

Lecture Notes in Computer Science 7484
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Christos Kaklamanis
Theodore Papatheodorou Paul G. Spirakis (Eds.)

Euro-Par 2012
Parallel Processing
18th International Conference, Euro-Par 2012
Rhodes Island, Greece, August 27-31, 2012
Proceedings

13

Volume Editors

Christos Kaklamanis
University of Patras
Computer Technology Institute and Press "Diophantus"
N. Kazantzaki
26504 Rio, Greece
E-mail: kakl@ceid.upatras.gr

Theodore Papatheodorou
University of Patras
University Building B
26504 Rio, Greece
E-mail: tsp@hpclab.ceid.upatras.gr

Paul G. Spirakis
University of Patras
Computer Technology Institute and Press "Diophantus"
N. Kazantzaki
26504 Rio, Greece
E-mail: spirakis@cti.gr

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-32819-0 e-ISBN 978-3-642-32820-6
DOI 10.1007/978-3-642-32820-6
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012944429

CR Subject Classification (1998): D.1.3, D.3.3-4, C.1.4, D.4, C.4, C.2, G.1.0, C.3,
H.3, I.6, I.2.6, F.1.2, H.2.8

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Euro-Par is an annual series of international conferences dedicated to the
promotion and advancement of all aspects of parallel and distributed computing.

Euro-Par covers a wide spectrum of topics from algorithms and theory to
software technology and hardware-related issues, with application areas ranging
from scientific to mobile and cloud computing.

Euro-Par provides a forum for the introduction, presentation, and discussion
of the latest scientific and technical advances, extending the frontier of both the
state of the art and the state of the practice.

The main audience of Euro-Par are researchers in academic institutions, gov-
ernment laboratories, and industrial organizations. Euro-Par’s objective is to be
the primary choice of such professionals for the presentation of new results in
their specific areas. As a wide-spectrum conference, Euro-Par fosters the synergy
of different topics in parallel and distributed computing. Of special interest are
applications that demonstrate the effectiveness of the main Euro-Par topics.

In addition, Euro-Par conferences provide a platform for a number of ac-
companying, technical workshops. Thus, smaller and emerging communities can
meet and develop more focussed topics or as-yet less established topics.

Euro-Par 2012 was the 18th conference in the Euro-Par series, and was orga-
nized by CTI (Computer Technology Institute and Press “Diophantus”). Previ-
ous Euro-Par conferences took place in Stockholm, Lyon, Passau, Southampton,
Toulouse, Munich, Manchester, Padderborn, Klagenfurt, Pisa, Lisbon, Dresden,
Rennes, Las Palmas, Delft, Ischia, and Bordeaux. Next year the conference will
take place in Aachen, Germany. More information on the Euro-Par conference
series and organization is available on the website http://www.europar.org

The conference was organized in 16 topics. The paper review process for each
topic was managed and supervised by a committee of at least four persons: a
Global Chair, a Local Chair, and two members. Some specific topics with a high
number of submissions were managed by a larger committee with more members.
The final decisions on the acceptance or rejection of the submitted papers were
made in a meeting of the Conference Co-chairs and Local Chairs of the topics.

The call for papers attracted a total of 228 submissions, representing 44
countries (based on the corresponding authors’ countries). A total of 873 review
reports were collected, which makes an average of 3.83 review reports per paper.
In total 75 papers were selected as regular papers to be presented at the confer-
ence and included in the conference proceedings, representing 29 countries from
all continents, and yielding an acceptance rate of 32.9%. Three papers were se-
lected as distinguished papers. These papers, which were presented in a separate
session, are:

1. Ricardo J. Dias, Tiago M. Vale, and João M. S. Lourenço “Efficient Support
for In-Place Metadata in Transactional Memory”

VI Preface

2. Wesley Bland, Peng Du, Aurelien Bouteiller, Thomas Herault, George Bosilca,
and Jack Dongarra “A Checkpoint-on-Failure Protocol for Algorithm-Based
Recovery in Standard MPI”

3. KonstantinosChristodoulopoulos,MarcoRuffini,DonalO’Mahony, andKostas
Katrinis “Topology Configuration in Hybrid EPS/OCS Interconnects”

Euro-Par 2012 was very happy to present three invited speakers of high inter-
national reputation, who discussed important developments in very interesting
areas of parallel and distributed computing:

1. Ewa Deelman (Information Sciences Institute, University of Southern Cali-
fornia, USA)

2. Burkhard Monien (University of Paderborn, Germany)
3. Thomas Schulthess (CSCS, ETH Zurich, Switzerland)

In this edition, 11 workshops were held in conjunction with the main track
of the conference. These workshops were:

1. 10th International Workshop on Algorithms, Models and Tools for Parallel
Computing on Heterogeneous Platforms (Heteropar)

2. 7th Workshop on Virtualization in High-Performance Cloud Computing
(VHPC)

3. 5th Workshop on Unconventional High-Performance Computing (UCHPC)
4. 5th Workshop on Productivity and Performance (PROPER)
5. Third Workshop on High-Performance Bioinformatics and Biomedicine

(HiBB)
6. Workshop on Resiliency in High-Performance Computing (Resilience)
7. CoreGRID/ERCIMWorkshop on Grids, Clouds, and P2P Computing (CGWS)
8. First Workshop on Big Data Management in Clouds (BDMC)
9. Workshop on Architecture and Systems Software for Data Intensive Super-

computing
10. First Workshop on On-chip Memory Hierarchies and Interconnects: Organi-

zation, Management and Implementation (OMHI)
11. Paraphrase Workshop

The 18th Euro-Par conference in Rhodes was made possible thanks to the
support of many individuals and organizations. Special thanks are due to the
authors of all the submitted papers, the members of the Topic Committees,
and all the reviewers in all topics, for their contributions to the success of the
conference. We also thank the members of the Organizing Committee. We are
grateful to the members of the Euro-Par Steering Committee for their support.
We acknowledge the help we had from Emmanuel Jeannot of the organization
of Euro-Par 2011. It was our pleasure and honor to organize and host Euro-Par
2012 in Rhodes. We hope all the participants enjoyed the technical program and
the social events organized during the conference.

August 2012 Christos Kaklamanis
Theodore Papatheodorou

Paul Spirakis

Organization

Euro-Par Steering Committee

Chair

Chris Lengauer University of Passau, Germany

Vice-Chair

Luc Bougé ENS Cachan, France

European Representatives

José Cunha New University of Lisbon, Portugal
Marco Danelutto University of Pisa, Italy
Emmanuel Jeannot LaBRI-INRIA, France
Christos Kaklamanis Computer Technology Institute and

Press “Diophantus”, Greece
Paul Kelly Imperial College, UK
Thomas Ludwig University of Hamburg, Germany
Emilio Luque Autonomous University of Barcelona, Spain
Tomàs Margalef Autonomous University of Barcelona, Spain
Wolfgang Nagel Dresden University of Technology, Germany
Rizos Sakellariou University of Manchester, UK
Henk Sips Delft University of Technology, The Netherlands
Domenico Talia University of Calabria, Italy

Honorary Members

Ron Perrott Queen’s University Belfast, UK
Karl Dieter Reinartz University of Erlangen-Nuremberg, Germany

Observer

Felix Wolf RWTH Aachen, Germany

Euro-Par 2012 Organization

Conference Co-chairs
Christos Kaklamanis CTI and University of Patras, Greece
Theodore Papatheodorou University of Patras, Greece
Paul Spirakis CTI and University of Patras, Greece

VIII Organization

Workshop Co-chairs

Luc Bougé ENS Cachan, France
Ioannis Caragiannis CTI and University of Patras, Greece

Local Organizing Committee

Katerina Antonopoulou CTI, Greece
Stavros Athanassopoulos CTI and University of Patras, Greece
Rozina Efstathiadou CTI, Greece
Lena Gourdoupi CTI, Greece
Panagiotis Kanellopoulos CTI and University of Patras, Greece
Evi Papaioannou CTI and University of Patras, Greece

Euro-Par 2012 Program Committee

Topic 1: Support Tools and Environments

Global Chair

Omer Rana Cardiff University, UK

Local Chair

Marios Dikaiakos University of Cyprus, Cyprus

Members
Daniel Katz University of Chicago, USA
Christine Morin INRIA, France

Topic 2: Performance Prediction and Evaluation

Global Chair

Allen Malony University of Oregon, USA

Local Chair

Helen Karatza Aristotle University of Thessaloniki, Greece

Members
William Knottenbelt Imperial College London, UK
Sally McKee Chalmers University of Technology, Sweden

Topic 3: Scheduling and Load Balancing

Global Chair

Denis Trystram Grenoble Institute of Technology, France

Organization IX

Local Chair
Ioannis Milis Athens University of Economics and Business,

Greece

Members
Zhihui Du Tsinghua University, China
Uwe Schwiegelshohn TU Dortmund, Germany

Topic 4: High-Performance Architecture and Compilers

Global Chair

Alex Veidenbaum University of California, USA

Local Chair

Nektarios Koziris National Technical University of Athens, Greece

Members
Avi Mendelson Microsoft, Israel
Toshinori Sato Kyushu University, Japan

Topic 5: Parallel and Distributed Data Management

Global Chair

Domenico Talia University of Calabria, Italy

Local Chair

Alex Delis University of Athens, Greece

Members
Haimonti Dutta Columbia University, USA
Arkady Zaslavsky Lulea University of Technology, Sweden

and CSIRO, Australia

Topic 6: Grid, Cluster and Cloud Computing

Global Chair

Erik Elmroth Umea University, Sweden

Local Chair

Paraskevi Fragopoulou FORTH, Greece

X Organization

Members
Artur Andrzejak Heidelberg University, Germany
Ivona Brandic Vienna University of Technology, Austria
Karim Djemame University of Leeds, UK
Paolo Romano INESC-ID, Portugal

Topic 7: Peer-to-Peer Computing

Global Chair

Alberto Montresor University of Trento, Italy

Local Chair

Evaggelia Pitoura University of Ioannina, Greece

Members
Anwitaman Datta Nanyang Technological University, Singapore
Spyros Voulgaris Vrije Universiteit Amsterdam, The Netherlands

Topic 8: Distributed Systems and Algorithms

Global Chair

Andrzej Goscinski Deakin University, Australia

Local Chair

Marios Mavronicolas University of Cyprus, Cyprus

Members
Weisong Shi Wayne State University, USA
Teo Yong Meng National University of Singapore, Singapore

Topic 9: Parallel and Distributed Programming

Global Chair

Sergei Gorlatch University of Münster, Germany

Local Chair

Rizos Sakellariou University of Manchester, UK

Members
Marco Danelutto University of Pisa, Italy
Thilo Kielmann Vrije Universiteit Amsterdam, The Netherlands

Organization XI

Topic 10: Parallel Numerical Algorithms

Global Chair

Iain Duff Rutherford Appleton Laboratory, UK

Local Chair

Efstratios Gallopoulos University of Patras, Greece

Members
Daniela di Serafino Second University of Naples, Italy
Bora Ucar ENS, France

Topic 11: Multicore and Manycore Programming

Global Chair

Eduard Ayguade Technical University of Catalonia, Spain

Local Chair
Dionisios Pnevmatikatos Technical University of Crete and FORTH,

Greece

Members
Rudolf Eigenmann Purdue University, USA
Mikel Luján University of Manchester, UK
Sabri Pllana University of Vienna, Austria

Topic 12: Theory and Algorithms for Parallel Computation

Global Chair

Geppino Pucci University of Padova, Italy

Local Chair

Christos Zaroliagis CTI and University of Patras, Greece

Members
Kieran Herley University College Cork, Ireland
Henning Meyerhenke Karlsruhe Institute of Technology, Germany

Topic 13: High-Performance Network and Communication

Global Chair

Chris Develder Ghent University, Belgium

XII Organization

Local Chair

Emmanouel Varvarigos CTI and University of Patras, Greece

Members
Admela Jukan Technical University of Braunschweig, Germany
Dimitra Simeonidou University of Essex, UK

Topic 14: Mobile and Ubiquitous Computing

Global Chair

Paolo Santi IIT-CNR, Italy

Local Chair

Sotiris Nikoletseas CTI and University of Patras, Greece

Members
Cecilia Mascolo University of Cambridge, UK
Thiemo Voigt SICS, Sweden

Topic 15: High-Performance and Scientific Applications

Global Chair

Thomas Ludwig University of Hamburg, Germany

Local Chair

Costas Bekas IBM Zurich, Switzerland

Members
Alice Koniges Lawrence Berkeley National Laboratory, USA
Kengo Nakajima University of Tokyo, Japan

Topic 16: GPU and Accelerators Computing

Global Chair

Alex Ramirez Technical University of Catalonia, Spain

Local Chair

Dimitris Nikolopoulos University of Crete and FORTH, Greece

Organization XIII

Members
David Kaeli Northeastern University, USA
Satoshi Matsuoka Tokyo Institute of Technology, Japan

Euro-Par 2012 Referees

Luca Abeni
Shoaib Akram
Jay Alameda
Susanne Albers
Marco Aldinucci
Ahmed Ali-ElDin
Srinivas Aluru
Ganesh Ananthanarayanan
Nikos Anastopoulos
Eric Angel
Constantinos Marios Angelopoulos
Ashiq Anjum
Mohammad Ansari
Alexandros Antoniadis
Christos Antonopoulos
Filipe Araujo
Django Armstrong
Cedric Augonnet
Win Than Aung
Aurangeb Aurangzeb
Scott Baden
Rosa M. Badia
Hansang Bae
Enes Bajrovic
Henri Bal
Harish Balasubramanian
Michael Bane
Leonardo Bautista Gomez
Ewnetu Bayuh Lakew
Tom Beach
Vicenç Beltran
Julien Bernard
Carlo Bertolli
Rob Bisseling
Luiz Bittencourt
Filip Blagojevic
François Bodin
Erik Boman
Sara Bouchenak

Steven Brandt
Ivan Breskovic
Patrick Bridges
Christopher Bun
Daniele Buono
Kevin Burrage
Alfredo Buttari
Javier Cabezas
Rosario Cammarota
Sonia Campa
Edouard Canot
Paul Carpenter
Daniel Cederman
Eugenio Cesario
Nicholas Chaimov
Kang Chen
Zhongliang Chen
Mosharaf Chowdhury
Chunbo Chu
Murray Cole
Carmela Comito
Guojing Cong
Fernando Costa
Maria Couceiro
Adrian Cristal
Ruben Cuevas Rumin
Yong Cui
Pasqua D’Ambra
Gabriele D’Angelo
Patrizio Dazzi
Usman Dastgeer
Ewa Deelman
Karen Devine
Diego Didona
Ngoc Dinh
Julio Dondo Gazzano
Nam Duong
Alejandro Duran
Ismail El Helw

XIV Organization

Kaoutar El Maghraoui
Robert Elsaesser
Vincent Emeakaroha
Toshio Endo
Daniel Espling
Montse Farreras
Renato Figueiredo
Salvatore Filippone
Wan Fokkink
Alexander Fölling
Agostino Forestiero
Edgar Gabriel
Giulia Galbiati
Saurabh Garg
Michael Garland
Rong Ge
Bugra Gedik
Isaac Gelado
Michael Gerndt
Aristotelis Giannakos
Lee Gillam
Luc Giraud
Sarunas Girdzijauskas
Harald Gjermundrod
Alfredo Goldman
Zeus Gómez Marmolejo
Georgios Goumas
Anastasios Gounaris
Vincent Gramoli
Clemens Grelck
Christian Grimme
Alessio Guerrieri
Ajay Gulati
Panagiotis Hadjidoukas
Eyad Hailat
Tim Harris
Piyush Harsh
Masae Hayashi
Jiahua He
Yuxiong He
Bruce Hendrickson
Pieter Hijma
Torsten Hoefler
Matthias Hofmann
Christian Hoge

Jonathan Hogg
Theus Hossmann
Nathanael Hübbe
Kevin Huck
Sascha Hunold
Felix Hupfeld
Nikolas Ioannou
Thomas Jahns
Klaus Jansen
Aubin Jarry
Bahman Javadi
Yvon Jegou
Ming Jiang
Hideyuki Jitsumoto
Fahed Jubair
Vana Kalogeraki
Yoshikazu Kamoshida
Takahiro Katagiri
Randy Katz
Richard Kavanagh
Stamatis Kavvadias
Kamer Kaya
Gabor Kecskemeti
Safia Kedad-Sidhoum
Ian Kelley
Paul Kelly
Markus Kemmerling
Rajkumar Kettimuthu
Le Duy Khanh
Peter Kilpatrick
Taesu Kim
Mariam Kiran
Nicolaj Kirchhof
Thomas Kirkham
Luc Knockaert
Takeshi Kodaka
Panagiotis Kokkinos
Charalampos Konstantopoulos
Ulrich Körner
Christos Kotselidis
Nektarios Kranitis
Michael Kuhn
Manaschai Kunaseth
Julian Martin Kunkel
Krzysztof Kurowski

Organization XV

Okwan Kwon
Felix Langner
Francis Lau
Adrien Lèbre
Chee Wai Lee
Pierre Lemarinier
Hermann Lenhart
Ilias Leontiadis
Dimitrios Letsios
Dong Li
Wubin Li
Youhuizi Li
John Linford
Luong Ba Linh
Nicholas Loulloudes
João Lourenço
Hatem Ltaief
Dajun Lu
Drazen Lucanin
Giorgio Lucarelli
Ewing Lusk
Spyros Lyberis
Maciej Machowiak
Sandya Mannarswamy
Osni Marques
Maxime Martinasso
Xavier Martorell
Naoya Maruyama
Lukasz Masko
Toni Mastelic
Carlo Mastroianni
Michael Maurer
Gabriele Mencagli
Massimiliano Meneghin
Mohand Mezmaz
George Michael
Milan Mihajlovic
Timo Minartz
Perhaad Mistry
Bernd Mohr
Matteo Mordacchini
Benjamin Moseley
Dheya Mustafa
Hironori Nakajo
Franco Maria Nardini

Rammohan Narendula
Sarfraz Nawaz
Zsolt Nemeth
Tung Nguyen
Bogdan Nicolae
Vincenzo Nicosia
Konstantinos Nikas
Andy Nisbet
Akihiro Nomura
Akira Nukada
Richard O’Keefe
Satoshi Ohshima
Stephen Olivier
Salvatore Orlando
Per-Olov Ostberg
Linda Pagli
George Pallis
Roberto Palmieri
Costas Panagiotakis
Harris Papadakis
Andreas Papadopoulos
Manish Parashar
Nikos Parlavantzas
Jean-Louis Pazat
Sebastiano Peluso
Raffaele Perego
Miquel Pericas
Dennis Pfisterer
Bernard Philippe
Vinicius Pinheiro
Timothy Pinkston
Polyvios Pratikakis
Jan Prins
Bart Puype
Nikola Puzovic
Thanh Quach
Jean-Noel Quintin
Yann Radenac
M. Mustafa Rafique
Kees Reeuwijk
Laurent Réveillère
Olivier Richard
Thomas Ropars
Mathis Rosenhauer
Barry Rountree

XVI Organization

Mema Roussopoulos
Krzysztof Rzadca
Amit Sabne
P. Sadayappan
Putt Sakdhnagool
Friman Sánchez
Carlos Alberto Alonso Sanches
Martin Sandrieser
Vijay Saraswat
Hitoshi Sato
Kento Sato
Thomas Sauerwald
Philip Schill
Elad Schiller
Scott Schneider
Mina Sedaghat
Kenshu Seto
Aamir Shafi
Jawwad Shamsi
Rajesh Sharma
Sameer Shende
Jinsong Shi
Jun Shirako
Yogesh Simmhan
Fabrizio Sivestri
Martin Skutella
Georgios Smaragdakis
Ismael Solis Moreno
Michael Spear
Jochen Speck
Ivor Spence
Cliff Stein
Mark Stillwell
John Stone
John Stratton
Petter Svärd
David Swanson
Guangming Tan
Yoshio Tanaka
Osamu Tatebe
Marc Tchiboukdjian
Samuel Thibault
Alex Tiskin
Rubén Titos
Hiroyuki Tomiyama

Massimo Torquati
Raul Torres
Pedro Trancoso
Paolo Trunfio
Hong-Linh Truong
Konstantinos Tsakalozos
Tomoaki Tsumura
Bogdan Marius Tudor
Rafael Ubal
Yash Ukidave
Osman Unsal
Philipp Unterbrunner
Jacopo Urbani
Marian Vajtersic
Rob van Nieuwpoort
Ben van Werkhoven
Hans Vandierendonck
Xavier Vasseur
Lúıs Veiga
Ioannis Venetis
Salvatore Venticinque
Vassilis Verroios
Kees Verstoep
Llúıs Vilanova
Frederic Vivien
David Walker
Edward Walker
John Walters
Lúıs Wanderley Góes
Jun Wang
Xinqi Wang
Ian Watson
Marc Wiedemann
Tong Wieqin
Adam Wierzbicki
Martin Wimmer
Justin Wozniak
Di Wu
Yong Xia
Wei Xing
Lei Xu
Gagarine Yaikhom
Ayse Yilmazer
Yitong Yin
Ossama Younis

Organization XVII

Matei Zaharia
Mohamed Zahran
Jidong Zhai
Guoxing Zhan
Haibo Zhang
Sen Zhang
Yunquan Zhang

Zhao Zhang
Aqun Zhao
Dali Zhao
Gengbin Zheng
Wei Zheng
Eugenio Zimeo
Michaela Zimmer

Table of Contents

Invited Talk

Selfish Distributed Optimization . 1
Burkhard Monien and Christian Scheideler

Topic 1: Support Tools and Environments

Introduction . 3
Omer Rana, Marios Dikaiakos, Daniel S. Katz, and Christine Morin

Tulipse: A Visualization Framework for User-Guided Parallelization 4
Yi Wen Wong, Tomasz Dubrownik, Wai Teng Tang,
Wen Jun Tan, Rubing Duan, Rick Siow Mong Goh, Shyh-hao Kuo,
Stephen John Turner, and Weng-Fai Wong

Enabling Cloud Interoperability with COMPSs . 16
Fabrizio Marozzo, Francesc Lordan, Roger Rafanell, Daniele Lezzi,
Domenico Talia, and Rosa M. Badia

Pattern-Independent Detection of Manual Collectives in MPI
Programs . 28

Alexandru Calotoiu, Christian Siebert, and Felix Wolf

A Type-Based Approach to Separating Protocol from Application
Logic: A Case Study in Hybrid Computer Programming 40

Geoffrey C. Hulette, Matthew J. Sottile, and Allen D. Malony

Topic 2: Performance Prediction and Evaluation

Introduction . 52
Allen D. Malony, Helen Karatza, William Knottenbelt, and
Sally McKee

Energy Consumption Modeling for Hybrid Computing 54
Ami Marowka

HPC File Systems in Wide Area Networks: Understanding the
Performance of Lustre over WAN . 65

Alvaro Aguilera, Michael Kluge, Thomas William, and
Wolfgang E. Nagel

XX Table of Contents

Understanding I/O Performance Using I/O Skeletal Applications 77
Jeremy Logan, Scott Klasky, Hasan Abbasi, Qing Liu,
George Ostrouchov, Manish Parashar, Norbert Podhorszki,
Yuan Tian, and Matthew Wolf

ASK: Adaptive Sampling Kit for Performance Characterization 89
Pablo de Oliveira Castro, Eric Petit, Jean Christophe Beyler, and
William Jalby

CRAW/P: A Workload Partition Method for the Efficient Parallel
Simulation of Manycores . 102

Shuai Jiao, Paolo Ienne, Xiaochun Ye, Da Wang,
Dongrui Fan, and Ninghui Sun

Topic 3: Scheduling and Load Balancing

Introduction . 115
Denis Trystram, Ioannis Milis, Zhihui Du, and Uwe Schwiegelshohn

Job Scheduling Using Successive Linear Programming Approximations
of a Sparse Model . 116

Stephane Chretien, Jean-Marc Nicod, Laurent Philippe,
Veronika Rehn-Sonigo, and Lamiel Toch

Speed Scaling on Parallel Processors with Migration 128
Eric Angel, Evripidis Bampis, Fadi Kacem, and Dimitrios Letsios

Dynamic Distributed Scheduling Algorithm for State Space Search 141
Ankur Narang, Abhinav Srivastava, Ramnik Jain, and
R.K. Shyamasundar

Using Load Information in Work-Stealing on Distributed Systems with
Non-uniform Communication Latencies . 155

Vladimir Janjic and Kevin Hammond

Energy Efficient Frequency Scaling and Scheduling for Malleable
Tasks . 167

Peter Sanders and Jochen Speck

Scheduling MapReduce Jobs in HPC Clusters . 179
Marcelo Veiga Neves, Tiago Ferreto, and César De Rose

A Job Scheduling Approach for Multi-core Clusters Based on Virtual
Malleability . 191

Gladys Utrera, Siham Tabik, Julita Corbalan, and Jesús Labarta

Table of Contents XXI

Topic 4: High-Performance Architecture and
Compilers

Introduction . 204
Alex Veidenbaum, Nectarios Koziris, Toshinori Sato, and
Avi Mendelson

Dynamic Last-Level Cache Allocation to Reduce Area and Power
Overhead in Directory Coherence Protocols . 206

Mario Lodde, Jose Flich, and Manuel E. Acacio

A Practical Approach to DOACROSS Parallelization 219
Priya Unnikrishnan, Jun Shirako, Kit Barton, Sanjay Chatterjee,
Raul Silvera, and Vivek Sarkar

Exploiting Semantics of Virtual Memory to Improve the Efficiency of
the On-Chip Memory System . 232

Bin Li, Zhen Fang, Li Zhao, Xiaowei Jiang, Lin Li,
Andrew Herdrich, Ravishankar Iyer, and Srihari Makineni

From Serial Loops to Parallel Execution on Distributed Systems 246
George Bosilca, Aurelien Bouteiller, Anthony Danalis,
Thomas Herault, and Jack Dongarra

Topic 5: Parallel and Distributed Data Management

Introduction . 258
Domenico Talia, Alex Delis, Haimonti Dutta, and Arkady Zaslavsky

DS-Means: Distributed Data Stream Clustering . 260
Alessio Guerrieri and Alberto Montresor

3D Inverted Index with Cache Sharing for Web Search Engines 272
Esteban Feuerstein, Veronica Gil-Costa, Mauricio Marin,
Gabriel Tolosa, and Ricardo Baeza-Yates

Quality-of-Service for Consistency of Data Geo-replication in Cloud
Computing . 285

Sérgio Esteves, João Silva, and Lúıs Veiga

A Fault-Tolerant Cache Service for Web Search Engines: RADIC
Evaluation . 298

Carlos Gómez-Pantoja, Dolores Rexachs, Mauricio Marin, and
Emilio Luque

XXII Table of Contents

Topic 6: Grid, Cluster and Cloud Computing

Introduction . 311
Erik Elmroth, Paraskevi Fragopoulou, Artur Andrzejak,
Ivona Brandic, Karim Djemame, and Paolo Romano

Scalable Reed-Solomon-Based Reliable Local Storage for HPC
Applications on IaaS Clouds . 313

Leonardo Bautista Gomez, Bogdan Nicolae, Naoya Maruyama,
Franck Cappello, and Satoshi Matsuoka

Caching VM Instances for Fast VM Provisioning: A Comparative
Evaluation . 325

Pradipta De, Manish Gupta, Manoj Soni, and Aditya Thatte

Improving Scheduling Performance Using a Q-Learning-Based Leasing
Policy for Clouds . 337

Alexander Fölling and Matthias Hofmann

Impact of Variable Priced Cloud Resources on Scientific Workflow
Scheduling . 350

Simon Ostermann and Radu Prodan

Topic 7: Peer to Peer Computing

Introduction . 363
Alberto Montresor, Evaggelia Pitoura, Anwitaman Datta, and
Spyros Voulgaris

ID-Replication for Structured Peer-to-Peer Systems 364
Tallat M. Shafaat, Bilal Ahmad, and Seif Haridi

Changing the Unchoking Policy for an Enhanced Bittorrent 377
Vaggelis Atlidakis, Mema Roussopoulos, and Alex Delis

Peer-to-Peer Multi-class Boosting . 389
István Hegedűs, Róbert Busa-Fekete, Róbert Ormándi,
Márk Jelasity, and Balázs Kégl

Topic 8: Distributed Systems and Algorithms

Introduction . 401
Andrzej Goscinski, Marios Mavronicolas, Weisong Shi, and
Teo Yong Meng

Towards Load Balanced Distributed Transactional Memory 403
Gokarna Sharma and Costas Busch

Table of Contents XXIII

CUDA-For-Clusters: A System for Efficient Execution of CUDA
Kernels on Multi-core Clusters . 415

Raghu Prabhakar, R. Govindarajan, and Matthew J. Thazhuthaveetil

From a Store-Collect Object and Ω to Efficient Asynchronous
Consensus . 427

Michel Raynal and Julien Stainer

An Investigation into the Performance of Reduction Algorithms under
Load Imbalance . 439

Petar Marendić, Jan Lemeire, Tom Haber, Dean Vučinić, and
Peter Schelkens

Achieving Reliability in Master-Worker Computing via Evolutionary
Dynamics . 451

Evgenia Christoforou, Antonio Fernández Anta, Chryssis Georgiou,
Miguel A. Mosteiro, and Angel (Anxo) Sánchez

Topic 9: Parallel and Distributed Programming

Introduction . 464
Sergei Gorlatch, Rizos Sakellariou, Marco Danelutto, and
Thilo Kielmann

Dynamic Thread Mapping Based on Machine Learning for Transactional
Memory Applications . 465

Márcio Castro, Lúıs Fabŕıcio Wanderley Góes,
Luiz Gustavo Fernandes, and Jean-François Méhaut

A Checkpoint-on-Failure Protocol for Algorithm-Based Recovery in
Standard MPI . 477

Wesley Bland, Peng Du, Aurelien Bouteiller, Thomas Herault,
George Bosilca, and Jack Dongarra

Hierarchical Partitioning Algorithm for Scientific Computing on Highly
Heterogeneous CPU + GPU Clusters . 489

David Clarke, Aleksandar Ilic, Alexey Lastovetsky, and Leonel Sousa

Encapsulated Synchronization and Load-Balance in Heterogeneous
Programming . 502

Yuri Torres, Arturo Gonzalez-Escribano, and Diego Llanos

Transactional Access to Shared Memory in StarSs, a Task Based
Programming Model . 514

Rahulkumar Gayatri, Rosa M. Badia, Eduard Ayguade,
Mikel Luján, and Ian Watson

On-the-Fly Task Execution for Speeding Up Pipelined MapReduce 526
Diana Moise, Gabriel Antoniu, and Luc Bougé

XXIV Table of Contents

Assessing the Performance and Scalability of a Novel Multilevel
K-Nomial Allgather on CORE-Direct Systems . 538

Joshua S. Ladd, Manjunath Gorentla Venkata,
Richard Graham, and Pavel Shamis

Topic 10: Parallel Numerical Algorithms

Introduction . 550
Iain Duff, Efstratios Gallopoulos, Daniela di Serafino, and Bora Ucar

Avoiding Communication through a Multilevel LU Factorization 551
Simplice Donfack, Laura Grigori, and Amal Khabou

Locality Improvement of Data-Parallel Adams–Bashforth Methods
through Block-Based Pipelining of Time Steps . 563

Matthias Korch

Parallel SOR for Solving the Convection Diffusion Equation Using
GPUs with CUDA . 575

Yiannis Cotronis, Elias Konstantinidis, Maria A. Louka, and
Nikolaos M. Missirlis

Topic 11: Multicore and Manycore Programming

Introduction . 587
Eduard Ayguade, Dionisios Pnevmatikatos, Rudolf Eigenmann,
Mikel Luján, and Sabri Pllana

Efficient Support for In-Place Metadata in Transactional Memory 589
Ricardo J. Dias, Tiago M. Vale, and João M. Lourenço

Folding of Tagged Single Assignment Values for Memory-Efficient
Parallelism . 601

Dragoş Sb̂ırlea, Kathleen Knobe, and Vivek Sarkar

High-Level Support for Pipeline Parallelism on Many-Core
Architectures . 614

Siegfried Benkner, Enes Bajrovic, Erich Marth, Martin Sandrieser,
Raymond Namyst, and Samuel Thibault

Node.Scala: Implicit Parallel Programming for High-Performance Web
Services . 626

Daniele Bonetta, Danilo Ansaloni, Achille Peternier,
Cesare Pautasso, and Walter Binder

Task-Parallel Programming on NUMA Architectures 638
Christian Terboven, Dirk Schmidl, Tim Cramer, and Dieter an Mey

Table of Contents XXV

Speeding Up OpenMP Tasking . 650
Spiros N. Agathos, Nikolaos D. Kallimanis, and
Vassilios V. Dimakopoulos

An Efficient Unbounded Lock-Free Queue for Multi-core Systems 662
Marco Aldinucci, Marco Danelutto, Peter Kilpatrick,
Massimiliano Meneghin, and Massimo Torquati

Topic 12: Theory and Algorithms for Parallel
Computation

Introduction . 674
Geppino Pucci, Christos Zaroliagis, Kieran T. Herley, and
Henning Meyerhenke

A Lower Bound Technique for Communication on BSP with Application
to the FFT . 676

Gianfranco Bilardi, Michele Scquizzato, and Francesco Silvestri

A Fast Parallel Algorithm for Minimum-Cost Small Integral Flows 688
Andrzej Lingas and Mia Persson

Topic 13: High Performance Network and
Communication

Introduction . 700
Chris Develder, Emmanouel Varvarigos, Admela Jukan, and
Dimitra Simeonidou

Topology Configuration in Hybrid EPS/OCS Interconnects 701
Konstantinos Christodoulopoulos, Marco Ruffini,
Donal O’Mahony, and Kostas Katrinis

Towards an Efficient Fat–Tree Like Topology . 716
D. Bermúdez Garzón, C. Gómez, M.E. Gómez, P. López, and
J. Duato

An Adaptive, Scalable, and Portable Technique for Speeding Up
MPI-Based Applications . 729

Rosa Filgueira, Malcolm Atkinson, Alberto Nuñez, and
Javier Fernández

Cost-Effective Contention Avoidance in a CMP with Shared Memory
Controllers . 741

Samuel Rodrigo, Frank Olaf Sem-Jacobsen, Hervé Tatenguem,
Tor Skeie, and Davide Bertozzi

XXVI Table of Contents

Topic 14: Mobile and Ubiquitous Computing

Introduction . 753
Paolo Santi, Sotiris Nikoletseas, Cecilia Mascolo, and Thiemo Voigt

Watershed-Based Clustering for Energy Efficient Data Gathering in
Wireless Sensor Networks with Mobile Collector . 754

Charalampos Konstantopoulos, Basilis Mamalis,
Grammati Pantziou, and Vasileios Thanasias

Distribution of Liveness Property Connectivity Interval in Selected
Mobility Models of Wireless Ad Hoc Networks . 767

Jerzy Brzeziński, Micha�l Kalewski, Marcin Kosiba, and Marek Libuda

Topic 15: High Performance and Scientific
Applications

Introduction . 779
Thomas Ludwig, Costas Bekas, Alice Koniges, and Kengo Nakajima

Memory-Access Optimization of Parallel Molecular Dynamics
Simulation via Dynamic Data Reordering . 781

Manaschai Kunaseth, Ken-ichi Nomura, Hikmet Dursun,
Rajiv K. Kalia, Aiichiro Nakano, and Priya Vashishta

On Analyzing Quality of Data Influences on Performance of Finite
Elements Driven Computational Simulations . 793

Michael Reiter, Hong-Linh Truong, Schahram Dustdar,
Dimka Karastoyanova, Robert Krause, Frank Leymann, and
Dieter Pahr

Performance Evaluation and Optimization of Nested High Resolution
Weather Simulations . 805

Preeti Malakar, Vaibhav Saxena, Thomas George, Rashmi Mittal,
Sameer Kumar, Abdul Ghani Naim, and Saiful Azmi bin Hj Husain

Optimized Hybrid Parallel Lattice Boltzmann Fluid Flow Simulations
on Complex Geometries . 818

Jonas Fietz, Mathias J. Krause, Christian Schulz,
Peter Sanders, and Vincent Heuveline

Topology-Aware Mappings for Large-Scale Eigenvalue Problems 830
Hasan Metin Aktulga, Chao Yang, Esmond G. Ng,
Pieter Maris, and James P. Vary

Fast and Effective Lossy Compression Algorithms for Scientific
Datasets . 843

Jeremy Iverson, Chandrika Kamath, and George Karypis

Table of Contents XXVII

Topic 16: GPU and Accelerators Computing

Introduction . 857
Alex Ramirez, Dimitrios S. Nikolopoulos, David Kaeli, and
Satoshi Matsuoka

OpenACC — First Experiences with Real-World Applications 859
Sandra Wienke, Paul Springer, Christian Terboven, and
Dieter an Mey

accULL: An OpenACC Implementation with CUDA and OpenCL
Support . 871

Ruymán Reyes, Iván López-Rodŕıguez, Juan J. Fumero, and
Francisco de Sande

Understanding the Performance of Concurrent Data Structures on
Graphics Processors . 883

Daniel Cederman, Bapi Chatterjee, and Philippas Tsigas

A New Programming Paradigm for GPGPU . 895
Julio Toss and Thierry Gautier

GPU-Accelerated Asynchronous Error Correction for Mixed Precision
Iterative Refinement . 908

Hartwig Anzt, Piotr Luszczek, Jack Dongarra, and Vincent Heuveline

GPURoofline: A Model for Guiding Performance Optimizations on
GPUs . 920

Haipeng Jia, Yunquan Zhang, Guoping Long, Jianliang Xu,
Shengen Yan, and Yan Li

Building a Collision for 75-Round Reduced SHA-1 Using GPU
Clusters . 933

Andrew V. Adinetz and Evgeny A. Grechnikov

GPU-Vote: A Framework for Accelerating Voting Algorithms on
GPU . 945

Gert-Jan van den Braak, Cedric Nugteren, Bart Mesman, and
Henk Corporaal

Author Index . 957

Selfish Distributed Optimization

Burkhard Monien and Christian Scheideler

Faculty of Computer Science, Electrical Engineering and Mathematics,
University of Paderborn, Fürstenallee 11, 33102 Paderborn, Germany

{bm,scheideler}@uni-paderborn.de

Abstract. In this talk, we present a selection of important concepts
and results in algorithmic game theory in recent years, some of which re-
ceived the 2012 Gödel Prize, along with some applications in distributed
settings.

A famous solution concept for non-cooperative games is the Nash equi-
librium. In a Nash equilibrium, no selfish player can unilaterally deviate
from his current strategy and improve his profit. Nash dynamics is a
method to compute a Nash equilibrium. Here, in each round, a single
player is allowed to perform a selfish step, i. e. unilaterally change his
strategy and improve his cost. The Nash dynamics terminates if it does
not run into a cycle. This is always the case if the game has a potential
function. In this case, computing a Nash equilibrium is a PLS problem
(Polynomial Local Search) and belongs to the large class of well-studied
local optimization problems.

Inspired by real-world networks, network congestion games have been
under severe scrutiny for the last years. Network congestion games model
selfish routing of unsplittable units. These units may be weighted or un-
weighted. Weighted congestion games do not necessarily have a pure
Nash equilibrium. Conversely, an unweighted congestion game has a po-
tential function. Computing a pure Nash equilibrium for an unweighted
congestion game is PLS-complete.

The absence of a central coordinating authority can result in a loss
of performance due to the selfishness of the participants. This situation
is formalized in the notion “Price of Anarchy”. The Price of Anarchy is
defined to be the worst case ratio between the maximal social cost in
a Nash equilibrium and the optimal social cost. We present the recent
results for congestion games and for the special case of load balancing.

Classical game theory assumes that each player acts rationally and
wants to improve his profit. This is not realistic in a distributed setting
since it requires that each player has the complete information about the
state of the system. We introduce the concept of selfish distributed load
balancing and describe recent results.

We will also consider distributed algorithms for network creation
games. In the past, network creation games have mostly been studied
under the assumption that the players have a global view on the net-
work, or more precisely, that the players are able to compute the average
distance or the maximum distance to the nodes they want to interact
with in the given network, depending on the objective function. A player
may then decide to add one or more edges for some extra cost or to drop

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 1–2, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

2 B. Monien and C. Scheideler

an edge. We will look at network creation games from a different angle.
In our case, the players have fixed distances to each other that are based
on some underlying metric (determined by, for example, the geographic
positions of the players), and the goal is to study the networks formed
if players selfishly add and remove edges based on that metric. We show
that for certain metrics like the line metric, tree metric, and the Eu-
clidean metric, certain selfish behavior, that only requires a local view of
the players on the network, will lead to stable networks that give a good
approximation of the underlying metric.

Topic 1: Support Tools and Environments

Omer Rana, Marios Dikaiakos, Daniel S. Katz, and Christine Morin

Topic Committee

Despite an impressive body of research, parallel and distributed computing re-
mains a complex task prone to subtle software issues that can affect both the
correctness and the performance of the computation. It is interesting to note
that this topic has always been listed as Topic 1 in the EuroPar conference
series for some time now – emphasising its importance and focus in the par-
allel and distributed systems community. The increasing demand to distribute
computing over large-scale parallel and distributed platforms, such as grids and
large clusters, often combined with the use of hardware accelerators, overlaps
with an increasing pressure to make computing more dependable. To address
these challenges, the parallel and distributed computing community continu-
ously requires better tools and environments to design, program, debug, test,
tune, and monitor programs that must execute over parallel and distributed
systems. This topic aims to bring together tool designers, developers and users
to share their concerns, ideas, solutions, and products covering a wide range of
platforms, including homogeneous and heterogeneous multi-core architectures.
Contributions with solid theoretical foundations and experimental validations on
production-level parallel and distributed systems were particularly valued. This
year we encouraged submissions proposing intelligent monitoring and diagnosis
tools and environments which can exploit behavioral knowledge to detect pro-
gramming bugs or performance bottlenecks and help ensure correct and efficient
parallel program execution.

Each paper was reviewed by at least three reviewers and we selected 4 papers
for the conference. It was interesting to see papers focusing on emerging themes
such as multi-core and GPUs, pattern-oriented parallel computing, deployment
over Android platform, Cloud interoperability and the use of autonomic com-
puting techniques along with papers that covered more established themes such
as program profiling, performance analysis, debugging, workflow management
and application tuning. The four selected papers cover program visualisation to
support semi-automated parallelisation, a programming model and run time en-
vironment to support application development/deployment over multiple Cloud
environments, detection of hand-crafted collective operations in MPI programs
(rather than the use of functions already provided in the MPI standard) and a
language extension (based on the use of a type system) for supporting program-
ming over accelerator architectures. The four selected papers cover a combination
of theoretical underpinnings and practical development and deployment.

We would like to thank the authors who submitted a contribution, as well as
the Euro-Par Organizing Committee, and the referees who provided useful and
timely comments.

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, p. 3, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Tulipse: A Visualization Framework

for User-Guided Parallelization

Yi Wen Wong1, Tomasz Dubrownik2, Wai Teng Tang3, Wen Jun Tan3,
Rubing Duan4, Rick Siow Mong Goh4, Shyh-hao Kuo4,

Stephen John Turner3, and Weng-Fai Wong1

1 National University of Singapore, Singapore
2 University of Warsaw, Poland

3 Nanyang Technological University, Singapore
4 Institute of High Performance Computing, A*Star, Singapore

Abstract. Parallelization of existing code for modern multicore proces-
sors is tedious as the person performing these tasks must understand the
algorithms, data structures and data dependencies in order to do a good
job. Current options available to the programmer include either auto-
matic parallelization or a complete rewrite in a parallel programming
language. However, there are limitations with these options. In this pa-
per, we propose a framework that enables the programmer to visualize
information critical for semi-automated parallelization. The framework,
called Tulipse, offers a program structure view that is augmented with
key performance information, and a loop-nest dependency view that can
be used to visualize data dependencies gathered from static or dynamic
analyses. Our paper will demonstrate how these two new perspectives
aid in the parallelization of code.

1 Introduction

As multicore and multi-node architectures become more prevalent and widely
available, programs have to be written using multiple threads to take full advan-
tage of all the cores available to them. Unfortunately, the task of multithreaded
programming remains a hard one. Programmers are required to take more factors
into account to write code that is both correct and that has good performance
at the same time. This places a great burden on application developers, not all
of whom may be as proficient in parallel programming as would be required.

Furthermore, it is increasingly difficult for existing legacy programs to take
advantage of the multicore capabilities of these chips without resorting to a
partial or complete rewrite of the source code. However, the cost of rewriting
software is prohibitive. This problem is exacerbated by the fact that many appli-
cation domain experts who maintain the legacy codes are not parallel program-
mers. Without the domain knowledge that is required in certain applications,
it may also be difficult for programmers outside the domain to convert them
from sequential programs into multithreaded ones. This is because apart from
understanding the algorithm, the programmer performing the code modification

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 4–15, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Tulipse: A Visualization Framework for User-Guided Parallelization 5

has to understand the data structures, control flow and dependencies within the
existing application to be able to do a good job in refactoring the code.

Visualization tools such as SUIF Explorer [8] and ParaGraph [1] have been
developed to help facilitate the task of converting sequential code to parallel
code. Such tools can reduce the effort needed by the programmer to understand
the program and to make the necessary changes to parallelize it. For example,
the ParaGraph tool displays a control flow graph of a code fragment to the user,
and augments it with data dependency edges in order to help the user under-
stand the data relations between different program statements. From this visual
information, the programmer is then able to decide if the code is parallelizable
or if synchronization is needed for certain data structures. Many of these tools,
such as the ParaScope Editor [6] or ParaGraph, are also front-ends for their
corresponding parallelizing compilers. They typically provide a limited form of
visualization, usually as text output organized using tables, or in some cases, a
two-dimensional graph representation of the data of interest [1]. Furthermore,
they do not support the typical workflow a programmer goes through during the
code parallelization process. For example, the ParaScope Editor and ParaGraph
attempt to parallelize all the loops found within a program regardless of their
suitability.

In this paper, we will describe an integrated visualization framework for par-
allelization that we have developed called Tulipse. The guiding principle behind
the design is to simplify the workflow for parallelizing a program through an
integrated visualization environment, and to provide visually useful information
for the parallelizing process. This can be accomplished by the following capabil-
ities. First, it consists of a graphical view that allows the user to visualize the
global structure of an application by displaying procedures and loops hierarchi-
cally. Profiler measurements which indicate code sections that take up a large
amount of the execution time can be overlaid in the graphical view. Second, a
three dimensional view is provided to help the programmer visualize the data
dependencies within a code section. It also allows the user to navigate through
the view interactively. Through these capabilities, the programmer would then
make an informed decision to effect the necessary code changes that will enable
the parallelization of the application.

The framework is designed to involve the programmer in the parallelization
workflow. This is because the programmer’s knowledge about the code will be
useful during the parallelization process. In addition, he is ultimately responsible
for maintaining the application, and therefore may want to have finer control over
code changes. Tulipse provides the following features to support semi-automatic
code parallelization: (1) it is a visualization framework written in Java for the
Eclipse IDE. In doing so, not only are all the facilities of the Eclipse IDE available
to the programmers, the framework can also be extended with new visualiza-
tion plug-ins; (2) it integrates a profiling and measurement tool that can be
used to instrument the application under study. It can, for example, be used
to find out which loops dominate execution time or have many cache misses.

6 Y.W. Wong et al.

The programmer can then focus his attention on these hotspots, where even
small improvements can have a significant impact on the overall execution time;
(3) it provides a way to visualize data dependencies in the application through
the use of a three-dimensional visualizer. The programmer can also animate,
and walk-through the index space to obtain a better understanding of the data
dependences. This allows the programmer to experiment with different ways of
parallelizing the code; (4) it inserts OpenMP directives [9] into code which is
found to be parallelizable using static and dynamic analyses, allowing the user to
focus his attention on code sections which cannot be automatically parallelized.

The rest of the paper is organized as follows: Sect. 2 gives an overview of
Tulipse and its capabilities. Section 3 presents examples on the usage of the
visualization capabilities of Tulipse. Section 4 discusses prior work that is related
and Sect. 5 concludes the paper.

2 Overview of Tulipse

The guiding principle behind the design of Tulipse is to offer to the programmer
as much help as possible in the parallelization process. It does not attempt
to anticipate the programmer’s intent, but rather, allows the programmer to
make the important decisions with respect to the code changes. It does this
by providing sufficient visual feedback for the programmer to identify the best
way to proceed with the parallelization. In this way, it gives the programmer
control over the way the code is modified. In order to achieve these goals, two
visualization capabilities are supported in Tulipse: the Loop-Procedure View and
the Data Dependency View. Figure 1 shows these two views embedded in an
instance of the Eclipse editor. The top panel displays the Loop-Procedure View,
while the bottom-left panel shows a code editor and the bottom-right panel
shows the Data Dependency View.

The workflow supported by Tulipse is shown in Fig. 2. An application is im-
ported and loaded into the Eclipse IDE. Through the Loop-Procedure View,
the user gets a hierarchical view of the whole application represented by pro-
cedures and loops that are defined in all of the project’s source files. Next, the
project is compiled and built with instrumentation automatically inserted into
the application binary so that run-time statistics can be collected using hardware
performance counters. The run-time statistics gathered from the profiling run
is then overlaid onto this view. The user can choose to see, for example, which
procedures or loops took up a large proportion of the overall execution time, or
experienced a significant number of cache misses. The user can then focus his
attention on these parts of the code using the Data Dependency View. This is
a three-dimensional perspective of the data dependences within a code section.
Through interactive visualization, it allows the user to decide whether the code
can be effectively parallelized or tuned. The process can be repeated until the
user is satisfied with the changes.

Tulipse: A Visualization Framework for User-Guided Parallelization 7

Fig. 1. A screenshot of the Tulipse plug-in in the Eclipse development platform

Import project View LPHG in Loop-
Procedure View Compile and profile

Identify hotspots on
LPHG

Identify dependencies
in Data Dependency

View
Modify code

Fig. 2. Workflow of parallelization process

2.1 Loop-Procedure View

This view presents the user with visual information on the application’s
overall structure. In this view, a Loop-Procedure Hierarchy Graph (LPHG) is
constructed for the entire application project. This is essentially a call-graph em-
bedded with loop nest relations obtained from the application source files. For
example, Fig. 3 shows the LPHG for the SPEC2006 470.lbm benchmark appli-
cation [12]. The inset in the figure shows a zoomed-in image of the hotspots.
The square-shaped nodes denote procedure definitions, and the ellipse-shaped
nodes denote loops. Edges into a procedure node represent calling instances to
that procedure. An edge from a procedure to a loop indicates that the loop is
defined within the procedure. An edge from a loop to another loop indicates that
the latter is nested in the former. There may be multiple incoming edges for a
procedure, indicating multiple calling instances of the same procedure. However,

8 Y.W. Wong et al.

there will only be exactly one incoming edge for a loop since there can only be
one definition of the loop residing either within a procedure or within another
loop. Recursive procedures create cycles in the graph. Nodes which are grouped
within a box belong to the same source file.

We integrated HPCToolkit [4] into our visualization framework to simplify
run-time performance measurement for the user. HPCToolkit uses hardware
counters provided by the underlying microprocessor to measure performance
metrics for identifying performance bottlenecks during program execution. Al-
though only HPCToolkit is currently supported by Tulipse, it is relatively easy
to add support for other measurement tools such as Tau [13]. Profile measure-
ments of the application taken by the performance measurement component can
be overlaid on the LPHG in the Loop-Procedure View. Different measurement
metrics can be selected for the overlay. Customized metrics can also be con-
structed using the base measurement metrics. The metric values are normalized
and mapped to a default color gradient from red to white, where red indicates
‘hot’ while white indicates ‘cold’. The respective nodes on the LPHG, including
both procedure definition and loop information, are colored according to this
mapping.

Profile measurements are loaded into the view by accessing the view menu
in the Loop-Procedure View. Different metrics can be overlaid on the LPHG
through the Load Overlay menu, including base metrics from the profile mea-
surements as well as user-specified derived metrics. A derived metric is essentially
a formula constructed by applying operators on metrics and numerical constants.
It is also possible to specify a custom color gradient to identify different ranges.
For example, the user may want to highlight metric values ranging from 50%
to 100% as hotspots, instead of just the top 10%. This can be adjusted using
a different color gradient with a larger range for the hotspots. By inspecting
the overlaid LPHG, the programmer will be able to identify problematic code
regions quickly, and focus his attention on them. By accessing a context menu,
we provide the user with the ability to target a code fragment of a problem node
through the code editor, or to visualize it through the Data Dependency View.

Fig. 3. Loop-Procedure View overlaid with performance measurements

Tulipse: A Visualization Framework for User-Guided Parallelization 9

2.2 Three-Dimensional Data Dependency View

The 3D Data Dependency View provides a way for programmers to interactively
explore the code’s data layout as well as the parallelization options for the loop
nests. This view can be launched directly from the Loop-Procedure View by se-
lecting a hotspot. In this view, the iteration spaces of loops within a procedure are
visualized. Statements in the loops are mapped to a higher dimensional space
based on the polyhedral model [3]. Each statement has a domain determined
from its enclosing control statement. Its upper and lower bounds are extracted
from the enclosing loops, and intersected with the domains of conditional state-
ments to obtain a system of linear constraints that defines a polyhedron. The
polyhedron in this space is projected into the 3D world space for visualization.

Loop nests do not necessarily have to be tightly nested and dependencies can
cross loop boundaries. There is no limit on the level of nesting. By selecting a
loop in the code panel, the visualizer will highlight the associated domains of the
all enclosed statements within the loop. This reduces clutter in the visualization.
The data dependencies are currently obtained by static analysis and dynamic
analysis built into the framework. The analyses yield flow dependence (read after
write), output dependence (write after write), and anti-dependences (write after
read). Each dependency is represented by an arrow drawn between the projected
coordinates of the source and target statement instance in the 3D world space.
Static analysis of dependencies is conservative in order to guarantee correctness,
thus dependencies may be over-reported. On the other hand, dependencies ob-
tained by dynamic analysis are dependent on the execution instance and may

Program Structure
View

Selected statement
instance

Statement
domain

Dependencies

Fig. 4. Selection of a statement instance (line 8, iteration (i = 4, r = 5, k = 8)) in the
Data Dependency View. Blue arrows indicate the dependences of this instance. Pink
arrows show which statements are dependent on the selected instance.

10 Y.W. Wong et al.

be input-dependent. However, it can obtain dependencies in cases where static
analysis is difficult or impossible, such as code involving pointer arithmetic.

Initially, the convex hulls corresponding to each statement domain are shown
to the user, with each statement using a different color. As the user zooms in,
statement instances and data dependencies (represented by cubes and arrows)
become visible to the user. This constrains the amount of information that is
shown to the user at any one time. Furthermore, users can use the mouse to
obtain more information about each point of interest, e.g. the dependencies of a
particular statement instance in the iteration space, or which specific statement
instances are responsible for a particular dependency (see Fig. 4), by clicking on
a node or an arrow in the view. This view also provides additional features that
allow users to further understand the code, and reason about the parallelization
options. For example, users can step through the iteration space either manually
or via animation to visualize the execution order of the statement instances. This
allows users to see the dependencies as they are generated during execution, and
to visually inspect if parallelization of certain loops are safe.

As a convenience to users, hints that depict parallel loops are provided by
the visualization engine by drawing a set of hyperplanes on top of the view. In
general, the equations for each hyperplane are specified as a set of constraints
such that statement instances that fall within the same plane can be executed
by the same thread. These planes are projected down to 3D space, and drawn as
an overlay on top of the polyhedral visualization. The framework also includes
an OpenMP parallelization component that assists the user in parallelizing code.
This component helps to insert OpenMP directives into the original source code
by presenting a list of parallelizable loops for the user to choose from. After
selecting the loop to parallelize, it then allows the user to modify a list of shared
and private variables that have been automatically detected. Reduction patterns
can also be detected and highlighted to the user. The modified code can be
previewed by the user before committing the changes.

3 Examples

In this section, we shall demonstrate the use of our visualization framework
on two examples. The first example is an image processing example found in
many applications. The second example is from 482.sphinx3, a speech recognition
application taken from the SPEC CPU2006 benchmark suite [12].

3.1 Anisotropic Diffusion

Anisotropic diffusion is an image noise reduction technique that is commonly
used in applications such as in ultrasound imaging or magnetic resonance imag-
ing [10]. It simulates an iterative diffusion process which is non-linear and space-
variant, and is aimed at removing image noise while at the same time preserving
important image details, especially the edges in an image. The algorithm takes a
noisy image and calculates for each pixel a set of eight values based on predefined
kernels, and then accumulates the sum of their weighted differences.

Tulipse: A Visualization Framework for User-Guided Parallelization 11

Fig. 5. Visualization of the code section in the diffuse procedure. The user can select
statements using the Program Structure View on the right to highlight the enclosing
domains. No arrows cross the planes normal to j and k axes, indicating that the j and
k loops are parallelizable.

From the Loop-Procedure View, we determined that the code section in the
diffuse procedure took up about 98% of the total execution time while the
rest is mainly due to I/O operations. Figure 5 shows the corresponding polyhe-
dral model of the code. Since there are three for-loops present, the 3D iteration
space resembles a rectangular cuboid. Each colored cube represents a state-
ment instance within the iteration space, and each arrow represents a producer-
consumer relationship between statement instances. The i, j and k axes denote
the direction of their respective loop iterations. As the implementation contains
pointer arithmetic, the dependencies were obtained using dynamic analysis. The
user can highlight a statement instance in the Data Dependency View by select-
ing the corresponding statement in the code panel on the right. By inspecting
the polyhedral model in Fig. 5, the user is able to determine that only planes
normal to the j and k axes do not have any arrows crossing them. Therefore, the
corresponding j and k loops do not have any loop-carried dependencies and are
fully parallelizable. The programmer may then select the outer loop and invoke
the OpenMP parallelization component to insert OpenMP directives to the loop.

On a Intel Core 2 Extreme Q6850 processor running at 3.00GHz and with a
512 by 512-pixel image, the OpenMP version of the code yielded close to a 4 times
speedup compared to the original single-threaded version. This is a significant
improvement because the sequential version of the code is not suitable for many
practical applications that demand real-time processing of images acquired from
sensors. The sequential form of the code could only manage about 4.2 frames

12 Y.W. Wong et al.

per second (fps), whereas the OpenMP version obtained a respectable 16.6 fps.
This improvement is significant as it will allow the algorithm to be used in many
real-time applications.

3.2 Speech Recognition System (482.sphinx3)

Sphinx-3 is a speech recognition system based on the Viterbi search algorithm
using beam search heuristics. The inputs are read initially, and the application
then processes the speech to calculate the probabilities at each recognition step
in order to prune the set of active hypothesis. We overlaid the runtime statistics
on the Loop-Procedure View and identified two hotspots. Essentially, the ap-
plication is dominated by two procedures that together account for over half of
the total runtime. The two hotspot procedures identified are mgau eval, which
accounted for 30.1% of the total cycles, and vector gautbl eval logs3, which
accounted for 24.5% of the total cycles. These two procedures also accounted for
92.9% of the total floating point instructions issued. Analysis of the source code
revealed that the two procedures are executing similar loops. As such, we shall
only present one of the procedures, mgau eval, in this paper. The procedure
consists of a two-dimensional loop with the inner loop accumulating a score for
the search probabilities.

The polyhedral model generated by the Data Dependency View is shown
in the Fig. 6. The polyhedra are two-dimensional planes, which correspond to
the two-dimensional loop. The statement represented by the gray nodes has a
flow dependence to the statement represented by the blue nodes. Within the
j iteration, the red and blues nodes have a flow dependence, as well as a loop-
carried data dependence. By inspecting Fig. 6, the user can see that it is possible

Fig. 6. Visualization of the mgau eval procedure. Loop iterations along the i axis can
be partitioned since there are no dependencies in the horizontal direction.

Tulipse: A Visualization Framework for User-Guided Parallelization 13

to partition the polyhedra in the i domain by cutting across the i axis. In other
words, one can parallelize the i loop without violating the correctness of the
code, since there are no arrows in the horizontal direction, and therefore, no
dependencies in the i direction.

4 Related Work

A number of visualization tools that target the Fortran language have been
developed over the past two decades. The ParaScope Editor [6], developed at Rice
University, allows the user to step through each loop in the program and displays
the relevant information in a two-panel window. The bottom panel displays a
list of the detected data-dependences along with the dependence vectors, as well
as other relevant details in a tabular format. The top panel displays the source
code of the current loop under consideration. It then allows the user to select
a transformation that is deemed safe to be applied to the program. NaraView
introduced an interactive 3D visualization system for aiding the parallelization
of sequential programs [11]. Of notable interest is the 3D Data Dependence
View, which displays data accesses as colored cubes and dependences as poles
connecting the cubes. However, NaraView does not perform program profiling
to determine the important loops, and does not include the ability to animate a
walk-through of the iteration space. Instead, it uses the z -axis to represent the
iteration access time and the x-y plane to denote the data location. Therefore,
visualization is limited to loops with a depth of at most two.

SUIF Explorer [8] is another interactive parallelization tool which targets both
the Fortran and C languages. It includes a Loop Profile Analyzer that identifies
the important loops that dominate the execution time. A useful feature of the
tool is that it applies inter-procedural slicing to the program to display only
the relevant lines of code to the programmer so that he can make the appro-
priate decisions. Annotations are added to the code, which are then checked
for their validity by the built-in checkers. The annotations help to enable the
parallelizing compiler to parallelize the loop. However, it does not make use of
OpenMP directives. Other tools such as Merlin [7] provide a textual representa-
tion of the program analysis to the user. It compiles the code using the Polaris
parallelizer, gathers static and dynamic execution data, then performs analysis
using “performance maps”, and finally presents diagnostics about the program
as well as suggestions on how to improve the code to the user in a textual format.
Currently, the only tool that supports 3D visualization for Fortran code is the
Iteration Space Visualizer [15].

In comparison, there are fewer visualization tools that target the C language.
The SUIF Explorer is able to perform inter-procedural analysis on C programs
by building upon the SUIF parallelizing compiler, and presents the results to the
user using program slicing. Another tool that supports C code parallelization is
ParaGraph [1]. It makes use of the Cetus compiler [2] to automatically paral-
lelize loops using OpenMP directives [9]. Alternatively, it also allows the user
to specify the directives, which it validates before attempting parallelization.

14 Y.W. Wong et al.

To our knowledge, ParaGraph is currently the only visualization tool for C that
runs as a Eclipse plug-in. However, apart from the source code outline and a
properties tab, the visualization support provided to the user consists of only
a control flow graph augmented with the dependency information in the form
of directed and dashed arrows between control blocks. Another related work is
VisualPolylib [14], which draws the polyhedral model supplied by the user. How-
ever, the user has to manually extract the model from the code and supply it to
the tool. Apart from ParaGraph, most of the tools are stand-alone front-ends,
and are not integrated with any IDEs. On the other hand, Tulipse is wholly inte-
grated in the Eclipse software development environment, which makes it highly
extensible and allows it to leverage many existing software engineering tools and
plug-ins available in the Eclipse developer framework. In addition, in using our
framework, parallelization opportunities can be identified even if the code cannot
be analyzed using static approaches, such as code involving pointer arithmetic.

The Intel Parallel Advisor [5] is closest to what our framework offers in terms
of capabilities and workflow. However there are a few major differences. First,
Intel Parallel Advisor is mostly textual. Unlike our framework, it does not pro-
vide visualization capabilities. Secondly, the workflow is different. The Advisor
requires the programmers to take a trial and error approach by guessing and
annotating parts of the code which they believe can be parallelized. The Ad-
visor then performs a trial run to detect data races. If races are detected, the
user is notified and may again attempt to identify other parallelizable sections
of the code. On the other hand, in our workflow, the data dependencies are first
obtained and then projected to 3D space to allow the user to directly identify
the parallelization opportunities.

5 Conclusions and Future Work

In this paper, we introduced Tulipse, a visualization framework for parallelization
built on top of Eclipse, with the goal of enhancing program understanding and
reducing the cognitive load of the developers in parallelizing applications.

In Tulipse, the programmer starts with a loop-procedural hierarchy graph
of the entire application using the Loop-Procedure View. This gives the user a
bird’s eye view of the application. Color coding allows for the display of selectable
performance data in this view, allowing the programmer to quickly zoom in to
the hotspots or the problem areas. Zooming in to the loop level exposes the
polyhedral view of the loop. In the Data Dependency View, the programmer
can easily correlate data dependencies found in the code by static or dynamic
analysis. This visualization also allows for the programmer to estimate the effort
involved in attempting to parallelize the loop along a particular dimension of the
iteration space. The user may invoke the OpenMP parallelization component to
aid in adding OpenMP directives to the selected loop.

Performance is but one aspect of software development. By being integrated in
a rich software development environment such as Eclipse, it gives developers ac-
cess to a wide range of tools that support their various workflows. As future work,

Tulipse: A Visualization Framework for User-Guided Parallelization 15

we shall be extending Tulipse with other parallelization and performance tuning
visualizers that will grow its functionality, for example cache usage visualization
that will help in identifying optimal data layout.We will also be investigating how
the user can carry out code transformations such as loop skewing and tiling with
the help of interactive visualization.

Acknowledgments. This work was supported by the Agency for Science, Tech-
nology and Research PSF Grant No. 102-101-0028. We are also grateful to the
anonymous reviewers for their suggestions.

References

1. Bluemke, I., Fugas, J.: A tool supporting C code parallelization. Innovations Com-
put. Sci. Soft. Eng., 259–264 (2010)

2. Dave, C., Bae, H., Min, S.J., Lee, S., Eigenmann, R., Midkiff, S.: Cetus: A source-
to-source compiler infrastructure for multicores. Computer 42, 36–42 (2009)

3. Girbal, S., Vasilache, N., Bastoul, C., Cohen, A., Parello, D., Sigler, M., Temam,
O.: Semi-automatic composition of loop transformations for deep parallelism and
memory hierarchies. Int. J. Parallel Program. 34, 261–317 (2006)

4. HPCToolkit, http://www.hpctoolkit.org
5. Intel Parallel Advisor, http://software.intel.com/en-us/
6. Kennedy, K., McKinley, K.S., Tseng, C.W.: Interactive parallel programming using

the ParaScope editor. IEEE Trans. Parallel Distrib. Syst. 2, 329–341 (1991)
7. Kim, S.W., Park, I., Eigenmann, R.: A Performance Advisor Tool for Shared-

Memory Parallel Programming. In: Midkiff, S.P., Moreira, J.E., Gupta, M., Chat-
terjee, S., Ferrante, J., Prins, J.F., Pugh, B., Tseng, C.-W. (eds.) LCPC 2000.
LNCS, vol. 2017, pp. 274–288. Springer, Heidelberg (2001)

8. Liao, S.W., Diwan, A., Bosch Jr., R.P., Ghuloum, A., Lam, M.S.: SUIF Explorer:
an interactive and interprocedural parallelizer. In: PPoPP, pp. 37–48 (1999)

9. OpenMP, http://www.openmp.org
10. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion.

IEEE Trans. Pattern Anal. Mach. Intell. 12, 629–639 (1990)
11. Sasakura, M., Joe, K., Kunieda, Y., Araki, K.: Naraview: An interactive 3D visual-

ization system for parallelization of programs. Int. J. Parallel Program. 27, 111–129
(1999)

12. SPEC CPU 2006 v1.1, http://www.spec.org
13. Tau: http://www.cs.uoregon.edu/research/tau/
14. VisualPolylib, http://icps.u-strasbg.fr/polylib/
15. Yu, Y., D’Hollander, E.H.: Loop parallelization using the 3D iteration space visu-

alizer. J. Visual Lang. Comput. 12, 163–181 (2001)

http://www.hpctoolkit.org
http://software.intel.com/en-us/
http://www.openmp.org
http://www.spec.org
http://www.cs.uoregon.edu/research/tau/
http://icps.u-strasbg.fr/polylib/

Enabling Cloud Interoperability with COMPSs

Fabrizio Marozzo3, Francesc Lordan1, Roger Rafanell1, Daniele Lezzi1,
Domenico Talia3,4, and Rosa M. Badia1,2

1 Barcelona Supercomputing Center - Centro Nacional de Supercomputación
(BSC-CNS)

{daniele.lezzi,francesc.lordan,roger.rafanell,rosa.m.badia}@bsc.es
2 Artificial Intelligence Research Institute (IIIA),
Spanish Council for Scientific Research (CSIC)

3 DEIS, University of Calabria, Rende (CS), Italy
{fmarozzo,talia}@deis.unical.it

4 ICAR-CNR, Rende (CS), Italy

Abstract. The advent of Cloud computing has given to researchers the
ability to access resources that satisfy their growing needs, which could
not be satisfied by traditional computing resources such as PCs and
locally managed clusters. On the other side, such ability, has opened
new challenges for the execution of their computational work and the
managing of massive amounts of data into resources provided by different
private and public infrastructures.

COMP Superscalar (COMPSs) is a programming framework that pro-
vides a programming model and a runtime that ease the development of
applications for distributed environments and their execution on a wide
range of computational infrastructures. COMPSs has been recently ex-
tended in order to be interoperable with several cloud technologies like
Amazon, OpenNebula, Emotive and other OCCI compliant offerings.

This paper presents the extensions of this interoperability layer to
support the execution of COMPSs applications into the Windows Azure
Platform. The framework has been evaluated through the porting of
a data mining workflow to COMPSs and the execution on an hybrid
testbed.

Keywords: Parallel programming models, Cloud computing, Data min-
ing, PaaS.

1 Introduction

The growth of cloud services and technologies has brought many advantages and
opportunities to scientific communities offering users efficient and cost-effective
solutions to their problems of lack of computational resources. Even though
the cloud paradigm does not address all the issues related to the porting and
execution of scientific applications on distributed infrastructures, it is widely
recognized that, through clouds, researchers can provision compute resources on
a pay-per-use basis, thus avoiding to enter in a procurement process that implies
investment costs for buying hardware or access procedures to supercomputers.

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 16–27, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

COMPSs on Azure 17

Recently, several grid initiatives and distributed computing infrastructures [1]
[2] [3] have started to develop cloud services in order to provide existing services
through virtualized technologies for the dispatch of scientific applications. These
technologies allow the deployment of hybrid computing environments where the
provision of private clouds is backed up by public offerings such as Azure[4] or
Amazon[5]. The VENUS-C[6] project in particular aims to support research and
industry user communities to leverage cloud computing for their applications
through the provision of a hybrid platform that provides commercial (Azure)
and open source cloud services.

In such a hybrid landscape, there are technical challenges such as interoper-
ability that need to be addressed from different points of view. The interoper-
ability concept can refer to different things at many levels. It could mean the
ability to keep the behaviour of an application when it runs on different environ-
ments such as a cluster, a grid or an IaaS provided infrastructure like Amazon
instances. At lower level, it might refer to a single application running in many
clouds being able to share information, which might require having a common
set of interfaces and the ability of users to use the same management tools,
server images and other software with a variety of Cloud computing providers
and platforms. From a programming framework perspective these issues have to
be solved also at different levels, developing the appropriate interfaces to inter-
act with several cloud providers, ensuring that the applications are executed on
different infrastructure without having to adapt them and handling data move-
ments seamlessly amongst different cloud storages.

The COMP Superscalar[7] programming framework allows the programming
of scientific applications and their execution on a wide number of distributed
infrastructures. In cloud environments, COMPSs provides scaling and elasticity
features allowing to adapt the number of available resources to the actual need of
the execution. The availability of connectors for several providers makes possible
the execution of scientific applications on hybrid clouds taking into account the
above mentioned issues related to the porting of applications to a target cloud
and their transparent execution with regards to the underlying infrastructure.
This paper describes the developments for making COMPSs interoperable with
Windows Azure Platform through the design of a specific adaptor.

The rest of the document is organized as follows. Section 2 describes the
COMPSs framework. Section 3 details the developed Azure GAT Adaptor. Sec-
tion 4 illustrates the porting of a data mining application to COMPSs. Section
5 evaluates the performance of the ported application. Section 6 discusses the
related work. Section 7 presents the conclusions and the future work.

2 The COMPSs Framework

COMPSs is a programming framework, composed of a programming model and
an execution runtime which supports it, whose main objective is to ease the
development of applications for distributed environments.

18 F. Marozzo et al.

On the one hand, the programming model aims to keep the programmers
unaware of the execution environment and parallelization details. They are only
required to create a sequential application and specify which methods of the
application code will be executed remotely. This selection is done by providing
an annotated interface where these methods are declared with some metadata
about them and their parameters.

On the other hand, the runtime is in charge of optimizing the performance of
the application by exploiting its inherent concurrency. The runtime intercepts
any call to a selected method creating a representative task and finding the
data dependencies with all the previous ones that must be considered along the
application run. The task is added to a task dependency graph as a new node
and such dependencies are represented by edges of the graph. Tasks with no
dependencies enter the scheduling step and are assigned to available resources.
This decision is made according to a scheduling algorithm that takes into account
data locality, task constraints and the workload of each node. According to this
decision the input data for the scheduled task are transferred to the selected host
and the task is remotely submitted. Once a task finishes, the task dependency
graph is updated, possibly resulting in new dependency-free tasks that can be
scheduled.

In a previous work[8], some of the authors described how COMPSs could also
benefit from Infrastructure-as-a-Service (IaaS) offerings. Through the monitor-
ing of the workload of the application, the runtime determines the excess/lack of
resources and turns to cloud providers enforcing a dynamic management of the
resource pool. In order to make COMPSs interoperable with different providers,
a common interface is used, which implements the specific cloud provider API.
Currently, there exist connectors for Amazon EC2 and for providers that imple-
ment the Open Cloud Computing Interface (OCCI)[9] and the Open Virtualiza-
tion Format (OVF)[10] specifications for resource management.

The contribution presented in this paper is an extension of the COMPSs run-
time to make it interoperable with the Microsoft Azure Platform-as-a-Service
(PaaS) offering. COMPSs virtualizes all the resources provided by Azure as a sin-
gle logical machine where multiple tasks can be executed at the same time. These
extensions do not affect the programming model, keeping existing COMPSs ap-
plications unchanged and the user unaware of the technical details. Users only
have to deal with the deployment of some components, as described later, on
their Azure account.

3 The Azure JavaGAT Adaptor

In order to solve the interoperability issues related to the execution of tasks
using an heterogeneous pool of resources in distributed environments, COMPSs
adopts JavaGAT[11] as the uniform interface to underlying Grid and Cloud mid-
dlewares implemented in several adaptors. Whenever a task has to be executed
on a specific resource, COMPSs manages all the data transfers and submits the
task using the proper adaptor. The Azure JavaGAT Adaptor here described

COMPSs on Azure 19

enriches COMPSs with data management and execution capabilities that make
it interoperable with Azure and implemented using two subcomponents.

Data management is supported by a subcomponent called Azure File Adaptor.
It allows to read and write data on the Azure Blob Storage (Blobs), to deploy
the libraries needed to execute on Azure and to store the input and output data
(taskdata) for the tasks. The Azure Resource Broker Adaptor, on the other side,
is responsible for the task submission. Following the Azure Work Queue pattern,
this subcomponent adds into a Task Queue the tasks that must be executed on
an Azure resource by a Worker. The implementation of these COMPSs workers
as Worker Role instances is based on a previous work on a Data Mining Cloud
App framework[12]. In order to keep the runtime informed about each task
execution, the status of the tasks is updated in a Task Status Table. The whole
architecture of the Azure JavaGAT Adaptor is depicted in Figure 1.

Task Status Table

Task Queue

Windows
Azure

Worker Role instances

Task Status Table

Tables

Worker
Worker

Worker
Worker

Task Queue

Queues Worker

BlobsClient
User

1

2

3

librarieslibraries

kMeans.jar matmul.jar

blast.jar

worker.jar

sparseLu.jar

taskdatataskdata

job1.out job1.err

input1 output1

4.1

5

4.2

COMPSs
G
A
T

Azure
GAT Adaptor

COMPSs
GG
AA
TT

Azure
GAT Adaptor

4.3

4.4

IaaS
Clouds

SSH GAT
Adaptor

Amazon
EC2

Eucalyptus

Emotive
Cloud

OpenNebula

Fig. 1. The Azure GAT adaptor architecture

The numbered components in Figure 1 correspond to each item in the list be-
low, which describes the different stages of a remote task execution on Azure. The
whole process starts when the COMPSs runtime decides to execute a dependency-
free task t in the platform following the next steps:

1. The Azure GAT adaptor, through the Azure File adaptor, prepares the ex-
ecution environment uploading the input application files and libraries into
the Blob containers, taskdata and libraries.

2. The adaptor, via the Azure Resource Broker, inserts a task t description into
the Task Queue.

3. The adaptor sets the status of the task t to Submitted in the Task Status
Table and polls periodically in order to monitor its status until it becomes
Done or Failed.

20 F. Marozzo et al.

4. An idle worker W takes the task t description from the queue and, after
parsing all the parameters, it runs the task. This step can be divided in the
following sub-steps:

4.1. The workerW takes the task t from the Task Queue starting its execution
on a virtual resource. The worker sets the status of t to Running.

4.2. The worker gets the needed input data and the needed libraries according
to the description of t. To this end, a file transfer is performed from the
Blob, where the input data is located, to the local storage of the resource,
and the task is executed.

4.3. After a task completion, the worker W moves the resulting files in the
taskdata Blob container.

4.4. The worker updates the status of the task in the Task Status Table
setting it to a final status that could be Done or Failed.

5. When the adaptor detects that the task t execution has finalized, it notifies
the execution end to the runtime which looks for new dependency-freed tasks
to be executed. If the output files are not going to be used by any other task,
the runtime downloads them from the Azure Blob.

4 Data Mining on COMPSs: A Classifier-Based Workflow

In order to validate the described work, a data mining application has been
adapted to run in a cloud environment through COMPSs. Such application runs
multiple instances of the same classification algorithm on a given dataset, ob-
taining multiple classification models, then chooses the one that classify in a
more accurate way. Thus, the aim is twofold: first, validate the implementation
checking that the system is able to manage the execution on different Cloud
deployments; second, compare the performance of the proposed solution on an
hybrid cloud scenario. The rest of the section describes the data mining applica-
tion as a workflow (Section 4.1), its Java implementation (Section 4.2) and the
porting to COMPSs (Section 4.3).

4.1 The Application Workflow

Figure 2 depicts the four general steps of the classifier-based workflow:

1. Dataset Partition: the initial dataset is split into two parts: a training set,
which trains the classifiers, and a test set to check the effectiveness of the
achieved models.

2. Classification: during this step, the training dataset is analyzed in paral-
lel using multiple instances of the same classifier algorithm with different
parameters.

3. Evaluation: the quality of each classification model is measured using dif-
ferent performance metrics (e.g., number of misclassified items, precision and
recall measure, F-measure).

4. Model Selection: finally, the best model is selected optimizing the chosen
performance metrics.

COMPSs on Azure 21

Dataset

Dataset
Partitioner

TestSet

Classifier

Model
Selector

Model

Model

Model Evaluator

Evaluator Evaluated
model

Evaluated
model

Evaluated
model

Best
model

Evaluator Classifier

Classifier

TrainSet

Fig. 2. The data mining application workflow

4.2 The Application Implementation

Following the described workflow, the initial dataset is divided in two parts:
2/3rd are left as a training set and the remaining 1/3rd is used as test set. The
classification algorithm is the J48, provided in Weka[13] data mining toolkit,
based on C4.5[14] algorithm. This algorithm builds a decision tree using the
concept of information entropy to classify the different items in the training set.
The different models are obtained varying the confidence value parameter of J48
in a range of values (i.e., from 0.05 to 0.50). Such range is divided in a certain
number of intervals specified by the user as an application parameter. Each
model is evaluated using, as a performance metric, the number of misclassified
items. Listing 1.1 presents the main code of the application:

1 public static void main(String args[]) throws Exception {
2 ...
3 // Run remote method
4 for (int i = 0; i < n_itvls ; i++){
5 c_val = c_min_val+i*(c_max_val -c_min_val)/(num_itvls -1);
6 // ***************** Remote methods ******************//
7 models[i]= WorkflowImpl.learning (trainSet , c_val);
8 reports [i]= WorkflowImpl.evaluate (models[i], testSet);
9 }

10 // Selection of the best model in binary tree way
11 int n = 1;
12 while (n < n_itvls){
13 for (int i = 0; i < n_itvls ; i+= 2 * n){
14 if (i + n < n_itvls) {
15 // ***************** Remote method ******************//
16 WorkflowImpl.getBestIndex(reports [i], reports [i+n]);
17 }
18 }
19 n *= 2;
20 }
21 // Read best model
22 J48 bestModel = models[reports [0]. getIndex ()];
23 }

Listing 1.1. Main application code

22 F. Marozzo et al.

As described in the application workflow section, the methods in lines 7
and 8 correspond to the classification and evaluation steps of the workflow.
The c min val and c max val are the limits of the confidence value range, and
num itvls is the number of intervals specified by user. The model selection step
(lines 11− 22) is performed in binary tree way in order to exploit the possibility
to be parallelized by COMPSs as detailed in along the next section.

4.3 Parallelization with COMPSs: The Interface

The main step of the porting of an application to COMPSs includes the prepa-
ration of a Java annotated interface provided by the programmer in order to
select which methods will be executed remotely. For each annotated method,
the interface specifies some information like the name of the class that imple-
ments it, and the type (e.g., primitive, object, file) and direction (e.g., in, out or
in/out) of its parameters. The user can add some additional metadata to define
the resource features required to execute each method. The Listing 1.2 shows
the annotated interface for the presented application.

1 public interface WorkflowItf {
2 @Constraints(processorCPUCount = 1, storageElemSize= 1.0)
3 @Method (declaringClass = "workflow .WorkflowImpl")
4 J48 learning (
5 @Parameter(type = Type.OBJECT, direction = Direction.IN)
6 Instances trainSet ,
7 @Parameter(type = Type.FLOAT , direction = Direction.IN)
8 float confFactor);
9

10 @Method (declaringClass = "workflow .WorkflowImpl")
11 Report evaluate (
12 @Parameter(type = Type.INT, direction = Direction.IN)
13 int i,
14 @Parameter(type = Type.OBJECT, direction = Direction.IN)
15 J48 model ,
16 @Parameter(type = Type.OBJECT, direction = Direction.IN)
17 Instances testSet);
18

19 @Method (declaringClass = "workflow .WorkflowImpl")
20 void getBestIndex(
21 @Parameter(type = Type.OBJECT, direction = Direction.INOUT)
22 Report rep0 ,
23 @Parameter(type = Type.OBJECT, direction = Direction.IN)
24 Report rep1);
25 }

Listing 1.2. Application Java interface

The COMPSs runtime intercepts the invocations in the main code to any
method contained in this interface by generating a task-dependency graph.
Figure 3 shows an example of the resulting dependency graph of the data mining
application. The red circles corresponds to learning tasks which forwards their
results to the evaluate tasks represented in yellow, creating dependencies be-
tween them. All these evaluations end in a reduction process implemented using
getBestIndex tasks, colored as blue, which find the model that minimizes the
number of classification errors.

COMPSs on Azure 23

1

9

2

1 0

3

1 1

4

1 2

5

1 3

6

1 4

7

1 5

8

1 6

1 7 1 81 9 2 0

2 12 2

2 3

Fig. 3. Task dependency graph automatically generated by COMPSs

5 Performance Evaluation

In order to evaluate the performance of the workflow application, a set of ex-
periments has been conducted using three different configurations: i) a private
cloud environment managed by Emotive Cloud[15] middleware; ii) a public cloud
testbed made of Azure instances; iii) an hybrid configuration using both private
and public clouds.

The private cloud included a total of 96 cores available in the following way:
4 nodes with 12 Intel Xeon X5650 Six Core at 2.6GHz processors, 24GB of
memory and 2TB of storage each, and 3 nodes with 16 AMD Opteron 6140
Eight Core at 2.6GHz processors, 32GB of memory and 2TB of storage each.
The nodes were interconnected by a Gigabit Ethernet network and the storage
was offered through a GlusterFS[16] distributed file system running in a replica
configuration mode providing a total of 8TB of usable space. On this testbed 8
quad-core virtual instances with 8GB of memory and 2GB of disk space have
been created running a fresh Debian Squeeze Linux distribution.

The public testbed based on Windows Azure was composed of up to 20 small
virtual instances with 1.6GHz single core processor, 1.75GB of memory and
225GB of disk space each. In order to reduce the impact of data transfer on the
overall execution time, the Azure’s Affinity Group feature has been exploited
allowing the storage and servers to be located in the same data center for per-
formance reasons.

The covertype1 dataset has been used as data source. This dataset contains in-
formation about forest cover type of a large number of sites in the United States.
Each instance, corresponds to a site observation and contains 54 attributes that
describe the main features of a site (e.g., elevation, aspect, slope, etc.). A subset
with 290.000 instances has been taken from this dataset creating a new 36MB
large one.

Table 1 presents the execution times and the speedup of an application run
with 100 different models and up to 20 and 32 processors available in the public
and private cloud deployments respectively. Table 2 presents the results of the

1 http://kdd.ics.uci.edu/databases/covertype/covertype.html

http://kdd.ics.uci.edu/databases/covertype/covertype.html

24 F. Marozzo et al.

Table 1. Private and public cloud deployment execution times

N. of
cores

Private cloud
(Emotive Cloud)

Public cloud
(Microsoft Azure)

Execution
time

Speedup Execution
time

Speedup

1 7:34:41 1 8:19:05 1

2 3:50:25 1.97 4:18:04 1.93

4 2:07:35 3.56 2:07:30 3.91

8 1:08:51 6.6 1:08:15 7.31

16 0:37:13 12.22 0:36:22 13.72

20 0:28:11 16.13 0:29:55 16.68

32 0:18:24 24.71 N/A N/A

Table 2. Hybrid cloud deployment execution times

N. of cores
Private cloud + Azure

Execution
time

Speedup

32 + 2 0:17:29 26.01

32 + 4 0:17:07 26.56

32 + 8 0:16:38 27.34

32 + 12 0:14:14 31.94

32 + 16 0:14:06 32.25

32 + 20 0:13:17 34.23

same experiment running on the hybrid cloud scenario; in this case, cloud out-
sourcing is used to expand the computing pool out of the private cloud domain.

As depicted in Figure 4, execution times are similar in both cases where a
single cloud provider is used: Emotive Cloud and Azure. The speedup keeps a
quasi-linear gain along the execution up to the point where the outsourcing
starts. The trend changes observed in the speedup curve are not originated
by the usage of outsourced resources but by a workload unbalance due to the
impossibility to adjust the total number of tasks (constrained by the specific use
case) to the amount of available resources. When the number of resources allows
a good load balancing, the speedup curve recovers some of the lost performance
as depicted in the 32+12 case where the gain is increased over the ideal line.
Generally, when the workload does not depend on the application input, the
COMPSs runtime scheduler is able to adapt the number of tasks to the number
of available resources.

COMPSs on Azure 25

 0

 5000

 10000

 15000

 20000

 25000

 30000

2 4 8 16 20 32 32+4
32+8

 32+12
 32+16

 32+20

E
xe

cu
tio

n
tim

e
(s

)

Number of processors

 Private
 Azure

 Private + Azure

 0

 10

 20

 30

 40

 50

2 4 8 16 20 32 32+4
32+8

 32+12
 32+16

 32+20

S
pe

ed
up

Number of processors

 Private
 Azure

 Private + Azure
 Linear speedup

(a) (b)

Fig. 4. Execution time and speedup values depending on the number of processors

6 Related Work

There already exist several frameworks that enable the programming and
execution of applications in the Cloud and several research products are be-
ing developed to enhance the execution of applications in the Azure Platform.
MapReduce [17], a widely-offered programming model, permits the processing
of vast amounts of data by dividing it into many small blocks that are processed
in parallel (i.e, map phase) and their results merged (i.e., reduce phase).

Hadoop[18] is an open source software platform which implements MapRe-
duce using the Hadoop Distributed File System (HDFS). HDFS creates multi-
ple replicas of data blocks for reliability and places them on compute nodes so
they can be processed locally. Hadoop on Azure[19] is a new Apache Hadoop
based distribution for Windows Server. Microsoft Daytona[20] presents an it-
erative MapReduce runtime for Windows Azure designed to support a wide
class of data analytics and machine learning algorithms. Also Google supports
MapReduce executions in its Google App Engine[21], which provides a set of li-
braries to invoke external services and queue units of work (tasks) for execution.
Twister[22] is an enhanced MapReduce runtime with an extended programming
model that supports iterative MapReduce computations efficiently. These public
cloud platforms have a high level of user’s intervention in the porting of the ap-
plications requiring the use of specific APIs and the deployment and execution
of the applications on their own infrastructure thus avoiding to port the code
to another platform. COMPSs, on the contrary, can execute the applications
on any supported cloud provider without the need to adapt the original code
to the specific target platform nor writing the map and reduce functions as in
MapReduce frameworks.

Manjrasoft Aneka[23] platform provides a framework for the development of
application supporting not only the MapReduce programming model but also

26 F. Marozzo et al.

a Task Programming and Thread Programming ones. The applications can be
deployed on private or public clouds such as Windows Azure, Amazon EC2, and
GoGrid Cloud Service. The user has to use a specific .NET SDK for the porting
of the code also to enact legacy code. Microsoft Generic Worker[24] has been
extended in the context of the VENUS-C project to ease the porting of legacy
code in the Azure platform. Even if the user does not have to change the core of
the code, the creation of workflows is not automated, as is in COMPSs, in any of
them; but has to be explicitly enacted through separated executions. Moreover,
an application executed through the Generic Worker, can not be ported to other
platforms.

7 Conclusions and Future Work

This paper presents the extensions of COMPSs programming framework to make
it able to execute e-Science applications also on the Azure Platform. The contri-
bution include the development of a JavaGAT adaptor that allows the scheduling
of COMPSs tasks on Azure instances taking care of the related data transfers,
and the implementation of a set of components deployed on Azure to manage
the execution of the tasks internally to the instances. The proposed approach
has been validated through the execution of a data mining workflow ported to
COMPSs and executed on an hybrid testbed composed of a private cloud man-
aged by Emotive Cloud and Azure machines. The results demonstrates that the
runtime is able to manage and schedule the tasks on different infrastructures in
a transparent way, keeping the overall performance of the application.

Future work includes the creation of a new connector in COMPSs to support the
dynamic resource provisioning in Azure and enhancements to the Azure JavaGAT
adaptor to optimize data transfers among different clouds, and the possibility to
specify input files already available on the Azure storage. The scheduling of the
COMPSs runtime will be also optimized to better balance the execution of tasks
taking also into account the required time to transfer data.

Acknowledgements. This work has been supported by the Spanish Min-
istry of Science and Innovation (contracts TIN2007-60625, CSD2007-00050
and CAC2007-00052), by Generalitat de Catalunya (contract 2009-SGR-980),
and the European Commission (VENUS-C project, Grant Agreement Number:
261565). This work was also made possible using the computing use grant pro-
vided by Microsoft in the VENUS-C project.

