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Preface

BPM 2012 was the tenth conference in a series that provides a prestigious forum
for researchers and practitioners in the field of business process management
(BPM). The conference was organized by the University of Tartu, Estonia, and
took place during September 3–6, 2012, in the capital city of Estonia, Tallinn.

In response to the call for papers we received 126 submissions. Each paper
was evaluated by three or four Program Committee members and one senior
Program Committee member. We accepted 17 regular papers (13.5% acceptance
rate) and seven short papers with an overall acceptance rate of 19%.

The call for papers of this year encouraged, in addition to the traditional re-
search areas of BPM, contributions that apply or combine established and new
techniques to the specific challenges of BPM. These include model-driven archi-
tecture, Web engineering, service-oriented architectures, complex event process-
ing, and cloud computing. The conference’s scientific program consisted of eight
research sessions: “Process Quality,” “Conformance and Compliance,” “BPM
Applications,” “Process Model Analysis,” “BPM and the Cloud,” “Requirements
and Performance,” “Process Mining,” and “Refactoring and Optimization.”

The conference hosted three invited keynote presentationswith amain theme of
past and future. Alejandro Buchmann, professor for databases and distributed sys-
tems in the Computer Science Department of Technische Universität Darmstadt,
outlined the architecture of future BPM systems using events. Wil van der Aalst,
professor of information systems at Eindhoven University of Technology (TU/e),
reflected on a decade of BPM conferences. Finally, Stephen A. White, the “father”
of BPMN and a BPM architect at IBM, talked about the future of BPMN.

We thank the authors and presenters, whose papers made this program
strong. We appreciate the senior Program Committee members, the Program
Committee members, and the external reviewers for their thorough review and
discussion of the submitted papers. We thank the BPM Steering Committee for
their valuable guidance.

We thank the BPM 2012 team. MarlonDumas, GeneralChair, and his Organiz-
ing Committee, Raimundas Matulevicius, Laura Kalda, and Georg Singer. Also,
Stephen A. White (Industry Chair),Marcello LaRosa andPnina Soffer (Workshop
Co-chairs), Niels Lohmann and Simon Moser (Demo Co-chairs), Florian Daniel
and Volker Gruhn (Tutorial and Panel Co-chairs), Michael zur Muehlen, Cesare
Pautasso, and Jianmin Wang (Publicity Co-chairs), and Boualem Benatallah,
Manfred Reichert, and Karsten Wolf (Doctoral Consortium Co-chairs).

We thank the conference sponsors: Bizagi (platinum), IBM and HP (gold), and
Signavio (silver) and our publisher, Springer, for their continuous support of BPM.
Finally, the use of EasyChair is appreciated, making our lives so much easier.

September 2012 Avigdor Gal
Ekkart Kindler
Alistair Barros
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Domenico Saccà University of Calabria
Shazia Sadiq The University of Queensland



X Organization

Erich Schikuta University of Vienna
Heiko Schuldt University of Basel
Guttorm Sindre NTNU
Pnina Soffer University of Haifa
Christian Stahl Eindhoven University of Technology
Mark Strembeck Vienna University of Economics and BA,

Institute of Information Systems,
New Media Lab
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A Decade of Business Process Management
Conferences: Personal Reflections

on a Developing Discipline

Wil M.P. van der Aalst

Department of Mathematics and Computer Science,
Technische Universiteit Eindhoven, The Netherlands

www.vdaalst.com

Abstract. The Business Process Management (BPM) conference series cele-
brates its tenth anniversary. This is a nice opportunity to reflect on a decade of
BPM research. This paper describes the history of the conference series, enumer-
ates twenty typical BPM use cases, and identifies six key BPM concerns: process
modeling languages, process enactment infrastructures, process model analysis,
process mining, process flexibility, and process reuse. Although BPM matured as
a research discipline, there are still various important open problems. Moreover,
despite the broad interest in BPM, the adoption of state-of-the-art results by soft-
ware vendors, consultants, and end-users leaves much to be desired. Hence, the
BPM discipline should not shy away from the key challenges and set clear targets
for the next decade.

1 History of the BPM Conference Series

The first International Conference on Business Process Management (BPM 2003) took
place in Eindhoven in the last week of June 2003, ten years ago. Therefore, I would like
to take the opportunity to describe the origin of the conference series and look back on
a decade of BPM research.

The direct trigger to organize the first BPM conference was generated by Grzegorz
Rozenberg in his capacity as chair of the Petri Nets Steering Committee. He invited us
to organize the 24th International Conference on Application and Theory of Petri Nets
(Petri Nets 2003) in Eindhoven. Moreover, he stimulated me to organize a co-located
event. This is how the idea for “BPM 2003” was born. The subtitle of BPM 2003 –
“On the Application of Formal Methods to Process-Aware Information Systems” – il-
lustrates the relation with Petri Nets conference. Together with Arthur ter Hofstede and
Mathias Weske, I served as PC chair of BPM 2003 [11]. I was also PC chair of Petri
Nets 2003 (together with Eike Best) [5]. Kees van Hee, Hajo Reijers, Eric Verbeek, and
many others from the Technische Universiteit Eindhoven (TU/e) were involved in the
organization of both conferences. BPM 2003 was remarkably successful considering it
was organized for the first time: 77 papers were submitted of which 25 papers were ac-
cepted. Moreover, various BPM vendors and consultants participated. Carl Adam Petri
gave a keynote, received a prestigious Royal medal (“Commandeur in de Orde van de
Nederlandse Leeuw”), and it was interesting to see him talking with BPM vendors about

A. Barros, A. Gal, and E. Kindler (Eds.): BPM 2012, LNCS 7481, pp. 1–16, 2012.
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2 W.M.P. van der Aalst

workflows. Afterwards, we decided to continue organizing BPM conferences given the
growing interest in the topic and enthusiasm of the BPM 2003 participants. We decided
to disconnect the BPM conference from the Petri Nets conference (to clearly show that
BPM is not linked to a specific formalism). Apparently, these were wise decisions; in
subsequent years the BPM conference series evolved into one of the premier informa-
tion systems conferences. The following list shows the ten BPM conferences organized
thus far:

– BPM 2003 (Van der Aalst, Ter Hofstede, Weske, Reijers, Van Hee, et al.), Eind-
hoven, The Netherlands [11],

– BPM 2004 (Weske, Desel, Pernici, et al.), Potsdam, Germany [19],
– BPM 2005 (Godart, Perrin, Van der Aalst, Benatallah, Casati, Curbera, et al.),

Nancy, France [4],
– BPM 2006 (Dustdar, Fiadeiro, Sheth, Rosenberg, et al.), Vienna, Austria [23],
– BPM 2007 (Rosemann, Dumas, Alonso, Dadam, Ter Hofstede, et al.), Brisbane,

Australia [14],
– BPM 2008 (Pernici, Casati, Dumas, Reichert, et al.), Milan, Italy [22],
– BPM 2009 (Reichert, Dadam, Reijers, Eder, Dayal, et al.), Ulm, Germany [18],
– BPM 2010 (Zur Muehlen, Hull, Mendling, Tai, et al.), Hoboken, USA [31],
– BPM 2011 (Toumani, Rinderle-Ma, Wolf, Hacid, Schneider, et al.), Clermont-Fer-

rand, France [36], and
– BPM 2012 (Dumas, Kindler, Gal, Barros, et al.), Tallinn, Estonia [15].

Since 2005 the conference features co-located workshops. The main proceedings are
published in Springer’s Lecture Notes in Computer Science (LNCS) and the workshop
proceedings are published in Springer’s Lecture Notes in Business Information Pro-
cessing (LNBIP). From 2003 to 2009, selected papers were invited for special issues
of Data & Knowledge Engineering (DKE). Since 2010, each year the best papers are
invited for a special issue of Information Systems (IS).

Although BPM 2003 was the first real BPM conference, there were some infor-
mal predecessor workshops. Together with Giorgio De Michelis and Skip Ellis, I or-
ganized the “Workflow Management: Net-based Concepts, Models, Techniques and
Tools” (WFM’98) workshop [12]. This workshop was co-located with Petri Nets 1998
in Lisbon, Portugal. Together with Jörg Desel and Roland Kaschek, I also organized
the “Software Architectures for Business Process Management” (SABPM’99) work-
shop [6]. This workshop was one of the pre-conference workshops of CAiSE 1999 in
Heidelberg, Germany. Based on these events, I started to work with Jörg Desel and An-
dreas Oberweis on an edited book during my sabbatical at the University of Karlsruhe.
In 2000, the book “Business Process Management: Models, Techniques, and Empiri-
cal Studies” [7] appeared. This LNCS volume can be seen as a direct predecessor of
BPM 2003 given the topic and people involved. Therefore, I will include it in my later
analysis.

2 Pre-BPM Era

Business Process Management (BPM) has various roots in both computer science and
management science. Therefore, it is difficult to pinpoint the starting point of BPM.
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However, it is obvious that BPM existed long before the term became popular. There-
fore, I reflect on the origins of BPM by summarizing major developments before the
conference in 2003.

Since the industrial revolution, productivity has been increasing because of techni-
cal innovations, improvements in the organization of work, and the use of information
technology. Adam Smith (1723-1790) showed the advantages of the division of labor.
Frederick Taylor (1856-1915) introduced the initial principles of scientific manage-
ment. Henry Ford (1863-1947) introduced the production line for the mass production
of “black T-Fords”. It is easy to see that these ideas are used in today’s BPM systems.

Around 1950 computers and digital communication infrastructures started to influ-
ence business processes. This resulted in dramatic changes in the organization of work
and enabled new ways of doing business. Today, innovations in computing and com-
munication are still the main drivers behind change in business processes. So, business
processes have become more complex, heavily rely on information systems, and may
span multiple organizations. Therefore, process modeling has become of the utmost im-
portance. Process models assist in managing complexity by providing insights and by
documenting procedures. Information systems need to be configured and driven by pre-
cise instructions. Cross-organizational processes can only function properly if there is a
common agreement on the required interactions. As a result, process models are widely
used in todays organizations.

In the last century many process modeling techniques have been proposed. In fact,
the well-known Turing machine described by Alan Turing (1912-1954) can be viewed
as a process model. It was instrumental in showing that many questions in computer
science are undecidable. Moreover, it added a data component (the tape) to earlier tran-
sition systems. Petri nets play an even more prominent role in BPM as they are graphical
and able to model concurrency. In fact, most of the contemporary BPM notations and
systems use a token-based semantics adopted from Petri nets. Petri nets were proposed
by Carl Adam Petri (1926-2010) in 1962. This was the first formalism able to model
concurrency. Concurrency is very important as in business processes many things hap-
pen in parallel. Many cases may be handled at the same time and even within a case
there may be various activities enabled or running concurrently. Therefore, a BPM sys-
tem should support concurrency natively.

Since the seventies there has been consensus on the modeling of data (cf. the Rela-
tional Model by Codd [17] and the Entity-Relationship Model by Chen [16]). Con-
versely, process modeling is best characterized by the term “divergence”. There is
little consensus on the fundamental concepts. Despite the availability of established
formal languages (e.g., Petri nets and process calculi) industry has been pushing ad-
hoc/domain-specific languages. As a result there is a plethora of systems and languages
available today (BPMN, BPEL, UML, EPCs, etc.).

Figure 1 sketches the emergence of BPM systems and their role in the overall infor-
mation system architecture. Initially, information systems were developed from scratch,
i.e., everything had to be programmed, even storing and retrieving data. Soon people
realized that many information systems had similar requirements with respect to data
management. Therefore, this generic functionality was subcontracted to a database sys-
tem. Later, generic functionality related to user interaction (forms, buttons, graphs, etc.)
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Fig. 1. Historic view on information systems development illustrating that BPM systems can be
used to push processes out of the application (left, adapted from [1])) and an overview of some
disciplines that contributed to the development of the BPM discipline (right)

was subcontracted to tools that can automatically generate user interfaces. This trend
continued in different areas. BPM systems can be seen in this context: a BPM system
takes care of process-related aspects. Therefore, the application can focus on support-
ing individual/specific tasks. In the mid-1990s many Workflow Management (WFM)
systems became available. These systems focused on automating workflows with little
support for analysis, flexibility, and management. BPM systems provide much broader
support, e.g., by supporting simulation, business process intelligence, case manage-
ment, etc. However, compared to the database market, the BPM market is much more
diverse and there is no consensus on notations and minimal capabilities. This is not a
surprise as process management is much more complex than data management.

A good starting point from a scientific perspective is the early work on office informa-
tion systems. In the seventies, people like Skip Ellis, Anatol Holt, and Michael Zisman
already worked on so-called office information systems, which were driven by explicit
process models [2, 24, 26, 25, 29, 30, 34, 40, 42, 41]. Ellis et al. [24, 26, 25] developed
office automation prototypes such as Officetalk-Zero, Officetalk-D and Officetalk-P at
Xerox PARC in the late 1970s. These systems used Information Control Nets (ICN), a
variant of Petri nets, to model processes. Office metaphors such as inbox, outbox and
forms were used to interact with users. The prototype office automation system SCOOP
(System for Computerizing of Office Processes) developed by Michael Zisman also
used Petri nets to represent business processes [40, 42, 41]. It is interesting to see that
pioneers in office information systems already used Petri-net variants to model office
procedures. During the seventies and eighties there was great optimism about the appli-
cability of office information systems. Unfortunately, few applications succeeded. As a
result of these experiences, both the application of this technology and research almost
stopped for a decade. Consequently, hardly any advances were made in the eighties.
In the nineties, there was a clear revival of the ideas already present in the early office
automation prototypes [8]. This is illustrated by the many commercial WFM systems
developed in this period.

In the mid-nineties there was the expectation that WFM systems would get a role
comparable to Database Management (DBM) systems. Most information systems sub-
contract their data management to DBM systems and there are just a few widely used
products. However, despite the availability of BPM/WFM systems, process management
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is not subcontracted to such systems at a scale comparable to DBM systems. The appli-
cation of “pure” BPM/WFM systems is still limited to specific industries such as banking
and insurance. However, BPM/WFM technology is often hidden inside other systems.
For example, ERP systems like SAP and Oracle provide workflow engines. Many other
platforms include workflow-like functionality. For example, integration and application
infrastructure software such as IBM’s WebSphere provides extensive process support.
In hindsight, it is easy to see why process management cannot be subcontracted to a
standard BPM/WFM system at a scale comparable to DBM systems. As illustrated by
the varying support of workflow patterns [9, 37], process management is much more
complex than data management. BPM is multifaceted, complex, and difficult to demar-
cate. Given the variety in requirements and close connection to business concerns, it is
often impossible to use generic BPM/WFM solutions. Therefore, BPM functionality is
often embedded in other systems and BPM techniques are frequently used in a context
with conventional information systems.

The first BPM conference in 2003 marked the transition from WFM to BPM [10].
Since then the BPM discipline matured. Today, the relevance of BPM is acknowledged
by practitioners (users, managers, analysts, consultants, and software developers) and
academics. This is illustrated by the availability of BPM systems, conferences, and
books such as [3, 8, 13, 21, 28, 32–35, 39].

3 BPM Use Cases

One of the goals of this paper is to reflect on 10 years of BPM research by analyzing the
proceedings of past BPM conferences (BPM 2003 - BPM 2011) and the edited book [7]
that can be viewed as a predecessor of the first BPM conference (see Section 1). In total
289 papers were analyzed by tagging each paper with the use cases and key concerns
described in the remainder.

Before conducting this analysis, I identified 20 use cases as shown in Figure 2. For
example, use case design model (DesM) refers to the creation of a process model from
scratch and use case discover model from event data (DiscM) refers to the automated
generation of a process model using process mining techniques. Models constructed
through use case DesM are descriptive (D), normative (N), and/or executable (E). This
is denoted by the “D|N|E” tag in Figure 2. A model discovered through process min-
ing (DiscM) is typically not normative as it is based on observed behavior (cf. “D|E”
tag). Models can also be obtained through selection (SelM), merging (MerM), or com-
position (CompM). Most papers were tagged with one or two use cases. The tagging
was based on the most important use case(s) the paper aims to support. For example,
the paper “Graph Matching Algorithms for Business Process Model Similarity Search”
[20] presented at BPM 2009 was tagged with the use case select model from collection
(SelM) since the paper presents an approach to rank process models in a repository
based on some initial model.

Use cases design configurable model (DesCM), merge models into configurable
model (MerCM), and configure configurable model (ConCM) deal with configurable
models. There models – also referred to as reference models – correspond to families
of concrete process models (i.e., variants of the same process). Use case refine model
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Fig. 2. Twenty BPM use cases: M = model, E = event data, CM = configurable model, S = in-
formation system, D = diagnostics, CD = conformance-related diagnostics, PD = performance-
related diagnostics. Models can be tagged as descriptive (D), normative (N), or executable (E).

(RefM) refers to the transformation of a descriptive or normative model into an exe-
cutable model. Executable models can be enacted by applying use case enact model
(EnM).

Use cases can be chained together as shown in Figure 3. The last use case in the
chain is analyze performance using event data (PerfED) which requires event data and
an executable model. PerfED use may be used to uncover bottlenecks observed in real-
ity. Use case check conformance using event data (ConfED) requires similar input but
focuses on deviations rather than performance. Use case analyze performance based
on model (PerfM) focuses on performance without using event data, e.g., model-based
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Fig. 3. Composite use case obtained by chaining five use cases: DesM, RefM, EnM, LogED, and
PerfED

simulation used to analyze flow times, utilization, and bottlenecks. Use case monitor
(Mon) refers runtime analysis without using any model (e.g., flow time analysis with-
out looking “inside the process”).

Use case adapt while running (AdaWR) refers to changing the system and model
at runtime to provide flexibility, e.g., modifying a model and subsequently migrating
process instances. The paper “Instantaneous Soundness Checking of Industrial Business
Process Models” [27] also presented at BPM 2009 is a typical example of a paper tagged
with use case verify model (VerM). In this paper 735 industrial business process models
are checked for soundness (absence of deadlock and lack of synchronization) using
three different approaches.

Use case repair model (RepM) changes a model based on conformance-related diag-
nostics, e.g., deviations are used to correct the model. Use case improve model (ImpM)
is similar but focuses on performance-related diagnostics. For example, bottleneck anal-
ysis is used to redesign the process. Use case extend model (ExtM) refers to the process
mining scenario where a model is enriched using information extracted from the event
log [3].

Papers where typically tagged with one dominant use case, but sometimes more tags
were used. In total, 367 tags were assigned (on average 1.18 use cases per paper). By
simply counting the number of tags per use case and year, the relative frequency of
each use case per year can be established. For example, for BPM 2009 four papers
were tagged with use case discover model from event data (DiscM). The total number
of tags assigned to the 23 BPM 2009 papers is 30. Hence, the relative frequency is
4/30 = 0.133. Table 1 shows all relative frequencies including the one just mentioned.
The table also shows the average relative frequency of each use case over all years.
These averages are shown graphically in Figure 4.

Figure 4 shows that use cases design model (DesM) and enact model (EnM) are
most frequent. This is not very surprising as these use cases are less specific than most
other use cases. The third most frequent use case – verify model (VerM) – is more
surprising (relative frequency of 0.144). An example paper having such a tag is [27]
which was mentioned before. Over the last decade there has been considerable progress
in this area and this is reflected by various papers presented at BPM. In this context it
is remarkable that the use cases monitor (Mon) and analyze performance using event
data (PerfED) have a much lower relative frequency (respectively 0.009 and 0.015).
Given the practical needs of BPM one would expect more papers presenting techniques
to diagnose and improve the performance of business processes.

Figure 5 shows changes of relative frequencies over time. The graph shows a slight
increase in process-mining related topics. However, no clear trends are visible due to
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Fig. 4. Average relative importance of use cases (taken from Table 1)
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the many use cases and small numbers. Therefore, all BPM papers were also analyzed
based on the six key concerns presented next.

4 BPM Key Concerns

To provide a trend analysis at a coarser level of granularity, I also identified six key
concerns before analyzing the 289 papers:
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Process modeling languages. The first concern is about the process modeling
language to be used. Many papers propose a new notation or evaluate existing
ones. There are often competing requirements, e.g., the language should be very
expressive but simple at the same time [9]. Languages intended for automated pro-
cess execution (e.g., BPEL) may be very different from languages mainly used for
discussion and documentation (e.g., EPCs). Other languages may be tailored to-
wards verification (e.g., WF-nets) or process mining (e.g., C-nets or hidden Markov
chains).

Process enactment infrastructures. The second key concern is the creation of an in-
frastructure to execute, support, and monitor processes. Examples of topics dealing
with this concern are the development of workflow engines, service-oriented com-
puting, interoperability, cloud computing, enterprise application integration, work
distribution systems, etc.

Process model analysis. The third concern refers to the analysis of processes based on
models without using event data. Papers addressing this concern are about topics
such as soundness verification, simulation, model checking, queueing networks,
controllability, etc.

Process mining. The fourth concern refers to all analysis techniques that are driven by
event data. For example, process discovery techniques that construct a model based
on observed traces. Process mining is not limited to discovery and also includes
conformance checking and extension [3]. Conformance checking can be used to
check if reality, as recorded in an event log, conforms to the model and vice versa.
Extension adds a new perspective to the process model by cross-correlating it with
an event log.

Process flexibility. The fifth concern addresses the problem that existing WFM/BPM
systems tend to be inflexible. Process flexibility can be seen as the ability to deal
with both foreseen and unforeseen changes, by varying or adapting those parts of
the business process that are affected by them, while retaining the essential format
of those parts that are not impacted by the variations [38]. Papers on case handling,
adaptive workflows, late-binding, declarative languages, etc. all aim at adding flex-
ibility.

Process reuse. The sixth concern addresses the problem that (parts of) processes are
often “reinvented” rather than reused. The challenge is to avoid duplicate modeling
and implementation efforts. Configurable process models, reference models, pro-
cess repositories, similarity search, etc. are typical approaches to promote reuse.

As for the use cases, the papers in [7], [11], [19], [4], [23], [14], [22], [18], [31], [36],
and [15] were tagged with one, or sometimes more, key concerns. A total of 342 tags
were assigned to the 289 papers (1.18 tag per paper on average). The tags were used
to determine the relative frequencies listed in Table 2. For example, for BPM 2010 I
tagged four papers with key concern process reuse. The total number of tags for BPM
2010 is 25. Hence, the relative frequency is 4/25 = 0.16. The bottom row gives the
average relative frequency of each concern over all 10 years. Both trends and averages
are depicted graphically in Figure 6. As expected, the first three concerns are most
frequent. The fourth and sixth concern (process mining and process reuse) are gaining
importance, whereas the relative frequency of the process flexibility concern seems to
decrease over time.
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Table 2. Relative importance of the six key concerns over the years. All rows add up to 1. The
last row shows the average relative frequency over all years.

process
modeling
languages

process
enactment
infrastruc-
tures

process
model
analysis

process
mining

process
flexibility

process
reuse

year
2000 0.355 0.161 0.290 0.000 0.161 0.032
2003 0.325 0.200 0.250 0.050 0.075 0.100
2004 0.286 0.238 0.238 0.143 0.048 0.048
2005 0.288 0.231 0.212 0.058 0.096 0.115
2006 0.154 0.308 0.288 0.096 0.077 0.077
2007 0.387 0.097 0.194 0.194 0.065 0.065
2008 0.324 0.108 0.297 0.135 0.081 0.054
2009 0.148 0.111 0.370 0.222 0.037 0.111
2010 0.240 0.240 0.200 0.160 0.000 0.160
2011 0.143 0.171 0.200 0.314 0.000 0.171

average 0.265 0.187 0.254 0.137 0.064 0.093
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Fig. 6. Visualization of the results from Table 2 for each of the six key concerns: changes of
relative importance over time (left) and average relative frequency (right)
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5 Reflections

Before discussing some insights obtained when tagging the 289 BPM papers, I first
reflect on the analysis method used.

The tagging of a paper with use cases and key concerns is highly subjective. It is
unlikely that another expert would come to the exact same tags for each paper. For
example, to tag a paper one needs to decide what the key contribution of the paper is.
Many papers are rather broad and difficult to classify. For example, papers on topics
such as “Social BPM”, “BPM maturity”, and “BPM Security” cannot be tagged easily,
because these topics seem orthogonal to the uses cases and key concerns. This explains
why broad use cases like design model (DecM) and enact model (EnM) score relatively
high.

The key concerns were identified before tagging the papers. In hindsight there seem
to be at least three potentially missing concerns: process integration, patterns, and col-
laboration. Many papers are concerned with web services and other technologies (e.g.,
SaaS, PaaS, clouds, and grids) to integrate processes. These are now tagged as process
enactment infrastructures (second concern). In the BPM proceedings there are various
papers proposing new patterns collections or evaluating existing languages using the ex-
isting workflow patterns [9, 37]. These are now tagged as process modeling languages
(first concern). Another recurring concern seems to collaboration, e.g., collaborative
modeling or system development.

Given a process, different perspectives can be considered: the control-flow perspec-
tive (“What activities need to be executed and how are they ordered?”), the organiza-
tional perspective (“What are the organizational roles, which activities can be
executed by a particular resource, and how is work distributed?”), the case/data per-
spective (“Which characteristics of a case influence a particular decision?”), and the
time perspective (“What are the bottlenecks in my process?”), etc. The use cases and
key concerns are neutral/orthogonal with respect to these perspectives. Although most
papers focus on the control-flow perspective, there are several papers that focus on
the organizational perspective, e.g., papers dealing with optimal resource allocations or
role-based access control. It would have been useful to add additional tags to papers
based on the perspectives considered.

Next, I reflect on the papers themselves. Comparing papers published in the early
BPM proceedings with papers published in more recent BPM proceedings clearly shows
that the BPM discipline progressed at a remarkable speed. The understanding of process
modeling languages improved and analysis techniques have become much more pow-
erful. Despite the good quality of most papers, some weaknesses can be noted when
reflecting on the set of 289 BPM papers.

– Many papers introduce a new modeling language. The need for such new languages
is often unclear, and, in many cases, the proposed language is never used again. A
related problem is that many papers spend more time on presenting the context
of the problem rather than the actual analysis and solution. For example, there are
papers proposing a new verification technique for a language introduced in the same
paper. Consequently, the results cannot be used or compared easily.

– Many papers cannot be linked to one of the 20 use cases of Section 3 in a straight-
forward manner. Authors seem to focus on originality rather than relevance and
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show little concern for real-life use cases. One could argue that such papers pro-
pose solutions for rather exotic or even artificial problems.

– Many papers describe implementation efforts; however, frequently the software is
not available for the reader. Moreover, regrettably, many of the research prototypes
seem to “disappear” after publication. As a result, research efforts get lost.

– Many papers include case studies, e.g., to test a new technique or system, which is
good. Unfortunately, most case studies seem rather artificial. Often the core con-
tribution of the paper is not really evaluated or the case study is deliberately kept
vague.

6 Outlook

The BPM discipline clearly matured over the last decade. Nevertheless, there are many
exciting open problems and BPM will remain highly relevant. Whereas it used to be in
vogue to present a technique which just exists on paper, more recent BPM papers tend to
describe an implementation of the ideas (proof-of-concept). Moreover, the importance
of empirical evaluation seems to increase. Consider for example a new fictive verifica-
tion techniqueX . It used to be acceptable to just present the idea and some proof of X’s
correctness. Now it is expected that X is implemented and some experimental results
need to be provided in the paper. In the future authors will be required to include an em-
pirical evaluation using large collections of process models and really compare results
using benchmark examples. This is good development. Researchers should focus on the
hard BPM problems rather than trying to come up with original (fake or artificial) prob-
lems. Hence, it would be good to organize competitions centering around challenging
BPM problems that need to be solved urgently.

The “Big Data” wave provides new prospects for BPM research. Organizations are
recording large amounts of event data and start understanding the potential value of
such data. This is great opportunity to promote “evidence-based BPM”, e.g., research
ideas can be empirically evaluated using real data. This will increase the credibility of
BPM research and help convincing practitioners to adopt new ideas.

This paper lists 20 use cases. As mentioned, for some papers it is unclear to see
which use case the authors are trying to support. It would be interesting to require BPM
authors to tag their paper with the use cases addressed by their work. This could serve as
a reality check for the authors and help to structure the field (e.g., to find reviewers and
related work). Such ideas would of course require further development of the use cases
presented in this paper (including requests for input, open discussions, and consensus
building).

Although BPM research is extremely relevant and its results are useable by many or-
ganizations, there are no strong industrial counterparts willing to invest in foundational
BPM research. Established consultancy and software firms tend to be rather conserva-
tive and end-user organizations are not aware of advances in BPM research. Topics are
hyped, but the actual realization of ideas often leaves much to be desired. As a result
“BPM is everywhere and nowhere”. Compare this to other domains (e.g., the high-
tech industry) where there are fewer players, but these are able to invest in R&D and
cannot survive by selling only buzzwords. Given these circumstances, it is important
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to develop shared open-source software as a means to influence practitioners. Unfor-
tunately, many prototypes are developed from scratch and “fade onto oblivion” when
the corresponding research project ends. Therefore, there is a need to maintain larger
open-source software platforms shared between different groups. However, this is not
easy. For example, open-source tools like ProM and YAWL have more than 400,000
lines of code. It is a challenge to sustain such efforts over a longer period of time. The
BPM community would benefit from shared development efforts using a limited num-
ber of large open-source software platforms (instead of developing many throw-away
prototypes), but this requires a change in research culture.

Given all of these challenges, I’m looking forward to a new decade of exhilarating
and simulating BPM research!
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Abstract. Contemporary BPM systems fit very well with traditional
architectures that are based on a pull invocation principle, such as SOA.
The proliferation of sensors and streams of events has led to event driven
architectures that decouple event producers and consumers. EDAs are
push-based and support different control structures. Future BPM sys-
tems must therefore deal both with pull and push-based architectures.
In this talk we will analyze the interplay of the different architectures,
their components and the desirable and achievable correctness notions
and non-functional properties.

1 Introduction

By 2020 it is predicted that a large portion of enterprises will be process driven
[20]. The key driving forces that are mentioned are customer centricity, opera-
tional excellence, new regulations, new business models, and a global workforce.
In this world Business Process Management (BPM) will play a deciding role. A
BPM system, according to [28] is “a generic software system that is driven by
explicit process designs to enact and manage operational business processes”.
We will refer to BPM systems in their most general form, including not only
traditional workflow management (WFM) but also Business Process Analysis
(BPA), Business Process Monitoring (BAM) and Process Aware Information
Systems (PAIS).

The traditional BPM lifecycle consists of process design, system configura-
tion, process enactment, and diagnosis. The result of business process diagno-
sis may result in process redesign. The automatic extraction of new business
processes through process mining of the event log is an alternative to manual
process (re)design. Emergent software [13] is a closely related topic. Researchers
in this area are trying to develop software systems that can adapt to changing
environments producing new behaviors from local events. The goal of Emergent
Enterprise Software Systems is to facilitate the cooperation across enterprise
boundaries by self-adapting the business process.

The degree of human involvement in the (re)design of business processes can
vary and is a continuum ranging from completely manual design to autonomic
behavior with enforcement of self-x properties, and finally the automatic extrac-
tion of new processes. This continuum is the top layer of Figure 1.
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Fig. 1. Business processes from the system perspective

Processes are at the core of process aware software systems. Processes must be
represented by a model in the corresponding formalism or language. The mod-
eling formalism may range from intuitive and mostly graphic representations,
such as BPMN, to more formal notations based, for example, on petri-nets or
variants of process algebras, such as CCS or Pi-calculus. To automate the pro-
cess design or redesign, a formal model is needed. Informal or intuitive graphical
notations are good for human consumption but unsuitable for automatic process
extraction. This is the middle tier in Figure 1.

Processes must be mapped to the corresponding execution environment for
enactment. The by now established platform for enactment of business processes
are web services. Many of the most interesting new applications, however, are
monitoring and reactive applications responding to events that are sensed by
a multitude of sensors or are generated through event aggregation, composition
and/or derivation. These applications are not well served by web services and ser-
vice oriented architectures. There are two main reasons: 1) Web services employ a
request-respond invocation mechanism, i.e., they are primarily pull-based. Mon-
itoring and reactive applications are better served by push-based dissemination
(of streams) of events and their associated data. 2) Web services have been con-
ceived as black boxes that hide the middleware they are running on. Only recent
efforts [21] have tried to provide for vertical service composition that enables the
execution of services on the best suited middleware platform. The lower portion
of Figure 1 shows the two complementary paradigms and the corresponding ar-
chitectures: Service Oriented Architecture (SOA) for more traditional pull-based
invocation and Event Driven Architecture (EDA) for push-based invocation. It
is our conviction that environments for execution of a broad range of business
processes must offer both kinds of invocation. However, since SOA is well estab-
lished for the processing of business processes, we will concentrate on EDA, its
advantages and challenges.
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The advantages of EDA consist in the loose coupling between producers and
consumers of events that lead to easy extensibility of systems, and the celer-
ity with which events are detected, propagated and reacted to. The challenges
consist in establishing a common understanding of the semantics of events and
the execution of triggered tasks, and in establishing understandable correctness
criteria for the execution of event driven business processes.

The remainder of this paper discusses events and event composition in Section
2; Section 3 presents briefly EDA; Section 4 discusses quality of service in Event
Driven Architectures; Section 5 presents the concluding discussion.

2 Events and Event Composition

There exist many interpretations of what an event is. Often these different in-
terpretations are community-specific. Therefore, we start by introducing a clas-
sification proposed by Chandy and Schulte in their book ’Event Processing,
Designing IT Systems for Agile Companies’ [7] that reflects some of the ongoing
debate. There are three views of what an event is, each being true from one per-
spective but none describing the whole truth or being equally useful in different
situations.

– An event is a happening of interest. This is an activity-based view of events
and quite intuitive. For example, a person entering a room or a container
leaving a warehouse. While easy to understand and useful for describing
a situation it is not helpful computationally and must be translated into
measurable quantities.

– An event is a (meaningful) change of state. This definition considers any
change in the model of reality that is observed as a potential event. Such a
change could be the detection of an RFID tag on a container at the warehouse
gate. This approach is very useful in implementing event based systems but
often requires deriving the more abstract event (e.g. the container leaving
the warehouse) from one or more observations. This definition depends on
detecting change and makes it difficult to handle observations that may be
of interest even though no change occurred.

– An event is a detectable condition that can trigger a notification. This is a
reporting-based view of events. This definition is somewhat more general
than the change of state view in that it also considers the absence of change
as a detectable condition. However, it depends on a reporting capability
in the form of notifications, defined as an event-triggered signal sent to a
run-time recipient. This view of events is quite useful to detect all kinds of
events, even observations that do not depend on a change, but anything that
is either not observed or not reported is not considered an event.

In [14] we expanded the second definition above, by including time as a basic
dimension, thereby allowing us to consider two observations taken at different
times to be considered as two events even if none of the other dimensions describ-
ing the state have changed. Notifications are the natural way of notifying parties
interested in an event, usually via a publish/subscribe notification service.
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2.1 Important Concepts in Event Driven Architectures

Event types and event instances: The event type determines the attributes of an
event and its structure. An event instance is a particular materialization of an
event type and may be identified either through an event-identifier or through a
unique combination of attribute values.

Event objects, event representations and notifications: An event carries a times-
tamp and descriptive parameters and is typically represented as a tuple of values.
This representation is called the event object. Event objects can have other rep-
resentations, for example, an XML document. When the event object is packaged
into a message, we talk about an event notification.

Temporal events are first class citizens. We distinguish between absolute tempo-
ral events and relative temporal events. Absolute temporal events conceptually
consist only of a timestamp and the source and have a simple representation.
The timestamp has a given granularity that is often encoded in the format of the
timestamp and an identifier of the clock that may be omitted in centralized sys-
tems. Relative temporal events are time offsets relative to a base event. The base
event can be either an absolute temporal event or it could be any other event.
The granularity of the offset can be specified as a function of the capability of
the clock and the requirements of the application.

State events are sometimes identified as a special kind of event to distinguish
them from change events, i.e. the change of state. State events are observations in
which the observed quantity may not have changed but only time has advanced.
Given the framework proposed earlier to include time as an integral part of
the definition of state, there is no need to make a distinction for state events.
Subscribers to state events must provide the frequency at which they need the
observation events.

Change events refer to any change of state. We must restrict ourselves to mean-
ingful state changes. What is meaningful is determined by an event consumer
who subscribes to events. The producer may generate events at a certain rate,
for example, every second, but one consumer of those events is only interested
in every tenth event while another consumer needs that type of event only every
minute, i.e. every 60th event.

Event filtering is applied to eliminate those events that were observed but for
which no interest exists. Event filtering can occur in principle anywhere along
the path between producer and consumer of a certain event type. Placing the
filter near the event source minimizes the notification costs and the processing
cost for the event consumer.

Simple events are basic events that are not the result of some composition.

Complex events are all the events that are the result of an event processing step
that combines several events or enriches the events with context information.
We distinguish between composite and derived events.
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Composite events are the result of combining multiple events, typically through
the operations of an event algebra. Although this is not always accepted, the
glossary of the Event Processing Technical Society (EPTS) [19] defines that
composite events always must carry all the constituting events. A special case
of composite events are aggregate events which are formed through applica-
tions of the standard aggregation operators, such as average, sum, max, min,
count, or top-k. Aggregate events rarely carry the full set of simple events
that were aggregated. Particularly in wireless sensor networks it is the goal
to reduce the volume of transferred events and only the aggregation is propa-
gated.

Derived events are events of a higher level of abstraction. For example, if we
observe 3 failed login attempts we might consider this to be an attempt to
penetrate the system, or 10 temperature readings that increase monotonically
imply a failure of the air conditioning system. Derived events are the events one
typically expects when talking about complex event processing. They can be
quite abstract and may involve correlation of events with external information.
For example, the sale of stock by a manager of a pharmaceutical company two
days before it is publicly known that a new drug will not be approved by the FDA
might be an insider trading event. The combination of events with additional
information, either from external sources or from databases, is generally referred
to as event enrichment or event contextualization.

Complex event processing encompasses event filtering, aggregation, composition
and derivation, as well as event contextualization. Complex event processing
can be accomplished with several mechanisms. Most common is the processing
of streams of event objects on which windows are defined [5]. Stream processing
systems apply the operators of an algebra, for example those of relational algebra,
to the instances of event objects in a window. Windows can be defined based on
a number of objects in the window or based on time intervals. They can also be
sliding or tumbling. Sliding windows open a new window at predefined intervals.
If the interval for opening a new window is the size of the window, we speak of
tumbling windows.

An alternative (or complement) to stream processing is the correlation of
events, e.g. based on time. This approach is typical in sensor fusion. More so-
phisticated event compositions are based on event algebras that typically contain
operators for sequencing (ordered events), intersection (AND, two events occur-
ring in any order), union (OR, any of two events occurring), negation (an event
NOT occurring in a well-defined interval), accumulation (ANY n events occurring
in a well-defined interval), etc. [10,6]. Complex events are then represented as
expressions of the event algebra. These expressions are transformed into a tree
structure in which the inner nodes are the operators of the algebra and the
operands (event objects) are at the leaves. These graphs are evaluated similarly
to query graphs in a database from the leaves to the root with the composite
event being the result of the evaluation of the root node.
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2.2 Events in BPM

Usage of events is supported in mainstream business process models such as
BPMN and UML activity diagrams by means of two workflow patterns: the “de-
ferred choice” pattern [25] and the “event-based task trigger” pattern [26]. These
offer an activity-based view of events; events are sent as messages to trigger sub-
processes. The producer of the event sends a single event as a direct message to
activate the subprocess. In this sense it is comparable with imperative program-
ming. The notion of streams of events, subscriptions and composition/derivation
of events is not considered yet.

3 Event Driven Architecture

A basic tenet of EDA is the loose coupling between event producers and event
consumers. This means that the producer of events need not be aware of who
will eventually consume the produced events. It also means that producer and
consumer of events should be decoupled in space and time. Spatial decoupling
results in distributed systems, temporal decoupling in asynchronous systems.
The main properties an EDA should fulfill as stated in [7] are:

– Reporting of current events as they happen
– Pushing notifications of events from the producer to the consumer
– Responding immediately to recognized events
– Communicating one-way without the need for acknowledgements
– Reacting to event notifications and not to commands

Events should be reported as soon as they happen rather than being stored
and later forwarded or requested by the consumer. Events will be reported as
discrete event objects that are packaged in a notification. A notification service
is thus responsible for prompt delivery of notifications. Consumers of events,
i.e. the applications, should respond immediately to relevant events. These three
conditions guarantee timely response of event driven systems.

Decoupling is important since events occur independently of the reactions.
Interested parties must subscribe to events in order to receive the corresponding
event notifications. Subscribers can also unsubscribe and this does not affect
the future detection of the events, only their notification. The event based in-
teraction pattern does not require any answer, i.e., the event producer will not
block. Because the event producer is not aware of the event consumers, it cannot
request the event consumer to execute any actions. Event driven systems are,
therefore, consumer controlled. Loose coupling provides the desired flexibility
because components need not be active at the same time and new components
can be added without affecting existing components as long as the notifications
do not change.
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3.1 Components of an Event Driven Architecture

An EDA minimally consists of three components: event producer, notification
mechanism, and event consumer, as shown in Figure 2. Event objects are ac-
cepted by the notification mechanism and packaged into notifications.

Fig. 2. Components of an EDA

Event producers detect events and produce event objects. The event object has
a structure that is defined by the event type and contains the necessary event
parameters. Event parameters are instantiated by the event detection process
and the event contextualization process. The event detection process typically
will probe the environment. The event contextualization process will add context
information, such as location of the detector and timestamp but may rely on
external data sources as shown in Figure 3, although for practical reasons type
and context information may be held locally.

Fig. 3. Event Producer

Event consumers receive event notifications from the notification mechanism.
Event consumers must unpack the event notification, extract the event object
and execute an action in response to the received event. In principle, the response
may be a local action, the invocation of a (remote) service or business process,
a rule that must be triggered, an event composition or storage of the event for
logging. Event consumers may act as event producers, for example, when they
produce a composite event that is forwarded. Figure 4 shows schematically an
event consumer.
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Fig. 4. Event Consumer

The notification mechanism is the most interesting component of the whole
EDA. Its function is that of a communication channel that pushes events from
the producers to the consumers thereby providing an end-to-end push-style com-
munication. Because in an event driven interaction the producer does not know
the consumer, the notification mechanism must mediate the communication. In
its simplest form this could be a dedicated communication channel carrying all
the events of a producer to the consumer, or it could be a sophisticated pub-
lish/subscribe system. We will analyze the spectrum of options. The relevant
questions are:

– How are producers and consumers brought together?
– Does the channel deliver all messages or does it filter?
– If filtering is done, on what criteria and where are the filters placed?
– Are events transformed or only routed by the notification mechanism?
– If transformations are applied, where are they applied and what are they?

3.2 Channel-Based Notification Systems

Common Area Channels of two kinds are popular: blackboards and queues. In
a blackboard-type channel, publishers post their detected events to a common
area and consumers pick up events from there. Examples of blackboard-type
common areas are tuple-spaces. An extreme form of a persistent tuple-space
is a relational database. Queues are message buffering structures administered
by a queue manager. Queues come in a variety of flavors: persistent vs. non-
persistent, transactional vs. non-transactional. Common-area channels provide
asynchrony and loose coupling but do not fulfill the requirement of end-to-end
push-style notification required for EDA, since consumers must pull events from
the common area. Therefore, we will not pursue common-area channels further
in this discussion.

Notification Routing Channels contain one or more brokers that implement some
form of routing table. Routing tables are built based on event subscriptions.
Consumers declare their interest in certain (types of) events and the brokers
mediate between producers and consumers. If no filtering occurs in the broker, we
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Fig. 5. Event Transforming Broker

speak about flooding. The power of notification routing channels, however, lies in
the ability to filter event notifications and deliver only the relevant notifications
to the consumer.

Notification Transforming Channels consist of a network of brokers, each of which
can act as a consumer and producer of events. Notification transforming chan-
nels in their simplest form take in an event and change the structure of the
event object and/or the format of one or more parameters. Events can also be
enriched with external context data, aggregated or composed with other events.
The Notification Transforming Broker receives an event notification, unpacks it,
transforms the event, re-packs it into a notification and routes the new notifica-
tion according to its routing table. This type of broker is shown schematically
in Figure 5. Event transforming brokers are used in some advanced types of
publish/subscribe systems and Enterprise Service Busses.

3.3 Publish/Subscribe Notification Systems

Publish/Subscribe is the mechanism of choice in Event Driven Architectures.
Although it is possible to implement an EDA with other notification channels,
Pub/Sub offers many advantages. In a Pub/Sub system, consumers subscribe
to events of interest. Subscriptions are mapped to routing tables and to filters.
Optionally, event producers can advertise the types of events they are prepared
to produce. Depending on the filtering and the kind of routing performed by the
brokers, we can distinguish different classes of publish/subscribe systems:

Channel-based Pub/Sub provides a named channel to which subscribers can sub-
scribe. All the events of a given type are dumped into the channel. The subscriber
receives all the notifications published to this channel and must apply the filters.
This is the approach used in early middleware platforms, e.g. CORBA Event Ser-
vice [22]. The CORBA Notification Service [23] improves the Event Service by
providing filters.

Type-based Pub/Sub uses path expressions and subtype inclusion tests to se-
lect notifications. Through multiple inheritance, the subject tree can thus be
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converted into a type lattice with multiple rooted paths to the same node. This
approach circumvents some of the limitations of simple subject hierarchies [24].

Topic-based Pub/Sub is the approach associated with the Java Messaging Service
[27]. Topic-based pub/sub uses channels that include filters. Filtering is done
through Boolean predicates defined on the envelope of the notification. While
the filters that can be expressed are quite flexible their expressiveness is limited
by the fact that they can only be defined over the metadata contained in the
header.

Content-based Pub/Sub extends matching to the content of the body of the
message rather than limiting it to the header. The expressiveness of this approach
is determined to a large extent by the data model used for the content and the
corresponding formalism for expressing the filter predicates. Systems have been
proposed based on simple template matching [9], filter expressions on name/value
pairs [1] and XPath expressions on XML documents [11]. A tacit assumption
for content-based pub/sub to work is the existence of a common name space
and context used by publishers and subscribers. This is often the case in small
systems but rarely in large, heterogeneous environments.

Concept-based Pub/Sub [8,12] addresses the problem of implicitly assumed se-
mantics and makes the semantics of advertisements, subscriptions and notifica-
tions explicit. Concept-based pub/sub associates a context with each notification
and filter. Matching compares first if the contexts of filter and notification are
the same. If true, the normal content-based pub/sub approach kicks in. If the
contexts of filter and notification are different, an ontology service is invoked
to resolve the different semantics, for example by converting currencies or for-
mats of dates. This approach can be used in conjunction with many of the other
pub/sub approaches in large, heterogeneous environments.

3.4 Hybrid Architectures

Real-life systems rarely conform to the pure reference architecture. Therefore, it
is necessary to combine different invocation styles in the form of hybrid archi-
tectures. Referring to Figure 4, the event consumer may trigger a request-driven
interaction to a business process or a service in a SOA, resulting in an event
driven SOA. Likewise, an event may trigger a request to a queue to pick up
something posted there. Both architectural styles must coexist.

4 Quality of Service in Event Driven Architectures

End to end Quality of Service (QoS) in an EDA can be affected by various
components. Large event driven systems are often distributed, so the network
characteristics play a big role. For example, messages may be delayed, lost or
arrive out of order. This must be considered when looking at the achievable QoS
of the components of an EDA. We will consider four aspects in this section:
the QoS of the stream processing mechanism, the QoS of the algebra-based
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event composition mechanism, the QoS provided by the notification mechanism,
and the effect on transactional behavior of business (sub)processes if these are
triggered by an event.

4.1 QoS of Stream Processing

Stream processing is used to detect patterns and raise alarms or trigger rules or
actions when certain patterns are observed. Stream processing is highly depen-
dent on the nature of the streams. While the operators used in stream processing
resemble the operators of relational algebra but applied to windows (when the
event objects are tuples), the nature of streams is quite different from the na-
ture of data in a database. Event objects in a stream arrive continuously and are
usually processed in arrival order. They are generated by external sources that
are outside the control of the stream processing system. Therefore, the input
characteristics can’t be controlled and event objects may be lost or corrupted.
The volume of incoming streams may vary widely depending on the subscription
pattern of the application, and the structure of the event objects may range from
simple tuples to XML documents or even unstructured data, such as images.

Stream processing requires continuous processing of incoming event objects.
Since applications depending on stream processing typically have timing con-
straints to meet, the timeliness of a response is one of the most relevant QoS
requirements. Many applications that depend on stream processing can tolerate
approximate results. Therefore, it is common to trade-off accuracy for timeliness.
A closely related QoS metric is the achievable throughput. Throughput is less
sensitive to load than response time.

Stream processing systems attempt to optimize continuous query execution
to maximize throughput. However, load shedding is often the only practical ap-
proach, resulting in a trade-off of accuracy for timeliness. Application processes
must be aware of this and specifications of expected timeliness and tolerable
accuracy are required during business process design.

Another issue that is application dependent is the tolerance to events being
processed out of order. Research on how to deal with out of order events in
streams [4] has been incorporated into some of the industrial offerings.

4.2 QoS of Event Composition

The achievable QoS in event composition depends largely on the possibility to
establish an ordering between events. While operators such as intersection and
union do not require ordering, the sequence operator, which is part of most event
algebras, requires an ordering of events. The natural ordering is done on time.
This is perfectly fine if there is only one central clock and at most one event can
occur per clock tick. As soon as multiple events can occur simultaneously and
are time-stamped by different clocks it becomes impossible to establish a total
order.

The granularity of time is also important when trying to establish an ordering.
Two events with distinguishable order with timestamps of fine granularity (e.g.
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milliseconds) may not be distinguishable with coarser timestamps (e.g. seconds).
Some applications are not affected, while for others it is essential. For example,
if a tagged container passes two RFID readers, the proper sequence determines
the derived event that the container has either entered or left the warehouse.
It is often the case that application semantics or additional information sources
must be brought in to resolve ambiguities. However, in case of ambiguity, the
underlying middleware should never arbitrarily choose a solution and pretend
there exists an unambiguous ordering.

The delay or loss of messages, especially in wide area networks, is another
source of potential ambiguity. To evaluate the negation operator, i.e. to deter-
mine whether an event did not occur in a given interval, one must be able to
establish that the message with the notification is neither lost nor delayed. In
networks with bounded delay, the 2g precedence model is adequate [15]. It es-
tablishes that anything outside an interval formed by one maximum delay before
to one maximum delay after a given point in time can be known with certainty.
For unbounded networks, such as the Internet, an approach based on sweeper
events has been proposed [16]. It does not assume ordering, but requires only
that two events in the same channel do not overtake each other. By injecting the
heartbeat events from an outside time service, the recipient knows that every-
thing coming over that channel after the heartbeat must be younger. Delivery
in publishing order can be ensured by the messaging middleware. The past be-
fore the heartbeat thus becomes certain while the past between the heartbeat’s
timestamp and the present is still uncertain.

The last issue impacting the QoS of the event composition is the order in
which events are consumed. Event expressions are written based on event types.
Expressions are instantiated by the arrival of instances of events that are part of
an expression. If we do not specify in what order the events should be consumed,
we can’t have clear semantics. For example, the expression E AND C with an event
stream e1, e2, c1 would consume e1 AND c1 under chronological consumption,
but e2 AND c1 if we use the most current instances of an event type. A good
solution to this problem was given in [6], but the domain expert must decide what
semantics fit the application. It is equally important that the event composition
software offers the right choices.

4.3 QoS of the Notification Mechanism

The notification mechanism is essential to disseminate event notifications in an
asynchronous and decoupled way. Event driven business process components
subscribe to events and a single event notification can trigger or change the
execution of a business process. It is thus necessary to make business process
components aware of the QoS of the underlying notification mechanisms. Com-
ponents that rely on events should therefore be able to express QoS demands.
Different QoS properties are adopted in current notification middleware, e.g., in
JMS brokers.
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– Persistence: The middleware takes extra care to ensure that no event noti-
fications are lost in case of a server crash by buffering them on persistent
storage.

– Delivery Mode: The delivery mode determines whether events are delivered
at least once, at most once, or exactly once.

– Durability: With non-durable subscriptions a subscriber will only receive
notifications that are published while he is active. With durable subscriptions
notifications are buffered in case subscribers temporarily disconnect.

– Transactions : A notification session can be transactional or non-transactional.
A transaction is a set of notification operations that is executed as an atomic
unit of work, e.g., send all or discard all notifications in a session.

– Order : When order of event notifications is guaranteed, the middleware en-
sures that notifications arrive in the order they were published.

– Performance: The number of event notifications that can be handled by the
middleware in time (throughput and latency).

A more detailed discussion of quality of service in Publish/Subscribe systems is
presented in [2].

4.4 QoS of Transaction Management

Business processes often require transactional behavior. However, transactions
come in many different flavors. Database transactions are tightly coupled and
guarantee full ACID properties (atomicity, consistency, isolation and durability).
This is possible because the DBMS has full control over (synchronous) commu-
nication, execution, storage, and release of results. In object transactions, the
components communicate directly with each other 1:1 and communication is
reference based, i.e., each component knows its counterpart and how to address
it directly. Interaction requires communicating components to be present at the
same time and the requestor blocks while the other component answers. This
ought to be compared to a mediated communication based on publish/subscribe,
where n producers communicate with m consumers, the addressing is not refer-
ence based but logical, e.g. content-based, and asynchronous. If transactions are
to be executed successfully when producers and consumers of notifications are
completely decoupled by the middleware, the middleware must be incorporated
into the transaction.

This is the approach originally purposed by Middleware Mediated Transac-
tions (MMT) [18,17]. The key to this proposal is to incorporate the sending
and receiving of notifications into the transactional boundaries of the producer
and/or the consumer of the notification. This, together with a controlled delivery
mode by the messaging middleware as described above, defines a very flexible
and powerful transaction model for event driven systems.

The key properties of MMTs are grouped by so-called coupling modes that
reflect the visibility rules, commit and abort dependencies of complex transaction
models [3].
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– Visibility refers to when a notification is sent to consumers relative to the
completion of the producer’s transaction: with immediate visibility, notifica-
tions are sent to the middleware and on to consumers before the producer’s
transaction commits. On commit (abort), notifications are sent out only af-
ter a commit (abort) of the producing transaction. Deferred visibility means
that notifications are propagated when the producer begins the commit pro-
cess.

– Context allows the recipient of a notification to join the same transaction
context as the producer (shared context) or the middleware or the consumer
may establish a separate context for the recipient (separate context).

– Forward dependency limits the freedom of the consumer of a notification
to commit. A forward commit dependency means that the consumer of a
notification may only commit if the producer commits. Likewise, a forward
abort dependency states that the consumer can only commit if the producer
aborts.

– Backward dependency limits the freedom of the producer of an event noti-
fication to commit. If vitally coupled, the producer may only commit if the
consumer transaction committed. A marked-rollback producer may complete
but may be rolled back on request of the consumer.

– Production of a notification in transactional mode limits the delivery of the
event notification to the mediating middleware to after the commit of the
producer. An independent production policy leaves the decision to the pro-
ducing transaction how a failure in delivery should be handled.

– Consumption refers to when the event notification is considered to have been
delivered. It could be either on delivery, or when the recipient returns from
executing its reaction, or when the consumer begins commit.

QoS of event driven systems is still a wide open area. We do not advocate
a specific solution for stream processing, event composition, notification or a
transaction model for EDA. Instead, we raise awareness of the issues that must
be addressed jointly by researchers, product vendors and domain experts.

5 Summary and Conclusions

An increasing number of sensors and other sources are generating streams of
valuable information that business processes should exploit. To support this,
process models and the formalisms used for their description need to be expanded
to represent more powerful notions of events and their integration as first class
citizens in the specification and design of business processes.

We made a case for hybrid architectures combining a Service Oriented Archi-
tecture with an Event Driven Architecture. Both architectural styles are needed
to satisfy the requirements of modern process oriented enterprises.

Domain experts should exploit the benefits of event processing to improve
timeliness and agility. At the same time they must be aware of limitations and
potential pitfalls.
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End to end QoS is important for business processes. We identified four aspects
that can affect the end to end QoS in an Event Driven Architecture. Additional
elements are required in the modeling formalisms for the specification of quality
of service expected by business processes and the acceptable trade-offs.
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Abstract. In an investigation into the process of process modeling, we 
examined how modeling behavior relates to the quality of the process model 
that emerges from that. Specifically, we considered whether (i) a modeler’s 
structured modeling style, (ii) the frequency of moving existing objects over the 
modeling canvas, and (iii) the overall modeling speed is in any way connected 
to the ease with which the resulting process model can be understood. In this 
paper, we describe the exploratory study to build these three conjectures, clarify 
the experimental set-up and infrastructure that was used to collect data, and 
explain the used metrics for the various concepts to test the conjectures 
empirically. We discuss various implications for research and practice from the 
conjectures, all of which were confirmed by the experiment.  

Keywords: business process modeling, process model quality, empirical 
research, modeling process. 

1 Introduction 

Business process modeling is utilized at an increasing scale in various companies. The 
fact that modeling initiatives in multinational companies have to rely on the support 
of dozens of modelers requires a thorough understanding of the factors that impact 
modeling quality [1–3]. One of the central challenges in this area is to provide 
modelers with efficient and effective training such that they are enabled to produce 
high-quality process models. There is clearly a need to offer operational guidance on 
how models of high quality are to be created [4, 5]. 

Recent research has investigated several factors and their influence on different 
measures of process model quality [6, 7]. In essence, this stream of research identifies 
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both process model complexity and the reader’s modeling competence as the major 
factors among these. While these insights are in themselves valuable, they offer few 
insights into how we can help process modelers to create better models right from the 
start. In order to give specific hints to the modeler, we have to shed light on how good 
process models are typically created, and in which way this creation process differs 
from drawing process models of lower quality.  

In this paper, we look deeper into the modeling process in its relation to the 
creation of a high-quality process model. The research question we deal with, is 
whether it is possible to identify certain aspects of modeling style and model creation 
that relate to good modeling results. Our approach has been to leverage the Cheetah 
Experimental Platform [8], which allows for tracing the creation of process models on 
a detailed level. This permitted us to quantify the process of process modeling with 
respect to three different aspects. We also determined an objective measure for the 
quality of the resulting process models, putting the focus on the ease with which such 
models can be read. Based on an experiment with 103 graduate students following a 
process modeling course, we were able to demonstrate a strong statistical connection 
between three aspects of the modeling process on the one hand with our notion of 
model quality on the other. These findings have strong implications, as they pave the 
way for explicating and teaching successful modeling patterns. 

The structure of the paper is as follows. Section 2 discusses cognitive concepts that 
are relevant for investigating the process of process modeling. In addition, we 
describe how the capabilities of the Cheetah Experimental Platform are conducive to 
document the process of process modeling in detail. Section 3 presents our research 
design. We explain how we developed three conjectures about process-related factors 
that result in better process models. Each of these three factors as well as the notion 
for process model quality is operationalized, such that the conjectures can be 
experimentally tested. Section 4 reports on the conduct and results of our experiment. 
We discuss the results and reflect upon the threats to their validity. The paper closes 
with conclusions and an outlook on future research. 

2 Background on the Process of Process Modeling 

In this section, we revisit findings on process model quality and the process of process 
modeling. Section 2.1 summarizes prior research in this area, after which Section 2.2 
discusses how the process of process modeling can be analyzed. 

2.1 The Process of Process Modeling and Process Model Quality 

There is a wide body of literature that centers on the quality of process models, 
ranging from high-level, comprehensive quality frameworks (e.g., [3, 4, 9]) to a 
variety of metrics that pin down the quality notion in specific ways (e.g., [2, 10, 11]). 
Mostly, the process model is considered in these papers as a given, complete, and 
finished artifact. Recently, approaches are emerging that aim to connect the way that a 
process model has come into being with the properties of the ensuing model. In this 
context, various authors refer to the actual construction of a process model as the 
process of process modeling [8, 12, 13].  
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In general, modeling is often characterized as an iterative and highly flexible 
process [14, 15], dependent on the individual modeler and the modeling task at hand 
[16]. A central element in the further understanding of the process of process 
modeling is the identification of the recurring activities or common phases that 
comprise this process. Inspired by views on problem solving, Soffer et al. [13] 
distinguish between the phase in which a modeler forms a mental model of the 
domain and the phase in which the modeler maps the mental model to modeling 
constructs. The work presented in [16] is in line with this view by its explicit 
recognition of a comprehension phase and a modeling phase, yet extends it by the 
additional recognition of a reconciliation phase. During the latter phase, modelers 
may reorganize the process model at hand (e.g., rename activities) and utilize the 
process model's secondary notation (e.g., layout). While modeling and comprehension 
phases generally alternate, they may be interspersed with reconciliation actions [16]. 
In the same work, a so-called modeling phase diagram is introduced that can be used 
to categorize a modeler’s actions using these phases.  

At this point, several preliminary insights exist that relate the modeling process 
with the modeling outcome, i.e., the business process model. First of all, the structure 
of the informal specification that is used as the basis for a process modeling effort 
seems to be of influence on the accuracy of the ensuing process model [17]. The 
reason may be that pre-structuring such a specification lowers the mental effort for 
modelers, resulting in a process model that better reflects the actual domain. Another 
insight is that the specific reasoning tools that are at the disposal to the modeler, e.g., 
workflow patterns vs. behavioral patterns, seem to affect the mental model that the 
modeler creates of a domain and, in this way, influence the semantic quality of the 
process model [13]. Finally, in [18] it is empirically shown that providing modelers in 
a distributed setting with specific model building blocks will minimize model quality 
issues such as variations in terminology and abstraction that individual modelers use.  

The work that is presented in this paper must be seen as an attempt to extend the 
list of factors that can be connected to the quality of a process model, in the spirit of 
[13, 17, 18]. Another similarity with these works is that an empirical angle is taken to 
investigate conjectures about the influence of attributes of the modeling process.  

2.2 Tracing the Process of Process Modeling with Cheetah Experimental 
Platform 

The process of process modeling can be analyzed by recording editor operations as a 
sequence of modeling events. In this paper, we rely on Cheetah Experimental 
Platform1. This platform has been specifically designed for investigating the process 
of process modeling in a systematic manner [8]. In particular, the platform 
instruments a basic process modeling editor to record each user's interactions together 
with the corresponding time stamp in an event log, describing the creation of the 
process model step by step. 

When modeling with Cheetah Experimental Platform, the platform records the 
sequence of adding nodes, i.e., activities, gateways and events, and edges to the 
process model, naming or renaming activities, and adding conditions to edges.  

                                                           
1  For download and information we refer to http://www.cheetahplatform.org 
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In addition, modelers can influence the process model's secondary notation, e.g., by 
laying out the process model using move operations for nodes or by utilizing bend 
points to influence the routing of edges (see Table 1 for an overview of all recorded 
operations). By capturing all of the described interactions with the modeling tool, we 
are able to replay a recorded modeling process at any point in time without interfering 
with the modeler or her problem solving efforts. This allows for observing how the 
process model unfolds on the modeling canvas. We refer to [16] for technical details. 

Table 1. Recorded events in Cheetah Experimental Platform and their classification 

Create Move Delete 

CREATE_START_EVENT 

CREATE_END_EVENT 

CREATE_ACTIVITY 

CREATE_XOR 

CREATE_AND 

CREATE_EDGE 

RECONNECT_EDGE (**) 

MOVE_START_EVENT 

MOVE_END_EVENT 

MOVE_ACTIVITY 

MOVE_XOR 

MOVE_AND 

MOVE_EDGE_LABEL 

CREATE_EDGE_BENDPOINT (*) 

MOVE_EDGE_BENDPOINT (*) 

DELETE_EDGE_BENDBPOINT (*) 

 

DELETE_START_EVENT 

DELETE_END_EVENT 

DELETE_ACTIVITY 

DELETE_XOR 

DELETE_AND 

DELETE_EDGE 

RECONNECT_EDGE (**) 

Other : NAME_ACTIVITY, RENAME_ACITIVTY, NAME_EDGE, RENAME_EDGE

(*) create, move and delete edge bendpoint were considered as actions to move an edge 

(**) reconnect edge was considered as deleting and creating an edge

3 Foundations of the Experimental Design 

In this section we present the foundations of our experimental research design. 
Section 3.1 summarizes three conjectures that we derived from exploratory modeling 
sessions. Section 3.2 provides operational definitions for objectively measuring the 
process of process modeling. Section 3.3 builds an operational definition of quality 
for a resulting process model, which is suitable for our experimental setting. 

3.1 Conjectures from Exploratory Modeling Sessions 

To derive insights in the modeling process, we performed three small-scale 
experiments that involved 40 modelers in total. These were conducted at sites of the 
participating researchers throughout 2010. In these experiments modelers were asked 
to draw a process model on the basis of a given informal description, which was the 
same at all sites. We analyzed the results of these experiments by visualizing the 
recorded data in charts and by replaying individual modeling cases. To this end, we 
designed a visualization of the process of process modeling in terms of a PPMChart 
(Process of Process Modeling Chart)2. Fig. 1 is an example of such a chart. The 
horizontal axis represents a time interval of one hour. Vertically, each line represents 
                                                           
2  We used the Dotted Chart Analysis plug-in of the process mining tool ProM for visualizing 

the PPMChart. 
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(a) (b)  

(c) (d)  

Fig. 3. More examples of the visualization of the operations in the process of process modeling  

The utilization of PPMCharts helped us to identify patterns of modeling and 
connections between the process of process modeling and the quality of the resulting 
process models. More specifically, we found three conjectures: 

Conjecture 1: Structured modeling is positively related with the 
understandability of the resulting model. 

The conjecture is related to the limited amount of items that humans can hold in their 
working memory [19]. Cognitive Load Theory suggests that problems arise when 
one’s working memory is overloaded [20]. We therefore surmise that working on the 
complete model at once will make overloading of the working memory more likely, 
as compared to working on calculable pieces of the model, one at a time. Conjecture 1 
defines this style of working as structured modeling. In other words, we assume that 
focusing on a specific, bounded part of the model (e.g., a block as apparent in the 
modeling process in Fig. 1) and finishing it before starting to work on another such 
part will help to reduce one’s cognitive load. Hence, this style will result in better 
models.  

Conjecture 2: A high number of move operations is negatively related to the 
understandability of the resulting model. 

While studying the results of our exploratory experiments, we observed a notable 
difference in the structure of the modeling process across modelers. The data of the 
sessions suggest that modelers who frequently move model elements seem to have no 
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clear idea in mind of how the process is supposed to be modeled. They will therefore 
potentially make more mistakes, which results models of lower quality.  

Conjecture 3: Slow modeling is negatively related to the understandability of the 
resulting model. 

Finally, we noticed a difference in the modeling speed of different modelers (i.e., in 
terms of the total time between the first and last recorded modeling actions). 
Presumably, modelers who are in doubt about the structure of the process or about the 
way to capture it, will spend more time thinking about the process, trying out different 
strategies to organize and re-organize the model. This will ultimately take more time 
to finalize the process model. We presume that the more time it takes the modeler to 
create the model, the lower the quality of the resulting model will be. Such an effect 
would be congruent with the result that faster programmers tend to deliver code with 
fewer defects than median or below-median performing programmers [21]. 

3.2 Operational Measurement of Process-Based Factors 

The challenge arising for these conjectures relates to their operational definition. For 
Conjecture 1, we need to provide an operational definition for a structured style of 
modeling based on the notion of blocks. In this context, a block consists of all 
involved model elements in two, or more, parallel or optional paths in the model. 
Mostly, this will concern a structure that consists of one split gateway, some 
successive activities, and one join gateway to complete it. We consider the modeling 
process to be structured if the modeler is not working on more than one block at the 
same time. The degree of structured modeling is determined based on the replay of 
the modeling process as visually assessed by an expert. This assessment provides the 
values of two metrics for structured modeling. 

MaxSimulBlock is the maximum number of blocks that were simultaneously in 
construction. A block was considered in construction from the time the first element 
was created until the time the last element was created. If a block was changed 
afterwards (e.g., deleting and creating an activity), it had no effect on this metric. 

PercNumBlockAsAWhole is the number of blocks that were made as a whole in 
relation to the total number of blocks. A block was considered to be made as a whole 
if no other elements (except for edges) were created between the creation of the first 
and last created element of the block. 

We observed many modelers positioning activities and gateways in a block 
structure while adding the edges much later. For this reason, we did not consider the 
edges to be part of the block when calculating these metrics. As we are interested in 
the timing of the creation of elements in a block, we did not consider changes after 
the original creation of a block. Therefore, only those elements that were present at 
the initial completion of a block (this is the point in time when its last element is 
added) were considered to be part of the block. 

For Conjecture 2, we consider how many elements were moved and how many 
moves were performed on these elements. This was calculated by a program that 
determined which of the recorded actions are move actions according to the list 
presented in Table 1. We define the following two metrics. 
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AvgMoveOnMovedElements is the average amount of move operations on elements 
with at least one move operation. 

PercNumElementsWithMoves is the number of elements with move operations in 
relation to the total number of elements. 

For Conjecture 3, we also wrote a small program to calculate the time spent until 
the model was finished. As we observed many modelers moving lots of elements 
around after finishing the creation of all elements, we distinguish the time between 
first and last action and between first and last create action. 

TotTime is the total time between the first and last recorded action of the modeling 
process. 

TotCreateTime is the total time between the first and last recorded create action of 
the modeling process. 

3.3 Operational Measurement of Process Model Quality 

There is a wide body of literature available on quality measures for process models. In 
this paper process model quality is defined as the ease with which the process model 
can be understood. In order to objectify this notion (and automate its assessment) we 
consider it from the structural correctness point of view; not from the semantical point 
of view. Prior research has defined an extensive amount of formal, structural 
correctness criteria for process models [22]. In the context of our experiments, we 
utilized BPMN as a modeling language. The problem with existing criteria, such as 
soundness, is that they are not directly applicable to BPMN models because BPMN 
does not enforce a WF-net structure [23]. Therefore, we consider a relaxed notion of 
quality, namely that the resulting process model should be perspicuous4. We 
operationalize the definition of a perspicuous model as “a model that is 
unambiguously interpretable and can be made sound with only small adaptations 
based on minimal assumptions on the modeler’s intentions with the model”.  

To make our notion of model quality robust against the familiarity of a modeler 
with notational conventions, we translate each model to a syntactically correct BPMN 
model whenever the model structure strongly hints at the modeler’s intentions. The 
resulting BPMN model is then transformed into a WF-net according to the mapping 
defined in [24]. For such a WF-net, we checked soundness using LoLA [25]. A 
BPMN model is classified as being perspicuous if the respective WF-net is sound; 
otherwise, it is classified as non-perspicuous. In the remainder of this section, we 
describe the transformation to derive a syntactically correct BPMN model that can be 
transformed into a WF-net based on structural characteristics. The transformation is 
inspired by the preprocessing discussed in [24] and applied in the presented order5. 

 
Handling of Start and End Events. Many modeling languages do not have specific 
symbols for the start or end of the process (e.g., Petri-nets and EPCs). Modelers who 
are not aware of these specific events in BPMN may, therefore, forget to include them 
in their model. In line with the BPMN specification, we normalize such models: 
                                                           
4  See Merriam-Webster at 
http://www.webster.com/dictionary/perspicuous. 

5  Note that these transformation rules may be generalized to any kind of modeling language. 
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• Transform a process that does not have a start or an end event into a process 
that does, by preceding each task without incoming flows by a start event and 
succeeding each task without outgoing flows by an end event. [24] 

Further, some modeling languages allow for several starting points in the model (e.g., 
EPC, BPMN), cf. [26]. Also, it is allowed or even required that each end point in the 
process model is indicated separately (e.g., EPCs, COSA, BPMN). Modelers may be 
familiar with this explicit modeling of each start or end point, so that a WF-net 
structure is obtained by the following transformations: 

• Transform a process that has multiple start (end) events by replacing all start 
(end) events with only one start (end) event succeeded (preceded) by an XOR-
split (XOR-join) gateway, and connect this gateway to each activity that was 
preceded (followed) by one of the original start (end) events. [24] 

• If we determine only one origin for the multiple flows, i.e., all starting (ending) 
paths join in (originate from) the same gateway, we use the sign (i.e., AND or 
XOR) of this gateway. 

Note that the latter rule, in particular, relates to the intention of a modeler and, 
therefore, is specific to the notion of a model being perspicuous. Fig. 4 illustrates the 
transformations for exemplary cases.  

                                       

             

Fig. 4. Transformations related to the handling of start and event events 

Split and Join Semantics. BPMN allows for modeling nodes with more than one 
incoming or outgoing flow. To translate the BPMN model into a WF-net, we make 
those split and join semantics explicit: 

• Transform multiple incoming (outgoing) flows to an event or activity into one 
incoming (outgoing) flow, by preceding (following) the corresponding object 
with an XOR-join (AND-split) gateway that has all the incoming (outgoing) 
flows of the object. [24] 

• If we determine only one origin (destination) for the multiple incoming 
(outgoing) flows, we use the sign of this gateway. 

Again, the latter transformation relates to the modeler’s intentions. We deviate from 
the standard processing, if the model structure provides a strong hint to do so. Fig. 5 
illustrates the transformations. In the example in the lower half, none of the split 
gateways qualifies to induce the type of the join gateway, so that the default 
transformation applies. 
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Fig. 5. Transformations related to split and join semantics 

Mixed Gateways. BPMN allows for the specification of mixed gateways that 
combine split and join semantics. Those may be split up into a pair of a join and a 
split gateway of equal type [24]. However, we do not adopt this transformation for 
several reasons. When building the conjectures based on preliminary studies, we 
observed that modelers would often be unsure about semantics of mixed gateways. In 
contrast to the handling of start and end events and split and join semantics mentioned 
earlier, however, the process model structure does not provide a strong hint on the 
modeler’s intentions regarding a mixed gateway. As such, mixed gateways lead to a 
non-perspicuous model. Note that those considerations are in line with the 
recommendation of the BPMN specification not to use mixed gateways ([27], p288). 

4 Experimental Results 

In this section we summarize the results of our experiment. Section 4.1 describes the 
experiment. Section 4.2 presents the results, while Section 4.3 provides a discussion.  

4.1 Modeling Session in Eindhoven 

In order to test our conjectures, we designed an experiment that would rely on the use 
of Cheetah Experimental Platform. The task in this experiment was to create a formal 
process model in BPMN from an informal description. The object that was to be 
modeled was the process of preparing the take-off of an aircraft6. We decided to use a 
subset of BPMN for our experiment and provided no sophisticated tool features (e.g. 
automated layout support or automatic syntax checkers) to prevent the modelers to 
become confused or overwhelmed with tool aspects [14]. A pre-test was conducted at 
the University of Innsbruck to ensure the usability of the tool and the 
understandability of the task description. This led to some minor improvements of 
Cheetah Experiment Platform and a few updates to the task description.  

The modeling session was conducted in November 2010 with 103 students 
following a graduate course on Business Process Management at Eindhoven 
University of Technology. The modeling session started with a modeling tool tutorial, 
which explained the basic features of the platform. After that, the actual modeling  
 

                                                           
6  The case description is available at:  
http://bpm.q-e.at/experiment/Pre-Flight 
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task was presented according to which the students had to model the process shown in 
Fig. 2. By conducting the experiment during class and closely monitoring the 
students, we mitigated the risk of external distractions that might otherwise have 
affected the modeling process. No time restrictions were imposed on the students. 

4.2 Results 

We used the collected data of the experiment to calculate the values of the six 
process-based metrics of Section 3.2 for the modeling process of each student. We 
also determined for each modeling process the value (0 or 1) for the perspicuity 
metric as a measurement of process model quality. As it turned out, 54 students (52%) 
managed to create a perspicuous model while the remaining 49 (48%) did not. 

As a next step, we looked at the distribution of the metrical values. All 
distributions deviated from normality, being more skewed than a characteristic Bell-
curve. Therefore, we turned to the representation of these distributions as boxplots 
[28]. A boxplot (a.k.a. a box and whisker plot) consist of a box, which represents the 
middle 50 percent of the data. The upper boundary (also known as the hinge) of the 
box locates the 75th percentile of the data set, while the lower boundary indicates the 
25th percentile. The area between these two boundaries is known as the inter-quartile 
range and this gives a useful indication of the spread of the middle 50 percent of the 
data. There is also a line in the box that indicates the median of the data (which may 
coincide with a box boundary) and a cross that indicates the average value. The 
whiskers of the box-plot are the horizontal lines that extend from the box. These 
indicate the minimum and maximum values in the dataset. If there are outliers in the 
data, shown as open rectangles, the whiskers extend to their maximum of 1.5 times 
the inter-quartile range. The boxplots for all metrics are shown in Fig. 6, 7 and 8. 

    

Fig. 6. Boxplots of the metrics for conjecture 1 

    

Fig. 7. Boxplots of the metrics for conjecture 2 
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What can be seen in Fig. 6 is that people who created perspicuous models tend to 
simultaneously work on a smaller number of blocks (MaxSimulBlock) than people 
who delivered a non-perspicuous model. Overall, those who developed a perspicuous 
model tend to complete a higher percentage of blocks as a whole too 
(PercNumBlocksAsWhole). Both aspects provide support to conjecture 1. 

In Fig. 7 it can be seen that modelers of perspicuous models tend to less frequently 
move elements than the other modelers (AvgMoveOnMovedElements); this is in line with 
conjecture 2. The groups, however, do not seem to differ very much with respect to the 
overall number of elements being moved around (PercNumElementsWithMoves). This 
can be seen from the distributions that cover about the same area. So, this gives no 
additional support for conjecture 2. 

    

Fig. 8. Boxplots of the metrics for conjecture 3 

Finally, Fig. 8 shows that the total time between the first and last recorded action 
of the modeling process (TotTime), as well as the total time between the first and last 
recorded create action of the modeling process (TotCreateTime), seem slightly lower 
for the group of modelers who created perspicuous models. It is this insight, i.e., that 
both distributions for modelers of perspicuous models cover a relatively lower range, 
that supports conjecture 3. 

While these visual insights are promising, it is necessary to subject these to more 
rigorous testing. For this purpose, we carried out a t-test7 for each of the six metrics in 
order to compare the respondents who created a perspicuous model with those who 
delivered a non-perspicuous model. The results are shown in Table 2. 

What can be derived from these results is that there is a significant difference between 
the groups for all investigated metrics when assuming a 95% confidence interval (i.e., the 
P-values are lower than 0.05), except for PercNumElementsWithMoves (P-value equals 
0.648 >> 0.05). In other words, the group of modelers who created a perspicuous model 
scored significantly different than the group who delivered non-perspicuous models with 
respect to all our measures but one, and in exactly the direction we conjectured. For 
example, the respondents who created a perspicuous model indeed were working on a 
lower maximum number of blocks simultaneously (MaxSimulBlock) and completed 
more blocks as one related whole (PercNumBlockAsAWhole) than the other group. From 
these results, we conclude that we have found strong support for conjectures 1 and 3 (i.e., 

                                                           
7  In large samples, the t-test is valid for any distribution of outcomes [32], even if we can not 

assume normality as is the case here.  
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through support for all related metrics), and mild support for conjecture 2 (i.e., via 
support for just one of the two related metrics). 

Table 2. Results student t-test 

Conjecture Metric T-value        df P-value (sig.) 

C1 MaxSimulBlock -2.231          101             0.028* 

 PercNumBlockAsAWhole  2.199          101             0.030* 

C2 AvgMoveOnMovedElements             -1.984          101               0.049* 

 PercNumElementsWithMoves            0.457          101                 0.648 

C3 TotTime -2.183          101                 0.031* 

 TotCreateTime -2.505          101                0.014* 

(*) statistically significant values at the 95% confidence level 

4.3 Discussion 

Our findings warrant a reflection on their potential impact on research and practice. 
From a scientific point of view, our study confirms that the properties of a modeling 
process can be related to its outcome. Specifically, our work shows that aspects of a 
modeler’s style can be operationalized and quantified, providing means to distinguish 
between more and less effective approaches to create a process model. As such, this 
work opens the venue towards a more sophisticated understanding of what makes 
someone a good modeler or, more precisely, what is a good modeling process. 
Values, beliefs, cognitive abilities, and personality traits may be as important in the 
field of process modeling as they are in the area of computer programming (see [29]). 
It is also noteworthy that the attractive aspect of structured modeling in particular 
echoes the large interest for the formal property of structuredness in the process 
modeling field [30, 31].  

From a practical point of view, our findings suggest, cf. the support for conjecture 
1, that an approach that emphasizes successive phases of thorough and localized 
modeling (i.e., within blocks) is more attractive than diverting one’s attention across 
different parts of a model at the same time. Similarly, yet less pronounced via mild 
support for conjecture 2, excessive reshaping of a model and moving its elements 
around seem to be anathema to good modeling practice. These are both actionable 
items that can be shaped into modeling instructions, which can be incorporated in 
process modeling courses (beyond the more traditional syntactical and formal topics). 
Our insight with respect to modeling speed, cf. the support for conjecture 3, seems 
particularly relevant to distinguish more from less proficient modelers. Such an 
insight may be particularly useful when composing project teams (a fast modeler is an 
asset, both time- and quality-wise) or assigning modeling tasks to professionals (a 
faster modeler will deliver a readable model). 

The interpretation of our findings is presented with the explicit acknowledgement 
of a number of limitations to our study. First of all, our respondents represented a 
rather homogeneous and inexperienced group. Although relative differences in 
experience were notable, the group is not representative for the modeling community 
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at large. At this stage, in particular, the question can be raised whether experienced 
modelers follow a similar approach to process modeling as that of skillful yet 
inexperienced modelers. Note that we are cautiously optimistic about the usefulness 
of the presented insights on the basis of modeling behavior of graduate students, since 
we have established in previous work that such subjects perform comparably in 
process modeling tasks as some professional modelers [7]. 

We cannot claim construct validity: In our approach we derive process metrics at 
the syntactical level of recorded actions of a modeler and we needed to make slight 
assumptions on the modelers’ intentions to calculate our metrics. Nevertheless, we are 
hopeful that we can verify the results in later experiments, because the t-tests 
provided significant results (except for PercNumElementsWithMoves). 

5 Conclusion 

This paper reports on research about the process of process modeling by examining 
relations between the modeling process and the modeling outcome (i.e., a process 
model). We have been particularly interested in the notion of understandability as a 
quality criterion for process models and searched for related properties of the 
modeling process that would ensure an understandable modeling result.  

We formulated three conjectures, i.e., that (i) structured modeling ties to model 
quality, whereas (ii) lots of movement of modeling objects, and (iii) low modeling 
speed relate to low model quality. To validate or reject these conjectures, we 
performed an experiment with 103 modelers and recorded for each modeler all the 
actions performed with the modeling tool. This allowed us to measure the related 
concepts of our conjectures (i.e., structuredness, movement, speed, and 
understandability) in metrics on the modeling process the modeling result. T-tests 
point at significant differences, in line with our conjectures about the quality of the 
model in terms of its perspicuity. We believe this provides firm empirical support for 
two of our conjectures and, to a lesser extent, for the remaining one. 

This paper forms a basis for a deeper understanding of the process of process 
modeling and its impact on the quality (in casu understandability) of the resulting 
process model. If we manage to better comprehend the factors that directly influence 
the result of the modeling process, we would be able to comprise this knowledge in 
training and tools supporting process modeling. This, in turn, could result in more 
understandable process models, as well as a more efficient modeling process. 

In this paper, we have limited ourselves to visual inspection of the distributions and 
t-tests to study three conjectures. Future work will include additional statistical tests 
on the collected data set to identify further factors describing the process of process 
modeling and to assess their influence on the quality of the resulting process model. 
Next to a further investigation of the collected data set, we will focus on validating 
our observations in modeling sessions while varying the modeling task to be able to 
generalize our findings. We also wish to include modeling experts to be able to 
observe a more heterogeneous group of modelers during the act of modeling.  
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What is also open to further study is how effective modeling instructions can be 
developed on the basis of our findings. Beyond instruction, we expect that tool 
support may be another important ingredient in achieving good modeling practice.  
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Abstract. We present the results of a case study where we compared the needs of
case managers with the capabilities of case management software systems (CMS)
in social work, health care, and the handling of complex claims in insurance.
Building on existing maturity models, we relate capabilities with maturity levels
and present the C3M maturity model for IT-based case management.

Whereas vendors of business process management suites (BPMS) argue that
case management requires flexible process guidance and improved context-
sensitive information handling, we identify case assessment and case similarity
as key capabilities of future CMS. We show how these and other capabilities are
implemented in CMS today and discuss future trends of how CMS capabilities
will evolve further. Furthermore, we discuss the impact of CMS technology on
the practice of case management in an organization.

Our results are beneficial for the evaluation of CMS. They support organiza-
tions in mastering levels of maturity when using CMS, help them exploiting their
benefits and addressing associated risks. The results also help BPMS vendors
in adding the ‘right’ case-management capabilities to their BPM software when
addressing case-oriented work.

1 Introduction

Case management (or case handling) has become a popular term within the business
process management community as well as among vendors of BPM suites. It is com-
monly used to emphasize that a business process management suite (BPMS) offers
flexible process support, e.g., that users of BPMS can change process flows during exe-
cution, and that multiple information sources related to a case are handled by the BPMS
in a uniform and context-sensitive manner.

In its original meaning, case management denotes a specific management approach
for the coordinated handling of complex situations in social work, health care, and
insurance and is supported by well-established case management software systems
(CMS) today. Examples of CMS that are widely used in Switzerland are CaseNet
(www.diartis.ch), a web-based solution, and e-Case (infogate.ch), a rich client. One
may thus wonder how trends of flexibilizing BPMS relate to the capabilities of cur-
rently existing CMS. We therefore conducted a case study during which investigated
the capabilities of CMS and their usage in more detail. We present the following con-
tributions in this paper, derived from the results of our case study:
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– Building on [1], we introduce a revised four-quadrants model based on the dimen-
sions of knowledge complexity and relationship complexity to position and distin-
guish case management among different types of human work.

– We present a set of capabilities for CMS that is derived from case management
work in its original domains.

– We relate these capabilities to different levels of maturity in using information tech-
nology in case management and present the C3M maturity model for IT-based case
management.1

– We summarize current trends in IT-based case management and discuss their im-
pact on the practice of case management in an institution.

Lucerne University of Applied Sciences and Arts has currently defined four interdis-
ciplinary focus areas that bundle a wide area of research and education activities. One
of these focus areas is devoted to the future of social security and the social insurance
system.2 Social security is not only an important factor guaranteeing the stability of a
society by offering support in case of disease, accident, unemployment, or poverty. The
social security system also constitutes an important economic factor, e.g., in Switzer-
land, more than 140 Billion swiss francs or one third of the GDP result from social
transfer services. All social security systems face enormous challenges due to dramat-
ically growing expenses, demographic changes, and the need to better coordinate and
align existing services as well as to develop new service models. Solutions to these
challenges comprise, among many others, legal and technological aspects. In particu-
lar, information technology is considered as an important source of potential solutions,
think for example of the EU research initiatives on ambient assisted living to help an
aging population.

In our research project, we are investigating case management practices and how IT
solutions can help improving the intra- and inter-organizational coordination and align-
ment of services in the area of health care, e.g., related to diagnosis-related groups, per-
sonal health management, and prevention, e.g., child welfare and protection of minors.
In a first phase, we explored current trends in using IT technology for case management
in selected insurances and public organizations that are partners in the case manage-
ment network of Switzerland, which joins over 100 private and public organizations
(see http://www.netzwerk-cm.ch). Furthermore, we assessed the state of the art of IT-
based case management solutions used by our partners and explored how existing IT
solutions impact their practice of case management. We also talked to vendors of case
management systems and IT providers of innovative solutions used in CMS.

In particular, we address the following questions:

– What capabilities provide current IT-based case management solutions and how are
they used in an organization?

1 Note that we focus on the assessment of the maturity in using IT systems for case management,
but do not assess the maturity of case management itself. The latter is completely out of our
focus and would require a very different approach, see for example [2,3]. However, to the best
of our knowledge, no maturity models for case management exist in literature.

2 See http://www.hslu.ch/hochschule-luzern/
h-interdsiziplinaere-schwerpunkte.htm (in german only).

http://www.hslu.ch/hochschule-luzern/h-interdsiziplinaere-schwerpunkte.htm
http://www.hslu.ch/hochschule-luzern/h-interdsiziplinaere-schwerpunkte.htm
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– How do these capabilities impact an organizations’s practice of case management
and what benefits and risks can be observed?

