
OpenACC — First Experiences
with Real-World Applications

Sandra Wienke, Paul Springer, Christian Terboven, and Dieter an Mey

JARA, RWTH Aachen University, Germany
Center for Computing and Communication

{wienke,springer,terboven,anmey}@rz.rwth-aachen.de

Abstract. Today’s trend to use accelerators like GPGPUs in heterogeneous com-
puter systems has entailed several low-level APIs for accelerator programming.
However, programming these APIs is often tedious and therefore unproductive.
To tackle this problem, recent approaches employ directive-based high-level pro-
gramming for accelerators. In this work, we present our first experiences with
OpenACC, an API consisting of compiler directives to offload loops and re-
gions of C/C++ and Fortran code to accelerators. We compare the performance
of OpenACC to PGI Accelerator and OpenCL for two real-world applications
and evaluate programmability and productivity. We find that OpenACC offers a
promising ratio of development effort to performance and that a directive-based
approach to program accelerators is more efficient than low-level APIs, even if
suboptimal performance is achieved.

1 Introduction

Due to a promising performance per watt ratio and an attractive price, HPC architec-
tures prevailingly tend towards heterogeneous computer systems comprising general-
purpose cores with attached accelerator devices. However, programming accelerators
such as general-purpose graphic processing units (GPGPUs) with low-level APIs is dif-
ficult, may complicate the software design and usually couples the code to a device
of a particular vendor. This leads to an unproductive development process with error-
prone programming tasks and highly hardware-specific implementations, which is not
acceptable for large development projects with a long projected code lifetime.

Recent approaches promise to make the compiler responsible for many of the low-
level programming tasks by offering a directive-based high-level API. As finding parts
of an algorithm that can efficiently be executed on an accelerator device is still up to
the programmer, these approaches do not simplify programming accelerators in gen-
eral. However, they improve the development productivity and simplify code mainte-
nance. Unifying the syntax of various directive-based approaches for accelerators with
the intention to make it available across multiple vendors, a group of members of the
OpenMP Language Committee published OpenACC in November 2011. OpenACC en-
ables the offloading of loops and regions of C/C++ and Fortran code to accelerators and
is initiated by the companies CAPS, CRAY, NVIDIA and PGI. In this work, we present
our first experiences with OpenACC applied to two real-world simulation codes from
the fields of engineering and medicine that can both benefit from GPU acceleration.

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 859–870, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

860 S. Wienke et al.

Our work comprehends a performance analysis of these codes, as well as an evaluation
of programmability and productivity.

The paper is structured as follows: Section 2 covers related work and Sect. 3 gives
an overview of OpenACC. In Sect. 4, the two real-world applications and the under-
taking for their porting to OpenACC are explained. The measured performance values
with OpenACC are evaluated in Sect. 5 and compared to the ones gained with OpenCL
and PGI Accelerator. In Sect. 6, we discuss programmability and productivity aspects.
Finally, we assess OpenACC’s effort-performance ratio regarding our real-world appli-
cations in Sect. 7.

2 Related Work

The desire for general-purpose computations on GPUs caused the advance of new pro-
gramming paradigms. Nowadays, the dominant GPU programming models are CUDA
[13] and OpenCL [10]. Both empower the programmer to exploit performance from
the accelerator by porting code to GPU kernel functions at a low level. CUDA is cou-
pled to NVIDIA GPUs, while OpenCL as a standard is portable across vendors and
targets different hardware architectures. As using low-level APIs often results in an
unproductive development process due to repeatedly written code portions and error-
prone programming [15], several directive-based approaches for accelerator computing
have been proposed in which compilers undertake the implementation guided by hints
from the user. OpenACC [7] is an industry standard for this directive-based accelerator
programming that may contribute to the specification of OpenMP for accelerators [2].