References

1. European Grid Infrastructure, http://www.egi.eu
2. StratusLab, http://www.stratuslab.eu
3. European Middleware Initiative, http://www.eu-emi.eu
4. Microsoft Azure, http://www.microsoft.com/azure

http://www.egi.eu
http://www.stratuslab.eu
http://www.eu-emi.eu
http://www.microsoft.com/azure

COMPSs on Azure 27

5. Amazon Elastic Compute Cloud, http://aws.amazon.com/es/ec2
6. Virtual multidisciplinary ENvironments USing Cloud infrastructures,

http://www.venus-c.eu

7. Tejedor, E., Badia, R.M.: COMP Superscalar: Bringing GRID superscalar and
GCM Together. In: IEEE Int. Symposium on Cluster Computing and the Grid,
Lyon, France (2008)

8. Lezzi, D., Rafanell, R., Carrion, A., Blanquer, I., Badia, R.M., Hernandez, V.:
Enabling e-Science applications on the Cloud with COMPSs. Cloud Computing:
Project and Initiatives (2011)

9. Open Cloud Computing Interface Working Group, http://www.occi-wg.org
10. Distributed Management Task Force Inc., Open Virtualization Format Specifica-

tion v1.1. DMT Standar DSP0243 (2010)
11. Allen, G., Davis, K., Goodale, T., Hutanu, A., Kaiser, H., Kielmann, T., Merzky,

A., van Nieuwpoort, R., Reinefeld, A., Schintke, F., Schütt, T.T., Seidel, E., Ullmer,
B.: The Grid Application Toolkit: Towards Generic and Easy Application Program-
ming Interfaces for the Grid. Proceedings of the IEEE 93(3) (March 2005)

12. Marozzo, F., Talia, D., Trunfio, P.: A Cloud Framework for Parameter Sweeping
Data Mining Applications. In: 3rd IEEE Int. Conference on Cloud Computing
Technology and Science (CloudCom 2011), Athens, Greece (2011)

13. Witten, H., Frank, E.: Data Mining: Practical machine learning tools with Java
implementations. Morgan Kaufmann Publishers (2000)

14. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publish-
ers (1993)

15. Goiri, I., Guitart, J., Torres, J.: Elastic Management of Tasks in Virtualized Envi-
ronments. In: XX Jornadas de Paralelismo (JP 2009), Coruña, Spain (2009)

16. GlusterFS Distributed Network File System, http://www.gluster.org
17. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.

Commun. ACM 51, 107–113 (2008)
18. Apache Hadoop, http://hadoop.apache.org
19. Hadoop on Azure, https://www.hadooponazure.com
20. Project Daytona, http://research.microsoft.com/en-us/projects/daytona
21. Google App Engine, http://code.google.com/intl/de/appengine
22. Ekanayake, J., Li, H., Zhang, B., Gunarathne, T., Bae, S., Qiu, J., Fox, G.: Twister:

A Runtime for Iterative MapReduce. In: 1st Int. Workshop on MapReduce and its
Applications (MAPREDUCE 2010), Chicago, USA (2010)

23. Wei, Y., Sukumar, K., Vecchiola, C., Karunamoorthy, D., Buyya, R.: Aneka
Cloud Application Platform and Its Integration with Windows Azure. CoRR,
abs/1103.2590 (2011)

24. Simmhan, Y., Ingen, C., Subramanian, G., Li, J.: Bridging the Gap between Desk-
top and the Cloud for eScience Applications. In: 3rd IEEE Int. Conference on
Cloud Computing (CLOUD 2010), Washington, USA (2010)

http://aws.amazon.com/es/ec2
http://www.venus-c.eu
http://www.occi-wg.org
http://www.gluster.org
http://hadoop.apache.org
https://www.hadooponazure.com
http://research.microsoft.com/en-us/projects/daytona
http://code.google.com/intl/de/appengine

Pattern-Independent Detection

of Manual Collectives in MPI Programs

Alexandru Calotoiu1,2, Christian Siebert1,2, and Felix Wolf1,2,3

1 German Research School for Simulation Sciences, 52062 Aachen, Germany
2 RWTH Aachen University, Computer Science Department, 52056 Aachen, Germany
3 Forschungszentrum Jülich, Jülich Supercomputing Centre, 52425 Jülich, Germany

Abstract. In parallel applications, a significant amount of communica-
tion occurs in a collective fashion to perform, for example, broadcasts,
reductions, or complete exchanges. Although the MPI standard defines
many convenience functions for this purpose, which not only improve
code readability and maintenance but are usually also highly efficient,
many application programmers still create their own, manual implemen-
tations using point-to-point communication. We show how instances of
such hand-crafted collectives can be automatically detected. Matching
pre- and post-conditions of hashed message exchanges recorded in event
traces, our method is independent of the specific communication pat-
tern employed. We demonstrate that replacing detected broadcasts in
the HPL benchmark can yield significant performance improvements.

Keywords: MPI, collective operations, performance optimization, HPL.

1 Introduction

The most scalable parallel application codes today use message passing as their
primary parallel programing model, which offers explicit communication primi-
tives for the exchange of messages. While pair-wise communication is most com-
mon, the majority of applications require communication among larger groups
of processes [5]. The latter is needed, for example, to distribute data, gather re-
sults, make collective decisions, or broadcast their outcomes. Although all those
communication objectives can be mapped onto point-to-point messages between
two processes, their efficient realization is often challenging.

For this reason, the Message Passing Interface (MPI) [10], the de-facto stan-
dard for message passing, defines 17 so-called collective operations to support
the most common group exchange patterns. For example, sending data from one
process to all other processes is encapsulated in the functionality of MPI Bcast().
Although equivalent semantics could be achieved by sending the same piece of
data iteratively to all processes, one at a time, using MPI Bcast() is simpler,
the resulting code looks cleaner and is easier to maintain. In addition, sophis-
ticated implementations of MPI Bcast() are likely to be much more efficient.

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 28–39, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Pattern-Independent Detection of Manual Collectives in MPI Programs 29

In general, MPI collectives offer advantages in terms of simplicity, expressive-
ness, programmability, performance, and predictability [5]. In particular, they
allow users to profit from both efficient algorithms [2,13,14] and platform-specific
optimizations [8,9,7]. Such improvements have often been reported to make col-
lective implementations several times faster. Some of them exploit hardware
features such as multicast or utilize special networks for collectives not even
accessible via MPI point-to-point communication. These advantages cannot be
overemphasized as the efficient implementation of collective operations is a com-
plex task, which requires detailed knowledge not only of parallel algorithms and
programming but also of the specific physical properties of the target platform.

However, in spite of such benefits, not all applications today make consequent
use of predefined collectives and still deploy hand-crafted ensembles of point-to-
point messages instead. One way of encouraging their adoption, is to recognize
manually-implemented collectives in existing codes and to suggest their replace-
ment. Existing recognition methods available for this purpose rely on the specifics
of the underlying message exchange pattern [11,3]. But given the multitude of
ways collectives can be implemented, any such attempt is too restrictive.

In this paper, we show how to overcome these disadvantages using a novel
approach based on a semantic detection. We propose a method for identifying
patterns of point-to-point messages in compact communication traces of MPI
applications that are semantically equivalent to predefined collective operations.
Relying exclusively on pre- and postconditions derived from the specification of
the collective operation, we do not make any assumptions regarding the specific
characteristics of the pattern. Our method detects broadcasts and operations
composed of broadcasts fully automatically. It detects more sophisticated col-
lective operations with a certain degree of prior user instrumentation. Applying
our method to the HPL benchmark [1] pinpoints all contained collective commu-
nication operations. Replacing those manual collectives with the corresponding
MPI collectives improves the HPL performance by up to 44%.

The remainder of the paper is organized as follows: In Section 2 we formalize
the semantics of collective operations and show how pre- and postconditions can
be derived that can be verified based on trace data. Proving such conditions
requires analyzing both the contents of messages and the paths along which
they travel. How we store all the necessary information in trace files is explained
in Section 3. There, we place special emphasis on the hash functions we apply
to avoid excessive memory requirements and their structure-preserving prop-
erties. The actual identification of manual collectives is outlined in Section 4.
A major part of it is devoted to the parallel message replay we need to track
communication pathways and the additional challenges posed by more complex
collective operations such as scatter or reduce. Experimental results demonstrat-
ing the benefits of our method are presented in Section 5. Finally, we compare
our approach to related work in Section 6, before we conclude the paper with
an outlook on future work in Section 7.

30 A. Calotoiu, C. Siebert, and F. Wolf

Time

P1: A A,B

P2: C A,B

P3: B A,B

P4: C A,B

A
A

A

B

B
B

Fig. 1. Timeline diagram of two broadcast implementations

2 Semantics of Collective Operations

The MPI standard specifies only the semantics of collective operations, but does
not dictate how they must be implemented. Therefore, any method capable
of detecting a wide variety of manual collectives can not rely on any specific
implementation. We will start our discussion with the simplest collective, the
broadcast, and later move on to more challenging collectives such as scatter and
reduce. For broadcast, the standard provides the following definition:

MPI BCAST broadcasts a message from the process with rank root to all
processes of the group [. . .].

This definition does, however, not imply that a correct implementation needs to
send a message from the root to all other processes directly. On the contrary,
efficient implementations typically involve other processes to forward messages.
By reversing this semantic definition, it is possible to infer pre- and postcon-
ditions that can tell whether or not a broadcast occurred. If at some point in
time only one process owns a certain message and at a later time all processes
within a group own the same message, then there must have been a collective
communication that is semantically equivalent to a broadcast.

Figure 1 illustrates the behavior of two different broadcasts in the form of a
timeline diagram. The diagram shows a timeline for every process and arrows
between them to depict point-to-point communication. In addition, the letters A
and B represent message contents. At the beginning, processes 1 and 3 own con-
tents A and B, respectively. All processes receive further contents via messages
as the time progresses. The communications with message A are semantically
equivalent to a broadcast carried out using a simple centralized algorithm. The
communications with message B are also semantically equivalent to a broadcast
but in a hierarchical fashion. Identifying those different communication patterns
as the same collective operation needs some deterministic rules. A precondition
that needs to be true before the broadcast happens is that one of the processes,
which is called the root, owns some data X . During the broadcast, X travels
to the other processes in the group to which the broadcast applies. In other
words, exactly one process in the group must not receive X before sending it.
Although more receives are valid, a postcondition that needs to be fulfilled after
the broadcast happened is that all processes in the group except the root must

Pattern-Independent Detection of Manual Collectives in MPI Programs 31

P1

P2 P3 P4

P3

P4

P1 P2

Fig. 2. Communication graphs for the two broadcast variants

have received X . Only then it is guaranteed that, at the end of the analyzed
period of time, all processes share X . This fulfills the semantics of a broadcast.

Figure 2 maps the two broadcast variants from Figure 1 onto simpler communi-
cation graphs, ignoring temporal relationships. If any of the two communication
graphs was not connected, then it would describe independent communications,
which is in contradiction to the collective character of the operation. This implicit
connectivity requirement among the processes of the group is checked during the
analysis to prove the presence of a collective operation (see Section 4).

Defining pre- and postconditions for scatter and gather is more intricate, as
messages can be split or concatenated. In the case of scatter, a message at the
root is split into pieces to be distributed to all processes. Again, the precondition
requires the original message to be located at the root and the postcondition re-
quires non-overlapping parts of the message to be located at specific ranks. We
use hashes with homomorphic properties to handle message splitting and con-
catenation. Even more challenging are collectives computation operations (a.k.a.
reductions), where the messages are combined using, for example, arithmetic or
logical operations. Nevertheless, even this can be formalized. While all such con-
ditions can theoretically be verified under the assumption of unlimited access
to the memory and message buffers used by the application, difficulties arise in
practice when knowledge is restricted to manageable amounts of trace data. Two
specific challenges need to be addressed:

1. For reasons of space efficiency, we only store message hashes in our trace
files. Section 3 explains how we can still track many of the above-mentioned
transformational relationships even with hashes.

2. In manual collectives, data destined to remain at the root may never appear
in a message buffer and is thus not recorded in the traces. In Section 4, we
suggest a method to make those visible again.

A further advantage of our technique, which does not require any knowledge
of a collective operations’ implementation, is that it can also be used to search
for collective exchanges that do not have an existing primitive yet. This could
motivate the standardization of new collective operations such as neighborhood
or sparse collectives (under consideration for MPI-3.0). In this sense, it is not
only an instrument for application optimizers but also for MPI developers.

32 A. Calotoiu, C. Siebert, and F. Wolf

Program
modification &

validation
Matches

Process-local
event traces

Parallel execution
of target application

Parallel search for
manual collectives

Fig. 3. Workflow of detecting manual collectives within parallel applications. Stacked
boxes denote parallel programs. The user is in charge of the last step.

3 Analysis Workflow and Trace Generation

Figure 3 illustrates the workflow of detecting manual collectives. First, the target
application is prepared for tracing by linking it to a library of PMPI interpo-
sition wrappers. Not to duplicate development efforts, we leverage the tracing
infrastructure of the Scalasca toolset [4]. Only if more sophisticated collectives
should be detected, the application needs further preparation as described in
Section 4. The prepared application is then executed to generate a trace of
happened communication events. As a next step, these traces are searched for
manual collectives, which is done with the help of communication replays. This
search is carried out by our analyzer, which is a parallel program in its own right.
The analysis creates a list of matches, which the user then can decide to replace
with predefined collectives. Since the matches characterize only a single run, the
user not only needs to validate whether performance objectives are met but also
has to ensure that a replacement does not violate the program’s correctness.

In addition to the default information Scalasca stores with communication
events, we record a hash of the message payload, the starting address of the
message buffer, and the MPI data type. The first item is needed to track the
path along which a particular message is forwarded, and the last two to support
concatenation and split of messages, as explained in Section 4. Hashing mes-
sage payloads avoids storing full messages, which would consume a prohibitive
amount of storage space. A hash provides a fixed-length value regardless of the
message size. If two messages have the same hash value, they are identical with
high probability. If their hashes are different, the messages are different for sure.
Although testing for equality is a fundamental application of hashes and suffi-
cient to detect for example broadcasts, it is not enough to identify collectives
such as scatter, gather, or reduce, which split, concatenate, or combine messages.
For those, we exploit homomorphic properties of certain hash functions h that
ensure the following conditions for operations ⊕ on messages m1 and m2:

h(m1 ⊕m2) = h(m1)⊕ h(m2)

As a default, we use the establishedCRC-32 checksum from zlib because it is fast,
needs only 32 bits per message, gives acceptably-low collision probability, and
even supports split and concatenation. We also identified further hash functions
to support arithmetic or logical reductions of certain data types. Many hash
algorithms, however, entail difficult compromises. For example, cryptographic
hashes have a lower collision probability but are much slower, need more mem-
ory and can neither be concatenated nor combined. In general, the choice of hash

Pattern-Independent Detection of Manual Collectives in MPI Programs 33

Time

P1

P2

P3

P4

(a) Hierarchical broadcast.

Time

P1

P2

P3 {4,2,1}
P4 {2,1}

{4,2,1}
{1}{2}

(b) Backward replay.

Fig. 4. Identifying a hierarchical broadcast via backward replay

function is configurable, a feature which can be used to expand the coverage of
our method. Unfortunately, MPI reduction operations can be arbitrarily com-
plex as they support both user-defined data types and user-defined reduction
operations. Correctly identifying reductions via hashes is already challenging for
predefined data types such as floating point values, which is why we also store
an 8-byte message prefix in addition to the hash. This enables testing against
a predefined set of potential reduction operations. To support arbitrary user-
defined data types, we utilize the MPITypes library by Rob Ross [12], which
allows hashes to be calculated for arbitrary MPI messages.

4 Search for Manual Collectives

Our collectives detector searches for manual collectives in communication traces
enriched with message hashes such as illustrated using a hierarchical broadcast
example in Figure 4a. The actual search is performed via a backward replay
of the traces. During this replay, we traverse the traces from end to beginning
and reenact the recorded point-to-point communication in backward direction,
that is, the roles of sender and receiver are reversed. To simplify the replay,
our analyzer runs with the same number of processes as were used to trace
the target application, giving a one-to-one mapping between application and
analysis processes. The objective of the replay is to determine all processes that a
particular message has visited on its way to the final destination and to propagate
this information back to its origin. At the end, each process checks whether it
acted as root (i.e., did not receive the message from anyone else) and whether
the message has reached all other processes—directly or indirectly.

For this purpose, each process maintains a set of receivers for each message
hash that will later contain the ranks of all processes that have received a mes-
sage with this particular hash. Figure 4b shows these sets for the hash involved
in a broadcast. At the beginning, all sets are empty. Whenever a process en-
counters a receive event during the backward replay for this hash, it adds its
rank to the set and sends its own set along with the backward message. The
receiver of a replay message then constructs the union of its own set with the set
just received. If at the end of the replay one process has a set containing all other

34 A. Calotoiu, C. Siebert, and F. Wolf

processes but not itself, a broadcast has happened with this process acting as the
root. Sending the hash along with the message is one way of separating the traffic
related to different broadcasts. In the example, processes 1 and 2 add themselves
to the set once they hit their local receive events. After replaying the first two
messages, the set of process 4 therefore includes {2, 1}. Before replaying the third
message, process 4 adds itself to the set and sends it to process 3. The set of
process 3 finally includes {4, 2, 1}, satisfying the condition for a broadcast with
3 as the root. Using this method, we can detect any broadcast irrespective of its
particular implementation. The backward replay ensures that we can track every
conceivable message pattern. In general, the direction of the replay depends on
the nature of the collective operation. If information is spread as in the case of
broadcast, we replay in backward direction. If information is concentrated as in
the case of gather, we replay in forward direction. The goal is always to end up
at the root. The all-to-all collective does not have a root, but can be detected
by decomposing it into either its 1-to-all or all-to-1 components.

There are two major challenges arising in the context of operations such as
gather, scatter, and reduce that transformmessages through concatenation, split,
or combine operations. To check whether a message has been created as a result
of such a transformation, we need to send message hashes along with our replay
messages. The checks are then performed as we go, exploiting homomorphic
properties of the hash function as far as this is possible. Unfortunately, not all
operands of such a transformation are necessarily stored in the trace because
they might involve buffers that never appear in any communication.

Figure 5 illustrates the problem for scatter. For example, we cannot tell
whether the process shown in Figure 5a is the root of a scatter operation that
intends to disseminate the vector A,B,C,D,E because C is only stored locally
and as such never part of a communication that causes its message hash to be
recorded in the trace. To make such information available to our analyzer, we
introduced a new function that a user can insert into the program:

void Send_To_Self(void *buf, int count, MPI_Datatype datatype);

A call to this function records the missing information, about a buffer that a
process utilizes locally, in the trace. Calling this function for C before doing
both sends, makes C available in the trace. With this information, the analyzer
can infer that A,B,C,D, and E belonged together before they were scattered
across the processes. Without this information, however, no positive match can
be made. A similar situation is shown in Figure 5b. Here, an inner node of a
scatter tree receives a message, stores a part of it locally and forwards the rest
to other processes. A message containing A, B and C is received but only A and
B are sent further. Only with the hash of C written to the trace, the relationship
becomes visible. Nevertheless, finding all related message parts requires testing
of every combination of hashes. As this would be impractical for large numbers of
messages, our detector checks only adjacent messages for split and concatenation.
This is accomplished by looking at their starting addresses and MPI data types.

Pattern-Independent Detection of Manual Collectives in MPI Programs 35

A,B

D,EC

(a) Root process.

A,B,C
A

B
C

(b) Non-root, non-leaf process.

Fig. 5. Inputs and outputs of processes during scatter operations

Currently, our prototype supports the fully automatic detection of broadcast
and alltoall variants composed of multiple point-to-point broadcasts. Barriers
are currently recognized as alltoall with an empty payload. Moreover, our pro-
totype is capable of semi-automatically recognizing scatter, gather, and reduce
with the help of the extra information described above. Reduce is restricted
to some arithmetic and logical operations on certain datatypes. Floating-point
arithmetics are not supported. We believe, that our collectives detector can be
upgraded to eventually support all regular MPI collective operations. Irregular
collectives, however, still present serious challenges due to their high degree of
flexibility, which makes it hard to formulate manageable pre- and postconditions.

5 Evaluation

To demonstrate that our method can handle even very challenging cases, we
apply it first to a set of micro-benchmarks that implement different variants
of broadcast. A case study with the HPL benchmark shows the potential for
actual performance improvements. We conducted all experiments on the IBM
Blue Gene/P Jugene installation located at the Jülich Supercomputing Centre.

5.1 Microbenchmarks

We start with a linear broadcast, as illustrated with solid arrows in Figure 6a. In
a linear broadcast, a message visits one process after another until all processes
have seen it. Thus, the communication is effectively serialized. In spite of the un-
related message traffic (i.e., the noise depicted as dashed arrows), the pattern is
correctly identified. Adding a redundant message in Figure 6b offers two choices
for the root process (P1 and P2). Both options are reported. Repeating the same
broadcast twice as in Figure 6c results in the recommendation to replace all mes-
sages involved with a single predefined broadcast. Finally, we perform a nested
broadcast by passing a token from the root to each other process (Figure 6d).
Whoever owns the token initiates an inner broadcast. Both types of broadcasts
are reported, although replacing the outer broadcast might change the order of
the inner broadcasts. The ultimate decision is left to the user. If token-passing
is extended to ring communication, our algorithm will report one instance for
each process involved because each process could be a potential root.

36 A. Calotoiu, C. Siebert, and F. Wolf

Time

P1:

P2:

P3:

P4:

(a) Linear broadcast with noise.

Time

P1:

P2:

P3:

P4:

(b) Broadcast with a redundant message.

Time

P1:

P2:

P3:

P4:

(c) Repeated broadcast.

Time

P1:

P2:

P3:

P4:

(d) Nested broadcast with token passing.

Fig. 6. Four test scenarios for broadcast. All solid arrows show messages with the same
payload. Dashed arrows represent noise messages with different payloads. The dotted
arrows illustrate correctly detected broadcasts.

5.2 High-Performance Linpack

The High-Performance Linpack Benchmark [1] solves a dense linear system in
double precision and is used to rank the world’s fastest supercomputers in the
Top500 list. We selected HPL as a test candidate because it makes heavy use of
collective operations implemented via point-to-point communications. Prior to
running this benchmark, the user needs to select in a configuration file one out
of six hand-crafted broadcast implementations.

Regardless of whether the broadcasts are implemented with blocking or non-
blocking semantics in any send mode, our collectives detector correctly reported
all six HPL broadcast implementations including their source-code location plus
some others that are presumably used for synchronization. Figure 7a compares
the HPL execution time for any of the six broadcast options with the execution
time after replacing the manual variant with MPI Bcast(). The experiments re-
flect the performance for 256 cores and an input problem size of 32,000. Our
results not only show significant performance differences among the six manual
variants, but also show that the MPI broadcast always delivers superior perfor-
mance with an overall improvement of up to 9%.

Although BLongM performed worst in this test with 256 cores, we chose it for
the scaling study in Figure 7b because its bandwidth-optimized implementation
reveals benefits for larger core counts. The number of matrix elements per core
was kept at four million. Indeed, the difference between BlongM andMPI Bcast()
is most pronounced between 2k and 16k cores. Above, BLongM plays out its
own strength. Overall, MPI Bcast() was faster in all cases and with 8k cores

Pattern-Independent Detection of Manual Collectives in MPI Programs 37

310.0
320.0
330.0

350.0

300.0

Seconds

1Ring 1RingM 2Ring 2RingM Blong BlongM Bcast

Bcast

(a) Comparison between the HPL-included broadcasts and MPI Bcast.

500.0

1000.0

1500.0

2000.0

2500.0

3000.0

3500.0

4000.0

4500.0

5500.0

0.0

Seconds

32 64 256 512 1024 2048 4096 8192 Cores 32768

9326
8518

(b) Weak-scaling of HPL using BLongM (left) and MPI Bcast (right).

Fig. 7. Total execution time of HPL with and without manual collectives

the difference was even 44%. This demonstrates that the performance advantage
of predefined collectives can be substantial and that the replacement of manual
collectives is often worthwhile. In addition, using MPI Bcast() in HPL makes
several hundred lines of code obsolete, reducing its code complexity.

6 Related Work

In this section, we compare our approach with alternative routes taken earlier.
Preissl et al. [11] pursue an almost identical objective. They not only attempt to
find collective point-to-point exchanges but also to automatically replace their
occurrences in the code with equivalent predefined MPI operations. Their solu-
tion is built around ROSE, a generator for source-to-source translators. They
trace the messages sent during program execution, match the structure of the
message graph with predefined structures representing collective communica-
tions, find the corresponding places in the code, and carry out the substitution.

38 A. Calotoiu, C. Siebert, and F. Wolf

The advantage of their solution is that the user does not have to do anything
except running the tool to get—in the optimal case—better code. A disadvan-
tage, however, is that no collective communication pattern can be matched ex-
cept those already thought of and stored in the tool. While this might not seem
to be very important at first, one has to consider that a user can implement a
collective communication in any way that suits him and his particular applica-
tion. For example, since different hardware topologies support different commu-
nication topologies, the precise shape of the communication pattern might be
platform dependent. Moreover, since new network topologies are being created
alongside new hardware, new patterns can emerge that are not thought of yet.
While it is possible to add them to such a solution, the maintenance cost will
rise with the number of possibilities. Also, if the number of possible patterns
increases, the time to check against all of them will grow as well. At the time
of publishing their work, the tool developed by Preissl et al. was able to detect
only one simple broadcast implementation.

Whereas the previous approach and ours search for manual collectives in traces
with dynamic content, di Martino et al. [3] attempt to detect them relying only
on static information. They define collectives using mathematical abstractions
and then use algebraic methods to find them. This methodology can provide
a strong basis for matching potential candidates to models of communication
patterns. However, PPAR, a prototypical tool based on this method, seems re-
stricted in the range of patterns it can interact with. Just like Preissl et al.,
PPAR also tries to match known patterns of collective communications, only
that PPAR does it via source-code analysis of the program.

7 Conclusion and Outlook

We proposed a practical method to detect manually-implemented collective op-
erations in MPI programs written in any language without making any assump-
tions about the actual communication pattern. This eliminates the detection of
false negatives, which sets our approach apart from earlier work in the field.
However, there are still limitations which we want to address in the future.

Our prototype needs further work to evolve into a productive tool. As collec-
tive operations involving only a subset of the processes in a given communica-
tor are not yet recognized, we plan to extend our method to also detect those
cases and to suggest the creation of sub-communicators. Moreover, our current
scheme allows fully automatic detection only for collectives such as broadcast
and alltoall. For more sophisticated collectives, the user needs to supply extra
information by inserting function calls into the program. Future versions could
extend the coverage of our detector by also reporting matches that are incom-
plete to a certain degree, carefully balancing false negatives with false positives.
Finally, to guide the user to the most promising replacement candidates in terms
of potential performance improvements, we plan to simulate the effects of a re-
placement using a real-time replay of modified traces [6]. This would permit the
user to compare the required effort with the benefit that is likely to materialize.

Pattern-Independent Detection of Manual Collectives in MPI Programs 39

References

1. HPL – A portable implementation of the high-performance Linpack benchmark for
distributed-memory computers, http://netlib.org/benchmark/hpl/

2. Bernaschi, M., Iannello, G., Lauria, M.: Efficient Implementation of Reduce-scatter
in MPI. In: Proceedings. 10th Euromicro Workshop on Parallel, Distributed and
Network-based Processing, pp. 301–308 (2002)

3. Di Martino, B., Mazzeo, A., Mazzocca, N., Villano, U.: Parallel program analy-
sis and restructuring by detection of point-to-point interaction patterns and their
transformation into collective communication constructs. Science of Computer Pro-
gramming 40, 235–263 (2001)

4. Geimer, M., Wolf, F., Wylie, B.J.N., Ábrahám, E., Becker, D., Mohr, B.: The
Scalasca performance toolset architecture. Concurrency and Computation: Practice
and Experience 22(6), 702–719 (2010)

5. Gorlatch, S.: Send-Receive Considered Harmful: Myths and Realities of Mes-
sage Passing. ACM Transactions on Programming Languages and Systems
(TOPLAS) 26, 47–56 (2004)

6. Hermanns, M.-A., Geimer, M., Wolf, F., Wylie, B.J.N.: Verifying causality between
distant performance phenomena in large-scale MPI applications. In: Proc. of the
17th Euromicro International Conference on Parallel, Distributed, and Network-
Based Processing (PDP), Weimar, Germany, pp. 78–84. IEEE Computer Society
(February 2009)

7. Hoefler, T., Siebert, C., Lumsdaine, A.: Group Operation Assembly Language -
A Flexible Way to Express Collective Communication. In: The 38th International
Conference on Parallel Processing. IEEE (September 2009)

8. Hoefler, T., Siebert, C., Rehm, W.: A practically constant-time MPI Broad-
cast Algorithm for large-scale InfiniBand Clusters with Multicast. In: Proceed-
ings of the 21st IEEE International Parallel & Distributed Processing Symposium,
pp. 1–8. IEEE Computer Society (March 2007)

9. Kumar, S., Sabharwal, Y., Garg, R., Heidelberger, P.: Optimization of All-to-All
Communication on the Blue Gene/L Supercomputer. In: Proc. of the 37th Inter-
national Conference on Parallel Processing, pp. 320–329. IEEE Computer Society,
Washington, DC (2008)

10. Message Passing Interface Forum. MPI: A Message-Passing Interface Standard,
Version 2.2. High Performance Computing Center Stuttgart, HLRS (2009)

11. Preissl, R., Schulz, M., Kranzlmuller, D., de Supinski, B.R., Quinlan, D.J.: Trans-
forming MPI Source code based on communication patterns. Future Generation
Computer Systems 26, 147–154 (2009)

12. Ross, R., Latham, R., Gropp, W., Lusk, E., Thakur, R.: Processing MPI Datatypes
Outside MPI. In: Ropo, M., Westerholm, J., Dongarra, J. (eds.) PVM/MPI. LNCS,
vol. 5759, pp. 42–53. Springer, Heidelberg (2009)

13. Sanders, P., Träff, J.L.: Parallel Prefix (Scan) Algorithms for MPI. In: Mohr, B.,
Träff, J.L., Worringen, J., Dongarra, J. (eds.) PVM/MPI 2006. LNCS, vol. 4192,
pp. 49–57. Springer, Heidelberg (2006)

14. Träff, J.L., Ripke, A., Siebert, C., Balaji, P., Thakur, R., Gropp, W.: A Pipelined
Algorithm for Large, Irregular All-Gather Problems. International Journal of High
Performance Compututing Applications 24, 58–68 (2010)

http://netlib.org/benchmark/hpl/

A Type-Based Approach

to Separating Protocol from Application Logic

A Case Study in Hybrid Computer Programming

Geoffrey C. Hulette1, Matthew J. Sottile2, and Allen D. Malony1

1 University of Oregon, Eugene, OR
2 Galois, Inc., Portland, OR

Abstract. Numerous programming models have been introduced to al-
low programmers to utilize new accelerator-based architectures. While
OpenCL and CUDA provide low-level access to accelerator program-
ming, the task cries out for a higher-level abstraction. Of the higher-
level programming models which have emerged, few are intended to
co-exist with mainstream, general-purpose languages while supporting
tunability, composability, and transparency of implementation. In this
paper, we propose extensions to the type systems (implementable as syn-
tactically neutral annotations) of traditional, general-purpose languages
can be made which allow programmers to work at a higher level of ab-
straction with respect to memory, deferring much of the tedium of data
management and movement code to an automatic code generation tool.
Furthermore, our technique, based on formal term rewriting, allows for
user-defined reduction rules to optimize low-level operations and exploit
domain- and/or application-specific knowledge.

1 Introduction

Programming for hybrid architectures is a challenging task, in large part due
to the partitioned memory model they impose on programmers. Unlike a basic
SMP, devices must be set up and torn down, processing synchronized, and data
explicitly allocated on a particular device and moved around within the memory
hierarchy. Programming systems such as CUDA[1] and OpenCL[2] provide an
interface for these operations, but they are quite low-level. In particular, they
do not distinguish between the high-level computational and application logic
of a program, and the protocol logic related to managing heterogeneous devices.
As a result, the different types of program logic invariably become entangled,
leading to excessively complex software that is prohibitively difficult to develop,
maintain, and compose with other software. The problem we have described is
pervasive in programming for hybrid architectures; in this paper, we will focus
on the specific instance of this problem presented by GPU-based accelerators.

We present a high-level programming language called Twig, designed for ex-
pressing protocol logic and separating it from computational and application
logic. Twig also supports automated reasoning about composite programs that

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 40–51, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Type-Based Approach to Separating Protocol from Application Logic 41

can, in many cases, avoid problems such as redundant memory copying. This
allows Twig programs often to retain the high performance of a lower-level pro-
gramming approach.

Crucially, Twig’s role in the programming toolchain is to generate code in
a mainstream language, such as C. The generated code is easily incorporated
into the main program, which is then compiled as usual. This minimizes the
complexity that Twig adds to the build process, and allows Twig code to interact
easily with existing code and libraries.

Twig achieves these goals by using data types to direct the generation of code
in the target language. In particular, we augment existing data types in the
target language with a notion of location, e.g., an array of floats located on a
GPU, or an integer located in main memory. In the following sections, we first
present related work, and then describe Twig’s code generation strategy and core
semantics. Finally, we present an example demonstrating the use of located types
to generate code for a GPU. In the example, we also show how Twig programs
can be automatically rewritten in order to minimize data movement.

2 Related Work

Twig was inspired in part by Fig[3]. In that project, a similar formal approach
was used to express bindings between different programming languages. In our
experience, multi-language programming has much in common with program-
ming hybrid systems. The overlaps include memory ownership and management,
data marshaling, and managing the flow of program control across the language
or device boundary. Our work builds upon the approach in Fig, and in particu-
lar aims to provide a general-purpose tool not tied to the Moby[4] programming
language.

Numerous systems have been created in recent years that provide an abstrac-
tion above low-level interfaces such as OpenCL or CUDA. These include the PGI
Accelerate model[5], the HMPP programming system[6], and Offload[7]. Inter-
estingly, Offload, like Twig, uses locations encoded in the type system. While
these systems provide an effective high-level abstraction, they offer little room for
tuning the low-level interface to the accelerator. Twig provides a simple method
for user-definable rewriting of programs, which allows architecture-, domain-,
and even application-specific optimizations to be realized.

Furthermore, in large applications it is infeasible to assume that all devel-
opers of the various components will use the same high-level abstraction. This
makes program composition challenging, since it may be unclear how the objects
generated by independent programming systems interacts. Twig adopts a code
generation approach in which a single, low-level target (such as CUDA) is used.
This approach solves the composability problem, since all Twig code maps to a
single “lingua franca” for programming the hybrid system.

Sequoia[8] is a language and runtime system for programming hybrid com-
puters. It allows programmers to explicitly manage the memory hierarchy, while
retaining program portability across architectures. Although Sequoia is based

42 G.C. Hulette, M.J. Sottile, and A.D. Malony

on C++, it is intended as a complete programming environment, not as a way
to extend existing programs with hybrid computation.

Code generation approaches have had notable success in the computational
science field, an exemplar being the Tensor Contraction Engine (TCE)[9]. The
TCE allows computational chemists to write tensor contraction operations in a
high level language, and then generates the corresponding collections of loops
that implement the operations. Unlike Twig, the TCE is quite specialized, being
of use only to programmers working with tensor-based computations.

3 Method Overview

In Twig, we write rules which express some high-level operation, such as kernel
execution or copying data to a device, as a function on types. A Twig program is
evaluated with a type given as input. The output is another type, transformed
by the combined rules of the program. As a side-effect, C code is generated
which performs the transformation on values in C. This basic idea is formalized
in Sec. 5.

Types in Twig are based on the set provided by C, but may be augmented
with additional information. For GPU programming, we augment standard data
types with a location. The location information describes where the data is stored
in memory; in this case, either in the main system memory or on the GPU. For
example, we can represent an array of ints on the CPU with the Twig type
array(int). The same type located on the GPU is gpu(array(int)). Any
standard type may be wrapped inside the gpu type constructor.

Note that location information is only used by Twig during evaluation and
code generation. In particular, it may not be reflected in the types for the gener-
ated code. If we are generating CUDA code, for example, the generated type for
both gpu(array(int)) and array(int) is simply a C pointer to int (i.e., int
*). In this case, the location information is erased during the code generation
phase. For other target languages or APIs that have a notion of location, the
information could be preserved in the target data types.

By augmenting basic data types with location information, we ensure that
rules must be specific to the GPU in order to operate on GPU data. For example,
a rule

[gpu(array(float)) -> gpu(array(int))]

converts an “array of floats” data type to an “array of integers” type if and only
if the type describes data located on the GPU. If the type describes data located
elsewhere, its type must be “converted” (i.e., the data copied to the device) with
a rule such as

[array(float) -> gpu(array(float))]

This simple scheme enables Twig to reason about requirements for data motion.

A Type-Based Approach to Separating Protocol from Application Logic 43

It is important to understand that rules such as those given above describe
transformations on data types, not on the data themselves. It falls to the code
that is generated as a consequence of successful application of these rules to
perform the promised conversion on the actual data. Code generation is described
in Sec. 4.

Our scheme could be extended to support multiple GPU devices, with each
device corresponding to a unique located type. In fact, we think that located
types could be useful in a variety of situations; this is a topic of ongoing work.

4 Code Generation

To generate code, Twig uses an abstract, language-independent system with a
small number of basic operations. The relative simplicity of the model is mo-
tivated by Twig’s semantics, described in Sec. 5. It is helpful in clarifying the
precise operations which Twig supports, without getting bogged down in the
(potentially quite complicated) details of outputting code for a particular lan-
guage.

Twig generates code in units called blocks. A block of code represents any-
thing that performs some operation on a set of inputs in order to produce a
set of outputs. Blocks have zero or more inputs and/or outputs. Blocks can be
combined in two different ways: sequentially, or in parallel. These operations are
described below.

Our current implementation of this model generates C code, although the
model is general enough to generate other languages as well. Figures 1(a) and
1(b) each depict a different basic block that generates C.

4.1 Block Composition

As mentioned above, Twig provides two fundamental operations on blocks. The
first is sequential composition, which we represent formally as addition (+) on
blocks. Sequencing connects two blocks of code by “wiring” the outputs of the
first block into the inputs of the second (see Fig. 1(c)). In C, this is done by creat-
ing uniquely-named temporary variables which are substituted into the original
blocks.

The second operation is parallel composition, where two blocks are combined
so as to execute independently of one another, but to appear as one single block
(see Fig. 1(d)). We represent this operation as multiplication (×).

4.2 Identity Blocks

Twig’s formal semantics require the definition of a set of special identity blocks.
An identity block In has n inputs and n outputs (n > 0). Its function is, as
its name implies, to simply pass each of its inputs through, unchanged, to the
corresponding output. In Twig’s semantics we use In as a kind of “no-op.” We
also use I in place of In when the value of n is implied from the context.

44 G.C. Hulette, M.J. Sottile, and A.D. Malony

$out1 = $in1*2;

in1

out1

A

$out1 = $in1+1;

in1

out1

B

tmp = $in1*2;
$out1 = tmp+1;

in1

out1

A+B

$out1 = $in1*2;
$out2 = $in2+1;

in1

out1

A×B

in2

out2

(a) (b) (c) (d)

Fig. 1. Code generation using blocks. A (a) and B (b) are basic blocks. A+B (c) is the
sequential composition of A and B. A×B (d) is the parallel composition of A and B.

Identity blocks are subject to a few rules, which we describe here informally
and only briefly. First, In are left- and right-identity elements under sequential
composition, i.e., I + x = x + I = x for all blocks x. Second, we can define
parallel composition of identity blocks is defined by summing their size, i.e.,
In × Im = In+m.

5 Twig’s Semantics

Twig is based on a core semantics for term rewriting called System S[10], aug-
mented with code generation and specialized to operate on types instead of
general terms. Twig uses the operators in System S to combine primitive rules
into more complex transformations on types. These transformations are then
applied to a given type, resulting in a new type and potentially generating code
as a side effect. In this section we describe the Twig language.

We present an abbreviated and relatively informal description of Twig’s se-
mantics, focusing on the features used to support GPU programming. The full
semantics will be described in a forthcoming paper.

Twig does not currently provide any built-in constructs for expressing general
recursive expressions, including loops. We are working to address this limitation
in our current work. At the moment, Twig can generate loops contained within a
single generated block and, of course, Twig can also be used to generate a block
of code for inclusion within a loop body.

5.1 Values

Values in Twig can be any valid term representing a type in the target lan-
guage. Terms are tree structured data with labeled internal nodes. Examples of
terms include simple values like int and float, as well as compound types like
ptr(int), which might represent a pointer to an integer in C.

The mapping between terms in Twig and types in the target language is a
configuration option. Furthermore, the mapping need not be injective, i.e. users
are free to have multiple values in Twig map to the same type in C. For example,
you might use distinct Twig values string and ptr(char), but map both to a
pointer to char (char *) in C.

A Type-Based Approach to Separating Protocol from Application Logic 45

Twig also includes support for terms representing groups of values, i.e. tuples,
and operations on groups. We omit these semantics here for lack of space.

5.2 Rules

The fundamental components of a Twig program are called primitive rules. A
primitive rule describes a transformation from one term to another. For example,
in C it is easy to convert an integer value to floating point, and we can write
this rule in Twig as follows:

[int -> float]

The term to the left of the arrow is the input, and the term to the right is the
output. In this example, the rule says that if and only if the input to the rule is
the term int, then the output will be the term float. If the input is not int,
then the output will be the special value ⊥, which can be read as “undefined”
or “failure.”

Primitive rules will typically generate code as a side effect of successful ap-
plication. To associate a block of code with a rule, the programmer puts it
immediately after the rule definition and surrounds it with braces. The brace
symbols are configurable; here we use <| and |>. For example:

[int -> float] <| $out = (float)$in; |>

When the code is generated, Twig will create temporary variables for $in and
$out and ensure that the various bookkeeping details, such as variable decla-
rations, are handled. If there are multiple inputs or outputs, then the relevant
placeholders are enumerated; e.g., $in1, $in2, and so on.

Note that Twig does not check the generated code for correctness – the gener-
ation procedure is essentially syntactic. This approach is similar to the strategy
used tools such as SWIG[11].

5.3 Formal Semantics

In the following formal semantics, let t range over terms, m over code block
expressions, and s over rule expressions, i.e., a primitive rule or a sub-expression
built with operators.

Primitive Rules. A primitive rule s transforms a term t to another term t′

with generated code m:

t
s−→ (t′,m)

if the application of rule s to value t succeeds. If no code is given for the rule,
then m is the identity element, I (see Sec. 4). If the application of s to t fails,
e.g., if t does not match the pattern in s, then

t
s−→ ⊥

Note that a code block is not emitted in this case.

46 G.C. Hulette, M.J. Sottile, and A.D. Malony

Operators. Rules can be combined into more complex expressions using op-
erators. The most useful of these is the sequence operator (note the distinction
from the + operator for code blocks described in Sec. 4). A sequence chains the
application of two rules together, providing the output of the first to the input of
the second, and failing if either rule fails (see Fig. 2). With this operator, simple
rules can be composed into multi-step transformations.

t
s1−→ (t′,m1) t′

s2−→ (t′′,m2)

t
s1;s2−−−→ (t′′,m1 +m2)

t
s1−→ ⊥

t
s1;s2−−−→ ⊥

t
s1−→ (t′,m) t′

s2−→ ⊥
t

s1;s2−−−→ ⊥

Fig. 2. Semantics for sequence operator

Another important operator is left-biased choice. Choice expressions will try
the first rule expression, and if it succeeds then its output is the result (see
Fig. 3) of the expression. If the first rule fails (i.e., results in ⊥), then the second
rule is tried. This operator allows different paths to be taken, and different code
to be generated, depending on the input type.

t
s1−→ (t′,m)

t
s1|s2−−−→ (t′,m)

t
s1−→ ⊥ t

s2−→ (t′,m)

t
s1|s2−−−→ (t′,m)

t
s1−→ ⊥ t

s2−→ ⊥
t

s1|s2−−−→ ⊥

Fig. 3. Semantics for left-biased choice

Fig. 4 gives the formal semantics for some of Twig’s other basic operators.
These include constant operators and operators which discard their results.

t
id−→ (t, I) t

fail−−→ ⊥

t
s−→ (t′, m)

t
?s−→ (t, I)

t
s−→ ⊥

t
?s−→ ⊥

t
s−→ (t′,m)

t
¬s−−→ ⊥

t
s−→ ⊥

t
¬s−−→ (t, I)

Fig. 4. Semantics for basic operators

Twig also provides some special operators for tuples. These are not needed
for this paper, so we omit further discussion.

Named Expressions. Twig allows rules and rule expressions to be assigned to
names. The name can be used in place of the rule itself within expressions. For
example:

intToFloat = [int -> float] { ... }

A Twig program is a list of such name/expression assignments. There is a special
name, main, which designates the top-level expression for the program.

A Type-Based Approach to Separating Protocol from Application Logic 47

5.4 Reductions

Reductions are a mechanism provided within Twig as a way to automatically
simplify expressions. Reductions can be used to exploit application or domain
knowledge about primitive rules, and as such are usually developed alongside a
set of rules.

As an example, consider the following two rules:

intToFloat = [int -> float] {

$out = (float)$in;

}

floatToInt = [float -> int] {

$out = (int)$in;

}

and the expression

intToFloat;floatToInt

We would most likely consider this conversion to be redundant and we should
eliminate it wherever possible. We can tell Twig to do this with the following
reduction rule:

reduce intToFloat;floatToInt => id

This statement instructs Twig to replace any subexpression intToFloat;

floatToInt with the identity rule, id, anywhere it occurs within the program.
Recall that id is the identity rule; it simply passes the value through unchanged.

Twig comes equipped with some standard reductions by default. These re-
ductions rely on the meaning of Twig’s combinators to normalize expressions.
For example, we can replace subexpressions of the form id;X with X, where X

represents any subexpression.
Twig’s reductions are based on the theory of term rewriting; for a formal

discussion see [12]. In this case, Twig’s expressions constitute the terms. There
are some subtleties with reductions, e.g., they must be developed carefully to
avoid circular reductions.

6 Implementation

Our implementation of Twig is written in Haskell. Twig expects as input a .twig
file containing a list of named rule expressions along with a main rule expression,
as described in Sec. 5.3. It also expects an initial value (i.e. a term, representing
a C type), which will be used as the input to the main rule expression. Twig
must also be configured with a mapping from terms to C types. Currently, this
mapping is provided with a simple key/value text file.

Generated code may optionally be wrapped in a C function body, with pa-
rameters corresponding to the inputs, and return value corresponding to the
output. The generated code may be redirected to a separate file and included in
a C program using an #include directive.

48 G.C. Hulette, M.J. Sottile, and A.D. Malony

7 Example

Now we present an example program written in Twig. The code in Fig. 5 demon-
strates how Twig is used, and how reductions can eliminate redundant memory
copies.

copyToGPU=[array(float) -> gpu(array(float))] <|

cudaMalloc((void **)&$out,SIZE);

cudaMemcpy($out,$in,SIZE,cudaMemcpyHostToDevice);

|>

copyFromGPU=[gpu(array(float)) -> array(float)] <|

$out = malloc(SIZE * sizeof(float));

cudaMemcpy($out,$in,SIZE,cudaMemcpyDeviceToHost);

|>

kernel(k)=[gpu(array(float)) -> gpu(array(float))] <|

$k <<<N_BLOCKS,BLOCK_SIZE>>>($in, N);

$out = $in;

|>

runKernel(k)=copyToGPU;kernel(k);copyFromGPU

main=runKernel(<|foo|>);runKernel(<|bar|>)

reduce copyFromGPU;copyToGPU => id

Fig. 5. Twig code example

This example is quite simple, in the interest of brevity and clarity. We omit
setup and teardown logic, and assume that the array size, block size, and other
parameters are simple constants. A real application would probably pass these
values around using more complex rules.

The first three rules definitions are primitives for moving data to and from the
GPU (copyToGPU and copyFromGPU), and for invoking a kernel transformation
on the array in GPU memory (kernel). The rules kernel and runKernel are
parameterized by k, whose value is inserted directly into the generated code.

The runKernel rule will perform a single logical “function” on the GPU. Note
that this rule will be semantically valid in any context where it appears, since
it ensures that the data is first moved onto the GPU, the kernel is executed,
and then the data is copied back. To the programmer, runKernel appears to
perform a function on a local array – a considerably simpler than the abstraction
presented by OpenCL or CUDA.

The main rule is the top level of the program. This example executes two
kernels in sequence with two invocations of runKernel. As noted above, by
design each invocation would normally result in a copy to and from the GPU
– a conservative strategy. Since the data is not modified in between GPU calls,
on its own this expression would generate a redundant copy in between the calls
to foo and bar. To see why, we can trace the execution of the Twig program.
First, variable names are substituted with the expressions they denote, so main

goes from:

A Type-Based Approach to Separating Protocol from Application Logic 49

main = runKernel(foo);runKernel(bar)

to

main = copyToGPU;kernel{foo};copyFromGPU;

copyToGPU;kernel{bar};copyFromGPU

Evaluating this expression on the type array(float) will generate the following
code.

float *tmp01,*tmp02,*tmp03,*tmp04,*tmp05,*tmp06,*tmp07;

cudaMalloc((void **)&tmp02,SIZE);

cudaMemcpy(tmp02,tmp01,SIZE,cudaMemcpyHostToDevice);

foo <<<N_BLOCKS,BLOCK_SIZE>>> (tmp02, N);

tmp03 = tmp02;

tmp04 = malloc(SIZE * sizeof(float));

cudaMemcpy(tmp04,tmp03,SIZE,cudaMemcpyDeviceToHost);

cudaMalloc((void **)tmp05,SIZE);

cudaMemcpy(tmp05,tmp04,SIZE,cudaMemcpyHostToDevice);

bar <<<N_BLOCKS,BLOCK_SIZE>>> (tmp05,N);

tmp06 = tmp05;

tmp07 = malloc(SIZE * sizeof(float));

cudaMemcpy(tmp07,tmp06,SIZE,cudaMemcpyDeviceToHost);

Notice that this code, while correct, contains a redundant copy! The problem
arises because we sequenced the two kernel operations, which introduces the sub-
expression copyFromGPU;copyToGPU. This sub-expression will copy data from
the GPU to main memory, and then immediately back to the device. We solve
this problem using a reduction, as described in Sec. 5.4. The line

reduce copyFromGPU;copyToGPU => id

instructs Twig to search for the expression copyFromGPU;copyToGPU and replace
it with id, the identity transformation. After the reduction step, the expanded
version of main has the extra copies removed:

main = copyToGPU;kernel{foo};id;kernel{bar};copyFromGPU

In fact, Twig’s built-in reduction rules would remove the spurious id as well,
although this has no bearing on the meaning. Now Twig will generate this code:

float *tmp01,*tmp02,*tmp03,*tmp04,*tmp05;

cudaMalloc((void **)&tmp02,SIZE);

cudaMemcpy(tmp02,tmp01,SIZE,cudaMemcpyHostToDevice);

foo <<<N_BLOCKS,BLOCK_SIZE>>> (tmp02, N);

tmp03 = tmp02;

bar <<<N_BLOCKS,BLOCK_SIZE>>> (tmp03,N);

tmp04 = tmp03;

tmp05 = malloc(SIZE * sizeof(float));

cudaMemcpy(tmp05,tmp04,SIZE,cudaMemcpyDeviceToHost);

50 G.C. Hulette, M.J. Sottile, and A.D. Malony

This code does not contain the extraneous copying. Although this example is sim-
ple, it demonstrates the power of reductions. The reduction rule given here would
probably be paired with the copyToGPU and copyFromGPU rules in a module in-
tended for consumption by domain programmers, allowing them to perform GPU
operations without worrying about the design of the rules. Sophisticated users,
however, could add their own rules or even application-specific reductions, en-
abling very powerful and customizable code generation based on domain-specific
logic.

8 Future Work

We are working on expanding the Twig language with a notion of functors.
Functors cleanly capture most cases in which users might need to generate loop
constructs, allocate/free patterns, or other protocols that require a notion of
context.

We are also investigating a number of ways in which Twig might be more
closely integrated with mainstream coding practices. For example, we imagine
that it may be possible for Twig code to live in the background, and express
protocol logic through declarative annotations in the application code.

9 Conclusion

We have introduced the concept of separating the protocol logic inherent to hy-
brid systems from the computational and application logic of a program. We
have demonstrated that a type-based approach can enforce this separation by
making explicit in data types information related to both data location, and the
representation of the data itself. By doing so, we allow the protocol logic of a
program to be expressed via operations exclusively on located types. Many ex-
plicit programming chores become implicit features of the generated code, such
as declaring intermediate values or reducing redundant memory movement. Fi-
nally, by adopting a code generation approach, we show that users of these higher
level abstractions are not prohibited from both tuning the resultant code and
composing independently developed programs that utilize standardized hybrid
programming libraries like OpenCL or CUDA.

Acknowledgements. This work was supported in part by the Department of
Energy Office of Science, Advanced Scientific Computing Research.

References

1. Sanders, J., Kandrot, E.: CUDA By Example: An Introduction To General-Purpose
GPU Programming (July 2010)

2. Khronos OpenCL Working Group: The OpenCL Specification Version 1.0
3. Reppy, J., Song, C.: Application-specific foreign-interface generation. In: GPCE

2006, pp. 49–58 (October 2006)

A Type-Based Approach to Separating Protocol from Application Logic 51

4. Fisher, K., Reppy, J.: The design of a class mechanism for Moby. In: SIGPLAN
1999, pp. 37–49 (May 1999)

5. Wolfe, M.: Implementing the PGI accelerator model. In: GPGPU 2010 (2010)
6. Dolbeau, R., Bihan, S., Bodin, F.: HMPP: A hybrid multi-core parallel program-

ming environment. In: GPGPU 2007 (2007)
7. Cooper, P., Dolinsky, U., Donaldson, A.F., Richards, A., Riley, C., Russell, G.: Of-

fload – Automating Code Migration to Heterogeneous Multicore Systems. In: Patt,
Y.N., Foglia, P., Duesterwald, E., Faraboschi, P., Martorell, X. (eds.) HiPEAC
2010. LNCS, vol. 5952, pp. 337–352. Springer, Heidelberg (2010)

8. Fatahalian, K., Knight, T., Houston, M., Erez, M., Horn, D., Leem, L., Park, H.,
Ren, M., Aiken, A., Dally, W., Hanrahan, P.: Sequoia: Programming the memory
hierarchy. In: SC 2006 (November 2006)

9. Baumgartner, G., et al.: Synthesis of high-performance parallel programs for a class
of ab initio quantum chemistry models. Proceedings of the IEEE (2005)

10. Visser, E., el Abidine Benaissa, Z.: A core language for rewriting. Electronic Notes
in Theoretical Computer Science 15, 422–441 (1998)

11. Beazley, D.M.: Automated scientific software scripting with SWIG. Future Gener-
ation Computer Systems 19, 599–609 (2003)

12. Baader, F., Nipkow, T.: Term rewriting and all that. Cambridge University Press,
New York (1998)

Topic 2: Performance Prediction and Evaluation

Allen D. Malony, Helen Karatza, William Knottenbelt, and Sally McKee

Topic Committee

In recent years, a range of novel methodologies and tools have been developed for
the purpose of evaluation, design, and model reduction of existing and emerging
parallel and distributed systems. At the same time, the coverage of the term
‘performance’ has constantly broadened to include reliability, robustness, energy
consumption, and scalability in addition to classical performance-oriented evalu-
ations of system functionalities. Indeed, the increasing diversification of parallel
systems, from cloud computing to exascale, being fueld by technological ad-
vances, is placing greater emphasis on the methods and tools to address more
comprehensive concerns. The aim of the Performance Prediction and Evalua-
tion topic is to bring together system designers and researchers involved with
the qualitative and quantitative evaluation and modeling of large-scale parallel
and distributed applications and systems to focus on current critical areas of
performance prediction and evaluation theory and practice.

The five papers selected for the topic area reflect the broadening perspec-
tive of parallel performance involving alternative evaluation techniques (mea-
surement, simulation, analytical modeling), different systems components (file
systems, GPUs, I/O, multicore processors), and multiple targeted metrics (ex-
ecution time, energy, network latency). The two papers based on modeling
methodologies looked at two different systems aspects:

The paper “Energy Consumption Modeling for Hybrid Computing” by
Marowka presented analytical models based on an energy consumption met-
ric and used the model to analyze different design options for hybrid CPU-GPU
chips. They studied the joint effect of performance and energy consumption to
understand their relationship, particularly with respect to greater parallelism.
The paper “HPC File Systems in Wide Area Networks: Understanding the Per-
formance of Lustre over WAN” by Aguilera et al., also looked at performance
interactions, but with respect to network system design. They evaluated the
performance of the Lustre file system and its networking layer, with the goal
of understanding the impact that the network latency has on Lustre’s perfor-
mance and deriving useful “rules of thumb” to help predict Lustre performance
variation.

The next two papers share a common thread of how to capture a more compre-
hensive evaluation of performance for predictive purposes when the environment
itself is complex and difficult to study directly. While sharing this theme, the two
papers look at two distinct problems areas and take two different approaches:

“Understanding I/O Performance using I/O Skeletal Applications” by Logan
et al. attempts to get a handle on the causes of I/O bottlenecks in HPC appli-
cations for purposes of guiding scaling optimization. By combining an approach
to generate I/O benchmark codes from a high-level description with low-level

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 52–53, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Topic 2: Performance Prediction and Evaluation 53

performance characterization of I/O components, a more complete and represen-
tative picture of application I/O behavior is obtained. The methodology enables
more meaningful I/O performance testing, improved prediction of I/O perfor-
mance, and more flexible evaluation of new systems and I/O methods. The paper
“ASK: Adaptive Sampling Kit for Performance Characterization,” by Castro et
al., addresses the complexity of a large optimization design space for perfor-
mance tuning. Their approach measures and understands performance tradeoffs
by applying multiple adaptive sampling methods and strategies with the goal
of considerably reducing the cost of performance exploration. The outcome are
precise models of performance, created with a small number of measures, that
can be used for prediction of performance for specific features, such as memory
stride accesses.

The last paper of the topic area “CRAWP: A Workload Partition Method for
the Efficient Parallel Simulation of Manycores” by Jiao et al. points out the in-
teresting aspect that the behavior of manycore execution affects the performance
of parallel discrete event simuation (PDES) system used to study it. Thus, by
altering how workload is partitioned in the PDES simulator, it is possible to
achieve improved speed and accuracy. The authors propose an adaptive work-
load partition method – Core/Router-Adaptive Workload Partition (CRAWP)
– that make the simulation of on-chip-network independent of the cores. Signifi-
cant improvements are achieved for the simulation of the SPLASH2 benchmark
applications.

Energy Consumption Modeling

for Hybrid Computing

Ami Marowka

Department of Computer Science
Bar-Ilan University, Israel

amimar2@yahoo.com

Abstract. Energy efficiency is increasingly critical for embedded sys-
tems and mobile devices, where their continuous operation is based on
battery life. In order to increase energy efficiency, chip manufacturers are
developing heterogeneous CMP chips.

We present analytical models based on an energy consumption met-
ric to analyze the different performance gains and energy consumption
of various architectural design choices for hybrid CPU-GPU chips. We
also analyzed the power consumption implications of different processing
modes and various chip configurations. The analysis shows clearly that
greater parallelism is the most important factor affecting energy saving.

Keywords: Analytical model, CPU-GPU architecture, Performance,
Power estimation, Energy.

1 Introduction

Energy efficiency is one of the most challenging problems confronting multi-core
architecture designers. Future multi-core processors will have to manage their
computing resources while maintaining their power consumption within a power
budget. This constraint is forcing the microprocessor designers to develop new
computer architectures that deliver better performance per watt rather than
simply yielding higher sustainable performance.

Recent research shows that integrated CPU-GPU processors have the poten-
tial to deliver more energy efficient computations, which is encouraging chip
manufacturers to reconsider the benefits of heterogeneous parallel computing.
The integration of CPU and DSP cores on a single chip has provided an at-
tractive solution for the mobile and embedded market segments, and a similar
direction for CPU-GPU computing appears to be an obvious move. It is known
that the integration of thin cores and fat cores on a single processor achieves
a better performance gain per watt. For example, a study of analytical mod-
els of various heterogeneous multi-core processor configurations found that the
integration of many simplified cores in a single complex core achieved greater
speedup and energy efficiency when compared with homogeneous simplified cores
[1]. Thus, it is generally agreed that a heterogeneous chip integrating different
core architectures, such as CPU and GPU, on a single die is the most promising

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 54–64, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Energy Consumption Modeling for Hybrid Computing 55

technology [2–5]. Chip manufacturers such as Intel, NIVIDIA, and AMD have
already announced such architectures, i.e., Intel Sandy Bridge, AMD’s Fusion
APUs, and NVIDIA’s Project Denver.

Despite some criticisms [6, 7] Amdahl’s Law [8] is still relevant as we enter
a heterogeneous multi-core computing era. Amdahl’s Law is a simple analytical
model that helps developers to evaluate the actual speedup that can be achieved
using a parallel program. However, the future relevance of the law requires its
extension by the inclusion of constraints and architectural trends demanded by
modern multiprocessor chips. Here, we extend a study conducted by Woo and
Lee [1] and apply it to the case of hybrid CPU-GPU multi-core processors.

We investigate how energy efficiency and scalability are affected by the power
constraints imposed on modern CPU-GPU based heterogeneous processors. We
present analytical models that extend Amdahl’s Law by accounting for energy
limitations and we analyze the three processing modes available for heteroge-
neous computing, i.e., symmetric, asymmetric, and simultaneous asymmetric.

The rest of this paper is organized as follows. Section 2 presents an ana-
lytical model of a symmetric multi-core processor that reformulates Amdahl’s
Law to capture power constraints. In Section 3 we continue by applying energy
constraints to an analytical model of an asymmetric processor. In Section 4 we
study how performance and power consumption are affected by simultaneous
asymmetric processing. In Section 5 we compare the three analytical models.
Section 6 presents related works and Section 7 concludes the paper.

2 Symmetric Processors

In this section we reformulate Amdahl’s Law to capture the necessary changes
imposed by power constraints. We start with the traditional definition of a sym-
metric multi-core processor and continue by applying energy constraints to the
equations following the method of Woo and Lee [4].

2.1 Symmetric Speedup

Amdahl’s law posts an upper limit on the symmetric speedup (speedups) that can
be achieved by parallelization of a symmetric multi-core processor, as follows:

Speedups =
1

(1− f) + f
c

(1)

where c is the number of cores, and f is the fraction of a program’s execution
time that is parallelizable (0 ≤ f ≤ 1).

2.2 Symmetric Performance per Watt

To model power consumption in realistic scenarios, we introduce the variable kc
to represent the fraction of power a single CPU core consumes in its idle state

56 A. Marowka

(0 ≤ kc ≤ 1). In the case of a symmetric processor, one core is active during
the sequential computation and consumes a power of 1, while the remaining
(c−1) CPU-cores consume (c−1)kc. During the sequential computation period,
the processor consumes a power of 1 + (n − 1)kc. Thus, during the parallel
computation time period, c CPU-cores consume c power. It requires (1− f) and
f/c to execute the sequential and parallel codes respectively, so the formula for
the average power consumption Ws of a symmetric processor is as follows.

Ws =
(1− f) · {1 + (c− 1)kc}+ f

c · c
(1− f) + f

c

= (2)

1 + (c− 1)kc(1− f)

(1− f) + f
c

Next, we define the performance per watt (Perf/W) metric to represent the
amount of performance that can be obtained from 1 W of power. The Perf of
a single CPU-core execution is 1, so the Perf /Ws achievable for a symmetric
processor is formulated as follows.

Perf

Ws
=

Speedups
Ws

=
1

1 + (c− 1)kc(1− f)
(3)

2.3 Symmetric Performance Per Joule

The definition of Perf /W metric allows us to evaluate the performance achiev-
able by a derived unit of power (watt). Power is the rate at which energy is
converted, so we can define a Performance per Joule (Perf/J) metric where the
joule is the derived unit of energy, representing the amount of performance stored
in an electrical battery. The Perf /J of a single CPU-core execution is 1, so the
Perf /Js achievable by a symmetric processor is formulated as follows.

Perf

Js
= Speedups ·

Perf

Ws
=

1

(1− f) + f
c

· 1

1 + (c− 1)kc(1 − f)
(4)

Figure 1 plots the Perf /Js as a function of the number of CPU-cores in a sym-
metric multi-core processor. It is immediately obvious that there is a huge gap
between the Perf /Js obtainable when a high degree of parallelism is available
(f = 0.99) and that when the available parallelism is only 10% less (f = 0.9).
Thus, the major factor affecting the energy saving of mobile devices is the de-
velopment of extremely parallel applications. When an abundance of parallelism
is available (f = 0.99), the Perf /Js increases linearly with the increase in the
number of cores whereas with f < 0.9 the Perf /Js reaches it maximum at a
small number of cores before decreasing slowly.

Energy Consumption Modeling for Hybrid Computing 57

 0.0625
 0.125

 0.25
 0.5

 1
 2
 4
 8

 16
 32
 64

148 16 32 64 100

Pe
rfo

rm
an

ce
 p

er
 Jo

ul
e

Number of CPU cores

f = 0.99
f = 0.9
f = 0.7

f = 0.5
f = 0.3

Fig. 1. Performance per joule as a function of the number of CPU-cores in a symmetric
multi-core processor when kc = 0.3 and various values of f

3 Asymmetric CPU-GPU Processors

We assume that a program’s execution time can be composed of a time period
where the program runs in parallel (f), a time period where the program runs
in parallel on the CPU cores (α), and a time period where the program runs in
parallel on the GPU cores (1 − α).

To model the power consumption of an asymmetric processor we introduce
another variable, kg, to represent the fraction of power a single GPU-core con-
sumes in its idle state (0 ≤ kg ≤ 1). We introduce two further variables, α and
β, to model the performance difference between a CPU-core and a GPU-core.
The first variable represents the fraction of a program’s execution time that is
parallelized on the CPU-cores (0 ≤ α ≤ 1), while the second variable represents
a GPU core’s performance normalized to that of a CPU-core (0 ≤ β). For exam-
ple, comparing the performance of a single core of Intel Core-i7-960 multi-core
processor against the performance of a single core of a NVIDIA GTX 280 GPU
processor yields values of β between 0.4 and 1.2. Moreover, recent studies such as
[9] show that the GPU processor (NVIDIA GTX 280) achieves only 2.5x speedup
in average compared to multi-core processor (Intel Core-i7-960).

We assume that one CPU-core in an active state consumes a power of 1 and
the power budget (PB) of a processor is 100. Thus, g = (PB−c)/wg is the number
of the GPU-cores embedded in the processor, where variable wg represents the
active GPU core’s power consumption relative to that of an active CPU-core
(0 ≤ wg ≤ 1).

3.1 Asymmetric Speedup

Now, if the sequential code of the program is executed on a single CPU-core
the following equation represents the theoretical achievable asymmetric speedup
(speedupa).

58 A. Marowka

Speedupa =
1

(1− f) + αf
c + (1−α)f

g·β
(5)

3.2 Asymmetric Performance per Watt

To model the power consumption of an asymmetric processor we assume that
one core is active during the sequential computation and consumes a power of
1, while the remaining c− 1 idle CPU-cores consume (c− 1)kc power and g idle
GPU-cores consume g · wg · kg power. Thus, during the parallel computation
period of the CPU-cores, c active CPU-cores consume c power and g idle GPU-
cores consume g · wg · kg power. During the parallel computation period of the
GPU-cores, g active GPU-cores consume g · wg power and c idle CPU-cores
consume c · kc power. Let Ps, Pc and Pg denote the power consumption during
the sequential, CPU, and GPU processing phases, respectively.

Ps = (1− f){1 + (c− 1)kc + g · wg · kg}

Pc =
αf

c
{c+ g · wg · kg}

Pg =
(1 − α)f

g · β {g · wg + c · kc}

It requires (1 − f) to perform the sequential computation, and αf
c and (1−α)f

g·β
to perform the parallel computations on the CPU and GPU, respectively, so the
average power consumption Wa of an asymmetric processor is as follows.

Wa =
Ps + Pc + Pg

(1− f) + αf
c + (1−α)f

g·β
(6)

Consequently, Perf /Wa of a an asymmetric processor is expressed as

Perf

Wa
=

Speedupa
Wa

=
1

Ps + Pc + Pg
(7)

3.3 Asymmetric Performance per Joule

Based on our definition of performance per joule, the
Perf /Ja of a an asymmetric processor is expressed as follows.

Perf

Ja
= Speedupa ·

Perf

Wa
= (8)

1

(1− f) + αf
c + (1−α)f

g·β
· 1

Ps + Pc + Pg

Energy Consumption Modeling for Hybrid Computing 59

 0.015625

 0.0625

 0.25

 1

 4

 16

 64

148 16 32 64 99

Pe
rfo

rm
an

ce
 p

er
 Jo

ul
e

Number of CPU cores

f = 0.99
f = 0.9
f = 0.7

f = 0.5
f = 0.3

Fig. 2. Performance per joule as a function of the number of CPU-cores in an asym-
metric processor when α = 0.1, kc = 0.3, kg = 0.2, wg = 0.25, β = 0.5 and various
values of f

Figure 2 plots the Perf /Ja as a function of the number of CPU-cores in an
asymmetric processor. It can be observed again that high energy efficiency in a
heterogeneous system is obtainable only if hybrid parallel programming models
will be available for building extremely parallel programs. Such programs will
need the support of runtime systems to find the optimal chip configuration for
maximum battery continues operation. For example, in Figure 2 the optimal
configuration (for f = 0.99) is achieved for 28 CPU-cores and 312 GPU-cores.

4 CPU-GPU Simultaneous Processing

In the previous analysis we assumed that a program’s execution time is divided
into three phases as follows: a sequential phase where one core is active, a CPU
phase where the parallelized code is executed by the CPU-cores and a GPU
phase where the parallelized code is executed by the GPU-cores. However, the
aim of hybrid CPU-GPU computing is to divide the program while allowing the
CPU and the GPU to execute their codes simultaneously.

4.1 Simultaneous Asymmetric Speedup

We conduct our analysis assuming that the CPU’s execution time overlaps with
the GPU’s execution time. Such an overlap occurs when the CPU’s execution

time αf
c equals the GPU’s execution time (1−α)f

g·β . Let α′ denote the value of α
that applies to this equality:

α′ =
c

g · β + c

60 A. Marowka

Now, if the sequential code of the program is executed on a single CPU-core the
following equation represents the theoretical achievable simultaneous asymmetric
speedup (speedupsa).

Speedupsa =
1

(1 − f) + α′f
c

=
1

(1− f) + f
g·β+c

(9)

4.2 Simultaneous Asymmetric Perf/W

To model the power consumption of an asymmetric processor for the case of
simultaneous processing, we assume that one core is active during the sequential
computation and consumes a power of 1, while the remaining c−1 idle CPU-cores
consume (c−1)kc power and g idle GPU-cores consume g ·wg ·kg power. During
the parallel computation period, c active CPU-cores consume c power and g
GPU-cores consume g·wg power. It requires (1−f) to execute the sequential code,
and α′f

c to execute the parallel code on the CPU and GPU simultaneously, so
the formula for the average power consumption Wsa of an asymmetric processor
during simultaneous processing is as follows.

Wsa =
Ps +

α′f
c {c+ g · wg}

(1 − f) + α′f
c

(10)

Consequently, Perf /Wsa of an asymmetric processor during simultaneous pro-
cessing is expressed as

Perf

Wsa
=

Speedupsa
Wsa

=
1

Ps +
α′f
c {c+ g · wg}

(11)

4.3 Simultaneous Asymmetric Perf/J

Based on our definition of performance per joule, the
Perf /Jsa of an asymmetric processor in the simultaneous processing mode is
expressed as follows.

Perf

Jsa
= Speedupsa ·

Perf

Wsa
= (12)

1

(1 − f) + α′f
c

· 1

Ps +
α′f
c {c+ g · wg}

Figure 3 shows the Perf /Jsa as a function of number of CPU-cores with an
asymmetric processor where the CPU and the GPU are in simultaneous pro-
cessing mode. As expected, a low degree of parallelism decreases significantly

Energy Consumption Modeling for Hybrid Computing 61

 0.0625

 0.25

 1

 4

 16

 64

 256

148 16 32 64 100

Pe
rfo

rm
an

ce
 p

er
 Jo

ul
e

Number of CPU cores

f = 0.99
f = 0.9
f = 0.7
f = 0.5
f = 0.3

Fig. 3. Performance per joule as a function of the number of CPU-cores for an asym-
metric processor in simultaneous processing mode when α = 0.1, kc = 0.3, kg =
0.2, wg = 0.25, β = 0.5 and various values of f

the energy efficiency. On the other hand, when an abundance of parallelism is
available the energy efficiency is very high. In simultaneous processing mode,
the obtainable Perf /Jsa decreases slowly with the increase in the number of
CPU-cores. This phenomenon means that it is not always necessary to support
a dynamic reconfigurable processor and an associated runtime optimizer when
finding the best chip configuration, because all possible chip configurations yield
optimal or near-optimal configuration.

5 Synthesis

Figure 4 shows the three Perf /J graphs for the analytical models investigated,
i.e., symmetric (s), asymmetric (a) and simultaneous asymmetric (sa). This com-
parison shows that greater parallelism yields better energy efficiency and offers
more chip configurations choices, while encouraging the search or better scalable
software with energy saving. Simultaneous processing yields an excellent Perf /J
with peak performance using a chip configuration of a single CPU-core. It then
decreases as the number of CPU-cores increases untill the point where all cores in
the chip are CPU-cores, which is also the intersection point with the symmetric
Perf /J . In contrast, the asymmetric processor delivers poor Perf /J at extreme
points where the number of CPU-cores is small or large, which requires that the
dynamic configuration is identified and set for optimal chip organization.

6 Related Work

Hill and Marty [11] studied the implications of Amdahl’s law on multi-core hard-
ware resources and proposed the design of future chips based on the overall chip
performance rather than core efficiencies. The major assumption in that model

62 A. Marowka

1
8

16

32

64

14 8 16 32 64 100

Pe
rfo

rm
an

ce
 p

er
 Jo

ul
e

Number of CPU cores

s
a

sa

Fig. 4. Comparison between symmetric Perf/J (s), asymmetric Perf/J (a), and simul-
taneous asymmetric Perf/J (sa) when α = 0.1, kc = 0.3, kg = 0.2, wg = 0.25, β = 0.5
and f = 0.99

was that a chip is composed of many basic cores and their resources can be com-
bined dynamically to create a more powerful core with higher sequential per-
formance. Using Amdahl’s law, they showed that asymmetric multi-core chips
designed with one fat core and many thin cores exhibited better performance
than symmetric multi-core chip designs. For example, with f = 0.975 (the frac-
tion of computation that can parallelize) and n = 256 (Base Core Equivalents),
the best asymmetric speedup was 125.0, whereas the best symmetric speedup
was 51.2. Individual core resources could be dynamically combined to increase
performance of the sequential component, so the performance was always im-
proved. In our example, the speedup was increased to 186.0.

Woo and Lee [1] developed a many-core performance per energy analytical
model that revisited Amdahl’s Law. Using their model the authors investigated
the energy efficiency of three architecture configurations. The first architecture
studied contained multi-superscalar cores, the second architecture contained
many simplified and energy efficient cores, and the third architecture was an
asymmetric configuration of one superscalar core and many simplified energy ef-
ficient cores. The evaluation results showed that under restricted power budget
conditions the asymmetric configuration usually exhibited better performance
per watt. The energy consumption was reduced linearly as the performance was
improved with parallelization scales. Furthermore, improving the parallelization
efficiency by load balancing among processors increased the efficiency of power
consumption and increased the battery life.

Sun and Chen [11] studied the scalability of multi-core processors and reached
more optimistic conclusions compared with the analysis conducted by Hill and
Marty [11]. The authors suggested that the fixed-size assumption of Amdahl’s
law was unrealistic and that the fixed-time and memory-bounded models might
better reflect real world applications. They presented extensions of these models
for multi-core architectures and showed that there was no upper bound on the

Energy Consumption Modeling for Hybrid Computing 63

scalability of multi-core architectures. However, the authors suggested that the
major problem limiting multi-core scalability is the memory data access delay
and they called for more research to resolve this memory-wall problem.

Esmaeilzadeh et al. [12] performed a systematic and comprehensive study to
estimate the performance gains from the next five multi-core generations. Accu-
rate predictions require the integration of as many factors as possible. Thus, the
study included: power, frequency and area limits; device, core and multi-core
scaling; chip organization; chip topologies (symmetric, asymmetric, dynamic,
and fused); and benchmark profiles. They constructed models based on pes-
simistic and optimistic forecasts, and observations of previous works with data
from 150 processors. The conclusions were not encouraging. Over five technol-
ogy generations only a 7.9x average speedup was predicted with multi-core pro-
cessors, while over 50% of the chip resources will be turned off due to power
limitations. Neither multi-core CPUs nor many-core GPUs architectures were
considered to have the potential for delivering the required performance speedup
levels.

Cho and Melhem [13] studied the mutual affects of parallelization, program
performance, and energy consumption. Their analytic model was applied to a
machine that could turn off individual cores, while others do not make this
assumption. The main prediction was that greater parallelism (a greater ratio of
the parallel portion in the program) and more cores helped reduce energy use.
Moreover, it was shown that is possible to reduce the processor speeds and gain
further dynamic energy reductions before static energy becomes the dominant
factor determining the total amount of energy used.

Hong and Kim [14] developed an integrated power and performance modeling
system (IPP) for the GPU architecture. IPP is an empirical power model that
aims to predict performance-per-watt and the optimal number of active cores for
bandwidth-limited applications. IPP uses predicted execution times to predict
power consumption. In order to predict the execution time the authors used
a special-purpose GPU analytical timing model. Moreover, to obtain the power
model parameters, they designed a set of synthetic micro-benchmarks that stress
different architectural components in the GPU.

The evaluation of the proposed model was done by using NVIDIA GTX280
GPU. The authors show that by predicting the optimal number of active cores,
they can save up to 22.09% of runtime GPU energy consumption and on aver-
age 10.99% of that for five memory bandwidth-limited benchmarks. They also
calculated the power savings if a per-core power gating mechanism is employed,
and the result shows an average of 25.85% in energy reduction. IPP predicts the
power consumption and the execution time with an average of 8.94% error for
the evaluated benchmarks GPGPU kernels. It can be used by a thread scheduler
in order to manage the power system more efficiently or by the programmers to
optimize program configurations.

64 A. Marowka

7 Conclusions

We investigated three analytical models of symmetric, asymmetric, and simul-
taneous asymmetric processing. These models extended Amdahl’s Law for sym-
metric multi-core and heterogeneous many-core processors by taking in account
power constraints. The analysis of speedup and the performance per watt of
various chip configurations suggests that future CMPs should be a priori de-
signed to include one or a few fat cores alongside many efficient thin cores to
support energy efficient hardware platforms. On the software side, this study
shows without a doubt that increased parallelism should not be the exception,
because the standard parallel programming paradigm can create energy saving
applications that can be used to efficiently underpin future multi-core processor
architectures.

References

1. Woo, D.H., Lee, H.S.: Extending Amdahl’s Law for Energy-Efficient Computing
in the Many-Core Era. IEEE Computer 38(11), 32–38 (2005)

2. Mantor, M.: Entering the Golden Age of Heterogeneous Computing. In: Perfor-
mance Enhancement on Emerging Parallel Processing Platforms (2008)

3. Kogge, P., et al.: ExaScale Computing Study: Technology Challenges in Achieving
Exascale Systems. DARPA, Washington, D.C (2008)

4. Fuller, S.H., Millett, L.I.: Computing Performance: Game Over or Next Level?
IEEE Computer 44(1), 31–38 (2011)

5. Borkar, S.: Thousand core chips: a technology perspective. In: Proc. 44th Design
Automation Conference, pp. 746–749. ACM Press (2007)

6. Gustafson, J.L.: Reevaluating Amdahl’s Law. Communication of ACM 31(5), 532–
533 (1988)

7. Hillis, D.: The pattern on the stone: The simple ideas that make computers work.
Basic Books (1998)

8. Amdahl, G.M.: Validity of the Single-Processor Approach to Achieving Large-
Scale Computing Capabilities. In: Proc. Am. Federation of Information Processing
Societies Conf., pp. 483–485. AFIPS Press (1967)

9. Lee, V.W., et al.: Debunking the 100X GPU vs. CPU myth: an evaluation of
throughput computing on CPU and GPU. In: Proceedings of the 37th Annual
International Symposium on Computer Architecture (2010)

10. Hill, M.D., Marty, M.R.: Amdahl’s Law in the Multicore Era. IEEE Com-
puter 41(7), 33–38 (2008)

11. Sun, X.-H., Chen, Y.: Reevaluating Amdahl’s law in the multicore era. Journal of
Parallel and Distributed Computing 70(2), 183–188 (2010)

12. Esmaeilzadeh, H., Blem, E., Amant, R.S., Sankaralingam, K., Burger, D.C.: Dark
Silicon and the End of Multicore Scaling. In: Proceeding of 38th International
Symposium on Computer Architecture (ISCA), pp. 365–376 (June 2011)

13. Cho, S., Melhem, R.G.: On the Interplay of Parallelization, Program Performance,
and Energy Consumption. IEEE Trans. Parallel Distrib. Syst. 21(3), 342–353
(2010)

14. Hong, S., Kim, H.: An Integrated GPU Power and Performance Model. In: Pro-
ceeding of ISCA 2010, pp. 19–23. ACM (June 2010)

HPC File Systems in Wide Area Networks:

Understanding the Performance of Lustre
over WAN

Alvaro Aguilera, Michael Kluge, Thomas William, and Wolfgang E. Nagel

Technische Universität Dresden, Dresden, Germany
{alvaro.aguilera,

michael.kluge,thomas.william,wolfgang.nagel}@tu-dresden.de

Abstract. Using the first commercially available 100Gbps Ethernet
technology with a link of varying length, we have evaluated the perform-
ance of the Lustre file system and its networking layer under different
latency scenarios. The results led us to a better understanding of the im-
pact that the network latency has on Lustre’s performance. In particular
spanning Lustre’s networking layer, striped small I/O, and the parallel
creation of files inside a common directory. The main contribution of this
work is the derivation of useful rules of thumbs to help users and system
administrators predict the variation in Lustre’s performance produced
as a result of changes in the latency of the I/O network.

1 Introduction

Scientific instruments create an enormous amount of data every day. For ex-
ample, the NASA Earth Observation System (EOSDIS) created about 2.9TiB
data in average each day in 2010 [1]. To share this data with collaborating scient-
ists, WAN file systems have already proven their value. The European DEISA
project [2] utilizes a series of dedicated 10Gbps links to serve a distributed GPFS
file system to different HPC centers. Since about 2006, the parallel file system
Luste has gained some attention while being used in WAN environments [3,4,5].
These evaluations and the consecutive use of Lustre as a production file system
in the DataCapacitor project at Indiana University have demonstrated that par-
allel file systems can be used efficiently on networks with latencies of more than
100 milliseconds.

However, up to now, the relevant publications only describe different use cases,
experiences, and tuning efforts, but none focuses on the interplay between the
network latency, the Lustre tunables and the resulting performance of the file
system. Advancing this understanding will certainly ease Lustre’s tuning effort
as well as give some hints about how to use the file system in production, e.g.
how files should be striped. Our aim in this paper is to make a first step in this
direction by analyzing our observations on the 100Gpbs Ethernet testbed.

The paper is structured as follows. The next section (Section 2) introduces
the testbed system itself. In Section 3, previous work on performance models,

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 65–76, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

66 A. Aguilera et al.

especially for parallel file systems, is reviewed. Within Section 4, the Lustre
networking layer is evaluated and a simple performance model for this software
layer is presented. After this, Section 5 deals with the performance obtained
when different I/O calls are issued from a single client while Section 6 extends
this work to multiple clients. Section 7 gives a conclusion and sketches future
work.

2 100GbE Testbed between Dresden and Freiberg

The 100Gbps testbed, provided by Alcatel-Lucent, T-Systems, HP, and DDN,
provided a unique resource to, on the one hand test this new technology, and
on the other hand to extend our knowledge about different network services.
The testbed spans the distance between the cities of Dresden and Freiberg in
Saxony, Germany with a geographical distance of about 37 km and a optical cable
length of about 60km. During the test, additional boxes with optical cables
have been used to extend the testbed from 60 up to 400km. This allows us
to conduct experiments using different latency configurations with a reliability
not found in software-based latency injection methods. An Alcatel-Lucent 1830
photonic service switch connects both sides and can transmit 100Gbps on a
single carrier. The 7750 SR-12 service router links the optical layer and the
network adapter. Both service routers (Freiberg and Dresden) have one media
dependent adapter (MDA) with 100Gbps, two adapters with 5x10Gbps, five
adapters with 2x10Gbps, and 20x1Gbps adapters.

HP provided 34 DL160G servers, 17 on each location, which are stocked with
a ServerEngines-based 10Gbps card, each connected to one of the 10Gbps in-
terfaces of the Ethernet switch. All servers are equipped with one six core Intel
Westmere (Xeon 5650, 2.67GHz) processor and 24GiB of RAM.

Several sub-projects were scheduled on this testbed. Initial TCP tests provide
the subsequent projects with a reliable base in terms of the available bandwidth
and the network behavior in general. Three different parallel file systems: GPFS,
Lustre, and FhGFS are installed on the HP servers to study the impact of the

Fig. 1. 100Gbps testbed equipment with connection cables

HPC File Systems in Wide Area Networks 67

latency on the file system performance. An overview of the testbed setup is
shown in Figure 1.

3 Related Work

The performance analysis of network file systems accessed over high latency
networks such as WANs has been the focus of several studies during the last
decade, and has been gaining importance as the technological trends make this
use case more and more practical. The first studies describing the viability of a
WAN file system in HPC context were conducted by the researchers working on
the TeraGrid project, and can be found in [6]. The first published experiences
using a minimally tuned Lustre file system in a WAN environment are detailed
in [3,4,5,7]. More recent publications concentrate not on analyzing Lustre’s raw
performance over WAN, but more on its suitability for concrete use cases. An
analysis of the use cases that would profit from an HPC WAN file system the
most is presented in [8]. In [9], Cai et al. evaluated the suitability of a Lustre
over WAN solution to sustain database operations. In [10], Rodriguez et al.
describe their experience using Lustre over WAN for the CMS experiment at the
LHC. Even though the modeling and simulation of storage systems have been a
subject of study for at least two decades, most of the publications concentrate
on modeling the individual components and not the file systems. To the best of
our knowledge, there is only one publication explicitly dealing with the modeling
of Lustre’s performance, namely [11], in which Zhao et al. applied the idea of
relative modeling to predict the performance of a Lustre file system.

4 Lustre’s Networking Layer

In the first part of this paper we will discuss the performance of Lustre at its
networking layer without considering the storage hardware and software com-
ponents acting on lower layers. Understanding the performance of Lustre’s net-
working layer is a first logical step in order to gain an understanding about how
this parallel file system behaves when its major tunable parameters and network
conditions are changed.

4.1 The LNET Protocol

Lustre Networking (LNET) is a custom networking API that leverages on
the native transport protocol of the I/O network to interconnect the
Metadata Server (MDS), the Object Storage Servers (OSSs), and the client sys-
tems of a Lustre cluster. It offers support for most of the network technologies
used in HPC through a set of Lustre Network Drivers (LNDs) that are both
available as individual kernel modules, and user space libraries. Internally, LNET
uses a stateful protocol based on remote procedure calls that was derived from
Sandia Portals. The bandwidths achievable by LNET during the file system

68 A. Aguilera et al.

operation are determined by a combination of its own performance paramet-
ers, and the characteristics and configuration of the underlying I/O network.
In low-latency environments, the relevance of the former group of parameters is
not apparent, since Lustre achieves its maximal performance without much tun-
ing. Their importance, however, is promptly made clear as soon as the network
latency increases.

LNET fragments all data transfers in units called Lustre RPCs, whose sizes
are always aligned to the system page size, and range from a single page (in
most cases 4096 bytes) up to one megabyte. The maximal size a Lustre RPC
may have, can be modified on a per client basis as long as the new size sat-
isfies the conditions stated in [12]. In order to minimize the transmission and
processing overhead associated with small RPCs, Lustre tries to merge adjacent
RPCs to form RPCs of maximal size. The individual size of an RPC being trans-
mitted is ultimately determined by a combination of the maximal RPC size, the
size of the buffers being read or written by the application, and on whether or
not the operation is immediately committed to disk (call to fsync(), operation
in O DIREC mode, etc.). LNET is a stateful protocol in which every RPC being
sent must be acknowledged by the receiver. Similarly to TCP’s sliding window
protocol, LNET may send more than one RPC before waiting for an acknow-
ledgment response. These unacknowledged RPCs are normally referred to as the
RPCs in flight. Like in the previous case, the maximal number of RPCs in flight
sent by LNET during any operation is a parameter that can be defined on a per
client basis.

In the following section we explore the interplay between the size and count
of Lustre RPCs in flight, and how they affect, together with the network latency,
the LNET effective bandwidth.

4.2 Model Constraints

The performance of LNET is heavily dependent on the underlying transport pro-
tocol it relies upon, and especially on its congestion avoidance mechanisms. In
order to keep our model as simple, and as general as possible, we will constrain it
to data transmissions that are unthrottled by the transport protocol of the I/O
network. The behavior of the LNET bandwidth as a function of its in-flight data
is best exemplified in Figure 2. Our focus will lie in the unthrottled state (a) in
which changes in the RPC size or count, as well as on the network latency yield
a full effect on the LNET bandwidth. Even though this constrain is certainly
undesirable, doing otherwise would incur in excessive complexity, while simul-
taneously tying our model to a particular transport protocol (implementation).

4.3 Proposed Model

It is well understood that for any given network, the relation between the
bandwidth-delay product and the amount of in-flight data that is actually present
in a network segment at a given time is one of the key factors determining the
network throughput [13]. The maximal amount of in-flight data Dmax that fits

HPC File Systems in Wide Area Networks 69

Fig. 2. Behavior of the LNET bandwidth as a function of its in-flight data. (a) un-
throttled communication, (b) throttled by the transport protocol, and (c) maximal
utilization reached.

inside a network path is determined by the bandwidth-delay product, defined
as the round-trip time l of the network, multiplied by the network bandwidth
b, plus the buffer space m of the network devices along the way (Equation 1).
It is trivial to see that (omitting the buffer space m) any change in the network
latency from l0 to l1 will immediately affect Dmax by a factor of l1/l0.

Dmax = l ∗ b+m (1)

On the other hand, the amount of data D that LNET may put down the wire
before waiting for an acknowledgment is mainly defined by the size s and number
c of RPCs in flight (Equation 2). In a similar way, a change in the size and number
of RPCs in flight should affect D by a factor of (s1c1)/(s0c0).

D = s ∗ c (2)

Our first modeling hypothesis will be that the LNET bandwidth will vary by
the same factor, and in direct proportion to D, and by the same factor but in
inverse proportion to Dmax. This means that the expected variation in a known
LNET bandwidth b0 resulting from a change in the network latency, or in the
size and number of RPCs in flight during an unthrottled communication can be
calculated using Equation 3.

b = (
s1
s0

c1
c0

l0
l1
)b0 (3)

4.4 Measurement and Comparison with the Model

The benchmarking of the LNET performance was conducted on the testbed sys-
tem previously introduced using the LNET-Selftest tool distributed with Lustre.