– Which IT capabilities require users and what future trends can be identified?

We conducted interviews with stakeholders in the field of case management, reviewed
sources from the swiss case management network, and analyzed the currently available
literature. We also compared the identified capabilities as seen by users and vendors of
CMS with those capabilities offered or envisioned by BPM researchers and vendors.
Although we cannot claim our analysis to be representative, in particular not at a global
scale, we believe that our results make interesting contributions to the future of IT-based
case management as well as BPM suites.

The paper is organized as follows: Section 2 reviews the origins of case manage-
ment and explores case management work in more detail. It positions case management
with respect to business process work, intelligent problem-solving, and social collabo-
ration in a four-quadrants model and discusses the applicability of the case management
metaphor to other types of knowledge-intensive work. Section 3 summarizes capabil-
ities of IT-based case management solutions and relates them to maturity levels. The
C3M maturity model for IT-based case management is proposed that relates key ca-
pabilities to benefits and risks at each level. Section 4 briefly summarizes trends of
how IT-based CMS will evolve in the future. Section 5 reviews related work, whereas
Section 6 concludes with a brief summary.

2 What Constitutes Case Management in Its Original Meaning?

Case management practices have recently been very influential on discussions around
the next evolutions of business process management. BPM authors often speak of adap-
tive case management [4] or case handling [5] and refer to a better support for weakly
structured and knowledge-intensive processes. As the authors of [5] state, data and busi-
ness goals play a much more prominent role than predefined workflows: “In case han-
dling, the knowledge worker in charge of a particular case actively decides on how the
goal of that case is reached, and the role of a case handling system is assisting rather
than guiding her in doing so.”

The original setting of case management as it was defined in the context of social
work emphasizes additional aspects. For example, the definition of case management
by the case management network of Switzerland3 states that case management is

. . . a specific approach for the coordinated handling of complex situations in
social work, health care and insurance. A bundle of services is provided to a
client based on her/his individual needs in a systematic and cooperative pro-
cess in order to effectively achieve jointly defined objectives in high quality.
Case management coordinates inter-professional and inter-institutional ser-
vices and respects the autonomy of the clients while preserving resources in
the client’s and the supporting systems.

3 Netzwerk Case Management Schweiz, http://www.netzwerk-cm.ch
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Case management defines how a complex situation is handled and how the services,
which respond to the needs of the client, are determined and implemented. Five phases
are commonly distinguished in the client-facing processes of case management:

1. Clearing and Intake: Is a client in a situation in which case management can and
should be applied?

2. Assessment: What detailed situation is the client facing? How is the case struc-
tured? What services could be of help, reaching which possible objectives?

3. Planning: What objectives can be jointly agreed with the client? Which services
are possible and can be bundled to achieve the objectives?

4. Linking and Monitoring: How are the services put in place and how is the partner
network established? How effective are the services?

5. Evaluation: Which results and change are achieved in the client’s situation before
she/he exits the case-management process? Are the objectives met?

Phase 1 covers the entering of a client into the case-management process. Phases 2 to
4 are highly iterative. The assessment often happens in a continuous way leading to
changes in the planning and linking of the services when necessary. Figure 1 summa-
rizes the phases.

Assessment Planning Linking & 
Monitoring

EvaluationIntake

Fig. 1. The 5 phases of the case-management process

Three characteristics stand out when comparing case management to business pro-
cess management: (1) the setting of objectives jointly with the client, (2) a planning
phase where the case manager selects possible services, but also needs the buy-in of the
client that these services can be applied and constitute a solution to the complex prob-
lems faced by the client, (3) the controlling (and revision) of service execution towards
achieving the objectives.

Historically, case management has emerged as a management discipline within so-
cial work to ensure the continuity of care in the United States in the 1970/1980 years
where social work and health care were extended into a coordinated end-to-end process
involving different institutions and professions. Elements of case management can be
found much earlier in social work, but the management discipline was coined in this
decade. A core metaphor of case management is to tailor the care-giving process to the
needs of the individual, i.e., the creation of a personalized instance of this process. The
tailoring itself is a qualified process conducted by the case manager who needs a vari-
ety of competences to succeed. Furthermore, transparency of the tailoring is required,
i.e., the result must logically follow from the assessment outcome and the defined ob-
jectives, which set the constraints for what is possible and meaningful for a client.
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Case management is thus considered as a coordinated response to a differentiated
landscape of offerings that can constitute a solution to a client’s complex problem.
It has the goal of empowering clients and also often initiates change in the resource
system when necessary. Thus, in response to [4], one may argue whether a term such as
adaptive case management is meaningful as case management is by definition a highly
adaptive process.

Following [1], we use a four-quadrants model to characterize human work along two
dimensions: the complexity of knowledge (KC) required to successfully accomplish a
work task and the complexity of the personal and business relationships (RC) required.
Four quadrants can be distinguished, which allow us to differentiate and position mod-
ern IT solutions supporting human work, cf. Figure 2.

– KC low/RC low: This quadrant comprises the domain of well-defined business
processes that can be highly automated. It is the classical playground for BPM
and workflow technology. The knowledge required can be clearly identified and
captured in automated solutions. Relationships between human workers are well-
defined and can be mapped to pre-defined roles that interact in a predefined work-
flow.

– KC high/RC low: This quadrant is the domain of creative and highly intelligent
work, but also of intelligent systems that automate certain complex tasks within a
well-defined scope. Examples are the detection of credit card fraud, complex event
processing, document and internet search.

– KC low/RC high: In this quadrant, unstructured interactions between humans domi-
nate and thus, social computing solutions prosper. Recent years have seen a tremen-
dous development in the IT solutions that support and facilitate (but do not auto-
mate) these interactions. New trends such as social business emerge from the tech-
nology and show first impact on the business world by levering a thinking in terms
of networks and platforms, cf. [6].

– KC high/RC high: The domain of highly qualified work combined with comprehen-
sive collaboration needs. Workers use various IT systems, but are facing insufficient
IT support today. Case management is only one metaphor to characterize this type
of work. Other examples are research and development, business development and
management, or project-oriented work to solve complex problems.

Case
Management

Intelligent
Problem-Solving

Knowledge
Complexity

Relationship
Complexity

Low High

Low

High

Process-oriented
Work

Social
Collaboration

Fig. 2. Four quadrants of human work [1] (credits also to Pascal Sieber, Sieber & Partners)
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Following [7] and the feedback from our interview partners, we distinguish two types
of how case management work is performed:

1. Consumer-driven CM: Case management is considered as a clearly distinguished
and complex activity that is separated from other (more structured) business pro-
cesses. It is strongly client-centered and purely driven by humans, i.e., the case
managers. Phases of the case-management process are reflected in a CMS (or
other tools) used by case managers, however, the CMS does not drive these phases
nor trigger certain tasks autonomously. Case managers work fully self-dependent
and maintain the responsibility over the process. Their work style is problem- and
solution-oriented.

2. System-driven CM: Case management is part of a larger end-to-end business
process, which comprises structured and unstructured activities. The unstructured
activities require a complex coordination between different stakeholders in the pro-
cess as well as deep knowledge/expertise either from stakeholders or sources that
are external to the process. A typical example is the investigation of complex in-
surance claims under suspicion of a potential insurance fraud. In this example,
system-driven case work is usually state-driven, i.e., state changes in the related
information objects drive the progress of the handled case (an insurance claim may
be under investigation, under dispute, settled, rejected). In system-driven CM, the
CMS plays a more active role in driving and monitoring the case work and is often
either an extension of the BPMS or integrated with it.

BPM suites are currently expanding from the lower left quadrant into all other quadrants
by offering for example, business intelligence, collaboration features, and recently sup-
port for case management, the latter being mostly tackled by focusing on Type 2 of our
classification, i.e., system-driven case management. Dedicated CMS used by case man-
agers, however, focus more on Type 1, i.e., consumer-driven case management. Interest-
ingly, we found that successful CMS rarely follow a paradigm of guiding case workers
through a predefined set of activities triggered by events or states of the case. They
rather focus on providing customizable forms and document templates, easy recording
of assessments, objectives and plans, as well as on collaboration support. Their success
lies in respecting the qualified nature of the case work, i.e., preserving the autonomy
of the case workers in their decisions and work organization, as well as in facilitating
the planning phase of the case-management process. They offer quite different features
than BPMS, which we explore in more detail in this paper.

In our analysis, we found the following characteristics of case management work to
be of central importance:

– Complex assessment instruments are used and a holistic view is applied to the case
situation.

– Setting objectives is a collaborative process itself and central to the success of case
management due to the motivation of the client.

– Case management work comprises complex coordination, controlling and monitor-
ing as well as assessment activities.

These characteristics are also discussed in the literature, e.g., [8], and applied to
characterize knowledge-intensive work in general. It seems that the above-mentioned
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characteristics are typical for many modern and highly-qualified work tasks, which ex-
plains why the case management metaphor has received such interest by the BPM com-
munity. The case-management community itself feels rather uneasy when the term case
management is used outside their domain, because other types of case management
seem to exhibit only some of the elements from the case management definition. For
case management however to succeed in the context of social work, all elements must be
applied successfully and the case-management process itself must be well implemented
with all its phases.

We find two aspects of case management especially interesting when applied to other
types of work such as for example complex research and development projects, crisis
management, etc. First, there is the personalization of the solution for the client, which
is a key challenge and trend in the service economy. Companies such as IBM for exam-
ple have adopted their terminology and speak of clients instead of customers. Instead of
selling goods to customer, they address the needs of their clients and help them to suc-
ceed.4 Second, the role of the business professional increases in the service economy
and information is the key resource, see also [9]. Similar to the case manager, who is in-
strumental in the case-management process and balances complex needs and resources
in an information-heavy process, many business professionals face corresponding chal-
lenges.

One can also gain new insights by better understanding the different roles in which
a case manager acts, see also [10]:

– Advocacy: The case manager takes the side of the client to obtain the services the
client needs.

– Broker: The case manager acts as a neutral intermediary between the client and the
resource system to determine the optimal service bundle achieving the objectives
while saving resources.

– Gate-keeper: The case manager assigns the available and required services to the
client balancing constraints and needs in a fair way.

– Supportive companion: The case manager supports a client in a severe crisis situa-
tion such that the client becomes able to accept help and supporting services.

In each role, a case manager develops different information needs and handles the
case-management process in a different way. Roles may also change during case man-
agement phases. This type of adaptive behavior depending on the role played by a
responsible stakeholder in a process is not yet well-reflected in today’s BPMS. We also
would like to point out that these roles are different from the organizational roles usually
considered in the design of business processes. They relate to the individual tailoring
of a process and the personal positioning of a stakeholder with respect to the client,
which may also vary depending on whether a stakeholder actively handles a case, as-
sumes a management or supervising position, or acts on behalf of a regulatory authority.
Summarizing, applying the case management metaphor to other areas of knowledge-
intensive work seems to be well justified, nevertheless, it should be done with care and
by acknowledging the many important aspects of case management.

4 See for example, IBM client success stories at
http://www.ibm.com/software/success
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3 Capabilities and Maturity in IT-Based Case Management

The IT landscape of CMS is currently characterized by local providers and solutions.
We could not identify global players with global, but customizable products in the case
management IT market. The reason lies in the high tailoring of CMS to local law and
national social systems.

We begin by listing a set of capabilities required by case workers, but also offered
by the IT systems used in case management. We group these capabilities by functional
areas that we identified as relevant for more than one phase of the case-management
process: management of the information and data belonging to a case, tracking and ob-
taining insights into the case history, recording and managing case-related decisions,
support for collaboration among case workers and organizations, support for adminis-
trative tasks such as benefits or work-time accounting.

Table 1. Capabilities grouped by functional area and degree of IT usage

Capability Degree of IT usage
low average advanced

Information spreaded/paper-dominated coordinated integrated & consistent
- visualization genogram, ecomap (paper) diagrams task-specific
- forms simple templates intelligent
- access individualized role-based inter-organizational
- assessment guided unified standardized
Case History spreaded across documents tracked visualized
- management difficult available advanced insights
- insights descriptive diagnostic predictive
Decisions individually taken systematically recorded best practices
- case groups none possible case similarity
Collaboration disintegrated partially integrated seamlessly integrated
- transfer difficult supported inter-organizational
Administration separated embedded forms partially automated

Table 1 gives an overview over the capabilities as they take shape from lower to ad-
vanced usages of IT systems. We distinguish three levels of IT usage. “Low” means
no dedicated CMS is used, but the IT support comes from other tools, e.g., office tools
or database applications. “Average” stands for today’s typical CMS capabilities. “Ad-
vanced” represents innovative CMS extensions implemented or envisioned by some
players in the case management market. At the end of this section, we refine the ad-
vanced level of IT usage further and arrive at five levels of maturity for IT-based case
management.

Information-related Capabilities: Handling the data and information of a case is a key
capability during case management. Case information is often unstructured. In par-
ticular in the context of social work, graphical representations such as genograms or
ecomaps are used to capture the situation of a client. Notes taken by a case manager,
emails, and interviews are predominant entities of information. When the usage of IT
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systems is low, many of these information entities are often recorded on paper. Others
are spread across various IT tools. With the introduction of a CMS, paper-based doc-
uments are replaced by electronic solutions and information entities are better coordi-
nated. For example, data and documents can be easily transfered between different tasks
within the case-management process. Diagrams are increasingly used besides text to vi-
sualize case assessments for example. Still, duplicated information recording happens.
With an advanced usage, duplicated information is eliminated and information entities
are integrated and checked for consistency. Advanced visualizations are available, for
example, combining case-specific data with geographic and socio-demographic infor-
mation. Figure 3 shows an example of an advanced visualization that combines patient
data with geo-spatial information used by an insurance company to understand how
patients move between health care providers.

Forms are used at all three levels, but with the introduction of a CMS, customiz-
able templates improve electronic forms with pre-configured elements to initiate and
manage services. Intelligent forms ease information recording and analysis at the ad-
vanced level. Access to a case remains with the individual case worker at the lowest
level, whereas role-based access control is introduced with the usage of a CMS. At the
advanced level, information can be exchanged and coordinated between organizations
with security and privacy issues being resolved, e.g., by using an information broker
that provides functionality far beyond the case folder introduced by some BPMS today.

A key capability is the correct assessment of the case. At the lowest level, the qual-
ity of the assessment depends on the qualification of the responsible case worker who
follows organizational guidelines. With the introduction of a CMS, assessments are uni-
fied by templates and forms encoding guidelines. At the advanced level, sophisticated
standardized assessments are introduced, which encode deep insights into a case man-
agement domain and enable the multi-faceted analysis of a case.

History-related Capabilities: Tracking cases and obtaining aggregated information
about a case or a case group is a major management need and often the reason why
CMS are introduced into an organization. Understanding the history of a case, in partic-
ular, how effective the planning and linking worked, but also controlling and predicting
its potential development, and recognizing complex cases early (including the detection
of social trends), is a major challenge today. Data analysis techniques to visualize and
understand the temporal progress of a case are requested by CMS users. The history of

Fig. 3. Advanced case visualizations in D-Care, see www.lcc-consulting.ch
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a case comprises the assessments and evaluation(s), the objectives agreed between case
stakeholders, the benefits and services provided as well as their outcomes. At the low-
est level, this information is spread across many documents and a unified view on the
history of a case is very hard to obtain. With the introduction of a CMS, the information
related to a case is managed in a more coordinated manner and the history is tracked,
but problem-specific views on the history might not yet be available. Advanced levels
integrate heterogeneous and unstructured information sources and provide sophisticated
visualizations of the case history.

The main challenge for the case manager lies in arriving at an adequate assessment
of a case and in keeping an overview of the big picture of the client situation and how it
evolves. Case managers often face the problem that an improvement in one dimension
causes a degradation in another. Deep human judgment is required to assess whether
the overall situation has improved and which steps should be next. Sometimes, clients
pose additional challenges by moving between service providers and trying to cut off a
case history. For example, parents relocate to enter a challenged child into a new school,
which cannot know about the history of the case due to data privacy issues.

Decision-related Capabilities: Knowledge of how a case is handled is often formu-
lated as rules that guide or constrain the human decision maker. Some of these rules
are made explicit in a case-management organization and are regulated by law, others
remain implicit. Achieving and maintaining compliance of the case handling with legal
regulations is a major challenge today as the complexity of cases as well as the regu-
lation of case management is increasing. Furthermore, some, but not all of the knowl-
edge about the case is available in the case-related documents. A significant source of
knowledge also comes from observations made by the case manager and other case
workers involved in a case. This knowledge is not always consistent and made explicit
in the case-related documents, but plays an important role in the case-management pro-
cess through the empathy and intuition applied when taking decisions. Effectiveness
of decision-making is critical for the case-management process to succeed— an aspect
where it often differs from business process management. Different case evolutions
require different responses: different wrt. time to react, costs, coordination, benefits,
experience, and qualification of the case manager. A better understanding of the state
of the client, the events that happen as well as the case provider network helps in taking
effective decisions.

At the lowest level, decision-making is not directly supported by the IT infrastruc-
ture. In a CMS, decisions are supported by an improved view on the case situation.
With advanced usages of CMS, benefit/service usage patterns can be extracted from the
case data and a specific case can be compared to a representative case group. A refined
understanding of case groups can help in establishing best practices, but also risks that
a “one-size-fits-all” approach replaces the key paradigm of case management, namely
that individualization is key to success, i.e., results do not improve, but cost savings are
achievable by accepting less optimal solutions for clients.

Collaboration-related Capabilities: The longer a case lasts, the more stakeholders get
involved and the more information needs to be coordinated between stakeholders. Low
IT system usage hinders effective collaboration as information is scattered, must be
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manually transfered, and easily gets out of sync. With the introduction of a CMS, role-
based access control is established, documents can be transfered using small workflows,
and document exchange with office tools is made easy. Advanced solutions require to
address in particular inter-organizational issues, which are mostly unresolved today.
Each stakeholder of a case acts within his own law-regulated space and is not or only
partially aware of the spaces of other stakeholders. Coordination and opportunity find-
ing is therefore difficult. Furthermore, coordination needs vary for each case, which is
a challenge for advanced CMS implementations.

Administration-related Capabilities: Accounting of benefits and tracking work efforts
put into a case by stakeholders requires calculating forms and templates. With low IT
usage, these forms exist either on paper or in separated IT systems. CMS embed and
facilitate accounting. Advanced levels partially automate these tasks.

We are now ready to present our proposed C3M maturity model for IT-based case
management. The model distinguishes a pre-CMS level and a CMS level, where a CMS
is introduced into an organization. It refines the advanced usage of CMS into three post-
CMS levels. In our investigations, we found that many organizations still work at the
pre-CMS or CMS level. Some organizations, in particular larger insurance companies,
begin to evolve their CMS systems and enter the post-CMS area. For each level, the
model shows the main capability that we consider as characteristic for this level and
combines this capability with two other aspects, namely the main benefit an organiza-
tion can gain and the main risk it has to address.

At the individualistic level, the individualization paradigm on the side of the client as
well as the case workers dominates. Documents are personally organized with the help
of various IT systems. The main benefit is the high personal identification of the case
manager with a case. The main risk lies in the lack of traceability. At the supported
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Fig. 4. The C3M maturity model for IT-based case management
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level, a CMS is used to better organize documents and provide templates that facili-
tate the case work. Productivity increases, but an organization might face acceptance
problems of the CMS as well as lack of management support in particular in the initial
phase of technology adoption. At the managed level, the organization exploits the data
aggregation and analytics features of the CMS as a basis for management decisions at
the level of higher management, but also for the handling of the individual case. Data
of one case can be compared with data of other cases. Management transparency is the
main benefit, but the risk is a cost thinking that overdominates other aspects. At the
standardized level, a unified assessment methodology is implemented in the CMS and
standardized assessments are introduced. Similar assessment outcomes lead to similar
objectives and measures in the subsequent phases, helping to improve the effectiveness
of the case-management phases as the main benefit. Visualizations of the case state, its
objectives and history are provided by the CMS and exploited during decision making.
As the main risk, changing assessments and their implications becomes more costly as
with any work approach that is implemented in a software system. At the transformative
level, similarity of cases is defined including data from the case history, which enables
an organization to extract best practices and feed them back into case management. This
can help the organization as a whole to improve the effectiveness of its case manage-
ment, but also bears the risk that the tailoring of a solution to the individual needs of a
client is lost as cases are managed based on the most similar case group.

A refinement of the levels with the characteristic instances of all capabilities and a
more detailed map of risks and benefits is possible, but goes far beyond the scope of
this paper. We believe that this model is not only beneficial for maturity assessment, but
also for IT governance purposes as it addresses the impact of IT innovations on a case-
management organization. A systematic refinement of the model enables us to consider
benefits and risks for all aspects of a business system. Organizations need to respond to
IT developments. Their response decides whether they can built new business models
upon an IT innovation and manage the associated risks in order to keep up with the
competition or whether they will disappear from the market.

The impact of IT on case management is also reflected in the four-quadrants model
of human work. For example, we saw tendencies that the further division of labor within
case management moves some activities from the upper right quadrant into the lower
left, i.e., many administrative tasks within case management receive better IT support,
get partially automated and thus, become structured business processes. A combination
of intelligent and social computing technologies leads to novel IT capabilities provided
by CMS. For example, information visualization changes the way how case managers
can look at case-relevant data. Intelligent decision support exploits insights based on
case similarity and leads to decisions with more effective outcomes. We briefly discuss
some of these trends in the next section.

4 Trends in IT-Based Case Management

Several trends and emerging needs have also been identified in our interviews that we
briefly summarize in the following:
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Adoption of Mobile Technologies: The trend to replace paper-based work and isolated
legacy solutions with integrated CMS continues. Organizations still using proprietary
extensions of legacy systems such as MS Access or Filemaker feel an increasing pres-
sure to replace and modernize their IT environments. Mobile clients are clearly a need
that help case managers work in different locations. Furthermore, web services or apps
that extend mobile clients with specific context- or location-specific capabilities such as
data access have been mentioned. Security needs increase as typical case workers are
not really IT savvy, but information must be increasingly shared, including the access
of clients to their personal data stored in a CMS. Furthermore, the intelligent linking of
different information sources to enable the effective management of a case also leads to
unresolved data privacy issues.

Improved Collaboration: The management and hosting of sensitive data is an unsolved
issue, in particular when shared between different organizations. Complex cases re-
quire the delegation of tasks among case workers including a transfer of access to
sensitive documents. The increased need for interdisciplinary cooperation and inter-
organizational coordination requires effective solutions. In particular, the information
need of involved stakeholders that join or take over a case management situation should
be met with low effort and low cost, but effectively. Three major groups of users adopt-
ing different views and understandings must be addressed: the case workers, their man-
agement, and regulatory authorities. Collaboration solutions must also be seamlessly
integrated with the default communication systems, which also evolve at a high pace.

Applied Business Intelligence: The visualization of case-related data will gain further
importance. On the one hand, case-related data will be presented more often in graphi-
cal form than text-based. On the other hand, different data sources will be presented in
an integrated way and trends in the evolution of a single case or a group of cases will
be displayed graphically. There is a clear desire to obtain insights into hidden patterns
and states of cases. Furthermore, CMS will help case managers to learn from previous
decision histories and also illustrate potential decision options. Decision support using
aggregated and extended data, for example using external sources such as household
statistics, is currently built into CMS. The early recognition of cases will be partially
automated and thus improve the intake phase. There is a general need to integrate anal-
ysis tools and operative process support. Standardized assessments seem to gain further
importance requiring deeper skills and involving more stakeholders. Cases that require
cross-organizational collaboration undergo a detailed assessment, e.g., clarifying insur-
ance conditions, during which it is determined which organization takes the lead in
handling the case. Case similarity becomes a key concept at the advanced level, but
effective criteria on which to measure the similarity of cases are an unresolved research
problem in most domains. “Case intelligence/insight” in general is a promising future
research area to achieve better decisions. Instead of descriptively recording in a CMS
what is happening, decisions should be based on understanding why it did happen and
finally move to prescriptive decisions that can actively influence what will happen.

Measuring and Scheduling: In particular larger organizations have an increased need
to improve the scheduling of the case management work force. Furthermore, work-
time reporting (and the related billing, benefits accounting, and cost transfer) should
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be further automated and simplified. In general, the desire increases to better measure
the costs and quality of service benefits and their effectiveness for a case. An improved
root cause analysis over a group of cases has also been mentioned. Questions such
as why do cases increase? in which areas? are asked more often and cannot easily be
answered with today’s CMS. Recurring routine activities, for example those required to
administer a case, should be easy to automate.

5 Related Work

Humphrey’s seminal maturity model for the software process with its five maturity
levels initial, repeatable, defined, managed, optimizing has inspired maturity models in
various areas. Its original focus, as also carried on in the famous CMMI (Capability Ma-
turity Model Integration) is on process improvement, i.e., it provides organizations with
the essential elements of effective processes, which will improve their performance. It
is thus very natural that maturity levels have been defined for business processes by the
BPM community as well. We build on these models as we could not find in the literature
any maturity models or capabilities sets defined for case management.

One of the first BPM maturity models is defined by Fischer in 2004 [11] who con-
siders the dimensions (levers of change) strategy, controls (governance), process, peo-
ple, and technology and defined the following five maturity levels based on capabilities
reached along each dimension: siloed, tactically integrated, process driven, optimized
enterprise, intelligent operating network. De Bruin and Rosemann present an improved
model in 2005 [12] that replaces the process dimension (which is in fact the one to
be defined and should thus not be part of the input) by the dimensions of methods
and culture. The five maturity levels are preserved and follow more closely the orig-
inal CMMI levels: initial, defined, repeated, managed, optimized. In 2006, Wolf and
Harmon [13] present a maturity model with slightly changed levels focusing on the de-
gree of process organization: unaware (no organized processes), opportunistic (some
processes organized), standards (most processes organized), enterprise (processes are
managed), transformative (processes are continuously improved). Also in 2006, Gart-
ner [14] presents a maturity model distinguishing 6 phases, which refines the standards
level into two levels of intra-process and inter-process automation and control. In 2007,
Hammer [15] introduces the PEMM (Process and Enterprise Maturity Model) that dis-
tinguishes four levels of process maturity based on enablers such as design, performers,
owner, infrastructure, and metrics and combines them with four levels of enterprise-
wide capabilities based on leadership, culture, expertise, and governance. PEMM does
not aggregate the two groups into overall maturity levels. Its focus is more on analyzing
and guiding transformation processes than on a general assessment of maturity. Finally,
the OMG publishes a BPM maturity model specification in 2008 [16] with the five lev-
els initial, managed, standardized, predictable, innovating and defines detailed process
areas. Despite minor differences in naming or emphasis on certain aspects, all models
essential share similar levels of maturity.

Usually, the models focus on the maturity levels, and less on the capability levels,
which play a much more prominent role in CMMI. Capability levels apply to individual
process areas and enable a continuous and incremental evolution of processes, whereas
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Fig. 5. The Wolf and Harmon BPM maturity model as presented in [17]

maturity levels address entire process areas and allow an organization to advance in
stages. In our work, we focus on capabilities and their support by IT. Thus in contrast to
BPM and other maturity models, we focus on the degree of technology adoption by an
organization. It is important to acknowledge that higher maturity levels not necessarily
mean better case-management processes. Each organization must decide which matu-
rity level in using IT leads to the best support of case-management work. Our highest
maturity level corresponds to the most comprehensive and sophisticated usage of IT
technology, but this is not identical with the best case-management practices. As De
Bruin and Rosemann pointed out [12], “it is a case-by-case challenge to identify the
most appropriate (BPM) maturity level based on context, underlying objectives, related
constraints, possible business cases, etc.”

Recent years seem to have seen less interest in maturity models. Measuring and com-
paring processes and capabilities is interesting, but not necessarily useful unless it can
help guiding improvements and transformations of a business. Our maturity model thus
focuses less on measurement, but more on the identification of capabilities, for example
as a foundation for a detailed requirements analysis. Furthermore, we link capabilities to
benefits and risks to help governing case-management-related IT decisions and manage
their impact. This helps organizations assessing whether a specific capability is needed
and identifying its associated benefits and risks. The model thus supports organizations
in evaluating software products and it simplifies purchasing decisions. Software ven-
dors can position their product roadmaps with respect to the model. Furthermore, the
model makes explicit the impact of technology on the business.

6 Conclusion

We present a detailed characterization of case management and contrast it with the
ongoing discussion of case management within the BPM community. We position case
management in a four-quadrants model of human work and compare it with process-
oriented work, social collaboration, and intelligent problem-solving. We derive a set of
capabilities required by case workers and show how these capabilities are supported
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at the low, average, and advanced levels of using IT-based case management systems.
We propose the C3M maturity model for IT-based case management consisting of five
levels where we relate the characteristic capability of each level with the main benefit
and risk of technology adoption.
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Abstract. Becoming more and more process oriented, companies de-
velop collections of hundreds or even thousands of business process mod-
els that represent the complex system of cooperating entities that form
an organization. Designing and analyzing the structure of this system
of business process models emerges as a new challenge, which is cov-
ered by the field of business process architecture. This paper presents
a formal conceptual framework for representing and analyzing business
process architectures. It identifies patterns of relations between process
models, and it introduces anti-patterns that represent erroneous relations
between them. The conceptual framework and the patterns are evaluated
using a real-world process model collection. The evaluation shows that
explicitly representing and analyzing relations between process models
can help improving the correctness and consistency of the business pro-
cess architecture as a whole.

1 Introduction

Companies develop and maintain collections of hundreds or even thousands of
business process models. These models and the business processes that they
depict, represent the complex system of cooperating entities that is an entire
organization. Designing and analyzing the structure of this system of business
process models emerges as a new kind of problem, which is covered by the field
of business process architecture.

In business process management, so far mostly individual processes were in
the centre of interest, and a myriad of interesting research results regarding
individual processes have been established by the BPM community. In this paper,
we take a different view by studying the interrelationships between the business
process models of an organization, and not the individual models themselves.
We address design questions, such as:

◦ While I know my individual processes to be sound, are my processes also
sound in their relations with each other?

◦ Where should one business process start and another begin and how does
this affect assignment of responsibility?

A. Barros, A. Gal, and E. Kindler (Eds.): BPM 2012, LNCS 7481, pp. 65–81, 2012.
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◦ Which path does a client go through in administration offices as whole, when,
for example, that client wants to open a new enterprise?

While most of the process architecture design styles presented in Dijkman et
al. [1] help to answer these questions, they lack a formal definition to analyze
the overall interdependencies of all processes of the system represented in the
business process architecture. There are two kinds of interdependencies that can
be observed in a process architecture, triggering and information flows. While
both the analysis of process and service interaction across organizational bound-
aries and also instantiation behavior for single processes is dealt with in litera-
ture [2,3,4,5,6], the combination of both within a business process architecture
has not been looked at in detail. To overcome this gap, this paper introduces a
conceptual framework and structural patterns that shall help to design correct
process architectures and anti-patterns to detect erroneous interdependencies
between process models in process architectures.

The remainder of this paper is organized as follows Section 2 defines and
formalizes the concept of business process architecture. Section 3 presents struc-
tural patterns and anti-patterns that are applied and evaluated with the SAP
Reference Model collection in Section 4. Section 5 puts our work into research
context followed by the conclusion in Section 6.

2 Business Process Architecture

This section defines and formalizes the concept of business process architecture
and defines the behavioral contract that must be observed by processes that
cooperate in the context of that business process architecture.

2.1 Business Process Architecture Syntax

A business process architecture is a collection of business processes and their
interdependencies with each other. In previous work [1] we surveyed the different
types of relations that have been used by business process architecture design
methods, these mainly include:

◦ composition, which represents that one business process is composed of a
number of other business processes, also called the sub-processes;

◦ specialization, which represents that one business process specializes another;
◦ trigger, which represents that one business process causes another business
process to instantiate and start; and

◦ information flow, which represents that information or other objects flow
from one business process to another.

This paper focuses on behavioral relations between business process models: trig-
ger and information flow. We use the concepts of throwing and catching interme-
diate events, inspired by the BPMN, where throwing events are of active nature
(like sending a message) and catching events are of passive nature (like receiving
a message), since they wait for throwing events to happen. We define a business
process architecture as follows.
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Definition 1 (Business Process Architecture). A business process archi-
tecture is a tuple (E,P, T, F,M), in which:

◦ E is a set of events, partitioned into start events, ES, end events EE, inter-
mediate throwing events ET and intermediate catching events EC .

◦ P is a partition of E and represents a set of business processes and each
member represents a business process.

◦ T : E → E is the trigger relation, partitioned into synchronous triggers T S

and asynchronous triggers TA.
◦ F : E → E is the flow relation, partitioned into synchronous flows FS and
asynchronous flows FA.

◦ M : (ET ∪EC) → P (N)∪{{0 . . . n}, {1 . . . n}} is a multiplicity function that
defines for each intermediate event of a process instance how often it can be
thrown or caught respectively.

For an event e ∈ E, we denote the set of events •e = {e′ ∈ E|(e′, e) ∈ T ∨(e′, e) ∈
F} that contains the events with an outgoing relation to e. Similarly, we denote
the set of events e• = {e′ ∈ E|(e, e′) ∈ T ∨ (e, e′) ∈ F} that contains the events
with an incoming relation from e. Note that it is not necessary for start and
catching events to have incoming relations, and for end and throwing events
to have outgoing relations. We also call such events external events. They are
events that interact with factors outside of the process architecture.

Figure 1 shows a graphical representation of a sample business process archi-
tecture. The architecture has start events s1, . . . , s5 ∈ ES , end events e1, . . . , e4 ∈
EE , and intermediate events i1, . . . , i8 ∈ ET ∪EC . It contains process models (or
processes) p, p1, p2, q, and r ∈ P , where, for example, p = {s1, e1, i7, i8}. The
architecture also has flows and triggers connecting the events of the different
processes. The logic of the business process architecture depicted in Figure 1 is
described in Definition 2.
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Fig. 1. Example of a business process architecture
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2.2 Business Process Architecture as a Behavioral Contract

A business process architecture provides a minimum contract that all business
processes that cooperate in its context must observe. The contract specifies when
business processes can be instantiated, when they complete and at what time
which events can throw or catch. This section defines the behavioral contract
that must be observed by processes in a process architecture, but first we define
the behavioral semantics of trigger and flow relations between processes.

A trigger relation from an end event e ∈ EE to a start event s ∈ ES represents
that the event e triggers the event s and therewith the instantiation of the process
that contains s. Note that we assume that a start event can only occur once for
an instance, when it occurs again, it again creates a new instance of the process.
If the triggering relation is synchronous, e and s occur at the same time; if the
relation is asynchronous, the event e is buffered and can trigger s at a later time.
Once a process is instantiated, eventually that instance will complete with the
occurrence of one of its end events. A trigger relation from an event e to a non
start event e′ simply represents that e triggers e′, thus passing on the trigger,
but not instantiating any process.

A trigger relation of multiple events e1, . . . , en with an another event e signifies
that the occurrence of any one of e1, . . . , en trigger event e. A trigger relation of
event e with multiple events e1, . . . , en signifies that the occurrence of e triggers
all of e1, . . . , en. This behavior is motivated by the nature of events: if an event
occurs, it occurs for all parties that are interested in it. For example, if the event
‘order ready’ occurs, this signifies that the order is ready for all parties involved,
such that the occurrence of one ‘order ready’ event is sufficient to trigger all
others. Note, however, that the message that the event has occurred may take
some time to convey. This depicted, motivates the introduction of asynchronous
triggers in the business process architecture.

A flow relation from an event e to an event e′ represents that upon the oc-
currence of event e information is passed to event e′, causing it to occur as well.
However, a flow relation can never instantiate and start a process. Therefore, it
should never have a start event as its target.

Using this behavioral semantics for trigger and flow relations, we define the
behavioral contract implied by a business process architecture.

Definition 2 (Behavioral Contract of a Business Process Architecture).
Processes in a business process architecture A = (E,P, T, F,M) must observe the
following behavioral contract.

◦ An instance of process p ∈ P must become active when a start event s ∈
ES ∩ p occurs.

◦ A start event e ∈ ES is always ready to occur. An intermediate event e ∈
ET ∪ EC is ready to occur for active instances of p ∈ P for which e ∈ p.
An end event e ∈ EE is ready to occur for active instances of p ∈ P for
which e ∈ p. This implies that each intermediate event i ∈ p ∩ (ET ∪ EC)
has occurred a number of times specified in M(i) for that instance.

◦ If e ∈ E ∧ •e = ∅ holds, event e can occur for an instance, if it is ready to
occur for that instance.
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◦ If e ∈ E ∧•e 
= ∅ holds, event e must occur for an instance if and only if: (i)
it is ready to occur for that instance; and (ii) it gets a trigger or flow object.

◦ An instance of process p ∈ P ceases to be active if an end event e ∈ EE ∩ p
occurs.

◦ For a synchronous relation (e1, e2) ∈ T S ∪ FS, if e1 occurs, e2 must get a
trigger or flow object at the same time.

◦ For an asynchronous relation (e1, e2) ∈ TA ∪ FA, if e1 occurs, e2 must get
a trigger or flow object at some time in the future.

A process instance should not end due to an event that belongs to another
instance. For that reason, we pass along a trigger stack with each trigger. An
invocation stack is the stack of process instance identifiers of active processes
in the context of which a trigger is given. Each time a process is instantiated,
it pushes its own identifier onto the stack that is received with the trigger. An
end event can then only occur for a process instance due to a trigger, if the
identifier at the top of the trigger stack corresponds to the identifier of the
process instance. When the end event occurs, it pops the top from the stack. To
enforce this behavior, the following contractual rules must be enforced.

Definition 3 (Instantiation Contract)
◦ A trigger or flow (e1, e2) ∈ T ∪ F passes a stack from e1 to e2.
◦ When a start event occurs and an instance of p becomes active, a unique
identifier for that instance is pushed onto the stack.

◦ An end event can only occur for a process instance due to a trigger, if the
conditions from Definition 2 hold and the element at the top of the stack of
the trigger corresponds to the identifier of the process instance.

◦ When an end event occurs, it pops the top from the stack of the process
instance.

For example, in Figure 1 process p can initially instantiate due to s1, creating
instance p1 that is pushed onto the stack. The stack is passed on to s2 and s3. s2
instantiates p1, creating an instance p11 with stack [p1, p11]. When p11 ends due to
e2, the identifier is popped from the stack and the stack is passed on to e1. The
stack now contains [p1] and consequently e1 can only occur for instance [p1].

The behavioral contract can be enriched by defining an abstract control flow
for each process. A process must then not only observe the contract determined
by the business process architecture, but also observe the order of events implied
by the abstract control flow. An abstract control flow of a business process p ∈ P
is a business process model that defines the behavioral relations between the
events in p and that does not contain any other events, tasks or sub-processes.
Figure 2 shows a process with an abstract control flow, modeled in BPMN. We
leave the incorporation of abstract control flows for future work.

Where the correctness of individual processes is usually verified by assuming
that they have a clearly identifiable start and end [7], these properties cannot
be used for a process architecture. For example, consider a process that continu-
ously collects bills from other processes and, at the end of the month, pays those
bills. Although we could consider the start and the end of the month as the
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Fig. 2. Example of a process with abstract control flow

start and the end of the payment process, the other processes, which provide the
payment process with its information and are therefore part of the same process
architecture, most likely do not share the same start and end. Consequently, we
rely on other notions of correctness. In particular, we assume a process architec-
ture to be behaviorally correct, if it is free from deadlocks, livelocks, dead events
and lost triggers or flow objects.

Definition 4 (Dead event, Lost trigger or flow object, Deadlock, Live-
lock, Correctness)
◦ A dead event is an event that can never occur.
◦ A lost trigger or flow object is a trigger or flow object that either gets emitted
by a synchronous relation at a moment at which the target event is not ready,
or gets emitted by an asynchronous relation to an event that may never
become ready.

◦ A process instance is in a deadlock, if it is active, has one or more end events,
and none of its end events can occur at any moment in the future.

◦ A business process architecture is in a livelock, if it is in a state, from which
it is not possible to reach a state in which all its processes are not active.

A business process architecture is correct if and only if it is free from deadlocks,
livelocks, dead events and lost triggers or flow objects.

In the remainder of this paper, we will define structural patterns that can be used
to detect incorrect behavior in a process architecture. The definition of formal
correctness verification rules that can be used to exhaustively detect incorrect
behavior is left for future work.

3 Structural Patterns

The structural patterns in the following sections describe message flows between
processes as well as their instantiation interdependencies in synchronous and
asynchronous environments. This in particular is important to detect undesired
behavior in a process architecture. The patterns consist of basic constructs, com-
posite constructs and constructs of multiple instances.

For the design of correct process architectures hierarchical interdependencies
need to be taken into account as well. Interdependencies within one hierarchical
level are described in patterns 1-13 and 15-28. Hierarchical interdependencies are
reflected in the patterns 14, 29 and 30. Multi-event patterns, though of interest,
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will be elaborated in detail in future work. The main attention will be given to
anti-patterns as they expose erroneous interdependencies. We will describe the
patterns in a brief and semi-formal way with the help of following definitions.

Definition 5 (Trigger and Flow relations). For convenience, we define the
relations:
◦ triggerssint = T s ∩ (Et × Es) for processes that trigger a start of another
process with an intermediate throwing event in synchronous environments.

◦ triggerssend = T s ∩ (Ee × Es) for processes that trigger a start of another
process with an end event.

◦ sendssint = F s ∩ (Et × Ec) for processes that send an intermediate message
to another process.

◦ sendssend = F s ∩ (Ee × Ec) for processes that send a message to another
process through an end event.

◦ triggersasint = T a ∩ (Et ×Es) for processes in an asynchronous environment
that trigger a start of another process with intermediate throwing event.

◦ triggersasend = T a∩ (Ee×Es) for processes in an asynchronous environment
that trigger a start of another process with an end event.

◦ sendsasint = F a ∩ (Et × Ec) for processes in an asynchronous environment
that send an intermediate message to another process.

◦ sendsasend = F a ∩ (Ee × Ec) for processes in an asynchronous environment
that send a message to another process through an end event.

The patterns and anti-patterns are depicted in Fig. 3 and in Fig. 4 in which pro-
cess p generally is the starting point of reading the patterns. The semantics of the
visualization of the patterns is as follows. The triangles depicted in the patterns
show incoming events when pointing inside the process symbol and outgoing
events when pointing away from the process symbol respectively. Intermediate
events either point up or down and start or end events to the right.

3.1 Basic Patterns

The very basic interaction patterns with only one relation between two processes
are trigger patterns and flow patterns. One process is linked to another process
or itself by a relation between a throwing (end, intermediate) and a catching
event (start, intermediate). In trigger patterns one process instantiates another
process. Flow patterns depict an information flow that can be observed between
two processes. These are shown in patterns 1-4 in Fig. 3.

Trigger Patterns. Pattern 1 depicts a process p that triggers process r. Process
p finishes with end event e1 and process r starts with start event s1, hence
(p, r) ∈ triggerssend. Similarly, pattern 2 shows process p triggering process r but
through its intermediate throwing event t1, so that (p, r) ∈ triggerssint. Both
patterns hold for asynchronous and synchronous environments.
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Flow Pattern. Pattern 3-4 show an information flow from process p to pro-
cess r through a throwing intermediate event or an end event respectively:
(p, r) ∈ sendssint in pattern 3 and (p, r) ∈ sendssend in pattern 4. In both patterns
process r must be instantiated in synchronous environments for the information
exchange to occur. Else the information flow will be lost. In asynchronous en-
vironments, r does not need to be instantiated at the moment when process p
passes the information. Hence, (p, r) ∈ sendsasend as well. The message will be
read after instantiation when the process execution reaches the according state
of the process where this input is required.

3.2 Composite Patterns

Patterns 5-8 in Fig. 3 show regular composite patterns that display a combination
of triggering and information flow behavior between two processes p and r.

Flow Feedback Patterns. Patterns 5 and 7 describe feedback of informa-
tion from process r to process p after having been instantiated by process p.
In pattern 5 and 7 process r is triggered by a throwing intermediate event.
During execution process r passes information to process p through a throw-
ing intermediate event in pattern 5 and through an end event in pattern 7.
In Pattern 5 (p, r) ∈ triggerssint and (r, p) ∈ sendssint whereas in pattern 7
(p, r) ∈ triggerssint∧ (r, p) ∈ sendssend.

Unidirectional Interaction Patterns. In contrast to patterns 5 and 7, pattern
6 displays only unidirectional interaction from process p to process r. Process p
instantiates process r and passes a message to process r when it finishes. Process
r needs to be still active in synchronous environments when process p finishes.
Else the information flow object would be lost. In asynchronous environments the
information object could then be read by the next triggered instance of process
r, hence (p, r) ∈ triggerssint ∧ sendssend and (p, r) ∈ triggersasint ∧ sendsasend.

Send-Receive Pattern. In pattern 8, process p passes a message to process r
through an outgoing intermediate event and vice versa, so that (p, r) ∈ sendssint
and (r, p) ∈ sendssint. Both processes need to be active in synchronous environ-
ments. In asynchronous environments they could be active at different times.

Broadcast. In pattern 13 a broadcast of the end event of process p to processes
q and r can be observed. Both processes will be triggered.

3.3 Multi-instances Patterns

To describe multi-instantiation patterns we introduced cardinalities in section 2
that define the number of occurrences of one event in a relation between two
processes. The cardinalities describe the minimum and maximum number of
occurrences of the event. The three vertical lines depicted in process r in patterns
9-12 of Fig. 3 represent the possible parallel execution of multiple instances of
process r.
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Fig. 3. Basic Patterns

One-to-Many-Broadcast. Pattern 9 displays a one to many broadcast pattern
where process p sends information to many instances of process r. In synchronous
environments instances of r need to be active as information objects are sent
by p. In asynchronous environments the instances could also become active in
sequential order.

Information Sink. Pattern 10 displays an information sink. Process p collects
many information objects from several instances of process r that run in par-
allel. In synchronous environments all process instances need to be active. In
asynchronous environments p can become active at a later stage to receive all
information objects from process r.

Trigger Fleet. Pattern 11 depicts similar behavior like pattern 2. However,
process p triggers many instances of process r, so that (p, r) ∈ triggerssint and
M(t1) = {1 . . . n}. In synchronous environments all process instances of process
r become active at the same time. In asynchronous environment, the instances
of r could become active at different points in time.

Pattern 12 is a combination of pattern 9 and 10 whereas the process instances of
process r also send many information objects to process p. In this pattern (p, r) ∈
sendssint with M(t1) = {1 . . . n} and (r, p) ∈ sendssint with M(t2) = {1 . . . n}.

3.4 Basic Anti-patterns

There are four basic process anti-patterns that demonstrate self-reflexive/looping
behavior that expose incorrect behavior of the system. They are depicted in
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patterns 15-18 of Fig. 4. Anti-patterns that are considered regular patterns in
asynchronous environments are marked with a * in Fig. 4 and in the heading of
the pattern description.

Loop. Patterns 15 and 16 describe looping behavior in which a process p triggers
itself either through its own throwing intermediate event or through its own end
event. In pattern 15 process p triggers itself when finishing. This relation should
not occur in a process architecture as such process could never be instantiated.
When instantiated once, process p would trigger itself for infinite times as there
is no other end event. Similarly in pattern 16, process p triggers itself with its
throwing intermediate event t1. Hence it can never become active as it waits for
its own throwing intermediate event to trigger itself. Also if instantiated once,
infinite instances of process p could possibly be instantiated as there is no other
end event. (p, p) ∈ triggerssint, (p, p) ∈ triggerssend, (p, p) ∈ triggersasend, or
(p, p) ∈ triggersasint should never become true. The looping behavior is undesired
in synchronous as well as asynchronous environments.

Dead Event*. Pattern 17 of Fig. 4 depicts a dead event. When process p is
active it waits for an information flow from its own end event. t1 will never occur,
so that process p will never end. c1 is a dead event as it never occurs.

If considering the intermediate events being optional, the information flow
would be lost in synchronous environment as p sends a message to itself the
moment it ceases. In an asynchronous environment this pattern can be considered
a regular pattern as the message would be stored until p is active again. Hence
(p, p) /∈ sendssint but (p, p) ∈ sendsasint.

Self Messaging. Pattern 18 does not formally depict undesired behavior. How-
ever a process p that passes an information object to itself, displays improper
behavior. The throwing intermediate event t1 sends an information object to
its catching intermediate event c1. In both synchronous and asynchronous envi-
ronments this could lead to process p not finishing as the message flow to itself
would never stop or never start.

3.5 Composite Anti-patterns

The anti-patterns consist of lost flow patterns, inhibiting flows or triggers, and
looping behavior.

Trigger Loop.Deriving from patterns 15 and 16, patterns 19 and 20 depict loop-
ing behavior over two processes. Process p triggers process r through a throwing
intermediate event t1. Process r in return triggers process p, so that the combi-
nation (p, r) ∈ triggerssint ∧ (r, p) ∈ triggerssint or (p, r) ∈ triggerssint ∧ (r, p) ∈
triggerssend resolves in a dead structure. This symmetric behavior describes a
loop spanning over two processes in which neither process can be instantiated as
they depend on being triggered by each other. If once active, multiple instances
of process p could exist in both patterns at the same time. Patterns 25 and 26
depict another version of looping behavior, except that process p when finishing
triggers process r. Either pattern cannot be instantiated as both processes are
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triggered by each other. In pattern 21 as well, process p is triggered by process r
and wants to send an information object to r. (r, p) ∈ triggerssint∧(p, r)sendssint
lead to process p inhibiting the execution of process r. Process r is instantiated
and waits for the throwing event t1 of process p which cannot occur as process
p is triggered by intermediate event t2 of process r.

Lost Flows *. Patterns 22-24 in Fig. 4 show different constructs in which in-
formation objects are lost in synchronous environments. An information object
gets lost when the receiver process is not active. In patterns 22 and 24 process
p triggers process r when it finishes. In pattern 22, process r, while executing,
passes a message to the not instantiated process p through a throwing interme-
diate event, so that (p, r) ∈ triggerssend but (r, p) 
∈ sendssint. In pattern 24,
process r, when it finishes, passes an information object to the not instantiated
process p so that (p, r) ∈ triggerssend and (r, p) 
∈ sendssend.

Pattern 23 describes a unidirectional relation information object loss. Process
p is active and wants to pass an information object to process r. However, process
r is not instantiated yet, as it is triggered by process p when process p finishes.
Hence the information object will be lost, such that (p, r) 
∈ sendssint but (p, r) ∈
triggerssend.

However, in asynchronous environments, patterns 22-24 are considered regular
patterns as the information flows will be stored until the according process will
be active and able to process it.

Multi-cast *. Patterns 27-28 depict a situation in which the receiving process
r is triggered and gets an information object from one event of the sending
process p at the same time in synchronous environments. The message object
will be lost due to that. In asynchronous environments these pattern describe
regular behavior as the message object will be buffered.

3.6 Nesting

A process architecture often exhibits hierarchical interdependencies of processes.
The interdependencies between processes within one hierarchical level need to
remain intact when decomposing a process into its subprocesses. To ensure strict
hierarchy events should always be forwarded to events of the same type. If a
parent process p consists of one or several child processes p1..n, catching events
of the parent process need to be forwarded to at least one of its child processes
and throwing events from at least one child to the parent. For instance, in pattern
14 the throwing event e2 of p1 is forwarded to e1 of process p.

3.7 Nesting Anti-patterns

Patterns 29 and 30 describe anti-patterns in hierarchical relations. In pattern
29 trigger or flow relations are not forwarded from the parent process to its
child processes or the child processes throwing events are not forwarded to the
according partner process of the parent. The trigger relations that exist between
process n and process p should be forwarded to the child process p1.
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Fig. 4. Anti-Patterns

Pattern 30 shows wrong forwarding of events from parent to child process and
vice versa. The trigger relation from process p should be forward to process p1
such that start event s1 of process p relates to start event s2 of child process p1.
As s1 of process p relates to an event of different type, the intermediate event c2
of process p1, the hierarchical decomposition is erroneous.

4 Evaluation

A business process architecture aims to give an overview of a collection of busi-
ness process models, which helps to manage the complexity of interactions be-
tween models in that collection and, therewith, avoid errors. To evaluate the
extent to which business process architecture can help do that, we analyzed the
complexity of interactions between models in the SAP reference model collec-
tion [8], by constructing a process architecture for it and analyzing its architec-
tural patterns.

Constructing a business process architecture for the SAP reference model is
complicated by three factors.

First, the SAP Reference Model has a control flow semantics that is difficult
to interpret automatically, in particular because it is known to contain errors in
the control flow [9]. Since constructing the process architecture requires insight
in the control flow semantics (in particular to analyze how often an event occurs
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Fig. 5. Part of the SAP Reference Model Process Architecture

per instance), we were forced to investigate the collection manually. To make this
feasible, we investigated 7 branches of the model with a total of 12 subbranches.
These branches contain 95 of the total collection of 604 models. The interac-
tion observed between process models remained within their branches. However,
interaction across subbranches could be observed quite frequently.

Second, the SAP reference model does not explicitly distinguish between start,
end and intermediate events, while a process architecture distinguishes between
these different types of events. To identify these different types of events, we
used the following definitions. A start event is an event that is meant to occur
before any activity. An end event is an event that is meant to occur after all
activities have occurred. An intermediate event is an event that is meant to occur
after an activity has already occurred and before all activities have occurred. To
determine whether an event is expected to occur at all for a single instance of a
process, we assume that the processes are meant to be one-safe in a token-based
execution semantics. For example, if a process has two start events A and B that
are followed by an XOR-join, then we assume that either A or B should occur
in a single process instance, but not both.

Third, the SAP Reference Model also does not distinguish explicitly between
‘trigger’ and ‘flow’ relations or between synchronous and asynchronous relations.
Instead, it distinguishes conditions that can become true. We interpret each of
these conditions as a synchronous trigger relation, as a condition that becomes
true, becomes true at all places in the architecture at the same time.

Using these assumptions, we constructed process architectures for the various
branches, like the one shown in Figure 5, and subsequently we identified the
architectural patterns that are shown in Table 1. Figure 5 shows a process archi-
tecture for one of the smaller branches of the SAP Reference Model, consisting of
only leaf processes. The processes have been anonymized for copyright reasons.
The architecture provides some interesting insights. For example, it is clearly
visible that process C can be executed multiple times and process B collects
the results of the various instances of process C. During our examination of 95
business processes of the SAP Reference Model we mainly found normal patterns
that derive from patterns 1-4. In general we found more triggering relations than
flow relations between processes. Looking more closely we could observe more
end trigger than intermediate trigger relations. Flow relations were dominated
by interactions between two intermediate events, rather than flows between end
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Table 1. Patterns in SAP-Reference Model

Pattern Counts Pattern Counts

Trigger (Pattern 1 and 2) 95 Self-Messaging 2
Flow (Pattern 3 and 4) 13 Anti-Pattern 25 1
Broadcast 10 Anti-Pattern 26 3
Nesting 27 Nesting Anti-Patterns 29 and 30 38
Loop (Anti-Pattern 13 and 14) 4

events and catching intermediate events. Two of the analyzed branches showed
correct behavior as they did not expose any anti-patterns.

In the other five branches 48 anti-patterns could be observed. Nesting anti-
patterns 29 and 30 could be observed with a high count of 14 (anti-pattern 29)
and 24 (anti-pattern 30) respectively, in contrast to the observance of 27 regular
nesting patterns. This is due to the fact that most of the parent processes of one
branch in the SAP Reference Model are a composite of all subprocesses in their
branch but exhibit not all intermediate events of the subprocesses that relate to
other processes of other branches. Anti-pattern 16 and 23 were found each two
times, and loop anti-patterns four times. However, one count of the loop anti-
pattern and the two counts of anti-pattern 23 could resolve in a regular behavior
when taking their abstract workflows into consideration as each process exposes
several start and end events. Anti-pattern 26 could be observed three times in
derivative form and anti-pattern 25 only once.

This discussion shows that the errors found in that process model collection
could have been avoided by using our approach. It can lead to better understand-
ing of the interdependencies between related process models and, ultimately, to
better and more consistent process model collections. Future work will deal with
refactoring approaches for repairing anti-patterns.

5 Related Work

A large part of literature on process architectures focuses on the organization
of processes and the description of their interrelations within process collections.
They facilitate processes classification [1] and mainly build on hierarchical in-
terrelations between processes. However, most approaches do not take care of
the interdependencies of processes in regard to their instantiation semantics and
message flows. These topics are mainly dealt with in literature on service inter-
action patterns [3,4,5,6], process instantiation [10], process choreographies [11]
and workflow modules [12,13]. In addition, Milner [14], Decker et al.[15] and Luc-
chi and Mazzara [16] use the π-calculus to analyze communication interaction
between communicating parts.

Examining service properties, Barros et al. [4] present service interaction
patterns. Their aim is to provide common patterns to benchmark technology.
The basic patterns presented in previous sections align and cover the eight basic
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patterns proposed by Barros et al. [4]. We expand on this work by also consid-
ering trigger relations and using anti-patterns to analyze correctness.

Van der Aalst et al. [3] introduce the foundational concepts of service interac-
tion and a collection of basic service interaction and correlation (anti-)patterns.
To examine the compatibility of service interactions, they use a refined Petri Net
specification. Similarly, our conceptual framework supports the correct design of
process architectures, and the detection of undesired interdependencies between
processes. Van der Aalst et al. [3] focus on the exchange of messages between
services rather than triggering interdependencies between several processes.

In contrast, Decker and Mendling [10] focus only on instantiation semantics
disregarding any message flows between processes. They propose the CASU clas-
sification framework for describing the instantiation semantics of single processes.
Extending this, our approach takes into account triggering and flow relations to
identify incorrect process interdependencies in a process architecture. So far,
only some of their creation and activation patterns are covered by our approach.
Patterns on subscription and unsubscription as well as multi-event patterns will
be examined in the near future.

Examining interaction of workflow modules, Glabeek and Storck [13] focus on
the property of termination. They propose to ensure global termination of work-
flow nets by checking local properties only. We look at termination rather from a
holistic perspective and assume that multiple instances of one process can exist
during one instance of another process. Martens [12] analyzes the interaction
and replacement of parts of composite web services in regard to deadlocks and
soundness. He introduces communication and usability graphs to evaluate the
behavior of the composite workflow modules.

Decker and Weske [11] emphasize the need for behavioral consistency check-
ing in process choreographies to ensure integrated processes interaction. They
examine various consistency and compatibility definitions and introduce a com-
patibility and consistency framework. Wombacher [17] investigates consistency
checking in cross-organizational workflows. Their definitions of consistency aim
to define overall correct behavior when processes interact with each other.

Milner [14] looks at interaction between two components from a different an-
gle, considering each component as communicating part. Their communication
properties are defined and described by the π-calculus. Based on Milner’s work,
Lucchi and Mazzara [16] define BPEL’s error handling constructs with the π-
calculus and extend its transaction semantics to be able to analyze web service
orchestration. Decker et al. [15] introduce a formalism for Let’s Dance, based on
the π-calculus to be able to analyze execution semantics of process choreogra-
phies and detect unreachable interactions between processes.

6 Conclusions

This paper presents a formal conceptualization of process architecture. A pro-
cess architecture is a collection of business processes and their relations with
each other. The conceptualization serves as a starting point for analyzing the
correctness of business processes in their relation to each other.
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The paper also presented a collection of patterns that define possible relations
that business processes can have with each other in an organization, including
anti-patterns that lead to incorrect behavior. Incorrect behavior includes dead
events, lost triggers or flow objects, deadlock and livelock of the process archi-
tecture as a whole, even if the individual processes do not contain such incorrect
behavior.

An evaluation on a collection of 95 industry-strength business processes shows
that process architecture can be used to better understand the relations between
business processes and that it can be used to uncover incorrect behavior. In par-
ticular 48 anti-patterns of different types were uncovered during the evaluation.

Although the paper demonstrates that the anti-pattern based approach can be
used to detect incorrect behavior, it cannot be claimed that this approach can be
used to uncover all problems related to dead events, lost triggers or flow objects,
deadlock and livelock. Problems that are not captured as an anti-pattern will not
be detected. Therefore, the concepts of dead events, lost triggers or flow objects,
deadlock and livelock in a process architecture should be defined formally and
formal techniques, and tools should be developed to detect these problems.
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Abstract. Process mining can be seen as the “missing link” between data min-
ing and business process management. Although nowadays, in the context of
process mining, process discovery attracts the lion’s share of attention, confor-
mance checking is at least as important. Conformance checking techniques ver-
ify whether the observed behavior recorded in an event log matches a modeled
behavior. This type of analysis is crucial, because often real process executions
deviate from the predefined process models. Although there exist solid confor-
mance checking techniques for procedural models, little work has been done
to adequately support conformance checking for declarative models. Typically,
traces are classified as fitting or non-fitting without providing any detailed diag-
nostics. This paper aligns event logs and declarative models, i.e., events in the log
are related to activities in the model if possible. The alignment provides then so-
phisticated diagnostics that pinpoint where deviations occur and how severe they
are. The approach has been implemented in ProM and has been evaluated using
both synthetic logs and real-life logs from Dutch municipalities.

1 Introduction

Traditional Workflow Management Systems (WFMSs) are based on the idea that pro-
cesses are described by procedural languages where the completion of a task may en-
able the execution of other tasks. While such a high degree of support and guidance
is certainly an advantage when processes are repeatedly executed in the same way, in
dynamic settings (e.g., healthcare) a WFMS is considered to be too restrictive. Users
often need to react to exceptional situations and execute the process in the most appro-
priate manner. Therefore, in these environments systems tend to provide more freedom
and do not restrict users in their actions. Comparing such dynamic process executions
with procedural models may reveal many deviations that are, however, not harmful. In
fact, people may exploit the flexibility offered to better handle cases. In such situations
we advocate the use of declarative models. Instead of providing a procedural model
that enumerates all process behaviors that are allowed, a declarative model simply lists
the constraints that specify the forbidden behavior, i.e., “everything is allowed unless
explicitly forbidden”.

In this paper, we focus on conformance checking for declarative models. Confor-
mance checking techniques take an event log and a process model and compare the

� The research of Dr. de Leoni has received funding from the European Community’s Seventh
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Fig. 1. Declare model consisting of six constraints and eight activities

observed behavior with the modeled behavior [3,4,5,16]. Along with process discov-
ery (learning process models from event logs) and process enhancement (e.g., extend-
ing process models using information extracted from the actual executions recorded in
event logs), conformance checking belongs to the area of process mining [3].

Since often the actual execution deviates from the prescriptions of theoretical mod-
els, this type of analysis is critical in many domains, e.g., process auditing [17] or risk
analysis [11]. However, while there is a large stream of research about conformance
checking of procedural models, little work has been conducted for declarative models.
Existing approaches exclusively focus on determining whether a given process instance
conforms with a given process model or not [7,6,9,1]. In this paper, we want to provide
diagnostics at the event log level rather than a simple yes/no answer at the trace level.
Moreover, our approach is able to pinpoint where deviations more frequently occur and
how severely a process instance does not comply the process model.

There are different quality dimensions for comparing process models and event logs,
e.g., fitness, simplicity, precision, and generalization [3,15,10]. In this paper, we focus
on fitness: a model with good fitness allows for most of the behavior seen in the event
log. A model has a perfect fitness if all traces in the log can be replayed by the model
from the beginning to the end. Our approach is applied to Declare, a declarative lan-
guage supported by a toolset that includes a designer, a workflow engine, a worklist
handler, and various analysis tools [20,2].1 Due to space reasons we cannot provide a
detailed description of Declare and only highlight some of the most relevant features of
the language through an example.

Example 1. A travel agency has enacted a process to handle health insurance claims. A claim
can be classified as high or low, depending on the amount that the customer claims to receive
back. Fig. 1 shows a simple Declare model with some example constraints to describe this pro-
cess. The model includes eight activities (depicted as rectangles, e.g., Contact Hospital) and six
constraints (shown as connectors between the activities). For low claims, two tasks Low Insur-
ance Check and Low Medical History need to be executed. The co-existence constraint indicates
that these activities always occur together (in any order). If a claim is classified as low, no ac-
tivities referring to high claims can be executed and vice versa. The not co-existence constraint
indicates that Low Insurance Check and High Insurance Check can never coexist in the same pro-
cess instance. Moreover, in case of high claims, the medical history check (High Medical History)

1 Declare web site - http://www.win.tue.nl/declare/

http://www.win.tue.nl/declare/
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can only be executed together with the insurance check (High Insurance Check), even though they
can be executed in any order. Nevertheless, it is possible to execute High Insurance Check without
executing High Medical History. All this is enforced by the responded existence constraint. For
every claim, it is also possible to contact the doctor/hospital for verification. However, in case of
high claims, this cannot be done before the insurance check. This is defined by the not succession
constraint, that means that Contact Hospital cannot be followed in the same process instance by
High Insurance Check. In this process, a questionnaire is also created and eventually sent to the
applicant (modeled by the response constraint); after having sent the questionnaire, the applicant
can possibly decide whether to fill it in or not (precedence constraint).

The approach we propose is based on the principle of finding an alignment of an event
log and a process model. The concept of alignment has successfully been used in the
context of procedural models (e.g., [4,5,12]); here, we adapt it for declarative models.
Similarly to what has been proposed for procedural models, in our approach, events in
the log are mapped onto executions of activities in the process model. A cost/weight is
assigned to every potential deviation. We use the A* algorithm [4,8] to find, for each
trace in the event log, an optimal alignment, i.e., an alignment that minimizes the cost of
the deviations. The application of the A* algorithm is more challenging for declarative
models than for procedural models. This is due to the fact that, since in a declarative
model everything is allowed unless constrained otherwise, the set of admissible behav-
iors is generally far larger than the set of behaviors allowed by procedural models. This
implies that the search space where to find an optimal alignment of a log and a declar-
ative model is much larger. Therefore, for this type of models, it is essential to avoid
exploring search-space nodes that certainly lead to non-optimal solutions.

In addition to simply returning an optimal alignment for each trace, we also provide
the process analyst with a summary that gives a helicopter view of the conformance of
the model with respect to the entire log. In particular, we aggregate the information as-
sociated to the optimal alignments and visualize the deviations upon the process model.
In fact, we generate a “map” thus highlighting on a Declare model which constraints are
more often violated during the performance and which activities are mostly involved in
the deviations. The approach has been implemented in ProM and has been evaluated on
a variety of synthetic and real-life logs.

The paper is structured as follows. Section 2 introduces event logs and Declare mod-
els. Section 3 describes the notion of alignment and how it can be used for conformance
checking. Section 4 describes the application of the A* algorithm to find an optimal
alignment. Here, we also introduce an optimization of the algorithm to prune large ir-
relevant parts of the search space (that do not lead to an optimal solution). Section 5
shows which diagnostics and feedback we can provide to the process analyst. Section 6
presents the plug-ins we have implemented and reports some performance results. Here
we also validate our approach by applying it to real-life logs of Dutch municipalities.
Section 7 concludes the paper highlighting future work.

2 Basic Concepts

Declare is a language that provides both an intuitive graphical representation and a for-
mal semantics for declarative process models. In particular, Declare is grounded in Lin-
ear Temporal Logic (LTL) with a finite-trace semantics and every Declare constraint
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is formally defined through an LTL formula.2 For instance, the response constraint
in Fig. 1 can be formally represented using LTL as �(Create Questionnaire →
♦Send Questionnaire). This means that “whenever activity Create Questionnaire
is executed, eventually activity Send Questionnaire is executed”. In the following, we
refer to a Declare model D = (A,Π), where A is a set of activities and Π is a set of
Declare constraints defined over activities in A.

To identify potential deviations of a log from a reference Declare model, we need to
map each activity in the log onto an activity in the model. Each process instance in a log
follows a trace of events and different instances may follow the same trace. Therefore,
an event log can be seen as a multi-set of traces, i.e., L ∈ B(AL

∗)3, where AL is the set
of activities in the log. Since Declare is an “open” language, it allows for the execution
of any activity which is not in the model. Therefore, the set of activities in the log may
include all activities in the model and more, i.e., A ⊆ AL.

For conformance checking, we do not need to distinguish the activities in the set
AL \ A as they do not appear in the model. This allows us to reduce the space of
the allowed behaviors. Note that we cannot completely abstract from the activities in
AL \A because some constraints use LTL’s next operator (e.g., the chain response and
chain precedence constraints). Therefore, we map all events referring to some activity
in AL \ A to �. Afterwards, the log L ∈ B(AL

∗) is converted into L′ ∈ B(Σ∗) with
Σ = A ∪ {�}. We use function χ ∈ AL → Σ that maps each activity in AL onto Σ.
∀a ∈ A. χ(a) = a and ∀a ∈ (AL \A). χ(a) = �, i.e., every occurrence of an activity
in a log trace that is also defined in the model is mapped onto the activity itself, whereas
other events are mapped onto �.

Example 1 (cont.). The set of activities of the Declare model in Fig. 1 is

A = 〈Low Insurance Check, Low Medical History,High Insurance Check,
High Medical History,Contact Hospital,Create Questionnaire,
Send Questionnaire,Receive Questionnaire Response〉

Let us assume to have a log that contains the following trace:

σL = 〈Register, Low Insurance Check,Create Questionnaire,
Prepare Notification Content,Create Questionnaire,
Send Notification by e-mail, Send Notification by Post,Archive〉

This log trace is defined over an activity set AL that includes A. Using the mapping function χ,
σL can be transformed into σ′

L.

σ′
L = 〈�, Low Insurance Check,Create Questionnaire,�,
Create Questionnaire,�,�,�〉

Note that Register, Send Notification by e-mail, Send Notification by Post, Archive are mapped
onto �.

In the remainder, we only consider event logs after mapping unconstrained activities
onto �, i.e., L ∈ B(Σ∗). To check whether a log trace σL ∈ L is compliant with

2 For compactness, in the following we will use the LTL acronym to denote LTL on finite traces.
3 B(X) the set of all multi-sets over X and X∗ is the set of all finite sequences over X .
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Fig. 2. Constraint automata for two Declare constraints in Fig. 1

a Declare constraint π ∈ Π , using the technique described in [19], we translate the
corresponding LTL formula into a final-state automaton that accepts all traces that do
not violate constraint π.

Definition 1 (Constraint Automaton). Let D = (A,Π) be a Declare model, π ∈ Π
and Σ = A ∪ {�}. The constraint automaton Aπ = (Σ,Ψπ, ψ0π, δπ, Fπ) is the final-
state automaton which accepts precisely those traces σ ∈ Σ∗ satisfying π, where:

– Σ = A ∪ {�} is the input alphabet;
– Ψπ is a finite, non-empty set of states;
– ψ0π ∈ Ψπ is an initial state;
– δπ ∈ Ψπ ×Σ → Ψπ is the state-transition function;
– Fπ ⊆ Ψπ is the set of final states.

We create a constraint automaton Aπ for every constraint π ∈ Π . These automata can
be used to check the conformance of a log trace with respect to each constraint in D.

Example 1 (cont.). For the co-existence constraint and the precedence constraint in Fig. 1,
we obtain the automata depicted in Fig. 2a and 2b. In both cases, state 0 is the initial state and
accepting states are indicated using a double outline. A transition is labeled with the set of the
activities triggering it (we use the initial letters to denote an activity, e.g., we use LIC to indicate
Low Insurance Check). This indicates that we can follow the transition for any event included in
the set (e.g., we can execute event High Insurance Check from state 0 of the precedence automaton
and remain in the same state).

The process behavior set PD ⊆ Σ∗ of a Declare model D = (A,Π) is the set of
traces that are accepted by all automata Aπ with π ∈ Π , i.e., all process executions that
comply the model D.

3 The Conformance Checking Framework

To check the conformance of an event log L with respect to a Declare model D, we
adopt an approach where we search for an alignment of the log and the model. Such an
alignment shows how the event log can be replayed on the Declare model.
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An alignment relates moves in log and to moves in model as explained in the follow-
ing definition. Here, we explicitly indicate no move with . Σ� = Σ ∪ {}, where
Σ denotes the input alphabet of each constraint automaton in D.

Definition 2 (Alignment). A pair (s′, s′′) ∈ (Σ� ×Σ�) \ {(,)} is

– a move in log if s′ ∈ Σ and s′′ =,
– a move in model if s′ = and s′′ ∈ Σ,
– a move in both if s′ ∈ Σ, s′′ ∈ Σ and s′ = s′′.

ΣA = (Σ� ×Σ�) \ {(,)} is the set of the legal moves.
The alignment of two execution traces σ′, σ′′ ∈ Σ∗ is a sequence γ ∈ ΣA

∗ such
that the projection on the first element (ignoring ) yields σ′ and the projection on the
second element yields σ′′.

In particular, if σ′ = σL ∈ L and σ′′ ∈ PD , we refer to the alignment γ as a complete
alignment of σL and D. An alignment of the event log L and the Declare model D is
a multi-set A ∈ B(ΣA

∗) of alignments such that, for each log trace σL, there exists an
alignment γ ∈ A of σL and D. The definition of A as a multi-set is motivated by the
fact that an event log can contain the same log trace σL multiple times and, hence, the
same alignment can be given for all its occurrences.

Example 1 (cont.). Given the log trace σL = 〈�, LIC,CQ,�, CQ,�,�,�〉, there are
many possible complete alignments of σL and the Declare model in Fig. 1. For instance, the
following are valid complete alignments:

γ1 =
L: � LIC CQ � CQ � � � �
P: � � CQ � CQ SQ � � � γ2 =

L: � LIC � CQ � CQ � � �
P: � LIC LMH � � � � � �

γ3 =
L: � LIC � CQ � CQ � � � �
P: � LIC LMH CQ � CQ SQ � � � γ4 =

L: � LIC CQ � CQ � � �
P: � � � � � � � �

Conversely, γ0 =
L: � LIC CQ � CQ � � �
P: � LIC CQ � CQ � � � is not a complete alignments since σL is

not in the process behavior set of the Declare model. Indeed, the co-existence constraint is
violated, because Low Insurance Check occurs in the log trace and Low Medical History does
not. Moreover, two occurrences of Create Questionnaire are not followed by Send Questionnaire,
as prescribed by the response constraint.

In order to quantify the severity of a deviation, we introduce a cost function on the legal
moves κ ∈ ΣA → R+

0 . One can use a standard cost function with unit costs for moves
in log or in model. However, the costs may also depend on the specific characteristics of
the process, e.g., it may be more costly to skip an insurance check for high claims than
for low claims. Therefore, a different cost function κ needs to be defined for individual
processes. The cost of an alignment γ is defined as the sum of the costs of the individual
moves in the alignment, K(γ) =

∑
(s′,s′′)∈γ κ(s

′, s′′).
Given a log trace σL ∈ L, our goal is to find a complete alignment of σL and a valid

trace σM ∈ PD that minimizes the cost with respect to all σ′
M ∈ PD . This complete

alignment is referred to as an optimal alignment.
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Definition 3 (Optimal Alignment). Let σL ∈ L be a log trace and D a Declare model.
Let Γ(σL,D) be the set of the complete alignments of σL and D. A complete alignment
γ ∈ Γ(σL,D) is an optimal alignment of σL ∈ L and D iff ∀γ′ ∈ Γ(σL,D). K(γ′) ≥
K(γ). The projection of γ on the second element (ignoring ) yields σM ∈ PD, i.e., a
valid trace of D that is the closest to σL.

Example 1 (cont.). In our example, we can suppose that deviations for activity Send Question-
naire are less severe than those referring to the other activities, since this activity is automatically
performed by a system. Moreover, moves associated to � can be weighted less than any other,
since they refer to activities that are not in the model. Therefore, a reasonable cost function on
legal moves can be defined as follows:

κ(a′,�) = κ(�, a′) =

⎧
⎨

⎩

1 if a′ = �
2 if a′ = Send Questionnaire
4 otherwise

κ(a′, a′′) =
{
0 if a′ = a′′

∞ if a′ �= a′′ ∧ a′ �=� ∧ a′′ �=�

Using this cost function, alignments γ1, γ2, γ3 and γ4 have the following costs: K(γ1) = 6,
K(γ2) = 12, K(γ3) = 6 and K(γ4) = 12. Therefore, γ1 and γ3 are better complete alignments.
According to the given cost function, γ1 and γ3 are, in fact, optimal alignments.

When focusing on the fitness dimension of conformance, we are not only interested
in finding the optimal alignment and, hence, diagnosing where a log trace does not
conform with a model. We also need to quantify the fitness level of traces and logs.
Therefore, we introduce a fitness function F ∈ (Σ∗ × 2Σ

∗
) → [0, 1]. F(σL,D) =

1 if σL can be replayed by the model from the beginning to the end with no non-
conformance costs. Conversely, F(σL,D) = 0 denotes a very poor fitness. K(·) cannot
be used as fitness function directly, as we are interested in expressing the fitness level as
a number between 0 and 1. The normalization between 0 and 1 can be done in several
ways. In our approach, we divide the cost of the optimal alignment by the maximal
possible alignment cost. Typically, the greatest possible cost of an alignment of a log
trace σL = 〈aL1 , . . . , aLn〉 and a model trace σM = 〈aM1 , . . . , aMm 〉 ∈ PD is obtained for
the reference alignment in which there are only moves in model and in log:

γref
(σL,σM ) =

L: aL1 . . . aLn   
P:    aM1 . . . aMm

.

Therefore, the fitness level of a log trace can be defined as follows:

Definition 4 (Fitness Level). Let σL ∈ Σ∗ be a log trace and let D be a Declare
model. Let γO ∈ ΣA

∗ be an optimal alignment of σL and D and σM ∈ PD the model
trace in the optimal alignment. The fitness level of σL and D is defined as follows:

F(σL,D) = 1− K(γO)

K(γref
(σL,σM ))
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Therefore, the fitness of σL and D is valued 1 if in the alignment there are only
moves in both, i.e., there are no deviations. F(σL,D) = 0 if the optimal alignment
only contains moves in log and in model. Note that this fitness function always returns
a value between 0 and 1: if γO ∈ ΣA

∗ is an optimal alignment, any other alignment,
including γref

(σL,σM ), must have the same or a higher cost.
In the next section, we introduce an approach to create an optimal alignment with

respect to a custom cost function κ. The approach is based on the A* algorithm that
is intended to find the path with the lowest overall cost between two nodes in a direct
graph with costs associated to nodes.

4 The A* Algorithm for Conformance Checking

Let us suppose to have a graph V with costs associated to arcs. The A* algorithm,
initially proposed in [8], is a pathfinding search in V . It starts at a given source node
v0 ∈ V and explores adjacent nodes until one node of a given target set VTrg ⊂ V of
destination nodes is reached, with the intent of finding the path with the overall lowest
cost. Every node v ∈ V is associated to a cost, which is determined by an evaluation
function f(v) = g(v) + h(v), where

– g : V → R+
0 is a function that returns the smallest path cost from v0 to v;

– h : V → R+
0 is an heuristic function that estimates the smallest path cost from v to

any target node v′ ∈ VTrg .

Function h is said to be admissible if it never underestimates the smallest path cost
to reach any target node: for each node v ∈ V and for each target node v′ ∈ VTrg

reachable from v, h(v) ≤ g(v′). Technical results in [8] shows that if h is admissible,
A* finds a path that is guaranteed to have the overall lowest cost.

The A* algorithm keeps a priority queue of nodes to be visited: a higher priority is
given to nodes with lower costs so as to traverse those with the lowest costs first. The
algorithm works iteratively: at each step, the node v with lowest cost is taken from the
priority queue. If v belongs to the target set, the algorithm ends returning v. Otherwise,
v is expanded: every successor v′ of v is added to the priority queue with cost f(v′).

4.1 Usage of A* to Find an Optimal Alignment

We use A* to find any of the optimal alignments of a log trace σL ∈ Σ∗ and a Declare
modelD. In order to be able to apply A*, an opportune search space needs to be defined.
Every node γ of the search space V is associated to a different alignment that is a prefix
of some complete alignment of σL and D. Since a different alignment is also associated
to every node and vice versa, later on we use the alignment to refer to the associated
node. The source node is the empty alignment γ0 = 〈〉 and the set of target nodes
includes every complete alignment of σL and D. Since the successors of an alignment
are obtained by adding a move to it, the search space is, in fact, a tree.

Let us denote the length of a trace σ with ‖σ‖. Given a node/alignment γ ∈ V ,
the search-space successors of γ include all alignments γ′ ∈ V obtained from γ by
concatenating exactly one move. Let us consider a custom cost function κ and denote
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with κmin the smallest value returned by κ greater than 0. Given an alignment γ ∈ V
of σ′

L and σ′
M , the cost of a path from the initial node to γ ∈ V is defined as:

g(γ) = κmin · ‖σ′
L‖+K(γ).

It is easy to check that, given two complete alignments γ′
C and γ′′

C , K(γ′
C) < K(γ′

C) ⇔
g(γ′

C) < g(γ′′
C) and K(γ′

C) = K(γ′
C) ⇔ g(γ′

C) = g(γ′′
C). Therefore, an optimal

solution returned by the A* algorithm coincides with an optimal alignment. We have
added the term κmin · ‖σ′

L‖ (which does not affect the optimality) to define a more
efficient and admissible heuristics. Given an alignment γ ∈ V of σ′

L and σ′
M , we utilize

the following heuristic:

h(γ) = κmin · (‖σL‖ − ‖σ′
L‖)

For an alignment γ, the number of moves to add in order to reach a complete alignment
cannot exceed the number of moves of σL that have not been included yet in the align-
ment, i.e., ‖σL‖ − ‖σ′

L‖. Since the additional cost to traverse a single node is at least
κmin, the cost to reach a target node is at least h(γ), corresponding to the case in which
the part of the log trace that still needs to be included in the alignment (i.e., σL \ σ′

L)
fits in full.

4.2 Search Space Reduction

Declarative models allow for more flexibility and, therefore, for more behavior than
procedural models. Hence, the search space in the A* algorithm may be extremely large.
Nevertheless, many search-space nodes (i.e., partial alignments) are, in fact, equivalent,
i.e., some partial alignments can be extended with the same moves:

Definition 5 (Alignment Equivalence). Let D = (A,Π) be a Declare model and let
Aπ = (Σ,Ψπ, ψ0π, δπ, Fπ) be the constraint automaton for π ∈ Π . Let σL ∈ Σ∗ be
a log trace. Let γ′ and γ′′ be alignments of σ′

L and σ′
M , and of σ′′

L and σ′′
M , where

σ′
L and σ′′

L are prefixes of σL and σ′
M and σ′′

M are prefixes of model traces in PD.
Let ψ′

π = δ∗π(ψ0π, σ
′
M ) and ψ′′

π = δ∗π(ψ0π, σ
′′
M ) be the states reached by Aπ when

replaying σ′
M and σ′′

M on it.4 Alignments γ′ and γ′′ are equivalent with respect to D, if
σ′
L = σ′′

L and, for all π ∈ Π , ψ′
π = ψ′′

π. We denote this with γ′ ∼D γ′′.

If two partial alignments γ′ and γ′′ are equivalent, the cost of the least expensive path
to reach a target node (i.e., a complete alignment) from γ′ is the same as from γ′′.
Indeed, since they are equivalent, they both can be extended with the same sequences
of alignment moves. In order to get an optimal alignment, it is only necessary to visit
one of them, specifically the one with lowest g cost. Therefore, it is possible to prune
the sub-trees with roots in the nodes/alignments that do not have to be visited.

4 Given a state-transition function δ and a symbol sequence σ = 〈s1, . . . , sn〉, δ∗(ψ0, σ) de-
notes the recursive application of the state-transition function over a symbol sequence σ start-
ing from state ψ0, i.e., δ∗(ψ0, σ) = ψn where, for all 0 < i ≤ n, ψi is recursively defined as
ψi = δ(ψi−1, si).
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Theorem 1. Let D be a Declare model. Let σL be a log trace to be aligned. Let Γ(σL,D)

be the set of complete alignments of σL and D. Let γ′ and γ′′ be two alignments such
that γ′ ∼D γ′′ and g(γ′) > g(γ′′). For all complete alignments γ′⊕ γ̂ ∈ Γ(σL,D), there
exists a complete alignment γ′′ ⊕ γ̃ ∈ Γ(σL,D) such that g(γ′ ⊕ γ̂) ≥ g(γ′′ ⊕ γ̃).

Proof. Let σ′
L be the portion of σL aligned by γ′ and γ′′. Let γ′ = γ′ ⊕ γ̂ ∈ Γ(σL,D)

be one of the complete alignments with the lowest cost among the ones that can be
obtained by extending γ′. Since γ′ ∼D γ′′, alignment γ′′ can also be extended with
γ̂, i.e., γ′′ = γ′′ ⊕ γ̂ ∈ Γ(σL,D). g(γ′) = kmin · ‖σL‖ + K(γ′ ⊕ γ̂) and g(γ′′) =

kmin · ‖σL‖ + K(γ′′ ⊕ γ̂). Suppose that g(γ′′) > g(γ′) with g(γ′) > g(γ′′). If this
holds, K(γ′′ ⊕ γ̂) = K(γ′′) + K(γ̂) > K(γ′ ⊕ γ̂) = K(γ′′) + K(γ̂). Therefore,
K(γ′′) > K(γ′) and, hence, g(γ′′) > g(γ′), which is a contradiction. Therefore, there
is a complete alignment γ′′ obtained by extending with cost lower or equal to g(γ′),
i.e., the lower bound of the costs of all complete alignments obtained by extending γ′.

We maintain a set ΓV of nodes γ that have already been visited and their costs g(γ).
When a new node-alignment γ′ is encountered, we check whether it is a candidate
node to be visited, i.e., whether its successors need to be added to the priority queue of
nodes to be visited. Node γ′ is a candidate if for every node γ′′ ∈ ΓV equivalent to γ′

g(γ′′) > g(γ′). It is also a candidate if there is no equivalent node in ΓV .

5 Provided Diagnostics

This section details some advanced diagnostics that we build on top of the optimal
alignments that have been returned for all traces in the event log. First, we indicate why
an optimal alignment includes a certain move in log/model: in fact, such a move was
introduced to solve a violation of a constraint that occurred in the log trace. Second, we
provide a helicopter view that allows one to determine which activities are mostly in-
volved in deviations and which constraints are more often violated. On this concern, we
provide metrics to measure the “degree of conformance” of single activities and con-
straints in a Declare model against the entire event log, in addition to simply evaluating
the fitness level (Definition 4) of each log trace against the entire Declare model.

5.1 Why Do I Need This Move?

Let γ = 〈(aL1 , aP1 ), . . . , (aLn , aPn )〉 be an optimal alignment of σL and D. Let Aπ be
the constraint automaton for π ∈ Π . For each move (aLi , a

P
i ) ∈ γ in log or in model

of an alignment (i.e., s.t. either aLi = or aPi =), we indicate which constraint(s)
in the Declare model the move aims to solve. For this purpose, we build an execution
trace σi obtained from 〈aP1 , . . . , aPi−1, a

L
i , a

P
i+1, . . . , a

P
n 〉 by removing all . Then, for

each constraint π ∈ Π , we check whether σi is accepted by Aπ. If it is not accepted,
(aLi , a

P
i ) has been introduced to solve a violation in π. Note that, a move in log or in

model always solves at least one violation.

Example 1 (cont.). Let us again consider the optimal alignment γ1 (see Page 87). It contains
two moves in log or in model: (LIC,�) and (�, SQ). For (LIC,�), we build the execution
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trace σ1 = 〈�, LIC,CQ,�, CQ,�,�,�〉. This sequence is accepted by all the constraint
automata in the Declare model, apart from the constraint automaton for the co-existence con-
straint (see Fig. 2a). Similarly, for (�, SQ), σ5 = 〈�, CQ,�, CQ,�,�,�〉 is accepted by
all the constraint automata, apart from the constraint automaton for the precedence constraint
(shown in Fig. 2b). Therefore, (LIC,�) has been introduced to solve a violation in the co-
existence constraint and (�, SQ) has been introduced to solve a violation in the precedence
constraint.

5.2 Degree of Conformance

We denote with MCγ(π) the metric representing the number of moves in model and
in log of a complete alignment γ that contribute to solve a violation of π. For a ∈ Σ,
we denote with MMγ(a) the number of a moves in model, with MLγ(a) the num-
ber of a moves in log and with MBγ(a) the number of a moves in both model and
log. MCγ(π), MMγ(a), MLγ(a) and MBγ(a) can be used to quantify the degree of
conformance.