The Portland Group provides the PGI Accelerator programming model [14] for
C and Fortran which enables compiler-aided and directive-based work offloading to
NVIDIA GPUs and specifies a broad range of features. It served as the foundation for
the OpenACC specification. Furthermore, CAPS has previously established its hybrid
multicore parallel programming (HMPP) environment [6] providing directives to de-
clare codelets, which are functions suitable for hardware acceleration, and targeting a
variety of accelerators. Intel also relies on directives to offload code to its Many In-
tegrated Core (MIC) accelerator [11]. hiCUDA [9] defines a high-level abstraction of
CUDA with kernel directives, data transfer clauses and function calls. While support-
ing CUDA-specific concepts, hiCUDA leaves more responsibilities to the programmer
than OpenACC. OpenMPC [12] approaches the generation of CUDA code by translat-
ing OpenMP regions. Additional directives control CUDA-related parameters and the
compiler may find an appropriate tuning configuration for the program. It is also re-
stricted to NVIDIA GPUs due to the CUDA affiliation. The Barcelona Supercomputing
Center has developed the StarSs programming model [1] which provides extensions to
the OpenMP language to exploit several architectures, for instance GPUs. It focuses on
OpenMP tasks and their distribution to different targets during runtime by forcing the
programmer to specify all data input and output dependencies of a task.

Since the productive development is one main issue of directive-based models, we
examine the programmability and productivity with OpenACC. Only few studies con-
sider productivity aspects. While [3] provides a general overview of coding effort, [8]
looks mainly at the effort from a computing center’s point of view. In our previous work

OpenACC — First Experiences with Real-World Applications 861

[15], we concluded that the PGI Accelerator model has a good effort-performance ratio
and [2] also approaches productivity with respect to a ratio estimation of performance
to time effort. In this work, we do not only elaborate on productivity in general, but also
specify the number of modified code lines as an indication of the development effort.

3 OpenACC Overview

The directive-based OpenACC API for C/C++ and Fortran delegates the responsibil-
ity for low-level GPU programming tasks to the compiler, while providing portability
across operating systems, host CPUs and accelerator devices. Concerning accelerator
types, up to now, the existing OpenACC implementations only support NVIDIA GPUs.
In this section, we provide a brief overview of OpenACC, point out the most important
use cases with respect to GPUs and map the terminology to the OpenCL nomenclature.

The OpenACC API assumes a host-directed execution model in which the main pro-
gram runs on the host and compute-intensive regions are offloaded to an attached accel-
erator. The memory model is based on separate host and device memories which do not
synchronize automatically. GPU devices implement a weak memory model that pre-
vents coherence between operations on different compute units and enables coherence
within the same compute unit only by using explicit synchronization.

The execution and data management is guided by the programmer using OpenACC
directives. Some basic constructs are illustrated in Listing 1.1.

Listing 1.1. Brief use case of basic OpenACC constructs

/ / I n i t i a l i z a t i o n : | x [i] | < 1 , i = 0 , . . . , s i z e −1
#pragma acc d a t a copy (x [0 : s i z e]) / / Data movement t o / f rom d e v i c e
{ whi l e (e r r o r > eps) {

e r r o r = 0 . 0 ;
#pragma acc p a r a l l e l p r e s e n t (x [0 : s i z e]) / / Kerne l e x e c u t i o n
#pragma acc loop gang v e c t o r r e d u c t i o n (+ : error) / / Loop s c h e d u l e

f o r (i n t i =0 ; i<s i z e ; ++ i) {
x [i] ∗= x [i] ;
e r r o r += f a b s (x [i]) ;

} } }

The most important directives are parallel and kernels which describe regions
of code to be accelerated asynchronously or synchronously. Here, we focus on the
parallel directive due to some restrictions on the kernels construct in the recent
implementation. A parallel region maps to an OpenCL kernel function which can
be enqueued for execution on the device in an n-dimensional range of work-items. To
improve the performance, it is possible to specify the so-called number of gangs, the
number of workers or the vector length. The terms gang and vector corre-
spond to work-groups and work-items (usually) within a work-group, respectively, in
OpenCL. A worker defines a certain union of work-items, i.e. a warp on CUDA archi-
tectures. Within parallel regions, a loop directive instructs the worksharing of a

862 S. Wienke et al.

loop among the accelerator’s workers. The programmer can insert additional clauses in
parallel, kernels or loop directives to optimize or correct the implicit data man-
agement chosen by the compiler. Furthermore, the data movement can be decoupled
from these compute regions by using an enclosing explicit data region. Correspond-
ing data clauses can specify the kind and direction of data movement, e.g. copyin
or copyout. It is also possible to create arrays only on the device, define device
private data, tell the compiler that data is already present on the device or spec-
ify different kinds of reductions. Since the user has to manually manage the data
coherence between host and device, the executive update directive can be applied to
synchronize the separate memories of host and device. The GPU’s memory hierarchy
also often supports a low-latency local memory for which the compiler may optimize
the program. To guide the compiler, the developer can apply the cache directive which
specifies (sub-)arrays to be stored in this fast memory.