70 A. Aguilera et al.

This tool allows the generation of intense LNET traffic between groups of nodes
without requiring any physical I/O. The generated workload is also supposed to
be similar to that produced by Lustre during real I/O operation.

Using (3) we were able to obtain a good approximation of the experimental
data for changes in the network latency and RPC count. However, the bandwidth
changes resulting from increasing the RPC size up from its minimum value were
roughly half as big as those predicted. This difference indicates that an increase
in the RPC size doesn’t translate 1:1 to an increase in the LNET in-flight data.
In spite of this, the model can be adapted by introducing a factor k to account
for this overhead, as shown in Equation 4 .

b =
1

k
(
s1
s0

c1
c0

l0
l1
)b0 (4)

It is expected for the value of k to vary depending on each particular network
configuration. For the testbed system, a value of k = 2.27 yielded the best
results with an overall error of less than 15%. Figure 3 and 4 compare some
of the predictions against the experimental data. The predictions of the model
were done using the measured performance obtained with one 4KiB RPC in
flight and a network latency of 2.17ms to extrapolate all other points.

Fig. 3. Predictions of the LNET model
for 128KiB RPCs using different latency
settings and RPC counts.

Fig. 4. Predictions of the LNET model
for 2 RPCs in flight using different latency
settings and RPC sizes.

5 Single Client Performance Observations

The aim of this section is to describe the impact of the latency for small file
accesses and a single Lustre file system client. This data is advantageous for
users that use WAN file systems similiar to home file systems, for example for
compiling source code or for editing input files. The main parameters that have
an impact on the performance and that can be influenced by the user are mainly
the file size, the access size and for Lustre, the way the striping is done. For the
striping it is worth mentioning, that the stripe size is fixed to 1MiB as this is
the native stripe size of the DDN devices. Thus, only the number of used stripes
can be adjusted.

HPC File Systems in Wide Area Networks 71

5.1 Setup and Measurements

For these tests we performed initial measurements with IOzone and a fiber length
of 200km and compared the results with results gathered at 400km. Comparing
this data with performance data collected locally (at 0 km) would have not made
sense in this context as the communication locally was done via InfiniBand
and any comparison would not only include the latency difference but also the
difference between the protocols.

5.2 Observations and Findings

Fig. 5 shows the difference between the 200 km and the 400km data for different
I/O functions, for different file sizes and one block size. The figure shows the
performance in KiB/s for the 400km case in percent, using the performance for
200km as 100%. It shows that there is a noticeable performance impact only on
the initial write of a file. All other functions, which reuse existing files, show only
a small performance impact. This impact is due to the fact that the creation of
a file needs at least one RTT. With increasing file sizes, this additional RTT has
less influence on the total time of the operation.

Fig. 6 shows a more detailed performance study of the influence of the file
size and the stripe count on the performance. The figure shows the differences
in the latencies for the initial creation of files with different sizes and different
stripe counts. Here, we subtracted the numbers gathered at 200km from the
numbers gathered at 400 km. As the next step, we normalized this time difference
to the difference in the RTTs (4.14ms − 2.17ms = 1.97ms) between the two
distances. This allows to characterize the impact of the additional distance on
the performance.

Up to 1MiB file size, all data is written to a single stripe and the number of
stripes that the file can use does not influence the performance. The ’1’ in the
figure in these cases just means that at 400 km it takes 1.97ms longer to create
a file and to write the content than it takes at 200 km. For each additional stripe
used there is a penalty that is added as soon as a new stripe is used. This is due
to the fact that the Lustre file system creates the objects on the storage servers
for the first stripes in a sequential fashion.

This can create a large impact on file systems with a large number of stripes
used by default, as the time to write the first NMiB will always be (N+1)∗RTT.
The +1 has to be added for the initial file creation on the metadata server, the
stripes are created in an extra step. The problem with this finding is that in these
cases the bandwidth is determined by the RTT, and not by the capabilities of
the link.

Fig. 7 shows that there is no significant performance impact by the addition
of 200 km to the distance when the same file is accessed with different block sizes
or with different I/O functions. As most file I/O for these cases is rather small,
this implies that the clients cache most I/O operations efficiently.

72 A. Aguilera et al.

Fig. 5. Comparison of different I/O functions for 200 km and 400 km for different file
sizes. A block size of 4KiB and a stripe count of 1 was used. The performance for
400 km is given in percent relative to the performance for 200 km.

Fig. 6. Time differences for the initial file creations between the 400 km and the 200 km
setup. The time difference is normalized to the difference of the RTTs for both distances.

Fig. 7. Comparison of different I/O functions for 200 km and 400 km for different
block sizes. A file size of 16MiB and a stripe count of 1 was used. The performance for
400 km is given in percent relative to the performance for 200 km.

HPC File Systems in Wide Area Networks 73

6 Performance Observations for Multiple Clients

The goal of the experiment was to determine the latency of the I/O traffic for
multiple clients working in parallel, and to analyze the impact of the extension
of the testbed fiber length on different file sizes. We therefore used the Lustre
file system described above to generate unidirectional I/O traffic from Dresden
to Freiberg. Up to 16 clients were used to measure latency and bandwidth using
8B files for latency and 2GiB files for bandwidth. The benchmarking tool used
to generate the workload was IOR [14].

6.1 Setup and Measurements

Each process wrote its own file using POSIX I/O in O DIRECT mode to ensure
that the I/O operation is immediately committed to disk (see Fig. 8). The
value blockSize in Fig. 9 denotes the amount of data that is written to each
file per process, while transferSize represents the size of the payload being sent
with each I/O request. This is restricted by IOR to a minimum of 8 bytes and a
maximum of 2GiB. IOR uses MPI to synchronize processes, therefore switching
on intraTestBarriers adds a MPI Barrier(all) between each test to ensure that
there is no traffic left from previous I/O operations.

api=POSIX
f i l eP e rP r o c=1
useO DIRECT=1
in t r aTe s tBa r r i e r s=1
r e p e t i t i o n s=10
w r i t eF i l e=1
r eadF i l e=0

Fig. 8. IOR configuration header

RUN
b lockS i z e=8
t r a n s f e r S i z e=8
numTasks=16
RUN
b lockS i z e =2147483648
. . .

Fig. 9. I/O test with 16 processes each
sending 8B and 2GB

The 1GbE management links were used for the MPI communication not to
disrupt the Lustre traffic. Also, each test was repeated 10 times for higher ac-
curacy. The benchmarks were executed on the Dresden HP nodes on a mount
point pointing to the Lustre in Freiberg using the SFA10K DDN storage and the
16 Freiberg HP nodes as OSTs.

In the experiments, IOR was run on one Server using one process writing
to only one OST at first. Then additional servers doing the same file I/O were
added up to the point where 16 processes were writing 16 files in parallel each
to its own OST. This setup generated data for:

– different optical line length (60 km, 200 km, and 400km)
– different number of parallel writes (1-16)
– different file sizes (8 B up to 2GiB).

74 A. Aguilera et al.

6.2 Observations and Findings

IOR can separately log the times for the functions involved in writing a file to
disk (open(), write(), close()). We normalized the values to the round-trip
time that was measured on the TCP layer (60 km→ 0.72ms, 200 km→ 2.17ms,
400km → 4.14ms) to see how many RTTs it takes to complete each of the
functions and whether this depends on the number of parallel clients or not.

Fig. 10. Minimum RTT for file open of
8Byte files

Fig. 11. Average RTT for file open of
8Byte files

We first look at the time needed to open a file at the different line lengths
and for different numbers of parallel clients. The numbers shown are for 8Byte
files but are essentially the same for 2GiB files as well. The minimum numbers
in Fig. 10 show the anticipated time of 1 RTT only for the 400km distance.
The latency of the computer hardware has a larger influence at 60 km due to
the small transfer time compared to the time needed for processing. The time
needed for the open() call is the RTT plus an overhead which in turn is a
function depending on the number of parallel processes. Using a linear least
squares fit we can determine the slope being 0.08 for 60 km and 0.06 for 200 km.
This means that each additional process adds an overhead of 8% of the RTT for
60 km and 6% for 200km to the minimum time needed to complete a open()

call for the first process in the group that issues the open call. Additionally, the
average time rises with the number of parallel processes (all processes involved
and 10 repetitions) as seen in Fig. 11. This is due to the locking of the directory
in which all files reside.

For the close() call the minimum times are nearly the same across all process
counts at 1 RTT as there is no additional workload on the MDS. Again, 2GiB
files do not differ from 8bytes files. Fig. 13 shows the transfer times for the
write() call with minimum and maximum values as error bars. For large files the
distance has no significant impact on the transfer time. As each of the processes
was writing to its own OST, the number of parallel streams has no noticeable
influence on the individual performance either.

HPC File Systems in Wide Area Networks 75

Fig. 12. Minimum RTT to close files of
8 bytes

Fig. 13. Write RTT and data rate for
2GiB files

7 Conclusion

In this paper we explored some aspects of the performance variation exhibited
by the Lustre file system when subjected to changes in the network latency. Fur-
thermore, we used the empiric results obtained using a testbed network between
the cities of Dresden and Freiberg to derive basic rules explaining the observed
interaction between different performance parameters. Our findings describe the
interplay between the bandwidth-delay product of the network, and the size and
count of Lustre RPCs in flight for unthrottled communications, the penalty in-
troduced by the stripe count during file creation, and the overhead encountered
when concurrently opening files from multiple nodes.

There are several ways in which this work could be further improved. The
first one would be to investigate whether the results are still valid for other
deployments of Lustre or not. Among the other things deserving a deeper look
are the relation between the RPC size and its induced overhead (expressed with
the constant k), and how the congestion avoidance mechanisms acting at the
transport layer of the network affect the predictions of the LNET-model.

Acknowledgments. We would like to conclude this paper by expressing our
gratitude to all the sponsors and our networking group for the support they
provided.

References

1. NASA. Key Science System Metrics (2010),
http://earthdata.nasa.gov/about-eosdis/performance

2. Gentzsch, W.: DEISA, The Distributed European Infrastructure for Supercom-
puting Applications. In: Gentzsch, W., Grandinetti, L., Joubert, G.R. (eds.) High
Performance Computing Workshop. Advances in Parallel Computing, vol. 18,
pp. 141–156. IOS Press (2008)

3. Simms, S.C., Davy, M., Hammond, B., Link, M., Stewart, C., Bramley, R., Plale,
B., Gannon, D., Baik, M.-H., Teige, S., Huffman, J., McMullen, R., Balog, D.,
Pike, G.: All in a Day’s Work: Advancing Data-Intensive Research with the Data
Capacitor. In: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing,
SC 2006. ACM, New York (2006)

http://earthdata.nasa.gov/about-eosdis/performance

76 A. Aguilera et al.

4. Simms, S.C., Pike, G.G., Balog, D.: Wide Area Filesystem Performance Using
Lustre on the TeraGrid. In: Proceedings of the TeraGrid 2007 Conference (2007)

5. Simms, S.C., Pike, G.G., Teige, S., Hammond, B., Ma, Y., Simms, L.L., Westneat,
C., Balog, D.A.: Empowering Distributed Workflow with the Data Capacitor: Max-
imizing Lustre Performance Across the Wide Area Network. In: Proceedings of the
2007 Workshop on Service-Oriented Computing Performance: Aspects, Issues, and
Approaches, SOCP 2007, pp. 53–58. ACM, New York (2007)

6. Andrews, P., Kovatch, P., Jordan, C.: Massive High-Performance Global File Sys-
tems for Grid Computing. In: Proceedings of the 2005 ACM/IEEE Conference on
Supercomputing, SC 2005, p. 53. IEEE Computer Society, Washington, DC (2005)

7. Filizetti, J.: Lustre Performance over the InfiniBand WAN. In: Proceedings of the
2010 Lustre User Group (2010)

8. Michael, S., Simms, S., Breckenridge III, W.B., Smith, R., Link, M.: A Compelling
Case for a Centralized Filesystem on the TeraGrid: Enhancing an Astrophysical
Workflow with the Data Capacitor WAN as a Test Case. In: Proceedings of the
2010 TeraGrid Conference, TG 2010, pp. 13:1–13:7. ACM, New York (2010)

9. Cai, R., Curnutt, J., Gomez, E., Kaymaz, G., Kleffel, T., Schubert, K., Tafas, J.:
A Scalable Distributed Datastore for BioImaging (2008),
http://www.r2labs.org/pubs/BioinformaticsDatabase.ps

10. Rodriguez, J.L., Avery, P., Brody, T., Bourilkov, D., Fu, Y., Kim, B., Prescott, C.,
Wu, Y.: Wide Area Network Access to CMS Data Using the Lustre Filesystem.
Journal of Physics: Conference Series 219(7), 072049 (2010)

11. Zhao, T., March, V., Dong, S., See, S.: Evaluation of a Performance Model of
Lustre File System. In: 2010 Fifth Annual ChinaGrid Conference (ChinaGrid), pp.
191–196 (July 2010)

12. Oracle, Inc. Lustre 2.0 Operations Manual (2010),
http://wiki.lustre.org/images/3/35/821-2076-10.pdf

13. Lakshman, T.V., Madhow, U.: The Performance of TCP/IP for Networks with
High Bandwidth-Delay Products and Random Loss. IEEE/ACM Trans. Netw. 5,
336–350 (1997)

14. Shan, H., Shalf, J.: Using IOR to Analyze the I/O Performance for HPC Platforms.
In: Cray User Group Conference (2007)

http://www.r2labs.org/pubs/BioinformaticsDatabase.ps
http://wiki.lustre.org/images/3/35/821-2076-10.pdf

Understanding I/O Performance

Using I/O Skeletal Applications

Jeremy Logan1,2, Scott Klasky1, Hasan Abbasi1, Qing Liu1,
George Ostrouchov1, Manish Parashar3, Norbert Podhorszki1,

Yuan Tian4, and Matthew Wolf1,5

1 Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
2 University of Tennessee, Knoxville, Tennessee, USA

3 Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
4 Auburn University, Auburn, Alabama, USA

5 Georgia Tech., Atlanta, Georgia, USA

Abstract. We address the difficulty involved in obtaining meaningful
measurements of I/O performance in HPC applications, as well as the
further challenge of understanding the causes of I/O bottlenecks in these
applications. The need for I/O optimization is critical given the difficulty
in scaling I/O to ever increasing numbers of processing cores. To address
this need, we have pioneered a new approach to the analysis of I/O
performance using automatic generation of I/O benchmark codes given
a high-level description of an application’s I/O pattern. By combining
this with low-level characterization of the performance of the various
components of the underlying I/O method we are able to produce a
complete picture of the I/O behavior of an application.

We compare the performance measurements obtained using Skel, the
tool that implements our approach, with those of an instrumented ver-
sion of the original application to show that our approach is accurate.
We demonstrate the use of Skel to compare the performance of several
I/O methods. Finally we show that the detailed breakdown of timing
information produced by Skel provides better understanding of the rea-
sons for the performance differences between the examined I/O meth-
ods. We conclude that our approach facilitates faster, more accurate
and more meaningful I/O performance testing, allowing application I/O
performance to be predicted, and new systems and I/O methods to be
evaluated.

1 Introduction

Understanding and optimizing the I/O performance of high-performance scien-
tific applications is critical for the success of many of these applications. As larger
and faster platforms are introduced, the higher fidelity applications that run on
these platforms produce increasingly massive data sets. At the same time, the
increase in computational performance of supercomputers is greatly outpacing
the I/O bandwidth of these machines [1]. To achieve reasonable I/O performance
despite this growing gap, increasingly sophisticated I/O techniques are required.

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 77–88, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

78 J. Logan et al.

The design, implementation, and subsequent optimization of these techniques
require sophisticated tools that allow the performance of I/O methods to be
rapidly understood.

Meaningful measurements of I/O performance on large-scale systems are cur-
rently difficult and time consuming to acquire. One approach is to instrument a
representative application with timing code to measure I/O performance. This
approach presents unnecessary complexity to an I/O developer since building
and running the application typically requires detailed knowledge that is unre-
lated to the task of I/O performance measurement.

A more manageable approach is to use I/O kernels, such as the FLASH-IO
benchmark routine [2] and the S3D I/O kernel [3], codes that include the I/O
routines from a target application but which typically have had computation and
communication operations removed. While providing accuracy by performing the
same I/O pattern as the application, I/O kernels have significantly shorter to-
tal execution time since they do not include the application’s computational
workload. Furthermore, I/O kernels may not retain all of the application’s de-
pendencies on external libraries, simplifying their use on new systems. The use
of I/O kernels still presents several problems, including (i) They are seldom kept
up-to-date with changes to the target application; (ii) They often retain the
same cumbersome build mechanism of the target application; (iii) Different I/O
kernels do not measure performance the same way; (iv) An I/O kernel is not
necessarily available for every application of interest.

To address the weaknesses of current approaches, we have investigated a
new approach to I/O performance measurement using I/O skeletal applications.
These are generated codes that, like I/O kernels, include the same set of I/O op-
erations used by an application while omitting computation and communication.
In contrast to I/O kernels, I/O skeletal applications are built from the informa-
tion included in a high-level I/O descriptor, and do not directly duplicate any
of the application source code. Our skeletal applications share the advantages of
I/O kernels, providing an accurate and concise benchmark for I/O performance.
Furthermore, this approach directly addresses the four problems of I/O kernels
identified above: (i) Since skeletal applications are automatically generated, they
are trivial to reconstruct after a change to the application; (ii) All skeletal ap-
plications share the same relatively simple build mechanism; (iii) All skeletal
applications share the same flexible measurement techniques, making it easier
to perform apples to apples comparisons; (iv) Given its I/O descriptor, it is a
simple process to generate an I/O skeletal application for any application.

To implement our I/O skeletal approach, we have created Skel. Skel generates
skeletal applications based on the high-level I/O descriptors used in the Adaptive
IO System (ADIOS) [4]. We have extended ADIOS to include a mechanism
for timing the low-level operations performed during calls to the ADIOS API
functions. Integration with this augmented ADIOS library allows more detailed
measurements than are typically available from I/O kernels, enabling a user to
determine, for instance, how much of the total I/O time is spent performing
interprocess communication or low-level I/O operations.

Understanding I/O Performance Using I/O Skeletal Applications 79

In the next Section, we provide an overview of the Skel tool that implements
our generative approach to creating I/O skeletal applications. In Section 3, we
present some brief background of declarative I/O and ADIOS. Section 4 examines
the validity of the generated skeletal applications. In Section 5, we describe the
use of Skel to perform a detailed analysis of three I/O methods. We describe the
related work in Section 6. Finally, Section 7 concludes the paper and presents
an overview of future work.

2 The Skel System

We have implemented a tool, Skel [5], which supports the creation and execution
of I/O skeletal applications. Skel consists of a set of python modules, each of
which performs a specific task. The skel-xml module produces the adios-config
file to be used by the skeletal application. The skel-parameters module creates a
default parameter file based on the configuration file, which is then customized
by the user. Modules adios-config and skel-config interpret the inputs, the adios-
config file, which already exists for users of the ADIOS XML-based API, and the
parameter file, which provides all other information needed to create a skeletal
application. Based solely on data from those two input files, the skel-source
module generates the source code, in either C or Fortran, that comprises the
skeletal application. The skel-makefile module generates a makefile for compiling
and deploying the skeletal application based on a platform specific template.
Finally, the skel-submit module generates a submission script, also based on a
template, suitable for executing the skeletal application on the target platform.
Due to space limitations, we refer the reader to [5] for a more detailed discussion
of the design of the Skel system.

In order to obtain more detailed timings of the ADIOS I/O methods, we have
extended ADIOS with a mechanism for providing such timing information. The
optional, low-level timing information is collected on each application core. We
have also instrumented the I/O methods of interest with customized timing in-
structions using our timing mechanism. The timing functionality, though simple,
is designed to be extensible, so that authors of new I/O methods can instrument
their codes and extend the timer set to include arbitrary timing targets.

3 Background

Our implementation of Skel depends on the use of the declarative I/O mechanism
that is present in the Adaptive IO System (ADIOS) [4]. ADIOS is a componen-
tized I/O library designed to achieve excellent I/O performance on leadership
class supercomputers. It provides a mechanism for externally describing an appli-
cation’s I/O requirements using an XML file that is termed the adios-config file.
The mechanism provides a clear description of the structure of the application’s
I/O that is separate from the application source code.

80 J. Logan et al.

In addition to describing the application’s I/O pattern, the adios-config file
allows the user to toggle between the various I/O methods1 that are offered by
ADIOS. This is particularly convenient because it allows different I/O mecha-
nisms to be substituted without the need to change or recompile the application’s
source code. Such flexibility is a major strength of ADIOS since it facilitates the
optimization of an application’s I/O performance.

3.1 I/O Methods

In this paper we focus on three of the synchronous write methods offered by
ADIOS, namely POSIX, MPI LUSTRE and MPI AMR [4]. We chose these methods
both to show the general applicability of the Skel tool to different I/O methods,
and to explore the performance of these methods over a range of scales and
applications. Each of the methods takes a different approach to handling the
application’s I/O. In particular, the methods each produce a different number
of files as shown in Fig. 1.

(a) POSIX (b) MPI LUSTRE (c) MPI AMR

Application Process File

Fig. 1. Comparison of the three I/O methods

The POSIX method [6] was designed to take advantage of the concurrency of
parallel file systems. With POSIX, each writing process is responsible for writing
data to its own output file, as illustrated in Fig. 1a. An index file is then written
by just one of the processes. So the use of the POSIX method results in the index
file, along with a subdirectory containing all of the files written individually by
the application processes.

The MPI LUSTRE method, in contrast to the POSIX method, writes all data to
a single file. Each process writes its data independently to an assigned location
in the file as shown in Fig. 1b. This method is designed to work well with the
striping scheme of the Lustre file system, thus the locations assigned to the writers
are chosen to coincide with the beginning of a Lustre stripe, and the file’s stripe
size is carefully chosen so that each stripe accommodates the data from a single
application process.

1 In this paper the termmethod should be taken to mean a runtime selectable technique
for performing the basic ADIOS operations (adios open, adios write, etc.).

Understanding I/O Performance Using I/O Skeletal Applications 81

Finally, the MPI AMR method is a more sophisticated technique in which each
of a subset of application processes acts as an aggregator for a group of peers.
This method results in a collection of separate files, with one file corresponding to
each of the aggregators. As can be seen in Fig. 1c, this results in fewer separate
files than are produced by the POSIX method, but more than the single file
written by MPI LUSTRE. This strategy, in our experience, often achieves better
throughput when scaled to large (>10,000) core counts.

These three methods all produce ADIOS-BP formatted files. ADIOS-BP is a
structured, self-describing and resilient format for scientific data. The ADIOS-
BP format was designed to provide efficient writing and reading [7,8] by allowing
parallel I/O operations to be performed independently and supporting flexibility
in the layout of data on the file system.

4 Validation of Skel

To understand whether an automatically generated skeletal application is an
accurate predictor of application I/O performance, we compare performance
measured with the skeletal apps with performance measured by applications
and I/O kernels. We focus on two applications: CHIMERA [9] and GTS [10].
For both of these we compare the observed performance of our I/O skeletal
application with that of the corresponding I/O kernel or application.

4.1 Test Platforms

Jaguar is a Cray supercomputer located at the Oak Ridge Leadership Computing
Facility (OLCF) at Oak Ridge National Laboratory. Our experiments coincided
with an upgrade of the Jaguar machine. The original configuration (Jaguar-XT5)
consisted of 18688 compute nodes, each home to two Opteron 2435 “Istanbul”
six-core processors and 16 GB of memory, and connected with Cray’s Seastar
interconnection network. The second configuration of Jaguar (Jaguar-XK6) had
9216 compute nodes, each containing a single 16 core AMD “Interlagos” proces-
sor and 32 GB of memory, and connected with the Gemini interconnect [11].

Sith is a 1280 core Linux cluster also located at the Oak Ridge National
Laboratory. Sith consists of forty compute nodes connected with an InfiniBand
interconnection network. Each node contains four 2.3 GHz 8 core AMD Opteron
processors and 64 GB of memory [12].

All tests utilize Spider [13], the OLCF center-wide Lustre file system, which
provides a total of 10.7 Petabytes of disk space. Spider consists of three sepa-
rate Lustre file systems. Our experiments were performed using the widow1 file
system, which offers 5 PB of storage space distributed over 672 OSTs.

4.2 CHIMERA

CHIMERA is a multi-dimensional radiation hydrodynamics code designed to
study core-collapse supernovae [9]. An I/O kernel based on the CHIMERA ap-
plication is the focus of this set of experiments. The comparison involved a weak

82 J. Logan et al.

scaling experiment where approximately 10 MB of data was written by each core.
Each test was repeated 50 times, and the results are presented in Fig. 2. Each
graph shows the average observed throughput for all of the runs that used that
I/O method. The error bars represent the minimum and maximum throughput
that were observed during these runs.

Parameters may be used to guide some of the ADIOS methods. The POSIX

method does not take any parameters, but both MPI LUSTRE and MPI AMR al-
low method parameters to be specified. For the MPI LUSTRE tests, we used
stripe count=160, stripe size=10485760, block size=10485760. The pa-
rameters for the MPI AMR tests were stripe count=1, stripe size=4194304,

block size=4194304, num aggregators=N, merging pgs=0. We varied the
number of aggregators depending on the number of cores, keeping the aggre-
gator count fixed at one aggregator for every 4 cores.

The results of these tests are shown in Fig. 2. The graphs show the mean
throughput seen during the tests, with the error bars indicating the minimum
and maximum throughput observed. Also shown are the computed relative error
values for the skeletal application with respect to both maximum and average
throughput.2 The relative error of the skeletal application as compared with the
CHIMERA I/O kernel is less than 10% for over 93% of the cases shown.

4.3 GTS

The GTS application [10] is a first principles fusion microturbulence code that
studies turbulent transport of energy. GTS uses a generalized geometry to solve
the realistic geometries from many fusion reactors used today. For these tests,
we looked at weak scaling performance, with each core writing approximately
55 MB of data. The method parameters used for the MPI LUSTRE tests were
stripe count=160, stripe size=57344000, block size=57344000. For the
MPI AMR tests, we used parameters stripe count=1, stripe size=4194304,

block size=4194304, num aggregators=N, merging pgs=0. The number of
aggregators for the MPI AMR method varied, with one aggregator used for ev-
ery 16 processor cores.

Each individual test was repeated 25 times and the results are shown in Fig. 3.
Again, we have calculated the relative error for both the average and maximum
throughput values. For these tests we observe that the skeletal application yields
results that are within 10% of the values given by the GTS application for
approximately 71% of the cases.

These results are extremely positive, particularly when we consider that skel
will be most useful at larger scales with larger core counts. All cases involving
1024 or more cores, including both CHIMERA and GTS, are accurate to within
10% of the corresponding application or I/O kernel measurements.

2 We have omitted a comparison of the minimum throughput as we have found that
poor performance due to I/O contention with other jobs can lead to arbitrarily poor
performance, making this measurement difficult to reproduce, even among separate
runs of the same test.

Understanding I/O Performance Using I/O Skeletal Applications 83

Fig. 2. Results of CHIMERA comparison

84 J. Logan et al.

Fig. 3. Results of GTS comparison

5 Using Skel to Study I/O Performance

A common challenge in high-performance computing is determining which I/O
method to use for a given situation. In general, the answer depends on a great
many factors including application I/O pattern, frequency of I/O, storage hard-
ware, file system type and configuration, network performance and system uti-
lization to name a few. An intended use of Skel is to provide a mechanism for
rapidly exploring I/O space in order to select an I/O method for arbitrary sit-
uations. This is useful to middleware developers for verifying and testing I/O
methods, and to end users to assist in manual selection of I/O methods. In the
future the mechanism should prove useful in guiding the autonomous selection of
I/O methods. To illustrate this use of Skel, we have performed a comparison of
three of the I/O methods available in ADIOS: POSIX, MPI LUSTRE and MPI AMR.

5.1 CHIMERA

The data from the CHIMERA skeletal application runs is shown in Fig. 4a,
including two additional data points that illustrate the results of continuing these
tests on the newly upgraded Jaguar-XK6. It can be seen that the POSIX method
provides the highest throughput for most of the runs, with the MPI AMR method
offering better performance only for the 4096 core case. This agrees with our
experience with these methods, as MPI AMR has been observed to achieve better
performance than POSIX at higher core counts. The number of cores at which
it becomes advantageous to use the MPI AMR method varies by application and
platform, and also relies on the parameters used for MPI AMR.

The CHIMERA I/O skeletal application provided us with a first glimpse at
the I/O performance of Jaguar’s XK6 configuration. The 8192 core and 16384
core cases were run immediately after the Jaguar-XK6 configuration became

Understanding I/O Performance Using I/O Skeletal Applications 85

available. It appears that there may be a slight decrease in I/O performance for
the POSIX and MPI AMR methods, but the MPI LUSTRE method exhibited truly
poor performance on the new hardware. We will return to this issue in the next
section.

(a) CHIMERA (b) GTS

Fig. 4. Comparison of I/O methods on Jaguar

5.2 GTS

Next we compared these same three I/O methods using a skeletal application
for GTS. Each run was repeated 25 times, and the results are summarized in
Fig. 4b. Again we see that the POSIX method provides the best performance
among these three methods up to 8192 cores.3 Beyond 8192 cores, however, the
MPI AMR method provides greater throughput than the other methods.

A surprising result is the particularly poor performance of the MPI LUSTRE

method. To investigate this anomaly, we examined the more detailed timing
results available from Skel. We chose a single representative run of the 1024 core
GTS / MPI LUSTRE experiment, and looked at the performance for each of the
cores, focusing on communication and I/O timings, and sorting by total time.
The result is shown in Fig. 5. It can be seen that in both cases the times for the
I/O operations are roughly equal for all of the overall slowest cores. However the
communication times show dramatically different behavior. On Jaguar-XK6, a
few of the cores exhibit very large communication times, with the slowest taking
nearly 55 seconds. This view led to a quick diagnosis of the cause of the poor
performance seen with the MPI LUSTRE method, an expensive global collective
communication operation that is not used by the other two methods.

3 These results are not directly comparable to those found in [5], since those tests were
performed on Jaguar-XT5, and used a different file system partition.

86 J. Logan et al.

Fig. 5. Comparison of GTS execution times using MPI LUSTRE on Jaguar-XK6 and
Sith

6 Related Work

A common I/O performance measurement method is bulk I/O testing, using a
tool such as IOR [14] or the NAS parallel benchmark [15, 16]. As with Skel, the
bulk I/O testing process is less cumbersome, since it is not necessary to deal
with the complexities of an application, however the results may not provide an
accurate prediction of the I/O performance that an application would obtain [17].

There are many I/O kernels that are used to benchmark I/O performance.
FLASH-IO [2], MADBench2 [18] and S3D-IO are three often-used examples. Our
skeletal applications are intended to provide the utility of I/O kernels, while
eliminating issues such as difficulty of use, lack of availability, and outdated
versions of codes.

The Darshan project [19] is examining the I/O patterns used by applica-
tions of interest. Darshan provides a lightweight library for gathering runtime
event traces for later examination. The ScalaIOTrace tool [20] also addresses
the measurement and analysis of I/O performance. Similar to Darshan, it works
by capturing a trace of I/O activities performed by a running application. The
multilevel traces may then be analyzed offline at various levels of detail.

7 Conclusion and Future Work

In this paper, we have presented our approach for the automatic generation of
I/O skeletal benchmarks, as well as our tool, Skel, which implements this ap-
proach. We have examined one application and one I/O kernel and confirmed
that the measurements obtained from the I/O skeletal application provide a rea-
sonable estimate of performance. We observed a slightly better correspondence
with the CHIMERA I/O kernel than with the GTS Application. In both cases,
the performance predictions produced by the skeletal application improved with
larger numbers of application processes.

We have conducted a performance comparison of three of the ADIOS write
methods using our I/O skeletal technique. We have shown how Skel can be

Understanding I/O Performance Using I/O Skeletal Applications 87

used to quickly measure the aggregate performance achieved by these methods.
Furthermore, we have shown how the more detailed measurements provided by
Skel can be leveraged to achieve a deeper understanding of the causes for the
observed performance behavior.

In this paper we have focused on writing single restart files using synchronous
I/O methods. In the future we will extend Skel to explore the task of writ-
ing smaller and more frequent analysis data. We will also investigate how to
accurately measure the impact of asynchronous I/O. We expect that this will
require generating some computation and communication operations to provide
the same effect as those performed by the application. Finally, we will use Skel
to investigate reading performance for very large data files.

Acknowledgment. This work was supported in part by the National Cen-
ter for Computational Sciences (NCCS) at Oak Ridge National Laboratory.
Support was provided by the Director, Office of Science, Office of Advanced
Scientific Computing Research, of the U.S. Department of Energy under Con-
tract No. DEAC02- 05CH11231. Additional support was provided by the Sci-
DAC Fusion Simulation Prototype (FSP) Center for Plasma Edge Simulation
(CPES) via Department of Energy Grant No. DE-FG02-06ER54857. This ma-
terial is based upon work supported by the National Science Foundation under
Grant No. 1003228. Support was also provided by the Remote Data Analysis
and Visualization Center (RDAV) through National Science Foundation Grant
No. 0906324.

References

1. Lang, S., Carns, P., Latham, R., Ross, R., Harms, K., Allcock, W.: I/O perfor-
mance challenges at leadership scale. In: Proceedings of the Conference on High
Performance Computing Networking, Storage and Analysis, SC 2009, pp. 40:1–
40:12. ACM, New York (2009)

2. FLASH I/O benchmark routine – parallel HDF5,
http://www.ucolick.org/~zingale/flash_benchmark_io/

3. Chen, J., Choudhary, A., De Supinski, B., DeVries, M., Hawkes, E., Klasky, S.,
Liao, W., Ma, K., Mellor-Crummey, J., Podhorszki, N., et al.: Terascale direct
numerical simulations of turbulent combustion using S3D. Computational Science
& Discovery 2, 015001 (2009)

4. ADIOS 1.3 user’s manual,
http://users.nccs.gov/~pnorbert/ADIOS-UsersManual-1.3.pdf

5. Logan, J., Klasky, S., Lofstead, J., Abbasi, H., Ethier, S., Grout, R., Ku, S.H., Liu,
Q., Ma, X., Parashar, M., Podhorszki, N., Schwan, K., Wolf, M.: Skel: generative
software for producing skeletal I/O applications. In: The Proceedings of D3science
(2011)

6. Lofstead, J., Zheng, F., Klasky, S., Schwan, K.: Adaptable, metadata rich IO meth-
ods for portable high performance IO. In: IEEE International Symposium on Par-
allel Distributed Processing, IPDPS 2009, pp. 1–10 (May 2009)

7. Tian, Y., Klasky, S., Abbasi, H., Lofstead, J., Grout, R., Podhorski, N., Liu, Q.,
Wang, Y., Yu, W.: EDO: improving read performance for scientific applications
through elastic data organization. In: Proceedings of IEEE Cluster (2011)

http://www.ucolick.org/~zingale/flash_benchmark_io/
http://users.nccs.gov/~pnorbert/ADIOS-UsersManual-1.3.pdf

88 J. Logan et al.

8. Lofstead, J., Polte, M., Gibson, G., Klasky, S., Schwan, K., Oldfield, R., Wolf, M.,
Liu, Q.: Six degrees of scientific data: reading patterns for extreme scale science
IO. In: Proceedings of the 20th International Symposium on High Performance
Distributed Computing, HPDC 2011, pp. 49–60. ACM, New York (2011)

9. Messer, O.E.B., Bruenn, S.W., Blondin, J.M., Hix, W.R., Mezzacappa, A., Dirk,
C.J.: Petascale supernova simulation with CHIMERA. Journal of Physics: Confer-
ence Series 78(1), 012049 (2007)

10. Wang, W.X., Lin, Z., Tang, W.M., Lee, W.W., Ethier, S., Lewandowski, J.L.V.,
Rewoldt, G., Hahm, T.S., Manickam, J.: Gyro-kinetic simulation of global turbu-
lent transport properties in tokamak experiments. Physics of Plasmas 13(9), 092505
(2006)

11. Titan configuration and timeline,
http://www.olcf.ornl.gov/titan/system-configuration-timeline/

12. OLCF computing resources: Sith,
http://www.olcf.ornl.gov/computing-resources/sith/

13. Shipman, G., Dillow, D., Oral, S., Wang, F.: The spider center wide file system:
From concept to reality. In: Proceedings, Cray User Group (CUG) Conference,
Atlanta, GA (2009)

14. IOR HPC Benchmark, http://sourceforge.net/projects/ior-sio/
15. Bailey, D., Harris, T., Saphir, W., Van Der Wijngaart, R., Woo, A., Yarrow, M.:

The NAS parallel benchmarks 2.0. Technical Report NAS-95-020, NASA Ames
Research Center, Tech. rep. (1995)

16. Bailey, D., Barszcz, E., Barton, J., Browning, D., Carter, R., Dagum, L., Fatoohi,
R., Frederickson, P., Lasinski, T., Schreiber, R., et al.: The NAS parallel bench-
marks summary and preliminary results. In: Proceedings of the 1991 ACM/IEEE
Conference on Supercomputing, pp. 158–165. IEEE (1991)

17. Shan, H., Shalf, J.: Using IOR to analyze the I/O performance for HPC platforms.
In: Cray Users Group Meeting (CUG) 2007, Seattle, Washington (May 2007)

18. MADbench2, http://crd.lbl.gov/~borrill/MADbench2/
19. Darshan, petascale I/O characterization tool,

http://www.mcs.anl.gov/research/projects/darshan/

20. Vijayakumar, K., Mueller, F., Ma, X., Roth, P.C.: Scalable I/O tracing and analy-
sis. In: Proceedings of the 4th Annual Workshop on Petascale Data Storage, PDSW
2009, pp. 26–31. ACM, New York (2009)

http://www.olcf.ornl.gov/titan/system-configuration-timeline/
http://www.olcf.ornl.gov/computing-resources/sith/
http://sourceforge.net/projects/ior-sio/
http://crd.lbl.gov/~borrill/MADbench2/
http://www.mcs.anl.gov/research/projects/darshan/

ASK: Adaptive Sampling

Kit for Performance Characterization

Pablo de Oliveira Castro1, Eric Petit2,
Jean Christophe Beyler3, and William Jalby1

1 Exascale Computing Research,
University of Versailles - UVSQ, France

{pablo.oliveira,william.jalby}@exascale-computing.eu
2 LRC ITACA, University of Versailles - UVSQ, France

eric.petit@uvsq.fr
3 Intel Corporation

jean.christophe.beyler@intel.com

Abstract. Characterizing performance is essential to optimize
programs and architectures. The open source Adaptive Sampling Kit
(ASK) measures the performance trade-offs in large design spaces. Ex-
haustively sampling all points is computationally intractable. Therefore,
ASK concentrates exploration in the most irregular regions of the design
space through multiple adaptive sampling methods. The paper presents
the ASK architecture and a set of adaptive sampling strategies, includ-
ing a new approach: Hierarchical Variance Sampling. ASK’s usage is
demonstrated on two performance characterization problems: memory
stride accesses and stencil codes. ASK builds precise models of perfor-
mance with a small number of measures. It considerably reduces the cost
of performance exploration. For instance, the stencil code design space,
which has more than 31.108 points, is accurately predicted using only
1 500 points.

1 Introduction

Understanding architecture behavior is crucial to fine tune applications and de-
velop more efficient hardware. An accurate performance model captures all inter-
actions among the system’s elements such as: multiple cores with an out-of-order
dispatch or complex memory hierarchies. Building analytical models is increas-
ingly difficult with the complexity growth of current architectures.

An alternative approach considers the architecture as a black box and em-
pirically measures its performance response. The Adaptive Sampling Kit (ASK)
gathers many state of the art sampling methods in a common framework sim-
plifying the process. From the samples, engineers build a surrogate performance
model to study, predict, and improve architecture and application performance
on the design space. The downside of the approach is the exploration time needed
to sample the design space. As the number of factors considered grows – cache
levels, problem size, number of threads, thread mappings, and access patterns –
the size of the design space explodes and exhaustively sampling each combination
of factors becomes unfeasible.

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 89–101, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

90 P. de Oliveira Castro et al.

To mitigate the problem, the engineer must sample only a limited number of
combinations. Moreover, they should be chosen with care: clustering the sampled
points in a small portion of the design space biases the performance model. The
two fundamental elements of a sampling pipeline are the sampling method and
surrogate model.

1. The sampling method decides what combinations of the design space should
be explored.

2. The surrogate model extrapolates from the sampled combinations a predic-
tion on the full design space.

Choosing an adequate sampling strategy is not simple: for best results one must
carefully consider the interaction between the sampling method and surrogate
model [1]. Many implementations of sampling methods are available, but they
all use different configurations and interfaces. Therefore, building and refining
sampling strategies is difficult. ASK addresses this problem by gathering many
state of the art sampling strategies in a common framework. Designed around a
modular architecture, ASK facilitates building complex sampling pipelines. ASK
also provides reporting and model validation modules to assess the quality of the
sampling and find the best experimental setup for performance characterization.
The paper’s main contributions are:

– ASK, a common toolbox gathering state of the art sampling strategies and
simple to integrate with existing measurement tools

– A new sampling strategy, Hierarchical Variance Sampling (HVS), which
mitigates sampling bias by using confidence bounds

– An evaluation of the framework, and of HVS, on two representative perfor-
mance characterization experiments

Section 2 discusses related works. Section 3 explains the HVS strategy. Section 4
succinctly presents ASK’s architecture and usage. Finally, Section 5 evaluates
ASK on two performance studies: memory stride accesses and 2D stencils.

2 Related Works

There are two kinds of sampling strategies: space filling designs and adaptive
sampling. Space filling designs select a fixed number of samples with sensible
statistical properties such as uniformly covering the space or avoiding clusters.
For instance, Latin Hyper Cube designs [2] are built by dividing each dimension
into equal sized intervals. Points are selected so the projection of the design on
any dimension contains exactly one sample per interval. Maximin designs [3]
maximize the minimum distance between any pair of samples; therefore spread-
ing the samples over the entire experimental space. Finally, low discrepancy
sequences [4] choose samples with low discrepancy: given an arbitrary region of
the design space, the number of samples inside the region is close to propor-
tional to its measure. By construction, the sequences uniformly distribute points

ASK: Adaptive Sampling Kit for Performance Characterization 91

in space. Space filling designs choose all points in one single draw before starting
the experiment.

Adaptive sampling methods, on the contrary, iteratively adjust the sampling
grid to the complexity of the design space. By observing already measured sam-
ples, they identify the most irregular regions of the design space. Further samples
are drawn in priority from the irregular regions, which are harder to explore.

The definition of irregular regions changes depending on the sampling method.
Variance-reduction methods prioritize exploration of regions with high variance.
The rationale is irregular regions are more complex, thereby requiring more mea-
sures. Query-by-Committee methods build a committee of models trained with
different parameters and compare the committee’s predictions on all the can-
didate samples. Selected samples are the ones where the committee’s models
disagree the most. Adaptive Multiple Additive Regression Trees (AMART) [5]
is a recent Query-by-Committee approach based on Generalized Boosted Mod-
els (GBM) [6], it selects non-clustered samples with maximal disagreement. An-
other recent approach by Gramacy et al. [7] combines the Tree Gaussian Process
(TGP) [8] model with adaptive sampling methods [9]. For an extensive review
of adaptive sampling methods please refer to Settles [10].

The Surrogate Modeling Toolbox (SUMO) [11] offers a Matlab toolbox build-
ing surrogate models for computer experiments. SUMO’s execution flow is sim-
ilar to ASK’s: both allow configuring the model and sampling method to fully
automate an experiment plan. SUMO focuses mainly on building and control-
ling surrogate models, offering a large set of models. It contains algorithms for
optimizing model parameters, validating the models, and helping users choose a
model. On the other hand, most of SUMO’s adaptive methods are basic sequen-
tial sampling methods. Only a single recent approach is included, which finds
trade-offs between uniformly exploring the space and concentrating on nonlinear
regions of the space [12]. SUMO is open source but restricted to academic use
and depends on the proprietary Matlab toolbox.

ASK specifically targets adaptive sampling for performance characterization,
unlike SUMO. It includes recent state of the art approaches that were success-
fully applied to computer experiments [7] and performance characterization [5].
Simpson et al. [1] show one must consider different trade-offs when choosing a
sampling method: affinity with the surrogate model or studied response, accu-
racy, or cost of predicting new samples. Therefore, ASK comes with a large set
of approaches to cover different sampling scenarios including Latin Hyper Cube
designs, Maximin designs, Low discrepancy designs, AMART, and TGP. Addi-
tionally, ASK includes a new approach, Hierarchical Variance Sampling (HVS).

3 Hierarchical Variance Sampling

Many adaptive learning methods are susceptible to bias because the sampler
makes incorrect decisions based on an incomplete view of the design space. For
instance, the sampler may ignore a region despite the fact it contains big varia-
tions because previous samplings missed the variations.

92 P. de Oliveira Castro et al.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

factor x

re
sp

on
se

 f(
x)

σub

s

●

●

●

●

●

●

●

●

●● ●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● samples
last iteration samples

Fig. 1. HVS on a synthetic 1D benchmark after fifteen drawings of ten samples each.
The true response, f(x) = x5|sin(6.π.x)|, is the solid line. CART partitions the factor
dimension into intervals, represented by the boxes horizontal extension. For each inter-
val, the estimated standard deviation, s, is in a light color and the upper bound of the
standard deviation, σub, is dark. HVS selects more samples in the irregular regions.

To mitigate the problem, ASK includes the new Hierarchical Variance Sam-
pling. HVS’ principal concept is to reduce the bias using confidence intervals
that correct the variance estimation. HVS partitions the exploration space into
regions and measures the variance of each region. A statistical correction de-
pending on the number of samples is applied to obtain an upper bound of the
variance. Further samples are then selected proportionally to the upper bound
and size of each region. By using a confidence upper bound on the variance, the
sampler is less greedy in its exploration but is less likely to overlook interesting
regions. In others words, the sampler will not completely ignore a region until
the number of sampled points is enough to confidently decide the region has low
variance.

HVS is similar to Dasgupta et al. [13] proposing a hierarchical approach for
classification tasks using confidence bounds to reduce the sampling bias. Nev-
ertheless, the Dasgupta et al. approach is only applicable to classification tasks
with a binary or discrete response; whereas HVS deals with continuous responses,
which are more appropriate for performance characterization.

To divide the design space into regions, HVS uses the Classification and Re-
gression Trees (CART) partition algorithm [14] with the Analysis of Variance
(ANOVA) splitting criteria [15] and prunes the tree to optimize cross validation

ASK: Adaptive Sampling Kit for Performance Characterization 93

error. At each step, the space is divided into two regions so the sum of the regions
variance is smaller than the variance of the whole space. The result of a CART
partitioning is shown in Figure 1 where each box depicts a region.

After partitioning, HVS samples the most problematic regions and ignores
the ones with low variance. The sampler only knows the empiric variance s2,
which depends on previous sampling decisions; to reduce bias HVS derives an
upper bound of the true variance σ2. Assuming a close to normal region’s dis-
tribution, HVS computes an upper bound of the true variance σ2 satisfying

σ2 < (n−1)s2

χ2
1−α/2,n−1

= σ2
ub with a 1 − α confidence1. To reduce the bias HVS uses

the corrected upper bound accounting for the number of samples drawn.
For each region, Figure 1 plots the estimated standard deviation s, light col-

ored, and upper-bound σub, dark colored. Samples are selected proportionally
to the variance upper bound multiplied by the size of the region, as shown in
Figure 1. New samples, marked as triangles, are chosen inside the largest boxes.
HVS selects few samples in the [0, 0.5] region, which has a flat profile.

If the goal of the sampling is to reduce the absolute error of the model, then
the HVS method is adequate because it concentrates on high-variance regions.
On the other hand, if the goal is to reduce the relative, or percentage, error
of the model it is better to concentrate on regions with high relative variance,
s2

x2 . HVSrelative is an alternate version of HVS using relative variance with
an appropriate confidence interval [16]. Section 5 evaluates the two sampling
strategies, HVS and HVSrelative, in two performance studies.

4 ASK Architecture

ASK’s flexibility and extensibility come from its modular architecture. When
running an experiment, ASK follows the pipeline presented in Figure 2:

1.Bootstrap

Latin Hyper
Cube

Low Discrepancy

Maximin, . . .

3.Model

CART

GBM

TGP, . . .

4.Sampler

AMART

HVS

TGP, . . .

2.Source

2.Source

Reporter
Reports

progress and
predictive error

5.Control
Decides

when to stop
sampling

Fig. 2. ASK pipeline

1 1− α = 0.9 confidence bound is default.

94 P. de Oliveira Castro et al.

1. A bootstrap module selects an initial batch of points. ASK provides standard
bootstrap modules for the space filling designs described in Section 2: Latin
Hyper Cube, Low Discrepancy, Maximin, and Random.

2. A source module, usually provided by the user, receives a list of requested
points. The source module computes the actual measures for the requested
factors and returns the response.

3. A model module builds a surrogate model for the experiment on the sam-
pled points. Currently ASK provides CART [14], GBM [6,17], and TGP [7]
models.

4. A sampler module iteratively selects a new set of points to measure. Some
sampler modules are simple and do not depend on the surrogate model. For
instance, the random sampler selects a random combination of factors and
the latin sampler iteratively augments an initial Latin Hyper Cube design.
Other sampler modules are more complex and base their decisions on the
surrogate model.

5. A control module decides when the sampling process ends. ASK includes two
basic strategies: stopping when it has sampled a predefined amount of points
or stopping when the accuracy improvement stays under a given threshold
for a number of iterations.

From the user perspective, setting up an ASK experiment is a three-step process.
First, the range and type of each factor is described by writing an experiment
configuration file in the JavaScript Object Notation (JSON) format. ASK ac-
cepts real, integer, or categorical factors. Then, users write a source wrapper
around their measuring setup. The interface is straightforward: the wrapper re-
ceives a combination of factors to measure and returns their response. Finally,
users choose which bootstrap, model, sampler, control, and reporter modules to
execute. Module configuration is also done through the configuration file. ASK
provides fallback default values if parameters are omitted from the configuration.
An excerpt of a two factor configuration with the hierarchical sampler module
follows:

"factors": [{"name": "image-size",

"type": "integer",

"range": {"min": 0, "max": 600}},

{"name": "stencil-size",

"type": "categorical",

"values": ["small", "medium", "large"]}],

"modules": {"sampler": {"executable": "sampler/HVS",

"params": {"nsamples":50}}}

Editing the configuration file quickly replaces any part of the ASK experiment
pipeline with a different module. All the modules have clearly defined interfaces
and are organized with strong separation of concerns in mind. It allows the user
to quickly integrate custom made modules to the ASK pipeline. For example, by
replacing sampler/HVS with sampler/latin the user replays the same experi-
ence with the same parameters but using a Latin Hyper Cube sampler instead.

ASK: Adaptive Sampling Kit for Performance Characterization 95

5 Experimental Study

Two performance characterization experiments were conducted using ASK to
achieve two different objectives. The first objective was to validate the ASK
pipeline and understand on a low dimension space the behavior of each method
using a synthetic microbenchmark called ai aik. Ai aik explores the impact of
stride accesses to a same array in a single iteration. The design space is com-
posed of 400 000 different combinations of two factors: loop trip N and k-stride.
The design space is large and variable enough to challenge sampling strategies.
Nonetheless, it is narrow enough to be measured exhaustively providing an exact
baseline to rate the effectiveness of the sampling strategies.

The second objective was to validate the strategies on a large experimental
space: 2D cross-shaped stencils of varying sizes on a parallel SMP. A wide range
of scientific applications use stencils: for instance, Jacobi computation [18,19]
uses 2 × 2 stencils and high-order finite-difference calculations [20] use 6 × 6
stencils. The design space is composed of five parameters: the N ×M size of the
matrix, the X × Y size of the stencil, and T the number of concurrent threads
used. The design space size has more than 7.108 elements in a 8-core system and
more than 31.108 elements in a 32-core system.

Since an exhaustive measure is computationally unfeasible, the prediction
accuracy is evaluated by computing the error of each strategy on a test set
of 25 600 points independently measured. The test set contains 12 800 points
chosen randomly and 12 800 points distributed in a regular grid configuration
over the design space. Measuring the test set takes more than twelve hours of
computation on a 32-core Nehalem machine.

All studied sampling strategies use random seeds, which can slightly change
the predictive error achieved by different ASK runs. Therefore, the median error,
among nine different runs, is reported when comparing strategies.

Experiments ran with six of the sampling strategies included in ASK: AMART,
HVS, HVSrelative, Latin Hyper Cube, TGP, and Random. All the benchmarks
were compiled with ICC 12.0.0 version. The strategies were called with the fol-
lowing set of default parameters on both experiments:

Samples All the strategies sampled in batches of fifty points per iteration.
Bootstrapping All the strategies were bootstrapped with samples from the

same Latin Hyper Cube design, except Random, which was bootstrapped
with a batch of random points.

Surrogate Model The TGP strategy used tgpllm [8] model with its default pa-
rameters. The other strategies used GBM [6] with the following parameters:
ntrees=3 000, shrinkage=0.01, depth=8.

AMART ran with a committee size of twenty as recommended by Li et al. [5].
TGP used the Active Learning-Cohn [9] sampling strategy.
HVS, HVSrelative used a confidence bound of 1− α = 0.9.

Section 5.1 validates ASK on an exhaustive stride access experiment. Section 5.2
validates ASK on a large design space that cannot be explored exhaustively:
multi-core performance of cross-shaped stencils.

96 P. de Oliveira Castro et al.

samples
R

M
S

E

0.08

0.10

0.12

0.14

0.16

●

●

● ●
● ● ● ● ● ●

100 200 300 400 500

Strategy

● AMART

HVS

HVSrelative

Latin

Random

TGP

Fig. 3. Stride experiments: (Left) exhaustive level plot shows the true response of the
studied kernel in cycles per element. AMART, HVS, and TGP respectively show the
predicted response of each strategy. Black dots indicate the position of the sampled
points. (Right) RMSE is plotted for each strategy and number of samples. The median
among nine runs of each strategy was taken to remove random seed effects.

5.1 Stride Memory Effects

This section studies the stride memory accesses of the following ai aik kernel:

for(i=0;i<N*256;i++) {

res[i]=a[i]+a[i+2*k];

}

The baseline is an exhaustive measure of cycle per element performance on a
Xeon L5609 quad-core 1.87GHz with 8GB of RAM. The measures revealed the
four zones on the left side of Figure 3:

1. In Zone 1 the kernel is fastest because both i and i + 2.k accesses fit in L1.
2. Zone 2 is a transition zone between Zone 1 and Zone 3: under the diagonal,

the accessed elements still fit in L1.
3. In Zone 3 accesses do not fit fully in L1 anymore but the performance is still

acceptable because the accesses i + 2.k prefetch the data needed for the i
accesses in future iterations.

4. In Zone 4, performance is the worst because accesses do not fully fit in L1
and the 2.k distance is too wide for efficient software prefetching.

The preceding exhaustive analysis required 400 000 measures of the ai aik kernel.
ASK ran the same experiment with different sampling strategies stopping at five
hundred samples. Each method’s accuracy was determined by comparing its
predictions to the exhaustive baseline.

Comparing the predicted and exhaustive responses in Figure 3 shows that
TGP and HVS capture the four zones in detail while AMART is less precise in

ASK: Adaptive Sampling Kit for Performance Characterization 97

Zone 2. The diagonal effect in Zone 2 introduces high variance. Therefore, HVS
concentrates its sampling, capturing the zone accurately.

The Root Mean Square Error (RMSE) is the standard metric in the literature
to evaluate a model’s accuracy. Figure 3, right side, shows the RMSE of each
method. The methods, except TGP, are comparable in terms of convergence
speed and reached accuracy. TGP scores a poor RMSE performance compared
to the other methods. GBM surrogate model seems to be a better fit for this
experiment.

In the experiment, ASK’s five hundred point sampling successfully captures
the performance features of the design space. ASK uses eight hundred times less
samples than the exhaustive analysis, while preserving accuracy.

5.2 Stencil Characterization

The stencil code characterization is unfeasible with exhaustive exploration, but
is possible using ASK’s adaptive sampling methods. In the studied stencil code,
Figure 4a, five factors are tunable – X and Y ∈ {1, 2, 4, 8, 16} the horizontal
and vertical sizes of the stencil, N ∈ [64, 2048] the number of lines of the matrix,
M ∈ [64, 2048] the number of columns of the matrix, and T ∈ [1, 32] the number
of threads. The stencil was studied on two Nehalem architectures: an 8-core dual-
socket Xeon E5620 at 2.40GHz with 24GB of RAM and a 32-core four-socket
Xeon X7550 at 2.00GHz with 128GB of RAM. The OpenMP mapping policy
was set to Scatter. The error was evaluated on an independent test set of 25 600
points.

TGP was not used during the second experiment because it does not handle
categorical variables [8]. The computation time needed to select samples with
HVS, HVSrelative, and Latin is negligible compared to the time required to
measure a batch of samples. AMART is a Query-by-Committee strategy, which
generates a prediction on all the candidate points, for twenty different models. In
the stencil experiment the number of candidate points is in the order of billions,
computing a prediction on all of them is not possible. Therefore, as suggested by
Gramacy [8], ASK’s AMART implementation reduces the number of candidate
points to one thousand with a Latin Hyper Cube presampling.

The sampling strategies’ accuracy is measured in terms of RMSE and mean
relative error, in Figure 4b. Here only the 32-core results are examined because
the sampling strategies’ accuracy was similar for both the 8 and 32-core archi-
tectures. For RMSE, HVS outperforms all other strategies both in quality of
the final model, 1.76 RMSE, and speed of convergence. For mean percentage
error, AMART achieves the best final result, 8.89%, followed closely by Latin,
Random, and HVSrelative. HVSrelative converges faster than the others.

Overall, HVSrelative is the best compromise between RMSE and percentage
error because it achieves low final errors and converges quickly to an accurate
model. Using only eight hundred samples, HVSrelative predicts the test set with
a mean absolute error of 1.51 cycles and a mean relative error of 10.97%.

Figure 4c shows the performance prediction for HVS and HVSrelative on the
X × 16 stencils. Each square represents a unique (X,Y, T) configuration. Inside

98 P. de Oliveira Castro et al.

samples

R
M

S
E

5

10

15

20

25
●

●

●

●

●
●

●
●

●

●

●
●

● ● ●
● ●

●
● ●

●
● ●

●
●

●
●

● ● ●

200 400 600 800 1000 1200 1400

Strategy

● AMART

HVS

HVSrelative

Latin

Random

samples

M
ea

n
%

 e
rr

or

20

40

60

80

100

120

140
●

●

●

●

●

● ●
● ●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

200 400 600 800 1000 1200 1400

Strategy

● AMART

HVS

HVSrelative

Latin

Random

(b) Error curves for the exploration on 32
cores. The median among nine runs of each
strategy was taken to remove random seed
effects.

T : threads

C
yc

le
s

pe
r

el
em

en
t

20

40

60

80

100
●

●

●

●

●
●

●
● ●

5 10 15 20 25 30

Model

● True response

HVSrelative model

Ideal linear scaling

(d) Scalability for the 8 × 8 stencil on a
1 000× 1 000 matrix.

#pragma omp parallel for

for(i=Y; i<N-Y; i++)

for(j=X; j<M-X; j++) {

for(k=j-X; k<=j+X; k++)

out[i][j] += in[i][k];

for(l=i-Y; l<=i+Y; l++)

out[i][j] += in[l][j];

}

(a) Stencil code evaluated

(c) Stencil X × 16 predicted performance
vs. test set performance in cycles per

element.

Fig. 4. Stencil experiments

ASK: Adaptive Sampling Kit for Performance Characterization 99

each square the performance is plotted depending on the matrix size N×M . The
kernel is slowest for high Y stencils whose column order accesses stress the cache.
In comparison,X stencil’s size impact on performance is negligible. Performance
degrades for large matrices, as shown from the darker top-right corners of each
square, probably because the matrices exceed the L2 cache capacity. Therefore,
choosing an adequate blocking factor should improve the performance. On ASK
HVS’ 32-core model the mean speed-up obtained by varying the matrix size is
1.65. Using a small matrix with a high number of threads is detrimental because
the cost of synchronization predominates.

On both 8 and 32-core targets the stencil code scales linearly up to, respec-
tively, 8 and 32 threads. As an example, the scalability of the application was
studied on the 8 × 8 stencil on a 1 000 × 1 000 matrix. Figure 4d shows the
performance per number of threads predicted by the HVSrelative strategy. The
prediction follows the measured true response. The matrix sizes explored fit into
the socket’s 18Mb L3 cache, additionnaly the 2D stencil beneficiates from data
reuse, which explains the strong scaling.

Measuring the whole design space would take centuries whereas ASK adaptive
sampling took less than an hour of experiment time with a 1.76 RMSE. ASK
is both efficient when dealing with narrow design spaces, as in ai aik, and large
design space, as in the stencil codes experiment.

6 Conclusion

Adaptive sampling techniques drastically reduce exploration time of large design
spaces. Nevertheless, choosing the right technique can be difficult for a perfor-
mance architect. ASK provides an homogeneous interface to multiple state of
the art sampling strategies, making the process easier. Adding new strategies to
the framework is straightforward due to ASK’s modular architecture.

The new HVS strategy reduces experimental bias and is comparable, or even
outperforms, other state of the art approaches in two case studies. The stencil
code design space, which has more than 31.108 points, was accurately predicted
using only 1 500 points. The performance characterization field could benefit
from adaptive sampling techniques. Hopefully, ASK’s open source release will
facilitate their adoption.

Currently, users must try different models manually to find what is best suited
to their experiment. Automatic model and sampling selection techniques [11,21]
applied to performance experiments will be investigated in future works.

ASK will soon be released at http://code.google.com/p/adaptive-sampl
ing-kit. The experimental data and benchmarks used to produce the paper
results are available at the same URL.

Acknowledgments. This work has been conducted conjointly by the Exascale
Computing Research lab, thanks to the support of CEA, GENCI, Intel, UVSQ,
and by the LRC ITACA lab, thanks to the support of the French Ministry for
Economy, Industry, andEmployment throught the ITEA2 projectH4H.Any opin-
ions, findings, and conclusions or recommendations expressed in this material are

http://code.google.com/p/adaptive-sampling-kit
http://code.google.com/p/adaptive-sampling-kit

100 P. de Oliveira Castro et al.

those of the author(s) and do not necessarily reflect the views of the CEA, GENCI,
Intel, or UVSQ.

References

1. Simpson, T., Lin, D., Chen, W.: Sampling strategies for computer experiments:
design and analysis. International Journal of Reliability and Applications 2(3),
209–240 (2001)

2. Stein, M.: Large sample properties of simulations using Latin hypercube sampling.
Technometrics, 143–151 (1987)

3. Johnson, M., Moore, L., Ylvisaker, D.: Minimax and maximin distance designs.
Journal of Statistical Planning and Inference 26(2), 131–148 (1990)

4. Diwekar, U., Kalagnanam, J.: Efficient sampling technique for optimization under
uncertainty. AIChE Journal 43(2), 440–447 (1997)

5. Li, B., Peng, L., Ramadass, B.: Accurate and efficient processor performance pre-
diction via regression tree based modeling. Journal of Systems Architecture 55(10-
12), 457–467 (2009)

6. Ridgeway, G.: Generalized Boosted Models: A guide to the gbm package. Update 1,
1 (2007)

7. Gramacy, R., Lee, H.: Adaptive design and analysis of supercomputer experiments.
Technometrics 51(2), 130–145 (2009)

8. Gramacy, R.: tgp: An R package for Bayesian nonstationary, semiparametric non-
linear regression and design by treed gaussian process models. Journal of Statistical
Software 19(9), 6 (2007)

9. Cohn, D.: Neural network exploration using optimal experiment design. Neural
Networks 9(6), 1071–1083 (1996)

10. Settles, B.: Active Learning Literature Survey. Science 10(3), 237–304 (1995)
11. Gorissen, D., Couckuyt, I., Demeester, P., Dhaene, T., Crombecq, K.: A surrogate

modeling and adaptive sampling toolbox for computer based design. The Journal
of Machine Learning Research 11, 2051–2055 (2010)

12. Crombecq, K., Gorissen, D., Deschrijver, D., Dhaene, T.: A Novel Hybrid Sequen-
tial Design Strategy for Global Surrogate Modeling of Computer Experiments.
SIAM Journal on Scientific Computing 33, 1948 (2011)

13. Dasgupta, S., Hsu, D.: Hierarchical sampling for active learning. In: Proceedings of
the 25th International Conference on Machine learning, pp. 208–215. ACM (2008)

14. Breiman, L., Friedman, J., Olshen, R., Stone, C., Steinberg, D., Colla, P.: CART:
Classification and regression trees. Wadsworth, Belmont (1983)

15. Atkinson, E., Therneau, T.: An introduction to recursive partitioning using the
RPART routines. Mayo Foundation, Rochester (2000)

16. McKay, A.: Distribution of the Coefficient of Variation and the Extended t Distri-
bution. Journal of the Royal Statistical Society 95(4), 695–698 (1932)

17. Friedman, J.: Greedy function approximation: a gradient boosting machine. Annals
of Statistics, 1189–1232 (2001)

18. Datta, K., Murphy, M., Volkov, V., Williams, S., Carter, J., Oliker, L., Patterson,
D., Shalf, J., Yelick, K.: Stencil computation optimization and auto-tuning on
state-of-the-art multicore architectures. In: Proceedings of the 2008 ACM/IEEE
Conference on Supercomputing, pp. 1–12. IEEE Press (2008)

ASK: Adaptive Sampling Kit for Performance Characterization 101

19. Treibig, J., Wellein, G., Hager, G.: Efficient multicore-aware parallelization strate-
gies for iterative stencil computations. J. Comput. Science 2(2), 130–137 (2011)

20. Dursun, H., Nomura, K.-i., Peng, L., Seymour, R., Wang, W., Kalia, R.K., Nakano,
A., Vashishta, P.: A Multilevel Parallelization Framework for High-Order Stencil
Computations. In: Sips, H., Epema, D., Lin, H.-X. (eds.) Euro-Par 2009. LNCS,
vol. 5704, pp. 642–653. Springer, Heidelberg (2009)

21. Maron, O., Moore, A.: Hoeffding races: Accelerating model selection search for
classification and function approximation. Robotics Institute, 263 (1993)

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 102–114, 2012.
© Springer-Verlag Berlin Heidelberg 2012

CRAW/P: A Workload Partition Method
for the Efficient Parallel Simulation of Manycores

Shuai Jiao1,2, Paolo Ienne3, Xiaochun Ye1, Da Wang1,
Dongrui Fan1, and Ninghui Sun1

1 SKL Computer Architecture, ICT, CAS, Beijing, P.R. China
2 Graduate University of Chinese Academy of Sciences, Beijing, P.R. China

3 École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
{jiaoshuai,yexiaochun,wangda,fandr,snh}@ict.ac.cn,

Paolo.Ienne@epfl.ch

Abstract. This paper addresses the workload partition strategies in the
simulation of manycore architectures. The key observation behind this paper is
that, compared to traditional multicores, manycores feature more non-uniform
memory access and unpredictable network traffic; these features degrades
simulation speed and accuracy of Parallel Discrete Event Simulators (PDES)
when one uses static workload partition schemes. Based on the observation, we
propose an adaptive workload partition method: Core/Router-Adaptive
Workload Partition (CRAW/P). The method delivers more speedup and
accuracy than static partition schemes by partitioning the simulation of on-chip-
network independently from that of the cores and by synchronizing them
differently. Using a PDES simulator, we evaluate the performance of CRAW/P
in simulating a 256-core general purpose many-core processor. Running
SPLASH2 benchmark applications, the experimental results demonstrate it can
deliver speed improvement by 28%~67% over static partition scheme and
reduces timing errors to <10% in very relaxed simulation (quantum size as 64).

Keywords: Parallel Simulation, Manycore, Multicore, Workload Partition.

1 Introduction

While the “manycore era” approaches, some manycore processors have already arrived
[1, 2, 3, 4, 5]. Thousand-core processors are no longer infeasible, and it is likely that
thousands of cores on a single die will become a commodity [6]. Simulating such
parallel systems is a serious problem. Currently, the majority of simulators available
are sequential [7, 8, 9] and thus run the simulation workload on a single host thread.
When the number of cores increases in a target system, the simulation performance for
each core goes down.

A variety of techniques have been proposed to accelerate simulation. These
techniques include the following: parallel simulation [10, 11, 12, 13, 14, 15], direct
execution [15, 16], and FPGA acceleration [17, 18, 19]. Among these techniques,
parallel simulation speeds simulation by exploiting the parallelism inherent in the
target parallel architecture. Besides, the advent of low-cost SMP computers makes

 CRAW/P: A Workload Partition Method 103

parallel simulation very attractive. Representative works on parallel simulation are
Parallel Discrete Event Simulation (PDES) simulators [21].

State-of-the-art PDES simulators focus on simulating multicores. These simulators
partition the simulation workload in a simple static manner. Examples could be found
in P-mambo [16], SlackSim [14], and Graphite [15]. In these simulators, target cores
are evenly distributed among host threads. These schemes work well in simulating
multicores but are inefficient in simulating manycores. The distinction lies in the
architectural difference between multicores and manycores: manycores feature large
scale on-chip-networks, which produce more non-uniform memory accessses (NUCA)
and unpredictable network traffic.

Based on these observations, this paper proposes a partition method: core/router-
adaptive workload partition (CRAW/P). The essential idea of CRAW/P is that it
partitions the simulation workload adaptively, divides the simulation of on-chip-
network (routers) separately from that of the cores and simulates network more strictly.
The method delivers more speedup and accuracy than static partition schemes.

The main contributions of CRAW/P are 1) how to use adaptive partitions to deliver
speedup and accuracy and 2) how to leverage the core/router partitioning to efficiently
maintain accuracy in terms of (i) reduction of host threads that simulate the network
and (ii) strict synchronization for the network. As far as we can tell, we are the first to
comprehensively discuss the workload partition scheme in manycore simulation and
exploit simulation speedup and accuracy saving from the division of network and cores
in parallel simulating manycores.

The remainder of this paper is structured as follows. Section 2 discusses the
architectural characteristics of manycores and demonstrates the observations. Section 3
discusses the details of CRAW/P. Section 4 illustrates the experimental results. Section 5
discusses some related work. Section 6 offers some concluding remarks.

2 Observation

This section explains why static workload partition scheme is far from an optimal
choice for simulating manycores and demonstrates the observation that motivates the
adaptive partitioning and the core/router partitioning. Some experimental examples are
given using the experimental platform later described in Section 4.

Fig. 1 shows how static partition schemes are used to simulate typical multicores
and manycores. The partition scheme in Fig. 1(a) represents the scheme used, for
instance, by SlackSim [14] while the partition scheme in Fig. 1(b) represents what
used in Graphite [15]. The static scheme may work well in these multicore simulators
but it is inefficient for manycores. The key is the large-scale on-chip-network, which
is widely used in modern manycore architectures to provide better scalability. A large
on-chip-network enlarges the following phenomenon on manycores: non-uniform
cache accesses and unpredictable network traffic.

Non-uniform cache access (NUCA) produces an obvious workload imbalance. On
large scale networks, NUCA accesses might produce very non-uniform on-chip traffic
due to topology and routing. The situation is worsened if hot spotting appears on the
network. The non-uniform traffic results in some cores being busy running ahead due
to short off-core latency, while other cores are stalling for reply. In a typical PDES
simulator, simulating a busy core/router results in a large workload while simulating a

104 S. Jiao et al.

Fig. 1. A typical multicore S
static partition schemes. The M
CMP has a L1 instruction and
L2 (or even L3) cache banks
private or shared to each cor
manycore processors (e.g., Inte
These processors present com
DRAM controllers at the perip

waiting core/router involv
distribution when simulati
kernel. The arrows and cir
main reason of non-uniform

If the simulation workloa
imbalance would slowdown
synchronizing their local clo
method), clock skew is mo
shows a example of stati
simulation speed and timin
per Second) is the measure
the simulator achieves durin
is the measure of the dynam
average cycle deviation of
Workload imbalance is
synchronization overhead
presents opposite variation
similarly with the imbalanc

Unpredictable network
sensitive to accuracy. The
predict the on-chip traffic p
cycle latency between nei
(SlackSim) for any router-
asynchronously simulated b
threads would easily produc

Further examining the n
router is less frequent and m
Router-Router (RR) link w
messages into the network
interacting cores. The C

MP and manycore processor simulated by 5 host threads u
Multi-core architecture is typical CMP architecture. Each core
d coherent data cache. The lower level cache hierarchy is mad
s, which are accessed in a NUCA [21] manner. Banks can
re. The manycore architecture is extracted from state-of-the
el SCC [1], Polaris [2], Tile64/Pro/Gtx [3, 4], and Godson-T [
mmon features such as distributed caches, mesh network,
pheral of the chip.

ves practically no activity. Fig. 2 shows the workl
ing a 256-core architecture running the matrix_mult
rcles indicate that on-chip cache-access hot spotting is

m workload distribution.
ad is statically partitioned among host threads, the workl
n simulation speed because host threads spend more time
ocks. Besides, in cases of relaxed simulation (e.g., quant
re likely to happen, resulting in more timing errors. Fig
ic partition scheme which demonstrates the relation
ng error with workload imbalance. MCPS (Million Cyc
e of simulation speed: it indicates how many target cyc
ng one wall-clock second. ECPE (Error Cycles per Eve

mic timing error during simulation run time: it indicates
an event timestamp from the cycle it actually takes eff
measured by the Standard Deviation (SD) of
for all host threads. As illustrated, simulation sp

n against workload imbalance while timing error va
e. The relation is more obvious in the region of 130–150
k traffic makes parallel simulation of network q
network connects so many interacting tiles that we can

pattern. Besides, most modern on-chip routers achieve o
ighboring tiles; as a result, there is no “critical-laten
to-router link. In this situation, if neighboring routers

by different threads, even a limited clock skew between h
ce timing errors.
network traffic, we find that the traffic between core
more deterministic than that between router and router.

would be quite busy even if all cores inject infrequen
k because a router-router link may be shared by m
Core-Router (CR) link, however, demonstrates so

sing
of a

de of
n be
e-art
[5]).
and

load
tiply

the

load
e on
tum
g. 3

n of
cles
cles
ent)
the

fect.
the

peed
aries
0s.
uite

nnot
one-
ncy”

are
host

and
 A
ntly

many
ome

Fig. 2. Relation between on-c
distribution (bottom) during s
manycore processor running m
every L2$. Workload is measu
mini blocks) represents a snap
the pane indicates a target tile
heavy workload while lighter f

Fig. 3. Simulation speed (M
imbalance (Standard Deviation
section of matrix-multiply by 8
of workload imbalance is obse

determinism. For example,
continuous Cache-Misses o
between a Cache-Miss even
because the L2$ (Level 2 ca
request. Although these e
between two CR link events

To demonstrate the dif
distribution of RR link and
the cycles between two con
idle-cycle of 4 for a CR li
previous one on that CR
matrix_multiply and lu. Ma
little inter-core communicat
Lu is among the applicatio
core communication. Most
Both simulations show tha
example, in matrix_multipl

CRAW/P: A Workload Partition Method

Simulation Run Time

chip hot spotting in accessing shared cache (top) and workl
simulation. Data is collected from the simulation of a 256
matrix-multiply. Hot spotting is measured as the busy cycle
ured by the time spent in simulating each tile. Each pane (16
shot of simulation workload distribution. Each gray mini bloc
e. The shade of gray indicates the workload level: darker is
for light workload.

MCPS) and timing error (ECPE) are influenced by workl
n) during simulation run-time. Data is collected from a simula
8 host threads with a relaxed quantum of 16. An obvious epis

erved in the region of 130–150s.

, we can predict the most probable interval between
on a CR link. Also, we can determine the minimum inter
nt and the corresponding Cache-Refill event on a CR l
ache) has the minimum processing cycles for a Cache-M
events may happen concurrently and result in less cyc
s, the CR link still present more determinism than RR lin
fference between RR link and CR link, the idle-cy

d CR link is presented in fig. 4. An idle-cycle is defined
ntinuous traffic events on a specific link. For example,
ink indicates that a link event happens 4 cycles after
link. Two simulation cases are demonstrated in Fig

atrix_multiply is a highly parallel application and conta
tion. Most network traffic events are Cache-Misses/Ref
ns of the SPLASH2 benchmark which contain most in
of the on-chip traffic is coherence traffic between cach

at router-router link is busier than core-router link.
ly, the idle-cycles equal to 2 accounts for a proportion

105

load
6-tile
es of
6x16
ck in
s for

load
ation
sode

two
rval
link

Miss
cles

nk.
ycle
d as
, an
the

. 4:
ains
fills.
nter-
hes.
For

n of

106 S. Jiao et al.

(a) matrix_mu

Fig. 4. Idle-cycles distribution i
and lu. Idle-cycles larger than 1

20%. The idle-cycles for
determined by the least pr
latency). In lu, idle-cycles m
minimum processing cycles

3 CRAW/P

This section discusses the
schemes are also described
examples of these three part
distributed onto multiple h
Implementation details of th

Fig. 5. Workload partitioning
Simple-Adaptive use one sync
two different quantum sizes: co

The described Static par
simply partitions the target
scheme is a very straightforw
workload balance between a
synchronization, resulting in
skew between host threads, r

R R

RR

RR

RR

R R
C

RR
C

RR
C

RR
C

C

C

C

C

C

C

C

C

C

C

C

C

R

R

R

R

C

C

C

C

R

R

R

R

C

C

C

C

R

R

R

R

C

C

C

C

R
C

R
C

R
C

R
C

Host Threa

Synchronizatio
point

ultiply (b) lu

in the simulation of a 256-core architecture running matrix_mult
28 is ignored.

the CR link, however, mostly falls beyond 8, which
rocessing cycles of Cache-Miss message in L2$ (L2$
mainly fall in the region of 4–10, which is determined by
s of Cache-Invalidation message in the core.

e proposed partition scheme, CRAW/P. Two partit
for comparison: Static and Simple-Adaptive. Fig. 5 sho

tition schemes. In these schemes, simulation of the targe
ost threads. Host threads run in a relaxed PDES mann

he used PDES method in this paper could be referred in [2

for Static, Simple-Adaptive, and CRAWP. Note that Static
chronization quantum among all host threads while CRAWP u
ore thread quantum (large) and router thread quantum (small).

rtition scheme is exactly the scheme used in Graphite
t tiles evenly onto all host threads. The Simple-Adap
ward manner to create adaptive partitions: It tries to main
all host threads. As a result, host threads spend less time
n some speedup. Besides, better balance produces less clo
reducing timing errors in a relaxed simulation.

Core Thread Router Thread

R R

RR

RR

RR

R R
C

RR
C

RR
C

RR
C

C

C

C

C

C

C

C

C

C

C

C

C

R R

RR

RR

RR

R RC

RRC

RRC

RRC

C

C

C

C

C

C

C

C

C

C

C

C

ad

on

Router Thread
Quantum

Core Thread
Quantum

tiply

h is
 hit

y the

tion
ows
et is
ner.

22].

and
uses
.

e. It
ptive
ntain
e on
ock-

 CRAW/P: A Workload Partition Method 107

Fig. 6. Adaptive workload partition in Simple-adaptive and
CRAW/P

Fig. 6 shows how
adaptive partition works
in a quantum based
PDES simulator. During
the simulation, host
threads record the
simulation time for each
tile; all host threads
barrier twice after a
period of T cycles;
between every barrier-
pair, only one host thread
runs the repartition work
while other threads are
simply waiting. The

partitioning thread assembles the summary workload and redistributes the tiles to each
thread, assuring workload balance. The idea of adaptive partition is to use the workload
distribution in the near history to guide the workload partition in the near future and
achieve better balance. In practical simulation, the partition interval should be set to a
proper value: a big interval would result in bad partition efficiency while a small one
would introduce considerable synchronization overhead. In this paper, the interval is
set dynamically during simulation to ensure the partition overhead is less than a
constant (e.g. 2%).

CRAW/P is essentially an adaptive partition scheme and has the same basic
mechanism as Simple-Adaptive. However, it goes further; it partitions the network
apart from the cores and allows the simulation of network and cores to use different
synchronization strategies. To implement the network/core partition and different
synchronization strategies, CRAW/P divides the host threads into two types: core
thread and router thread. Core threads simulate cores (processing pipeline, L1$, and
L2$) and synchronize with a coarse quantum; on the other hand, router threads
simulate routers and synchronize with a fine quantum. The idea of CRAW/P could be
defined through the following constraints on the simulator:

1. Workload balance must be maintained between all host threads (core
threads + router threads). Since workload balancing is the basic mechanism
to reduce synchronization overhead and clock-skew, it is a must for parallel
simulation.

2. Network must be simulated by router threads. Since the network is quite
sensitive to parallelism, the network should be simulated by as few threads as
possible. Because the router is a light weight module compared to core module
(functional model and core timing model), this constraint will largely reduce
the number of router threads.

3. Cores should be simulated by core threads with higher priority than by
router threads. Ideally, cores are simulated only by core threads. However, in
cases of serious workload imbalance between router threads and core threads,
workload balance should be achieved by migrating cores to router threads
other than routers to core threads. Fig. 5(c) shows an example where a core

108 S. Jiao et al.

migrates to a router thread. This decision still obeys constraint 2 that the
network must be simulated by router threads.

4. Synchronization between router threads must be strict to increase
accuracy. Since RR link is highly-interactive, if synchronization between
router threads is relaxed, the clock-skew between router threads will easily
produce timing errors. So, for the sake of accuracy, router threads must
synchronize very strictly. In our CRAW/P scheme, the router thread quantum
is set as 1 by default. The small router thread quantum requires router threads
to frequently synchronize with each other. However, the synchronization
overhead is not much because the number of router thread is small.

5. Synchronization between core threads and router threads should be
relaxed to a reasonable extent to enable speedup. The only synchronization
requirement for simulating cores derives from the CR interaction. The CR
links, however, are observed to be less interactive links. So, relaxing the core-
core and core-router synchronization to a reasonable extent will improve the
simulation speed at the expense of a moderate accuracy loss.

In summary, compared to a Static scheme, CRAW/P should present a better speedup
and accuracy: Simulation speedup comes from 1) workload balancing between host
threads and 2) synchronization relaxation between core threads. The accuracy
improvement comes from several features: 1) it partitions the workload adaptively,
achieving accuracy improvements from the workload balance; 2) it requires the
network to be simulated by dedicated router threads, which limits the number of host
threads that simulate the network; 3) it requires tight synchronization between router
threads (small router thread quantum).

4 Results

This section presents the evaluation results that demonstrate the simulation speed and
accuracy of our partition scheme compared to our two references. Section 4.1 describes
the host and target configurations. Section 4.2 compares the performance of Static,
Simple-Adaptive, and CRAW/P.

4.1 Experimental Setup

The multi-core host has four quad-core Intel(R) Xeon(R) E7420 CPUs running at
2.13GHZ and 128GB of DRAM. The OS is Red Hat SMP Linux with kernel version
2.6.18. Each of the experiments in this section uses the target architecture parameters
summarized in Table 1 unless otherwise noted. The 256-core many-core architecture is
similar with that in Fig. 1(b). The cache coherency used in the target is directory
based MESI, which is similar with that of TilePro [3]. We ported representative
applications from the SPLASH2 benchmark suite. Table 2 lists the problem size of
these applications. All applications are threaded with 256 threads.

Tab

Feature Value
Clock 1GHz

L1 Cache Private,
L2 Cache Shared,
Coherence Directo

DRAM 64GB/s
Interconnect Mesh n

4.2 Simulation Perform

Case Study. Fig. 7 (abc) il
error of the three partition
(Simple-Adaptive and CRA
~20% to <10%. Meanwhile
CRAW/P is slightly worse t
because of the higher pa
introduced by the stricter
simulation speed and tim
Adaptive improves the s

Fig. 7. The top graphs show th
imbalance) for Static (a), Simp
simulation speed (MCPS) and
CRAW/P (g). Data are collect
For Static and Simple-Adapti
core thread quantum is 8 and th

Table 2. Parameters of Targe

application Proble
fft 64M p
radix 256M
lu 1024x
fmm 4k
barnes 2048
cholesky Input

CRAW/P: A Workload Partition Method

ble 1. Parameters of Target Architecture

, 32 KB, 32-byte line size, 4-way associative, and LRU replacement.
, 128KB, 64-byte line size, 8-way associative, and LRU replacement.

ory based MESI.
s = (8 Controllers * 8 GB/s each).
network 16x16; wormhole routing;

The experiment platform is
quantum [13] based PDES simulato
QMill. QMill derives from the G
[22] simulator, which is an accur
simulator for the Godson-T Many-c
architecture [5]. We use QMill beca
it can conveniently simulate hundr
core general purpose manyc
architectures described in fig. 1(b).

mance

llustrates the average synchronization overhead and tim
schemes during a simulation run. The adaptive schem

AW/P) largely reduce the synchronization overhead fr
e, the deviation is reduced from ~23% to <5%. Note t
than Simple-Adaptive in synchronization reduction. Thi
rtitioning overhead and extra synchronization overh
r inter-router synchronization. Fig. 7 (efg) shows

ming error of three schemes during simulation. Simp
speed from ~0.011MCPS to >0.015 MCPS. CRAW

he average synchronization overhead and the deviation (workl
ple-Adaptive (b), and CRAW/P (c). The bottom graphs show
d timing error (ECPE) for Static (e), Simple-Adaptive (f),
ted from the matrix_multiply kernel simulated by 8 host thre
ive, the synchronization quantum is set to 8. For CRAW/P,
he router thread quantum is 1.

et Applications

em size
points

M keys
x1024

set tk15.O

109

a
or—
GAS

rate
core
ause
red-
core

ming
mes
rom
that
is is

head
the

ple-
W/P

load
w the

and
eads.
 the

110 S. Jiao et al.

improves the speed to >0.014 MCPS, which is slightly less than that achieved by
Simple-Adaptive. However, CRAW/P reduces the timing error (ECPE) from ~0.016
(Static) to <0.002, which is far less than ~0.01 of Simple-Adaptive.

Simulation Speed. Fig. 8 shows the simulation speedup over the SPLASH2
benchmarks for Static, Simple-Adaptive, and CRAW/P. All applications exhibit better
speed when using Simple-Adaptive or CRAW/P. The improvement of Simple-Adaptive
ranges from a factor 1.37 (choleskey_p16) to 1.74 (radix_p4). The improvement of
CRAW/P ranges from a factor 1.28 (cholesky_p16) to 1.67 (radix_p4).

Fig. 8. Scaling of SPLASH benchmarks across various core counts using the three partition
schemes. The top graph shows the speed-up normalized to a single core (sequential simulation).
The bottom shows the speed improvement of Simple-Adaptive and CRAW/P compared to
Static. The number of cores in the host is denoted by *_p*. In all simulations, the quantum size
is 8 but in CRAW/P router thread quantum is 1. The number of router threads in all the
simulations falls in the region of 1–2.3.

 (a) fft (b) radix

Fig. 9. Simulation speed of (a) fft and (b) radix with different quantum sizes and different
numbers of host threads. The quantum size is denoted by Q*. The thread count is denoted by
P*. For example, Q4P8 indicates that the simulation is run on 8 host threads with a
synchronization quantum of 4.

It is notable that Simple-Adaptive behaves slightly better than CRAW/P. The
difference is more obvious when more host threads are involved. That happens
because CRAW/P introduces more partitioning overhead because it has to consider

0
1
2
3
4
5
6
7
8

Sp
ee

d-
up

 (N
or

m
al

iz
ed

) Static
Simple-Adaptive
CRAWP

0
2
4
6
8

10
12
14
16
18

Sp
ee

d-
up

 (N
or

m
al

iz
ed

)

Static
Simple-Adaptive
CRAWP

 CRAW/P: A Workload Partition Method 111

the workload of core and router respectively. Besides, the router threads in CRAW/P
synchronize in every cycle while in Simple-Adaptive the synchronization between all
host threads is relaxed. The extra synchronization slows down the simulation speed of
CRAW/P but warrants better accuracy.

Another observation in is that the speed improvements of Simple-Adaptive and
CRAW/P generally slowly drop as more host threads are added. The observation
corresponds to the growing synchronization overhead between host threads. The
benefit of workload balancing is gradually reduced as synchronization dominates the
simulation overhead.

To demonstrate the effect of Simple-Adaptive and CRAW/P using different
quantum, the result of fft (the application displaying the worst scaling) and radix (the
application with best scaling) are selected and illustrated in Fig. 9. A general trend
can be observed: adaptive partition schemes provide more improvement in cases of
larger quantum sizes. The reason is the following: in quantum simulation, each host
thread advances quantum cycles without synchronization, and the imbalance in each
quantum is accumulated. The imbalance accumulation will be more significant as the
quantum grows. A bigger workload imbalance will give more chances to adaptive
partition schemes to do workload balancing.

Simulation Accuracy. Fig. 10 shows timing errors of fft and radix with different
quantum sizes and different numbers of host threads. The timing error referred here is
obtained by comparing the timing result with sequential simulation. The first fact to
observe is that the timing error of fft is generally less than radix. This matches the
application behavior of fft that contains a considerable sequential phase (the
sequential phase is sequentially simulated and thus involves no timing error).

As illustrated, in the case of the Static scheme, the timing error grows intensely
with 1) more host threads and 2) larger quantum. The simulation is particularly
inaccurate with large quantum. The timing error in Q64P8 and Q64P16 exceeds 50%
(51.5% in fft and 84.1% in radix), which makes the results simply worthless. Another
notable fact is that timing error grows very significantly from Q16 to Q64. That’s
because a quantum of 64 would more easily yield clock skew of tens of cycles, which
would completely cover the major part of idle-cycle distribution (cf. Fig. 4).

(a) fft (b) radix

Fig. 10. Simulation error of (a) fft and (b) radix in simulation with different quanta across various
numbers of host threads. Quantum size is denoted by Q*. Thread number is denoted by P*.

Simple-Adaptive does indeed reduce the timing error, but the saving is very
limited. Although it shows better efficiency in cases with more host threads and larger
quantum size, the timing error is still more than half that of Static. CRAW/P is very

51.5%

31.0%

6.5%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

Ti
m

in
g

Er
ro

r(
%

)

Static
Simple-Adaptive
CRAWP

84.1%

48.7%

9.9%

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

Ti
m

in
g

Er
ro

r(
%

)

Static
Simple-Adaptive
CRAWP

112 S. Jiao et al.

effective in improving accuracy, especially in the cases of Q64*. It reduces the timing
error of fft_Q64P16 from 51.5% to 6.5%, and reduces the timing error of
radix_Q64P16 from 84.1% to 9.9%. Overall, the experiment shows that CRAW/P
behaves much better than both Simple-Adaptive and Static.

5 Related Work

Simulation is an important technique to explore new computer architectures ranging
from micro-processors to parallel computers. A variety of different simulators exist,
most of which are sequential. Sequential simulators run on one host thread, which
limits performance. Various techniques have been studied to accelerate simulation
speed including parallel simulation, direct execution, and FPGA acceleration et.

The best known parallel simulation method, PDES has been studied for decades. In
conventional PDES simulators, host threads must synchronize frequently to maintain
the fidelity of the simulation. Some PDES simulators adopted Quantum [13] or Slack
to relax the synchronization condition.

