
From UML to OWL2

Jesper Zedlitz1, Jan Jörke2, and Norbert Luttenberger2

1 German National Library of Economics (ZBW)
2 Christian-Albrechts-Universität zu Kiel

Abstract. In this paper we present a transformation between UML class
diagrams and OWL2 ontologies. We specify the transformation on the
M2 level using the QVT transformation language and the meta-models of
UML and OWL2. For this purpose we analyze similarities and differences
between UML and OWL 2 and identify incompatible language features.

1 Introduction

A class model following the Unified Modeling Language (UML) specification
[11] often serves the purpose to express the conceptual model of information
systems. UML’s graphical syntax helps to understand the resulting models—
also for non-computer scientists. Due to the rich software tool support UML
class models lend themselves well to be used as a decisive artifact in the design
process of information systems. The retrieval of data from information systems
benefits from semantic knowledge. For this purpose it is desirable to provide
an ontology for data. The commonly used language to describe ontologies is
the Web Ontology Language (OWL).[15] Both modeling languages are accepted
standards and have benefits in their areas of use. To leverage both languages’
strengths it is usually necessary to repeat the modeling process for each language.
This effort can be avoided by a transformation of a model from one language
into the other.

This paper shows a transformation from a UML class model into an OWL 2
ontology by using OMG’s Query/View/Transformation (QVT) [12] transforma-
tion language in conjunction with the meta-models for UML and OWL2.

The paper is organized as follows: In section 2 we show some existing work
on the transformation of UML and OWL. Section 3 explains our approach in
general. Section 4 shows differences between UML and OWL2. In section 5 we
present our transformations en detail. Section 6 concludes and points out fields
of future work.

2 Existing Work

A generic comparison of the seeming difference between models and ontologies
is given in [1]. Differences between UML class models and OWL ontologies have

D. Lukose, A.R. Ahmad, and A. Suliman (Eds.): KTW 2011, CCIS 295, pp. 154–163, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

From UML to OWL2 155

been studied in [7] and [9]. [5] contains an analysis of approaches for the trans-
formation between UML and ontologies that have been published until 2003.
Transformations from UML to OWL can be grouped into three categories:

Extension of UML: [2] presents an extension of UML to improve the de-
scription of (DARPA Agent Markup Language based) ontologies using UML.
[14] presents a UML based graphical representation of OWL extended by OWL
annotations.

XSLT based approaches: In [6] the transformation of a UML class diagram
into an OWL ontology using Extensible Stylesheet Language Transformation
(XSLT) is described. Additionally a UML profile is used to model specific aspects
of ontologies.

Meta-model based approaches: [4] describes a meta-model for OWL based
on Meta Object Facility (MOF) and a UML profile to model ontologies us-
ing UML. [3] is a preparation for the Ontology Definition Meta-model (ODM)
specification. It presents a meta-model for OWL as well as a UML profile. [10]
gives a transformation between a UML model and an OWL ontology using
the Atlas Transformation Language (ATL). [8] uses MOFScript to perform a
UML→OWL2 transformation. However, their goal is the validation of meta-
models. Therefore they insert several model elements into the ontology that are
needed for this goal but complicate the usability of the ontology.

3 Our Approach

The goal of our work is not primary to create better OWL2 ontologies from
a UML class model but to provide a well-arranged transformation that can be
used for further investigation on the transformations. Each of the mentioned
approaches has one or more drawbacks—e.g. syntax-dependency, no declarative
transformation. Therefore we combine several thoughts from the existing ap-
proaches and apply them to the up-to-date OWL2 Web Ontology Language
(OWL2). OWL2 offers several new model elements that facilitate the transfor-
mation. We will highlight these elements at the relevant points. These are the
five fundamental ideas of our work:

Restrict UML class models: Because we are interested in the structural
schema of an information system we do not have to take the behavioral schema
into account.

Meta-models on M2 level: Instead of transforming elements of a M1-model1

directly (like an XSLT-based transformation that works with the concrete syntax
of M1-models) we describe the transformation using elements of the M2 meta-

1 A four-layer meta-model hierarchy is used for UML and MOF: M0 = Run-time
instances, M1 = user model, M2 = UML, M3 = MOF.[11, sec. 7.12].