For reliability, we average over all optimal alignments. Let Γ = {γ1, . . . , γn} be
the set of the optimal alignments of a log L = {σ1, . . . , σn} and D. The degree of
conformance of a ∈ Σ with respect to Γ is defined as follows:

DConfΓ (a) = 1− 1

n
·
∑
γ∈Γ

MMγ(a) +MLγ(a)

MMγ(a) +MLγ(a) +MBγ(a)
.

DConfΓ (a) = 1 if the moves that involve a are only moves in both (i.e., there are no
deviations related to a). DConfΓ (a) decreases with the fraction of moves in model or
in log. DConfΓ (a) = 0 if all moves that involve a are only moves in log or moves in
model.

Given a constraint π ∈ Π , the degree of conformance π with respect to Γ is defined
as follows:

DConfΓ (π) = 1− 1

n
·
∑
γ∈Γ

MCγ(π)

‖γ‖ .

DConfΓ (π) = 1 if π is never violated. DConfΓ (π) decreases towards 0 as the fraction
of moves in model and in log needed to solve violations of π increases.

6 Implementation and Experiments

To check the conformance of Declare models, we have implemented two plug-ins of
ProM, a generic open-source framework for implementing process mining functionality
[18]. The first plug-in is the Declare Replayer that takes as input a Declare model and an
event log and, using the algorithm described in Section 4, finds an optimal alignment for
each trace in the event log. Starting from the results of the Declare Replayer, a second
plug-in, the Declare Diagnoser generates a map based on the diagnostics described in
Section 5.

Section 6.1 reports some experiments to analyze the performance of our approach.
Then, Section 6.2 presents our plug-ins and illustrates how diagnostics are graphically
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Fig. 3. Results of the experiments conducted on synthetic logs with different combinations of
sizes and degrees of non-conformance

visualized in a map. Most of the experiments in Section 6.1 use synthetic logs. Never-
theless, we have also validated our approach on a real case study in the context of the
CoSeLoG project5 involving 10 Dutch municipalities.

6.1 Performance Experiments

To carry out our experiments, we have generated a set of synthetic logs by modeling
the process described in Example 1 in CPN Tools (http://cpntools.org) and
by simulating the model. We use logs with different degrees of non-conformance. A
degree of non-conformance of 90% means that each constraint in the log is violated with
a probability of 90%. Note that multiple constraints can be violated at the same time
in a log trace. In our experiments, the logs have varying degrees of non-conformance:
0%, 15%, 30%, 45%, 60%, 75% and 90%. For all degrees of non-conformance, we use
randomly generated logs including 250, 500 and 750 instances to verify the scalability
of the approach when varying the log size. The experiments have been conducted on a
dual-core CPU at 2.40 GHZ.

Fig. 3 shows the execution times for the Declare Replayer plug-in (implementing
the A* algorithm) for the different logs. For each combination of log size (250, 500 or
750) and degree of non-conformance (x-axis), the figure plots the average value of the
execution time over 5 runs. The three lines show the trends for the three different log
sizes. Fig. 3 illustrates the scalability of the algorithm.

Table 1 shows the effect of pruning the state space and of the heuristics. If we do not
prune the search-space employing the technique described in Section 4.2, the Declare
Replayer has to visit 41% of extra nodes and, consequently, the execution time increases
by 33%. Table 1 also shows a dramatic reduction in time and nodes achieved by the
heuristics described in Section 4.1. Without using the heuristics, the needed amount of
memory increases from 300 MBs to 3.5 GBs.

5 http://www.win.tue.nl/coselog

http://cpntools.org
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Table 1. Comparison of the execution time of the Declare Replayer when all optimizations are
enabled with respect to the cases when they are selectively turned off. The results refer to a log
with 250 instances and a degree of non-conformance of 15%.

Employed Technique Visited Nodes Tree Size Execution Time
Optimized A* 21 181 30 seconds
Without pruning 30 252 40 seconds
Without heuristics 123419 1204699 ca. 7 hours

We have also performed various experiments using real-life event logs from the
CoSeLoG project. For the validation reported here, we have used two logs of processes
enacted by two different Dutch municipalities. Process instances in these event logs re-
fer to permissions for building or renovating private houses. We have first discovered a
Declare model using an event log of one municipality using the Declare Miner plug-in
in ProM [14,13]. Then, using the Declare Replayer, we have checked the conformance
of the mined model with respect to an event log of the second municipality, where ev-
ery deviation is assigned the same cost/weight. Analysis showed commonalities and
interesting differences. From a performance viewpoint the results were also encourag-
ing: 3271 traces with 14338 events could be replayed in roughly 8 minutes, i.e., 137
milliseconds per trace. Section 6.2 provides more details about this experiment.

6.2 User Interface and Diagnostics

Fig. 4 illustrates the output produced by the Declare Replayer. The screenshot shows
an analysis used in the context of a case study involving two municipalities. An event
log of one municipality is compared with a Declare model learned from an event log of
another municipality.

Each sequence of triangles in Fig. 4 refers to an alignment of a trace with respect to
the model. Each triangle is a different alignment move; the color of the move depends
on its type (see the legend on the right-hand side), i.e., move in log (yellow), move in
model (purple) or move in both (green). Each sequence is also associated with a number
that identifies the fitness level of the specific trace. A button Detail is also associated to
each trace; it allows us to show the alignment details at the bottom (e.g., for trace 1649
in the screenshot). Each rectangle represents a different move and is annotated with the
activity involved in the move. Also here, the color of the move depends on its type,
i.e., move in log (yellow), move in model (purple) or move in both (green). In case of
moves in log or in model, when moving with the mouse over the rectangle, the Declare
Replayer shows which constraint violation it aims to solve, in line with the diagnostics
described in Section 5.1. In the figure, for trace 1649, the 8th alignment move concerns
a move in log for Verzenden beschikking. This move has been introduced to solve a
violation in a precedence constraint modeling that if activity Verzenden beschikking
occurs in the log, Beslissing must precede, being Beslissing not present beforehand.
The Declare Replayer also provides the average fitness with respect to all log traces
(0.8553808). This value indicates that the Declare model mined from the first event log
is not fully conforming with the second log, i.e., the two municipalities execute the two
processes in a slightly different manner.
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Fig. 4. A screenshot showing the output of the Declare Replayer plug-in. For clarifying, we
provide the English translation of the Dutch activity names. Administratie, Toetsing, Besliss-
ing, Verzenden beschikking and Rapportage can be translated with Administration, Verification,
Judgement, Sending Outcomes and Reporting, respectively.

Fig. 5. A screenshot showing the output of the Declare Diagnoser plug-in
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The results obtained through the Declare Replayer can be “projected” on the Declare
model by the Declare Diagnoser plug-in. The Declare Diagnoser plug-in annotates ac-
tivities and constraints of the Declare model with the degree of conformance. In this
way, the process analyst can easily understand where the deviations occur most fre-
quently. Fig. 5 depicts a screenshot of the output of this second plug-in when taking as
input the alignments shown in Fig. 4. Activities and constraints are annotated with num-
bers showing the degree of conformance. To make the visualization more effective also
colors are used. Green and red nodes and arcs indicate a degree 1 or 0 of conformance,
respectively. Intermediate shades between green and red reflect values in-between these
two extremes.

The coloring of activities and constraints in Fig. 5 shows that the level of confor-
mance is reasonable (most parts are close to green). As shown, most of the detected
deviations are related to activities Toetsing and Administratie, which have the lowest
degree of conformance (DConfΓ (Toetsing) = 0.608 and DConfΓ (Administratie) =
0.721). The other activities have degree of conformance close to 1. By selecting an
activity, a better insight is provided: in the figure, the selected activity Beslissing is in-
volved 12 times in a move in log, 52 times in a move in model and 1372 times in a move
in both. The degree of conformance of a constraint indicates whether the constraint is
somewhere violated. For instance, DConfΓ (precedence(Beslissing,Administratie))
= 0.97 highlights that moves in log and/or in model have been included in some align-
ments to solve a violation in this constraint. DConfΓ (not succession(Administratie,
Beslissing)) = 1 indicates that this constraint is never violated.

7 Conclusion

This paper presents a novel conformance checking approach tailored towards declara-
tive models. The many conformance checking techniques defined for procedural mod-
els (e.g., Petri nets) are not directly applicable to declarative models. Moreover, these
techniques tend to provide poor diagnostics, e.g., just reporting the fraction of fitting
cases. We adapted alignment-based approaches to be able to deal with the large search
spaces induced by the inherent flexibility of declarative models. Based on such align-
ments we provide novel diagnostics, at the trace level, showing why events need to be
inserted/removed in a trace, and at the model level, coloring constraints and activities
in the model based on their degree of conformance. As future work, we plan to extend
our approach in order to incorporate in our analysis data and resource perspectives.
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Abstract. Organizations face more and more the burden to show that
their business is compliant with respect to many different boundaries.
The activity of compliance checking is commonly referred to as auditing.
As information systems supporting the organization’s business record
their usage, process mining techniques such as conformance checking
offer the auditor novel tools to automate the auditing activity. However,
these techniques tend to look at process instances (i.e., cases) in isolation,
whereas many compliance rules can only be evaluated when considering
interactions between cases and contextual information. For example, a
rule like “a paper should not be reviewed by a reviewer that has been
a co-author” cannot be checked without considering the corresponding
context (i.e., other papers, other issues, other journals, etc.). To check
such compliance rules, we link event logs to the context. Events modify
a pre-existing context and constraints can be checked on the resulting
context. The approach has been implemented in ProM. The resulting
context is represented as an ontology, and the semantic web rule language
is used to formalize constraints.

Keywords: auditing, compliance checking, process mining, business
rules, ontologies.

1 Introduction

Organizations need to ensure that their business stays within boundaries. A
boundary restricts the organization in its operation. Boundaries may be imposed
by all kinds of external sources, like legislation, regulatory bodies, best practices,
but also from sources within the organization itself, e.g., based on its corporate
culture or management style. These boundaries are often expressed in terms
of the business environment, called the context. A boundary may restrict the
business in behavior, in structure, or in data.

As a consequence, organizations need to constantly monitor their business.
The activity of checking whether the business execution adheres to the defined
boundaries is called auditing. Traditionally, an audit can only provide reasonable
assurance that the business is compliant, i.e., that the business is executed within
the given boundaries. Auditors can only assess the operating effectiveness by
checking samples of factual data.
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The advance of information systems supporting organizations in their business
enables a new formof auditing. The large amount of data recorded by these systems
allow to constantly monitor the business execution. Continuous auditing [21, 25]
focuses to bring auditing closer to the operational process, and away from the tra-
ditional backward-looking once-a-year examination of financial statements [6].

Continuous auditing is an automated form of auditing that can take all execu-
tion data into account [6,11,25]. As such, this form of auditing can provide more
assurance. However in order to automate the process of auditing [4, 7, 16], it first
requires the formalization of the boundaries in terms of the execution data, and
secondly, it can only use context data if an automated link is provided from the
execution data to the context data. As the boundaries are typically formalized in
terms of the context data, and as the automated link from execution data to con-
text data is typically not available, continuous auditing is restricted in its use.

Consider a journal that publishes papers. To support the journal’s operation,
it may use a system that supports the entire process starting from the submission
of a paper to the final publication or rejection. This system typically records
everything that happens to a submitted paper into a so-called event log. Next
to this Process-Aware Information System (PAIS) [10], other systems may also
collect and store data about this paper. In the remainder of this paper, this
other data is referred to as context data, while the PAIS data is referred to as
execution data.

To insure the quality of published papers, a journal needs to discourage un-
desirable behavior. Therefore, most journals impose a number of boundaries on
its own operation to guarantee this high quality:

1. For each submitted paper a notification is sent;
2. Each paper needs to be reviewed by at least three different reviewers;
3. The author of a paper cannot be a reviewer of that paper;
4. A reviewer should work at a different affiliation than any of the authors;
5. A reviewer has never been a co-author with any of the authors;

To check whether the journal indeed respects these boundaries, audits are used.
However, in practical situations, auditing can only be done on a small part of
the available data. Hence auditing is incomplete. This may lead, for example, to
a paper being rejected by a reviewer which has a conflict of interest, while this
conflict does not get noticed.

This paper proposes a link from execution data to context data, which removes
some of these restrictions on continuous auditing. As a result of this link, we can
bring the execution data to the context data, which allows automated checking
of the boundaries and automated linking with other context data.

Please note that although we use a journal to explain the issues at hand,
the proposed approach can be used in any other compliance setting. It offers a
generic approach for the problem that continuous auditing is restricted to the
available execution data.

This paper is organized as follows. Sec. 2 introduces the necessary concepts on
which our approach is based. Next, Sec. 3 presents our approach how to link the
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context data with execution data. Sec. 4 shows the applicability of the approach
with a proof of concept, using both existing tools as developing our own. Last,
Sec. 5 concludes this paper and hints at possible future directions.

2 Basic Notions

2.1 Business Context

The environment in which an organization like the journal operates is called
its context. The context is “the combination of all situational circumstances
that impact process design and execution” [18], and describes the concepts that
influence and bound the business of an organization and the relations between
these concepts.

In this paper, we use the notion of a context model, which can be viewed as a
data model, e.g., using UML class diagrams, the relational database schema or
Entity-Relationship diagrams (ERD). A context model defines the concepts, their
relationships, and their attributes. Concepts can inherit from other concepts, have
different relationships and different attributes. A relationship is from a source
concept to a target concept, where a cardinality can be associated to both these
concepts. Let A denote the attribute name universe.

Definition 1 (Context model). A context model is a 6-tuple (O, α, ι,R, σ, τ)
where

– O is a set of concepts;
– α : O → P(A) is a function defining for each concept the set of attributes;
– ι : O ⇀ P(O) is a partial function defining the inheritance relation. If for a

concept A ∈ O a B ∈ O exists such that B ∈ ι(A), we say B is a parent of
A. The transitive closure of ι has to be irreflexive;

– R ⊆ O × A × O is a set of relationships between concepts such that if
{(A, l, B1), (A, l, B2)} ⊆ R implies B1 = B2. Given a relationship r =
(A, l, B) ∈ R, A is called the source of r, B is called the target of r, and l
is called the name of r;

– σ : R → (N × (N ∪ {∗})) defines the source cardinality (lower bound and
upper bound) of each relationship;

– τ : R → (N× (N ∪ {∗})) defines the target cardinality of each relationship.

For inheritance, we do not allow overriding of attributes and relationships, i.e.,
for all B ∈ ι+(A) and l ∈ A that α(A) ∩ α(B) = ∅ and if (B, l, ·) ∈ R, then
(A, l, ·) 
∈ R, where ι+ is the transitive closure of ι.

An example context model for the journal (using an UML class diagram) is de-
picted in Fig. 1. In this example context model there are six concepts (Affiliation,
Author, Journal, Paper, Researcher, and Reviewer), six relationships (authors,
is submitted to, reviews, works at, and two unnamed inheritance relations), and
nine attributes (abstract, notificationdate, name, number, publicationdate, sub-
missiondate, title, volume, and year). The works at relation indicates that each
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Researcher is connected to exactly one Affiliation and that an Affiliation is con-
nected to multiple (possibly none) Researchers. Likewise, the reviews relation
indicates that a Paper is connected to multiple (possibly none, if not under re-
view) Reviewers, and that a Reviewer is connected to at least one Paper, and
the authors relation indicates that an Author is connected to at least one Paper,
and a Paper to at least one Author. A researcher can both write papers as well
as review those. Therefore, the Author and Reviewer concepts inherit from the
Researcher concept.

A context model can be instantiated, i.e., the context model can be popu-
lated with instances of each concept, and associations between these instances,
reflecting the relationships defined on the concepts in the model. Let U denote
the concept instance universe, i.e., the set of all possible concept instances, and
let V be the attribute value universe.

Definition 2 (Instance of a context model). An instance of a context model
M = (O, α, ι,R, σ, τ) is a 3-tuple (IO, IA, IR) where

– IO : O → P(U) defines the available concept instances. Each concept has a,
possibly empty, set of instances;

– IA : (U × A) → P(V) defines for each concept instance and attribute the
corresponding set of attribute values;

– IR : R → P(U × U) is the set of associations between concept instances.

Let A,B ∈ O be two concepts, let l ∈ α(A) be an attribute of A, and let
(A, r,B) ∈ R be a relationship. Given an instance I = (I0, IA, IR) of M , we
write a ∈ A for a ∈ IO(A), a.l = v for ((a, l), v) ∈ IA and (a, b) ∈ r for
(a, b) ∈ IR((A, r,B)). The set of all instances of M is denoted by I(M).

Given two instances I1 = (IO,1, IA,1, IR,1) and I1 = (IO,2, IA,2, IR,2), we
define their union by I1 ⊕ I2 = (IO,1 ⊕ IO,2, IA,1 ⊕ IA,2, IR,1 ⊕ IR,2) where
f ⊕ g : V → P(O) with (f ⊕ g)(v) = f(v) ∪ g(v) for all sets V ,O, functions
f, g : V → P(O), and v ∈ V .

-title
-abstract
-submissiondate
-notifcationdate
-publicationdate

Paper

-title
-volume
-number
-year

Journal

-name

Affiliation

-name

Researcher

Reviewer

Author

works_at

1 *

reviews

1..* *

authors

1..* 1..*

is_submitted_to

0..* 1..*

Fig. 1. Context model of the review process context
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Fig. 2. The review process

Please note that, in principle, an attribute has a set of values, instead of just
a single value. For example, a paper will have a set of authors, and not just a
single author. However, many attributes will have a singleton set as value. In
such cases, we allow the value of the attribute to be the single element of that
set instead of the set itself. As a consequence, for a concept instance a and an
attribute label l, a.l can either be a set of values (a.l ∈ P(V)), or the value of
its only element in case of a singleton set (a.l ∈ V). From the context, it will
typically be clear which interpretation is used.

An instantiation of a context model is called consistent if all the constraints
enforced by the cardinalities and inheritance relations are satisfied.

2.2 Process-Aware Information Systems

Business processes form the heart of any organization. A business process can
be seen as a set of interdependent tasks and resources needed to produce some
product or to deliver some service. In modeling and describing a business process,
context plays a natural role. As an example, the names of the activities and
resources in the business process are typically aligned with the context in which
the process operates. In our example, the journal has a review process that
defines for a paper the tasks and resources needed in order to publish the paper
in the journal, as depicted in Fig. 2.

In this process model, authors may submit a paper, which will be reviewed
by three researchers. Based on the review outcomes, the editor decides whether
the paper is accepted, a revision is needed, or whether the paper is rejected, and
notifies any accept/reject decision to the authors. Some reviewers may forget to
review, or are too late, which is modeled as a skip, using the black transitions.
The editor can decide to request an additional review, up to the point that he
has sufficient information to make a proper decision.
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More and more information systems are developed and implemented to sup-
port an organization like the journal in executing their business. A Process Aware
Information System (PAIS) [10] assists an organization in the execution of its
business process. The business process is then used to configure the system.

A PAIS records each and every step in the business process. For example, the
PAIS of the journal records when a paper is submitted, when the reviewers are
invited, and whether and when the reviews have been returned. As a result, a
PAIS generates enormous amounts of execution data.

For each user action on the system, an event is raised. An event records its
type, for which activity it has been raised, for which case or business process
instance, when it was raised, by whom, and the data inserted by the user. Such
a recording is called an event log [1]. Let E be the event universe and let C be
the case universe.

Definition 3 (Event log). An event log is a 3-tuple L = (C,E,#) where

– C ⊆ C is a set of case identifiers in the event log;
– E ⊆ E is a set of event identifiers in the log;
– # : A× (C ∪ E) → P(V) is an attribute mapping.

For an attribute n ∈ A we write #n(·) as a shorthand for #(n, ·).
Each event belongs to exactly one case, denoted by the mandatory attribute

case ∈ A, i.e., #case : E → P(C) such that |#case(e)| = 1 for all e ∈ E. Each
case has at least one event, i.e., for all cases c ∈ C an event e ∈ E exists
such that #case(e) = c. An event may have a successor, denoted by next ∈ A,
i.e., #next : E → P(E) such that |#next(e)| ≤ 1 for all e ∈ E. The transitive
closure of #next is irreflexive. Each case has exactly one start event, denoted by
first ∈ A, and exactly one end event, denoted by last ∈ A, i.e., #first,#last :
C → P(E), such that |#first(c)| = |#last(c)| = 1 for all c ∈ C, if #next(e) = ∅
then #last(#case(e)) = e, and if no event p ∈ E exists with #next(p) = e, then
#first(#case(e)) = e for an event e ∈ E . The set of all possible event logs is
denoted by L.
An event log represents a period of business execution. Event logs representing
consecutive periods of business execution may be concatenated. Suppose event
log L′ represents the initial business execution, and L′′ represents the consecutive
business execution. When a case identifier, say c occurs in both L′ and L′′, it
means that this case was not finished in L′. Consequently, all events for c in L′′

follow after the last event for case c in L′. In the concatenation of two event
logs representing two consecutive periods of business execution, these cases are
concatenated: the first event of the second log is the next event of the last event
for this case in the first log. Note that by definition of event logs, the sets of
event identifiers of two consecutive event logs need to be disjoint. Further, remark
that the functions #first and #last return singleton sets, i.e., these functions are
always defined and return a single event.

Definition 4 (Concatenation of event logs). Let L′ = (E′, C′,#′) and L′′ =
(E′′, C′′,#′′) be two event logs such that E′ and E′′ are disjoint. The concatena-
tion of L′ with L′′, denoted by L′;L′′, results in a new event log (C,E,#) with
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Table 1. Event log of journal reviewing process

Case Activity Resource Time stamp Data

118 submit paper system 24-12-2011 17:00:12 title: “Title paper 118”,
author: 192
author: 193

119 submit paper system 24-12-2011 17:05:49 title: “Title paper 119”,
author: 194

. . . . . . . . . . . . . . .

118 request reviews editor 29-12-2011 10:19:23 reviewer: 112
reviewer: 149
reviewer: 195

119 request reviews editor 29-12-2011 10:22:43 reviewer: 112
reviewer: 149
reviewer: 195

118 review 149 07-01-2012 16:39:21 verdict: accept

. . . . . . . . . . . . . . .

C = C′ ∪C′′, E = E′ ∪E′′ and # = (#′ \ {((last, c), e) | c ∈ C′ ∩C′′, e ∈ E′})∪
(#′′ \ {((first, c), e) | c ∈ C′ ∩ C′′, e ∈ E′′}) ∪ {((next,#′(last, c)),#′′(first, c)) |
c ∈ C′ ∩ C′′}.
An example of an event log is shown in Tbl. 1. This example represents a small
part of an event log generated by the journal review system. It shows for example
the submission of papers 118 and 119 with one and respectively two authors, the
editor who is requesting reviews for these papers, and a returned review for
paper 118 by reviewer 149.

In an event log, we may group the events per case or business process instance.
In this way, the events form execution traces per case. For example, from the
partial event log in Tbl. 1, we have for case 118 the partial execution trace
“submit paper”, “request reviews” and “review”.

The example event log in Tbl. 1 already shows the tight relation between the
context and the business execution. For example, solely based on the event log,
resource 149 is meaningless, whereas in an instance of the context model, it can
be related to some researcher and his affiliation.

2.3 Auditing

Organizations like the journal need to constantly monitor their business to assure
that they stay within their boundaries. The activity of checking whether the
business execution adheres to the defined boundaries is called auditing [4, 7].

Traditionally, an audit can only provide reasonable assurance that the business
is compliant, i.e., that the business is executed within the given boundaries. As
an audit is typically a manual chore, auditors can only assess the operating
effectiveness by checking samples of factual data [7].

To audit a system, the auditors may place process controls to assess the bound-
aries, such that the control reports the violation of a boundary [9,14,19,20]. Only
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if a control is not in place or if it is not functioning as expected, the auditor will
typically check factual data. In order to audit a PAIS that supports the review
process, a control may be placed counting the number of different reviews per
submitted paper. A second control may monitor the time between submission
and notification, in order to check the boundary on the time to review a paper.

It is important to realize that a process control may not be sufficient for
checking a boundary. Consider, for example, boundary 5, which states that a
reviewer may not be a co-author. A control could check, at the moment of the
review, whether the reviewer is a co-author, but it will not check this again in
the future. Thus, if in the very near future some paper appears in some journal
from which it is clear that the reviewer actually was co-authoring a paper, then
the control would miss this fact.

Placing controls already increases the assurance an auditor can give. However,
adding controls changes the business processes implemented in a PAIS. Hence,
if either the business process or a boundary changes, both systems need to be
changed. Therefore, process analysis techniques can help in separating process
controls from the control flow [17].

3 Context-Aware Continuous Auditing

Since information systems more and more record their usage in event logs, the
execution data can be used to check for compliance. Whereas traditional audit
only relies on sample-based checks, continuous auditing [7, 21] focuses on the
analysis of the execution data to perform an audit.

The omnipresence of execution data, coupled with process mining [1] tech-
niques, allows the auditor to perform an audit on the whole business execution,
rather than only sample-based [3,4,7,16]. However, boundaries are typically de-
fined on the context data, and not solely based on the execution data [5, 17].
As a result, to be able to check these boundaries, continuous auditing requires
both execution data as well as context data. Only if the boundaries are formal-
ized, algorithms and techniques can be developed to automate the process of the
auditor. Consequently, not only the boundaries need to be formalized, also the
context needs to be modelled.

3.1 Formalization of Boundaries

One way to formalize a boundary is by constraining the concepts in the context
model by using the right cardinalities between concepts. In this way, one can
easily formalize the boundary that a Paper has at least one Author. It is enforced
by the cardinalities of the relationship authors. However, not every boundary can
be formalized using only the cardinalities.

Dependencies over different concepts cannot be expressed by local constraints,
like the cardinalities, only. For example, the boundary that a Reviewer and Au-
thor should be of a different Affiliation cannot be expressed by local constraints.
For this reason, we use a constraint language on the context model in first-order
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logic. The aforementioned boundary can then be expressed by the following non-
local constraint:

∀p ∈ Paper, a ∈ Author, r ∈ Reviewer, w1, w2 ∈ Affiliation :

( (a, p) ∈ authors ∧ (r, p) ∈ reviews ∧
(a, w1) ∈ works at ∧ (a, w2) ∈ works at

) =⇒ w1 
= w2

This constraint formalizes that in any instance of the context model, the affilia-
tions of an author and a reviewer of the same paper should be different.

3.2 Relating the Process Execution with the Context

By formalizing the boundaries, compliance checking becomes checking whether
each constraint is satisfied by the business execution. However, the constraints
are expressed using the context data, while the execution is expressed using the
execution data. As a consequence, we need to link both data: Either we trans-
form the constraints in terms of the execution data, or the event log needs to be
transformed in terms of the the context data. For example, the rule that a paper
has been reviewed by three different reviewers, can be expressed like “Each exe-
cution trace contains at least three activities named ‘review’ executed by different
resources”. However, many constraints, like the one that corresponds to bound-
ary 5 (“A reviewer has never been a co-author of any of the authors”), are global
constraints, i.e., constraints over a set of traces, rather than local constraints over
a single execution trace. As a consequence, replay techniques [2] cannot be used,
as these only consider single execution traces. Such constraints cannot be trans-
formed into a constraint in terms of the execution data, as the co-author relation
does not only depend on the execution data, as authors may decide to submit pa-
pers to other journals as well. Clearly, this influences the co-author relation, while
these submission will not be stored in the PAIS of the journal at hand.

The context model describes the concepts and their relationships. An instance
of the context model describes a state of the business. By execution a business
process, the state of the business changes, and hence, the instance of the con-
text model. For example, executing the “submit paper” activity corresponds to
the insertion of a Paper concept in the current instance. Likewise, the “request
reviews” activity corresponds in the insertion of new associations between one
instance of Paper and several instances of Reviewer.

Each event in an event log corresponds to an update of the current state of
business. As a consequence, executing an event can be seen as a function from
one instance of the context model to a new instance. We denote with I(M) the
universe of instances of context model M .

Definition 5 (Transformation function). Given a context model M , a trans-
formation function transforms a given context model instance and an event log
into a new instance of the context model, i.e, a function f : I(M)× L → I(M)
such that for I ∈ I(M) and L1, L2 ∈ L we have f(I, ∅) = I and f(I, L1;L2) =
f(f(I, L1), L2).
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Fig. 3. Replaying the event log of Tbl. 1 on the context

In this way, we are able to replay the event log in terms of the context. As
each event updates the context, we define an additional function that transforms
a context model instance and an event log into a new context model instance.
Let us consider the journal example again. Let I be a consistent instance of the
context model depicted in Fig. 1, let L be the current event log, and let e be
the event that corresponds to the submission of paper 118. The event causes the
creation of the Paper 118 object, the Author 192 and Author 193 objects, and it
creates the author relation from these Author objects to the Paper object. We
can formalize this to an update of the context model instance:

f(I, ({c}, {e},#)) =

{
I ⊕ (eO, eA, eR) if #name(e) = ‘submit paper’;
I otherwise,

where

eO = {Paper �→ {c},Author,Researcher �→ #author(e)},
eA = {(c, title) �→ #title(e), (c, submissiondate) �→ #timestamp(e)},
eR = {(Paper, authors) �→ {(c, a) | a ∈ #author(e)}}.
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Note that the creation of an object is only necessary if the object does not already
exist. If, for example, the object for Author 192 would have already existed, then
the existing object would be reused. Likewise, the event that corresponds to the
other submission creates the Paper 119 object, the Author 194 object, and the
authors relation between both. Fig. 3 shows the result of replaying the first
events from Tbl. 1 on an empty journal context model instance.

Similar functions can be created for the other events. The first request review
event creates the Reviewer 112, Reviewer 149, and Reviewer 195 objects, and
the reviews relations to the Paper 118 object, whereas the second request review
reuses the Reviewer objects and creates reviews relations from these objects to
the Paper 119 object. As a result of replaying the event log in the context model,
we have now extended the context model with the execution data. Hence, we
can use the execution data as if it were context data.

3.3 Compliance Checking

The first step in checking compliance, is the check whether the initial instance
of the context satisfies each of the constraints. After this check, we can start to
replay the event log. For this, we need to sort all events in the event log based
on their time stamp, so that the context is updated in the same order as the
business has been executed.

While replaying the events on the context model, after each update the current
instance needs to be checked to see whether the constraints are still satisfied. If
in a step a constraint is violated, we need to report this event and the violation.
An auditor then needs to test the severity of the violation. For example, if after
completing the trace, the constraint is repaired, the impact of the violation may
be less than if the constraint remains violated.

In this approach, we only allow the event log to change the context. In re-
ality, not only the business execution changes the context, also external events,
like researchers that change affiliation, or people that write papers for different
journals, may change the context. These external changes to the context are (for
now) ignored by our approach.

4 Implementation

As a proof of concept, we implemented the approach in the process mining
toolkit ProM6 [22]. In literature, ontologies are often used to capture context (cf.
[12,13,18]). An ontology can be seen as a collection of concepts with associations
between these concepts [23]. Further, ontologies allow for modularization using
the import concept. In this way, different ontologies can be combined into a
single context model. For example the context of the journal could be split into
an ontology for the publications and reviews, and a separate ontology for the
researchers and their affiliation.
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4.1 Event Logs as Ontologies

Not only the context model can be represented in an ontology. Also event logs can
be represented in an ontology. This allows us to reason over both the context as
well as the process execution in a single formal representation. The XES standard
[22] defines the important concepts in an event log, and their relationships. In
the XES standard, a Log uses zero or more Extensions that each define a set of
Attributes. An Attribute has a set of values, represented by the Value concept
in the ontology. The concepts Log, Event, Trace and Value are subclasses of the
Attributable concept, meaning that they can have Values attached. Each Trace
belongs to a Log, and has a start event and an end event. Events belong to a
Trace, and each can have a predecessor and a successor Event. The ontology also
stores the transitive closure of the predecessor and successor relation, i.e., the
set of all predecessors or successors, respectively, of an Event.

The Ontologies package of ProM6 provides an automatic transformation from
event logs into the ontology format. For a log of the journal with 1000 cases and
12461 events, the transformation results in an ontology with 455.990 axioms,
i.e., concept, individuals, and relations between these individuals.

4.2 Linking Events to the Ontology

As seen in the previous section, each event belongs to an update of the context
model. For example, the event ‘submit paper’ creates a paper. In the formaliza-
tion, we represented this by stating that each trace in the event log creates an
instance of the concept Paper. In terms of ontologies, this means that each trace
of this event log is not only an individual of the concept Trace, but also of the
concept Paper. Hence, we want to add this relation between the ontology of the
event log and the ontology of the context model. To automate the process of
relating the different individuals, we introduce the notion of annotation rules.

An annotation rule relates individuals between the ontologies of the event log
and of the context model. It defines a source element, a target element and the

(a) Event log as ontology in ProM6 (b) Annotation rule in ProM6

Fig. 4. Implementation of context models as ontologies in ProM6
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relation between the source and target, like inheritance relation, instantiation,
and an ontology object or data property. If the relation between source and
target is an ontology property, we also need to specify which property is used.

To select elements from the event log, we use XPath, which allows us to select
multiple elements in an event log. For example, the rule that each trace is a
paper, can be expressed by the following annotation rule, assuming that the
Paper ontology has the namespace http://localhost/publication.owl:

AR 1 (A paper) Creates an instance of the concept ‘Paper’ for each trace
source //trace

relation instance of
target http://localhost/publicatizon.owl#Paper

This rule selects each trace (//trace) in the event log, and adds the correspond-
ing Trace individual to the concept Paper. As the transformation also specifies
that a paper has a title, we need another annotation rule to express this.

AR 2 (A paper has a title) The title is specified in the activity ‘submit paper’
as an attribute named ‘title’
source //trace

relation has data property: http://localhost/publication.owl#title
target ./event[/string[@key=’concept:name’ and @value=’submit

paper’]]/string[@key=’title’]@value

This rule iterates over each trace, as specified in the source of the annotation
rule, and gets the corresponding title by retrieving the attribute ‘title’ of its
‘submit paper’ event. In case multiple elements are selected by the target XPath
query, then a relation is created for each of the selected elements. In this way, we
need to create five annotation rules for the transformation of the ‘submit paper’
event: one to add the Trace to the Paper concept (AR 1 ), two to add the title
(AR 2 ) and a similar rule for the submission date of the paper, one to create
the authors, and one to relate the authors to the paper.

Fig. 4(b) depicts an annotation rule as it is implemented in ProM6. Simi-
lar annotation rules can be created for each of the events. In this way, we get
an ontology that connects the ontology of the event log with the ontology of
the context model. This connecting ontology serves as input for the compliance
checking.

4.3 Compliance Checking

The approach results in three ontologies: one ontology being the initial context
model instance, one ontology representing the event log and one that provides the
connection between these two. In order to check whether the organization stayed
within its boundaries, we need to check whether all three ontologies together
satisfy these boundaries. The previous section showed how each of the boundaries
can be formalized into a set of constraints expressed in first order logic. Next
step is to express these constraints in a language that can be used on ontologies.
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One such language is the Semantic Web Rule Language (SWRL) [8]. SWRL
rules are expressed in terms of an ontology. Hence, we can create a separate
ontology containing these rules.

For example, to express the rule that states that for each paper no reviewer
may be a coauthor of one of the authors of that paper, we first add a data
property to each paper, e.g., violatesBound5, with domain Paper and the Boolean
values as range. Next, we can express when this rule is true: if a paper has
been submitted earlier by both a reviewer and an author of the current paper.
Expressed in SWRL:

violatesBound5(?p, true) ← Paper(?p) ∧ reviews(?r, ?p) ∧ authors(?a, ?p)

∧ Paper(?y) ∧ authors(?a, ?y) ∧ authors(?r, ?y)

∧ submitdate(?y) < submitdate(?p)

As ontologies are being used to express both execution data and context, other
formalisms can be exploited to express constraints, like SBVR [15].

Important to realize when working with ontologies is the open world assump-
tion. In the open world assumption, a statement is either true, false, or unknown,
whereas in a closed world a statement is either true or false. This is an impor-
tant difference. For example, in the rule above we can only express when the
statement is true. If no witness is found, in the closed world assumption the con-
straint is satisfied, whereas in the open world assumption, the statement results
in unknown.

To increase the expressivity of the constraints, the closed world assumption is
needed. For example, a logic language like Prolog would be a natural next step,
as the translation from ontologies to Prolog is straightforward [24].

5 Conclusions

All kinds of sources enforce boundaries on the way an organization runs its
business. Typically, these boundaries are phrased in terms of the environment
of the business, called the context. In this paper, we proposed a novel approach
to support the auditor in checking whether the organization stays within its
boundaries.

Mostly, the work of an auditor is manual. As more and more organizations are
supported by information systems that record their usage in event logs, more
and more data becomes available to automate the work of the auditor. The
enormous amounts of data available allows the auditor to use techniques like
process mining.

In order to automate the compliance checking, also the boundaries need to
be formalized. In this paper, we propose context models. However, as event logs
are in terms of the system, and the boundaries in terms of the context, we argue
the need of transforming the information available in event logs into information
available in terms of the context.
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The approach presented in this paper is a next step towards continuous audit-
ing. To show the applicability of the approach we implemented it in ProM6 using
ontologies as a context model. Although ontologies provide a powerful mecha-
nism to reason over the context, more research is needed to further automate
the task of the auditor.

Current replay techniques only visualize control flow related aspects, like con-
formance checking, of a business execution. The approach proposed in this paper
allows to replay the business execution in its context. In this way, business ana-
lysts and auditors have the possibility to inspect how business execution changes
the business environment.
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Abstract. Nowadays, repurposing of personal data is a major privacy issue. De-
tection of data repurposing requires posteriori mechanisms able to determine how
data have been processed. However, current a posteriori solutions for privacy
compliance are often manual, leading infringements to remain undetected. In this
paper, we propose a privacy compliance technique for detecting privacy infringe-
ments and measuring their severity. The approach quantifies infringements by
considering a number of deviations from specifications (i.e., insertion, suppres-
sion, replacement, and re-ordering).

Keywords: Process compliance management, Security in business processes.

1 Introduction

Privacy protection is becoming a major issue in society nowadays. Advances in ICT
allows the collection and storage of a huge amount of personal data. Those data are
a valuable asset for business corporations. For instance, they can be used to provide
customized services and create effective, personalized marketing strategies. However,
such practices might be intrusive limiting customers’ right to privacy.

The need to protect personal data has spurred the definition of several privacy policy
languages. These languages usually extend access control with the concept of purpose
to provide a more strict control on access and usage of data. Purpose is used to repre-
sent the reason for which data can be collected and processed. Data are usually labeled
with the intended purposes and can be accessed only if the purposes for which data
are requested is compliant with the label attached to the requested data. However, this
approach is preventive and only guarantees policy compliance by preventing infringe-
ments to occur. Therefore, it is unacceptable when access to data should be granted to
provide critical services such as medical treatment in emergency situations.

Recent privacy legislation recognizes the need of more comprehensive solutions
to privacy and has an increased emphasis on accountability. The demand of techni-
cal means to enforce legislation requires the development of novel auditing systems
which are able to ensure compliance with privacy policies and make users accountable
for their actions. The development of such systems requires methods for determining
whether the actual usage of personal data is compliant with the intended purpose.
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A first step to enable purpose control is to provide semantics to purposes, which de-
fines how data can be used. Business process has been proved to be a suitable formalism
for the definition of semantic purpose models [1]. This formalism makes it possible to
verify user behavior against the intended purpose of data by verifying whether the user
actions recorded in a log correspond to a valid trace of the process model correspond-
ing to the intended purpose [1]. This approach to purpose control is more suitable for
critical systems because it does not prohibit access to data in emergency situations in
contrary to the preventive approaches. However, the corresponding existing solutions
are only able to determine that a deviation occurred, but they are not able to identify
particular deviations and to assess their privacy severity.

This paper proposes a conformance metric to detect privacy infringements and quan-
tify their severity. In particular the conformance metrics is able to identify four dif-
ferent types of local deviations (i.e., insertions, suppressions, and replacements) and
non-local deviations (i.e., re-ordering). Moreover, it adds a transition in isolation for
each log event that has no corresponding transition in the process model. Therefore, the
algorithm accepts a large range of logs as input. The detected infringements are then
quantified using the privacy metric proposed in [2].

2 Privacy Compliance Checking

Deviations between an event log and a process model can have different types. Each
type of deviation has a different privacy severity. In this paper, we consider four types of
deviation: insertion occurs when an activity is executed, but its execution is not allowed
by the process model; suppression occurs when an activity whose execution is required
by the process model is not executed; replacement occurs when an activity is executed
instead of another activity; re-ordering occurs when the order in which activities are
executed is different than the order of the same activities specified in the process model.

To identify deviations from the specification, we propose a conformance checking
technique based on [3]. In particular, the event log is replayed over the process model
to identify user behavior which is not compliant with the intended behavior. Non com-
pliant behaviors are represented in terms of remaining tokens (i.e., tokens that were left
in the model after the execution of the process) and missing tokens (i.e., tokens created
artificially for the successful execution of the process).

Conformance checking in [3], however, suffers from drawbacks in terms of accuracy
[4]. First, the metric is sensitive to the process structure and does not consider all paths
allowed by the process model. In addition, it does not identify the type of deviation
that occurred for the measurement of fitness. Moreover, [3] assumes that all events in
the log must have a counterpart in the process model, and every node must be on some
path from the start to the end of the process. This assumption is too restrictive for our
purposes. Indeed, we have to consider cases, for instance, where a user performed a
task which he was not allowed to perform.

To overcome these drawbacks, we revise the technique in [3] in several ways. We
associate a counter to tokens to represent the time in which an event occurred. This (to-
gether with the distinction between consumable and produced tokens) allows the defini-
tion of patterns for the identification of the type of deviation (Section 2.4). In addition,
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we will add activities in isolation to the process model. Finally, conformance checking
is performed on all alternative paths rather than on the entire process model.

The privacy compliance checking proposed in this paper comprises of five phases:

1. Pre-processing phase, in which alternative paths in the process model are identified;
2. Simulation phase, in which the event log is replayed in the process model;
3. Pairing phase, in which behaviors not compliant with the model are detected;
4. Deviation identification phase, in which non compliant behaviors are categorized

according to the type of deviation;
5. Quantification phase, in which deviations are analyzed and quantified.

2.1 Pre-processing Phase

The pre-processing phase takes as input a business process represented as a CPN model
(we refer to [5] for the notation for CPN models) and identifies alternative paths in the
model. In particular, this phase consists of a non-disjoint “partitioning” of the process
model into sub-processes such that each sub-process contains only paths defined in the
original model and no two sub-processes contain the same path. The following phases
of the algorithm are executed on each identified sub-process.

2.2 Simulation Phase

The goal of the simulation phase is to replay an event log λ over a CPN model N . To
facilitate the pairing phase (Section 2.3) and the identification of the type of deviation
(Section 2.4), we distinguish the set of consumable tokens (denoted by Cons) and the
set of produced tokens (denoted by Prod). Tokens have the form of (p, c)@�, where p
is the place containing the token and c is the token color. Each token has a counter �
associated to it, which is used to represent the sequence in which events occur.

The replay of λ starts with the initial marking. Then, logged events are fired one after
another in N . Differently from [3], in our simulation approach, tokens are not consumed
by transitions. Instead, every event e in λ leads to the generation of one consumable
token in every place in •t and one produced token in every place in t•, where t is the
transition in e. If t does not belong to N , it is not performed by the intended role,
or accessed data are not as intended, a new activity representing the executed event
is added to the model in isolation (i.e., unconnected from the rest of the model). The
output of the simulation phase is a new process model obtained by replaying λ over N
together with marking Cons ∪ Prod.

2.3 Pairing Phase

The aim of the pairing phase is to detect non conformant behaviors that occurred in the
execution of the process model. The basic idea is to identify proper information flow by
pairing produced and consumed tokens generated in the simulation phase. Intuitively,
a consumable and a produced token match if (1) they are located in the same place,
(2) they have equal token color, and (3) the counter of the produced token is lower
or equal than the one of the consumable token. Paired tokens are removed from the
marking. The set of tokens that do not have a counterpart (hereafter called unpaired
tokens) corresponds to non conformant behaviors. Unpaired tokens are used in the next
phases to identify the type of deviation and quantify its severity.
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Fig. 1. Graphical representation of grouping

2.4 Deviation Identification Phase

The aim of this phase is to identify the type of deviations that occurred. In particular, the
deviation type is identified using patterns based on unpaired tokens. Before presenting
the patterns and the identification process, we introduce the following notation.

Definition 1. Let N = (P, T,A,C,E,M,Y,M0) be a CPN and Γ ⊂ T a set of tran-
sitions. The input boundary of Γ , denoted by InΓ , is the set of places Π ⊂ P s.t. for
every p ∈ Π , (p, t) ∈ A iff t ∈ Γ , and (t, p) ∈ A iff t /∈ Γ .

Definition 2. Let N = (P, T,A,C,E,M,Y,M0) be a CPN and Γ ⊂ T a set of tran-
sitions. The output boundary of Γ , denoted by OutΓ , is the set of places Π ⊂ P s.t. for
every p ∈ Π , (t, p) ∈ A iff t ∈ Γ , and (p, t) ∈ A iff t /∈ Γ .

Definition 3. Let N = (P, T,A,C,E,M,Y,M0) be a CPN. Given a set of transitions
Γ ⊆ T with input boundary InΓ and output boundary OutΓ , we say that Γ forms a
grouping on N iff for all px ∈ InΓ and py ∈ OutΓ there exists a path from px to py
s.t. all the transitions on the path belong to Γ .

Fig. 1 represents a grouping together with its input and output boundaries. The grouping
is delimited by a dashed rectangle. The places on the left and right sides of the dashed
rectangle form the input and output boundaries of the grouping, respectively. Note that
input and output boundaries do not have to be disjoint sets.

Deviation Identification Patterns. In this section, we define four patterns based on
the configuration of unpaired tokens for the identification of insertions, suppressions,
replacements and re-orderings.

Insertion Pattern. A set of transitions Γ ⊂ T is an insertion if Γ is a grouping with
input and output boundaries InΓ and OutΓ respectively, and the following conditions
hold: (1) every place pi ∈ InΓ contains a token (pi, ci)@�i ∈ Cons; (2) every place
pj ∈ OutΓ contains a token (pj , cj)@�j ∈ Prod; (3) for all i and j, �i ≤ �j ; (4) all
places p ∈ {•t ∪ t • |t ∈ Γ} \ (InΓ ∪OutΓ ) do not contain any token.

Suppression Pattern. A set of transitions Γ ⊂ T is a suppression if Γ is a grouping with
input and output boundaries InΓ and OutΓ respectively, and the following conditions
hold: (1) every place pi ∈ InΓ contains a token (pi, ci)@�i ∈ Prod; (2) every place
pj ∈ OutΓ contains a token (pj , cj)@�j ∈ Cons; (3) all places p ∈ {•t ∪ t • |t ∈
Γ} \ (InΓ ∪OutΓ ) do not contain any token.
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Replacement Pattern. A set of transitions ΓS ⊂ T are replaced by a set of tran-
sitions ΓI ⊂ T if the following conditions hold: (1) ΓS satisfies the conditions of
the suppression pattern with tokens (pi, ci)@�i ∈ Prod s.t. pi ∈ InΓS , and tokens
(pj , cj)@�j ∈ Cons s.t. pj ∈ OutΓS ; (2) ΓI satisfies the conditions of the insertion
pattern with tokens (pk, ck)@�k ∈ Cons s.t. pk ∈ InΓI and tokens (pl, cl)@�l ∈ Prod
s.t. pl ∈ OutΓI ; (3) for all i, j, k and l, �i < �k ≤ �l < �j;

Re-ordering Pattern. A set of transitions Υ ⊂ T are re-ordered if the order in which
transitions are executed is different than the order of the same transitions in the process
model. A re-ordering is characterized by the existence of places p ∈ P such that p
contains tokens (p, c)@�i ∈ Prod and (p, c)@�j ∈ Cons s.t. �j < �i.

Pattern Identification Process. Deviations are identified in two steps: first, insertions,
suppressions and re-orderings are identified; then, replacements. Pattern detection starts
from the token with the lowest counter in the marking. If more than one token have such
a counter, a consumable token is chosen. The process model is traversed to identify (a
set of) tokens which, in the combination with the selected token, satisfy a pattern. Iden-
tified patterns are stored into a deviation list Δ. A deviation in Δ is a tuple (δ,G,C,R)
where δ is the deviation type associated to the pattern, and G, C and R are the sets of
transitions, consumable and produced tokens that satisfy the pattern, respectively.

After an insertion or a re-ordering has been identified, the tokens forming the pattern
are removed from the marking. After a suppression has been identified, the consumable
tokens associated to it are used to fire the suppressed transitions. Such tokens flow in
the process model until they reach a place containing a produced token associated to
the currently identified suppression. If the counter of the consumable token is higher or
equal to the one of the produced token, then the tokens are removed from the marking;
otherwise, they indicate that a re-ordering also occurred, and such a deviation is added
to the deviation list. To determine which transitions have been re-ordered, it is necessary
to analyze the event log and token counters. Let p be a place that contains two tokens
satisfying the re-ordering pattern. The corresponding re-ordered activities are identified
by determining the longest path from p in the model such that it only contains transitions
corresponding to events which occurred in the interval defined by the counters of the
tokens used to identify the deviation.

If the selected token, in combination with (possibly) different sets of tokens, satisfies
the conditions of more than one pattern, a copy of the deviation list for each pattern is
created together with the corresponding marking; each identified pattern is stored in a
separate deviation list. Then, the process continues on each marking and deviation list.
This step ends when no insertion, suppression or re-ordering can be found.

Replacements are identified by checking deviations lists. In particular, a replacement
is identified if there exist an insertion and a suppression in the deviation list such that
the insertion occurred within the suppression. If such a pattern is detected, the corre-
sponding insertions and suppressions are removed from the list, and a replacement is
added to the same list.

2.5 Quantification Phase

The quantification phase aims to measure the severity of the identified privacy in-
fringements (if the severity is 0, no infringement occurred). The severity assessment is
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performed on each deviation list associated to a log using the metric dΦL presented in
[2]. This metric uses a number of factors (e.g., accessed data, executed action, user role)
to measure the privacy distance between the intended and actual user behavior (see [2]
for details). Every deviation list Δ is traversed separately, and dΦL is applied to each
deviation in the list. The insertion of a sequence of events ξ ⊂ E is quantified against
the empty sequence ε, i.e. dΦL(ε, ξ). The suppression of a sequence of activities χ ⊂ A
is quantified against an empty sequence ε, i.e. dΦL(χ, ε). The replacement of a set of
(suppressed) activities χ ⊂ A by a sequence of (inserted) events ξ ⊂ E is quantified
as dΦL(χ, ξ). The re-ordering of a sequence of events Υ is quantified by considering the
data accessed by events which occurred before they were supposed to have occurred.
Let ξ ⊂ Υ be the sequence of events which occurred before they were supposed to have
occurred. Re-ordering is quantified as dΦL(ξ, ξ

′) where ξ′ is equal to ξ except that the
user’s knowledge about data is the one specified in the process model.

3 Conclusions

In this paper we have proposed a privacy compliance technique for identifying privacy
infringements and quantifying their severity. In particular, we have defined patterns for
identifying four types of deviations, namely insertions, suppressions, replacements and
re-orderings. The proposed technique has been implemented as a ProM 6 plug-in.

We are planning to extend this work by considering silent transitions, which are
necessary for the analysis of OR splits. The variety of deviations considered in this work
poses the basis for assisting privacy auditors in the investigation of privacy violations.
Future work includes the development of a user-friendly auditing tool which allows the
visualization of violations and automated generation of privacy assessments.
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Abstract. Timely insight into manufacturing processes events can help in improv-
ing its efficiency and agility.  Events are state change in process execution that can 
be not only monitored but correlated and managed in order to take immediate ac-
tion.  In this paper a new approach to develop event driven manufacturing process 
management solutions is presented. The event-driven architecture is considered as 
the basis to design a unified modeling methodology which enables near real time 
event stream processing. The approach adapts Business Process Management to 
manufacturing at the different automation levels (ISA-95 levels 2, 3 and 4). The 
key issue is to model the logic of complex events in manufacturing processes. The 
use of BPMN 2.0 is proposed as the standardized modeling language. Through this 
notation a standardized definition of business logic for monitoring and controlling 
manufacturing operations can be developed, representing the knowledge to apply 
in order to increase process performance.  

Keywords: Business Process, Complex Event Processing, Business Activity 
Monitoring, BPMN. 

1 Introduction and Motivations 

Manufacturing related processes cover from high level plant scheduling, material use, 
production, delivery and shipping activities, to low level monitoring and control of 
shop-floor activities. In this context, it is often needed to apply decision logic on the 
fly to detect particular situations and handle them in consequence. In response to 
these occurred events, the supporting IT solution must help to carry out appropriate 
automated actions that can require attention of users at different levels of responsibili-
ty according to the specific manufacturing organization. The purpose of this paper is 
to present the Event Driven Manufacturing Process Management (EDMPM) as a nov-
el approach to manage manufacturing processes in cases where is required a highly 
integration with existing IT manufacturing solutions.  

The structure of this paper is as follows: In the section 2 the proposed approach is 
explained. The proposed solution general schema following the presented approach is 
shown in section 3. Section 4 illustrates the approach applied to a sample manufactur-
ing scenarios including process models. Finally, section 5 concludes and gives an 
outlook of findings and future work. 
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2 Proposed Approach 

The EDMPM approach is elaborated from the analysis of complex events occurring in 
the manufacturing systems, and the identification of the need for a method to express 
the knowledge about how to handle them.  

2.1 Manufacturing Events Analysis 

As some authors reviewed before [1, 2, 3], in manufacturing operations, events occur 
constantly. From sales order creation, ordered products production starts and finishes, 
materials arrive at the loading dock, machines can reports failures, quality control or 
statistical process control systems notify about out-of-bounds conditions, and so on. 
Determining if a manufacturing event is important and how must be handled varies 
and depend on the complexity of each organization and even on the specific manufac-
turing industry. Table 1 shows sample situations on the different levels that that are 
considered in this research. 

Simple events normally are handled directly by supervisor systems that monitorize 
them, but normally these event occurrences are not thrown again to be handled by 
other upper level systems. However, in others scenarios more elaborated procedures  
 

Table 1. Sample manufacturing complex events application at diferent levels 

 Process Control Manufacturing Execution Enterprise Management 

Q
ua

lit
y 

• Control Service Level 
Agreement conformity of 
machine performance para-
meters.  

• Detect production line 
failure when consecutive 
bad finished products are 
found. 

• Detect quality problem 
when a number of returned 
products in last month is 
greater than a specific val-
ue. 

Pr
od

uc
tio

n 

• Control number operations 
performed to detect the end 
of the machining process. 

• Control the number of 
pieces processed to detect 
lots finalization. 

• Detect production resche-
duling need when some ma-
chines fail. 

• Control the number of 
finished lots to detect pro-
duction end.   

• Detect delayed needed 
materials for manufactur-
ing. 

M
ai

nt
en

an
ce

 • Monitorize machine work-
ing parameters to detect out 
of normal limits. 

• Predictive maintenance from 
product line machine work-
load. 

• Control corrective mainten-
ance SLA 

• Detect not performed 
preventive maintenance 
tasks. 

• Detect increasing mainten-
ance operations to consider 
machine renewal. 

E
ne

rg
y 

• Monitorize energy con-
sumption peaks to predict 
machining tool changes. 

• Monitorize energy con-
sumption to turn off ma-
chine components when idle 
too much time. 

• Control the energy con-
sumption deviation of ma-
chining processes. 

• Automated turn on/off 
manufacturing equipment 
when it is not used. 

• Control that Plant energy 
savings plans are executed 
on time. 

• Detect unexpected increas-
es in the organization ener-
gy consumption. 
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for complex event correlation detection logic could be implemented using previously 
simple event occurrences to detect particular situations that in other way will happen 
unnoticed. This case use to be more relevant when involved events are originated at 
different manufacturing levels. For example, a process that manage a scheduled pro-
duction with time constraints must take attention of any situation that could alter the 
expected production plan to take special actions to ensure expected delivery times. 
The occurrence of undesired situations could be inferred from product lots bad fi-
nished information, which could be inferred from particular out of control low level 
process measures. 

All of this is part of the manufacturing knowledge to be managed, including partic-
ular data acquisition requirements, simple event detection and complex event correla-
tion logic, and finally procedures about how to operate as consequence. This involves 
people involvement and automated actions beyond manufacturing plant scope includ-
ing business level activities and sometimes decisions taken by high level staff. 

2.2 EDMPM Based Manufacturing IT Solution 

The use of manufacturing related IT solutions could represent many benefits with 
reduction of failures and related costs, obtaining better resources usage and response 
time. Standardization efforts like ANSI ISA-95 standard [4] for enterprise control 
systems provides standard terminology and object models used by manufacturing 
related IT solutions to decide which information, should be managed and exchanged 
among different levels of the proposed automation pyramid. We are interested on 
addressing scenarios where is required to detect and correlate events occurrences that 
can come from different ISA-95 levels. Therefore, the required IT solution conform a 
new kind of EMI (Enterprise Manufacturing Intelligence) platform supporting com-
munication to existing systems and being able to automate process models 
representing the knowledge about how each manufacturing scenario must be handled 
in response to incoming events. 

In this context, the EDBPM (Event-Driven Business Process Management) para-
digm concepts presented by R. von Ammon and others [5, 6, 7] can be applied. This 
concept is presented as an enhancement of BPM (Business Process Management) 
including concepts of SOA (Service Oriented Architecture), EDA (Event Driven Ar-
chitecture), SaaS (Software as a Service), BAM (Business Activity Monitoring) and 
CEP (Complex Event Processing).  In this paper, inspired by this paradigm we are 
proposing a new approach, EDMPM, emphasizing the usage of process modeling 
techniques to express into process models the main concepts of EDA, CEP and BAM 
without needing to use of several parallel supporting platforms. Furthermore, while a 
BPM engine can execute these processes models, complex events are detected on the 
fly and thrown through the BPM system in order to be caught by existing running 
processes to handle them. At the same time, defined Performance Measures are calcu-
lated, emphasizing the streaming processing aspect of this approach without waiting 
to post process analysis. 

The main component of the proposed IT solution will be then the BPM system. 
Traditionally, BPM system means a software platform, which provides companies the 
ability to model, manage, and optimize processes. The usage of standards to model 
how each manufacturing scenario must be handled, describing it in a formally way, 
helps to communicate across all the organization involved staff how manufacturing 
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operations are done and their implications. This way, common understanding is 
achieved and future improvement proposals could be obtained from more people, not 
only particular operation specialists. Different modeling techniques could be applied 
to model manufacturing related activities, like IDEF0/3 (Integrated Definition Me-
thods) [8], UML (Unified Modeling Language) [9], BPMN (Business Process Model-
ing Notation) [10], etc. Over time IDEF have been taken over by UML for systems 
modeling and BPMN for business process modeling. Nowadays, the most used graph-
ical representation for specifying business process in a business process model seems 
to be the BPMN developed by the BPMI (Business Process Management Initiative), 
which is maintained by the OMG (Object Management Group) to develop the stan-
dard further. The aim of this notation is to provide a modeling language for the  
business analyst community, which is simple and provide a standard way of process 
elicitation. Thus, we explored the BPMN capabilities to model manufacturing 
processes involving complex event handling. The main advantage of using BPMN 
models would be that these are directly executed by existing BPM engines or indirect-
ly executed being previously mapped to BPEL (Business Process Execution lan-
guage). Not less important is the BPMN simplicity and familiar flow chart notation 
that enables both business and IT process modeling participants to understand it.  

Modeling CEP with BPMN 
Handling scenarios, like manufacturing where a huge number of events are generated 
and must be processed, require applying more event focused techniques. AS defined 
by D. Luckham [11], an event is something that happens or is thought of happening in 
a system and involves information about its origin, timestamp, and other specific 
event related data. Even though simple events are useful by themselves, in many sce-
narios, some interesting events are inferred only from a combination of simple events 
occurrence.  

Traditionally, to perform this inference, CEP approaches use techniques like event-
pattern detection or running query analysis against a mass of events previously stored. 
Different Event Processing Languages (EPL) to define or query events can be found 
in the literature: There are event pattern description languages like Rapide [12] for 
specifying patterns of events in causal event executions (posets); Other languages are 
composition-operator-based (COB) to define simple events and a set of operators that 
are recursively defined on them, conforming a so called “event algebra”. The result of 
applying these COB operators is a complex event. An example of these languages is 
SASE [13]; Data stream languages focused on data operations like TelegraphCQ [14] 
developed at the UC Berkeley, implements a dataflow system for processing conti-
nuous queries over data streams that could be used to discover complex event occur-
rences.  Engines for data streaming with a SQL language variant for writing event 
queries are implemented in open source libraries like ESPER [15]; Production rule 
languages that were not created originally for event query but use a condition-action 
rule of the form “WHEN condition THEN action” can also be used to express event 
queries. An example of these languages is DROLS [16]. 

Almost all CEP oriented languages only come with textual representations and for 
that reason are not used by process modelers in graphical languages. At the contrary, 
modeling complex events evaluation logic expressed using the BPMN modeling  
notation offers more visibility about the correlation logic behind it and enables best 
understanding from non-technical users. A. Barros et al. [17] discusses about the  
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requirements for handling complex events in process models and how difficult is to 
represent some CEP patterns in flow oriented languages like BPMN because its event 
matching and consumption mechanism. However BPMN 2.0 can avoid, partially, 
these limitations. This last BPMN version includes new event types like parallel mul-
tiple event to match multiple events at the same time, signals for broadcasting, or the 
conditional event that could include rule based EPLs to match more complex event 
correlations. 

Event-Driven Architecture (EDA) with BPM 
EDA is a software architecture pattern promoting the production, detection, consump-
tion of, and reaction to events. In our approach, following the typical EDA event 
flow, the BPM acts as “event generator” receiving events from the already imple-
mented adapters, and as “event channel” storing these events in event queues to be 
ready to be consumed by processes. The other typical flow layers of EDA, “event 
processing engine” and “downstream event-driven activity” are played by the running 
processes themselves, which incorporate into the models the complex event detection 
logic and the tasks to be executed in consequence of the event.  

How to organize all the complex event management logic into BPMN models is 
not trivial. Conceptually, the process models can be classified attending to its events 
usage as event producer, complex event evaluator or event consumer. At the same 
time, one process could play more than one of these roles. 

• Event Producer Processes: All BPM running processes potentially could be an 
event producer process. But not all events, required to detect a complex event, 
come from other executing process because often these events come from external 
sources (mainly at ISA-95 level 2). 

• Complex Event Evaluator Processes: The complex event detection logic should be 
designed as an isolated process, although not mandatory, that attends incoming 
events and decides if a complex event occurs and then a message is sent to the in-
terested consumer processes.  

• Complex Event consumers: These processes attends complex event occurrence and 
operate in consequence. 

The following figure (Fig. 1) shows a picture to clarify these concepts using BPMN 
symbols and depicts our proposed EDA modeling guideline. For each manufacturing 
process, which can play one or more of the possible roles, a modeled phase identifies 
the tasks, gates and caught/thrown events involved. This way, publisher/subscription 
event propagation mechanism is explicit in the BPMN diagrams. 

At runtime, running instances of these process models and/or external adapters can 
throw events which must be caught by other running instances of complex event eva-
luator processes. Complex event logic is applied then, and when a complex event 
occurrence is detected other existing process instances are notified or new ones are 
created to operate in consequence. In a full event-driven monitoring, manufacturing 
related KPIs are then updated accordingly and refreshed the result measures dash-
boards.  
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Fig. 1. Event driven process roles 

Modeling BAM Related Performance Measures 
Manufacturing processes performance measurement is required for its management. 
Choosing the right Key Performance Indicators (KPI) of a manufacturing processes 
requires good understanding of what is important to the organization. To help in task 
some BPM based solutions offers the capability of store logs and information persis-
tence about each performed task or event occurred that can be exploited. BAM discip-
line attends this topic in depth, using Business Intelligence (BI) related techniques, 
like data warehousing and data mining that proved its value applied to enterprise data 
sources, to handle BPM processes tracking data. Not all KPIs can be evaluated direct-
ly from this persisted data and often requires access to external data sources and may-
be perform special logic that must be implemented separately on external tools or 
included into the processes models themselves. Over the years much work has been 
done in field of BAM and related intelligence management tools. For instance, D. 
Gregori et al. [18] presented a tool suite providing features for analysis, monitoring, 
prediction, control and optimization of business processes using BI techniques like 
data mining and data warehouse. This is a sample approach that uses an externally full 
BI post process execution data processing cycle that penalizes rapid response times.  

Our approach proposes to evaluate manufacturing KPIs explicitly, embedding KPIs 
evaluation logic inside the manufacturing processes logic. In this respect, CEP tech-
nologies can be used as a foundation for BAM as some authors had proposed [11]. 
This way, all the needed information to evaluate real time KPIs could be forwarded 
by the business process itself, throwing and catching events, forcing KPIs measures 
update while its execution, instead of being obtained from the BPMS database or 
other systems. In this context, some authors [19, 20] discuss about implementing 
workflows oriented to obtain operational measures.  

There are clear differences between process oriented BPMN models and classical 
Extract, Transformation and Loading (ETL) data warehouse cycle. The advantage of 
the proposed BPMN models approach is that instead of using a post process analysis, 
the KPI update logic is executed synchronously with the related activities; near real 
time updates for critical measures are possible. The basic steps required to monitorize 
a KPI must be expressed in BPMN: data arrivals, filtering, time series addition, com-
putation and analysis.  
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Figure 2 shows an example BPMN subprocess diagram to monitorize a simple KPI 
computed from a sensor values. Incoming sensor data are modeled as input messages 
containing measured data and timestamp information, which must be filtered compar-
ing the sensor value to valid boundary limits, throwing and event in case of out of 
bounds. The valid data is added to a data sequence and then the KPI is computed us-
ing aggregation functions on this data sequence. In parallel, both the KPI trend and 
the KPI semaphore state are evaluated. If there is a change in one of them, a trend or 
semaphore change event occurs. These events are thrown to be handled by consumer 
processes and/or other evaluator processes. Infinite variations of this model can be 
designed depending on each specific KPI evaluation requirements. 

 

 

Fig. 2. Sample subprocess diagram to monitorize a simple KPI explicitly 

BPMN Extensions for Modeling CEP and KPIs Evaluation 
Some other authors propose to extend BPMN standard with special symbols with 
semantics related to CEP and KPIs concepts and use them instead of BPMN standard 
symbols. S. Kunz et al. [21] presented an approach for integrating complex events, 
described in ESPER EPL [15], extending attributes of standard symbols, but requires 
that ESPER must be integrated into the BPM solution as a rule engine and some spe-
cial diagram artifacts information must be understood by the BPM execution engine. 
G. Decker et al. [22] introduce a graphical language for modeling composite events in 
business processes, called BEMN that could be used to define event rules. In the field 
of KPIs evaluation models, J. Friedenstab et al. [23] presents a set of graphical sym-
bols extending BPMN to represent BAM relevant concepts like measures, aggrega-
tions, targets, filtering, etc., but it is not clear how BPMS engines will understand 
these symbols and implement the required logic. Further research and standardization 
efforts seem to be required in this direction. 
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3 EDMPM Based IT Solution Architecture 

Following some of the previously presented CEP techniques some authors [1, 2, 3] 
propose frameworks to manage manufacturing processes, using the event publisher / 
consumer mechanism in conjunction with EDA architecture as a basis for an extensi-
ble MES (Manufacturing Execution System) solution. The problems with these query 
based approaches are the mass event storage required, EPL queries engine perfor-
mance, and mainly its poor extensibility comparing to a BPM based solution where 
process models can be really easily modified. 

In this paper, we propose to exploit EDMPM paradigm that promotes the use 
process modeling languages to design the manufacturing process models. But the 
execution of this process models must be supported by an IT solution, which must 
offer a set of features that must be discussed. The following figure (Fig. 3) shows the 
proposed approach generic architecture schema for an EDMPM based solution. Three 
main layers are proposed in this architecture: connectivity layer to enabled communi-
cation with existing manufacturing IT solutions using available technology standards 
in the manufacturing field; an enhanced BPM engine to support direct execution of 
manufacturing processes modeled with BPMN, enabling an enhanced time window 
event handling to help CEP correlations evaluation and offering some special prede-
fined tasks to enable data series statistical processing to help KPIs evaluation; and 
finally the user interface layer that must provide the BPMS user interaction required 
support plus customizable KPIs visualization and analysis support. 

 

  

Fig. 3. EDMPM general architecture schema 

3.1 Manufacturing Connectivity Layer 

The IT solutions found in the manufacturing field are highly specialized on each level 
and the use of specific communication standards increase the complexity of the man-
agement of all the manufacturing related activities in an integrated way. As manufac-
turers changed to a global business model this integration is more obviously needed. 
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Now, manufacturing IT solutions are no longer an island unto itself, but an important 
component in the organization wheel. This way the solution accommodates the cur-
rent business environment requiring higher integration and openness. 

Therefore, the IT solution must provide adapters implementing standards like OPC 
(OLE for Process Control) to read process measures or alarms from machine automa-
tion controllers at level 2, or B2MML (Business to Manufacturing Markup Language) 
defined by the WBF (World Batch Forum) according to the ISA-95 standard to inter-
change information between level 3 and level 4 about production performance results, 
produced and consumed material, product tracking and tracing information, etc. These 
adapters transform specialized existing standard protocols messages to BPM ready to 
consume messages. BPM vendors typically have their own event representation for-
mat, but the Workflow Management Coalition had published XML Business Process 
Analytics Format (BPAF) standard that defines event information representation that 
could be used for this purpose. BPM based solutions are not EAI (Enterprise Applica-
tion Integration) tools but they can be used to solve the manufacturing systems inte-
gration problems because its SOA nature, but this overhead could impact on system 
response time and make it unusable for severe time restrictions scenarios like ISA 
level 2 process control (milliseconds), etc.  

3.2 BPM Engine Enhancements 

In addition to normal business process execution support including management of all 
the running processes, notifying users pending tasks, etc., the BPM engine must offer 
some enhancements to help the normal execution of EDMPM process models.  The 
connectivity adapters and running processes are generating simple events that must 
remain in the BPM event queues, at least for a period of time that could be specified 
by an event attribute, avoiding to be lost if some processes, which could be waiting 
for them, are not waiting at the moment that they were thrown. In addition broadcast-
ing events functionality is a requirement in these scenarios when a single event could 
be consumed by many processes.  

In order to support basic data processing to enable process related data to be stored, 
filtered, aggregated, etc., some specialized tasks could be required to be offered by the 
BPM engine itself. In addition, more complex processing tasks like computational 
intelligence algorithms could help to update prediction models that could be critical in 
some scenarios to prevent failures that could be identified as warning events and be 
processed. If all these features are implemented, natively embedded into the BPM 
engine, overall response time will be reduced, increasing performance. 

3.3 Customizable User Interface  

In addition to common user interaction with BPM oriented solutions where the execu-
tion of pending running process tasks are managed, a more manufacturing manage-
ment oriented interface is required. In the business contexts, strategic management 
solutions like Balanced Scorecard (BSC) solution offers real time visualization update 
especially to show critical business KPIs. The user interface must be able to visualize 
dashboards including charts, data tables, gauges, semaphores, etc., to visualize KPIs 
and its related information. Highly customizable dashboard visualization and KPIs 
analysis is necessary to accommodate user information needs to take the appropriate 
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decisions inside critical processes. This feature could be partially offered by many 
BPM vendors using their BAM visualization tools or rely on thirdy party solutions for 
these purposes. 

4 Use Case 

To illustrate the proposed EDMPM approach, we applied its concepts to a simple manu-
facturing scenario, considering a production line with various machines. Products must 
be processed on each machine consecutively.  In this fully automated scenario, all the 
product line is sensor equipped and it is possible to detect some basic situations. Some 
complex events applications identified on section 1, using events correlation logic im-
plemented in BPMN to detect complex event occurrence, is applied to illustrate how to 
use our approach in order to manage the control production quality, detect machine fail-
ures, maintenance tasks and manufacturing energy consumption. 

Several events have to be considered in order to decide if a CEP pattern occurs, consi-
dering time window restrictions when it is needed. In order to simplify the BPMN  
diagrams, the required CEP logic are represented as loop subprocesses where on each 
iteration a new CEP event is detected and thrown. To simplify, all incoming events are 
represented as intermediate messages despite there are a lot of event types in BPMN and 
it is not necessary to include all possible event type combinations in the diagrams.  

• Quality related complex event sample: The objective is to advise from a possible 
production line problem where consecutive bad finished products are found. It fol-
lows the Event cardinality pattern: A specified number of events of the same type 
that are all subject to the same constraints have to have occurred. As shown in fig-
ure 4, initially a counter is zero initialized and two parallel flows are executed. On 
one hand a reset event is expected to enable the counter to be reset externally. On 
other hand, every time a quality error event occurs the corresponding counter is in-
creased and its value is compared to a max value. If this max value is reached the 
CEP event is thrown, otherwise a new quality error event must be expected.   

 

Fig. 4. Detect quality problem expanded subprocess loop 

• Maintenance related complex event sample: Detection of not performed corrective 
maintenance tasks according to the maintenance Service Level Agreement (SLA). 
It follows the Event – Event Time Relation pattern: This is a special case where the 
event of one type always has to have occurred after the other. As shown in figure 5, 
once a machine problem happens, the maintenance team must apply corrective 
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maintenance under the previously signed SLA. Only if this maintenance is not 
done in the SLA interval the success event wait subprocess is interrupted and the 
CEP event is thrown. 

 

Fig. 5. Detect maintenance SLA failure expanded subprocess loop 

• Energy related complex event sample: Detection of machine idle state for a period 
of time to propose turn off components for energy savings. It follows the Event – 
Event Time Relation pattern: This is a special case where the occurrence of a third 
event cancels the pattern. As shown in figure 6, every time an energy power meas-
ure arrives from the energy monitoring device, its value is checked to identify idle 
state (low values). If idle state is identified and the subprocess “waiting period of 
time” hasn’t started previously then it starts. In the case of the incoming measure is 
identified as a regular operation value and the waiting subprocess was started pre-
viously a signal is thrown to interrupt it. Only in the case of the idle values remains 
constant on the predefined period of time the CEP turn off proposal event is 
thrown. 

 

Fig. 6. Propose machine turn off expanded subprocess loop 
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5 Conclusions and Future Work 

Following the proposed EDMPM approach, it is possible to use the widely extended 
BPMN to express at the same time the main manufacturing process activities, the 
logic to detect and handle complex events and the related KPIs evaluation. This way, 
a new level of manufacturing process intelligence is possible, representing the know-
ledge about how to manage different manufacturing situations, enabling it to be un-
derstood by more people from the manufacturing organization. 

Solutions following the EDMPM approach can be implemented as a BPM based 
solution, implementing adapters to manufacturing communication standards to inte-
ract with existing manufacturing IT solutions and technologies like OPC and 
B2MML. 

The events managed by the BPM engine must remain in the BPM event queues, at 
least for a period of time that could be specified in an event attribute, avoiding to be 
lost if some processes, which could be waiting for them, are not waiting at the mo-
ment that they were thrown. In addition broadcasting events functionality is a re-
quirement in these scenarios when a single event could be consumed by many 
processes. BPMN 2.0 execution capability could help to avoid some of these prob-
lems because its more rich catalog of event symbols.  

In order to support basic data processing to enable process related data to be stored, 
filtered, aggregated, etc., some specialized tasks must be offered by the BPM engine 
itself to increase performance. In addition, more complex processing tasks like data 
mining or optimization related algorithms could help to update prediction models that 
could be critical in some scenarios to prevent failures that could be identified as warn-
ing events and be processed.  

The EDMPM approach could be used to define more integrated manufacturing 
processes in highly automated scenarios which are promoted by future manufacturing 
efforts to increase efficiency, flexibility, agility and quality like FuTMaN [24] or 
ManuFuture [25]. These efforts propose to increase manufacturing automation related 
activities requiring capturing and managing of an also increasing amount of data and 
events in contexts where near real time analysis and response could be critical.   

In order to validate the proposed approach, some manufacturing scenarios like 
identified in section 1 could be simulated into plant simulator software capable to 
interact with a BPM companion engine, generating and receiving events to/from dep-
loyed process models to carry out the manufacturing management logic including 
CEP correlation to identify new complex events and BAM measures update logic to 
update KPIs values. 

As future work, more manufacturing related patterns will be identified and specia-
lized set of tasks will be well defined and classified in the context of EDMPM.  It is 
also the will to identify more useful patterns for CEP and KPI evaluation logic to be 
embedded into the manufacturing process models. Finally, the proposed approach 
could be applied to distributed modern enterprise manufacturing environments where 
processes covering supply chain aspects which require greater communication logic 
must be defined.  
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Abstract. Wireless Sensor and Actuator Networks (WSNs) are distrib-
uted sensor and actuator networks that monitor and control real-world
phenomena, enabling the integration of the physical with the virtual
world. They are used in domains like building automation, control sys-
tems, remote healthcare, etc., which are all highly process-driven. Today,
tools and insights of Business Process Modeling (BPM) are not used to
model WSN logic, as BPM focuses mostly on the coordination of people
and IT systems and neglects the integration of embedded IT. WSN devel-
opment still requires significant special-purpose, low-level, and manual
coding of process logic. By exploiting similarities between WSN appli-
cations and business processes, this work aims to create a holistic sys-
tem enabling the modeling and execution of executable processes that
integrate, coordinate, and control WSNs. Concretely, we present a WSN-
specific extension for Business Process Modeling Notation (BPMN) and a
compiler that transforms the extended BPMN models into WSN-specific
code to distribute process execution over both a WSN and a standard
business process engine. The developed tool-chain allows modeling of an
independent control loop for the WSN.

1 Introduction

Today there is still lack of high-level, model-driven programming tools for Wire-
less Sensor and Actuator Network (WSN) applications and the integration with
enterprise services requires significant effort and expertise in embedded program-
ming of WSNs. Organizations are reluctant to install large-scale WSNs, as this
still requires significant, costly, low-level programming of sensing and actuation
logic for the WSN, in addition to the physical deployment of the WSN nodes
(e.g., inside a building). Additionally, setting up the communication channel be-
tween a WSN and an enterprise’s information system requires an even larger set
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of technologies and manually writing of custom code. Domain experts typically
lack the necessary low-level programming skills.

To foster widespread adoption and more efficient use of sensor networks for
enterprise information systems, a need for a specifically tailored integration tech-
nique that is able to bring together sensor networks and business applications
[1] is perceived. The aim is to drastically improve the ease of programming of
WSNs by enabling the graphicalmodeling of WSN applications, leaving low-level
details to a model compiler and a run-time system. WSN programming should
be accessible to domain experts, such as business process modelers. They should
further be empowered to design the WSN’s interaction with enterprise informa-
tion systems using the methods of business process modeling they are familiar
with. Our approach aims to:

– Provide a conceptual model that abstracts typical WSN programming knowl-
edge into reusable tasks that can be integrated into modeling notations, such
as the Business Process Modeling Notation (BPMN).

– Develop an extension of BPMN [2], BPMN4WSN, that enables the graphical
modeling of WSN applications and their integration with BPs based on an
abstraction layer that hides low-level details of the sensor network.

– Introduce tools that enable the design, deployment, and execution of in-
tegrated WSN/BP applications. We do not reuse existing APIs toward the
WSN; we program the WSN and automatically generate the necessary APIs.

– Evaluate our approach with a realistic prototype deployment, including a
self-optimizing run-time system layer, and a report on the first experiences
with its usage in the context of the EU project makeSense.

In order to create applications that span both a BPMN process and a WSN
application, knowledge in both fields is required. We do not expect the applica-
tion developer (the domain expert) to model an executable process. Rather, we
suggest a two-phase approach, where a descriptive process model is created by
the developer, which is then refined by a more technical system developer using
the WSN extension integrated in the process diagram.

In the following, we outline an application scenario to better describe our
approach. Then, in Section 3, the typical characteristics and components of
WSNs are analyzed. In Section 4 it is outlined how the challenges identified in the
scenario are approached conceptually, and in Section 5 the according extension
of BPMN is described. Subsequently in Section 6 the implementation of the
prototype, including the code generation logic for WSNs is described. Section
7 critically discusses the results achieved so far. Section 8 reviews related work
before concluding the paper.

2 Scenario: Convention Center HVAC Management

Our application scenario showcases the operation of a convention center (see
Figure 1) that has a variety of meeting rooms, which can be booked for
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Fig. 1. Integration of a convention center’s BP engine with a WSN for HVAC

various events. Each room can be booked at a rate that partly depends on room
characteristics (e.g., its size) and partly on the energy consumption of the event
organized in the room. For this purpose, the convention center is equipped with
a Heating, Ventilation, and Air Conditioning (HVAC) system including a WSN,
which ensures comfortable levels of temperature, humidity, and CO2 for each
individual room for the booked duration of the respective event. In order to
do so, the HVAC system must be instructed automatically by the convention
center’s information system about when to activate the ventilation and how
long to control the room’s temperature and CO2 concentration for each room.
Room conditions are only maintained during the booked times to save energy
and only if presence of people is detected by presence sensing; air conditioning
is shut off when a meeting is not attended at all or ends prematurely. In turn,
the HVAC system feeds back sensor data to the information system, which allow
the information system to precisely compute the HVAC cost for each individual
event. The information system is used for the booking of rooms, the reporting
on energy consumption, and the billing of customers. This mode of operation
is more energy efficient that today’s common practice, where one would simply
run the HVAC system at a fixed rate, independently of room occupation or
environmental conditions — a practice that wastes much energy.

Technically, it is necessary to develop (i) the BP logic running inside the BP
engine, (ii) the code running on the nodes inside the WSN, and (iii) a suitable
set of communication endpoints supporting the interaction of the BPM with
the WSN and vice versa. Note that it is not the goal of this work to optimize
convention center operation or more generally building automation, but to pro-
vide a basic set of abstractions, tools, and methodologies that can be used in all
scenarios where also WSNs are used. We use it merely as a device to depict a
concrete application of our approach.



Process-Based Design and Integration 137

3 Relevant Properties of Wireless Sensor Networks

Before going into the details of the approach, the special properties of WSNs
that are relevant at the application layer and that therefore underpin our model
of the system are explained. A WSN is a distributed system, namely a network of
wireless, battery-powered, autonomous, small-scale devices, so called nodes, each
of which is equipped with one or more sensors or actuators or both. Nodes are
battery-powered and replacing the battery is mostly not intended or not feasible
from a Total Cost of Ownership (TCO) perspective. Therefore, they make use
of ultra-low-power hardware, that is drastically limited in processing power,
memory, and transmission bandwidth and the application software running on
the nodes, including wireless communication protocols, needs to be optimized
for low power consumption to extend network lifespan. These limits typically
prevent executing a regular BPMN engine on the devices that interprets BPMN
models serialized as XML.

Sensors are used to sense information from the real world (e.g., temperature)
while actuators perform actions that change the state of the environment (e.g.,
control a motor or a lamp). The typical number of nodes inside a network can
vary from a few to hundreds or even thousands. Via radio links, a node can
generally communicate with all other nodes in its transmission range and with
nodes further away by multi-hop, routed communication. WSNs are able to
self-organize, overcome network failure, and execute distributed computation
logic, such as computing the average of sensor values while those are routed to
a destination node. Often, WSNs are composed of heterogeneous nodes, each
equipped with a custom set of sensors, so that, for example, one type of node
can sense CO2 and humidity while another type of node is able to control an
automatic door, while a third has enough special hardware to compute complex
arithmetics.

As a basis for modeling WSN application logic, a very simple model of the
physical set-up that is sensed and acted upon is assumed: a given WSN monitors
real world entities, each is referred to as an Entity of Interest (EoI) which can
be a location or a thing. A thing is any physical object, while a location is
a space that the sensor network is monitoring, e.g., a room or a building. A
domain expert is usually only interested in the EoIs and the operations that can
be applied to them, but not in the technical layer of sensors that sense or the
actuators that influence them.

To overcome the limitations of WSN hardware and to maximize efficiency
of operations, the research community has introduced a large number of pro-
gramming abstractions to program wireless sensor networks [3]. By abstracting
existing programming concept into high-level constructs [4] (described in Section
5.2) and assuming that all existing functionality can be expressed using them,
one can use high-level constructs as basic building blocks for graphical modeling.
Usually, a sensor network will perform some or all of these tasks:

Sensing: measuring one or more environmental parameters of an EoI, such as
temperature or humidity, making use of the sensing equipment of the nodes.
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Actuation: enacting operations physically affecting an EoI, e.g., controlling or
moving it or flashing a LED. WSNs are often used to actuate or control the
environment in reaction to sensed parameters, creating a control loop (as
the actuation eventually triggers changes in the sensed values).

Task distribution: distributing operations that coordinate a subset of nodes,
e.g., any in-network aggregation on the input values or the election of a
controller node based on certain criteria. As WSNs consist of several nodes,
several of which can monitor the same EoI, especially data aggregation op-
erations are often required, e.g., to compute the average temperature of a
room observed by many sensor nodes.

From the perspective of a domain expert, it is irrelevant which part of a WSN
performs a task, e.g., whether an operation is carried out by a single node or the
network as a whole as long as the operations are addressable by an EoI.

4 Requirements and Approach

In the convention center scenario, there is a need for collaboration between the
reservations and billing systems in the back-end and the sensor network that
executes the sensing and actuating operations. Thus, the application runs on
different types of systems which can be seen as two distinct participants in the
process. This raises the need to model both the intra-WSN logic and its interac-
tions with back-end systems as a collaboration of two process participants. While
the back-end part is orchestrated using classical Business Process Management
(BPM), modeling the process logic to be executed inside the WSN needs certain
provisions (e.g., model extensions) to enable the specification of WSN logic in a
high-level fashion and the creation of code that can be executed in the network.

Typically, the integration of WSNs into BPs is based on the invocation of
services exposed by the network [5,6,7]. This results in a modeling approach
that uses the network as set of available operations on which a process can be
constructed, but that prohibits the programming of the WSN itself. This limits
the possibility to define custom WSN logic to be carried out by the network as
part of the process. Instead, the key idea of our approach is to develop a business
process modeling notation that allows a domain expert to program both the BP
and the actual network logic, without the need to know and specify all the low-
level details. The created process model is later used to derive the code that will
be executed by the WSN. In this way, the WSN logic is fully specified at the
process level.

The specific requirements we identify can be divided into supporting model-
ing, deployment and runtime. Supporting modeling means defining a modeling
paradigm that fits the needs of a domain expert and integrates back-end business
processes and WSN logic using a single modeling language. This requires to:

– Provide an easy to understand and familiar way of expressing WSN logic;
enable integrating WSN processes into back-end processes, coupling them
and allowing for easy data sharing.
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– Define a set of concepts to describe the logic and operations that can be
combined for creating reusable, high-level WSN modeling constructs. We
have to supply the modeler with the possibility to specify operations like
sense, actuate and aggregate for measurements over EoIs.

– Model WSN capabilities and details. WSNs are usually heterogeneous re-
garding the type of sensors and actuators. Knowing the characteristics of the
network is fundamental to have an overview of which things and locations
can be controlled and monitored by the WSN as well as which operations the
WSN is able to perform. Having such a model will give the domain expert
the ability to express the desired processes in the familiar terms of EoIs and
irrespective of technical systems.

– Supporting the modeler in designing only feasible processes by restricting
the available modeling constructs to him to what the WSN is capable of
executing.

Supporting the deployment of the process requires to:

– Split the process model into an intra-WSN part and a WSN-aware part
(back-end). The process is divided between two actors that participate in
the execution. These two parts of the process have to be separated and
handled differently.

– Create WSN binary code. The intra-WSN part of the process has to be
translated to binary code and injected into the nodes. This code is generated
based on the flow of the process model and tasks that describe the operations.

– Create the endpoints and communication channels to handle the messages
from and to the network. After having split the process in two parts and
after having translated the WSN part into binary code the communication
between these two participants has to be guaranteed. To do so, the end-
points and the communication channels through which the messages will be
sent/received need to be available.

Supporting the execution requires to:

– Provide a process engine to execute the WSN-aware business process part.
The process engine also handles the communication with the WSN.

– Run the code in the WSN. Part of the process actually runs inside the net-
work without the need for external communication and control. The process
is executed on the gateways and the actions are distributed on the nodes,
guaranteeing the correctness of the process depicted by the modeler.