Static workload partition is widely used in state-of-art parallel simulators. Typical
examples are P-Mambo, SlackSim, and Graphite. Parallel Mambo [16] (P-Mambo) is
a multi-threaded implementation of Mambo where a core based module partition is
proposed to achieve high inter-scheduler parallelism. However, the evaluation only
simulates a relatively small 4-core PowerPC machine.

In SlackSim, there are two types of host threads: core thread and manager thread.
One dedicated thread simulates the centralized lower memory hierarchy while another
set of threads (four in the paper) simulate the cores. The workload imbalance between
core and memory threads can be statically avoided and the minimum L2$ access
latency can be identified as safe quantum (SlackSim).

Graphite [15] uses multi-machine distributed simulation, which provides a better
scalability. The tiled multicore architecture is very similar to the manycore
architecture proposed in this paper. However, the workload partition is still static,
with each host process simulating a set of target tiles, whose number is limited to 32.

6 Conclusion and Future Work

This paper addresses workload partitioning in manycore simulation. We discuss the
architectural characteristics of manycores, present the drawbacks of a static scheme
for manycore simulation, and propose an adaptive workload partition method called
CRAW/P. Experimental results demonstrate that CRAW/P delivers considerable
speedup (28–67%) and accuracy saving (<10% in timing error with a quantum of 64).

Further digging into the mechanisms lying behind the effects of workload
imbalance and network on speed and accuracy can help us better understand
manycore simulation; it can also provide future improvement opportunities. These
opportunities are the focus of our future work. Another possible extension is to
partition the simulation of cores and network onto different machines, seeking better
performance to simulate large-scale manycore architecture containing more cores.

 CRAW/P: A Workload Partition Method 113

Acknowledgment. This work is in part supported by the National Grand
Fundamental Research 973 Program of China under Grant No. 2011CB302501, the
National Science Foundation for Distinguished Young Scholars of China under Grant
No. 60925009, the Foundation for Innovative Research Groups of the National
Natural Science Foundation of China under Grant No. 60921002, the Beijing science
and technology plans under Grant No.2010B058 and the National Natural Science
Foundation of China under Grant No.(61173007，61100013 and 61100015).

References

[1] Howard, J., Dighe, S., Hoskote, Y., et al.: A 48-Core IA-32 Message-Passing Processor
with DVFS in 45nm CMOS. In: Proceedings of the International Solid-State Circuits
Conference, ISSCC 2010 (February 2010)

[2] Vangal, S., et al.: An 80-Tile 1.28 TFLOPS Network-on-Chip in 65nm CMOS. In: IEEE
International Solid-State Circuits Conference, ISSCC 2007. Digest of Technical Papers,
pp. 98–589 (2007)

[3] Bell, S., et al.: TILE64 processor: A 64-core SoC with mesh interconnect. In:
Proceedings of the International Solid-State Circuits Conference, ISSCC 2008 (February
2008)

[4] The TILE-GxTM Processor Family, Tilera (2009),
http://www.tilera.com/products/processors

[5] Fan, D., Zhang, H., Wang, D., et al.: High-Efficient Architecture of Godson-T Many-
Core Processor. In: Proceedings of Hot Chips 23. IEEE Computer Society (2011)

[6] Kelm, J.H., Johnson, D.R., Johnson, M.R., et al.: Rigel: An Architecture and Scalable
Programming. In: ISCA 2009 (2009)

[7] Burger, D., Austin, T.: The SimpleScalar tool set, version 2.0. Technical Report TR-1342,
University of Wisconsin-Madison Computer Sciences Department (June 1997)

[8] Binkert, N.L., Dreslinski, R.G., Hsu, L.R., Lim, K.T., Saidi, A.G., Reinhardt, S.K.: The
M5 Simulator: Modeling Networked Systems. IEEE Micro 26, 4 (2006)

[9] Magnusson, P.S., et al.: Simics: A Full System Simulation Platform. IEEE
Computer 35(2), 50–58 (2002)

[10] Chidester, M.C., George, A.D.: Parallel simulation of chip-multiprocessor architectures.
Proceedings of ACM Trans. Model. Comput. Simul., 176–200 (2002)

[11] Steinman, J.S.: SPEEDES: A Multiple-Synchronization Environment for Parallel
Discrete-Event Simulation. International Journal in Computer Simulation 2, 251–286
(1992)

[12] Chandy, K.: Distributed Simulation: A Case Study in Design and Verification of
Distributed Programs. IEEE Transactions on Software Engineering 5(5), 440–452 (1979)

[13] Mukherjee, S.S., Reinhardt, S.: Wisconsin Wind Tunnel II: A Fast, Portable Parallel
Architecture Simulator. IEEE Concurrency 8(4), 12–20 (2000)

[14] Chen, J., Annavaram, M., Dubois, M.: SlackSim: A Platform for Parallel Simulations of
CMPs on CMPs. SIGARCH Comput. Archit. News 37(2), 20–29 (2009)

[15] Miller, J.E.: Graphite: A distributed parallel simulator for multicores. In: HPCA 2010:
The 16th IEEE International Symposium on High-Performance Computer Architecture
(2010)

[16] Wang, K., Zhang, Y., Wang, H., Shen, X.: Parallelization of IBM mambo system
simulator in functional modes. Operating Systems Review, 71–76 (2008)

114 S. Jiao et al.

[17] Chiou, D., Sunwoo, D.: FPGA-Accelerated Simulation Technologies (FAST): Fast, Full-
System, Cycle Accurate Simulators. In: MICRO 2007: Proceedings of the 40th Annual
IEEE/ACM International Symposium on Microarchitecture, pp. 249–261 (2007)

[18] Chung, E.S., Papamichael, M.K., Nurvitadhi, E., Hoe, J.C., Mai, K., Falsa, B.: ProtoFlex:
Towards Scalable, Full System Multiprocessor Simulations Using FPGAs. ACM Trans.
Recongurable Technol. Syst. 2(2), 1–32 (2009)

[19] Dave, N.: Implementing a functional/timing partitioned microprocessor simulator with an
FPGA. In: 2nd Workshop on Architecture Research using FPGA Platforms, WARFP
2006 (February 2006)

[20] Monchiero, M., Ahn, J.H., Falcon, A., Ortega, D., Faraboschi, P.: How to simulate 1000
cores. SIGARCH Comput. Archit. News 37(2), 10–19 (2009)

[21] Dybdahl, H.: An Adaptive Shared/Private NUCA Cache Partioning Scheme for Chip
Multiprocessors. In: Proc. of the Int. Symposium on High Performance Architecture
(HPCA), pp. 2–12 (2007)

[22] Huiwei, L., et al.: P-GAS: Parallelizing a Cycle-Accurate Event-Driven Many-Core
Processor Simulator Using Parallel Discrete Event Simulation. In: 24th ACM/IEEE/SCS
Workshop on Principle of Advanced and Distributed Simulation (PADS 2010), Atlanta,
USA (June 2010)

[23] Jefferson, D., Beckman, B., Wieland, F., Blume, L., Diloreto, M.: Time warp operating
system. In: Proceedings of the 11th ACM Symposium on Operating System Principles,
pp. 77–93 (1987)

[24] Das, S.R., Fujimoto, R., Panesar, K.S., Allison, D., Hybinette, M.: GTW: a time warp
system for shared memory multiprocessors. In: Winter Simulation Conference, pp. 1332–
1339 (1994)

Topic 3: Scheduling and Load Balancing

Denis Trystram, Ioannis Milis, Zhihui Du, and Uwe Schwiegelshohn

Topic Committee

More than ever, parallelism is available today at every level of computing sys-
tems, including dedicated embedded systems, basic instructions and registers,
hardware accelerators, multi-core platforms, computational grids, etc. Despite
of lot of efforts and nice positive results obtained during the past years, such
systems are still not fully exploited. Scheduling represents the use or optimiza-
tion of resources allocation in parallel and distributed systems. There are many
issues to study for a better share of the load, a better reliability, a better adap-
tivity under computing, bandwidth or memory constraints. They are all crucial
for obtaining a better use of parallel and distributed systems. It is a big challenge
to study related techniques provided at both application and system levels. At
the application level, the choice of the adequate computational model, the design
of dynamic algorithms that are able to adapt to the particular characteristics,
the mapping of applications onto the underlying computing platforms and the
actual utilization of the systems are particularly relevant.

This new edition of the topic in EuroPar provides a very good coverage of
the various modern perspectives. The submitted papers covered many aspects
of scheduling and load balancing from theoretical foundations for modeling or
analyzing new policies under specific constraints to the design of efficient and ro-
bust strategies, experimental studies, applications and development of practical
tools.

This year all the submitted papers have been evaluated by four reviewers,
and finally seven papers were chosen to be included into the final program.
They reflect the good and necessary synergy between theoretical approaches
(models, analysis) and practical realization and tools (new methods, simulation
results, actual experiments, specific tuning of some applications). Problems like
minimization of energy consumption, malleability for achieving the maximum
possible resource utilization, on-line policies, scheduling of MapReduce jobs show
how this old field always creates new problems. The objects of study evolve from
year to year and reflect the new trends in scheduling showing that this classical
topic remains very active and challenging.

Finally we would like to express our gratitude to all our colleagues, experts
in any field of scheduling for the time and effort spent in the reviewing process.
Their good job could not be achieved without the support of the organizing
committee which created a good balance between a gentle pressure and the
trust and freedom they gave us within the scientific topics.

Thanks also to the authors whose unfailing involvement makes EuroPar a
premium forum for scheduling for parallel and distributed systems.

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, p. 115, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Job Scheduling Using Successive Linear

Programming Approximations of a Sparse Model

Stephane Chretien1, Jean-Marc Nicod2, Laurent Philippe2,
Veronika Rehn-Sonigo2, and Lamiel Toch2

1 Department of Mathematics, Université de Franche-Comté, Besançon, France
2 FEMTO-ST Institute, UMR CNRS / UFC / ENSMM / UTBM, Besançon, France

Abstract. In this paper we tackle the well-known problem of scheduling
a collection of parallel jobs on a set of processors either in a cluster
or in a multiprocessor computer. For the makespan objective, i.e., the
completion time of the last job, this problem has been shown to be
NP-Hard and several heuristics have already been proposed to minimize
the execution time. We introduce a novel approach based on successive
linear programming (LP) approximations of a sparse model. The idea is
to relax an integer linear program and use �p norm-based operators to
force the solver to find almost-integer solutions that can be assimilated
to an integer solution. We consider the case where jobs are either rigid or
moldable. A rigid parallel job is performed with a predefined number of
processors while a moldable job can define the number of processors that
it is using just before it starts its execution. We compare the scheduling
approach with the classic Largest Task First list based algorithm and
we show that our approach provides good results for small instances of
the problem. The contributions of this paper are both the integration
of mathematical methods in the scheduling world and the design of a
promising approach which gives good results for scheduling problems
with less than a hundred processors.

1 Introduction

Nowadays clusters of computers or large shared memory computers are widely
used by many communities such as researchers, universities or industries to speed
up their applications. Due to their cost these computing facilities are usually
shared between several users and several parallel jobs must be run at the same
time on the same platform. The problem of scheduling parallel jobs on clusters
without knowing in advance the submission times of user jobs has been widely
studied [20]. In this case the scheduling problem is said to be “on-line” [12].
When all characteristics of the jobs are known in advance, the scheduling problem
becomes “off-line” and it has been widely studied for sequential jobs [13] and for
parallel jobs [8,11].

The “off-line” problem considered here depends on the job characteristics. In
the literature one distinguishes three kinds of parallel jobs. Rigid jobs [16] are
performed with the number of processors originally required. Moldable jobs in-
troduced by Turek et al. in [18] may run with different numbers of processors but
cannot change their allocation after their start. Malleable jobs [9] can modify

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 116–127, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Job Scheduling Using Successive Linear Programming Approximations 117

the number of allocated processors during their execution. The rigid job model
can easily be used in most of the cases of parallel jobs. The two other models
however need an interaction between the application and the scheduler to define
the number of allocated processors. This is for instance the case of applications
developed with the Bulk Synchronous Parallel (BSP) model introduced in [19]
that can be run as moldable jobs. Processor virtualization however could be a
solution to transparently make standard parallel applications moldable as pre-
sented in [17]. Applying virtualization to malleable jobs is probably more difficult
as it would need to use virtual machine migration. For these reasons we focus
on rigid and moldable jobs.

The problem of scheduling several parallel rigid and moldable jobs on ho-
mogeneous computing resources has been shown to be NP-Hard respectively
in [11] and [8]. Several previous works have already tackled the issue of provid-
ing heuristics that give efficient sub-optimal solutions. In [2] static scheduling
of rigid parallel jobs for minimizing the makespan is studied and in [1] for min-
imizing the sum of the completion time of each job. In [10], Dutot et al. con-
sider the problem of scheduling moldable jobs with the objective of minimizing
the makespan. The authors present experimental results where the well-known
Largest Task First (LTF) algorithm is the best for the makespan objective.

The contribution of this paper is a novel approach for scheduling a collection of
rigid or moldable jobs using successive LP approximations based on the gradient
operator. To the best of our knowledge there is no existing work using this
promising approach based on the sparse recovery problem in statistics domain.

The remainder of the paper is organized as follows. In Section 2 we describe
the problem and the model of moldable jobs. In Section 3 we present the spar-
sity promoting penalization as well as linear approximation principles. Then, in
Section 4 we present how to adapt this method to our scheduling problem. In
Section 5 we compare our technique with the algorithm developed by Dutot et al.
in [10] and show experimental results to assess the performance of our approach,
and finally we conclude and give future work directions in Section 6.

2 Framework

In this section we formally define the targeted framework and the problem. We
consider the problem of scheduling a collection of n independent parallel jobs.
We tackle both cases of rigid and moldable jobs.

The jobs are run on a homogeneous cluster of distributed computing nodes
or on a shared memory multiprocessor or multicore computer. In a cluster each
node is made up of identical processors which are in turn made up of identical
cores. The scheduling policy used on most clusters does not pay any attention
to the exact distribution of the cores allocated on the nodes provided that the
job is parallel. For this reason, in this paper, we will only consider the number of
allocated cores, assimilated to processors and called Processing Elements (PEs).
The results can then be applied either on clusters or on multiprocessor-multicore
computers. In the remainder of the paper m denotes the number of available PEs
in the execution platform.

118 S. Chretien et al.

Rigid jobs are defined by an execution time and a static number of requested
PEs, i.e., the job cannot be run on neither more nor less PEs than originally
requested. Each rigid job i is defined by its number of requested PEs reqproci
and its duration reqtimei.

Moldable jobs can be run on a different number of PEs or cores but this num-
ber is fixed at the job execution start and cannot change during the execution.
The considered moldable jobs respect the model defined in [10]. Let reqtimei
be the duration of job i which requires at most reqproci PEs. Let ti(n) be the
duration of the job i if n PEs are allocated for job i. The relation between the
duration of a job i and its number of allocated PEs is stated as:

∀i, ∀n ≤ reqproci, ti(n) =
⌈reqproci

n

⌉
reqtimei

Given this framework our objective is to minimize the makespan of the schedule.
According to the α|β|γ (platform | application | optimized criterion) classification
of scheduling problems given by Graham in [15], the above problem is denoted
by P |parallel jobs|Cmax.

3 Sparsity Promoting Penalization with Successive
Linearizations

The optimization method presented in the paper relays on two steps. First we
formulate the problem as an integer linear program, then we relax it and apply
the sparsity promoting penalization which tries to find almost integer solutions.
As the sparsity promoting penalization implies to minimize a non linear objective
function we use successive LP approximations to linearize it. In this section we
detail the main steps of the method.

3.1 Sparsity Promoting Penalization

Recent works on the sparse recovery problem in statistics and signal processing
have brought to general attention the fact that using non-differentiable penalties
such as the �p norm can be an efficient ersatz to combinatorial constraints in
order to promote sparsity. This approach for constructing continuous relaxations
to hard combinatorial problems is a key ingredient in e.g., the new field called
Compressed Sensing which originated in the work of Candès, Romberg and Tao
[3]. Donoho [7] showed that finding the sparsest solution to an under-determined
system of linear equations may sometimes be equivalent to finding the solution
with smallest �1-norm. This discovery lead to a intense research activity in the
recent years focusing on finding weaker sufficient conditions on the linear system
under which it is possible to prove this equivalence. It was found in particular
that for matrices satisfying certain incoherence conditions (implying that the
columns of the associated matrix are almost orthogonal), the equivalence be-
tween finding the sparsest and the least �1 norm solution holds for systems with
a number of unknowns to the order of exponential of the number of equations.

Job Scheduling Using Successive Linear Programming Approximations 119

Other non-differentiable penalties have also been proposed in order to increase
the performance of sparse recovery procedures. Candès, Wakin and Boyd pro-
posed an iterative reweighted �1 procedure in [4]. In our setting, the standard
�1 relaxation is not suitable. Indeed, as will be detailed in the sequel (e.g. equa-
tion 1 below), our constraints will always imply that the �1 is constant. A more
appropriate sparsity promoting penalization in this case is the �p-quasi-norm
relaxation, for p ∈ (0, 1). This corresponds to minimizing ‖x‖p := (

∑
k x

p
k)

1/p

instead of ‖x‖1, under the same design constraints. Such a non–convex relation
was successfully implemented in, e.g. [6].

3.2 Linear and Conic Approximation

In physics and mathematics a function f is often approximated with a linear
formulation at point x0, if f is differentiable at point x0. The gradient of a
function with several parameters (f : Rn → R), noted ∇f , is the vector whose
components are equal to derivatives of f with respect to the parameters. Taylor’s
expansion gives

f(x+ h) = f(x) + 〈∇f, h〉+ o(h)

where x and h belong to Rn, and 〈 〉 represents the dot product.
In cases such as x → ‖x‖p, where f is non-differentiable, it is still possi-

ble linearize by using the appropriate generalization of the gradient, called the
Clarke-subdifferential. In simple words, a non-differentiable function may have
several tangents in a generalized sense and the Clarke-subdifferential, denoted
by ∂f(x), is the set of all such generalized tangents. The nonsmooth counterpart
to Taylor’s expansion is given by

f(x+ h) = f(x) + sup
g∈∂f(x)

〈g, h〉+ o(h)

.
In order to implement our �p-based relaxation, we will implement successive
linearizations on a standard linear programming solver.

4 Applying the Method on the Job Scheduling Problem

In this section we apply the method on the job scheduling problem. First it
implies to define a sparse representation of the problem then we apply the two
steps of sparsity promoting penalization and linear approximation.

4.1 Formulation as an Integer Linear Program

In the defined framework a solution to the scheduling problem must provide at
least the start time of the jobs for the rigid jobs as their duration and the number
of used PEs are constants of the problem. For the moldable jobs, the duration
depends upon the number of PEs that are allocated to the jobs. So the scheduled
jobs are characterized by their start time and the number of allocated PEs and

120 S. Chretien et al.

the duration of the job is determined as soon as this number of allocated PEs is
determined. We call “configuration” of a job the number of allocated PEs. We
call “position” of a job, its position determined by its start time in a discrete
time scale. Finally, we call “slot” the couple (configuration, position).

Let us create a list of slots (configurations, positions) for each job. The idea is
to create a vector xi for each job i. Each component xi,j of the vector xi is a binary
variable which indicates whether slot j of job i is chosen or not. Then we fix a time
horizon T and we let a linear program find a solution. We iteratively reduce the
time horizon T until the linear program cannot find a solution any more.

The following constant values are defined to formulate the problem:

– proci,j : the number of PEs for the configuration j of job i
– nconfi: the number of all possible configurations for job i (for rigid jobs i,

nconfi = 1)
– nslotsi: the number of all possible slots for job i
– Ci,s: the configuration index of job i used in the slot s of job i
– runi,s,t indicates whether in the slot s the job i is running at time t.

Then we define the binary variable xi,s which indicates whether slot s of job i is
chosen or not. For each job i, we note xi the vector whose components are the
values xi,s and we define a vector x which is equal to the concatenation of the
n vectors xi of every job i, 1 ≤ i ≤ n.

The problem can be formulated as an integer linear program. Since we only
have to determine whether a feasible solution exists or not for a given time
horizon T , we only need the constraints to be respected. That is why we set all the
coefficients of the variables in the objective function to 0. The problem is stated
as: “find a feasible solution which respects the following linear constraints:”

∀1 ≤ i ≤ n,

s=nsloti∑
s=1

xi,s = 1 (1)

∀1 ≤ t ≤ T ,

i=n∑
i=1

s=nsloti∑
s=1

xi,s × runi,s,t × proci,Ci,s ≤ m (2)

Constraint 1 imposes the unicity of the chosen slot s on each job i. Constraint 2
means that at each time t, the set of all running jobs does not consume more
than the m available PEs in the considered cluster.

4.2 Relaxation via Sparsity Promoting Penalization

The solution of the Integer formulation of the problem cannot be found in poly-
nomial execution time. So we make a relaxation of it. We transform all binary
variables xi,s into rational variables and with 0 ≤ xi,s ≤ 1. Since vector x – the
concatenation of xi vectors – indicates which slots are chosen, we are tempted
to strongly enforce its sparsity. In fact, vector x must have exactly n “1” and
many “0”. Thus, we legitimately expect the binary constraints to be naturally
recovered by imposing sufficient sparsity. Notice that the proposed constraints

Job Scheduling Using Successive Linear Programming Approximations 121

impose that the sum of the components of x is equal to one jobwise. Since the
components are positive, this implies that the �1 norm is equal to one jobwise,
which explains why minimizing the �1 norm for promoting sparsity is unfortu-
nately useless in the present context. In order to overcome this difficulty, we
chose to minimize the �p norm non-convex function

f(x) =
∑
i

‖xi‖p (3)

under constraints (1) and (2) for p ∈]0, 1[.

4.3 Successive LP Approximation Scheme

We now apply successive LP approximation schemes to linearize the problem.
Let fi(xi) = ‖xi‖p, for all jobs i. Thus, f =

∑
i fi. We use the value of each vari-

able computed during the previous iteration. We will use the following arbitrary
choice g ∈ ∂f among all possible subgradients of f :

gi,j =

⎧⎪⎨⎪⎩
xp−1
i,j × fi (xi)

1−p
if xi,j �= 0

0 otherwise.

(4)

The method is implemented in Algorithm 1. It starts with any initial value e.g.
the zero vector. First we compute a lower bound of the makespan at line 1,
which is equal to the maximum between the duration of the longest job and∑

i reqproci×reqtimei
m . The time horizon T is set to the makespan of the LTF

list algorithm. If the linear program LP finds a satisfactory solution (line 9),
it reduces the time horizon (line 12) until it cannot (line 23) before maxIter
iterations. If it does not find a satisfactory solution with T = Listmakespan
before maxIter iterations (line), it increases the time horizon T (line 21). For a
given time horizon T , it iteratively updates the objective function of the linear
program (line 7) according to the subgradient-based Taylor approximation rule
of the sparsity promoting penalization.

4.4 Improving the Algorithm Efficiency

During the experiment step of our work a problem appeared in the linear reso-
lution. Satisfactory solutions for Algorithm 1 are only detected (at line 9) if all
jobs i have their vector xi with exactly one “1” as the algorithm is designed to
find exclusively exact solutions. In fact, for a given time horizon T , the succes-
sive linear approximations manage to find a schedule for most of the jobs of the
collection but it let few jobs j of the collection with fuzzy schedules. That is to
say, vectors xi contain exactly one “1” while vectors xj do not. In this case the
algorithm often continues to iterate, even if xj is close to 1, until maxIter is
reached without being able to find a solution. This leads to longer computing
times for the algorithm while giving inefficient solutions.

122 S. Chretien et al.

Algorithm 1. A successive LP scheme
1 lb ← lower bound of makespan
2 sched ← compute a schedule with LTF ; listMakepsan ← makepsan(sched) ;

T ← listMakespan ; end ← false ; incT ← false;
3 while T > lb and not end do
4 proc ← compute the configurations (J) ; run ← compute all possible slots (J ,m, T) ;

iter ← 1 ; found ← false

5 ∀i, k, x(iter)
i,k ← 0

6 while iter < maxIter and not found do
7 set the objective function of LP(J ,m, T, proc, run) to

∑|J|
i f(x

(iter)
i) + 〈∇f(x

(iter)
i), xi − x

(iter)
i 〉

8 x ← execute LP(J ,m, T, proc, run)
9 if ∀i, xi contains exactly one “1” then

10 sched ← convert into schedule (x, proc, run)
11 T ← makespan(sched)
12 T ← T − 1
13 found ← true
14 if incT = true then
15 end ← true

16 ∀i, k, x(iter)
i,k ← xi,k ; iter ← iter + 1

17 if not found then
18 if T = listMakespan then
19 incT ← true

20 if incT = true then
21 T ← T + 1

22 else
23 end ← true

24 return sched

So we modify Algorithm 1 and its detection criterion at line 9 as follows:
when a valid rational schedule is found we keep the exact schedule for jobs i
whose xi have exactly one “1” and we schedule the rest of the jobs for which the
linear program gives fuzzy schedules with the LTF list algorithm. If a solution
shorter than the time horizon T is found, then the found variable is set to true
otherwise we continue to iterate.

5 Simulation and Results

In this section we present the results obtained on the two versions of the algo-
rithm and we compare them to the well-known Largest Task First algorithm.
We assess both cases of rigid and moldable jobs. Notice that the problem we
propose to solve is nonconvex and very high dimensional. Moreover, no theoret-
ical guarantee for convergence of the proposed iterative procedure is available
and it is well known that minimizing an �p quasi-norm, 0 < p < 1, is NP-hard
already. On the other hand, various non-convex �p-based strategies have been
successfully used for promoting sparsity in the literature. Despite the current
lack of appropriate theoretical foundation, in most reported experiments the �p-
based approach managed to reach a local solution significantly superior to the �1
minimizer for, e.g., the Compressed Sensing reconstruction problem [6]. The goal

Job Scheduling Using Successive Linear Programming Approximations 123

of this section is to show that such a good performance can also be observed for
the studied scheduling problem. Notice that we did not optimize the computa-
tional aspects of the problem, in particular, we made no use of the very special
properties of the constraint matrix. This explains why the computing time is
currently much higher than what could be obtained after a careful design of the
algebraic aspects of our algorithms.

5.1 Experimental Settings

Carrying out real experiments on clusters is difficult: experiments are not repro-
ducible and may be long. Furthermore a cluster is expensive and meant to be
used for calculations while experiments may monopolize it. For these reasons, we
have developed a simulator of a homogeneous cluster based on a master/slave
architecture. This simulator is also meant to check schedules obtained by the
different algorithms. The simulator is implemented using SimGrid [5] and its
MSG API. It takes a workload as input and it gives a schedule as output.

To simulate the job collection, we use synthetic workloads generated with
uniform distributions. The parameters associated with a workload is the job
granularity, the ratio of the duration of the longest job over the duration of the
shortest one.

5.2 Assessing Performance of Algorithm 1

In a first set of experiments the simulations have been run with a �p norm where
p = 0.1, maxIter is set to 15000 in the algorithm and the machine is made up of
64 PEs. We have scheduled a collection of 60 jobs and, for each number of jobs in
the collection, we performed 40 experiments to compute an average value of the
ratio of the makespan over the lower bound. The results where disappointing:
they were far from the optimal and very time consuming.

So we ran another set of experiments with less jobs, �p norm where p = 0.1,
maxIter set to 15000. The machine is made up of 32 PEs and the number of PEs
requested by each job is uniformly chosen between 1 and 8. The granularity is
set to 25. For each number of jobs in the collection we perform 20 experiments,
then we remove the best and the worse results in order to reduce the deviation,
and we compute an average of the ratio of the makespan over the lower bound.

Figure 1a shows the ratio of the makespan over the lower bound against the
number of rigid jobs, while Figure 1b shows this ration for moldable jobs. In the
figures the algorithms are noted succ. LP approx for our algorithm and LIST for
the LTF implementation. The figures also show the standard deviation σ: the
height of a vertical line is equal to 2σ.

We can note that for less than 25 jobs the successive LP approximation algo-
rithm gives better results than the LTF algorithm and with more than 25 jobs
the latter outperforms successive LP approximation. Note that after 40 jobs the
performance ratio of LTF quickly tends toward 1.1 which means, on the one
hand, that it probably finds most of the time the optimal solution and, on the
other hand, that it is difficult to find better solutions. Moreover, with more than

124 S. Chretien et al.

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1.45

 5 10 15 20 25 30 35 40

m
ak

es
pa

n
/ l

ow
er

 b
ou

nd

number of jobs

LIST
succ. LP approx.

(a) rigid jobs

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1.45

 5 10 15 20 25 30 35 40

m
ak

es
pa

n
/ l

ow
er

 b
ou

nd

number of jobs

LIST
succ. LP approx.

(b) moldable jobs

Fig. 1. Performance comparison 32 PEs

25 jobs, the problem becomes so complex that the successive LP approximation
algorithm must increase its T to find a solution. Under this threshold the maxi-
mum gain is about 15% for 16 moldable or rigid jobs. Furthermore the standard
deviation of the experiments with our new approach is less than the standard
deviation of LTF. We can easily understand that for 5 jobs the optimal is found
due to the experimental settings: the number of PEs that each job requires is
uniformly chosen between 1 and 8. As a consequence, all jobs may start at time
0. That also explains the peak with 15 jobs which do not necessarily start at time
0. We can also notice that for rigid jobs and moldable jobs the successive LP
approximation algorithm has the same behavior, that is to say, when the number
of jobs increases, the ratio of the makespan over the lower bound increases.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 5 10 15 20 25 30 35 40

C
PU

 T
im

e
(m

s)

number of jobs

LIST
succ. LP approx.

(a) rigid jobs

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 5 10 15 20 25 30 35 40

C
PU

 T
im

e
(m

s)

number of jobs

LIST
succ. LP approx.

(b) moldable jobs

Fig. 2. Compute time for 32 PEs

As we can see in Figure 2a and Figure 2b, Algorithm 1 is very time consuming
with both rigid jobs and moldable jobs compared to the LTF algorithm. Note
however that for 15 jobs, in the case where gives the best results, the time taken
by the LP approximation is not more than 1.5 minutes which is still reasonable.
We assess the performance of the improved version in the following section.

Job Scheduling Using Successive Linear Programming Approximations 125

5.3 Performance of the Improved Algorithm

To assess the improved algorithm, we performed experiments with two simulated
machines made up of 64 and 128 PEs. The number of PEs requested by each job
is uniformly chosen between 1 and 16 for the machine with 64 PEs, and between 1
and 32 for the machine with 128 PEs. Granularity is set to 25 for the machine with
64 PEs and to 10 for the machine with 128 PEs. We set p = 0.1 and maxIter =
200. For each number of jobs in the collection, we perform 40 experiments.

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 10 20 30 40 50 60

m
ak

es
pa

n
/ l

ow
er

 b
ou

nd

number of jobs

LIST
succ. LP approx. + LIST

(a) rigid jobs

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 10 20 30 40 50 60

m
ak

es
pa

n
/ l

ow
er

 b
ou

nd

number of jobs

LIST
succ. LP approx. + LIST

(b) moldable jobs

Fig. 3. Performance of the algorithms with 64 PEs

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 20 40 60 80 100 120

m
ak

es
pa

n
/ l

ow
er

 b
ou

nd

number of jobs

LIST
succ. LP approx. + LIST

(a) rigid jobs

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 20 40 60 80 100 120

m
ak

es
pa

n
/ l

ow
er

 b
ou

nd

number of jobs

LIST
succ. LP approx. + LIST

(b) moldable jobs

Fig. 4. Performance of the algorithms with 128 PEs

Figure 3a shows the ratio of the makespan over the lower bound against the
number of rigid jobs in a cluster of 64 PEs, while in Figure 3b we consider
scheduling moldable jobs. The performances of the new approach are better
than LTF for moldable and rigid jobs, and better than the unmodified algorithm.
Figure 4a and Figure 4b give the results for a machine with 128 PEs.

We can note that in the four cases the performance ratio between LTF and
our approach is up to 20%. The results obtained with a 128 PEs machine show
an improvement for the LTF algorithm compared to 64 case while the behavior
of the new algorithm is quite similar. This is probably because our solution is
very close to (if not at) the optimal solution and nothing more can be gained.

We have also recorded some statistics data after each execution of the linear
program. On average with 64 PEs and 16 jobs almost 75% of jobs have exact

126 S. Chretien et al.

schedules, while with 64 jobs 50% of them have exact schedules. We notice that
when the number of jobs to schedule increases the number of exact schedules
found by the linear program decreases. We get the same behaviour with 128 PEs:
on average with 128 PEs and 16 jobs almost 80% of jobs have exact schedules,
while with 128 jobs 60% of them have exact schedules.

 10

 100

 1000

 10000

 100000

 1e+06

 10 20 30 40 50 60

C
PU

 T
im

e
(m

s)

number of jobs

LIST
succ. LP approx. + LIST

(a) rigid jobs

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 10 20 30 40 50 60
C

PU
 T

im
e

(m
s)

number of jobs

LIST
succ. LP approx. + LIST

(b) moldable jobs

Fig. 5. CPU Time consumed to compute a schedule with 64 PEs

Figures 5a and 5b show the time spend by the two algorithms. We notice that
the hybrid algorithm is less time consuming than the original algorithm but still
consumes more time than the LTF algorithm.

6 Conclusion and Future Work

In this paper, we assess the use of successive linear programming approxima-
tions of a sparse model for job scheduling. This method is applied on clusters to
schedule rigid and moldable jobs. Experimental results show that the pure suc-
cessive LP approximation only gives good performances regarding the makespan
for scheduling up to dozens jobs on a machine with dozens PEs. In contrast, a
variant associated with LTF gives good results for bigger instances with up to
a hundred jobs on machines with up to a hundred PEs. This variant is a good
alternative to the LTF algorithm and provides a significant improvement of the
schedules for the range of machine size where the LTF algorithm is less efficient.

For future work we plan to implement the Split Bregman Method [14] to speed
up the solving time and try other relaxations of the linear program. We also plan
to use a multi-level scheduling approach for which we distinguish small jobs and
large jobs. We then apply our method on different collections of jobs.

An important part of the simulations has been run thanks to the computing
facilities of the Mésocentre de Calcul de Franche-Comté in Besançon, France.

References

1. Afrati, F.N., Bampis, E., Fishkin, A.V., Jansen, K., Kenyon, C.: Scheduling to
minimize the average completion time of dedicated tasks. In: Proceedings of the
20th Conference on Foundations of Software Technology and Theoretical Computer
Science, FST TCS 2000, London, UK, pp. 454–464 (2000)

Job Scheduling Using Successive Linear Programming Approximations 127

2. Amoura, A.K., Bampis, E., Kenyon, C., Manoussakis, Y.: Scheduling independent
multiprocessor tasks. Algorithmica 32(2), 247–261 (2002)

3. Candes, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal
reconstruction from highly incomplete frequency information. IEEE Transactions
on Information Theory 52(2), 489–509 (2006)

4. Candes, E.J., Wakin, M.B., Boyd, S.P.: Enhancing Sparsity by Reweighted L1
Minimization. Journal of Fourier Analysis and Applications 14(5), 877–905 (2008)

5. Casanova, H., Legrand, A., Quinson, M.: Simgrid: A generic framework for large-
scale distributed experiments. In: UKSIM 2008, pp. 126–131 (2008)

6. Chartrand, R., Yin, W.: Iteratively reweighted algorithms for compressive sensing.
In: 33rd International Conference on Acoustics, Speech, and Signal Processing,
ICASSP (2008)

7. Donoho, D.L.: Compressed sensing. IEEE Trans. Inform. Theory 52, 1289–1306
(2006)

8. Dutot, P.-F., Eyraud, L., Mounié, G., Trystram, D.: Bi-criteria algorithm for
scheduling jobs on cluster platforms. In: Proceedings of the Sixteenth Annual
ACM Symposium on Parallelism in Algorithms and Architectures, SPAA 2004,
New York, NY, USA, pp. 125–132 (2004)

9. Dutot, P.-F., Trystram, D.: Scheduling on hierarchical clusters using malleable
tasks. In: SPAA 2001, pp. 199–208 (2001)

10. Dutot, P.-F., Netto, M.A.S., Goldman, A., Kon, F.: Scheduling Moldable BSP
Tasks. In: Feitelson, D.G., Frachtenberg, E., Rudolph, L., Schwiegelshohn, U. (eds.)
JSSPP 2005. LNCS, vol. 3834, pp. 157–172. Springer, Heidelberg (2005)

11. Feitelson, D.G.: Job scheduling in multiprogrammed parallel systems. Research
Report RC 19790 (87657). IBM T. J. Watson Research Center (1997)

12. Feitelson, D.G., Mualem, A.W.: On the definition of “on-line” in job scheduling
problems. Technical report, SIGACT News (2000)

13. Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York (1990)

14. Goldstein, T., Osher, S.: The split bregman method for l1-regularized problems.
SIAM J. Img. Sci. 2, 323–343 (2009)

15. Graham, R.L., et al.: Optimization and approximation in deterministic sequencing
and scheduling: a survey. Ann. Discrete Math., 287–326 (1979)

16. Lublin, U., Feitelson, D.G.: The workload on parallel supercomputers: Modeling
the characteristics of rigid jobs. Journal of Parallel and Distributed Computing 63,
2003 (2001)

17. Nicod, J.-M., Philippe, L., Rehn-Sonigo, V., Toch, L.: Using virtualization and job
folding for batch scheduling. In: ISPDC 2011, 10th Int. Symposium on Parallel
and Distributed Computing, Cluj-Napoca, Romania, pp. 39–41. IEEE Computer
Society Press (July 2011)

18. Turek, J., Wolf, J.L., Yu, P.S.: Approximate algorithms scheduling parallelizable
tasks. In: Proceedings of the Fourth Annual ACM Symposium on Parallel Algo-
rithms and Architectures, SPAA 1992, pp. 323–332. ACM, New York (1992)

19. Valiant, L.G.: A bridging model for parallel computation. Commun. ACM 33, 103–
111 (1990)

20. Ye, D., Zhang, G.: On-line scheduling of parallel jobs in a list. J. of Scheduling 10,
407–413 (2007)

Speed Scaling on Parallel Processors

with Migration�

Eric Angel1, Evripidis Bampis2, Fadi Kacem1, and Dimitrios Letsios1,2

1 IBISC, Université d’ Évry, France
{eric.angel,fadi.kacem,dimitris.letsios}@ibisc.univ-evry.fr

2 LIP6, Université Pierre et Marie Curie, France
{Evripidis.Bampis}@lip6.fr

Abstract. We study the problem of scheduling a set of jobs with re-
lease dates, deadlines and processing requirements (works), on parallel
speed-scalable processors so as to minimize the total energy consump-
tion. We consider that both preemption and migration of jobs are al-
lowed. We formulate the problem as a convex program and we propose a
polynomial-time combinatorial algorithm which is based on a reduction
to the maximum flow problem. We extend our algorithm to the multipro-
cessor speed scaling problem with preemption and migration where the
objective is the minimization of the maximum lateness under a budget
of energy.

1 Introduction

Energy consumption is a major issue in our days. Great efforts are devoted to the
reduction of energy dissipation in computing environments ranging from small
portable devices to large data centers. From an algorithmic point of view, new
challenging optimization problems are studied, in which the energy consumption
is taken into account as a constraint or as the optimization goal itself (for recent
reviews see [1], [2]). This later approach has been adopted in the seminal paper of
Yao et al. [11], where a set of independent jobs with release dates and deadlines
have to be scheduled on a single processor so that the total energy is minimized,
under the so-called speed-scaling model where the processor may run at variable
speeds. Under this model, if the speed of a processor is s then the power con-
sumption is sα, where α > 1 is a constant, and the energy consumption is the
power integrated over time.

Single Processor Case. Yao et al., in [11], proposed an optimal off-line algo-
rithm, known as the YDS algorithm, for the preemptive problem, i.e., where the
execution of a job may be interrupted and resumed later on. In the same work,
they initiated the study of online algorithms for the problem, introducing the
Average Rate (AVR) and the Optimal Available (OA) algorithms. Bansal et al.

� Research supported by the French Agency for Research under the DEFIS program
TODO, ANR-09-EMER-010, and by GDR du CNRS, RO.

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 128–140, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Speed Scaling on Parallel Processors with Migration 129

[5] proposed a new online algorithm, the BKP algorithm, which improves the
competitive ratio of OA for large values of α.

Multiprocessor Case. There are two variants of the model. The first variant
allows the preemption of the jobs but not their migration. We call this vari-
ant, the non-migratory variant. This means that a job may be interrupted and
resumed later on, on the same processor, but it is not allowed to continue its
execution on a different processor. In the second variant, the migratory variant,
both the preemption and the migration of the jobs are allowed.

In [4], Albers et al. considered the multiprocessor non-migratory problem of
minimizing the total energy consumption of a set of jobs with release dates and
deadlines. For unit-work jobs with agreeable deadlines, they proposed a polyno-
mial time algorithm. When the release dates and deadlines of jobs are arbitrary,
they proved that the problem becomes NP-hard even for unit-work jobs and
proposed approximation algorithms with constant approximation ratios for the
off-line version of the problem. A generic reduction is given by Greiner et al. (see
[9]) transforming a β-approximation algorithm for the single-processor prob-
lem to a βBα-approximation algorithm for the multi-processor non-migratory
problem, where Bα is the α-th Bell number. Furthermore, they showed that a
β-approximation for multiple processors with migration yields a deterministic
βBα-approximation algorithm for multiple processors without migration.

For the migratory variant, Chen et al., in [8], initiated the study of the en-
ergy minimization speed scaling problem on multiprocessors with migration and
they proposed a efficient algorithm when the jobs have arbitrary works but a
common release date and deadline. In [7], Bingham and Greenstreet proposed a
polynomial-time algorithm for the general problem when the release dates and
deadlines of jobs are arbitrary. Their algorithmmakes use of the Ellipsoid method
(see [10]). Since the complexity of the Ellipsoid algorithm is high for practical
applications, it was interesting to define a faster combinatorial algorithm.

When preparing a previous version of this paper, it came to our knowledge
that Albers et al. [3], independently of our work, considered the same problem
and proposed an optimal O(n2f(n))-time combinatorial algorithm, where n is
the number of jobs and f(n) is the complexity of finding a maximum flow in a
graph with O(n) vertices. They, also, extended the analysis of the single processor
OA and AVR online algorithms to the multiprocessor case with migration.

Our Contribution and Organization of the Paper. We consider the mul-
tiprocessor migratory scheduling problem with the objective of minimizing the
energy consumption. In Section 3, we give a convex programming formulation
of the problem and in Section 4, we apply, the well known KKT conditions to
our convex program. In this way, we obtain a set of properties that are satisfied
by any optimal schedule. Then in Section 5, we propose an optimal algorithm in
the case where the jobs have release dates, deadlines and the power function is of
the form sα, where α > 2. The time complexity of our algorithm, which we call
BAL, is in O(nf(n) logU), where n is the number of jobs, U is the range of all
possible values of processors’ speed divided by the desired accuracy and f(|V |)

130 E. Angel et al.

is the complexity of computing a maximum flow in a layered graph with O(|V |)
vertices. Notice that our algorithm is faster than the one of Albers et al. [3] only
if moderate precision is required. If full accuracy is required, our algorithm is
not faster. Finally, we extend our algorithm so as to obtain an optimal algorithm
for the problem of maximum lateness minimization under a budget of energy.

2 Preliminaries

Let J = {j1, ..., jn} be a set of jobs. Each job ji is specified by a workwi, a release
date ri and a deadline di. We define the span of a job ji to be spani = [ri, di] and
we say that ji is alive at time t if t ∈ spani. We also define the density of job ji as
deni = wi/(di− ri). We assume a set of m variable-speed processors in the sense
that they can all, dynamically, change their speeds and have a common speed-
to-power function P (t) = s(t)α, where P (t) is the power consumption at time t,
s(t) is the speed at time t and α > 2 is a constant. Consider any interval of time
[a, b] and a given processor. The amount of work processed by this processor and

its energy consumption, during [a, b], are
∫ b

a s(t)dt and
∫ b

a s(t)αdt, respectively.
Hence, if the processor runs at a constant speed s, during [a, b], then s · (b − a)
units of work are executed and sα · (b− a) units of energy are consumed, during
[a, b]. In our setting, preemption and migration of jobs are allowed. That is,
the processing of a job may be suspended and resumed later, on the same or
on different processor. Nevertheless, we do not allow parallel execution of a job
which means that a job cannot be run simultaneously on two or more processors.
We also assume that a continuous spectrum of speeds is available and that there
is no upper bound on the speed of any processor. Our objective is to find a
feasible schedule that minimizes the total energy consumed by all processors.

We define T = {t0, . . . , tL} to be the set of release dates and deadlines taken
in a non-decreasing order and without duplication. Clearly, t0 = minji∈J {ri}
and tL = maxji∈J {di}. Let Ij = [tj−1, tj], for 1 ≤ j ≤ L, and I = {I1, . . . , IL}.
We denote |Ij | the length of the interval Ij . Also, let A(j) be the set of jobs that
are alive during Ij , i.e. all the jobs ji with Ij ⊆ spani, and aj = |A(j)| be the
number of jobs in A(j). Given any schedule, we denote ti,j the total units of time
that job ji is processed during the interval Ij . As already mentioned in many
other works (see [11] for example), one can show, through a simple exchange
argument, that, in any optimal schedule, every job ji is executed at a constant
speed si and this comes from the convexity of the power function.

Next, we state a problem which is a variation of our problem that we will need
throughout our analysis, we call it the Work Assignment Problem (or WAP)
and can be described as follows: Consider a set of n jobs J = {j1, j2, . . . , jn}
and a set of intervals I = {I1, I2, · · · , IL}. Each job can be alive in one or
more intervals in I. During each interval Ij there are mj available processors.
Moreover, we are given a value v. Our objective is to find whether or not there
is a feasible schedule that executes all jobs in J with constant speed v. Recall
that a schedule is feasible if and only if each job is executed during its alive
intervals and is executed by at most one processor at each time t. Preemption

Speed Scaling on Parallel Processors with Migration 131

and migration of jobs are allowed. Note that the WAP is almost the feasibility
scheduling problem where, given a set of jobs J = {j1, j2, . . . , jn}, so that each
job ji has a processing time pi, a release date ri and a deadline di, we ask
whether there exists a feasible preemptive and migratory schedule that executes
each job between its release date and its deadline (according to the classical
3-field notation of Graham, this problem is denoted by P |ri, di, pmtn|−). The
P |ri, di, pmtn|− problem is almost the same with the WAP with the difference
that, in WAP, not all intervals have the same number of available processors.
Therefore, WAP is polynomially solvable by applying a variant of an algorithm
for P |ri, di, pmtn|− (see [6]).

We also consider the problem of maximum lateness minimization given a fixed
budget of energy. We are given a set of n jobs J = {j1, ..., jn}, a set of m parallel
homogeneous processors and a budget of energy E. Each job ji is characterized
by a release date ri, a due date d̄i and a work wi. Given a schedule S, the lateness
of a job ji in S is defined as Li(S) = Ci(S)− d̄i, where Ci(S) is the completion
time of ji is S. The objective is to find a feasible schedule, where preemption and
migration of jobs are allowed, with minimum Lmax = maxi{Li} whose energy
consumption does not exceed a given budget E.

3 Convex Programming Formulation

In order to derive a convex program for our problem, we introduce a variable
si and a variable ti,j , for each ji ∈ J and for all Ij such that ji ∈ A(j), to be
the speed of job ji and the total execution time of job ji during the interval Ij ,
respectively. So, we propose the following convex programming formulation:

min
∑
ji∈J

wis
α−1
i (1)

wi

si
−

∑
Ij : ji∈A(j)

ti,j = 0 ji ∈ J (2)

∑
ji∈A(j)

ti,j −m · |Ij | ≤ 0 1 ≤ j ≤ L (3)

∑
ji∈A(j)

ti,j − aj · |Ij | ≤ 0 1 ≤ j ≤ L (4)

ti,j − |Ij | ≤ 0 1 ≤ j ≤ L, ji ∈ A(j) (5)

−ti,j ≤ 0 1 ≤ j ≤ L, ji ∈ A(j) (6)

−si ≤ 0 ji ∈ J (7)

Note that the total running time and the total energy consumption of each job ji
is wi

si
and wis

a−1
i , respectively. Then, the term (1) is the total energy consumed

by all jobs which is our objective function and the constraints (2) enforce that
wi units of work must be executed for each job ji. The constraints (3) enforce
that we can use at most m processors for |Ij | units of time during any interval

132 E. Angel et al.

Ij . Also, we can use at most aj processors operating for |Ij | units of time during
any interval Ij , otherwise we would have parallel execution of a job and this is
expressed by (4). The constraints (5) prevent any job ji from being executed for
more than |Ij | units of time during any interval Ij ⊆ spani, otherwise we would
have parallel execution of a job. The constraints (6) and (7) insure the positivity
of the variables ti,j and si, respectively.

The above mathematical program is indeed convex because the objective func-
tion and the first constraint are convex while all the other constraints are linear.
Since our problem can be written as a convex program, it can be solved in poly-
nomial time to arbitrary precision, by applying the Ellipsoid Algorithm [10].
Nevertheless, the Ellipsoid Algorithm is not used in practice and we would like
to construct a faster and less complicated combinatorial algorithm.

At this point, notice that once the speeds of the jobs are computed, by solving
the convex program, a further step is needed in order to construct a feasible
schedule. This can be done by solving the feasibility problem P |ri, di, pmtn|−.

4 Structure of the Optimal Schedule

We apply the KKT conditions to our convex program so as to obtain neces-
sary conditions for optimality of a feasible schedule. We next show that these
conditions are sufficient for optimality.

The following lemma is a direct consequence of the KKT conditions applied
to the convex program of our problem combined with the fact that the power
function with respect to the speed is convex.

Lemma 1. There is always an optimal schedule for our problem that satisfies
the following properties:

1. Each job ji is executed at a constant speed si.

2. During any interval Ij, we have that
∑

ji∈A(j) ti,j = min{aj ,m}|Ij|.
3. If aj ≤ m during an interval Ij , then ti,j = |Ij |, for every ji with Ij ⊆ spani.

4. If aj > m then

i. All jobs ji that are alive during Ij , with 0 < ti,j < |Ij |, have equal speeds.

ii. If a job ji is not executed during an interval Ij ⊂ spani, i.e. ti,j = 0,
then si ≤ sk for every job jk with Ij ⊆ spank and tk,j > 0.

iii. If a job ji has ti,j = |Ij | in an interval Ij , then si ≥ sk for any job jk
alive during Ij with tk,j < |Ij |.

Proof. The Properties 1, 2 and 3 can be easily proved by applying the definition
of convexity and a simple exchange argument.

Next, we focus on proving the Property 4. For this, we will use the KKT
conditions whose general form can be found in the full version. In order to apply
the KKT conditions, we need to associate with each constraint a dual variable.
Therefore, to each set of the constraints from (2) up to (7), we associate the dual
variables βi, γj, δj , εi,j , ζi,j and ηi, respectively.

Speed Scaling on Parallel Processors with Migration 133

By stationarity conditions, we have that

∇
∑
ji∈J

wis
α−1
i +

∑
ji∈J

βi · ∇
(
wi

si
−

∑
Ij : ji∈A(j)

ti,j

)

+

L∑
j=1

γj∇
(∑

ji∈A(j)

ti,j −m · |Ij |
)
+

L∑
j=1

δj∇
(∑

ji∈A(j)

ti,j − aj · |Ij |
)

+

L∑
j=1

∑
ji∈A(j)

εij∇(ti,j − |Ij |) +
L∑

j=1

∑
ji∈A(j)

ζij∇(−ti,j) +
∑
ji∈J

ηi∇(−si) = 0

The previous equation can be rewritten equivalently as

L∑
j=1

∑
ji∈A(j)

(
− βi + γj + δj + εi,j − ζi,j

)
∇ti,j

+
∑
ji∈J

(
(α− 1)wis

α−2
i − βiwi

s2i
− ηi

)
∇si = 0 (8)

Furthermore, complementary slackness conditions imply that

γj ·
(∑

ji∈A(j)

ti,j −m · |Ij |
)

= 0 1 ≤ j ≤ L (9)

δj ·
(∑

ji∈A(j)

ti,j − aj · |Ij |
)

= 0 1 ≤ j ≤ L (10)

εij · (ti,j − |Ij |) = 0 1 ≤ j ≤ L, ji ∈ A(j) (11)

ζij · (−ti,j) = 0 1 ≤ j ≤ L, ji ∈ A(j) (12)

ηi · (−si) = 0 ji ∈ J (13)

We can safely assume that there are no jobs with zero work because we may treat
such jobs as if they did not exist. So, for any job ji, it holds that si > 0 and∑

Ij⊆spani
ti,j > 0. Then, (13) implies that ηi = 0. We set the coefficients of the

partial derivatives ∇si and ∇ti,j equal to zero so as to satisfy the stationarity
conditions. Thus, (8) gives that βi = (α− 1)sαi for each job ji ∈ J and

(α− 1)sαi = γj + δj + εi,j − ζi,j (14)

for each ji ∈ J and Ij ⊆ spani. Now, for each interval Ij such that aj > m,
because of (10), we have that δj = 0. Next, we consider the following cases for
the execution time of any job ji ∈ A(j):

– 0 < ti,j < |Ij |
Complementary slackness conditions (11), (12) imply that εi,j = ζi,j = 0. As
a result, (14) can be written as

(α− 1)sαi = γj . (15)

134 E. Angel et al.

The variable γj is specific for each interval and thus, all such jobs have the
same speed throughout the whole schedule and Property 4(i) is valid.

– ti,j = 0
This means, by (11), that εi,j = 0 and (14) is expressed as (α − 1)sαi =
γj − ζi,j . Thus, since ζi,j ≥ 0, we get that

(α− 1)sαi ≤ γj . (16)

– ti,j = |Ij |
In this case, by (12), we get that ζi,j = 0. So, (14) becomes (α − 1)sαi =
γj + εi,j . Because of dual feasibility conditions, εi,j ≥ 0. Hence, all jobs of
this kind have

(α− 1)sαi ≥ γj . (17)

By Equations (15), (16) and (17), we get Properties 4(ii) and 4(iii). ��

Given a solution of the convex program that satisfies the KKT conditions, we
derived some relations between the primal variables. Based on them, we defined
some structural properties of any optimal schedule. These properties are neces-
sary for optimality and we show that they are also sufficient because all schedules
that satisfy these properties attain equal energy consumptions.

Lemma 2. The properties of Lemma 1 are also sufficient for optimality.

Proof. Assume for the sake of contradiction that there is a schedule A, that
satisfies the properties of Lemma 1, which is not optimal and let B be an optimal
schedule that also satisfies the properties (by Lemma 1 we know that the schedule
B always exists). We denote EX , sXi and tXi,j the energy consumption, the speed
of job ji and the total execution time of job ji during the interval Ij in schedule
X , respectively. Because of our assumption, EA > EB. Let S be the set of jobs ji
with sAi > sBi . Clearly, there is at least one job jk such that sAk > sBk , otherwise
A would not consume more energy than B. So, S �= ∅. By definition of S,∑

ji∈S

∑
Ij :ji∈A(j)

tAi,j <
∑
ji∈S

∑
Ij :ji∈A(j)

tBi,j .

Hence, there is at least one interval Ip such that∑
ji∈S

tAi,p <
∑
ji∈S

tBi,p.

If ap ≤ m, then there is at least one job jq such that tAq,j < tBq,j . Due to the

property 3 of Lemma 1, it should hold that tAq,j = tBq,j = |Ij | which is a contra-

diction. So, assume that ap > m. Then, the last equation gives that tAk,p < tBk,p
for some job jk ∈ S. Thus, tAk,p < |Ip| and tBk,p > 0. Both schedules have equal
sum of processing times

∑
ji∈Ij

ti,j during any interval Ij . So, there must be a

job j� /∈ S such that tA�,p > tB�,p. Therefore, t
A
�,p > 0 and tB�,p < |Ip|. We conclude

that sA� ≥ sAk > sBk ≥ sB� , which contradicts the fact that j� /∈ S. ��

Speed Scaling on Parallel Processors with Migration 135

Notice that the properties of Lemma 1 do not explain how to find an optimal sched-
ule. The basic reason is that they do not determine the exact speed value of each
job. Moreover, they do not specify exactly the structure of the optimal schedule.
That is, they do not specify which job is executed by each processor at each time.

5 An Optimal Combinatorial Algorithm

In this section, we propose an optimal combinatorial algorithm for our problem.
Our algorithm always constructs a schedule satisfying the properties of Lemma
1 which, as we have already showed, are necessary and sufficient for optimality.

Our algorithm is based on the notion of critical jobs defined below. Initially,
the algorithm conjectures that all jobs are executed at the same speed and it
assigns to all of them a speed which is an upper bound on the maximum speed
that a job has in any optimal schedule. The key idea is to continuously decrease
the speeds of jobs step by step. At each step, it assigns a speed to the critical jobs
that we ignore in the subsequent steps and goes on with the remaining subset
of jobs. At the end of the last step, every job has been assigned a speed. Critical
jobs are recognized by finding a minimum (s, t)-cut in an (s, t)-network as we
describe in the following.

Now, for each instance of the WAP, we define a graph so as to reduce our
original problem to the maximum flow problem. Given an instance < J , I, v >
of the WAP, consider the graph G = (V,E) that contains one node xi for each
job ji, one node yj for each interval Ij , a source node s and a destination node
t. We introduce an edge (s, xi) for each ji ∈ J with capacity wi

v , an edge (xi, yj)
with capacity |Ij | for each couple of ji and Ij such that ji ∈ A(j) and an edge
(yj , t) with capacity mj |Ij | for each interval Ij ∈ I. We say that this is the
corresponding graph of < J , I, v >.

We are ready, now, to introduce the notion of criticality. Given a feasible
instance for the WAP, we say that job jc is critical iff for any feasible schedule
and for each Ij ⊆ spanc, either tc,j = |Ij | or

∑
ji∈A(j) ti,j = mj |Ij |. Moreover,

we say that an instance < J , I, v > of the WAP is critical iff v is the minimum
speed so that the set of jobs J can be feasibly executed over the intervals in I
and we refer to the speed v as the critical speed of J and I.

5.1 Properties of the Work Assignment Problem

Next, we will prove some lemmas that will guide us to an optimal algorithm.
Our algorithm will be based on a reduction of our problem to the maximum flow
problem which is a consequence of the following theorem whose proof is omitted.

Theorem 1. [6] There exists a feasible schedule for the work assignment prob-
lem iff the corresponding graph has maximum (s, t)-flow equal to

∑n
i=1

wi

v .

Based on the above theorem, we can extend the notion of criticality. Specifically,
with respect to graph G that corresponds to a feasible instance of the WAP, a
job jc is critical iff, for any maximum flow, either the edge (xc, yj) or the edge

136 E. Angel et al.

(yj , t) is saturated for each path xc, yj, t. Recall that an edge is saturated by a
flow F if the flow that passes through the edge according to F is equal to the
capacity of the edge. Moreover, we say that a path is saturated if at least one of
its edges is saturated.

The following lemmas that involve the notions of critical job and critical in-
stance are important ingredients for the analysis of our algorithm. The following
lemma links the concept of a critical instance with the concept of a critical job
and it is omitted due to space constraints.

Lemma 3. If < J , I, v > is a critical instance of WAP, then there is at least
one critical job ji ∈ J .

Note that the instance < J , I, v − ε > is not feasible if < J , I, v > is critical.
Up to now, the notion of a critical job has been defined only in the context of
feasible instances. We extend this notion for infeasible instances as follows: in an
infeasible instance < J , I, v− ε >, a job ji is called critical if every path xi, yj , t
is saturated by any maximum (s, t)-flow in the corresponding graph G′.

Let < J , I, v > be a critical instance of the WAP and let G be its correspond-
ing graph. Next, we propose a way for identifying the critical jobs of < J , I, v >
using the graph G′ that corresponds to the instance < J , I, v − ε >, for some
sufficiently small constant ε > 0 based on Lemmas 4 and 5 below. The value of
ε is such that the two instances have exactly the same set of critical jobs. More-
over, the critical jobs of < J , I, v− ε > can be found by computing a minimum
(s, t)-cut in the graph that corresponds to < J , I, v−ε >. The proofs of Lemmas
4 and 5 can be found in the full version of the paper.

Lemma 4. Given a critical instance < J , I, v > of the WAP, there exists a
constant ε > 0 such that the unfeasible instance < J , I, v − ε > and the critical
one have exactly the same critical jobs. The same holds for any other value ε′

such that 0 < ε′ ≤ ε.

Lemma 5. Assume that < J , I, v > is a critical instance for the WAP and
let G′ be the graph that corresponds to the instance < J , I, v − ε >, for any
sufficiently small constant ε > 0 in accordance with the Lemma 4. Then, any
minimum (s, t)-cut C′ of G′ contains exactly:

i. at least one edge of every path xi, yj, t for any critical job ji,
ii. the edge (s, xi) for each non-critical job ji.

5.2 The BAL Algorithm

We are now ready to give a high level description of our algorithm. Initially,
we will assume that the optimal schedule consumes an unbounded amount of
energy and we assume that all jobs are executed with the same speed sUB . This
speed is such that there exists a feasible schedule that executes all jobs with
the same speed. Then, we decrease the speed of all jobs up to a point where no
further reduction is possible so as to obtain a feasible schedule. At this point,

Speed Scaling on Parallel Processors with Migration 137

all jobs are assumed to be executed with the same speed, which is critical, and
there is at least one job that cannot be executed with speed less than this, in
any feasible schedule. The jobs that cannot be executed with speed less than
the critical one form the current set of critical jobs. So, the critical job(s) is
(are) assigned the critical speed and is (are) ignored after this point. That is,
in what follows, the algorithm considers the subproblem in which some jobs
are omitted (critical jobs), because they are already assigned the lowest speed
possible (critical speed) so that they can be feasibly executed, and there are less
than m processors during some intervals because these processors are dedicated
to the omitted jobs.

In detail, the algorithm consists of a number of steps, where at each step
a binary search is performed, in order to determine the minimum speed so as
to obtain a feasible schedule for the remaining jobs, i.e. the critical speed. We
denote scrit the critical speed and Jcrit the set of critical jobs at a given step.
In order to determine scrit and Jcrit, we perform a binary search assuming that
all the remaining jobs are executed with the same speed. We know that each job
will be executed with speed not less than its density. Therefore, given a set of
jobs J , we know that there does not exist a feasible schedule that executes all
jobs with a speed s < maxji∈J {deni}. Also, observe that if all jobs have speed

s = maxj{
∑

ji∈A(j) wi

|Ij | }, then we can construct a feasible schedule. These bounds

define the search space of the binary search performed in the initial step. In the
next step the critical speed of the previous step is an upper bound on the speed
of all remaining jobs and a lower bound is the maximum density among them.
We use these updated bounds to perform the binary search of the current step
and we go on like that. A high level pseudo-code of our algorithm follows.

Algorithm 1. BAL

1: sUB = maxj{
∑

ji∈A(j) wi

|Ij |
}, sLB = maxji∈J {deni}

2: while J �= ∅ do
3: Find the minimum speed scrit so that the instance < J , I, scrit > of the WAP

problem is feasible, using binary search in the interval [sLB , sUB], through re-
peated maximum flow computations.

4: Pick a sufficiently small ε > 0.
5: Determine the set of critical jobs Jcrit by computing a minimum (s, t)-cut in the

graph G′ that corresponds to the instance < J , I, scrit − ε >.
6: Assign to the critical jobs speed scrit and set J = J \Jcrit.
7: Update the number of available processors mj for each interval Ij .
8: sUB = scrit, sLB = maxji∈J {deni}
9: Apply an optimal algorithm for P |ri, di, pmtn|− to schedule each job ji with pro-

cessing time wi/si.

Algorithm BAL produces an optimal schedule, and this holds because any
schedule constructed by the algorithm satisfies the properties of Lemma 1.

Theorem 2. Algorithm BAL produces an optimal schedule.

138 E. Angel et al.

Proof. First of all, it is obvious that the algorithm assigns a constant speed to
every job because each job is assigned exactly one speed in one step and the
Property 1 of Lemma 1 is true.

Recall that at each step of the algorithm, a set of jobs is assigned a speed and
some processors during some intervals are dedicated to these jobs. Consider the
k-th step. At the beginning of the step, the remaining jobs J (k) and available
intervals I(k) form the new instance of the WAP for which the critical speed and
jobs are determined. We denote G(k) the graph that corresponds to the instance

< J (k), I(k), v > of the WAP, where the speed v varies between s
(k)
UB and s

(k)
LB,

i.e. the bounds of the step.
Assume that the Property 2 is not true. Then, there must be an interval

Ij during which
∑

ji∈A(j) ti,j < min{aj ,m}|Ij |, i.e. we can decrease the speed
of some job and still get a feasible schedule. Note that it cannot be the case
that

∑
ji∈A(j) ti,j > min{aj ,m}|Ij| because BAL assigns speeds only if there

exists a feasible schedule with respect to these speeds. So, there must be a job
jc ∈ A(j) such that tc,j < |Ij | and there is an idle period during Ij such that
jc is not executed. Suppose that jc became critical during the k-th step. Then,
in the graph G(k), since jc is a critical job, either the edge (xc, yj) or the edge
(yj , t) belongs to a minimum (s, t)-cut and as a result, for any maximum flow in

G(k), either f(xc, yj) = |Ij | or f(yj , t) = m
(k)
j |Ij | where m

(k)
j is the number of

available processors during Ij at the beginning of the k-th step. Hence, we have
a contradiction on the fact that

∑
ji∈A(j) ti,j < min{aj ,m}|Ij| and tc,j < |Ij |.

For the Property 3, we claim that during the interval Ij with aj ≤ m, if a
job jc becomes critical, the edge (xc, yj) becomes saturated by any maximum
(s, t)-flow in G(k) (given that jc becomes critical at the k-th step). If this was
not the case, then there would be a maximum (s, t)-flow F in G(k) such that
f(xc, yj) < |Ij |. Also, in F it holds that f(xi, yj) ≤ |Ij | for any other ji ∈ A(j).
Hence, f(yj, t) < aj |Ij | ≤ m|Ij |. So, neither the edge (xc, yj) nor the edge (yj , t)
becomes saturated by F , contradicting the criticality of jc. Therefore, the total
execution time of jc during Ij is |Ij |.

Next we prove the Property 4. Initially, consider two jobs ji and j�, alive during
an interval Ij , such that 0 < ti,j < |Ij | and 0 < t�,j < |Ij |. We will show that the
jobs are assigned equal speeds by the algorithm. For this, it suffices to show that
they are assigned a speed at the end of the same step. So, assume that ji becomes
critical at the end of the k-th step. Then, either the edge (xi, yj) or the edge
(yj , t) belongs to a minimum (s, t)-cut C in G(k). Since 0 < ti,j < |Ij |, we know
that there exists a maximum (s, t)-flow in G(k) such that 0 < f(xi, yj) < |Ij |.
So, it is the edge (yj , t) that belongs in C. Therefore, in G(k), the edge (yj , t) is
saturated by any maximum (s, t)-flow, and as a result, all the processors during
the interval Ij are dedicated to the execution of some tasks at the end of the
k-th step. Hence, j� cannot be assigned a speed at a step strictly greater than
k. Similarly, ji is not assigned a speed later than j�. Hence, the two jobs are
assigned a speed at the same step. That is, 4(i) is true.

Next, for the Property 4(ii), consider the case where ti,j = 0 for a job ji
during an interval Ij ⊆ spani and assume that ji becomes critical at the k-th

Speed Scaling on Parallel Processors with Migration 139

step. Then, either yj does not appear in G(k), that is no processors are available
during Ij , or (yj , t) belongs to a minimum (s, t)-cut of G(k). If none of these was
true, then (yj , t) would appear in G(k) and it would not belong to a minimum
(s, t)-cut. Then, all the edges (x�, yj) would belong to a minimum (s, t)-cut, for
all j� alive during Ij that appear in G(k). So, (xi, yj) would be saturated by any
maximum (s, t)-flow and we have a contradiction, since the fact that ti,j = 0
implies that there exists a maximum (s, t)-flow with f(xi, yj) = 0. In both cases,
that is if yj does not appear in G(k) or (yj , t) belongs to a minimum (s, t)-cut
of G(k), no job executed during Ij will be assigned a speed after the k-th step.
Hence, all jobs j� with t�,j > 0 do not have lower speed than ji.

Next, let ji be a job with ti,j = |Ij | and assume that it is assigned a speed at
the k-th step. As we have already shown, this cannot happen after a step where
a job j� with 0 < t�,j < |Ij | is assigned a speed because after such a step, the
interval Ij is no longer considered. Also, as we showed in the previous paragraph,
ji becomes critical not after a job j� with t�,j = 0. The Property 4(iii) follows.

Finally, because of Lemmas 4 and 5, BAL correctly identifies the critical jobs
at each step of the algorithm. The theorem follows. ��

We turn, now, our attention to the complexity of the algorithm. Because of
Lemma 3 at least one job (all critical ones) is scheduled at each step of the
algorithm. Therefore, there will be at most n steps. Assume that U is the range
of all possible values of speeds divided by our desired accuracy. Then, the binary
search needs to check O(logU) values of speed to determine the next critical
speed at one step. That is, BAL performs O(logU) maximum flow calculations
at each step. Thus, the overall complexity of our algorithm is O(nf(n) logU)
where f(|V |) is the complexity of computing a maximum flow in a graph with
|V | vertices.

6 Maximum Lateness with a Budget of Energy

In order to solve the problem of minimizing the maximum lateness under a
budget of energy, it is sufficient to determine an upper and a lower bound on
the maximum lateness of the optimal schedule and then perform a binary search
within this interval. The algorithm and its optimality are given in the full version
of the paper.

Theorem 3. The multiprocessor speed scaling problem of minimizing the maxi-
mum lateness of a set of jobs under a budget of energy can be solved in polynomial
time when preemption and migration are allowed.

Acknowledgments. We thank Alexander Kononov for helpful discussions on
this work.

References

1. Albers, S.: Energy Efficient Algorithms. Communications of the ACM 53(5), 86–96
(2010)

140 E. Angel et al.

2. Albers, S.: Algorithms for Dynamic Speed Scaling. In: STACS. LIPIcs, vol. 9, pp.
1–11 (2011)

3. Albers, S., Antoniadis, A., Greiner, G.: On Multi-Processor Speed Scaling with
Migration. In: SPAA, pp. 279–288 (2011)

4. Albers, S., Muller, F., Schmelzer, S.: Speed Scaling on Parallel Processors. In:
SPAA, pp. 289–298 (2007)

5. Bansal, N., Kimbrel, T., Pruhs, K.: Speed Scaling to Manage Energy and Temper-
ature. Journal of the ACM 54(1), 3 (2007)

6. Baptiste, P., Néron, E., Sourd, F.: Modèles et Algorithmes en Ordonnancement.
Ellipses (2004)

7. Bingham, B., Greenstreet, M.: Energy Optimal Scheduling on Multiprocessors with
Migration. In: ISPA, pp. 153–161 (2008)

8. Chen, J.J., Hsu, H.R., Chuang, K.H., Yang, C.L., Pang, A.C., Kuo, T.W.: Mul-
tiprocessor Energy Efficient Scheduling with Task Migration Considerations. In:
ECRTS, pp. 101–108 (2004)

9. Greiner, G., Nonner, T., Souza, A.: The Bell is Ringing in Speed Scaled Multipro-
cessor Scheduling. In: SPAA, pp. 11–18 (2009)

10. Nemirovski, A., Nesterov, I., Nesterov, Y.: Interior Point Polynomial Algorithms
in Convex Programming. Society for Industrial and Applied Mathematics (1994)

11. Yao, F., Demers, A., Shenker, S.: A Scheduling Model for Reduced CPU Energy.
In: FOCS, pp. 374–382 (1995)

Dynamic Distributed Scheduling Algorithm
for State Space Search

Ankur Narang1, Abhinav Srivastava1, Ramnik Jain1, and R.K. Shyamasundar2

1 IBM India Research Laboratory, New Delhi
{annarang,abhin122,ramnjain}@in.ibm.com

2 Tata Institute of Fundamental Research, Mumbai
shyam@tifr.res.in

Abstract. Petascale computing requires complex runtime systems that need to
consider load balancing along with low time and message complexity for schedul-
ing massive scale parallel computations. Simultaneous consideration of these ob-
jectives makes online distributed scheduling a very challenging problem. For state
space search applications such as UTS, NQueens, Balanced Tree Search, SAT
and others, the computations are highly irregular and data dependent. Here, prior
scheduling approaches such as [16], [14], [7], HotSLAW [10], which are dom-
inantly locality-aware work-stealing driven, could lead to low parallel efficiency
and scalability along with potentially high stack memory usage.

In this paper we present a novel distributed scheduling algorithm (LDSS) for
multi-place1 parallel computations, that uses an unique combination of d-choice
randomized remote (inter-place) spawns and topology-aware randomized remote
work steals to reduce the overheads in the scheduler and dynamically maintain
load balance across the compute nodes of the system. Our design was imple-
mented using GASNet API2 and POSIX threads. For the UTS (Unbalanced Tree
Search) benchmark (using upto 4096 nodes of Blue Gene/P), we deliver the best
parallel efficiency (92%) for 295B node binomial tree, better than [16] (87%)
and demonstrate super-linear speedup on 1 Trillion node (largest studied so far)
geometric tree along with higher tree node processing rate. We also deliver upto
40% better performance than Charm++. Further, our memory utilization is lower
compared to HotSLAW. Moreover, for NQueens (N = 18), we demonstrate su-
perior parallel efficiency (92%) as compared Charm++ (85%).

1 Introduction

State space search problems such as planning and scheduling problems in manufactur-
ing industries and world wide web, VLSI design automation problems (routing, floor-
planning, cell placement and others), N-Queens [8], Traveling Salesman problem and
other discrete optimization problems are very fundamental in nature and hence fre-
quently used in many industry application domains and systems research. Since all
these problems are NP-Hard, one needs to resort to systematic but intelligent state

1 Multi-place refers to a group of places. For example, with each place as an SMP(Symmetric
MultiProcessor), multi-place refers to cluster of SMPs.

2 http://gasnet.cs.berkeley.edu

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 141–154, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

142 A. Narang et al.

space search to find optimum solutions. The states and the transition function(s) (in-
cluding constraints) between the states are defined according to the nature of the state
space search problem. The objective of the state space search problem is to find a path
from a start state to a desired goal state (or a path from the start to each among a set of
goal states). For a lot of state space search problems, in order to search the given state
space, one constructs a search tree where each node in the search tree represents the
state reached during the search.

Even though it seems that state space search problems require exponential number of
processors (as compared to graph algorithms such as depth-first search etc.) since their
worst case time is almost always exponential, the average time complexity of heuristic
search algorithms for some problems is polynomial [17] [12]. Furthermore, there are
heuristic search algorithms that find suboptimal solutions for specific problems in poly-
nomial time. In such cases, bigger problem instances can be solved using large scale
parallel computing infrastructure. Many discrete optimization problems (such as robot
motion planning, speech understanding, and task scheduling) require realtime solutions.
For these applications, parallel processing may be the only way to obtain acceptable
performance. Since the state space search involves higher irregular computation DAG,
it suffers from severe load balancing problems.

Further, with the advent of petascale machines such as K-Computer 3, Jaguar 4,
Blue Gene/Q 5 and others, there is an imminent demand for strong performance and
scalability of large scale computations along with improved programmer productiv-
ity. Thus, there is a strong need to have efficient scheduling frameworks as part of
run-time systems that can meet these performance and productivity objectives simul-
taneously. For handling large parallel computations, the scheduling algorithm (in the
run-time system) should be designed to work in a distributed fashion. For the execution
of dynamically unfolding irregular and data-dependent parallel computations, the on-
line scheduling framework has to make decisions dynamically on where (which place
and core/processor) and when (order) to schedule the computations. Further, the criti-
cal path of the scheduled computation is dependent on load balancing across the cores
as well as on the computation and communication overheads. The scheduler needs to
maintain appropriate trade-offs between load balancing, communication overheads and
space utilization. Simultaneous consideration involving space, time, message complex-
ity and load balance makes distributed scheduling of large scale parallel state space
search applications a very challenging problem.

Distributed Scheduling for parallel computations is a well studied problem in the
shared memory context starting from the pioneering research by Blumofe and Leiser-
son [3] on Cilk scheduling, followed by later work including [2] [1] [4] [6] amongst
many others. These efforts are primarily focused on work-stealing efficiency improve-
ment in shared-memory architectures without considering explicit affinity annotations
by the programmer. With the advent of distributed memory architectures, lot of recent
research on distributed scheduling looks at multi-core and many-core clusters [16] [15].
All these recent efforts primarily achieve load balancing using (locality-aware) work

3 http://www.fujitsu.com/global/about/tech/k/
4 http://www.nccs.gov/computing-resources/jaguar/
5 http://www-03.ibm.com/systems/deepcomputing/solutions/bluegene/

Dynamic Distributed Scheduling Algorithm for State Space Search 143

stealing across the nodes in the system. Although, this strategy works well for slightly
irregular computation such as UTS for geometric tree, it could result in large parallel
inefficiencies when the computation is highly irregular (binomial tree for UTS). Cer-
tain other approaches such as [14] consider limited control and no data-dependencies
in the parallel computation, which limits the scope of applicability of the scheduling
framework.

In this paper, we address the following distributed scheduling problem.

Given:
(a) A parallel computation DAG (Fig. 1(a)) that represents a parallel multi-threaded
computation. Each node in the DAG is a basic operation (instruction) such as and/or/add
etc. Each edge in the DAG represents one of the following: (a) Spawn of a new thread;
(b) Sequential flow of execution;or, (c) Synchronization dependency between two nodes.
The DAG is a strict parallel computation DAG (synchronization dependency edge rep-
resents a thread waiting for the completion of a descendant thread, details in section 2).
(b) A cluster of n SMPs (refer Fig. 1(b)) as the target architecture on which to schedule
the computation DAG. Each SMP also referred as place has fixed number(m) of pro-
cessors and memory. The cluster of SMPs is referred as the multi-place setup.
Determine: An online schedule for the nodes of the computation DAG in a distributed
fashion that ensures:
(a) good trade-off between load-balance across the nodes and communication over-
heads;
(b) Low space, time and message complexity for execution.

In this paper, we present the design of a novel distributed scheduling algorithm (referred
as LDSS) that combines topology-aware inter-place prioritized random work stealing
with d-choice based randomized distributed remote spawns to provide automatic dy-
namic load balancing across places. Our LDSS algorithm partitions the compute nodes
of the target system into disjoint groups. By using higher priority for limited radius
(within a group) work stealing as well as remote spawns across the places (as compared
to farther off, outside the group) our algorithm achieves low overheads. The remote
spawns happen within the group to maintain affinity, while they are enabled across
the groups to improve load-balance in the system. By controlling the rate of remote
spawns 6, rate of remote work steals, granularity of work steals and group size one
can obtain a balanced trade-off point between load balancing, scheduling overheads
and space utilization. Our main contributions are as follows:

– We present a novel online distributed scheduling algorithm (referred to as LDSS)
that uses an elegant combination of topology-aware remote (inter-place) spawns
based on randomized d-choice load balancing and remote prioritized random work
steals to reduce the overheads in the scheduler and to dynamically maintain load
balance across the compute nodes of the system.

– By tuning the parameters such as granularity of remote steals, remote work-steal
rate, value of d in d-choice based remote spawns, compute group-size and oth-
ers we obtain optimal trade-offs between load-balance and scheduling overheads

6 Ratio of remote spawned threads to total spawned threads at a processor.

144 A. Narang et al.

that results in scalable performance. The LDSS algorithm was implemented using
GASNet API and POSIX threads to enable asynchronous communication across the
nodes and improve computation-communicationand communication-communication
overlap.

– Using upto 4096 nodes of Blue Gene/P we obtained superior performance as com-
pared to prior approaches. For the binomial tree UTS (Unbalanced Tree Search)
benchmark 7, LDSS delivers: (a) Upto around 40% better performance than
Charm++ [15] and [16]; (b) Best parallel efficiency (92%) for 295B node tree
as compared to best prior work [14] [16] (87%). LDSS demonstrates super-
linear speedup for 1 Trillion node geometric tree and best processing rate of around
4GNodes/s for 16Trillion node geometric tree (largest studied so far by any prior
work). Further on benchmarks such as NQueens [8], LDSS demonstrates superior
parallel efficiency as compared to Charm++ on Blue Gene/P, MPP architecture.

v1 v2 v14 v18 v19 v20

v3 v6 v9 v13 v15 v16 v17

v4 v5 v7 v8 v10 v11 v12

T1 @ P1

T2 @ P2 T6 @ P3

T3 @ anyplace T4 @ P3 T5 @anyplace

Spawn edge

Continue edge

Dependence edge

v1 v2 v14 v18 v19 v20

v3 v6 v9 v13 v15 v16 v17

v4 v5 v7 v8 v10 v11 v12

T1 @ P1

T2 @ P2 T6 @ P3

T3 @ anyplace T4 @ P3 T5 @anyplace

Spawn edge

Continue edge

Dependence edge
PE PE

PE PE

L2 Cache

L2 Cache

System Bus

SMP

Single Place with
multiple processors

PE PE

SMP Cluster

Memory

SMP Node

….
PE PE

Memory

SMP Node

….

Interconnect (Active
Message Network)

…

Multiple Places with multiple
processors per place

PE PE

PE PE

L2 Cache

L2 Cache

System Bus

SMP

Single Place with
multiple processors

PE PE

SMP Cluster

Memory

SMP Node

….
PE PE

Memory

SMP Node

….

Interconnect (Active
Message Network)

…

Multiple Places with multiple
processors per place

(a) (b)

Fig. 1. (a) Computation DAG. (b) Multiple Places: Cluster of SMPs

2 System and Computation Model

The system on which the computation DAG is scheduled is assumed to be cluster of
SMPs connected by an Active Message Network (Fig. 1(b)). Each SMP is a group of
processors with shared memory. Each SMP is also referred to as place in the paper.
Active Messages ((AM) 8 is a low-level lightweight RPC(remote procedure call) mech-
anism that supports unordered, reliable delivery of matched request/reply messages. We
assume that there are n places and each place has m processors.

The parallel computation to be dynamically scheduled on the system, is assumed
to be specified by the programmer in languages such as X10 and Chapel. To describe
our distributed scheduling algorithm, we assume that the parallel computation has a
DAG(directed acyclic graph) structure and consists of nodes that represent basic op-
erations (as in a processor instruction set architecture) like and, or, not, add and so
forth. There are edges between the nodes (basic instructions such as and/or/add etc) in
the computation DAG (Fig. 1(a)) that either represent: (a) creation of new activities

7 http://barista.cse.ohio-state.edu/wiki/index.php/UTS
8 Active Messages defined by the AM-2:
http://now.cs.berkeley.edu/AM/active messages.html

Dynamic Distributed Scheduling Algorithm for State Space Search 145

(spawn edge), (b) sequential execution flow between the nodes within a thread/activity
(continue edge) and (c) synchronization dependencies (dependence edge) between the
nodes. In the paper, we refer to the parallel computation over nodes (basic instructions
such as and/add/or) to be scheduled as the computation DAG. At a higher level, the
parallel computation can also be viewed as a computation tree of threads. Each thread
(as in multi-threaded programs) is a sequential flow of execution of instructions and
consists of a set of nodes (basic operations/instructions); and it may or may not have an
affinity annotation defined by the programmer. Fig. 1 shows a strict computation dag
where: v1..v20 denote nodes, T 1...T 6 are threads and P1..P3 denote places).

Based on the structure of dependencies between the nodes in the computation DAG,
there can be multiple types of parallel computations such as: (a) Fully-strict compu-
tation: Dependencies are only between the nodes of a thread and the nodes of its im-
mediate parent thread; and, (b) Strict computation: Dependencies are only between the
nodes of a thread and the nodes of any of its ancestor threads.

3 LDSS: Scheduling Algorithm

Our distributed scheduling algorithm, LDSS, attempts to achieve communication ef-
ficient load balancing across the places with low scheduling overheads. In order to
achieve this goal, we make the following design choices: (a) Topology Awareness: The
places in the system are clustered into small groups based on their distances amongst
each other in the topology of the underlying target architecture; (b) Two-level Work
Stealing: Our algorithm uses work-stealing at two-levels. One is intra-place random-
ized work stealing to achieve load balance across the processors within a place. The
other is inter-place prioritized (topology-aware) randomized work stealing that provides
load balance across the places in the system; (c) Load Balance driven Randomized
Work Pushing: LDSS incorporates (topology-aware) work-pushing across the places
(nodes) in the system. This uses the d-choice randomized load balancing algorithm
to achieve low load imbalance across the groups. The rate of such remote spawns is
automatically adjusted during the algorithm;and, (d) Dedicated Communication Pro-
cessor: In order to handle inter-place spawns we assign a dedicated communication
processor in each node (place). This communication processor uses GASNet API to
enable asynchronous communication and improves the performance of the scheduling
algorithm by enabling computation-communication overlap as well as communication-
communication overlap across the places. Within a place, the online unfolding of the
computation DAG happens in a depth-first manner to enable efficient space and time
execution. To achieve load balancing within a place, work-stealing is enabled to allow
load-balanced execution of the computation sub-graph associated with that place. The
computation DAG unfolds in an online fashion in a breadth-first manner across places
when the threads are pushed (remote spawns) onto remote places for better load bal-
ance. This execution strategy leads to low overall stack space requirement as compared
to prior approaches which use a combination of work-first and help-first policies [10].

146 A. Narang et al.

Worker(1)

Stall BufferStall Buffer

FABFAB

Worker(2)Worker(2)

Worker(m)Worker(m)

Dedicated

Processor

Dedicated

Processor

R
ea

dy
 D

e
qu

e
R

ea
dy

 D
e

qu
e

Steal DequeSteal Deque

RSRBRSRB RSRS

RERE

Abbreviations: RSR = Remote Steal Request queue, RS = Remote Spawn queue,
FAB = Fresh Activity buffer, & RE = Remote enable buffer

Remote
Steal/Remote

Spawn

Stolen
Activity/Remote

Enable

Worker 1Worker 1

Worker mWorker m

Worker 1Worker 1

Worker mWorker m

Worker 1Worker 1

Worker mWorker m

Worker 1Worker 1

Worker mWorker m

P0

P3P1

P2

Remote Spawn

(AM(B))

Remote enable

Group (0) Group (1)

Stolen
Activity/Remote

Enable

Remote
Steal/Remote

Spawn

Remote
Steal/Remote

Spawn

Stolen
Activity/Remote

Enable

Worker 1Worker 1

Worker mWorker m

Worker 1Worker 1

Worker mWorker m

Worker 1Worker 1

Worker mWorker m

Worker 1Worker 1

Worker mWorker m

P0

P3P1

P2

Remote Spawn

(AM(B))

Remote enable

Group (0) Group (1)

Stolen
Activity/Remote

Enable

Remote
Steal/Remote

Spawn

(a) (b)

Fig. 2. (a) Distributed data-structures at a Place. (b) Work Stealing & Remote Spawns

3.1 Distributed Data Structures

Each place has a dedicated communication processor (different from workers) to man-
age remote communication with other places. This processor manages the following
data-structures (Fig. 2(b)): (a) Fresh Activity Buffer(FAB) is a non-blocking FIFO data-
structure. It contains threads that are remote spawned onto this place by remote nodes
due to either the place annotation of the thread or the need for inter-group load bal-
ancing; (b) Remote Spawn queue (RS) is a non-blocking FIFO data-structure which
contains all the threads that are to be remote spawned by local processors onto remote
places; (c) Remote Enable Buffer (RE) is a non-blocking deque data structure, which
contains all the remote enable signals issued by local processors to remote places;and,
(d) Remote Stealing queue (RSRQ) is a FIFO data-structure contains all the remote steal
requests received by this particular place from other places within the same group.

Each worker (processor) at a place has the following data-structures (refer Fig. 2(b)):
(a) Ready Deque: is a deque that contains the threads of the parallel computation that
are ready to execute locally. This is accessed by the local processor only; (b) Steal
queue: is a non-blocking deque that contains threads that are ready to be stolen by the
some other processor at a local or remote place. It is accessed by other local processors
or communication processor for work stealing from this processor. In helps in reducing
the synchronization overheads on the local processor;and, (c) Stall Buffer: is a deque
that contains the threads that have been stalled due to dependency on another thread
that are either spawned locally or remotely in the parallel computation. This is only
accessed by the local processor.

3.2 Algorithm Design

During execution, the LDSS algorithm is able to keep track of data and control depen-
dencies in the computation DAG, by using enable signals. Flow of enable signals across
the places is managed by the dedicated communication processor at each place, using
the Remote Enable buffer. The root place receives communication from each place on

Dynamic Distributed Scheduling Algorithm for State Space Search 147

the status of work at each place and based on the termination condition of the program,
the root node sends termination signal to each node. This technique can be further en-
hanced using well-known global termination detection techniques. The actions taken
by the (general) processors and the dedicated communication processor at each place,
Pi, are described below.

General Processor Actions: At any step, a thread A at the rth processor (at place i),
W r

i , may perform the following actions:

1. Spawn

(a) A spawns B locally: B is successfully created and starts execution whereas A
is pushed into the bottom of the Ready Deque.

(b) A spawns B remotely: (i) If affinity for B is for a place, Pj , the target place =
Pj . (ii) Else, if B is anyplace thread, then determine the target place using d-
choice randomized selection. (iii) Active message for B is enqueued on head
of the Remote Spawn queue with the destination as the target place.

2. Terminates (A terminates): The processor at place Pi, W r
i , where A terminated,

picks a thread from the bottom of the Ready Deque for execution. If none available
in its Ready Deque, then it tries to transfer all the threads from Steal queue to Ready
Deque and pick from the bottom of the deque. If steal queue is empty then it steals
from the top of other processors’ Steal queue. Each failed attempt to steal from
another processor’s Steal queue is followed by attempt to get the topmost thread
from the FAB at that place. If there is no thread in the FAB then another victim
processor is chosen from the same place. If no thread is available at that place, then
enable inter place work stealing. (The communication processor helps in inter-place
work-stealing by using the d-choice prioritized random selection of victim places
and deciding the target place.)

3. Stalls (A stalls): A thread may stall due to control or data dependencies in which
case it is put in the Stall Buffer in a stalled state. Then same as Terminates (case 2)
above.

4. Enables (A enables B): A thread, A, (after termination or otherwise) may enable a
stalled thread B . If B is a local thread then the state of B changes to enabled and it
is pushed onto the appropriate position of the Ready Deque. It B is remotely stalled
then push the enable signal for that place at the bottom of the Remote Enable buffer.

Dedicated Communication Processor Actions: At any moment during the execution,
the dedicated communication processor at place i will try pick up an active message
from the bottom of the Remote spawn queue. Each failed attempt is followed by attempt
to pick up an enable signal from bottom of the Remote Enable buffer. If there is no
enable signal in Remote Enable buffer and inter place work stealing is enabled then it
randomly non-uniformly (with priority) chooses d distinct places (with higher priority
to places within its own group) and sends the active messages requesting workloads. On
receiving reply from these places, it selects that target place (victim place) as the one
with the highest load (as measured in the prior time interval). If this fails, then it tries
to pick up the request from the bottom of the Remote Stealing buffer and sends it an
available thread at this place. All these operations require asynchronous and one-sided

148 A. Narang et al.

communication with other places. Hence, we implemented our LDSS algorithm using
GASNet.