156 J. Zedlitz, J. Jörke, and N. Luttenberger

models. Thus the transformation does not depend on the model instances. It
only depends on the involved meta-models.

Abstract syntax instead of concrete syntax: By working with the abstract
syntax our transformation becomes independent of any particular representation
(like Functional-Style Syntax, Turtle Syntax, OWL/XML Syntax, Manchester
Syntax, etc.)

Declarative language: Instead of processing the input model step by step we
can describe how to map elements of one model on corresponding elements of
the other language.

Well-known transformation language: We choose OMG’s QVT Relations
Language because it is declarative and works with MOF-based meta-models.
The support by the OMG consortium and several independent implementations
makes it future-proof.

4 UML and OWL2

A complete transformation between a UML class model and an OWL2 ontology
is probably not possible. There are concepts in UML that do not exist in OWL.
Also the semantic of some concepts differ which hinders a transformation. [1],
[7] and [9] give detailed comparisons between UML and OWL. In the following
we take a look at some of these differences and show possible solutions for a
transformation.

Global Names: In UML it is specified that each model element has a unique
name within its package. That assures that each model element is identified by
its name and its position in the package hierarchy. A similar problem applies to
names of class-dependent attributes. In UML the names of these attributes have
to be unique only within the class they belong to. In contrast, in OWL all names
are global. Therefore we have to take care to assign each model element with
a name—in OWL called “Internationalized Resource Identifier” (IRI)—that is
globally unique. These IRIs are generated during the transformation process.

Unique Name Assumption: UML uses a Unique Name Assumption (UNA)
which states that two elements with different names are treated as different.
OWL does not use a UNA. Therefore we have to explicitly mark elements as
being different.

Open-World vs. Closed-World Assumption: In UML class models we work
under a Closed-World Assumption: All statements that have not been mentioned
explicitly are false. In contrast OWL uses an Open-World Assumption (OWA)
where missing information is treated as undecided. These different semantics
make it necessary to add various restrictions to the ontology during the trans-
formation process from a UML model to an OWL ontology to preserve the
original semantics of the model. We will highlight these problems later.

From UML to OWL2 157

Profiles:UMLhas the concept of “profiles”which allow extensions ofmeta-model
elements. There is no corresponding construct in OWL2. In most cases UML pro-
files are used to define stereotypes to extend classes. The information of these
stereotypes can be mapped to OWL by clever creation of some new classes and
generalization assertions. However a large part of an UML profile is too specific
and would require transformation rules adapted for the particular profile.

Abstract Classes:Abstract classes can not be transformed intoOWL2. If a class
is defined as abstract in UML no instances of this class (objects) can be created.
In contrast OWL has no language feature to specify that a class must not contain
any individual. An approach to preserve most of the semantics of an abstract class
would be the usage of a DisjointUnion. This would ensure that any individual
belonging to a subclass would also belong to the abstract superclass. However, it
does not prohibit to create direct members of the abstract superclass.

5 Transformations

5.1 Classes

The concepts of instances resp. individuals belonging to classes exists in both
UML, and OWL2. Because both concepts are similar a basic transformation can
be done with little effort. As mentioned above the missing UNA in OWL2 makes
it necessary to insert a DisjointClasses axiom to the ontology for every pair
of classes that are not in a generalization relation.

5.2 Specialization/Generalization

The concepts of specialization and generalization in UML and OWL2 are similar.
If C′ is a specialized sub-class of class C and i is an instance resp. individuum
then in both cases we have C′(i) → C(i).

Therefore the transformation is straightforward. For each generalization rela-
tionship “C is generalization of C′” (resp. “C′ is specialization of C”) we add a
SubClassOf(C′ C) axiom to the ontology.

You can specify two kinds of constraints for generalizations in UML: complete-
ness and disjointness. In a UML class diagram you can define these constraints

Fig. 1. A generalization relationship without constraints

158 J. Zedlitz, J. Jörke, and N. Luttenberger

by adding the keywords disjoint or complete near the arrowhead of the general-
ization arrow. A generalization without these keywords is not subjected to the
two contains.