Figure 2 illustrates the conceptual model of how we approach WSN program-
ming. The model is not meant to be an extension of the BPMN meta-model.
Only part of it is related to BPMN4WSN, the other part is related to our own
modeling formalism for the definition of low-level WSN logic. The two entities
on the top represent the physical WSN, which we abstract as composed of a set
of Nodes (sensor or actuator nodes) supporting a set of native operations, the
so-called WSN Operations, such as sense CO2 for a sensor or open for a valve
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Fig. 2. Conceptual model of WSN operations

actuator. We allow the domain expert to use WSN operations by abstracting
away from the network topology, i.e., nodes, and instead allowing him to reason
in terms of EoIs via a dedicated task type, the WSN Tasks. A WSN Task is
a generic action that can be used to express sense, actuate, and aggregate op-
erations and that can be executed by the network. The WSN Task is logically
connected to an EoI, which allows the modelers to scope the action. That is, the
EoI specifies where the action will be executed; it could be a thing or a location.
WSN Task and EoI represent the high-level constructs used to model WSN logic
in BPMN4WSN. This level of abstraction is however not enough to describe
all the needed details to generate binary code that runs on the nodes, which
instead requires taking into account the topology of the network. The detailed
specification is based on WSN logic constructs, which abstract operations that
can be configured (e.g., by adding a concrete target node resolving a logical EoI)
and translated into binary code. The composition of WSN logic constructs (the
WSN logic composition box) allows the system developer to refine the process
model designed by the domain expert and to fill WSN tasks with concrete logic.

Figure 3 shows the architecture of the tool chain for developing WSN/BP
applications containing an extended BPMN editor in which the process is mod-
eled, and a compiler for translating the high-level specifications into low-level
executable binary code for the sensor network and for the process engine. Next,
the modeling and deployment part are discussed in more detail; a first prototype
of the tool is discussed afterwards.

5 BPMN4WSN

As illustrated in Figure 3, two types of developers jointly develop a process model:
the application developer and the system developer. The application developer is
the person whomodels the coarse process; he is an expert of the domain with expe-
rience in business process modeling and has some WSN background. The system
developer is aWSN expert and has the task of creating the refined, XML-formated
model of the system (see the bottom left corner of Figure 3). This model contains
information of the network such as the EOIs, nodes and available sense and actu-
ate operations. The two roles collaborate mainly in the design ofWSN Tasks. The
application developer creates a process that crosses the system boundary between
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standard IT and WSN including the specification of the behavior of the latter. He
defines a descriptive, not yet executable version of the process. For instance, in the
convention center use case, the application developer would specify a task for read-
ing the latest sensor values or driving an actuator based on the system descriptor
model. Later, the system developer would refine this model by adding WSN logic
components to make the tasks that involve the WSN executable.

5.1 Process Logic

In our solution the design of the business process is mainly carried out by the
application developer, who uses BPMN [8] with some additions based on the
extension points defined in the standard (without touching the BPMN meta
model), designed to model the salient characteristics of the WSN. The extended
language is referred to as BPMN4WSN. This extended version comprises both
new components and modeling rules.

A BPMN4WSN process must be composed of at least two pools: an intra-
WSN pool and WSN-aware pool; Figure 4 contains a minimal example. The
intra-WSN pool is the part where the WSN logic is specified, while the WSN-
aware pool is a classical BPMN process. The splitting into process logic executed
inside and outside the WSN forces the modeler to explicitly model interactions
between the two parts as messages, directly mapping the run-time behavior
(where messages are the only way of interaction between the parts) to the model.
This separation also enables the clean generation of code.

In the intra-WSN pool, constructs that directly orchestrate WSN function-
ality (made available through high-level abstractions) are needed. This need is
addressed by introducing a new activity type: the WSN Task, that can only be
used in the intra-WSN part. It has two properties: a reference to a set of WSN
logic construct definitions and the EoI to which the respective operations should
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be applied (see Figures 4 and 2). It has an antenna on the top-left corner to dis-
tinguish it from other tasks; if specified, the EoI value is written below the task
name. For example, setting the EoI value to “room Moon” will execute the task
on those nodes that belong to the “room Moon”. In a nutshell it specifies where
(i.e., by which subset of nodes) each WSN Task is executed.

The referenced WSN logic construct definition is the set of operations that
have to be performed by the network. For simplifying the modeling of such low-
level programming specification, a set of WSN logic constructs that describe the
common operations and the way they can be combined is created.

In addition to the WSN Task, a Performance Annotation element, i.e., an
extension of the BPMN group element which shows the chosen performance
configuration on the top-left corner, is introduced. It is used for describing the
network behavior from a performance point of view. This new component allows
the application developer and system developer to decide when the network per-
formance goal has to be changed (e.g., to optimize battery lifetime). For example,
when a room is empty, the network will be set to low energy consumption mode
in order to save battery and prolong node network lifetime at the cost of lower
reactiveness and possibly less reliable message transfer. In cases where high per-
formance is needed (at the cost of battery power), other performance annotations
are used. At run-time the execution semantics of these annotations is that one
performance mode is set for the whole WSN, depending on the number of the
tasks in each performance group. The group that contains the most tasks to be
executed sets the performance mode.

5.2 WSN Task Specification

WSN Tasks are modeled in two steps: (i) the process design and (ii) the pro-
cess refinement. The process design is generally carried out by the application
developer. He just specifies a WSN Tasks with a speaking name, which can be
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a sense, actuate, or aggregate operation and the EoI on which the operation has
to be executed. This part of the modeling is represented in Figure 2 by the items
inside the BPMN4WSN dashed rectangle.

The process refinement (an example is shown in Figure 4), instead, is gener-
ally performed by the system developer. Its goal is to transform all high-level
WSN Tasks into executable operations by combiningWSN logic constructs which
model the network behaviors. As shown in Figure 2, each WSN Task represents
WSN logic constructs that are the basic functionality and instances of so called
meta abstractions [4] that must be configured and instantiated:

Local actions are executed locally on each sensor node.

– The tell/report actions represent one-to-many/many-to-one communication.
– The tell action enables a node to delegate an embedded action to a set of

other nodes.
– The report action enables the gathering of information from many nodes.
– Collective actions enable distributed, many-to-many collaborations.

Each of these distributed actions has a target, which is used to select the subset
of nodes the action refers to (obtained by resolving logical EoIs into physical
nodes, based on the system description). In addition there is also the possibil-
ity to specify data operators useful to perform mathematical operations during
transmission of data (e.g., to compute the average).

Each specific WSN deployment has its unique system-description, which is
the starting point for modeling. It describes the details of the network and it is
used as configuration for the model editor. The document provides a high-level
description of application-specific details of the concrete WSN deployment to
the business process editor and to the model compiler. It is used by the editor
to list only those attributes to the system developer that are actually available
in a concrete deployment, such as the list of EoIs (simple or composed ones like
“First Floor” comprising “room1” and “room2”) and to restrict the selectable
operations (e.g., CO2 sensing can only be selected if EoI “room2” has been
selected, because only that room is equipped with CO2 sensors).

6 Prototype

The approach described in the previous sections has been implemented as a
proof-of-concept prototype. Figure 3 depicts the architecture of the prototype,
showing the document flow and the actors involved. The modeling process, de-
fined by our tool chain, is divided into three phases: modeling, translation, and
execution.

Modeling. For the modeling part of the prototype, a well-
known web-based BPMN editor called Signavio Core Components
(http://code.google.com/p/signavio-core-components) has been ex-
tended. The editor has been modified by adding a start page for scenario
selection and a model editor for the WSN logic constructs.

http://code.google.com/p/signavio-core-components
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The start page is used to select or create a separate workspace for each sce-
nario to enable development for distinct WSN set-ups, each with its on system-
description. In each workspace, only operations that can actually be executed
inside the corresponding network are enabled, helping the modeler in creating
correct executable processes. For instance, in our example scenario there would
be the possibility to sense CO2 and presence but no other environmental param-
eters as the WSN is only equipped with these sensors.

BPMN extension points have been used to realize WSN Tasks and perfor-
mance annotations as explained in Section 5 and in Figure 4. To support the
modeling, the modeling tool has been extended with these two components.

The WSN logic construct composition has been enabled by creating a new
meta model inside the tool. By doing so, the modeler is given the possibility
to compose WSN logic construct blocks by dragging and dropping and nesting
them according to predefined composition rules that are checked by the tool.
The composition is later translated into an internal format, and the files are
used by the compiler to create the binary code for sensors.

Example. In Figure 5 there is a screen shot of the process that models the
scenario explained in Section 2. For the sake of clarity, in the intra-WSN process
only CO2 measurement and presence detection are modeled.

A new process instance is started when a new meeting is scheduled. The
WSN will be set to low energy consumption mode until the actual meeting starts.
Throughout the duration of the meeting, the network checks the room conditions,
increasing the ventilation when sensor values exceed a given threshold and a
human presence is detected. After the scheduled meeting end time, the network
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checks if someone is still in the room, in which case the information system is
informed, charging the user for extra time.

Translation and Execution. The WSN-aware part of the process is a stan-
dard BPMN model that can be executed by a process engine exterior to the
WSN. The intra-WSN part, instead, is translated into executable code. A tool
for translation called model compiler takes this part of the process and generates
code implementing a custom execution engine. The executable program hence
behaves similar to a regular BPMN engine interpreting the given BPMN model.
The generated program implements a finite state machine, realizing the execu-
tion semantics of the translated process model including instance management
and message correlation, and of course keeps track of all execution tokens in each
process instance as specified in the BPMN 2.0 specification.

For example, an exclusive diverging gateway will be translated into a series of
if statements (mapping the conditions on the outgoing flows) in the “main loop”
of the program. Each WSN Task is translated using the WSN logic construct
composition describing sensor logic. This is the most extensive generation step,
as these sub-models need to be mapped to an API for instantiating, managing,
and using those programming abstractions. The system-description describes the
characteristic of each node of the network and it is used as input for the transla-
tor. The EoI of a WSN Task is mapped to attribute matching at run-time, e.g.
if a WSN Task has been configured to operate on EoI “Floor 1” and the system
developer contains information which room ids belong to that floor, this could
be mapped to the expression location=’room1.1’ or location=’room1.2’.

The two parts of the process can now be executed separately. To make them
communicate, the model compiler maps the message flows between intra-WSN
and WSN-aware process to communication endpoints that are created automat-
ically on either side, enabling each part to receive and send messages. As the
message format and transmission encoding are out of scope of the BPMN spec-
ification, a simple message format and an efficient transmission encoding are
defined and implemented in both the generated intra-WSN executable and as
an extension to a regular BPMN execution engine. In order to support the co-
ordination of multiple instances, each message contains a field that is used for
instance correlation and the execution of message start events creates instance
IDs that need to be used by either side of a same process instance.

7 Discussion and Future Work

Our approach was guided by the core requirement presented in Section 4, i.e.,
to integrate WSN programming into business process modeling. We address
this requirement by offering unified modeling in one model editor, hiding model
artifacts that are not relevant in a given modeling context, splitting work between
application developer and system developer, and providing model compilation
and execution as a custom engine in the WSN.

The work described in this paper is a first iteration towards integrating WSNs
with BPs, combining classical business process modeling with ad-hoc extensions
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for WSNs that hide low-level network details. This integration allows an applica-
tion developer to design process logic both inside and outside the sensor network,
without requiring intimate knowledge of how to program distributed computa-
tions inside a WSN; an intuitive understanding of EoIs and sensing and actuating
actions is enough. The system developer instead only focuses on the refinement
of WSN Tasks. The described tool-chain takes care of splitting the two logics
(intra-WSN and WSN-aware) and of the binary code generation. Endpoints for
communication between the business process and the network are created fol-
lowing the model of the process. Yet, there is still space for improvement, space
that we are going to cover in our future work.

Patterns. For instance, WSNs are characterized by hardware constraints that an
application developer is typically not familiar with. Thus, providing patterns as
best practices for modeling WSN logics is a necessity that is not yet implemented
but that will be covered in the future, in order to further simplify the creation
of WSN applications.

Two Different Meta Models. Our current solution uses a different meta-
model for modeling the lowest level of WSN logic, the WSN logic construct.
WSN Tasks internally follow a logic that is different from BPMN, in order to
compose WSN logic constructs. We could therefore not model them via simple
sub-processes. A new logic and meta-model is needed, which is however seam-
lessly integrated in the same model editor. Opting for pure BPMN modeling,
also for the WSN logic construct would have complicated the modeling as they
have strict composition rules that could not be expressed easily in BPMN. In-
stead, we use a simple box model to compose WSN logic constructs, supporting
the construction of correct models. We will evaluate to what degree we can use
more BPMN and less custom modeling constructs in the future.

Modeling Two Separate Pools. Our current prototype forces the modeler to
model at least two pools, one for the intra-WSN part and one for the WSN-aware
part. We opted for this solution as it makes communication from and to the WSN
explicit and the compilation and creation of communication endpoints easier.
Modeling all logic in a single pool would be less burdensome to the modeler, but
it requires non-trivial data and control analyses of the process, which for the
sake of simplicity we did not implement yet.

Events. Although the current model does not explicitly use special BPMN
events for the WSN inside the process model, the approach is strongly based
on asynchronous communication under the hood. On the one hand, modeling
two explicit pools with asynchronous message exchanges has similar semantics
as BPMN message events. On the other hand, for example, the current imple-
mentation of receiving a sensor value is realized asynchronously: rather than
querying the sensor directly, the buffered last value of a stream of sensor val-
ues is read. This behavior is however hidden behind the WSN logic constructs.
Introducing WSN-specific events in the process model would however allow for
more flexible control flow logic and is therefore part of the future development
of the system.
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Multiple Processes Interacting with One WSN. In our current proto-
type, the generated intra-WSN logic only supports conversations with multiple
instances of one process model. In the future, we intend to support multiple
process models by merging the intra-WSN parts of all models to a combined
model or by running several of the generated engines concurrently at operating
system level and dispatching messages based on model identifiers. In practice,
we could single out the WSN-internal logic as an own pool and allow the ap-
plication developer to define multiple (WSN-aware) processes interacting with
this WSN-internal process. This would enable the generation of WSN code that
natively supports multiple different WSN-aware processes.

8 Related Work

Building commercially relevant applications on resource-constrained, networked
embedded systems (the front-end) such as WSNs while integrating them into
business processes of an enterprise (the back-end) is a complex, challenging task
that has to be repeated for each combination of front-end and back-end. Numer-
ous efforts have been made, aiming also at demonstrating the business benefit.

Approaching the problem bottom-up, i.e., from the WSNs, several solutions
have been proposed to simplify programming. Although many programming ab-
stractions have been introduced, most of them aim at simplifying the activities
of skilled WSN programmers [9] and cannot be used directly to specify high-level
process constructs by domain experts without WSN expertise.

The COBIS project (www.cobis-online.de) aimed at integrating heteroge-
neous WSNs with back-end systems by providing a web service facade to the
WSN’s functionality. The proof of concept was trialled in an environment, health,
and safety application scenario, more specifically by enforcing physical storage
rules for hazardous goods managed in an enterprise system [5,10].

The SOCRADES project (www.socrades.eu) targeted industrial automation
with the goal to almost eliminate the need for any proprietary intermediate
layers between embedded services and the business back-end by directly service-
enabling devices themselves [1]. The approach was based on the WS-* family of
web service standards and only for very resource-constrained and legacy devices
a gateway/service-mediator concept was developed to enable those to participate
in service orchestrations.

Other proposed solutions for modeling sensor network applications using a
process-based design include the Graphic Workflow Execution Language for Sen-
sor Network (GWELS) [6], which enables the design of data-flow as workflow,
and an ad-hoc architecture for handling the communication. Similarly, [7] uses
a process paradigm for defining WSN applications, easing the configuration for
non-experts of the field. Mash-up composition is also promising; in [11], the au-
thors wrap smart-objects with web services, introducing an architecture and a
web-based mash-up tool for composition and execution. These solutions enable
the modeling of WSN logic in a model-driven fashion but without deriving the
executable logic of the network.

www.cobis-online.de
www.socrades.eu


148 S. Tranquillini et al.

Recently, BPMN has gained interest as method to program WSNs. Caracas
et al. [12,13] presented studies on the expressiveness of the language and its
potential to be compiled into source code for WSN nodes. As results they produce
a system that creates WSN applications by compiling BPMN processes. The
outcomes highlight that, as it is, BPMN is powerful enough for specifying the
high-level behavior (if modeled with correct patterns) more than low-level one.
At the same time they prove how a process can be compiled into native source
code for WSNs, without losing too much performance compared to hand-written
code. These preliminary works show the possibility to compile the BPMN for
creating binary code. However, the example shown in this work users a higher-
level API, that does not allow one to fine-tune communication in the WSN as it
is possible with our approach.

In the past months, extensions of BPMN for modeling smart objects have
been proposed as outcome of the IoT-A (www.iot-a.eu) project [14,15], an idea
that shares some common ground with our approach. The idea is to extend
the BPMN language to model Internet of Things (IoT) aspects. However, this
approach differs as they propose modeling extensions that affect the language
at a high level of abstraction; in fact their goal is to use this language to model
IoT services instead of creating the logic from the process.

Approaches like SysML [16] are only remotely related to our approach. This
modeling framework, derived from UML, allows the modeling of low-level details
of a WSN system. Yet, SysML models are graphical models without a standard
serialization, therefore they are not directly usable for process-based integration.

9 Conclusion

In the era of the IoT, collaboration and integration of non-conventional IT de-
vices, such as entertainment and automotive equipment, RFID devices and tags,
or WSNs, with Enterprise services is of paramount importance [1]. In this paper,
we focused on one relevant representative of this need, i.e., WSNs, which typi-
cally still represent isolated and impenetrable realities from a business IT point
of view. We proposed a layered approach for developing, deploying and manag-
ing WSN applications that natively interact with enterprise information systems,
such as a business process engine and the processes running therein. We did not
try to crack the whole problem at once, e.g., by aiming at a business-view-only
approach to WSN application development, and rather foster current practice,
equipping both the application developer (holding the process knowledge) and
the system developer (holding the WSN knowledge) with effective languages
and instruments to co-develop advanced, process-based WSN applications with
non-trivial distributed sensing and actuation logics.
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Abstract. Social computing is actively shaping Internet-based business
models. Scalability and effectiveness of collective intelligence are becom-
ing increasingly attractive to investors. However, to fully exploit this po-
tential we still have to develop crowd-management frameworks capable
of supporting rich collaboration models, smart task division and virtual
careers. An important step in this direction is the development of mod-
els of rewarding/incentivizing processes. In this paper, we conceptualize
and represent rewarding and incentive mechanisms for social business
processes. Our techniques enable definition, composition, execution and
monitoring of rewarding mechanisms in a generic way.

Keywords: rewards, incentives, socially-enhanced BPM.

1 Introduction

Incentives and rewarding are inseparable parts of business processes today. Their
main purpose is to align the interests of workers and employers. By stimulat-
ing workers with various monetary, material and psychological rewards the em-
ployer can enhance productivity, quality, knowledge, collaboration, leadership,
and other positive qualities in the company. Even more beneficial are the selective
effects of the incentives [4]. Each particular incentive usually targets to enhance
a single aspect of worker’s performance. This can lead to workers starting to
exhibit various dysfunctional types of behavior, meant to increase productiv-
ity only in segments targeted by the incentive while neglecting the others. This
is why in practice often a number of simple incentives are combined together
targeting each other’s unwanted consequences.

Motivation: Social Computing for business is expected to grow substantially in
the coming years[1]. Crowdsourcing is already a well-established business model,
but it is characterized by exploitation of unstructured crowds of independent
workers performing small, simple tasks. Collaboration models on the web are
becoming richer, evolving from traditional company to crowdsourcing to so-
cial business. In the future, we expect that the development and adoption of
novel business models involving social business processes will match or extend
the contemporary processes in traditional companies. These business processes
(so-called Social BPs) will (partially) rely on dynamic, distributed workforces,
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structured in problem-related, ad-hoc assembled teams of professionals. The new
business reality will require advanced organizational and management structures
for the workers, intelligent task division and distribution, with the advent of
long-lasting “virtual careers”.

These trends inevitably require advanced crowd-management capabilities in
future social computing platforms, including novel rewarding/incentive frame-
works exploiting the advantages of vast amounts of digital productivity records,
cheap peer evaluation, psychological techniques, etc. However, to the best of our
knowledge, existing social computing platforms lack techniques for formulating,
composing and automatically deploying incentive mechanisms.

Contribution: We identify the basic composing parts and conceptualize a
model for representing most real-world incentive mechanisms using rewarding
rules and events. Our model supports reasoning and acting along quantitative,
structural and temporal data associated with teams of workers, allowing com-
position of incentive mechanisms into complex schemes.

Related Work: Most related work in the area of rewarding and incentives orig-
inates from economics, organizational science, psychology and applied research.
It can be used to classify and substantiate the basic rewarding approaches and
expected outcomes, and to simulate the responses to incentive strategies. The
principal economic theory treating incentives today is the Agency Theory[3]. We
use many of the basic findings from this theory implicitly in the foundation of
our model. The paper [6] presents a comprehensive review and comparison of
different incentive strategies. In computer science, the topic has been treated
only within application-specific contexts so far, e.g., social networks[8], human
microtask platforms[5,7], peer-to-peer networks, etc. However, to the best of our
knowledge, the topic has not been previously addressed elsewhere in a compre-
hensive, general manner.

2 Modeling Rewards and Incentive Mechanisms

Incentive is any activity employed by the system to stimulate or discourage
certain worker activities before the actual execution of those activities. Reward
is any kind of recompense for worthy services rendered or retribution for wrong-
doing exerted upon workers after the completion of the activity.

Based on a thorough review of classical economic literature on the topic we
identified the three components that every incentive mechanism consists of:

(1) Evaluation methods serve to assess the quality of worker’s performance
from different aspects. They provide inputs for making a decision whether to ap-
ply a reward/sanction. (2) Incentive conditions represent the business logic
behind the incentive mechanism. They contain the rules for application of re-
warding actions and take the evaluation results as inputs. (3) Rewarding ac-
tions are concrete measures taken against individuals or teams to influence their
future behavior.

Any concrete incentive mechanism can be expressed as incentive rules contain-
ing these three components, in a system-independent way. It is is then possible
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to translate automatically such rules into queries and actions upon a rewarding
model (RMod), representing the following aspects of a real-world system:

State represents quantitative state of the system. It includes global attributes
and individual worker attributes, representing different performance metrics
(QoS). These metrics are part of the business logic of a company, and, as such,
represent an input to our model. Time is expressed as a collection of time-
annotated records of past and future worker interactions, supporting various
time conditions and constraints. Structure allows representation and manipu-
lation of various types of relationships among workers.

The RMod represents an abstraction layer between an actual real-world plat-
form that manages worker teams and client’s system-independent representation
of an incentive mechanism (Figure 1). At any time, the RMod must mirror the
current state of the external system. RMod must be versatile and general enough
to model many different real-world platforms and support application of any in-
centive mechanism. Therefore, it must stay decoupled of both. This allows for
seamless switching between different incentive strategies and application of same
strategies on different systems. The aforementioned implies a highly abstract and
minimalistic RMod that fits to various underlying systems, and is able to sup-
port expressing a range of specific incentive mechanisms by the end-users. We
believe that incentive mechanisms should be expressed declaratively, i.e. without
explicit control flow and data manipulation. As in real life, a client then needs
only to specify what incentive actions should be applied and upon which condi-
tions. The condition evaluation and actual scheduling and execution of incentive
actions should be encoded imperatively at runtime in RMod, transparent to the
client. The benefit for the client is the ability to specify human-friendly, portable,
scalable, composable and modifiable incentive strategies. In the remainder of this
paper we focus only on RMod.

2.1 The Rewarding Model (RMod)

To develop a general-purpose model we adopt simple and abstract representa-
tions. An organization, referred to as principal, employs a group of workers to
perform a complex process, consisting of multiple tasks. The principal uses a
system that splits, assigns, and in every other aspect manages task lifecycles. A
worker is assigned a (sub)task to perform in a given time and agrees to be sub-
ject of incentive evaluations. Workers can work individually on assigned tasks, or
have a formalized organization or relationship with the principal (be employed,
be part of teams, have managers, etc.) Workers can be paid and/or otherwise
rewarded for their contribution. Principal’s knowledge of the task progress is



Modeling Rewards and Incentives for Social Computing 153

obtained by periodic messages (updates) that he receives from workers and sub-
sequent reasoning over that data. Similarly, his influence over a worker (penalty,
promotion, bonus, etc.) is performed via legally-binding messages to the worker.
With this assumption, a worker can be represented by a real human, e.g., as a
member of a Social Compute Unit (SCU) [2] and via a Web Service interface.
Without loss of generality, we can assume that the principal employs a group of
humans that perform their work via Web Services, by contracting a third-party
human-labor platform that fully takes care of task and worker management. That
way, we can focus solely on providing the services of management of incentives
and rewards (RI Management).

Task is the basic working unit. Workers are rewarded for working on a par-
ticular task within the task’s timeframe, although the outcome of the evaluation
can also depend on the history of previous contributions. Therefore, the lifetime
of a worker is not related to the duration of the task. The principal maintains
his own view of the workers and the relations between them in a community
graph. The nodes in the graph represent the workers, while the edges represent
different real-world relationships among the workers (e.g., records of past collab-
orations, trust, dependencies, managerial relations, etc.). In addition, each node
is described by a set of attributes. The attributes may represent task-specific
(short-lived) or permanent records of worker’s performance. This is the most
general representation possible. However, in practice we expect this model to be
coupled with a real-world system, so the nodes and relations can be mapped to
entities in a system that uses, e.g., BPEL4People, SCU or a custom platform for
managing tasks and workers.

Each task is performed in iterations. Iteration length is measured in clock
ticks. Clock tick is the basic unit of time measurement. Worker’s progress is
submitted upon iteration expiry so the system can update the QoS metrics.
Iteration is the basic unit for splitting, monitoring and evaluating task execution
in runtime. Iteration cycle length is tunable to allow better runtime adaptability,
as the iteration length can be a significant factor when evaluating results and
can affect the performance of the team. In order to represent history of past
behavior, as well as scheduling of future performance evaluations and rewarding
actions, we include in the model the notions of timeline and event. The timeline
is a time-stamped collection of past and future event records. An event object
encapsulates an executable action and a timestamp. Events are interpreted by
the system as orders or suggestions to the system itself or particular workers,
e.g, to notify a worker to increase QoS level in future iterations, to dissolve a
team, invite new workers, terminate contracts, etc. Events can be generated by
the system itself or originate from an incentive mechanism. They can target
individual workers, groups of workers or global system properties, depending on
the query that forms part of the action contained in the event object.

An event can be in two states: scheduled and past. Scheduled events are
used to enforce/influence future behavior. They contain information to execute
performance measurements, evaluations or concrete rewarding actions in a spec-
ified moment in the future. Scheduled events can be canceled or re-scheduled
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when needed. The timestamp can be expressed either in iterations or clock ticks.
Time expressed in clock ticks is fixed, whereas time expressed in iterations is au-
tomatically recalculated to an appropriate clock tick if the iteration duration is
altered. This can be useful in many real-world situations. For example, we want
Christmas bonuses to be paid out on a fixed date, while if a process stage is
prolonged due to some unexpected events, we want to reschedule the current
iteration and perform the rewarding only at its end. When the time to execute
an event is reached, the contained action is executed and the results stored back
in the event, which is then archived and put into past state. After that point,
the purpose of the past event is to serve as a historical reference for future
evaluations of workers. An event execution can generate new events, or perform
modifications of the team structure and worker attributes. Events are initially
generated by executing rewarding rules. The rules encode an actual rewarding
mechanism provided by the principal. Those rules that fulfill the execution con-
dition generate new event objects to be stored in the timeline. Rules also contain
the various bits of logic that get embedded into event objects.

Figure 2 describes a typical working cycle of our Rewarding Model (RMod).
Rules provide the necessary logic for performing evaluations and rewarding ac-
tions. At every clock tick rules get evaluated. Only the rules that fulfill a logical
condition will be triggered to execute. The rules examine the current state of
the model and, if an action needs to be performed, produce one or more events.
The action contained in the event will include the logic contained in the rule.
The events then get stored into the timeline. When the appropriate time comes,
the events get executed, modifying the attributes and the graph structure, and
possibly spawning new events. The RModManager boxes in Figure 2 represent
the system that implements the functionalities and manipulates RMod.
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The RMod allows us to express and compose different incentive mechanisms.
For example:

– “At the end of iteration, award each contributor who scored better than the
average score of his neighbors in that iteration.”

– “Reward every worker (contributor) who within the last n iterations scored
a score t or greater in at least k iterations (k ≤ n).”

– “Assign the person with most check-ins at a place a ’Mayor’ badge.”

– “Unless the productivity increases to a level p within n next iterations, replace
team’s current manager with the most-trusted of his subordinate workers.”

3 Conclusions and Future Work

Considering the lack of general methods for defining and composing incentive
mechanisms for social business process, in this paper we analyze common com-
ponents of incentive mechanisms and devise novel techniques for modeling and
representing incentive schemes suitable for emerging, social-based processes. Our
Rewarding Model supports expressing, composing and executing customized,
complex incentive schemes. We are currently developing a prototype and intend
to illustrate our techniques with real-world scenarios that cover the most impor-
tant aspects of rewarding. Furthermore, we are integrating our model with the
Social Compute Unit[2], a framework for on-demand virtual team provisioning
for managing distributed large-scale software systems in clouds.
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Abstract. Some popular modeling languages for business processes,
e.g., BPMN, contain inclusive OR-joins (IOR-joins), but others, e.g.,
Petri nets, do not. Various scenarios in Business Process Management
require, or benefit from, translating a process model from one language
to another. This paper studies whether the control flow of a process
containing IOR-joins can be translated into a control flow without IOR-
joins.

First we characterize which IOR-joins can be replaced locally and de-
fine a local replacement for each replaceable IOR-join. Then, we present
examples that cannot be locally replaced but have a more general trans-
lation. We give a non-local replacement technique, together with its con-
dition of applicability, which runs in polynomial time. Finally, we show
that there exist simple process models with an IOR-join that cannot
be replaced – in the sense that its synchronization behavior cannot be
obtained by any combination of AND and XOR gateways. The proof re-
veals an intrinsic limitation on the replaceability of IOR-joins and hence
the translatability of BPMN-like control flow into Petri nets.

1 Introduction

Different BPM tools, execution engines, and scientific analysis techniques are
based on different modeling languages for business processes. This generates a
general interest in translating models from one language into another. In par-
ticular, business processes are in practice often modeled in industrial languages
such as BPMN and EPCs whereas many analysis techniques, such as control-flow
analysis, cost estimation, performance analysis, and process mining are based on
Petri nets.

One major obstacle to translate process models between those industrial lan-
guages and Petri nets is the presence of gateways with inclusive OR (IOR) logic
in the industrial languages. An IOR gateway forks or joins a variable set of
threads, thereby supporting various workflow patterns [9]. The IOR-join, which
has a non-local semantics, is difficult to translate to Petri nets because the se-
mantics of a Petri net transition is local. That is, the enablement and effect of a
transition in a Petri net relates only to its adjacent places—a small part of the
state of the Petri net—whereas the enablement of an IOR-join may depend on
the entire state of the process model.

In this paper, we study the question to what extent a process model with IOR-
joins can be translated into a process model without IOR-joins. More precisely,

A. Barros, A. Gal, and E. Kindler (Eds.): BPM 2012, LNCS 7481, pp. 156–171, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



The Difficulty of Replacing an Inclusive OR-Join 157

we focus on the control flow of a business process, which is modeled by a workflow
graph. We ask whether a workflow graph with IOR-joins can be translated into a
workflow graph with only XOR and AND gateways. Workflow graphs with XOR
and AND gateways can be easily translated into an isomorphic Petri net [8].

We focus on acyclic workflow graphs, for which the IOR-join semantics is
simpler. This will allow us to provide replacement strategies for IOR-joins. Con-
versely, it will already suffice to display simple workflow graphs in which, in
some formal sense, an IOR-join cannot be replaced. This will reveal an intrinsic
limitation on the replacability of IOR-joins and hence the translatability of the
workflow graph of general process models into Petri nets.

The requirements of a translation from a workflow graph with IOR-joins into
a workflow graph without IOR-joins can vary for different use cases. To obtain
general, yet useful results, we take the following requirements into account:

– The translated workflow graph must have equivalent behavior. Many notions
of equivalence exist [10]. The adequacy of an equivalence for the translation
depends on the use case. We will present the equivalences we use later in
the paper. Note that this requirement is by itself not challenging as one can
easily ‘unfold’ an acyclic workflow graph into its finite full behavior (i.e.,
computation tree) and then encode this ‘unfolding’ as a sequential workflow
graph. Such a construction would preserve, depending on its precise execu-
tion, many popular behavioral equivalences, such as trace equivalence and
bisimulation. However, the obtained translation is in general exponentially
larger than the original workflow graph. Therefore, we require that

– the size of the obtained workflow graph must be manageable. An exponential
blowup is usually not acceptable. We are not aware of any general transla-
tion from workflow graphs with IOR-joins into Petri nets that preserves the
behavior and does not incur an exponential blowup.

– Furthermore, we are interested to preserve the structure of the workflow
graph as much as possible. This is important if we want to map analysis
results between the two workflow graphs. For example, in order to return to
the user of an analysis technique the results in terms of the original process
model or, when monitoring or administrating a process, to understand a trace
or a state of the running process in terms of the original process model.

The paper is structured as follows. In Sect. 3, we will first consider local re-
placements of IOR-joins. This translation strategy consists in replacing an IOR-
join by a partial workflow graph that connects to the edges left dangling by the
removal of the IOR-join. Such a local replacement fully maintains, apart from
the IOR-join, the original workflow graph and thus makes the mapping to the
original workflow graph trivial. Moreover, it leads to a very intuitive notion of
equivalence: the partial workflow graph must have the same behavior as the IOR-
join. We characterize under which conditions a local replacement is possible in
an acyclic workflow graph and define a replacement for these cases. In Sect. 4,
we consider a non-local translation strategy and characterize its condition of
application. A non-local replacement essentially still retains the structure of the
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original workflow graph and allows us to replace some IOR-joins that have no
local replacement. In Sect. 5, we relax our notion of replacement even more, and
we show that even then, there exist simple acyclic workflow graphs that have
IOR-joins that cannot be replaced. In Sect. 6, we relate this result and its im-
plications to the translations of workflow graphs containing IOR-joins into Petri
nets. Most proofs are omitted in this version but are available in an extended
version, which is available as a technical report [5].

2 Workflow Graphs

In this section, we define the necessary fundamental notions, which include work-
flow graphs and their semantics.

A directed multi-graph G = (N,E, c) consists of a set N of nodes, a set E of
edges and a mapping c : E → (N ∪ {null})× (N ∪ {null}) that maps each edge
to an ordered pair of nodes or a null value. If c(e) = (s, t), then s is called the
source of e, t is called the target of e; e is an outgoing edge of s, and e is an
incoming edge of t. If s = null, then we say that e is a source of the graph. If
t = null, then we say that e is a sink of the graph. For a node n ∈ N , the set of
incoming edges of n is denoted by ◦n. The set of outgoing edges of n is denoted
n◦.

Let G = (N,E, c) be an acyclic multi-graph. If x1, x2 are two elements in
N ∪ E such that there is a non trivial path from x1 to x2, then we say that x1

precedes x2, denoted x1 < x2, and x2 follows x1.
A partial workflow graph (pwfg) W = (N,E, c, l) consists of a multi-graph

G = (N,E, c) and a mapping l : N → {AND,XOR, IOR, task} that associates
a logic with every node n ∈ N . A workflow graph is a partial workflow graph
W = (N,E, c, l), such that: 1. W has exactly one source and at least one sink.
2. For each node n ∈ N , there exists a path from the source to one of the sinks
that contains n.
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Fig. 1. A workflow graph

Figure 1 depicts an acyclic workflow graph.
A rectangle represents a task node. A diamond
containing a plus symbol represents a node with
AND logic, an empty diamond represents a node
with XOR logic, and a diamond with a circle in-
side represents a node with IOR logic. A node
with a single incoming edge and multiple out-
going edges is called a split. A node with multi-
ple incoming edges and a single outgoing edge is
called a join. A node with AND, IOR, or XOR logic is called gateway. For the
sake of presentation simplicity, we do not use gateways with multiple incoming
edges and multiple outgoing edges. It will become clear later that this restric-
tion does not reduce the expressiveness of workflow graphs because such gateway
could be represented by a split and a join of the same logic. Nodes with task
logic always have a single incoming edge and a single outgoing edge. In the rest
of this paper, we only consider acyclic workflow graphs, which simplifies some
of our definitions such as the semantics of the IOR-join.
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The semantics of workflow graphs is, similarly to Petri nets, defined as a token
game. Let W = (N,E, c, l) be a workflow graph. A marking of W is represented
by tokens on the edges of W , i.e., a marking is a mapping m : E → N. We write
m[e] instead of m(e). When m[e] = k, we say that the edge e is marked with k
tokens in m. When m[e] > 0, we say that m marks e. The initial marking ms of
W is such that the source edge is marked with exactly one token in ms and ms

does not mark any other edge. If a node n of a workflow graph has AND or task
logic, executing n removes one token from each of the incoming edges of n and
adds one token to each of the outgoing edges of n. If n has XOR logic, executing
n removes one token from one of the incoming edges of n and adds one token
to one of the outgoing edges of n. If n has IOR logic, n can be executed if and
only if at least one of its incoming edges is marked and there is no marked edge
that precedes a non-marked incoming edge of n. When n executes, it removes
one token from each of its marked incoming edges and adds one token to a non-
empty subset of its outgoing edges. This IOR semantics, which is explained in
detail elsewhere [12], complies with the BPMN 2.0 standard and BPEL’s dead
path elimination [1]. The choice of the set of outgoing edges to which a token is
added when executing a node with XOR or IOR logic is non-deterministic. In
the following, this semantics is defined formally:

A triple (E1, n, E2) is called a transition if n ∈ N , and any of the following
propositions:

– l(n) = AND or l(n) = task, E1 = ◦n, and E2 = n◦.
– l(n) = XOR, there exists an edge e ∈ ◦n such that E1 = {e}, and there

exists an edge e′ ∈ n◦ such that E2 = {e′}.
– l(n) = IOR, E1 ⊆ ◦n, E2 ⊆ n◦, and E1 and E2 are non-empty.

Let m and m′ be two markings of W . A transition (E1, n, E2) is enabled in a
marking m if, for each edge e ∈ E1, we have m[e] > 0 and, if l(n) = IOR,
E1 = {e ∈ ◦n | m(e) > 0} and for every edge e ∈ ◦n \ E1, there exists no edge
e′, marked in m, such that e′ < e. A transition t can be executed in a marking
m if t is enabled in m. When t is executed in m, a marking m′ results such
that: m′[e] = m[e] − 1 if e ∈ E1, m

′[e] = m[e] + 1 if e ∈ E2, and m′[e] = m[e]

otherwise. We write m1
t→ m2, when a transition t is enabled in a marking m1

and its execution results in a marking m2.
An execution sequence of W is a finite alternating sequence σ = 〈m0, t0,

m1, ..., mn〉 of markings mi of W and transitions ti = (Ei, ni, E
′
i) such that,

for each i ≥ 0, ti is enabled in mi and mi+1 results from the execution of

ti in mi. We write m1
σ→ m2 when m1 is the first marking and m2 is the

last marking of σ. An execution sequence σ marks an edge e if there exists a
marking of σ that marks e. An execution of W is a (finite) execution sequence
σ = 〈m0, ...,mn〉 of W such that m0 = ms and there is no transition enabled
in mn. As the transition between two markings can be easily deduced, we often
omit the transitions when representing an execution or an execution sequence,
i.e., we write them as sequence of markings. We only consider finite executions
and finite execution sequences because we only discuss acyclic workflow graphs.
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Let m be a marking of W , m is reachable from a marking m′ of W if there
exists an execution sequence σ = 〈m0, ...,mn〉 of W such that m0 = m′ and
m = mn. The marking m is a reachable marking of W if m is reachable from
ms. The marking m is a (local) deadlock if there exists a non-sink edge e ∈ E
that is marked in m and e is marked in all the markings reachable from m. We
say that W is deadlock-free if there exists no reachable marking m of W such
that m is a deadlock. The marking m is a lack of synchronization (or unsafe)
if there exists an edge e ∈ E that is marked by more than one token in m.
We say that a workflow graph W contains a lack of synchronization if there
exists a reachable marking m of W such that m is a lack of synchronization.
A workflow graph is sound if it is deadlock-free and does not contain a lack of
synchronization. Note that this notion of soundness is equivalent to the usual
notion of soundness used for workflow nets (see for e.g. [8]).

3 Local Replacements
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Fig. 3. Local replacement of j
by the partial workflow graph
composed of the nodes v and w,
and the edge i

Fig. 2 and Fig. 3 illustrate an example of a lo-
cal replacement of an IOR-join. In this example,
the IOR-join j is replaced by the partial work-
flow graph composed of the nodes v and w, and
the edge i. As a graphical convention, we repre-
sent the elements of the original workflow graph
using plain lines and the elements introduced to
replace an IOR-join using dashed lines. In the
following, we omit tasks in the workflow graphs
when they are not relevant for our discussion.

A local replacement of an IOR-join j is a par-
tial workflow graph R that connects to the edges
left dangling by the removal of j. Note that j and
R have exactly the same set of incoming and
outgoing edges. Such a replacement is a very in-
tuitive way to replace an IOR-join. Apart from
the IOR-join, a local replacement preserves the original workflow graph, which
makes it very easy to relate the original and the translated workflow graph. We
formalize a local replacement as follows:

Definition 1 (Local replacement). Let W = (N,E, c, l) be a workflow graph
and j be a node in N . Let R = (N ′′, E′′, c′′, l′′) be a partial workflow graph such
that for each node n ∈ N ′′, l′′(n) = XOR or l′′(n) = AND, N ∩ N ′′ = ∅, and
E ∩ E′′ = ∅.

A local replacement of j in W by R results in a workflow graph W ′ =
(N ′, E′, c′, l′) such that:

– N ′ = N \ {j} ∪N ′′,
– E′ = E ∪E′′,
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– c′(e) = c′′(e) when e ∈ E′′,
c′(e) = c(e) = (s, t) when e ∈ E and s 
= j 
= t,
c′(e) = (s, t) such that s ∈ N ′′ and t ∈ N iff e ∈ E and c(e) = (j, t),
c′(e) = (s, t) such that t ∈ N ′′ and s ∈ N iff e ∈ E and c(e) = (s, j),

– l′(n) = l(n) when n ∈ N \ j, l′(n) = l′′(n) when n ∈ N ′′, and
– each element x ∈ N ′′ ∪ E′′ is on a path in W from an edge ein ∈ E such

that c(ein) = (s, j) to the edge eout ∈ E such that c(eout) = (j, t).

Intuitively, the workflow graph W ′ resulting from the local replacement of an
IOR-join j in a workflow graph W by a partial workflow graph R is equiva-
lent to W iff R has the same “behaviour” as j. We formalize this as follows:
Let, in the rest of this section, W = (N,E, c, l) be a workflow graph contain-
ing an IOR-join j and W ′ = (N ′, E′, c′, l′) be a workflow graph obtained by
local-replacement of j by a partial workflow graph R. A transition (E1, n, E2)
of W ′ is a replacement transition iff n ∈ (N ′ \ N). An execution sequence σ
of W ′ is a replacement execution sequence iff each transition of σ is a replace-
ment transition and after σ no replacement transition is enabled and no edge
e ∈ E′ \ E is marked. W and W ′ are equivalent iff the following two conditions
are met:

1. Let m1 and m2 be two reachable markings of W . For any transition t =

(E1, j, E2) such that m1
t→ m2 in W , there exists a replacement execution

sequence σ such that m1
σ→ m2 in W ′.

2. Let m1 and m2 be two reachable markings of W ′ such that m1 and m2

only mark edges in E. For any replacement execution sequence σ such that

m1
σ→ m2 in W ′, there exists a transition t = (E1, j, E2) such that m1

t→ m2

in W .

Some IOR-joins can easily be replaced locally: It is clear that we can replace an
IOR-join by an AND-join if all its incoming edges are marked everytime it is
executed, and by an XOR-join if only one of its incoming edge is marked every-
time it is executed [13]. For an acyclic workflow graph, we have shown elsewhere
[4] how to compute these properties in quadratic time with respect to the size of
the workflow graph. Furthermore, a workflow graph completion heuristic based
on the refined process structure tree [11] can also provide a local replacement for
some IOR-joins.

In the following, we give a local replacement technique which, as we will see
later, can provide a local replacement for any IOR-join that can be replaced lo-
cally. Then, we characterize under which conditions an IOR-join can be replaced
locally, i.e., regardless of the replacement technique. This result is an extension
of a technique [11] that completes a workflow graph with multiple sinks to obtain
a workflow graph with a single sink.

First, we define the notions of test and cover which will allow us to formulate
a replacement based on covers:
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Definition 2 (Mutually exclusive edges, test, and cover). Let W = (N,E,
c, l) be a workflow graph.

Two edges in E are mutually exclusive iff there exists no execution of W
which marks both edges.

A test of an edge e ∈ E is a set Te ⊆ E of pairwise mutually exclusive edges
such that an execution σ of W marks e iff σ marks one of the edges in Te. If
X ⊆ E is a subset of edges such that Te ⊆ X, we say that Te is a test over X.

Let X ⊆ E and e ∈ E. A cover of X with respect to e is a set C of tests of e
over X such that each edge in X belongs to a test in C.
In Fig. 2, the tests T1 = {e, f} and T2 = {c} of g form a cover C = {T1, T2} of
◦j with respect to g. We now describe how to obtain a local replacement of an
IOR-join using a cover of its incoming edges with respect to its outgoing edge.
We shall see later that such cover does not always exist. Fig. 4 illustrates the
structure of the replacement:

Definition 3 (Cover-based replacement). Let j be an IOR-join in a work-
flow graph W and o be the outgoing edge of j. Let C be a cover of ◦j with respect
to o. Let the R = (N ′′, E′′, c′′, l′′) be a partial workflow graph defined as follows:

– N ′′ contains: an AND-split ae for each edge e ∈ ◦j, an XOR-join xi for each
test Ti ∈ C, and one AND-join f .

– For each test Ti ∈ C, for each edge e ∈ Ti, E
′′ contains an edge from the

AND-split ae to the XOR-join xi. For each XOR-join xi, E
′′ contains an

edge from xi to the AND-join f .

The Cover-based replacement (C-replacement for short) of j replaces j by R as
follows: The target of each (previously) incoming edge e of j is set to be ae. The
source of the (previously) outgoing edge o of j is set to f .

e1

en

. .
 .

. .
 . o

AND-split for each 
incoming edge

XOR-join for each test

Each test connects 
to the final AND-join

Each edge connects to 
the tests it belongs to

Final AND-join

f

x1

xm

ae1

aen

Fig. 4. Canvas of local replacement
based on a cover

Note that, when an edge e in ◦j belongs
to only one test, the AND-split ae has a sin-
gle outgoing edge and can be removed. When
a test Ti contains only one edge, the XOR-
join xi has a single incoming edge and can be
removed. The local replacement illustrated
by Fig. 2 and Fig. 3 is the result of a C-
replacement using the cover C = {{e, f}, {c}}
of ◦j with respect to the outgoing edge g of
j. Because each edge is used only in one test,
there is no AND-split necessary. Moreover,
the test {c} contains only one edge, therefore
it does not require an XOR-join.

Computing tests, including checking that edges are mutually exclusive can
be done using state space exploration, which can take exponential time. More
efficient heuristics exist for some special cases. For example, it is possible to
compute in quadratic time whether a set of edges in an acyclic process is mutually
exclusive [4]. Efficient computation of the tests is out of scope of this paper.
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We can now characterize the conditions under which an IOR-join has an
equivalent local replacement:

Theorem 1 (Equivalent local replacement existence). Let W be a sound
workflow graph containing an IOR-join j.

An IOR-join j has an equivalent local replacement iff there exists a cover of
◦j with respect to the outgoing edge of j.
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Fig. 5. The edge f does not
belong to any test of g that
is a subset of ◦j
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Fig. 6. The edge e does not
belong to any test of h that
is a subset of ◦j

While Thm. 1 applies to any local replacement tech-
nique, the proof of the ‘if’ direction [5] shows that,
whenever there exists a cover of ◦j with respect to
the outgoing edge of j, the C-replacement of j pro-
duces an equivalent workflow graph.

Fig. 5 is a slight variation of Fig. 2 where chang-
ing the target of the edge e makes it impossible re-
place the IOR-join locally. By changing the target
of e, e does not belong to ◦j anymore. Therefore,
the test T1 = {e, f} cannot be used to build a cover
of ◦j anymore and there is no other test of g that
contains f .

In Fig. 6, the IOR-join cannot be replaced locally
because e does not belong to any test of h contained
in ◦j, i.e., there exists no cover of h. We will see
in the next section how the IOR-joins of these two
examples can be replaced using a non-local replace-
ment.

4 Non-local Replacements
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Fig. 7. A workflow graph
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Fig. 8. Non-local replace-
ment of j in Fig. 7

Fig. 8 shows an example of a non-local replacement
where the IOR-join j of Fig. 7 is replaced by the par-
tial workflow graph composed of the nodes w, x and
the edges i, e′ where, additionally, the AND-split v
was inserted on the edge c which delivers additional
(non-local) information to the IOR-join replacement
via the edge i.

So, in addition to a local replacement, we allow
non-local replacements to insert additional AND-
splits in the graph, which can only be connected to
the IOR-join replacement. These AND-splits only
“copy” tokens to route them to the replacement and
do not alter the original behavior of the process.
This also preserves the graph structure to a large
extent.

Kiepuszewski et al. [6, Proof of Theorem 5.1] give
a completion approach to transform a Petri net with
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multiple sinks into a Petri net with a single sink. In this section, we will show
that one can use a variation of that approach, which we call K-replacement,
to replace an IOR-join in an acyclic workflow graph. We give a condition that
characterizes the IOR-joins for which this replacement produces an equivalent
workflow graph. Finally, we show that checking whether replacing the IOR-
join produces an equivalent workflow graph can be done in polynomial time and
that the replacement itself requires polynomial time.

Non-local Replacement and Equivalence: First, we formalize the concept
of non-local replacement. When inserting a gateway g on an edge e, we create
an additional edge e′ such that the source of e′ is g and the target of e′ is the
target of e and the target of e becomes g. We say that the edge e′ is the resulting
edge from the insertion of g on e.

Definition 4 (Non-local replacement). Let W = (N,E, c, l) be a workflow
graph and j be a node in N . Let R = (N ′′, E′′, c′′, l′′) be a partial workflow graph
such that for each node n ∈ N ′′, l′′(n) = XOR or l′′(n) = AND, N ∩ N ′′ = ∅,
and E ∩ E′′ = ∅. Let lg =< a0, . . . , an > be a list of AND-splits such that
lg ∩ (N ∪R) = ∅.

A non-local replacement of j in W by R and lg results in a workflow graph
W ′ = (N ′, E′, c′, l′) obtained by the insertion of lg on some edges < e0, . . . , en >
of W resulting in a list le of edges and the insertion of R such that:

– N ′ = N \ {j} ∪N ′′ ∪ lg,
– E′ = E ∪E′′ ∪ le ,
– c′(e) = c(e) = (s, t) when e ∈ E, s ∈ N , t ∈ N , and s 
= j 
= t,

c′(e) = c′′(e) = (s, t) when e ∈ E′′, s ∈ N ′′, and t ∈ N ′′,
c′(e) = (s, t) such that s ∈ N and t ∈ N ′′ iff e ∈ E and c(e) = (s, j) or
e ∈ E′′ and s ∈ lg,
c′(e) = (s, t) such that s ∈ N ′′ and t ∈ N iff e ∈ E and c(e) = (j, t),

– l′(n) = l(n) when n ∈ N \ j, l′(n) = l′′(n) when n ∈ N ′′, and
– each element x ∈ N ′′∪E′′ is on a path in W from an edge ein ∈ E such that

c(ein) = (s, j) or a node ai ∈ lg to the edge eout ∈ E such that c(eout) = (j, t).

We now define when a non-local replacement is semantically correct through
a notion of equivalence of the two workflow graphs. Let, in the rest of this
section, W = (N,E, c, l) be a workflow graph containing an IOR-join j and
W ′ = (N ′, E′, c′, l′) be a workflow graph obtained by non-local replacement of
j. To define equivalence we need to map the markings of W and W ′. We first
define a mapping ψ : E′ → E ∪ {null} such that for any edge e′ in E′:

ψ(e′) =

⎧⎪⎨
⎪⎩
e′ if e′ ∈ E,

e if e′ is the resulting edge of the insertion of an AND-join on e,

null otherwise.

We define a mapping φ from a marking of W ′ to a marking of W such that

φ(m)[e] =
∑

ψ(e′)=e

m[e′].
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We reuse the notion of replacement execution sequence defined in Sect. 3.
W and W ′ are equivalent iff for any pair of reachable markings m1 of W , m′

1

of W ′ such that m1 = φ(m′
1), we have:

1. for any transition t = (E1, j, E2) and any marking m2 such that m1
t→ m2

in W , there exists a replacement execution sequence σ and a marking m′
2

such that m′
1

σ→ m′
2 in W ′ and m2 = φ(m′

2), and
2. for any replacement execution sequence σ and any marking m′

2 such that

m′
1

σ→ m′
2 in W ′, there exists a transition t = (E1, j, E2) and a marking m2

such that m1
t→ m2 in W and m2 = φ(m′

2).
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Fig. 9. Non-local replacement of j in Fig. 5
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Fig. 10. Non-local replacement of j in
Fig. 6

A Simple Non-local Replace-
ment: As intermediary step, we dis-
cuss informally a simple version of the
technique, which we call simple K-
replacement. We will then point out a
shortcoming of simple K-replacement
and modify it to obtain the K-
replacement.

Fig. 9 and Fig. 10 show equivalent
non-local replacements for the work-
flow graphs in Fig. 5 and Fig. 6, re-
spectively. These are two examples of
simple K-replacement.

The simple K-replacement uses the
notion of a bridge: A bridge from an
edge e to an edge e′ is a path from e
to e′ such that each split on the path is
an AND-split and each join on the path is an XOR-join. For example, in Fig. 9,
the path < e, v, j, w, f ′ > is a bridge from e to f ′. The existence of a bridge from
e to e′ implies that every execution which marks e also marks e′.

The key idea of simple K-replacement is to replace an IOR-join by an AND-
join and to ensure that every incoming edge of the new AND-join carries a token
in every execution by adding suitable bridges. More precisely, for each incoming
edge e′ of the AND-join and each outgoing edge e of any XOR-split such that
e is not on a path to e′, we create a bridge from e to e′. Intuitively, for each
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Fig. 11. Non-local replacement of j in
Fig. 7

outgoing edge e of an XOR-split that
removes a token from a path to e′, we
add a bridge that brings an additional
token to e′ on a different path. This
leads to equivalent workflow graphs for
the examples in Fig. 5 and Fig. 6.

However, consider the workflow
graph in Fig. 11 obtained by the same
technique for the IOR-join v in the
workflow graph shown by Fig. 7. When



166 C. Favre and H. Völzer

an execution σ marks the edge d of the workflow graph in Fig. 11, the edge h is
also marked by σ which is not the case when an execution marks the edge d in
the workflow graph in Fig. 7. Thus, simple K-replacement does not lead to an
equivalent workflow graph when applied to an IOR-join that is not executed by
every execution of the original workflow graph.

K-Replacement: We now describe our generalized technique, called K-replace-
ment. Applying K-replacement to f in Fig. 7 results in the workflow graph in
Fig. 8. K-replacement uses the notion of dominator frontier to apply the same
replacement strategy as the simple K-replacement to a sub-graph of the workflow
instead of the complete graph. Applying the K-replacement to a sub-graph of the
workflow graph implies that the AND-join replacing the IOR-join only executes
during the execution that marks an edge of this sub-graph and thus allows
us to produce an equivalent replacement in more cases than with simple K-
replacement.

To this end, we use the following notions. A node x1 dominates another node
x2 if each path from the source edge of the workflow graph to x2 contains x1.
A dominator x1 of a node x2 is the minimal dominator of x2 iff there exists no
node x′

1 such that x′
1 dominates x2, x1 dominates x′

1, and x1 
= x′
1 
= x2. For

example, in Fig. 3, the nodes r and s dominate the node v and the node s is the
minimal dominator of v. A set Ed of edges is the dominator frontier of a node
x2 iff a node x1 is the minimal dominator of x2, Ed ⊆ x1◦, for each edge e ∈ Ed,
e < x2, and for each edge e′ ∈ ((x1◦) \ Ed), we have e′ 
< x2. For example, in
Fig. 7, the dominator frontier of j is the set of edges {b, c}.

K-replacement replaces an IOR-join j by an AND-join. Furthermore, a bridge
from e to e′ is created for each incoming edge e′ of j and each edge e such that
e is the outgoing edge of an XOR-split on a path from an edge of the dominator
frontier of j to j, and there is no path from e to e′. K-replacement is detailed
further by Algorithm 1. As mentioned earlier, Fig. 8 shows the workflow graph
resulting from the application of Algorithm 1 to the IOR-join j in Fig. 7.
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Fig. 12. The IOR-join y cannot be
replaced

The K-replacement implies that the AND-
join replacing the IOR-join executes in every
execution where an edge of the dominator
frontier is marked. Thus, intuitively, the K-
replacement produces an equivalent workflow
graph if each execution that marks one edge
of the dominator frontier also executes the
IOR-join. In the following, we formalize this
intuition as a necessary and sufficient con-
dition for the K-replacement to produce an
equivalent workflow graph:

Theorem 2 (K-replacement applicability). K-replacement of an IOR-join j
in a workflow graph W produces a workflow graph that is equivalent with W iff j
is executed in each execution of W in which an edge of the dominator frontier
of j is marked.
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Algorithm 1. K-replace(j, W ) input: A workflow graph W = (N,E, c, l) and
and IOR-join j ∈ N . output: A workflow graph W ′ = (N ′, E′, c′, l′) where j
has been K-replaced.

Create an AND-join a and set the source of the outgoing edge of j to be a.
Let EI be the set of incoming edges of j in W .
for each edge e ∈ Ei do

Create an XOR-join xe.
Set the target of e to be xe.
Create and edge from xe to a.

Let preset(j) be the set of all elements in E ∪ N from the minimal dominator of j
having a path to j
for each edge e′ ∈ ◦j do

for each decision d ∈ preset(j) do
Let preset(e′) be the set of all elements in E ∪ N from the dominator frontier
of j having a path to e′,
for each edge e ∈ d◦ such that e �∈ preset(e′)) do

if d �= minimal dominator of j OR e ∈ dominator frontier of j then
if The target of e is not an and split then

Insert an AND-split s on e
else

Let s be the target of e
Add an edge from s to xe′

Thus, K-replacement of the IOR-join j in Fig. 7 produces an equivalent work-
flow graph shown in Fig. 8 because j executes in an execution σ if and only if
an edge of its dominator frontier {b, c} is marked by σ. This is not the case for
the workflow graph in Fig. 12. The dominator frontier of y in Fig. 12 is the set
{b, c}. The edges b and c are marked by every execution. Thus, applying the
K-replacement algorithm to y would thus produce a workflow graph in which
the task z is executed during every execution. It is not the case for the workflow
graph in Fig. 12 in which the execution where the edges g and d are marked
does not execute z.

A Note on Complexity: We now argue that the condition expressed by
Thm. 2 can be computed efficiently, i.e., in polynomial time with respect to
the size of the workflow graph. Algorithm 1 also runs in polynomial time. This
allows us to conclude that we can identify IOR-joins that can be replaced by
K-replacement and replace them efficiently:

Theorem 3 (Polynomial time complexity of K-replacement). Let j be
an IOR-join, and W be the workflow graph containing j.

1. Computing whether the K-replacement of j produces a workflow graph that
is equivalent to W can be done in polynomial time with respect to the size of
W .

2. The K-replacement of an IOR-join j can be computed in polymonial time
with respect to the size of W .
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5 The Difficulty of Replacing an IOR-Join

As discussed above, the IOR-join y in Fig. 12 cannot be replaced correctly with
K-replacement. In this section, we provide an argument why it is difficult to
implement the IOR-join in Fig. 12 with any combination of AND and XOR
gateways.

Recalling the discussion in Sect. 1 we have to specify an equivalence and
we require some structure to be preserved in order to rule out some ‘simple’
implementations that incur an exponential blowup.
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Fig. 13. Prefix
that cannot be
completed

In this section, we take the view that the IOR-join synchro-
nizes its incoming branches, where these incoming branches
have a certain ‘forking’ logic, depending on the gateway struc-
ture ‘before’ the IOR-join. The forking logic for the example
in Fig. 12 is represented by the workflow graph in Fig. 13. We
will show that the workflow graph in Fig. 13 cannot be com-
pleted with any combination of AND and XOR gateways to
produce a behavior equivalent to the behavior of the workflow
graph in Fig. 12. In this sense, no combination of AND and
XOR gateways can produce the synchronization behavior of
the IOR-join in Fig. 12.

We consider the workflow graph in Fig. 13 as a prefix of a possible implemen-
tation. A prefix P = (Np, Ep, cp, lp) of a workflow graph W = (N,E, c, l) is a
workflow graph that is a subgraph of N ∪E such that for each pair e1, e2 of ele-
ments of W such that e1 < e2, we have: If e2 belongs to P , then e1 belongs to P .

Rather than picking a concrete behavioral equivalence (cf. discussion in Sect. 1),
we formalize properties that a workflow graph must have to be equivalent to the
workflow graph in Fig. 12. We allow multiple tasks of the implementing workflow
graph to be labeled with z and therefore to correspond to the task z in Fig. 12.

Definition 5 (Equivalent workflow graph properties).
Let W ′ be a workflow graph which has the prefix illustrated by Fig. 13. Let

t1 = ({b}, s, {d}) and t2 = ({c}, t, {g}. The workflow graph W ′ satisfies the
following properties:

P1 There exists no execution where t1, t2, and a task labeled with z are executed.
P2 There exists an execution during which t1 and a transition tz executing a

task labeled with z are executed and, for each execution where t1 and tz are
executed, t1 is executed before tz.

It is easy to see that the workflow graph in Fig. 12 satisfies these properties
and that notions of equivalence such as the ones that we defined for local and
non-local replacements would ensure that any equivalent workflow graph satisfies
them too. We can now enunciate our result:

Theorem 4 (The synchronization role of IOR-joins cannot be imple-
mented using only AND and XOR-logic). There exists no deadlock-free
workflow graph W ′ such that W ′ has the workflow graph P illustrated by Fig. 13
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as prefix, W ′ does not contain any IOR-join, and W ′ satisfies the properties of
Def. 5.

Proof. This proof rests on the following two lemmas:

Lemma 1. Let W be a deadlock-free workflow graph, e, e′ be two edges of W ,
m be a reachable marking of W which marks e.

If there exists a path p from e to e′ in W , then there exists a marking m′,
reachable from m, such that m′ marks e′.

Lemma 2. Let W be a deadlock-free acyclic workflow which does not contain
IOR-joins. Let t = (E1, n, E2) and t′ = (E′

1, n
′, E′

2) be two transitions of W .
If, in each execution σ of W where t and t′ occur, we have that t occurs before

t′ during σ, then there exists a path from an edge e ∈ E2 to an edge e′ ∈ E′
1.

Proof of Thm. 4: We prove this theorem by contradiction: Suppose that there
exists a workflow graph W ′ such that W ′ has P (illustrated by Fig. 13) as prefix,
does not contain an IOR-join, and satisfies P1 and P2.

By P2, we have that t1 and a transition tz = (E1, n, E2) such that n is a task
labeled z occur together in some execution and that t1 always occur before tz
when both occur. By Lemma 2, there exists a path p from d to the incoming edge
of n. Consider an execution sequence σ = 〈[a], ({a}, r, {b, c}), [b, c], t1, [d, c], t2,
[d, g]〉. We can complete σ to obtain the execution σ∗ by following p and thus
executing tz (Lemma 1). This contradicts P1 because t1, t2, and a task labeled z
are executed during σ∗.

6 On the Translation to Petri Nets and Related Work

We have shown that, in some sense, the IOR-join cannot always be replaced
by a combination of AND and XOR gateways. Workflow graphs without IOR
gateways are essentially equivalent to free-choice workflow nets, a class of Petri
nets for which efficient analysis algorithms exist [2]: A workflow graph without
IOR gateways can be translated into an isomorphic free-choice workflow net of
about the same size [8] but it can also be shown that a free-choice workflow net
can be translated into an isomorphic workflow graph without IOR of about the
same size. Hence, there is no free-choice workflow net implementing the IOR-join
in Fig. 12 in the sense discussed above.

To translate an acyclic workflow graph into a non-free-choice Petri-net, one
can use Dead Path Elimination [1,12] to implement the IOR-join with gateways
that have a local semantics. Dead Path Elimination uses workflow graphs with
individual tokens, where a token can have a value that is either true or false.
Such a workflow graph can be easily translated into a high-level Petri net, which
in turn can be unfolded into a non-free-choice Petri net. Alternatively, Mendling,
van Dongen, and van der Aalst [7] use the theory of regions to synthesize a Petri
net from the reachability graph of the process model. In both approaches, the
resulting Petri net is exponentially larger than the original workflow graph and
does not preserve the structure of the original process.
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Fig. 14. A non-free-choice Petri net
that is equivalent to the one in Fig. 12.

A more direct approach to implement
the IOR-join from Fig. 12 as a Petri net
is shown in Fig. 14, where the IOR-join re-
placement is delimited by the dashed box.
The behavior of this Petri net is equivalent
to the workflow graph in Fig. 12. Note that,
similar to K-replacement, we provide addi-
tional inputs to the IOR-replacement and
that this construction preserves most of the
structure of the original workflow graph.
These additional inputs give the IOR-join
replacement information on the edges that
have been marked by the execution.

We can then think of the IOR-join as two boolean expressions over these
marked edges that fully characterize its executions: the first expression charac-
terizes the executions that lead to a token on the outgoing edge of the IOR-join,
the second characterizing all other executions. Both expressions can be easily
represented by a non-free-choice Petri net as in the example in Fig. 14, where
the transitions y1, y2, and y3 implement the first expression (d′∧j)∨(i∧j)∨(i∧g′)
The transition y∗ implements the second expression. The role of y∗ is to “purge”
the place d′ and g′ in the second case.

This construction can be defined to implement an IOR-join in any acyclic
workflow graph because the full execution history can be provided to the re-
placement subgraph. However, the Petri net representations of the boolean ex-
pressions are exponential in the size of the workflow graph. We leave it as future
work to evaluate whether this exponential blowup can be mitigated using sim-
plification techniques for boolean formulas.

To sum up, Theorem 4 gives a strong argument why IOR-joins cannot be
easily implemented by a free-choice net, it points to some difficulty when trying
to translate to general Petri nets, and no general polynomial-space translation
to general Petri nets is known.

7 Conclusion

In this paper, we studied the difficulty of replacing an IOR-join. For acyclic
processes, we established a necessary and sufficient condition that characterizes
IOR-joins that can be locally replaced. For the IOR-joins that can be locally
replaced, we proposed a generic local replacement. We presented a non-local
replacement strategy which allows us to translate some of the IOR-joins that
cannot be replaced locally. We have shown that computing this replacement and
checking its condition of application can be done in polynomial time with respect
to the size of the original workflow graph.

While these results have been presented for the replacement of a single IOR-
join in a sound acyclic business process model, they can be applied to replace
multiple IOR-joins in an acyclic workflow graph. Moreover, it can be shown
that both replacement techniques do not alter the soundness of the process, i.e.,
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cannot introduce or fix a control-flow error which makes these replacement
strategies applicable to replace IOR-joins in process models of which the sound-
ness is unknown such as, for example, when performing a control-flow analysis.
We have used elsewhere [3] process structure trees to decompose the workflow
graph into fragments. Such a decomposition allows us to factor out cycles and
therefore to apply the replacements in processes containing cycles.

We have shown that the synchronization provided by the IOR-join cannot,
in general, be implemented by free-choice constructs. Translations of a workflow
graph containing an IOR-join into a (non-free-choice) Petri net exist, however,
known translations have an exponential blowup and, usually, do not preserve
the structure of the original process. These results show a difficulty to translate
the non-local semantics of the IOR-join into a modeling language that only
contains local gateways and therefore a difficulty to fully leverage Petri net
based techniques for process models containing IOR-joins.
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Abstract. We present an automated and efficient approach for the veri-
fication of information flow control for business process models. Building
on the concept of Place-based Non-Interference, the novelty is that Petri
net reachability is employed to detect places in which information leaks
occur. We show that the approach is sound and complete, and present its
implementation, the Anica tool. Anica employs state of the art model-
checking algorithms to test reachability. An extensive evaluation com-
prising over 550 industrial process models is carried out and shows that
information flow analysis of process models can be done in milliseconds.

1 Introduction

Business processes (BPs) specify how operational activities are executed to pro-
vide a service; for instance steps in a supply-chain or profile updates in customer
relationship management. In doing so, they handle sensitive data that must re-
main confidential. However, structural flaws in BPs design may lead to a violation
of such confidentiality requirements [30], i.e., they can cause leaks.

Leaks happen when data or information flows from a secret to a public do-
main. The former is called data leak, while the latter is referred to as information
leak . A data leak is direct, but illegal access to a data object. An information
leak concern the fact that subjects in the public domain can infer secret informa-
tion. Although certification standards (e.g., ISO/IEC 27001 [23] and TCSEC [36])
demand the identification of both kinds of leaks, current state of the art mainly
provides mechanisms to detect data leaks (e.g., [8,9,12,21,26,33]). This paper
proposes a mechanism to detect information leaks in BP models.

Information flow control provides a powerful abstraction to reason about in-
formation leaks [16]. Assuming that the BP model under analysis is split into two
logical security domains (high for secret, low for public), a BP model is assumed
secure with regard to information leaks if it enforces non-interference; that is,
the actions in the high domain do not produce an observable effect (interference)
in the low domain. Details on the security domains follow in Sect. 2. By showing
non-interference for a BP model one thus ensures that subjects in the low do-
main cannot deduce information about the high domain, thereby guaranteeing
its confidentiality and isolation.

A. Barros, A. Gal, and E. Kindler (Eds.): BPM 2012, LNCS 7481, pp. 172–187, 2012.
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We consider the Petri net representation of BP models as a basis for the
analysis. For this, mappings from common modeling languages, such as BPEL,
BPMN and EPC, exist [28]. Subsequently, the activities— denoted as Petri net
transitions— are separated into high and low. The analysis of these models is
carried out with Place-based Non-Interference (PBNI) [14]. PBNI is an approach
to encode and reason about structural non-interference (and hence information
flow control) in Petri nets. The rationale is that specific places in the net encode
different interferences; they denote information leaks. In showing the absence of
such places in a net, one rules out structural interferences.

The current approach [3] and tool support [5,19] for information flow analysis
of BP models exhibits the following drawbacks: firstly, the decision procedures
to detect these places are based on the generation and exploitation of the whole
state space, which renders a very inefficient approach for complex BP models.
Secondly, formal proofs of the decision procedure are missing. In particular,
soundness and completeness have not been demonstrated. The lack of these
guarantees weakens the security guarantees provided by tool-support, because
it could provide false-negative results, i.e., that a BP model is considered secure
even though information leaks exist.

Contributions. This paper provides the following contributions:

– It introduces an approach for the information flow analysis of BP models
based on Petri net reachability [31]. By reducing the analysis to reachability,
we obtain a decision procedure based on standard Petri net reasoning.

– It shows that the approach based on reachability is sound and complete.
– It presents the design and implementation of Anica, a tool for efficient in-

formation flow analysis of BP models. Anica employs Petri net analysis and
state space reduction methods to generate and analyze only relevant parts
of the state space. Its realization employs the model-checking tool LoLA [37].

– It evaluates Anica on a BP repository comprising over 550 industrial models.
The information flow analysis of each BP takes only fractions of a second.
Anica analyzes the entire repository, whereas tools using full state space
exploration fail for complex BPs.

This paper shows that the well-founded information flow analysis of industrial
BPs can be done on-the-fly. This opens the possibility of security analysis during
BP editing, or at run-time upon the event of ad-hoc process changes. In doing so,
the approach contributes to the reliably secure modeling of flexible BP models.

Organization. For completeness, Sect. 2 revisits the concept of PBNI. Section 3
presents the approach to detect non-interference based on reachability, and shows
its main properties. Section 4 introduces Anica and Sect. 5 presents its evalu-
ation. Section 6 compares our contribution with related work and Sect. 7 sum-
marizes the lessons learnt and indicates further work.

Running example. We employ a simple example to illustrate the main insights
on the information flow analysis. The Petri net in Fig. 1, which serves as input
to the information flow analysis approach, represents two instances of a process.
The instance classified high is encoded in the upper part; the instance classified
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Fig. 1. Petri net model of the Update Patient Record process

low is encoded in the lower part. Each instance realizes the update of a patient
record in a hospital. Given an existing patient ID, the corresponding record is
opened, updated and closed. The record is represented with the token “Record”,
which is shared between the two instances. The central security requirement for
the process is that information about the patients and the patient record remain
secret. This is usually achieved with access control techniques. Below we show
that leaks can occur.

2 Information Flow Control in Petri Nets

This section provides the formal basis necessary to reduce the detection of inter-
ferences in BPs to a reachability problem. We first define the necessary Petri net
background, then revisit Place-based Non-interference (PBNI) [14] to capture
leaks as interferences.

Petri Nets. We assume sound [1] and safe Petri nets; that is, all places contain
at most one token in all markings. Safeness is no restriction, because sound nets
are bounded and can be expressed as safe Petri nets as well.

Definition 1 (Petri net). A Petri net N = [P, T, F,m0] consists of two finite
and disjoint sets P of places and T of transitions, a flow relation F ⊆ (P ×
T ) ∪ (T × P ), and an initial marking m0. A marking m ⊆ P represents a state
of the Petri net and is visualized as a distribution of tokens on the places. Let
x ∈ (P ∪ T ). The preset of x is the set •x = {y | [y, x] ∈ F}, the postset of
x is x• = {y | [x, y] ∈ F}. Transition t is enabled in marking m iff, •t ⊆ m.
An enabled transition t can fire, transforming m into the new marking m′ with
m′ = (m \ •t) ∪ t•. The firing of one transition is denoted as m

t−→ m′ and a
sequence σ ∈ T ∗ of transitions transforming m to m′ is denoted as m

σ−→ m′. A
marking m′ is reachable from m, if m

∗−→ m′ (with ∗ for an arbitrary sequence).

PBNI and Security Model. PBNI is an approach to reason about structural non-
interference in Petri nets. Specifically, PBNI tackles the characterization and
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Fig. 2. Patterns for potential causal and conflict places s

detection of places that correspond to a violation of non-interference. Previous
work focuses on the characterization of Bisimulation Non-Deducibility on Com-
position (BNDC) [18]. BNDC is a strong structural non-interference property
which guarantees that the high and the low parts of the net do not interfere.

The consideration of a security model consisting of two levels does not restrict
the generality of the results. According to Anderson [7, Chap. 7], as well as
previous work [13,14,15,34], a violation in models using a more complex, linear
lattice of security levels (e.g., top secret, secret, moderate, public) can be mapped
to information transfer between two levels.

We employ labeled Petri nets to encode the two security levels in the Petri nets
modeling BPs. To this end, the set of transitions T is divided into two disjoint
subsets L and H , capturing, respectively, the low and high levels.

Definition 2 (Labeled Petri Net). A labeled Petri net N = [P,L,H, F,m0]
is a Petri net [P,L ∪H,F,m0] with L ∩H = ∅.
Given a labeled Petri net, the main insight in PBNI is that some places in a
net characterize interferences between a high and a low domain, thereby denot-
ing information flows and violations of confidentiality requirements. Specifically,
these places are the causal places and conflict places (named s in Fig. 2).

Definition 3 (Causal and conflict places [14]). Let N = [P,L,H, F,m0] be
a labeled Petri net. Let s ∈ P be a place of N such that s• ∩ L 
= ∅.

A place s is a potential causal place if •s∩H 
= ∅. A potential causal place s is
an active causal place if the following condition holds: there exists (1) l ∈ s•∩L,
(2) h ∈ •s∩H, and (3) a transition sequence σ and a reachable marking m such
that m

hσl−→ m′ and s /∈ t• for all t ∈ σ.
A place s is a potential conflict place if s• ∩ H 
= ∅. A potential conflict

place is an active conflict place if the following condition holds: there exists (1)
l ∈ s• ∩ L, (2) h ∈ s• ∩ H, and (3) a transition sequence σ and a reachable
marking m such that m

h−→ m′, m σl−→ m′′ and s /∈ t• for all t ∈ σ.
A place which is either a potential (active) causal or conflict place is also

called a potential (active) place.

Causal and conflict places capture the following interferences: in case of a causal
place s (cf. Fig.2(a)) transition l always depends on transition h. Then, the
fact that transition h has fired leaks to a low user. In case of a conflict place s
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(cf. Fig.2(b)), a high and a low transition compete for a token; if transition l
cannot obtain the token, a low user may deduce that transition h has been
performed (i.e., the occurrence of h leaks). Together, causal and conflict places
capture the BNDC property. Its equivalent formalization for Petri nets is called
Positive Place-Based Non-Interference (PBNI+) [14]. If causal and conflict places
do not occur in a net, PBNI+ holds. In other words, causal and conflict places
encode all possible leaks. Thus, from now on this paper focuses on PBNI+.

Frau et al. [19] propose a two-step algorithm for the verification of PBNI+.
The static step analyzes the structure of the net to determine whether potential
causal or conflict places exist; if so, the dynamic step generates and investigates
the state space of the net to determine whether they are active; that is, on an
execution path in the net. The algorithm proposed by Frau et al. is PSPACE-
complete. In particular, the whole state space must be considered, which makes
tool-support based upon these algorithms inefficient. In fact, nets representing
complex BPs cannot be analyzed using state space exploration (cf. Sect. 5 for
details.)

Running example (cont.). Being employed in a hospital, the BP model in Fig. 1
can be triggered by different users, including nurses (typically low) and physi-
cians (high). The net is designed to analyze the concurrent interaction of sub-
jects in these two levels with the BP to identify possible interferences. The net
in Fig. 1 violates PBNI+ and, thereby, the confidentiality requirements. The
analysis identifies Record as potential causal and potential conflict place. The
dynamic analysis further indicates that Record is active in both cases.

Technically, Record induces a storage covert channel [34] by which users in
the low domain may deduce information about high. This happens because users
share the same storage resource. Specifically, the hospital information system
encompassing this BP allows, for instance, the deduction which patients were
hospitalized (e.g., the low part observes which records are being processed) and
the kind of treatment for a patient (the low part observes the timespan necessary
to update a record, associating the elapsed time to a particular treatment).

3 Verification of PBNI+ as a Reachability Problem

In this section we show how PBNI+ verification is decided using reachability [31].
To this end, we introduce objectives which we use to encode potential interfer-
ences. To decide whether such a potential interference, encoded as objective, is
an active one, we create an extended net based on the objective. Subsequently,
we perform a reachability check on each extended net. In case a dedicated place
in the extended net can be marked, the potential interference is an active one.
The provided proofs guarantee that our translation to reachability is correct
(soundness) and that we capture all interferences (completeness).

3.1 Creating Reachability Problems

The central concepts in our new definitions are the objective and the undesired
transitions. An objective is a triple [s, h, l] consisting of a place s, a transition h



Automatic Information Flow Analysis of Business Process Models 177

labeled high and a transition l labeled low. With these three nodes we can
describe each potential and active place (cf. Def. 3). The difference between a
potential and an active place, expressed as objective, lies in the dynamic behavior
of their labeled Petri net. This difference is based on a transition sequence σ in
which some transitions are prohibited for each particular objective [s, h, l], these
transitions are therefore undesired.

Definition 4 (Objective, undesired transitions). An objective [s, h, l] is a
triple for both a potential causal or a potential conflict place with s ∈ P , l ∈ s•∩L
and h ∈ •s∩H (in causal case) or h ∈ s•∩H (in conflict case). We call [s, h, l] an
active objective (or potential objective) if s is an active (or potential) causal
or conflict place for the transitions h and l. Let U[s,h,l] = {t ∈ T | s ∈ t•} be
the undesired transitions in the transition sequence σ (cf. Def. 3), necessary to
decide whether s is active.

For each potential place s, there exists at least one objective [s, h, l], which we
use to construct a Petri net N[s,h,l]. The next definition shows how we construct
this extended net based on the given net N and the objective [s, h, l]. The first
four changes apply to both causal and conflict places.

Definition 5 (Extended net). Let N = [P,L,H, F,m0] be a labeled Petri net
and [s, h, l] be an objective of N . The extended net N[s,h,l] = [P ′, T, F ′,m′

0] is a
Petri net, which is constructed based on N as follows:

1. PT :=
{
pt | t ∈ U[s,h,l]

}
,

2. P ′ := P ∪ {fired, goal} ∪ PT ,
3. T := L ∪H ∪ {hC , lC},
4. F ′ :=F∪{[p, hC ] | p ∈ •h}∪{[p, lC ] | p∈•l}∪{[hC , fired], [fired, lC ], [lC , goal]}∪{

[pt, t], [t, pt] | t ∈ U[s,h,l], p ∈ PT

} ∪ {[pt, hC ] | pt ∈ PT },
5. m′

0 := m0 ∪ PT ,
6. F ′ := F ′ ∪ {[hC , p] | p ∈ h•} (only causal case),
7. P ′ := P ′ ∪ {enabled} (only conflict case),
8. F ′ := F ′ ∪ {[hC , p] | p ∈ •h} ∪ {[enabled, hC ], [h, enabled], [enabled, h]} (only

conflict case),
9. m′

0 := m′
0 ∪ {enabled} (only conflict case).

According to Def. 5, extended nets are Petri nets (cf. Def. 1), because the labeling
of the original transitions is not considered, so we disregard the labels in N[s,h,l].
Extended nets are safe by construction. Regarding Def. 3, we need to disable
all undesired transitions, therefore we create, for each undesired transition t ∈
U[s,h,l], an additional place pt (1). Self loops between the undesired transitions t ∈
U[s,h,l] and their new places pt ∈ PT (4), together with their initial marking (5)
provide the desired behavior. The places of the extended net (2) consist of those
from (1) and the places fired (indicating whether hC has fired) and goal (marked,
if the objective [s, h, l] is active). The new transitions (3) of the extended net
are hC and lC . Think of them as copies of h and l. To make use of the additional
nodes in the extended Petri net, we add arcs (4) from the preset of h to hC ,
from the preset of l to lC and the flow between fired, goal, hC and lC .
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Fig. 3. Extension patterns for causal and conflict case

In the causal case, we need the effect of firing hC (instead of h), so we add the
postset of h to the postset of hC (6). In the conflict case, we need an extra place
enabled (7); this place ensures that after firing hC (instead of h) h cannot fire
anymore, even though all preconditions for h remain. This is necessary because,
in the conflict case, h and l compete for the token on s. In contrast to the causal
case, we do not need the effect of firing h or hC . Instead, we must notice that h
was activated. We thus add the preset of h to the postset of hC and use enabled to
ensure that this happens only once (8). The initial marking must hence contain
an additional token on enabled (9).

In Fig. 3 the extension patterns for both cases are shown exemplarily. The
extended parts of N[s,h,l] (over N) are highlighted. For simplicity, only the neigh-
borhoods of the interesting nodes s, h, and l are shown with just one element.

Considering declassification. In practice, information flow control is often too
strict because every interference is considered as bad. Think of a login check
where one bit distinguishes whether the login is successful. Here, an authorized
flow from high to low happens, even though it violates non-interference. De-
classification is used to controllably downgrade flows from high to low. Busi
and Gorrieri extended PBNI+ to intransitive non-interference with downgrading
transitions, so-called PBNID [20]. For this, Def. 3 is modified: it adds a set D
of downgrading transitions and discards any d ∈ D from transition sequence σ.
Hence, in addition to Def. 3, the firing sequence σ is restricted to σ ∈ (H ∪L)∗.
Reducing PBNID to reachability is easily achieved by adding all downgrading
transitions d ∈ D in N[s,h,l] to the undesired transitions U[s,h,l].

3.2 Completeness and Soundness Proofs

The main property to be proven is stated in Theorem 1: a leak encoded in an
objective is active if and only if it is comprised in a reachable marking.

Theorem 1. The objective [s, h, l] is active in N if and only if a marking m
with goal ∈ m is reachable in N[s,h,l].
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To show Theorem 1, it suffices to show completeness and soundness. We state
each as lemma, proving them separately. Due to the lack of space, the proofs
concentrate on the causal case. The conflict case is similar.

Lemma 1 (Completeness). The objective [s, h, l] is active in N if a marking
m with goal ∈ m is reachable in N[s,h,l]

For completeness, we need an additional proposition.

Proposition 1 (Same firing sequences). Let N be a labeled Petri net, [s, h, l]
a potential objective of N and N[s,h,l] be the extended net for N and [s, h, l]. Then
N[s,h,l] contains all firing sequences of N .

Proof (Proposition 1). Observations: No transition and no arc is removed but
additional places are added in some presets. Thus, we only consider these new
places in this proof.

In both cases, for each transition t ∈ U[s,h,l], an additional place pt is added
to its preset. In the initial marking m′

0, these places are marked, hence their
enabling is not restricted. Every time a transition t ∈ U[s,h,l] fires, it produces
the token on pt again. The only transition which consumes all tokens from PT

is hC , which is a new transition.
Consequently, all firing sequences of N , which do not contain any new tran-

sitions, are also possible firing sequences in N[s,h,l]. ��
With Proposition 1, we can prove Lemma 1 for completeness.

Proof (Lemma 1). Assume [s, h, l] is active in N . Then a markingm∗ with goal ∈
m∗ must be reachable in N[s,h,l]. N can fire m0

σ0−→ m
hσ−→ (s ∪m′) l−→ m′′, so

we have to show that N[s,h,l] can fire m′
0 = (m0 ∪ PT )

∗−→ m∗, where m′
0 is the

initial marking of N[s,h,l].
Based on Proposition 1, the extended net N[s,h,l] can fire the same firing

sequences as N , especially σ0 from m0 to m. After this firing sequence, the
marking of N[s,h,l] is m ∪ PT . In this marking, N[s,h,l] can fire hC instead of h,
which has the same effect to the original part of the net as firing h. Because [s, h, l]
is active, σ contains no transitions of U[s,h,l]. Therefore disabling them by hC

does not disable any transition of σ. So instead of (m ∪ PT )
hσ−→ (s ∪m′ ∪ PT )

(by firing h), we obtain (m ∪ PT )
hCσ−→ (s ∪m′ ∪ fired) (by firing hC). In both

cases, the net N[s,h,l] can either fire l or lC , in case of lC the place goal is
marked. ��
Until here we proved that every active objective [s, h, l] leads to a reachable
marking m in which goal is marked in the extended net N[s,h,l]. Next we show
that in all cases goal is reachable in N[s,h,l] the objective [s, h, l] is active in N .

Lemma 2 (Soundness). The objective [s, h, l] is active in N only if a marking
m with goal ∈ m is reachable in N[s,h,l].

The proof of soundness is analogous to the proof of completeness, except for the
fact that we use an indirect approach.
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Proof (Lemma 2). Assume that a marking m∗ with goal ∈ m∗ is reachable in
N[s,h,l] and [s, h, l] is not active in N .

Place goal can only be marked by firing lC . If lC was able to fire, l was also able
to fire (•l � •lC). Before lC can fire, firing hC is necessary. If hC was able to fire,
h was also able to fire (•h � •hC). A possible firing sequence between hC and
lC cannot contain transitions from U[s,h,l], because hC consumes all tokens on
all places p ∈ PT . This means σ contains no undesired transitions. Consequently
hσl is a valid firing sequence in N starting in some marking reachable from m0

in contradiction to the assumption. ��
The proof of the conflict case is similar. The only difference is place enabled
which is comparable to the places in PT . As in the conflict case, transitions h
and l compete for the token in place s, place enabled is used to indicate that
h was enabled but not fired, and by choosing hC instead, h is deactivated by
consuming the token on enabled.

By proving completeness and soundness we ensure that our approach detects
all possible violations (completeness) and that all violations detected by our
approach are indeed violations (soundness).