The dedicated communication processor also helps in maximizing computation-
communication overlap as well as communication-communication overlap. When, a
thread needs data from another place, it sends the request to the communication pro-
cessor. The communication processor forwards that request to the place that contains
that data. This goes in parallel with the computation that can be performed at the pro-
cessor where the data request originated. Hence, one gets computation-communication
overlap. Moreover, multiple communication requests including remote steal requests,
remote enable and d-choice selection all can proceed in parallel with different places,
leading to effective communication-communication overlap.

Place(i)

Remote Spawn request (AM(B))

Remote enable

Place(j)

Worker(1)

Stall BufferStall Buffer

FABFAB

Worker(2)Worker(2)

Worker(m)Worker(m)

Dedicated

Processor

Dedicated

Processor

R
e

a
d

yD
e

q
u

e
R

e
a

d
yD

e
q

u
e

Steal DequeSteal Deque

RSRBRSRB RSRS

Worker(1)

Stall BufferStall Buffer

FABFAB

Worker(2)Worker(2)

Worker(m)Worker(m)

Dedicated

Processor

Dedicated

Processor

R
e

a
d

yD
e

q
u

e
R

e
a

d
yD

e
q

u
e

Steal DequeSteal Deque

RSRBRSRB RSRS

Remote

Spawns

Remote Spawns

RERE RERE

Abbreviations: RSR = Remote Steal Request queue, RS = Remote Spawn queue, FAB = Fresh Activity buffer, & RE = Remote enable buffer

Place(i)

Remote Spawn request (AM(B))

Remote enable

Place(j)

Worker(1)

Stall BufferStall Buffer

FABFAB

Worker(2)Worker(2)

Worker(m)Worker(m)

Dedicated

Processor

Dedicated

Processor

R
e

a
d

yD
e

q
u

e
R

e
a

d
yD

e
q

u
e

Steal DequeSteal Deque

RSRBRSRB RSRS

Worker(1)

Stall BufferStall Buffer

FABFAB

Worker(2)Worker(2)

Worker(m)Worker(m)

Dedicated

Processor

Dedicated

Processor

R
e

a
d

yD
e

q
u

e
R

e
a

d
yD

e
q

u
e

Steal DequeSteal Deque

RSRBRSRB RSRS

Remote

Spawns

Remote Spawns

RERE RERE

Abbreviations: RSR = Remote Steal Request queue, RS = Remote Spawn queue, FAB = Fresh Activity buffer, & RE = Remote enable buffer

Fig. 3. Remote-spawn from Place(i) to Place(j)

Remote Spawns: Any processor that needs to spawn a thread (Fig 3), enqueues the
active message for creation of that thread at the head of the Remote Spawn buffer. The
dedicated communication processor pops the active message from the Remote Spawn
buffer and sends it to the appropriate place asynchronously. The communication proces-
sor uses d-choice randomized load balancing for choosing the appropriate destination
place. Here, random d groups are selected and the one with the lowest load is chosen as
the destination. Each place maintains a load vector that contains load of d places. This
load vector is updated (d each time) at periodic intervals. The rate of remote spawns is
adjusted automatically (by considering relative load difference between this node and
system average load) to reduce overheads while at the same time provide optimal trade-
off between load balancing across the places and scheduling overheads. The d-choice
based remote spawns result in good load balancing [11] while keeping low schedul-
ing overheads. It is well-known [11] that pure random assignment of m balls (threads)

to n bins (m >> n) leads to O(
√

m log(n)
n) gap across the bins (servers, processors)

while d-choice based assignment leads to O(ln ln(n)) gap across the bins. Thus, the
instantaneous load-imbalance across the nodes (places) reduces in the system.

Dynamic Distributed Scheduling Algorithm for State Space Search 149

Workstealing: Each core (processor) uses Ready Deque (lockless queue for threads
intended for local execution and Steal queue (synchronized queue) for threads that can
be stolen. Each place in the system is associated with one and only one group. For
inter-place work stealing higher priority is given to the groups close in the target topol-
ogy as compared to the groups farther away. Once all the processors becomes idle at a
place, the dedicated (communication) processor at that place (thief) queries a randomly
selected place (victim) about its load. When the victim dedicated communication pro-
cessor receives the request for worksteal from a thief, it randomly deques a thread from
one of its local processors’ Ready deque and sends it to thief place for its continuation.

4 Results and Analysis

Experimental Setup: We used upto 4096 compute nodes/places (with 4 cores/
processors per place, total 16384 cores in the system) of Blue Gene/P (Watson 4P 9)
for empirical evaluation of our distributed scheduling algorithm. Each compute node
(place) in Watson 4P is a quad-core chip with frequency of 850 MHz having 4 GB of
DRAM and 32 KB of L1 instruction and data cache per core. Nodes (places) are inter-
connected by a 3D torus interconnect (3.4 Gbps per link in each of the six directions)
apart from separate collective and global barrier networks. For efficient compute and
communication overlap, GASNet was used since it provides asynchronous one sided
message passing primitives. GASNet is a language-independent, low level network-
ing layer that provides network-independent, high performance communication primi-
tives tailored for implementing Parallel Global Address Space. GASNet’s DCMF (Deep
Computing Messaging Framework) conduit is the native port of GASNet to BlueGene/P
architecture as it uses DCMF for the lower level communication between nodes.

Benchmarks: We implemented our distributed scheduling algorithm (LDSS) using
pthreads (NPTL API) and GASNet as the underlying communication layer. The LDSS
algorithm and benchmarks were compiled using mpixlc r with optimization options -
O3, -qarch=450, -qtune=450 and -qthreaded. We present comparison of performance
and scalability with Charm++ [15] on Blue Gene/P architecture and show that we have
superior results. The benchmarks used for evaluation include:

– Unbalanced Tree Search (UTS): The Unbalanced Tree Search problem is to count
the number of nodes in an implicitly constructed tree that is parameterized in shape,
depth, size and imbalance, and,

– NQueens: NQueens is a backtracking search problem to place N queens on a N by
N chess board so that they do not attack each other. We target at finding all solu-
tions for N Queen problem.
Note: UTS and NQueens are strict parallel computations as both of them have
parent-child dependencies.

Scalability Analysis: Here, we present scalability analysis for the benchmarks. Fig. 4(a)
and Fig. 4(b) demonstrate the strong scalability of LDSS algorithm with increasing

9 http://www.research.ibm.com/bluegene

150 A. Narang et al.

Strong Scalability (UTS Geometric:270B)

0

1000

2000

3000

4000

5000

12
8

25
6

38
4

51
2

64
0

76
8

89
6

10
24

20
48

30
72

40
96

Number of Nodes

Ti
m

e
(s

) LDSS

Charm++

Strong Scalability (UTS Geometric:1T)

0

2000

4000

6000

8000

10000

12
8

25
6

38
4

51
2

64
0

76
8

89
6

10
24

20
48

30
72

40
96

Number of Nodes

Ti
m

e
(s

) LDSS

Charm++

(a) (b)

Fig. 4. UTS: (a) Strong Scalability (270B) Geometric Tree. (b) Strong Scalability (1T) Geo-
metric Tree

Strong Scalability (UTS Binomial:157B)

0
200
400
600
800

1000
1200
1400
1600

128 256 384 512 640 768 896 1024

Number of Nodes

T
im

e
(s

)

LDSS

Charm++

Strong Scalability (UTS Binomial:295B)

0

500

1000

1500

2000

2500

3000

128 256 384 512 640 768 896 1024

Number of Nodes

Ti
m

e
(s

)

LDSS

Charm++

Parallel Efficiency (NQueens)

80

85

90

95

100

105

110

12
8

25
6

38
4

51
2

64
0

76
8

10
24

15
36

20
48

Number of Nodes (Places)

P
ar

al
le

l E
ffi

ci
en

cy
 (

%
)

NQueens-18

NQueens-20

(a) (b) (c)

Fig. 5. UTS: (a) Strong Scalability (157B) Binomial Tree. (b) Strong Scalability (295B) Bino-
mial Tree (c) Strong Scalability (NQueens).

number of nodes (places) from 128 to 4096 for geometric type UTS tree with 270 Bil-
lion, and 1 Trillion tree size respectively. Here, the granularity of work-stealing was
kept as 50 and the group size chosen was 8. For 270B geometric tree, the LDSS al-
gorithm achieves super-inear speedup of around 36.6× (from 2524s to 69s) with 32×
increase in number of nodes. The LDSS algorithm has better performance as compared
to Charm++ by at least 28% throughout the variation in compute nodes. For the 1T ge-
ometric tree, the LDSS algorithm also achieves super-linear speedup of around 37.5×
(from 9491s to 253s) with 32× increase in number of nodes. Here again, the LDSS
algorithm has better performance (2352s) as compared to Charm++ (3667s) by around
36% at 512 compute nodes, and by 35% (1007s vs 1541s) at 1024 nodes. Charm++
gave memory error for 128 and 256 nodes (places).

On 4096 nodes, LDSS had a completion time of 69s for 270B nodes, 253s for 1T
nodes, 993s for 4T nodes and 4037s for 16T nodes; which demonstrates better than
linear data scalability. For 16Trillion nodes, LDSS delivers processing rate of 3.96G
Nodes/s, which is the best reported so far in the literature. Further, the parallel effi-
ciency achieved is slightly better as compared to the best prior work [7], and this is
demonstrated on the geometric tree 16Trillion tree nodes which is largest amongst the
maximum sizes considered by any prior work including [14] [16] [10].

Fig. 5(a) and Fig. 5(b) demonstrate the strong scalability of LDSS algorithm with
increasing number of nodes (places) from 128 to 1024 for binomial type UTS tree with
157Billion, and 295Billion tree size respectively. Here, the granularity of work-stealing
was kept as 50, the group size chosen was 8, the base remote spawn rate was set at 50

Dynamic Distributed Scheduling Algorithm for State Space Search 151

and d was chosen as 3 for d-choice randomized load balancing during remote spawns.
For 157B binomial tree, the LDSS algorithm achieves a speedup of around 7.34× (from
1021s to 139s) with 8× increase in number of nodes, resulting in parallel efficiency of
around 92%. The performance of LDSS is better than Charm++ by around 27% at 128
nodes and by around 22% at 1024 nodes.

For the 295B binomial tree, the LDSS algorithm also achieves a speedup of around
7.34× (from 1715s to 234s) with 8× increase in number of nodes, resulting in parallel
efficiency of 91.75%. The efficiency achieved is better than the best prior work [16] by
around 5%. Further, for 295B nodes, LDSS has lower time than Charm++ by around
32% at 128 nodes and by around 35% at 1024 nodes.

The efficiency for binomial tree is lower than the geometric tree case since the bino-
mial tree has larger depth and smaller breadth and hence more unbalanced as compared
to the geometric tree. Due to this, the scheduling algorithm incurs larger overheads of
remote spawns and work stealing in-order to achieve load balance across the compute
nodes in the system. Hence, the geometric tree is able to achieve high efficiency even
without remote spawns. The average (across varying number of compute nodes) single
node performance of LDSS for Binomial tree is 1.1M nodes/sec as compared to 0.85M
nodes/s for Charm++; while that for Geometric tree it is 0.96M nodes/s (for LDSS) as
compared to 0.70M nodes/s for Charm++.

The parallel efficiency results (w.r.t. 128 nodes (places)) for NQueens benchmark are
presented in Fig. 5(c). While for NQueens 20, LDSS delivers super-linear scalability
and sustains parallel efficiency of 103% even at 2048 nodes; for NQueens 18 the parallel
efficiency drops to 91% at 2048 nodes (places). This is due to exponential increase in
size of NQueens 20 w.r.t. NQueens 18. For NQueens 18, the parallel efficiency achieved
by LDSS is better than that for Charm++ (around 85%) [15].

Deque Space Variation with time
 (UTS, 157B, Binomial Tree, 1024 nodes)

0

500

1000

1500

2000

2500

1 9 17 25 33 41 49 57 65 73

Progress of Computation

N
um

be
r

of
 S

ta
ck

 F
ra

m
es

uts-binom-space

Variation in Standard Deviation of Load Across Compute
Nodes (1024 BG/P nodes, 157B UTS binomial tree)

0
200000
400000
600000
800000

1000000
1200000
1400000
1600000
1800000

1 9 17 25 33 41 49 57 65 73

Progress in Execution (s)

N
u

m
b

e
r

o
f

T
re

e
 N

o
d

e
s

Gasnet-LDSS

MPI-unopt

Performance Variation with Group Size and "d"
(1024 BG/P nodes, 157B binomial tree)

0

50

100

150

200

250

16 32 64 128 256

Group Size

T
im

e
(s

) d=10

d=20

d=40

d=160

(a) (b) (c)

Fig. 6. UTS: (a) Space Usage (UTS). (b) Standard deviation of Load Across Compute Nodes
(UTS) (c) Performance Variation with Group Size and d value.

Fig. 6(c) illustrates the impact of change in group size on the overall performance
of the LDSS algorithm. This variation is considered with different values of d in d-
choice randomized spawns. For most group sizes (16, 64, 128, 256), as the value of d
increases, the time increases while for group size 32, d value equal to 40 gives the best
performance. Thus, there is an optimal combination of group size and d that gives the
best performance. In general, as d increases for a given group size, the communication
overheads increase leading to a larger overall time, while for some values of group
size, larger d could also lead to better load balance within the system. For d = 32

152 A. Narang et al.

we observed this by studying the load across the compute nodes in the system. This
represents complicated trade-offs between load balance and communication overheads
involved in scheduling binomial UTS trees.

Fig. 6(a) presents space usage (in number of stack frames) of the total space usage
per processor (including the space used by the dedicated communication processor) as
the computation progresses in the case of UTS/binomial tree with 157B nodes. The
maximum space used is less than 2000 stack frames. This at least 3× lesser than that
reported by HotSLAW [10], which reports maximum space usage of around 8000 stack
frames and stays above 2000 stack frames for quite sometime. This is because LDSS
does not use help-first policy which leads to BFS expansion of the graph and larger
usage of space, while HotSLAW uses a combination of work-first and help-first policy
as does SLAW [6]. Fig. 6(b) reports the standard deviation in load across the compute
nodes in the system for LDSS with tuned (gasnet-opt) and untuned (MPI-unopt) pa-
rameters 10, as the computation progresses for 157B binomial tree. By using GASNET
and parameter tuning LDSS achieves around 8× lower standard deviation (and hence
better load balance) as compared to MPI implementation and untuned parameters.

5 Related Work

Distributed Scheduling for parallel computations is a well studied problem in the shared
memory context starting from the pioneering research by Blumofe and Leiserson [3]
on Cilk scheduling, followed by later work including [2] [1] [4] [6] amongst many
others. These efforts are primarily focused on work-stealing efficiency improvement
in shared-memory architectures without considering explicit affinity annotations by the
programmer. With the advent of distributed memory architectures, lot of recent research
on distributed scheduling looks at multi-core and many-core clusters.

Olivier et.al. [14] consider work stealing algorithms in distributed and shared mem-
ory environments, with one sided asynchronous communications. This work considers
task migration on pull based mechanism and ignores affinity as well as it considers
computations with no dependencies.

Dinan et.al. [7] construct distributed and local task pools for its dynamic load bal-
ancing model. [7] restricts the execution model by requiring that all tasks enqueued in
task pool are independent. The model is confined to tasks that require only parent-child
dependencies not other way around. Our model supports all the computations that are
strict in nature hence allowing tasks to wait for completion of other tasks.

Saraswat et.al. [16] introduce a lifeline based global load balancing technique in X10
which provides better load balancing for tasks as compared to random work stealing,
along with global termination detection using the finish (X10) construct. Our algorithm
considers multiple workers per place and handles data dependencies across the threads
in the computation tree. We demonstrate better efficiency and performance on the bino-
mial tree in UTS benchmark than [16].

Ravichandran et.al. [9] introduce work stealing for multi-core HPC clusters which
allow multiple workers per place and two separate queues for local threads and for re-
mote stealing, but this does not consider locality or data dependencies. Min et.al. [10]

10 Rate of remote spawns, rate of workstealing, granularity of workstealing and group size.

Dynamic Distributed Scheduling Algorithm for State Space Search 153

present a task library, called HotSLAW, that uses Hierarchical Victim Selection (HVS)
and Hierarchical Chunk Selection (HCS) to improve performance as compared to prior
approaches. Our LDSS algorithm uses an elegant combination of two-level work steal-
ing and remote-place (inter-group) work pushing to achieve optimal trade-offs between
load balancing and scheduling overheads. Further, our space requirement is much lower
than that reported by [10] for the UTS benchmark as presented in the Results section 4.
Frameworks such as Scioto framework [5] and KAAPI 11 consider distributed setup but
have not demonstrated results at large scale for state space search problems.

Charm++ is a C++ based parallel programming system that implements a message-
driven migratable objects programming model, supported by an adaptive runtime sys-
tem and work stealing [13] [15]. Charm++ supports work stealing across places [15]
and uses a hierarchical mechanism [18] to migrate objects to places (processors) for
load balancing. Zheng et.al. [18] consider hierarchical load balancing in Charm++. Our
algorithm incorporates randomized d-choice based work pushing and prioritized inter-
place work-stealing to ensure better instantaneous load balance across the places in the
system. Further, on the UTS benchmark we demonstrate upto 40% better performance
as compared to Charm++ on Blue Gene/P.

6 Conclusions and Future Work

We have addressed the challenging problem of online distributed scheduling of state
space search oriented parallel computations, using a novel combination of d-choice
based randomized remote spawns and topology-aware work stealing. On multi-core
clusters such as Blue Gene/P (MPP architecture), our LDSS algorithm demonstrates
superior performance and scalability (for UTS) and parallel efficiency (for NQueens
benchmark) as compared to prior state-of-the-art approaches such as Charm++. For
UTS (binomial tree) we have delivered highest parallel efficiency (close to 92%) for
binomial tree (better than [16] which delivers 87%); and upto 40% better performance
as compared to Charm++ [15]. In future, we plan to look into balanced allocation [11]
based arguments to compute optimum trade-offs between work sharing and work steal-
ing in large scale distributed environments.

References

1. Acar, U.A., Blelloch, G.E., Blumofe, R.D.: The data locality of work stealing. In: SPAA,
New York, NY, USA, pp. 1–12 (December 2000)

2. Arora, N.S., Blumofe, R.D., Plaxton, C.G.: Thread scheduling for multiprogrammed multi-
processors. In: SPAA, Puerto Vallarta, Mexico, pp. 119–129 (1998)

3. Blumofe, R.D., Leiserson, C.E.: Scheduling multithreaded computations by work stealing. J.
ACM 46(5), 720–748 (1999)

4. Blumofe, R.D., Lisiecki, P.A.: Adaptive and reliable parallel computing on networks of work-
stations. In: USENIX Annual Technical Conference, Anaheim, California (1997)

5. Dinan, J., Krishnamoorthy, S., Larkins, D.B., Nieplocha, J., Sadayappan, P.: A framework
for global-view task parallelism. In: Proceedings of the 37th Intl. Conference on Parallel
Processing, ICPP (2008)

11 https://gforge.inria.fr/projects/kaapi/

154 A. Narang et al.

6. Guo, Y., Zhao, J., Cave, V., Sarkar, V.: Slaw: A scalable localityaware adaptive work-stealing
scheduler. In: IPDPS, pp. 1–12 (2010)

7. Dinan, J., Larkins, D.B., Sadayappan, P., Krishnamoorthy, S., Nieplocha, J.: Scalable work
stealing. In: SC, Oregon, USA (November 2009)

8. Kalé, L.: An almost perfect heuristic or the n-queens problem. Information Processing Let-
ters 34, 173–178 (1990)

9. Ravichandran, K., Lee, S., Pande, S.: Work Stealing for Multi-core HPC Clusters. In: Jean-
not, E., Namyst, R., Roman, J. (eds.) Euro-Par 2011, Part I. LNCS, vol. 6852, pp. 205–217.
Springer, Heidelberg (2011)

10. Min, S.-J., Iancu, C., Yelick, K.: Hierarchical work stealing on manycore clusters. In: PGAS
2011: Fifth Conference on Partitioned Global Address Space Programming Models. ACM
(October 2011)

11. Mitzenmacher, M.: The Power of Two Choices in Randomized Load Balancing. PhD in
computer science. Harvard University (1991)

12. Pearl, J.: Heuristics-Intelligent Search Strategies for Computer Problem Solving. Addison
Wesley (1984)

13. Shu, W., Kale, L.: A dynamic scheduling strategy for the chare-kernel system. In: ACM/IEEE
Conference on Supercomputing (Supercomputing 1989), New York, USA, pp. 389–398
(1989)

14. Oliver, S., Prins, J.: Scalable dynamic load balancing using UPC. In: ICPP, Oregon, USA
(September 2008)

15. Sun, Y., Zheng, G., Jetley, P., Kale, L.V.: An adaptive framework for large-scale state space
search. In: IPDPS Workshop, Alaska, USA, pp. 1798–1805 (2011)

16. Saraswat, V., Grove, D., Kambadur, P., Kodali, S., Krisnamoorthy, S.: Lifeline based global
load balancing. In: PPOPP, Texas, USA (February 2011)

17. Wah, B.W., Li, G., Yu, C.F.: Multiprocessing of combinatorial search problems. IEEE Com-
puter 18, 93–108 (1985)

18. Zheng, G., Meneses, E., Bhatele, A., Kale, L.V.: Hierarchical load balancing for charm++ ap-
plications on large supercomputers. In: 39th International Conference on Parallel Processing
Workshops, ICPPW, pp. 436–444. IEEE Computer Society, Washington, DC (2010)

Using Load Information in Work-Stealing

on Distributed Systems
with Non-uniform Communication Latencies

Vladimir Janjic and Kevin Hammond

School of Computer Science, University of St Andrews, United Kingdom
{jv,kh}@cs.st-andrews.ac.uk

Abstract. We evaluate four state-of-the-art work-stealing algorithms
for distributed systems with non-uniform communication latenices (Ran-
dom Stealing, Hierarchical Stealing, Cluster-aware Random Stealing and
Adaptive Cluster-aware Random Stealing) on a set of irregular Divide-
and-Conquer (D&C) parallel applications. We also investigate the extent
to which these algorithms could be improved if dynamic load informa-
tion is available, and how accurate this information needs to be. We show
that, for highly-irregular D&C applications, the use of load information
can significantly improve application speedups, whereas there is little
improvement for less irregular ones. Furthermore, we show that when
load information is used, Cluster-aware Random Stealing gives the best
speedups for both regular and irregular D&C applications.

1 Introduction

Work stealing [5], where idle “thieves” steal work from busy “victims”, is one
of the most appealing load-balancing methods for distributed systems, due to
its inherently distributed and scalable nature. Several good work-stealing al-
gorithms have been proposed and implemented for systems with non-uniform
communication latencies, that is for cloud- or grid-like systems [2,4,16,17], and
for high-performance clusters of multicore machines [13]. However, most of these
algorithms are tailored to highly regular applications, such as those using sim-
ple Divide-and-Conquer (D&C) parallelism. This paper considers how work-
stealing can be generalised to irregular parallel D&C applications, so covering
a wide class of real parallel applications. In particular, we compare the effec-
tiveness of different work-stealing approaches for such applications, and describe
improvements to these approaches that provide performance benefits for “more
irregular” parallel applications. This paper makes the following main research
contributions:

– We compare the performance of state-of-the-art work-stealing algorithms for
highly-irregular D&C applications, providing insight into whether the “best”
methods for regular D&C applications also perform well for irregular ones.

– We evaluate how well these algorithms could perform if they had access to
perfect load information, i.e. how much speedup could be improved if this

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 155–166, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

156 V. Janjic and K. Hammond

information was available. This gives insight into whether load information
can improve work-stealing and also tests the limits to these improvements.

– We investigate how accurate this load information needs to be to provide
some benefit. Since it is impossible to obtain fully-acurate instantaneous
load information for real distributed systems, this gives insight into whether
work-stealing can benefit from less accurate load information.

We address these three issues using high-quality simulations in the SCALES sim-
ulator [8]. The decision to use simulations is driven by our goal of considering the
theoretical limits to improvements that can be obtained by using fully-accurate
load information and also to quantify the extent to which those limits can be
approached using more realistic partial load information. This would not be pos-
sible using a real implementation, since we cannot instantaneously communicate
load information between distributed machines. The general operation of the
simulation has been verified against a real distributed system [8], so we have a
high degree of confidence in its ability to predict scheduling performance. We
stress that, in this paper, unlike other work [16,8,2], we are not concerned with
the question of how to obtain accurate load information. Rather, we are inter-
ested purely in the impact of this information on load-balancing. A comparison
of different heuristics for obtaining load information can be found in [8].

2 Work-Stealing on Systems with Non-uniform Latencies

We consider distributed clusters, where each cluster contains one or more (paral-
lel) machines (that is a cloud- or grid-like server farm). Each machine in a cluster
forms a processing element (PE) that can manage its own set of independent par-
allel tasks (which will normally be evaluated using lightweight multi-threading)
Each PE has its own task pool, which records the tasks that are owned by that
PE. When a PE starts executing a task, it converts it into a thread (which we
will assume is fixed to one PE). Tasks can, however, be migrated between PEs.
In a work-stealing setting, whenever a PE has no tasks in its task pool, that PE
becomes a thief. The thief sends a steal attempt message to its chosen target PE.
If the target PE has more than one task in its task pool, it becomes a victim
and returns one (or more) tasks to the thief. Otherwise, the target can either
forward the steal attempt to some other target or, alternatively, a negative re-
sponse can be sent to the thief, who then deals with it in an appropriate way
(either by initiating another steal attempt or by delaying further stealing). The
main differences between the various work-stealing algorithms that we consider
lie in the way in which thieves select targets, and in the way in which targets
that do not have enough tasks respond to steal attempts. This paper considers
the following four state-of-the-art work-stealing algorithms:

– Random Stealing [4] – Targets are chosen randomly, and targets also forward
steal attempts to random PEs. This is used by e.g. Cilk [3] or GUM [15].

– Hierarchical Stealing – The PEs are organised into a tree (based on com-
munication latencies). A thief first attempts to steal from all of its children

Using Load Information in Work-Stealing on Distributed Systems 157

(which may recursively attempt to steal from their children); only if no work
is found will it ask its parent for work. This algorithm is used by the Atlas [2]
and Javelin [11] runtime systems for distributed Java.

– Cluster-Aware Random Stealing (CRS) – Local stealing (within a cluster)
and remote stealing (outside of a cluster) are done in parallel. That is, a
thief will attempt to steal from a random PE within its own cluster, and,
in parallel, will attempt to steal from a remote PE. Targets always forward
the steal attempt to a PE in its own cluster if they have no work. A very
similar algorithm is used in the Satin [18] extension to Java, which provides
primitivies for divide-and-conquer and master-worker parallelism1.

– Adaptive Cluster-Aware Random Stealing (ACRS) – An improvement to the
CRS algorithm, where thieves prefer to steal remote tasks from clusters that
are nearer to them [17].

Note that the focus of these algorithms is on the selection of potential victims.
This is the main issue for distributed systems with potentially high communica-
tion latencies, so that thieves obtain work quickly. Following the usual practice
in work-stealing for divide-and-conquer applications, we assume that the oldest
task from the task pool is sent to the thief in response to the steal attempt, and
that the youngest task from the PE’s task pool is chosen for local execution. This
allows locality to be preserved, while large tasks are transferred over the network.
Many other factors may also influence speedups, such as task queue locking [10]
and identifying termination conditions [13,14]. A comparison of several other
policies for task pool management can be found in [9].

3 Irregular Divide-and-Conquer Applications

This paper focuses on the irregularity in parallelism that arises from an un-
balanced task tree, i.e. where some of the tasks created by a parallel task are
sequential, but where others are themselves parallel. This kind of irregularity
arises in many benchmarks for load imbalance as well as in many realistic appli-
cations that deal with irregular or unbalanced data-structures. For example, the
Unbalanced Tree Search benchmark dynamically creates highly-unbalanced trees
and then processes their nodes [12]; in the Bouncing Producer and Consumer
benchmark [6], a producer creates a set of consumer subtasks, and then nomi-
nates one of these consumers as a new producer. Unbalanced task trees arise, for
example, in real applications that trace particles through a 3D scene (e.g. the
Monte Carlo Photon Transport algorithm [7], where the input data determines
how unbalanced the task tree is). Implementations of the Min-Max algorithm,
which prune a tree of game positions, also exhibit irregularity of this kind.

We have previously introduced a formal statistical measure for the degree
of irregularity for such an application [8]. Intuitively, the more unbalanced the

1 In Satin, a target that has no tasks to send to the thief returns a negative response,
rather than forwarding the steal attempt, as here. We have found that our version
performs much better in our context.

158 V. Janjic and K. Hammond

Fig. 1. Task graph for an example DCFixedPar(6,3,5ms,T)

task tree of such an application is, the more irregular is the application. Due to
space constraints, we will use this intuitive “measure” of the irregularity of an
application, without defining it rigorously here. Our main focus is on divide-and-
conquer applications with fixed parallelism, denoted by DCFixedPar(n,k,S,t). In
such an application, every nested-parallel task creates n subtasks, where every
k-th subtask is itself nested-parallel (and the others are sequential). Below some
threshold t, all tasks are sequential with size S. Such applications are examples
of irregular D&C applications, where k determines the degree of irregularity, and
n determines the number of tasks. The larger k is, the more unbalanced is the
task tree, and, therefore, the more irregular is the application. Figure 1 shows
the task tree of an example DCFixedPar(6,3,5ms,t) application.

4 Using Load Information

For the work-stealing algorithms presented in Section 2, we can observe that the
methods they use for selecting targets are partially (or, in the case of Hierarchical
Stealing, fully) based on knowledge of the underlying network topology. They do
not, however, depend on information about PE loads. Choosing targets in this
way is acceptable for applications where the majority of tasks create additional
parallelism (for example, DCFixedPar(n, k, S, t), where k is small). During the
execution of such applications a thief that steals a task will itself become a
potential victim for some other thief. This means that there are a large number
of potential victims in most execution phases. This makes locating victims easy,
even when it is done randomly. Indeed, Nieuwpoort et al. [16] show that very
good performance can be obtained using these work-stealing algorithms, with
CRS giving the best speedups for simple D&C applications (those corresponding
to DCFixedPar(2,1,S,t) applications). This is because thieves can usually obtain
work locally, and remote prefetching of work (via wide-area stealing) essentially
comes for free, because the latency is hidden by executing locally obtained work.

The performance of these algorithms for irregular D&C applications is, how-
ever, not well understood. In these applications, most of the tasks may be

Using Load Information in Work-Stealing on Distributed Systems 159

sequential. This means that it is no longer true that almost every successful thief
becomes a potential victim. Furthermore, in some execution phases the number
of potential victims may be low, and high load imbalances may then exist. Locat-
ing the victims in a potentially large system can be hard if it is done randomly,
and a thief may send many fruitless steal attempts over high-latency networks be-
fore it manages to locate a victim. Therefore, for irregular D&C applications, the
CRS algorithm may not perform the best, and might indeed be outperformed by
methods that do some kind of systematic search for targets, from closer to further
ones (as with Hierarchical Stealing). In order to obtain good speedups, it may be
essential to have some information about target loads, to minimise the time that
thieves spend obtaining work. In order to investigate these issues, we first evalu-
ate how basic work-stealing algorithms perform on highly irregular D&C applica-
tions, determining which of them gives the best speedups. We then investigate the
extent to which these speedups could be increased if fully accurate load informa-
tion is present and used in these algorithms; that is, if each thief, at the moment
where it needs to select the stealing target, knows precisely how many tasks are in
each PE’s task pool. We, therefore, consider the following “perfect” work-stealing
algorihms:

– Perfect Random Stealing. A target with non-zero load is chosen randomly.
– Perfect Hierarchical Stealing. A set of all PEs is organised into a tree. A thief

checks the load of all of its children (where the load of a PE is the aggregate
load of all of the PEs in its subtree). If a child with non-zero load exists,
the steal attempt is sent to it. Otherwise, a thief tries to steal from its own
parent. Whenever a target receives a steal attempt, if it has no work to send,
it forwards the steal attempt using the same procedure.

– Perfect Cluster-aware Random Stealing (Perfect CRS). A thief attempts to
steal in parallel from random local and remote PEs with non-zero load.

– Perfect Adaptive Cluster-aware Random Stealing (Perfect ACRS). This al-
gorithm is similar to Perfect CRS, except that during the remote stealing,
thieves prefer to steal from closer targets with non-zero load.

– Closest-Victim Stealing (CV). The closest target with work is chosen.
– Highest-Loaded-Victim Stealing (HLV). A thief steals from a target with the

largest number of tasks.

Note that the last two algorithms do not have “basic” equivalents, since they
depend on the presence of load information. We include them here because they
represent fairly intuitive methods for selecting stealing targets in the presence of
load information. We assume that a thief steals only one task at a time from a
victim. While stealing more than one task may be beneficial where many tasks
are sequential, for more regular D&C applications this can result in unnecessarily
large amounts of work being transferred from the victim to the thief. Finally,
we evaluate how the accuracy of load information relates to the performance of
algorithms. In other words, we evaluate what happens if the load information is
not completely accurate. This enables us to observe whether the load information
needs to be fully accurate (which is impossible to obtain in the real word), or
whether some approximation (which can be obtained by a heuristic) is enough.

160 V. Janjic and K. Hammond

5 Experiments

All experiments were conducted using the SCALES simulator [8], which was
developed for the sole purpose of testing the performance of work-stealing algo-
rithms on parallel systems with non-uniform communication latencies. SCALES
supports several popular parallelism models, such as divide-and-conquer, data
parallel and master-worker. It independently simulates the load-balancing events
for each PE, such as sending/forwarding steal attempts and the transfer of
tasks between PEs. It also simulates the overheads for individual load-balancing
events (such as sending steal attempts, packing and unpacking of tasks, exe-
cuting tasks). SCALES has been shown to accurately estimate speedups under
various work-stealing algorithms for realistic runtime systems [8].

In order to keep the number of experiments manageable, we use the same
simulated system in all of our experiments. A number of experiments on other
simulated systems can be found in [8], which confirm the conclusions found here.
Our system consists of 8 clusters of PEs, with 8 PEs in each cluster. Clusters are
split into two continents of 4 clusters each, with an inter-continental latency of
80ms. Each continent is split into two countries, with an inter-country latency
of 30ms. Finally, each country is split into two sites, with an inter-site latency of
10ms. In the remainder of the paper, the PE that executes the main application
task is the main PE; the cluster containing the main PE is the main cluster ;
and all other clusters are remote clusters.

5.1 Performance of the Basic Algorithms

For our first set of experiments with irregular D&C applications, we focus on the
DCFixedPar(40,k,5ms,4) applications. The size of sequential subtasks is set to
5ms to produce an application with fine-grained tasks. Note that, as k increases,
the applications become more irregular. Figure 2 shows the speedups that we
obtained under the basic algorithms. We observe that the CRS and ACRS al-
gorithms give the best speedups for more regular applications. However, as the
applications become more irregular (for k > 6), we observe that Hierarchical
Stealing starts to outperform both CRS and ACRS. The reason for this is that
Hierarchical Stealing gives much more uniform work distribution than CRS,
where most of the tasks are executed by PEs from the main cluster, and where
PEs in the remote clusters are mostly idle. For highly irregular applications we
observe that CRS and ACRS deliver poor speedups of 10-12, whereas Hierar-
chical Stealing still manages to deliver good speedups of 25-30. This experiment
reveals two things. Firstly, it shows that the situation for irregular applications is
less clear cut than for regular ones, where the CRS algorithm constantly delivers
the best speedups. We can see that for less irregular applications, CRS is still
the best choice. For highly-irregular ones, however, Hierarchical Stealing is bet-
ter. Secondly, as the irregularity of the applications increases, speedups decrease
sharply for most of the algorithms. The exception is Hierarchical Stealing, which
still manages to deliver good speedups, even for highly-irregular applications. A
similar situation exists for other DCFixedPar applications. If we increase the

Using Load Information in Work-Stealing on Distributed Systems 161

 0

 10

 20

 30

 40

 50

 60

3 4 5 6 7 9 11

S
pe

ed
up

k

Speedups of the DCFixedPar(40,k,5ms,4) applications

Work stealing algorithm:
Random

Hierarchical
CRS

ACRS

 0

 10

 20

 30

 40

 50

 60

15 20 25

S
pe

ed
up

k

Speedups of the DCFixedPar(100,k,5ms,4) applications

Work-stealing algorithm:
Random

Hierarchical
CRS

ACRS

Fig. 2. Speedups under the basic algorithms for the DCFixedPar(40,k,5ms,4) applica-
tions (above) and DCFixedPar(100,k,5ms,4) applications (below)

number of subtasks from 40 to 100, as shown in the bottom of Figure 2, we
obtain similar results. Since all the DCFixedPar(100,k,5ms,4) applications are
highly irregular, Hierarchical Stealing gives the best speedups.

5.2 Performance of the Perfect Algorithms

We now consider the perfect algorithms. Figure 3 shows the corresponding
speedups and relative improvements for the DCFixedPar(40,k,5ms,4) applica-
tions. It is clear that CRS and ACRS give the best speedups. Since all thieves
know exactly where to look for work, thieves from remote clusters manage to
steal a lot of work, so Perfect CRS does not suffer from the same problem as the

162 V. Janjic and K. Hammond

 0

 10

 20

 30

 40

 50

 60

3 4 5 6 7 9 11

S
pe

ed
up

k

Speedups of the DCFixedPar(40,k,5ms,4) applications

Work stealing algorithm:
Perfect Random

Perfect Hierarchical
Perfect CRS

Perfect ACRS
CV

HLV

-20

 0

 20

 40

 60

 80

 100

 120

 140

3 4 5 6 7 9 11

S
pe

ed
up

 im
pr

ov
em

en
t (

in
 %

)

k

Improvements with perfect load information for DCFixedPar(40,k,5ms

Work stealing algorithm:
Random

Hierarchical
CRS

ACRS

Fig. 3. Speedups (above) and relative Improvements in speedups (below) using perfect
load information for the DCFixedPar(40,k,5ms,4) applications

basic version of CRS. CV and Hierarchical Stealing perform similarly to CRS
and ACRS for more irregular applications, but are consistently worse. Random
Stealing and HLV are considerably worse than these four algorithms. The bot-
tom half of Figure 3 shows the improvement in speedup for the perfect versions.
We observe small improvements for less irregular applications, but very good im-
provements (70%-120%) for highly-irregular applications for Random Stealing,
CRS, and ACRS. For Hierarchical Stealing, we only observe very small improve-
ments. In some cases, Hierarchical Stealing without load information is actually
better than with fully accurate load information. Finally, Figure 4 shows cor-
responding speedups for the DCFixedPar(100,k,5ms,4) applications. We once
again observe that CRS and ACRS give the best speedups.

Using Load Information in Work-Stealing on Distributed Systems 163

 0

 10

 20

 30

 40

 50

 60

15 20 25

S
pe

ed
up

k

Speedups of the DCFixedPar(100,k,5ms,4) applications

Work-stealing algorithm:
Perfect Random

Perfect Hierarchical
Perfect CRS

Perfect ACRS
CV

HLV

Fig. 4. Speedups under the perfect algorithms for DCFixedPar(100,k,5ms,4)

5.3 How Accurate Does Load Information Need to Be?

In the previous section we have seen that the use of fully-accurate load informa-
tion brings significant speedup benefits when using the Random, CRS and ACRS
algorithms for highly-irregular D&C applications. With fully accurate load in-
formation, CRS and ACRS give the best speedups both for less irregular and
for more irregular applications. Coupled with the fact that these algorithms are
also the best for regular applications, it seems that they are the algorithms of
choice for work stealing on distributed systems, provided we can obtain a good
approximation of PE loads during the execution of the application.

In this section, we will focus on the CRS algorithm, since it gives similar
results to ACRS, and is easier to implement. The natural question to ask is how
accurate load information needs to be for the load-based CRS algorithm to obtain
good speedup improvements over the basic version. It is obvious that obtaining
perfect load information (where each PE has fully accurate information about
the load of all other PEs) is simply impossible in real systems. We, therefore,
now investigate the extent to which an application’s speedup changes when load
information becomes outdated to some extent.

Let us denote the set of all PEs by {P1, . . . , Pn}, and the load of PE P at
time t by L(P, t). The load information I(Q, t) that a PE Q has at time t can
then be represented as a set {(Pi, L(Pi, ti)|Pi ∈ {P1, . . . , Pn}} of PE-load pairs,
where the load of Pi was accurate at time ti. For perfect information (denoted
by PI), ti = t for all PEs, so PI(Q, t) = {(Pi, L(Pi, t)|Pi ∈ {P1, . . . , Pn}}. We
introduce the idea of outdated information with a delay of k time units by

OI(Q, t, k) = {(Pi, L(Pi, t− lat(Q,Pi)− k)|Pi ∈ {P1, . . . , Pn}},

164 V. Janjic and K. Hammond

 0

 10

 20

 30

 40

 50

 60

3 4 5 6 7 9 11

S
pe

ed
up

k

DCFixedPar(40,k,5ms,4) with load information

Load information:
None

Perfect
10ms outdated

100ms outdated
500ms outdated

1000ms outdated
2000ms outdated

Fig. 5. Speedups with outdated load information when using CRS

where lat(Q,Pi) is the communication latency between PEs Q and Pi. This
represents a more realistic setup, where the age of the load information that PE
Q has about PE P depends on the communication latency between P and Q,
and also on the fixed delay k (in time units) of the delivery of such information.
In an even more realistic setup, k could be a function, rather than a constant,
so this delay could be different for different PEs.

Figure 5 shows the speedups of the DCFixedPar(40,k,5ms,4) applications
under the CRS algorithm using outdated load information with various delays
(in ms). As expected, speedups decrease as the load information become more
outdated. However, we can still observe good speedups when the information
is relatively recent (with a delay of up to 100ms). With a delay of 500ms, the
information is still usable (i.e. speedups are notably better with than without
load information). For large delays of 1000ms and 2000ms, the load informa-
tion becomes practically unusable. Note that the load information delays in our
experiments are rather high with respect to the sizes of sequential tasks. In ap-
plications with coarser-grained tasks, load information with the same delay will
have less impact on the application’s speedup, since PE loads will change more
slowly. We therefore conclude that significant speedup improvements can be
achieved for the CRS algorithm not only with perfect information, but also with
relatively recent load information (which it is possible to obtain in real systems).
Only if load information is completely outdated does it becomes unusable.

6 Conclusions and Future Work

In this paper, we have investigated the performance of four state-of-the-art
distributed work-stealing algorithms (Random Stealing, Hierarchical Stealing,

Using Load Information in Work-Stealing on Distributed Systems 165

Cluster-aware Random Stealing and Adaptive Cluster-aware Random Stealing)
for irregular Divide-and-Conquer parallel applications. We have shown that, sur-
prisingly, for highly-irregular applications Hierarchical Stealing delivers the best
speedups. This differs from regular D&C applications, where previous work [16,8]
has shown that CRS delivers the best speedups.

We have also investigated the speedup improvements that can be made if ac-
curate system load is available. Our results show that perfect load information
brings significant speedup benefits for highly-irregular D&C applications. Sur-
prisingly, for less irregular ones, the availability of perfect load information is
not too significant. Our results show that if some load information is available,
then the CRS and ACRS algorithms deliver the best speedups for irregular D&C
applications. We have, moreover, shown that in order to obtain good speedups
with these algorithms, it is not necessary for the load information to be perfect: a
good approximation also suffices. This clearly indicates that the CRS and ACRS
algorithms are the best ones to choose for work-stealing on distributed systems
with non-uniform and potentially high communication latencies.

In future, we plan to extend the CRS algorithm with mechanisms for
approximating load information. Several good mechanisms for obtaining good
approximations of load information already exist, e.g. Grid-GUM [1] uses a fully-
distributed mechanism of load information propagation, and Atlas uses a Hier-
archical mechanism [2]. We intend to consider a combination of fully-distributed
and fully-centralised approaches, where load information is centralised within
the low-latency networks, and distributed over high-latency ones. We also in-
tend to investigate heuristics for estimating the number of tasks that should be
transferred in one steal operation and the impact that sending more than one
steal attempt has on various algorithms.

Acknowledgments. This research is supported by European Union grants
SCIEnce (RII3-CT-026133), ADVANCE (IST-248828) and ParaPhrase (IST-
288570), and by EPSRC grant HPC-GAP (EP/G 055181).

References

1. Al Zain, A.D., Trinder, P.W., Michaelson, G.J., Loidl, H.-W.: Managing Het-
erogeneity in a Grid Parallel Haskell. Scalable Computing: Practice and Expe-
rience 7(3), 9–25 (2006)

2. Baldeschwieler, J.E., Blumofe, R.D., Brewer, E.A.: ATLAS: An Infrastructure for
Global Computing. In: Proc. 7th Workshop on System Support for Worldwide
Applications, pp. 165–172. ACM (1996)

3. Blumofe, R.D., Joerg, C.F., Kuszmaul, B.C., Leiserson, C.E., Randall, K.H., Zhou,
Y.: Cilk: An Efficient Multithreaded Runtime System. In: Proc. PPoPP 1995: ACM
Symp. on Principles and Practice of Parallel Prog., pp. 207–216 (1995)

4. Blumofe, R.D., Leiserson, C.E.: Scheduling Multithreaded Computations by Work
Stealing. Journal of the ACM 46(5), 720–748 (1999)

5. Burton, F.W., Sleep, M.R.: Executing Functional Programs on a Virtual Tree of
Processors. In: Proc. FPCA 1981: 1981 Conf. on Functional Prog. Langs. and
Comp. Arch., pp. 187–194. ACM (1981)

166 V. Janjic and K. Hammond

6. Dinan, J., Larkins, D.B., Sadayappan, P., Krishnamoorthy, S., Nieplocha, J.: Scal-
able Work Stealing. In: Proc. SC 2009: Conf. on High Performance Computing
Networking, Storage and Analysis, pp. 1–11. ACM (2009)

7. Hammes, J., Bohm, W.: Comparing Id and Haskell in a Monte Carlo Photon
Transport Code. J. Functional Programming 5, 283–316 (1995)

8. Janjic, V.: Load Balancing of Irregular Parallel Applications on Heterogeneous
Computing Environments. PhD thesis, University of St Andrews (2011)

9. Janjic, V., Hammond, K.: Granularity-Aware Work-Stealing for Computationally-
Uniform Grids. In: Proc. CCGrid 2010: IEEE/ACM Intl. Conf. on Cluster, Cloud
and Grid Computation, pp. 123–134 (May 2010)

10. Michael, M.M., Vechev, M.T., Saraswar, V.A.: Idempotent Work Stealing. In: Proc.
PPoPP 2009: 14th ACM SIGPLAN Symp. on Principles and Practice of Parallel
Prog., pp. 45–54 (2009)

11. Neary, M.O., Cappello, P.: Advanced Eager Scheduling for Java-Based Adaptively
Parallel Computing. In: Proc. JGI 2002: Joint ACM-ISCOPE Conference on Java
Grande, pp. 56–65 (2002)

12. Olivier, S., Huan, J., Liu, J., Prins, J.F., Dinan, J., Sadayappan, P., Tseng, C.-W.:
UTS: An Unbalanced Tree Search Benchmark. In: Almási, G.S., Caşcaval, C., Wu,
P. (eds.) LCPC 2006. LNCS, vol. 4382, pp. 235–250. Springer, Heidelberg (2007)

13. Ravichandran, K., Lee, S., Pande, S.: Work Stealing for Multi-core HPC Clus-
ters. In: Jeannot, E., Namyst, R., Roman, J. (eds.) Euro-Par 2011, Part I. LNCS,
vol. 6852, pp. 205–217. Springer, Heidelberg (2011)

14. Saraswat, V.A., Kambadur, P., Kodali, S., Grove, D., Krishnamoorthy, S.: Lifeline-
based Global Load Balancing. In: Proc. PPoPP 2011: 16th ACM Symp. on Prin-
ciples and Practice of Parallel Prog., pp. 201–212 (2011)

15. Trinder, P.W., Hammond, K., Mattson Jr., J.S., Partridge, A.S., Peyton Jones,
S.L.: GUM: A Portable Parallel Implementation of Haskell. In: Proc. PLDI 1996:
ACM Conf. on Prog. Lang. Design and Implementation, pp. 79–88. ACM (1996)

16. Van Nieuwpoort, R.V., Kielmann, T., Bal, H.E.: Efficient Load Balancing for Wide-
area Divide-and-Conquer Applications. In: Proc. PPoPP 2001: 8th ACM SIGPLAN
Symp. on Principles and Practice of Parallel Prog., pp. 34–43 (2001)

17. Van Nieuwpoort, R.V., Maassen, J., Wrzesinska, G., Kielmann, T., Bal, H.E.:
Adaptive Load Balancing for Divide-and-Conquer Grid Applications. Journal of
Supercomputing (2004)

18. Van Nieuwpoort, R.V., Wrzesińska, G., Jacobs, C.J.H., Bal, H.E.: Satin: A High-
Level and Efficient Grid Programming Model. ACM TOPLAS: Trans. on Prog.
Langs. and Systems 32(3), 1–39 (2010)

Energy Efficient Frequency Scaling

and Scheduling for Malleable Tasks

Peter Sanders and Jochen Speck

Department of Informatics
Karlsruhe Institute of Technology, Germany

{sanders,speck}@kit.edu

Abstract. We give an efficient algorithm for solving the following
scheduling problem to optimality: Assign n jobs to m processors such
that they all meet a common deadline T and energy consumption is min-
imized by appropriately controlling the clock frequencies of the proces-
sors. Jobs are malleable, i.e., their amount of parallelism can be flexibly
adapted. In contrast to previous work on energy efficient scheduling we
allow more realistic energy consumption functions including a minimum
and maximum clock frequency and a linear term in energy consumption.
We need certain assumptions on the speedup function of the jobs that
we show to apply for a large class of practically occurring functions.

1 Introduction

In recent years the environmental impact of computing systems and their energy
usage was increasingly recognized as an important issue. Additionally the energy
costs of computers became a more important part of the total costs of computing
systems. Hence much research effort was put into reducing the energy usage of
computers. Frequency scaling and power gating (switch off entire processors if
they are not needed) which were originally invented to increase battery life time
of mobile devices became more and more common in PC and server systems.
Theoretical research work in this area mostly considered NP-hard problems or
jobs which are only sequential (see [7] and [3] for example). The well known YDS
algorithm [8] which also computes an energy-optimal schedule uses a similar
energy model as our work but also only considers one processor and serial jobs.
This work is focused on the energy minimization problem for jobs with flexible
parallelism called malleable jobs as defined in [4]. In this model we will be able
to adapt previous work on makespan optimization [2], [1] and [6] to achieve
polynomial time algorithms.

The main result of our work is that we can compute the optimal schedule
and frequencies to minimize the energy usage for n jobs on m processors in
time O(n log(mn) · logm) or even in O

(
(n
m + 1) logm · log(mn)

)
if we use all m

processors for the computation. We need some assumptions about the speedup
functions but show that these are fulfilled in many common cases. We also gen-
eralize the model to allow an additional linear term in energy consumption. Fur-
thermore, we consider the problem with minimal and maximal clock frequencies,

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 167–178, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

168 P. Sanders and J. Speck

for which we give an ε-approximation. Note that this is an important step to
bridge the gap between real world processors and the simple power laws usually
used in theoretical results.

The rest of the paper is organized as follows: In Section 2 we describe the
model. In Section 2.1 we show that the assumptions we made are commonly
fulfilled. The problem for one job is solved in Section 3. In Section 4 we introduce
noninteger processor numbers and the energy function for them. The algorithm
is given in Section 5. The model is generalized in Section 6.

2 Model

We have a system consisting of m uniform (or physical identical) processors
whose speed (processing frequency) can be adjusted independently. Since one
usually has to increase the processor voltage as one increases the processing
frequency and the voltage is proportional to the electrical current, it is plausible
that the power consumption of a processor is proportional to the cubic frequency.
For our model we set the power consumption of one processor proportional to
fα with α > 2 and processing frequency f . Frequency changes of processors are
immediate and with negligible overhead. If a processor is not used, the power
consumption of that processor will be 0 during that time. In the initial machine
model we have no maximum frequency and the power consumption of a processor
approaches 0 if the frequency approaches 0. An enhanced model is introduced
in Section 6. For the initial model we get

E = p · fα · T

for the energy consumption E of a job which runs on p processors with frequency
f for a time T .

The n jobs we want to schedule on this machine are ready at time 0 and have
a common deadline T . Job j ∈ {1, . . . , n} requires wj clock cycles on a single
processor. The jobs are malleable which means that the number of processors
working on them can be changed over time. There is no penalty for changing
the number of processors. However, a function sj(p) gives the speedup achieved
by using p processors for job j, i.e., the amount of work done for a job j during
a time interval of length t on p processors running at frequency f is f · sj(p) · t
(we will drop the j of sj when there is only one job or the job is clear).

For the rest of the article we assume that two restrictions are met for the
speedup functions s. In Section 2.1 we argue that these conditions are met by a
large class of relevant speedup functions.

The first restriction is that all speedup functions are concave at least be-
tween 0 and the processor number p̂ where the maximal speedup is reached. Of
course the speedup for 0 processors is 0 and the speedup for 1 processor is 1.

The second restriction is that the function h defined as h(0) = 0 and for
other p as

h : p → α−1

√
sα(p)

p

Energy Efficient Frequency Scaling and Scheduling for Malleable Tasks 169

is monotonically increasing for all p < p̄ for a p̄ ∈ N and monotonically decreasing
for all p > p̄. Additionally h should be concave on (0, p̄]. We set p̄ to be the
smallest value for which h reaches its maximum then h is strictly increasing on
(0, p̄] because of the concavity on (0, p̄]. Both functions (h, s) are in general only
known for integer values of p. We can see directly p̄ ≤ p̂.

As this work heavily depends on convexity or concavity properties of functions
we restate the following definition known from calculus:

Definition 1. A function f is said to be concave (convex) on an interval [a, b]
when for all x, y ∈ (a, b) with x < y the following holds:
For each r ∈ (0, 1) with z = ry + (1 − r)x we have f(z) ≥ (1 − r)f(x) + rf(y)
(f(z) ≤ (1− r)f(x) + rf(y)).

For functions which are two times continuously differentiable it is known that
concavity (convexity) is equivalent to f ′′(z) ≤ 0 (f ′′(z) ≥ 0) ∀z ∈ (a, b).

2.1 Common Speedup Functions

All speedup functions considered in this section are given as closed formulas and
are two times continuously differentiable except for a finite number of points.
We want to show in this section that the quite technical restrictions from the
model hold for many typical speedup functions and hence do not restrict the use
of the results of this paper.

Linear Speedup Functions. One of the easiest types of parallel jobs are those with
linear speedup between 1 and p∗ processors and s(p) = s(p∗) for all p > p∗ (even
for embarrassingly parallel jobs the maximal speedup is reached for p = m). If
we set p̄ = p∗ then h is monotonically decreasing for all p > p̄ and h(p) = p
for all p ∈ (0, p̄) which is monotonically increasing and concave. The speedup
function is also concave between 0 and p∗. Hence these kind of jobs fulfills the
restrictions.

Jobs with Amdahl’s Law. Another kind of jobs one often sees are these which
fulfill Amdahl’s Law. If the amount of sequential work is w

k and the amount of
parallelizable work is (1 − 1

k)w, we get

s(p) =
w

w
k + (1− 1

k)
w
p

=
k · p

p+ k − 1

as speedup function. Doing the math we get h′(p) > 0⇔ p < (α− 1)(k− 1) and
thus p̄ = (α − 1)(k − 1). For h′′(p) we get h′′(p) < 0 ⇔ p < 2 · (α − 1)(k − 1).
Hence h is concave for all p ∈ (0, p̄) and monotonically increasing in (0, p̄) and
monotone decreasing in (p̄,∞). The speedup function is concave for all p. Thus
these kind of jobs fulfills the restrictions.

Jobs with Parallelization Overhead. A situation also very common in parallel
computing is that one can parallelize all the work but one has to pay an ad-
ditional overhead g depending on the number of processors with g(p) ≥ 0 and
g′(p) ≥ 0 for all p ≥ 1. Then we get this speedup function:

170 P. Sanders and J. Speck

s(p) =
w + g(1)
w
p + g(p)

=
p · w + p · g(1)
w + p · g(p)

With some calculus we get:

h′(p) > 0⇔ (α− 1)w > p · (g(p) + αpg′(p))

h′′(p) < 0⇔

p · (g(p) + pg′(p))2
2α− 1

α− 1
< (w + pg(p))(2g(p) + 4pg′(p) + p2g′′(p))

All p which fulfill h′(p) > 0 fulfill also h′′(p) < 0 if g′(p) + pg′′(p) ≥ 0. To have
only one local maximum of h the term p · (g(p) + αpg′(p)) has to be strictly
increasing but this is the case if 2g′(p)+pg′′(p) > 0. Hence if 2g′(p)+pg′′(p) > 0
holds for an overhead g then the second restriction is fulfilled.

If w = p2g′(p) then s′(p) = 0 and if the function p → p2g′(p) is strictly
increasing this only holds for only one p = p∗. If 2g′(p) + pg′′(p) > 0 then
p → p2g′(p) is strictly increasing and s′′(p) < 0 for all p ∈ (0, p∗]. For p̂ = p∗ the
first restriction is fulfilled.

Hence if 2g′(p) + pg′′(p) > 0 and g(p) ≥ 0 and g′(p) ≥ 0 hold for all p ≥ 1
both restrictions are fulfilled. We can check this condition for some overheads:

g(p) g′(p) g′′(p) 2g′(p) + pg′′(p)
p 1 0 2

log p p−1 −p−2 p−1

p log p log p+ 1 p−1 3 + 2 log p√
p (2

√
p)−1 −(4p√p)−1 3 · (4√p)−1

p2 2p 2 6p

log2 p 2p−1 log p 2p−2 · (1− log p) 2p−1 · (1 + log p)

So the condition is fulfilled for all of these overheads and all possible sums of
these overheads.

3 The Optimal Solution for the Single-Job Case

In this section we want to compute the optimal number of processors in terms
of energy usage for a job which fulfills the restriction from Section 2. Now we
will give some lemmata which also will be useful for the multi-job case:

Lemma 1. In an optimal solution for any number of processors p used during
the computation of the job the processing frequency is always the same if you use
p processors.

The detailed proof will be given in the full paper.

Lemma 2. For only one job running on the machine it is optimal to use p̄
processors for the whole time [0, T].

Energy Efficient Frequency Scaling and Scheduling for Malleable Tasks 171

Proof. If we want a job to do an amount of work w during a time interval I of
length t with a constant number of processors, the operating frequency depends
only on the speedup reached during I: f = w

s(p)·t . Thus the energy becomes now

a function only dependent on p:

E =
wα

tα−1
· p

sα(p)
=

wα

tα−1
· 1

hα−1(p)

Thus the energy consumption is minimized if h is maximized and it is optimal
to use p̄ processors during I (this is also true for w = 0).

Hence this is true for all subintervals of [0, T] and thus it is optimal to use p̄
processors all the time.

Because of Lemma 1 the work done in an interval I for a job which runs on p̄
processors for the whole time [0, T] is proportional to the length of I. Because
of Lemma 2 the algorithm to find the optimal number of processors for a job
consists only of the search for the integer value p̄ that maximizes h. It is also
obvious that E is strictly decreasing on [1, p̄]. It is possible that p̄ > m but as h
is strictly increasing in (0, p̄), the minimal E is reached for p = m in this case.

4 Energy Function for Non-integer Processor Numbers

Until this section all processor numbers were integer. In order to solve the energy-
optimal scheduling problem for multiple jobs we need to handle noninteger pro-
cessor numbers. For a noninteger processor number we introduce the notation
p + τ for the rest of the paper where p is the integer part and τ ∈ [0, 1). The
main goal of this Section is to compute the minimal energy consumption (and
according optimal schedule) of a job with work w to be done in time T when
the job can use an average number of p+ τ processors. A job runs on an average
processor number p+ τ = T−1

∑m
p=0 tpp during time T =

∑m
p=0 tp if it runs on

p processors for time tp. We prove that for any average processor number p+ τ
Consider a job that runs on an average processor number p+ τ . We prove that
it is optimal to only use p and p+ 1 processors for the job. Then we define the
the energy function E of the job to be the mapping from the average processor
number p + τ to the minimal possible energy consumption with this processor
number. In the end we will show some useful properties of E. All processor num-
bers in this section are not bigger than p̄ otherwise you could shrink all larger
processor numbers to p̄ without using more energy (because of Lemma 2).

Lemma 3. If the average number of processors is τ then it is optimal to run on
1 processor for time τT and not to run for time (1− τ)T .

Proof. We consider the case of a job which runs on p processors for a time interval
I1 of length t1 and runs on 0 processors (or does not run) for a time interval I2 of
length t2. Let w be the total work done in I1 (and I2) and Eold = wα

tα−1
1

· p
sα(p) be

the energy used. Set τ := t1·p
t1+t2

. We will now use 1 processor for time τ(t1 + t2)
and 0 processors for time (1− τ)(t1 + t2) and show that this does the same work

172 P. Sanders and J. Speck

with no more energy. The energy used to do work w with 0 and 1 processor is

Enew = wα

(τ ·(t1+t2))α−1 · 1
sα(1) =

sα(p)
pα ·Eold ≤ Eold.

The repeated use of this argument for all intervals where the job runs on more
than one processor shows that if the average number of processors used during
time T is τ ≤ 1 then it is optimal to use one processor during time τ · T and 0
processors during time (1 − τ) · T .
Lemma 4. If the average number of processors is p+ τ ≥ 1 then it is optimal
to run on at least 1 processor throughout [0, T].

The detailed proof will be given in the full paper.

Lemma 5. If the average number of processors is p+τ ≥ 1 then it is optimal to
run on p+1 processors for time τT and to run on p processors for time (1−τ)T .

Proof. We consider the case of a job which runs on p1 processors for a time
interval I1 of length t1 and runs on p2 processors for a time interval I2 of length
t2 (because of Lemma 4 p1, p2 > 0) w.l.o.g. 0 < p1 < p2 ≤ p̄. Let wi be the

work done in Ii and Ei =
wα

i

tα−1
i

· pi

sα(pi)
be the energy used in Ii for i ∈ {1, 2}.

Let w = w1 + w2 be the total work done. We now compute how the work w
is optimally distributed between I1 and I2. If we do βw work during I1 and
(1− β)w work during I2 we get the following energy as a function of β ∈ (0, 1):

E(β) =
βαwα

tα−1
1

· p1
sα(p1)

+
(1− β)αwα

tα−1
2

· p2
sα(p2)

We now have to find the minimum of E(β). We do this by computing the β
with E′(β) = 0. This β is a minimum because E′′(β) > 0 for all β ∈ (0, 1). For
A = p1

sα(p1)t
α−1
1

and B = p2

sα(p2)t
α−1
2

the minimizing β is

β =
α−1
√
B

α−1
√
A+ α−1

√
B

Thus the value with the optimal β for E is E = wα · (t1h(p1) + t2h(p2))
−α+1.

We set p := � t1p1+t2p2

t1+t2
� and τ := t1p1+t2p2

t1+t2
− p then p + τ is the average

number of processors used during I1 and I2 and p1 ≤ p < p + 1 ≤ p2. We now
want to show that using p processors during time (1 − τ)(t1 + t2) and p + 1
processors during time τ · (t1 + t2) is an optimal solution to do the work w
during I1∪I2. In order to do this it is sufficient to show that t1h(p1)+ t2h(p2) ≤
τ · (t1 + t2)h(p+ 1) + (1− τ)(t1 + t2)h(p).

If we set r := τ t1+t2
t1

· p2−(p+1)
p2−p1

then 1 − r = (1 − τ) t1+t2
t1

· p2−p
p2−p1

and with

s := τ t1+t2
t2

· p+1−p1

p2−p1
we get 1− s = (1− τ) t1+t2

t2
· p−p1

p2−p1
. With this we have:

t1h(p1) + t2h(p2) = rt1h(p1) + st2h(p2) + (1− r)t1h(p1) + (1 − s)t2h(p2)

= τ · (t1 + t2)

(
p2 − (p+ 1)

p2 − p1
h(p1) +

p+ 1− p1
p2 − p1

h(p2)

)
+(1− τ)(t1 + t2)

(
p2 − p

p2 − p1
h(p1) +

p− p1
p2 − p1

h(p2)

)
≤ τ · (t1 + t2)h(p+ 1) + (1− τ)(t1 + t2)h(p)

Energy Efficient Frequency Scaling and Scheduling for Malleable Tasks 173

because h is concave for p1, p, (p+ 1), p2 ∈ (0, p̄].
The repeated use of this argument for all intervals with different numbers of

processors shows that if the average number of processors used during time T is
p+ τ with p ≥ 1 then it is optimal to use p+1 processors during time τ · T and
p processors during time (1− τ) · T .
With Lemma 3 and Lemma 5 we can define the energy usage for an average
number of processors p+ τ as the optimal energy usage of this case:

Definition 2. A job which does work w during time T on an average number
of processors p+ τ with p ∈ N0 uses energy

E(p+ τ) := E(p, τ) :=
wα

Tα−1
· (τ · h(p+ 1) + (1− τ)h(p))−α+1

It is immediately clear that E is a continuous function on (0,∞) and has the
same values as E from Section 3 on integer p.

Lemma 6. The function E(p + τ) as defined in Definition 2 is strictly convex
on (0, p̄] and has its minimum at p̄.

Proof. The thing left to show is that E(p+τ) is strictly convex on (0, p̄) and the

minimum at p̄. We will first show that ∂2E(p,τ)
∂τ2 = Eττ (p, τ) > 0 for all p+1 ≤ p̄.

Eτ (p, τ) = − wα

Tα−1
· (α− 1)(τ · h(p+ 1) + (1 − τ)h(p))−α(h(p+ 1)− h(p))

Eττ (p, τ) =
wα

Tα−1
· α(α − 1)(τ · h(p+ 1) + (1− τ)h(p))−α−1(h(p+ 1)− h(p))2

Thus Eττ (p, τ) > 0⇔ h(p+1)− h(p) > 0⇔ p+1 ≤ p̄. It remains to check that

lim
τ→1

Eτ (p, τ) ≤ lim
τ→0

Eτ (p+ 1, τ)

⇔ h(p+ 1)− h(p) ≥ h(p+ 2)− h(p+ 1)

The last inequality is true for p+2 ≤ p̄ because h is concave and true for p+1 = p̄
because h(p+1) ≥ h(p), h(p+2). Thus we have shown that E is strictly convex
for p+ 1 ≤ p̄ and Eτ is strictly increasing for p+ 1 ≤ p̄.

The fact that E has its minimum at p̄ directly comes from the fact that h has
its maximum at p̄.

Definition 3. We define the left derivative of E for integer processor numbers
as
−→
E (p) := lim

τ→1
Eτ (p− 1, τ) and the right derivative as

←−
E (p) := lim

τ→0
Eτ (p, τ).

For noninteger p + τ the left and right derivative are the same and we define−→
E (p+ τ) =

←−
E (p+ τ) = Eτ (p, τ) =: E′(p+ τ).

Lemma 7. We have
←−
E (0) = −∞ and

←−
E (p̄) ≥ 0 and

−→
E (p+τ) ≤ ←−

E (p+τ) ∀p+
τ ∈ (0, p̄] and

−→
E (p+ τ),

←−
E (p+ τ) are strictly increasing on (0, p̄].

This lemma is obvious and needs no proof. With Lemma 7 we can define the
inversion of the derivative of the energy function:

174 P. Sanders and J. Speck

Definition 4. We have E as in Definition 2 and the left and right derivatives
as in Definition 3. Then for any c ∈ (−∞, 0] we define (E′)−1(c) := p∗ + τ∗ for

p∗ + τ∗ ∈ (0, p̄] with
−→
E (p∗ + τ∗) ≤ c ≤ ←−

E (p∗ + τ∗).

Lemma 8. (E′)−1 as defined in Definition 4 is a continuous and monotonously
increasing function on (−∞, 0].

The detailed proof will be given in the full paper.

5 The Optimal Solution for the Multi-job Case

After the technical section we are now ready to prove the main theorem:

Theorem 1. We have n jobs and for each job j an energy function Ej as in
Definition 2 and the left and right derivatives as in Definition 3 and the inverse
of the derivative of the energy function (E′

j)
−1 as in Definition 4. If we want to

minimize
∑

j Ej(pj+τj) under the restriction
∑

j(pj+τj) ≤ m then there exists

a c ∈ R such that
−→
Ej(p

∗
j + τ∗j) ≤ c ≤ ←−

Ej(p
∗
j + τ∗j) for all j holds for an optimal

solution (p∗1 + τ∗1 , . . . , p
∗
n + τ∗n).

If we have found a c such that
∑

j(E
′
j)

−1(c) = m or
∑

j(E
′
j)

−1(c) < m and

(E′
j)

−1(c) = p̄j for all j then we have found an optimal solution.

Proof. We do the first part of the proof by contradiction. Suppose there are
i, j ∈ {1, . . . , n} with

−→
Ej(p

∗
j + τ∗j) >

←−
Ei(p

∗
i + τ∗i) in an optimal solution. Because

−→
Ej is continuous from the left and

←−
Ei is continuous from the right there exists a

ε such that for all y ∈ [p∗j + τ∗j − ε, p∗j + τ∗j] and all z ∈ [p∗i + τ∗i , p
∗
i + τ∗i + ε] we

have
−→
Ej(y) ≥

←−
Ei(z) + ε. Thus we have

Ej(p
∗
j + τ∗j)− Ej(p

∗
j + τ∗j − ε) ≥ inf

y∈[p∗
j+τ∗

j −ε,p∗
j+τ∗

j]

−→
Ej(y) · ε

≥ sup
z∈[p∗

i+τ∗
i ,p

∗
i +τ∗

i +ε]

(
←−
Ei(z) + ε) · ε ≥ Ei(p

∗
i + τ∗i + ε)− Ei(p

∗
i + τ∗i) + ε2

⇔ Ej(p
∗
j + τ∗j) + Ei(p

∗
i + τ∗i) ≥ Ej(p

∗
j + τ∗j − ε) + Ei(p

∗
i + τ∗i + ε) + ε2

Hence we have shown that there exists a better solution than the optimal solution
which leads to the contradiction.

In case of
∑

j(E
′
j)

−1(c) < m and (E′
j)

−1(c) = p̄j for all j every job runs with
its optimal number of processors. Thus no job can save energy trough running
on a different number of processors. (E′

j)
−1(c) = p̄j is always the case for c = 0.

In case of
∑

j(E
′
j)

−1(c) = m we have used all processors available. As we have

c ≤ 0 and (E′
j)

−1(c) ≤ p̄j for all j in this case we would increase energy usage if

we used less processors. As
−→
Ej(p

∗
j + τ∗j + δ) >

←−
Ei(p

∗
i + τ∗i − δ) for all δ > 0 and

all i, j it is not possible to improve the solution by transferring an amount δ of
processors from job i to job j. Hence the solution can not be improved and thus
is optimal.

Energy Efficient Frequency Scaling and Scheduling for Malleable Tasks 175

With Theorem 1 we can now give the algorithm. Let c∗ be the c of an optimal
solution as in Theorem 1 and p∗j + τ∗j be the amount of processors of job j in the

optimal solution. If we have a c such that
∑

j(E
′
j)

−1(c) < m and (E′
j)

−1(c) < p̄j
for at least one j then we know c < c∗ because all (E′

j)
−1 are monotonously

increasing. If we have a c such that
∑

i(E
′
i)

−1(c) > m then we know c > c∗ also
because all (E′

i)
−1 are monotonously increasing. Hence we can use an interval

halving technique to find the optimal c = c∗.
We also know in which interval to search. The maximal possible c is 0. If we use

the same amount of pm+ τm = min{m
n , 1} processors for each job then we know

that c∗ can not be smaller than cm = mini
←−
E i(pm + τm) because pm + τm ≤ p̄i

for all i and
∑

i(E
′
i)

−1(cm) ≤ m.
For each job i we have a set of 2p̄i ≤ 2m bend points. These are the points←−

E i(p) and
−→
E i(p) for all p ∈ {1, . . . , p̄}. If we know c∗ lies in an interval (c�, cu)

which contains no bend points, we can solve the problem directly. For i with←−
E i(p) ≤ c� < cu ≤

−→
E i(p+ 1) for a certain p we have p∗i + t∗i ∈ (p, p+ 1) (case

1). For i with
−→
E i(p) ≤ c� < cu ≤

←−
E i(p) for a certain p we have p∗i + t∗i = p

(case 2) thus t∗i = 0. Other cases can not exist.
The computation of (E′

i)
−1(c) is done in two steps. First we search for the two

adjacent bend points of c. If we are in case 2 we are done. In case 1 we know p in
E′

i(p+τ) = c. With some algebra we get (τ ·(hi(p+1)−hi(p))+hi(p))
−α ·Di = c

for a positive Di which does not depend on τ and thus we can compute τ with

τ =
α
√

c−1·Di−hi(p)

hi(p+1)−hi(p)
and then (E′

i)
−1(c) = p+ τ .

We will now compute the exact solution if all bend points are eliminated.
W.l.o.g. let the n jobs be ordered such that the jobs 1, . . . , n1 are from case
1 and the jobs n1 + 1, . . . , n are from case 2. We set mr = m −

∑n
i=1 p

∗
i thus∑n1

i=1 τ
∗
i = mr. For all jobs from case 1 the derivative of the energy function

E′
i(p

∗
i , τ

∗
i) has to be the same (= c∗). With some algebra we get:

D1 · (τ∗1 h1(p1 + 1) + (1− τ∗1)h1(p1))
−α = . . . =

Dn1 · (τ∗n1
hn1(pn1 + 1) + (1− τ∗n1

)hn1(pn1))
−α = c∗

⇔ D
−1
α
1 · (τ∗1 h1(p1 + 1) + (1− τ∗1)h1(p1)) = . . . =

D
−1
α
n1 · (τ∗n1

hn1(pn1 + 1) + (1− τ∗n1
)hn1(pn1)) = (c∗)

−1
α

With Ai = D
−1
α

i · (hi(pi + 1)− hi(pi)) and Bi = D
−1
α
i hi(pi) and G = (c∗)

−1
α we

get Aiτ
∗
i + Bi = G and thus τ∗i = G

Ai
− Bi

Ai
for all i of case 1. We can compute

G through

mr =

n1∑
i=1

τ∗i = G

n1∑
i=1

1

Ai
−

n1∑
i=1

Bi

Ai

and with G we can compute the τ∗i and thus the final solution.
With these prerequisites we can now describe the algorithm:

1. Set cu = 0 and c� = cm and the range of bend points [1, p̄i] for each job i.
2. Pick a randomly chosen bend point in (c�, cu) and set c accordingly.

176 P. Sanders and J. Speck

3. Check if
∑

i(E
′
i)

−1(c) > m then cu = c else c� = c and update the range of
bend points for each job.

4. If there are bend points left in (c�, cu) goto 2.
5. Do the exact calculation as above.

The expected number of times the loop 2-4 is executed is in O(log(mn)) because
there are Θ(nm) bend points. Each time we have to choose one random bend
point this is possible in time O(n). In 3 we have to invert n functions. Each can
be done in time O(logm) if all values of hi(p) are given. Additionally we have
to update n ranges of breakpoints in 3. Each update can be done in O(1) with
the p computed during function inversion done for the same job. The check in 4
can be done in O(n). The exact calculation also takes time in O(n).

Altogether the algorithm takes time in O(n log(mn) · logm). It remains to
compute the frequencies and to place the jobs onto the m× T processor × time
rectangle.

We now know p∗i and t∗i for each job i. We reserve p∗i processors for each job i
for the whole interval [0, T]. For the τ∗i and the remaining processors we can use
McNaughton’s wrap-around rule [5]. This can be done in time O(n) and each
job i runs on p∗i processors for time (1− τ∗i)T and on pi + 1 processors for time
τ∗i T additionally any job changes its number of processors at most two times. A
more detailed solution for a similar problem is given in [1]. With τ∗i and p∗i we
can compute the work distribution between the phase with p∗i processors and
the phase with p∗i +1 processors in a similar way as we computed β in the proof
of Lemma 5. Then the time, work and number of processors of both phases are
known and the frequency can be computed with w = s(p) · f · t.

The parallelization is done in a similar way as we did it in [6] for another
problem. If each processor does the computation of (E′

i)
−1(c) for n

m jobs and
takes care of their list of bend points we only have to use collective operations
for sum, broadcast of c and a distributed random pick. Such operations cost
time Θ(logm). In the loop 2-4 each processor computes (E′

i)
−1(c) for n

m jobs in
O
(
n
m logm

)
and takes part in the collective sum in time O

(
n
m + logm

)
. Thus

the main part of the algorithm runs in O
(
(n
m + 1) logm · log(mn)

)
. Frequency

computation can be done in time O
(
n
m + 1

)
. The placement can be done with

prefix sum in time O
(
n
m + logm

)
.

6 The Enhanced Model

If we have an additional linear term in the energy usage (maybe from memory
or other parts which can not change their frequency) like in Enew = p · fα · T +

p · δ · T with δ being independent of the job then
−→
E new(p, t) =

−→
E (p, t) + δT

and
←−
E new(p, t) =

←−
E (p, t) + δT . The optimal solution for the single job case is

p̄new = (E′
new)

−1(0) ≤ p̄ which can be noninteger. As E′
new is just E′ with an

additional constant we can use the same techniques as in the original model to
get an optimal solution for the multi-job case.

Many processors have minimal and maximal operating frequencies (because
of memory requirements or the length of signal paths). For this case we have

Energy Efficient Frequency Scaling and Scheduling for Malleable Tasks 177

to do a bit more theory first. We will restrict the presentation here to case of a
maximal frequency fG because the case of a minimal frequency is analogous.

There are two amounts of resources which are interesting. One is the absolute
minimal amount of resources for our job p1 + τ1 and the other is the minimal
amount of resources p2 + τ2 above we can use the standard techniques already
introduced. Let fq(p + τ) be the frequency for the part of the job which runs
on q processors. fq is defined on (q − 1, q + 1). When we use β from the proof
of Lemma 5 we can compute fp(p+ τ) and fp+1(p+ τ) for the optimal solution
through βw = s(p+ 1)fp+1(p+ τ)T · τ and (1− β)w = s(p)fp(p+ τ)T · (1− τ).
Doing some algebra we get:

fp(p+ τ)

fp+1(p+ τ)
= α−1

√
s(p)(p+ 1)

s(p+ 1)p
≥ 1

Thus fp(p+τ) ≥ fp+1(p+τ). Because the energy usageE is a continuous decreas-
ing function of p+τ we know that fp+1 and fp are continuous decreasing functions.
Hence we can use the techniques for the case with unrestricted frequencies as long
as fp(p+τ) ≤ fG this gives us p2+τ2. The absolute minimum of resources needed
for our job can be computed trough w = s(p1)fGT (1−τ1)+s(p1+1)fGTτ1. Let p
be such that fp+1(p+1) ≤ fG ≤ fp(p). As fp(p) ≥ fp(p2 + τ2) ≥ fp+1(p2 + τ2) ≥
fp+1(p+1) and s(p)fGT ≤ w ≤ s(p+1)fGT we know that p ≤ p1+τ1 ≤ p2+τ2 ≤
p+ 1 and thus p = p1 = p2.

Now we can define the energy function Ẽ on (p+τ1, p+τ2). The frequencies on
(p+τ1, p+τ2) will be f̃p and f̃p+1. We know from the proof of Lemma 5 that E(β)

is convex hence for an optimal energy usage f̃p(p + τ) = fG for all τ ∈ [τ1, τ2].

Thus we can compute f̃p+1(p+τ) trough w = s(p)fGT ·(1−τ)+s(p+1)f̃p+1(p+

τ)Tτ . With f̃p+1(p+ τ) we can compute Ẽ(p+ τ). Doing some analysis we see

that Ẽ is convex on (p+τ1, p+τ2). Obviously Ẽ is continuous, Ẽ(p+τ) ≥ E(p+τ)

and Ẽ(p+τ2) = E(p+τ2). Hence we also have
−→̃
E (p+τ2) ≤

−→
E (p+τ2). We also can

compute M :=
←−̃
E (p+ τ1) = Tfα

G(s(p+1)−α · (p+1)(s(p+1)− s(p)))s−1(p+1)
which is a function of the input values.

Let c be as in Section 5 then we get: If c ≤
←−̃
E (p+ τ1) our job just gets p+ τ1

processors because it is the minimal number so we can put this amount away

and continue with the other jobs. If c ≥
−→̃
E (p+τ2) we can use the technique from

Section 5. If we know that the optimal solution lies between the bend points for
p+ τ1 and p+ τ2 (these are new bend points for the enhanced model) then we
do not know how to compute an exact solution. But then we know the minimal
derivative M (the same is true for a minimal frequency).

If we want to compute a solution which only uses an amount of ε more energy
than the optimal solution we can do it in the following way: For each job for
which the amount of processors is already known we sum up these amounts.
Let the difference between these amounts and m be m̃. We now do interval
halving on (M,

−→̃
E (p + τ2)). For every c we invert the E′ and Ẽ′ (depending

on which one applies) with an maximal additive error of ε
8n . Then we compare∑

(E′)−1(c) +
∑

(Ẽ′)−1(c) with m̃. If the remaining interval is smaller than

178 P. Sanders and J. Speck

ε · (M · 2m)−1 we know that the lower end of the interval stands for a feasible
solution with a maximal additive error of ε.

The algorithm needs time in O
(
n log(8nε−1) · log(2mM2ε−1)

)
and can be

parallelized in a similar way as above.
The placement is done as in Section 5. The frequency calculations for jobs

with energy function Ẽ is clear for the others we can do it in the same way as
in Section 5.

7 Conclusion

We have shown that with two restrictions it is possible to solve our energy effi-
cient scheduling problem optimally in near linear time. The major step to solve
the problem was to build continuous convex energy functions and to use some
calculus on them. This is somehow surprising because many related problems
are known to be NP-hard. The two restrictions do not limit the applicability too
much because many classes of parallel jobs fit into these restrictions.

Acknowledgment. This work was partly supported by the German Research
Foundation (DFG) as part of the Transregional Collaborative Research Center
”Invasive Computing” (SFB/TR 89). We also like to thank the unknown reviewer
who gave a very helpful two page review.

References

1. Blazewicz, J., Kovalyov, M.Y., Machowiak, M., Trystram, D., Weglarz, J.: Preempt-
able malleable task scheduling problem. IEEE Transactions on Computers 55 (2006)

2. Blazewicz, J., Machowiak, M., Weglarz, J., Kovalyov, M.Y., Trystram, D.: Schedul-
ing malleable tasks on parallel processors to minimize the makespan: Models and
algorithms for planning and scheduling problems. Annals of Operations Research 129
(2004)

3. Chen, J.-J., Kuo, T.-W.: Multiprocessor energy-efficient scheduling for real-time
tasks with different power characteristics. In: International Conference on Parallel
Processing, ICPP 2005 (2005)

4. Leung, J.Y.-T. (ed.): Handbook of Scheduling. CRC (2004)
5. McNaughton, R.: Scheduling with deadlines and loss functions. Management Sci-

ence 6(1) (1959)
6. Sanders, P., Speck, J.: Efficient parallel scheduling of malleable tasks. In: 2011 IEEE

International Parallel Distributed Processing Symposium, IPDPS (2011)
7. Yang, C.-Y., Chen, J.-J., Kuo, T.-W.: An approximation algorithm for energy-

efficient scheduling on a chip multiprocessor. In: Proceedings of the Conference on
Design, Automation and Test in Europe, DATE 2005, vol. 1 (2005)

8. Yao, F., Demers, A., Shenker, S.: A scheduling model for reduced cpu energy. In:
Annual Symposium on Foundations of Computer Science, pp. 374–382. IEEE Com-
puter Society (1995)

Scheduling MapReduce Jobs in HPC Clusters

Marcelo Veiga Neves, Tiago Ferreto, and César De Rose

Faculty of Informatics, PUCRS, Brazil
marcelo.neves@acad.pucrs.br, {tiago.ferreto,cesar.derose}@pucrs.br

Abstract. MapReduce (MR) has become a de facto standard for large-
scale data analysis. Moreover, it has also attracted the attention of the
HPC community due to its simplicity, efficiency and highly scalable par-
allel model. However, MR implementations present some issues that may
complicate its execution in existing HPC clusters, specially concerning
the job submission. While on MR there are no strict parameters required
to submit a job, in a typical HPC cluster, users must specify the number
of nodes and amount of time required to complete the job execution.
This paper presents the MR Job Adaptor, a component to optimize the
scheduling of MR jobs along with HPC jobs in an HPC cluster. Ex-
periments performed using real-world HPC and MapReduce workloads
have show that MR Job Adaptor can properly transform MR jobs to be
scheduled in an HPC Cluster, minimizing the job turnaround time, and
exploiting unused resources in the cluster.

1 Introduction

The MapReduce (MR) model is in increasing adoption by several researchers,
including the ones that used to rely on HPC solutions [19,18]. Much of this
enthusiasm is due to the highly visible cases where MR has been successfully used
by companies like Google, Yahoo, and Facebook. Besides, MR provides a simpler
approach to address the parallelization problem over traditional approaches, such
as MPI [10].

MR implementations, such as Hadoop [20], provide a complete execution plat-
form for MR applications, normally using a dedicated cluster in combination with
an optimized distributed file system. As consequence, in order to enable the ex-
ecution of regular HPC and MR jobs in a computing laboratory, two distinct
clusters are required. It leads to a split in the laboratory investments, in terms
of hardware and staff, to support the two models, instead of focusing in a single,
large scale and powerful computing infrastructure.

We believe that users and computing laboratory administrators may benefit
from using already existing HPC clusters to execute MR jobs. In order to enable
it, one of the first issues that must be addressed is regarding the job submission
process. While MR implementations provide a straightforward job submission
process which involves the whole cluster, HPC users submit their jobs to a
Resource Management System (RMS) and need to specify the number of nodes
and amount of time that should be allocated for complete the job execution.

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 179–190, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

180 M.V. Neves, T. Ferreto, and C. De Rose

HPC User

MR User

HPC Job
(# of nodes, time)

MR Job
(# of nodes, time)

Resource
Management

System

MR Job
Adaptor

MR Job
(# of map tasks, # of reduce tasks,

job profile)

Cluster

Fig. 1. Architecture of the HPC cluster with the MR Job Adaptor

Current solutions, such as Hadoop on Demand (HOD) [1] and myHadoop [13]
allow one to create a virtual Hadoop cluster as a partition of a large physical clus-
ter. However, the user must explicitly specify the number of nodes and time to
be allocated as a regular HPC job. This approach may confuse typical MR users
that are not used to do it, and they may, in return, always try to allocate the
whole cluster for the longest time as possible. As a consequence, the turnaround
time of the MR job will probably increase, since the job will be scheduled to the
end of the RMS queue, which will frustrate the user again. Other solutions, such
as MESOS [11] and Hamster [21], use a different approach where the respon-
sibility for resource management is taken away from the cluster’s RMS, which
may conflict with the policy of use of most HPC clusters.

In order to overcome these problems, we present in this paper the MR Job
adaptor, a component that converts MR jobs in order to enable their execution
in HPC clusters. Figure 1 presents the MR Job adaptor and its connection with
MR users and the RMS of the HPC Cluster. It receives the MR job from the
user and interacts with the RMS in order to find a suitable slot to schedule the
job that minimizes the resulting turnaround time of the job. We evaluated the
algorithm implemented inside the MR Job Adaptor using real HPC and MR
workloads and observed that it effectively decreases the turnaround time while
also exploits unused resources in the cluster.

The paper is organized as follows: Section 2 provides an overview of HPC clus-
ters and the Map Reduce model; Section 3 describes the functioning of the MR
Job Adaptor for HPC Clusters; Section 4 presents the experiments performed to
evaluate the MR Job Adaptor using real workloads. The conclusion and future
work are presented in Section 5.

2 HPC Clusters and MapReduce

Clusters of computers, which have transformed HPC in the last decade, are still
the dominant architecture in this area [22]. HPC clusters consist of a number
of stand-alone computers connected by a high performance network, working
together as a single computing resource, and sharing a common storage volume
exported through a distributed file system.

Scheduling MapReduce Jobs in HPC Clusters 181

Traditional HPC clusters typically have their resources controlled by a Re-
source Management System (RMS), such as PBS/TORQUE [23] or SGE [16],
which enable the submission, tracking and management of jobs in the cluster. Al-
though this approach maximizes the overall utilization of the system and enables
sharing of the resources among multiple users [13], it also requires all applications
to be submitted as batch jobs. The user must submit the job accompanied by
the number of nodes that the parallel application should use and the maximum
time that it will take to complete the job execution.

The de-facto standard for parallel programming in HPC clusters is MPI (Mes-
sage Passing Interface [10]), which follows the message-passing paradigm. A par-
allel program using MPI consists of different processes running on the cluster and
explicitly exchanging data via messages. Despite the higher complexity in the
development of parallel applications using this approach, it also enables one to
fine-tune the application, resulting in better performance than other high-level
approaches.

In the past few years, the increase in data generation has reached rates never
seen before, making it necessary to develop new technologies for storing and
analyzing such a large amount of data. The processing of such large data sets,
also known as big data, is normally referred as data-intensive computing [15].
Several works have already been proposed in the data-intensive computing area
to address the needs of big data [17,6,9]. In this model, the data set may not
fit in the main memory nor in a single disk and, therefore, a distributed storage
solution is necessary.

The execution platform for data-intensive computing is typically a dedicated
large-scale cluster, with the data set distributed between the cluster nodes, i.e.,
each node has a slice of the data set. Thus, each node is both a data and compute
node, which provides scalable storage and efficient data processing (by exploiting
data locality). This architecture differs from traditional HPC clusters in some
ways. HPC clusters are usually shared by several users to execute different ap-
plications, through the mediation of a RMS, while in data-intensive computing
the cluster is usually dedicated to process large data sets of an unique organi-
zation. HPC clusters use a shared-disk file system to share data between nodes,
while in data-intensive computing each cluster node uses its own local storage
(shared-nothing). Consequently, users of data-intensive computing usually adopt
a dedicated cluster for their applications.

There are several frameworks for the development of data-intensive applica-
tions [6,7,12], most of them based on the MapReduce (MR) model. Hadoop [20]
is currently one of the most popular open-source MapReduce implementations.
Unlike typical HPC parallel programming libraries, such as MPI, MR frameworks
hide much of the complexity of parallel programming from the programmer (for
example, not requiring explicit data communications or application-specific logic
to avoid communications). Current MR implementations allow automatic paral-
lelization and distribution of computations on large clusters of commodity PCs,
hiding the details of parallelization, fault tolerance, data distribution and load
balancing [6].

182 M.V. Neves, T. Ferreto, and C. De Rose

The availability of several programming frameworks and the facilities to de-
velop a parallel program has contributed to the adoption of MR by traditional
HPC users. Instead of explicitly specifying the communication between processes
and guaranteeing their coordination, the definition of simple map and reduce tasks
seemed to be simpler in some cases. As a result, typical CPU-intensive HPC appli-
cations started being reimplemented using the MapReduce model (e.g. scientific
application [19]) and, consequently, using a dedicated MR cluster.