Besides directives, the OpenACC API provides runtime library calls and environ-
ments variables too. For instance, library calls can gather information about the device,
initialize it or allocate data on the device.

4 Applications

For our investigations on performance, productivity and programmability of OpenACC,
we chose two real-world applications from the fields of engineering and medicine. In the
following, we point out their contributions to their domains, describe implementation
relevant features and explain how we carried out implementations with OpenACC.

4.1 Simulation of Bevel Gear Cutting

The engineering application KegelSpan [4] written in Fortran and developed by the
Laboratory for Machine Tools and Production Engineering (WZL) at RWTH Aachen
University is a 3D simulation software of the bevel gear cutting process and a leading-
edge application in the automotive industry. It aims at minimizing the number of tool
changes in the production process of bevel gears and contributing to a cost-efficient
manufacturing by enabling a detailed tool load and wear analysis. The module under
investigation computes the intersection of tool and gear. It contains one loop nest where
outer and inner loop each iterates tens of thousands times (small dataset). The inner loop
of the nest contains dependencies due to a minimum computation which is needed for
the key value of chip thickness. The intersection module has to be executed repeatedly
to optimize the manufacturing parameters.

We approached the basic implementation of the intersection module with OpenACC
analogously to the one with PGI Accelerator in our previous work [15]: We distributed
the work of the outer loop amongst all work-items and executed the inner loop serially.
For that, we mainly applied a parallel region with numerous data clauses and a
loop directive with gang vector schedule. Using the vector length attribute,
we optimized the number of work-items within a work-group. A second variant (re-
struct) comprises a restructured data format for an optimized, coalesced data access and
serves for comparing performances rather than development efforts of the different pro-
gramming models. In comparison to the basic version, just the adaption of OpenACC

OpenACC — First Experiences with Real-World Applications 863

data clauses was necessary. Furthermore, we examined a more complex type of par-
allelism by distributing the outer loop to the work-groups and the inner loop to the
work-items within a work-group. This approach required the addition of a minimum
reduction, denoted by reduction(min:varlist), to the inner loop due to the
chip thickness computation. However, the position of the minimum, i.e. the array in-
dex, is needed as well. Since manual extraction of this index was tedious and delivered
low performance, we omitted a detailed analysis. In OpenCL, we further leveraged the
work-group’s local memory (locMem) by storing intermediate data and input data that
is needed multiple times in the fast software cache of the GPU (compare [15]). A sim-
ilar approach was possible neither with PGI Accelerator nor with OpenACC, but the
results gained with OpenCL show the potential of the caching technique in Sect. 5.1.

4.2 Neuromagnetic Inverse Problem

The second application comes from the field of medicine or more precisely magne-
toencephalography (MEG). In MEG, the magnetic field induced by the current density
inside the human brain is measured outside the head. To reconstruct the focal activity in
the brain, the neuromagnetic inverse problem can be solved by means of a minimum p-
norm solution. Since this unconstrained nonlinear optimization problem is challenging
in terms of computational efficiency and accuracy effecting the convergence behavior
[5], first- and second-order derivatives are computed by automatic differentiation (AD)
in the software package of Bücker, Beucker and Rupp [5]. The software package is im-
plemented primarily in MATLAB. To enable AD combined with parallel computing,
the objective function of the optimization problem, as well as its first- and second-
order derivatives are written in C. For our investigations, we concentrate on these three
kernels which include the computations of matrix-vector products using a matrix of di-
mensions 128 × 512000. Additionally, the matrix can be divided into a big dense and
a small sparse part. Each kernel contains a single loop or loop nest with summation
reductions.