4 Anica – Tool Support for Detecting Information Flows

Anica (Automated Non-Interference Check Assistant) implements Theorem 1.
It checks PBNI+ (and PBNID) much faster and with less space than existing
tools (cf. Sect. 5 for details) by creating reachability problems automatically. As
part of the open source service-technology.org-family [29], Anica uses the model
checker LoLA [37] and the Petri Net API [27].

Figure 4 depicts the current architecture. Anica first reads a labeled Petri net
as input, then creates pairs of extended nets and task files. A task file contains
the reachability statement for place goal. These pairs are passed to LoLA. If the
checked objective is not active, more pairs are created, otherwise the result is
presented to the user.

The implementation of Anica follows the constructive Def. 3, 4 and 5. In this
section, we focus on how to combine the definitions to a tool. The input of Anica

extended net

reachability check
LoLA

analysis result

/
reachable?

witness path

create reachability 
problem(s)

[unreachable, !completed]

task file

analysis result

/
safe?

witness pathlabeled Petri net

[else]

Fig. 4. Architecture of Anica
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is a labeled Petri net. The transitions of such a net are labeled with high (h ∈ H)
or low (l ∈ L) and for PBNID possibly with downgrade (d ∈ D). A net violates
the non-interference properties PBNI+ or PBNID if it contains at least one active
place. So we check for each place whether it is active (cf. Alg. 1). In case we are
only interested in whether the whole net is secure we can abort after the first
active place (Alg. 1, line 3). For a complete check of the whole net we enumerate
all places, which can be done simultaneously.

A necessary condition for an active place is that it must be a potential (causal or
conflict) place (cf. Def. 3). Checking whether a place is potential can be decided by
the structure of the input net, which has linear complexity in terms of nodes. If the
input net contains no potential place, it is secure. If a place s is a potential place,
we generate all its objectives (cf. Alg. 2). For causal and conflict places we need the
transitions labeled low (l ∈ L) in the postset of s. Which transitions labeled high
(h ∈ H) are necessary depends on the case: we use the preset of s for potential
causal places and the postset of s for potential conflict places. Whereas one active
objective [s, h, l] (tested by Alg. 3) is enough to make a potential place s active, we
break on the first active objctive (Alg. 2, lines 4 and 7). All checks of the objectives
are independent (Alg. 2, lines 2-4 and 5-7).

Algorithm 1. isNoninterfering(N): Boolean

1: for all s ∈ S do
2: if isActive(N, s) then
3: return false // PBNI+ or PBNID is violated
4: return true

Algorithm 2. isActive(N , s): Boolean

1: for all l ∈ (L ∩ s•) do
2: for all h ∈ (H ∩ •s) do
3: if isActiveObjective(N, [s, h, l]) then // s is a potential conflict place
4: return true // s is an active causal place
5: for all h ∈ (H ∩ s•) do
6: if isActiveObjective(N, [s, h, l]) then // s is a potential conflict place
7: return true // s is an active conflict place
8: return false // s is not active

Algorithm 3. isActiveObjective(N , [s,h,l]): Boolean

1: construct extended net N[s,h,l] // according to Def. 5
2: if m0

∗−→ m in N[s,h,l] with goal ∈ m then // call LoLA
3: return true
4: return false
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5 Evaluation

The evaluation will demonstrate that information flow analysis becomes feasible
with our approach in contrast to the existing ones. We use a library of 735
industrial BPs from different business branches, including financial services, ERP,
supply-chain, and online sales. These BPs were modeled in the IBM WebSphere
Business Modeler format. Only 559 models out of the 735 are sound [1], thus
building the core set of BPs for the evaluation. Fahland et al. [17] translated this
set of BPs to role annotated Petri nets.

The remaining 559 sound BPs contain no semantic information with respect
to the security domains. That is, they are not labeled for security analysis. We
use the roles of the BPs (called swim lanes) for labeling. For each role r (swim
lane) in a BP B, we create one labeled Petri net NBr . In NBr , all transitions la-
beled with r are set secret (labeled high). This means we check PBNI+. Figure 5
gives an overview on this approach. Intuitively, with this strategy we can check
the interference between the different roles within a process, (e.g., interference
between the back- and front office of a financial service). We cannot judge the re-
sulting interferences, because they are constructed by us, instead of derived from
practice. But we believe this approach is comprehensible, acceptable, and more
realistic than creating randomized BPs and security domains. This yields 1,206
labeled Petri nets which build the base for the evaluation. Table 1 summarizes
their structural and behavioral properties.

Intentionally and for the sake of exhaustiveness, all the 1,206 processes violate
the non-interference property: in each process, there exist at least one, at most
25 and in average 3 potential causal places. All of them are also active causal
places and none of the 52,751 examined places is a potential conflict place. The
absence of conflict places can be explained by the construction of the security

translate role annotated
Petri net

createbusiness process model

role 1

role n

labeled Petri net 
(role 1)

labeled Petri net 
(role n)

...

Fig. 5. Testsuite generation

Table 1. Structural and behavioral properties of the 1,206 labeled Petri nets

Min Average Max

Places 5 44 234
Transitions (labeled high) 4 (2) 28 (5) 100 (60)
Arcs 8 93 476

Full state space (< 10,000,000 states) 5 1,777 588,508
Full state space (> 10,000,000 states) 28,451,334 > 1,074,797,069 > 2,214,007,203
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Table 2. Comparing existing techniques (the state space) with Anica (reachability)

Existing techniques Anica

Labeled Petri nets verified 1,178 1,206

Minimum states computed 5 5
Average states computed 1,777 51
Maximum states computed 588,508 735

Overall states computed 2,088,135 62,049

domains: Labeling along the swimlanes results in a clear responsibility between
two roles. After a role has finished a specific task, it provides its results to
exactly one successor role. The successor role is elected by the current role, i.e.,
the choice is in the initial swimlane. Overall, 8 percent of all places violate the
non-interference property.

State space and runtime. Using existing techniques to analyze PBNI+ or PBNID,
the whole state space must be created. As 28 of the 1,206 labeled Petri nets (see
Tab. 2) contain more than 10 million states (see Tab. 1), those are infeasible using
common desktop hardware (8 GB RAM). The existing state space approaches
require about 2 million states to verify the remaining 1,178 nets and fail for the
28 big nets. For those, we used a server with 128 GB RAM, computed more than
30 billion states in several days and were able to verify 15 of 28 nets.

Our reachability approach instead verifies all 1,206 labeled Petri nets with
about 0.06 million states in about 30 seconds on common desktop hardware.
The proofs provided in Sect. 3.2 ensure the correctness of our approach. We
performed all tests in a sequential manner (i.e., used no parallelism) and the
30 seconds include the time consumed by LoLA for deciding the reachability
problems. This leads to an average time consumption of about 24 ms for each
net (212 ms for the biggest net), without exploiting the inherent parallelism.

Running example (cont.). Anica verifies the net in Fig.1 by checking 12 states, in-
stead of 32 states for the full state space. Record is marked as an active causal and
active conflict place. The objective for the causal case is [Record,Close H,Open L]
and the conflict case is [Record,Open H,Open L].

The testsuite shows that, by reducing PBNI+ to reachability, (1) we can handle
more complex inputs from industry and (2) we can check them independently.
Anica does not depend on LoLA. All results can be achieved with any other
model checker capable of state-of-the-art reduction techniques for reachability.

6 Related Work

Business process security focuses on the enforcement of confidentiality, integrity
and availability requirements in BP models [10]. The focus of information flow
analysis is confidentiality and, dually, integrity [34]. While approaches employing
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formalisms other than Petri nets exist (e.g., [9,11,21,26]), the vast majority of
proposed technologies build upon Petri nets. This is due to the extensive use of
Petri net models to reason about BPs and the availability of mature tool support.
The state of the art addresses: (1) the detection of explicit information flows (i.e.,
data flows), both in terms of discretionary access control (DAC) and mandatory
access control (MAC) based upon multi-level security; and (2) the detection of
implicit flows over covert channels (i.e., interferences). Today’s focus is on (1),
whereas the tool Anica and the formal results presented here focus on (2).

Tackling DAC, Shafiq et al. [35] present a colored Petri net (CPN) framework
for verifying the consistency of role based access control (RBAC) policies. Sim-
ilarly, Armando and Ranise [8] provide a SAT-based tool support for analyzing
BPs with RBAC. The Chinese Wall policy, together with the Strict Integrity
Policy, is considered by Zhang et al. [38]. Here, policies are modeled with CPN,
whereas the verification is based upon a coverability graph technique. Huang
and Kirchner [22] use CPN to model policies in general, and conflict of inter-
est in particular, thereby focusing on the modularity aspects of Petri net-based
policies. Katt et al. [25] and ourselves [2] employ CPN to model usage control
policies. However, focusing on monitoring systems, the objective is not the anal-
ysis. Focusing on DAC, these analysis technologies merely cover “point-to-point”
security guarantees, which make it impossible to detect leaks originating from
interferences.

Turning to MAC-based data-flow analysis, existing approaches are based upon
the multi-level security (MLS) model, in particular the model of Denning [15]
and Bell and LaPadula [13]. Juszczyszyn [24] uses CPN for the MLS specification
of policies and CPN-Tool to realize the verification as a reachability problem.
Röhrig and Knorr [33] define task based access control as a dynamic BP and
then specify the BPs with Petri nets; the approach is unclear as to the realization
of the analysis, though. Barkaoui et al. [12] employ the security rules of Bell
and LaPadula for the verification of workflows expressed as Workflow nets. The
reasoning reduces to a soundness check with Maude. While these technologies
employ MLS to capture information flows, they do not detect interferences.

The information flow analysis of BPs models focusing on interferences is a
young research strand in the business process management community. The ap-
proach is inspired by the formalization of non-interference properties as Petri
net patterns given by Busi and Gorrieri [14]. On these grounds, we [3,4] present
with InDico information flow nets to capture BP transformations to automat-
ically label the model with security classes, and Petri net patterns capturing
non-interference. We also consider other properties, including data flow-based
properties and industrial constraints, such as separation of duties and declas-
sification. This approach has been successfully employed to detect leaks in BP

models; for example in e-auction [3], e-health [4,32] and publishing [6]. How-
ever soundness and completeness guarantees are not provided. The approach
presented in this paper is thus the first to use reachability to address the verifi-
cation problem and to provide soundness and completeness properties.
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Turning to tools for automatic information flow analysis of BP models, Frau et
al. [19] implemented the general-purpose Petri Net Security Checker (PNSC) and
we implemented InDico in the Security Workflow Analysis Toolkit (SWAT) [5].
Both realizations follow the state space exploration strategy proposed in [14].
They thus require the construction and exploration of the whole state space, so
that the tools do not scale well for big Petri net models. The tool Anica presented
in this paper provides a faster alternative.

7 Summary and Future Work

In this paper we introduced a novel approach for the automated verification of
information flow control for BPs. The main insight in the paper is the treatment
of PBNI+ verification as a set of reachability problems, which opens up the
possibility of employing efficient, automated tool-support for the analysis. The
approach is proven to be sound and complete, and is implemented in the Anica
tool. A thorough evaluation demonstrates the speed to verify complex BPs.

Lessons learnt. Although the reachability problem itself is also PSPACE-comple-
te for safe nets and although the approach introduced in this paper comprises
more of these checks for one BP than the state space approach, Anica is a much
faster mechanism in the average case, as shown in Sect. 5. Hence, information
flow security checks for industrial, complex BPs become efficient. This opens up
the possibility of information flow analysis in background during the process
modeling, thereby contributing to reliably secure BP design. Such a guarantee
was not possible with previous techniques.

Future work. Future work aims at three directions: firstly, augment the set of
properties to be analyzed. In particular, we plan to integrate the properties
considered in InDico [4]; for instance parameter confidentiality and resource con-
flicts. We firmly believe that further properties considerably extend the expres-
sive power of the certification, thereby contributing to reliably secure BP mod-
eling from the outset. Secondly, spelling out the consequences for more complex
security models beyond the high and low classes. This allows one to capture fine-
grained properties which are especially useful for data-flow reasoning. Thirdly,
provide some further information on found violations. So far the modeler can
identify the cause during the modeling (when using background checks) or use
provided witness paths. Nevertheless the question is raised whether it is possible
to rate found violations automatically. Based on these ideas, it seems possible to
help the modeler to fix the BP, therefore he could use for instance downgrading
transitions (PBNID) which are already supported by Anica.
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Abstract. In many domains, we find tasks for which no strict process can be 
prescribed, but which require the expertise of case managers who work with in-
formation from a broad set of sources. To support case managers’ highly indi-
vidual work in such so-called “process clouds”, we present an approach that 
enables them to structure their work along any suitable mix of keywords, activi-
ties and artifacts. 

Keywords: case management, agenda items, templates, artifacts. 

1 Introduction 

Business process management and workflow management ensure that process in-
stances follow the definitions and guidelines described in the form of process models. 
This works nicely for all kinds of processes that are well-understood and highly struc-
tured. Such business processes tend towards automation (as a consequence of ongoing 
industrialization) [1]. Usually, however, certain parts of business processes cannot be 
automated; very often, they cannot even be described in detail. They are less struc-
tured and depend much more on the expertise of a responsible person (called a case 
manager in the following). Very often, such a case manager does not follow a prede-
fined process model, but a more or less coarse agenda that he arranges flexibly as the 
case demands. Here we leave the traditional field of business process management 
and arrive at so called case handling [2]. When working on an “open process cloud”, 
as we call it, we observe that case managers employ other cognitive approaches for 
planning and structuring their work than they would need to “blindly” follow prede-
fined processes: To build their agenda for proceeding with a knowledge/research-
intensive task, some will follow an ontological approach, planning their work along 
the conceptual entities of the business domain that the business process touches on (in 
the health care domain, for example, diagnosis, treatment, complications etc.). Others 
break a task down by the activities that need to be performed in the course of its com-
pletion (e.g. requesting second opinions, making appointments, checking progress 
etc.). Still others’ agendas may focus on the artifacts they need to review and produce 
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(e.g. doctors’ reports, treatment schedules, evaluations etc.). Often, a case manager’s 
agenda will contain items of all three classes – how they are weighed, and how many 
items there are, largely remains at the discretion of each individual case manager. 

Besides flexible agenda management and support for artifact-oriented working, 
another main goal of our research is to enable further automation of unstructured 
processes. To learn what actually happens in a process cloud, we therefore propose to 
log all its relevant events in so-called traces. Trace evaluation should then give us a 
basis for better understanding processes and reducing their “cloudiness”. 

In summary, this paper introduces the notion of (i) process clouds that indicate 
parts of business processes which are not well-understood; (ii) flexible agendas that 
let case managers organize their process work in different styles; and (iii) a workspace 
that supports artifact-oriented knowledge work. In the following section, we first in-
troduce to the core concepts of process clouds. Section 3 then suggests approaches for 
process cloud optimization through tracing, and describes how an OPC toolset can 
support case managers. We conclude with a discussion of related work in Section 4. 

2 Process Cloud Concepts 

Even though process clouds do not have a clearly defined internal structure (and 
therefore cannot be supported by traditional workflow management systems), we 
believe that cloud traversals can be tool-supported. Our mechanisms focus on sup-
porting different working styles of case managers in their cloud traversals, where they 
shall be free to plan and structure their work according to the cognitive approach that 
seems most useful to them. To accomplish this, we will introduce the concepts of 
agendas, templates and artifacts using an example from the rehabilitation management 
domain in the context of disability insurance. Here, so-called rehabilitation managers 
are responsible for driving the medication and therapy process in order to avoid 
unnecessary costs and to ensure quick recovery of the injured person. 

entry

entr
y

 

Fig. 1. Structured process parts and process clouds in a rehabilitation control process 
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While some of the activities performed by a rehabilitation manager can be explicity 
defined and supported by structured dialogs and algorithms, the details of certain 
other parts (such as selecting the most appropriate care provider) are rather undefined 
and symbolized by clouds in Fig. 1: For these process clouds, it is not specified in 
detail what has to be done at which step, what kinds of information sources have to be 
considered, and what kinds of data have to be produced – we just know that the 
process cloud requires and produces certain input and output artifacts, and may have a 
coarse agenda as an informal guideline for what needs to be done to complete the 
task. In the following subsections, we show how the OPC approach can support case 
managers in working on such unstructured, knowledge-intensive tasks: 

Agendas. In any open process cloud, the notion of an agenda is of central importance. 
An agenda contains links to and names of all entities that a case manager puts on the 
list of things he plans to consider. If starting from an activity-driven perspective, first-
class agenda items are activities that are candidates for execution. If the perspective is 
more artifact-oriented, then first-class agenda items are any form of artifacts (files, 
documents, web pages etc.) and other sources of information. If the perspective is 
more structure-driven, first-class agenda items are key entities of the cloud’s domain. 
In the given scenario, for example, “healing plan”, “care providers” and “therapy” are 
such key domain entities. This structure-driven perspective allows allocating activi-
ties, information sources and documents around key entities of the case domain.  

Our notion of an agenda supports these arbitrary mixes of perspectives by just us-
ing the general notion of agenda items, and by supporting hierarchies of agenda items 
in order to support different levels of abstraction. Agenda item hierarchies can be 
arbitrarily linked with each other. If, for example, an activity such as “generate heal-
ing plan” is linked to the domain entity “healing plan”, then this may be interpreted to 
be an activity which works on a healing plan. 

Templates. For certain process cloud traversals, the case manager might start on a 
clean slate, having to figure out for himself how best to proceed and what agenda to 
follow. In other process clouds, there may be precedents that provide guidelines for 
subsequent cloud traversals. In our example, it might be useful to identify what is 
usually done in the “monitor therapy” cloud, and to check what other rehabilitation 
managers recently did in the context of similar injuries. They might take note of what 
kind of expertise has to be considered in the further cloud traversal and which infor-
mation sources should be consulted. 

Agenda items which are considered useful for all process clouds can be collected 
in what we call a template. Such an agenda template includes an initial set of agenda 
items and a set of cloud-, but not yet case-specific, artifacts that any new process 
cloud is initially populated with. The template itself might be defined according to an 
organization’s documented best practice, the case manager’s own experience, or ac-
cumulated histories of prior cloud traversals by colleagues. A case manager can modi-
fy the initially provided agenda by deleting, adding and revising items. When the 
traversal is completed, the case manager and template owner can decide whether the 
template should be updated. As an alternative to manual revision of the agenda tem-
plate, cloud tracing mechanisms may enable automated optimization (cf. Sect. 3). 
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Artifacts. While the activity-driven approach to traversing clouds is based on the 
agenda and agenda items, the artifact-driven approach is based on artifacts and work-
spaces. The motivation for this perspective on process clouds is that one of the most 
frequently performed activities of a case manager is to search and explore information 
related to the case. Based on the information gathered from various heterogeneous 
sources, he builds a mental model of the way he wants to solve the case. We collec-
tively call all information that the case manager gathers artifacts, and are developing 
a digital workspace (briefly introduced below) where the case manager can combine, 
evaluate, rate, relate and annotate all relevant information. 

3 Ongoing Research 

In parallel to refining the above elements of process clouds, we are developing me-
chanisms for tracing and analyzing case managers’ actions, for several purposes: 

• Individual cloud traces can document what has actually happened in individual 
cloud traversals. This may be required by law for certain processes (e.g. document-
ing rationales for therapy decisions), or desirable in order to check compliance 
with company policies (e.g. observing spending caps). An archive of individual 
cloud traces may also be helpful for reference, if a case manager would like to re-
view a particular solution from a previous case. 

• Accumulated cloud traces can serve as a basis for a variety of statistical evalua-
tions, e.g. the time required for researching particular facts or making particular 
decisions (broken down e.g. by case manager or by patient), the number of itera-
tions on particular artifacts (e.g. healing plans), the frequency of accessing paid da-
ta sources (e.g. archives of medical journals), etc. 

• Insights from accumulated cloud traces can also help to improve the template that 
those cases were derived from, by focusing the template on the most frequently 
used and most relevant agenda items and artifacts. 

• Alternatively, analysis of accumulated cloud traces may reveal different classes of 
process clouds that suggest the creation of separate templates for each class. 

• Finally, analysis of accumulated cloud traces may reveal recurring structures that 
indicate that the process cloud actually contains implicit structured process frag-
ments, whose automation might improve efficiency. 

To help case managers to keep an overview of their progress on each case, find in-
formation relevant to it and work with it, we are also developing suitable tool support. 
The user interface prototype of our OPC toolset provides three window panes, as 
shown in Fig. 2: The agenda pane on the left displays the agenda items that need to 
be worked on during the traversal of this case. Clicking on any agenda item will bring 
up all associated artifacts in the artifacts pane – the main workspace – in the middle. 
The source pane on the right provides detailed views of the various artifacts that  
are relevant to a case, as well as the data sources from which those artifacts are  
imported. 
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Fig. 2. User interface prototype of OPC workspace with agenda, artifact and source panes 

4 Related Work 

A prominent approach to describe processes with a certain control flow variability is 
the “case handling paradigm” as developed by van der Aalst et al. [2]. There, a case 
consists of activities, data objects, precedence relations between activities, and rela-
tions between them, as well as a state space used to describe the current state of  
activities and data objects. Our approach also focuses on required data objects and 
defined goals of unstructured activities. However, in contrast to the “cases” in the 
case handling paradigm, our “process clouds” do not prescribe any precedence rela-
tion or control flow definition for their internal steps. Instead, we provide an agenda 
as a guideline to case managers, but no explicit order of agenda items or control flow 
elements that would introduce some notion of a structured process. 

A further approach called “activity schemes” is presented by Schmidt et al. in [3]. 
They describe knowledge activities as a graph of knowledge action nodes that in-
cludes relations between activities, applications, and resources. In contrast to this 
knowledge-focused approach, we focus on steps that have to be taken and goals that 
have to be achieved during a process cloud’s traversal.  

Holz et al. use a “task list” as a central concept for supporting case management 
[4]. This task list is comparable to our agenda due to the possibility of relating re-
sources to task list items. The idea of using templates in the context of supporting 
unstructured activities is motivated and described by Riss et al. in [5]. Following 
them, we developed a specific template lifecycle for our agenda. 

Besides providing tools such as agendas and templates, a further approach for sup-
porting case management is monitoring and analyzing the actions of case managers. 
Process mining [6], for example, aims to identify recurring process patterns or work 
patterns [7]. In the context of open process clouds, we are interested in supporting 
case managers to decide about the next step in a process cloud as well. In [8], for 
example, Schonenberg et al. describe a concept for logging the actions of case  
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managers, and provide weight functions to recommend what to do in the next step. 
However, in contrast to our approach, they consider neither the context of a concrete 
activity, nor required or used resources. 

5 Conclusion 

In this paper, we introduced the OPC approach for handling so-called process clouds, 
i.e. segments within a structured business process that cannot be executed according 
to a pre-defined series of steps, but whose completion relies extensively on the exper-
tise and judgment of a case manager who works with a broad spectrum of data 
sources in order to arrive at results. To support work in such process clouds, we intro-
duced the concepts of agendas and templates to guide the case manager, and the  
artifact workspace in which he can collect and evaluate relevant data from highly 
heterogeneous resources. By having all relevant information consolidated in one tool, 
being able to relate them and go back to their sources if necessary, we expect to free 
case managers from a significant cognitive load that the operational aspects of their 
research work would otherwise impose on them. 
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Abstract. Cloud computing is a new model for the provisioning of
dynamically elastic and often virtualized resources at the levels of infras-
tructures, platforms and software. Cloud platforms are being increas-
ingly used for the deployment and execution of service-based business
processes (SBPs). Nevertheless, the provisioning of elastic infrastruc-
tures and/or platforms is not sufficient to provide users with elasticity
at the level of SBPs. Therefore, there is a need to provide SBPs with
mechanisms to scale their resource requirements up and down whenever
possible. This can be achieved using mechanisms for duplicating and
consolidating business services that compose the SBPs. In this paper, we
propose a formal model and a generic framework for elasticity of SBPs.

1 Introduction

Cloud computing is a new delivery model for IT services based on Internet
protocols. It typically involves provisioning of dynamically scalable and often
virtualized resources at the infrastructure, platform and software levels. Cloud
environments are being increasingly used for deploying and executing business
processes and particularly service-based business processes (SBPs) that are made
up of components that provide business services. One of the expected facilities
of cloud environments is elasticity at different levels.

At the platform as a service (PaaS) level, the deployed processes should be pro-
vided with platform mechanisms that can scale up and down whenever needed.
In this context, we have conducted studies of existing application servers and
SBP engines. These classical platforms are not elastic [6]. For that reason, we
have developed a new model for service deployment called micro-container [8].
Our approach was based on a simple idea that consists in dedicating a micro-
container with minimal and personalized functionalities to manage the life cycle
of each deployed services. With this idea we have shown the elasticity of services
deployed at the PaaS level can be ensured [8]. In addition, we have shown that
elastic micro-containers can be used to host service-based application.

Nonetheless, provisioning of elastic platforms, e.g. based on micro-containers,
is not sufficient to provide users with elasticity of the deployed business process
(at the Software as a Service (SaaS) level). Therefore, SBPs should be provided
with elasticity so that they would be able to adapt to the workload changes while
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ensuring the desired functional and non-functional properties. In this paper we
address elasticity at the level of SBPs that mainly raises the following questions.

– What mechanisms should be developed to perform elasticity of SBPs?
– How to evaluate elasticity strategies of SBPs?

Performing elasticity consists in providing cloud environments with mechanisms
that allow deployed SBPs to scale up or down. To scale up a SBP, elasticity
mechanisms have to create, as many copies as necessary, of some business services
(part of the considered SBP). To scale down a SBP, elasticity mechanisms have
to remove unnecessary copies of some services.

Many strategies that decide on when SBP elasticity is performed can be pro-
posed. It would be useful for a Cloud provider to have an evaluation framework
in order to make a better decision on the elasticity strategy to adopt.

In this paper, we propose a formal model for SBP elasticity and a framework
to evaluate elasticity strategies.

2 Model for SBPs Elasticity

We are interested in this paper in modelling elasticity of SBPs. A SBP is a busi-
ness process that consists in assembling a set of elementary IT-enabled services.
These services realise the business activities of the considered SBP. Assembling
services into a SBP can be ensured using any appropriate service composition
specifications (e.g. BPEL). Elasticity of a SBP is the ability to duplicate or con-
solidate as many instances of the process or some of its services as needed to
handle the dynamic of received requests. Indeed, we believe that handling elas-
ticity does not only operate at the process level but it should operate at the level
of services too. It is not necessary to duplicate all the services of a considered
SBP while the bottleneck comes from some services of the SBP.

2.1 SBP Modeling

We model the SBP using Petri nets. Many approaches model SBPs using petri
nets, but instead of focusing on the execution model of processes and their
services, we focus on the dynamic (evolution) of loads on each basic service
participating in the SBP’s composition. In the proposed model, each service is
represented by a place. The transitions represent calls transfers between services.

Definition 1. A SBP load model is a petri net N =< P, T, Pre, Post >:

– P : a set of places (represents the set of services involving in a SBP).
– T : a set of transitions (represents the call transfers between services according

to the SBP behavioural specification).
– Pre : P × T → {0, 1}
– Post : T × P → {0, 1}

For a place p and a transition t we give the following notations:
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– p• = {t ∈ T |Pre(p, t) = 1}. •p = {t ∈ T |Post(t, p) = 1}
– t• = {p ∈ P |Post(t, p) = 1}. •t = {p ∈ P |Pre(p, t) = 1}

Definition 2. Let N be a Petri net, we define a net system S = 〈N,M〉 with
M : P → N a marking that associates to each place an amount of tokens.

The marking of a Petri net represents a distribution of calls over the set of ser-
vices that compose the SBP. A Petri net system models a particular distribution
of calls over the services of a deployed SBP.

Definition 3. Given a net system S = 〈N,M〉 we say that a transition t is
fireable in the marking M , noted by M [t〉 iff ∀p ∈• t : M(p) ≥ 1.

Definition 4. The firing of a transition t in marking M changes the marking
of the net system to M ′ s.t. ∀p : M ′(p) = M(p) + (Post(t, p) − Pre(p, t)), we
note the transition by M [t〉M ′.

The transition firing represents the evolution of the load distribution after calls
transfer. The way that calls are transferred between services depends on the
behaviour specification (workflow operators) of the SBP.

2.2 Elasticity Operations

Place Duplication
As noted before places represent services deployed on containers. The marking
of a place denote the number of the current instances (or requests) of the service.
Each service has a maximal capacity over what the QoS of the service decrease
and can leads to the stuck of the container and by the same way the crash of the
service. Giving to the container more memory and/or more CPU time will not
change the issue of the problem [8]. A solution to this problem is to duplicate
the service without changing underlying SBP.

Definition 5. Let S = 〈N,M〉 be a net system and let p ∈ P , the duplication
of p in S by a new place pc ( 
∈ P ), noted as D(S, p, pc), is a new net system
S′ = 〈N ′,M ′〉 s.t
– P ′ = P ∪ {pc}
– T ′ = T ∪ T ′′ with T ′′ = {tc|t ∈ (•p ∪ p•)}
– Pre′ : P ′ × T ′ → {0, 1}
– Post′ : T ′ × P ′ → {0, 1}
– M ′ : P ′ → N with M ′(p′) = M(p′) if p′ 
= pc and 0 otherwise.

The Pre′ (respectively Post′) functions are defined as follow:

Pre′(p′, t′) =

⎧⎪⎪⎨
⎪⎪⎩

Pre(p′, t′) p′ ∈ P ∧ t′ ∈ T
Pre(p′, t) t ∈ T ∧ t′ ∈ (T ′ \ T ) ∧ p′ ∈ (P \ {p})
Pre(p, t) t ∈ T ∧ t′ ∈ (T ′ \ T ) ∧ p′ = pc

0 otherwise.

Post′(t′, p′) =

⎧⎪⎪⎨
⎪⎪⎩

Post(t′, p′) p′ ∈ P ∧ t′ ∈ T
Post(t, p′) t ∈ T ∧ t′ ∈ (T ′ \ T ) ∧ p′ ∈ (P \ {p})
Post(t, p) t ∈ T ∧ t′ ∈ (T ′ \ T ) ∧ p′ = pc

0 otherwise.
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Fig. 1. Example of the elasticity of a SBP

Place Consolidation
When a service has few calls, the containers that host its instances use more
resources than required for the same QoS. As a dual operator to duplication we
define the consolidation or merging operator that removes a copy of a service.

Definition 6. Let S = 〈N,M〉 be a net system and let p, pc be two places in
N with p 
= pc, the consolidation of pc in p, noted as C(S, p, pc), is a new net
system S′ = 〈N ′,M ′〉 s.t
– N ′: is the net N after removing the place pc and the transitions (pc)• ∪• pc

– M ′ : P ′ → N with M ′(p) = M(p) +M(pc) and M ′(p′) = M(p′) if p′ 
= p.

Example 1. Figure 1-(a) shows an example of nets system that represents an
SBP. Figure 1-(b) is the resulted system from the duplication of s2 1 in (a).
Figure 1(c) is the consolidation of the place s2 1 in its copy s2 2.

3 A Generic Framework for SBPs Elasticity

Usually in the Cloud, a set of policies is implemented to guarantee some SLA
properties to the deployed applications. These policies are implemented in what
is usually called controller. In our case, we are interested in elasticity policies
of services that compose a SBP. In order to achieve this, we want to develop
a controller to provide an optimal ratio QoS and allocated resources of a SBP.
The proposed controller (Figure 2)-(a) is able to perform three actions:

– Routing: Routing decision is about the way a load of services is routed over
the set of their copies. It determines under which condition a given transition
(call transfer) is fired. One can think of routing as a way to define a strategy
to control the flow of load according to some rules e.g. a call is transferred
iff the resulted marking does not violate the capacity of the services.

– Duplication: Duplication decision is about the creation of a new copy of a
service in order to meet its increased workload.
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Fig. 2. General architecture of the controller

– Consolidation: Consolidation decision is about the removing of an unneces-
sary copy of a service in order to meet its workload decrease.

If we consider the three actions that can be performed by an elasticity controller,
any combination of conditions associated with a decision of routing, duplica-
tion and consolidation is an elasticity strategy. The strategy is responsible of
making decisions on the execution of elasticity mechanisms i.e. deciding when
and how to use these mechanisms. Several strategies can be used to manage the
SBP elasticity [4]. The abundance of possible strategies requires evaluating these
strategies before implementing them. Our goal here is not to propose an addi-
tional elasticity strategy, but a framework, called generic controller that allows
the implementation and evaluation of SBPs elasticity strategies.

We model the controller as a high level Petri net (HLPN). The structure of
the controller is shown in Figure 2-(b). The controller HLPN contains one place
(BP) of type net systems (SBPs). The marking of this place is modified by three
transitions that represent the three elasticity mechanisms (Routing, Duplication
and Consolidation). Each of these transitions is guarded by a generic condition.
Implementing a strategy consists then in instanciating the three generic condi-
tions. The reachability graph resulted from the instanciated controller represents
the different evolutions of the SBP according to the strategy. Using HLPN anal-
ysis tools, the evaluation of the strategy can be processed by model-checking its
reachability graph.

4 Related Work

The elasticity in the Cloud has been studied in the past. Proposed approaches
use generally sets of rules to make decisions about the elasticity of the infras-
tructure. In this kind of approaches, several techniques have been used. In [3] the
authors propose to add or remove VMs according to demands. In [5,1] the au-
thors propose to calculate the optimal number of VMs to be deployed according
to variations of demands.

The use of duplication/consolidation mechanisms to provide elasticity have
been considered in the area of dynamic service deployment [2,7]. The proposed
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mechanisms allow the duplication/consolidation of the entire SBP (and so, of all
its services) while the bottleneck may come from some services of the SBP.

At the best of our knowledge the approaches for elasticity are interested in
the infrastructure level of cloud environments (IaaS). As stated before, ensuring
elasticity at the IaaS level is not sufficient to provide users with elasticity of
deployed SBPs. Similarly, ensuring elasticity at the PaaS level is not enough to
ensure elasticity of deployed SBPs. We believe that elasticity should be handled
and tuned at different levels of cloud environments. The work we present in this
paper is novel in the sense that it (1) tackles the problem of elasticity at the
SaaS level and (2) proposes a generic framework for evaluating SBPs elasticity.

5 Conclusion

This paper addresses the problem of elasticity of service-based business pro-
cesses (SBPs) deployed in cloud environments. Unlike existing work, the pro-
posed approach tackles the elasticity at the level of SBPs. To perform elasticity
we proposed using Petri nets tow operations: duplication and consolidation. In
addition, we have proposed a framework to evaluate SBPs elasticity. As per-
spectives of this work, we are working on the implementation of the elasticity
operations into CloudServ (a PaaS under development within the French FUI
CompatibleOne project).
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Abstract. Dependencies among software artifacts are very useful for various 
software development and maintenance activities such as change impact analy-
sis and effort estimation. In the past, the focus on artifact dependencies has been 
at the design and code level rather than at the requirements level. This is due to 
the difficulties in identifying dependencies in a text-based requirements specifi-
cation. We observed that difficulties reside in the disconnection among itemized 
requirements and the lack of a more systematic approach to write text-based re-
quirements. Business process models are an increasingly important part of a re-
quirements specification. In this paper, we present a mapping between 
workflow patterns and dependency types to aid dependency identification and 
change impact analysis. Our real-world case study results show that some par-
ticipants, with the help of the mapping, discovered more dependencies than  
other participants using text-based requirements only. Though many of these 
additional dependencies are highly difficult to spot from the text-based re-
quirements, they are however very useful for change impact analysis. 

Keywords: Business process modeling, workflow pattern, software develop-
ment and maintenance, requirements dependency. 

1 Introduction 

In a volatile environment, software systems must evolve to adapt to the rapid changes 
of stakeholders’ needs, technologies and the business [1]. A change can impact not 
only source code, but also other software artifacts, such as requirements, design and 
test cases [2]. To analyze the impact of a proposed software change, one should  
determine which parts of the software system may be affected by the change and as-
certain their possible risks [3]. Bohner [3] proposed an impact analysis process that 
examines change requests to identify the Starting Impact Set (SIS) of software arti-
facts that could be affected by these requests. The SIS is then analyzed to identify 



 A Business Process-Driven Approach for Requirements Dependency Analysis 201 

 

other artifacts to be affected, which are then incorporated into SIS to form the Candi-
date Impact Set (CIS). His process’s goal is to estimate a CIS that is as close as possi-
ble to the set of artifacts that is actually modified after all the changes are made.  

A CIS can be determined starting from the requirements specifications affected by 
the changes to the source code level [4] through information about traceability [5]. A 
traceability link is “any relationship that exists between artifacts involved in the soft-
ware-engineering life cycle” [6]. A link can be between artifacts in different models 
(e.g. requirements and code) or between artifacts within a model. Requirements de-
pendency, an example link, characterizes the relationship between requirements with-
in a requirement model and acts as a basis from which a CIS is analyzed. The CIS 
include not only requirements to be affected directly by the change requests but also 
requirements to change potentially. To improve the accuracy of a CIS, it is useful to 
associate semantics with traceability links [3], such as the use of requirement depen-
dency types since they convey important information for change impact analysis. 
Requirements dependency discovery tends to require a significant effort especially 
when the set of requirements is large. Studies have explored ways to automate the 
discovery (e.g. [7]). However, the solutions to date are immature and human experts 
are still relied upon for a large set of requirements [8]. 

Traditionally text is the primary (or even only) means of documenting require-
ments specification. Our previous empirical evaluation [9] found that many depen-
dencies, which are especially useful for change impact analysis, were not spotted 
during dependency discovery in text-based requirements alone. An explanation for 
this is that even when they were closely related to business processes and rules, they 
could not  be represented explicitly in text-based requirements.  

It is no doubt that a diagram is worth ten thousand words [10] and hence Business 
Process Modeling Notation (BPMN) based models [11] combined with text-based 
requirements should increase the likelihood of finding more dependencies than the 
latter alone in requirements dependency analysis. In this research, however, we are 
interested in how BPMN models can help requirements dependency analysis and 
change impact analysis in a more concrete fashion. In this spirit, we propose a map-
ping between workflow patterns in BPMN and dependency types to supplement text-
based requirement dependency analysis by systematically and manually deriving de-
pendencies from a typical business process model. We conducted a case study on a 
real-world industrial project to evaluate our approach and confirmed that practitioners 
using our approach did discover additional dependencies useful to change impact 
analysis. 

2 Related Work 

2.1 Dependency and Change Impact Analysis 

Research in traceability is gaining attention in requirements engineering [12]. Correct 
traceability is the basis for change propagation analysis [13], important for all aspects 
of a software development project. In requirements engineering, requirements rela-
tionships are classified into dependency types based on the structural and semantic 
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properties of requirements, to help practitioners identify these relationships (e.g. 
[14]). Requirements dependencies also play an important role in change impact analy-
sis. Hassine et al. applied dependency analysis at the use case map level (rather than 
between requirements in natural languages) to identify the potential impact of re-
quirement changes on the overall software system [12]. Yan et al. discussed the rip-
ple-effect of requirements evolution based on requirements dependencies [15]. 

2.2 Business Process Modeling in Requirements Engineering 

Business process models (BPMs) are widely used in requirements engineering. To the 
best of our knowledge, however, no studies have considered applying BPMs in re-
quirements dependency discovery to facilitate change impact analysis. For instance, 
to bridge business process modeling with requirements elicitation and analysis, de la 
Vara González and Díaz [16] described a business process-driven requirements engi-
neering approach to derive requirements from organizational models that express 
business strategies and from business processes in BPMN. Cardoso et al. [17] used 
business process models to derive alternative sets of requirements for a process-
oriented software system. These sets capture different decisions regarding the in-
tended “level of automation” for various activities in a business process. Mathisen et 
al. [18] presented an approach for early detection of structural changes that have im-
plications for the software architecture. Their approach hinges on using business 
process modeling to increase the level of understanding of the problem domain in 
early stages of a project. 

3 Requirements Dependency Analysis Based on Business 
Process Models 

Before delving into the details of our approach, we use a stimulating example to high-
light its use. In Fig. 1, a simple BPM for processing home loan applications consists of 
four sequential processes as shown. Let us focus on the middle two processes, viz. 
“Check Credit” and “Approve Loan”. The former performs credit checking on loan 
applicants and fulfills three requirements (UC1, UC2 and UC3). The latter lets a loan 
assessor approves loan applications and involves two requirements (UC4 and UC5). 
These two processes form a sequence workflow pattern in that “Check Credit” pre-
cedes “Approve Loan”. The pattern logically connects requirements UC1, UC2 and 
UC3 to UC4 and UC5. In the context of dependency, UC1, UC2 and UC3 are regarded 
as preconditions for UC4 and UC5. More generally, the power of BPMs connects indi-
vidual text-based requirements into a manageable and well-scoped visual structure. 
The connections are often useful guidance for implementation-related dependency 
identification. Sometimes it is easy to spot preconditions based on the textual descrip-
tions of the requirements without the help of BPMs. To calculate how much an appli-
cant can borrow (UC5), one first needs to know how much the person owes (UC2) and 
his/her income level (UC3). At other times, dependencies are non-trivial from textual 
descriptions whence BPMs may provide some hints (e.g. connecting UC1 and UC4). 
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The example just showcased that BPMs can be useful for dependency discovery. Now 
we present the formal definitions of the dependency type model plus the mapping  
between workflow patterns and dependency types. 

 

Fig. 1. BPM example 

3.1 Requirements Dependency Model 

Many dependency types have been proposed and they have different levels of abstrac-
tion and different criteria for categorization. Their complexity and diversity gives rise 
to a steep learning curve, which contributes to the difficulty in comprehending, using 
and evaluating them. Thus, in earlier work [9], we surveyed dependency types from 
the literature, consolidated them into a requirements dependency model and empiri-
cally evaluated its applicability in dependency identification and change impact anal-
ysis in a real-world industry project. Here we divide its twenty-three dependency 
types into three categories: 

• Document-related: This category of dependency types is embedded in the struc-
ture, content and version relationships in the requirements representation. For in-
stance, a requirement can have a “formalizes” dependency on another requirement, 
which means the former is defined more formally (using computational logic, 
business rules, constraints, etc.) than the latter. 

• Value-related: This category is concerned with the relation between the realization 
of one requirement to the value that a customer/user perceives the realization of 
another requirement will provide [9]. For example, the adoption of a complex user-
interface style can increase the usability of the user interface for a web-based ap-
plication (i.e. “increases_cost_of” dependency type). This category can be useful 
for selecting the set of requirements to be fulfilled in release planning. 

• Implementation-related: In this category, the realization of a requirement relates to 
one or more requirements. For instance, the requirement “withdraw cash” calls for 
the requirement “calculate account balance” to be realized to determine the with-
drawal limit for a bank account. Dependency types in this category often indicate 
change propagations among low level models such as the detailed design and the 
code, which are important for change impact analysis. 
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The dependency types in each category are listed in Table 1. In this study, we concen-
trate on the implementation-related dependency types because they are the most use-
ful and relevant to software design and development. Due to space limitations, we do 
not elaborate further on other dependency types. Interested readers may refer to [9] 
for the in-depth discussions. The implementation-related dependency types are: 

• Constraints: A requirement can relate to another by being a constraint to the latter. 
For instance, the requirement “cash withdrawal is limited to $2000 daily” is a con-
straint for the requirement “withdraw cash”. 

• Refines: One requirement can be a refinement of another requirement, providing 
more detailed descriptions for the latter.  

• Precondition: Only after one function prescribed by a requirement is finished, or 
one condition described by the requirement is satisfied, that another function pre-
scribed by a requirement can be performed. Usually precondition reflects the busi-
ness rules or the sequence relationship between (sub-)processes. For instance, the 
requirement “a customer successfully logged in to the application” is a precondi-
tion for “a customer withdraws cash from bank account”. 

• Satisfies: This type expresses that if one requirement is implemented in an applica-
tion, the implementation will also satisfy another requirement. For example, the re-
quirement “when a user logs out, all opened documents will be automatically 
saved” satisfies the requirement “no unsaved work will be allowed before the edi-
tor terminates”. 

• Similar_to: The prescription of one requirement (e.g. “display account balance”) is 
similar to or overlapping with one or more requirements (e.g. “display amount 
available for withdrawal”).  

Table 1. Dependency Type Model [9] 

Category Dependency types 

Document-related Compares, Contradicts, Conflicts, Example_for, Test_case_for, Purpose, 
Comments, Background, Replaces, Based_on, Elaborates, Generation, 
Changes_to, Formalizes

Value-related Increase_cost_of, Decreases_cost_of, Increase_value_of, Decreas-
es_value_of

Implementation-related Constraints, Refines, Precondition, Satisfies, Similar_to

3.2 Business Process Driven Dependency Identification 

In recent years, BPMs are increasingly used in requirements analysis to define system 
goals and requirements. We believe BPMs can also be used to discover missing and 
ambiguous requirements in requirements specifications. In our approach, we adopted 
BPMN as the business process modeling language because it is a widely used busi-
ness process modeling language and covers most of the workflow patterns compared 
to other modeling languages. 

A well-known collection of Workflow Patterns was proposed in [19, 20]. This 
work provides a comprehensive examination of the various perspectives (control 
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flow, data, resource, and exception handling) of workflows. Each workflow pattern 
precisely defines recurring semantics between some process elements. Using the 
evaluation of BPMN version 1.0 against the workflow control-flow patterns [21], we 
map all relevant workflow patterns supported by BPMN models to all the implemen-
tation-related dependency types. The mapping is an informal one with no mathematic 
rigor as it is targeted for business analysts and requirements engineers to identify 
informal dependencies. We derived the mappings largely from the expert opinions 
and our observation in the previous case study [9]: 

• Certain dependency types are often associated with certain workflow patterns. For 
example, we observed empirically that Precondition dependency types are often 
associated with workflow patterns such as the sequence workflow pattern. 

• Some workflow patterns are similar to each other in terms of their associations 
with the dependency types. For example, sequence, merge/split-related workflow 
patterns are too often pointing to the Precondition dependency type. Thus, we 
created more generic definitions for these similar patterns to further reduce the 
complexity of the mapping. 

The mapping only acts as an informal guidance and is highly indicative. There are 
many-to-many relationships between the workflow patterns and the dependency 
types. It is up to practitioners to confirm each instance of dependency identification in 
a particular project. We acknowledge the limitation and imprecision of the mapping 
but consider it helpful in the task as demonstrated by the later evaluation. We also 
excluded the workflow patterns on data, resource and exceptional handling in this 
study due to the scope. However, we believe they will also be helpful in identifying 
requirements dependencies and we plan to investigate them in future work. The map-
ping results are summarized in Table 2. 

Table 2. Mapping between workflow patterns and dependency types 

Workflow Patterns [19, 20] Relevant Generic 
Pattern 

Dependencies 

sequence, split-related, merge-related, triggers Generic Sequence Precondition 

merge-related Generic Merge Similar_to 

split-related Generic Split Similar_to 

cancelling/termination-related, interleaved routing, 
thread merge  

Generic Crosscut Constraints 

Individual workflow patterns that provide more details 
to the decision points logic, sub-process 

Generic Detailing Refines, Satisfies 

Generic Sequence 
A (sub-)process is enabled after the completion of a preceding (sub-)process. For 
example, a bank allocates a valuation task to a valuer after a client has submitted the 
valuation request. Many workflow patterns, such as split-related, merge-related and 
triggers [19, 20], indicate a precedence-successor relationship and are therefore 
grouped under it. Due to the large number of workflow patterns involved, we do not 
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list all of them here. Although this is one of the most obvious patterns, the textual 
descriptions of this pattern’s instances are often scattered around or only implied in 
text-based requirements, resulting in the dependencies not being found. This is a basic 
pattern which may be included in the other workflow patterns such as split-related and 
merge-related patterns. The corresponding dependency type for Generic Sequence is 
“Precondition” (e.g. A is a precondition of B in Fig. 2(a)). 

Generic Split 
This represents the divergence of a (sub-)process into two or more (sub-)processes 
(i.e. branches). For example, after a client has proposed property valuation requests, 
one or more of the “desktop valuation”, “curbside valuation” or “full valuation” can 
be performed. This generic pattern includes all the workflow patterns for choices and 
splits, such as parallel split, synchronization, exclusive choice, multi-choice, thread 
split [19, 20]. In some of the splitting instances, the branches serve a similar purpose 
(Similar_to each other) and only one or more of them are selected. However, the tex-
tual descriptions may look very different and are again scattered within requirements. 
Our case study described later on is one such example. Practitioners missed some of 
the similar relationship among the text-based requirements but they were easily iden-
tified in the BPMN models. The corresponding dependency type for Generic Split is 
“Similar_to” (e.g. B and C are similar to each other in Fig. 2(b)). 

Generic Merge 
This represents the convergence of two or more (sub-)processes (i.e. branches) into a 
single subsequent (sub-)process. For example, “prepare invoice” and “send for ap-
proval” happen simultaneously and join before “send report”. This generic pattern 
covers all the workflow patterns for synchronization, merge and join and discrimina-
tors, such as structured synchronizing merge, multi-merge, thread merge [20]. The 
rationale behind this pattern is similar to the Generic Split pattern. For example, task 
“prepare valuation reports” can be started if and only if all the valuation results are 
returned. An example of change request is checking the quality of the reports before 
allowing an administrator to print them. This may result in checking all the valuation 
results before they are returned. The corresponding dependency type for Generic 
Merge is “Similar_to” (e.g. A and B are similar to each other in Fig. 2(c)) 

 

Fig. 2. Workflow patterns used in the mapping 

Generic Crosscut 
The workflow patterns grouped under this category are cancelling, thread merge and 
interleaved routing [20]. Cancelling-related workflow patterns (cancelling discrimina-
tor, cancelling partial join, etc.) abort the execution of other (sub-)processes and so 
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crosscut many of these (sub-)processes. BPMs help identifying cross-cutting impacts 
of exceptional events such as Canceling. In BPMN models, for example, all the pre-
ceding (sub-)processes of a cancellation point can act as a source of dependency  
candidates narrowing down the scope of possibly affected requirements. These de-
pendencies are difficult to identify across text-based requirements. Thread merge and 
interleaved routing workflow patterns concern the control of execution threads (i.e. 
multiple (sub-)processes) at runtime. The information they specify crosscuts multiple 
requirements and is often not captured in text-based requirements. The corresponding 
dependency type for Generic Crosscut is “Constraints”. 

Generic Detailing 
All decision points in BPMN models have precise meanings. For example, a split can 
mean running in parallel, an exclusive choice or a multiple choice. In text-based re-
quirements, such precise meanings are often elaborated separately and it is often diffi-
cult to spot the dependency between the elaboration and its original requirements. All 
such decision points related patterns also help tremendously in terms of identifying 
missing and/or ambiguous requirements. The corresponding dependency types are 
“Refines” and “Satisfies”. The sub-process notations in BPMN also have similar 
meanings with respect to and are obvious helpers for identifying these two dependen-
cy types. 

The same type of dependencies identified in BPMs often has different nature from 
those identified in text-based requirements. For example, Similar_to mostly refers to 
task similarity in BPMs but data similarity is often identified in text-based require-
ments. In BPMs, Similar_to can exist in the generic merge pattern where several (sub-
)processes join to proceed to the next (sub-)process. These (sub-)processes may have 
some similarity in talking to the next activity. But in text-based requirements, Simi-
lar_to can exist between many functional requirements dealing with the same data 
information. Another example is Constraints. It indicates constraints that non-
functional requirements, such as security-related non-functional requirements, have 
on functional requirements. These new dependencies are usually not identified in text-
based requirements but very useful to impact analysis. 

3.3 Usage Guidelines 

While the mapping is useful for identifying dependencies in requirements, it is ex-
pected to be used in a larger framework. For instance, one can define a mini-process 
for requirements elicitation for business-process oriented applications as below: 

1. Develop text-based requirements and supplement them with BPMs. They cover 
business-level activities, business goals and business rules.  

2. Identify dependencies among requirements. This makes use of our mapping be-
tween workflow patterns and dependency types to help analyze requirements de-
pendencies. 

3. Perform coverage checking between BPMs and text-based requirements so that 
missing and ambiguous text-based requirements can be discovered and resolved 
along with dependency analysis. 
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Our work presented in this paper contributes to Step 2 above, relying on availability 
of BPMs. Steps 1 and 3 have their own complexities and we do not elaborate them 
further because of space limitations. Note that the mapping involves overheads, which 
includes learning the dependency types and the mapping, eliciting detailed BPMs and 
applying the mapping. However, these can be offset with the productivity gained from 
identifying dependencies and a more accurate CIS (since more impacted requirements 
are found), both of which exemplified by the case study in the next section. 

Note that while the mapping can be useful for identifying the dependencies of and 
hence linking text-based requirements, mapping text-based requirements onto BPM 
structures and vice versa is an additional problem in itself. For instance, a security 
requirement can cross-cut several parts of an application and may be linked to many 
parts of a BPM. Due to space limitations, this issue is deemed out of scope. 

4 Case Study 

4.1 Questions to Evaluate and Case Selection 

To evaluate our approach, we undertook a case study to answer these questions: 

Q1: Can more dependencies be found by using both BPM and text-based require-
ments than using text-based requirements alone? 

Q2: Are additional dependencies found in Question 1 actually useful in change im-
pact analysis and how? 

The kinds of data linked to research questions and collected through a questionnaire 
are shown in Table 3. 

Table 3. Research question and data to collect 

Question Data to collect

Q1 Number of dependencies found through BPMs 

Number of dependencies found through text-based requirements 

Time spent on dependency discovery 

Q2 Impacted requirements found through dependencies in BPMs 

Impacted requirements found through dependencies in text-based requirements 

Dependency types used in change impact analysis  

 
The case we selected is a property valuation system (PVS) developed by NICTA 

(National ICT Australia) for a company employing the LIXI (Lending Industry XML 
Initiative) standards for the format and exchange of lending-related data using XML. 
LIXI is an independent non-profit organization established to remove data exchange 
barriers within the Australian lending industry. Through the work of LIXI, member 
organizations - including major banks, mortgage originators and brokers, mortgage 
insurers, property valuers, settlement agents, trustees and information technology 
providers - offer services to customers more efficiently and at lower costs. PVS had 
gone through changes with V2 being the latest. It included a “Pocket Valuer”  



 A Business Process-Driven Approach for Requirements Dependency Analysis 209 

 

sub-system on Personal Digital Assistant (PDA) for capturing property valuation data 
onsite, a desktop sub-system for managing information and a web-based business 
process system for managing the valuation workflows. The company planned to mi-
grate all the desktop sub-system functions to a web-based system and implement new 
functions for PVS. In this paper, this whole new system is called PVS V3. This study 
was conducted as part of the PVS V3 requirements development and system design 
project. Our study used requirements in PVS V2 for dependency identification and 
change propagation analysis triggered by new requirements in PVS V3. 

4.2 Case Study Procedures 

Four practitioners, all experienced in requirements engineering, participated in this 
case study. They were evenly split into two groups: the Text group and the 
BPMN+Text group. The former used only text-based requirements specifications and 
the latter used both a BPMN process model and a text-based requirements specifica-
tion. The BPMN+Text group were also familiar with the BPMN language. The case 
study was conducted as follows. Participants in the Text group were firstly given: 

• thirty three change requests from PVS V3 (e.g. new functions); 
• the dependency types and their definitions; and 
• the PVS V2 requirements document written in natural language, consisting of 144 

requirements organized into nineteen modules. Snippets of example modules “Val-
uation Requests” and “Valuation Bookings” are shown in Table 4: 

Table 4. An example of text-based requirements for desktop application specification 

Module ID Specification 

1 - Valuation Requests  R3000 The ability to create valuation requests 

….. ….. 

2 - Valuation Bookings R3200 Requests should be able to be assigned to a valuer and 
booked for a specific date and time 

….. ….. 

Participants in the Text group individually learned the dependency types, identified 
dependencies from the text-based requirements of PVS V2 and recorded them in a 
dependency matrix (example snippet in Fig. 3). Next, they analyzed the requirements 
estimated to be changed because of the change requests from PVS V3. Fig. 5(a) 
summarizes this procedure. 

For the BPMN+Text group, the participants were handed the documentation to the 
Text Group plus the BPMN models to accompany PVS V2 and V3 requirements, a set 
of workflow patterns and the mapping between these patterns. After learning depen-
dency types, the workflow patterns and the mapping, this group identified dependen-
cies in the PVS V2 text-based requirements and the BPMN model, during which they 
identified the workflow patterns in the BPMN model and noted the dependencies in 
patterns in the BPMN model. Dependencies were recorded in a dependency matrix 
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(e.g. Fig. 3) and annotated on the BPMN model (e.g. Fig. 4). Finally, they were asked 
to identify change propagation paths and dependency types used in change impact 
analysis and to analyze the requirements estimated to be changed as triggered by 
change requests in PVS V3. Fig. 5(b) depicts this procedure. 

 

 

Fig. 3. An example of the dependency matrix Fig. 4. An example of patterns and depen-
dencies in the BPMN model 

  

Fig. 5. Case study procedures 

4.3 Analysis Results 

Q1. Can more dependencies be found by using both BPM and text-based re-
quirements than using text-based requirements alone? 
The BPMN+Text group found more dependencies with higher efficiency (i.e. higher 
number of dependencies found per hour) than the Text group (cf. Table 5). None 
found more than ten wrong dependencies because of their familiarity with PVS.  

Table 5. Comparison of dependencies found  

Category Text Group BPMN+Text 
Group 

Number of implementation-related dependencies 125 231 

Number of document-related and value-related dependencies 95 103 

Total number of dependencies 220 334 

Efficiency (number of dependencies identified per hour) 55 74.2 
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The numbers of document-related dependency found by two groups are similar, but 
there is 85% difference between the numbers of implementation-related dependencies 
found by both groups. To explain this difference, we analyzed the data, interviewed 
the participants and confirmed that the BPMN model and the mapping helped the 
BPMN+Text group to understand the text-based requirements and find more depen-
dencies. This is because some dependencies are missing or not explicitly expressed in 
text-based requirements. This group also found twenty three requirements from the 
BPMN model that should be but were left out in the text-based requirements. This 
could be explained by the ambiguity of text-based requirements and a clearer rela-
tional view of business related requirements as provided by the BPMN model. 

The implementation-related dependency distribution is shown in Fig. 6. The 
BPMN+Text group identified more instances of Precondition and Constraints depen-
dencies than the Text group. There were many sequence patterns in the BPMN model 
corresponding to the Precondition dependency which were not explicitly represented 
in text-based requirements. Therefore, it was easier for the BPMN+Text group to 
discover Precondition dependencies. Additionally, there were many cancelling-related 
workflow patterns in the BPMN model which indicated the Constraints dependency. 
However, most of the canceling-related information was missing in text-based re-
quirements as only normal event flows were described. The BPMN model, on the 
other hand, captured these exceptional events comprehensively and helped the 
BPMN+Text group to find more Constraints dependencies. 

 

 

Fig. 6. Implementation-related dependency distribution 

Q2. Are additional dependencies found in Question Q1 actually useful in change 
impact analysis and how? 
We grouped thirty three change requests from PVS V3 into nine categories according 
to their intent and descriptions and compared the number of requirements impacted by 
the nine categories as reported by each of the participant groups. The number of im-
pacted requirements for two request categories was the same for both groups and they 
were discarded from further analysis. The numbers of impacted requirements found 
for the remaining seven categories are shown in Fig. 7, The BPMN+Text group 
scored higher in each of the seven categories than the Text group since they found 
more dependencies and potentially more change impacts. 
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Although both groups identified all five implementation-related dependency types, 
the BPMN+Text group discovered 106 more implementation-related dependencies. 
Subsequently, this group used these extra dependencies to find forty seven impacted 
requirements, a significant portion of all the impacted requirements found (47%), 
suggesting that these dependencies were useful for change impact analysis. 
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Fig. 7. Number of requirements impacted by 
change requests 

Fig. 8. Change impact strengths of dependency 
types 

To show how the five dependency types are useful to change impact analysis, we 
used the concept of change impact strength – which we define as the average number 
of requirements impacted by one change request - to measure the capability of a de-
pendency type to propagate changes between requirements. Fig. 8 shows the change 
impact strengths of the dependency types. “Constraints” has the highest change  
impact strength because this dependency type indicates that one requirement may 
interact with many other requirements to an extent like a crosscutting relation in as-
pect-oriented software development. Please note, from Fig. 8, that the change impact 
strengths of dependency types are different, and therefore it is important to pay atten-
tion to dependency types, which tend to have higher change impact strengths. Our 
findings provide a sweet spot for practitioners to analyze change impacts. 

5 Discussions 

Our case study emphasized realism and integrity of commercial confidentiality rather 
than the sample size. All our chosen participants were and/or had been involved in the 
development of the application at some stage of its lifecycle. However, this recruit-
ment opened potential threats to the credibility of the case study. Thus, we investi-
gated whether or not any relevant factors could lead to the bias of its results. In terms 
of the extent of domain knowledge about the application, one particular participant 
had been involved in the development of the project since inception. However, the 
other participant in the same group who had less experience with the application 
found more dependencies. The lack of domain knowledge did not seem to influence 
the results. We also observed that having specific knowledge and experience in re-
quirements engineering or development determined greatly on what dependency types 
participants could find. One participant in the Text group, who has more requirements 
analysis experience, found more document-related dependencies while the other, who 



 A Business Process-Driven Approach for Requirements Dependency Analysis 213 

 

has more development experience, found more implementation-related dependencies. 
Both found similar numbers of dependencies. That means experience could influence 
the dependency types the participants focus on. On the other hand, we do believe that 
experience did influence a participant in learning the dependency types and later on 
the number of dependencies he/she found but the case study lacks statistical evidence 
to support it (i.e. only four participants).  

There was no evidence of learning effect in this case study because both groups 
discovered dependency in one round. The Text group found dependencies in text-
based requirements and the BPMN+Text group identified dependencies using both 
text-based requirements and the BPMN model together at the same time.  

For external validity, we have only evaluated our approach on one project and ac-
knowledge it as a limitation. Thus our evaluation results were constrained by the 
project. However, PVS appeared to be fairly complex and representative of a real 
application. The project offered us an opportunity to conduct an in-depth case analysis 
as an initial evaluation for our approach.  

With regard to reliability, the participants reported that certain definitions of de-
pendency types were vague when they applied the types. This might result in different 
understanding of the dependency types and affect the dependencies found. To assure 
the correctness and consistency of dependencies found, we conducted a follow-up 
interview with participants, discussed about disputed dependency types and achieved 
an agreement on the understanding of those disputed dependency types.  

In related work, System Modeling Language (SysML) defines a number of re-
quirement relationships for systems-of-systems and enterprise modeling [22]: derive, 
copy, verify, refine, satisfy and trace. The “trace” relationship is an abstract class for 
all the other relationships. “Refine” and “satisfy” are equivalent to our “Refines” and 
“Satisfies” relationships. The “verify” relationship links a test case to a requirement 
and it is not applicable to our dependency model which it is limited to the requirement 
stage and BPMN. Being software-centric, our current dependency model does not 
consider or explore SysML’s “copy” and “derive” relationships. The former refers to 
one requirement’s text property being a read-only copy of another requirement’s for 
requirement reuse. The “derive” relationship relates one requirement to its derived 
requirements, which are at the next level of the system hierarchy. A future extension 
to our model and mapping is to incorporate all of SysML’s requirement relationships 
to support systems-of-systems and enterprise architecture.  

6 Conclusion and Future Work 

From the requirements perspective, change impact analysis can be efficiently sup-
ported by dependency information. To facilitate dependency discovery in business 
process oriented applications, we proposed a mapping between a set of frequently 
occurring workflow patterns typical in BPMN, and a set of dependency types: Simi-
lar_to, Constraints, Precondition, Satisfies and Refines. Through this mapping, in-
stances of these dependency types can be systematically derived from a typical BPM 
by identifying those workflow patterns from the BPMN-based model.  
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We conducted a case study in a real-world project to compare BPMN-and-text with 
text-only dependency discovery. In the former, case study participants discovered 
new dependencies in the requirements that were highly difficult to spot from the text-
based requirements, suggesting an increased scope of change impacts. Through this 
case study, we also found the dependency types discovered through the mapping and 
BPMs very useful for change impact analysis and the change impact strengths of de-
pendency types were different. These findings suggest that it is important to consider 
the nature of dependency during change impact analysis and inspire us in future work 
to explore the change impact abilities of different dependency types which may help 
improve the accuracy of change impact analysis.  

Our study provides insights into applicability of business process modeling in re-
quirement dependency discovery and change impact analysis for both research and 
practice. In the future, we will apply our approach to more industrial projects to vali-
date its applicability. 
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Abstract. To capture knowledge workers’ tacit knowledge, while they
are performing their work, we consider the use of an ad-hoc workflow
system that does not leverage on any predefined model. To avoid the
noisy divergence of ad-hoc executions of business processes, we propose
a recommendation algorithm that promotes convergent behavior through
a goal-driven strategy based on data instead of activity control flow.

Keywords: Recommendations, Tacit Knowledge, Data-driven, Ad-hoc.

1 Introduction

To identify and automate their business processes, organizations need to rely
on the empirical knowledge owned by their workers. This practical knowledge,
usually known as tacit knowledge, which is difficult to transfer to others, allows
workers to deal with particular business situations according to their experi-
ence and the organization’s implicit set of business rules. Such tacit knowledge
empowers workers to interact with one another using generic tools such as docu-
ments, spreadsheets, email, telephone and fax, resulting in interactions that are
mainly ad-hoc and based on their experience, i.e. they are not driven by formal
business process models automated in workflow tools.

Given the necessity of capturing tacit knowledge to build efficient business
process models, knowledge elicitation techniques such as interviews or collabo-
rative business process modeling environments are gaining popularity. However,
these approaches are considered intrusive to knowledge workers, whose main
function is, and should continue to be, the execution of business processes.

One way to support a non-intrusive elicitation of knowledge is through the
means of a capture-while-doing strategy. The idea behind the capture-while-doing
strategy is to support a flexible execution of business processes within an en-
vironment that simultaneously captures the flow of work in a structured way.
Flexibility is enabled by an ad-hoc execution of business processes where there
are no models prescribing the activities and control flow orchestrating them.
Nevertheless, providing too much flexibility inevitably results in a combinato-
rial explosion of cases that, if left unmanaged, introduce noisy divergence that
hinders standardization. In this paper we propose a recommendation algorithm
that promotes convergent behavior through a goal-driven strategy based on data
produced in previous business process instances instead of activity control flow.

A. Barros, A. Gal, and E. Kindler (Eds.): BPM 2012, LNCS 7481, pp. 216–222, 2012.
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2 Algorithm

In our previous work [1], developed within the context of the Processpedia
project [2], we proposed a people-driven ad-hoc workflow tool to non-intrusively
capture organizational behavior. To ensure this non-intrusiveness quality, the
tool enables end-users to interact and exchange data objects using an interface
similar to an email client system. Despite the interface similarities, interactions
are supported by a more structured and semantically rich approach settled on the
foundations of Language-Action Perspective (LAP). Therefore, without business
process models to support their interactions, knowledge workers interact through
the means of a request-response interaction pattern that allows them to request
work from one another by providing the necessary input data objects, while
expecting the data objects they need as a response (see Figure 1).

R1 R2

D1 A
D4

D1

D2 R3

D3 B
D4 D4D3

D1D1

D3

D1

D3

D1

Fig. 1. The end-user playing role R1, owns two data objects named D1 and D2, sends a
request named A to another end-user playing role R2, only providing D1 as input. The
end-user playing R1 is the initiator of request A. The end-user playing R2, after receiv-
ing the data object D4 from the end-user playing R3, replies with an updated version
of D1, D3 and D4 to the initial requestor. The end-user playing R2 is simultaneously
the executor of request A, and the initiator of request B.

In our approach, the sets of produced data objects represent the business
process goals, which can be achieved in different ways: either by the same set
of requests that execute in different orders, or by different sets of requests that
produce the same set of data objects, i.e. that achieve the same process goal.
Moreover, a business process can have different goals as their instances can
produce different sets of data objects.

Given the absence of an underlying business process model, end-users must
name requests and data objects to semantically differentiate them, inevitably
resulting in a combinatorial explosion of names if the naming process is left un-
managed. To identify organizational behavior, we must promote convergence by
avoiding the creation of terminologically different entities that are semantically
equivalent. There are two main strategies to deal with this divergence problem:
we either foster reutilization by providing the end-users with recommendations
based on the past execution of their co-workers, or we can infer semantic equiv-
alence between entities that may have different nomenclature and structure. We
follow the former strategy because we are focusing on capturing and standardiz-
ing organizational behavior. Using the knowledge captured within previous ad-
hoc executions, we are enabled to foster convergence by recommending request
configurations (see Table 1), based on previous contextually similar executions.

The recommendation algorithm fosters convergence of behavior towards the
achievement of previously attained process goals by suggesting request configu-
rations used in the previous achievements of those goals. To do so, the algorithm
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Table 1. An example of two request configurations, 1 and 2, under the same request
name. The second column represents the number of process instances where the request
configuration was applied, and the respective achieved process goals where it was used.
The third and fourth column represents, respectively, the request input and output data
objects. The fifth column represents the data objects available to the request initiator.
The sixth column represents the data objects produced already in the process instance.
Finally, the last column holds information concerning the organizational roles played
by the request initiator.

Config Occurrences
Input

Context
Output
Context

Request
Context

Process
Context

Initiator
Context

1 G1(20),G2(10),G3(4) D1 D5,D6 D1,D2 D1,D2 R1,R3

2 G1(2),G2(1),G3(8) D1 D5 D1,D2 D1,D2,D3,D4 R2,R3

deals with the immediate problem of ordering request configurations according to
their contextual relevance to the end-user to whom the set of recommendations
is addressed. However, in order to establish order within those set of requests,
we established some quantitative metrics for comparison:

– Goal Match: reflects how the data objects already produced in the process
instance fit within a particular process goal.

– Request Configuration Fitness: defines how fit is a request configuration,
in the context of a process instance, an initiator, and its available data
objects. It considers five fitness dimensions: process data, request data, input
data, output data and initiator roles fitness (uses columns 3 to 6 in Table 1).
• Input Data Fitness: how much the input data objects of the request
configuration fit the set of data objects available to the initiator.

• Output Data Fitness: how much the output data objects of the request
configuration contribute to achieve the process goal.

• Request Data Fitness: how much the request context data objects of the
request configuration fit the data objects available to the initiator.

• Process Data Fitness: how much the process context data objects of the
request configuration fit the data objects already produced in the process
instance.

• Initiator Fitness: checks if the initiator plays at least one of the organi-
zational roles in the initiator context of the request configuration.

– Support: measures the contribution of the request configuration to the
achievement frequency of each process goal (uses column 2 in Table 1).

Algorithm 1 computes a set of request configuration recommendations, associat-
ing to each request configuration the metrics described above. A recommendation
is therefore a tuple (rc, goal-match, fitness, support), where rc is a request config-
uration to be recommended, and goal-match, fitness and support are the metrics
that will be used to order the recommendations before they are presented to the
end-user initiating a new request, in the context of the current request r. Given
a process goal g, a process instance p, and the current request r, by applying the
data() function to each respectively, we obtain the process goal data objects, the
data objects already produced within the process instance, and the data objects
available to the executor of the current request r.
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Algorithm 1. Compute the set of request configuration recommendations

Require: Fitness Weights σi, σo, σr, σp, σf

Require: Process P
Require: Process instance p ∈ P
Require: Current request r ∈ request(p)
Ensure: σi + σo + σr + σp + σf = 1

recommendations ← {}
for all process goal g ∈ goal(P ) do

missing-data ← data(g) \ data(p)
goal-match ← goal-match(g, p)
for all data object d ∈ missing-data do

for all distinct request configuration rc where d ∈ output-context(rc) do
input-fit ← σi·data-fit(input-context(rc), data(r))
output-fit ← σo·data-fit(output-context(rc), missing-data)
request-fit ← σr·data-fit(request-context(rc), data(r))
process-fit ← σp·data-fit(process-context(rc), data(p))
initiator-fit ← σf ·role-fit(initiator-context(rc), executor-roles(r))
fitness ← input-fit + output-fit + request-fit + process-fit + initiator-fit
support ← occurrences(rc, g)
recommendations ← recommendations ∪ (rc, goal-match, fitness, support)

end for
end for

end for

Given a process goal g and a process instance p, we compute the goal match
by using the Tversky asymmetric similarity measure parametrized with α = 0
and β = 1:

goal-match(g, p) =
| data(g) ∩ data(p) |

| data(g) ∩ data(p) |+ | data(p) \ data(g) |
The data fit function, used in Algorithm 1, is defined in Equation 1, illustrating
how well a set of data objects A fits inside a set of data objects B.

data-fit(A,B) =
1

1 + | A \ B | (1)

Finally, we define role fit as the Kronecker Delta function established on the
existence of an intersection between two sets of roles, as given by Equation 2.

role-fit(A,B) =

{
1 A ∩ B 
= ∅
0 A ∩ B = ∅ (2)

Although the goal-match is independent of the request configuration, it provides
an important metric to identify how the current process data objects comply
with process goals.

The computation of the overall fitness value is weighted by a vector of fitness
weights 〈σi, σo, σr, σp, σf 〉, respectively, for input, output, request, process and
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initiator roles fitness. To compute such request configuration fitness, the input-fit,
request-fit, process-fit and initiator-fit are metrics that represent the capability
the initiator has to initiate that request configuration, while the output-fit mea-
sures how closer the output of that request configuration will bring the process
instance towards the considered process goal. Finally, the support of a given re-
quest configuration represents the number of times that a request configuration
has contributed to achieve the considered process goal.

A last comment on how the algorithm orders recommendations: first recom-
mendations are ordered by goal match since this metric reflects how much the
process instance data is convergent with the process goal; then, for all the rec-
ommendations that have the same goal match, order is given by the request
configuration overall fitness because it defines how able is the end-user to per-
form the request given its current context; finally, for the recommendations that
also have the same fitness, they are ordered by the request recommendation sup-
port, which reflects the frequency a particular request configuration contributed
to the achievement of the considered process goal.

3 Related Work

There are other approaches [3] that attempt to non-intrusively extract business
process models from email logs. However, mining email logs is likely to produce
incomplete business process models given its unstructured and noisy nature.

In [4], Vanderfeesten et al. use a Product Data Model (PDM) approach to
drive the execution of business processes based on data dependencies. Further
work [5] has focused on making decision process knowledge explicit by logging
the interaction of knowledge workers with a simulated environment containing
all data needed for the decision, with the intention of mining a PDM. In both
cases, it is necessary to explicitly pre-define some of the data objects.

Other recent work [6] proposes recommendations based on document struc-
ture, using process structure and document’s semantics to compute recommenda-
tions. Nevertheless, they focus on recommending different control flow sequences,
based on pre-defined activities, to achieve the same goals.

In [7], Motahari and Nezad recommend next steps based on the automated
discovery of annotated models, based on both structured and unstructured in-
formation on conversational and social interactions. Nevertheless, the similarity
functions focus on tags and historical flow matching.

The work present in [8] proposes a recommendation service to guide end-users
during process execution, providing recommendation on possible next steps. Al-
though recommendations are also founded on similar past process executions,
they focus on specific optimization goals, and like other works [9,10], are only
concerned with activity control flow and disregard data objects.

Object-aware processes’ work [11] also centers on the data produced, and
avoids the pre-definition of activities. Our work relates by centering recommen-
dations on data and capturing different ways to reproduce it, following a multi-
dimensional context aware recommendation system approach [12].
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4 Conclusions

In this paper we propose a goal-driven algorithm to compute request recom-
mendations in people-driven ad-hoc processes. The algorithm calculates which
requests are most suitable by leveraging on the state of the process instance
and execution context. Such process instance state and execution context are
defined using data objects and organizational roles. We defined the suitability of
a recommendation using notions of goal match, fitness and support, respectively
relating the recommended request to its contribution to the accomplishment of
a goal, its contextual adequacy, and its execution frequency. Implicit feedback
from the acceptance of the recommendation increases its support, whereas its
goal match and fitness metrics are based on the availability and necessity of data
objects, and on the organizational roles adequacy of their participants.

In the future we plan to conduct empirical evaluations of the algorithm in
real organizations. Additionally, it would be interesting to extend the algorithm
to also recommend the addressees of a request based on their organizational
roles and accountabilities, as also establishing a credibility metric to promote
the re-use of request configurations executed by experienced end-users.
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Abstract. Process Performance Indicators (PPIs) are a key asset for the
measurement of the achievement of strategic and operational goals in process–
oriented organisations. Ideally, the definition of PPIs should not only be unam-
biguous, complete, and understandable to non–technical stakeholders, but also
traceable to business processes and verifiable by means of automated analysis.
In practice, PPIs are defined either informally in natural language, with its well–
known problems, or at a very low level, or too formally, becoming thus hardly
understandable to managers and users. In order to solve this problem, in this
paper, a novel approach to improve the definition of PPIs using templates and
ontology–based linguistic patterns is proposed. Its main benefits are that it is easy
to learn, promotes reuse, reduces ambiguities and missing information, is under-
standable to all stakeholders and maintains traceability with the process model.
Furthermore, since it relies on a formal ontology based on Description Logics,
it is possible to perform automated analysis and infer knowledge regarding the
relationships between PPI definitions and other process elements.

Keywords: Business Process Management, Process Performance Management,
Key Performance Indicator, Process Performance Indicator, Templates, Patterns.

1 Introduction

Many companies are adopting a process–oriented approach in their business. In order
to measure progress towards their business goals, it is important to evaluate the perfor-
mance of their business processes (BPs) by means of the so–called Process Performance
Indicators (PPIs), a particular case of Key Performance Indicators (KPIs) dedicated to
BPs. For example, for the process depicted in Fig. 1, some PPIs could be defined based
on metrics such as the average time of the Analyse RFC activity, the registered/approved
RFC ratio, or the average delay of elevating a RFC to committee.

PPIs are recommended to satisfy the SMART criteria [1], i.e to be Specific, Mea-
surable, Achievable, Relevant and Time–bounded, but also to be understandable, traced
to the related BPs and automatically analysable [2,3,4]. A notation for PPI definition
satisfying these requirements is still a challenge, mainly because of the conflict be-
tween understandability and automatic analysis. In practice, PPIs are defined either in
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Fig. 1. Sample business process: Request for Change (RFC) management

(1) natural language, with its well–known problems of ambiguity and incompleteness;
(2) at implementation level; or (3) too formally, becoming thus hardly understandable
for managers and users.

In this paper we address this challenge and propose a novel approach to improve
the definition of PPIs using templates and linguistic patterns (L–patterns, i.e. very used
sentences in natural language that can be reused by parametrisation), which have been
successfully applied in the areas of Requirements Engineering [5,6] and Service Level
Agreements [7]. The proposed notation is formally supported by the PPINOT ontology
[3], allowing their automated analysis using Description Logics.

2 PPI Template

Our proposal for PPI template, inspired by the requirements templates originally pro-
posed in [5], is shown in Table 1 and an example is shown in Table 2. It has been
designed in order to fulfil the SMART criteria [1] and is heavily based on the PPINOT
ontology [3]. As commented in [5], using templates helps to organise the information
in a structured form, reduces ambiguity, promotes reuse, and also serves as a guide to
avoid missing relevant information. The notation used in the template is the follow-
ing: words between “<” and “>” are placeholders for either literals (lower case) or
L–patterns (upper case); words between “{” and “}” and separated by “|” are one–only
options; words between “[” and “]” are optionals. The meaning of the template fields is
the following:

– Identifier and descriptive name: unique PPI identifier, needed for traceability, and
a self–descriptive name for the PPI.
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Table 1. Template for PPI specification

PPI–<ID> <PPI descriptive name>

Process <process ID the PPI is related to>

Goals <strategic or operational goals the PPI is related to>

Definition The PPI is defined as {
<DurationMeasure> | <CountMeasure> | <ConditionMeasure> |
<DataMeasure> | <DerivedMeasure> | <AggregatedMeasure> }

[ expressed in <unit of measure> ].

Target The PPI value must {
be {greater | lower} than [or equal to] <bound> |
be between <lower bound> and <upper bound> [inclusive] |
fulfil the following constraint: <target constraint> }

Scope The process instances considered for this PPI are {
the last <n> ones |
those in the analysis period <AP–x> }

Source <source from which the PPI measure can be obtained>

Responsible { <role> | <department> | <organization> | <person>}

Informed { <role> | <department> | <organization> | <person>}

Comments <additional comments about the PPI>

– Process and goals: traces to the process for which the PPI is defined and to the
strategic or operational goals the PPI is related to (Relevant SMART criteria).

– Definition: kind of measure and units, if needed, the PPI is based on (Specific and
Measurable SMART criteria). Corresponding measure L–patterns are described in
next section.

– Target: target value of the PPI for achieving previously referenced goals (Achiev-
able SMART criteria).

– Scope: number of process instances or analysis period considered for computing
the PPI value (Time–Bounded SMART criteria). Due to space limitations, analysis
period descriptions are not included in this paper (see [3,4] for more information).

– Source of information: source from where the required information to compute
the PPI is gathered.

– Responsible and Informed: resources in charge of or interested in the PPI. They
can be persons, roles, departments or organisations.

– Comments: any other relevant information that cannot be fitted in previous fields.

3 L–Patterns for PPI Specification

Following [5,6], L–patterns are integrated in the proposed PPI template because filling
blanks in prewritten sentences is easier, faster and less error–prone than doing it from
scratch. The six proposed L–patterns are described in this section.
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Table 2. PPI specification example

PPI–001 Average time of RFC analysis

Process Request for change (RFC)

Goals • BG–002: Improve customer satisfaction

• BG–014: Reduce RFC time–to–response

Definition The PPI is defined as the average of Duration of Analyse RFC activity.

Target The PPI value must be lower than or equal to 1 working day.

Scope The process instances considered for this PPI are the last 100 ones.

Source Event logs of BPMS.

Responsible Planning and quality manager

Informed CIO

Comments Most RFCs are created after 12:00.

3.1 Duration Measure L–Pattern

In the PPI context, a duration can be defined as the difference between two events,
considering as events not only BP event triggerings but also BP element transitions.
Following the BPMN 2.0 specification [8], we consider activities, pools and data ob-
jects as elements; and ready, active, withdrawn, completing, completed, failing, failed,
terminating, terminated, compensating and compensated as states (data object states
are user–defined). Having said that, the DurationMeasure L–pattern can be
defined as:

the duration between the time instants when <event1> and when <event2>

where <event> is defined as:

{ <BP element> changes to state <BP state> | <BP event> is triggered }

For example, in order to measure the duration of the Analyse RFC activity, the L–pattern
can be instantiated as:

the duration between the time instants when RFC analysis activity changes to state
active and when RFC analysis activity changes to state completed

3.2 Count Measure L–Pattern

A count measure for PPIs counts the number of times a specific event—as considered
in previous section—happens. Therefore, its corresponding L–pattern is as simple as
the number of times <event>, for example:

the number of times Analyse RFC activity changes to state completed
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3.3 Condition Measure L–Pattern

A condition measure takes boolean values depending on either the state of a BP element
or a condition specified on a data object. The two corresponding L–patterns are:

<BP element> { is currently | has finished } in state <BP state>

Data object <object> satisfies: <condition on object properties>

For example:

Activity Analyse in committee is currently in state active

Data object RFC satisfies: priority = high

3.4 Data Measure L–Pattern

A data measure takes the value of a specific property of a data object. The L–pattern
is as simple as: the value of <property> of <object>. For example, assuming the RFC
data object has a property indicating the affected departments:

the value of affected departments of RFC.

3.5 Derived Measure L–Pattern

A derived measure is a function defined over other measures expressed using some of
the previous L-patterns. For the sake of simplicity, they are referred to by means of a
symbolic name. In this case, the L–pattern includes the expression of the function and
a mapping from function variables to the measures of other measures:

the function <expression over x1 . . . xn>, where { <xi> is <Measurei> }i=1..n

For example, assuming two Measures such as Number of approved RFCs and Number
of registered RFCs, a derived measure for the ratio of RFCs approved from registered
could be defined as:

the function
a

r
∗ 100, where a is Number of approved RFCs and r is Number of

registered RFCs

3.6 Aggregated Measure L–Pattern

In a similar way to derived measures, aggregated measures are defined over one of the
previous measures by applying one aggregation function, i.e. sum, maximun, minimum,
average, etc. The corresponding L–pattern is the following:

the { sum | maximum | minimum | average | . . . } of <Measure>

An example of the use of an aggregated measure L–pattern can be seen in the sample
PPI definition in Table 2.
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4 Conclusions and Future Work

As a major conclusion we can claim that it is possible to define PPIs with a notation that
is easy to learn, promotes reuse, reduces ambiguities and avoids missing information,
is understandable to all stakeholders, maintains traceability with the process model,
and can be automatically analysed. The only price to pay is to restrict the employed
sentences to the ones allowed by the underlying PPINOT ontology [3].

Some possible lines for future work can include adapting templates when more feed-
back from real scenarios is available, discovering more patterns, specially for the def-
inition of resource–aware PPIs, and developing a tool to integrate it into the PPINOT
tool, allowing thus the definition of PPIs through either the approach presented here or
using our graphical notation, and their subsequent analysis, enabling also the automatic
generation of documentation.
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Abstract. Process mining techniques relate observed behavior (i.e., event logs)
to modeled behavior (e.g., a BPMN model or a Petri net). Processes models can
be discovered from event logs and conformance checking techniques can be used
to detect and diagnose differences between observed and modeled behavior. Exist-
ing process mining techniques can only uncover these differences, but the actual
repair of the model is left to the user and is not supported. In this paper we inves-
tigate the problem of repairing a process model w.r.t. a log such that the resulting
model can replay the log (i.e., conforms to it) and is as similar as possible to the
original model. To solve the problem, we use an existing conformance checker
that aligns the runs of the given process model to the traces in the log. Based on
this information, we decompose the log into several sublogs of non-fitting sub-
traces. For each sublog, a subprocess is derived that is then added to the original
model at the appropriate location. The approach is implemented in the process
mining toolkit ProM and has been validated on logs and models from Dutch mu-
nicipalities.

Keywords: process mining, model repair, Petri nets, conformance checking.

1 Introduction

Process mining techniques aim to extract non-trivial and useful information from event
logs [1,14]. Typically three basic types of process mining are considered: (a) process
discovery, (b) conformance checking, and (c) model enhancement [1]. The first type of
process mining is process discovery, i.e., automatically constructing a process model
(e.g., a Petri net or a BPMN model) describing the causal dependencies between ac-
tivities. The basic idea of control-flow discovery is very simple: given an event log
containing a set of traces, automatically construct a suitable process model “describing
the behavior” seen in the log. However, given the characteristics of real-life event logs,
it is notoriously difficult to learn useful process models from such logs. The second type
of process mining is conformance checking [2,4,5,8,9,13,18,19,21,23]. Here, an exist-
ing process model is compared with an event log of the same process. Conformance
checking can be used to check if reality, as recorded in the log, conforms to the model
and vice versa. The conformance check could yield that the model does not describe the
process executions observed in reality: activities in the model are skipped in the log, the
log contains events not described by the model, or activities are executed in a different
order than described by the model.

Here, the third type of process mining comes into play: to enhance an existing model
to reflect reality [3]. In principle one could use process discovery to obtain a model that

A. Barros, A. Gal, and E. Kindler (Eds.): BPM 2012, LNCS 7481, pp. 229–245, 2012.
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Fig. 1. Original model (left), model (middle) obtained by repairing the original model w.r.t. a
given log, and model (right) obtained by rediscovering the process in a new model

describes reality. However, the discovered model is likely to bear no similarity with
the original model, discarding any value the original model had, in particular if the
original was created manually. A typical real-life example is the references process
model of a Dutch municipality shown in Fig. 1(left); when rediscovering the actual
process using logs from the municipality one would obtain the model in Fig. 1(right).
A more promising approach is repair, that is change, the original model so that the
repaired model can replay the log and is as similar as possible to the original model.
This is the first paper to focus on model repair with respect to a given log.

The concrete problem addressed in this paper reads as follows. We assume a Petri
net N (a model of a process) and a log L (being a multiset of observed cases of that
process) to be given. N conforms to L if N can execute each case in L, i.e., N can replay
L. If N cannot replay L, then we have to change N to a Petri net N′ s.t. N′ can replay L
and N′ is as similar to N as possible.