Instead of using two clusters, one for HPC applications and another for MR
applications, the RMS of the HPC cluster should also be able to schedule MR
jobs. However, in order to do that, the MR job must include the number of
nodes and amount of time to execute the job, which is not common in MR
implementations. There are some initiatives in order to execute MR jobs in an
HPC cluster. Systems such as Hadoop on Demand (HOD) [1] and myHadoop [13]
allow one to create a virtual Hadoop cluster as a partition of a large physical
cluster. Both systems use the TORQUE Resource Management System [23] to
perform the allocation of nodes. However, the user has to specify the number of
nodes and time to be allocated.

A straightforward solution would be to request the whole cluster for as long
as possible to execute the job. Despite the simplicity of this approach, it can
lead to longer turnaround times, since the request will probably go to the end
of the RMS queue, which increases the time before the request is attended [5].
Due to the high flexibility of MR jobs (they can be executed with a variable
number of nodes), the RMS could use a more intelligent approach, trying to fit
the MR job in the free slots available in the RMS queue. Therefore, we propose
a component called MR Job Adaptor, used to adjust the request to an HPC
Cluster RMS, including number of nodes and amount of time, while ensuring
that the turnaround time is minimized.

3 MapReduce Job Adaptor

This section presents the algorithm implemented inside the MapReduce Job
Adaptor. The adaptor has three main goals: (i) to facilitate the execution of MR
jobs in HPC clusters, (ii) to minimize the average turnaround time of MR jobs
executed in an HPC cluster, and (iii) to exploit unused resources in the cluster
resulted from the various shapes of HPC job requests.

MR job requests are quite different from HPC ones. They do not require any
specific infrastructure parameter for submission, only straightforward applica-
tion parameters such as number of map and reduce tasks. On the other hand,
HPC job requests require the number of nodes and amount of time to allocate
a cluster partition. The approach used by systems such as Hadoop on Demand
and myHadoop to run MR jobs in HPC clusters is to ask the user how many
nodes and time should be allocated for a job. However, this approach is quite
cumbersome since, in general, users do not have this kind of knowledge about
their MR applications for different numbers of nodes and combinations of map
and reduces tasks. In practice, this causes the user to allocate the maximum

Scheduling MapReduce Jobs in HPC Clusters 183

allowed amount of time and resources in the cluster, which may cause longer
turnaround times and waste of resources.

The proposed adaptor aims to enable the transparent execution of MR jobs
in the HPC cluster, i.e., the user specifies the MR job request as he would do in
a typical MR cluster and the adaptor converts it to an HPC-compatible request,
which is forwarded to the Resource Management System (RMS) of the HPC
cluster. Instead of always using the maximum amount of nodes and time to
execute the MR job, the adaptor allocates a cluster partition which minimizes
the turnaround time of the job. It does that by interacting with the RMS to
get free areas (slots) in the job requests queue. Using a profile of the MR job,
it estimates the job completion time for each free slot and selects the one that
yields the minimum turnaround time.

This approach relies on the fact that MR jobs do not have strict requirements
regarding the number of resources for execution as HPC jobs. Thus, we use
the MapReduce performance model proposed by Verma et al. [24] to estimate
job completion times for different number of resources. It creates a job profile
comprising performance invariants from past executions and uses it as input for
the time estimation. This model can be used to estimate the lower (T low

J) and
upper (T up

J) bounds of the overall completion time of a given job J . The lower
bound can be obtained as follows:

T low
J =

NJ
M +Mavg

SJ
M

+
NJ

R.(Sh
typ
avg +Ravg)

SJ
R

+ Sh1
avg − Shtyp

avg (1)

where NJ
M is the number of map tasks, NJ

R is the number of reduce tasks,
SJ
M is the number of map slots, SJ

R is the number of reduce slots and the tu-
ple (Mavg, Ravg, Sh

1
avg, Sh

typ
avg) represents the performance invariants, for each

MapReduce phase, extracted from the job profile. The equation for T up
J can be

written in a similar form and is detailed in Verma et al. [24]. It was reported that
the average of lower and upper bounds (T avg

J) is a good approximation of the
job completion time, so we chose the upper bound as a conservative approach,
avoiding the underestimation cases.

The algorithm implemented for the MapReduce Job Adaptor is presented
in Algorithm 1. It starts by receiving the number of map and reduce tasks
(Nm,Nr), and a profile p of the MR job to be executed in the cluster. It also
gets information from the RMS, such as the list of free slots in the queue and
maximum number of nodes and time that can be allocated in the queue. These
limits in the number of nodes and time are usually imposed by HPC cluster
administrators in order to enforce a fair sharing of resources between users.

Figure 2 presents an example of RMS queue of an HPC cluster with six jobs
(A to F) scheduled in the queue. In this example, function getFreeSlots() would
return four free slots that could be used to execute the MR job. Slot 1 starts at
time 10 with 25 nodes and maximum duration of 2. Slot 2 starts at time 13 with
50 nodes and maximum duration of 2. Slot 3 starts at time 16 with 25 nodes
with no maximum duration, and slot 4 starts at time 17 with all cluster nodes
and has also no maximum duration.

184 M.V. Neves, T. Ferreto, and C. De Rose

Algorithm 1 MapReduce Job Adaptor internal functioning

(Nm, Nr) ← Number of map and reduce tasks of MR job
p ← Job profile of MR job
freeSlotsList ← getFreeSlots()
maxNodes ← Maximum number of nodes allowed for allocation in the cluster
maxT ime ← Maximum time allowed for allocation in the cluster
turnaround ← BigNumber
for all freeSlot in freeSlotsList do

startT ime ← getStartTime(freeSlot)
slotDuration ← getSlotDuration(freeSlot)
slotDuration ← MIN(slotDuration,maxT ime)
numNodes ← getNumberOfNodes(freeSlot)
numNodes ← MIN(numNodes,maxNodes)
execT ime ← estimateJobExecutionTime(p, Nm, Nr, numNodes)
newTurnaround ← startT ime+ execT ime−NOW
if execT ime <= slotDuration and newTurnaround < turnaround then

nodes ← numNodes
time ← execT ime
turnaround ← newTurnaround

end if
end for
return (nodes, time)

A

B

C

D

no
de

s

100

50

25

75

time

NOW

10 11 12 13 14 15 16 17 18

Slot 1

Slot 2
 Slot 3

E
F

Slot 4

Fig. 2. Example of the queue of a Resource Management System

Variables maxNodes and maxT ime receive the maximum number of nodes
and amount of time that can be requested to the RMS. The turnaround variable,
which stores the turnaround time of the best solution found by the algorithm, is
initialized with a big number. After that, the algorithm starts testing each free
slot in the RMS queue to verify if the MR job would fit on it while minimizing
the turnaround time. Since the number of nodes can change for each slot, the
execution time of the MR job needs to be estimated again. The execution time
of the MR job is estimated using its parameters (number of map and reduce
tasks, and job profile) and numNodes. The algorithm finishes with parameters
nodes and time to be used in the job submission to the RMS which minimizes
the turnaround time of the MR job. The turnaround time is calculated using
the slot start time and the estimated execution time of the MR job subtracted
by the current time (indicated by NOW in the algorithm).

Scheduling MapReduce Jobs in HPC Clusters 185

4 Evaluation

In order to evaluate the proposed algorithm, we used a simulator based on the
SimGrid toolkit [3], which provides abstractions and functionalities for the sim-
ulation of parallel and distributed systems, such as HPC clusters. We simulated
a cluster of 128 nodes with 2 cores each (for the MapReduce experiments, we
defined 1 map and 1 reduce task slot per node). Cluster’s resources were man-
aged by a RMS that allows users to submit jobs. We also simulated a stream of
job submissions, where each job requires a number of nodes to be allocated for
a particular amount of time.

The simulated RMS implements the Conservative Backfilling (CBF) [8] al-
gorithm. The CBF algorithm enables backfilling and is a representative of the
algorithms running in deployed RMS schedulers today. The main idea of CBF
is that an arriving job is always inserted in the first free slot available in the
schedulers queue, which offers an upper-bound to the job start time. Every time
a new free slot appears, the scheduler sweeps the entire queue looking for jobs
that can be brought forward without delaying the start of any other job in the
queue. This means that at any time it is possible to obtain the list of available
free slots in the scheduler’s queue. We use this feature to provide input for the
algorithm described in the previous section.

We used a naive algorithm as a baseline for comparison purposes. It consists
of allocating a number of nodes, based on the number of map and reduce tasks,
during a fixed amount of time, defined as the maximum allowed amount of time
per request. This is the case when there is no information about the MapReduce
application and the scheduler’s queue state. A similar approach is used by sys-
tems such as Hadoop On Demand [1] and myHadoop [13], yet in those systems
the user has to specify the required number of nodes. The algorithms were com-
pared in terms of average job turnaround time (interval between the submission
of a job and its completion) and average system utilization. The number of sim-
ulations was defined in order to provide a confidence level of 95% with an error
less than 5%.

To simulate a stream of job submissions for the users of an HPC cluster, we
used two different approaches. The first was to simulate a synthetic workload
based on a widely used model by Lublin et al. [14], which is one of the most
comprehensive and validated batch workload models in the literature. Basically,
it uses two gamma distributions to model the job inter-arrival time (depending
on the time of day), a two-stage uniform distribution to model the job sizes and
a two-stage hyper-gamma distribution to model the runtime of jobs.

We also used real-worldworkload traces from the ParallelWorkloadsArchive [2]
as input to our simulation. This archive contains log information regarding the
workloads on parallel machines, such as HPC clusters. We chose traces from the
San Diego Supercomputer Center SP2 (SDSC SP2), which is a well-known and
widely studied workload. SDSC SP2 workload has 128 nodes and 73,496 jobs,
spanning 2 years from July 1998 to December 2000.

Unfortunately, there is not yet any such workload archive publicly available for
MapReduce jobs. However, recent publications [25,26,4] have reported workload

186 M.V. Neves, T. Ferreto, and C. De Rose

Table 1. Distribution of job sizes in Facebook workload (based on Zaharia et al. [26])

Bin # Map Tasks # Reduce Tasks % Jobs at Facebook

1 1 0 39%

2 2 0 16%

3 10 3 14%

4 50 0 9%

5 100 0 6%

6 200 50 6%

7 400 0 4%

8 800 180 4%

9 2400 0 3%

characteristics for MapReduce clusters in production at Google, Facebook and
Yahoo!. We used the detailed description of a Facebook workload, provided by
Zaharia et al. [26], to create a synthetic MapReduce workload. This workload
comes from a Hadoop cluster, in production at Facebook in October 2009, with
600 nodes running about 7,500 jobs per day.

The Facebook workload used in our experiments is distributed in 9 bins as
summarized in Table 1. As can be observed, most jobs in Facebook’s workload
are small. However, in the original workload, jobs in the last bin range from
1,501 to 25,000 maps. We chose 2,400 maps as our representative for this bin to
make it fit in the HPC cluster simulated in our experiments. The job inter-arrival
times is roughly exponential with a mean of 14 seconds. We defined map and
reduce tasks duration as N(60,20) and N(120,30) respectively, where N(μ, σ) is
the normal distribution with a mean μ and standard deviation σ.

The first experiment performed aims to evaluated the impact of the proposed
algorithm in the job performance, in terms of average turnaround time and
system utilization, for an HPC cluster running a mixed workload of HPC and
MR jobs. We simulated one hour of HPC job submissions (around 400 jobs,
since the mean inter-arrival time in the so-called ”peak hour” of the Lublin et
al. model is roughly 5 seconds) mixed with one hour of MR job submissions
(around 300 jobs).

Table 2 compares the results of the proposed algorithm (Adaptor) against the
naive algorithm for each workload (HPC-only, MR-only and mixed HPC+MR).
The proposed algorithm obtained shorter average turnaround time and improved
utilization in all cases. For the MR-only workload, the use of the adaptor algo-
rithm reduced the average turnaround time in 40%. For the mixed workload
(HPC + MR), the overall average turnaround time was reduced in approxi-
mately 15%. However, the average turnaround time of the MR jobs in the mixed
workload changed from 31776 (using naive algorithm) to 8616 seconds, which
represent a reduction of 73%.

To evaluate the influence of MR job sizes in our algorithm, we conducted
experiments for each bin in Facebook’s workload. Figure 3 shows the obtained
results in terms of average job turnaround time. The adaptor algorithm outper-
formed the naive approach regardless the job bin. However, the adaptor algorithm

Scheduling MapReduce Jobs in HPC Clusters 187

Table 2. Average job turnaround time and system load for each algorithm using Lublin
et al. model (HPC) and Facebook (MR) workloads.

Workload (job type) HPC MR HPC + MR

Algorithm Naive Adaptor Naive Adaptor

Avg Utilization (%) 88.9 68.5 93.7 87.5 93.3

Avg Turnaround (s) 9126 6151 3709 13680 11512

performed better for bins with smaller job sizes. This happens because small job
length cause more opportunity for backfilling.We believe that it is a positive char-
acteristic, since the first 4 bins represent approximately 80% of the jobs in Face-
book workload. Moreover, similar job size distribution can be seen in workloads
from Google [25] and Yahoo! [4].

In order to evaluate the adaptor algorithm with different system loads, we
conducted experiments varying the inter-arrival time of job submissions. The
peak hour model by Lublin et al. produces mean inter-arrival time of 5.01 sec-
onds, which is the mean of a Gamma distribution with α = 10.23 and β = 0.49.
Thus, different HPC load characteristics were simulated varying the value of α
from 4 to 60, giving inter-arrival times between approximately 2 and 30 seconds.
Similarly, different inter-arrival times for MR jobs were obtained by varying the
mean in the exponential distribution described earlier. The results are shown in
Figure 4. In both cases, the adaptor algorithm performed better regardless of
the inter-arrival time.

1 2 3 4 5 6 7 8 9

Bin

A
ve

ra
ge

 tu
rn

ar
ou

nd
 ti

m
e

(m
in

ut
es

)

0
50

0
10

00
15

00
20

00
25

00

Naive
Adaptor

Fig. 3. Average job turnaround time for each bin in Facebook workload

188 M.V. Neves, T. Ferreto, and C. De Rose

Mean HPC job inter−arrival time (seconds)

A
ve

ra
ge

 tu
rn

ar
ou

nd
 ti

m
e

(m
in

ut
es

)

50

100

200

400

600

800

1000

5 10 15 20 25 30

Algorithm

Adaptor

Naive

Mean MR job inter−arrival time (seconds)

A
ve

ra
ge

 tu
rn

ar
ou

nd
 ti

m
e

(m
in

ut
es

)

50
100

250

500

750

1000

1250

1500

1 5 10 15 20 25 30

Algorithm

Adaptor

Naive

Fig. 4. Average turnaround time for a mixed workload varying (a) the mean job inter-
arrival time of the HPC workload and (b) the mean job inter-arrival time of the MR
workload

Finally, to evaluate the performance of the adaptor algorithm using a real-
world HPC workload, we chose a day-long trace from SDSC SP2 and used it
along with 1,000 MR jobs as input for our simulation. Table 3 shows the results.
The adaptor algorithm performed better in all cases. In this experiment, we also
observed that HPC and MR workloads are quite different. The HPC traces used
to have few jobs with long running times, while MR have many jobs with short
running times. This reinforces our argument that one should able to use an HPC
cluster to run both HPC and MR jobs and that it can exploit unused resources.

Table 3. Average job turnaround time and system load for each algorithm using a
trace from SDSC SP2 and Facebook workload

Workload (job type) HPC MR HPC + MR

Algorithm Naive Adaptor Naive Adaptor

Avg Utilization (%) 52.5 83.4 89.4 56.3 68.4

Avg Turnaround (s) 16198 22602 10269 99629 19288

5 Conclusion and Future Work

MapReduce has gained attention by the HPC community, but it is still not trivial
how HPC clusters can be exploited to execute such kind of job along with HPC
applications. HPC clusters present some characteristics that conflict with the
MapReduce model, such as the process used to submit jobs. This paper presented
the MR Job Adaptor, a module that customizes regular MR jobs for submission

Scheduling MapReduce Jobs in HPC Clusters 189

in HPC clusters. MR Job Adaptor estimates the execution time of the job using
an MR Job Profile and tests the available slots in the Resource Management
System queue in order to allocate one that results in minimal turnaround time.
The experiments performed to evaluate the module demonstrated that, besides
minimizing the job turnaround time, it also exploits unused resources in the
cluster.

As future work, we intend to evaluate other characteristics of the MR to
enhance the algorithm used by the MR Job Adaptor. We believe that using a
single cluster for HPC and MR jobs can be beneficial for both users and cluster
administrators.

References

1. Apache Hadoop on Demand (HOD) (2012),
http://hadoop.apache.org/common/docs/current/hod_scheduler.html (ac-
cessed on February 2012)

2. Parallel Workloads Archive (2012),
http://www.cs.huji.ac.il/labs/parallel/workload/ (accessed on February
2012)

3. Casanova, H.: Simgrid: A toolkit for the simulation of application scheduling. In:
Proceedings of the First IEEE/ACM International Symposium on Cluster Com-
puting and the Grid (CCGrid 2001), Brisbane, Australia (May 2001)

4. Chen, Y., Ganapathi, A., Griffith, R., Katz, R.H.: The case for evaluating mapre-
duce performance using workload suites. In: MASCOTS, pp. 390–399. IEEE (2011)

5. De Rose, C.A.F., Ferreto, T., Calheiros, R.N., Cirne, W., Costa, L.B., Fireman,
D.: Allocation strategies for utilization of space shared resources in bag of tasks
grids. Future Generation Computer Systems 24(5), 331–341 (2008)

6. Dean, J., Ghemawat, S.: Mapreduce: Simplified data processing on large clusters.
Communications of the ACM 51(1), 107–113 (2008)

7. Ekanayake, J., et al.: Twister: a runtime for iterative mapreduce. In: Proceed-
ings of the 19th ACM International Symposium on High Performance Distributed
Computing, HPDC 2010, pp. 810–818. ACM, New York (2010)

8. Feitelson, D.G., Mu’alem Weil, A.: Utilization and predictability in scheduling the
IBM SP2 with backfilling. In: 12th Intl. Parallel Processing Symp (IPPS), pp.
542–546 (April 1998)

9. Fox, G., et al.: Parallel data mining from multicore to cloudy grids. In: Proceedings
of HPC 2008 (2011)

10. Gropp, W., Lusk, E., Skjellum, A.: Using MPI Portable Parallel Programming with
the Message Passing Interface. The MIT Press (1994)

11. Hindman, B., Konwinski, A., Zaharia, M., Ghodsi, A., Joseph, A.D., Katz, R.,
Shenker, S., Stoica, I.: Mesos: Flexible resource sharing for the cloud. USENIX
(August 2011)

12. Isard, M., et al.: Dryad: distributed data-parallel programs from sequential building
blocks. In: Proceedings of EuroSys 2007 (January 2007)

13. Krishnan, S., Tatineni, M.: Myhadoop-hadoop-on-demand on traditional hpc re-
sources. sdsc.edu (2011), http://www.sdsc.edu/~allans/MyHadoop.pdf

14. Lublin, U., Feitelson, D.G.: The workload on parallel supercomputers: Modeling
the characteristics of rigid jobs. J. Parallel & Distributed Comput. 63(11), 1105–
1122 (2003)

http://hadoop.apache.org/common/docs/current/hod_scheduler.html
http://www.cs.huji.ac.il/labs/parallel/workload/
http://www.sdsc.edu/~allans/MyHadoop.pdf

190 M.V. Neves, T. Ferreto, and C. De Rose

15. Middleton, A.: Data-intensive technologies for cloud computing. In: Handbook of
Cloud Computing (January 2010)

16. Oracle: Oracle Grid Engine, previously known as Sun Grid Engine (SGE) (2012),
http://www.oracle.com/technetwork/oem/grid-engine-166852.html (accessed
on February 2012)

17. Schadt, E., Linderman, M., Sorenson, J.: Computational solutions to large-scale
data management and analysis. Nature Reviews (January 2010)

18. Sehrish, S., et al.: Mrap: a novel mapreduce-based framework to support hpc ana-
lytics applications with access patterns. In: Proceedings of HPDC 2010, pp. 107–118
(2010), http://doi.acm.org/10.1145/1851476.1851490

19. Srirama, S., Jakovits, P.: Adapting scientific computing problems to clouds using
mapreduce. Future Generation Computer Systems (January 2011)

20. Team, A.H.: Apache hadoop web site (2011), http://hadoop.apache.org (ac-
cessed on February 2012)

21. Team, A.H.: Hamster: Hadoop and mpi on the same cluster (2011),
https://issues.apache.org/jira/browse/MAPREDUCE-2911 (accessed on Febru-
ary 2012)

22. Top 500: Top 500 Supercomputers Site (2012), http://www.top500.org (accessed
on February 2012)

23. TORQUE: TORQUE Resource Manager (2012),
http://www.clusterresources.com/products/torque-resource-manager.php

(accessed on February 2012)
24. Verma, A., Cherkasova, L., Campbell, R.H.: Aria: automatic resource inference and

allocation for mapreduce environments. In: Proceedings of ICAC 2011, pp. 235–244
(2011)

25. Wang, G., et al.: Towards synthesizing realistic workload traces for studying the
hadoop ecosystem. In: MASCOTS. pp. 400–408. IEEE (2011)

26. Zaharia, M., et al.: Delay scheduling: a simple technique for achieving locality and
fairness in cluster scheduling. In: Morin, C., Muller, G. (eds.) EuroSys, pp. 265–278.
ACM (2010)

http://www.oracle.com/technetwork/oem/grid-engine-166852.html
http://doi.acm.org/10.1145/1851476.1851490
http://hadoop.apache.org
https://issues.apache.org/jira/browse/MAPREDUCE-2911
http://www.top500.org
http://www.clusterresources.com/products/torque-resource-manager.php

A Job Scheduling Approach for Multi-core

Clusters Based on Virtual Malleability

Gladys Utrera1, Siham Tabik2, Julita Corbalan1, and Jesús Labarta3

1 Technical University of Catalonia (UPC) 08034 Barcelona, Spain
{gutrera,juli}@ac.upc.edu

2 University of Malaga, 29071 Malaga, Spain
stabik@uma.es

3 Barcelona Supercomputing Center (BSC) 08034 Barcelona, Spain
jesus.labarta@bsc.es

Abstract. Many commercial job scheduling strategies in multi process-
ing systems tend to minimize waiting times of short jobs. However, long
jobs cannot be left aside as their impact on the performance of the
system is also determinant. In this work we propose a job scheduling
strategy that maximizes resources utilization and improves the overall
performance by allowing jobs to adapt to variations in the load. The
experimental evaluations include both simulations and executions of real
workloads. The results show that our strategy provides significant im-
provements over the traditional EASY backfilling policy, especially in
medium to high machine loads.

Keywords: job scheduling, MPI, malleability.

1 Introduction

Modern computational clusters tend to have thousands of execution units [5]. In
order to make these investments profitable, such clusters must have many users
(clients). This leads to a large amount of job submissions that often exceeds the
cluster capacity. Figure 1 shows a typical weekly load of the Marenostrum ma-
chine [1]. Many of these clusters are composed by nodes of multi-core processors.
Multi-core processors have two or more complete computational cores integrated
in the same chip. As a processing core can act as an independent processor or
CPU, in this work terms core and CPU are synonyms.

A job scheduling strategy (JSS) is an algorithm that allocates resources to
submitted jobs while applying system’s administrative policies and priorities. A
JSS has to deal with a wide variety of applications, from sequential to highly
parallel codes, with execution times that varies from minutes to days. This sce-
nario converts the comparison of two JSS into a difficult task. The high cost
of the clusters usually makes user satisfaction the main objective for improving
performance of the JSSs. For this reason, waiting times of short jobs that exceed
by far their execution times are inadmissible. However, long jobs also play an
important role in the performance which finally affect short jobs as well.

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 191–203, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

192 G. Utrera et al.

Fig. 1. Marenostrum load and wait queue during a week [1]

��

��� ��
���

��

���

��

���
��
���

�	
���

��

��

�

��	

(a) FCFS

��

��� ��
���

��

���

��

���
��
���

�	
���

��

��

�

��	

(b) EASY backfilling

��
���

��
���

��
���

��
���

	
��

�

�

��
���

��
���

��	

(c) FCFS-malleable

Fig. 2. Job scheduling under : (a) FCFS, (b) EASY backfilling and (c) FCFS-malleable

To quantify the performance of JSSs, this work uses three metrics, namely the
response time, slowdown and fragmentation. The first two metrics depend on the
waiting and execution times of jobs while the last one measures the utilization
of the computing system. The following classification of job flexibility is com-
monly accepted in the literature [14]: rigid jobs, which are compiled to be run
with a specific and fixed number of processes; moldable jobs can be executed on
multiple CPU partition sizes, but once the execution starts, these sizes cannot
be modified; malleable, if the size of the assigned partition can also be modified
during the execution. Moldable and malleable jobs would increase system utiliza-
tion. However, they are not the common case in production systems. This paper
presents a JSS, called First Come First Served-malleable (FCFS-malleable), that

A Job Scheduling Approach for Multi-core Clusters Based on VM 193

minimizes waiting times by maximizing system utilization no matter the jobs’
execution time, nor their flexibility type. The proposed JSS is based on the idea
of Virtual Malleability (VM)[24]. VM allows jobs to adapt to changes in the
number of CPUs at runtime preserving the original number of processes. Fig-
ure 2 exemplifies two JSSs from literature, FCFS and EASY backfilling, and
FCFS-malleable on a hypothetical machine of 10 CPUs where the x- and y- axis
represent time and number of CPUs respectively. Each rectangle is labeled with
the name of the job it represents (e.g. J1) and the number of processes per CPU
(e.g., 8×1 means that each of the 8 processes is assigned to a different CPU).
The jobs arrived to the wait queue in the following order: J1, J2, J3, J4, J5, J6
with execution times equal to 2, 1, 1, 2, 2, 1 time units respectively.

Figure 2(a) shows the execution of the workload under FCFS. The execution
of each job is delayed till there are enough CPUs for it. Meanwhile a group of
available CPUs is not used even though there are jobs in the wait queue. For
example, 2 CPUs are idle when J1 is running and 6 CPUs are idle when J5 is
running which generates fragmentation.

Figure 2(b) shows how EASY backfilling [16] works. To alleviate the delayed
execution and fragmentation problem it tries to forward jobs ahead in the queue
when there are enough resources for them to be executed and provided they
don’t delay the first job in the queue. For example, J3 can start together with
J1. However, EASY backfilling does not always find a suitable hole for a waiting
job so fragmentation is not always eliminated (e.g. after J1 and J3 finish).

Figure 2(c) demonstrates how the JSS proposed in this paper behaves. As
there are jobs in the wait queue, VM is applied to J1 (the oldest) so it starts
its execution shrunk in 4 CPUs together with J2 and J3. Even shrinking J2 and
J3, there are not enough CPUs for J4, so it has to wait and J2 and J3 can run
expanded. This restriction is due to the fact that in this work VM can reduce the
number of CPUs only up to half of the total assigned number. After J2 and J3
finish, J4 and J5 can start their executions shrunk. Finally, J6 starts expanded
as there are no jobs in the wait queue 1.

The experimental results showed that FCFS-malleable overcomes EASY back-
filling by 28% in average slowdown and 31% in average response time.

The main contributions of this work are as follows:

– A new JSS based on the concept of VM. The algorithm is easy to imple-
ment and does not require neither application recompilation nor any previous
knowledge about the application.

– A study of the impact on the performance when applying VM to individual
applications, taking into account intranode contention.

– Evaluations and comparison of the proposed JSS using both simulator and
a runtime system.

1 We assume that two processes are executed twice slower on a single CPU than on
two separated CPUs. Different studies indicate that this time could be by far less
then twice [22][26], since computation and communication can be overlapped.

194 G. Utrera et al.

2 Related Work

The problem of scheduling and allocating resources to jobs in parallel systems
has been addressed in previous research from two perspectives. While some works
focus on providing support, libraries and runtime systems, to make individual
applications malleable [20,7,8,11,24,15] others attempt to integrate heuristics or
new techniques to backfilling or FCFS policies [23,10,9,21].

In [20] the moldability is applied in conjunction with folding [18] to reduce wait
times. They create as many threads as the available number of CPUs and execute
the job in the assigned partition. As the load increments, the partition of the
latest arrived job is reduced to a half, freeing CPUs. The folding must be done at
explicit synchronizing points in the source code. This generates additional wait
time and requires extra effort from programmers and system support.

In [7] the authors modify the number of used CPUs at predetermined points of
execution. The evaluation was carried out using workloads of only up to 10 jobs
of NAS Benchmarks, with small classes like A and B. The inclusion of dynamic
malleability support using a resource manager was also studied in [8,11] They
all require applications to be malleable or code modifications.

Certain levels of oversubscription improve resources utilization. The schedul-
ing of jobs on the assigned CPUs can be done explicitly as in Gang Scheduling
[13]. A static schedule of parallel communicating processes must be computed a
priori, and a global context switch is used to coschedule these communicating
processes. In this way, these processes have the illusion of running on a dedi-
cated (but slower) system. These schemes usually require long time quanta to
amortize the high context switch and synchronization costs, making the system
less responsive for interactive and I/O-intensive applications. Furthermore, they
keep the CPU idle while a process is performing I/O or is waiting for a message
within its allotted time quantum. In [27] they propose an alternative to overcome
this problem by matching pairs of processes: compute bound with I/O bound to
share a time slice. The idea looks interesting, but they still have synchronization
costs and extra effort to find, if possible, the correct matching. On the other
hand, the experiments use applications with no more than 16 processes.

Implicit coscheduling [6,28] tries to overcome the drawbacks of explicit
coscheduling by relying on local schedulers, so that interactive and I/O-bound
jobs are properly handled. They use the communication behavior of parallel pro-
cesses to make scheduling decisions. Compared to explicit coscheduling, these
strategies are easier to implement on clusters, and have better scalability and
reliability characteristics basing exclusively on local knowledge.

In [25] it is shown that when a job shares CPUs with itself response time
and stability are improved. The fact of oversubscribing CPUs was recently re-
addressed in multi-core systems [15]. Using several applications from different
programming models they demonstrated that oversubscribing up to 8 tasks to
each single CPU improves throughput over pure space sharing.

The most commonly used backfilling strategies are EASY backfilling and Con-
servative backfilling [19]. Conservative backfilling prioritizes predictability in re-
sponse times and fairness, while EASY backfilling provides better response times,

A Job Scheduling Approach for Multi-core Clusters Based on VM 195

especially for short jobs. Many previous related works focus on making backfilling
strategies more flexible by integrating moldability with them [23]. The partition
size for a job is selected based on its scalability and turnaround time by applying
the Downey model [10]. Results demonstrate a gain in performance over pure
backfilling and pure moldability [9] on individual applications. In [21] they pro-
pose a relaxation of conservative backfilling by allowing all waiting jobs to be
delayed but only to some extent which improved response time predictability and
resource utilization. Bounded slowdown obtained worse results than backfilling.

The JSS presented in this paper has the following advantages over state-of-art:
no predefined synchronization points are required to vary the number of CPUs;
jobs are unaware of the changes in the number of assigned CPUs and consequently
there is no overhead derived from data redistribution, process creation or elim-
ination at runtime; no need for recompilation; no job classification is required;
no prior knowledge of the job is needed; all the jobs are candidate to be shrunk
and moldability is not required. Finally, evaluations were done using both real
executions with workloads made from benchmarks with large variations in data
size, number of processes and communication degree. Simulations use well-known
workload traces rather than synthetic workloads with few jobs and CPUs.

3 The FCFS-Malleable Job Scheduling Strategy

First, this section describes our JSS and defines the metrics that are used for
the comparisons of JSSs. After that, a brief description of the implementation
of the runtime system is provided. A deeper description can be found in [26].

3.1 FCFS-Malleable Algorithm

Algorithm 1. Code executed at job arrival

1: GetJobFromWaitQueue(J)
2: if FreeCpus ≥ J.cpusRequested then
3: J.cpusAllocated ← J.cpusRequested
4: Execute(J) //This function updates FreeCpus
5: else
6: listOfOrderedJobs = SortByArrivalT ime(listOfRunningJobs)
7: //Selects as many jobs as required to execute J
8: listOfCandidates = SelectCandidateJobs(listOfOrderedJobs, J)
9: if listNotEmpty(listOfCandidates) then
10: J.cpusAllocated = J.cpusAllocated/2;
11: for V = JobsInList(listOfCandidates) do
12: V.cpusAllocated = V.cpusAllocated/2
13: Shrunk(V) //This function updates FreeCpus and NumJobsShrunk
14: end for
15: Execute(J)
16: end if
17: end if

196 G. Utrera et al.

FCFS-malleable combines FCFS with VM. Applying VM to a job consists on
running it on a pool of CPUs with a size less than or equal to the number of pro-
cesses. In the case the number of CPUS is smaller than the number of processes,
each CPU will have binded a queue of processes belonging to the same job. The
size of this queue is called multiprogramming level (MPL). The maximum MPL
was set to 2. This maximum level was chosen based on: memory bandwidth, num-
ber of CPUs per node, number of entry points to the interconnection network.

FCFS-Malleable is an event driven algorithm executed at job arrival and at
job ending. Algorithm 1 shows the code executed when a new job arrives. At
that event, the algorithm evaluates whether it is possible to start a new job
depending on the available CPUs. If so, it starts the job with as many CPUs as
requested (lines 3-4). Otherwise, the JSS tries to free CPUs and execute the job
by applying VM to some jobs that are already running, including J if necessary.
When a job finishes execution, if the wait queue is not empty, Algorithm 1 is
applied, otherwise, running shrunk jobs are expanded to the newly freed CPUs.
Several criteria to decide which job to shrink or expand first were evaluated: the
oldest first, the one with less CPU utilization, the longest first and, the shortest
first. Our experiments showed that the oldest one first is the best option. Line
8 of Algorithm 1 implements this option.

Metrics Used for Evaluations. In order to quantify the performance of our
technique and make comparisons with others JSSs from bibliography three met-
rics were used: average response time, average slowdown and fragmentation.

Response time, is the time elapsed between the job submission and termina-
tion. This metrics evidences long jobs performance and is calculated by averaging
the response times of all the jobs across a workload. For example, the average
response times of the example shown in Figures 2(a), 2(b), and 2(c) are equal
to 4.66, 4.33 and 3.66 time units respectively.

Slowdown relates execution and wait time as it is shown in formula (1). This
metrics indicates short jobs performance and is calculated by averaging the slow-
down of all the jobs across a workload. It is important to note that to calculate
the value of the average slowdown for the FCFS-malleable policy, the execution
time in numerator of formula 1 is obtained using VM (i.e. with the overheads of
running shrunk included). The average slowdown in Figures 2(a), 2(b), and 2(c)
are equal to 3.5, 3.16 and 2.5 time units respectively. The utilization of the sys-
tem is usually addressed as the percentage of CPUs that are busy running jobs.
As we are concerned only when there are jobs in the wait queue, we will use
the fragmentation concept instead (see formula (2)). In the example provided
in introduction, the fragmentation values are equal to 30% for Figures 2(a) and
2(b) and 0% for 2(c).

Slowdown =
WaitT ime+ExecutionT ime

ExecutionT imeExpanded
(1)

Fragmentation =

∑t=start to termination
whenWaitQueueNotEmpty freeCPUs

WorkloadTotalT ime ∗ TotalCPUs
(2)

A Job Scheduling Approach for Multi-core Clusters Based on VM 197

3.2 Runtime System Implementation

Let us now describe the runtime system and relevant details of implementation of
the experimental framework. The runtime system is composed by a job scheduler
(JS) and a runtime library. The JS receives as input a trace file and the JSS to
apply. The trace file has identifications of the jobs, their arrival times and the
number of requested CPUs [4]. The JS tracks information about node allocation,
jobs in the wait queue, and already finished jobs.

The implementation of FCFS-malleable uses a library (VM library) that im-
plements the concept of VM. The VM library was constructed using the Message
Passing Interface [2], MPI, interposition mechanism. MPI was selected for being
the most widely used and for its portability across shared and distributed memory
architectures. The VM library is linked dynamically with jobs and communicates
with the JS via TCP/IP sockets. This avoids the necessity of job recompilation.
The library is in charge of CPU allocation and scheduling of processes. Process
migrations are only allowed within a node and when VM is applied. Otherwise,
processes remain binded to their assigned CPUs. The whole mechanism is trans-
parent to the user. A job is said to run shrunk when is executed on a CPUs par-
tition smaller than its number of processes. Processes belonging to the same job
compete with themselves for the use of CPUs. A job is said to run expanded when
is executed on a CPUs partition equal to its number of processes.

The scheduling of processes on a CPU is done by applying implicit coschedul-
ing (see Section 2 for more details): only local knowledge (e.g. local communi-
cation events) is taken into account to make scheduling decisions. In particular
Self co-scheduling [25] is applied. A running process yields the CPU and blocks
immediately every time it executes a blocking operation (e.g. wait for a message
that has not arrived yet). This type of scheduling promotes the overlapping of
communication and computation phases.

The experiments were performed on a multi-core cluster with 10240 IBM
Power PC 970MP cores at 2.3 GHz (2560 JS21 blades), 20 TB of main memory,
2510 nodes, and interconnection networks: Myrinet and Gigabit Ethernet. The
operating system is Linux: SuSe Distribution. Each node has 4 cores sharing
memory and each L2 cache is shared by every 2 cores.

4 Simulator

An event-driven simulator was constructed to extensively evaluate and compare
JSSs. The simulator uses trace files in format of [4] as input and output. The
following information about jobs is required to do the simulations: execution
time, requested CPUs, requested time, CPU utilization2. Notice that FCFS-
malleable may vary the number of CPUs of jobs at runtime. Thus, for FCFS-
malleable we know only the expanded execution time of jobs. Next we provide a
model to estimate the execution time of jobs when VM is applied to them.

2 The field ”CPU utilization” is used only by FCFS-malleable. In this work we refer
to CPU utilization of a job to the average CPU time used by all its processes. That
is the time when the CPU is doing useful work (i.e. computation).

198 G. Utrera et al.

Formula (3) arises from empirical observations. It estimates the execution
time of a job when it runs isolated on different number of CPUs using the VM
library. The value of MPL can vary during the execution time and is greater
than 1 every time the job runs shrunk and is equal to 1 every time the job runs
expanded. The parameter CPUUtil is the percentage of CPU utilization when
the job runs expanded. The parameter execT ime corresponds to the expanded
execution time of the job. The parameter OV represents the overhead generated
by the contention suffered when using the interconnection network. In our simu-
lations, OV was set to random values between 0 and 1 as trace files have neither
information about the communication-computation ratio nor the message sizes.
We validated the proposed model by comparing results of simulations with real
executions of several synthetic workloads.

estimatedIsolatedExecT ime =∑t=termination
t=start execT ime ∗MPL(t) ∗ CPUUtil

(3)

Our final model is described by formula (4).

estimatedExecT ime = estimatedIsolatedExecT ime+
execT ime ∗OV

(4)

4.1 Validation of the Simulator

A synthetic workload trace was constructed to validate the simulator by applying
the model in [17]. The trace was adjusted to have 150 jobs to be launched during
2 hours with average machine loads from 30% to 90%.

Table 1. Comparison of average wait times, response times and slowdowns between
simulator and runtime system

EASY backfilling FCFS-malleable
Avg wait Avg resp Avg sld Avg wait Avg resp Avg sld

%load S R S R S R S R S R S R

30 55.0 60.0 107.0 113.0 2.1 2.1 1.6 1.3 73.5 73.3 1.2 1.4
50 69.6 74.0 121.3 125.0 6.5 6.5 13.2 13.8 93.5 93.0 3.2 3.2
70 93.0 100.0 145.2 152.0 10.7 10.3 36.8 32.0 118.3 113.0 6.0 5.7
90 175.0 162.0 228.0 214.0 19.0 16.0 118.0 111.0 220.0 198.9 10.8 9.6

In order to execute the trace generated with [17] in the runtime system, we
substituted applications in the trace for real applications. Applications in the
trace were matched according to their execution time and number of processes.
In this way interarrival times were kept with the same characteristics as of the
original trace. We used the NAS Parallel Benchmarks [3] classes A, B, C and D
and number of processes varying from 1 to 128. We chose these benchmarks as
they include widely used kernels. We executed the synthetic traces under FCFS-
malleable and EASY backfilling JSSs both on simulator and runtime system.
Table 1 provides the average waiting time, response time and slowdown obtained

A Job Scheduling Approach for Multi-core Clusters Based on VM 199

with the simulator (S) and with the real execution (R). The average relative error
of the simulator compared to the runtime system is equal to 7%. Considering
that the average gain of FCFS-malleable over EASY backfilling in the runtime
system is around 30% we concluded that this error is acceptable.

5 Results and Analysis

Cleaned traces from Parallel Workload Archive [4] were used in our experiments.
A cleaned trace does not contain flurries of activity by individual users which
may not be representative of normal usage. Table 2 summarizes the workloads
characteristics.

The columns show the names of the used workloads, total number of CPUs
in the machine, number of jobs in the workload, average CPU utlization, aver-
age CPU utilization by long jobs and the ratio between the average number of
requested CPUs by the machine capacity. For example, the workload in figure 1
has this ratio equal to 2. We have classified long jobs as the ones with number
of processes greater than 64 and execution times greater than 8 hours and short
jobs as the ones with execution times less than 10 minutes.

Table 2. Description of the workload log traces used for simulation

Workload Cpus Jobs Avg CPU Util Avg long jobs CPU Util Req.Cpus/Cpus

CTC 430 20K-25K 57 % 70% 5.8

SDSC Blue 1152 20K-25K 23 % 70% 3.8

SDSC 128 40K-45K 66 % 90% 8.8

The CTC trace contains records from IBM SP2 located at the Cornell Theory
Center. SDSC and SDSC Blue traces are from the San Diego Supercomputing
Center. We now present the experimental results obtained from simulations using
the workloads traces from Table 2.

5.1 Experimental Results

Figures 3(a), 3(b), 3(c) and 3(d) show the average wait time, execution time,
response time and slowdown respectively for CTC, SDSC and SDSC Blue work-
loads under FCFS-malleable and EASY backfilling JSSs3.

FCFS-malleable JSS obtained better average response time in all the traces,
especially in trace SDSC Blue. This workload contains jobs with low CPU uti-
lization, which leads to higher degree of overlap of communication and commu-
nication. In addition, this workload has no sequential jobs, thus all the jobs are
eligible for applying VM.

3 Variations of backfilling policies are used in most of the Top50 machines[12]. EASY
backfilling is used as a reference for performance comparison in almost every job
scheduling research. That is why we chose EASY backfilling for our comparisons.

200 G. Utrera et al.

As it was expected, average execution times are larger under FCFS-malleable
due to the reduction on the number of CPUs. However, these execution times
are not twice larger than the execution times in EASY backfilling.

FCFS-malleable obtains substantially better average slowdowns in CTC and
SDSC Blue but not in SDSC. This means that the performance of short jobs
is degraded in that workload. Analyzing this penalization we found that it was
due to the strong presence of sequential jobs and the high CPU utilization of
long jobs. EASY backfilling outperformed FCFS-malleable only on jobs with
execution time less than 3 minutes and number of processes less than 16. EASY
backfilling failed to find a suitable hole to forward long sequential jobs or with
high degree of parallelism. This study can be found in [26].

0

10000

20000

30000

40000

50000

CTC SDSC Blue SDSC

A
ve

ra
ge

 w
ai

t t
im

e
(s

) EASY-backfilling

FCFS-malleable

(a) Average wait time

0

2000

4000

6000

8000

10000

12000

14000

CTC SDSC Blue SDSC

A
ve

ra
ge

 e
xe

cu
ti

on
 ti

m
e(

s)

EASY-backfilling

FCFS-malleable

(b) Average execution time

0

10000

20000

30000

40000

50000

CTC SDSC Blue SDSC

A
ve

ra
ge

 re
sp

on
se

 ti
m

e
(s

) EASY-backfilling
FCFS-malleable

(c) Average response time

0

50

100

150

200

250

300

350

CTC SDSC Blue SDSC

A
ve

ra
ge

sl

ow
do

w
n

EASY-backfilling
FCFS-malleable

(d) Average slowdown

Fig. 3. Average wait, execution, response time and slowdown for CTC, SDSC and
SDSC Blue under FCFS-malleable and Easy backfilling

The CPU utilization for long jobs is the highest for the SDSC workload (see
Table 2). We re-simulated the SDSC workload trace varying the average value of
CPU utilization of long jobs between 60% and 100%. We observed that for long
jobs with CPU utilization under 90% the average slowdown for FCFS-malleable
is smaller than for EASY backfilling. Due to lack of space we omitted that study
here, but it can be found in [26].

A Job Scheduling Approach for Multi-core Clusters Based on VM 201

Table 3. Average MPL

Workload EASY backfilling FCFS-malleable

CTC 0.75 0.91

SDSC Blue 0.76 0.98

SDSC 0.89 1.47

FCFS-malleable managed to eliminate fragmentation in all the workloads
while EASY backfilling had fragmentation percentages from 6 for CTC to 14 for
SDSC. Table 3 shows the average MPL of the three workloads for EASY back-
filling and FCFS-malleable. MPL was calculated by averaging the total number
of processes in the system per CPU. FCFS-malleable has average MPL below
2 (the maximum). This means that the workloads have variations so that jobs
could expand from time to time decreasing in this way the average value of MPL.
The value of the average MPL for the SDSC trace means that half of the CPUs
run shrunk jobs all the time.

6 Conclusions and Future Work

In this work we proposed a new job scheduling strategy (JSS) for multi-core clus-
ters: FCFS-malleable. Evaluations on the target architecture were carried out
using a job scheduler and a runtime system implemented for that purpose. In ad-
dition, to extend evaluations to workloads from production systems, a simulator
was constructed. Experimental results showed that FCFS-malleable outperforms
EASY backfilling by 28% in average slowdown and by 31% in average response
time. In addition, our JSS reduces fragmentation thanks to its capability to
adapt jobs to available resources by shrinking and expanding them.

Although in this work we compete with backfilling, our JSS can be combined
with it to take the most of both strategies. We are currently evaluating this
approach. Memory bandwidth was not taken into account in the current study.
We are working on an accurate estimation of the overhead caused by limited
memory bandwidth.

Acknowledgements. This work was supported by the Ministry of Science and
Technology of Spain under contracts TIN2007-60625, TIN2006-01078, TIN2010-
16144 and Juan de la Cierva and the postdoctoral contract funded by the Uni-
versity of Malaga.

References

1. Marenostrum, http://www.bsc.es/marenostrum-support-services
2. MPI library, http://www.mcs.anl.gov/research/projects/mpi/
3. NAS Parallel Benchmarks,

http://www.nas.nasa.gov/Resources/Software/npb.html

4. Parallel workload archive, http://www.cs.huji.ac.il/labs/parallel/workload/
5. Top500 supercomputers sites, http://www.top500.org/

http://www.bsc.es/marenostrum-support-services
http://www.mcs.anl.gov/research/projects/mpi/
http://www.nas.nasa.gov/Resources/Software/npb.html
http://www.cs.huji.ac.il/labs/parallel/workload/
http://www.top500.org/

202 G. Utrera et al.

6. Arpaci-Dusseau, A.C.: Implicit coscheduling: coordinated scheduling with implicit
information in distributed systems. ACM Trans. Comput. Syst. 19, 283–331 (2001)

7. Buisson, J., Sonmez, O., Mohamed, H., Lammers, W., Epema, D.: Scheduling
malleable applications in multicluster systems. In: Proc. of the IEEE International
Conference on Cluster Computing 2007, pp. 372–381 (2007)

8. Cera, M.C., Georgiou, Y., Richard, O., Maillard, N., Navaux, P.O.A.: Support-
ing Malleability in Parallel Architectures with Dynamic CPUSETs Mapping and
Dynamic MPI. In: Kant, K., Pemmaraju, S.V., Sivalingam, K.M., Wu, J. (eds.)
ICDCN 2010. LNCS, vol. 5935, pp. 242–257. Springer, Heidelberg (2010)

9. Cirne, W., Berman, F.: Using moldability to improve the performance of super-
computer jobs. J. Parallel Distrib. Comput. 62, 1571–1601 (2002)

10. Downey, A.B.: A model for speedup of parallel programs. Technical report, Uni-
versity of California at Berkerley (1997)

11. El Maghraoui, K., Desell, T.J., Szymanski, B.K., Varela, C.A.: Dynamic malleabil-
ity in iterative MPI applications. In: Proceedings of the Seventh IEEE International
Symposium on Cluster Computing and the Grid, CCGRID 2007, pp. 591–598.
IEEE Computer Society, Washington, DC (2007)

12. Ernemann, C., Krogmann, M., Lepping, J., Yahyapour, R.: Scheduling on the Top
50 Machines. In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP
2004. LNCS, vol. 3277, pp. 17–46. Springer, Heidelberg (2005)

13. Feitelson, D.G., Rudolph, L.: Gang scheduling performance benefits for fine-grain
synchronization. Journal of Parallel and Distributed Computing 16(4), 306–318
(1992)

14. Feitelson, D.G., Rudolph, L.: Toward Convergence in Job Schedulers for Parallel
Supercomputers. In: Feitelson, D.G., Rudolph, L. (eds.) IPPS-WS 1996 and JSSPP
1996. LNCS, vol. 1162, pp. 1–26. Springer, Heidelberg (1996)

15. Iancu, C., Hofmeyr, S., Zheng, Y., Blagojevic, F.: Oversubscription on multicore
processors. In: 24th International Parallel and Distributed Processing Symposium
(IPDPS), pp. 1–11 (2010)

16. Lifka, D.A.: The ANL/IBM SP Scheduling System. In: Feitelson, D.G., Rudolph,
L. (eds.) IPPS-WS 1995 and JSSPP 1995. LNCS, vol. 949, pp. 295–303. Springer,
Heidelberg (1995)

17. Lublin, U., Feitelson, D.G.: The workload on parallel supercomputers: Modeling
the characteristics of rigid jobs. Journal of Parallel and Distributed Computing 63,
2003 (2001)

18. McCann, C., Zahorjan, J.: Processor allocation policies for message-passing par-
allel computers. In: Proceedings of the 1994 ACM SIGMETRICS Conference on
Measurement and Modeling of Computer Systems, SIGMETRICS 1994, pp. 19–32.
ACM, New York (1994)

19. Mu’alem, A.W., Feitelson, D.G.: Utilization, predictability, workloads, and user
runtime estimates in scheduling the ibm sp2 with backfilling. IEEE Transactions
on Parallel and Distributed Systems 12(6), 529–543 (2001)

20. Padhye, J., Dowdy, L.W.: Dynamic Versus Adaptive Processor Allocation Policies
for Message Passing Parallel Computers: An Empirical Comparison. In: Feitelson,
D.G., Rudolph, L. (eds.) IPPS-WS 1996 and JSSPP 1996. LNCS, vol. 1162, pp.
224–243. Springer, Heidelberg (1996)

21. Sodan, A.C., Jin, W.: Backfilling with fairness and slack for parallel job scheduling.
Journal of Physics: Conference Series 256(1), 012–023 (2010)

A Job Scheduling Approach for Multi-core Clusters Based on VM 203

22. Subotic, V., Labarta, J., Valero, M.: Simulation environment for studying overlap
of communication and computation. In: 2010 IEEE International Symposium on
Performance Analysis of Systems & Software (ISPASS), White Plains, NY, pp.
115–116 (March 2010)

23. Sudarsan, R., Ribbens, C.J.: Scheduling resizable parallel applications. In: Inter-
national Parallel and Distributed Processing Symposium, pp. 1–10 (2009)

24. Utrera, G., Corbalán, J., Labarta, J.: Implementing malleability on MPI jobs.
In: Proceedings of the 13th International Conference on Parallel Architectures
and Compilation Techniques, PACT 2004, pp. 215–224. IEEE Computer Society,
Washington, DC (2004)

25. Utrera, G., Corbalán, J., Labarta, J.: Scheduling of MPI Applications: Self-co-
scheduling. In: Danelutto, M., Vanneschi, M., Laforenza, D. (eds.) Euro-Par 2004.
LNCS, vol. 3149, pp. 238–245. Springer, Heidelberg (2004)

26. Utrera, G., Tabik, S., Corbalán, J., Labarta, J.: A job scheduling approach to
reduce waiting times. Technical report, Technical University of Catalonia, UPC-
DAC-RR-2012-1 (October 2011)

27. Wiseman, Y., Feitelson, D.G.: Paired gang scheduling. IEEE Transactions on Par-
allel and Distributed Systems 14(6), 581–592 (2003)

28. Zhang, Y., Sivasubramaniam, A., Moreira, J., Franke, H.: A simulation-based study
of scheduling mechanisms for a dynamic cluster environment. In: Proceedings of the
14th International Conference on Supercomputing, ICS 2000, pp. 100–109. ACM,
New York (2000)

Topic 4: High-Performance Architecture

and Compilers

Alex Veidenbaum, Nectarios Koziris, Toshinori Sato, and Avi Mendelson

Topic Committee

High-performance architecture and compilation are the foundation on which the
modern computer systems are built. The two sub-topics are very strongly related
and only in combination can deliver performance levels we came to expect from
systems. The topic is quite broad, with sub-areas of interest ranging from multi-
core and multi-threaded processors to large-scale parallel machines, and from
program analysis, program transformation, automatic discovery and manage-
ment of parallelism, programmer productivity tools, concurrent and sequential
languages, and other compiler issues.

This year four papers were accepted after a thorough review and discussion.
These papers are summarized below. We are grateful to all reviewers who helped
us in this process, as we obtained at least three reviews per submitted paper.

It is clear that the remaining papers proposed interesting ideas, but this year’s
competition was really tough. We thank all for their submissions and hope ev-
eryone will continue to support the conference. We also thank the Euro-Par
Organizing Committee for their guidance and their useful comments.

The paper “Dynamic Last-Level Cache Allocation to Reduce Area and Power
Overhead in Directory Coherence Protocols” by Mario Lodde, Jose Flich, and
Manuel E. Acacio proposes the reorganization of the Last Level Cache (LLC),
where the storage or not of the cache blocks’ data will depend on their charac-
terization as private or shared blocks. More specifically, if a block is private (i.e.
used only by one core), then the LLC will hold only its tag and any information
needed by the coherence protocol. The motivation behind this proposal is the
observation that a large percentage of the actions performed by the LLC con-
cerns private blocks as they are forwarded straight to the L1 caches and do not
involve the data portion of the LLC. By “eliminating” the storage of the private
blocks in the LLC, the authors achieve area and power savings with a negligible
impact on the performance.

The paper “A Practical Approach to DOACROSS Parallelization” by Priya
Unnikrishnan, Jun Shirako, Kit Barton, Sanjay Chatterjee, Raul Silvera, and
Vivek Sarkar presents a new approach for automatic parallelization of
DOACROSS loops. It is based on a compiler and runtime optimization (“depen-
dence folding”) which bounds the number of synchronization variables needed
to control cross-iteration dependences. Furthermore, the authors present a cost
analysis for determining the profitability of parallelization, and additional tech-
niques (unrolling, chunking) that increase granularity and reduce synchroniza-
tion overhead. These characteristics render their approach practical, compared
to prior similar efforts. Their approach was evaluated using 4 benchmarks on
a 32-core machine. The auto-parallelization of DOACROSS loops offered

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 204–205, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Topic 4: High-Performance Architecture and Compilers 205

significant speedups (compared both to sequential execution and DOALL au-
tomatic parallelization) but only when cost analysis and granularity control was
enabled.

The paper “Exploiting Semantics of Virtual Memory to Improve the Efficiency
of the On-Chip Memory System” by Bin Li, Zhen Fang, Li Zhao, Xiaowei Jiang,
Lin Li, Andrew Herdrich, Ravishankar Iyer, and Srihari Makineni proposes two
hardware-based mechanisms that exploit stack memory’s characteristics to op-
timize on-chip memory. The first mechanism reduces TLB misses by 10%− 20%
by automatically creating large pages (“superpages”) to host stack memory con-
tents. The second technique treats stack accesses in a distributed shared cache
in a different way than regular ones, by routing them to each core’s local cache
slice. The benefit of this approach is reduced interconnect power consumption
by more than 14%. Both techniques are evaluated using a simulation framework
and the SPEC CPU 2000 benchmarks.

Finally, the paper “From Serial Loops to Parallel Execution on Distributed
Systems” by George Bosilca, Aurelien Bouteiller, Anthony Danalis, Thomas Her-
ault, and Jack Dongarra, presents a compiler front-end for the DAGuE runtime
system, to analyze annotated serial loops of tiled dense linear algebra algorithms,
in order to provide symbolic information to the runtime system for the efficient
execution on distributed memory machines.

Dynamic Last-Level Cache Allocation to Reduce Area
and Power Overhead in Directory Coherence Protocols

Mario Lodde1, Jose Flich1, and Manuel E. Acacio2

1 Universitat Politècnica de València, Spain
2 Universidad de Murcia, Spain

Abstract. Last level caches (LLC) play an important role in current and future
chip multiprocessors, since they constitute the last opportunity to avoid expensive
off-chip accesses. In a tiled CMP, the LLC is typically shared by all cores but
physically distributed along the chip, thus providing a global banked capacity
memory with high associativity. The memory hierarchy is orchestrated through a
directory-based coherence protocol, typically associated to the LLC banks. The
LLC (and directory structure) occupies a significant chip area and has a large
contribution on the global chip leakage energy. To counter measure these effects,
we provide in this paper a reorganization of the LLC cache and the directory by
decoupling tag and data entry allocation, and by exploiting the high percentage
of private data typically found in CMP systems. Private blocks are kept in L1
caches whereas LLC area is reorganized to reduce L2 entries while still allowing
directory entries for private data, thus, maximizing on-chip memory reuse. This is
achieved with no performance drop in terms of execution time. Evaluation results
demonstrate a negligible impact on performance while achieving 45% of area
saving and 75% of static power saving. For more aggressive designs, we achieve
80% area and 82% static power savings, while impacting performance by 10%.

1 Introduction

Tiled chip multiprocessors (CMPs) have been advocated as the most effective way of
organizing future many-core CMPs with dozens of processor cores [1]. These tiled
architectures provide a scalable solution for managing the design complexity, and ef-
fectively using the resources available in advanced VLSI technologies. A tiled CMP is
built by replicating the same tile structure on the chip surface. Each tile typically in-
cludes one (or more) processor core, one (or more) level of private caches, part (one
bank) of a shared but distributed last-level cache (LLC) and a router to connect the tiles
building a network-on-chip (NoC). The shared LLC is typically inclusive with respect
to all of the private caches. This means that, at all times, the LLC contains a superset of
the blocks in the private caches (Intels Core i7 is a good example [2] of the latter).

Private caches in these designs are kept coherent by means of a directory-based cache
coherence protocol implemented in hardware. The directory structure is distributed be-
tween the LLC banks, usually included into the tags portion of every cache entry [3].
In this way, each tile keeps the sharing information of the blocks mapped to the LLC
bank that it contains. This sharing information comprises two main components: the
state bits used to codify one of the possible states that the directory can assign to the
cache block, and the sharing code, that holds the list of current sharers.

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 206–218, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Dynamic Last-Level Cache Allocation to Reduce Area and Power Overhead 207

(a) breakdown of actions performed by the
LLC when an L1 request is received (b) % of L2 replacements

Fig. 1. Breakdown of actions and replacements at LLC

Last level caches (LLC) play an important role in ensuring performance since they
constitute the last opportunity to avoid expensive off-chip accesses. In this way, current
and future CMPs will be equipped with increasingly larger LLCs, occupying a signif-
icant fraction of the total chip area and having a large contribution on the global chip
leakage energy (as an example, the size of the LLC of the Intel Core i7 can reach up
to 15MB as by today [2]). In this work we focus on the design of an effective LLC for
future many-core CMPs. In particular, we propose to reorganize the LLC structure to
allow for the dynamic allocation of entries at this cache level depending on the specific
necessities of every address.

Our work is motivated by the observation that for private blocks (memory blocks
requested by a single core) the LLC contains stale data (or, more precisely, the data
portion of the cache entry is not needed). While all the cached copies of a shared block
have the same value, both in the private and the LLC caches, in the case of a private
block (the block is owned by a single private cache) the values of the LLC and the
private copies may differ (the block could be in modified state in the private cache).
Therefore, the LLC copy of a private block is then probably stale, and useless until
the corresponding private cache performs a writeback operation on the block. In that
situation, the only valid copy of the block would be moved to the LLC. In this way,
there are two cases in which the data portion of each LLC entry is needed: a) the block
is shared by several cores, and b) a private block has been replaced by the owner private
cache. In the rest of situations, keeping the data portion of the LLC entries can be seen as
a waste of resources. Figure 1.(a) plots the breakdown of actions performed by the LLC
of the 16-core CMP assumed in this work (details about the evaluation environment can
be found in Section 3). More than 80% in some cases of the requests are forwarded to
the L1 caches, thus do not involve the data portion of the LLC. Therefore, we can see
that a large percentage of area and power is wasted in LLC to store private blocks.

On the other hand, LLC replacements (due to limited capacity and associativity) lead
to invalidating data in private caches. Figure 1.(b) shows the percentage of LLC replace-
ments of private blocks. As derived from the figure, a large percentage of replacements
in the LLC (more than 40% in some applications) are for private blocks. Private data is

208 M. Lodde, J. Flich, and M.E. Acacio

only requested the first time the processor wants to operate on it and then is written and
read without sending any request to the LLC, thus becoming older in the LLC set and
thus becoming quickly selected by the LRU replacement algorithm (even if it is being
actively referenced by a processor core).

Taking those results as a reference, we can conclude that an effective organization
for the LLC should combine two types of entries: entries with just the tag’s portion for
private blocks, and regular entries for the rest of the blocks. In this work, we propose
to reorganize the LLC structure to allow the dynamic allocation of blocks depending
on the block being private or shared. In particular, we redesign the associated directory
with a different (higher) associativity than the L2 data array. The tag and directory
array contain information about all the cached blocks, while the data array contains
only shared and replaced private blocks. This allows for a smaller LLC with the same
performance as private blocks will be kept only at private caches. With our approach, we
achieve large savings in static power while not hurting performance. Evaluation results
demonstrate average savings of 45% in area and 75% in static power.

Our proposal can be combined with previous works that aim for reducing static power
at L2 caches by dynamically powering down cache lines. This is the case of [4]. Notice
that in that situation entries in L2 for private blocks (once the L1 cache writes on the
block) are powered down. This means extra power saving through a line-level power
gating mechanism (similar to cache decay for L1 caches [5]). These strategies are or-
thogonal to our approach. We provide results for the two mechanisms combined together.

The rest of the paper is organized as follows. In Section 2 we describe our proposal
and its impact on area and power overhead. In Section 3, we perform a detailed analysis
of performance and power savings. Then, related work is described in Section 4 and the
paper is concluded in Section 5.

2 Dynamic L2 Cache Line Allocation

In this work, and without losing generality, we focus on CMPs made of 16 tiles con-
nected through a 2D mesh NoC. Each tile includes a processor core, its private L1 cache
and a bank of the L2 cache, which is shared by all the tiles. The whole L2 cache is, thus,
distributed and made of 16 banks, each managing a subset of the global address space.
From now on, we use the term L2 cache and LLC interchangeably.

We assume MESI states for the L1 caches. The M state is used when the block is
private and has been modified; E is used when the block is private and not modified;
S means read-only permissions over the block (the block is potentially shared); and I
denotes a block that is invalid or not cached. Additionally, each directory entry (associ-
ated with each L2 cache entry) will have the following fields: 1) Cache line state field
being P when the block is private, S when the block is shared with no owner, C when the
block is only cached in L2, and I when the block is not cached (invalid entry). 2) Owner
field being a pointer to the owner L1, which can provide the block to future requestors.
3) Sharers List field, being the list of the L1 caches which share the block.

Figure 2 shows how an L2 block switches between states depending on the requests
received by L1 caches (transient states are omitted for the sake of clarity). At first, the
block is not cached on chip (state I). Upon a write (GETX) or a read (GETS) request, the

Dynamic Last-Level Cache Allocation to Reduce Area and Power Overhead 209

block is fetched from main memory and sent to the L1 requestor, which is now the owner
of the block and holds a private copy (state P). At this point, a write request from an-
other core will be forwarded to the owner, which will send the data to the requestor and
invalidate its copy (the requestor will become the new owner). A read request (GETS)
will also be forwarded to the owner, but in this case it will not invalidate its copy. In-
stead, it will provide the data to the requestor but also keep a copy of the block with
read permission. However, the block state in the L2 bank will switch from P to S.

Fig. 2. Simplified FSM for the L2 cache (MESI protocol)

If the block is in P state and the owner replaces the block (PUTS or PUTX), then
the only on-chip copy of the block lies in the corresponding L2 bank, which switches
to state C. Further requests will be served using the L2 copy of the block.

Usually, there is a 1:1 relationship between the tag/directory and the data portions of
the LLC. A different design can be chosen, with fewer data entries than tag/directory
entries. If the block is private (state P in the directory), then only the tag/directory is
allocated, as the only valid copy will be held by the owner L1. If, on the contrary, the
block is shared or only cached in the L2 bank (state S and C in the directory), then both
the tag/directory and the cache line are allocated.

We can reorganize an L2-directory bank by reducing the associativity in L2 and
keeping or using that area for more tag/directory entries in the directory structure, so
we break the 1:1 relationship. This will reduce replacements of blocks in P state. To do
this, we keep the associativity of the tag/directory array to 16 while reducing the L2 data
array associativity from 16 down to 8. This means that only the first eight ways of the
tag array can store information about a block in state S or C, which data will be saved in
the corresponding way of the data array, and all the 16 ways can store information about
a private block. We also stress the inequality by further reducing L2 data associativity
down to four and even two. Notice that this will constraint the area devoted to a shared
data in L2 but will not compromise private data, as will be tracked by the directory and
will be allocated in the L1 caches. With these ratios (from 1:2 to 1:8) large savings in
L2 area are expected.

It has to be noted that one could think of reducing L2 size by reducing the number
of sets, instead of the number of ways (see Figure 3). However, this could compro-
mise cache capacity depending on the data set. Indeed, having less sets would lead to
have less entries for shared data, while by reducing the associativity, cache capacity for

210 M. Lodde, J. Flich, and M.E. Acacio

shared data will not be compromised (as long as shared data does not conflict in the
same set). Notice that we reduce ways as those are, expectedly, used by private blocks.

Another direction one could take is reducing in the same degree both the associativity
in the L2 and in the directory (see Figure 3). However, in that case we would incur in
high performance penalty (as will be seen later) as the associativity in the directory must
be proportional and in line with the associativity in L1 caches. Simply, the directory will
not have enough ways to avoid conflicts between both shared and private blocks.

Fig. 3. Different LLC configurations by changing the number of sets and the associativity of the
L2 and directory structures

Figure 4 shows an example of an L2 cache reorganized. Only the first four ways of
the tag array may keep information about shared or cached blocks, which will be saved
in the same way of the data array. The remaining four sets of the tag array are devoted
to private blocks. However, private blocks can also be mapped in the first four ways of
the tag array. In this case, the information included in the corresponding set of the data
array would not be useful.1

Assuming an L2 cache with 4 ways and a directory with 8 ways, when a block
switches from P to S or C, its entry must be moved if it doesn’t lie in the first four ways.
This may trigger the replacement of another block if all the first four ways are already
in use, which means that the data array set is full. Thus, the automata to manage the L2
and directory needs to be slightly modified.

1 With orthogonal power saving techniques as [4] these entries can be powered down. Its impact
is later analyzed.

Dynamic Last-Level Cache Allocation to Reduce Area and Power Overhead 211

Fig. 4. Example of LLC reorganization

2.1 Replacement Policy

An LRU counter per way is used to implement the replacement policy. The counters
are used in the classical way: each time the L2 receives a request for a block, all the
counters with a lower value are incremented and the block counter is set to zero. When
a new block is requested and all the set entries are already in use, the entry with the
highest LRU counter value is selected. With the organization we propose, replacements
can be triggered also when a block which is already cached must be saved in the L2
cache. As shown in Figure 2, this happens when an owner invalidates its private copy
or a read request is received for a private block: the L2 state switches from P to C in the
first case or from P to S in the second case. In both cases, a data entry must be allocated
for the block in the L2 cache. If the first four ways are already allocated to other blocks,
the replacement policy will choose the way with the highest LRU counter only between
the first four entries (even though the entry with the highest LRU value could be one of
the remaining ones). Notice, that LRU counters are updated for all the directory entries,
thus not having two entries with the same number.

2.2 Dynamic Power Techniques

With our technique, truly shared data is promoted in the L2 data array, and private data
is just tracked in the directory. However, it may happen that for a given L2-directory set
more than half of the entries are for private blocks, thus not all the entries in the L2 cache
will be used. In such situation, these L2 data entries are wasting energy. To mitigate this
effect, our approach can be complemented with dynamic power-off strategies as [4], in
which private blocks that could be allocated in the L2 cache lead to powering down the
L2 entry. This can be achieved using ”sleep transistors” at each cache line to eliminate
the most part of the leakage current, as proposed by Kaxiras et al. [5] for L1 caches. As
in [5], we use Powell’s gated Vdd design [6] at cache line level, inserting a transistor

212 M. Lodde, J. Flich, and M.E. Acacio

between the ground and each L2 cache line to reduce the leakage current to a negligible
level.

When combined, the different transitions of a block A in the L2 cache can be sum-
marized as follows:

– When an L1 cache requests block A, which is not cached on-chip, the L2 issues
an off-chip request, allocates a tag entry to the block (which can be anyone of the
entries) and marks the block as private; if the tag entry is one of the first half, its
corresponding data entry is powered-off.

– Subsequent write requests will cause a change of the owner but the state of the
block in L2 cache will remain P.

– When the owner replaces its copy, it must be saved in the L2 cache. The same
happens if the L2 receives a read request for a private block, which will become
shared. If A is mapped in the first half of the tag ways, the corresponding data entry
must be powered-on. If, on the contrary, A is mapped in the second half, it will
trigger a potential internal swap, selecting one entry from the first half (using the
LRU algorithm). The selected entry can be in one of the following states:
• Private: this block and A are swapped, the data entry is powered on to save the

write back copy of A.
• Shared/Cached: this entry will be replaced and allocated to A.

– If a write request (in case A is in state S) or any request (in case A is in state C) is
received, the block will be again treated as a private block and the data entry must
be powered-off.

3 Performance Evaluation

We evaluate our proposal by using gMemNoCsim and Graphite [7] simulators.
gMemNoCsim is an in-house event-driven cycle accurate cache hierarchy and NoC
simulator. gMemNoCsim is embedded in Graphite, which allows execution-driven sim-
ulation of applications. Application’s memory accesses are tracked by Graphite and fed
into gMemNoCsim for an accurate memory coherency and on-chip network modeling.
Graphite threads are blocked until memory accesses are resolved by gMemNoCSim.
We implemented a two-level MESI coherence protocol, and the modifications needed
to implement our block allocation and replacement policy (later we do the same for a
MOESI protocol). Five different L2 designs have been evaluated and compared (block
size is set to 64 bytes):

1. L2-512-16 D-512-16. An 512KB L2 bank with 512 sets and 16 ways. The directory
also has 512 sets and 16 ways (1:1 ratio). This is the baseline for comparison.

2. L2-512-8 D-512-16. An 256KB L2 bank with 512 sets and 8 ways. The directory
also has 512 sets but keeps 16 ways (1:2 ratio).

3. L2-512-4 D-512-16. An 128KB L2 bank with 512 sets and 4 ways. The directory
keeps the same with 512 sets and 16 ways (1:4 ratio).

4. L2-512-2 D-512-16. An 64KB L2 bank with 512 sets and 2 ways. The directory
keeps the same with 512 sets and 16 ways (1:8 ratio).

Dynamic Last-Level Cache Allocation to Reduce Area and Power Overhead 213

Fig. 5. Normalized execution time. MESI protocol with L2 banks with 512 sets.

Fig. 6. Normalized execution time. MESI protocol with L2 banks with 256 sets.

In addition, we use a smaller L2 cache of 256KB as the baseline. In this case (L2-256-
16 D-256-16), 256 sets and an associativity of 16 is used for both the L2 and the di-
rectory. Our designs on top of this baseline are L2-256-8 D-256-16 (1:2 ratio, 128KB),
L2-256-4 D-256-16 (1:4 ratio, 64KB), and L2-256-2 D-256-16 (1:8 ratio, 32KB).

The system is made of 16 tiles with one processor in each tile and with a private
32KB L1 data cache (with 256 sets and 4 ways). Each tile includes also the L2 bank
and the associated directory. All the tiles are connected through a 2D mesh topology
using the XY routing algorithm. In a first test every configuration does not incorporate
any sleep transistor technology. Later we evaluate the combination of our technique
with those. We ran various SPLASH-2 applications with these cache organizations.

Figure 5 shows the execution time for the different applications, normalized to the
case of the first baseline L2-512-16 D-512-16. As can be seen, some applications have
no impact on execution time when L2 banks are reduced. Indeed, in BARNES,
CHOLESKY, LU, LUNC, and WATERNSQ, the L2 could be reduced by a factor of
8 (L2-512-2 D-512-16) with practically no impact on performance. On the other hand,
other applications can be sensitive to L2 cache capacity to shared blocks. Anyway, by
averaging, we can see that a good tradeoff is reducing L2 cache by half, which on av-
erage leads to only 1.7% performance decrease. Further reductions in area will tend to
7.5% performance degradation for an L2 reduction factor of 4 and to 15% for a reduc-
tion factor of 8.

For the case of smaller L2 banks (those with 256 sets), Figure 6 shows the execution
time of applications. We can see similar trends with large savings (up to a factor of 8x)
in area with no performance degradation, and others with some impact (up to 35%). On
average, a reduction of 2x in L2 size have no large impact.

We use Cacti 5.3 [8] to compute area and leakage for the different L2-directory
configurations. In Figure 7 we can see how area needs compare to the different evaluated

214 M. Lodde, J. Flich, and M.E. Acacio

Fig. 7. Normalized LLC area occupancy

Fig. 8. Normalized L2 leakage energy. MESI protocol.

designs. Each component is normalized to the baseline design (L2-512-16 D-512-16).
Tag array’s area is the same for the first four designs, while in L2-256-16 D-256-16 tags
take roughly half the area as the overall associativity is reduced. As far as data array is
concerned, the area needs decrease with the associativity of each design. Even though
L2-512-8 D-512-16 and L2-256-16 D-256-16 have the same data array size, the area
of the former is lower than the area of the later, due to its lower associativity (lower
number of comparators).

Figure 8 shows the leakage energy consumed by the L2 banks taking into account
the entire execution of each application, and normalized to the baseline (L2-512-16 D-
512-16). Leakage is reduced up to 80% due to the cache reorganization. This saving is
proportional to the reduction ratio performed.

Figure 9 shows leakage savings when our proposal is combined with [6]. We com-
pare the previous four cases and a baseline 256KB cache (L2-256-16 D-256-16). In
both baselines, caches have all data entries powered on during the whole execution
time, while the proposals power-on the L2 data entries only when needed, as perviously
described. The average leakage energy is reduced on average by 75% (for 1:2 ratio),
83% (for 1:4 ratio) and 89% (for 1:8 ratio). Depending on the application, we achieve
up to 98% in leakage energy savings (BARNES).

3.1 Benefits When Using MOESI Protocol

Another appealing protocol which can be implemented in L1 caches is MOESI. It be-
haves like the MESI protocol but when an owner (which has its block in state M or
E) receives a forwarded GETS its state becomes O (and not S like in MESI protocol).

Dynamic Last-Level Cache Allocation to Reduce Area and Power Overhead 215

Fig. 9. Normalized L2 leakage energy (MESI) with sleep transistors

This means it remains the owner of the block with read permission, and when the L2
receives a request, it will still be forwarded to this L1. This is inefficient in a typical
memory hierarchy since it takes one more step to provide the data to the requestor, but
can largely benefit from our approach. Indeed, shared blocks in state O do not need to
be allocated in L2 banks, thus, being all the requests forwarded to the owner. The L2
state diagram when a MOESI protocol is used in L1 caches is shown in Figure 10. A
block keeps switching between states P and O until the owner invalidates its copy, and
only then an L2 cache line must be allocated. In Figure 11 we compare the execution
time for the different cache configurations with L1s that use a MOESI protocol (the
figure shows the cases for 512 sets). However, for the sake of fairness, we use the MESI

Fig. 10. Simplified FSM for the L2 cache (MOESI protocol)

Fig. 11. Normalized execution time. MOESI (for 1:x ratio proposals) and MESI (for baseline).

216 M. Lodde, J. Flich, and M.E. Acacio

protocol for the baseline configuration (which works better than when using MOESI,
due to the extra indirection). For our proposals, however, we use the MOESI protocol.

As shown, our organization takes advantage of the O state since less blocks in state
S and C must be invalidated. The average penalty when using a data array with lower
associativity is now 0.7% (with a 1:2 ratio), 5.2% (with a 1:4 ratio) and 11.4 % (with
a 1:8 ratio), while saving 43%, 72% and 81% of area and 75%, 82% and 83% of static
power, respectively (these results are not shown due to space constraints).

4 Related Work

As the cache hierarchy is currently the chip component which has more impact in area
and power, many efforts have been made in reducing its energy requirements. At circuit
level, different techniques have been proposed to reduce cache leakage. Powell et al. [6]
propose the gated-Vdd technique which powers down the L2 entries used for private
blocks. Similar techniques have been proposed to reduce the supply voltage enough to
reduce leakage without destroying the content of the cell, as done with drowsy [9] and
superdrowsy [10] caches. The latter techniques have various drawbacks compared to
the destructive technique proposed by [6], being more difficult to implement and saving
less leakage since a certain voltage has to be provided to the cell to keep the data.

At higher level, alternative cache architectures have been proposed to reduce static
and/or dynamic power. Savings can be achieved by modifying cache parameters like
cache size and cache associativity [12, 13]. Other efforts have been made to reduce the
number of cache accesses, by using snoop filters [14, 15], way predictors [16] or filter
caches [17]. Various proposals turn off L1 or L2 cache ways based on different predic-
tion techniques. As an example, Kaxiras et al [5] propose to turn off L1 cache entries
which are not expected to be reused. Abella et al [11] propose a different predictor to
turn off unused L2 cache entries. Li et al [4] use different policies to turn off L2 cache
entries when block copies are replicated in an L1, and evaluate both conservative and
destructive voltage gating techniques.

All these works always assume a 1:1 relationship between L2 entries and directory
entries. In addition, our proposal is orthogonal to all these works, since in our work we
simply remove the area devoted mainly to private blocks in L2. Indeed, we reduce L2
cache size by reducing its associativity, while keeping directory associativity, which is
vital to keep track all the on-chip blocks, either shared or private. Indeed, we demon-
strated in this paper our technique can be complemented with the one presented in [6].

5 Conclusions

In this paper we have proposed an effective method to significantly reduce the area of
LLC caches in a CMP system. The reduction comes from the idea of keeping private
blocks in L1 caches and not using L2 entries for such blocks. Although the idea is not
new, in our approach we physically redimension the LLC cache and its associated direc-
tory and provide a 1:x approach, where different associativity degrees are used in both
L2 and directory caches. The L2 cache associativity is lower in order to accommodate

Dynamic Last-Level Cache Allocation to Reduce Area and Power Overhead 217

only shared blocks, while directory associativity is kept to keep track of all the blocks
in the chip, either private or shared blocks.

Results demonstrate large savings in L2 area and static power consumption. With a
MESI procotol, the L2 cache size can be halved with no impact on performance and
with a rough reduction of leakage of 50%. More aggressive designs (75% of L2 size
reduction) lead to low performance penalties but with very large savings in power. We
also demonstrate in this paper that our technique can be complemented with power-
gating mechanisms in the L2 cache.

Acknowledgement. This work has been supported by the VIRTICAL project (grant
agreement n 288574) which is funded by the European Commission within the Re-
search Programme FP7.

References

1. Tile-gx processors family, http://www.tilera.com/products/TILE-Gx.php
2. Intel Core i7 technical Specifications,

http://www.intel.com/products/processor/corei7ee/
specifications.htm

3. Zhang, M., Asanović, K.: Victim replication: Maximizing capacity while hiding wire delay in
tiled chip multiprocessors. In: Proc. of the 32nd Int’l Symposium on Computer Architecture
(ISCA-32), pp. 336–345 (2005)

4. Li, L., Kadayif, I., Tsai, Y.-F., Vijaykrishnan, N., Kandemir, M., Irwin, M.J., Sivasubrama-
niam, A.: Leakage energy management in cache hierarchies. In: Proceedings of the Interna-
tional Conference on Parallel Architectures and Compilation Techniques (2002)

5. Kaxiras, S., Hu, Z.: Cache Decay: Exploiting Generational Behavior to Reduce Cache Leak-
age Power. In: Proc. of the 28th Int’l Symposium on Computer Architecture (ISCA 2001)
(May 2001)

6. Powell, M., Yang, S.-H., Falsafi, B., Roy, K., Vijaykumar, T.N.: Gated-Vdd: a circuit tech-
nique to reduce leakage in deep-submicron cache memories. In: Proceedings of the Interna-
tional Symposium on Low Power Electronics and Design, ISLPED 2000 (2000)

7. Miller, J.E., Kasture, H., Kurian, G., Gruenwald III, C., Beckmann, N., Celio, C., Eastep, J.,
Agarwal, A.: Graphite: A Distributed Parallel Simulator for Multicores. In: The 16th IEEE
International Symposium on High-Performance Computer Architecture (HPCA) (January
2010)

8. Cacti 5 Technical Report,
http://www.hpl.hp.com/techreports/2008/HPL-2008-20.html

9. Flautner, K., Kim, N.S., Martin, S., Blaauw, D., Mudge, T.: Drowsy caches: Simple tech-
niques for reducing leakage power. In: Proceedings of the ACM/IEEE 29th International
Symposium on Computer Architecture, ISCA 2002 (2002)

10. Kim, N.S., Flautner, K., Blaauw, D., Mudge, T.: Single-VDD and Single-VT super- drowsy
techniques for low-leakage high-performance instruction caches. In: Proceedings of the
ACM/IEEE International Symposium on Low Power Electronics and Design, ISLPED 2004
(2004)

11. Abella, J., Gonzales, A., Vera, X., O’Boule, M.F.P.: IATAC: A Smart Predictor to Turn-off
L2 Cache Lines. ACM Transactions on Architecture and Code Optimization 2(1) (March
2005)

http://www.tilera.com/products/TILE-Gx.php
http://www.intel.com/products/processor/corei7ee/specifications.htm
http://www.intel.com/products/processor/corei7ee/specifications.htm
http://www.hpl.hp.com/techreports/2008/HPL-2008-20.html

218 M. Lodde, J. Flich, and M.E. Acacio

12. Drophso, S., Buyuktosunoglu, A., Balasubramonian, R., Albonesi, D.H., Dwarkadas, S.,
Semeraro, G., Magklis, G., Scott, M.L.: Integrating adaptive on-chip storage structures for
reduced dynamic power. In: Proceedings of the IEEE 11th International Conference on
Parallel Architectures and Compilation Techniques, PACT 2002 (2002)

13. Zhang, C., Vahid, F., Najjar, W.: A highly configurable cache architecture for embedded
systems. In: Proceedings of the ACM/IEEE 30th International Symposium on Computer
Architecture, ISCA 2003 (2003)

14. Moshovos, A., Memik, G., Falsafi, B., Choudhary, A.: Jetty: Filtering snoops for reduced
energy consumption in SMP servers. In: Proceedings of International Symposium on High
Performance Computer Architecture (HPCA 2001) (January 2001)

15. Salapura, V., Blumrich, M., Gara, A.: Design and implementation of the Blue Gene/P snoop
filter. In: Proceedings of International Symposium on High Performance Computer Archi-
tecture (HPCA 2007) (February 2007)

16. Inoue, K., Ishihara, T., Muruami, K.: Way-predictive set-associative cache for high perfor-
mance and low energy consumption. In: Proceedings of the ACM/IEEE International Sym-
posium on Low Power Electronics and Design, ISLPED 1999 (1999)

17. Kin, J., Gupta, M., Mangione-Smith, W.-H.: The filter cache: An energy efficient memory
structure. In: Proceedings of the ACM/IEEE 30th International Symposium on Microarchi-
tecture, MICRO 1997 (1997)

A Practical Approach to DOACROSS Parallelization

Priya Unnikrishnan1, Jun Shirako2, Kit Barton1,
Sanjay Chatterjee2, Raul Silvera1, and Vivek Sarkar2

1 IBM Toronto Laboratory
{priyau,kbarton,rauls}@ca.ibm.com

2 Department of Computer Science, Rice University
{js20,cs20,vs3}@rice.edu

Abstract. Loops with cross-iteration dependences (DOACROSS loops) often con-
tain significant amounts of parallelism that can potentially be exploited on mod-
ern manycore processors. However, most production-strength compilers focus
their automatic parallelization efforts on DOALL loops, and consider DOACROSS

parallelism to be impractical due to the space inefficiencies and the synchro-
nization overheads of past approaches. This paper presents a novel and prac-
tical approach to automatically parallelizing DOACROSS loops for execution on
manycore-SMP systems. We introduce a compiler-and-runtime optimization
called dependence folding that bounds the number of synchronization variables
allocated per worker thread (processor core) to be at most the maximum depth
of a loop nest being considered for automatic parallelization. Our approach has
been implemented in a development version of the IBM XL Fortran V13.1 com-
mercial parallelizing compiler and runtime system. For four benchmarks where
automatic DOALL parallelization was largely ineffective (speedups of under 2×),
our implementation delivered speedups of 6.5×, 9.0×, 17.3×, and 17.5× on a
32-core IBM Power7 SMP system, thereby showing that DOACROSS paralleliza-
tion can be a valuable technique to complement DOALL parallelization.

1 Introduction

As hardware processors move from multicore to manycore designs, the challenge of
enabling software to exploit parallelism is gaining a heightened urgency. While a num-
ber of programming models have been proposed for explicit parallelism, manual par-
allelization still requires a high degree of parallel programming expertise, and is often
time-consuming and error-prone. It is widely believed that automatic parallelization
can play an important role in improving the programmability of manycore-SMP sys-
tems [4] because it requires minimal or no effort by users. Furthermore, techniques for
automatic parallelization can also be used in programming tools that assist in manual
parallelization.

Most compilers focus on loops with no cross-iteration dependences in which all iter-
ations can be executed completely in parallel with each other; such loops are referred to
as DOALL loops. Loops with cross-iteration dependences are referred to as DOACROSS

loops, and are usually serialized or, in some cases, transformed into skewed DOALL

loops when practical to do so. However, Amdahl’s Law dictates that it will be increas-
ingly important to pay attention to the sequential fraction of the program, including

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 219–231, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

220 P. Unnikrishnan et al.

non-parallelized DOACROSS loops, as we move to manycore processors. Unfortunately,
past approaches to DOACROSS parallelization are impractical for use in production-
strength compilers due to unrealistic assumptions about space (e.g., allocating one syn-
chronization variable per dynamic iteration instance) or granularity (e.g., performing
synchronization operations even when their overhead exceeds the execution time of a
loop iteration).

This paper presents a novel and practical approach to automatically parallelizing
DOACROSS loops for execution on manycore-SMP systems. We introduce a compiler-
and-runtime optimization called dependence folding that bounds the number of syn-
chronization variables per worker thread (processor core) to be at most the maximum
depth of a loop nest being considered for automatic parallelization. We also present an
effective cost analysis to determine the profitability of DOACROSS parallelization, and
practical techniques to increase the granularity of computation between successive syn-
chronization operations. Our approach has been implemented in a development version
of the IBM XL Fortran V13.1 commercial parallelizing compiler and runtime system.
For four benchmarks where automatic DOALL parallelization was largely ineffective
(speedups of under 2×), our implementation delivered speedups of 6.5× for LU, 9.0×
for Poisson, 17.3× for SOR, and 17.5× for Jacobi on a 32-core IBM Power7 SMP
system. Thus, DOACROSS parallelization can be a valuable technique to complement
DOALL parallelism in cases where DOALL parallelization results in limited benefits [13].

The rest of the paper is organized as follows. Section 2 summarizes some of the
previous work in this area. Section 3 describes our approach to DOACROSS paralleliza-
tion, with details on dependence folding and runtime algorithms. Section 4 describes
our methods for cost analysis and optimal grain size selection. Section 5 presents ex-
perimental results to evaluate the effectiveness of our approach. Section 6 contains our
conclusions, along with suggestions for future work.

2 Previous Work

Early work on DOACROSS parallelization concentrated primarily on the synchroniza-
tion mechanisms used. Cytron [2] showed how to determine a DOACROSS schedule to
enforce a given set of dependences, based on the delays to be introduced for different
iterations of the loop in processors that execute synchronously. Padua and Midkiff [7]
focused on synchronization techniques to enforce loop carried dependences in singly-
nested DOACROSS loops. They use one synchronization variable per data-dependence
in the loop, and do not consider multi-dimensional loops. Wolfe [12] looked at four
different synchronization mechanisms such as synchronizing at every data-dependence
relationship in the loop, dividing the loop into segments of statements and pipelining
the execution of the segments, inserting barriers at various points in the loop, using
ordered critical sections etc. Again, only singly-nested loops were considered.

Su and Yew [10] proposed several interesting data synchronization schemes. The
data-oriented scheme uses a dedicated synchronization variable for each datum involved
in a dependence relationship in the loop, while the statement-oriented and process-
oriented schemes have one per statement and iteration, respectively. They considered
multi-dimensional loops with both a single level of parallelism and nested parallelism,
but did not include any experimental results. Li [5] presents algorithms to generate

A Practical Approach to DOACROSS Parallelization 221

synchronization code based directly on array subscripts and loop bounds using an array
of event variables. This technique does not require constant data dependence distances
and can target arbitrarily nested loops. Chen et al [3] proposed an algorithm for runtime
parallelization of DOACROSS loops when data dependences cannot be determined at
compile-time. Tang et al [8], presented synchronization schemes that can parallelize
general nested loop structures with complicated cross-iteration data dependences.

Our experience in the area of automatic parallelization has led us to believe strongly
that the choice of synchronization mechanism, its implementation and its tuning all have
a major impact on the (im)practicality of a given approach to DOACROSS parallelization.
All of the above papers [2,3,10,5,7,8,12] propose interesting techniques for synchroniza-
tion, but lack quantitative measurements on the performancegains achieved, and the syn-
chronization costs and memory requirements of the stated methods. Our synchronization
mechanism uses a simple and intuitive “iteration vector” based scheme that can be eas-
ily applied to multi-dimensional loop nests. Our experimental results show that a single
level of parallelism is sufficient in most cases to exploit the available resources.

There has also been some notable past work on optimizing synchronization opera-
tions. Krothapalli [11] targeted redundant synchronization elimination by removing re-
dundant dependences in simple loops with constant dependences. Rajamony and Cox [9]
used integer programming to determine the optimal solution to minimize the amount of
synchronization in DOACROSS loops while retaining the parallelism that can be extracted
from the loop. Chen [1] focused on increasing parallelism with statement reordering and
reducing communication overhead by eliminating redundant synchronizations.