The MATLAB program calls the kernels about thousand times during the optimiza-
tion process (simple configuration). For simplification, we established a C framework
that mimics the original call hierarchy: Implemented with an explicit data region,
the matrix is copied to the accelerator once per optimization run and then each kernel
is called thousand times. The operands needed for the computations are copied into
or updated on the device and the results are transferred to the host in between and
at the end of the explicit data region. Porting the three kernels with OpenACC to the
GPU, we first implemented a basic approach again. That means that only the outer
loops run in parallel and the inner loops are executed serially. Each kernel consists of
two or more parallel regions to distinguish at least between matrix-vector multi-
plications, vector-vector operations and summation reductions. Additionally, the im-
plementations of first- and second-order-derivative evaluations require resolving race
conditions. Therefore, intermediate values are stored in auxiliary arrays and the ac-
cess to these arrays is globally synchronized by creating an additional parallel re-
gion. A loop interchange is applied as well. The corresponding basic PGI Accelerator
implementation looks similarly. In a second variant (l2par), we added a level of par-
allelism to the OpenACC kernels which distributes the outer loops to the gangs and

864 S. Wienke et al.

runs the inner loops in vector mode. This approach needed the usage of reduction
clauses on outer and inner loops. A similar approach was not possible with PGI Accel-
erator due to a limitation in its implementation. The third approach aims at leveraging
the cache of the GPU and improving the data access pattern by chunking the matrix-
vector multiplications into blocks of size vector length. Each block is mapped to
a work-group, whereas the work-items within a work-group execute the multiplications
row-wise. With PGI Accelerator, the blocked version was implemented analogously ex-
cept that only one level of parallelism could be applied to the loop nests that do not
access the matrix. The OpenCL version also employs a blocked matrix-vector multi-
plication. Furthermore, it is highly optimized with respect to the usage of device local
memory and host pinned memory, asynchronous data transfer and kernel execution,
the specification of constant values as preprocessed macros or loop unrolling. Loop
unrolling is also applied to all PGI and OpenACC versions. The OpenACC compiler
automatically unrolls loops within accelerated code regions or can be guided by the
#pragma unroll(size). Although the PGI Accelerator API includes an unroll
clause, here, it is ignored by the compiler. Therefore, we had to unroll most of the loops
manually up to a level of 32 to achieve comparable performance. cache and async
optimizations could not yet successfully applied with both directive-based models.

5 Performance Evaluation

In this section, we present performance results of the OpenACC implementations of
both applications and compare them to implementations made with OpenCL1 and PGI
Accelerator. Since tool support across all three programming models is limited, our
evaluation also contains assumptions of result explanations. This analysis is based on
NVIDIA’s Visual Profiler. All reported runtimes include the accelerator’s setup time,
data transfers between host and device, kernel execution times and the overhead intro-
duced by the need of manual management (OpenCL) or adapting the data structure.
Each runtime is the minimum value of five program runs.

For all measurements, we used an NVIDIA Tesla C2050 GPU with ECC enabled
and CUDA toolkit 4.0. The host system2 on which the OpenACC results were gath-
ered consists of one AMD Magny-Cours 12-core processor and runs SUSE Enterprise
Server 11. There, we use the Cray 8.1.0 compiler3 with the optimization flag -O3. For
the results gained with OpenCL and PGI Accelerator, we worked on an Intel Westmere
4-core host processor and Scientific Linux 6.1. The OpenCL and PGI Accelerator im-
plementations are compiled with the Intel 12.1.2 compiler and the PGI 12.3 compiler
(-ta=nvidia,4.0,cc20,fastmath(,nofma)), respectively.

1 OpenCL and CUDA performance results are comparable in almost all our application versions.
2 Since this machine is an experimental system from Cray, performance should be better on the

Cray XK6 product.
3 At time of developing, Cray provided the first OpenACC release. The used Cray compiler com-

prises an early implementation of OpenACC which does not contain all features of OpenACC
yet. Furthermore, the performance is likely to increase with future releases. First partly imple-
mentations by PGI and CAPS were released in March and May 2012, respectively, and will be
subject to further investigations.