This problem is effectively a continuum problem between confirming that N can
replay L and discovering a new model N′ from L in case N has nothing to do with
L. The goal is to avoid the latter case as much as possible. We solve this problem in
a compositional way: we identify subprocesses that have to be added in order repair
N. In more detail, we first compute for each case l ∈ L an alignment that describes at
which parts, N and l deviate. Based on this alignment, we identify transitions of N that
have to be skipped to replay l and which particular events of l could not be replayed
on N. Moreover, we identify the location at which N should have had a transition to
replay each of these events. We group sequences of non-replayable events at the same
location to a sublog L′ of L. For each sublog L′, we construct a small subprocess N′
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that can replay L′ by using a process mining algorithm. We then insert N′ in N at the
location where each trace of L′ should have occurred. By doing this for every sublog
of non-replayable events, we obtain a repaired model that can replay L. Moreover, by
the way we repair N, we preserve the structure of N giving process stakeholders useful
insights into the way the process changed. We observed in experiments that even in
case of significant deviations we could identify relatively few and reasonably structured
subprocesses: adding these to the original model always required fewer changes to the
original model than a complete rediscovery. Repairing the model of Fig. 1(left) in this
way yields the model shown in Fig. 1(middle).

The remainder of this paper is structured as follows. Section 2 recalls basic notions
on logs, Petri nets and alignments. Section 3 investigates the model repair problem in
more detail. Section 4 presents a solution to model repair based on subprocesses. We
report on experimental results in Sect. 5 and discuss related work in Sect. 6. Section 7
concludes the paper.

2 Preliminaries

This section recalls the basic notions on Petri nets and introduces notions such as event
logs and alignments.

2.1 Event Logs

Event logs serve as the starting point for process mining. An event log is a multiset of
traces. Each trace describes the life-cycle of a particular case (i.e., a process instance)
in terms of the activities executed.

Definition 1 (Trace, Event Log). Let Σ be a set of actions. A trace l ∈ Σ∗ is a sequence
of actions. L ∈ IB(Σ∗) is an event log, i.e., a multiset of traces.

An event log is a multiset of traces because there can be multiple cases having the
same trace. If the frequency of traces is irrelevant, we refer to a log as a set of traces
L = {l1, . . . , ln}. In this simple definition of an event log, an event is fully described by
an action label. We abstract from extra information such as the resource (i.e., person or
device) executing or initiating the activity and the timestamp of the event.

2.2 Petri Nets

We use labeled Petri nets to describe processes. We first introduce unlabeled nets and
then lift these notions to their labeled variant.

Definition 2 (Petri net). A Petri net (P, T, F) consists of a set P of places, a set T
of transitions disjoint from P, and a set of arcs F ⊆ (P × T ) ∪ (T × P). A marking
m of N assigns each place p ∈ P a natural number m(p) of tokens. A net system
N = (P, T, F,m0,m f ) is a Petri net (P, T, F) with an initial marking m0 and a final
marking m f .
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Fig. 2. A net system N

We write •y := {x | (x, y) ∈ F} and
y• := {x | (y, x) ∈ F} for the pre- and the
post-set of y, respectively. Fig. 2 shows a
simple net system N with the initial mark-
ing [p1] and final marking [p6]. N will
serve as our running example.

The semantics of a net system N are
typically given by a set of sequential runs.
A transition t of N is enabled at a marking m of N iff m(p) ≥ 1, for all p ∈ •t. If t

is enabled at m, then t may occur in the step m
t−→ mt of N that reaches the successor

marking mt with mt(p) = m(p) − 1 if p ∈ •t \ t•, mt(p) = m(p) + 1 if p ∈ t• \ •t, and
mt(p) = m(p) otherwise, for each place p of N. A sequential run of N is a sequence

m0
t1−→ m1

t2−→ m2 . . .
tk−→ m f of steps mi

ti+1−−→ mi+1, i = 0, 1, 2, . . . of N beginning in the
initial marking m0 and ending in the final marking m f of N. The sequence t1t2 . . . tk is an
occurrence sequence of N. For example, in the net N of Fig. 2 transitions a is enabled
at the initial marking; abcd is a possible occurrence sequence of N.

The places and transitions of a Petri net can be labeled with names from an alpha-
bet Σ. In particular, we assume label τ ∈ Σ denoting an invisible action. A labeled
Petri net (P, T, F, �) is a net (P, T, F) with a labeling function � : P ∪ T → Σ. A la-
beled net system N = (P, T, F, �,m0,m f ) is a labeled net (P, T, F, �) with initial marking
m0 and final marking m f . The semantics of a labeled net is the same as for an un-
labeled net. Additionally, we can consider labeled occurrence sequences of N. Each
occurrence sequence σ = t1t2t3 . . . of N induces the labeled occurrence sequence
�(σ) = �(t1)�(t2)�(t3) . . . �(tk)|Σ\{τ} obtained by replacing each transition ti by its label
�(ti) and omitting all τ’s from the result by projection onto Σ \ {τ}. We say that N can
replay a log L iff each l ∈ L is a labeled occurrence sequence of N.

2.3 Aligning an Event Log to a Process Model

Conformance checking techniques investigate how well an event log L ∈ IB(Σ∗) and a
labeled net system N = (P, T, F, �,m0,m f ) fit together. The process model N may have
been discovered through process mining or may have been made by hand. In any case, it
is interesting to compare the observed example behavior in L and the potential behavior
of N. In case the behavior in L is not possible according to N (L cannot replay N), we
want to repair N.

In the following we recall a technique for identifying where L and N deviate, and
hence where N has to be repaired. It will allow us to determine a minimal set of changes
that are needed to replay L on N [2,5,4]. It essentially boils down to relate l ∈ L to an
occurrence sequence σ of N s.t. l and σ are as similar as possible. When putting l and
σ next to each other, i.e., aligning σ and l, we will find (1) transitions in σ that are not
part of l and (2) activities of l that are not part of σ [2].

For instance, a trace l = accd is similar to the occurrence sequence σ = abcd of
the net of Figure 2 where trace l deviates from σ by skipping over b and having an
additional c.
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In order to repair N to fit trace l, N has to allow to skip over transitions of the first
kind and has to be extended to execute activities of the second kind. In [5,4] an approach
was presented that allows to automatically align a trace l to an occurrence sequence of
N with a minimal number of deviations in an efficient way. All of this is based on the
notion of an alignment and a cost function.

Definition 3 (Alignment). Let N = (P, T, F, �,m0) be a labeled net system. Let l =
a1a2 . . . am be a trace over Σ. A move is a pair (b, s) ∈ (Σ ∪{
})× (T ∪ {
}) \ {(
,
)}.
An alignment of l to N is a sequence α = (b1, s1)(b2, s2) . . . (bk, sk) of moves, s.t.

1. the restriction of the first component to actions Σ is the trace l, i.e., (b1b2 . . . bk)|Σ =
l,

2. the restriction of the second component to transitions T , (s1s2 . . . sk)|T , is an occur-
rence sequence of N, and

3. transition labels and actions coincide (whenever both are defined), i.e., for all i =
1, . . . , k, if si � 
, �(si) � τ, and bi � 
, then �(si) = bi.

Move (bi, si) is called (1) a move on model iff bi = 
 ∧ si � 
, (2) a move on log iff
bi � 
 ∧ si = 
, and (3) a synchronous move iff bi �
 ∧ si � 
.

For instance, for trace l = accd and the net of Figure 2, a possible alignment would
be (a, a)(c, c)(
, b)(c,
)(d, d).

Each trace usually has several (possibly infinitely many) alignments to N. We are
typically interested in a best alignment, i.e., one that has as many synchronous moves
as possible. One way to find a best alignment is to use a cost function on moves and to
find an alignment with the least costs.

Definition 4 (Cost function, cost of an alignment). Let κ : Σ∪T → N define for each
transition and each action a positive cost κ(x) > 1 for all x ∈ Σ ∪ T. The cost of a move
(b, s) is κ(b, s) = 1 iff b � 
 � s, κ(b, s) = κ(s) iff b = 
, and κ(b, s) = κ(b) iff s = 
.
The cost of an alignment α = (b1, s1) . . . (bk, sk) is κ(α) =

∑k
i=1 κ(bi, si).

In this paper, we abstract from concrete cost functions. However, we assume that desir-
able moves, i.e., synchronous moves (b, s) with �(s) = b and invisible moves on model
(
, s) with �(s) = τ, have low costs compared to undesirable moves such as moves on
log (b,
) and visible moves on model (
, s) with �(s) � τ.

Definition 5 (Best alignment). Let N = (P, T, F, �,m0) be a labeled net system. Let κ
be a cost function over moves of N and Σ. Let l be a trace over Σ. An alignment α (of l
to N) is a best alignment (wrt. κ) iff for all alignments α′ (of l to N) holds κ(α′) ≥ κ(α).

Note that a trace l can have several best alignments with the same cost. A best alignment
α of a trace l can be found efficiently using an A�-based search over the space of all
prefixes of all alignments of l. The cost function κ thereby serves as a very efficient
heuristics to prune the search space and guide the search to a best alignment. See [5,4]
for details.

Using the notion of best alignment we can relate any trace l ∈ L to an occurrence
sequence of N.
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3 Model Repair: The Problem

The model repair problem is to transform a model N that does not conform to a log
L into a model N′ that conforms to L. We review the state-of-the-art in conformance
checking and investigate the model repair problem in more detail.

3.1 Conformance of a Process Model to a Log

Conformance checking can be done for various reasons. First of all, it may be used to au-
dit processes to see whether reality conforms to some normative or descriptive model.
Deviations may point to fraud, inefficiencies, and poorly designed or outdated proce-
dures. Second, conformance checking can be used to evaluate the results of process dis-
covery techniques. In fact, genetic process mining algorithms use conformance check-
ing to select the candidate models used to create the next generation of
models [17].

Numerous conformance measures have been developed in the past
[2,4,5,8,21,9,13,18,19,23]. These can be categorized into four quality dimensions
for comparing model and log: (1) fitness, (2) simplicity, (3) precision, and (4) general-
ization [1]. A model with good fitness allows for most of the behavior seen in the event
log. A model has a perfect fitness if all traces in the log can be replayed by the model
from beginning to end. The simplest model that can explain the behavior seen in the
log is the best model. This principle is known as Occam’s Razor. A model is precise if
it is not “underfitting”, i.e., the model does not allow for “too much” behavior. A model
is general if it is not “overfitting”, i.e., the model is likely to be able to explain unseen
cases [1,2].

The fitness of a model N to a log L can be computed using the alignments of Sect. 2.3
as the fraction of moves on log or move on model relative to all moves [2]. The aligned
event log can also be used as a starting point to compute other conformance metrics
such as precision and generalization.

3.2 Repairing a Process Model to Conform to a Log

Although there are many approaches to compute conformance and to diagnose devia-
tions given a log L and model N, we are not aware of techniques to repair model N to
conform to an event log L.

There are two “forces” guiding such repair. First of all, there is the need to improve
conformance. Second, there is the desire to clearly relate the repaired model to the orig-
inal model, i.e., repaired model and original model should be similar. Given metrics for
conformance and closeness of models, we can measure the weighted sum or harmonic
mean of both metrics to judge the quality of a repaired model. If the first force is weak
(i.e., minimizing the distance is more important than improving the conformance), then
the repaired model may remain unchanged. If the second force is weak (i.e., improving
the conformance is more important than minimizing the distance), then repair can be
seen as process discovery. In the latter case, the initial model is irrelevant and it is better
to use conventional discovery techniques. Put differently, the model repair problem is
positioned in a spectrum of two extremes:
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keep. Keep the original model because it is of high value and non-conformance is
within acceptable limits, e.g., 99.9% of all cases can be replayed.

discover. Model and log are effectively unrelated to each other, e.g., no case can be
replayed and alignments find few or no synchronous moves.

Typically model repair is applied in settings in-between these two extremes. This creates
a major challenge: How to identify which parts of a model shall be kept, and which
parts of a model shall be considered as nonconformant to the log and hence changed,
preferably automatically? The latter is a local process discovery problem which requires
to balance the four quality dimensions of conformance as well.

3.3 Addressing Different Quality Dimensions

In this paper, we primarily focus on fitness which is often seen as the most important
quality dimension for process models. A model that does not fit a given log (i.e., the
observed behavior cannot be explained by the model) is repaired using the information
available in the alignments.

Only for a fitting model precision can be addressed [18]; our particular technique
for model repair will cater for precision as well. The two other criteria of generaliza-
tion and simplicity may contradict these aims [1,14]. Generalization and precision can
be balanced, for instance using a post-processing technique such as the one presented
in [11].

Similarity of the repaired model to the original model, as well as simplicity of the
repaired model in general, is harder to achieve. It may require tradeoffs with respect to
the other quality dimensions. For model repair basically the same experiences apply as
for classical process discovery: while repairing, one should not be forced to extend the
model to allow for all observed noisy behavior — it could result in overly complicated,
spaghetti-like models. Therefore, we propose the following approach.

1. Given a log L and model N, determine the multiset L f of fitting traces and the
multiset Ln of non-fitting traces.

2. Split the multiset of non-fitting traces Ln into Ld and Lu. According to the domain
expert the traces in Ld should fit the model, but do not. Traces in Lu could be
considered as outliers/noise (according to the domain expert) and do not trigger
repair actions.

3. Repair should be based on the multiset L′ = L f ∪ Ld of traces. L′ should perfectly
fit the repaired model N′, but there may be many candidate models N′.

4. Return a repaired model N′ that can be easily related back to the original model N,
and in which changed parts are structurally simple.

The critical step of separating Ln into Ld and Lu does not require manual inspection
of each case by a domain export. A number of standard preprocessing techniques can
help to filter Ln: by (1) including in Ld only cases with particular start and end events,
by (2) filtering infrequent events (that occur only rarely), and by (3) identifying events
that occur out of order using trace alignment [7]; see [6] for a comprehensive use of
preprocessing techniques in a case study.
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Fig. 3. Alignments of log L = {acfced, abccfed} to the net of Fig. 2

In the remainder, we assume L′ to be given, i.e., outliers Lu of L are removed. If an
event log is noisy and one includes also undesired traces Lu, it makes no sense to repair
the model while enforcing a perfect fit as the resulting model will be spaghetti-like and
not similar to the original model.

4 Repairing Processes by Adding Subprocesses

In the following, we present a solution to model repair. We first sketch a naive ap-
proach which completely repairs a model w.r.t. the quality dimension of fitness but
scores poorly in terms of precision. We then define a more advanced approach that also
caters for precision. Improvements w.r.t. simplicity are discussed at the end.

4.1 Naive Solution to Model Repair – Fitness

Alignments give rise to a naive solution to the model repair problem that we sketch
in the following. It basically comprises to extend N with a τ-transition that skips over
a transition t whenever there is a move on model (
, t), and to extend N with a self-
looping transition t with label a whenever there is a move on log (a,
). This extension
has to be done for all traces and all moves on log/model. The crucial part is to identify
the locations of these extensions.

Figure 3 illustrates how the non-fitting log L = {acfced, abccfed} aligns to the net
N of Fig. 2. The nets below each alignment illustrate the differences between log L
of Fig. 3 and net N of Fig. 2. After replaying ac, the net is in marking [p4, p3] and
the log requires to replay f which is not enabled in the net. Thus a log move (f,
) is
added. Similarly, c is not enabled at this marking and log move (c,
) is added. Then e
should occur, which requires to move the token from p3 to p5, i.e., a model move (
, b).
Correspondingly, the rest of the alignment, and the second alignment is computed. The
third line of the alignment describes the marking that is reached in N by replaying this
prefix of the alignment on N.

Using this information, the extension w.r.t. a move on model (
, t) is trivial: we just
have to create a new τ-labeled transition t∗ that has the same pre- and post-places as t.
The extension w.r.t. a move on log (a,
) provides various options that only require that
an a-labeled transition is enabled whenever this move on log occurs. We can use the
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Fig. 4. Result of repairing the net of Fig. 2 w.r.t. the log of Fig. 4 by the naive approach (left) and
by adding subprocess (right)

alignment to identify for each move on log (a,
) in which marking m of N it should
have occurred (the “enabling location” of this move). In principle, adding an a-labeled
transition that consumes from the marked places of m and puts the tokens back imme-
diately, repairs N w.r.t. to this move on log. However, we improve the extension by
checking if two moves on log would overlap in their enabling locations. If this is the
case, we only add one a-labeled transition that consumes from and produces on this
overlap only.

Figure 4(left) shows how model N of Fig. 2 would be repaired w.r.t. the alignment
of Fig. 3. The move on model (
, b) requires to repair N by adding a τ transition that
mimics b as shown in Fig. 4. The move on log (c,
) occurs at two different locations
{p4, p3} and {p4, p5} in the different traces. They overlap on p4. Thus, we repair N
w.r.t. (c,
) by adding a c-labeled transition that consumes from and produces on p4.
Correspondingly for (f,
). The extended model that is shown in Fig. 4(left) can replay
log L of Fig. 3 without any problems.

4.2 Identify Subprocesses – Precision

The downside of the naive solution to model repair is that the repaired model has low
precision. For a log L where a best alignment contains only few synchronous moves,
i.e., N does not conform to L, many τ-transitions and self-loops are added. In fact, we
observed in experiments that self-looping transitions were often added at the same loca-
tion creating a “flower sub-process” of events Σ′ ⊂ ΣL that locally permitted arbitrary
sequences (Σ′)∗ to occur.

In the following, we turn this observation into a structured approach to model repair.
Instead of just recording for individual events a ∈ Σ their enabling locations w.r.t. log
moves, we now record enabling locations of sequences of log moves. Each maximal
sequence of log moves (of the same alignment) that all occur at the same location is
a non-fitting sub-trace. We group non-fitting subtraces at the same location Q into a
non-fitting sublog LQ of that location. We then discover from LQ a subprocess N(LQ)
that can replay LQ by using a mining algorithm that guarantees perfect fitness of N(LQ)
to LQ. We ensure that N(LQ) has a unique start transition and a unique end transition.
We then add subprocess N(LQ) to N and let the start transition of N(LQ) consumes
from Q and let the end transition of N(LQ) produce on Q, i.e., the subprocess models a
structured loop that starts and ends at Q.

Figure 4(right) illustrates this idea. The model depicted is the result of repairing
N of Fig. 2 by adding subprocesses as described by the alignments of Fig. 3. We can
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identify two subtraces cf and fc that occur at the same sublocation p4. Applying process
discovery on the sublog {cf, fc} yields the subprocess at the top right of Fig. 4(right) that
puts c and f in parallel. The two grey-shaded silent transitions indicate the start and end
of this subprocess.

4.3 Formal Definitions

The formal definitions read as follows. For the remainder of this paper, let N be a Petri
net system, let L be a log. For each trace l ∈ L, assume an arbitrary but fixed best fitting
alignment α(l) to be given. Let α(L) = {α(l) | l ∈ L} be the set of all alignments of the
traces in L to N.

Locations. Let α = (a1, t1) . . . (an, tn) be an alignment w.r.t. N = (P, T, F,m0,m f , �).
For any move (ai, ti), let mi be the marking of N that is reached by the occurrence
sequence t1 . . . ti−1|T of N. For all 1 ≤ i ≤ n, if (ai, ti) = (ai,
) is a log move, then the
enabling location of (ai,
) is the set loc(ai,
) = {p ∈ P | mi(p) > 0} of places that
are marked in mi. For example in Fig. 3, loc(c,
) = {p4, p3} in the first alignment and
loc(c,
) = {p4, p5} in the second alignment.

It is easy to check that extending N with a new a-labeled transition t with •t =
loc(ai,
) = t• turns the log move (ai,
) into synchronous move (ai, t), i.e., repairs N
w.r.t. (ai,
). We now lift this local repair for one log move to a repair for all alignments
of a log to N.

Subtraces. Any two consecutive log moves have the same location as the marking
of N does not change. We group these moves into a subtrace. A maximal sequence
β = (ai,
) . . . (ai+k,
) of consecutive log moves of α is a subtrace of α at location Q
iff loc(a j,
) = loc(ai,
) = Q, i ≤ j ≤ i + k, and no longer sequence of log moves has
this property. We write loc(β) = loc(ai,
) for the location of subtrace β. Let β(L) be
the set of all subtraces of all alignments α(L) of L to N.

For example, in Fig. 4, fc is a subtrace of the first alignment at location {p4, p3} and
cf is a subtrace of the second alignment at location {p4, p5}. We could repair the net
by adding two subprocesses, one that can replay fc at Q1 = {p4, p3} and one that can
replay cf at Q2 = {p4, p5}. However, we could instead just add one subprocess that can
replay fc and cf at location Q1 ∩Q2 = {p4}.

Formally, we say that Q is a sublocation of a subtrace β = (a1,
) . . . (ak,
) iff
Q ⊆ loc(β). A sublog (LQ,Q) of α(L) at location Q is a set of subtraces LQ ⊆ β(L) s.t.
for all β ∈ LQ, ∅ � Q ⊆ loc(β), that is, each trace in LQ can start at sublocation Q of its
first event.

Sublogs. The entire set of subtraces β(L) can be partitioned into several sublogs of
disjoint sublocation, though there are multiple ways of partitioning. We call a set
{(LQ,1,Q1), . . . , (LQ,k,Qk)} of sublogs of α(L) complete iff LQ,1 ∪ . . . ∪ LQ,k = β(L).
While completeness is enough to repair N w.r.t. L, one may want to have as few sublogs
at as few locations as possible, for instance, by merging two sublogs (LQ,1,Q1) and
(LQ,2,Q2) to (LQ,1 ∪ LQ,2,Q1 ∩Q2) if Q1 ∩Q2 � ∅. We call {(LQ,1,Q1), . . . , (LQ,k,Qk)}
minimal iff Qi ∩Q j = ∅ for all 1 ≤ i < j ≤ k. There may be multiple minimal complete
sets of sublogs of L. This allows us to configure the repair w.r.t. the locations and the
contents of the different sublogs, yielding different repair options.
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We now have all notions to formally define how to repair model N w.r.t. log L. For
a complete set of sublogs of α(L), we can repair N w.r.t. α(L) by discovering for each
sublog (LQ,Q) a process model NQ, adding NQ to N and connecting the start- and end
transition of NQ to Q.

Definition 6 (Subprocess of a sublog). Let L be a log, let N be a Petri net, let α(L) be
an alignment of L to N, and let (LQ,Q) be a sublog of α(L).

Let L+Q = {start a1 . . . ak end | (a1,
) . . . (ak,
) ∈ LQ} be the sequences of events
described in LQ extended by a start event and an end event (start, end � ΣL).

LetM be a mining algorithm that returns for any log a fitting model (i.e., a Petri net
that can replay the log). Let NQ =M(L+Q). Then (NQ,Q) is the subprocess of LQ.

The mining algorithm M will produce transitions labeled with the events in L+Q and

a start transition tNQ

start with label start and an end transition tNQ

end with label end. In the

following, we assume that •tNQ

start = ∅ and tNQ

end

•
= ∅, i.e., that start and end transitions

have no pre- or post-places. In caseM produced pre- and post-places for start and end,
these places can be safely removed without changing that NQ can replay L+Q. When

repairing N, we connect tNQ
start and tNQ

end to the location Q of the subprocess.

Definition 7 (Subprocess model repair). Let L be a log, let N be a Petri net. Let α(L)
be the alignments of the traces of L to N.

Let {(LQ,1,Q1), . . . , (LQ,k,Qk)} be a minimal and complete set of sublogs of α(L). The
subprocess-repaired model of N w.r.t. α(L) is the net N′ that is obtained from N as
follows.

– Add to N a fresh transition tτ � TN with •tτ = •t and tτ• = t•, �′(tτ) = τ iff there
exists an alignment α ∈ α(L) containing a visible model move (
, t), and

– For each sublog (LQ,i,Qi), i = 1, . . . , k, let (NQ,i,Qi) be the subprocess of LQ,i s.t.
NQ,i and N are disjoint (share no transitions or places). Extend N with NQ,i (add
all places, transition and arcs of NQ,i to N) and add arcs (q, tNQ,i

start) and (tNQ,i

end , q) for

each q ∈ Qi, and set labels �′(tNQ,i

start) = τ and �′(tNQ,i

end ) = τ.

Theorem 1. Let L be a log, let N be a Petri net. Let α(L) be the alignments of the traces
of L to N and {(LQ,1,Q1), . . . , (LQ,k,Qk)} be a minimal and complete set of sublogs of
α(L). Let N′ be a subprocess-repaired model of N w.r.t. these subtraces. Then each trace
l ∈ L is a labeled occurrence sequence of N′, that is, N′ can replay L.

Proof (Sketch). The theorem holds from the observation that each alignment
α = (a1, t1) . . . (an, tn) ∈ α(L) of L to N can be transformed into an alignment of L to N′
having synchronous moves or model moves on invisible transitions only as follows.

Every move on model (
, ti) of α w.r.t. N is replaced by a model move (
, ti,
) w.r.t.
N′ on the new invisible transition ti,
, �(ti,
) = τ which allows to skip over ti.

Every move on log (a,
) w.r.t. N is part of a subtrace β = (a1,
) . . . (ak,
) of
a sublog (LQ,i,Qi). By adding the subprocess NQ,i at location Qi, the subtrace β is re-
played by a sequence (
, tNQ,i

start)(a1, t1) . . . (ak, tk)(
, tNQ,i

end ) of synchronous moves in the

subprocess NQ,i. Moves (tNQ,i

start,
) and (tNQ,i

end ,
) are harmless because they are made

silent by relabeling t
NQ,i

start and t
NQ,i

end with τ. ��
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This theorem concludes the techniques for process model repair presented in this paper.
Observe that original model N is preserved entirely as we only add new transitions and
new subprocesses. By taking a best alignment α(L) of L to N, one ensures that num-
ber of new τ-transitions and the number of new subprocesses (or of new self-looping
transitions) is minimal.

4.4 Improving Repair – Simplicity

The quality of the model repair step can be improved in some cases. According to Def. 7,
each sublog (LQ,i,Qi) is added as a subprocess NQ,i that consumes from and produces
on the same set Qi of places, i.e., the subprocess is a loop. If this loop is executed in
each case of L only once, then NQ,i is also executed exactly once. Thus, N could be
repaired by inserting NQ,i in sequence (rather than as a loop), by refining the places
Qi = {q1, . . . , qk} to places {q−1 , . . . , q−k } and {q+1 , . . . , q+k } with

1. •q−j =
•q j, q−j

•
= {tNQ,i

start}, j = 1 . . . , k, and

2. q+j
•
= q j

•, •q+j = {tNQ,i

end }, j = 1 . . . , k.

Also, the repaired model N′ can structurally be simplified by removing those model
elements which are no longer used. Consider for instance a transition t which is never
executed because the alignment only includes moves on model (
, tτ), where tτ is the
new transition to skip over t. In this case t is always bypassed by transition tτ and t can
be removed from N′.

5 Experimental Evaluation

The technique for model repair presented in this paper is implemented in the Process
Mining Toolkit ProM 6 in the package, available from http://www.promtools.org/
prom6/.

Uma provides a plugin Repair Model that takes as input a Petri net N, a log L, and a
best-fitting alignment α(L) of L to N. The alignment can be computed in ProM 6 using
the Conformance Checker of [2,5,4]. The Repair Model plugin repairs N by extending
N with subprocesses as defined in Sect. 4.3 and Sect. 4.4. For this, it first replays each
alignment on N, and identifies all subtraces. Then subtraces are grouped to sublogs at
the same location. The resulting sublogs are merged if they share the same location in
a greedy way (by merging sublogs with the largest overlap of places first), until the
resulting set of sublogs is minimal (i.e., all locations are disjoint). Each sublog is then
passed to the ILP miner [24] which guarantees to return a model that can replay the
sublog. The returned model is then simplified according to [11] and added to N as a
subprocess as defined in Def. 7.

We validated our implementation on real-life logs from a process that is shared by
five Dutch municipalities. Figure 1(left) shows the reference base model that is used in
several municipalities. However, each municipality runs the process differently as de-
manded by the “couleur locale”. As a result, the process observed in each municipality
substantially deviates from the base model. To validate our technique, we repaired the

http://www.promtools.org/prom6/
http://www.promtools.org/prom6/
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Table 1. Results on model repair for 10 logs from Dutch municipalities

log deviations subprocesses change to original
moves on per # added |T | total |T | similarity-dist.

traces length model log case avg. max. add. rem. repair discover

M1 434 1-51 3327 310 1-26 7 7 21 69 3 0.144 0.476
M2 286 1-72 1885 323 1-41 5 10 23 65 3 0.147 0.486
M3 481 2-82 3079 1058 1-49 10 13 37 151 3 0.199 0.542
M4 324 1-37 2667 192 2-21 8 7 13 71 4 0.139 0.541
M5 328 2-43 3107 342 2-25 6 9 24 60 3 0.143 0.540

M1 f 249 24-40 681 229 1-12 2 6 9 25 4 0.074 0.473
M2 f 180 23-70 516 240 1-41 2 12 21 37 5 0.103 0.539
M3 f 222 22-82 465 598 1-49 7 10 26 87 5 0.164 0.543
M4 f 239 15-37 1216 180 2-17 6 7 13 60 4 0.124 0.542
M5 f 328 13-43 1574 280 2-16 4 9 23 51 3 0.111 0.541

base model for each municipality based on the municipality’s log. In the following, we
report our findings.

We obtained 5 raw logs (M1-M5) from the municipalities’ information systems.
From these we created filtered logs (M1 f -M5 f ) by removing all cases that clearly
should not fit the base model, for instance because they lacked the start of the pro-
cess or were incomplete (see Sect. 3 for the discussion). Table 1 shows the properties
of these 10 logs (over 44 different event classes) discussed in the following. The table
lists the number of traces, minimum and maximum length, and the properties of a best
matching alignment of the log to the model of Fig. 1(left) as the total number of model
moves, number of log moves and the minimum and maximum number of deviations
(log move or model move) per case. None of the traces could be replayed on the base
model, in some cases deviations were severe.

Repairing the base model of Fig. 1(left) w.r.t. the filtered log M1 f yields the model
of Fig. 1(middle). Repairing the same model w.r.t. the raw log M1 results in the model
shown in Fig. 5(left). Repairing the base model w.r.t. the filtered log M2 f yields the
model of Fig. 5(right). In each case, model repair requires only several seconds; a best-
fitting alignment (needed for repair) could be obtained in about a minute per log. We
checked all resulting models for their capability to replay the respective log and could
confirm complete fitness for all models.

Moreover, we could re-identify the original model as a sub-structure of the repaired
model, making it easy to understand the made repairs in the context of the original
model. The original model had 68 transitions, 59 places, and 152 arcs. Table 1 shows
for each log the number of added subprocesses, the average and maximal number of
transitions per subprocess, and the total number of added and of removed transitions
in the entire process. We can see that in the worst case, M3, the number of transitions
in the model is more than tripled. Nevertheless, this large number of changes is nicely
structured in subprocesses: between 2 and 10 subprocesses were added per log, the
largest subprocess had 37 transitions, the average subprocess had 6-13 transitions. We
identified alternatives, concurrent actions, and loops in the different subprocesses. Yet,
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Fig. 5. Result of repairing Fig. 1(left) w.r.t. M1 (left) and M2 f (right)

simplification [11] ensured a simple structure in all subprocesses, i.e., graph complexity
between 1.0 and 2.0. Model repair also allowed 25%-30% of the original transitions to
be skipped by new τ-transitions; only few original transitions could be removed entirely.

To measure similarity, we computed the graph similarity distance [10] between re-
paired model and original model, and between a completely rediscovered model and the
original model. The rediscovered model was obtained with the ILP miner [24] (ensuring
fitness) and subsequently simplified by the technique of [11] using the same settings as
for subprocess simplification. The similarity distance, roughly, indicates the fraction of
the original model that has to be changed to obtain the repaired/rediscovered model, i.e.,
0.0 means identical models. We observed that original model is significantly more simi-
lar to the repaired models (.074-.199) than the original model to the rediscovered models
(.473-.543). This indicates that model repair indeed takes the original model structure by
far more into account than model repair. The numbers also match the observations one
can make when comparing Fig. 1(middle) to Fig. 1(right). Finally, the simpler models
and fewer changes required for the filtered logs compared to the raw logs indicate that
log preprocessing, as discussed in Sect. 3, has a significant impact on model repair.

6 Related Work

The model repair technique presented in this paper largely relates to two research
streams: conformance checking of models and changing models to reach a particular
aim.

Various conformance checking techniques that relate a given model to an event
log have been developed in the past. Their main aim is to quantify fitness, i.e., how



Repairing Process Models to Reflect Reality 243

much the model can replay the log, and if possible to highlight deviations where possi-
ble [2,4,5,8,21]. The more recent technique of [2,4] uses alignments to relate log traces
to model executions which is a prerequisite for the repair approach presented in this
paper. Besides fitness, other metrics [2,9,13,18,19,23] (precision, generalization, and
simplicity) are used to describe how good a model represents reality. Precision and
generalization are currently considered in our approach only as a side-effect and not a
leading factor for model repair. Incorporating these measure into model repair is future
work. Simplicity is considered in our approach in the sense that changes should be as
tractable as possible, which we could validate experimentally.

A different approach to enforcing similarity of repaired model to original model
could be model transformation incorporating an edit distance. The work in [15] de-
scribes similarity of process model variants based on edit distance. Another approach
to model repair is presented in [12] to find for a given model a most similar sound model
(using local mutations). [16] considers repairing incorrect service models based on an
edit distance. These approaches do not take the behavior in reality into account. Other
approaches to adjust a model to reality, adapt the model at runtime [22,20], i.e., an
individual model is created for each process execution. This paper repairs a model for
multiple past executions recorded in a log. The approach of [11] uses observed behavior
to structurally simplify a given model obtained in process discovery.

7 Conclusion

This paper addressed, for the first time, the problem of repairing a process model w.r.t.
a given log. We proposed a repair technique that preserves the original model structure
and introduces subprocesses into the model to permit to replay the given log on the re-
paired model. We validated our technique on real-life event logs and models and showed
the approach is effective and the resulting model allows to understand the changes done
to the original model for repair.

Our proposed technique of model repair covers the entire problem space of model
repair between confirming conformance and complete rediscovery. In case of complete
fitness, the model is not changed at all. In case of an entirely unfitting model (no syn-
chronous move), the old model is effectively replaced by a rediscovered model. In case
of partial fitness, only the non-fitting parts are rediscovered. This allows to apply our
technique also in situations where the given model is understood as a partial model
(created by hand) that is then completed using process discovery on available logs.

The technique can be configured. The cost-function influences the best-fitting align-
ment found, grouping of traces into sublogs and identifying sublocations for inserting
new subprocesses allows for various solutions. Any process discovery algorithm can
be used to discover subprocesses; the concrete choice depends on the concrete confor-
mance notion addressed.

In our future work we would like to consider other conformance metrics such as
generalization and precision. Moreover, in our current approach we abstract from extra
logging information such as the resource executing or initiating the activity and the
timestamp of the event. We would like to incorporate this information when repairing
the model. For example, resource information can give valuable clues on for repair.
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18. Muñoz-Gama, J., Carmona, J.: A Fresh Look at Precision in Process Conformance. In: Hull,
R., Mendling, J., Tai, S. (eds.) BPM 2010. LNCS, vol. 6336, pp. 211–226. Springer, Heidel-
berg (2010)
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Abstract. Nowadays, more and more organizations describe their op-
erations in terms of business processes. Consequently, it is common for
organizations to have collections of hundreds or even thousands of busi-
ness process models. This calls for techniques to quickly retrieve business
process models that satisfy a given query. Some advanced techniques for
querying a collection business process models exist. However, these tech-
niques mainly focus on the expressive power of the query language, and
performing an advanced business process query using these techniques
can take considerable time. Consequently, querying a collection of models
can take considerable time. To solve this problem, this paper proposes an
efficient technique, using feature nets. Experiments show that on aver-
age the technique performs two orders of magnitude faster than existing
techniques.

1 Introduction

Nowadays, business process management becomes more and more important
in managing organizations. To increase the flexibility and controllability of the
management of organizations, business processes are used to describe their oper-
ations. As a result, it is common to see collections of hundreds or even thousands
of business process models. For example, the collection of SAP reference mod-
els consists of more than 600 business process models [15], and the collection
of the reference models for Dutch Local Government contains a similar number
of models [8]. As business process model collections increase in size, business
process model repositories are developed to provide process-specific functions
managing them. Querying a collection of business process models is one of these
functions [23].

Querying a collection of business process models is done by providing a busi-
ness process model fragment as a query. The querying technique then returns
all business process models from the collection that contains that fragment. For
example, if query a from Fig. 1 is provided to the querying technique, then the
first three models should be returned, because they all contain that fragment;
graph 4 should be returned for query b.

This paper focuses on advanced business processes queries, which are queries
that contain advanced query modeling elements, e.g., query b from Fig. 1. There

A. Barros, A. Gal, and E. Kindler (Eds.): BPM 2012, LNCS 7481, pp. 246–261, 2012.
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Fig. 1. Querying a Collection of Business Process Models

are four advanced query elements, which will be defined in section 3: wildcard
nodes, transitive edges, negative edges, and negative transitive edges. To the
best of our knowledge, three advanced query languages exist [1,3,6]. However,
performing an advanced business process query using these techniques can take
considerable time. For example, it on average takes 5s to run a query with a
collection of 500 process models, using BPMN-Q [2,16]. While users of a search
engine typically expect a response within milliseconds.

Therefore, our goal is to make advanced business process querying more ef-
ficient. To this end, this paper introduces the concept of feature net (FNet for
short) and an efficient technique for querying based on feature nets. In this way,
while both advanced query languages and techniques for efficiently performing
non-advanced queries, the contribution of this paper is a technique for efficiently
performing advanced queries.

The rest of the paper is organized as follows. Section 2 introduces the concept
of process graph, which we use as the underlying formalism to define our effi-
cient querying technique. Section 3 introduces query process graphs. Section 4
introduces the concept of feature of a process (query) graph. Features are the
elements of an FNet. Section 5 presents the FNet and shows how it can be
constructed for a collection of process models and how it can be used to make
advanced querying more efficient. Section 6 evaluates the performance of the
FNet. Section 7 introduces related work and Section 8 concludes the paper.

2 Process Graph

We define our querying technique on process graphs. A process graph is a graph-
based representation of a process model [7,13]. The benefit of using a graph-
based representation is that it can be used to represent the structure of existing
(graph-based) business process modeling languages. In this way, techniques that
are defined for process graphs can be generically applied to models that are
constructed with multiple business process modeling languages. As an example,
Fig. 2 shows the business process graphs for the models from Fig. 1. As shown
in graph 4 of Fig. 2, we assign each gateway node a unique label to represent its
routing function, e.g., ‘And-Split’ and ‘Xor-Join’.
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Definition 1 (Process Graph, Pre-set, Post-set). Let L be a set of labels.
A process graph describes a (business) process as a tuple (N,E, λ), in which:

– N is the set of nodes.
– E ⊆ N ×N is the set of edges.
– λ : N → L is an injective function that maps nodes to labels.

Let G = (N,E, λ) be a process graph and n ∈ N be a node: •n = {m|(m,n) ∈ E}
is the pre-set of n, while n• = {m|(n,m) ∈ E} is the post-set of n.

A path is a sequence of edges. For example, in graph 4 of Fig. 2, there is a path
from node ‘Order Goods’ to node ‘Receive Goods’.

Definition 2 (Path). Let G = (N,E, λ) be a process graph and n1, ns ∈ N
be nodes of G. There is a path from n1 to ns if and only if there exists nodes
{n1, n2, n3, . . . , ns} ⊆ N (s > 1), and {(n1, n2), . . . , (ns−1, ns)} ⊆ E.

3 Query Process Graph

Being a fragment of a business process, a business process query can contain
notational elements from the business process modeling notation in use. We
refer to notational elements as basic elements. To make querying more powerful,
advanced business process query languages [1,3,6] also use the following types
of nodes and edges: wildcard node, transitive edge, negative edge, and neg-
transitive edge. A wildcard node matches any node in a business process graph.
A transitive edge matches a path from its source node to its target node. A
negative edge matches if there is no edge between its source node and its target
node. A neg-transitive edge is transitive and negative at the same time, matching
if there is no path from its source node to its target node.

Definition 3 (Query Process Graph). Let L be a set of labels. A query
process graph is a process graph that can contain advanced elements besides basic
ones, defined as a tuple Q = (N,E, λ,Θ, θ), in which:

– N is the set of nodes.
– E ⊆ N ×N is the set of edges.
– λ : N → L is an injective function that maps a node to a label.
– Θ : N → {basic, wildcard} is an injective function that determines whether

a node is a basic or a wildcard query node.
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Fig. 3. Query Process Graphs with Advanced Nodes or Edges

– θ : E → {basic, transitive, negative, neg-transitive} is an injective function
that determines whether an edge is a basic, a transitive, a negative, or a neg-
transitive edge.

For example, as shown in Fig. 3, query c has a wildcard node, which is denoted
as a node without any label; query d has a transitive edge, θ(Order, Pay) =
transitive, which is represented as an edge with ‘∗’ as its label; query e has a neg-
ative edge, θ(Receive, Pay) = negative, which is represented as an edge with ‘¬’
as its label; query f has a neg-transitive edge, θ(Receive, Pay) = neg-transitive,
which is represented as an edge with both ‘¬’ and ‘∗’ as its label. Besides these
queries with advanced elements, a query process graph can also be a basic query
like query a in Fig. 2.

Using the definition of a business process graph and a query graph, querying
is done by finding business process graphs that match a given query graph.

Definition 4 (Querying). A business process graph G=(NG, EG, λG) matches
a query graph Q = (NQ, EQ, λQ, ΘQ, θQ), if and only if there exists a mapping
M : NQ → NG, such that:

– for each (nQ, nG) ∈ M , either Θ(nQ) = wildcard or ω(λQ (nQ)) ⊆ ω(λG(nG)),
where ω(l) denotes the set of words that appear in a label l 1;

– if (nQ,mQ) ∈ EQ and θ(nQ,mQ) = basic then (M(nQ),M(mQ)) ∈ EG;
– if (nQ,mQ) ∈ EQ and θ(nQ,mQ) = negative then (M(nQ),M(mQ)) 
∈ EG;
– if (nQ,mQ) ∈ EQ and θ(nQ,mQ) = transitive then there exists a path from

M(nQ) to M(mQ) in G;
– if (nQ,mQ) ∈ EQ and θ(nQ,mQ) = neg-transitive then there does not exist a

path from M(nQ) to M(mQ) in G.

For example, in Figure 2 and 3, node ‘Order’, is matching with nodes, ‘Order
Goods’ and ‘Order Goods Online’ ; ‘Receive’ is matching with ‘Receive Goods’
and ‘Receive Application; a wildcard node, ‘’, is matching with all nodes; ‘Pay’, is
matching with ‘Pay’ ; query a, ‘Order ’→‘Receive’, is matching with graph 1,2,3 ;
query c, ‘’→‘Receive’, is matching with graph 1,2,3,4 ; query d, ‘Order’

∗→‘Pay’,
is matching with graph 3,4 ; query b, ‘Order’→‘Receive’ 
→‘Pay’, query e, ‘Re-

ceive’ 
→‘Pay’, and query f, ‘Receive’
∗

→‘Pay’, are matching with graph 4.

1 Label matching can be measured in a number of different ways [7]. For illustration
purposes, we perform label matching by considering words of a label. This also allows
users to query with only words under their concerns (like Google). It can be easily
replaced by other metrics for label matching.
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4 Features

To efficiently query a collection of business process graphs, we break both the
process graphs and the query process graphs up into features. Features should
be small and representative. Since they are small, they can be used for efficient
processing. Since they are representative, results of a query feature are candidates
of results of a query graph. After also defining an index on features in section 5,
we can use them for fast query processing. This section presents how to perform
feature-based querying.

Taking the criteria for selecting features (small and representative) into ac-
count, we only consider features based on the most common workflow patterns:
sequence, split, join, and loop. Besides that we also consider single nodes as a
feature, because we want to construct an index based on node labels. We name
these features basic features.

Definition 5 (Basic Feature). Let G = (N,E, λ) be a process graph. A feature
F of G is a subgraph of G. The size of a feature is the number of edges it contains.
A feature is a:

– node feature consisting of node n, if and only if NF = {n} ∧ EF = ∅ (its size
is 0);

– sequence feature of size s− 1 consisting of nodes {n1, n2, n3, . . . , ns}, if EF is
the minimal set containing (n1, n2), (n2, n3), . . . , (ns−1, ns), for s ≥ 2;

– split feature of size s consisting of a split node n and a set of nodes {n1, n2, . . . ,
ns}, if and only if EF is the minimal set containing (n, n1), (n, n2), . . . , (n, ns),
for s ≥ 2;

– join feature of size s consisting of a join node n and a set of nodes {n1, n2, . . . ,
ns}, if and only if EF is the minimal set containing (n1, n), (n2, n), . . . , (ns, n),
for s ≥ 2;

– loop feature of size s consisting of nodes {n1, n2, . . . , ns}, if EF is the minimal
set containing (n1, n2), . . . , (ns−1, ns), and(ns, n1), for s ≥ 1.

For example, for graph 4 in Fig. 2, the set of basic node features consists of
nodes ‘Order Goods’, ‘Receive Goods’, ‘And-Split’, and ‘Pay’ ; the set of the
basic sequence features of size 1 consists of sequences ‘Order Goods’→‘And-Split’,
‘And-Split’→‘Receive Goods’, ‘And-Split’→‘Pay’, and ‘Receive Goods’→‘Order
Goods ; the basic split feature set consists of the feature with split node ‘And-
Split’ and the set of nodes ‘Receive Goods’, ‘Pay’ ; and the basic loop feature set
consists of the loop feature with three basic nodes ‘Order Goods’, ‘And-Split’,
and ‘Receive Goods’.

More features are used other than sequences in this paper, which helps filter
more graphs that are not matching with a given query [21]. For example, given
a split query a → {b, b}, a sequence a → b is filtered using split features.

A process graph contains only basic features. However, as explained in Sec-
tion 3, a query process graph can also contain wildcard nodes, transitive edges,
negative edges, and neg-transitive edges. Consequently, we need advanced fea-
tures to be able to break up a query process graph into query features.
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Definition 6 (Advanced Feature). Let Q = (N,E, λ,Θ, θ) be a query process
graph. An advanced feature F = (NF , EF , λ, Θ, θ) of Q is a subgraph of Q. The
advanced feature is a:

– wildcard feature consisting of node n, if and only NF = {n} and Θ(n) =
wildcard (its size is 0);

– transitive feature consisting of nodes {n1, n2}, if and only if EF = {(n1, n2)}
and θ((n1, n2)) = transitive (its size is 1);

– negative feature consisting of nodes {n1, n2}, if and only if EF = {(n1, n2)}
and θ((n1, n2)) = negative (its size is 1);

– neg-transitive feature consisting of nodes {n1, n2}, if and only if EF =
{(n1, n2)} and θ((n1, n2)) = neg-transitive (its size is 1);

– basic feature, if and only if ∀e ∈ EF , θ(e) = basic, and it is a feature accord-
ing to Definition 5.

The basic features in Definition 6 also includes basic features with wildcard
nodes besides features in Definition 5, which can be used as a query feature.
For example, in Fig. 3, query c is a basic query feature; query d is a transitive
query feature; query e is a negative query feature; query f is a neg-transitive
query feature. Definition 4 is used to measure whether an advanced feature is
matching with a basic feature.

In order to optimally benefit from indexes that can be constructed for features,
we allow features to be constructed hierarchically, such that we can use a multi-
level (hierarchical) index. To this end, Definition 7 defines a hierarchical relation
between features.

Definition 7 (Parent Feature, Child Feature). If a feature f can generate
feature cf by adding a single edge and at most one node, feature f is a direct
parent feature of feature cf and feature cf is a direct child feature of feature f .
It is denoted as f ∈ DPFS(cf) or cf ∈ DCFS(f), where DPFS (DCFS) is a
function that maps a feature to its direct parent (child) feature set. The parent
and the child relation are the transitive closure of the direct parent and the direct
child relation.

For example, for graph 4 in Figure 2, the direct child feature set of the node fea-
ture ‘Receive Goods’ is the set consisting of sequence features ‘And-Split’→‘Receive
Goods’ and ‘Receive Goods’→‘Order Goods’.

Feature based querying is done by first finding matching graphs for each of the
features and subsequently determining whether the matching graphs also match
the query as a whole. For a graph to match the query as a whole, it must meet
three requirements. First, it must be a match for all of the basic query features.
Second, the mappings that create the matches for each basic query feature, must
not contradict each other (i.e.: if a node from the query graph is mapped to a
node from the process graph for one feature, it must be mapped to the same
node for another feature). Third, the advanced features must be matching with
the graph for the given mappings according to Definition 4.

More precisely, feature-based querying is defined as follows.
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Fig. 4. Example of feature-based querying

Definition 8 (Feature-based Querying). Given a business process graph g,
a query graph qg and a decomposition of the query graph into a set of basic query
features {f1, f2, . . . , fn} and a set of advanced query features {af1, af2, . . . , afn}
(as defined in Definition 6). The business process graph matches the query graph,
if and only if for each of the features there exists a corresponding mapping
M1,M2, . . . ,Mn, such that:

– each mapping Mi creates a match of query fi to g according to Definition 4;
– there exists the mapping M such that for each node n ∈ NQ, for each basic

feature fi, if n is a node of fi, then M(n) = Mi(n) (1 ≤ i ≤ n);
– for the mapping M , each advanced query feature afi is matching with the

process graph g according to Definition 4.

For example, Figure 4 shows a query process graph and three process graphs. If we
use only nodes and sequences of size 1 as features, then query g has four basic nodes
features, a, b, c and d, the basic sequence features, a→b and b→c, and one negative
feature, b 
→d. First, these basic query features are queried through indexes, and
retrievedmatching features are used to check which graphs containmatches for all
basic query features. In this example, graph 7 and graph 8 have matching features
for basic query features, while graph 6 do not have and therefore is not a match for
the query graph. Second, for each graph satisfying the first requirement, whether
the same query node maps to the same node in the graph in all the mappings
for features is checked. In this example, graph 7 is also not a match. Although it
is a match for all of the basic features, the only possible way in which to make
both features match, causes a contradiction in the mappings. In particular the
node labeled ‘b’ from the query graph must be mapped to two different nodes in
graph 7 to match all basic features. Third, for each graph satisfying the first two
requirements, whether advanced features are matching with the graph is checked
based on the node mappings above. In this example, graph 8 is a match for the
query graph, because it does not have an edge between nodes b and d.

5 Feature Net

In order to speed up the querying operation, we must be able to quickly deter-
mine which process graphs in a collection contains all the features of a query
graph without contradictions, because, according to Definition 8, those process
graphs are the results for the query. In order to determine this, we construct an
index of all basic features and transitive sequence features that process graphs
in the collection contain. We call this index the feature net (FNet).
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Figure 5 shows how this works. There are two operations that can be per-
formed on the FNet: indexing and querying. When indexing a collection of
process graphs {G1, G2, . . .}, an FNet is constructed that consists of the pro-
cess features, PF1, PF2, . . ., and a mapping to the graphs that have those fea-
tures. When querying, the query graph must be split up into query features,
QF1, QF2, . . .. For each of those features, the matching process features (if any)
are then determined. Subsequently, those process graphs are returned that are
a match for all of the features.

In this section we describe in more detail how an index of features, an FNet,
can be constructed and how that FNet can be queried.

5.1 Constructing an FNet

An FNet consists of a directed graph, in which each node corresponds to a
feature and edges relate each feature to its direct children. Node features are the
smallest possible features and, as a consequence, are not the child of any feature.
However, in the FNet we relate nodes to the words that are used in their labels,
using an inverted index [12]. The inverted index does not contain stop-words,
e.g., ‘a’, ‘an’, ‘the’, ‘one’, . . . and uses lower case versions of the words. The FNet
maps each feature to the process graphs of which it is a feature and each node of
a feature to the process graph node that it represents. This mapping is required
to decide which feature nodes also represent the same graph node, which must
be checkable according to the second requirement of definition 8.

More precisely, an FNet is defined as follows.

Definition 9 (Feature Net (FNet)). Let D be a collection of process graphs
with disjoint sets of nodes. The feature net of D, denoted FNet(D), is a tuple
(W,F,RW,RF, υ), in which:

– W =
⋃

G∈D
⋃

n∈NG
ω(λ(n)) is the set of all words in D.

– F =
⋃

G∈D Γ (G) is the set of all basic features of graphs in D, where Γ (G)
returns the basic feature set of G.

– RW = {(w, f)|w ∈ W, f ∈ ⋃
G∈D NG, w ∈ ω(λ(f))} is the relation between

words and node features in D that contain that word.
– RF = {((f1, f2))|f1, f2 ∈ F ∧ f1 ∈ DPFS(f2)} is the direct parent-child

relation between features as defined in Definition 7.
– υ : (

⋃
f∈F Nf ) → P(

⋃
G∈D NG) is the function that maps each feature node

to the graph nodes from which the feature is derived.
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Fig. 6. Example of an FNet

Figure 6 shows an example of an FNet. The FNet is generated based on graph 1-
5 in Fig. 2. From left to right, five columns are listed, in which the first one lists
the words (W ) that appear in labels and the latter four list features (F ) ordered
by their sizes in the ascending order. Between columns, relationships (arrows)
are drawn to connect a word to a node feature (RW ) and connect a feature to
its child features (RF ). Each feature is associated with both graphs containing
the feature and lists of nodes of which the feature consists (υ). For the sake of
simplicity, not all of the features are shown in the figure.

5.2 Querying an FNet

To query a collection of process graphs for a given query graph through an
FNet, four steps are performed: retrieving nodes, generating features, retrieving
features, and checking graphs.
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Firstly, for each query node, the words in its label are looked up, using the
inverted index, to retrieve matching node features. A node feature is returned if
all words in the query node’s label return that node feature. If the query node is a
wildcard node, then all the node features in the FNet are returned. The querying
proceeds if and only if all the query nodes have matching node features in the
FNet; otherwise there is no graph from the collection that satisfies the query.
Taking query a and query b in Fig. 2 and the FNet in Figure 6 as an example,
query node ‘Order’ has two matching features, ‘order goods’ and ‘order goods
online’; query node ‘Receive’ has one matching feature, ‘receive goods’; query
node ‘Pay’ has one matching feature, ‘pay’.

Secondly, features are generated from the query graph, by breaking up the
query graph into subgraphs that are advanced features, as defined in Definition 6.
In the example, query a contains a basic sequence feature, ‘Order’→‘Receive’ ;
query b contains a transitive feature, ‘Order’

∗→‘Receive’, and a negative feature,
‘Receive’

¬→‘Pay’.
Thirdly, the FNet is used to retrieve matching features for each basic query

graph feature, as defined in Definition 4. Given a query feature of size 0 (a query
node), matching features were already retrieved using the inverted index in the
first step. Given a query feature of size 1 (a query sequence), we already have
the matching features of size 0 (the query nodes) that are this query feature’s
parents. For both these query nodes, we determine the sets of sequences that are
their direct children. A sequence in the intersection of these two sets is a match
of the query feature, if it connects the nodes in the same manner as the query
feature (i.e.: has the same source and target). Given a query feature of size n
(n > 1), which is a basic feature according to Definition 6, we already have the
matching features of size n − 1 that are this query feature’s parents. For both
these parents, we determine the sets of features that are their direct children.
A feature in the intersection of these sets is a match of the query feature, if it
connects the same nodes as the query feature, connects these nodes in the same
manner. Continuing with the example, query a has a basic sequence feature
‘Order’→‘Receive’ has two matches in the FNet, ‘order goods’→‘receive goods’,
and ‘order goods online’→‘receive goods’. The feature, ‘receive goods’→‘order
goods’, is not a match since its source (target) node matches with the target
(source) node of the query feature.

Fourthly, after getting the matching features for all basic query features, the
mapping between features and graphs maintained in the FNet is used to retrieve
and check matching graphs for the query graph, as defined in Definition 8. A
graph is potentially matching with the query graph, if it has matching features
for all query features. For such graphs, a check of contradictions is performed.
If a node in a query graph matches more than one node in a graph, there is a
contradiction. If there are advanced features in the query process graph, for each
graph without contradictions, a check of advanced feature matching is performed.
Graphs matching with all advanced features are returned as the final result set.
Continue with the example, for query a, graph 1,2,3 contain matching features
for each basic query feature; no contradictions exist between feature mappings;
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no advanced features are in query a; therefore, graph 1,2,3 are matching with
query a. For query b, graph 3,4 contain matching features for each basic query
feature; no contradictions exist between feature mappings; graph 3 and 4 are
matching with basic and transitive features of query b; graph 4 is matching with
the negative feature, while graph 3 is not.; Therefore, graph 3 is matching with
query b.

6 Evaluation

This section shows how the use of the technique affects process querying in terms
of performance and quality. We implemented the technique with Java. An FNet
is constructed and manipulated in memory. We provided more details about the
implementation and algorithms in a technical report [25].

The evaluation was performed on the collection of SAP reference models. This
is a collection of 604 business process models (described as EPCs) that capture
the business processes that are supported by SAP [15]. On average each process
model in the collection contains 20.3 nodes with a minimum of 3 and a maximum
130 nodes. The average size of node labels is 3.8 words.

All the experiments were run on a laptop with an Intel Core2 Duo T7500 CPU
(2.2GHz, 800MHz FSB, 4MB L2 cache), 4 GB DDR2 memory, the Windows
Vista operating system and the SUN Java Virtual Machine version 1.6.

To evaluate the performance and to determine what influences the perfor-
mance of the technique, two groups of queries were designed.

In the first group, as shown in Figure 7, five queries were adapted from the
evaluation of BPMN-Q [1]. Query a, b, d, e, and g in the evaluation of [1] were
selected. Query c and f were not selected, because they test specific types of
elements in BPMN-Q that are simply considered nodes in this paper and are
not handled differently from other types of nodes. Each node of the queries was
labeled by one or two words from the original labels of these SAP reference
models, such that the queries have matches in the collection of SAP reference
models. More precisely, query 1 is a sequence of size 1, composed of three basic
nodes and two basic edge; query 2 is a sequence of size 1, composed of a basic
node, a wildcard node and a basic edge; query 3 is a join of size 2, composed
of three basic nodes and two transitive edges; query 4 added two neg-transitive
edges in query 3 between the two nodes before joining; query 5 is a loop of size
1, composed of a wildcard node and a transitive edge.

The second group were large models that were chosen to test the effect of
query size on the performance of the FNet. The models in this group were
designed by randomly selecting 5 from the collection of SAP reference models;
then the models were adapted such that each query in this group contains as
many advanced constructs as the corresponding query in the first group. query
6 is composed of 9 basic nodes and 8 basic edges; query 7 contains 1 wildcard
nodes besides 22 basic nodes and 22 basic edges; query 8 contains 4 transitive
edges besides 22 basic nodes and 17 basic edges; query 9 contains 2 neg-transitive
edges besides 27 basic nodes and 26 basic edges; besides 20 basic nodes and 23
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basic edges, query 10 contains 1 transitive edge with the same source and target
node (a loop of size 1).

Table 1 shows the results of performing the queries on the collection of SAP
reference models. The columns in the table show the execution time of each
query and the average total time over the 5 queries in each group. The rows
in the table show the features that are used to construct the FNet. In the first
row process querying is performed based on node features of size 0 (Node(0)),
sequence features of size 1 (Seq(1)), and loop features of size 1 (Loop(1)). In the
second row process querying is performed based on features in the first row (1)
plus sequence features of size 2 (Seq(2)) and loop features of size 2 (Loop(2)).
Features of the rows below are described similarly.

In Table 1, we can see that on average a query in Group 1 is performed in 0.03
second and a query in Group 2 is performed in 0.06 second. The execution time
of the first group is faster than the second group on average. This is because in
the second group, there are more basic nodes and edges in the query models and
more words in the node labels, therefore more feature comparisons are required.
The second group has fewer matches than the first group. On average, for each
query in the first group there are 10 hits from the collection of SAP reference
models; while on average there are 1.6 positive results for each query in the
second group.

Table 1. Execution Time

Group 1

Features(size) query1 query2 query3 query4 query5 Tavg

1:Node(0)+Seq(1) 0.04s 0.07s 0.01s 0.01s 0.02s 0.03s
2:1+Seq(2) 0.04s 0.08s 0.01s 0.01s 0.02s 0.03s
3:1+Split(2) 0.04s 0.07s 0.004s 0.01s 0.02s 0.03s
4:3+Split(3) 0.04s 0.09s 0.01s 0.01s 0.03s 0.03s
5:1+Join(2) 0.04s 0.07s 0.01s 0.01s 0.02s 0.03s
6:5+Join(3) 0.04s 0.07s 0.01s 0.01s 0.02s 0.03s

Group 2

Features(size) query6 query7 query8 query9 query10 Tavg

1:Node(0)+Seq(1) 0.002s 0.09s 0.03s 0.06s 0.12s 0.06s
2:1+Seq(2) 0.002s 0.10s 0.04s 0.06s 0.13s 0.07s
3:1+Split(2) 0.002s 0.10s 0.03s 0.06s 0.13s 0.06s
4:3+Split(3) 0.004s 0.19s 0.03s 0.06s 0.92s 0.24s
5:1+Join(2) 0.002s 0.10s 0.03s 0.06s 0.13s 0.06s
6:5+Join(3) 0.001s 0.09s 0.03s 0.06s 0.13s 0.06s
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To better evaluate the performance of our technique, we compared it with the
performance of BPMN-Q [2]. BPMN-Q on average takes 5s to perform a query
with a collection of 500 process models (each model on average has 12 nodes) on
a PC (2.8 GHz processors and 4GB memory); while an FNet on average takes
0.05s to perform a query with a collection of 604 process models (each model on
average has 20.3 nodes) on a laptop (2.2 GHz processors and 4GB memory). The
queries in this paper have similar characteristics as in [2] in terms of the number
and type of advanced query elements. From the comparison we conclude that on
average the technique performs two orders of magnitude faster than BPMN-Q.

To evaluate the scalability of an FNet, we generated a collection of 6040 syn-
thetic process graphs and executed the first group of queries with the collection.
On average, a synthetic process graph contains 20.3 nodes and 24.1 edges. The
labels is the queries are adapted to make sure there are matching process graphs
in the collection. The average execution time of a query is 0.10s, which is still
within milliseconds. While using BPMN-Q [2], it on average takes about 6s to
execute a query with 1000 models. We also find out that more execution time
is required if a query has more hits in a collection or a query contains a wild-
card node. More details about the synthetic process graph generator and the
experiments with the synthetic collection are provided in a technical report [25].

To evaluate the quality of the technique, the first group of queries were used
to run an experiment. The collection was developed in two steps. First, twenty
SAP reference models were selected. We manually checked each pair of query
and selected SAP reference model to see whether the selected SAP reference
model is a positive or negative result for the query. We make sure that each
query at least have one positive result within the two models. Second, for each
query, three models were artificially made to check if the technique in this paper
works well in terms of result quality. One of the model is a positive result for
the query and the other two are negative results for the query. The experiment
result shows that both precision and recall of the technique are 1.

7 Related Work

The work presented in this paper is related to business process querying, business
process similarity search, general graph querying and general model querying.

Three groups of researchers have been working on advanced business process
querying [2,3,6]. Awad [2] develops BPMN-Q, a language to query business pro-
cesses, by extending the BPMN notation and implements BPMN-Q on top of
relational databases. Beeri et al. [3] propose BP-QL, a language to query busi-
ness processes modeled in BPEL. Choi et al. [6] propose IPM-EPDL, a query
language for a proprietary process modeling notation based on XML. The dif-
ference between this paper and the above work is that this paper focuses on de-
veloping indexing techniques to make advanced business process querying more
efficient. Jin et al. [9] develop efficient indexing techniques for basic business pro-
cess querying, using sequences in the process models. The differences between
this paper and [9] are as follows. Firstly, the technique in this paper supports



FNet: An Index for Advanced Business Process Querying 259

advanced business process querying besides basic business process querying. Sec-
ondly, more features besides sequences are evaluated in this paper. Besides the
work on querying business process models, there also exists work on querying
executions of business processes [4,5].

The technique in this paper relates to the topic of business process similarity
search. Process querying and similarity partly share the same techniques, e.g.,
for node matching. Similarity search is used to retrieve process models that are
similar to a query model instead of exactly matching and thus uses different
techniques to perform the search. The feature-based indexing has also been ap-
plied on business process similarity search to improve the efficiency of similarity
search [22,24]. The main difference between this paper and [22,24] is that the
metrics for matching (features of) process models are different because of the
differences of process similarity search and querying, therefore retrieving features
through the indexes are also different. In addition to that, features used in this
paper are different, i.e., the loop feature is used for process querying, while the
start and stop features are used for process similarity search. Other work on im-
proving the efficiency of similarity search includes the work by Kunze et al. [11],
who propose a metric that enables the use of an MTree index on process models.
Qiao et al. [14] use clustering techniques to search process models efficiently.

General graph querying has been applied in various application domains, in-
cluding fingerprint, DNA and chemical compound search. Willett et al. [20] de-
scribe a feature-based similarity search algorithm for searching in a chemical
compound databases. ShaSha et al. [17] propose a path-based approach; Yan et
al. [21] use discriminative frequent structures to index graphs. The main differ-
ence between the work that has been done in this area and the work in this
paper is the different nature of business process graphs as compared to graphs
in other domains. In particular, there is practically no restriction to the number
of possible node labels in a business process graph and matching nodes do not
necessarily have the identical labels. The selection of features is also different.
In this paper common workflow patterns are used due to the characteristics of
process models.

General model querying also relates to the topic of business process similarity
search. Query languages [18,19] have been designed based on UML (e.g., class
diagrams) instead of process modeling notations (e.g., BPMN and EPCs). There-
fore, these query languages are for querying general software models instead of
process models.

8 Conclusion

This paper presents a technique for improving the efficiency of advanced busi-
ness process querying, which can be used to efficiently retrieve specific business
models from the large sets of business process models that we encounter nowa-
days in practice. The technique works by breaking up a process model into small
sub-models, which can also be used to build an index, called a feature net. In
particular, the technique can also deal with advanced querying structures, such
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as paths of edges. Experiments show that a feature net can be used to retrieve
results two orders of magnitude faster than querying techniques that is built on
top of traditional RDBMS [2].

There are several directions for improving the feature net. Firstly, the technique
in this paper focuses on tasks and relations between tasks. However, process mod-
els often contain other information that may be exploited, e.g., resources. This in-
formation can be integrated into an FNet by add more dimensions into features,
e.g., resources and relations between resources and tasks. Querying on the basis
of this information is left for future work. Secondly, label matching is based on
matching identical words. However, equivalent tasks can be labeled differently,
e.g., due to the use synonyms and different levels of verbosity. Therefore, we ap-
pliedmore advancedmetrics for label matching that consider synonyms [7] and do-
main ontologies [10]. The integration of these advanced metrics into the technique
described in this paper is also left for future work. Finally, comparing with the per-
formance of the algorithm in this paper with that of general graph databases is
also left for future work.
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Abstract. Compliance checking is gaining importance as today’s organizations
need to show that operational processes are executed in a controlled manner
while satisfying predefined (legal) requirements. Deviations may be costly and
expose the organization to severe risks. Compliance checking is of growing im-
portance for the business process management and auditing communities. This
paper presents a comprehensive compliance checking approach based on Petri-
net patterns and alignments. 55 control flow oriented compliance rules, dis-
tributed over 15 categories, have been formalized in terms of Petri-net patterns
describing the compliant behavior. To check compliance with respect to a rule,
the event log describing the observed behavior is aligned with the corresponding
pattern. The approach is flexible (easy to add new patterns), robust (the selected
alignment between log and pattern is guaranteed to be optimal), and allows for
both a quantification of compliance and intuitive diagnostics explaining devia-
tions at the level of alignments. The approach can also handle resource-based and
data-based compliance rules and is supported by ProM plug-ins. The applicability
of the approach has been evaluated using various real-life event logs.

Keywords: compliance checking, process mining, conformance checking,
Petri-nets.

1 Introduction

Business processes need to comply with regulations and laws set by both internal and
external stakeholders. Failing to comply may be costly, therefore, organizations need to
continuously check whether business processes are executed within the boundaries set
by managers, governments, and other stakeholders. Deviations of the observed behavior
from the specified behavior may point to fraud, malpractice, risks, and inefficiencies.
Five types of compliance-related activities can be identified [23,30,19,28]:

– compliance elicitation: determine the constraints that need to be satisfied (i.e., rules
defining the boundaries of compliant behavior),

– compliance formalization: formulate precisely the compliance requirements de-
rived from laws and regulations in compliance elicitation,

– compliance implementation: implement and configure information systems such
that they fulfil compliance requirements,

– compliance checking: investigate whether the constraints will be met (forward com-
pliance checking) or have been met (backward compliance checking), and

A. Barros, A. Gal, and E. Kindler (Eds.): BPM 2012, LNCS 7481, pp. 262–278, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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– compliance improvement: modify the processes and systems based on the diagnos-
tic information in order to improve compliance.

There are two basic types of conformance checking: (1) forward compliance checking
aims to design and implement processes where conformant behavior is enforced and (2)
backward compliance checking aims to detect and localize non-conformant behavior.
This paper focuses on backward compliance checking based on event data.

Compliance checking is gaining importance because of the availability of event data
and new legislations. Major corporate and accounting scandals including those affect-
ing Enron, Tyco, Adelphia, Peregrine and WorldCom have fueled the interest in more
rigorous auditing practices. Legislation such as the Sarbanes-Oxley (SOX) Act of 2002
and the Basel II Accord of 2004 was enacted as a reaction to such scandals. At the same
time, new technologies are providing opportunities to systematically observe processes
at a detailed level by recording all process relevant events.

Process mining techniques [1] offer a means to more rigorously check compliance
and ascertain the validity and reliability of information about an organization’s core pro-
cesses. The core challenge is to compare the prescribed behavior (e.g., a process model
or set of rules) to observed behavior (e.g., audit trails, workflow logs, transaction logs,
message logs, and databases). For example, in [3] it is shown how constraints expressed
in terms of Linear Temporal Logic (LTL) can be checked with respect to an event log. In
[25] both LTL-based and SCIFF-based (i.e., abductive logic programming) approaches
are used to check compliance with respect to a declarative process model and an event
log. Dozens of approaches have been proposed to check conformance given a Petri-net
and an event log [2,8,6,7,11,13,20,26,27,31,38]. Approaches such as in [31] replay the
event log on the model while counting “missing” and “remaining” tokens. The former
indicates observed, but disallowed behavior, and the latter indicate non-observed, but
required behavior. State-of-the-art techniques in conformance checking retrieve this in-
formation by computing optimal alignments [2,8] between traces in the event log and
“best fitting” paths in the model.

Existing approaches to backwards compliance checking have two main problems.
First of all, the elicitation of compliance rules is not supported well. End users need
to map compliance rules onto expressions in temporal logic or encode the rules into a
Petri-net-like process model. Second, existing checking techniques can discover viola-
tions but do not provide useful diagnostics. While forward compliance checking tech-
niques [10,18] employ pattern matching to highlight compliance violations in a model,
such techniques are not applicable in backwards checking where not a model, but a
log is given. Here, LTL-based checkers will classify a trace as non-compliant without
providing detailed diagnostics and discard the remainder of the trace when the first
deviation is detected.

To address these limitations we provide a comprehensive collection of control flow
related compliance rules. We identify 55 rules distributed over 15 categories. These
compliance rules are formalized in terms of Petri-net patterns. We apply the alignment
technique developed in [2,8] to analyze if the process execution (log) has been compli-
ant with the compliance rules (Petri-net patterns). If the observed behavior is consistent
with the compliance rule, then the optimal alignment shows that all moves of the log
can be mimicked by the corresponding Petri-net pattern and vice versa. If this is not
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possible because the compliance rule is violated, then the alignment shows the root
cause of the deviation. This way, we are able to show detailed diagnostics without false
negatives (non-conformant behavior remains undetected) and false positives (confor-
mant behavior is classified as non-conforming because of an incorrect alignment of log
and model/rule). The approach is extendible, i.e., to add a new type of rule, one just
needs to add the Petri-net pattern to our repository. Moreover, as shown in this paper,
our approach can be used to support resource-based and data-based compliance rules.

The remainder of this paper is organized as follows. Section 2 reviews related work.
Section 3 explains the notion of alignments to relate observed and modeled behavior.
Our compliance rule framework is introduced in Section 4. Although the primary focus
of this paper is on control flow compliance rules, Section 5 illustrates that the approach
also supports the other perspectives (e.g. resources and data). In Section 6 the approach
is validated using a case study and the implementation in ProM is showcased. Section 7
concludes the paper.

2 Related Work

The importance of compliance management has been pointed out by various authors [5].
In [30] a life cycle is introduced to structure the process of compliance management.
A comparative analysis over different compliance management solution frameworks is
provided in [23].

Compliance management has gained wide interest from the Business Process Man-
agement (BPM) community. Compliance checking approaches can be mapped onto two
main categories [22]:

– Forward compliance checking aims at ensuring compliant process executions. Pro-
cesses can be constructed to be compliant [32] or verified whether they are com-
pliant [24]. Alternatively, compliance requirements can be transformed into mon-
itoring rules [12] or model annotations which then are used to enforce compliant
process executions [17,39]. Diagnostic information is obtained by pattern match-
ing [10,18].

– Backward compliance checking evaluates in hindsight whether process executions
did comply to all compliance rules or when and where a particular rule was vio-
lated. A variety of conformance checking techniques have been proposed to quan-
tify conformance and detect deviations based on an event log and process model
(e.g., a Petri-net) [2,8,6,7,11,13,20,26,27,31,38]. Also approaches based on tempo-
ral logic [3,25] have been proposed to check compliance

In this paper we focus on backward compliance checking and assume an event log to
be present. Compared to existing approaches we provide a comprehensive collection
of compliance rules. Moreover, we focus on providing diagnostic information in back-
wards compliance checking.

3 Conformance Checking Based on Alignments

As will be shown in this paper, we provide a large repository of Petri-net patterns mod-
eling typical compliance rules. These rules can be instantiated for a particular process,
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i.e., the abstract activities in the pattern are replaced by concrete activities also recorded
in the event log. The log complies to the rule if each log trace is described by the Petri-
net pattern. In case a trace is not described, we want to locate where the trace deviates
from the pattern. This section recalls basic notions and a recent technique [2,8] for
finding deviations between log traces and formal specification (a Petri-net).

An event log is a multiset of traces. Each trace describes the life-cycle of a particular
case (i.e., a process instance) as a sequence of events. An event often refers to the ac-
tivity executed. However, event logs may store additional information about events. For
example, many process mining techniques use extra information such as the resource
(i.e., person or device) executing or initiating the activity, the timestamp of the event, or
data elements recorded with the event (e.g., the size of an order).

From a formal point of view a trace σL is a sequence over an alphabet ΣL, i.e.,
σL ∈ ΣL

∗. An event log L is a multiset of traces, i.e., L ∈ IB(ΣL
∗). The alphabet ΣL

is typically the set of activity names. However, when including additional perspectives,
the alphabet may be extended to also contain information about data and resources. For
example, (prepare decision , start , John, gold , 50 euro) ∈ ΣL may refer to an event
describing the start of activity “prepare decision” by John for a gold customer claiming
50 euro. The choice of ΣL depends on the compliance rule that needs to be checked,
e.g., for most control flow related rules it is sufficient to record the activity name.

A Petri-net pattern is essentially a specification prescribing compliant traces in a con-
cise way. Technically, a specification S ⊆ ΣS

∗ is a finite set of traces over an alphabet
ΣS together with a mapping � : ΣS → 2ΣL ∪ {τ} that relates each specification event
in ΣS to a set of log events in ΣL or to τ . In this paper, S is the set of firing sequences
of a Petri-net and � is the function that labels each transition with an activity name. S
and � can be described by other formalisms such as temporal logics as well.

We use the alignment approach described in [2,8] to relate traces in the log (i.e.,
observed behavior) to traces of the specification (i.e., prescribed behavior). An optimal
alignment of σL to S, roughly speaking, is a trace σS that is possible according to S
and that is as similar to σL as possible. By comparing σL and σS , a business analyst
gains an understanding on what has been done wrong in σL and what instead should
have been done (to behave as shown in σS).

A given trace σL ∈ L will be related to a trace ΣS ∈ S by pairing events in σL to
events of ΣS . Formally, a move (of σL and S) is a pair (x, y) ∈ (ΣL∪{})×(ΣS∪{
}) \ {(,)}. For x ∈ ΣL, y ∈ ΣS , we call (x,) a move on log, (, y) a move on
specification S, and if x ∈ �(y), then (x, y) is a synchronous move.

An alignment of a trace σL ∈ ΣL
∗ to S is a sequence γ = 〈(x1, y1) . . . (xn, yn)〉 of

moves (of σL and S) such that the projection x1 . . . xn to ΣL is the original trace σL,
i.e., 〈x1 . . . xn〉|ΣL = σL, and the projection 〈y1 . . . yn〉|ΣS = σS ∈ S is described by
the specification.

For example, for a specification S = {〈a, b, c, d〉, 〈a, c, b, d〉} with �(x) = {x} the
trace σL = 〈a, c, c, d〉 has (among others), the following two alignments with events
of σL shown at the top and events of S shown at the bottom: γ1 = a c c  d

a c  b d
and γ2 =

a   c c d
a c b   d

.
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Both alignments yield the same specified trace σS = 〈a, c, b, d〉 ∈ S. However, γ1 is
preferable over γ2 as it maximizes the number of synchronous moves. The conformance
checking problem in this setting is to find for a given trace σL and specification S an
optimal alignment γ of σL to S s.t. no other alignment has fewer non-synchronous
moves (move on log only or move on specification only). The technique of [2,8] finds
such an optimal alignment using a cost-based approach: a cost-function κ assigns each
move (x, y) a cost κ(x, y) s.t. a synchronous move has cost 0 and all other types of
moves have cost > 0. Then an A�-based search on the space of (all prefixes of) all
alignments of σL to S is guaranteed to return an optimal alignment for σL and S.

In such an optimal alignment, a move on log (x,) indicates that the trace σL had
an event x that was not supposed to happen according to the specification S whereas
a move on specification (, y) indicates that σL was missing an event �(y) that was
expected according to S. As the alignment preserves the position relative to the trace
σL, we can locate the exact position where σL had an event too much or missed an
event compared to S.

In the remainder of this paper, we show how to leverage this approach to compliance
checking. The optimal alignments between log and specification provide excellent di-
agnostic information and can be used to robustly quantify conformance. Thereby, the
specification S will formally capture all traces that comply to a given compliance con-
straint. The alignment of a log trace σL to S can then clearly show where and how often
σL deviates from the constraint.

4 Expressing Compliance Rules as Petri-net Patterns

In this section, we provide a framework for compliance rules together with an extensive
list of control flow rules in 15 different categories. Each rule has a comprehensive de-
scription and is formalized as a Petri-net pattern. In Sect. 5 we generalize this approach
to data- and resource-related rules.

4.1 Compliance Rule Framework

A compliance rule prescribes how an internal or cross-organizational business process
has to be designed or executed. It originates in explicitly stated regulations and can refer
to the individual perspectives of a business process (control flow, data flow, organiza-
tional aspects) or a combination of several perspectives. We reviewed existing literature
on compliance [4,15,9,14,21,36,19,33,35], collected the rules described in these papers,
and categorized them. We found that a single rule usually is not concerned with only one
perspective of a process, but with several perspectives. Based on this observation, we
identified six orthogonal dimensions of compliance rules, into which each of the rules
could be categorized. For example, the rule “After a claim of more than 3000 EUR has
been filed, two different employees need to check the validity of the claim indepen-
dently.” is composed of 3 basic rules that refer to (1) control flow (“After a claim has
been filed, validity must be checked.”), (2) data flow (“A claim over 3000 EUR requires
two validity checks.”), and (3) the organization (“Multiple validity checks are carried
out by different employees.”).
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Fig. 1. Compliance Rule Framework

Furthermore, a compliance rule can
(4) impose time-related constraints (e.g.,
“Within 6 months the claim must be de-
cided.”) or can be untimed,(5) prescribe
properties of a single case or of multiple
cases (e.g., “20% of all claims require a
detailed check.”), and (6) prescribe prop-
erties of the process design (e.g., “The
claim process must have a time-out event
handler.”) or properties of the process ex-
ecutions, which can be observed (i.e.,
recorded in an event log).

These six dimensions give rise to
the framework shown in Fig. 1. In this
paper, we present compliance rules for
control flow, data flow as well as organi-
zational aspects, where we focus on un-
timed, observation-based properties of individual cases. The remainder of this section
presents control flow compliance rules and their formalization. Section 5 presents data
flow rules and organizational rules and their combination with control flow rules.

4.2 Control Flow Compliance Rules

Eliciting and formalizing compliance rules for a business process comprise determining
the laws and regulations that are relevant for this process and formulating these compli-
ance rules in an unambiguous, yet understandable manner [30]. Typically, this involves
expressing a given informal requirement in a formal notation: a task an end user may not
be capable of. To support elicitation, we provide end users with an extensive library of
comprehensive compliance rules. Each rule has an informal, precise description and is
accompanied by a mathematical formalization. The end user just has to pick the rule(s)
that describe the given compliance requirement best; the accompanying formalization
is then used for compliance checking.

We collected from literature [4,15,9,14,21,36,19,33,35] 55 compliance rules that
concern the control flow perspective of a process, and classified them further into 15
categories; see Tab. 1. Each category includes several compliance rules. For example,
the Existence category defines 2 rules in total, e.g., “In each process execution, task A
should be executed” and “In each process execution, Task A should not be executed.”
Each rule is parameterized over tasks (e.g., Task A) or numeric parameters (e.g., gov-
erning bounds for repetitions etc.).

To formalize these rules we need to use a concrete formalism. Some compliance
rules prescribe behaviors that are easier to express in terms of logical formulas (each
A is followed by a B), and some rules prescribe behaviors that are easier to express
in a more operational model (A, B, and C happen twice directly in sequence with no
other event in between). Our literature survey found both kinds of rules to be relevant,
temporal logics (e.g., LTL) against operational models (e.g., Petri-nets). Because of tool
support for conformance checking [8], we decided to formalize rules as parameterized
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Table 1. Categorization of the 55 Control Flow Compliance Rules

Category (Rules) Description
Existence (2) Limits the occurrence or absence of a given event A within a

scope. [4],[15],[9], [14],[21],[36],[33]
Bounded Existence (6) Limits the number of times a given event A must or must not

occur within a scope. [15],[14]
Bounded Sequence (5) Limits the number of times a given sequence of events must

or must not occur within a scope. [15],[14]
Parallel (1) A specific set of events should occur in parallel within a scope.

[33]
Precedence (10) Limits the occurrence of a given event A in precedence over

a given event B. [15],[33],[14],[36],[9],[19],[21],[4],[33]
Chain Precedence (4) Limits the occurrence of a sequence of events A1, . . . , An

over a sequence of events B1, . . . , Bn. [15],[14],[21]
Response (10) Limits the occurrence of a given event B in response to a

given event A. [33],[14],[21],[15],[37],[9],[19]
Chain Response (4) Limits the occurrence of a sequence of events B1, . . . , Bn in

response to a sequence of events A1, . . . , An. [15]
Between (7) Limits the occurrence of a given eventB between a sequence

of events A and C. [14]
Exclusive (1) Presence of a given event A mandates the absence of an

event B. [15]
Mutual Exclusive (1) Either a given event A or event B must exist but not none of

them or both. [15],[34]
Inclusive (1) Presence of a given event A mandates that event B is also

present. [15]
Prerequisite (1) Absence of a given event A mandates that event B is also

absent. [15]
Substitute (1) A given event B substitutes the absence of event A. [15]
Corequisite (1) Either given events A and B should exist together or to be

absent together. [15]

Petri-net patterns. Although being an unusual choice, we could formalize operational
rules as well as declarative rules in a systematic and understandable way. The complete
collection of compliance rules and their Petri-net patterns is described in [29]. In the
following we present a few characteristic rules and their formalization in terms of Petri-
net patterns.

4.3 Petri-net Patterns for Compliance Rules

Bounded Existence of a Task (from category Bounded Existence). Description: “Task
A should be executed exactly k times.” If A occurs less than or more than k times, the
rule is violated. For instance, for k = 2, the trace 〈BCADBCAD〉 complies to this
rule and 〈BCADBCAAD〉 violates the rule.

Figure 2 shows the Petri-net pattern that formalizes this rule. Task A is expressed as
an A-labeled transition. Occurrences of any other transition than A are mimicked by
the Ω-labeled transition. This way, the pattern abstracts from all other trace events that



Diagnostic Information in Compliance Checking 269

are not described in the compliance rule. The transition F expresses that the end of the
trace has been reached, i.e., it occurs after all other events of the trace occurred.

The pre-place Pk of A is initially marked with k tokens. As each occurrence of A
consumes one token from Pk, A can occur at most k times. Also each occurrence of
A produces one token on Count . By consuming k tokens from place Count , the final
transition F can only occur (i.e., the trace can only complete) if A has occurred k times.

A

F

Ω 

Initial

Pk (k=2)

Count

(k=2)

Final

Fig. 2. Petri-net pattern for rule “Bounded Exis-
tence of a Task”

Figure 2 also illustrates the basic prin-
ciples of Petri-net patterns for compliance
rules. Each pattern has a dedicated place
Final that defines the final marking of the
pattern. A trace σ complies to the pattern
(its rule) iff after executing σ, final transi-
tion F is enabled, and its occurrence leads
to the final marking that puts 1 token on
place final and all other places are empty. In Fig. 2, the arc from F to Initial ensures
that once F occurs, no other tokens remain in the net and A and Ω cannot occur any-
more.

We use the alignment-based approach of Sect. 3 for checking whether a trace σ com-
plies to this rule, by aligning σ to an occurrence sequence σS of the net of Fig. 2 where
F is the last event of σS . To this end, we first have to map transitions of the pattern to
events of σ by the labeling function �. For example, the trace 〈BCADBCAD〉 could
have the mapping �(A) = {A}, �(Ω) = {B,C,D}, and �(F ) = {τ} (the final transi-
tion F is always regarded as silent and not mapped to any trace event). For this labeling,
the approach of Sect. 2 aligns σ1 = 〈BCADBCAD〉 by γ1 = B C A D B C A D 

Ω Ω A Ω Ω Ω A Ω F
and

σ2 = 〈BCADBCAAD〉 by γ2 = B C A D B C A A D 
Ω Ω A Ω Ω Ω A  Ω F

and σ3 = 〈BCADBCD〉 by γ3

= B C A D B C  D 
Ω Ω A Ω Ω Ω A Ω F

. Alignment γ1 only contains synchronous moves of σ1 and Petri-

net (except for final transition F ) which means that σ1 complies to the rule. In contrast,
γ2 contains a move on log (A,) on the third A. This move on log not only indicates
that σ2 violates the compliance rule, but the move (A,) also tells the exact location of
the deviation, which is the third A. γ3 contains a move on model (, A) that is required
to get the Petri-net pattern into its final marking. This move on model also indicates a
violation of the rule as a missing second A in the σ3. This first rule constrains a sin-
gle task. The following rules constrain orderings of several tasks and also shows the
importance of the Ω-transition in the Petri-net patterns.

Direct Precedence of a Task (from category Precedence). Description: “Every time B
occurs, it should be directly preceded by A.” If B occurs without a directly preceding
A, the rule is violated. For instance, 〈ACCAAC〉 and 〈ABCAAB〉 comply to the rule,
whereas 〈ABACB〉 violates the rule.

The pattern of Fig. 3(top left) formalizes this rule. It basically describes a cycle of
A and B, so that B can only occur if A has preceded it. As there is no Ω-transition
adjacent to place p, A directly precedes any B (occurrences of any other transition but
B are excluded).
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This pattern also demonstrates the power of the alignment-based approach and for
checking whether a trace complies the rule. For instance, in the compliant trace σ =
〈ABCAABA〉, the second and the last occurrence of A are aligned to the left-most
transition A of Fig. 3 and only the first and third A that directly precede a B are aligned
to enter the cycle. This capability of the alignment-based approach allows to design
patterns with non-deterministic choices such as in Fig. 3, which gives greater flexibility
when formalizing compliance rules.