A generalization is disjoint if an instance of one sub-class must not be instance
of another sub-class of the generalization. We transform this kind of constraint
by adding a DisjointClasses axiom with all sub-classes to the ontology. This
benefits from the fact that in OWL2 a DisjointClasses axiom can make state-
ments about more than two classes.

Fig. 2. A disjoint (but not necessary complete) generalization

If a generalization is disjoint and complete we can use a stronger axiom. The
DisjointUnion(C C′

1 . . . C′
n) axiom states that each individual of C is an

individual of exactly one Ci and each individual of Ci is also an individual of C.
The DisjointUnion axiom is new in OWL2. Although it is just syntactic sugar
it makes the resulting ontology easier to read.

Fig. 3. A disjoint and complete generalization

5.3 Associations and Class-Dependent Attributes

In UML classes can be connected by associations and/or class-dependent at-
tributes. In the UML meta-model both connection kinds are represented by the
model element Property. Therefore it stands to reason that the transformation
of both associations and attributes can be handled together.

Since the model element Association is a subclass of Classifier all associations
in a UML class diagram are direct members of a package. Therefore an OWL2
concept that is similar to an association is an object property that is also direct
members of an ontology. Associations can be uni- or bi-directional. One directed

From UML to OWL2 159

association can be transformed into one object property. For a bi-directional
association two object properties will be created—one for each direction. To
preserve the information that both resulting object properties were part of one
association an InverseObjectProperties axiom is added to the ontology.

The transformation of class-dependent attributes is more complex. There are
no directly corresponding concepts in OWL2 that allow a simple transforma-
tion. The main problem is that classes in OWL2 do not contain other model
elements which would be necessary for a direct transformation. The most similar
concepts in OWL2 for class-dependent attributes are object properties and data
properties.

In both cases the decision whether a Property is transformed into an object
property or a data property depends on the type-association of the Property : If
it is associated with an instance of Class, an object property is needed. If it is
associated with an instance of DataType, a data property is needed.

In OWL2 properties do not need to have a specified domain or range. In
that case domain and range are implicitly interpreted as owl:Thing. This cor-
responds to the OWA: if no further information is known about a relation it
might exists between individuals of any two classes. However, to limit the prop-
erties similar to the closed-world assumption of a UML class diagram we have
to add the appropriate domain and range axioms that lists the allowed classes
and datatypes.

The range of a property can be determined easily: It is the name of the Clas-
sifier linked via the type-association of the Property. For the domain we have to
distinguish between properties of class-dependent attributes and those of associ-
ations. For class-dependent attributes the class-association of a Property is set.
That class is the needed domain. If the Property is part of an association (asso-
ciation-association of the Property is set) we have to choose the type-association
of the other member end’s property as domain.

The OWA allows to interpret two properties that have been transformed from
distinct UML properties as one. To avoid that and to map UML’s CWA best we

Fig. 4. Transformation of attributes and associations into object- and data properties

160 J. Zedlitz, J. Jörke, and N. Luttenberger

mark all properties that are not in a generalization relationship (i.e. a SubProp-

ertyOf axiom exists for them) as disjoint. To do this we add OWL2’s Disjoin-
tObjectProperties and DisjointDataProperties axioms to the ontology: For
all pairs of UML Property elements we check if they were transformed into an
OWL2 property, are not identical, no generalization relationship exists between
them, and they have not been marked disjoint before.

5.4 Association Inheritance

In UML class models it is not only possible to use generalization for classes but
also for associations. One association can inherit from anther association. This
can be transfered to the OWL2 world using SubPropertyOf axioms. Since a
bi-directional association is transformed into two ObjectProperty axioms an
inheritance relation between two associations is also transformed into two Sub-

PropertyOf axioms.