OpenACC — First Experiences with Real-World Applications 865

0

5

10

15

20

25

30

single precision double precision

ru
nt

im
e [

s]

Fig. 1. Runtimes of OpenCL, PGI Accelerator and
OpenACC (engineering application)

0%

20%

40%

60%

80%

100%

120%

basic restruct

PGIAcc
OpenACC

Fig. 2. Percentages of OpenCL perfor-
mance in double precision

5.1 Simulation of Bevel Gear Cutting

The results for the engineering application can be found in Fig. 1. Each color represents
one programming model, whereas the patterns correspond to different versions as men-
tioned in Sect. 4. For single and double precision, the absolute difference between PGI
Accelerator and OpenACC runtimes of the basic and the restructured version remain
approximately the same. A significant fraction of this difference is introduced by a great
amount of L2 read misses in the OpenACC programs which extends the one of PGI Ac-
celerator by a factor of 1.5. These L2 read misses must be resolved by long-latency
global memory accesses that hurt the performance. The PGI compiler feedback shows
that constant memory is used, whereas the OpenACC compiler does not elaborate on
this. We assume that the constant cache is ignored by the current OpenACC compiler
which would lead to the high number of L2 read misses. Additionally, the best-effort
PGI Accelerator versions using double precision omit the generation of FMA/MAD in-
structions. However, neither the OpenCL nor the OpenACC compiler provide an easy
way to disable FMA operations without losing other optimizations to verify this result.
Figure 2 illustrates the double precision results in percentages. Here, the runtime of the
best-effort OpenCL implementation serves as reference. With the restruct version, PGI
Accelerator outperforms OpenCL, and OpenACC achieves a considerable fraction of
approximately 80 % of OpenCL.

Furthermore, the OpenCL bars in Fig. 1 show that the usage of local memory was
beneficial for this application. The PGI Accelerator API provides a cache clause for the
loop schedule, but the compiler takes it as a hint instead of a rule. In this case, the com-
piler apparently cannot apply the hint successfully. In OpenACC, the cache directive is
not yet fully implemented in the Cray compiler. Given Cray’s ongoing implementation
work, we hope to examine OpenACC’s cache capabilities in the near future.

5.2 Neuromagnetic Inverse Problem

For the neuromagnetic inverse problem, we measured the runtime of the objective
function evaluation, the first- and second-order-derivative computations and the whole
program. The latter contains an equal number of calls to the three functional units as

866 S. Wienke et al.

0

50

100

150

200

OpenCL PGIAcc OpenACC

(a
ve

ra
ge

) r
un

tim
e [

m
s]

(a) Objective function

0

50

100

150

200

OpenCL PGIAcc OpenACC

(a
ve

ra
ge

) r
un

tim
e [

m
s]

(b) 1st-order derivative

0

50

100

150

200

OpenCL PGIAcc OpenACC

(a
ve

ra
ge

) r
un

tim
e [

m
s]

(c) 2nd-order derivative

0

100

200

300

400

500

OpenCL PGIAcc OpenACC

(a
ve

ra
ge

) r
un

tim
e [

m
s]

(d) Overall runtimes

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

basic blocked l2par

PGIAcc
OpenACC

(e) Percentages of OpenCL performance

Fig. 3. Comparison of OpenCL, PGI Accelerator and OpenACC in double precision (medical
application)

approximation of the actual optimization process. All runtimes represent an average
over 1000 iterations including data transfers. Computations are done in double precision
only due to the high impact of numerical inaccuracy.

Figure 3 illustrates the results of the various implemented versions as described in
Sect. 4. The colors refer to the programming model and the bar pattern to the imple-
mentation variants. In all cases, the basic versions have the longest runtimes and are
outperformed by the corresponding blocked versions. Although the blocking algorithm
in OpenCL, PGI Accelerator and OpenACC is almost the same, the OpenCL versions
contain much less read requests to the L2 cache and the device global memory. This
is mainly due to the coalesced prefetching of matrix and vectors to the on-chip local
memory and the consequent, cache-optimized computations that we implemented with
OpenCL. Contrary, both directive-based models lack either of an implementation or a
successful recognition of the caching clause. The runtime difference is intensified by
an additional global synchronization in the directive-based models. With OpenACC, a
performance improvement is surprisingly gained by using the algorithmic-simpler ver-
sion l2par with two levels of parallelism. For the objective function evaluation (see
Fig. 3(a)), the OpenACC performance even catches up with the OpenCL performance,