Ast

Ast

Ω

F

Acmp

BstBcmp

Acmp

Final

Fig. 3. Petri-net patterns for precedence

Our approach also allows to derive vari-
ants of patterns. For instance, Fig. 3(top
right) formalizes that “Every occurrence of B
should be preceded by A (also several steps
earlier).” The patterns presented so far as-
sumed an occurrence of a task A to be rep-
resented as an atomic event A in the log.
Fig. 3(bottom) formalizes the direct prece-
dence rule for the case that task A is rep-
resented by two events A − start (Ast) and
A−complete (Acmp) indicating the start and
completion of an ongoing activity. All Petri-
net patterns of our collection rules come in
these two flavors and can be picked based on
the setting. The next rule demonstrates that in this way, also intricate ordering con-
straints can be formalized with Petri-nets in an intuitive way.

Direct Precedence or Simultaneous Occurrences of Tasks. “Task A must always be
executed simultaneously or directly before task B.” In case of atomic tasks this rule
is identical to the preceding rule, in case of ongoing tasks, A and B can overlap in
time. For example, the trace 〈AstBstCAcmpDBcmp〉 complies to this rule whereas
〈AstAcmpCBstDBcmp〉 violates this rule.

Final

Acmp

Bcmp

Ω 

Acmp

Ast

Bst

F 

Ast

Ast Acmp Bst Bcmp

Fig. 4. Petri-net pattern for “Direct Precedence or Simultaneous
Occurrences of Tasks”

The Petri-net pattern of
Fig. 4 formalizes this rule.
The case where A strictly
precedes B (A ends be-
fore B starts) is formal-
ized by the lower cycle
of the net. More interest-
ingly, the case where A and
B occur simultaneously is
formalized by the upper
cycle (white transitions are
silent). There is no cycle that permits B without a preceding or simultaneousA. If there
is no B or B just occurred, any events but Bst and Bcmp may occur. This is also the
situation when the pattern may terminate. The replay-based approach of Sect. 3 aligns
traces to this pattern as explained for “Direct Precedence of a Task.”
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The preceding rules constrained control flow in one specific dimension (ordering or
number of occurrences). The next rule shows that also mixed rules occur, and how to
formalize mixed rules by reusing concepts of the preceding patterns.

Bounded Existence of Sequence of Tasks (from category Bounded Sequence). De-
scription: “The direct sequence of tasks 〈AB〉 (B exactly after A) should not occur
more than k times.” If 〈AB〉 occurs for the k + 1-st time, the rule is violated. For in-
stance, for k = 2, 〈CABACBABC〉 complies to this rule and 〈CABBCABABC〉
violates the rule.

Ω 

B

A

F F

Initial

Pk (k=2)

P1

Final

B

A

Ω 

Fig. 5. Petri-net pattern for “Bounded
Existence of Sequence of Tasks”

The pattern of Fig. 5 formalizes this rule
by combining concepts of “Bounded Existence”
(Fig. 2) with concepts of “Direct Precedence”
(Fig. 3). A consecutive sequence 〈AB〉 is ex-
pressed as a cycle in the pattern. The complete
cycle may occur at most k times because of pre-
place Pk of B. A k + 1-st occurrence of A is
permitted as it does not complete 〈AB〉, yet. Af-
ter A occurred, there may be arbitrary further
occurrences of A; a subsequent B still yields a
direct sequence 〈AB〉, any other transition inter-
rupts this sequence (Ω brings the token back to
Initial ).

The pattern can go to the final marking at any point (that is, if there are no other
events to be executed). Here, the reset arcs from Pk to the final transitions F ensure
that all pending tokens are removed from the net (e.g., if 〈AB〉 never occurred).

Aligning the violating trace σ = 〈CABBCABABC〉 to this pattern yields align-
ment γ =C A B B C A B A B C 

Ω A B B Ω A B A  Ω F
where the move on log (B,) at the third occurrence

of 〈AB〉 arises because there is no token on Pk left (and hence B is not enabled in
the pattern), i.e., this move on log indicates the violation. These patterns demonstrate
some of the key concepts and basic building blocks that we used to formalize all 55
compliance rules in terms of Petri-net patterns.

5 Compliance to Data and Organizational Aspects

So far we presented a comprehensive collection of control flow compliance rules and
their formalization as Petri-net patterns. These rules cover the control flow dimension
of the compliance rule framework introduced in Fig. 1. In this section, we show how
the pattern-based approach to compliance rules of Sect. 5 can also be applied to check
compliance with respect to data and to organizational aspects, which constitute two
other dimensions of the framework. As before, we consider single-case observation-
based untimed compliance rules.

5.1 Data Flow Compliance Rules

A typical example of a data flow compliance rule is to Restrict data values permit-
ted for a task. For example, “A discount of 10% is granted if the customer is a gold
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customer; 5% are granted if the customer is a silver customer.” A rule of this kind pre-
scribes that task grant refers to 2 attributes e.g., customer status and percentage. When
task grant discount occurs, these attribute values need to be logged in the corresponding
event such as (grant , John, gold , 10%) (see Sect. 3); otherwise compliance cannot be
checked in hindsight.

When checking compliance to this rule, it is not just sufficient to check whether
grant occurred, but we need to check whether grant occurred with the right attribute
values. To this end slight changes in actual Petri-net pattern and labeling � that relates
Petri-net transitions to events are required. Figure 6(top) shows the Petri-net pattern for
this rule. It contains two transitions grant that are further distinguished by the attribute
value combinations that are permitted by this task.

Init
Final

Ω 

F

grant 10% goldgrant 10% gold

grant 5% silvergrant 5% silver

Pk (k=2)

Fig. 6. Petri-net pattern to ‘Restrict data
values permitted for a task’

Recall from Sect. 3 that each pattern also
has a labeling function �(.) that maps transi-
tions to sets of events. In contrast to Sect. 4, a
transition is not mapped to an event name, but
to a combination of name and attribute values.
For instance, the mapping �(grant10%gold) =
{(grant , x, y, z) | y = gold , z = 10%} maps
transition grant10%gold only to grant events
which have gold and 10% as their attribute val-
ues, correspondingly for grant5%silver . Other
occurrences of grant (with other attribute value
combinations) are disallowed by mapping Ω
only to events other than grant , e.g., �(Ω) =
{(a, x, y, . . .) | a 
= grant}. This mapping � and the pattern of Fig. 6(bottom)
together formalize the compliance rule. For example, trace 〈(add item, x, 10EUR)
(add item, y, 32EUR) (grant, Joe, gold , 10%)〉 complies to this rule whereas align-
ing trace 〈(add item, x, 10EUR) (add item, y, 32EUR) (grant, Jim, silver , 10%)〉 to
the this rule yields a move on log ((grant, Jim, silver , 10%),) indicating that Jim
was granted a wrong discount.

Note that data flow compliance is essentially formalized by further distinguishing
transitions in the Petri-net patterns, and by defining the right mapping from transitions
to events. This permits to combine control flow rule and data flow compliance rules
also formally, e.g., the pattern of Fig. 6(bottom) formalizes that “A discount (of 10%
for gold customers and 5% for silver customers) is given at most twice per case.”

5.2 Compliance to Organizational Aspects

Separation of Duty (4-eyes principle). The perhaps best known compliance rule states
that “Of two sequential tasks A and B, if A was performed by user R, then B must not
be performed by R.” Here, each task has a particular attribute performed by (or role)
which takes as values user names or roles. Technically, the role attribute is a special data
attribute: a log event (check , Sue) describes that Sue performed activity check . A trace
σ1 = 〈(receive ,Tom)(check , Sue)(notify , Sue)(pay ,Tom)〉 complies to the 4-eye
principle for tasks check and pay whereas 〈(receive,Tom)(check , Sue)(notify , Sue)
(pay , Sue)〉 violates the principle.
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Figure 7 shows the Petri-net pattern that formalizes this compliance rule. It distin-
guishes two cases (as indicated by the upper and lower grey-shaded rectangle. Each
case describes one compliant role assignment to tasks A and B, either A is performed
by R, then B not by R, or vice versa. In this compliance rule, once R performed A,
it always has to perform A and may never perform B (within the same trace). Hence
the choice for either case is permanent in the pattern as well. The pattern may termi-
nate at any point in time, and all other tasks (except for A and B with the chosen role
assignments) may occur at any point in time. As for data flow compliance, the labeling
�(.) is crucial to relate patterns of the transitions to events: �(A,R) = {(x, y) | x =
A, y = R}, �(A,not-R) = {(x, y) | x = A, y 
= R}, �(B,R) = {(x, y) | x = B, y =
R}, �(B,not-R) = {(x, y) | x = B, y 
= R}, �(Ω) = {(x, y) | x 
∈ {A,B}, y 
= R}.

Each user gives rise to a different labeling that has to be checked separately from
other labelings. When checking compliance of trace σ2 given above w.r.t. tasks check ,
pay , and user Joe, the alignment-based approach of Sect. 3 returns a move on log

Fig. 7. Petri-net pattern for “Separation of Duty”

((pay , Sue),) indicating that
the pay task should not have been
performed by Sue (as it is not al-
lowed by the pattern).

Altogether, compliance to data
flow and to organizational as-
pects is orthogonal to control flow
compliance and builds on map-
ping Petri-net transitions to events
based on a combination of event
name and attributes. This also al-
lows to formalize and check rules
that depend on mixture of control
flow, data flow and organizational
aspects.

6 Experimental Results

We have evaluated the technique on real-life log taken from the financial system of a
large Dutch hospital. The log contained over 150000 events from over 700 different
activities in 1150 cases, each case representing a patient. The log was obtained from
financial system of the hospital in the period of 2005 to 2008. Beside anonymizing the
log, all other data in log is preserved including event names, involved resources etc.
We first describe the implementation used in this evaluation and then report on some
compliance rules relevant to this process and the results we obtained for them.

6.1 Implementation in ProM

The presented technique is implemented in the Compliance package of the Process Min-
ing Toolkit ProM 6, available from http://www.processmining.org/. The
packet provides Petri-net patterns for the control flow compliance rules discussed in
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this paper. The “Check Compliance” plugin takes a log as input. Then the user can
pick from a list of available compliance rules, those rules against which the log shall
be checked. For each rule to check, the user then configures its parameters, mostly by
mapping events to task names of the rule. Then the conformance checker of Sect. 3 is
called to align the log to the rule’s Petri-net pattern. The resulting alignment is shown to
the user. Each aligned trace is shown in a separate row and deviations are highlighted:
a move on log indicates an event occurred which did not comply to the rule, a move on
model indicates which event skipped in log such that log does not comply to the rule.
Several figures in the next section show these alignments.

To ease presentation of our results, we abstract long sequences of events that are
not relevant to the compliance rule (i.e., which are mapped to Ω-transitions), to shorter
sequences. This way, order and relative position of compliance-relevant events are pre-
served while irrelevant details are abstracted from.

6.2 Case Study Constraints and Results

In the case study we followed the standard use case for compliance checking: (1) check
relevant regulations and elicit respective compliance requirements, (2) for each require-
ment, identify the patterns that precisely express the requirement from the rule collec-
tion in Tab. 1, (3) take the corresponding Petri-net pattern and map its transitions to the
events in the given log, and (4) run the conformance checker.

In the following, we describe our findings for three compliance requirements that
were derived from the financial department’s internal policies and medical guidelines.

Fig. 8. Non-compliant case for
‘First Visit Registration should
occur exactly once’

Compliance Requirement 1. “The hospital should reg-
ister each visiting patient and prevent duplicate regis-
trations for a patient.” This requirement is formalized
by the compliance rule “Event First Visit Registration
should occur exactly once per case.” from the category
‘bounded existence’ of Table 1. The corresponding pat-
tern is shown in Fig. 2 (left). To obtain a reliable result,
we needed to filter the data for patients who started their
treatment between 2005 and 2008. We checked compliance for 640 cases and identified
622 compliant and 18 non-compliant cases.

Figure 8 shows diagnostic information for a non-compliant case. As described above,
ProM maps the trace on to the compliance-influencing events: First Visit Registration
occurs twice, where the first occurrence is compliant (highlighted green) and the second
one should not have been in the trace (highlighted yellow, move on log).

Compliance Requirement 2. The patients are sent to the hospital for specialized treat-
ment. Therefore a basic X-ray scan has to be performed after a patient was registered.
This requirement is formalized by two rules: “Event x-ray should occur at least once per
case.” and “Every time the event ‘x-ray’ occurs, ‘First Visit Registration’ should have
happened before x-ray.” Figure 9 shows compliance results for the second rule, which
is formalized by Fig. 3(top right); we found 104 compliant cases out of 640.
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Fig. 9. Non-compliant case
for ‘First Registration Visit
precedes x-ray’

An example of a non-compliant case is shown in
Fig. 9. The relevant sequence of events in this case is
〈. . . x-ray . . .FirstVisitRegistration . . .〉. The compliance
checker identified the x-ray event as an event that should not
have happened (highlighted yellow, move on log) because it
occurred before the FirstVisitRegistration event). In addi-
tion, the checker highlights the position where x-ray should
have occurred as a move on model (highlighted purple).

InitΩ 

P1

F

F
MRI Ω 

Ω CT
Final

Fig. 10. Petri-net pattern and a non-
compliant case for ‘CT-Scan and MRI
Test exclude each other’

Compliance Requirement 3. “For safety reasons,
either a CT-Scan or an MRI test of an organ should
be taken from a patient but not both.” The corre-
sponding compliance rule from the Exclusive cat-
egory has the Petri-net pattern of Fig. 10(top).

We checked this rule and identified 1092 com-
pliant cases out of 1150. Fig. 10(bottom) shows di-
agnostic information for one non-compliant case.
The relevant sequence of events for this case is
〈...CT .MRI ...CT ...MRI ...〉. The occurrence of
CT together with MRI is a violation. In addi-
tion, the diagnostic information provided by the
checker clearly shows several violations due to
multiple occurrences of CT (move on log, high-
lighted yellow).

Altogether we could identify and precisely locate various compliance deviations
from given compliance rules in a real-life log.

7 Conclusion

Today’s organizations need to comply to an increasing set of laws and regulations. Com-
pliance requirements are often described in natural language which makes checking
compliance a difficult task. In this paper we provided a first comprehensive collection
of control flow compliance rules which allow to formally capture a large set of compli-
ance requirements. Moreover we presented a robust technique for backwards compli-
ance checking which enables us to provide diagnostic information in case of violations.
The technique is also applicable to check compliance of artifact-centric processes [16].
The approach is supported by ProM plugins and we tested our techniques using real-life
logs and compliance requirements.

The unusual choice of formalizing compliance rules as Petri-nets rather than log-
ics posed no difficulties. Yet, we can foresee benefits from a mixed formalization of
declarative rules by logics and operational rules by Petri-nets. Note that in no situation,
the end user is confronted with the formalization of the rule, but picks rules by their
informal description.

We showed that our approach can also handle organizational rules and data flow
rules to constrain individual tasks. Handling constraints across several tasks requires to
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generalize the technique, in particular the underling conformance checker [8]. Also, the
mapping between event attributes and transitions is cumbersome and currently specified
at a technical level using concrete values; a more user-friendly approach to specify
organizational and data flow rules is required.

Thus, future work aims at exploring the compliance rule framework (Fig. 1) further
and extending the compliance rule set (Table 1) for other dimensions, i.e., with collec-
tions of compliance rules restricting data flow, process resource, and process time.
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ing from the European Community’s Seventh Framework Programme FP7/2007-2013
under grant agreement no 257593 (ACSI).

References

1. van der Aalst, W.M.P.: Process Mining - Discovery, Conformance and Enhancement of Busi-
ness Processes. Springer (2011)

2. van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.F.: Replaying history on process mod-
els for conformance checking and performance analysis. WIREs Data Mining Knowl. Dis-
cov. 2, 182–192 (2012)

3. van der Aalst, W.M.P., de Beer, H.T., van Dongen, B.F.: Process Mining and Verification of
Properties: An Approach Based on Temporal Logic. In: Meersman, R. (ed.) OTM 2005, Part
I. LNCS, vol. 3760, pp. 130–147. Springer, Heidelberg (2005)

4. van der Aalst, W.M.P., van Hee, K.M., van der Werf, J.M., Kumar, A., Verdonk, M.: Con-
ceptual Model for Online Auditing. Decision Support Systems 50(3), 636–647 (2011)

5. Abdullah, N.S., Sadiq, S.W., Indulska, M.: Information systems research: Aligning to in-
dustry challenges in management of regulatory compliance. In: PACIS 2010, p. 36. AISeL
(2010)

6. Adriansyah, A., van Dongen, B.F., van der Aalst, W.M.P.: Towards Robust Conformance
Checking. In: zur Muehlen, M., Su, J. (eds.) BPM 2010 Workshops. LNBIP, vol. 66, pp.
122–133. Springer, Heidelberg (2011)

7. Adriansyah, A., Sidorova, N., van Dongen, B.F.: Cost-based Fitness in Conformance Check-
ing. In: ACSD 2011, pp. 57–66. IEEE (2011)

8. Adriansyah, A., van Dongen, B.F., van der Aalst, W.M.P.: Conformance checking using cost-
based fitness analysis. In: EDOC 2011, pp. 55–64. IEEE (2011)

9. Awad, A., Decker, G., Weske, M.: Efficient Compliance Checking Using BPMN-Q and Tem-
poral Logic. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240,
pp. 326–341. Springer, Heidelberg (2008)

10. Awad, A., Weske, M.: Visualization of Compliance Violation in Business Process Models.
In: Rinderle-Ma, S., Sadiq, S., Leymann, F. (eds.) BPM 2009. LNBIP, vol. 43, pp. 182–193.
Springer, Heidelberg (2010)

11. Calders, T., Guenther, C., Pechenizkiy, M., Rozinat, A.: Using Minimum Description Length
for Process Mining. In: SAC 2009, pp. 1451–1455. ACM Press (2009)

12. Christopher Giblin, S.M., Pfitzmann, B.: Research report: From regulatory policies to event
monitoring rules: Towards model-driven compliance automation. Tech. rep., IBM Research
GmbH, Zurich Research Laboratory, Switzerland (2006)

13. Cook, J., Wolf, A.: Software Process Validation: Quantitatively Measuring the Correspon-
dence of a Process to a Model. ACM Transactions on Software Engineering and Methodol-
ogy 8(2), 147–176 (1999)



Diagnostic Information in Compliance Checking 277

14. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for finite-state
verification. In: ICSE 1999, pp. 411–420 (1999)

15. Elgammal, A., Turetken, O., van den Heuvel, W.-J., Papazoglou, M.: Root-Cause Analy-
sis of Design-Time Compliance Violations on the Basis of Property Patterns. In: Maglio,
P.P., Weske, M., Yang, J., Fantinato, M. (eds.) ICSOC 2010. LNCS, vol. 6470, pp. 17–31.
Springer, Heidelberg (2010)

16. Fahland, D., de Leoni, M., van Dongen, B.F., van der Aalst, W.M.P.: Conformance Checking
of Interacting Processes with Overlapping Instances. In: Rinderle-Ma, S., Toumani, F., Wolf,
K. (eds.) BPM 2011. LNCS, vol. 6896, pp. 345–361. Springer, Heidelberg (2011)
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Abstract. In this paper, we present a scalable data analysis technique
to support efficient event correlation for mining business processes. We
propose a two-stages approach to compute correlation conditions and
their entailed process instances from event logs using MapReduce frame-
work. The experimental results show that the algorithm scales well to
large datasets.

1 Introduction

As a key-step in any process discovery method, event correlation discovery con-
sists in analyzing event logs or interactions among processes entities in order
to find relationships between events that belong to the same business process
execution instance [1,5]. This task is recognized as challenging for at least two
main reasons: (i) big data is a fact of the modern world. Indeed, modern infras-
tructures supporting large scale enterprise applications record more and more
information about the history of business processes, and (ii) event correlation
discovery is in essence a data-intensive task. It consists of various repetitive
data-intensive computations (e.g., aggregation of events, intersection and join,
computing transitive closures, etc) on a sheer large amount of data. This trend is
particularly supported by the unprecedented computation opportunities offered
by the emerging service-oriented cloud computing infrastructures, which open
new possibilities for process mining in cross-organizational and/or multi-tenants
settings [8].

In this paper, we investigate the application of modern large scale data anal-
ysis techniques, and in particular the MapReduce approach, to support effi-
cient event correlation discovery in process mining activities. Mapreduce [2] has
emerged recently as a promising approach for processing huge amounts of data
on a multitude of machines in a cluster. It provides a simple programming frame-
work that enables harnessing the power of very large data centers, while hiding
low level programming details related to parallelization, fault tolerance, and load
balancing.
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We propose a two-stages approach to compute correlation conditions and their
entailed process instances from event logs. The first stage is devoted to the com-
putation of simple correlation conditions (called atomic conditions). The second
stage deals with composite correlation conditions (conjunctive and disjunctive
conditions) and associated process instances. Each stage is implemented as a
map and reduce step. The main difficulties encountered when designing our ap-
proach are related to log partitioning and redistribution in order to generate
efficient parallel computations.

The paper is organized as follows. Section 2 gives an overview on the event
correlation approach used in this paper and introduces the main MapReduce
concepts. Section 3 presents our approach to compute interesting process in-
stances by analyzing process events logs. We conclude and draw future research
directions in section 4.

2 Preliminaries

Overview on Event Correlation Discovery. This paper uses as a basis the
event correlation discovery approach presented in [5]. The pursued goal in that
work is to analyze web service interaction logs in order to identify correlation
between events that belong to the same process execution instance. The ex-
tracted knowledge is then exploited to build views that represent parts of the
original business processes. The global approach proposed in [5] consists in three
main steps: (i) finding correlation between events (transform messages in the log
into a set of process instances), (ii) using an algorithm for process mining to
discover the process model for each set of the discovered process instances, and
(iii) organizing the process views into a process map. Our aim is to investigate
the implementation of this approach in a MapReduce Framework. We consider
as input a web services interaction log L. A log L can be viewed as a relation
over a relational schema L(id, A1, . . . , An), where U = {A1, . . . , An} is a set
of attributes used in messages parameters and id a special attribute denoting
message identifiers. Elements of L are called messages. Since typically a mes-
sage m ∈ L contains only a subset of attributes of U , therefore m may have
several undefined attributes in L (i.e., having a null value). Correlated messages
are identified using correlation conditions. A correlation condition, denoted by
ψ(ml.Ai,mp.Aj), is a boolean predicate over the attributes Ai and Aj of respec-
tively the two messages ml and mp. Conditions of the form ml.Ai = mp.Aj are
called atomic conditions and denoted ψAi,Aj . A conjunctive (respectively, dis-
junctive) condition consists of conjunction (respectively, disjunction) of atomic
conditions. Criteria and measures, based on the number of distinct values as
well as the number of discovered process instances, have been proposed in [5] to
prune non-interesting conditions. Based on that measures, we present in section
3, a MapReduce-based approach to discover interesting correlation conditions
and associated process instances from an events log.

Overview on the MapReduce. A MapReduce framework provides a simple
programming constructs to perform a computation over an input file f through
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two primitives: a map and a reduce functions [2]. It operates exclusively on
〈key, value〉 pairs and produces as output a set of 〈key, value〉 pairs. A map
function takes as input a data set in form of a set of key-value pairs, and for every
pair 〈k, v〉 of the input returns zero or more intermediate key-value pairs 〈k′, v′〉.
The map outputs are then processed by reduce function. A reduce function
takes as input key-list a pair 〈k′, list(v′)〉, where k′ is an intermediate key and
list(v′) is the list of all the intermediate values associated with k′, and returns
as final result zero or more key-value pairs 〈k′′, v′′〉. Several instantiations of the
map and reduce functions can operate simultaneously. A given reduce execution
requires all the intermediate values associated with a same intermediate key
k′ (i.e., for a given intermediate key k′, all the pairs 〈k′, v′〉 produced by the
different map tasks must be processed by the same reduce task). Typically,
MapReduce programs are executed on clusters of several nodes and both their
inputs and outputs are files in a distributed file system.

3 Event Correlation Discovery Using Elastic MapReduce

In this section, we describe our approach for computing correlation conditions,
and the process instances entailed by these conditions, from event logs. The
general approach, depicted at figure 1, consists in two main stages: (i) a first map
and a reduce step to compute atomic correlation conditions and their associated
process instances, and (i) a second step that implements a MapReduce levelwise-
based algorithm to compute conjunctive conditions and associated instances.
Disjunctive correlation conditions discovery, not discussed here for space reasons,
can be processed following a similar approach. We briefly describe below each of
these two steps. More technical details are available in [7].

Computing Atomic Correlation Conditions. Given an events log L, the
goal is to compute the interesting atomic correlation conditions as well as the

Fig. 1. The proposed two-steps approach
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process instances entailed by these conditions. One of the encountered difficulty
is to decide how data and computations should be partitioned in order to ef-
ficiently execute the operations entailed by this task. The main idea is to use
several instantiations of the reduce functions in order to process in parallel candi-
date conditions ψAi,Aj associated to a couple of attributes Ai, Aj . Hence, a map
phase will hash-partitions the content of the events log across the network based
on keys in such a way that every pair of attributes Ai, Aj (with i, j ∈ [1, n]) of L
will be allocated to a unique reducer (i.e., identified by a unique key value). To
achieve this task, the map function will be in charge of projecting the log L on
each pair Ai, Aj (with i, j ∈ [1, n]), of its attributes, and then assigning a same
unique key to the projected record of Ai, Aj . More precisely, a map function
takes as input a key-value pair (k, v) with k = null and v = m a message in
L and for each pair of values m.Ai and m.Aj of m, with i, j ∈ [1, n], will emit
two intermediate key-value pairs (k′ij , v

′
i) and (k′ij , v

′
j) where: k

′
ij is a unique key

identifying a couple (i, j), and each value v′l = l-m.Al-m.id, with l ∈ {i, j}, cor-
responds to the message value m.Al tagged with both the attribute position l, as
a prefix, and the message identifier m.id, as a postfix. The map function ensures
that: (i) a given pair of attributes Ai and Aj is allocated to only one reducer, and
(ii) a given reducer, in charge of the attributes Ai and Aj , will receive all the val-
ues of these attributes appearing in L (i.e., the values of the projections πAi(L)
and πAj (L) are tagged and sent to the same reducer). Once a reducer node has
received all intermediate data (k′ij , v

′
i) and (k′ij , v

′
j) related to the attributes Ai

and Aj , it merges the data to produce a single pair 〈k′ij , list(v′)〉. Note that,
during the shuffle and sort phase, MapReduce sorts intermediate key-value pairs
by the keys but not by the values. However, it is very convenient for our pur-
poses to also sort the intermediated values since the computations inside the
reducer will take benefits from such an order. Therefore, instead of implement-
ing an additional secondary sorting within the reducer, we used the value-to-key
conversion design pattern [4], which is known to provide a scalable solution for
secondary sorting. This is achieved by moving intermediate values into the in-
termediate keys, during the map phase, to form composite keys, and then we
let the execution framework handle the sorting. Therefore, a given reducer will
process as input a pair 〈k′ij , list(v′)〉 where list(v′) is sorted by the intermediate
values. Moreover, since the values are prefixed by the attribute position, then
if i < j, the values of the attribute Ai will appear in list(v′) before the values
of Aj . A reduce function then takes as input an intermediate key-list of values
pair 〈k′ij , list(v′)〉 and then performs some computations, essentially counting
distinct values, computing intersections and transitive closures, corresponding
to the measures defined in [5] and used to prune non-interesting atomic con-
ditions. Finally, a reducer writes the final result to the distributed file system.
To efficiently implement these tasks, we use appropriate data structures that
enables compact storage of sorted values of the corresponding attributes (c.f.,
[7] for more technical details).
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Computing Conjunctive Conditions. Conjunctive conditions are computed
using conjunctive operator on atomic conditions: let ψ1 and ψ2 be two atomic con-
ditions elicited during the previous step, then the goal is to compute the process
instances entailed by the condition ψ1∧ψ2, noted ψ12. More generally, given a set
AC of atomic conditions, the goal is to identify the set of minimal atomic condi-
tions that partition the log into interesting process instances. As explained in [5],
such a task can be achieved using a levelwise-like approach where, roughly speak-
ing, each level is determined by the length, in terms of number of conjuncts, of
the considered conditions. Starting from atomic conditions (level 1), the discov-
ery process consists in two main parts: (i) generating candidate conditions of level
k from candidates of level k − 1, and (ii) pruning non interesting conditions. At
each level, the process instances associated with each generated candidate condi-
tion are computed and used to prune, if any, the considered candidate condition.
To cast such a levelwise-like algorithm into a mapreduce framework, the main is-
sue to deal with is the specification of how to distribute the candidates among
reducers such that the generation and pruning computations are effectively par-
allelized. We propose to partition the space of candidates in such a way that a
given partition can be handled by a unique reducer. This enables to avoid multi-
ple mapreduce steps in order to compute conjunctive conditions. We proceed as
follows to compute the partitions (c.f., step 2 at figure 1). Let AC be a set of n
atomic conditions and let P = {ψ1, . . . , ψl} ⊆ AC be a subset of AC containing l
atomic conditions, hereafter called the partitioning conditions. The main idea is to
define partition of the space of candidate conditions with respect to the presence
or absence of partitioning conditions. We annotate a partition with a condition
ψi to indicate that this partition is made of candidates that contain the subscript
i and with ψ̄i to indicate that the partition is made of candidates that do not
contain such a subscript. Consequently, given AC and P defined as previously,
the set P of partitions of the space of candidates using P is obtained as follows:
P = {ψ1, ψ̄1}× . . .×{ψl, ψ̄l}. Each element (φ1, . . . , φn) ∈ P , with φi ∈ {ψi, ψ̄i},
for i ∈ [1, l], forms a partition of the space of candidate conditions. Note that
the obtained partitions are balanced (i.e., they have the same number of candi-
date conditions) and form a partition of the initial space of candidates. It is also
worth noting that each partition can be treated separately from the others in or-
der to compute the corresponding interesting conditions. Roughly speaking, the
proposed mapreduce based levelwise algorithm works as follows: it takes as input
a setCA of atomic conditions and a set P , subset ofCA of partitioning conditions.
Then, the map function generates the different partitions and sends each condi-
tion, and its associated data, to the corresponding reducer. The reduce function
implements: (i) a generation of candidate conditions procedure which is suitable
for parallelization, and (ii) pruning tasks using the measures defined in [5].

We conducted preliminary experiments to evaluate the overhead due to the
use of the MapReduce framework. We considered both real world datasets and
randomy generated datasets with different log sizes. Two main observations
can be derived from the first results: (i) they suggest that the extension of the
proposed approach with additional map-reduce steps is potentially interesting
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since it will increase the level of parallelization, and hence improving scalability,
without impacting too negatively the global performances, and (ii) the implemen-
tation of stage 2 can be improved using compact data structures and specialized
Apriori-like algorithms.

4 Conclusions and Future Work

Since its introduction in [2], MapReduce has been used in several application
domains such as data management [4], data analysis [3,6], text processing [4],
etc. To the best of our knowledge, this is the first work that uses MapReduce
in processes discovery. In this paper, we studied the problem of event corre-
lation discovery using the MapReduce framework. We proposed a two-stages
approach to compute correlation conditions and their corresponding process in-
stances from service interactions event logs. We described efficient methods to
partition an events log across cluster nodes in order to balance the workload
related to atomic and conjunctive conditions computation while reducing data
transfer. First experimental results show that the overhead introduced by the
Mapreduce approach is small compared to gain in performance and scalability.
This suggests future research work on investigation of additional implementation
strategies, e.g., by increasing the number of MapReduce steps or using differ-
ent partitioning techniques that may increase the overhead while improving the
scalability of the proposed approach.
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Abstract. Driven by complex and dynamic business process requirements, 
there has been an increasing demand for business process reuse to improve 
modeling efficiency. Process specialization is an effective reuse method that 
can be used to customize and extend base process models to specialized models. 
In the recent years, artifact-centric business process modeling has emerged as it 
supports a more flexible process structure compared with traditional activity-
centric process models. Although, process specialization has been studied for 
the traditional models by treating a process as a single object, the specialization 
of artifact-centric processes that consist of multiple interacting artifacts has not 
been studied. Inheriting interactions among artifacts for specialized processes 
and ensuring the consistency of the processes are challenging. To address these 
issues, we propose a novel framework for process specialization comprising 
artifact-centric process models, methods to define a specialized process model 
based on an existing process model, and the behavior consistency between the 
specialized model and its base model. 

1 Introduction 

Complex business process requirements from different customer needs, government 
regulations, outsourcing partners, etc., result in frequent changes and revision to 
business processes. Therefore, reusability of business processes is highly sought after 
to improve process modeling efficiency. In this background, organizations strive for a 
more efficient and systematic approach to flexibly define and extend their business 
processes. Business process reuse aims to support on-demand customization and 
extension of existing business processes by establishing a modular and a repository of 
process components [18]. Business process specialization is deemed as one of main 
mechanisms that can be used to construct a specific business process by extending a 
generic reference process model. With specializations, processes can be reported at 
different levels of generality, and can be compared across the specializations [19]. 

Current activity-centric modeling approaches focus on the conformation of tasks 
and the control-flows among tasks according to specific logics. Intuitively, 
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constructing processes with sequenced activities leads to highly-cohesive and tightly-
coupled process structures; therefore, process componentization and extension are 
difficult to be achieved in a natural way [17]. In recent years, artifact-centric 
approaches to business process modeling have emerged and been widely studied [1, 2, 
3, 7, 11, 13, 16, 17, 19]. These approaches naturally lend themselves well to both 
object-orientation and service-orientation design principles, as they focus on the 
design of both business artifacts involved in a process and services (a.k.a. tasks) 
performing on such artifacts. Owning to the object-oriented nature, the artifact-centric 
models support higher level of flexibility, extensibility, and reusability. 

The existing approaches for the specialization of business processes treat a process 
as a single object [8, 9, 10]; hence, traditional object specialization techniques in 
object-oriented analysis and design can be applied (e.g., from [4]). For artifact-centric 
processes, specializations should not only apply on each individual artifact but also on 
their interactions. Some works have initiated the study of object lifecycles and their 
interactions within (or between) business processes in various areas, e.g., process 
adaptation and dynamic changes [20], design compliance [6, 13], conformance 
checking [16], and contract for inter-org processes [12]. However, a specialization 
mechanism that takes into account the interactions of objects and the guarantee of 
behavior consistency between a specialized process and its base process brings in 
technical challenges and requires further study. To address these challenges, we 
propose a novel framework for behavior-consistent process specialization that 
consists of artifact-centric process model, methods to define a specialized process 
model based on an existing model, and the behavior consistency between the 
specialized model and its base model. 

The remainder of this paper is organized as follows. Section 2 presents an artifact-
centric process model and an approach to process specialization. Section 3 discusses 
the behavioral properties and the consistency between a specialized model and its 
base model. Section 4 reviews and discusses related works. Finally, the conclusion 
and future work are given in Section 5. 

2 Specialization of Artifact-Centric Business Process Model 

To begin with, we briefly introduce an artifact-centric business process model (ACP 
model) (e.g., in [2, 3]). The ACP model constitutes of three sets: artifact classes, 
tasks, and business rules. An artifact class (or artifact if the context is clear), 
containing its relevant attributes and states, is a key business entity involved in 
business processes. A task performs read/write operations on some artifact(s). A 
business rule is defined in a Condition-Action style to associate task(s) with 
artifact(s). It describes on what pre-condition a particular task is executed, and what 
post-condition that the effect (after performing such task) must satisfy. We can say 
that a (complete) set of business rules defined in a process model specifies the control 
logic of the whole process from its beginning to its end. Now, we use two simplified 
product ordering processes to illustrate and motivate the artifact-centric process 
specialization, as shown in Fig. 1.  
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Fig. 1. Generic ordering process with its two specializations 

The example depicts a generic ordering process model with its two possible 
specialized process models: Online and Offline ordering processes. The former offers 
a service to only retail customers on the web, while the latter accepts both retail and 
wholesale customers. The Online ordering process has each artifact specializes its 
base artifact in the ordering process, e.g., Web PO specializes Purchase Order. Not 
only the internal behavior of Web PO is specialized, but it is possible that some 
synchronization between Web PO and the other artifact(s) may also need to be 
modified due to the specialization. Now, consider the Quote artifact that is added into 
the Offline ordering process. Extending this artifact, of course, requires some 
synchronization with the other artifact(s), e.g., Offline PO. Next, Section 2.1 explains 
more details about how to define an ACP model and Section 2.2 introduces our 
approach to define a specialized ACP model based on an existing ACP model. 

2.1 Syntax of ACP Model 

First, we begin with the definitions of an artifact. Artifact schema Z = { ,  ..., } 
is a finite set of artifact classes. Each artifact ∈Z (1≤i≤x) can be defined as a tuple (A, 

, S, ) where, set A = { , , …, }, and each ∈A(1≤j≤y) is a name-value 
pair attribute; set S = { , , …, } contains the possible states of the instances of 
class ;  is the initial state, and  ⊆ S is a set of final states. For example in 
Fig. 1, the Purchase Order (PO) artifact can be defined as ({OrderID, SupplierID, 
GrandTotal, SubmitDate, CompleteDate}, init, {created, confirmed, canceled, ready 
to ship, dispatched, billed, closed}, {closed, canceled}), and the Shipping Order (SO) 
artifact can be defined as ({ShippingID, OrderID, SubmitDate, ShipDate, 
CompleteDate}, init, {scheduled, in transit, arrived, completed}, {completed}). Next, 
we define business rules (in a condition-action style) to capture the processing control 
logic of artifacts in a process. A business rule, denoted as r, is a tuple (λ, β, v) where λ 
and β are a pre-condition and post-condition, respectively; v is a task that performs 
read/update operations on the attributes and the processing states of some artifact(s). In 
this paper, we do not focus on the task-level information, i.e., the specification of task 
is omitted; and, for the simplification, we restrict both pre- and post-conditions to be 
expressed by a conjunctive normal form (CNF). This form contains two types of 
propositions over Z: (1) state proposition (the instate predicate) and (2) attribute 
proposition (the defined and scalar comparison operators). We write: defined(C, a) if 
attribute a∈C.A of artifact of class C has a value; instate(C, s) if state s∈C.S of artifact 
of class C is active. Table 1 shows an example (incomplete) set of business rules that 
are used in our generic ordering process. 
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Table 1. Example of business rules 

 : Buyer confirms Purchase Order po to the selected Supplier 
Pre-condition instate(po, sent_to_supplier) ∧ defined(po, OrderID) ∧ defined(po.SupplierID) 

Task confirmPO(po)  
Post-condition instate(po, confirmed) ∧ defined(po.SubmitDate)  

 : Supplier creates Shipping Order so for Purchase Order so 
Pre-condition instate(po, confirmed) ∧ defined(po.SupplierID)   ∧ instate(so, init) 

Task createSO(po, so)  
Post-condition instate(po, ready_to_ship) ∧ instate(so, scheduled) ∧ defined(so.ShippingID)  

∧ defined(so.OrderID) 

Definition 1: (Artifact-Centric Process Model or ACP model). An ACP model, 
denoted as Π, is a tuple (Z, V, R), where Z is an artifact schema, V is a set of tasks, 
and R is a set of business rules over Z. 

Note that we call a synchronization (sync) rule for a business rule that is used to 
induce multiple state changes (of different artifacts), e.g.,  in Table 1. We also 
define two auxiliary functions: function _ ,  returns a set of states 
{ , , . . . ,  where business rule  and state . 1  is defined 
in the  predicate of the pre-condition of ; and function _ ,  returns 
a set of states of artifact  appearing in the post-condition of .  

2.2 Approach to Artifact-Centric Business Process Specialization 

Intuitively, we can adopt a single object specialization in the traditional object-
oriented (OO) approaches (e.g., [4, 8-10]) for an individual artifact class in our model. 
Apart from the specialization of artifacts in a process, we investigate the 
specialization of their interactions. In the design and modeling phase, we propose that 
the specialization of ACP models can be achieved by two construction methods: 
artifact refinement and artifact extension.  

− Artifact refinement. Process modelers decide to inherit an artifact from a base 
model by refining (adding/modifying) some corresponding business rules and 
states to the specialized model. The pre-condition and post-condition of a 
modified rule may have a state of the supertype refined into new state(s) in the 
subtype. Note that the refinement can be performed on a single business rule that 
is used to synchronize two or more artifacts. 

− Artifact extension. Process modelers decide whether there is a need of any 
additional artifact for the specialized process. Adding new artifacts to a process 
implies that the process requires not only new business rules (of such artifact) but 
also sync rules between the new artifact and existing artifact(s). 

Fig. 2 shows an example of specialized Offline ordering process and its base ordering 
process. The dash line linked between transitions of different artifacts indicates a sync 
rule that is used between such artifacts. The shaded artifacts represent extended 
artifacts. Similarly, for an existing artifact, a set of gray-shaded states and their 
corresponding transitions represents the refinement of its base artifact. In Fig. 2 (b), 
Offline PO is specialized by applying artifact extension (Quote, Picking List, and 
Shipping List are added with additional sync rules) and artifact refinement (the 
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created state and the transition from the confirmed state to ready to ship state are 
refined with more details). Similarly, Offline invoice is specialized by applying 
artifact refinement on the transition from the issued state to the cleared state. Next, 
we define a process specialization function that maps a specialized ACP model to its 
supertype, called ACP specialization. 

 

Fig. 2. Example of ACP specialization 

Definition 2: (ACP specialization). Given two ACP models Π = (Z, V, R) and Π  = 
( , , ), we define a specialization relation between Π  and Π  by ACP 
specialization function    :  ∪  ∪   →  Z ∪ V ∪ R ∪ { } such that ps 
is a total function mapping from each element in specialized model Π  onto the 
element in Π or empty element . The specialization methods can be expressed by  
as follows. 

− Artifact refinement. Let artifact  refine artifact , a set of business 
rules  refine business rule , a set of tasks  refine tasks 

, and a set of states .  refine state . . The following 
statements hold: (a) ; (b) , ; (c) , ,  . ; (d) , ,  _ ,  _ , . 

− Artifact extension. Let new artifact  be added in Π  with a set of new 
business rules \ , a set of new tasks \ . The following 
statements hold: (a)   ; (b) , ; (c) , , . 

Note that if artifact, business rule, or task :      remains unchanged in 
the specialized model, then   . 

3 Behavior-Consistent Process Specialization 

3.1 Behavioral Properties of ACP 

We first classify behavioral properties of ACP models into intra-behavior and inter-
behavior. The intra-behavior of an artifact describes how an artifact changes its state 
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throughout its lifecycle. Here, we use a deterministic finite state machine to capture 
the lifecycle of an individual artifact. The inter-behavior describes how a lifecycle of 
one artifact depends on the counterpart of another artifact, and it can be represented as 
state dependency (i.e., via a sync rule) between artifacts. Then, we discuss about the 
soundness property of individual artifact and the entire process which is constructed 
by composing all of its artifact lifecycles. 

Definition 3: (Lifecycle). Let artifact class = ( , , , ) be in ACP model Π. The lifecycle of , denoted as , can be defined as a tuple ( , , ) where set     ,  , and transition relation          where  Π.  is a set business rules that are used to induce a state transition of artifact 
, and  (guards) is a union set of state preconditions of each business rule in  

such that each precondition references to a state of other artifact in Π. 

Definition 4: (Sync rule). Given ACP model Π , a set of sync rules between 
lifecycles of artifacts ∈  Π .Z and ∈  Π .Z is denoted as ,   .  | , , ,  .   , , ,  . . 

Next, we define ACP lifecycle for describing the behavioral aspect of an ACP model 
consisting of synchronized lifecycles of artifacts. We adapt a state machine 
composition technique presented in [5] for generating the lifecycle of ACP. 

Definition 5: (Lifecycle composition and composed lifecycle). Given ACP model Π, two lifecycles ,  , , and ,  ,  can be composed, 
denoted as , into composed lifecycle ,  , , where  . S  . S  is a set of composed states, . , .  is the initial 
state, and    Π.      is transition relation where  is a set of guards. 
To formulate  of composed lifecycle , a following set of three inference  
rules are required. Let / ,  denote that state  in guard  is 
substituted by true or false (of state predicate) depending on whether the local state of 

 is . 

                
, , ,, , , , , , / ,    (1) 

                 
, , ,

, , , , , , / ,       (2) 

          , , , , , ,
, , , , , ,   / , / ,     (3) 

Rule (1) and Rule (2) are applied when a business rule is fired on  and , 
respectively. Rule (3) is applied when a sync rule is fired on both  and .  



 A Framework for Behavior-Consistent Specialization of ACP 291 

 

 

Fig. 3. An example of a lifecycle composition 

Fig. 3 shows the composition between the lifecycle of artifact  and the lifecycle 
of artifact . We attach label [g] to a transition to mean that the transition is fired 
when both the attribute proposition in the pre-condition of business rule  holds and 
all state propositions (of external lifecycles) in g hold. We denote the counter state 
condition of C.  by symbol –C.  in the guard. Next, we define the lifecycle of ACP 
by using lifecycle composition. Given ACP model Π, an ACP lifecycle of Π, denoted 
as , can be generated by iteratively performing lifecycle composition of every 
artifact in Π . For both artifact lifecycle and ACP lifecycle, we define lifecycle 
occurrence to refer to a particular sequence of states occurring from the init state to 
one of the final states of the lifecycle. Based on this, we define a soundness property 
to describe the desired and correct behavior of an artifact lifecycle and a process. 
Given ACP model Π, and lifecycle  (of either an artifact class or Π), a lifecycle 
occurrence is denoted as  = ( , ..., sf) such that for every state s∈ , there exists 
final state ∈ .  and  can be reached from  through s by a particular firing 
sequence of some business rules in R. 

Definition 6: (Safe, Goal-reachable, and Sound lifecycle). Given ACP model Π, 
lifecycle  = , ,  (of either an artifact class in Π.  or Π), we define sets of 
lifecycle states   . .  and final states  . Lifecycle  is said to 
be: (1) safe iff there exists business rule Π.  such that  induce one and only 
one transition in ; (2) goal-reachable iff, for every non-final state , there exists  
in some lifecycle occurrence; and, for every final state , there exists 
occurrence  such that  is the last state of ; (3) sound iff  is safe and goal-
reachable. 

In the rest of paper, we restrict our discussion only to the sound behavior of artifacts 
and ACP based on their lifecycles (not the changes of artifact’s data). However, 
discussions and formal approaches to data verification can be found in [2]. 

3.2 Behavior Consistent Specialization 

In this section, we discuss the behavior consistency between a specialized ACP model 
and its base model when applying two methods of ACP specialization introduced in 
Section 2.2: artifact refinement and artifact extension. In object-oriented design 
approaches, the consistency of (dynamic) object behaviors between subtype and its 
supertype can be divided into observation consistency and invocation consistency. 
Observation consistency ensures that if features added at a subtype are ignored and 
features refined at a subtype are considered unrefined, any processing of an artifact of 
the subtype can be observed as correct processing from the view of the supertype. The 
invocation consistency refers to the idea that instances of a subtype can be used in the 
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same way as instances of the supertype. More detailed discussion about object’s 
behavior consistencies can be found in [4, 10]. In this article, we restrict our 
discussion of business process specialization to observation consistency (for both 
artifact and process). On one hand, in the viewpoint of structure, it is ensured that the 
current processing states of artifact and process are always visible at the higher 
(abstracted) organizational role. On the other hand, to preserve the behavior 
consistency it is guaranteed that business rules added at a subtype do not interfere 
with the business rules inherited from its supertype. Particularly, dealing with changes 
of synchronization dependencies between artifacts is a major technical issue of ACP 
specialization. Here, we consider ACP specialization for an entire process as the 
product of (1) the specialization of individual lifecycle (lifecycle specialization) and 
(2) the specialization of synchronizations (sync specialization). 

Definition 7: (Lifecycle specialization). Let ACP model Π  be a specialization of 
ACP model Π with ACP specialization   . Given lifecycle , ,  
(of artifact in Π or Π) and lifecycle , ,  (of artifact in Π  or Π ), we 
define lifecycle specialization relation between  and  based on    by 
lifecycle specialization (total) function                .  

For ACP specialization method by the refinement of artifact class, a single state 
(or a transition) is refined into a set of sub states and sub transitions. Here, we define a 
fragment of lifecycle, called L-fragment, which contains a set of sub states and sub 
transitions for capturing the refinement, e.g., in Fig. 2, L-fragment  refines a 
transition of Invoice and L-fragment  refines the created state of Purchase Order. 
Then, we use lifecycle specialization function  to project every state and transition 
of a fragment in a specialized lifecycle onto a state or a transition of its base lifecycle. 

Definition 8: (L-fragment). Given ACP model Π, L-fragment ℓ  of lifecycle  is 
a nonempty connected sub-lifecycle of . It can be defined as ℓ ,, ,  where, 

− .  \  is a non-empty set of states of ℓ , where  is a set of 
final states of , 

−          .  is a set of transitions of ℓ , where  and 
 are subsets of business rules and guards, respectively, 

− .   . \        is a set of entry transitions, 
− .        . \  is a set of exit transitions, 
− such that, for every state  in ℓ . , there exists a sequence of transitions from 

some entry transition in  to  and from  to some exit transition in . 

Now, we apply L-fragment to the lifecycle specialization. Let lifecycle , ,  be a specialization of lifecycle , ,  by lifecycle 
specialization   . We denote a set of refined L-fragments that are used to refine 

 as  ℓ , ℓ , … , ℓ  where ℓ 1   is an L-fragment in  
such that ℓ  does not exist in .  
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Fig. 4. Examples of L-fragments 

For example in Fig. 4, lifecycles (b), (c), and (d) are different specializations of 
lifecycle (a). Lifecycles (b) and (c) refine some transitions of lifecycle (a), while 
lifecycle (d) refines only state  of lifecycle (a). Next, we want to check whether the 
behavior of specialized lifecycle is consistent to the behavior of its base lifecycle 

. It is understandable that if every L-occurrence of , disregarding the states and 
transitions in a refined L-fragment, is observable as the same sequence as of , then 
the behavior of  is consistent to the behavior of . Here, we define behavior-
consistency (B-consistency) property between two lifecycles to describe the condition 
to preserve the consistency between them. Our B-consistency relation between two 
lifecycles can be defined by adopting the notion of bi-simulation equivalence relation 
in process algebras. By replacing a silent ( ) action for a refined L-fragment in the 
specialized lifecycle, we can apply weak bi-simulation to compare two lifecycles. 

Definition 9: (B-consistent). Let lifecycle , ,  and lifecycle  , ,   such that  specializes  with lifecycle specialization   , and  be a set of states that exist in both  and . We 

have  B-consistent to  iff , , , , , , \ ,   , where  is denoted for a reflexive transitive closure of . We 
also say that    is B-consistent. 

For instance, the lifecycle in Fig. 4 (b) is not B-consistent to the lifecycle in Fig. 4 (a). 
This is because, in some lifecycle occurrences of lifecycle (b), state a can reach state c 
(through state ) without passing state b; and, state a can reach itself via state  
without passing state b. In contrast, we can see that   in Fig. 4 (c) and    
in Fig. 4 (d) are B-consistent.  Note that we can also apply B-consistency for the case 
of L-fragments. Now, we define L-fragment with a single entry and a single exit state 
as atomic L-fragment (AL-fragment) and show how it is considered for the behavioral 
consistency between two lifecycles. 

Definition 10: (AL-fragment). Given ACP model Π  and L-fragment ℓ ,, ,  of lifecycle , , , ℓ   is called AL-fragment iff for every 
entry transition ℓ. ,  is fired from same source state . \ℓ. ; and, 
for every exit transition ℓ. ,  is fired to same target state . \ℓ. . 

Theorem 1: Let lifecycle  be a specialization of lifecycle  with a set of refined 
L-fragments  ),    is B-consistent if, for every ℓ  ), 
− if  ℓ  refines transition .  then  ℓ  is an AL-fragment; or, 
− if  ℓ  refines state .  then, for every instate .  fired to  and for 

outstate .  fired from ,  can reach  in some L-occurrences of ℓ . 
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Revisiting Fig. 2, Offline PO (with L-fragments ℓ  and ℓ ) and Offline Invoice (with 
L-fragment ℓ ) are B-consistent to Purchase Order and Invoice, respectively. Next, 
we define B-consistent specialization for both an artifact and a process. 

Definition 11: (B-consistent specialization). Given ACP model Π  be a 
specialization of ACP model Π  with ACP specialization   , Π  is a B-
consistent specialization of Π iff    is B-consistent. Similarly, we say artifact 

 in Π  is a B-consistent specialization of artifact  in  Π  iff    is B-
consistent. 

3.3 Specialization of Synchronization Dependencies 

This section discusses how changes of artifact interactions (through their 
synchronization dependencies) affect the behavior of the process in their 
specialization at both the artifact level and the process level. We classify 
specialization of synchronizations into two methods: sync extension and sync 
refinement. First, sync extension is a method of synchronizing new artifact with an 
existing artifact without refining any existing sync rule. However, it is achieved by 
adding a new defined set of sync rules, called extended sync rules. Second, sync 
refinement is a method to decompose an individual existing sync rule in the base 
process to a new set of refined sync rules in the specialized process. A specialized 
sync rule can be used to synchronize between existing artifacts or between existing 
artifact(s) and new (extended) artifact(s) added to the specialized process. Fig. 5 
shows an abstracted example of results after applying different sync specialization 
methods to the base process (a). More discussions on this example will appear 
through the rest of the paper.  

 

Fig. 5. Examples of sync specializations between artifacts 
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The consistency of synchronization dependencies in process specialization means 
whatever changes made to the synchronization of artifacts the behavior of the 
composed lifecycle of such specialized artifacts must be consistent to their 
composition in the base process. Particularly, adding a new artifact into a specialized 
process results unobservable behavior of itself in the base process. However, it is 
desirable that the overall behaviors of such base and specialized processes with added 
artifacts remain consistently observable. For instance, in Fig. 2, the Quote artifact 
added to the Offline ordering process should not interfere with the behavior of the 
Purchase Order, Shipping Order and Invoice artifacts and their interactions in its base 
ordering process. Next, we define the specialization of the synchronization between 
two lifecycles followed by detailed discussion on how synchronization is consistently 
handled when applying each of the two sync operations. 

Definition 12: (Sync specialization). Let artifact lifecycles  and  in 

specialized ACP model Π  be a B-consistent specialization of artifact lifecycles  
and  in base ACP model Π , respectively. We define sync specialization   ,    , ,   ,      as a total 

function that projects a specialized sync rule between  and  onto its base 

sync rule between  and  or empty element . 

Now, in order to capture and analyze synchronizations between two lifecycles we 
extend the definition of AL-fragment of isolated lifecycle to atomic synchronized L-
fragment, called ASL-fragment, between two lifecycles.  

Definition 13: (ASL-fragment). Given ACP model Π, let L-fragment ℓ  in of 
artifact Π.  synchronize with L-fragment ℓ  in of artifact Π.  via 

business rules Π. . We identify ℓ  and ℓ  as ASL-fragments iff, for every ℓ ℓ , ℓ ,  

− ℓ  is an AL-fragment, 
− , , ℓ . , .  s ℓ .   , 

− , , ℓ . , .  ℓ .   , 

− Π. Z\ , , ℓ , . 

Note that the conditions for ASL-fragment are used to restrict two synchronized L-
fragments to include every transition and corresponding sync rule that are used for 
only the synchronization between L-fragments. This is because we want to guarantee 
that the composition of two ASL-fragments have all entry transition fired from the 
same (composite) source state and all exit transitions fired to the same (composite) 
target state, i.e., both the composition and ASL-fragments are atomic. 

For example, both L-fragments  and  in Fig. 6 (a) are ASL-fragments 
containing all related sync rules (  and ) used for  and . As such, the 
composition between   and  is then atomic, as shown in Fig. 6 (c). In contrast, in 
Fig. 6 (b), we can see that L-fragment  cannot satisfy the property of AL-fragment, 
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and L-fragment  does not include transition  where sync rule  exits in 

entry transition  of . Therefore,  and  are not ASL-fragments. Next, we 
discuss how we use ASL-fragments to induce the B-consistency of the specialization 
of synchronization of such two fragments. 

 

 

Fig. 6. Examples of the composition of synchronized L-fragments 

3.3.1   Sync Extension 
With an extension of any new synchronized artifact to the specialized process, we 
need to guarantee that the consistency is not interfered by the behavior of such 
artifact. This can be achieved by checking whether a lifecycle of an extended artifact 
can be completely composed within an embedded lifecycle of an artifact it 
synchronizes with, as shown in Definition 14 and Lemma 1. 

Definition 14: (ex-lifecycle and ). Let lifecycle  in specialized ACP model Π  
be B-consistent to lifecycle  in base ACP model Π , and lifecycle  of 

extended artifact  in Π  synchronize . We say  as an ex-lifecycle of 

 if there exists refined L-fragment ℓ  ) such that  has its 

whole lifecycle synchronized within ℓ , denoted ℓ . 

Lemma 1: Based on Definition 12, given refined L-fragment ℓ  ) 
synchronize with extended lifecycle , the composed lifecycle between  and ℓ is B-consistent to ℓ iff ℓ  and ℓ is an ASL-fragment. 

For example, extended artifact   in Fig. 5 (b) has its whole lifecycle synchronized 
within artifact . This case can be explained in more detail by using Fig. 6 (a). We 
can see that L-fragment ℓ  syncrhonizes with ℓ  which represents the whole 
lifecycle of  (ℓ  ); therefore,   is an ex-lifecycle of artifacts  and we 
have the composed lifecycle between  ℓ  and ℓ  B-consistent to ℓ . One can 
question that what would be the result if an extended artifact is synchronized with 
more than one existing artifact. For instance, in Fig. 5 (d), where two existing artifacts 

and  synchronize with extended artifact . It is possible to see that the 
lifecycle of  is an ex-lifecycle of the lifecycle of  while it does not hold for 
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. Based on Definition 13, although the condition of ex-lifecycle is satisfied for the 
synchronization between  and , however, it is not held for the synchronization 
between  and . Therefore, the result of iterative composition of such three 
lifecycles should not satisfy Lemma 1. 

3.3.2   Sync Refoinement 
− Refinement of synchronization for existing artifacts 
We classify specialization patterns of the synchronization between two existing 
artifacts into two cases. First, one of two artifacts is refined while the other one 
remains unrefined. Second, both artifacts are refined. With the first case, the effected 
sync rule(s) of the refinement may have its state condition redefined on either the 
entry transition or the exit transition of an L-fragment. For the second case, both 
artifacts have their L-fragment refined. For example, in Fig. 7 (b), sync rules  
and  are redefined for the exit transition of states  and . For the second 
case, both artifacts have their L-fragment refined, e.g., Fig. 7 (c) and (d).  

 

Fig. 7. Sync specializations of existing artifacts 

For the refinement of two existing artifacts, we can apply the notion of ASL-
fragments to check whether the refinement of these artifacts preserves the B-
consistency of the base process. However, for single artifact refinement, we consider 
it as a special case since the refinement is applied on a single transition of one artifact 
not L-fragment. In order to make the transition to qualify L-fragment, so we expand 
its boundary to cover the source and target states of the transition. Then we can 
validly apply the ASL-fragments to check B-consistency. For instance, in Fig. 7 (b), 
we have an expanded L-fragment in artifact , which consists of states  and , 
synchronizes with L-fragment of . 

Lemma 2: Let artifact lifecycles  and  in specialized ACP model Π  be B-

consistent to artifact lifecycles  and  in base ACP model Π . Given L-

fragment ℓ  refines transition  in  and L-fragment ℓ  refines transition  
in , if ℓ  and ℓ  are ASL-fragments, then the composed lifecycle of ℓ  and ℓ  

is B-consistent to the composed lifecycle of  and  (both  and  are 
considered as L-fragments with one transition). 

− Refinement of synchronization for extended artifacts 
Now, we extend the sync refinement between existing artifacts to be able to consider 
synchronizations between existing and extended artifacts. Recall sync extension, an 
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extended artifact can be considered as an ex-lifecycle of an existing artifact if the 
lifecycle of the extended artifact is entirely synchronized within such existing artifact. 
We can say that if extended artifact C is used to refine sync rule r, then each artifact 
that is synchronized by r must have C as its ex-lifecycle. For example in Fig. 5 (d), 
artifact   is used to refine sync rule  (between  and  ), and it can be 
considered as ex-lifecycle of both artifacts. A similar case is shown in Fig. 5 (e).  

We now consider the scenario that has to deal with synchronizations for multiple 
extended artifacts, e.g., extended artifact   in Fig. 5 (f). Similar to the refinement 
between an existing artifact and an extended artifact, here we extend the sync 
extension method and B-consistency checking to the synchronization for multiple 
extended artifacts by introducing transitivity of ex-lifecycles. We say  as a 
transitive ex-lifecycle of  if  is an ex-lifecycle of and  is an ex-

lifecycle of . Here, we write ℓ  if there exists refined L-fragment ℓ  ) such that ℓ  and  is an ex-lifecycle of . For 

instance, artifact  in Fig. 5 (f) has its whole lifecycle synchronized within the 
lifecycle of artifacts , and  is an ex-lifecycle of  ; so, we have that  is a 
transitive ex-lifecycle of  . Now, we show how the B-consistency of the refinement 
for extended artifacts can be preserved in Lemma 3. 

Lemma 3: Let artifact lifecycles  and  in specialized ACP model Π  be B-

consistent to artifact lifecycles  and  in base ACP model Π , and let L-

fragment ℓ  refines transition  in  and L-fragment ℓ  refines transition  
in  such that ℓ  and ℓ  are ASL-fragments. Let extended lifecycle  

synchronize with ℓ  or ℓ  and a set of extended lifecycles  synchronize with 
. The composed lifecycle of all artifacts in , , ℓ ,  and ℓ  is B-

consistent to the composed lifecycle of  and  iff C C Z , ℓ C  ℓ C . 

For example in Fig. 5 (e), the composed lifecycle of artifacts ,  , and ,   is 
B-consistent to the composed lifecycle of  and   since   is an ex-lifecycle 
of both   and . More complicated case is shown in Fig. 5 (f) having artifact  
extended to artifact  which is used for the sync refinement of artifacts  and 

. We can see that  is considered as a transitive ex-lifecycle of  and ; 
therefore, this refinement preserves the B-consistency of the base process. 

3.4 Sync Specialization and B-Consistency 

Based on our comprehensive discussion on the two operations of sync specialization 
and their individual consistency and the B-consistency of ACP models, we now are 
able to define a complete consistency property of sync specialization. 

Definition 17: (Synchronization consistent or S-consistent). Given ACP model Π  
be a specialization of ACP model Π  with ACP specialization    and sync 
specialization ,   , , ,   ,  is said to be  
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S-consistent iff, Lemma 1 is held for sync extension, and Lemmas 2 and 3 are held for 
sync refinement. 

Theorem 2: Let ACP model Π  specialize ACP model Π with ACP specialization   . Then, Π  is a B-consistent specialization of Π based on  iff,  

− for every artifact Π .  such that  specializes Π. ,    is 

B-consistent; and,  
− for every artifact  and  in Π , ,   ,  is S-consistent. 

Theorem 2 has an importance of being able to assert the overall behavioral 
consistency between a specialized ACP model and its base model while only perform 
fragmental consistency checking based on a specialization, i.e., for an individual 
artifact and for only a synchronization between artifacts that is added or modified in 
the specialized process. Notably, the model verification can suffer from the state 
exposition of compositional lifecycle if there are a number of artifacts having many 
states. Technically, we avoid the state space exposition problem by not composing all 
artifacts in the model. 

4 Related Work and Discussion 

The concept of business artifacts was introduced in [1] with the modeling concept of 
artifact lifecycles. Bhattacharya et al. [2] presented an artifact-centric process model 
with the study of necessary properties such as reachability of goal states, absence of 
deadlocks, and redundancy of data. Kuster et al. [6] presented a notion of compliance 
of a business process model with object lifecycles and a technique for generating the 
model from such set of lifecycles. Yongchareon and Liu [3, 11] proposed a process 
view framework to allow role-based customization and inter-org process modeling for 
artifact-centric business processes. In chorography settings, Van Der Aalst et al. [12] 
proposed an inter-org process-oriented contract with a criterion for accordance 
between private view and its public view modelled by open nets (oWFNs). Lohmann 
and Wolf [7] studied the generation of the interaction model from artifact-centric 
process models and used artifact composition to validate the model; and later, 
Lohamnn [13] proposed an approach to generate complaint and operational process 
model using policies and compliance rules. Fahland et al [16] presented conformance 
checking technique for interacting artifacts by decomposition into smaller problems 
so that conventional techniques can apply. Compared to our work, we also use similar 
composition technique to validate the overall behavior of the model; however, we 
focus on the fragmental behavior analysis for different methods of sync 
specializations (extension and refinement). 

Schrefl and Stumptner [4] studied the consistency criteria of the inheritance of 
object life cycles. They proposed necessary and sufficient rules for checking behavior 
consistency between object lifecycles. Some works have attempted to tackle the 
specialization of processes using state diagrams [8], the inheritance of (Petri-net 
based) workflow [10], and the behavior compatibility (consistency) between process 
models [14, 15]. However, these works only focused on the inheritance of single 
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object lifecycle or workflow model. We extend their study to the synchronization 
between lifecycles. Although [9] claimed that a specialization of processes cannot be 
viewed and treated analogously as a specialization of a single object, their work 
mainly treated the behavior of a process as the behavior of a single (dataflow) 
diagram. This approach still lacks detailed discussion and analysis of how objects and 
their interactions are considered in a specialized process, while our work takes into 
account the specialization of synchronizations between objects. In artifact-centric 
setting, Calvanese et al. [21] addressed the problem of comparing artifact-centric 
workflows by proposing a notion of dominance between workflows that captures the 
fact that all executions of one workflow can be emulated by another workflow. Their 
work focused on the initial and final snapshots of the workflow execution to be 
compared and did not take the behavior of artifact and process into account. 

5 Conclusion and Future Work 

This paper formally proposes the notion of process specialization for artifact-centric 
business processes with a comprehensive analysis of the behavioral consistency 
between a specialized process and its base process. For artifact-centric models, not 
only a local behavior of artifact but also the interaction behavior, which is described 
by sync business rules, can be specialized. One main outcome of this paper is the 
formal studies on the conditions for preserving the behavior consistencies of both 
intra-behavior and inter-behavior of artifacts in a specialized process based on our 
two proposed specialization methods (extension and refinement).  In the future, we 
will develop an efficient mechanism and a prototype for the consistency checking 
based on our proposed theorems. 
 
Acknowledgments. This work was partially supported by the Australian Research 
Council Linkage Project under the grant number LP0990393. 
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Abstract. Evidence exists that repositories of business process models used in
industrial practice contain significant amounts of duplication. This duplication
may stem from the fact that the repository describes variants of the same pro-
cesses and/or because of copy/pasting activity throughout the lifetime of the
repository. Previous work has put forward techniques for identifying duplicate
fragments (clones) that can be refactored into shared subprocesses. However,
these techniques are limited to finding exact clones. This paper analyzes the prob-
lem of approximate clone detection and puts forward two techniques for detecting
clusters of approximate clones. Experiments show that the proposed techniques
are able to accurately retrieve clusters of approximate clones that originate from
copy/pasting followed by independent modifications to the copied fragments.

1 Introduction

Duplication is a widespread phenomenon in software and model repositories [7,12].
Not surprisingly, significant amounts of duplication can also be found in repositories of
business process models used in industrial practice – both in the form of exact dupli-
cates (a.k.a. exact clones) [16] and pairs of similar fragments (approximate clones) [4].1

Clones in process model repositories emerge for example as a result of copy/pasting
activity, but also when multiple variants of a process co-exist and are described as sep-
arate models. For example, a large insurance company typically runs multiple claims
handling processes for different types of claims or products. Naturally, these process
variants share some commonalities, which manifest themselves in the form of clones.

Detecting clones in process model repositories allows analysts to identify opportu-
nities for standardization and refactoring. For example, given that disbursing occurs in
multiple variants of a claims handling process, process fragments corresponding to dis-
bursing can potentially be standardized and encapsulated in a shared subprocess. In pre-
vious work, we proposed a technique for identifying exact clones that can be refactored
into shared subprocesses [16]. However, when clones emerge as a result of copy/past-
ing, it is likely that these clones will subsequently undergo independent changes and
thereon can no longer be detected using exact clone detection methods.

1 The term fragment is used to refer to a connected subgraph of a process model.
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When designing approximate clone detection methods, a first step is to define what
an approximate clone is. Generally, such a definition relies on a similarity or (equiva-
lently) a distance metric. Previous work has shown that graph-edit distance is a suitable
proxy for perceived process model dissimilarity [3]. Accordingly, we postulate that a
necessary condition for two process model fragments to be approximate clones is that
their graph-edit distance is below a user-defined threshold. However, three additional
issues ought to be considered when defining a notion of approximate clone.

Firstly, it should be considered that any fragment g1 is similar to any fragment g2
such that g2 contains g1 or g1 contains g2, provided that the difference between g1 and
g2 falls below the threshold. A definition that would consider two fragments as approx-
imate clones merely because one contains the other would lead to many false positives
(e.g. in the SAP reference model there are 8,876 fragments with 13,131 containment
relations); this is an issue that has been widely discussed in the field of code and model
clone detection [12]. Secondly, given the goal to identify approximate clones for the
sake of refactoring them into subprocesses and given that subprocesses are invoked ac-
cording to a call-and-return semantics, it is necessary that the approximate clones we
retrieve are Single-Entry, Single-Exit (SESE) fragments. Thirdly, we are not interested
in trivial clones consisting of a single activity, since they do not represent an opportunity
for subprocess extraction. These considerations lead to the following definition.

Definition 1. Given a distance metric Dist and a distance threshold τ , two non-
trivial, SESE process model fragments g1 and g2 are approximate fragments – written
Approx(g1, g2) – iff g1 
⊂ g2, g2 
⊂ g1 and Dist(g1, g2) ≤ τ .

Armed with this definition, one can retrieve large amounts of approximate clone
pairs [4]. However, if the goal is to help analysts to identify opportunities for refac-
toring and standardization, retrieving all such pairs is of limited use. Instead, given the
goal at hand, analysts need to identify sets of fragments C that can be standardized
towards a single fragment with a bounded amount of changes on each fragment. Oth-
erwise, some fragments would need to undergo changes during the standardization that
would convert them into arbitrarily different fragments. In this respect, we envisage two
alternative approaches to standardize a set of fragments:

– A set of fragments can be standardized by taking a given “medoid”2 fragment as a
reference and standardizing all fragments towards this medoid.

– A set of fragments can be standardized by selecting any fragment in the group as a
reference and standardizing all other fragments towards this reference fragment.

This leads to the following definition.

Definition 2. A set of SESE process model fragments C is a cluster of approximate
clones iff one of the following properties holds:

1. ∃g ∈ C ∀g′ ∈ C : Approx (g, g′). In this case, g is called the cluster medoid.
2. ∀g, g′ ∈ C : Approx (g, g′).

2 In data clustering, a medoid is a representative object of a cluster, i.e. an object whose average
dissimilarity to all other objects in the cluster is minimal.
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The main contribution of this paper are two techniques (one per standardization ap-
proach) for identifying clusters of approximate clones. The proposed techniques are
validated in a twofold manner. First, a descriptive analysis of approximate clone clus-
ters in two industrial repositories of process models is undertaken. Secondly, a syn-
thetic experiment is conducted to evaluate the accuracy of the clustering techniques
with respect to the task of retrieving clusters of clones that have emanated from a single
original fragment via copy/pasting followed by independent changes to the duplicated
fragments.

The rest of the paper is structured as follows. Section 2 introduces three techniques
for process model parsing, exact clone detection and process model comparison used
in this paper. Section 3 then presents the proposed approximate clone clustering tech-
niques. Finally Section 5 discusses related work while Section 6 concludes the paper.

2 Preliminaries

This section introduces the three basic ingredients of the proposed technique: RPST,
RPSDAG and process model similarity.

2.1 RPST

The RPST [17,13] is a parsing technique that takes as input a process model and com-
putes a tree representing a hierarchy of single-entry single-exit (SESE) fragments. In-
tuitively, a process model, represented as a directed graph, is partitioned into sets of
edges such that the subgraph induced by each set of edges is a SESE fragment. SESE
fragments are organized by subset inclusion to form a rooted tree, where siblings are
associated to disjoint sets of edges. As the process graph is partitioned into set of edges,
some nodes may be shared in several SESE fragments. The RPST can be computed for
any process model in linear time and it is unique [17,13].

A node in an RPST corresponds to a fragment of one out of four types: trivial, poly-
gon, bond or rigid. A trivial consists of a single edge. A polygon represents a sequence
of fragments. A bond corresponds to a subgraph where all child fragments are adjacent
to the entry and exit nodes of the fragment. Any other case is a rigid fragment. We use
the prefixes T, P, B and R to designate the type of fragment. For example fragment B1
is a bond. This bond appears in three different places (its occurrences are thus exact
clones). Meanwhile, bonds B2 and B4 could be considered as approximate clones, de-
pending on the user-defined distance threshold. Similarly, one level above, R1, R2 and
R3 could also be considered as approximate clones.

Figures 1(a)–(c) present sample process fragments extracted from models in the SAP
Reference Model [6]. For sake of clarity, only SESE fragments with at least four vertices
are identified in the figures, surrounded by a dashed rectangle. Moreover, Figure 1(d)
shows a simplified (tree) representation of the RPST of each fragment in Figures 1(a)–
(c). Consider the process fragment shown in Figure 1(a). We can observe that this frag-
ment contains three bonds, viz. B1, B2 and B3; two non-trivial polygons, viz. P1 and
P2; and a rigid fragment, viz. R1. Furthermore, the rigid R1 is the root fragment, having
B1, P1, and P2 as children. Finally, polygon P1 is parent of bonds B2 and B3.

The process models and fragments in this paper use EPC as the underlying notation.
However, the presented techniques are notation-independent.
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(a) (b)

(c) (d)

Fig. 1. Process fragments extracted from the SAP Reference Model

2.2 RPSDAG

The RPSDAG [16] is an index structure designed for efficient and accurate identification
of exact clones in a collection of process models. Conceptually, it can be thought of as
the union of a set of RPSTs. A node in the RPSDAG corresponds to a SESE fragment of
a model in the collection, whereas edges encode the containment relation among SESE
fragments. Importantly, each fragment only appears once in the RPSDAG. Thus, if a
fragment appears multiple times, in the same RPST or in different RPSTs, it is factored
out and represented only once in the RPSDAG. For example, Figure 1(d) shows the
RPSTs and the RPSDAG of the process fragments presented in Figures 1(a)–(c). Note
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that fragments B1 and P2 are represented only once in the RPSDAG. A node in the
RPSDAG that has more than one parent is an exact clone fragment.

The RPSDAG is built incrementally. When a new process model is added to the
collection, the corresponding RPST is computed and merged into the existing RPSDAG.
The RPSDAG implementation described in [16] incorporates several optimizations that
make it scalable to real-life repositories of process models with hundreds of models. In
addition to identifying exact clones, the RPSDAG allows us to determine if a process
fragment is contained in another – a feature we will use during clustering.

2.3 Process Model Similarity

The similarity of process models specified in a graph-based notation can be measured
on the basis of three complementary aspects: the labels attached to tasks, events and
other model elements; their graph structure; or their execution semantics. In this paper,
we adopt a measure that combines structural and label similarity and that has been
shown to be correlated with perceived similarity [3]. This measure is defined over an
abstract representation of process models based on labelled graphs, as follows.

Definition 3 (Process graph). Let L be a set of labels. A (business) process graph H
is a tuple (V,E, λ) where V is the set of vertices, E ⊆ V × V is the set of edges, and
λ : V → L is a function that maps vertices to labels.

The adopted similarity measure is based on the well-known graph-edit distance [11].
The graph edit distance of two graphs is the minimal set of edit operations required to
transform one graph into the other. There are three edit operations: vertex substitution,
vertex insertion/deletion and edge insertion/deletion. A vertex substitution refers to the
fact that a vertex in one of the graphs is mapped to a vertex in the other graph. To define
a valid vertex substitution, we require a notion of vertex similarity. In this respect, we
consider that vertices are matched according to their label similarity measured in terms
of string-edit distance, denoted as Simled(label1, label2).3 A vertex substitution is only
allowed if the similarity between their labels is above a user-defined threshold (e.g.
0.4). Whenever a vertex in a graph is not matched to any vertex in the other graph, it is
considered as either inserted in one graph or deleted in the other one. Similarly, an edge
insertion (or deletion) operation is required for each edge that cannot be mapped to an
edge in the other graph. This intuition is formalized as follows.

Definition 4 (Normalized process graph edit distance [2]). Let H1 = (V1, E1, λ1)
and H2 = (V2, E2, λ2) be two process graphs. Let M : V1 � V2 be a partial injective
mapping that maps vertices of H1 to vertices of H2. Moreover, let subv be the set of
substituted vertices, i.e., ∀v ∈ subv : v ∈ dom(M) ∪ cod(M), skipv the set of skipped
vertices, i.e., ∀v ∈ skipv : v /∈ dom(M) ∪ cod(M), and skipe the set of skipped
edges, i.e., ∀(v, w) ∈ skipe : v /∈ dom(M) ∪ cod(M) ∨ w /∈ dom(M) ∪ cod(M). The
normalized graph edit distance induced by the mapping M is:

DistMGED(H1, H2) =
wskipv · fskipv + wskipe · fskipe+ wsubv · fsubn

wskipv + wskipe+ wsubv

3 Other measures of label similarity (e.g. semantic ones) can be used as discussed in [2].
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where wskipv, wskipe and wsubv are relative weights in the range [0..1] assigned
to each graph-edit operation, fskipv is the fraction of skipped vertices, fskipe
the fraction of skipped edges, and fsubv the average distance between substituted
vertices, defined as fskipv = |skipv|

|V1|+|V2| , fskipe = |skipe|
|E1|+|E2|m and fsubv =

2·∑(v,w)∈M 1−Simled(λ1(v),λ2(w))

|E1|+|E2| , where Distled is the string-edit distance between
vertex labels.

Finally, the normalized graph-edit distance between H1 and H2, written
DistGED(H1, H2), is the smallest DistMGED(H1, H2) across all mappings M .

A DistGED of 0 means that the process graphs are identical, while a DistGED of 1
implies that the process graphs are completely dissimilar.

The problem of computing the graph-edit distance is NP-Complete [11]. In this pa-
per, we adopt a fast greedy heuristic described in [2]. Still, despite the fact that we use
a greedy heuristic, the computation of the DistGED is expensive. Accordingly, before
computing the actual DistGED between two graphs, we first calculate a lower-bound
of it. When this lower-bound is above threshold τ (cf. Definition 1), we do not need
to compute DistGED to determine if two fragments are approximate clones. In this
way, we avoid unnecessary calculations when clustering. The lower-bound is obtained
from the following observations. First, we take the largest of the two graphs (i.e. the
one with more nodes and more edges). Say that H1 is larger than H2 (otherwise we
revert the roles). Now, assuming that H1 is a subgraph of H2, all vertices of H1 can be
substituted by vertices of H2, all edges of H1 are matched with edges of H2, and no
vertices are substituted. The only differences come from the vertices and edges of H2

that are not in H1. Thus, fskipv =
∣∣∣ |V1|−|V2|
|V1|+|V2|

∣∣∣, fskipe =
∣∣∣ |E1|−|E2|
|E1|+|E2|

∣∣∣ and fsubv = 0.

These are lower-bound values. If the assumption that H1 is not a subgraph of H2 is
violated, then the graph-edit distance will necessarily be greater because it entails ad-
ditional differences. Thus, we conclude that DistGED(H1, H2) is greater than the one
obtained by feeding the above lower-bound values of fskipv, fskipe and fsubv into
the equation for DistMGED(H1, H2) in Definition 4. Note that if the graphs have equal
size, the obtained lower-bound is zero – which is not useful.

3 Approximate Clones Clustering

In order to operationalize the two approaches proposed in the introduction, we reviewed
various clustering algorithms and selected two of them which allowed us, with minor
adaptations, to fulfill our requirements. These are the Density-Based Spatial Clustering
of Applications with Noise (DBSCAN) [15] for the first approach, and the Hierarchical
Agglomerate Clustering (HAC) [15] for the second approach. In both algorithms, de-
scribed below, we assume that the distance between every possible pair of fragments
has been pre-computed and stored in a distance matrix. This matrix only stores the dis-
tance DistGED of Definition 4 for a pair of fragments if this is within the user-defined
threshold τ , and if the two fragments do not contain one another (non-containment
relationship). For all other fragment pairs, it stores ∞.
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3.1 Density-Based Spatial Clustering of Applications with Noise (DBSCAN)

In the first approach we propose to standardize a set of clones towards a medoid frag-
ment. Given a cluster, a medoid is an element of the cluster that is the closest to the
center of the cluster. The medoid does not necessarily coincide with the center of the
cluster (called centroid) since in our problem the distance between the medoid and all
other cluster elements is not the same, but is bounded by the user-defined threshold. A
well-known algorithm that is built upon this principle is DBSCAN. DBSCAN creates
clusters based on the density of neighborhoods. Given a set of objects O, the neighbor-
hood of an object o ∈ O is the set of fragments No = {oi ∈ O | d(o, oi) ≤ ε}, where
d(o, oi) is a distance measure between o and oi and ε is the neighborhood radius. A
core object is an object whose |No| ≥ Sizemin, where Sizemin is the minimum cluster
size (we observe that a core object is contained in its neighborhood since its distance
with itself is 0). Thus, we have to specify two parameters for this algorithm: neighbor-
hood radius and minimum cluster size. In our case, the neighborhood radius coincides
with the used-defined distance threshold τ , whereas we can fix Sizemin to 2 to retrieve
clusters of at least two fragments. Moreover, we use the notion of graph-edit distance
DistGED as the distance measure between two objects.

Standard DBSCAN identifies all core objects of a given dataset and considers their
neighborhoods as initial clusters. If two core objects are within each other’s neigh-
borhood, their neighborhoods are merged into a single cluster. On the other hand, if an
object does not belong to the neighborhood of any core object, it is marked as noise. Our
adaptation of DBSCAN is described in Algorithm 1. Given the set of process fragments
G extracted from the RPSDAG, the algorithm repeats the clustering process (Steps 2–
14) until all fragments in G have been checked whether they are core objects. At the
beginning of each iteration, a random fragment f is removed from G and marked as
“processed”. The neighborhood Nf of f is computed (Step 3), and if f is a core ob-
ject the fragments in Nf are removed from G and from Noise (Step 5), and added to
a new cluster C (Step 6). Otherwise f is treated as noise and another fragment is ex-
tracted from G. The algorithm then expands cluster C by checking whether there are
core objects in C whose neighborhoods can be merged with C. This is done by iterating
over all fragments in Nf except f , via a set MC . For a fragment m in MC that has not
been processed, its neighborhood Nm is computed (Step 8) to determine whether m is
itself a core object. If so, before merging its neighborhood with C, we check whether
there is still a medoid s whose distance with all other fragments of the combined cluster
is within τ (Step 10), otherwise we will create clusters whose fragments are far apart
from each other to be standardized. In case of merging, the fragments in Nm are re-
moved from G and added, except m, to MC (Step 11), so that they can be checked
whether they are core objects. If Nm cannot be merged with C, m is added back to G
so that it can be eventually processed again (Step 12). In fact, Nm may form a cluster
by itself or be merged with some other cluster.

A fragment’s neighborhood is constructed using the distance matrix. Given the non-
containment relation enforced by this matrix, a fragment cannot be in the neighborhood
of a core object that contains or is contained by it. Still, it is possible to include two re-
lated fragments in a neighborhood if they are both sufficiently similar to the core object.
To prevent this, we retrieve the set of all the ascendants and descendants of a fragment
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Algorithm 1. DBSCAN Clustering
Input: Set G of process fragments.
Output: The sets of clusters (Clusters) and noise (Noise).

Initialize Clusters and Noise to empty sets.1

Remove a fragment f from G and mark f as “processed”.2

Retrieve the neighborhood Nf .3

If |Nf | < Sizemin, add f to Noise , then go to 1.4

Remove Nf from G and from Noise .5

Initialize a new cluster C in Clusters with Nf , and a new set MC to Nf \ {f}.6

Remove a fragment m from MC .7

If m is not “processed”, mark m as “processed” and retrieve Nm.8

If Nm ≥ Sizemin9

If there is a fragment s ∈ C ∪Nm such that for all p ∈ C ∪Nm DistGED(s, p) ≤ τ10

Remove Nm from G and Noise and add Nm to C and Nm \ {m} to MC .11

Else, mark m as “unprocessed” and add it to G.12

If MC �= ∅ go to 1.13

If G �= ∅ go to 1.14

by computing its transitive closure on the RPSDAG, and add to the neighborhood the
fragment in the transitive closure that is the nearest to the core object (the original frag-
ment may thus be discarded in favor of one of its ascendants or descendants). Further,
we mark all other fragments in the transitive closure as “visited” for that cluster, so that
these fragments will not be included in any neighborhood of that cluster.

The complexity of Algorithm 1 is dominated by that of the neighborhood compu-
tation (Steps 3 and 8), and by that of the merging condition (Step 10). Neighborhood
computation for a fragment f requires at most |G| − 1 lookups in the distance matrix.
The exploration of the transitive closure of each neighbor of f requires further |G| − 1
lookups (retrieving the transitive closure of an RPSDAG node is linear on the RPS-
DAG size, which is bounded by |G|). Similarly, the merging condition requires |G| − 1
lookups in the distance matrix for all members of a cluster. As the main loop is repeated
|G| times, the overall complexity of Algorithm 1 is O(|G|3). This is higher than the
complexity of standard DBSCAN, which is O(|G|2) [15]. That said, in our experience
the algorithm showed to be efficient (cf. Section 4). In fact, the search space is greatly
reduced by the cutoff conditions used when computing the distance of clusters, i.e. the
distance threshold τ and the non-containment relationship. The result is that the dis-
tance matrix is highly sparse, but the sparsity depends on intrinsic characteristics of the
process model collection. Further, we store each computed neighborhood so that it can
be reused when reprocessing a core object whose neighborhood has not been merged.

3.2 Hierarchical Agglomerate Clustering (HAC)

In the second approach, a set of clones can be standardized by selecting any fragment
in the group as a reference and standardizing all other fragments towards this reference
fragment. In other words, we require that every pair of fragments in a cluster has a dis-
tance below the threshold τ . This goal can be straightforwardly mapped to the strategy
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followed by the basic hierarchical agglomerative clustering method [15]. This cluster-
ing method starts with singleton clusters and iteratively combine the pair of clusters
that is found to be the closest among all other possible pairs. The process of merging
continues until there is only one cluster left.

One key issue is the definition of the distance between two clusters, which needs to
be recomputed after every cluster merging. Several possibilities are available: taking
the smallest distance between fragments in one of the clusters to the fragments in the
other one, known as single link; taking the farthest distance, referred to as complete
link; among others. It can be easily see that the complete link strategy suites well to our
purposes, as it allows to identify the cluster mergings that will not meet the requirement
of keeping a distance below the threshold τ . Note that the identification of such situation
can be accomplished ahead of time. The intuition is captured in the following definition.

Definition 5 (Distance of clusters under complete link strategy). Let Ci and Cj be
clusters in the dendrogram built by a hierarchical clustering algorithm, and τ be the
similarity threshold among fragments of Ci and fragments of Cj . Moreover, let F(C)
be a function that returns the set of fragments associated to C, inductively defined as
follows: (BASE) if C is a leaf node in the dendrogram, C is a singleton and refers to
a single fragment, say f , then F(C) = {f}; (STEP) if C is an intermediate node then
F(C) = ∪c∈CF(c). The distance of clusters Ci and Cj , denoted as Dist(Ci, Cj), can
defined as follows.⎧⎨
⎩

∞ if ∃f ∈ F(Ci), g ∈ F(Cj) :g ⊆ f ∨ f ⊆ g
∞ if maxf∈F(Ci),g∈F(Cj) DistGED(f, g) > τ
maxf∈F(Ci),g∈F(Cj) DistGED(f, g) otherwise

We note that the distance of two clusters is set to ∞ when there exist one fragment in the
first cluster which is in containment relationship with another fragment in the second
cluster. Moreover, when farthest distance between fragments of both clusters is above
the threshold τ , the distance is set to ∞. In the two previous cases, we are meeting
the constraints described in Definitions 1 and 2. Finally, the farthest distance between
fragments of both clusters is reported as the distance of the clusters, only when the value
is less or equal to the threshold τ . Algorithm 2 corresponds to the modified version of
the basic hierarchical agglomerative method adapted for clustering approximate clones.