Fig. 5. Transformation of generalized associations

5.5 Cardinalities

In UML cardinalities can be added to associations and class-dependent at-
tributes. A minimal and/or maximal occurrence can be a specified. OWL2 also
contains six different cardinality axioms for ObjectProperty and DataProperty:
ObjectMinCardinality, ObjectMaxCardinality, and ObjectExactCardinal-

ity as well as the respective axioms for a DataProperty.
Since an ExactCardinality axiom is just a abbreviation of a pair of MinCar-

dinality and MaxCardinality axioms with the same number of occurrences a
UML cardinality with an equal upper and lower limit can be transformed into
an ExactCardinality axiom to make the ontology more readable. In the case
that the upper limit is 1 the property can be marked functional by adding
a FunctionalObjectProperty (resp. FunctionalDataProperty) axiom to the
ontology.

It is not enough just to add cardinality axioms to the ontology. In UML a
class is restricted by the use of cardinalities for its class-dependent attributes
and associations. However, in OWL2 properties are not contained in classes
and therefore do not restrict them by their cardinality axioms. This problem
can (partly) be solved by adding SubClassOf axioms to the ontology that cre-
ate “virtual parent classes”. The only purpose of these “virtual parent classes”

From UML to OWL2 161

is to inherit their cardinality restrictions to the actual classes involved in the
associations and class-dependent attributes.

A reasoner can use these cardinality restrictions to check the consistency of
the ontology. However, it is only possible to detect a violation of an upper limit.
A violation of a lower limit it not possible to detect due to the OWA—there
might be other individuals that are simply not listed in the ontology.

Fig. 6. Transformation of attributes and associations with cardinality constraints

5.6 Aggregation and Composition

Aggregation and Composition in UML are special kinds of associations between
classes. There are a few restrictions for aggregations:

a) An object must not be in an aggregation association with itself.
b) An object must not be part of more than one composition.
c) An object of a class that is part of a composition must not exist without the

class it belongs to.

The restriction (a) can be transformed to OWL2 by adding an IrreflexiveOb-

jectProperty axiom to the ontology. This axiom prohibits the individual to be
connected to itself by the object property that represents the aggregation.

Restriction (b) can be enforced with a FunctionalObjectProperty or In-

verseFunctionalObjectProperty axiom. If the composition association is nav-
igable bi-directionally the user is free to choose. Otherwise the following rules
apply: If the association is navigable from ’part’ to ’whole’ a FunctionalOb-

jectProperty is required. A connection from an individual of the ’part’ class
to more than one individual of the ’whole’ class would make the ontology incon-
sistent. An InverseFunctionalObjectProperty is required if the association if
navigable from ’whole’ to ’part’.

The OWA makes a detection of (c) impossible—the individual might be part
of a composition that is simply not listed in the ontology.

162 J. Zedlitz, J. Jörke, and N. Luttenberger

5.7 Datatypes

For the transformation of datatypes two cases have to be considered:

a) The datatype is one of the primitive UML datatypes like “Boolean”, “In-
teger”, or “String”. OWL2 uses datatype definitions provided by the XML
Schema specification [16]. It is transformed into its corresponding datatype
from XML Schema. The indicator that a datatype belongs to this cate-
gory is its package name. For primitive UML datatypes the package name is
“UMLPrimitiveTypes”. In our implementation a function returns the corre-
sponding name of the datatype from XML Schema.

b) The definition of the (user defined) datatype is given within the class model.
We define a new datatype in the ontology by adding a DatatypeDefintion

axiom.

5.8 Enumeration

In UML an Enumeration is used to create a datatype with a predefined list
of allowed values. Although the graphical UML representation of Enumeration
looks similar to the representation of a class they are different elements in the
meta-model. Such an Enumeration can be transformed into a named datatype in
OWL. First we have to declare the existence of the datatype. Then a definition
of the datatype can be given using a DatatypeDefinition axiom. The allowed
values of the Enumeration are listed in the DataOneOf statement.

Fig. 7. Transformation of a classes with stereotype “Enumeration”

6 Summary and Outlook

We have developed a concept for a well-arranged transformation of a UML class
model into an OWL2 ontology that can be used for the analysis of the trans-
formation rules itself as well as the semantics of UML and OWL2. Our concept
takes up several existing approaches and combines them. The use of QVT Re-
lations Language enables us to describe the transformation declaratively and
to use model elements of the meta-models. Therefore we do not depend on the
concrete syntax.