OpenACC — First Experiences with Real-World Applications 867

Table 1. Number of modified source code lines in host/kernel code with respect to the serial
versions of the engineering application (∼ 150 kernel code lines) and medical application (∼ 100
kernel code lines)

engineering medical
basic restruct locMem basic blocked l2par

OpenCL 106/35 183/39 183/58 - 330/300 -
PGI Acc 0/3 84/14 - 9/121 12/109 -
OpenACC 0/3 84/14 - 9/31 12/85 9/37

both containing an equal number of global memory accesses. In contrast, the runtimes
of evaluating first- and second-order derivatives (Figs. 3(b) and 3(c)) are about 2.5 times
higher than the ones from OpenCL. Here, OpenACC’s number of global memory reads
and writes exceeds the ones of OpenCL, possibly due to less local-memory usage. In
general, the OpenCL implementations may also perform better due to asynchronous
data transfer and kernel execution, extensive loop unrolling, usage of pinned memory or
specification of constant values as preprocessed macros. Figure 3(e) presents the over-
all performance in percentages of the OpenCL version. The best-effort PGI Accelerator
and OpenACC versions achieve about 20 % and 40 %, respectively.

Comparing OpenACC to PGI Accelerator, in most cases, the OpenACC versions run
faster. We can see by profiling that OpenACC calls CUDA’s internal 32-bit alignment
routine. An optimal alignment may be the main reason for less memory accesses and
the better performance. Furthermore, loop unrolling was essential for improving per-
formance. While the OpenACC compiler automatically adapts the unroll level nicely
with #pragma unroll(size), the PGI compiler ignores any unroll clause so
that a manual and assumingly suboptimal loop unrolling must be applied. PGI’s only
performance gain (see Fig. 3(b)) results from a better cache access pattern evoked by
the reuse of the pow function.

6 Programmability and Productivity

Good programmability is the foundation of a productive development process. In this
section, we examine OpenACC’s ease-of-use in comparison with PGI’s Accelerator
model and OpenCL. We discuss OpenACC’s capabilities, restrictions and our sugges-
tions for improvement to decrease development effort.

Both applications show that the current OpenACC implementation allows successful
porting to GPUs in a productive way. Table 1 lists the number of modified source code
lines for each kernel and programming model. These values indicate how much time
a programmer spent to port the application to GPUs and how maintainable the ported
code is for further development.

The main features of OpenACC like data movement and loop acceleration can intu-
itively be applied, just as with PGI Accelerator. An inexperienced user can rely on an
automatic loop scheduling, whereas more experienced users can tune it by using differ-
ent levels of parallelism or by specifying the sizes of parallel chunks. Here, OpenACC

868 S. Wienke et al.

is even capable of explicitly managing warps, while OpenCL and PGI Accelerator do
not provide this degree of freedom. On the other hand, OpenACC is restricted to a
single gang or vector dimension, whereas OpenCL and PGI Accelerator offer multiple
dimensions to intuitively map e.g. a matrix to a two dimensional working space.

Synchronization. We find the automatic synchronization between work-items at any
level of parallelism that is entirely within a work-group convenient. However, to syn-
chronize between loops that are located within the same parallel region and whose work
is distributed with different schedules, the user has to manually synchronize the data by
splitting the parallel region. An additional executable directive that acts like a global
barrier might be useful to circumvent manual splitting of parallel regions. An use-case
of this directive would be the synchronization of GPU-local data after its initialization.
[9] provides the singular directive for the purpose of compact initialization.

Reduction. In OpenCL, a manual implementation of the reduction operation often
leads to poor performance. In contrast, the PGI compiler automatically recognizes a re-
duction (sometimes adding auxiliary variables is needed) and it creates well-optimized
machine code for it. In OpenACC, the user has to specify the reduction, but the
freedom to choose any typical kind of reduction (e.g. min reduction) and any scalar
variable to reduce without adding intermediate variables. Here, the addition of user-
defined reductions to the OpenACC standard would further improve the development.
In our case study, the collection of the minimum along with its (array) index would be
an appropriate application.