Algorithm 2 can be divided into two parts. Step 1 and 2, initialize the set of single-
ton clusters, stores them in TopClusters and initializes the distance matrix between
clusters (according to Definition 5). The remaining steps correspond to the main loop.
In Step 3, a pair of clusters is selected such that their distance is found to be the small-
est among all other possible pairs. If the distance of such pair is ∞ or there is only
one cluster left then the algorithm stops. In Step 4, a new cluster is created to hold the
union the previously selected pair. In Step 5, the distance matrix is updated (according
to Definition 5), by removing the pair clusters previously selected and adding the newly
created cluster.

The algorithm starts with a working set of |G| clusters. In every iteration, two clusters
are removed and a new one is added. Hence, the size of the working set decreases
monotonically. The algorithm stops when |TopClusters| = 1 or before if the entire
distance matrix D is filled with ∞.
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Algorithm 2. Hierarchical Agglomerative Clustering
Input: Set G of process fragments.
Output: The set of maximal clusters, viz. TopClusters.

For each f ∈ G create a singleton cluster. Initialize TopClusters to contain all singleton1

clusters.
Using the distance matrix between fragments, calculate the initial distance matrix between2

clusters in TopClusters, i.e. D[i, j] ← Dist(Ci, Cj), where Ci, Cj ∈ TopClusters .
In the distance matrix D, select a pair of clusters Ci, Cj ∈ TopClusters such that their3

distance is the minimum. Stop if no such pair exists, i.e. either all distances in D are ∞ or
|TopClusters| = 1.
Combine clusters Ci and Cj to form a new cluster Cij . Remove clusters Ci and Cj from4

TopClusters. Add cluster Cij to TopClusters.
Update matrix D by adding the distance between cluster Cij and all other clusters in5

TopClusters.
Go to 2.6

The complexity of Algorithm 2 is dominated by the maintenance of the distance
matrix (i.e., Steps 2 and 2), which has an initial size of O(|G|2). As the main loop
is repeated O(|G| − 1) times, the worst-case upper bound of the complexity is of
O(|G|3) [15]. The same simplifications of the search space that we used for DBSCAN
apply to HAC (distance cutoff and non-containment). Also this algorithm has shown to
be efficient in our experience.

4 Evaluation

We implemented the two algorithms in the Apromore [8] platform,4 and evaluated
them in a twofold manner. First, we performed a descriptive analysis of approximate
clone clusters in two industrial process model collections in order to assess the poten-
tial usefulness of the techniques. Secondly, we conducted an experiment to measure the
accuracy of the technique at retrieving fragments resulting from copy/pasting and subse-
quent independent changes. Both experiments make use of a measure of cluster quality
intended to capture the potential benefits of standardization.

4.1 Cluster Quality Measure

The proposed techniques are aimed at retrieving clusters of fragments that can be stan-
dardized into a common fragment. Such a standardization activity entails a certain ef-
fort and brings in certain benefits – in the form of less duplication and thus smaller
total repository size. We contend that clusters that have a higher benefit-to-cost ratio are
most likely to be candidates for standardization. In particular, if a cluster of approximate
clones has emerged from copy/pasting of a fragment followed by independent changes
of the copied fragments, it is likely to have a high benefit-to-cost ratio, provided that
the changes made are not considerable.

4 Available at www.apromore.org

www.apromore.org
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To operationalize the benefit-to-cost ratio as a measure of cluster quality, we need to
define a cost measure and a benefit measure. The cost of standardizing the fragments of
a cluster into a single fragment is determined by many factors, some of them exogenous
to the process models themselves. However, we contend that this cost is proportional
to the amount of elementary changes that will be made to the fragments in order to
standardize them to one common subprocess. Indeed, each elementary change will re-
quire a certain amount of effort to ensure that the execution of the process is adapted to
this change. Accordingly, we hereby use the absolute GED (DistAGED(H1, H2)) de-
fined in the same way as DistGED(H1, H2) in Definition 4 but replacing fskipv and
fskipe with |skipv|, |skipe| respectively, and removing the denominator in the defini-
tion of fsubv. In other words, we count actual number of edit operations as opposed to
fraction of edit operations relative to total size. We do not used the normalized GED in
this context (DistGED), because this normalized version is not reflective of the number
of operations required to standardize the fragments. Instead, DistGED is reflective of
the percentage difference shared between two models.

In the case of clusters produced using DBSCAN, there is a designated medoid
that serves as a reference. Thus, the cost of standardizing the cluster is the sum
of the distances between each fragment in the cluster and the medoid (m), i.e.∑

f∈C DistAGED(f,m). In the case of clusters produced using hierarchical cluster-
ing, every fragment in the cluster could potentially be used as the “medoid” towards
which all fragments would be standardized. Assuming that the aim is to maximize the
benefit-to-cost ratio, we will pick as medoid the fragment that will yield the highest
benefit-to-cost ratio (see below).

The benefit of standardizing and refactoring a cluster into a subprocess is propor-
tional to the amount of reduction in duplication, which in turn reflects itself in a re-
duction in size of the overall repository. This size reduction is equal to the sum of the
sizes of the fragments in the cluster (since they are removed) to which we subtract the
size of the medoid – since this medoid becomes a new subprocess – and the number of
fragments – since each cluster is replaced by a “call activity” to the subprocess. In other
words, the benefit of standardizing a cluster is

∑
f∈C |f | − |m| − |C|.

Given the above, we define the benefit-to-cost ratio of a cluster obtained with the

DBSCAN method as BCR(C) =
∑

f∈C DistAGED(f,m)
∑

f∈C |f |−|m|−|C| . In the case of hierarchical

clustering, we define the benefit-to-cost ratio of a cluster as the maximum of BCR(C)
across all fragments in the cluster.

4.2 Potential Usefulness Assessment

We assessed the potential usefulness of the approximate clone clustering techniques us-
ing two datasets. The first dataset is the SAP R/3 reference model [6]. It contains 595
models with sizes ranging from 5 to 119 nodes (average 22.28). The second dataset is
taken from an insurance company under condition of anonymity. It contains 363 models
ranging from 4 to 461 nodes (average 27.12). We first computed the RPSDAG for both
datasets and post-processed them by factoring out all exact clones using the technique
presented in [16]. This yielded 2,238 non-trivial fragments with at least 4 nodes for
the SAP dataset (11.47 average size) and 2,037 for the insurance dataset (16.58 aver-
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Fig. 2. Number of clusters vs clusters size for both algorithms

age size). We then applied the two clustering methods independently – having elimi-
nated exact clones to avoid double-counting. The clustering algorithms were run with a
DistGED threshold of 0.4.

All tests were run on a PC with a dual core Intel processor, 1.8GHz, 4GB memory,
running Microsoft Windows 7 and Oracle Java Virtual Machine v1.6. The cluster com-
putation is dominated by the computation of the distance matrix which took 26.3 mins
for the SAP dataset and 2.69 hours for the insurance dataset. The time for clustering
itself is negligible in comparison. The longer time taken for the insurance dataset is jus-
tified by the size of its fragments – much larger than those in the SAP dataset (e.g. the
largest fragment in the insurance dataset is a rigid with 461 nodes whereas the largest
SAP fragment contains 117 nodes).

Figure 2 plots the histograms of distribution of cluster sizes for the two datasets. For
the SAP dataset we retrieved a total of 364 clusters with DBSCAN (with sizes ranging
from 2 to 5 clusters) and 335 clusters for HAC (sizes between 2 and 13), while for
the insurance dataset we retrieved 243 clusters with DBSCAN (sizes between 2 and 6)
and 309 clusters with HAC (sizes between 2 and 10). This confirms the intuition that
real-life process model repositories contain a large number of approximate clone clus-
ters, and thus that copy/pasting of fragments across process models is a very common
practice. Looking at the size distribution, for both datasets the majority of the clusters
retrieved by the two algorithms contain between 2 and 8 fragments, with the largest
clusters having 2 fragments. This suggests that copy/pasting is typically limited to 6-8
copies per fragment.

Figure 3 shows the histograms of distributions of BCR for both datasets. We observe
that in general none of the techniques performs better than the other, since for the SAP

Fig. 3. Number of clusters vs benefit/cost ratio for both algorithms
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dataset we achieve higher BCRs for HAC than for DBSCAN, whilst for the insurance
dataset it is the other way around. This suggests that depending on the type of the
repository, one of the two techniques might be more appropriate than the other.

4.3 Retrieving Copy/Pasted Fragments

The second experiment aimed to evaluate the accuracy of the clustering techniques
with respect to the task of retrieving clusters of clones that have emanated from a single
original fragment by means of copy/pasting followed by independent changes to the
duplicated fragments. We did so by simulating a situation where new fragments are
inserted in an existing process model repository by copying a master fragment across
various models of the repository, after doing minor changes. We randomly extracted 50
fragments from the two datasets used in the previous experiment, such that they were
sufficiently different from each other (pairwise graph-edit distance above 70%).

To test the accuracy of the DBSCAN algorithm, we used these 50 fragments as
“seeds” to generate 50 artificial clusters by producing from 2 to 10 variants for each
seed, and grouping each seed with its variants in a cluster. We obtained a total of 311
fragments in 50 clusters. Seed variants were obtained by applying simple change op-
erations (edge/node removal or insertion), such that the graph-edit distance between a
variant and its seed was no more than 40% – the same threshold that we used in the
first experiment. The clusters’ size ranged from 3 to 10 fragments (average 6.35). We
then generated 300 process models from the two existing datasets, such that none of
these models contained any of the seed fragments, and we randomly inserted the 311
fragments into these models such that a model would contain from 0 to 2 fragments.
We then extracted the RPSDAG from this dataset and clustered the retrieved fragments
using our DBSCAN. The algorithm retrieved 328 clusters. We matched each artificial
cluster with the retrieved fragment that yielded the maximum FScore [19]. FScore is the
harmonic mean of the recall and precision of a retrieved cluster with respect to (w.r.t.)
an artificial cluster. Precisely, given an artificial cluster l and a retrieved cluster s, the
FScore of s w.r.t. l is F (s, l) = 2·R(s,l)·P (s,l)

R(s,l)+P (s,l) where R(s, l) and P (s, l) are the recall
and precision of s w.r.t. l.

In order to measure the overall quality of the algorithm, we then computed the
weighted average FScore (Fwa) [19]. Fwa is the maximum FScore of each artificial
cluster weighted against the combined size of all artificial clusters. Let L be the set of
artificial clusters and S the set of retrieved clusters. Then Fwa =

∑L
l=1

|l|
|L|F (l), where

F (l) = maxs∈S F (s, l).
We repeated the same experiment for the HAC algorithm. In order to

ensure that all fragments in an artificial cluster have pairwise graph-edit
distance within the 40% threshold, we used a random walk approach.

Table 1. Various quality metrics for the two al-
gorithms

Recall Precision Fwa

min max avg std min max avg std
DBSCAN 0.17 1 0.71 0.37 0.2 1 0.89 0.24 0.73

HAC 0.1 1 0.82 0.25 0.17 1 0.84 0.33 0.77

From each seed we generated a variant
with graph-edit distance of at most 0.4.
We chose one of these two fragments and
generated another variant such that its
distance to both fragments was at most
0.4, and so on until we generated from 2
to 10 variants for each cluster. This led
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to a total of 289 fragments in 50 clusters, with sizes ranging from 3 to 10 fragments
(average 5.8). We inserted these fragments in the collection of 300 process models that
we generated in the previous step, and then clustered the fragments retrieved from the
RPSDAG of this collection using HAC. This led to 295 clusters.

The results for both algorithms are reported in Table 1. Besides Fwa, this table re-
ports the minimum, maximum, average and std. deviation of recall and precision for
the best-matched retrieved cluster for each artificial cluster. The accuracy of the two
algorithms is partly affected by the presence of approximate clones that exist in the
generated process model collections, besides those that have been generated artificially.
Despite this, the results show high Fwa (0.73 for DBSCAN and 0.77 for HAC), as well
as high average precision and recall for both algorithms, demonstrating the accuracy of
the algorithms. None of the algorithms clearly outperforms the other.
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Fig. 4. ROC curves for both algorithms

Finally, we used the above
data to evaluate the ranking ac-
curacy of the BCR. For each
algorithm, we plotted a ROC
curve by ordering the retrieved
clusters from the highest to the
lowest BCR. In these curves, we
considered a retrieved cluster as
a true positive if it had a re-
call of 1, and as a true negative
otherwise. The curves, shown in
Fig. 4, show that the clusters with highest BCR are indeed those that most closely
match the synthetically generated clusters. This result is confirmed by the Area Un-
der the Curve which is 0.89 for DBSCAN and 0.72 for HAC (both with asymptotic
significance less than 0.05).

5 Related Work

Clone detection in software repositories has been an active field of research for several
years [7]. However in this field focus has been on exact software clone detection.

In the field of model-driven engineering, approximate clone detection has been in-
vestigated in [1], [12] and [14]. In [1] the authors present CloneDetective, a method for
detecting clones in large repositories of Simulink/TargetLink models from the automo-
tive industry. Models are partitioned into connected components which are compared
pairwise using a heuristic subgraph matching algorithm. These pairs are then clustered
based on the sets of their node labels. According to [12], CloneDetective suffers from
low inaccuracy and low degree of completeness in detection, mainly due to the fact that
small clones are absorbed by larger clone pairs. In other words, the algorithm tends
to find as large clones as possible, whereas in our approach we allow related frag-
ments to belong to different clusters, so that users can choose the abstraction level at
which to standardize. Moreover, this method is not very sensitive to approximate clones
having small differences. These cases commonly result from copy/pasting and as such
they should not be discarded. Moreover, they yield low standardization costs making
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them easy to standardize. The work in [12] overcomes these problems by proposing
two methods for exact and approximate matching of clones. In particular, the second
method, namely aScan, represents graphs by a set of vectors built from graph features:
e.g. path lengths and vertex in/out degrees. An empirical study shows that this feature-
based approximate matching improves pre-processing and running times, while keeping
a high precision. Despite these advantages, the method proposed in [12] does not fulfill
our requirements: The resulting clones may be non-SESE fragments and the identified
clusters do not satisfy any of the properties in Definition 2. The work in [14] detects
clones in UML models, such as class or activity diagrams. In this work, each object, its
properties and child objects (all called model elements) form a fragment. The similarity
between two fragments is computed by summing up the pairwise similarities of their
respective elements. This method is not suitable for our purposes as it does not consider
structural similarity, fragments are fixed to specific structures, and no clustering tech-
nique is proposed. Moreover, the method is not very sensitive to approximate clones
having substantial differences (e.g. removals or additions of parts).

Refactoring process model collections has been investigated in [16,4,18]. In [16],
we described a technique to find fragments that are equal across different pro-
cess models, so that they can be factored out in separate subprocess. In this pa-
per, we assume that all such exact clones have already been factored out, but we
reuse the RPSDAG structure that we built in [16] to identify hierarchical depen-
dencies among fragments in different process models. In [4], process fragments
that are sufficiently similar to each other are identified. In contrast to our work,
fragment similarity is exclusively based on label similarity rather than a combi-
nation of label and structural similarity. Also, fragments are considered pairwise
and no clustering takes place. This approach can help analysts detect overlap be-
tween process models, however no support is offered to standardize these sim-
ilar fragments such that they can be refactored. In [18], eleven process model
refactoring techniques are identified and evaluated. Extracting process fragments
as subprocesses is one of the techniques identified. Our work addresses the prob-
lem of identifying opportunities for such “fragment extraction” and provides an
actual implementation and experimentation. In addition, [18] does not consider
clustering.

Clustering of process models has been dealt with in [5] and [10]. In both cases pro-
cess models are clustered rather than process fragments leading to a small number of
clusters. Using fragments instead of process models is more complex, but for the pur-
poses of standardization and reuse it is more suitable as a fragment may be shared
between process models, while the rest of these models may be quite different.

In [9] an approach is described to synthesize the most representative process model
out of a collection of variants. This work is complementary to ours in that it could be
used after clustering has been applied in order to synthesize the centroid of a cluster.
However, this is not the approach we followed as this may likely lead to an artificially
created centroid which does not represent an actual fragment occurring in a process
model. The presence of such an artificial fragment could cause problems for a business
analyst when trying to standardize a cluster.
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6 Conclusion

This paper presented two techniques for retrieving clusters of approximate clones for
possible refactoring into shared subprocesses. Experiments showed that both tech-
niques, coupled with the proposed measure of cluster quality (benefit-to-cost ratio),
are able to accurately retrieve clusters resulting from copy/pasting activity followed by
independent modifications to the copied fragments. A descriptive analysis of clones in
two industrial process model repositories put into evidence a proliferation of approxi-
mate clones of varying sizes and benefit-to-cost ratio.

The evaluation is limited in at least two respects. First, clustering and cluster ranking
accuracy are evaluated based on synthetic data – albeit generated via perturbations of
real-world fragments. The retrieved clusters may not be reflective of the types of clusters
that analysts would find most suitable for standardization and refactoring. Addressing
this limitation requires a realistic “golden standard”, for example, one resulting from a
manual assessment of cluster quality by domain experts. This is a direction for future
work. A second limitation is that only two repositories were used to evaluate the poten-
tial benefit of the proposed techniques. In one case one technique led to higher overall
benefit-to-cost ratio, while the reverse was observed in the second case. Further evalu-
ation is needed to determine in what cases one technique should be preferred over the
other. Finally, the evaluation could be extended to include other clustering techniques.
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Abstract. Business process models are increasingly used by companies,
often yielding repositories of several thousand models. These models are
of great value for business analysis such as service identification or pro-
cess standardization. A problem is though that many of these analyses
require the pairwise comparison of process models, which is hardly fea-
sible to do manually given an extensive number of models. While the
computation of similarity between a pair of process models has been in-
tensively studied in recent years, there is a notable gap on automatically
matching activities of two process models. In this paper, we develop an
approach based on semantic techniques and probabilistic optimization.
We evaluate our approach using a sample of admission processes from
different universities.

1 Introduction

Business process models are increasingly used by companies for documentation
purposes. A process documentation initiative stores an extensive amount of pro-
cess models in a centralized process repository. This amount can easily rise to
several thousand models in large enterprises. Due to the size of such companies,
process modeling is often conducted by decentralized teams. A consistent and
systematic documentation of processes is often achieved by defining guidelines.
However, typically none of the team members has detailed insight into the entire
set of process models stored in the repository.

The availability of a detailed documentation of a company’s business pro-
cesses bears a lot of potential for business analysis, such as process standard-
ization, compatibility analysis, or business service identification. Process model
matching, realized by tools called matchers, is a prerequisite for such analyses.
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It defines which activities in one process model correspond to which activities
in another model. Such matches are required, for example, to determine which
activities can be merged when deriving standard processes from a collection of
processes. It is also needed to judge behavior compatibility or equivalence, and
to query a collection of business process models for a certain process or process
fragment. The importance of such questions is reflected by recent contributions
on computing similarity of pairs of process models, e.g. [1,2,3,4,5,6].

In this paper, we address process model matching with semantic matching
techniques and probabilistic optimization. The approach comprises two steps.
First, match hypotheses are generated based on automatically annotated activity
labels. We rely on a semantic interpretation of activity labels, whereas existing
work [7,8] (despite a notable exception [9]) is limited to syntactical similarity
assessment. Second, match constraints are derived based on behavioral relations
of process models. Those constraints are used for guiding the matching with a
probabilistic model, whereas existing work directly leverages the model structure
or execution semantics [7,8]. The evaluation of our approach with admission
processes from nine different universities shows that the novel conceptual basis
for process model matching indeed improves performance. In particular, we are
able to show that match results are more stable over different levels of process
model heterogeneity. Besides the definition of the matcher, our contribution is a
comparative analysis of the strengths and weaknesses of classical matchers and
semantic matching with probabilistic optimization. As such, we provide valuable
insights for advancing the field of process model matching.

Against this background, the paper is structured as follows. Section 2 illus-
trates the problem of matching process models. Section 3 presents a matcher
that incorporates the generation of semantic match hypotheses based on auto-
matically annotated activities and a probabilistic approach towards match opti-
mization using behavioral constraints. Section 4 challenges our approach using
a process model collection from practice. Section 5 reflects our contribution in
the light of related work. Finally, Section 6 summarizes the findings.

2 Problem Illustration

This section illustrates the problem of matching process models. We present
basic terminology and discuss the state of the art in finding matches.

Given two process models with sets of activities A1 and A2, matches between
their activities are captured by a relation match : P(A1) × P(A2). An element
(A1, A2) ∈ match defines that the set of activities A1 matches the set of activities
A2, i.e., they represent the same behavior in the organization. If |A1| = 1 and
|A2| = 1, we call the match an elementary match or 1:1 match. Otherwise, we
speak of a complex match or 1:n match. For convenience, we introduce a relation
map : A1 × A2, which defines the relations between individual activities as
induced by match, map = {(a1, a2)|(A1, A2) ∈ match, a1 ∈ A1, a2 ∈ A2}.

Figure 1 shows admission processes from two different universities. We high-
lighted matches by gray boxes around the activities, e.g., activity Check formal



Semantic Matching of Process Models 321

Fig. 1. Example of a business process models with matches

requirements of University A corresponds to activity Check documents of Univer-
sity B. Although the processes have the same goal, the organizational behavior
is modeled differently. Different labels are used (e.g., Accept application versus
Send letter of acceptance) and there are differences in the level of detail (e.g.,
Evaluate of University B is described in more detail for University A). Also the
behavior represented by the processes differs. For example, at University B the
Evaluate activity is mandatory, whereas at University A the matching activities
can be skipped. Before these behavioral differences can be analyzed, however,
matches between the activities have to be determined. The goal of matchers,
such as the ones described in [8,7], is to detect such matches automatically.

A matching approach of particular interest is the ICoP framework [8]. It de-
fines a generic architecture for assembling matchers along with reusable match-
ing components. As such, it integrates several of the proposed matchers, e.g.,
the graph-based matcher presented in [7]. Following the ICoP architecture, the
procedure for automatically detecting matches involves four kinds of matching
components: searchers find potential matches between activities, boosters im-
prove the quality of potential matches by combining them, selectors construct
the actual mapping from potential matches, and evaluators evaluate the quality
of an actual mapping with the purpose of finding the best mapping.

Matching components implemented for the ICoP framework leverage syntac-
tic measures, such as string edit distance or vector-space scoring, to find match
candidates. Selection and evaluation is guided by the structure of process mod-
els, e.g., utilizing the graph edit distance. An evaluation of the existing ICoP
components showed that much improvement is still possible with respect to au-
tomatically detecting matches. Given the focus on syntactic measures of the
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existing components, approaches that relate activities based on the semantics of
their labels can particularly be expected to improve matching performance.

3 Matching Based on Semantics and Constraints

This section introduces our approach for matching process models. It consists of
four phases. First, we annotate the activities of the considered models with their
semantic components such as action and business object. Afterwards, we use
these annotations for generating match hypotheses for activity pairs. Then, we
compute behavioural constraints in order to properly incorporate control flow as-
pects into the matching process. Finally, we involve these aspects in determining
the most likely match constellation using a Markov logic network.

3.1 Activity Label Annotation

Semantic matching requires the precise recognition of semantic components of
an activity label. Every activity label can be decomposed into three compo-
nents [10]: an action, a business object on which the action is performed, and
an optional fragment providing further details. For example, the activity label
Forward Request to Insurance Department contains the action forward, the busi-
ness object request and the additional fragment to Insurance Department. The
challenge here is to identify these different components for activities of different
label styles. Verb-object style labels start with an imperative verb followed by
business object and additional fragment, e.g. Calculate Costs for Production. In
action-noun labels the action is formulated as a noun, e.g. Order Shipment to
Customer.

The last example points to potential problems with ambiguity when a term
can be used both as a noun (the order) and a verb (to order). Therefore, we
use the two-phase approach of [11] for deriving annotations. In the style recog-
nition phase, the label style is determined. Contextual information is utilized to
classify ambiguous cases. The derivation phase yields the action, the business
object, and optional fragments. This step builds on the capability of the lexical
database WordNet [12] to derive a verb like register from the nominalized action
registration.

3.2 Generation of Semantic Match Hypotheses

The generation of semantic match hypotheses builds on the annotation of activ-
ities. It yields a similarity score for each activity pair of the two input models.

The general idea for this phase is to calculate the score based on the semantic
similarity between the actions, the business objects and the additional fragments
of the considered activity pair. In this context, the term semantic similarity refers
to the closeness of two concepts in the taxonomy WordNet [12]. Different propos-
als exist for calculating the similarity between two concepts based on taxonomies
[13,14,15]. Here, we utilize the similarity measure introduced by Lin, as it has
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been shown to correlate well with human judgments [16]. Forcalculating this
semantic similarity between two labels l1, l2, we introduce three functions: a
component similarity function simc, a coverage function cov, and a label simi-
larity function siml, combining the latter two to a final result.

The function simc calculates the semantic similarity between two label com-
ponents lc1 and lc2 . In general, the result of the Lin measurement is returned. If
not both labels include the component, the value is set to zero.

simc(l1, l2) =

{
0 if l1c = ∅ ∨ l2c = ∅
Lin(l1c , l2c) if l1c 
= ∅ ∧ l2c 
= ∅ (1)

The coverage function cov is used to determine the number of components in a
label l. Assuming a label at least refers to an action, the result of cov ranges
from 1 to 3. Note that the index a in the definition denotes the action, bo the
business object and add the additional information fragment.

cov(l) =

⎧⎨
⎩

1 if la 
= ∅ ∧ lbo = ∅ ∧ ladd = ∅
2 if la 
= ∅ ∧ (lbo 
= ∅ � ladd 
= ∅)
3 if la 
= ∅ ∧ lbo 
= ∅ ∧ ladd 
= ∅

(2)

In order to combine the individual similarity results, we introduce the function
siml. This function calculates the arithmetic mean of the similarity values for
action, business object and the additional information. This is accomplished by
dividing the sum of sima, simbo and simadd by the maximum coverage among l1
and l2. As a result, we obtain the overall matching weight for two given labels.

siml(l1, l2) =
sima(l1, l2) + simbo(l1, l2) + simadd(l1, l2)

arg max
l ∈ {l1,l2}

cov(l)
(3)

By calculating siml for every activity pair which can be combined from the
considered process models, we obtain a set of match hypotheses. This set of
hypotheses constitutes the first input for our probabilistic matching model.

3.3 Constraints Generation

Constraint satisfaction, also called second line matching [17], is often applied in
schema and ontology matching as a means to guide the selection of matches. Here,
constraints may relate to the general structure of matches (e.g., only 1:1 matches
shall be considered), particular attribute pairs (e.g., a pair forms a matches or
shall never be part of any match), or dependencies between different matches. We
aim at matching such dependencies which are related to the execution semantics
of process models. The intuition behind is that the order of processing described
by one model is likely to coincide with the order of processing specified in a
second model. Referring to the initial example in Figure 1, we see that in either
model the activities related to check an application (e.g., Check application in
time in the upper model and Check documents in the lower model) are preceding
the activities related to taking a decision (e.g, Reject application and Send letter
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of rejection). Also, activities for accepting an application are exclusive to those
of rejection an application in either model.

There are different alternatives to formulate behavioral constraints for a pro-
cess model. For the context of matching process models, a fine-grained formaliza-
tion of constraints appears to be appropriate. Although we assume two models
to show a rather consistent order of processing, slight deviations can always be
expected and should have a minor impact on the matching process. Therefore,
we consider a model that captures order constraints for the smallest possible con-
ceptual entity, i.e., pairs of activities. Further, in many cases, the final matching
will only be partial, meaning that activities of one model are without counterpart
in the other model. This suggests to not rely on direct successorship of activities
but on a notion that is insensitive of partial matchings.

Against this background, we capture behavioral constraints using a binary
relation over activities, called weak order [18]. It holds between two activities
a1 and a2 of a process model, if there exists an execution sequence in which a1
occurs before a2. By referring to the existence of a certain execution sequence, it
allows for capturing the potential order of occurrence for activities. In the afore-
mentioned example, weak order holds between Check application in time and
Reject application in the upper model, and between Check documents and Send
letter of rejection in the lower model. The exclusiveness of activities representing
acceptance and rejection of an application in either model is implicitly covered:
the respective activities are not related by weak order in either direction. The
strict order is also implied if weak order is only defined in one direction.

Weak order of activities can be derived from the state space of a process model.
For certain classes of models, however, the relation can also be derived directly
from the structure. For models that incorporate only basic control flow routing,
such as XOR and AND routing constructs, and that show soundness, i.e., the
absence of behavioral anomalies such as deadlocks, the weak order relation is
determined in low polynomial time to the size of the model [18].

3.4 Probabilistic Match Optimization

An instance of the process matching problem consists of the two processes, the
match hypotheses with a-priori confidence values, and the behavioral relations
holding between the activities. Statistical relational languages such as Markov
logic [19] are a natural choice when uncertainty meets relational data. We will
demonstrate that Markov logic is an appropriate choice for a process matching
framework as it is adaptable to different matching situations and allows fast
prototyping of matching formulations.

Markov Logic Networks. Markov logic [19] is a first-order template language
for log-linear models with binary variables. Log-linear models are parameteriza-
tions of undirected graphical models (Markov networks) which play an important
role in the areas of reasoning under uncertainty [20] and statistical relational
learning [21]. Log-linear models are also known as maximum-entropy models
in the natural language processing community [22]. The features of a log-linear
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model can be complex allowing the user to incorporate prior knowledge about
the importance of features of the data for classification. Moreover, within the
framework of log-linear models users can specify constraints on the resulting
classification. In the context of process matching, these constraints will allow us
to punish inconsistent sets of matches, also referred to as alignments.

A Markov network M is an undirected graph whose nodes represent a set of
random variables X = {X1, ..., Xn} and whose edges model direct probabilistic
interactions between adjacent nodes. More formally, a distribution P is a log-
linear model over a Markov network M if it is associated with:

◦ a set of features {f1(D1), ..., fk(Dk)}, where each Di is a clique in M and
each fi is a function from Di to R,

◦ a set of real-valued weights w1, ..., wk, such that

P (X = x) =
1

Z
exp

(
k∑

i=1

wifi(Di)

)
,

where Z is a normalization constant [20].
A Markov logic network is a set of pairs (Fi, wi) where each Fi is a first-

order formula and each wi a real-valued weight associated with Fi. With a finite
set of constants C it defines a log-linear model over possible worlds {x} where
each variable Xj corresponds to a ground atom and feature fi is the number
of true groundings (instantiations) of Fi with respect to C in possible world
x. Possible worlds are truth assignments to all ground atoms with respect to
the set of constants C. We explicitly distinguish between weighted formulas and
deterministic formulas, that is, formulas that always have to hold.

There are two common types of probabilistic inference tasks for a Markov
logic network: Maximum a-posteriori (MAP) inference and marginal probability
inference. The latter computes the posterior probability distribution over a sub-
set of the variables given an instantiation of a set of evidence variables. MAP
inference, on the other hand, is concerned with finding an assignment to the
variables with maximal probability. Assume we are given a set X′ ⊆ X of instan-
tiated variables and let Y = X \X′. Then, a most probable state of the ground
Markov logic network is given by

argmax
y

k∑
i=1

wifi(Di).

Similar to previous work on matching ontologies with Markov logic[23,24], we
can specify a set of hard and soft constraints that improve the overall match-
ing results. Finding the most likely alignment then translates to computing the
maximum a-posteriori state of the ground Markov logic network.

Markov Logic Formulation of Process Matching. Let A1 and A2 be the
activities of two process models to be mapped, we describe each process model
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in terms of weak order relations wo1 : A1 ×A1 and wo2 : A2 ×A2. Furthermore,
the mapping hypotheses are represented by a mapping relation map : A1 ×A2.
In the Markov logic formulation, the relations wo1 and wo2 are modeled using
observable predicates, that is, predicates whose ground state is known a-priori
whereas the relation map is modeled using a hidden predicate. Hence, when an
optimal alignment between activities in the two models is computed, we model
the weak-order relations as observed predicates and the map relation as a hidden
predicate. For convenience, we also define the strict order and the exclusiveness
relation between activities of a process model as follows:

soi(ai, bi) ⇔ woi(ai, bi) ∧ ¬woi(bi, ai)
exi(ai, bi) ⇔ ¬woi(ai, bi) ∧ ¬woi(bi, ai)

Using these relations, we can simply represent the constraints as a set of first-
order formulas and add those to the Markov logic formulation. The knowledge
base consists of the output of the base matcher encoded in terms of weighted
atoms of the map relation acting as evidence plus two sets of atoms of the order
relations mentioned above as static knowledge. The final result of the matching
process is now computed by adding additional constraints and computing the a
posteriori probability of the map atoms. We experimented with different types of
constraints that have proven useful in the area of ontology matching and which
we adapted to the case of process matching.

Cardinality. It has been shown that restricting alignments to one-to-one
matches typically leads to better results in ontology matching. In particular,
because gold standard alignments in this area tend to be one-to-one. While this
is clearly not the case for process matching, as processes are often described at
different levels of granularity, the cardinality of the mapping relation is still an
important constraint to avoid a too strong bias towards an alignment with too
many erroneous matches. Therefore, we stick to a cardinality constraint encoded
using the formula with n = 1:

|{activitiy(a)|∃b : map(a, b)}| < n

Stability. Stability is a constraint expressing that the structural properties
of the matched objects should be as identical as possible [25]. In particular,
stability means that semantic relations that hold between two elements in one
representation should also hold between the two elements in the representation
they are mapped to. For process matching, we can define this notion of stability
for the three order relations mentioned above, namely the weak order, strict
order, and exclusiveness relation, by using the following implicitly universally
quantified formulas where ai, bi, i ∈ {1, 2}, are activities in process model i.

woi(ai, bi)∧¬woj(aj , bj) ⇒ ¬(map(a1, a2)∧map(b1, b2)) with i, j ∈ {1, 2}, i 
= j

soi(ai, bi) ∧ ¬soj(aj , bj) ⇒ ¬(map(a1, a2) ∧map(b1, b2)) with i, j ∈ {1, 2}, i 
= j
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exi(ai, bi) ∧ ¬exj(aj , bj) ⇒ ¬(map(a1, a2) ∧map(b1, b2)) with i, j ∈ {1, 2}, i 
= j

Note that these constraints do not need to be hard. Indeed, our empirical results
have shown that in the process matching setting, constraints should be soft,
making alignments that violate them possible but less likely.

Coherence. A weaker class of constraints are those that encourage logical co-
herence of the integrated model. More specifically, such constraints exclude con-
flicting combinations of semantic relations in the integrated model. In the case
of process matching, coherence criteria can be formulated using order relations.
The basic idea is that activities that are exclusive in one of the models should
not be in a weak order or a strict order relation in the other model.

soi(ai, bi) ∧ exj(aj , bj) ⇒ ¬(map(a1, a2) ∧map(b1, b2)) with i, j ∈ {1, 2}, i 
= j

Another form of incoherence results when the strict order relations of aligned
activities in the two models are inverted leading to a conceptual conflict in the
merged process model. The constraint making alignments that cause this kind
of incoherence less likely is sometimes referred to as ’criss-cross mappings’ in the
ontology matching setting and can be formalized as follows.

soi(ai, bi) ∧ soj(bj , aj) ⇒ ¬(map(a1, a2) ∧map(b1, b2)) with i, j ∈ {1, 2}, i 
= j

Note that coherence is a weaker than stability, not enforcing a semantic relation
to hold, but only excludes incompatible relations between mapped elements.

4 Evaluation

In this section we present an evaluation of the defined concepts. More specifi-
cally, Section 4.1 describes the sample of admission process models from different
German universities that we use to that end. Section 4.2 summarizes the results
for applying probabilistic match optimization using Markov logic networks. Sec-
tion 4.3 compares the results of our optimized semantic matching approach with
syntactic matching in ICoP. Furthermore, we discuss the results of the two ap-
proaches in terms of their strengths and weaknesses.

4.1 Study Admission Processes of Nine German Universities

Up until now, there is no commonly accepted sample available for testing process
model matching algorithms for process. Therefore, we created such a sample
based on modeling projects of graduate students from Humboldt-Universität zu
Berlin, Germany. These students participated in a research seminar on process
modeling in three different semesters. The task of this seminar was to document
the study admission process of a Germany university, and to compare the process
with those of other student groups. This exercise yielded nine admission process
models from different universities, which were created by different modelers using
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different terminology and capturing activities at different levels of granularity.
All processes were modeled in BPMN, while the formal analysis was conducted
on a corresponding Petri net representation. The minimum number of activities
in a process model is 10 ranging up to 44. On average, a process model has 21
activities in this sample.

The combination of those nine processes results in 9 ∗ 8/2 = 36 model pairs.
In order to build our test sample, we involved three researchers in building
the gold standard of the pairwise activity mappings. Matches were identified
by two researchers independently, and the third researcher resolved those cases
where different matches were proposed. We used the process models and the
gold standard as input of two matching tools. We used the existing ICoP pro-
totype for generating 1:1 matches, for short ICoP. For the approach presented
in this paper, we implemented a separate prototype that incorporated different
components for annotation [11], for constraint generation [18], TheBeast1 for
Markov logic networks [26], and the mixed integer programming solver Gurobi2

to solve integer linear programs derived from the Markov logic networks. For
short, we refer to this second prototype as Markov. Both of these matching pro-
totypes were utilized to automatically generate matches between activities for
each pair of process models. Those matches were compared with the matches
defined in the gold standard. Using the gold standard, we can classify each
proposed activity match as either true-positive (TP), true-negative (TN), false-
positive (FP) or false-negative (FN). These sets provide the basis for calculat-
ing the precision (TP/(TP+FP)) and recall (TP/(TP+FN)) metrics. We will
also report the F1 measure, which is the harmonic mean of precision and recall
(2∗precision∗recall/(precision+recall)).

4.2 Evaluation of Match Optimization

In this section, we investigate in how far the matching result benefits from the
stability and coherence constraints as incorporated in the Markov prototype.
To this end, we conducted experiments with different combinations of soft con-
straints each with a weight of 0.1. All experiments were conducted on a PC with
AMD Athlon Dual Core Processor 5400B with 2.6GHz and 1GB RAM. Our con-
jecture was that by the help of the constraints and the Markov logic network
optimization we would improve precision without compromising recall too much.
If so, the corresponding F1 value should increase. Our base case is a configura-
tion without any constraints, which yielded 0.079 precision, 0.572 recall, and an
F1 of 0.136.

Table 1 summarizes the findings. The initial introduction of a 1:1 match cardi-
nality constraint improves the results towards an F1 score of 0.27, with precision
and recall at roughly 0.28. We use this configuration to introduce the three types
of stability constraints. It can be seen that both types of order constraints im-
prove the match results, the F1 score rises to 0.315 and 0.316, respectively. Strict

1 http://code.google.com/p/thebeast/
2 http://www.gurobi.com/
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Table 1. Precision, Recall, F1 and processing time for different constraint types

configuration precision stddev. recall stddev. F1 stddev. avg. time [s]

no constraints 0.079 0.033 0.572 0.205 0.136 0.052 1.1

cardinality 1:1 0.278 0.172 0.280 0.228 0.270 0.193 1.3

1-1 cardinality with

weak order stability 0.421 0.217 0.263 0.170 0.315 0.182 109.2

strict order stability 0.354 0.216 0.304 0.236 0.316 0.216 41.5

exclusiveness stability 0.280 0.174 0.234 0.174 0.247 0.170 50.3

so-exclusiveness coherence 0.306 0.179 0.252 0.178 0.268 0.171 45.3

so-so coherence 0.342 0.195 0.317 0.226 0.318 0.197 16.7

Table 2. Precision, Recall, F1 and processing time for Markov and ICoP

prototype precision stddev. recall stddev. F1 stddev.

Markov (weak order stability) 0.421 0.217 0.263 0.170 0.315 0.182

ICoP 0.506 0.309 0.255 0.282 0.294 0.253

order coherence yields a comparable result. Exclusiveness-related stability and
coherence prove to be less effective. The F1 score is lower due to a loss in recall.

These results suggest that order relations appear to be helpful in finding
correct and ruling out incorrect matches. In comparison to the base case, the
results improve from 0.136 to 0.315 for weak order stability in terms of the F1

score. Compared to the case with only cardinality constraints (F1 = 0.27), weak
order stability yields a considerably better precision at the expense of a small loss
in recall. This points to the potential of order constraints to inform automatic
process matching.

4.3 Semantic versus Syntactic Matching

After having demonstrated the benefits of constraint optimization in the Markov
prototype, this section aims to investigate in how far its usage of semantic match
hypotheses advances beyond the syntactic match strategies of ICoP. We ap-
proach this question by considering the average precision, recall and F1 measure
for the admission process sample along with their standard deviation.

Table 2 provides the figures for comparing the Markov prototype and the
existing ICoP prototype. It can be seen that ICoP achieves a better precision,
but a weaker recall. However, the Markov prototype yields a better F1 measure of
0.315 in comparison to 0.294. It is interesting to note that the Markov prototype
achieves these results with a much lower standard deviation. The difference in
standard deviation ranges from 0.071 up to 0.112. We might see in this difference
an indication that the Markov prototype is more robust and less sensitive to
specific characteristics of the process pair to be matched.

In order to understand which characteristics might favour one or the other
approach, we plotted the F1 measure for both as shown in Figure 2. For 20 of
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Fig. 2. F1 measure of Markov and ICoP for the 36 match pairs, ordered by Markov
result

the 36 pairs Markov yielded better results, while ICoP was better in 16 cases.
There are a few pairs with substantial difference: In three cases ICoP is better
with a difference of more than 0.20, namely 0.234, 0.404, and 0.439. For four
pairs, Markov is better with a difference of 0.290, 0.300, 0.345 and 0.346. We
aim to illustrate the three classes of comparable results, better ICoP, and better
Markov results by the help of three characteristic process model pairs.

Comparable Results: If comparable results are observed for both approaches,
the resulting F1 values remain in the lower range. The pair FU Berlin and
TU Munich is one such example where Markov yields 0.20 and ICoP 0.25.
The FU Berlin process has 21 activities and is described on a more fine-
granular level than the TU Munich process with its 11 activities. There
are seven 1:1 matches between these models and three 1:n matches. Eight
activities of FU Berlin have no counterpart in the TU Munich process, and
one Munich activity has no match. Both approaches suffer from the fact
that both processes contain several activities that mention the same verb:
the FU Berlin process has two activities with to add (Add Certificate of
Bachelor Degree and Add Certificate of German language), four activities
involving to check and three send activities; the TU Munich process has four
send activities. ICoP provides one false-positive and eleven false-negatives;
Markov has five false-positive and eleven false-negatives.

Better ICoP: ICoP yielded significantly better results for the match pair
Cologne-Frankfurt (F1 of 0.76 in comparison to 0.33 by Markov). The Cologne
process has 10 activities, Frankfurt 12. There are six 1:1 matches and no 1:n
matches. Four and six activities on each side, respectively, have no match
partner. Five of these matches are syntactically equivalent, another being a
substring of its match (Acceptance and Send letter of Acceptance). While the
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Table 3. Explorative results on relative strengths of Markov and ICoP

Match Pair FU Berlin Cologne Hohenheim
TU Munich Frankfurt Erlangen

Better Approach Comparable ICoP Markov

Activities 21 10 25
11 12 30

1:1 Match 7 6 6

1:n Match 3 0 4

No Match 9 10 28

ICoP False-Positives 1 1 3
Markov False-Positive 5 4 3

ICoP False-Negatives 11 1 17
Markov False-Negatives 11 4 10

ICoP F1 0.25 0.77 0.17
Markov F1 0.20 0.33 0.52

good performance of ICoP is no surprise, it is interesting that the semantic
approach in Markov shows weak results. There are four false positive, which
are semantically very close, but no match for this model pair (e.g. Take
Aptitude Test and Take Oral Exam). As a consequence, the probabilistic
optimizer penalizes some syntactically equal and correct matches. Markov
could be improved by generating 100% confidence match hypotheses for syn-
tactically identical activities. It is interesting to note that also the second
case of superior performance of ICoP can be traced back to a great share of
syntactically identical matches.

Better Markov: The processes for Hohenheim and Erlangen are much better
matched by Markov than by ICoP. The two process models of this match pair
have 25 and 30 activities, respectively. There are six 1:1 matches, four 1:n
matches, and 28 activities without a match in the other model. While ICoP
yields a low F1 of 0.17, Markov achieves a respectable 0.52. ICoP only finds
three correct matches, all being syntactically closely related (e.g. Checking
if complete and Check Application Complete). It is interesting to find that
Markov substantially benefits both from semantic match pairs and constraint
optimization. Among others, the correct match publishing the letters and
send acceptance is added by the help of the weak order stability and its
semantic similarity. The weak order rule also helps to eliminate eight false
matches including Receiving the written applications and receive rejection.

Table 3 summarizes the exploratory results on relative strengths of Markov and
ICoP. The following three conclusions can be drawn from this evaluation, also
from further investigation of the data. First, both approaches benefit from an
increase in the number of 1:1 matches. The number of 1:1 matches is strongly
correlated with the F1 of both approaches for our sample with 0.646 and 0.637,
respectively. Second, ICoP suffers from an increase in the number of not matched
activities. We find a correlation of -0.143. Interestingly, there is no such corre-
lation for Markov. Examples like the Hohenheim-Erlangen case suggest that
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the optimizer works well in filtering out unjustified match hypotheses based on
weak order. Third, both approaches suffer from an increase in the number of 1:n
matches. Interestingly, the decrease is much stronger for ICoP with a correlation
of -0.461. For Markov, this correlation is only -0.166. Markov seems to benefit
from semantic similarity in hypothesis generation, which turns out to be a rem-
edy to some extent for representation on different levels of granularity. While
these advantages of semantic matching appear to be stronger for larger models,
there is the need to account for trivial matches that are syntactically the same.
Markov has lost some share of its performance by not directly accepting such
trivial matches. Nevertheless, it will be rather straight-forward to incorporate
such strategies.

5 Related Work

The work presented in this paper mainly relates to two categories of related
research, process model similarity and semantic matching.

Process model similarity techniques can be used to determine how similar two
business process models are, usually measured on a scale from 0 to 1. There exists
a variety of techniques that exploit textual information and the process model
structure [2,1] or execution semantics [3,6]. An overview of these techniques
is given in [1]. The relevance of process model similarity to process matching
is twofold. First, often similarity techniques start by determining similarity of
individual activities, which is clearly also of interest when determining matches.
Second, similarity techniques often produce a mapping between activities as a
byproduct of computing the similarity. The most important difference between
similarity and matching is that, when computing the similarity between process
models, a matching of lower quality is required than when the matching itself is
the goal. Consequently, the similarity techniques are less advanced when it comes
to determining matches. They mostly rely on simple (and fast) label comparison
rather than semantic techniques to determine similarity of activities and neglect
complex matches. There is one notable exception [9] that leverages synonyms
from WordNet [12]. Our fine grained interpretation of activity labels, however,
goes beyond the approach presented in [9].

Semantic matching has received considerable attention for schema and ontol-
ogy matching, see [27,28,29]. In essence, semantic matching refers to the identifi-
cation of relations (equivalence, more or less general, disjoint) between concepts,
i.e., interpretations of schema or ontology entities [30]. Most prominently, the
S-Match system [31] realized semantic matching by first interpreting labels and
entities, which yields a set of concepts, before establishing relations between
them. This approach heavily relies on external knowledge bases, such as Word-
Net [12]. Those are used to interpret single labels and derive concepts, but also
to determine the semantic relations between them. Our approach for process
model matching takes up these ideas: we interpret activity labels by extracting
actions and business objects, i.e., concepts, to generate match hypothesis.
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6 Conclusion

In this paper we presented a novel approach for automatic process model match-
ing in two steps. First, we generate match hypotheses based on automatically
annotated activity labels and leveraging a semantic interpretation of activity la-
bels. Second, we make use of match constraints derived from behavioral relations
of process models. These constraints are utilized for guiding the matching with
a probabilistic model. The evaluation of our approach with admission processes
from nine different universities shows that this novel conceptual basis indeed
improves performance. We demonstrated that match results are more stable
over different levels of process model heterogeneity. Moreover, our comparative
analysis revealed strengths and weaknesses of classical matchers and semantic
matching with probabilistic optimization.

This research provides valuable insights for advancing the field of process
model matching. In future work we plan to improve our approach based on
the identified weaknesses. This involves on the one hand a smooth integration
of syntactical and semantic match hypotheses. On the other hand, we aim to
experiment with further process-related constraints. For instance, we plan to
work with hierarchical 1:n matches, which are non-overlapping. Finally, there is
the potential to improve matching results based on domain ontologies or domain
corpora. They might help to increase the accuracy of the calculated hypotheses.
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Abstract. There are many use cases in business process management
that require the comparison of behavioral models. For instance, verify-
ing equivalence is the basis for assessing whether a technical workflow
correctly implements a business process, or whether a process realization
conforms to a reference process. This paper proposes an equivalence rela-
tion for models that describe behaviors based on the concurrency seman-
tics of net theory and for which an alignment relation has been defined.
This equivalence, called isotactics, preserves the level of concurrency of
aligned operations. Furthermore, we elaborate on the conditions under
which an alignment relation can be classified as an abstraction. Finally,
we show that alignment relations induced by structural refinements of
behavioral models are indeed behavioral abstractions.

1 Introduction

Behavioral models can serve different purposes: communicating ideas, simulat-
ing systems, or defining precise execution instructions. Tailoring a model for a
certain purpose leads to the existence of several “related” models of the same
original. Each model shall be appropriate for its purpose. In business process
management (BPM), behavioral models on the business level should, thus, con-
centrate on aspects that are important from a business perspective, while techni-
cal implementation aspects are disregarded. Technical models, in turn, need to
describe activities required for implementation, such as data mapping or error
handling.

Given a set of related models, it is often feasible to map semantically related,
or aligned, (groups of) modeling constructs across models. Fig. 1 shows two
aligned behavioral models captured using BPMN [1] language. Both models de-
scribe behaviors of performing “product at the market” research. Related groups
of tasks are enclosed in the areas denoted by dotted borders and connected by
dashed lines, e.g., task “Study product” in Fig. 1(a) is aligned with tasks “Select
product” and “Collect product info” in Fig. 1(b) by the semantical concept α.
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Fig. 1. Alignment of BPMN diagrams

There are many use cases in BPM that require the comparison of aligned
behavioral models. Verifying equivalence, for instance, is the basis for assessing
whether a technical workflow correctly implements a business process, or whether
a process realization conforms to a reference process [2]. Further, abstraction of
behavioral models, i.e., an alignment that implies information loss from one
model to another, plays an important role in managing model complexity [3].
Despite these observations, as of today, there is a lack of formal grounding for
verifying behavior equivalence without imposing any assumption on the struc-
ture of an alignment relation. Note that in general groups of aligned modeling
constructs may be of arbitrary size and can even overlap.

In this paper, we study models that describe behavior as a partially ordered,
usually infinite, set (poset) of events. Here, an event is a phenomenon located
at a single point in time [4]. For these models, we answer the question of how
to define an equivalence relation that preserves order and concurrency of event
occurrences without imposing any assumptions on the structure of the alignment.
To answer this question, we introduce the notion of isotactics, which allows for
comparing aligned behavioral models, very much like bisimulation [5,6] allows
the comparison of non-aligned models. Formally, isotactics is implemented using
the concept of a tactic, i.e., a poset of groups of events labeled with the same
semantical concepts of the alignment relation. As such, our contribution is a first
step toward a spectrum of equivalences for aligned behavioral models. Moreover,
we show that common structural abstraction techniques for behavioral mod-
els [7,8] indeed preserve our new equivalence notion; however, we also show that
isotactics makes the limitations of such structural approaches explicit. Note that
the alignment construction, i.e., the discovery of semantically related constructs,
is taken for granted; it can either be performed manually or automatically [9,10].

We proceed as follows: The next section presents preliminary notions. Sec-
tion 3 is devoted to the discussion of alignment of behavioral models, which
leads to the definition of isotactics. Then, Section 4 studies how this notion can
aid in explaining the abstraction relation between behavioral models. Section 5
elaborates on the application of proposed notions. Finally, we draw conclusions.
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2 Preliminaries

First, Section 2.1 discusses Petri nets – a formalism to which many languages
for modeling behavior can be traced back [11]. Section 2.2 talks about causal
nets – a way of representing concurrent runs of net systems.

2.1 Petri Nets

Petri nets are a well-known formalism for modeling behaviors.

Definition 1 (Petri net). A Petri net, or a net, N = (P,T,F ) has finite
disjoint sets P of places and T of transitions, and the flow relation F ⊆ (P ×
T ) ∪ (T ×P ).

For a node x ∈ P ∪T , ●x = {y ∣ (y, x) ∈ F} is the preset, and x● = {y ∣ (x, y) ∈ F}
is the postset of x. Min(N) is the set of places of N with empty preset, i.e.,
{p ∈ P ∣ ● p = ∅}. A node x ∈ P ∪ T is an input (output) of a node y ∈ P ∪ T , iff
x ∈ ●y (x ∈ y●). For X ⊆ P ∪T , let ●X = ⋃x∈X ●x and X● = ⋃x∈X x●. For a binary
relation R, we denote by R+ (R∗) the transitive (and reflexive) closure of R.

In the graphical notation, places are represented by circles, transitions by
rectangles, and flow relation by directed edges (see Fig. 2). Execution semantics
of Petri nets is based on states and state transitions and best perceived as a
“token game”. The state of a net is represented by a marking, which describes
a distribution of tokens on the net’s places. Whether a transition is enabled at
a marking depends on the tokens in its input places. An enabled transition can
occur, which leads to a new marking of the net.

To formalize semantics, we identify the flow relation F with its characteristic
function on the set (P × T ) ∪ (T × P ).

Definition 2 (Net semantics). Let N = (P,T,F ) be a net.
○ M ∶ P → N0 is a marking, or a state, of N assigning each place p ∈ P a
number M(p) of tokens in p; N0 denotes the set of all natural numbers
including zero. With [p], we denote the marking in which place p contains
just one token and all other places contain no tokens. We identify M with
the multiset containing M(p) copies of p for every p ∈ P .
○ For a transition t ∈ T and a marking M of N , t is enabled at M , written
M[t⟩, iff ∀p ∈ ●t ∶M(p) ≥ 1.
○ If t ∈ T is enabled at M , then t can occur, which leads to a new marking M ′

and the step M[t⟩M ′ of N with M ′
(p) =M(p) − F (p, t) +F (t, p), p ∈ P .

○ A net system, or a system, is a pair S = (N,M0), where M0 is a marking of
N . M0 is called the initial marking of N .
○ A sequence of transitions σ = t1 . . . tn, n ∈ N0, ti ∈ T , i ∈ 1 . . . n, of net system
S = (N,M0) is a firing sequence in S iff there exists a sequence of steps
(N,M0)[t1⟩(N,M1) . . . (N,Mn−1)[tn⟩(N,Mn) which leads from markingM0

to marking Mn via a (possibly empty) sequence of intermediate markings
M1 . . .Mn−1.
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Fig. 2. Net systems that correspond to the BPMN diagrams in Fig. 1

○ For any two markings M and M ′ of N , M ′ is reachable from M , denoted by
M ′
∈ [N,M⟩ iff there exists a run of N , i.e., there exists a firing sequence σ

leading from M to M ′.

In the following, we shall refer to the natural marking of a net N ; the natural
marking puts one token at every place from the set Min(N) and no tokens
elsewhere. In the graphical notation, it is accepted that tokens are drawn as black
dots inside places. Fig. 2 shows two net systems (in natural initial markings);
the systems correspond to the BPMN diagrams in Fig. 1. Transitions which
correspond to tasks in BPMN diagrams are drawn as rectangles with labels
inside; the labels are the short-names of tasks which appear next to each task in
Fig. 1.

2.2 Causal Nets and Processes

In this section, we present causal nets [4,12] and discuss how they can be used
to capture processes, or concurrent runs, of net systems. Causal nets provide the
foundation for general net theory [13].

Definition 3 (Causal net). A net N = (B,E,G) is a causal net, iff :
○ for each b ∈ B holds ∣ ● b∣ ≤ 1 and ∣b ● ∣ ≤ 1, and
○ N is acyclic, i.e., G+ is irreflexive.

Elements of E are called events and elements of B are called conditions. The
events of causal nets are usually used to describe occurrences of “atomic events”,
e.g., occurrences of transitions of a net system. An occurrence of an event e is
associated with a state in which all its preconditions (●e) hold, and the effect of
its occurrence is that all its preconditions cease to hold, and all its postconditions
(e●) begin to hold [4]. Given a causal net N = (B,E,G), the concurrency relation
of N is defined by ∣∣N = ((B∪E)×(B∪E))∖(G

+
∪(G+)−1) (we omit the subscript
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if the context is clear). Note that ∣∣N is symmetric and reflexive. Moreover, every
two nodes of a causal net are either in the concurrency or in the (inverse) causal
relation, where nodes x and y are causal if and only if xG+y. The causal relation
specifies a dependency between events of a causal net, such that if e1G

+e2, where
e1, e2 ∈ E, then in the net system composed of the causal net and its natural
initial marking, e2 cannot occur without e1 having priorly occurred.

A process of a net system is a causal net together with a mapping which allows
interpreting the net as a concurrent run of the net system1. Prior to proceeding
with defining the notion of a process, we present the notion of a cut. A cut of a
causal net is the maximal co-set with respect to set inclusion, where a co-set is
a set of pairwise concurrent conditions. A process is then defined as follows.

Definition 4 (Process). A process π = (Nπ, ρ) of a net system S = (N,M0),
N = (P,T,F ), has a causal net Nπ = (B,E,G) and a function ρ ∶ B ∪E → P ∪T :
○ ρ(B) ⊆ P, ρ(E) ⊆ T (ρ preserves the nature of nodes),
○ Min(Nπ) is a cut, which corresponds to the initial marking M0, that is
∀ p ∈ P ∶M0(p) = ∣ρ

−1
(p) ∩Min(Nπ)∣ (π starts at M0), and

○ ∀ e ∈ E ∀ p ∈ P ∶ (F (p, ρ(e)) = ∣ρ−1(p) ∩ ●e∣) ∧ (F (ρ(e), p) = ∣ρ−1(p) ∩ e ● ∣)
(ρ respects the environment of transitions).

We refer to S as the originative system of π. A process π of S is initial, iff E = ∅.

Given a run of a net system, one can construct a unique process induced by
the run (observe that the inverse does not hold). The starting point of the
construction is a causal net composed of conditions that correspond to places
from the initial marking of the net system and no events. The construction
proceeds by stepwise appending events to the causal net. Each appended event
corresponds to a transition in the run. Events are appended in the order in
which corresponding transitions appear in the run. Each fresh event e which
gets appended to the causal net and has corresponding transition t is appended
together with output conditions, which must correspond to output places of t.
Note that input conditions of e, which must correspond to input places of t, must
be chosen from the conditions of the causal net with empty postsets.

Every process of a net system describes a family of runs together with in-
formation on concurrent nodes that participate in the runs. Processes of a net
system can be in a prefix relation. Process π′ is an extension of process π if
during construction of π′, induced by some run of the system, it is possible to
observe π. Consequently, process π is a prefix of π′.

Definition 5 (Prefix of a process). Let π = (Nπ, ρ), Nπ = (B,E,G), be a
process of a net system. Let c be a cut of Nπ and let c↓ denote the set of nodes
{x ∈ B ∪ E ∣ ∃ y ∈ c ∶ (x, y) ∈ G∗}. A process πc is a prefix of π up to (and
including) c, iff πc = ((B ∩ c

↓,E ∩ c↓,G ∩ (c↓ × c↓)), ρ∣c↓).

Fig. 3 shows two processes of the net system in Fig. 2(b), the process in Fig. 3(a)
being a prefix of the one in Fig. 3(b). Here, event ex corresponds to transition
tx of the originative system, i.e., ρ(ex) = tx (for each event ex), and condition

1 Not to be confused with a business process or a process model.
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Fig. 3. Processes of the net system in Fig. 2(b)

cy corresponds to place py of the originative system, i.e., ρ(cy) = py (for each
condition cy). Conditions c

′

3 and c′6 in Fig. 3(b) correspond to places p3 and p6
of the originative system, and represent second occurrences of respective places
in the process. Both systems in Fig. 3 induce infinitely many processes.

3 Alignment

Alignment can be seen as the generic setting in which two models can be com-
pared. We first reflect on the alignment of conceptual models in general in Sec-
tion 3.1. Then, Section 3.2 turns the focus to net systems. Section 3.3 proposes
the notion of isotactics to decide whether two aligned net systems show equiva-
lent behaviors.

3.1 Alignment of Conceptual Models

The alignment of conceptual models has its roots in the field of data integra-
tion [14,15]. Despite terminological differences even in this field, cf., [16], a com-
mon interpretation defines an alignment as an association between semantically
related entities of different models, e.g., between attributes of data schemas.

Following [15], an alignment consists of a set of correspondences between two
models. Each correspondence relates two sets of entities of both models to each
other. If both those sets are singletons, we speak of an elementary correspondence.
Otherwise, the correspondence is called 1:n or n:m complex. The identification
of correspondences, i.e., the construction of an alignment, is called matching.

A correspondence associates entities with each other, but does not define the
semantics of this relation. Semantics is defined by extending an alignment to-
ward a mapping comprising mapping expressions. Those are directed and define
how the instances of entities of one model are transformed into instances of en-
tities of another model. Consider a 2:1 complex correspondence between integer
attributes of data schemas. A mapping expression may define the sum of two
values from one schema as equivalent to a single value in the other schema.

Alignments and mappings of conceptual models may be checked for validity
using a variety of properties. In the field of data integration, for instance, sat-
isfiability and losslessness have been investigated [17]. The former holds for a
mapping between two schemas if there is a pair of instances of either schema,
i.e., a pair of data value tuples, that satisfies the constraints of the mapping.
Losslessness relates to the result set that may be queried. If a mapping is loss-
less, all instances returned by a query on one schema have a counterpart in the
other schema that is derived by the mapping.
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3.2 Alignment of Behavioral Models

The notion of an alignment discussed for conceptual models in general can di-
rectly be applied to behavioral models, e.g., Petri net systems. Correspondences
are then defined between sets of semantically related activities, i.e., transitions
of different net systems. Formally, we capture such an alignment as follows.

Definition 6 (Alignment of net systems)
Let S1 = (N1,M1), N1 = (P1, T1, F1), and S2 = (N2,M2), N2 = (P2, T2, F2), be
net systems. A set � ⊆ P≥1(T1) × P≥1(T2) is called an alignment of S1 and S2.

2

Given an alignment �, we denote by dom� and cod� the domain and codomain
of �, respectively. Recently, approaches for identifying correspondences between
behavioral models have been presented [9,10]. Even though fully automatic iden-
tification of correspondences is hard to achieve, these works provide support for
constructing an alignment in a semi-automated manner.

Again, correspondences between behavioral models capture only the related-
ness, not the exact semantics in the sense of a mapping. That is, corresponding
activities may not relate to the same real-world activities. For the models in
Fig. 1, for instance, “Study product” may involve more than “Select product”
and “Collect product info”. Nevertheless, the activities are semantically related
and are considered to be equivalent for any analysis of the alignment. For a com-
plex correspondence, sets of activities are considered to be equivalent. As such,
analysis of an alignment is founded on these sets instead of single activities.

Before, we discussed properties of alignments in the field of data integration,
i.e., satisfiability and losslessness. These properties may be translated into the
domain of behavioral models. Satisfiability then requires the existence of a single
process that is possible in two net systems after the corresponding transitions
have been resolved. Apparently, this is a rather weak requirement. Drawing the
analogy to behavioral models for losslessness yields a stricter criterion. It requires
that the characteristics of all processes of one net system are preserved in the
processes of the other net system once the correspondences have been resolved.

3.3 Isotactics of Aligned Behavioral Models

To decide if two net systems show equivalent behaviors under a given alignment,
we rely on a comparison of their processes. Therefore, we first need to clarify how
a single process is interpreted once we consider not only single events, but groups
thereof as being semantically related. Given a process of a net system and subsets
of its transitions, a set abstraction of the process captures its interpretation by
relating to all events that represent occurrences of transitions from the subsets.

Definition 7 (Process set abstraction)
Let S = (N,M0), N = (P,T,F ), be a net system, π = (Nπ, ρ), Nπ = (B,E,G), be
a process of S, and κ ⊆ P≥1(T ). The set abstraction of π with respect to κ, denoted
by ακ(π) = (H,≺, ξ), is defined by the set of eventsH = {e ∈ E ∣ ∃ k ∈ κ ∶ ρ(e) ∈ k},

2
P≥1(S) denotes the set of all non-empty subsets of a set S, including S itself.
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Fig. 4. (a) A process of the net system in Fig. 2(a), (b) the set abstraction of the
process in (a), and (c) the set abstraction of the process in Fig. 3(b)

the relation ≺, which is the restriction of the causal relation of Nπ to H , and the
function ξ ∶H → P≥1(κ) such that ξ(e) = {k ∈ κ ∣ ρ(e) ∈ k}, e ∈H .

Fig. 4(b) and Fig. 4(c) show set abstractions of the processes in Fig. 4(a) and
Fig. 3(b), respectively. In both abstractions, we use the sets of transitions induced
by the alignment depicted in Fig. 1 as κ. In the figures, boxes represent events
whose corresponding transitions belong to at least one set in κ, i.e., they are
visible with respect to κ; note that other events are considered to be silent for
the purpose of alignment. Edges encode causal relations between events, e.g.,
e2 ≺ e5 and e3 ≺ e5 in Fig. 4(b). Finally, every event e ∈ H gets labeled with a
subset of κ; the subset is composed of elements of κ which contain the transition
that corresponds to e, e.g., event e5 in Fig. 4(b) corresponds to transition t5
in Fig. 2(a), which is induced by task “Perform initial analysis” in Fig. 1 that
participates in β and γ correspondences of the alignment. Essentially, a process
set abstraction is an elementary event structure [4] composed of events that are
visible as much as the alignment is concerned. In [4], the authors accept the
equality of elementary event structures as an appropriate equivalence notion
for causal nets; the claim is supported by proposing translations between both
notations. We agree with this line of argument and accept two processes as
equivalent if and only if their set abstractions are isomorphic, i.e., if and only if
one can define a causality-preserving bijection between events.

As a next step, we relate process set abstractions to an alignment between
net systems, that is, we decide whether an alignment between set abstractions
of two processes of the net systems can be deduced from the given alignment
between their transitions. This is the case if events in both set abstractions can
be partitioned such that one can define a bijection relation between the partitions
for which any two events taken from one abstraction and different parts of the
partition, and any two events taken from the related parts of the partition of
the other abstraction, are causally related in a similar way3.

We refer to the partitions of events in set abstractions (see the discussion
above) as process tactics. Let (Hi,≺i, ξi) be a process set abstraction and let
h1 ⊆Hi and h2 ⊆Hi be non-empty disjoint sets of events, then h1 and h2 are in
causal relation, written h1 ≺i h2, iff for every pair (e1, e2) ∈ h1×h2 holds e1 ≺i e2;
note that in the following we shall omit subscript i where the context is clear.

3 A partition of a set is a collection of disjoint subsets of the set whose union is the
set.
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Definition 8 (Process tactic). Let α = (H,≺, ξ) be the set abstraction of
process π w.r.t. κ. A partition H of H is a tactic of α w.r.t κ iff :
○ for every part h ∈ H there exists k ∈ κ such that for every event e ∈ h holds
k ∈ ξ(e), i.e., ∀ h ∈ H ∃ k ∈ κ ∀ e ∈ h ∶ k ∈ ξ(e) (H respects κ), and
○ for every two parts h1, h2 ∈ H, h1 ≠ h2, holds either h1 ≺ h2, or h2 ≺ h1, or
for each (e1, e2) ∈ h1 × h2 holds (e1, e2), (e2, e1) ∉ ≺ (H respects causality).

Every part of a tactic describes a complex event which stands for an occurrence
of at least one and usually several semantically (by alignment) related transitions
of the net system. A tactic, therefore, can be seen as a poset of complex events.
Every set abstraction of a process has a trivial tactic, i.e., a tactic in which each
of its parts is a singleton. Usually, a process set abstraction can be characterized
by several tactics. Finally, aligned process set abstractions are defined as follows.

Definition 9 (Aligned process set abstractions)
Let π1 and π2 be processes of net systems S1 and S2, respectively. Let � be an
alignment of S1 and S2. Process set abstractions αdom�(π1) = (H1,≺1, ξ1) and
αcod�(π2) = (H2,≺2, ξ2) are aligned with respect to �, denoted by αdom�(π1) �

αcod�(π2), iff there exist tactics H1 and H2 of π1 and π2, respectively, and a
bijection χ ∶ H1 → H2 such that: (i) for every χ(h1) = h2, h1 ∈ H1, there exists
(x, y) ∈ � such that ∀e ∈ h1 ∶ x ∈ ξ1(e) and ∀e ∈ h2 ∶ y ∈ ξ2(e) (χ respects
alignment), and (ii) ∀u, v ∈ H1 ∶ u ≺1 v⇔ χ(u) ≺2 χ(v) (χ respects causality).

We refer to χ as the alignment between tactics of process set abstractions. We say
that processes are aligned if their abstractions are aligned. Apparently, the two
set abstractions in Fig. 4(b) and Fig. 4(c) are not equivalent in the sense of [4], i.e.,
there exists no causality-preserving bijection between event sets. Nevertheless,
one can rely on tactics to compare these set abstractions. Fig. 5 shows aligned
process set abstractions from Fig. 4(b) and Fig. 4(c). In the figure, areas denoted
by dotted borders with grey backgrounds define tactics (those which participate
in the alignment). The dashed lines depict a bijection relation between the tactics
and are labeled with semantical correspondences of the alignment from Fig. 1.
Observe that the part {e5, e7} of the tactic on the left can also be related to
the part {e8} of the tactic on the right by using correspondence β; however, the
existence of a correspondence is sufficient to decide for alignment.

Having defined the alignment of processes, we are able to define when the
behavior of one net system can be mirrored by another net system under a given
alignment. A system covers the tactic of another system if every process of the
former system has a corresponding process in the latter system which mimics
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the behavior once abstractions have been applied. Formally, we capture this by
a set that comprises pairs of aligned processes from both systems and require
that the set is closed under process extensions. Note that the style of the next
definition is inspired by the definitions of concurrent bisimulations in [18].

Definition 10 (Tactic coverage)
Let � be an alignment of net systems S1 and S2. S2 covers the tactic of S1 with
respect to �, denoted by S1 ⩿� S2, iff there exists a set I ⊆ {(π1, π2)} such that:
(i) π1 is a process of S1 and π2 is a process of S2.
(ii) If π1

0 and π2
0 are the initial processes of S1 and S2, respectively, (π

1
0 , π

2
0) ∈ I.

(iii) If (π1, π2) ∈ I, then αdom�(π1) � αcod�(π2) holds.
(iv) For each (π1, π2) ∈ I holds that if π′1 is an extension of π1 then there exists
(π′1, π

′

2) ∈ I where π′2 is an extension of π2.
(v) For each (π1, π2) ∈ I holds that if π′1 is an extension of π1 then for each π′2

extension of π2 such that αdom�(π
′

1) � αcod�(π
′

2) holds (π
′

1, π
′

2) ∈ I.

We shall denote with I� the set of process pairs used to decide S1 ⩿� S2. If each
of two aligned net systems covers the tactic of the other one with respect to the
alignment, we refer to the systems as isotactic with respect to the alignment.

Definition 11 (Isotactic net systems)
Let � be an alignment of net systems S1 and S2. S1 and S2 have equal tactics, or
are isotactic, with respect to �, denoted by S1 ≑� S2, iff S1 ⩿� S2 and S2 ⩿�−1 S1.

One can check that systems from Fig. 2 are isotactic with respect to the align-
ment proposed in Fig. 1. In net systems which are isotactic with respect to an
alignment relation, it holds that for every process that one can observe in one
net system one can also observe a process in the other net system so that the set
abstractions of these processes with respect to the domain and the codomain of
the alignment relation, respectively, are aligned (and vice versa). Intuitively, an
alignment of process set abstractions denotes the equivalence of the processes
with respect to complex events induced by the alignment and must be closed
under process extensions. Consequently, isotactics preserves the order of occur-
rence for groups of transitions of net systems that are related by the alignment
relation, as well as concurrent enabling of transitions in these groups. To define
these properties, we need a relation to capture concurrent enabling of transitions
in a net system (not to be confused with the concurrency relation for causal nets).
For a net system S = (N,M), N = (P,T,F ), the transition concurrency relation
of S, denoted by ∣∣S , contains all pairs of transitions (t1, t2) ∈ T × T for which
there exists a marking M ′

∈ [N,M⟩, such that ●t1 ⊎ ●t2 ⊆M
′.

Theorem 1. Let S1 = (N1,M1) and S2 = (N2,M2) be net systems and � be an
alignment of S1 and S2, s.t. S1 ⩿� S2 holds. Let α▹, β▹ ∈ dom� and let t1α ∈ α▹ and
t1β ∈ β▹ be transitions of N1 s.t. t

1
α ∉ β▹, t

1
β ∉ α▹, and for every γ▹ ∈ dom�∖{α▹, β▹}

holds {t1α, t
1
β} ∩ γ▹ = ∅. Then, the following properties hold:

(1) If there exists a firing sequence σ1 = t
1
1 . . . t

1
α . . . t

1
β in S1, then there exists a

firing sequence σ2 = t
2
1 . . . t

2
α . . . t2β in S2 s.t. there is α◃, β◃ ∈ cod� for which

holds (α▹, α◃), (β▹, β◃) ∈ �, t
2
α ∈ α◃, and t2β ∈ β◃.



Isotactics for Alignment and Abstraction of Behavioral Models 345

(2) If t1α ∣∣S1t
1
β, then there exist transitions t2α, t

2
β of N2 s.t. t2α ∣∣S2t

2
β and there is

α◃, β◃ ∈ cod� for which holds (α▹, α◃), (β▹, β◃) ∈ �, t
2
α ∈ α◃, and t2β ∈ β◃.

Proof. Let π1 = (Nπ1 , ρ1), Nπ1 = (B1,E1,G1), be a process of S1 such that
e1α, e

1
β ∈ E1, where ρ1(e

1
α) = t

1
α and ρ1(e

1
β) = t

1
β, and: (1) ρ1 is a bijection between

events in E1 and transitions in σ1, (2) e
1
α ∣∣Nπ1

e1β. Since S1 ⩿� S2, there is a pro-
cess π2 = (Nπ2 , ρ2), Nπ2 = (B2,E2,G2), of S2, such that αdom�(π1) � αcod�(π2)

with set abstractions αdom�(π1) = (H1,≺1, ξ1) and αcod�(π2) = (H2,≺2, ξ2). More-
over, there exist tactics H1 and H2 of events in αdom�(π1) and αcod�(π2), respec-
tively, and a bijection χ ∶ H1 → H2 which respects alignment and causality, cf.,
Definition 9. Let h1

α, h
1
β ∈ H1 be such that e1α ∈ h

1
α and e1β ∈ h

1
β. Let h

2
α, h

2
β ∈ H2

be such that χ(h1
α) = h

2
α and χ(h1

β) = h
2
β. Let e2α ∈ h

2
α and e2β ∈ h

2
β be events of

H2. It holds that h
1
α ≠ h

1
β due to the fact that χ preserves alignment and there

exists no δ▹ ∈ dom� that contains t1α and t1β , i.e., ∄ δ▹ ∈ dom� ∶ {t
1
α, t

1
β} ⊆ δ▹.

(1) It holds that either e1α G+1 e1β or e1α ∣∣Nπ1
e1β. Since h1

α ≠ h
1
β and χ preserves

causality, it holds that either e2α G+2 e2β or e2α ∣∣Nπ2
e2β. Hence, there is a firing

sequence in S2 in which transition ρ2(e
2
α) fires before transition ρ2(e

2
β).

(2) Since h1
α ≠ h

1
β and χ preserves causality, it holds that e2α ∣∣Nπ2

e2β. Hence, it

holds that ρ2(e
2
α) ∣∣S2ρ2(e

2
β). ◽

Based on Theorem 1, we say that isotactics is (1) order preserving and (2)
concurrency preserving. For instance, the order of t3 and t13 and the concurrency
of t2 and t3 from the system in Fig. 2(a) is preserved in the system in Fig. 2(b).

4 Abstraction

Abstraction can be seen as a special case of alignment if certain properties are
satisfied. Next, we elaborate on these properties and define abstraction using the
notion of tactic coverage. Again, we first reflect on the abstraction of conceptual
models in Section 4.1 before we turn the focus to behavioral models in Section 4.2.

4.1 Abstraction of Conceptual Models

Abstraction is at the core of model creation, which comprises the mapping and
reducing the entities of a problem domain for a certain purpose [19]. Abstraction
is not limited to the process of creating a model for an (existing or non-existing)
real world entity, though. The abstracted original may be a model as well. En-
tities of one model are then mapped to a more abstract model representing
a reduced representation of the former. Abstraction of a model, thus, yields a
second model that is aligned with the original model.

Abstraction of conceptual models relies on two elementary operations, aggrega-
tion and elimination. Aggregation refers to grouping entities that are semantically
related. They have a joint representation in the abstract model. As such, aggre-
gation leads to complex correspondences between the original model and the ab-
stract model. Elimination, in turn, refers to the act of omitting entities. Certain
entities of a model may be without counterpart in the abstract model. Eliminated
entities are not part of any correspondence between the original model and the
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abstractmodel. Along these lines, abstraction of conceptualmodels is, for instance,
the basis of the superclass concept in object oriented modeling.

Against this background, one may decide whether two conceptual models are
related by abstraction based on an alignment between them. That is the case if
one model can be derived from the other model by eliminating all entities that
are not part of any correspondence and by aggregating the remaining entities
according to the correspondences of the alignment. Since information loss is the
desired outcome of abstraction, aggregation must not increase the number of
entities represented in the model.

Note that the notion of specialization can be seen as the reverse operation for
abstraction. Specialization relies on extension and refinement, the former being
the reverse of elimination, the latter being the reverse of aggregation.

4.2 Abstraction of Behavioral Models

As for conceptual models in general, abstraction of behavioral models relies on
the aggregation and elimination of model entities. In net systems, these entities
are interpreted as poset of events, i.e., process runs. Thus, the abstraction of
behavior is the abstraction of processes that may be eliminated or aggregated.

Consider two net systems and an alignment between them. To determine
whether both models are related by abstraction, we check whether all differ-
ences in their processes are caused by elimination and aggregation from one
system to the other. Elimination of a process means that a process of one sys-
tem must have a corresponding process with the same tactic in the other system,
but the reverse is not required to hold. Further, the notion of aligned process
set abstractions, cf., Definition 9, enables us to consider the aggregation of pro-
cesses. In fact, the partitioning of process set abstractions allows the definition
of different aggregations. Since we require the existence of matching tactics, we
actually require the existence of some valid aggregation operation.

Definition 12 (Abstraction of net systems)
Let S1 and S2 be net systems. An alignment � of S1 and S2 is an abstraction
iff S1 ⩿� S2 and the aggregation predicate agg

�
holds. S1 is called an abstract

version of S2 with respect to abstraction �.
○ We refer to � as meta abstraction if agg

�
holds when ∀(x, y) ∈ � ∶ ∣x∣ ≤ ∣y∣.

○ We refer to � as instance abstraction if agg
�
holds when for every (π1, π2) ∈

I� there exists an alignment χ between some tactics of process set abstrac-
tions of π1 and π2 such that for all (x, y) ∈ χ holds ∣x∣ ≤ ∣y∣.

In Definition 12, elimination is captured by the concept of tactic coverage, i.e.,
an original net system describes all, and usually more, tactics than its abstract
version. We propose to parameterize the abstraction notion by using different
aggregation predicates. The role of an abstraction predicate is to define the se-
mantics of the aggregation operation. Intuitively, it must reflect the aggregation
of process related information. In this paper, we offer two aggregation predicates.
The meta abstraction relies on the aggregation of sets of aligned transitions in
net systems. In this case, one can argue that an original net system uses model-
ing constructs of higher granularity than its abstract version [20]. Alternatively,
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the instance abstraction ensures that set abstractions of processes taken from
the set of pairs used to decide on tactic coverage – the elimination feature of ab-
straction – can be aligned in such a way that the aligned parts show the decrease
in behavioral information, i.e., the sizes of parts decrease in size. The instance
abstraction, therefore, ensures aggregation on the instance level. We foresee that
new aggregation predicates will evolve to complement the above two.

5 Application of Isotactics

This section elaborates on the application of isotactics. In particular, we focus
on existing techniques for implementing the abstraction of behavioral models
with a structural approach. These techniques implement transformations that
are defined structurally, but motivated by behavioral characteristics. It is of-
ten assumed that abstraction operations should be order preserving, see [7,8].
However, there has been a lack of a precise definition of what constitutes order
preservation in a general setting, i.e., without imposing any assumptions on the
relation between activities of the original model and its abstract version. Based
on isotactics, we provided such a definition, cf., Theorem 1. We see that com-
mon approaches to structural abstraction respect the presented abstraction no-
tion. However, we also show that those structural approaches are limited in their
expressiveness. There exist behavioral models that show an order preserving ab-
straction based on isotactics, but they cannot be derived from each other using
the existing structural techniques. For instance, the triconnected abstraction of
behavioral models is based on fragments obtained by applying the triconnected
decomposition of a graph derived from the model [8]. These fragments are single-
entry-single-exit (SESE) and form a containment hierarchy, which is leveraged
for abstraction. In an abstraction step, the smallest (in the number of edges)
SESE fragment that contains all irrelevant constructs (for the purpose of the
model) gets replaced with a fresh activity. The latter represents the whole SESE
fragment of a given detailed model in its abstract version.

The intuition behind the triconnected abstraction can be transferred to net
systems. For a net N = (P,T,F ), a SESE fragment is given as a subnet

(a)

u v

v
u

u v

v
u

u v
tabs

u
tabs

tabs
v

tabs

(b)

u

v

tabs

SESE
u

v

Fig. 6. SESE abstraction of net systems

N ′ = (P ′, T ′, F ′) with P ′ ⊆ P , T ′ ⊆ T ,
and F ′ = F ∩((P ′×T ′)∪(T ′×P ′)). In
case of a special class of net systems,
called WF-systems [21], one can effi-
ciently compute all SESE subnets of
a given WF-system by using the tech-
nique described in [22]. Finally, a (tri-
connected) SESE abstraction step is
realized by replacing a SESE subnet of
a net system with a single transition;
note that we require that no place of
the subnet contains a token.

Fig. 6 explains the SESE abstrac-
tion. Fig. 6(a) shows the general idea.
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Fig. 7. Abstraction of BPMN diagrams: (a) original and (b) its abstract version

Here, a SESE subnet of the original net system with entry u and exit v (top) gets
replaced by transition tabs in its abstract version (bottom). Depending on types
of entry and exit nodes, we distinguish four abstraction operations, see Fig. 6(b).
Every SESE abstraction operation induces an alignment relation between the
original and the abstraction result; the set of transitions of the SESE fragment
can be put into a correspondence with the abstract transition tabs , whereas all
other transitions are related by elementary correspondence with their copies in
the resulting net system. Intuitively, the obtained alignment reflects some behav-
ioral relation between the systems. Formally, this relation can be characterized
using abstraction as introduced in Section 4.2.

Indeed, two net systems S1 and S2, where S1 is safe and live [23] and S2 is
obtained from S1 by means of a SESE abstraction operation, are in the meta
abstraction relation as well as in the instance abstraction relation. A formal
proof of this statement is beyond the scope of this paper. Nevertheless, one
can trivially conclude that for every process of the original net system which
contains events that represent transitions from the SESE subnet, there exists
a process in the abstract net system which contains an event which represents
an abstract transition tabs such that set abstractions of these processes can be
aligned. Safeness, liveness, as well as the absence of tokens at places of the SESE
subnets, are required to ensure that the occurrence of transitions in the subnet
has the same effect for the surrounding net as firing the abstract transition.

Besides the possibility to characterize the behavioral relation between net
systems derived from each other by structural transformations, isotactics also
makes the limitations of these techniques explicit. Consider two aligned models
in Fig. 7. Fig. 7(a) shows the original model, whereas Fig. 7(b) proposes its
abstract version. Both models show meta abstraction and instance abstraction.
Apparently, the model in Fig. 7(b) cannot be derived from the original by means
of SESE abstraction operations. The smallest SESE fragment which contains any
subset of at least two tasks of the model in Fig. 7(a) is the fragment with entry u
and exit v, which would imply the aggregation of the whole model into a single
task; note that at least two tasks are required to trigger a SESE abstraction
operation leading to a structural change in the abstract model. Nevertheless,
the model in Fig. 7(a) covers the tactic of the model in Fig. 7(b) and satisfies
aggregation predicates; both on the level of alignment of tasks and on the level
of aligned tactics employed to decide on tactic coverage.
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6 Related Work

Sequential equivalences have been classified in the linear-time branching-time
spectrum by the seminal work of van Glabbeek, for concrete behavioral mod-
els [24] and for those with silent steps [25]. Bisimulation [26], which requires
the ability of two models to simulate each other, is commonly seen as the upper
bound of this spectrum. It was advocated that equivalences of this spectrum shall
be applied for comparing behavioral models in BPM [27]. Several of the afore-
mentioned equivalences can be lifted to non-sequential models as investigated in
this paper. Isotactics is particularly inspired by notions of concurrent bisimula-
tion as defined in [18]. A survey of equivalences for net systems under sequential
and non-sequential semantics can be found in [28]. All those equivalences have
in common that they assume models to be defined on the same level of granular-
ity. As such, they are applicable only if an alignment is functional and injective,
i.e., built of non-overlapping 1:1 correspondences. There have been only a few at-
tempts to lift equivalences to a more general setting. In [29], trace partitioning is
proposed to decide trace equivalence for non-overlapping complex n:m correspon-
dences. A similar idea was followed for the comparison of state transition systems
under non-overlapping complex correspondences between transitions [30]. We go
beyond these results by grounding isotactics on concurrency semantics, thus pre-
serving the level of concurrency. Also, our notion is more generic than those
presented in [29,30], since it is applicable for overlapping correspondences.

The question of how to cope with elements of behavioral models that are
not part of any correspondence has been addressed by behavior inheritance [31].
It proposes to rely on hiding (assign a silent label to transitions) and blocking
(remove transitions) before bisimulation is assessed. This way, many use cases
for the comparison of business process models can be addressed by verifying
standard equivalences, cf., [2]. This work is orthogonal to the question of complex
correspondences. Hiding and blocking may be applied before isotactics is verified.

Behavioral abstraction and refinement techniques typically aim at preserv-
ing behavioral properties, but are defined on the structural level. Behavioral
abstraction was approached, e.g., with predefined patterns [32] and structural
decomposition [8]. There also exist different sets of reduction rules for Petri
nets [33,34]. For the reverse operation, different refinement operators have been
proposed [35]. Such refinements replace a transition or place with a subnet that
is embedded into the original net [23]. The notion of isotactics is not limited
to hierarchical abstraction and refinement as implemented by structural tech-
niques. It makes the limitations of structural transformations explicit and opens
the space for transformations that are directly grounded in the behavior.

7 Conclusion

We proposed the notion of isotactics – an equivalence relation for behavioral
models that are based on concurrency semantics and for which an alignment
relation has been defined. With respect to existing equivalence notions, isotac-
tics stands out for two reasons: First, it does not impose any assumptions on
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the alignment relation. Second, it preserves the level of concurrency of aligned
transitions, whereas existing work focuses on sequential semantics.

Given its broad applicability, isotactics can be used to solve a variety of issues
in BPM. For instance, when a technical process model is changed, one can deter-
mine whether the modified model is still isotactic to a respective business-level
model. If this is not the case, changes may be implemented accordingly. In many
cases, however, both models will still be isotactic, so that no modifications will
be required. In this way, isotactics can support consistent model evolution and
improve the quality of the process landscape. The proposed characterization of
abstraction defines a space for novel abstraction techniques. We showed that
structural transformations for behavioral abstraction are limited. The notion of
isotactics-based abstraction, thus, provides the foundation for techniques that
are directly grounded in the behavior.

Isotactics, as proposed in this work, is the first step toward a spectrum of
equivalences. Exploring this spectrum, e.g., by taking the branching structure
into account, along with results on the computational complexity of deciding
isotactics, are further directions for future work.
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