We have analyzed similarities and differences on UML elements and OWL 2
elements in-depth. With this knowledge we have developed rules to transform
UML class models into elements of an OWL2 ontology. The developed imple-
mentation of an OWL2 meta-model conforms to the specification of [15].

From UML to OWL2 163

Currently we are working on the opposite direction, a transformation from an
OWL2 ontology into a UML class model. That will enable us to perform a better
analysis of the transformations and the semantics by comparing the results of a
bi-directional transformation.

References

1. Atkinson, Guthei, Kiko: On the Relationship of Ontologies and Models. In:
Proceedings of the 2nd Workshop on Meta-Modeling and Ontologies, pp. 47–60.
Gesellschaft für Informatik, Bonn (2006)

2. Baclawski, K., Kokar, M.K., Kogut, P.A., Hart, L., Smith, J., Holmes III, W.S.,
Letkowski, J., Aronson, M.L.: Extending UML to Support Ontology Engineer-
ing for the Semantic Web. In: Gogolla, M., Kobryn, C. (eds.) UML 2001. LNCS,
vol. 2185, pp. 342–360. Springer, Heidelberg (2001)

3. Brockmans, S., Colomb, R.M., Haase, P., Kendall, E.F., Wallace, E.K., Welty,
C., Xie, G.T.: A Model Driven Approach for Building OWL DL and OWL Full
Ontologies. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika,
P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 187–200.
Springer, Heidelberg (2006)

4. Brockmans, S., Volz, R., Eberhart, A., Löffler, P.: Visual Modeling of OWL DL
Ontologies Using UML. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F.
(eds.) ISWC 2004. LNCS, vol. 3298, pp. 198–213. Springer, Heidelberg (2004)

5. Falkovych, Sabou, Stuckenschmidt: UML for the Semantic Web: Transformation-
Based Approaches. Knowledge Transformation for the Semantic Web 95, 92–107
(2003)

6. Gasevic, Djuric, Devedsic, Damjanovic: Converting UML to OWL Ontologies. In:
Proceedings of the 13th International World Wide Web Conference on Alternate
Track Papers & Posters, pp. 488–489. ACM (May 2004)

7. Hart, Emery, Colomb, Raymond, Taraporewalla, Chang, Ye, Kendall, Dutra: OWL
Full and UML 2.0 Compared (March 2004)

8. Höglund, Khan, Lui, Porres: Representing and Validating Metamodels using the
Web Ontology Language OWL 2, TUCS Technical Report (May 2010)

9. Kiko, Atkinson: A Detailed Comparison of UML and OWL. Technischer Bericht
4, Dep. for Mathematics and C.S., University of Mannheim (2008)

10. Milanovic, Gasevic, Giurca, Wagner, Devedzic: On Interchanging Between
OWL/SWRL and UML/OCL. In: Proceedings of 6th OCLApps Workshop at the
9th ACM/IEEE MoDELS, pp. 81–95 (October 2006)

11. Object Management Group: OMG Unified Modeling Language Infrastructure, ver-
sion 2.3 (2010), http://www.omg.org/spec/UML/2.3/Infrastructure

12. Object Management Group: Meta Object Facility (MOF) 2.0 Query/View/Trans-
formation (QVT) Specification 1.0 (2008), http://www.omg.org/spec/QVT/1.0/

13. Olivé: Conceptual Modeling of Information Systems (2007) ISBN 978-3-540-39389-4
14. Schreiber: A UML Presentation Syntax for OWL Lite (April 2002)
15. World Wide Web Consortium: OWL 2 Web Ontology Language Structural Speci-

fication and Functional-Style Syntax (October 2009)
16. World Wide Web Consortium: XML Schema Definition Language (XSD) 1.1 Part

2: Datatypes (December 2009)

http://www.omg.org/spec/UML/2.3/Infrastructure
http://www.omg.org/spec/QVT/1.0/

	From UML to OWL 2
	Introduction
	Existing Work
	Our Approach
	UML and OWL2
	Transformations
	Classes
	Specialization/Generalization
	Associations and Class-Dependent Attributes
	Association Inheritance
	Cardinalities
	Aggregation and Composition
	Datatypes
	Enumeration

	Summary and Outlook
	References