Function Calls. A major restriction of both directive-based models is that non-inlined
function calls in accelerated code are not supported at the moment. Function calls in
our investigated applications could be resolved by explicitly inling them. However, this
is not bearable for bigger software packages. PGI Accelerator also does not support this
feature currently, but in general, it seems possible to integrate it in high-level APIs [9].

Atomics and Critical Region. OpenMP-like atomics and critical regions for OpenACC
would help to avoid race conditions. For instance, detecting a critical region, the com-
piler could undertake the needed addition of an auxiliary array, the split of parallel
regions and the interchange of loops. The compiler could apply the most efficient
implementation and prevent programming errors.

Asynchronous Data Transfers. Asynchronous data copies would be beneficial for
OpenACC, not only regarding update directives, but also explicit data regions.

Multiple GPUs. To use multiple GPGPUs on a single host, the programmer must ex-
plicitly specify the particular device for work-offloading and manually manage data
synchronization between the devices and the host using a low-level API. This distribu-
tion of workload and data could also be left to the compiler and runtime in future.

OpenACC — First Experiences with Real-World Applications 869

At the time of writing, several features of OpenACC were not yet fully implemented in
the Cray compiler, but look promising. The kernels construct (combined with guided
loop execution) will hopefully improve the productivity of accelerating code regions
containing multiple loops. Aiming at increasing performance, the async clause of
parallel, kernels and update constructs will be applied to the investigated
medical application. Employing multiple command queues, it will enable the start of
separate parallel regions simultaneously to independently compute matrix-vector mul-
tiplications and vector-vector operations and the overlap of kernel execution and data
movement. In OpenCL, the usage of the GPU’s software cache improved the perfor-
mance of both software packages. The application of OpenACC’s cache clause may
also lead to further acceleration in the future. Moreover, we will examine the combina-
tion of OpenACC and MATLAB. With OpenCL, the communication to MATLAB was
employed by exchanging the OpenCL context. However, at the moment, it is unclear
whether a realization with OpenACC is possible.

7 Conclusion

In the context of two real-world applications, we examined the performance, program-
mability and productivity of OpenACC in comparison to OpenCL and PGI Accelerator.

With OpenACC, we find that the performance of the moderately complex kernel of
the simulation software for bevel gear cutting is about 80 % of the best-effort OpenCL
performance regarding double precision computations, although the implementation of
OpenACC that we used is still incomplete. This result matches the expectations of the
performance of a directive-based programming model. In contrast, the OpenACC per-
formance of the more complex medical program is only approximately 40 % of the
best-effort OpenCL implementation. Although this value is rather distressing at first
sight, we still believe that OpenACC is a promising approach: We assume that the loss
of performance is mainly due to the current lack of the ability to leverage the local
memory of the GPU intensified by our manually implemented global synchronization
to prevent race conditions. These trade-offs may be eliminated by the ongoing imple-
mentation work on OpenACC or by introducing additional directives. Moreover, it must
be taken into account that the highly optimized OpenCL code is quite verbose, hard to
read and requires 630 modified code lines, whereas the best OpenACC version only
needed 46 modified lines of code. Basing on these numbers, the OpenACC’s ratio of
development effort to performance is encouraging.

Thus, in terms of programmability and productivity, the OpenACC API is generally
convincing. It can be intuitively applied if the programmer has certain knowledge of
the accelerator’s hardware architecture. If adopting features like device function calls,
user-defined reductions or critical regions, the programming efficiency may be further
improved while simultaneously reducing sources of errors.

In our view, the move to directive-based accelerator programming is essential for
the further growth and acceptance of accelerator devices. To this end, OpenACC is an
important step as it standardizes a directive-based API for accelerators for the first time.
It is intended to integrate the feedback and the lessons learned from OpenACC into the
OpenMP specification. The inclusion of corresponding functionality into the OpenMP

870 S. Wienke et al.

standard will be technically demanding though and may slow down further development
of the standard. However, from the user’s point of view, OpenMP for accelerators is
certainly promising.