An optimal granularity of computation is required to offset the overhead of synchro-
nization. Pan et al [14] used tiling to increase the parallelization granularity and propose
a formulation for the optimal tile size. They conclude that static scheduling significantly
outperforms dynamic self-scheduling by enhancing inter-tile locality. Lowenthal [6]
presented a flexible runtime approach to determine the granularity for pipelined paral-
lelization. Our work instead uses a cost-based combination of compile-time and runtime
analyses to determine the granularity of work. Our results show that the accuracy of cost
analysis can have a significant impact on parallel performance and scalability.

3 DOACROSS Parallelization Algorithm

Our approach to automatic DOACROSS parallelization is based on the assumption that
there is one (logical) synchronization variable allocated per dynamic loop iteration.
Thus, the sources and targets of inter-iteration synchronization operations can be de-
noted as iteration vectors. (Recall that iteration vector

−→
Iv = (I1, I2, I3, ...In) represents

a unique point in an n-dimensional iteration space.) The core idea is that a dependent
iteration can examine the status of the synchronization variables of the iterations that
it is waiting on to determine when it can start execution. Using the iteration vector as
the synchronization variable interface has several advantages. It is very efficient to im-
plement in terms of the memory required (as we will see below), simple to understand
and implement, easily extensible to multidimensional loops, and does not constrain the
inherent parallelism in the loop nest.

In our approach, synchronization is performed at the statement level of a given pro-
gram representation. We assume that standard POST/WAIT operations can be performed

222 P. Unnikrishnan et al.

on the iteration vector synchronization variables to enforce the data dependence rela-
tionships in the loop. A POST is inserted after the source statement of the dependence
and the WAIT statement is inserted before the sink statement of the dependence:

1. WAIT (w
−→
Iv): Causes execution to wait until the iteration specified by the iteration

vector w
−→
Iv is completed. The iteration vector w

−→
Iv of WAIT is computed using the

current iteration vector and the dependence distance vector
−→
D = (d1, d2, d3, ...dn)

of the data dependence w
−→
Iv = (Iv −

−→
D) = (I1 − d1, I2 − d2, ...In − dn)

2. POST (p
−→
Iv): Indicates the completion of the iteration specified by the iteration vec-

tor p
−→
Iv . The iteration vector p

−→
Iv of POST is the current iteration being executed.

p
−→
Iv =

−→
Iv = (I1, I2, ...In)

3.1 Dependence Folding

With the aim of reducing synchronization overheads so as to make DOACROSS paral-
lelization practical, our implementation folds all the loop-carried dependences in the
loop into a single, conservative dependence. This leads to the insertion of at most one
pair of synchronization primitives per iteration. In our experience with current hardware,
the lower synchronization cost resulting from at most one synchronization per iteration
far outweighs the potential loss in parallelism due to conservative approximation.

Definition 1. A loop-carried data dependence is composed of the source statement,
sink statement and the dependence distance Δ = {Ssrcδ

∗Ssink,
−→
D}.

Consider a perfect loop nest L with n dimensions and m statements {S1..Sm} and k

data dependences Δi = {Sxδ
∗Sy,

−→
Di}, i ∈ {1..k}, x ∈ {1..m} and y ∈ {1..m}. Each

dependence vector, Di has the form Di = (di1, d
i
2, ..., d

i
n). The single conservative

dependence is computed by considering all the data dependences Δ1..k in loop nest L.
The source of the conservative dependence is computed as the Lexically Latest Source
(LLS) statement across all the data dependences in the loop nest. In control flow terms,
the LLS statement can be computed as follows. First compute the least common an-
cestor, LCA, of all source statements in the postdominator tree for the loop; then, find
the closest ancestor of LCA in the postdominator tree that is unconditionally executed
in the loop body. This statement is the LLS. Likewise, the sink of the conservative de-
pendence is computed as the Lexically Earliest Sink (LES) statement across all the data
dependences in the loop nest (by using the dominator tree instead of the postdomina-
tor tree). After the source and sink statements have been identified for the conservative
dependence, the next step is to identify the conservative dependence distance vector−→
C . As our mechanism applies only to a single level of parallelism in the loop, it is
possible to use a trivial formulation for the conservative dependence distance shown
below. Assuming the outermost dimension is parallelized without loop chunking, the

first dimension of
−→
Di denotes the stride (i.e. dependence distance) along with the inter-

thread loop dependence. Therefore, the first dimension of
−→
C should correspond to the

maximum value of common strides in that dimension, which is the GCD value. The re-
maining dimensions can be conservatively computed by using min vect(

−→
V1,

−→
V2, ..,

−→
Vk),

which determines the lexicographically smallest vector of
−→
V1,

−→
V2, ..

−→
Vk.

A Practical Approach to DOACROSS Parallelization 223

 DO K=2,N3-1
 DO J=2,N2-1
 DO I=2,N1-1
 WAIT (K-1,J+1,I) Use{A} Def{A}
 s1 : Z = B(1)*(A(I+1,J ,K)+A(I-1,J ,K)
 & +A(I ,J+1,K)+A(I ,J-1,K)
 & +A(I ,J ,K+1)+A(I ,J ,K-1))
 & + B(2)*(A(I+1,J+1,K)+A(I-1,J+1,K)
 & +A(I+1,J ,K+1)+A(I-1,J ,K+1)
 & +A(I+1,J-1,K)+A(I-1,J-1,K)
 & +A(I+1,J ,K-1)+A(I-1,J ,K-1)
 & +A(I ,J+1,K+1)+A(I ,J-1,K+1)
 & +A(I ,J+1,K-1)+A(I ,J-1,K-1))
 s2 : A(I,J,K) = (A(I,J,K) + Z)*0.5D0
 POST (K, J, I) Use{A} Def{A}
 END DO
 END DO
 END DO

(a) Kernel with POST/WAIT

s1(3, 2, 2)
s2(3, 2, 2)

. . .
s1(3, 3, 2)
s2(3, 3, 2)

. . .

s1(2, 2, 2)
s2(2, 2, 2)

. . .
s1(2, 3, 2)
s2(2, 3, 2)

. . .

s1(4, 2, 2)
s2(4, 2, 2)

. . .
s1(4, 3, 2)
s2(4, 3, 2)

. . .

C = (1, -1, 0)

K = 2 K = 3 K = 4

(b) Conservative dependence

Fig. 1. Pipelining POISSON

−→
C =

(
C[1]

C[2..n]

)
=

(
gcd(d11, d

2
1, ...d

k
1)

min vect(D1[2..n], ...Dk [2..n])

)

After insertion of POST/WAIT operations, the compiler will look for code motion op-
portunities to move the POST operations as early as possible in the loop, and the WAIT
operations as late as possible in the loop. To ensure that such transformations do not
violate any data dependences, the POST/WAIT operations are augmented with pseudo
USE and DEF sets as follows:

1. Flow dependence (δf): A flow dependence is from a def of the variable to its use.
The WAIT is inserted before the use and the POST is inserted after the def. In order
to prevent the use of the dependence variable from moving up past the WAIT call,
the variable is inserted in a pseudo DEF set for the WAIT call. Similarly, in order
to prevent the def of the dependence variable from moving down below the POST
call, the variable is inserted in a pseudo USE set for the POST call.

2. Anti dependence (δa): An anti dependence is from a use of the variable to its def.
The WAIT is inserted before the def and the POST is inserted after the use. The
dependence variable is marked as a use in the WAIT call to ensure that the WAIT is
completed before the def, and as a def in the POST call to ensure that the POST is
performed after the use of the variable.

3. Output dependence (δo): An output dependence is between two def ’s of the same
variable. The dependence variable is marked as use in both the WAIT and POST call
to ensure that the WAIT is done before all the defs and POST is done after all the
defs of that variable.

Figure 1a shows the POISSON computational kernel, which is a 3-dimensional
(400×400×400) DOACROSS loop nest with the POST/WAIT synchronization primitives

224 P. Unnikrishnan et al.

inserted after conservative dependence computation. In this case, there are multiple flow
dependences from s2 to s1 for array A with the following dependence distances:
−→
D1 = (1, 0, 0),

−→
D2 = (1, 0,−1),

−→
D3 = (1, 0, 1),

−→
D4 = (1,−1, 0),

−→
D5 = (1, 1, 0)

and multiple anti dependences from s1 to s2 for array A with the following dependence
distances:−→
D6 = (1, 0, 0),

−→
D7 = (1, 0, 1),

−→
D8 = (1, 0,−1),

−→
D9 = (1, 1, 0),

−−→
D10 = (1,−1, 0).

The conservative dependence are computed as follow:
−→
C = (gcd(1, 1, 1, 1, 1, 1, 1, 1, 1, 1),

min vect((0, 0), (0,−1), (0, 1), (−1, 0), (1, 0), (0, 0), (0, 1), (0,−1), (1, 0), (−1, 0)))

= (1,−1, 0)

Based on the conservative dependence, POST(K,J,I) is inserted after lexically last
source s2 and WAIT(K-1,J+1,I) is inserted before lexically earliest sink s1.

3.2 Runtime Implementation

The compiler outlines and parameterizes the DOACROSS loops after the POST/WAIT
synchronization calls to the runtime are inserted. The parallel runtime system is respon-
sible for initializing data structures and scheduling the DOACROSS loops. The current
implementation employs a static cyclic scheduling policy with a chunk size of one,
where iterations are assigned to processors in a round-robin fashion. The static cyclic
policy inherently brings good load balance and data locality in addition to low overhead
due to static iteration mapping.

Runtime Data Structure: Let m denote the number of threads and n denote the di-
mension of the DOACROSS loop nest. The runtime allocates a 2-dimensional array,
sync vec[1 : m][1 : n], which is a set of m × n synchronization variables to man-
age the POST/WAIT synchronization on the DOACROSS loop. Given a thread with id =
thrd id, the 1-dimensional sub-array sync vec[thrd id][1 : n] represents the last itera-
tion instance whose completion is ensured by the POST operation. Note that the iteration
space is normalized and it is guaranteed that an iteration instance p

−→
Iv passed to a POST

operation monotonically increases for each thread. A WAIT operation is blocked until
when sync vec[thrd id] is lexicographically larger or equal to the iteration instance
w
−→
Iv passed to the WAIT.

POST/WAIT Algorithm: Algorithms 1 and 2 show thePOST (p
−→
Iv) andWAIT (w

−→
Iv)

algorithms, respectively. The boundary check for the iteration instance p
−→
Iv /w

−→
Iv is per-

formed at the beginning of the POST/WAIT algorithm. Note that all valid elements of
p
−→
Iv /w

−→
Iv are non-negative because of the loop normalization. The POST algorithm as-

signs p
−→
Iv to sync vec[thrd id] for the current thread. In the implementation, this as-

signment is done in reverse order, i.e., starting with the innermost dimension and going
outer along with appropriate memory barriers. This ensures that the intermediate state of
sync vec[thrd id] is always smaller than p

−→
Iv . The WAIT algorithm computes the target

(source) thread based on the first dimension of w
−→
Iv , and waits until sync vec[thrd id]

A Practical Approach to DOACROSS Parallelization 225

Algorithm 1. POST algorithm
Input : The iteration vector of the current iteration pIv = (I1, I2, ..., In), n = dimension

of loop, m = number of threads

begin
// Check for boundary conditions
// The loops are all lower bound and bump normalized
if within boundary(pIv[1...n]) then

thrd id = mythread()

// Update the synchronization variable of the current thread
sync vec[thrd id][1..n] = pIv[1..n]

end

Algorithm 2. WAIT algorithm
Input : The iteration vector of the dependence source

wIv = (I1 − d1, I2 − d2, ..., In − dn), n = dimension of loop, m = number of
threads,

−→
D = (d1, d2..dn) is the dependence distance

begin
if within boundary(wIv[1...n]) then

// Determine the thread executing the source iteration specified by wIv
// Schedule is static with chunksize=1.
thrd id = wIv[1]%m

// Block until sync vec[thrd id] is lexicographically larger or equal to wIv[1..n]
while vector compare(sync vec[thrd id][1..n], wIv[1..n]) < 0 do

wait

end

becomes lexicographically larger or equal to w
−→
Iv . This vector comparison is done start-

ing with the outermost dimension and going inner. The order of updating and reading
of the synchronization vector by the POST and WAIT calls respectively ensures that a
WAIT operation will never be unblocked prematurely due to an illegal intermediate state
of sync vec[thrd id]. The WAIT operation is relatively cheap because it only performs
a read of the synchronization variable of another thread. The POST operation is very
expensive because it performs a write of the synchronization variable. Because the syn-
chronization variable in our method is an iteration vector, the number of writes is equal
to the number of dimensions of the doacross loop.

4 Profitability Analysis and Grain Size Selection

Profitability and cost analysis play a major role in automatic parallelization. Excessive
synchronization or insufficient granularity of computations for parallelism can result
in significant performance degradation. These considerations have been studied in past
work on parallelization of DOALL loops [13], and need to be extended for parallelization

226 P. Unnikrishnan et al.

of DOACROSS loops. In this section, we introduce a profitability analysis to determine
when it is worthwhile to parallelize a DOACROSS loop.

First, we perform a special-case check for a one-dimensional loop nest. If the POST/
WAIT calls encompass the entire loop body and the conservative dependence distance
equals 1, then DOACROSS parallelization cannot be profitable since the POST/WAIT calls
effectively serialize the entire loop. This check does not apply if the loop nest contains
n > 1 loops, since there may still be useful parallelism with a conservative dependence
distance of 1 at the outermost level (enabled by fine-grained synchronization calls in the
inner loops).

Second, we perform loop unrolling to reduce the amortized overhead of synchroniza-
tion operations by increasing the granularity of computation between POST and WAIT
operations. After unrolling, the lexically last POST and earliest WAIT operations are re-
tained, and all the intervening calls to POST/WAIT are removed so as to reduce the overall
synchronization overhead. Also, the iteration instancew

−→
Iv of the lexically earliest WAIT

is adjusted to match the lexically last POST according to the unrolling factor.
We assume the availability of two parameters, MinGrainSize and MaxLoopBodySize,

to guide our transformations for grain size selection. MinGrainSize imposes a lower
bound on the granularity of computation to be performed between POST and WAIT oper-
ations. To compute the heuristics for the grain-size MinGrainSize for DOACROSS par-
allelization, we start by looking at the heuristics for DOALL parallelization [13]. These
values were then adjusted to take into account the communication overhead. Subse-
quently, experimental runs were performed to further fine tune the heuristics. Similarly
to determine the code-size MaxLoopBodySize for DOACROSS parallelization, we rely
on previously calculated heuristics for the unrolling transformation. These heuristics are
adjusted to prevent excessive code growth during unrolling. For the platform studied in
this paper (Power7 with an XLC runtime system), it was determined that 20,000 cycles
and 320 cycles are reasonable value for MinGrainSize and MaxLoopBodySize respec-
tively. However, our approach is applicable to any other values that may be specified
for these parameters.

To select the unroll factor, UF, for the innermost loop, we first estimate the cost
of a single iteration of the loop, LoopBodyCost. Then, the unroll factor selected by
our approach can be specified as UF = min(32, �MaxLoopBodySize/LoopBodyCost�),
where 32 is an upper bound that is imposed on UF for practical reasons. If n = 1, an
extra constraint is imposed to ensure that UF is less than the conservative dependence
distance for the DOACROSS loop.

Finally, we perform a special form of chunking of the inner loops in a DOACROSS

loop nest, by estimating a chunk size that we refer to as a Runtime Granularity Factor,
RGF. RGF specifies the number of iterations of the inner loops that should be exe-
cuted sequentially. This is achieved by skipping RGF−1 POST operations in the inner
loops, so that one POST operation is performed for every RGF POSTs. As described in
Section 3.2, the POST(p

−→
Iv) operation ensures that all WAIT operations whose iteration

instance w
−→
Iv is lexicographically smaller or equal to p

−→
Iv can be unblocked. There-

fore, it is safe to perform only the last POST operation after RGF−1 POSTs. To avoid
a potential deadlock when the number of iterations is not an exact multiple of RGF,
an additional POST operation is inserted at the end of each iteration of the outermost

A Practical Approach to DOACROSS Parallelization 227

Uniform dependences

Insert synchronization

Profitable?

No (DOALL)

Yes

Yes

No

Serial loop

Identify reductions
Scalar privatization
Array privatization

Dependence analysis

Loop carried
dependence?

Outlining

Parallel loop
(DOALL/

DOACROSS)
Parallel Runtime

Library

Yes (DOACROSS)

Fig. 2. Context for automatic DOACROSS parallelization in the XL Fortran and C/C++ compilers

DOACROSS loop to signal that all iteration instances included in that iteration have been
completed. Note that WAIT operations, which have much smaller synchronization cost
than POST operations, are always performed.

The initial value of RGF is selected at compile-time by using the formula, RGF =
MinGrainSize/(UF ∗ LoopBodyCost), This value is further adjusted at runtime based
on the number of threads executing the DOACROSS loop. If there are more threads, a
larger value of RGF may reduce the amount of parallelism that can be exploited. Thus
we adjust the RGF value selected at compile-time to a runtime value, RGF′, as follows:
RGF′ = 2 × RGF/NumThreads. Note that RGF′ = RGF when NumThreads = 2,
and becomes proportionately smaller as NumThreads increases, thereby balancing the
trade-off between overhead and parallelism.

5 Experimental Results

This section presents results from the experiments conducted to evaluate our imple-
mentation. The experiments were performed on a Power7 system with 32-core 3.55GHz
processors running Red Hat Enterprise Linux release 5.4. The measurements were done
using a development version of the XL Fortran 13.1 for Linux (see Figure 2). We used 4
benchmark programs for our evaluation: Poisson, 2-dimensional LU from the NAS Par-
allel Benchmarks Suite (Version 3.2), SOR algorithm and 2-dimensional Jacobi com-
putation. We manually applied array privatization for some loops in blts and buts, for
which the compiler failed to automatically privatize the arrays. All these benchmarks
are excellent candidates for DOACROSS parallelization. All benchmarks were compiled
with option “-O5” for the sequential baseline, and “-O5 -qsmp” for the automatic paral-
lelization enabling DOACROSS parallelization. We evaluated four experimental variants:
a) only doall represents the speedup where the automatic DOACROSS parallelization is
turned off and uses only DOALL parallelism (far left), b) doall w/ manual skew repre-
sents the speedup with DOALL loops including DOACROSS loops which were converted

228 P. Unnikrishnan et al.

0
2
4
6
8

10
12
14

1 2 4 8 16 32

Sp
ee

du
p

vs
. s

er
ial

threads

0

2

4

6

8

10

1 2 4 8 16 32

Sp
ee

du
p

vs
. s

er
ial

threads

0

5

10

15

20

1 2 4 8 16 32

Sp
ee

du
p

vs
. s

er
ial

threads

only doall doall w/ manual skew

(a) Poisson

0

5

10

15

20

1 2 4 8 16 32

Sp
ee

du
p

vs
. s

er
ial

threads

doall + doacross (w/o cost) doall + doacross
(c) SOR

(b) LU

(d) Jacobi

Fig. 3. Speedup related to sequential run on Power7

to DOALL loops after manual loop skewing (second left), c) doall + doacross (w/o cost-
analysis) is the speedup where both DOALL and DOACROSS parallelization are enabled,
but with the cost analysis and granularity control turned off (second right), and d) doall
+ doacross is the speedup where both DOALL and DOACROSS parallelization with cost
analysis and granularity control are enabled (far right).

5.1 POISSON

We use the POISSON kernel discussed in Section 3.1. The DOACROSS loop is invoked
20 times in this experiment. Figure 3a shows the speedup of the 4 variants listed above
when compared to the sequential execution.

The only doall case results in no speedup; doall + doacross (w/o cost-analysis)
can results in worse performance than sequential execution because of the large syn-
chronization overhead. doall + doacross delivers a speedup of up to 9.0×. Note that
doall w/ manual skew shows better performance than doall + doacross. This is be-
cause the POISSON kernel is a triply nested DOACROSS loop. We manually selected
the outermost and middle-nested loops for the target of loop skewing and this choice
turns out to have a better granularity. On the other hand, the auto DOACROSS version in-
serted POST/WAIT in the innermost loop body and hence the total synchronization over-
head became larger despite the granularity control. (In the future, optimizing compilers
could reduce this gap by further adjusting the granularity for DOACROSS

A Practical Approach to DOACROSS Parallelization 229

parallelization.) However, the automatic doall + doacross version outperforms the doall
w/ manual skew version in the other three benchmarks whose kernel loops are doubly
nested and both the manual and automatic versions use the same granularity.

5.2 LU

LU has 2 DOACROSS loops in subroutines blts and buts. Together they account for
about 40% of the sequential execution time of LU. They are 2-dimensional (160×160)
DOACROSS loops that are invoked 40160 times. The conservative dependence vector
is (1,0) for both blts and buts, and the corresponding WAIT/POST synchronizations are
inserted. Although LU contains many DOALL loops, the best speedup with DOACROSS

parallelism disabled is 2.1× using 8 cores. On the other hand, our DOACROSS par-
allelization brings more scalable performance, up to 6.5× speedup with 32 cores as
shown in Figure 3b. The figure also shows the significant impact of the cost analy-
sis and granularity control on performance. Furthermore, the DOACROSS version show
even better scalability than the manual DOALL version that converted the DOACROSS

loops in blts and buts into DOALL loops. It is well known that DOACROSS paralleliza-
tion has better data locality and lower synchronization overhead than DOALL with loop
skewing, even when they use same granularity for wavefront parallelism.

5.3 SOR and Jacobi

The kernel loop nest of SOR is a 2-dimensional 20000×10000 loop which is invoked
50 times. Note that the kernel loop of Jacobi has very similar structure as SOR, and the
conservative dependence vector for both SOR and Jacobi kernels is (1,0). Our frame-
work extracted DOACROSS parallelism for both cases, and achieves up to 17.3× and
17.5× speedup for SOR and Jacobi, respectively as shown in Figures 3c and 3d. On
the other hand, the best speedups when manually converting DOACROSS into DOALL

by loop skewing are 6.4× for SOR and 3.5× for Jacobi. The figures also show that the
granularity control is essential to obtain scalable speedup using DOACROSS parallelism.

6 Conclusions and Future Work

We presented a novel and practical approach to automatically parallelizing DOACROSS

loops for execution on manycore-SMP systems, based on a compiler-and-runtime
optimization called dependence folding. The proposed framework uses a conservative
dependence vector analysis to identify suitable program points where POST/WAIT syn-
chronization operations can be inserted. A profitability analysis is used to guide un-
rolling and chunking transformations to select an optimized granularity of computation
for DOACROSS parallelization. Further, our runtime framework includes a lightweight
and space-efficient implementation of point-to-point synchronization for DOACROSS

loops.
The proposed framework has been implemented in a development version of the

IBM XL Fortran V13.1 commercial parallelizing compiler and runtime system. For four
benchmarks where automatic DOALL parallelization was largely ineffective (speedups

230 P. Unnikrishnan et al.

of under 2×), our implementation delivered speedups of 6.5×, 9.0×, 17.3×, and 17.5×
on a 32-core IBM Power7 SMP system, thereby showing that DOACROSS parallelization
can be a valuable technique to complement DOALL parallelization.

During the course of our work in enabling DOACROSS parallelization in the XL com-
pilers, we encountered multiple opportunities for future work related to interactions
between DOACROSS parallelization and lower-level compiler optimizations. We found
cases where the DOACROSS transformation inhibited software pipelining (a technique
for scheduling instructions to exploit instruction level parallelism in inner loops by over-
lapping loop iterations). In such cases, it would be desirable to extend the profitability
analysis to take the impact on software pipelining into account. As another example,
predictive commoning (an optimization to reuse computations across loop iterations by
detecting indexing sequences and unrolling to avoid register copies), if performed ear-
lier, can inhibit the detection of DOACROSS loops. A detailed study of these interactions
is part of our planned future work. Other opportunities for future work include deeper
analyses for synchronization overhead and parallel efficiency so as to improve accuracy
of profitability analysis, and performance comparison against other existing work. As
shown in the paper, POST/WAIT operations are well-suited for user annotations and the
technique of dependence folding can also be adapted for the explicit parallelization us-
ing such annotations. Extensions of the proposed framework to explicit parallelization
is another important direction of future work.

Acknowledgements. This work was supported in part by an IBM CAS Fellowship in
2011 and 2012.

References

1. Chen, D.K.: Compiler optimizations for parallel loops with fine-grained synchronization.
PhD Thesis (1994)

2. Cytron, R.: Doacross: Beyond vectorization for multiprocessors. In: Proceedings of the 1986
International Conference for Parallel Processing, pp. 836–844 (August 1986)

3. Chen, D.-K., Torrellas, J., Yew, P.C.: An efficient algorithm for the run-time parallelization
of doacross loops. In: Proc. Supercomputing 1994, pp. 518–527 (November 1994)

4. Gupta, R., Pande, S., Psarris, K., Sarkar, V.: Compilation techniques for parallel systems.
Parallel Computing 25(13-14), 1741–1783 (1999)

5. Li, Z.: Compiler algorithms for event variable synchronization. In: Proceedings of the 5th In-
ternational Conference on Supercomputing, Cologne, West Germany, pp. 85–95 (June 1991)

6. Lowenthal, D.K.: Accurately selecting block size at run time in pipelined parallel programs.
International Journal of Parallel Programming 28(3), 245–274 (2000)

7. Midkiff, S.P., Padua, D.A.: Compiler algorithms for synchronization. IEEE Transactions on
computers C 36, 1485–1495 (1987)

8. Tang, P., Yew, P., Zhu, C.: Compiler techniques for data synchronization in nested parallel
loop. In: Proc. of 1990 ACM Intl. Conf. on Supercomputing, Amsterdam, pp. 177–186 (June
1990)

9. Rajamony, R., Cox, A.L.: Optimally synchronizing doacross loops on shared memory mul-
tiprocessors. In: Proc. of Intl. Conf. on Parallel Architectures and Compilation Techniques
(November 1997)

A Practical Approach to DOACROSS Parallelization 231

10. Su, H.M., Yew, P.C.: On data synchronization for multiprocessors. In: Proc. of the 16th An-
nual International Symposium on Computer Architecture, Jerusalem, Israel, pp. 416–423
(April 1989)

11. Krothapalli, V.P., Sadayappan, P.: Removal of redundant dependences in doacross loops
with constant dependences. IEEE Transactions on Parallel and Distributed Systems,
281–289 (July 1991)

12. Wolfe, M.: Multiprocessor synchronization for concurrent loops. IEEE Software 5(1), 34–42
(1988)

13. Zhang, G., Unnikrishnan, P., Ren, J.: Experiments with auto-parallelizing SPEC2000FP
benchmarks. In: 17th Intl Workshop on Languages and Compilers for Parallel Computing
(2004)

14. Pan, Z., Armstrong, B., Bae, H., Eigenmann, R.: On the interaction of tiling and automatic
parallelization. In: First International Workshop on OpenMP (Wompat) (June 2005)

Exploiting Semantics of Virtual Memory to Improve
the Efficiency of the On-Chip Memory System

Bin Li1, Zhen Fang2, Li Zhao1, Xiaowei Jiang1, Lin Li1, Andrew Herdrich1,
Ravishankar Iyer1, and Srihari Makineni1

1 Intel Corporation, Hillsboro, OR, 97124, USA
{bin.li,li.zhao,xiaowei.jiang,lin.e.li,

andrew.j.herdrich,ravishankar.iyer,srihari.makineni}@intel.com
2 Nvidia, Austin, TX, 78717, USA

zfang@nvidia.com

Abstract. Different virtual memory regions (e.g., stack and heap) have differ-
ent properties and characteristics. For example, stack data are thread-private by
definition while heap data can be shared between threads. Compared with heap
memory, stack memory tends to take a large number of accesses to a rather small
number of pages. These facts have been largely ignored by designers. In this
paper, we propose two novel designs that exploit stack memory’s unique charac-
teristics to optimize the on-chip memory system.

The first design is Anticipatory Superpaging - automatically create superpages
for stack memory at the first page fault in a potential superpage, increasing TLB
reach and reducing TLB misses. It is transparent to applications and does not re-
quire kernel to employ online analysis algorithms and page copying. The second
design is Stack-Aware Cache Placement - stack accesses are routed to their lo-
cal slices in a distributed shared cache, while non-stack accesses are still routed
using cacheline interleaving. The primary benefit of this mechanism is reduced
power consumption of the on-chip interconnect. Our simulation shows that the
first innovation reduces TLB misses by 10% - 20%, and the second one reduces
interconnect power consumption by over 14%.

1 Introduction

The concept of stack memory is universally supported in today’s computer systems. By
definition, it is used for local variables inside subroutines, and for private data visible
only to the thread that they are attached to. The operating system (OS) supports usage
of stack and heap by defining them in the virtual memory address space.

Figure 1 shows the virtual address map of a 32-bit Linux. 64-bit systems are similar.
Different segments have clearly defined software semantics. For example, if the address
from a user application is greater than 0x80000000, we know except for pathological
cases it is a location in the stack. Virtual-to-physical address translation is performed in
the memory management unit(MMU). Virtual memory semantics of memory references
are not preserved after MMU, and are not exploited in the design of the memory system
(e.g., cache, interconnect). For example, caches are searched using physical address.

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 232–245, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Exploiting Semantics of Virtual Memory to Improve the Efficiency 233

Code
Data
BSS
Heap

Stack

0xFFFFFFFF

0x0

Shared Libraries

0xC0000000

0x40000000

Kernel Space

Fig. 1. A typical 32-bit virtual memory
address map

…

…

Core,
L1

Core,
L1

Core,
L1

Core,
L1

L2
slice

L2
slice

L2
slice

L2
sliceM

C
M
C

Fig. 2. A CMP with L2 cache slices connected
by a ring

1.1 Background: Physical Page Allocation, TLB and Superpaging

Memory for the vast majority of applications’ data set is acquired through one of two
dynamic allocation methods: malloc library call or stack growth. malloc triggers the
mmap service in the OS to allocate heap memory in virtual address space. Actual phys-
ical page allocation do not happen until the first access to the memory occurs. Accessing
an unmapped virtual page causes a major page fault. A physical page is then allocated
by the kernel to the faulting virtual page. Compared with the explicit malloc method,
stack growth is implicit and does not have the ”registration” step. A stack pointer reg-
ister simply points to the farthest location (i.e., lowest address) in a function, and page
faults occur when the local variables are first referenced using relative addresses based
on the value in the stack pointer. The memory allocator in the OS does not differ-
entiate among different virtual memory regions. Whether a page fault is triggered by
stack growth or heap expansion, a same page allocation algorithm is executed by the
kernel.

To expedite virtual-to-physical translation, the TLB caches recent translations. Due
to the performance criticality of TLB hits, its size has been limited. As a result, cov-
erage of TLB is rather small compared with the large cache capacity in today’s CMPs.
TLB misses are costly events because a pagetable walk could take hundreds of clock
cycles in a multi-Ghz processor. The penalty is even higher in the case of software TLB
miss handling due to interferences to the instruction pipeline and instruction cache.
The solution for increasing TLB coverage without slowing down TLB hits is the su-
perpage. A superpage maps a region of multiple virtual pages to a region of physical
memory. The physical pages that back a superpage must be contiguous and properly
aligned. A superpage mapping occupies a single TLB entry, thus increases the reach of
the TLB.

Currently, there are two ways for user applications to utilize superpages. The first is
for programmers to explicitly request the OS kernel to create a superpage mapping for
a virtual memory region. Imposing such an intrusive requirement upon application de-
velopers limits its popularity. An alternative approach that is transparent to applications

234 B. Li et al.

is to leave the burden of identifying superpage candidates to the kernel. In this approach,
the kernel runs a competitive algorithm, identifies superpages that should be created,
and dynamically coalesces basic pages into superpages [1]. These online algorithms
tend to be complicated and not always effective. As a result, although the MMU of
almost all general-purpose processors support superpages, the usage of them is rather
limited in practice [2]. Indeed, the key to successful usage of superpaging is two-fold:
1) an effective method to identify virtual pages that when promoted into one superpage,
will receive high reference counts, and 2) to lower or avoid the cost of page copying.

In Section 2, we will present a stack-aware optimization to the page allocator that
builds superpages with high efficacy and low cost. It does not entail any application
programmer involvement, and does not require page copying.

1.2 Background: The Last-Level Cache and the Interconnect

Today’s CMPs have increasingly large last-level caches (LLCs)1. Banks of the LLC
have to be physically distributed on a chip due to their large geometric sizes. Figure 2 is
a representative block diagram of a CMP with a number of LLC slices (banks) and two
memory controllers, interconnected by a ring. There are primarily two types of logical
organizations for the LLC: private caches with coherency maintained between them,
and a shared cache using address-based interleaving.

In private cache architecture, the working set of each thread is attracted to its local
L2 cache. Hardware-supported cache coherency ensures if a block resides in a remote
L2 cache, it will be visible to the requesting core. Disadvantages of private caches in-
clude design complexity for implementing cache coherency and lower utilization of the
L2 cache. Because of these disadvantages, in commercial CMPs, the predominant orga-
nization is distributed shared cache [3]. On a shared cache, memory locations are stat-
ically mapped to cache slice using physical address. With no data duplications within
the LLC, it eliminates the need for maintaining cache coherency between the slices.
Sharing the cache capacity among all cores also improves cache space utilization.

The address-to-cache slice mapping on a shared cache can be page interleaved
or cacheline interleaved. Cacheline interleaving improves interconnect utilization ef-
ficiency, especially for data structures that are heavily shared by threads running on
different cores. In this study, we assume cacheline interleaving, similar to some recent
high-performance processors [3]. Requests to contiguous memory blocks are sent to
different slices. Each cache slice is attached to a different access point on interconnect.

A distributed shared cache’s performance relies critically on interconnect bandwidth.
However, in contrast with ever-increasing core counts and cache sizes, the interconnect
does not scale well. Researchers projected interconnect latencies as high as hundred
cycles [4], and interconnect power up to 36% of chip power [5]. To mitigate the high
interconnect traffic dictated by the distributed shared LLC, we attempt to optimize for
stack memory accesses. We cache stack data in each thread’s local LLC since they are
private data by definition, and thus should better not be cached in remote cache.

1 In this study, we model a two-level cache hierarchy. Therefore L2 cache is our last-level cache.
The two terms are used interchangeably in this paper.

Exploiting Semantics of Virtual Memory to Improve the Efficiency 235

1.3 Overview of Innovations

We propose to exploit some unique characteristics and properties of stack memory to
improve the efficiency of TLB and interconnect/LLC. Specifically, we present the fol-
lowing two mechanisms.

Anticipatory Superpaging: Based on an observation that stack memory tends to oc-
cupy a small set of pages with high reference counts(data to be presented in Section 2.1),
we automatically build superpages in page fault handling triggered by stack references.
Superpage creation is performed in anticipation of two sets of events: 1) nearby virtual
pages will soon be referenced and would otherwise cause more page faults; 2) the super-
page will receive high access count. We identify superpage candidates at low cost and
also eliminate physical page coalescing. The primary benefit is increased TLB reach
and consequently decreased TLB misses.

Stack-Aware Cache Placement: Based on stack memory’s thread-private nature, we
route stack accesses to the local cache slice, while non-stack accesses are still routed
using the baseline block-interleaved mapping. By creating core-data affinity, we harvest
the advantages of both private and shared LLCs for stack data. One thing worth noting is
that depending on the system size and workload, the proposed mechanism may or may
not lead to noticeable performance improvement. Rather, the major benefit is reduced
traffic on the interconnect and consequently lower power consumption.

The two mechanisms are orthogonal to each other. In the next two sections, we de-
scribe both mechanisms in details. Section 2 elaborates on Anticipatory Superpaging
and Section 3 discusses Stack-Aware Cache Placement.

2 Anticipatory Superpaging

2.1 Motivation

We profiled SPEC 2000 benchmarks to measure the percentages caused by stack mem-
ory in three metrics: memory references, unique pages and data TLB misses. The data
are shown in Figure 3. Accesses to the stack account for about 40% of all memory ref-
erences. For a few applications, e.g., apsi, gap, mesa and swim, there are actually more
references to the stack than the combined sum of all other virtual memory regions.
However, the total number of unique pages used by each application’s stack memory is
on average only 21% of the total data memory footprint, as shown in Figure 3.

An interesting observation is that although the memory footprint of the stack is small,
stack accesses that miss the TLB accounts for 38% of all TLB misses. Further analysis
revealed that stack pages are often evicted out of the TLB by heap page mappings.
The experiment data indicate that stack memory pages have very high access density -
reference count per page, as a result of high reference count and small number of unique
pages. This suggests that they are good candidates for superpages.

236 B. Li et al.

Fig. 3. Percentages of certain statistics caused by stack accesses

2.2 The Proposed Mechanism

We propose Anticipatory Superpaging to automatically create a superpage if a faulting
address is believed to be a stack location. To the best of our knowledge, this is the first
superpaging algorithm that possesses both of the following two features:

– Transparent to applications
– No page copying or bookkeeping overhead

The proposed flow for memory allocation is as follows. For each reference, we check
whether it is a stack reference or not: (1) If the reference is non-stack reference, we per-
form normal memory allocation routine, that is, allocate one page. (2) If the reference
is a stack reference, we create a superpage that consists of M basic pages (M is system
dependent). When a stack access causes a major (i.e., ”page not present”) page fault, the
kernel automatically allocates multiple page frames so that a superpage can be created
for the faulting address, instead of just allocating one basic page.

We use 32-bit Linux to show how to quickly perform the check function described
above. In most systems, shared libraries are loaded to address 0x40000000 and above
by default. We can set an empirical value TOP OF LIB to around 0x50000000. As long
as a faulting address belongs to range [TOP OF LIB, 0xC0000000], we build a super-
page for it (0xC0000000 is the boundary between user stack and kernel space). Thus
the cost for identification of stack memory address is negligible. Building a superpage
that consists of M basic pages requires availability of M pages that are contiguous and
aligned. With advanced page frame management such as the Buddy algorithm, these
free pages can usually be found at very low cost. Since we allocate the pages upon the
initial access to the to-be-created superpage, we avoid the high cost of page copying in
conventional approaches.

Aggressively creating superpages for stack memory benefits applications’ perfor-
mance in two ways. The first is increased TLB coverage, since fewer TLB entries
will be taken by stack memory. The other, less obvious, benefit is related to how TLB

Exploiting Semantics of Virtual Memory to Improve the Efficiency 237

entries are replaced. TLB’s on today’s processors are usually set-associative with least-
recently used (LRU), or some variant of it. A superpage competes with the basic pages
”unfairly”; an access to any of the component pages of a superpage will help to push
the superpage entry toward the bottom in the LRU stack. Organized as superpages,
translations for stack memory have less chance of getting evicted out of the TLB. One
concern maybe that useful mappings for heap data in the same set may get penalized.
Our experiment results (see Section 4) reveal that this is rare with the benchmarks that
we tested.

3 Stack-Aware Cache Placement

Stack-Aware Cache Placement is orthogonal to afore- described superpage/TLB work.
In this section, we start with stack memory references’ behavior in the cache hierar-
chy to motivate our cache/interconnect innovation. We then discuss the challenges in
implementing the proposed idea and our design decisions.

3.1 Motivation

For stack-oriented LLC/interconnect optimizations to have meaningful benefits, a good
percentage of L1 misses need to be stack references. Earlier findings by researchers
suggest that if dedicated for stack variables, a L1 data cache would only need to be
about 8KB to hold the hottest working sets [6], much smaller than a dedicated heap
cache would. One’s intuition might be that with a conventional L1 cache, L1 misses
would have a similar mixture - dominated by heap accesses. Our experiment revealed
that this intuition is not correct.

Data in Figure 4 indicate that of all cache misses from a 32KB L1D, averagely 35%
are stack memory references. Even with a large, 64KB L1 data cache, stack accesses
still account for 30% of all misses, not too much lower than their percentage in origi-
nal programs’ loads and stores (40%). Although the sequence of stack accesses in the
instruction stream have strong locality, it does not translate to commensurate L1 cache
hit rates. The reason is interference from non-stack references. References to the heap
memory constantly cause stack data to be evicted out of the L1 cache. Most of these
thread-private references then get cached in, and fetched from, remote LLC slices.

We seek to optimize the LLC organization by mapping all stack accesses to each
thread’s local LLC slice. The mechanism is called Stack-Aware Cache Placement. When
the otherwise remote LLC hits are converted to local LLC hits, LLC latencies decrease
and total ring hops drop. However, a potential downside is that a stack-intensive appli-
cation could evict useful heap data out of its local slice, causing an increase in total LLC
miss rates. Therefore, we need to verify that if such a scenario exists, the performance
impact of increased LLC misses must not cancel off the benefits in reduced hit laten-
cies and interconnect traffic(see Section 4.3). In general, the larger the interconnect, the
more likely that create core-stack data affinity is beneficial for overall performance.

There are a few challenges in implementing this mechanism. First, it requires we
be able to recognize virtual memory regions outside the processor core. Second, due
to different routing rules for stack and non-stack memory, we need to make sure false

238 B. Li et al.

Fig. 4. Stack’s percentages in the cache hierarchy

hits do not occur between memory regions. Third, we should avoid fine-grained cache
coherence. In the next sections, we explain how each of these requirements is fulfilled.

3.2 Stack Reference Identification at the LLC

When a memory access misses the L1 cache, its physical address is sent out to the sys-
tem. Software semantic information is lost in the virtual-to-physical translation process.
We augment each pagetable and TLB entry with an extra bit for stack hint. In the page
fault handler, the kernel checks the faulting virtual address. If it is a stack access, the
stack hint bit is set to ’1’ in the pagetable entry. Otherwise set the bit to ’0’. Every
load/store operation acquires the stack hint bit from the TLB and carries it to the LLC
if it misses the L1 cache.

Using the stack reference identification method in Section 2.2, under pathological
cases we could misclassify memory references. We will explain in Section 3.5 that we
do not maintain cache coherency between slices on a block-by-block basis. Therefore
there is a concern on program correctness if a page misclassification does happen. Clas-
sifying a stack page as a non-stack one is harmless since that would be equivalent to
degrading into the baseline interleaved mapping. Classifying a heap page as a stack page
could cause program errors for multithreaded applications, because each of the threads
that share the page may keep a copy in its local cache slice. To fix this issue, the virtual
memory manager in the kernel only needs to increase the value of TOP OF LIB if non-
stack memory (heap, shared libraries) expands above the previously set TOP OF LIB.

3.3 LLC Slice Selection

With the stack hint available for each L1 cache miss, the ring stop can select between
the baseline hashing function and the local slice number as the destination LLC slice.
Stack accesses are routed to their local slice and non-stack accesses are routed using
the baseline hashing function.

Exploiting Semantics of Virtual Memory to Improve the Efficiency 239

hash function for
cacheline interleave

L1C miss
address

L2C
slice
number

(a) baseline

hash function for cacheline interleave

local L2C
slice num

L1C miss
address

L2C
slice
number

Stack hint

(b) the proposed function

Fig. 5. L2 cache slice selection logic

Figure 5 contains conceptual flows of the process for the baseline (Figure 5(a)) and
for the proposed mechanism (Figure 5(b)). LLC access latency will not be affected
since we are only adding a mux. In commercial processors, the LLC slice selection is
typically performed earlier in the pipeline, e.g., as soon as a miss to the private cache
is detected. In those designs the LLC slice selection logic is completely off the critical
path. Based on this LLC slice selection logic, blocks that miss the L1 cache are directed
to the local slice if they are stack accesses regardless of their memory block number.

3.4 Design of the Cache Tags

For a CPU with N cores and N cache slices, the slice selection logic uses logN bits
in the memory block address to route a request. None of the logN bits is used in set
indexing or tag. This is shown in the top row in Figure 6.

Blk offset

logN bits

Index

Blk offsetTag

Slice selectionTag

Index

Baseline

Stack

Blk offsetIndex Slice selectionTag

0 … 0

False hits could occur if
logN > log(PageSize)-
log(BlockSize)

Blk offsetTag (logN bits longer than baseline) Index Stack

Blk offsetIndex Slice selectionTag Non-stack0

False hits will not occur
even for large scale CMPs-

1

0 … 0

Tag

logN bits

logN bits

Non-stack

Fig. 6. Avoiding false hits between stack and non-stack data

For ease of discussion, let’s assume PageSize = 4096, BlockSize = 64. With
stack requests mapped to their local cache slice, the tag field of each cacheline should
include the baseline tag plus the logN bits used for slice selection of non-stack requests,
shown in the ”stack” row of the middle section in Figure 6. For non-stack blocks, these
extra logN bits in the tag field are don’t-care bits, shown as all 0’s in the figure. When
logN > log(PageSize)− log(BlockSize), i.e., logN > 6 in our example, false hits
can occur between stack and non-stack request/data. An incoming stack request can
falsely hit a cached block with heap data, or, vise versa. The reason these can happen is
that at least one low-order bit of the page number fails to be captured in the non-stack
index/tag. As we have explained, false hits could occur only if N > 64. If N ≤ 64,
false hits are never an issue since stack and non-stack physical page numbers differ. As
long as all bits of the page number are used in index/tag, stack and non-stack requests
will not hit a cached block of the other region.

240 B. Li et al.

Table 1. Simulation Setup

Core 2.0Ghz, Out-of-order, 16 Cores.
Date TLB 4-way set associative, LRU, 4KB/page, 32/64/128/256 entries
Caches L1: 32KB each of I and D, 4-way set-associative; L2: 0.5MBx16, 8-way set-associative
Other Cache Params. Write-back; 64-bytes/line, LRU replacement
Hit Latencies L1C = 2 core cycles, L2C = 12 core cycles if hit in local slice
DDR 2 Channels/MemCtrl, 64b interface, 16B/cycle @ 800Mhz, 120ns latency

Table 2. The Interconnect Setup

Ring 1.0Ghz, 18 stops: 16 core/LLC stops and 2 memory controller stops. Two uni-directional rings.
Ring Components 64-bit command/address ring and 128-bit data ring, each direction
Router Latency 2 cycles router delay, 1 cycle link propagation delay
Buffering Data ring: 4 flit-deep at each input port; Cmd/addr ring: 2-flit deep at each input port

To cope with the stack/non-stack false hit problem in a very large-scale CMP, we add
one bit in the cache tag. This bit is set to 1 for stack blocks, and 0 for non-stack blocks.
In a selected set, a stack request only checks the tags of cached stack blocks, and a non-
stack request only checks the tags of cached non-stack blocks. Since we separate stack
and non-stack, false hits are avoided. For stack blocks, we can then use the low-order
bits of the block address for cache set indexing, shown in the ”Stack” row of the bottom
section in Figure 6. This design solves the false hit problem.

3.5 Avoiding Cache Coherency Overhead

One key advantage of shared LLC over private LLC is elimination of the cache co-
herency overhead, as each memory block has a unique location in cache. The proposed
mapping method would break the uniqueness property of stack block’s slice number in
two scenarios. The first is thread migration. The second is page swapping: the memory
allocator of the kernel may decide to reallocate a page frame that currently holds stack
data to a different process. In both scenarios, cached stack data in the LLC slice need to
be flushed before thread migration or page reallocation can happen. To avoid duplicate
caching, without turning to hardware cache coherency, the kernel should flush the in-
volved pages out of the caches. Since swapping and thread migration are relatively rare
events, performance impact of software cache flushing will be moot in practice.

4 Evaluation of the Proposed Mechanisms

In this section, we present the experiment results of both mechanisms that were pro-
posed in Section 2 and 3. The evaluation metrics are performance and power.

4.1 Experiment Methodology

We evaluate the performance of the proposed optimizations through simulation of
a multiprogrammed workload on a CMP with a distributed shared L2 cache. We
use a cycle-accurate, trace-driven simulator ManySim [7] for performance modeling.

Exploiting Semantics of Virtual Memory to Improve the Efficiency 241

Fig. 7. TLB miss reduction when covering stack memory with superpages. Superpage size = 4

ManySim has an abstract core module to improve simulation speed, but accurately sim-
ulates the memory subsystem, including cache and TLB microarchitecture.

We model a system that is depicted in Figure 2: a 16-core CMP with a ring connect-
ing the cores and L2 cache. Each ring stop connects one core and one slice of the L2C.
Two memory controllers use dedicated ring stops. Key parameters of the simulation
are presented in Table 1. The interconnect is an 18-node ring consisting of a clockwise
channel and a counter-clockwise channel. Key interconnect parameters are shown in
Table 2. The workload we use is a mix of 16 SPEC CPU2000 applications, each oc-
cupying a processor core. We run them so that each one at least graduates 1 billion
instructions. We use Orion 2.0 [8] to estimate the power consumed by the interconnect.
The power results reported by Orion 2.0 are based on an interconnect in 65 nm, 1.2V
technology.

4.2 Evaluation of Anticipatory Superpaging

For the TLB performance evaluation, we model two types of processors: low-power
(with 32/64 TLB entries) and high-performance (with 128/256 TLB entries). Figure 7
presents the percentage of data TLB misses that are reduced when we apply Anticipa-
tory Superpaging. With 4KB basic pages, we assume a superpage size of 16KB. On
low-power processors, superpaging for stack memory is very effective in improving
TLB coverage, with an average reduction of over 20% in number of misses. Two appli-
cations (applu and art) get negative effects because superpage entries stay unfairly long
in the TLB and cause basic page entries for heap memory to be constantly victimized.

With larger TLB sizes of 128 and 256 entry, the efficacy of the superpaging is lower
than smaller sized TLBs, largely due to the small working set size of our benchmarks.
But a few applications, such as eon, equake, gzip and swim still benefit from solid reduc-
tions in TLB misses. These results motivate us to continue this line of study. As future
work, we will try applications with larger data set, such as scientific and commercial
workloads to showcase the performance benefits of Anticipatory Superpaging.

242 B. Li et al.

Fig. 8. Performance of Stack-Aware Cache Placement on a Multiprogrammed Workload

4.3 Evaluation of Stack-Aware Cache Placement

The main goal for Stack-Aware Cache Placement is not higher performance, but lower
power and energy consumption in the interconnect. While saving power by reducing
interconnect traffic is quite intuitive, the overall effect of the proposed mapping scheme
on LLC miss rate, and hence application performance, is not self-evident.

Regarding the ramifications in overall performance, affinitizing stack data to the
cores that they are attached to has two effects that conflict with each other. On one
hand, average traversed hops in the LLC interconnect will decrease. On the other, the
near-uniform distribution of LLC accesses across slices can be compromised because
some applications have higher cache space occupation tendency than others. On the
core-slice pair that has high cache space demand for stack data, heap accesses of all
applications are penalized. The overall performance is thus the net effect of both con-
flicting factors. In other words, we seek to trade LLC hit rates for a more significant
reward in LLC average hit latencies and interconnect switching power.

Figure 8 presents the performance results for the multiprogrammed workloads on
the 16-core, 18-stop ring. Of the 16 applications, 10 exhibit higher LLC miss rates, with
applu and gap being the two most impacted ones. Total LLC misses increase by 0.2% as
a result. What we get in return for the cost of higher LLC miss count is that aggregated
total number of traversed hops drops by 20%. Three applications, apsi, gap and swim,
save around 30% in ring hop counts, due to the high percentage of stack accesses in
their L1 cache miss streams. The overall effect on performance is an improvement of
1.7% in total instruction throughput, as shown in Figure 8. In fact, applu is the only
application which sees a performance drop with a negligible 0.07% change in CPI.

Core-data affinity reduces total number of traversed ring hops and consequently
switching activities in the routers and the links, and reduces dynamic power consump-
tion. We conduct two sets of experiment to estimate the savings in power consumption
of the ring. The first set of experiment consists of uni-programmed runs of the SPEC

Exploiting Semantics of Virtual Memory to Improve the Efficiency 243

applications. At any time only one of the 16 cores is active. In the baseline case, all
L1C misses from the active core are evenly distributed to the 16 LLC slices. In the op-
timized case, stack data are stored and fetched from the local LLC. Table 3 shows the
ring power when running different applications. On average, the proposed cache place-
ment scheme saves 14% power compared with the conventional mapping. Due to the
small working sets of SPEC CPU2000, except for a few, most applications have rather
small L1 miss rates. Much of the ring’s power consumption is thus due to leakage, miti-
gating the overall savings percentage. Two applications, eon and equake, hardly benefit
from the optimization at all, largely due to their small number of LLC accesses. An-
other interesting one is gap. As we have seen earlier in Figure 8, gap’s total hop counts
got reduced by a high 30%. However, because of its extremely low LLC accesses per
cycle, there is not much optimization opportunity on the interconnect, with a power
saving of only 2.48%. art demonstrates quite the opposite behavior. Its saved hop count
is below-average (Figure 8), but its power saving (43.92%) tops all the applications that
we tested, due to its high activity factor on the interconnect.

Table 3. Power Consumption of the Ring in a Uni-Program Setup

Application eon equake bzip2 gap mesa apsi mgrid gzip swim
Ring Power, Baseline(W) 0.2641 0.2642 0.2684 0.2732 0.2785 0.2936 0.3248 0.3472 0.3506
Ring Power, Optimized(W) 0.2636 0.2636 0.2654 0.2664 0.2689 0.2700 0.2915 0.3028 0.2934
Savings 0.18% 0.18% 1.10% 2.48% 3.47% 8.03% 10.27% 12.80% 16.32%
Application gcc parser applu vpr twolf mcf art Average Geomean
Ring Power, Baseline(W) 0.3694 0.3784 0.3632 0.4113 0.5042 1.3964 1.4425
Ring Power, Optimized(W) 0.3080 0.3125 0.2963 0.3251 0.3846 0.9259 0.8089
Savings 16.61% 17.40% 18.42% 20.97% 23.73% 33.69% 43.92% 14.35% 6.81%

In the second experiment, we run the 16 applications simultaneously, each occu-
pying a processor core. The aggregate traffic of the 16 applications causes significant
switching activities in the router and the links, making leakage dwarfed by dynamic
power consumption. Reduced ring activities cut total ring power from 3.58W to 2.85W,
a saving of 20.6%. Breakdown of the interconnect power is shown in Table 4.

Overall, we observe significant benefit from the two virtual memory semantic-aware
optimizations. Anticipatory Superpaging reduces TLB miss counts by 10 - 20%, while
Stack-Aware Cache Placement improves ring power consumption by over 20% on a
multiprogrammed workload despite slightly increased cache misses.

5 Related Work

5.1 Work Related to Anticipatory Superpaging

Making good use of superpaging to reduce TLB miss rates has been a perennial research
topic for the last three decades. Reservation-based physical page allocation [9] builds
superpages for heap memory with information gathered at malloc or mmap time. It is
not applicable to stack memory due to the lack of a reservation step in stack growth.
IRIX [10] and HP-UX [11] eagerly build superpages upon the initial page fault. The
major drawback of IRIX and HP-UX’s superpaging mechanisms is that they require
each user application to provide superpage size hints, one for each of the segments.

244 B. Li et al.

Table 4. Power Consumption of the Ring in a Multi-Program Setup

Router Power Link Power Total Power
Baseline 1.94W 1.64W 3.58W

Optimized 1.57W 1.28W 2.85W
Savings 19.4% 22.0% 20.6%

Recognizing limits of these static/offline superpage identification methods, Romer et
al. [1] puts forth a set of dynamic, online promotion algorithms. One of the proposed
algorithms is ASAP, in which a superpage is promoted as soon as all its component
basic pages have been touched. ASAP is found to be suboptimal due to the high cost of
page copying. Our paper can be regarded as a special form of ASAP. But we eliminate
the cost of page copying. Similar to this paper, Cascaval et al. use different page sizes
for different data categories [12]. While we classify data using virtual memory seman-
tics, they classify data based on user applications’ data structures which require offline
profiling. However, offline profiling is usually not available for real-world applications.

5.2 Work Related to Stack-Aware Cache Placement

Caches in general-purpose processors are typically designed oblivious of software se-
mantics, with some rare exceptions, e.g., building separate caches for user data versus
OS data [13], and stack versus non-stack [14,6]. Based on the observation that stack
data are private to each thread, Ballapuram et al. [15] propose to skip snooping for L2
accesses that belong to the stack region, assuming private caches.

Cho [16] and Jin [17] improve core-data affinity through page coloring on a dis-
tributed shared cache. Their approach assumes page-interleaving and do not exploit
virtual memory semantics. We assume cacheline interleaving, which is what most com-
mercial CMP use. But the key idea of our paper can also be achieved using page allo-
cation proposed by Cho and Jin.

6 Conclusions

In this paper, we propose two novel mechanisms that exploit software semantics to
optimize on-chip memory system components. In the first mechanism, automatically
and aggressively using superpages for stack memory greatly reduces TLB misses. By
creating superpages at the initial page fault of a potential superpage, we avoid the high
cost of moving pages of physical memory at a later time. In the second mechanism, we
force stack data, which are private in nature, to be mapped to their local cache slices.
Reduced average LLC hit latencies give us slight improvement in overall application
performance despite small increases in LLC miss rates, and decreased ring hop counts
lead to perceivable benefits in the interconnect power consumption.

In general, we believe that there are many opportunities in microprocessor design to
exploit the rich OS and programming language semantics that have been ’lost in trans-
lation’ on the execution path of data movement instructions and primitives. Identifying
and utilizing memory-related software semantics could lead to graceful solutions that
may cost much more in software semantics-oblivious approaches.

Exploiting Semantics of Virtual Memory to Improve the Efficiency 245

Acknowledgement. We thank Tong Li for discussions on virtual memory management,
Jim Held for his feedback on the manuscript, and the anonymous reviewers for their
constructive suggestions.

References

1. Romer, T.H., Ohlrich, W.H., Karlin, A.R., Bershad, B.N.: Reducing TLB and memory over-
head using online superpage promotion. In: ISCA 1995, pp. 176–187 (1995)

2. McCurdy, C., Coxa, A.L., Vetter, J.: Investigating the TLB behavior of high-end scientific
applications on commodity microprocessors. In: ISPASS 2008, pp. 95–104 (2008)

3. Speight, E., Shafi, H., Zhang, L., Rajamony, R.: Adaptive mechanisms and policies for man-
aging cache hierarchies in chip multiprocessors. In: ISCA 2005, pp. 346–356 (2005)

4. Muralimanohar, N., Balasubramonian, R., Jouppi, N.: Optimizing NUCA organizations and
wiring alternatives for large caches with CACTI 6.0. In: MICRO, vol. 40, pp. 3–14 (2007)

5. Wang, H.S., Peh, L.S., Malik, S.: A power model for routers: Modeling Alpha 21364 and
InfiniBand routers. IEEE Micro 23, 26–35 (2003)

6. Lee, H.H.S., Ballapuram, C.S.: Energy efficient D-TLB and data cache using semantic-aware
multilateral partitioning. In: ISLPED 2003, pp. 306–311 (2003)

7. Zhao, L., Iyer, R., Moses, J., Illikkal, R., Makineni, S., Newell, D.: Exploring large-scale
CMP architectures using ManySim. IEEE Micro 27, 21–33 (2007)

8. Kahng, A., Li, B., Peh, L.-S., Samadi, K.: ORION 2.0: A fast and accurate NoC power and
area model for early-stage design space exploration. In: DATE 2009, pp. 423–428 (2009)

9. Navarro, J., Iyer, S., Druschel, P., Cox, A.: Practical, transparent operating system support
for superpages. SIGOPS Oper. Syst. Rev. 36, 89–104 (2002)

10. Ganapathy, N., Schimmel, C.: General purpose operating system support for multiple page
sizes. In: ATEC 1998 (1998)

11. Subramanian, I., Mather, C., Peterson, K., Raghunath, B.: Implementation of multiple page-
size support in HP-UX. In: ATEC 1998, p. 9 (1998)

12. Cascaval, C., Duesterwald, E., Sweeney, P.F., Wisniewski, R.W.: Multiple page size modeling
and optimization. In: PaCT 2005, pp. 339–349 (2005)

13. Nellans, D., Balasubramonian, R., Brunvand, E.: OS execution on multi-cores: is out-
sourcing worthwhile? SIGOPS Oper. Syst. Rev. 43, 104–105 (2009)

14. Huang, M., Renau, J., Yoo, S.M., Torrellas, J.: L1 data cache decomposition for energy effi-
ciency. In: ISLPED 2001, pp. 10–15 (2001)

15. Ballapuram, C.S., Sharif, A., Lee, H.H.S.: Exploiting access semantics and program behavior
to reduce snoop power in chip multiprocessors. In: ASLPED 2008 (2008)

16. Cho, S., Jin, L.: Managing distributed, shared L2 caches through OS-level page allocation.
In: MICRO 2006 (2006)

17. Jin, L., Cho, S.: SOS: A software-oriented distributed shared cache management approach
for chip multiprocessors. In: PaCT 2009, pp. 361–371 (2009)

From Serial Loops to Parallel Execution

on Distributed Systems

George Bosilca1, Aurelien Bouteiller1, Anthony Danalis1, Thomas Herault1,
and Jack Dongarra1,2

1 University of Tennessee, Knoxville TN 37996, USA
2 University of Manchester, Manchester, UK

{bosilca,bouteill,adanalis,herault,dongarra}@eecs.utk.edu

Abstract. Programmability and performance portability are two major
challenges in today’s dynamic environment. Algorithm designers target-
ing efficient algorithms should focus on designing high-level algorithms
exhibiting maximum parallelism, while relying on compilers and run-
time systems to discover and exploit this parallelism, delivering sustain-
able performance on a variety of hardware. The compiler tool presented
in this paper can analyze the data flow of serial codes with imperfectly
nested, affine loop-nests and if statements, commonly found in scientific
applications. This tool operates as the front-end compiler for the DAGuE
run-time system by automatically converting serial codes into the sym-
bolic representation of their data flow. We show how the compiler ana-
lyzes the data flow, and demonstrate that scientifically important, dense
linear algebra operations can benefit from this analysis, and deliver high
performance on large scale platforms.

Keywords: compiler analysis, symbolic data flow, distributed comput-
ing, task scheduling.

1 Introduction and Motivation

Achieving scientific discovery through computing simulation puts such high de-
mands on computing power that even the largest supercomputers in the world
are not sufficient. Regardless of the details in the design of future high perfor-
mance computers, few would disagree that a) there will be a large number of
nodes; b) each node will have a significant number of processing units; c) pro-
cessing units will have a non-uniform view of the memory. Moreover, computing
units in a single machine have already started becoming heterogeneous, with the
introduction of accelerators, like GPUs.

This creates a complex environment (the “jungle”1) for application and li-
brary developers. A developer, whether a domain scientist simulating physical
phenomena, or a developer of a numerical library such as ScaLAPACK [4] or

1 Herb Sutter, “Welcome to the Jungle”, 12-29-2011,
http://herbsutter.com/2011/12/29/welcome-to-the-jungle/

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 246–257, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://herbsutter.com/2011/12/29/welcome-to-the-jungle/

From Serial Loops to Parallel Execution on Distributed Systems 247

PLASMA [12], is forced to compromise and accept poor performance, or waste
time optimizing her code instead of making progress in her field of science. A
better solution would be to rely on a run-time system that can dynamically
adapt the execution to the current hardware. DAGuE [10], which deploys dy-
namic micro-task scheduling, has been shown [11] to deliver portable high per-
formance, on heterogeneous hardware for a class of regular problems, such as
those occurring in linear algebra.

Unfortunately, dynamic scheduling approaches commonly require application
developers to use unfamiliar programming paradigms which hinders productivity
and prevents widespread adoption. As an example, in DAGuE, the algorithms
are represented as computation tasks decorated by symbolic expressions that
describe the flow of data between tasks.

In this paper, we describe a compiler tool that automatically analyzes anno-
tated sequential C code and generates the symbolic, problem size independent,
data flow used by DAGuE. Through polyhedral analysis, our compiler represents
the data flow of the input code as parameterized, symbolic expressions. These
expressions enable each task to independently compute, at run-time, which other
tasks it has dependencies with, thus defining the communication that must be
performed by the system. We explain the process and the tools used to perform
this translation. To the best of our knowledge, it is the first time that state-
of-the-art, handcrafted software packages are outperformed by automatic data
flow analysis coupled with run-time DAG scheduling on large scale distributed
memory systems.

2 Related Work

Symbolic dependence analysis has been the subject of several studies [14, 18–20],
mainly for the purpose of achieving powerful dependence testing, array privati-
zation and generalized induction variable substitution, especially in the context
of parallelizing compilers such as Polaris [5] and SUIF [17]. This body of work
differs from the work presented in this paper in that our compiler does not focus
on dependence testing, or try to statically find independent statements, in order
to parallelize them. Our compiler derives symbolic parameterized expressions
that describe the data flow and synchronization between tasks. Furthermore, we
focus on programs that consist of loops and if statements, with calls to kernels
that operate on whole array regions (i.e. matrix tiles), rather than operating on
arrays in an element by element fashion. This abstracts away the access pat-
terns inside the kernels, and simplifies the data flow equations enough that we
can produce exact solutions using the Omega Test.

The polyhedral model [1, 3, 23], of which the Omega Test is part, has drawn
a lot of attention in recent years, and newer optimization and parallelization
tools, such as Pluto [6], have emerged that take advantage of it. However, un-
like the work currently done within the polyhedral model, we do not use the

248 G. Bosilca et al.

dependence abstractions to drive code transformations, but rather export them
in symbolic notation to enable our run-time to make scheduling and message
exchange decisions.

In our work we harness the theoretical framework set by Feautrier [15] and
Vasilache et al. [25] to compute the symbolic expressions that capture the data
flow. By coupling for the first time this compiler theory with a distributed mem-
ory DAG scheduling run-time, we assert experimentally the significance of this
approach in the context of high performance computing.

Finaly, Baskaran et. al [2] performed compiler assisted dynamic scheduling
using compiler analysis. In their approach, the compiler generates code that
scans and enumerates all vertices of the DAG at the beginning of the run-time
execution. This has the same drawbacks as approaches, such as StarSS [21]
and TBlas [24], that rely on pseudo-execution of the serial loops at run-time to
dynamically discover dependencies between kernels. The overhead grows with the
problem size and the scheduling is either centralized of replicated. In contrast,
the symbolic data-flow and synchronization expressions our compiler generates
can be solved at run-time by each task instance independently, in O(1) time,
without any regard to the location of the given instance in the DAG.

3 Compiler and Run-Time Synergy

The goal of traditional standalone parallelizing compilers is to convert a serial
program into a parallel program by statically addressing all the issues involved
with parallel execution. However, dynamic environments call for a run-time solu-
tion. In our toolchain, the compiler static analysis scope is reduced to producing
a symbolic representation to be interpreted dynamically by the scheduler during
execution. Effectively, the compiler performs static data flow analysis to convert
an affine input serial program into a Direct Acyclic Graph (DAG), with program
functions (kernels) as its nodes, and data dependency edges between kernels as
its edges. Then, the run-time is responsible for addressing all DAG schedul-
ing challenges, including background MPI data transfers between distributed
resources [10].

To drive the scheduler decisions, the compiler needs to produce more than a
boolean value regarding the existence or not of a dependency. It has to identify
the exact, symbolic, dependence relations that exist in the source code. From
those, it generates parameterized symbolic expressions with parameters that
take distinct values for each task. The expressions are such that the run-time
can evaluate them for each task Ti independently of the task’s place in the
DAG. Also, the evaluation of each expression costs constant time (i.e., it does
not depend on the size of the DAG). The result of evaluating each symbolic
expression is another task Tj, to which data must be sent, or from which data
must be received2.

2 Therefore, the only parameters allowed in a symbolic expression are the parameters
of the execution space of Ti, and globals used in the input code.

From Serial Loops to Parallel Execution on Distributed Systems 249

4 Input and Output Formats

4.1 Input Format: Annotated Sequential Code

The analysis methodology used by our compiler allows any program with regular
control flow and side-effect free functions to be used as input. The current im-
plementation focuses on codes written in C, with affine loops and array accesses.
The compiler front-end is flexible enough to process production codes such as
the PLASMA library [12]. PLASMA is a linear algebra library that implements
tile-based dense linear algebra algorithms.

for (k = 0; k < A.mt; k++) {

Insert_Task(zpotrf, A[k][k], INOUT);

for (m = k+1; m < A.mt; m++) {

Insert_Task(ztrsm, A[k][k], INPUT, A[m][k], INOUT);

}

for (m = k+1; m < A.mt; m++) {

Insert_Task(zherk, A[m][k], INPUT, A[m][m], INOUT);

for (n = k+1; n < m; n++) {

Insert_Task(zgemm, A[m][k], INPUT, A[n][k], INPUT, A[m][n], INOUT);

}

}

}

Fig. 1. Cholesky factorization in PLASMA

Figure 1 shows the PLASMA code that implements the Tiled Cholesky factor-
ization [12] (with some preprocessing and simplifications performed on the code
for improving readability). The figure shows the operations that constitute the
Cholesky factorization POTRF, TRSM, HERK, and GEMM. The data matrix
“A” is organized in tiles, and notation such as “A[m][k]” refers to a block of data
(a tile), and not a single element of the matrix. Our compiler uses a specialized
parser that can process hints in the API of PLASMA. We made this choice be-
cause in the PLASMA API the following is true: a) for every matrix tile passed
to a kernel as a parameter, the parameter that follows it specifies whether this
tile is read, modified, or both, using the special values INPUT, OUTPUT and INOUT;
b) all PLASMA kernels are side-effect free. This means that they operate only
on memory pointed to by their arguments, and that memory is not aliased.

Figure 1 contains four kernels, that correspond to the aforementioned opera-
tions. In the rest of this article we will use the terms task and task class. A task
class is a specific kernel in the application that can be executed several times,
potentially with different parameters, during the life-time of the application.
zpotrf and zgemm are examples of task classes in Figure 1. A task is a particu-
lar, and unique, instantiation of a kernel during the execution of the application,

250 G. Bosilca et al.

with given parameters. In the example of the figure, task class zpotrf will be
instantiated as many times as the outer loop for(k) will iterate, and thus we
define the task class’s execution space to be equal to the iteration space of the
loop.

4.2 Compiler Output: Job Data Flow

for (k = 0; k < N; k++) {

Insert_Task(Ta, A[k][k], INOUT);

for (m = k+1; m < N; m++) {

Insert_Task(Tb, A[k][k], INPUT, A[m][m], INOUT);

}

}

Fig. 2. Pseudocode example of input code

The compiler outputs a collection of task classes and their dependency relation
in a format we refer to as the Job Data Flow (JDF). Consider the simpler input
defined in Figure 2. The compiler extracts (as described in Section 5.1) data
flows between Ta and Tb in a symbolic way and outputs them in the definitions
of task classes Ta and Tb in the JDF. The symbolic representation of each edge
is such that every task Ta(k) is able to determine the tasks Tb(k,m) that need
to use the data defined by Ta(k) and vice-versa. Consider the particular edge
due to A[k][k] flowing from Ta(k) to Tb(k,m). In the JDF, we use the following
notation to store this flow edge in task class Ta:

A[k][k] -> (k < N-1) ? A[k][k] Tb(k, (k+1)..(N-1))

Conversely, tasks of the class Tb must be able to determine which task they
depend on for input. In this case the same edge has the following form:

A[k][k] <- A[k][k] Ta(k)

The full JDF that the compiler produces to represent the example code of Fig-
ure 2 is shown in Figure 3. As can be seen in the figure, in addition to the
execution space and the data flow edges, there are two more elements in a JDF
file. First, there is an affinity definition of the form “:A[k][k]” which signifies
that the corresponding task should be run in the MPI process that owns the
corresponding data element. Second, there is a BODY that consists of C-language
code that the run-time will invoke in order to execute the actual kernel that
constitutes the body of a task.

From interpreting that JDF output, the DAGuE run-time can handle dis-
tributed memory execution efficiently, the scheduler can identify which tasks
must communicate with which other, without consulting a centralized entity or
traversing the whole problem DAG.

From Serial Loops to Parallel Execution on Distributed Systems 251

Ta(k)
k = 0..N-1
: A[k][k]

A[k][k] <- (k==0) ? A[k][k] : A[m][m] Tb(k-1, k)
-> (k<N-1) ? A[k][k] Tb(k, (k+1)..(N-1))
-> A[k][k]

BODY
Ta(A[k][k]);

END

Tb(k,m)
k = 0..N-1
m = k+1..N-1
: A[m][m]

A[k][k] <- A[k][k] Ta(k)
A[m][m] <- (k==0) ? A[k][k] : A[m][m] Tb(k-1, m)

-> (m==k+1) ? A[k][k] Ta(m) : A[m][m] Tb(k+1, m)
BODY

Tb(A[k][k], A[m][m]);
END

Fig. 3. Example Job Description Format

5 Extracting Symbolic Data Flow and Data Exchange

5.1 Omega Relations

The Omega test [22] is the library we use for manipulating the sets of affine
constraints over integer variables that arise when performing the symbolic data-
flow analysis necessary when converting from sequential code to JDF. An Omega
Relation is a mapping between two tuples, defining the execution space of the
source and sink task classes, as well as the conjunction of constraints for both
execution spaces. Consider the example of compiler input given in Figure 2. The
iteration space of Ta is the iteration space of outer loop for(k); We denote this
iteration space with the following Omega notation:

{[k] : 0 <= k <= N-1}

Such notation { [T] : C }, where T is a tuple, and C is a conjunction of con-
straints, defines the ranges of values for the elements of T for which C is true.
Similarly, we define the execution space of task class Tb to be:

{[k,m] : 0 <= k < N-1 && k+1 <= m <= N-1}

Here, the tuple has two elements, since Tb is enclosed by two loops. By examining
the data-flow of the code, we can see that A[k][k] for example, will be modified
(defined, in compiler parlance) by kernel Ta and then read (used, in compiler
parlance) by kernel Tb. The corresponding relation due to A[k][k] flowing from
Ta(k) to Tb(k,m) is:

{[k] -> [k’,m] : 0 <= k < N-1 && k+1 <= m <= N-1 && k == k’}

252 G. Bosilca et al.

In the example above, the term “[k]” represents the execution space of the
source, Ta, and the term “[k’,m]”3 represents the execution space of the sink,
Tb. In Omega parlance, this Relation has an input variable count of one and
output variable count of two.

5.2 Interprocess Data Exchange

The symbolic data edges are associated with task classes, so that the run-time
can use them to determine what messages need to be exchanged between tasks.
In particular, for each task the run-time must determine the tasks that produced
the input of this task and the tasks that will consume the output of this task.
Therefore, the expressions stored in the JDF may contain only a) the parameters
of the source task, b) symbolic and numeric constants, c) the logical constants
“TRUE” and “FALSE”.

Outgoing Messages. After the compiler has finished processing the input source
code, it will have a collection of Omega Relations describing the data flow edges
from each task class to each other task class in the code. To produce the infor-
mation needed by the run-time regarding the outgoing edges of a task Ti, we
need to process all Relations of flow edges that have as source the task Ti. For
every parameter that appears in the execution space of a Relation’s destina-
tion, we solve the equality constraints in the conjunction of constraints for this
parameter. Consider, as an example, the Relation:

{[k,m] -> [k’] : k’ = m && 1+k = m && 1 <= m < N}

which describes the flow edge from A[m][m] in Tb to A[k][k] in Ta. This edge
will be stored in the JDF of Tb as:

A[m][m] -> ((1+k)==m) ? A[k][k] Ta(m)

This way, when the run-time is processing task Tb(7, 8) for example, it can com-
pute in O(1) time that it needs to send tile A[8][8] to task Ta(8). Also, when
processing task Tb(7, 11), the run-time can compute that A[11][11] should not
be sent to any instance of Ta, since the condition (1 + k) == m is not true
(clearly, 1 + 7 �= 11).

If a destination parameter does not appear in any equality constraints in the
conjunction, we determine the lower bound and upper bound of this parameter
by solving the inequality constraints, and create a range of tasks that should be
the receiver of this message. As an example, consider the flow edge from A[k][k]
of Ta to A[k][k] of Tb which is described by the Relation:

{[k] -> [k’,m] : k’ = k && 0 <= k < m < N}

3 Although both task classes share a common enclosing loop, we use different variables
in the execution spaces (k and k’) because the dependency could be a loop carried
dependency, so we have to allow the two iteration spaces to be independent.

From Serial Loops to Parallel Execution on Distributed Systems 253

In order to store this edge in the JDF expression of Ta, we need to express k′ and
m in terms of k (and constants), since k is the only parameter in the execution
space of Ta. Therefore, this edge will be translated to the following information
in JDF notation:

A[k][k] -> (k < N-1) ? A[k][k] Tb(k, k+1..N-1)

since the output parameter “m” does not appear in any equality constraints. In
JDF syntax, expressions with ranges signify to the run-time that a broadcast
operation must be performed.

Incoming Messages. To produce the information regarding the incoming edges
of a task Ti, we traverse the flow edges of all tasks searching for edges that have
task Ti as the destination. For each such Relation, we compute the inverse, and
then proceed with solving the inverse Relation for the output parameters, as we
do for the outgoing edges.

5.3 Anti-dependence Edges

An anti-dependence edge exists between tasks Tsrc and Tdst if Tsrc uses a variable
that Tdst defines, and Tsrc executes before Tdst

4. In parallel execution, anti-
dependence edges must be translated to synchronization edges, to avoid using
wrong versions of the data. Ostensibly, anti-dependencies are not relevant in
a distributed memory execution environment due to data copying. However,
DAGuE can run on distributed memory machines, shared memory machines, or
distributed memory clusters of shared memory nodes. Therefore handling anti-
dependencies in a uniform and systematic way is important for preserving the
semantics of the input serial algorithm.

Our compiler starts by recording all potential anti-dependencies as Omega
Relations. Then, Algorithm 1 is used to minimize the number of synchroniza-
tion edges by using data flow edges between tasks to eliminate the need for
additional synchronization, wherever possible. This is possible because a data
flow edge imposes a message exchange between tasks and therefore explicit syn-
chronization.

6 Performance

Two metrics of performance are relevant in the context of this work. First, the
performance of the compiler tool itself, and second, the performance of applica-
tions running under our system. We have tested the performance of our compiler
tool by processing the dense linear algebra operations found in the PLASMA
library, on hardware commonly found on average personal computers. The com-
pilation time we have observed is in the order of 100ms when the anti-dependence
minimization algorithm is not being used, and in the order of a few seconds when
it is being used.

4 Or more accurately, if there exists an execution path from Tsrc to Tdst.

254 G. Bosilca et al.

Function FinalizeAntiDependencies(IG)
Input: IG, Input graph.
Result: Modifies IG by finalizing antidependencies.
begin

foreach anti-dependence edge Ea ∈ IG do
Let G be a copy of IG
/* Unless otherwise specified all nodes and edges belong */

/* to G, and all operations are done on G. */

foreach pair of nodes N1, N2 do
R ←

⋃
{Ri : N1 −−→

Ri

N2}
Replace all edges from N1 to N2 with single edge N1 −→

R
N2

foreach Node N0 do
Let (p1, . . .) be the parameters of the task that correspond to N0

/* Initiate Cycle(N0) with an empty (tautologic) */

/* Relation to self. */

Cycle(N0) ← {[p1, . . .] → [p1, . . .]}
foreach Node N0 do

foreach N0 −−→
R0

N1 . . . −−−−→
Rn−1

N0 do

/* N0, N1 . . . N0 is a Cycle formed following flow, */

/* and/or anti-dependence edges. */

C ← R0 ◦ R1 ◦ . . . ◦Rn−1

T ← transitive closure of C
Cycle(N0) ← Cycle(N0)

⋃
T

A ← FindTransitiveEdge(Source(Ea), ∅, ∅)
/* May remove Ea if empty */

Change Ea to (Ea − A) in IG

Algorithm 1. FinalizeAntiDependencies(IG)

Function FindTransitiveEdge(Nc, T,A)
Input: Nc, the current node in the transitive edge; T the transitive edge being

built; A the union of all transitive edges found until now.
Result: Union of the transitive edges that start at Nc and end at Sink(Ea)
begin

/* Scope inlcludes the variables of FinalizeAntiDependencies() */

/* in Algorithm 1. This algorithm operates on G. */

Mark Nc as visited
T ← Cycle(Nc) ◦ T
foreach Edge Nc −−→

Ri

Ni s.t. Ni is not visited do

Ttmp ← Ri ◦ T
A ← FindTransitiveEdge(Ni, Ttmp, A)

if Nc = Sink(Ea) then
return A

⋃
T

else
return A

Algorithm 2. FindTransitiveEdge(Nc, T, A)

From Serial Loops to Parallel Execution on Distributed Systems 255

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

20k 40k 60k 80k 100k 120k

P
er

fo
rm

an
ce

 (
o

ve
r

p
ea

k)

Matrix Size

Gemm Peak
DAGuE

ScaLAPACK
DSBP

(a) Cholesky Factorization

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

20k 40k 60k 80k 100k 120k

P
er

fo
rm

an
ce

 (
o

ve
r

p
ea

k)

Matrix Size

Gemm Peak
DAGuE

ScaLAPACK
High Performance Linpack

(b) LU Factorization

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

20k 40k 60k 80k 100k 120k

P
er

fo
rm

an
ce

 (
o

ve
r

p
ea

k)

Matrix Size

Gemm Peak
DAGuE

ScaLAPACK

(c) QR Factorization

Fig. 4. Performance comparison on the Griffon platform (on 648 cores)

The performance of the DAGuE run-time has been extensively studied in re-
lated publications [8, 9, 7]. The goal of this paper is to present the compiler
front-end of the system, so we present only a summary of performance results to
demonstrate that our toolchain can automatically analyze, schedule and execute
non-trivial algorithms, and deliver high performance at scale. Application per-
formance results are relevant, because the scalability achieved by our run-time is
enabled by the problem size independent algebraic expressions that our compiler
generates to describe inter-task dependence edges.

For the experiments we present here, we used 81 dual socket Intel Xeon L5420
quad core processors at 2.5GHz for a total of 648 cores. Each node has 16GB of
memory, and is interconnected to the others by a 20Gbs Infiniband network and
runs Linux 2.6.24 (Debian Sid).

The benchmarks consist of three popular dense matrix factorizations: Cholesky,
LU and QR. All three operations are implemented in the ScaLAPACK numerical
library [4]. Moreover, the Cholesky factorization has been implemented in a more
optimized way in the DSBP software [16], using static scheduling of tasks, and
a data distribution more efficient. The LU factorization with partial pivoting is
also solved by the well known High Performance Linpack benchmark (HPL [13]),
used to measure the performance of supercomputers.

For our comparison, we implemented these operations within DAGuE by us-
ing the compiler presented in this paper to generate the JDF symbolic repre-
sentation from the corresponding PLASMA files. The data distribution is not
generated by automatic tools, but rather chosen by the human developer. For
our experiments, we have distributed the initial data following the classical 2D-
block cyclic distribution used by ScaLAPACK, and used our run-time engine to
schedule the operations on the distributed data. The kernels consist of the BLAS
operations referenced by the sequential codes, and their implementation was the
most efficient available on this machine. The same kernel implementations for
ScaLAPACK, HPL, DSBP, and our engine were used on each run.

Figure 4 presents the performance measured using our system (labeled as
DAGuE) and ScaLAPACK, and when applicable DSBP and HPL, as a function
of the problem size. All data is normalized to the theoretical floating point peak
of the machine. A total of 648 cores participated in the distributed run, and the
data was distributed according to a 9x9 2D block-cyclic grid. Tile size was tuned

256 G. Bosilca et al.

to provide the best performance on each setup. As the figures illustrate, on all
benchmarks and for all problem sizes, our framework outperforms ScaLAPACK,
and performs as well as the state of the art, hand-tuned codes for specific prob-
lems. Our system goes from the sequential code to the parallel run automatically,
with very limited human involvement, but is still able to outperform DSBP, and
competes with the HPL implementation on this machine.

7 Conclusion

In this paper we presented the compiler front end of the DAGuE system, more
precisely how the compiler extracts the Symbolic Data Flow and Data Exchanges
from the input code in order to expose additional information to the run-time.
We outlined JDF, DAGuE’s internal problem-size independent representation of
task generated by the compiler and used by the run-time to make all task schedul-
ing and communication decisions. We showed how Relations produced using the
Omega test can be converted into message and synchronization requests for the
run-time, and how the synchronization edges can be reduced to the minimum
necessary set. Using this critical information exposed by the compiler, the run-
time can take more effective decisions about inter-nodes data transfers and about
how to schedule tasks in order to maximize the available parallelism not only
locally but remotely. Experimental results confirm that serial codes processed by
our system can match, or outperform, highly optimized, state of the art, hand
tuned, distributed linear algebra codes, such as Scalapack, libSCI and HPL.

References

1. Ancourt, C., Irigoin, F.: Scanning polyhedra with do loops. In: Proceedings of
ACM PPoPP 1991, Williamsburg, VA, pp. 39–50 (1991)

2. Baskaran, M.M., Vydyanathan, N., Bondhugula, U.K.R., Ramanujam, J., Rountev,
A., Sadayappan, P.: Compiler-assisted dynamic scheduling for effective paralleliza-
tion of loop nests on multicore processors. In: Proceedings of ACM PPoPP 2009,
Raleigh, NC, pp. 219–228 (2009)

3. Bastoul, C.: Code Generation in the Polyhedral Model Is Easier Than You Think.
In: Proceedings of IEEE PACT 2004, pp. 7–16. Antibes Juan-les-Pins, France (2004)

4. Blackford, L.S., Choi, J., Cleary, A., D’Azevedo, E., Demmel, J., Dhillon, I., Don-
garra, J., Hammarling, S., Henry, G., Petitet, A., Stanley, K., Walker, D., Whaley,
R.C.: ScaLAPACK Users’ Guide. Society for Industrial and Applied Mathematics,
Philadelphia (1997)

5. Blume, W., Doallo, R., Eigenmann, R., Grout, J., Hoeflinger, J., Lawrence, T.,
Lee, J., Padua, D., Paek, Y., Pottenger, B., Rauchwerger, L., Tu, P.: Parallel
programming with polaris. IEEE Computer 29, 78–82 (1996)

6. Bondhugula, U., Hartono, A., Ramanujam, J., Sadayappan, P.: A practical auto-
matic polyhedral parallelizer and locality optimizer. In: Proceedings of ACM PLDI
2008, Tucson, AZ, pp. 101–113 (2008)

7. Bosilca, G., Bouteiller, A., Danalis, A., Faverge, M., Haidar, H., Herault, T.,
Kurzak, J., Langou, J., Lemarinier, P., Ltaief, H., Luszczek, P., YarKhan, A., Don-
garra, J.: Distributed-Memory Task Execution and Dependence Tracking within
DAGuE and the DPLASMA Project. Tech. Rep. 232, LAWN (September 2010)

From Serial Loops to Parallel Execution on Distributed Systems 257

8. Bosilca, G., Bouteiller, A., Danalis, A., Faverge, M., Haidar, A., Herault, T.,
Kurzak, J., Langou, J., Lemarinier, P., Ltaief, H., Luszczek, P., YarKhan, A.,
Dongarra, J.: Flexible development of dense linear algebra algorithms on mas-
sively parallel architectures with DPLASMA. In: IEEE PDSEC 2011, Anchorage,
AK (2011)

9. Bosilca, G., Bouteiller, A., Danalis, A., Herault, T., Lemarinier, P., Dongarra, J.:
DAGuE: A generic distributed dag engine for high performance computing. In:
HIPS 2011, Anchorage, AK (2011)

10. Bosilca, G., Bouteiller, A., Danalis, A., Herault, T., Lemarinier, P., Dongarra,
J.J.: DAGuE: A generic distributed DAG engine for high performance computing.
Parallel Computing (2011) (to appear),
http://dx.doi.org/10.1016/j.parco.2011.10.003

11. Bosilca, G., Bouteiller, A., Hérault, T., Lemarinier, P., Saengpatsa, N.O., Tomov,
S., Dongarra, J.J.: Performance portability of a gpu enabled factorization with the
dague framework. In: IEEE CLUSTER, pp. 395–402 (2011)

12. Buttari, A., Langou, J., Kurzak, J., Dongarra, J.J.: A class of parallel tiled linear
algebra algorithms for multicore architectures. Parallel Comput. Syst. Appl. 35,
38–53 (2009)

13. Dongarra, J.J., Luszczek, P., Petitet, A.: The LINPACK benchmark: Past, present
and future. Concurrency Computat.: Pract. Exper. 15(9), 803–820 (2003)

14. van Engelen, R.A., Birch, J., Shou, Y., Walsh, B., Gallivan, K.A.: A unified frame-
work for nonlinear dependence testing and symbolic analysis. In: Proceedings of
ACM ICS 2004, Malo, France, pp. 106–115 (2004)

15. Feautrier, P.: Dataflow analysis of array and scalar references. International Journal
of Parallel Programming 20, 23–53 (1991), 10.1007/BF01407931

16. Gustavson, F.G., Karlsson, L., K̊agström, B.: Distributed SBP cholesky factoriza-
tion algorithms with near-optimal scheduling. ACM Trans. Math. Softw. 36(2),
1–25 (2009)

17. Hall, M.W., Anderson, J.M., Amarasinghe, S.P., Murphy, B.R., Liao, S.W.,
Bugnion, E., Lam, M.S.: Maximizing multiprocessor performance with the SUIF
compiler. IEEE Computer 29, 84–89 (1996)

18. Kyriakopoulos, K., Psarris, K.: Data dependence analysis techniques for increased
accuracy and extracted parallelism. International Journal of Parallel Program-
ming 32, 317–359 (2004)

19. Kyriakopoulos, K., Psarris, K.: Nonlinear Symbolic Analysis for Advanced Pro-
gram Parallelization. IEEE Transactions on Parallel and Distributed Systems 20,
623–640 (2009)

20. Maydan, D.E., Hennessy, J.L., Lam, M.S.: Efficient and exact data dependence
analysis. In: Proceedings of ACM PLDI 1991, Toronto, Ontario, pp. 1–14 (1991)

21. Perez, J.M., Badia, R.M., Labarta, J.: A dependency-aware task-based program-
ming environment for multi-core architectures. In: Proceedings of IEEE Cluster
Computing, pp. 142–151 (2008)

22. Pugh, W.: The omega test: a fast and practical integer programming algorithm for
dependence analysis. In: Proceedings of the ACM/IEEE SC 1991, pp. 4–13 (1991)

23. Quilleré, F., Rajopadhye, S., Wilde, D.: Generation of efficient nested loops from
polyhedra. Int. J. Parallel Program. 28, 469–498 (2000)

24. Song, F., YarKhan, A., Dongarra, J.: Dynamic task scheduling for linear algebra al-
gorithms on distributed-memory multicore systems. In: Proceedings of ACM/IEEE
SC 2009 (2009)

25. Vasilache, N., Bastoul, C., Cohen, A., Girbal, S.: Violated dependence analysis. In:
Proceedings of ACM ICS 2006, Cairns, Queensland, Australia, pp. 335–344 (2006)

http://dx.doi.org/10.1016/j.parco.2011.10.003

Topic 5: Parallel and Distributed Data

Management

Domenico Talia, Alex Delis, Haimonti Dutta, and Arkady Zaslavsky

Topic Committee

The ever-increasing data volumes used to empower contemporary data–in-
tensive applications as well as aggregations of computing systems call for novel ap-
proaches and efficient techniques in the management of geographically dispersed
data. Despite recent advances, Internet-scale requirements for both applications
and underlying systems require effective provisioning, staging, manipulation, con-
tinuous maintenance and monitoring of data hosted in multiple, pre-existing au-
tonomous, distributed and often heterogeneous systems. Evidently, the notions of
parallelism and concurrent execution at all levels remain key elements in attaining
scalability and effective management for nearly-allmodern data-intensive applica-
tions. Moreover, as underlying computing environments get transformed through
the introduction of novel infrastructures, enhanced capacities and extended func-
tionalities, new solutions are sought to cope with these changes.