References

1. Ayguadé, E., Badia, R., Bellens, P., Cabrera, D., Duran, A., Ferrer, R., Gonzàlez, M., Igual,
F., Jiménez-González, D., Labarta, J., Martinell, L., Martorell, X., Mayo, R., Pérez, J., Planas,
J., Quintana-Ortı́, E.: Extending OpenMP to Survive the Heterogeneous Multi-Core Era.
International Journal of Parallel Programming 38, 440–459 (2010), doi:10.1007/s10766-010-
0135-4

2. Beyer, J.C., Stotzer, E.J., Hart, A., de Supinski, B.R.: OpenMP for Accelerators. In: Chap-
man, B.M., Gropp, W.D., Kumaran, K., Müller, M.S. (eds.) IWOMP 2011. LNCS, vol. 6665,
pp. 108–121. Springer, Heidelberg (2011)

3. Bordawekar, R., Bondhugula, U., Rao, R.: Can CPUs Match GPUs on Performance with Pro-
ductivity?: Experiences with Optimizing a FLOP-intensive Application on CPUs and GPU.
Technical report, IBM Res. Division (2010)

4. Brecher, C., Gorgels, C., Hardjosuwito, A.: Simulation based Tool Wear Analysis in Bevel
Gear Cutting. In: International Conference on Gears, Düsseldorf. VDI-Berichte, vol. 2108.2,
pp. 1381–1384. VDI Verlag (2010)

5. Bücker, M., Beucker, R., Rupp, A.: Parallel Minimum p-Norm Solution of the Neuromag-
netic Inverse Problem for Realistic Signals Using Exact Hessian-Vector Products. SIAM
Journal on Scientific Computing 30(6), 2905–2921 (2008)

6. Dolbeau, R., Bihan, S., Bodin, F.: HMPP: A Hybrid Multi-core Parallel Programming Evi-
ronment. In: First Workshop on General Purpose Processing on Graphics Processing Units
(2007)

7. CAPS Enterprise, Cray Inc., NVIDIA, and the Portland Group. The OpenACC Application
Programming Interface, v1.0 (November 2011)

8. Hacker, H., Trinitis, C., Weidendorfer, J., Brehm, M.: Considering GPGPU for HPC Centers:
Is It Worth the Effort? In: Keller, R., Kramer, D., Weiss, J.-P. (eds.) Facing the Multicore-
Challenge. LNCS, vol. 6310, pp. 118–130. Springer, Heidelberg (2010)

9. Han, T.D., Abdelrahman, T.S.: hiCUDA: High-Level GPGPU Programming. IEEE Transac-
tions on Parallel and Distributed Systems 22(1), 78–90 (2011)

10. Khronos OpenCL Working Group. The OpenCL Specification, v1.1.44 (2011)
11. Koesterke, L., Boisseau, J., Cazes, J., Milfeld, K., Stanzione, D.: Early Experiences with

the Intel Many Integrated Cores Accelerated Computing Technology. In: Proceedings of the
2011 TeraGrid Conference: Extreme Digital Discovery, TG 2011, pp. 21:1–21:8. ACM, New
York (2011)

12. Lee, S., Eigenmann, R.: OpenMPC: Extended OpenMP Programming and Tuning for GPUs.
In: 2010 International Conference for High Performance Computing, Networking, Storage
and Analysis (SC), pp. 1–11 (November 2010)

13. NVIDIA. CUDA C Programming Guide, v4.0 (2011)
14. The Portland Group. PGI Accelerator Programming Model for Fortran & C, v1.3 (2010)
15. Wienke, S., Plotnikov, D., an Mey, D., Bischof, C., Hardjosuwito, A., Gorgels, C., Brecher,

C.: Simulation of bevel gear cutting with GPGPUs-performance and productivity. Computer
Science - Research and Development 26, 165–174 (2011), doi:10.1007/s00450-011-0158-0

	OpenACC — First Experiences with Real-World Applications
	Introduction
	Related Work
	OpenACC Overview
	Applications
	Simulation of Bevel Gear Cutting
	Neuromagnetic Inverse Problem

	Performance Evaluation
	Simulation of Bevel Gear Cutting
	Neuromagnetic Inverse Problem

	Programmability and Productivity
	Conclusion
	References