In topic 5, we solicited papers in all aspects of data management (access, query,
and analysis) and data-intensive applications whose central focus is weaved
around the notions of concurrency, parallelism and distributed processing. Key
areas that were of interest included parallel and highly-available distributed
databases, data-intensive clouds, middleware solutions for processing large-scale
data, distributed transaction and query processing, management of distributed
data sources, Internet-scale applications, parallel and distributed information re-
trieval, data-intensive peer-to-peer systems efficient management of data streams,
scalable web services as well as data analysis on multi-core and many-core ar-
chitectures.

Each paper was reviewed by at least 3 reviewers and, finally, we were able to
select 4 papers. The accepted papers discuss timely developments in the areas of
clustering distributed data streams, organizing web-data using novel indexing ap-
proaches, maintaining consistent replicated data across geographically dispersed
data-centers and providing fault-tolerant cache-services for search engines.

The paper entitled “DS-Means: Distributed Data Stream Clustering” by A.
Guerrieri and A. Montresor proposes the DS-Means algorithm that achieves clus-
tering of data emanating from different sources operating with minimal interac-
tion. Instead of simply partitioning text collections across clusters of processors,
paper “3D Inverted Index with Cache Sharing for Web Search Engines” by E.
Feuerstein, G.-V. Gil-Costa, M. Marin, G. Tolosa and R. Baeza-Yates advocates
the use of a 3D indexing approach which exploits the fact that data is often in-
herently partitioned and replicated. Paper “Quality-of-Service for Consistency
of Data Geo-Replication in Cloud Computing” by S. Esteves, J. Nuvo Silva and
L. Veiga suggests the V FC3 approach that is a novel consistency model and

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 258–259, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Topic 5: Parallel and Distributed Data Management 259

framework capable of enforcing varying degrees of consistency in accordance to
the semantics of the replicated data. Finally, paper “A Fault-Tolerant Cache
Service for Web Search Engines” by C. Gomez-Pantoja, D. Rexachs, M. Marin
and E. Luque proposes a new approach in structuring the cache of results for
web-search engines; the approach is based on consistent hashing and a strategy
that readily enables fault tolerance.

We would also like to take this opportunity to sincerely thank all contributing
authors for their submissions, the Euro-Par 2012 Organizing Committee as well
as all our referees who provided highly useful comments and whose efforts have
made this topic and conference possible.

DS-Means: Distributed Data Stream Clustering

Alessio Guerrieri and Alberto Montresor	

University of Trento, Italy

Abstract. This paper proposes DS-means, a novel algorithm for clus-
tering distributed data streams. Given a network of computing nodes,
each of them receiving its share of a distributed data stream, our goal
is to obtain a common clustering under the following restrictions (i) the
number of clusters is not known in advance and (ii) nodes are not al-
lowed to share single points of their datasets, but only aggregate informa-
tion. A motivating example for DS-means is the decentralized detection
of botnets, where a collection of independent ISPs may want to detect
common threats, but are unwilling to share their precious users’ data.
In DS-means, nodes execute a distributed version of K-means on each
chunk of data they receive to provide a compact representation of the
data of the entire network. Later, X-means is executed on this repre-
sentation to obtain an estimate of the number of clusters. A number
of experiments on both synthetic and real-life datasets show that our
algorithm is precise, efficient and robust.

1 Introduction

Broadly speaking, clustering is the problem of partitioning a set of items into a
collection of clusters, so that, given a definition of similarity, items in the same
cluster are more similar to each other than they are to items in other clusters.

Most clustering algorithms assume that the items to be analyzed are available
here and now, meaning that the entire data set could be easily accessed from
a single machine. Sometimes both these assumptions must be relaxed, meaning
that items are inherently distributed and not immediately available, for example
because they are continuously generated and volatile in nature.

As a potential application area, consider the problem of detecting malicious
threats like botnets, DDoS attacks, viruses, etc. [3]. In this setting, a large num-
ber of detectors, potentially belonging to different organizations (ISPs, compa-
nies, universities) collect large quantity of information about the behavior of a
system (for example, by inspecting the networking traffic at routers). In order to
associate detection with a (potentially immediate) reaction, data should be ana-
lyzed and clustered as it flows through the detectors. In such setting, centralized
algorithms cannot be applied. There are several reason for this:

– The data to be analyzed is constituted by a continuous stream of items, and
waiting for all of them to be collected in a single machine is infeasible;

� This work is supported by the Italian MIUR Project Autonomous Security, sponsored
by the PRIN 2008 Programme.

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 260–271, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

DS-Means: Distributed Data Stream Clustering 261

– Forwarding all data to one machine may be too expensive, inducing a large
amount of unnecessary traffic;

– If the data is collected by different organizations, privacy issues may prohibit
the gathering of the entire data set by a centralized third party.

Based on these considerations, the problem we are trying to solve is a distributed
form of data stream clustering [1], where data arrives continuously at multiple
nodes, without having the possibility to transmit the entire dataset to a single
machine.

The main contribution of this paper is the DS-means algorithm (where DS
stands for Distributed Streams), a combination of various known techniques to
solve this problem, without the need of previous knowledge about the number
of clusters. DS-means first partitions – at each node – data into chunks; then
a distributed version of K-means is applied on these chunks. Each time the
distributed K-means algorithm is executed, it returns K centroids (points equal
to the average of a cluster) that are used, together with centroids obtained from
previous executions, as a compact representation of the entire set of streams.
Each node then locally runs X-means, a clustering algorithm able to choose the
number of clusters, on this representation. An aggregation protocol is executed
by all nodes to reach an agreement on the number G of clusters; finally, each node
runs a centralized instance of K-means with K = G to get the final clustering.

This approach has two important properties. Given that DS-means works
independently on each chunk of data, we can use it in an online setting (in
which we want to look only at the last chunks of data) without the need of
restarting it from scratch each time new data arrives. Also, the nodes do not
directly exchange information about the single points they are trying to cluster,
thus achieving a reasonable level of privacy in the presence of sensitive data.

The paper shows the good behavior of the protocol using synthetic datasets.
DS-means is able to reach high precision even when it starts without knowing
the exact number of clusters; the amount of computation is similar to the cen-
tralized version; and finally, DS-means is fault-tolerant and reaches the same
level of precision with or without failures (although the computation time may
increase in the presence of failures).

2 Problem Statement

We consider a distributed network of N computing nodes p1, . . . , pN , each of
them independently receiving a (possibly unbounded) stream of data items. Al-
though the amount of points each node receives may be different, data items
are homogeneous: each of them is a point in the same d-dimensional space Rd,
taken from a single distribution. Similarity of two points p, q is measured based
on their Euclidean distance d(p, q) in Rd: the smaller their distance, the more
similar two points are. We use P to denote the set of points received by all nodes.

Nodes may fail by crashing, meaning that they stop executing the protocol; we
do not consider malicious failures, where nodes behave arbitrarily (for example
spoofing other nodes with incorrect information about the points they receive).

262 A. Guerrieri and A. Montresor

In other words, nodes participating in the computation are trusted. Nodes are
partially synchronized, e.g. through NTP.

Each node may reliably communicate with any other node; to claim a limited
degree of privacy, we require that only aggregate information can be shared
among nodes, without communicating individual points.

The output of our problem is a collection of G centroids c1, . . . , cG, again
taken from Rd, such that (i) each centroid ci represents a cluster Ci ⊆ P ; (ii)
each point p ∈ P is assigned to the cluster represented by the closest centroid,
denoted c(p); (iii) the average distance

1

|P|
∑
p∈P

d(p, c(p))

between each point and the center of its cluster is minimized.
The value of G is not known in advance; instead, the correct value must

be identified based on the Bayesian information criterion [10]. This measure
uses the log-likelihood of the dataset according to the model and its number of
parameters (in our case the number of centroids multiplied by the number of
dimensions) to compute the following metric:

BIC(j) = logMj(S)−
1

2
kj logn

In this formula j is a model, Mj(S) is the maximal likelihood of dataset S using
model j, kj is the number of parameters of the model and n = |S|. To compute
the maximal likelihood of the dataset we used the identical spherical Gaussian
assumption (see [9] for the exact formulas).

3 Background

Clustering a data set is one of the classical problems in the area of machine
learning. This section provides a brief review of the clustering algorithms that
are used as building blocks for our own solution.

3.1 K-Means

The most commonly known clustering algorithm is K-means, based on a paper
by LLoyd [6]. K-means works as follows: it starts from K centroids (points
representing the center of a cluster), repeatedly assigns each point to the closest
centroid and recomputes the position of the centroids according to the points
assigned to it. This algorithm is guaranteed to converge to a local minima of the
within-cluster sum of squares (i.e. the average squared distance between each
point and the center of its cluster), but the quality is highly dependent on the
choice of the starting centroids.

Another drawback is that K needs to be initialized to the correct value of G,
the actual number of clusters present in the system. If K-means is given the
wrong K (because such value is not known in advance), the algorithm fails to
answer precisely.

DS-Means: Distributed Data Stream Clustering 263

3.2 X-Means

One algorithm that is able to compute a good clustering even without knowing
the number of clusters is X-means [9]. This algorithm uses 2-Means (K-means
with K = 2) as a subroutine and continues to divide the data set in smaller
subsets using the Bayesian information criterion to decide if (and where) does
the data need more clusters.

The algorithm will then return the clustering which scores the highest value
based on the Bayesian information criterion. We use this algorithm mostly as a
subroutine to compute the number of clusters to be created.

3.3 Distributed K-Means

The main building block of our algorithm is the distributed K-means algo-
rithm presented by Bandyopadhyay et al. [1], created to cluster datasets in P2P
environments. The algorithm works as follows: each iteration of the K-means
algorithm is executed at the same time by all nodes in the network. Each node
starts with the same centroids, updates them using its own data and computes
an average between its own centroids and the centroids computed by some of its
neighbors. This process is repeated until a steady state is reached.

Looking more closely to the algorithm, it appears clearly that it is based on
a simple relaxation of the averaging step of K-means. All nodes start from the
same centroids and are able to map each of its point to the closest of them.
In the centralized version of K-means, we select all the points that have been
mapped to a single centroid and compute their mean to get the new position
of that centroid. In this distributed algorithm, each node computes the position
of each centroid as the mean of the points in the neighborhood that have been
mapped to it.

An interesting property to be emphasized is the fact that each node only com-
municates with the others using aggregate data. In the communication rounds
the nodes only send their centroids to some of their neighbors. The actual points
are not shared in the network and each node can avoid sharing information with
the other nodes. This is highly desirable when the data is distributed between
nodes representing different companies and they want to collaborate to get a
good clustering without having to directly share their points with the competi-
tion.

4 The Algorithm

The original distributed K-means algorithm works on static datasets and needs
to know the number of clusters that better represent the data distribution in
advance, or it will fail to produce a good clustering [1]. We use this algorithm as
a subroutine and we create a novel distributed framework to discover the correct
number of clusters in data streams.

264 A. Guerrieri and A. Montresor

Distributed K-Means

Local X-Means

Pairwise
Averaging

Local K-Means

Distributed K-Means

Local X-Means

Pairwise
Averaging

Local K-Means

Node 1 Node 2
1.

2.

3.

4.

5.

Global chunk

Fig. 1. Overview of DS-means

We provide here an overall view of the algorithm, while implementation details
are provided in the following subsections. The algorithm is divided in the follow-
ing five steps, numbered (1)–(5), illustrated in Figure 1 and whose pseudo-code
is outlined in Figure 2:

1. Each node pi receives a stream of data points p, which are collected in
variable C. The execution is divided into approximately synchronized epochs
of duration Δ; at the beginning of each epoch t, a chunk of data denoted
containing the points collected in the last Δ time units is stored in variable
chunk i(t) and variable C is emptied.

2. The set of chunks, one for each node, that have been created at epoch t is
called global chunk and is denoted chunk(t):

chunk(t) = {chunk1(t), chunk2(t), . . . , chunkN (t)}

The nodes execute an independent instance of the distributed K-means
algorithm on each global chunk chunk(t), using an arbitrary value of K.
Each node pi generates a collection of centroids centroids i(t) of size K. The
new centroids are added to the set centroids i, which contains all centroids
generated so far by node i. The original data points are discarded.

3. Each node pi execute the centralized version of X-means on centroids i to
obtain the number Gi of centroids that better represent centroids i.

4. The resulting number of centroids could be different at different nodes, so a
pairwise averaging algorithm [5] is run on such values. All nodes will obtain

the same average number G = 1/N
∑N

i=1 Gi.
5. Finally, each node runs a local version of K-means on centroids i, using K

equal to the number of clusters resulting from the previous step (K = G).
The resulting set centroids iG is the output of the algorithm.

DS-Means: Distributed Data Stream Clustering 265

on receive p
(1) C ← C ∪ {p}

repeat every Δ time units
t ← t+ 1

(1) chunk i(t) ← C
C ← ∅

(2) centroids i(t) ← DistKMeans(chunk i(t),K)

centroids i ← centroids i ∪ centroids i(t)

(3) Gi ← XMeans(centroids i)

(4) K ← distributedAverage(Gi)

(5) centroids iG ← KMeans(centroids i,K)

Fig. 2. Algorithm executed by node pi

DS-means can be transformed into a dynamic algorithm that quickly adapts
to new data arriving in the system. Assuming that the last estimate of the
number of clusters is Kold , the framework will react as follows:

– All nodes in the network will start an instance of the distributed K-means
algorithm only on the new global chunk, using K = Kold .

– When the distributed K-means algorithm has terminated, all nodes update
their list of centroids by adding the new ones. In a “sliding window” model,
they also discard the centroids generated w epochs ago, where w is the size
of the sliding window (in number of epochs):

centroids i ← centroids i ∪ centroids i(t)− centroids i(t− w)

– Each node will run the local X-means algorithm giving it an upper bound
on the number of clusters based on Kold .

– The pairwise aggregation step and the local K-means step is repeated as
usual, thus obtaining a new estimate of the number of clusters and a new
clustering.

The choice to partition data into (global) chunks helps us in avoiding repeating
unnecessary computations in the distributed K-means step. Reusing the old
number of clusters as K helps in making even less important the value of K
given to DS-means at startup.

Note that the nodes communicate only during two steps: for distributed K-
means and for pairwise averaging. During the former, only centroids are sent
over the network, while in the latter the only shared value is the number of
centroids. Actual points are never shared across the network, giving us a sufficient
(although limited) degree of privacy.

4.1 Dividing Data into Chunks

We derive the idea of dividing data into chunks and working on each of them
separately by the work of Guha et al. [4]. The easiest way to divide the data is

266 A. Guerrieri and A. Montresor

based on the timestamp (creating a new chunk for each interval of time). Even if
the nodes receive data at different rates and therefore create chunks of different
size, the distributed K-means algorithm makes sure that each node has similar
results. We force each node to generate the same number of chunks, so that each
global chunk will contain exactly one chunk from each node.

4.2 Distributed K-Means

The nodes in the network need to execute the distributedK-means algorithm on
each global chunk. We start an execution of the distributed K-means algorithm
any time a new global chunk arrives, meaning that each node has a new chunk to
work on. Each execution is completely independent and chooses its own starting
centroids. At the end of each execution, K new centroids are created (roughly
the same in all nodes), which are added to the list of centroids computed so far.
This list acts as a compact representation of all data in the network.

Each execution selects a set of starting centroids, common to all nodes, as
follows: each node chooses randomlyK centroids and a real number c in the range
[0, 1]. A round-based epidemic protocol is executed to reconcile the different sets
of centroids [2]. At each round, each node communicates with a random subset
of neighbors and inherits both the centroids and c from the neighbor having
the greatest value of c. Thanks to this epidemic protocol, O(log n) rounds are
sufficient to have all nodes knowing the same set of starting centroids.

Another important part of this algorithm is the distributed termination con-
dition. In the centralized K-means, the algorithm terminates when there are
no more updates to the centroids and a steady state has been reached. This
approach is not viable in a decentralized setting due to the lack of a global view
of the system, so we need to define a local condition to be checked by individ-
ual nodes. Each node keeps track of the last set of centroids it has generated
and, at each iteration, checks if they have been changed by measuring the dis-
tance between the centroids and checking if the average change is more than a
given threshold δ. A node terminates the execution and outputs its centroids
when both the local centroids and the ones of the contacted neighbors have not
changed in the last τ iterations.

4.3 X-Means

In this step, each node executes its own instance of X-means on the list of
centroids obtained from the previous step. Different runs of X-means will result
in different clustering and, in unlucky cases, in a number of clusters far from the
correct answer. By running X-means separately on each node in the network,
we use redundancy to discard unlucky instances of X-means.

Since we give as input to the X-means algorithm a set of points centroids i,
each of them representing a subset of the original data points, we make each
node compute the variance of each centroid in the list using its own data and
we use this value as a “lower bound” on the cost of making a cluster containing
that centroid.

DS-Means: Distributed Data Stream Clustering 267

4.4 Pairwise Averaging

The number of clusters identified by the local execution of X-means can vary
significantly between different nodes, while it would be desirable to obtain in
all nodes a clustering with the same number of clusters. To obtain this we use
a simple, epidemic-based pairwise averaging algorithm [5]. After O(logN) epi-
demic rounds all nodes know the average number of clusters computed by the
different instances of X-means.

4.5 Local K-Means

When the pairwise averaging step is over, all nodes have the same estimate
of the number of clusters in the underlying data. Now each node can run the
centralized K-means algorithm on the local list of centroids using the value K
computed in the previous steps. We can reuse some of the centroids found by
the local X-means as the starting centroids for the local K-means, since they
work on the same dataset centroids i.

A more efficient implementation of this algorithm could share additional in-
formation between the two algorithms. If we wanted to compute some of the data
structures commonly used to speed up clustering algorithms (like KD-Trees [8]),
we could reuse them in both algorithm, thus avoiding unnecessary computations.

5 Evaluation

DS-means has been tested on PeerSim [7], a P2P simulator. In this section, first
the experimental framework used to evaluate DS-means is presented, then the
results are shown.

5.1 Experimental Framework

The input of the evaluation is a list of data points, each labeled with the correct
group to which they belong. The output is a similar list, with points labeled by
the clusters discovered through DS-means.

We compare DS-means against the centralized version of K-means (in-
structed with the correct value of K) and the centralized version of X-means.
Four figures of merit are considered: Clustering quality is measured through the
F-score, the harmonic mean of precision and recall, and through the within-
cluster sum of squares. Execution time is measured in number of communication
iterations in the simulation. Note that comparing execution time of centralized
and decentralized algorithms is hardly significant, because the latter strongly
depends on the underlying network. The fourth figure of merit is thus total com-
putational work, measured as the number of times that the distance function
(used to compare two data points) is called across the entire execution.

An artificial dataset is generated as follows. First of all,G differentmean points
are randomly chosen from a d-dimensional space, one for each of the groups in

268 A. Guerrieri and A. Montresor

which data points are correctly subdivided. Then, each point in the dataset
is created in two steps: (i) one of the groups is selected uniformly at random,
and the point is labeled with it; (ii) the actual point coordinates are generated
following a standard Gaussian distribution (in each of the d dimensions) centered
in the corresponding mean point.

A couple of observations are in order:

– Given that mean points are independently generated, groups may overlap, in-
ducing errors when a clustering algorithm is applied. All potential clustering
algorithms are affected in the same way by this problem, so our comparison
against centralized algorithms is fair.

– Data points are equally divided among nodes, and then divided in chunks.
We do not ensure that a chunk will contain data from all of the original
groups; this most likely occurs when the number of points in a chunk is
small.

Table 1. Simulation parameters

Parameter Symbol Value

Network size N 100

Groups G 20

Data dimensionality d 2

Threshold iterations τ 3

Threshold variance δ 0.5

Size of the space M 100

Each experiment is repeated 20 times; variance is so small that it is not shown
in the figures. Unless explicitly stated otherwise, our results have been obtained
with the parameters listed in Table 1.

5.2 Experimental Results

Figure 3(a) compares the F-score of DS-means and the two centralized clus-
tering algorithms. We can see that the centralized K-means algorithm obtains
a clustering of lower quality, even when it is given the correct value of G. This
is caused by the usual problem of the presence of local minima, that are bet-
ter avoided by X-means. DS-means obtains very good F-scores not only when
the correct K is used to initialize to the algorithm, but it even obtains results
comparable with X-means with the wrong value of K.

Figure 3(b) shows the average within-cluster sum of squares distance of DS-
means. As before, the experiments show results equivalent to the centralized
X-means.

Another interesting property of DS-means is the amount of computation
(measured by the number of calls to the distance function) that is needed to
complete the execution. Figure 4(a) shows that our clustering algorithm is always
comparable to the centralized algorithm.

DS-Means: Distributed Data Stream Clustering 269

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 20 40 60 80 100 120 140 160

F
-s

co
re

Chunk size

DS-Means (K=10)
DS-Means (K=20)
DS-Means (K=50)

DS-Means (K=100)
Centralized K-Means
Centralized X-Means

(a) Average F-score against two central-
ized algorithms

 0

 10

 20

 30

 40

 50

 60

 20 40 60 80 100 120 140 160

S
um

 o
f s

qu
ar

ed
 d

is
ta

nc
e

Chunk size

DS-Means (K=10)
DS-Means (K=20)
DS-Means (K=50)

DS-Means (K=100)
Centralized K-Means
Centralized X-Means

(b) Average within-cluster sum of squares
against two centralized algorithms

Fig. 3. Precision of DS-means using different values for K

 0

 100

 200

 300

 400

 500

 600

 20 40 60 80 100 120 140 160

N
um

be
r

of
 c

al
ls

 /
 1

06

Chunk size

DS-Means (K=10)
DS-Means (K=20)
DS-Means (K=50)

DS-Means (K=100)
Centralized K-Means
Centralized X-Means

(a) Total computational work against two
centralized algorithms

 0

 100

 200

 300

 400

 500

 20 40 60 80 100 120 140 160

Ite
ra

tio
ns

Chunk size

DS-Means (K=10)
DS-Means (K=20)
DS-Means (K=50)

DS-Means (K=100)

(b) Average execution time

Fig. 4. Computational work and execution time of DS-means using different values
for K

Figure 4(b) shows that, even if the amount of computation is larger, the
execution time (in which we only take into account the communication costs)
seems to become lower when the algorithm is given a bigger K.

While we have seen that the precision of DS-means is high even when given
the incorrect number of clusters, it could be interesting to see what is the actual
number of clusters obtained from it. Figure 5(a) shows the number of clusters
found by DS-means when given different values of K, when G = 20 different
groups have been created. The results are quite interesting: the algorithm is
closer to the correct answer when it is given a value of K bigger than necessary,
while when it is given the correct K the number of clusters it creates is big-
ger than necessary. This behavior is easily explained: giving a bigger K to the
distributed K-means algorithm results in a bigger number of centroids gener-
ated and thus a better representation of the data. When K is small then it is
more likely that in the distributed K-means algorithm more than one cluster is
mapped to a single centroid, thus creating a new point in the list of centroids
that does not correspond to any of the 20 original groups. The reason the algo-

270 A. Guerrieri and A. Montresor

 0

 10

 20

 30

 40

 50

 60

 70

 20 40 60 80 100 120 140 160

N
um

be
r

of
 c

lu
st

er
s

Chunk size

DS-Means (K=10)
DS-Means (K=20)
DS-Means (K=50)

DS-Means (K=100)
Centralized X-Means

(a) Average number of clusters

 0

 50

 100

 150

 200

 250

 300

 0 200 400 600 800 1000

Ite
ra

tio
ns

Number of nodes

(b) Scalability: execution time

Fig. 5. Average number of clusters and scalability given G = 20 groups and an initial
value K = 40

 0.8
 0.82
 0.84
 0.86
 0.88
 0.9

 0.92
 0.94
 0.96
 0.98

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
ve

ra
ge

 F
-s

co
re

Pf

Pr=0.1
Pr=0.2
Pr=0.5

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Ite
ra

tio
ns

Pf

Pr=0.1
Pr=0.2
Pr=0.5

Fig. 6. Robustness of DS-means with different recovery probabilities

rithm is still very precise is that these centroids, being quite far from the real
distributions, will not be used when mapping the data of the entire network to
the clusters.

As the next step we want to see the behavior of our distributed clustering
algorithm when the network grows in size. In Figure 5(b) we see the execution
time of our clustering algorithm against the number of nodes in the network. We
see that the differences are very small and that we need a similar amount of com-
munication iterations to complete the algorithm. This fact was expected since
the nodes in the network only look and communicate to their local neighbors
and the data is distributed homogeneously in the network.

Finally, an important aspect to be analyzed is the robustness of our approach.
In our model, nodes may go down for a period of time before getting repaired and
rejoining the distributed algorithm. Nodes that are down do not communicate
with the rest of the network and do not work on their data. They are still able
to receive a new chunk and store it until the node goes up. This model has been
chosen to make sure that each node has the data on which it has to work.

Our model for robustness uses two parameters: the probability of failure (Pf)
and the probability of recovery (Pr). All nodes start the computation in the up
state and then, at each iteration of the simulation, each node in the up state

DS-Means: Distributed Data Stream Clustering 271

goes down with probability Pf , while each node in the down state goes up with
probability Pr.

In Figure 6(a) the F-score of our algorithm with different values of these two
parameters is shown. In this simulation, while G = 20, the algorithm has been
initialized with K = 40. Even with very high failure percentage and low recovery
rate the algorithm is able to reach roughly the same F-score. Note that in the case
in which the probability of recovery is 0.1 and the probability of failure is 0.9, on
average 90% of the nodes in the network are down at all times. The algorithm is
still able to reach a good clustering even in these extreme conditions, at the price
of an increase in the number of communication iterations (see Figure 6(b)).

6 Conclusion

In this paper, we have presented DS-means, a novel algorithm for clustering dis-
tributed data streams. Preliminary results with synthetic datasets are promising;
we are now evaluating the system with realistic data for botnet detection.

References

1. Bandyopadhyay, S., Giannella, C., Maulik, U., Kargupta, H., Liu, K., Datta, S.:
Clustering distributed data streams in peer-to-peer environments. Information Sci-
ences 176(14), 1952–1985 (2006)

2. Demers, A., Greene, D., Hauser, C., Irish, W., Larson, J., Shenker, S., Sturgis, H.,
Swinehart, D., Terry, D.: Epidemic algorithms for replicated database maintenance.
In: Proceedings of the Sixth Annual ACM Symposium on Principles of Distributed
Computing, pp. 1–12. ACM (1987)

3. Gu, G., Perdisci, R., Zhang, J., Lee, W.: BotMiner: Clustering analysis of network
traffic for protocol-and structure-independent botnet detection. In: Proc. of the
17th USENIX Security Conference, pp. 139–154 (2008)

4. Guha, S., Meyerson, A., Mishra, N., Motwani, R., O’Callaghan, L.: Clustering
data streams: Theory and practice. IEEE Transactions on Knowledge and Data
Engineering, 515–528 (2003)

5. Jelasity, M., Montresor, A., Babaoglu, O.: Gossip-based aggregation in large dy-
namic networks. ACM Transactions on Computer Systems (TOCS) 23(3), 219–252
(2005)

6. Lloyd, S.: Least squares quantization in PCM. IEEE Transactions on Information
Theory 28(2), 129–137 (1982)

7. Montresor, A., Jelasity, M.: PeerSim: A scalable P2P simulator. In: Proc. of the 9th
Int. Conference on Peer-to-Peer (P2P 2009), Seattle, WA, pp. 99–100 (September
2009)

8. Pelleg, D., Moore, A.: Accelerating exact k-means algorithms with geometric rea-
soning. In: Proc. of the 5th Int. Conference on Knowledge Discovery and Data
Mining (KDD 1999), pp. 277–281. ACM, San Diego (1999)

9. Pelleg, D., Moore, A.W.: X-means: Extending k-means with efficient estimation of
the number of clusters. In: Proc. of the 17th Int. Conference on Machine Learning
(ICML 2000), pp. 727–734. Morgan Kaufmann, San Francisco (2000)

10. Schwarz, G.: Estimating the dimension of a model. The Annals of Statistics 6(2),
461–464 (1978)

3D Inverted Index

with Cache Sharing for Web Search Engines

Esteban Feuerstein1, Veronica Gil-Costa2,5, Mauricio Marin4,5,
Gabriel Tolosa3,1, and Ricardo Baeza-Yates5

1 Universidad Nacional de Buenos Aires, Argentina
2 Universidad Nacional de San Luis, Argentina
3 Universidad Nacional de Lujan, Argentina

4 Universidad de Santiago de Chile
5 Yahoo! Labs Santiago, Chile

Abstract. Web search engines achieve efficient performance by parti-
tioning and replicating the indexing data structure used to support query
processing. Current practice simply partitions and replicates the text
collection on the set of cluster processors and then constructs in each
processor an index data structure. This paper proposes a different ap-
proach by constructing an index data structure that properly considers
the fact that data is partitioned and replicated. This leads to a so-called
3D indexing strategy that outperforms current approaches. Performance
is further boosted by introducing an application caching scheme devised
to hold most frequently issued queries.

1 Introduction

The importance of text retrieval systems for the Web has grown dramatically
during recent years due to the very rapid increase of available storage capacity.
To ease the search of information, Web search engines (WSEs) are systems that
index a portion of documents from the whole Web and allow to locate information
through the formulation of queries. Well-known WSEs use the inverted index (or
inverted file) [1] to speed up determination of relevant documents for queries.

The inverted index [1,10] is composed of a vocabulary table (which contains
the V distinct relevant terms found in the document collection) and a set of post-
ing lists. The posting list for term c ∈ V stores the identifiers of the documents
that contain the term c, along with additional data used for ranking purposes.
To solve a query, one must fetch the posting lists for the query terms, compute
the intersection among them, and then compute the ranking of the resulting in-
tersection set using algorithms like BM25 or WAND [2]. Hence, the precomputed
data stored in the inverted index enables the very fast computation of the top-k
relevant documents for a query.

Usually these systems are expected to hold the whole index in the distributed
main memory held by the processors. There are two basic types of organization
for distributed inverted indexes, namely document-based partition and term-
based partitions (or local and global indexes respectively). In the former, doc-
uments are evenly distributed onto P processors and an independent inverted

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 272–284, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

3D Inverted Index with Cache Sharing for Web Search Engines 273

index is constructed for each of the P sets of documents. Therefore answering a
conjunctive query requires computing at each processor the intersection of the
terms that form the query, obtaining partial results by performing the ranking
to select the top-k local documents and then merging all those results.

In the term-partitioned index, a single inverted file is constructed from the
whole document collection to then distribute evenly the terms with their respec-
tive posting lists onto the processors. In that way, to answer a conjunctive query
one needs to determine which processor(s) hold the posting lists of the involved
terms, then gather those lists in one processor and compute their intersection.
Afterwards the ranking is performed over the resulting intersection set.

In our previous work [5], a 2-dimensional (2D) index was introduced. The 2D
index combines document- and term-partitioning to get the “best of two worlds”,
i.e. to exploit the trade-off between the overhead due to the involvement of all pro-
cessors in each query process as in the former, and the high communication costs
required by the latter. In this paper we propose to extend the 2D index by adding
processor replication, which has been widely used in conjunction with the
document- and term-based approaches to improve throughput and fault tolerance
[7].

We investigate the characteristics, performance and scalability of our extended
2D index called 3D index through the application of a performance evaluation
framework (already used in [4]) that combines the usage of input query logs,
average-cost analysis and stochastic values to compute realistic predictions of
performance. The framework, based on the bulk-synchronous model of parallel
computing (BSP) [12], blends empiric analysis and theoretical tools to predict
the cost of real system executions which, otherwise, would be impossible to
obtain in practice given the large scale of the cluster resources that would be
required for experimentation.

We also improve the 3D index by adding a cache-sharing mechanism to save
communication and computation overhead at the expense of an extra cost re-
quired to synchronize more processors. This new caching mechanism is also us-
able in simpler architectures as for example a term-partitioned index supporting
replicas. The new caching mechanism constitutes an improvement to what has
been proposed by Moffat et al. in [10].

The reminder of this paper is organized as follows. Section 2 presents the basic
ideas behind the 3D distributed index. In Section 3 we introduce our cost esti-
mation framework. In Section 4 we present the experimental setting. Sections 5
and 6 are devoted to show details and results of our experiments. Sections 7
and 8 respectively present related work and conclusions.

2 3D Index

The architecture we are proposing consists of the arrangement of a set of P
processors in a 3D cube, formed by replicating D times each processor of a basic
2-dimensional matrix of R rows and C columns. On the row dimension, we apply
the term-partition approach. On the column dimension we apply a document-
partition approach. In other words, the document collection is divided into C

274 E. Feuerstein et al.

sub-collections, each of which is allocated into a “column” of R processors. Each
processor holding a sub-collection Ci with terms belonging to Rj is replicated
D times (See Figure 1).

The 2D index can be replicated in different ways. Each one may imply different
search algorithms, sharing resources policies, synchronization and fault tolerance
approaches, among other features. For example, by simply replicating D times
the 2D index may improve the throughput roughly in a linear way as a function
of the number of replicas, because the D sets of processors form D independent
2D index. Then each single 2D index replica processes a different set of queries.
No communication is required between replicas, only among processors within
the same replica. But it has some important drawbacks. The first one regards
fault tolerance: the failure of a processor would imply the unavailability of a
whole 2D index portion for a given set of queries.

The second issue regards the workload and may be explained as follows. For
a fixed document collection and processor capacity, there is a minimum number
of processors needed to handle the whole index on main memory. By simply
maximizing the number of replicas would keep all the processors RAMs with
the same load. No free memory is available for storing other cache structures.
Meanwhile reducing the number of replicas and expanding the index over the C
and R dimensions would allow to free RAM space in the processors that could
be used for caching purposes.

A second approach consists on replicating D times each individual processor
holding a portion of the 2D index. In this case queries are solved by processors
of different replicas. Therefore there is communication among replicas. This ap-
proach may allow a more flexible replacement policy in case of a failure of a
processor. It also allows to share the caches memories among the processors in
a more intelligent way at the expense of additional synchronization costs. We
explore the trade-off between these costs in Section 6.

In Figure 1 we present a schematic view of our architecture and the query flow.
We propose a setting in which all the processors have a dual role of query brokers
and search nodes. Each query will be introduced to the system through one of

Fig. 1. 3D Index architecture

3D Inverted Index with Cache Sharing for Web Search Engines 275

the processors that will act as its broker. That processor will then distribute the
query by sending it to a random processor of each column of the same replica,
the column brokers (step 2 in Figure 1).

In each column the terms may be co-resident at the same processor (row)
or not. Each column broker determines which rows contain the terms involved
in the query, and sends the query to the processors in each of those rows (in
that same replica). Afterwards, they perform the intersection and ranking of the
posting list. Each column broker that has computed and ranked the intersection
sends its results to the broker. The broker merges the partial results.

As a broker, each processor keeps a cache called RCache [6]. The RCache keeps
the answers for frequent queries (they are query results composed of document
IDs). Each processor, as a search node, keeps the inverted index in secondary
memory. Also each processor holds a posting lists cache for most frequent terms
and an intersection cache for previously computed intersections. The latter will
be used as a resource shared by a subset of the processors using the approaches
explored in Section 6.

3 Cost Estimation Methodology

Our cost estimation framework is based on the bulk-synchronous model of par-
allel computing (BSP) [12], where computation is organized as a sequence of
supersteps. In each of superstep the processors may perform computations on
local data and/or send messages to other processors. The messages are available
for processing at their destinations by the next superstep, and each superstep
ends with the synchronization of the processors.

The total running cost of a BSP program is the cumulative sum of the costs
of its supersteps, and the cost of each superstep is the sum of three components:
computation, communication and synchronization. Computation cost is given by
the maximum computation cost of a processor in the superstep, including also
disk accesses. Communication cost is given by the maximum number of word-
length messages sent or received by a processor during the superstep multiplied
by the cost of communicating one word.

Besides, we note that just for participating in the processing of a query a pro-
cessor incurs in certain overheads which must also be taken into consideration
such as disk access, thread scheduling, etc. We model computation, communi-
cation and disk access overheads separately. We also separate computation cost
taking into account partial costs of performing intersection, ranking and merging
operations. Therefore, the total cost of a superstep is defined as:

max
p

(max(computation+ communication), disk) + Sync (1)

where

– p ranges over all participating processors
– computation = processing overhead + intersection cost + ranking cost +

merge cost
– communication = communication overhead + communication cost
– disk = disk overhead + disk access cost

276 E. Feuerstein et al.

The overheads of computation, communication and disk costs of formula 1 are
computed as the total number of operations (of each kind) performed in the pro-
cessor. These values are then multiplied by appropriate constants corresponding
to each operation. All these constants were obtained through benchmark pro-
grams run on actual hardware. Table 1 summarizes the primitive components
(computation and communication costs) assigned to each query.

In our context, communication cost is by far smaller than computational cost
since the sum of costly operations requiered to solve queries is much larger
than the cost of sending small messages of size |q| or size K among processors.
Selecting the top-k results for a query requires operating on posting lists of size
x� K.

Table 1. Primitive operations and concepts used in the simulation, and their values

Notation Meaning Cost

ti(x, y) Time required to compute the intersection
of two lists of lengths x and y.

ti(x, y) =
min(x log y, x+ y)/6

tm(x) Time required to merge a set of lists of to-
tal length x.

x/6

tr(x) Time to select the top-k results in a list of
x items.

x

I(x, y) Intersection length of two lists of length
x ≤ y and constant values s and a.

s∗x∗y/104+(s+a)∗x
according to [4]

processing overhead Overhead due to the participation of a pro-
cessor in a query.

0.1 nanoseconds

processing cost Variable processing cost. 1 nanosecond

communication over-
head

Overhead for transmitting any number of
bytes

50000 nanoseconds

communication cost Variable communication cost 50 nanoseconds (5)

disk overhead Fixed cost for accessing disk 700 nanoseconds

disk access Variable disk cost (per byte) 0.4 nanoseconds (0.2)

4 Experimental Setting

In this section we describe the general framework used for our experiments. We
estimated the cost of different 3D index configuration by combining the variables
P,C,R andD, where P is the total number of processors. We run 300,000 queries
with P ranging from 32 to 2048. The number of replicas ranges from D = 2 to 64,
and the number of columns and rows range from 1 to P/2 with P = C ×R×D.

Queries were selected from a query log with 36,389,567 queries. We prepro-
cessed the query log following the rules applied in [6] by removing stopwords
and completely removing any query consisting only of stopwords. The result-
ing query trace has 16,900,873 queries. Then, we randomly selected about one
million queries where 42% are unique queries, 14% occur twice and 6% occur
three times. As expected, the queries’ lengths are not uniformly distributed. The
relative frequencies of one, two, three and four-term queries is respectively 24%,

3D Inverted Index with Cache Sharing for Web Search Engines 277

33%, 23% and 11%. The basic index and the posting lists were built using a
1.5TB sample of the UK’s web obtained from Yahoo! Search engine.

To set the values of the different primitive operation costs and constants
required by our cost estimation framework, we used the same results of the
benchmark programs reported in [4]. The values are expressed relative to a
baseline in terms of ranking time defined as tr(x) = x (See Table 1).

To determine the communication and disk access costs we run specific bench-
mark programs. In both cases we used standard available technology (serial ATA
disks, and a Gigabit Ethernet). Hence, both estimations can be seen as lower
bounds for the real performance on a specialized and fine-tuned architecture.
Benchmark programs where run on a Linux operating system with MPI.

To compute disk access time we considered the positioning of the read/write
head (lseek) in response to a sequence of a random sequence of positioning
depending on the length of the stream of bytes, and the time employed to read
a block. We used blocks of different sizes (1 to 3000 bytes). We run six different
tests combining reset and update operations. The results show that the cost of
accessing x bytes can be approximated with the function 0.4x+700 nanoseconds.

We run benchmark programs to obtain the communication time between pairs
of processors with different message sizes (in a range of 1-3000 bytes). We consid-
ered messages in the unicast and broadcast modes. We observed that the com-
munication cost grows with the number of transmitted bytes. This cost can be
approximated with the expression 50x+ 50000 nanoseconds. From these bench-
mark programs we established the values reported in Table 1.

5 Evaluation of the 3D Index

In this section we report the experiments performed to analyze the efficiency
of our 3D index. We use a basic architecture as described in Section 2. All
queries are solved within one replica of the 2D index, so no synchronization
is needed among all processors at the end of every superstep, but just among
those participating in the same replica. Figure 2 at left shows this approach. The
black ball represents processors involved in the query process. No communication
between processors of different replicas is required.

The size of cache memories used in the following experiments is reported in
Section 6. We also show cost normalized to 1 to better illustrate the difference
between strategies. In all cases we divide the values by the observed maximum
in the respective experiment.

Figure 3 at left shows that if we allow replicas to proceed without synchro-
nization, the best choice is to have the maximum possible number of replicas.
That is natural as the whole stream of queries can be divided evenly among all
replicas. In this way we obtain an optimal speed-up.

Figure 3 at right shows in the y−axis the optimal number of rows and columns
selected for different values of replicas D in the x−axis. Namely, the configura-
tions R × C with the minimum estimated cost. We observed that those con-
figurations with many replicas (where each replica is as small as possible) it is

278 E. Feuerstein et al.

Fig. 2. Left: queries solved within a single 2D replica. Right: queries solved among all
processors.

better to arrange the processors with R = 1 and C columns, i.e. a local index.
However, configurations with a small D (and hence bigger R × C) present the
typical 2D index trade-off between communication and overhead costs presented
among the term-partition and document-partition indexes.

 0.01

 0.1

 1

 1 10 100 1000 10000

C
o
st

Replicas

P=256
P=512

P=1024
P=2048

 0

 5

 10

 15

 20

 25

 30

 35

 1 10 100 1000 10000

D

Rows
Columns

Fig. 3. Non synchronization among replicas. Left: Estimated cost. Right: Optimal num-
ber of columns C and rows R as a function of D with P = 2048.

Figure 4 at left shows results forcing synchronization among all P processors
at the end of each superstep. In this approach queries are solved using processors
belonging to different replicas. For a given query, replicas are selected in a round-
robin fashion. As communication is performed among all processors a global
synchronization is required. Figure 2 at right shows how a query q represented
as a black ball is processed by processors belonging to different replicas.

Figure 4 at left shows the estimated cost as a function of the number of
columns. The optimal value of D grows with P , but is far from tending to
D = P . Moreover, the natural trade-off between the benefits of the global and
local indexes makes that the optimal configuration can be found using a pure
2D configuration, i.e. using between 8 and 16 columns.

3D Inverted Index with Cache Sharing for Web Search Engines 279

 0.01

 0.1

 1

 1 10 100

C
o

st

Columns

P=256-D=4
P=512-D=8

P=1024-D=8
P=2048-D=32

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000

C
o

st

Columns

SYNC
NO-SYNC

Fig. 4. Left: All processors are synchronized at the end of every superstep. Right:
replica synchronization vs. global synchronization.

Figure 4 at right compares the estimated cost for different values of P when
synchronization is performed only among processors within a single replica (NO-
SYNC) versus global synchronization (SYNC) involving all processors. With few
processors, synchronizing only processors within a replica significantly reduces
the total cost. But with P ≥ 500, the difference between both approaches is
less than 1%. Moreover, the SYNC approach does not present the same fault-
tolerance and workload drawbacks as described in Section 2. We conclude that,
without any cache sharing mechanism (as the one introduced in Section 6), the
number of replicas must be as big as possible.

5.1 Scalability of the 3D Index

In this section we study the scalability of the 3D index as the size of the document
collection increases. We estimate the total cost of computing 300,000 queries
for P = 512, 1024 and 2048. We selected the best configurations for each P .
Namely, the combination P = R × C × D which minimizes the total cost. We
used R×C ×D defined by: R = [2 . . . 64], C = [4 . . . 64] and D = [4 . . . 16]. The
rest of the parameters were kept unchanged, as described in Section 4. We force
the synchronization of all the processors.

Figure 5 at left shows the estimated cost in the y-axis. The x-axis values rep-
resent the growth factor of posting lists. The main conclusion of this experiment
is that, for a fixed value of P , the estimated cost of the system grows propor-
tionally to the logarithm of the size of the document collection. This behavior is
expected due to the fact that the running time of list intersections is logarithmic.
Interestingly Figure 5 at right shows that the speed-up is constant as we increase
the number of processors. Sometimes it even tends to improve as the collection
size grows.

280 E. Feuerstein et al.

 0.01

 0.1

 1

 0 2 4 6 8 10

C
o

st
 (

N
o

rm
al

iz
ed

)

N (Collection size)

P512
P2048

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8 9 10

S
p

ee
d

u
p

N (Collection size)

P=512
P=1024
P=2048

Fig. 5. Left: Estimated cost as the collection size varies, for different number of pro-
cessors. Right:Speed-up as the collection size varies.

6 Pipelined Caching

In this section we propose a novel idea for managing the individual RAM mem-
ories of the processors as part of a big common cache. We propose to use a
larger cache shared among processors. A different idea with the same goal was
presented in [4] for a simpler index (local index with replication). The results
in [4] showed that improvements in the performance can be obtained with some
extra communication cost. We apply this idea to the intersection cache.

Our schema is applied to the set of processors forming a “column slice” of
our 3D cube. Each column slice is a term-partitioned index with replicas for a
particular sub-collection of documents (see Fig 6(a)–(c)). Within each slice the
processors are partitioned in subsets (called teams). We use a hash function H to
map each query term to one processor of the team. Different ways of constructing
the teams determine different algorithms. We will explore three particular cases:

(a) One Row-many Replicas teams: Each slice is partitioned by terms in R
teams. Each team has D replicas (Figure 6(a)).

(b) One Replica - many Rows teams: Each slice is divided in D teams. Each
team has R processors. (Figure 6(b)).

(c) Slice-teams: All the processors in each slice form one single team (Figure 6(c)).

(a) One Row-Many Repli-
cas teams

(b) One Replica - Many
Rows teams

(c) Slice teams

Fig. 6. Pipelined caching

3D Inverted Index with Cache Sharing for Web Search Engines 281

Algorithm 1 explains our caching policy. We explain the query process inside
one team. Upon request of a query t1 ∧ t2 . . . ∧ tm, the broker directs the query
to one random processor in each column of its replica. Each of these C proces-
sors will be referred to as a column-broker. The column-broker analyzes the query
and interacts with the processors of its team to evaluate if there are, in the team’s
collective cache, any previously cached intersections that may be useful to com-
pute the answer. What differentiates the three approaches presented above is the
construction of the hashing function H , whose co-domain is always the team of
the column-broker. For any set of terms {t1 . . . ti}, pH(t1...ti) denotes the proces-
sor that, according to the hashing function H , could have in its cache the result
of the intersection t1 ∧ t2 . . . ∧ ti.

The column-broker first looks for the whole or part of the query intersection
(lines 1-4). If some intersection is found, the cached result is requested to the
processor that holds it (lines 5-8). Otherwise an empty list is set (lines 9-11).
This list � will contain the processors identifiers that hold the remaining terms
of the query (lines 13-16). If the whole query is found in cache, the retrieved list
is returned (line 17). Each processor that computes an intersection caches the
result and sends it to the following processor in �. We use O(t) to denote the
processor that holds term t in any replica.

For example, for a four-term query t1 ∧ t2 ∧ t3 ∧ t4 the column-broker in each
column looks for the intersection t1 ∧ t2 ∧ t3 ∧ t4 in a particular processor of the
team (pH(t1...t4)). If that fails, in a second step, it looks for t1 ∧ t2 ∧ t3 on the
corresponding processor (pH(t1...t3)) and so on. When a hit is found the partial
result of the intersection is retrieved from cache, and a schedule in � is prepared
to complete (by computation) the remaining intersections.

Algorithm 1. Pipelined Caching

Input: t1 . . . tm in increasing order of length of the posting list
1: i ← m+ 1
2: repeat
3: i ← i− 1
4: until i = 1 or pH(t1...ti) has t1 ∩ . . . ∩ ti in its intersection cache
5: if i �= 1 then
6: ask pH(t1...ti) the intersection t1 ∩ . . . ∩ ti
7: � ← (t1 ∩ . . . ∩ ti)
8: j ← i+ 1
9: else
10: � ← ∅
11: j ← 1
12: if j ≤ m then
13: Send the query t1 ∧ . . . ∧ tm along with � to processor pO(tj)

14: while j < m do
15: Processor pO(tj) computes � ← � ∩ tj , caches � in processor pH(t1...tj), makes

j ← j + 1, and sends � to pO(tj)

16: Processor pO(tm) computes � ← � ∩ tm, caches � in processor pH(t1...tm), and
sends � to the column-broker

17: Return � to the broker of the query

282 E. Feuerstein et al.

6.1 Results

In the following experiments we set the size of the intersection cache of each pro-
cessor in terms of the number of “entries”, i.e. a certain number of pre-computed
intersections. We set a fixed size of 100K cache entries for each processor so the
total size of the intersection cache is 100K × P entries. This enables a natural
“growing” property when adding processors to the whole system. The total space
of the intersections cache in a particular team varies according to the combina-
tions of R×C ×D and the chosen scheme. With the One Row-Many Replicas,
the total size of the cache of each team is 100K × D. For One Replica -Many
Rows it is 100K ×R and finally for the Slice scheme we have 100K ×R×D.

The RCache implemented at the broker side uses a SDC policy [3]. We made
a “warm up” of the RCache with 200K query results. Finally, all the processors
maintain caches of posting lists to reduce secondary memory access. This cache
is administered with the standard LRU strategy.

In the baseline approach (2D approach) each processor cache is used and
managed locally. Any information about previously computed intersections of
posting lists is local to the owner of the cache memory.

Figure 7 at left shows the improvement obtained by the cache sharing model
One Replica - Many Rows team. With P = 512, this new approach reduces the
estimated cost by 40%. With the Slice approach the improvement is up to 55%.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 400 600 800 1000 1200 1400 1600 1800 2000 2200

C
o

st

P

Baseline
ORep-MRows

Slice

 0.01

 0.1

 1

 1 10 100 1000

C
o

st
 (

N
o

rm
al

iz
ed

)

Columns

Baseline
ORows-MReps

Slice
ORep-MRows

Fig. 7. Left: Normalized costs of the caching strategies. Right: Estimated cost as a
function of the number of columns.

Figure 7 at right shows the estimated cost of the three cache sharing strategies
and the baseline approach as a function of the number of columns for the best D
value. Again the Slice approach presents very good results followed by the One
Replica -Many Rows approach. The Slice allows an efficient use of the cache
space since it allows to maximize the memory space shared between nodes of
different replicas.

3D Inverted Index with Cache Sharing for Web Search Engines 283

7 Related Work

The 2D index that combines document- and term-partitioning was originally pro-
posed in [5]. Other variants of these basic schemes have been proposed in [11,13].
In this work, we use a cost estimation framework [4] based on BSP [12]. Recently
the BSP model has been widely adopted by systems used in off-line computa-
tions for search engines (e.g., index construction) such as Google’s Pregel [8].
In [4] the cost estimation framework was used for a simpler index (local index
with replication) showing performance improvements due to the reduction in
computation time and disk access. Moreover, the caches were shared by the set
of replicas of each partition (in that work, a column). Within each partition all
the computation was centralized at the broker of the query, which asked all its
“replicas” for possible intermediate results in their caches. No “query routing”
was considered there.

Also, our approach is related to the pipelined query-evaluation methodology
of [10] in which partially evaluated queries are passed amongst the set of proces-
sors that host the query terms. In other words, it constructs a path or pipeline
schedule through which the query “flows” to be solved. But in our case the path
depends on the content of the shared cache. We combine this pipelined approach
with an intersection cache distributed across the replicas of processors. The ini-
tial architecture of [10] suffered from load imbalance across the nodes of the
cluster. That problem is partially solved in [9] through replication of popular
terms in different processors.

8 Conclusions

In this work we have presented a 3D inveted index along a new caching algo-
rithm for Web search engines. Replication is used as a mean to increase query
throughput and to support failures. The 3D index efficiently handles replication
and outperforms the 2D index which in turn outperforms well-known distributed
indexes [5]. The number of rows, columns and replicas can be chosen so as to
optimize the overall performance. We explored two approaches to replicate the
index: SYNC and NO-SYNC. There is a trade-off. The NO-SYNC presents bet-
ter performance but is less fault tolerant and viceversa.

The proposed caching algorithm is designed to make an optimized use of
the distributed memory for caching posting list intersections. This significantly
reduces communication of posting lists among nodes (processors). Intersections
of popular terms in queries tend to remain cached, so the load of the holders
of those terms is also reduced. Moreover, the hashing function of the caching
algorithm can be fine-tunned to optimize a combination of hit ratio and load
balance of nodes.

284 E. Feuerstein et al.

References

1. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval - the concepts
and technology behind search, 2nd edn. Pearson Education Ltd. (2011)

2. Broder, A.Z., Carmel, D., Herscovici, M., Soffer, A., Zien, J.Y.: Efficient query
evaluation using a two-level retrieval process. In: CIKM, pp. 426–434 (2003)

3. Fagni, T., Perego, R., Silvestri, F., Orlando, S.: Boosting the performance of web
search engines: Caching and prefetching query results by exploiting historical usage
data. ACM Trans. Inf. Syst. 24, 51–78 (2006)

4. Feuerstein, E., Gil-Costa, V., Mizrahi, M., Marin, M.: Performance Evaluation
of Improved Web Search Algorithms. In: Palma, J.M.L.M., Daydé, M., Marques,
O., Lopes, J.C. (eds.) VECPAR 2010. LNCS, vol. 6449, pp. 236–250. Springer,
Heidelberg (2011)

5. Feuerstein, E., Marin, M., Mizrahi, M., Gil-Costa, V., Baeza-Yates, R.: Two-
Dimensional Distributed Inverted Files. In: Karlgren, J., Tarhio, J., Hyyrö, H.
(eds.) SPIRE 2009. LNCS, vol. 5721, pp. 206–213. Springer, Heidelberg (2009)

6. Gan, Q., Suel, T.: Improved techniques for result caching in web search engines.
In: WWW, pp. 431–440 (2009)

7. Gomez-Pantoja, C., Marin, M., Gil-Costa, V., Bonacic, C.: An Evaluation of Fault-
Tolerant Query Processing for Web Search Engines. In: Jeannot, E., Namyst, R.,
Roman, J. (eds.) Euro-Par 2011, Part I. LNCS, vol. 6852, pp. 393–404. Springer,
Heidelberg (2011)

8. Malewicz, G., Austern, M.H., Bik, A.J., Dehnert, J.C., Horn, I., Leiser, N., Cza-
jkowski, G.: Pregel: a system for large-scale graph processing. In: PODC, p. 6
(2009)

9. Moffat, A., Webber, W., Zobel, J.: Load balancing for term-distributed parallel
retrieval. In: SIGIR, pp. 348–355 (2006)

10. Moffat, A., Webber, W., Zobel, J., Baeza-Yates, R.: A pipelined architecture for
distributed text query evaluation. Information Retrieval 10, 205–231 (2007)

11. Tang, C., Dwarkadas, S.: Hybrid global-local indexing for efficient peer-to-peer
information retrieval. In: NSDI, p. 16 (2004)

12. Valiant, L.G.: A bridging model for multi-core computing. J. Comput. Syst.
Sci. 77(1), 154–166 (2011)

13. Xi, W., Sornil, O., Luo, M., Fox, E.A.: Hybrid Partition Inverted Files: Experi-
mental Validation. In: Agosti, M., Thanos, C. (eds.) ECDL 2002. LNCS, vol. 2458,
pp. 422–431. Springer, Heidelberg (2002)

Quality-of-Service for Consistency

of Data Geo-replication in Cloud Computing�

Sérgio Esteves, João Silva, and Lúıs Veiga

Instituto Superior Técnico - UTL / INESC-ID Lisboa, GSD, Lisbon, Portugal
sesteves@gsd.inesc-id.pt, {joao.n.silva,luis.veiga}@inesc-id.pt

Abstract. Today we are increasingly more dependent on critical data
stored in cloud data centers across the world. To deliver high-availability
and augmented performance, different replication schemes are used to
maintain consistency among replicas. With classical consistency models,
performance is necessarily degraded, and thus most highly-scalable cloud
data centers sacrifice to some extent consistency in exchange of lower la-
tencies to end-users. More so, those cloud systems blindly allow stale
data to exist for some constant period of time and disregard the seman-
tics and importance data might have, which undoubtedly can be used
to gear consistency more wisely, combining stronger and weaker levels of
consistency. To tackle this inherent and well-studied trade-off between
availability and consistency, we propose the use of V FC3, a novel consis-
tency model for replicated data across data centers with framework and
library support to enforce increasing degrees of consistency for different
types of data (based on their semantics). It targets cloud tabular data
stores, offering rationalization of resources (especially bandwidth) and
improvement of QoS (performance, latency and availability), by provid-
ing strong consistency where it matters most and relaxing on less critical
classes or items of data.

1 Introduction

The great success Internet achieved during the last decade has brought along the
proliferation of web applications which, with economies of scale (e.g., Google,
Facebook, and Microsoft), can be served by thousands of computers in data
centers to millions of users worldwide. These very dynamic applications need to
achieve higher-scalability in order to provide high availability and performance.
Such scalability is typically realized through the replication of data across several
geographic locations (preferably close to the clients), reducing application server
and database bottlenecks while also offering increased reliability and durability.

Highly-scalable cloud-like systems running around the world often comprise
several levels of replication, specially among servers, clusters, inter-data cen-
ters, or even among cloud systems. More so, the advantages of geo-distributed
� This work was partially supported by national funds through FCT – Fundação para a

Ciência e a Tecnologia, under projects PTDC/EIA-EIA/102250/2008, PTDC/EIA-
EIA/108963/2008 and PEst-OE/EEI/LA0021/2011.

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 285–297, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

286 S. Esteves, J. Silva, and L. Veiga

micro-data centers over singular mega-data centers have been gaining significant
attention (e.g., [1]), as, among other reasons, network latency is reduced to end-
users and reliability is improved (e.g., in case of a fire or a natural catastrophe,
or simply network outage). With this current trend that brings higher number
of replicas, more and more data needs to be properly synchronized, carrying out
the need of having smart schemes to manage consistency while not degrading
performance.

In replication, the consistency among replicas of an object has been handled
through both traditional pessimistic (lock-based) and optimistic approaches [2].
Pessimistic strategies provide better consistency but cause reduced performance,
lack of availability, and do not scale well. Where optimistic approaches rely on
eventual consistency, allowing some temporary divergence among the state of the
replicas to favor availability and performance. Since it is not possible to fully
have the best of both approaches in a distributed environment with arbitrary
message loss, as stated in the CAP theorem [3], we envision that more can be
done to approximate consistency from availability. One path not yet significantly
explored, and that we intend to address in this work, consists of wisely and
dynamically strengthen and weaken consistency in accordance to the importance
of the data being replicated.

In the context of the web, replication has been extensively applied at the appli-
cation and database tiers, significantly improving the performance and reducing
workload. At the application level, popular in-memory caching solutions, such as
memcached [4], defy developers in the following ways: they do not offer transac-
tional consistency with the underlying database; and they offer only a key-value
interface, and developers need to explicitly manage the cache consistency, namely
invalidating cache data when the database changes. This management, which in-
cludes performing manual lookups and keeping the cache updated, has been a
major source of programming errors.

At the database level, tuples are replicated and possibly partitioned across
multiple network nodes, which can also execute queries on replicas. However,
adding more database servers to a RDBMS is difficult, since the partition of
database schemas, with many data dependencies and join operations, is non-
trivial [5]. This is where non-relational NoSQL databases come to take place.

High-performance NoSQL data stores emerged as an appealing alternative to
traditional relational databases, since they achieve higher performance, scala-
bility, and elasticity. For example, Google has built its own NoSQL database,
BigTable [6], which is used to store google entire web search system. Other solu-
tions include Cassandra [7], Dynamo [8], PNUTS [9] and HBase [10] (which we
focus on in this work).

To sum up, these several approaches to replication, existent in well-known cloud
systems and components, usually treat all data at the same consistency degree and
are blind w.r.t. the application and data semantics, which could and should be used
to optimize performance, prioritize data, and drive consistency enforcement.

Given the current context, we propose the use of a novel consistency model
with framework and programming library support that enables the definition

Quality-of-Service for Consistency of Data Geo-replication 287

and dynamic enforcement of multiple consistency degrees over different groups of
data, within the same application, across very large scale networks of cloud data
centers. This model is driven by the different semantics data might have; and the
consistency levels can be automatically adjusted based on statistical information.
Moreover, this framework, named V FC3 (Versatile Framework for Consistency
in Cloud Computing), comprises a distributed transactional in-memory cache
and is intended to run on top of NoSQL high-performance databases. This way,
we intend to improve QoS, rationalize resource usage (especially bandwidth),
and deliver higher performance.

The remainder of this paper is organized as follows. Section 2 presents the
architecture of the V FC3 framework, and Section 3 its underlying consistency
model. In Section 4, we offer details of relevant implementation aspects. Then,
Section 5 presents a performance evaluation, and Section 6 reviews related work.

2 Geo-distributed Cloud Scenario and Architecture

The V FC3 consistency model was specially designed to address very large-scale
and dynamic environments (e.g., cloud computing) that need to synchronize
large amounts of data (either application logic or control data) between several
geographically dispersed points, while maintaining strong requirements about
the quality of service and data provided. Figure 1a depicts a scenario of geo-
replicated data centers where a mega data center needs to synchronize data with
micro data centers scattered throughout different regions. Such micro centers
replicate part of the central database, with only the more relevant data to a given
corresponding region. In more detail, Figure 1b shows the constituent parts of
the mega and micro data centers, where the V FC3 middleware operates and
how the interaction is carried out among data centers.

(a) Target environment (geo-
distributed data centers)

(b) data center detailed view

Fig. 1. V FC3 overall scenario and network architecture

288 S. Esteves, J. Silva, and L. Veiga

We present an archetypal architecture (Figure 2) of the V FC3 framework that
is capable of enforcing different degrees of consistency (or conversely, bounding
divergence) and runs atop very large-scale (peta-scale) databases residing in mul-
tiple data centers. The consistency constraints over the replicas are specified in
accordance to the data semantics and they can be automatically adjusted at run
time. Moreover, this framework comprises a distributed transactional in-memory
cache system enhanced with a number of more components, described as follows.

Fig. 2. V FC3 middleware architecture

Monitor and Control.
This component analyses all
requests directed to the database.
It decides from where to re-
trieve results to queries, cache
or database, and controls the
workflow when an update oc-
curs. It also collects statistics
regarding access patterns to
stored data in order to au-
tomatically adjust the diver-
gence levels.

QoS Engine. It maintains data structures and control meta-data to decide
when to replicate and synchronize data, obeying to consistency specifications.

Scheduler. This component verifies the time constraints over the data. When
the time for data being replicated expires, the Scheduler notifies the QoS engine.

Distributed Cache. It represents an in-memory, transactional and dis-
tributed database cache for: i) temporary storing frequently accessed database
items; and ii) keep tracking of which items need to be replicated.

Session Manager. It manages the configurations of the consistency con-
straints over the data through extended database schemas (automatically gen-
erated) defined for each application.

Application Adaptation: Applications may interact with the V FC3 frame-
work by explicitly invoking our libraries, but V FC3 can also automatically adapt
and intercept the invocation of other libraries, such as the HBase API, where de-
velopers need only change the declarations referencing the HBase libraries (also
being automated), with remaining code unmodified. Legacy code is adapted
by using annotations or pre-processor directives, during loading-time, where
database tier code is transformed into calls to V FC3 API.

Caching: The V FC3 framework comprises a distributed and transactional in-
memory cache system to be used at the application-level. It has two main pur-
poses: i) keep tracking of the items waiting for being fully replicated and ii)
temporarily store both frequently used database items and items within the
same locality group (i.e., pre-fetch columns of an hot row), in order to im-
prove read performance. Specifically, this cache stores partial database tables,
with associated QoS constraints, that are very similar from the ones in the

Quality-of-Service for Consistency of Data Geo-replication 289

underlying database, but with tables containing many less rows. Moreover, the
V FC3 cache is completely transparent to applications; it guarantees transac-
tional consistency with the underlying database and the data is automatically
maintained and invalidated, relieving developers from a very error-prone task.

This cache can be spanned across multiple application servers within the
same data center, so that it can grow in size and take advantage of the spare
memory available in the commodity servers. Although the work is distributed,
it still gives a logical view of a single cache. The partition of data follows an
horizontal approach, meaning that rows are divided across servers and the hash
of their identifiers works as key to locate the servers in which they should be
stored. Hence, this cache is optimized for our target database systems, since rows
constitute indexes in the multi-dimensional map and every query must contain
a row identifier (apart from scans). Furthermore, each running instance of the
V FC3 cache knows all others running on neighbor nodes.

Replication: The V FC3 framework handles the whole replication process asyn-
chronously, supporting the two general used formats, statement-based and row/
column-based. However, if the statement-based strategy is used, the element
(row, column, or table), referenced in a query, with the more restrictive QoS
constraints will command the replication of the statement, leading other data
with less restrictive constraints to be treated at stronger consistency degrees
(which can be useful for some use cases). When a maximum divergence bound,
associated to an element (row, column, or table), is crossed, the changed items,
and only these, within that element are broadcasted to the other interested
servers. These modified items are identified through dirty bits.

The system constantly checks bandwidth usage of messages exchanged with
other nodes. The framework can trigger data replication and synchronization on
low bandwidth utilization periods, even if consistency constrains do not impose
it. Replication messages, using the column-based strategy, contain the necessary
indexes to identify items placement within the database map and are compressed
with gzip.

3 Consistency Model

The V FC3 consistency model is inspired on our previous work [11]. It defines
three-dimensional consistency vectors (κ) that can be associated with data ob-
jects. κ bounds the maximum objects divergence; each dimension a numerical
scalar defining the maximum divergence of the orthogonal constraints: time (θ),
sequence (σ), value (ν).

Time: Specifies the maximum time a replica can be without being updated
with is latest value. Considering θ(o) provides the time (e.g., seconds) passed
since the last replica update of object o, constraint κθ, enforces that θ(o) < κθ

at any given time.
Sequence: Specifies the maximum number of updates that can be applied to

an object without refreshing its replicas. Considering σ(o) indicates the number

290 S. Esteves, J. Silva, and L. Veiga

of applied updates, this sequence constraint κσ enforces that σ(o) < κσ at any
given time.

Value: Specifies the maximum relative difference between replica contents or
against a constant (e.g., top value). Considering ν(o) provides that difference
(e.g., in percentage), this value constraint κν enforces that ν(o) < κν at any
given time. It captures the impact or importance of updates on the object’s
internal state.

Evaluation and Enforcement of Divergence Bounds: The evaluation of
the divergence vectors σ and ν takes place every time an update request is
received by the middleware. Upon such event, it is necessary to identify the af-
fected tables/rows/columns, increment all of the associated vectors σ and verify
if any σ or ν is reached when compared with the reference values (i.e., the max-
imum object allowed divergences). If any limit is exceeded, all updates since
last replication are placed in a FIFO-like queue to be propagated and exe-
cuted on other replicas. When there are multiple versions for the same mapping
(table/row/column), the most recent ones are propagated first.

To evaluate the divergence vector, θ, V FC3 uses timers (each node holding one
timer per application) to check, e.g., every 1 second, if there is any object that
should be synchronized (timestamp about to expire). Specifically, references to
modified objects (identified by the dirty bits) are held in a list ordered ascending
by time of expiration, which is the time of the last object synchronization plus
θ. The Scheduler component, starting from the first element of the list, checks
which objects need to be replicated. As the list is ordered, the Scheduler has
only to fail one check to ignore the rest of the list; e.g., if the check on the first
element fails (its timestamp has not expired yet), the Scheduler does not need
to check the remaining elements of the list.

We consider 3 main events, perceived by the Monitor and Scheduler, that
influence the enforcement and tuning of QoS, with their handling workflow de-
scribed next.

Upon Read Event: 1) Try to fetch results from cache with sufficient QoS; 2)
On success, return results immediately to the client application; 3) Otherwise,
perform query on the database, return the respective results to the application,
and store the same results in cache.

Upon Write Event: 1) Perform update on the database; 2) Update the cache;
3) Update θ and increment σ on table, column, or row; 4) Verify if the divergence
bound, κ, is reached; 5) If so, the data is replicated to the other nodes, θ receives
a new timestamp, and σ is reset.

Upon Time Expiration Event: 1) The data is replicated to the other in-
terested nodes, θ is timestamped, and σ goes to 0.

Dynamic Adjustment of Consistency Guarantees: Users can specify in-
tervals of values on the QoS vectors to let the framework automatically adjust
the consistency intensity. This adjustment, performed by the QoS Engine com-
ponent, is based on the observation of the frequency of read and write operations
to data items during a given time frame. The general idea behind this is that
many write operations, performed on different nodes over the same object (or

Quality-of-Service for Consistency of Data Geo-replication 291

replica), will cause conflicting accesses, and thus it is necessary to guarantee
stronger consistency. Conversely, few updates, or updates concentrated only on
one node, allow weakening consistency guarantees within the specified vector in-
tervals. The frequency of read operations also contributes to tuning. Many read
operations on data that is mainly written in other nodes will strengthen consis-
tency; if the data is written in the same nodes, consistency is relaxed. Conversely,
few reads, or reads concentrated on one node, will weaken consistency.

Concurrent Updates: When two or more updates occur simultaneously over
the same data in different data centers, both are preserved as the all data items
are versioned. We resort mostly to last-writer-wins rule and handlers to make
data centers converge on the same values. If stronger agreement is needed in
more critical (and restricted) data, rotating leases allow data centers to perform
writes without contention.

4 Implementation Details

As a proof of concept, we developed, in Java, a prototype of V FC3 to demon-
strate the advantages of our consistency model when deployed as a replication
middleware for high-performance databases (i.a., not supporting a full relational
model). Although the framework may be adapted to other storages, our tar-
get, in the scope of this particular work, is BigTable [6] open-source Java clone,
HBase [10]. This database system is a sparse, multi-dimensional sorted map,
indexed by row, column (includes family and qualifier), and timestamp; the
mapped values are simply an uninterpreted array of bytes. It is column-oriented
and designed to scale into the petabyte, while ensuring that write and read per-
formance remain constant. In the following we provide the more relevant details
of the V FC3 implementation.

Schema and Database Management: V FC3 requires the registration of
each application, which includes providing the schema of the required databases.
For each table, row, column (and optionally sets of rows and columns), therein,
it is necessary to specify the maximum object divergence, κ. Otherwise, the
default κ will be used meaning no divergence at all. This schema can be built
manually, specifying tables and columns, or simply introduced as the standard
auto-generated XML-based schema (given by the HBase Schema Manager tool),
which can be processed by V FC3. After this, the user should create and associate
divergence bounds with database objects (i.e., tables/rows/columns) through
code annotations, XML specification or a UI.

W.r.t. the creation of divergence bounds, users may specify intervals of val-
ues as elements for vectors, rather than scalar constants, so that consistency
constraints can be automatically adjusted within an interval. The association
of κ with: i) tables is useful when the semantics of the data therein contained
indicates that the data should be treated at the same consistency level (e.g.,
a guest list); ii) rows is beneficial to handle single records independently; iii)
columns may be practical if they are supposed to hold very large values, such as

292 S. Esteves, J. Silva, and L. Veiga

media content. Furthermore, the vector ν is only applied on numeric values, and
thus text or byte fields are initially precluded and supported only as byte-wise
differences (e.g., number of different characters in a string). After the association
of divergence bounds with schemas, a similar database is created in the domain
of the V FC3 framework for caching and tracking purposes. This database also
contains the QoS attributes and a dirty bit for each cell telling if the cell was
modified since the last synchronization occurred.

QoS Management: Different applications may specify overlapping QoS con-
straints; in this case, more restricted constraints override any others. Thus, such
a scenario may happen: application1 requires κ1,x and κ1,y, and application2 re-
quires κ2,y (κ1,y > κ2,y). It could make no sense for application1 to have different
consistency levels for the items x and y (as κ1,y is overridden by κ2,y). To tackle
this, we also allow users to define groups over items that should be handled
at the same consistency level, i.e., ensuring atomicity upon serial consistency
constraints, over a set or rows and/or columns, to comply with the application
semantics. In the previous example, and considering application1 grouped x and
y, κ1,x is thus assigned with the value of κ1,y.

The QoS constraints, referring to the data consistency levels, are specified
along with standard HBase XML schemas and given to the middleware with an
associated application. Specifically, we introduced in the relative XSD the new
element vfc3, which can be used inside the elements table, column family, or row,
to specify data requirements in relation to a table, column, or row. The vector
ν is optional. Enhanced XML schemas are known by all data centers.

Library Support and API: In order to adapt HBase client applications, we
provide a similar API to HBase,1 where we only changed the implementation of
some classes in order to redirect HBase calls to the V FC3 framework, namely
Configuration.java, HBaseConfiguration.java, and HTable.java were modified to
delegate the HBase configurations to V FC3. V FC3 performs the management
of the multiple distributed stand-alone HBase instances (without the Hadoop
replication) in a transparent manner.

Cache and Metadata: The cache uses similar data structures to HBase itself,
such as the ConcurrentHashMap, but with extensions to include metadata (the
divergence bound vectors) and living in memory (albeit its state can be persisted
in the underlying HBase for reliability purposes). The size of the cache and
number of items to replace is configurable and new implementations of the cache
eviction policy can be provided (default is LRU). Also, the types of the vector
elements can be configurable.

5 Evaluation

This section presents the evaluation of the V FC3 framework and its benefits when
compared with the regular HBase/Hadoop replication scheme. All tests were

1 http://hbase.apache.org/apidocs/overview-summary.html

http://hbase.apache.org/apidocs/overview-summary.html

Quality-of-Service for Consistency of Data Geo-replication 293

conducted using machines with an Intel Core 2 Quad CPU Q6600 at 2.40GHz,
7825MBofRAM memory, and HDD SATA II 7200RPM16MB.As for the network,
we scattered nodes around two different and relatively distant locations and the
available bandwidth was around 60Mbps (downstream and upstream). Moreover,
each node/machine had a standalone HBase instance running under V FC3.

To evaluate the performance of our replication middleware we modified and
adapted the YCSB benchmark [12] to work with V FC3, thereby only redirecting
the imports of some classes. Our scenario consisted of running this benchmark,
with three different workloads (95/5, 5/95, and 50/50 %updates/%reads), to
measure the overall latency and throughput (operations/second) for series of
1000, 10000, 50000, and 100000 operations (reads and writes), assuming in each
case that 25, 50, 75, and 100% of the data is critical and required maximum con-
sistency. The non-critical data was associated with σ and ν constraints, meaning
its replication could be postponed and not all versions of the data are required.
Additionally, the case of 100% means full replication, i.e., the same as using the
regular HBase replication.

The (straight) lines of figures 3a, 3c, and 3e show that the overall latency is
reduced with V FC3 (25, 50, and 75%) when compared with HBase full replica-
tion (100%): i) latency gains were almost linear (latency of single operations is
nearly constant, especially for writes), e.g., under heavy updates, for 100000 ops.,

1000

10000

50000
100000

0

200

400

600

800

1000

25
50

75
100

800-1000

600-800

400-600

200-400

0-200

Overall Latency

critical data

se
co

nd
s

(a) Overall Latency - Update Heavy

1000

10000

50000
100000

0

200

400

600

25
50

75
100

400-600

200-400

0-200

Throughput

critical data

op
er

at
io

ns
/s

ec

(b) Throughput - Update Heavy

1000

10000

50000
100000

0

50

100

150

200

25
50

75
100

150-200

100-150

50-100

0-50

Overall Latency

critical data

se
co

nd
s

(c) Overall Latency - Read Heavy

1000

10000

50000
100000

0

500

1000

1500

25
50

75
100

1000-1500

500-1000

0-500

Throughput

critical data

op
er

at
io

ns
/s

ec

(d) Throughput - Read Heavy

1000

10000

50000
100000

0

50

100

150

200

250

25
50

75
100

200-250

150-200

100-150

50-100

0-50

Overall Latency

critical data

se
co

nd
s

(e) Overall Latency - 50/50 Up-
date/Read

1000

10000

50000
100000

0

500

1000

1500

25
50

75
100

1000-1500

500-1000

0-500

Throughput

critical data

op
er

at
io

ns
/s

ec

(f) Throughput - 50/50 Up-
date/Read

Fig. 3. V FC3 throughput and latency performance

294 S. Esteves, J. Silva, and L. Veiga

the gain was about 200 sec. every time critical data decreased; ii) from 10000 to
100000 ops., in all workloads, the latency increased linearly for each critical data
segment; iii) for 1000 ops., the latency is not stable as the critical data increases,
except for the first workload that incurs a slight improvement through the criti-
cal data axis (naturally, workloads with more updates will favor V FC3, even for a
small number of ops.); iv) the level of critical data is almost irrelevant in workloads
under heavy reads, and the gains therein are mostly supported by our cache; v)
the effects of the non-critical data replication were almost not noticed, since most
of these data allowed version loss through vector σ (and the cache also absorbed
some of these latencies); and vi) in a workload with a balanced mix of reads and
writes, the average latency gain with V FC3 is very satisfactory.

Figures 3b, 3d, and 3f show that the gains of throughput are more accentuated
when critical data represents a smaller slice (25% in this case). Plus, the number
of ops. only affected significantly the throughput for smaller amounts of critical
data (e.g., from blue to green lines in the Read Heavy workload). The throughput
for full replication was practically the lowest, comparing with other critical data
levels, and almost the same in the non read heavy workloads (irrespective of
the number of operations). Also, single read operations have higher latency than
write operations (practically zero sec. since they are written in memory first on
HBase) and that explains the instability on the Read Heavy figure.

Regarding network usage, we reduced the number of messages and also the
volume of data with V FC3. Note that only the last versions of the data were
sent (like what typically happens) when σ expired; and the middleware synchro-
nization performed compression and agglomeration of replication messages when
they were inside a same small time window. For 25, 50, and 75% of critical data
we saved on average about 75, 48, and 20% respectively, since we mostly relied
on the σ vector (message skip).

For evaluating the cache component, we relied on different workloads (taken
from the YCSB benchmark) performing 100000 operations each: a) 50%/50%
reads and writes (e.g., session store recording recent actions); b) 95%/5% reads/
write mix (e.g., photo tagging); c) 100% reads; d) read latest workload (e.g.,
user status updates on social networks); e) read-modify-write (e.g., user database
activity). The cache size was 30% of the size of each workload.

0 20000 40000 60000 80000 100000 120000

a

b

c

d

e

VFC3

No Cache

Cache Performance

Runtime (milliseconds)

Fig. 4. Cache Performance

Figure 4 shows that our cache is
effective and can reduce latency and
save communication hops. Not sur-
prisingly, the workload d obtained
best results; i.e., since we read the
most recently inserted records and
have LRU as the cache eviction pol-
icy. For the other workloads, the gains
were good, between 23-35% (a and b
at the extremes). Note that the cache
size and eviction policy can impact

Quality-of-Service for Consistency of Data Geo-replication 295

these results; so these parameters should be adjusted to better suit the target
applications.

The average hit rate of the cache for all experimented workloads was about
51% (except for d, which had 77%), revealing that V FC3 cache can significantly
improve performance, by avoiding expensive trips to the database, for a set of
typical scenarios.

6 Related Work

Many work has been done in the context of replication, transactional and consis-
tency models. Our model is based on those already established (standard book
[13]) and can be seen as an extension of them by allowing multiple levels of
consistency.

In [14], a system is presented for detection-based adaptation of consistency
guarantees. It takes a reactive approach to adjust consistency: upon detection
of inconsistencies, this system tries to increase the current consistency levels so
that they satisfy certain requirements. Contrastingly, we follow in V FC3 a more
proactive approach by trying to avoid inconsistencies from the beginning.

In [15], authors propose three metrics to cover the consistency spectrum (nu-
merical order, order error, and staleness) which are expressed by a logical unit
(conit). However, it could be difficult to associate conits with the application-
specific semantics, specially in terms of granularity; whereas our work goes with
a more fine-grained approach, capturing the semantics from the data itself.

In [16], authors propose creating different categories of data that are treated at
different consistency levels. They demonstrate through the TPC-W benchmark
that object-based data replication over e-commerce applications can definitely
improve availability and performance. We go further with V FC3, whereas we
do not have such a restrictive model regarding target applications and degrees
of consistency.

In [17], authors propose a system that allows developers to define consistency
guarantees on the data (instead of at the transaction level) that can be auto-
matically adjusted at runtime. Different strategies are explored to dynamically
adjust consistency by gathering temporal statistics of the data. Moreover, those
strategies are driven by a cost model, which associates penalty costs with differ-
ent degrees of consistency. This project shares our goals of having a data-driven
consistency model, however it could be difficult to associate (real) costs with
transactions; and they provide only 3 consistency levels. In V FC3, consistency
degrees are not pre-categorized and hence can be used to fine-tuning and better
optimize the overall system performance.

Caching at the application-level can significantly improve the performance of
both web servers and underlying databases, since it can save expensive trips to
the data base (e.g., [4,18]). The granularity may vary, storing partial database
tables, SQL queries, entire webpages, arbitrary content, etc. The major prob-
lems: i) they usually do not provide transactional consistency with the primary
data; and ii) application developers have to manually handle consistency and

296 S. Esteves, J. Silva, and L. Veiga

explicitly invalidate cache items when the underlying data changes (a very error-
prone task). In V FC3, we offer a complete solution that transparently handles
consistency and data is always updated w.r.t. the local database.

Regarding cloud data stores, Amazon S32 and BigTable provide eventual con-
sistency. PNUTS [9] argue that eventual guarantees do not suit well its target
applications; they provide a per-record timeline consistency: all updates to a
record are applied in the same order over different replicas. Conflicting records
cannot exist at the same time as it is allowed by Dynamo [8].

7 Conclusion

This paper presented a novel consistency model and framework capable of en-
forcing different degrees of consistency, accordingly to the data semantics, for
data geo-replication in cloud tabular data stores.

We implemented and evaluated a prototype architecture of the V FC3 frame-
work revealing promising results. It is effective on improving QoS, thereby re-
ducing latency, bandwidth and augmenting throughput for a set of key (and
typical) workloads; this, while maintaining the requirements about the quality
of data provided to end-users.

To the best of our knowledge, none of the existing solutions in the areas of web-
caching, database replication offer a similar flexible and data-awareness control
of consistency to provide high-availability without compromising performance.
Most of them only allow one level of stale data to exist, that is usually configured
per application, and follow a blind approach w.r.t. the data that could require
or not strong consistency guarantees; while other solutions, that share some of
our goals, impose fixed consistency levels that and limited number of application
classes or categories.

References

1. Church, K., Greenberg, A., Hamilton, J.: On delivering embarrassingly distributed
cloud services. In: HotNets (2008), CR-ENS-GRID

2. Saito, Y., Shapiro, M.: Optimistic replication. ACM Comput. Surv. 37, 42–81
(2005)

3. Brewer, E.A.: Towards robust distributed systems (abstract). In: Proceedings of
the Nineteenth Annual ACM Symposium on Principles of Distributed Computing,
PODC 2000, p. 7. ACM, New York (2000)

4. Fitzpatrick, B.: Distributed caching with memcached. Linux Journal 2004, 5 (2004)
5. Coulouris, G.F., Dollimore, J.: Distributed systems: concepts and design. Addison-

Wesley Longman Publishing Co., Inc., Boston (1988)
6. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M.,

Chandra, T., Fikes, A., Gruber, R.E.: Bigtable: a distributed storage system for
structured data. In: Proceedings of the 7th USENIX Symposium on Operating Sys-
tems Design and Implementation, OSDI 2006, vol. 7, p. 15. USENIX Association,
Berkeley (2006)

2 http://aws.amazon.com/s3/

http://aws.amazon.com/s3/

Quality-of-Service for Consistency of Data Geo-replication 297

7. Lakshman, A., Malik, P.: Cassandra: structured storage system on a p2p network.
In: Proceedings of the 28th ACM Symposium on Principles of Distributed Com-
puting, PODC 2009, p. 5. ACM, New York (2009)

8. DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin,
A., Sivasubramanian, S., Vosshall, P., Vogels, W.: Dynamo: amazon’s highly avail-
able key-value store. In: Proceedings of Twenty-first ACM SIGOPS Symposium on
Operating Systems Principles, SOSP 2007, pp. 205–220. ACM, New York (2007)

9. Cooper, B.F., Ramakrishnan, R., Srivastava, U., Silberstein, A., Bohannon, P.,
Jacobsen, H.A., Puz, N., Weaver, D., Yerneni, R.: Pnuts: Yahoo!’s hosted data
serving platform. Proc. VLDB Endow. 1, 1277–1288 (2008)

10. George, L.: HBase: The Definitive Guide, 1st edn. O’Reilly Media (2011)
11. Veiga, L., Negrão, A., Santos, N., Ferreira, P.: Unifying divergence bounding and

locality awareness in replicated systems with vector-field consistency. J. Internet
Services and Applications 1, 95–115 (2010)

12. Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking
cloud serving systems with ycsb. In: Proceedings of the 1st ACM Symposium on
Cloud Computing, SoCC 2010, pp. 143–154. ACM, New York (2010)

13. Tanenbaum, A.S., van Steen, M.: Distributed Systems: Principles and Paradigms,
2nd edn. Prentice-Hall, Inc., Upper Saddle River (2006)

14. Lu, Y., Lu, Y., Jiang, H.: Adaptive consistency guarantees for large-scale repli-
cated services. In: Proceedings of the 2008 International Conference on Network-
ing, Architecture, and Storage, pp. 89–96. IEEE Computer Society, Washington,
DC (2008)

15. Yu, H., Vahdat, A.: Design and evaluation of a continuous consistency model for
replicated services. In: Proceedings of the 4th Conference on Symposium on Oper-
ating System Design & Implementation, OSDI 2000, p. 21. USENIX Association,
Berkeley (2000)

16. Gao, L., Dahlin, M., Nayate, A., Zheng, J., Iyengar, A.: Application specific data
replication for edge services. In: Proceedings of the 12th International Conference
on World Wide Web, WWW 2003, pp. 449–460. ACM, New York (2003)

17. Kraska, T., Hentschel, M., Alonso, G., Kossmann, D.: Consistency rationing in the
cloud: Pay only when it matters. PVLDB 2, 253–264 (2009)

18. Sivasubramanian, S., Pierre, G., van Steen, M., Alonso, G.: GlobeCBC: Content-
blind result caching for dynamic web applications. Technical Report IR-CS-022,
Vrije Universiteit, Amsterdam, The Netherlands (2006)

A Fault-Tolerant Cache Service
for Web Search Engines: RADIC Evaluation

Carlos Gómez-Pantoja1,2, Dolores Rexachs5,
Mauricio Marin3,4, and Emilio Luque5

1 Universidad Andres Bello, Santiago, Chile
2 DCC, University of Chile, Santiago, Chile

3 University of Santiago of Chile
4 Yahoo! Research Latin America, Santiago, Chile

5 University Autonoma of Barcelona, Barcelona, Spain

Abstract. Large Web search engines are constructed as a collection of services
that are deployed on dedicated clusters of distributed-memory processors. In par-
ticular, efficient query throughput heavily relies on using result cache services
devoted to maintaining the answers to most frequent queries. Load balancing
and fault tolerance are critical to this service. A previous paper [7] described
the design of a result cache service based on consistent hashing and a strategy
for enabling fault tolerance. This paper goes further into implementation details
and experiments related to the basic scheme to support fault-tolerance which is
critical for overall performance. To this end, we evaluate the performance of the
RADIC scheme [14] for fault-tolerance under demanding scenarios imposed in
the caching service.

1 Introduction

Data centers for large Web search engines (WSEs) contain thousands of processors
arranged in high-communicating groups called services. Usually each service is devoted
to a single specialized operation related to the processing of user queries. Typically a
WSE is composed by three relevant services: Front-End/Broker Service (FS), Caching
Service (CS) and Index Service (IS). The FS receives queries and handles query routing;
the CS keeps results for frequent queries; and the IS uses an inverted index to calculate
top K results when the query results are not in the CS. The CS plays a key role in
enabling high query throughput [1] as the cost of searching a query in the CS and
returning the answer stored in the respective cache entry, is by far less costly in running
time than computing the query answer from the IS.

The traffic generated by WSE users is not uniform neither constant, it is variable,
unpredictable and follows Zipfian distributions [3]. It means that users always gener-
ate new queries and a few very popular queries can have a huge impact in performance
degradation since they can cause imbalance. In addition, failing nodes can affect perfor-
mance as it is necessary to distribute the load assigned to them on the remaining nodes.
The service that is most exposed to imbalance situations is the CS. This is because it
splits queries into disjoint sets using hash functions so that each query is allocated to
only one partition. Therefore, bursty queries can overload partitions.

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 298–310, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Fault-Tolerant Cache Service for Web Search Engines: RADIC Evaluation 299

The literature related to caching is extensive, but it lacks of efficient solutions for
the problem relevant to this paper. A noticeable exception is the Amazon Dynamo [4]
system. Almost all of previous work propose eviction algorithms, admission policies
and query invalidation strategies to improve the performance of individual cache nodes
[1,11,6]. We aim at a distributed system suitable for clusters of processors. Peer-to-
Peer (P2P) systems using consistent hashing [8] -like Chord [15]- assume uniform key
distribution, which tends to favour static assignments of keys to nodes. It is important
to bear in mind that our application domain is radically different from load balancing
P2P systems [16], which means that not all solutions from this domain are applicable
to our setting. In our case, queries must be solved in a few tens of milliseconds and
thereby there is no room for approaches based on data movement across processors
[12], extra messages to locate processors [15], or the like. A fairly similar idea, though
fully distributed, is proposed for P2P systems in [2]. This work does not balance the
load caused by stored items or their popularity. They indirectly try to do this by making
similar the range of keys that each node is responsible for. We do the opposite by using
ranges of variable length as a function of node popularity. Our proposal is intended to
form part of dedicated search services where homogeneous processors are not shared by
other applications and no virtualization technology is used for load balancing because
of its overheads.

We propose a dynamic load balancing algorithm upon consistent hashing in order to
cope with imbalance in CS nodes. The balancing process is reactive in the sense that
it is triggered when imbalance is detected. We also propose to mitigate the effects of
node failures by using a protection system for frequent queries. For this purpose we
use the RADIC approach [14]. Here, a cache pi selects a set of pairs <query, answer>
according to a criteria, and then these queries are sent to a secondary cache pj . In case
of failure of cache pi, all of its requests are redirected to pj (the protector of pi). The
protection of selected cache entries is a proactive action.

The remainder of this paper is organized as follows. Section 2 describes the system
architecture. Section 3 presents our proposal. Section 4 presents experimental results
using simulation, and Section 5 presents results of our RADIC implementation. Finally,
Section 6 presents conclusions.

2 System Architecture

The Front-End Service (FS) comprises several replicated nodes. Each FS node receives
and routes user queries, and sends back the top K results to users. After a query arrives
to a FS node bi, it asks the Caching Service (CS) to determine whether the query result
has been previously stored there. A baseline CS cluster architecture is formed by an
array of Pc × Dc processors (or CS nodes). A scheduling method in FS carries out the
distribution of queries onto the Pc partitions. When a partition pi has been selected, one
of its Dc replicas is chosen at random to search for the query. If the query is cached, the
CS node sends the query answer to bi. Afterwards bi sends the results to the user. If the
query is not found in cache, the CS node sends a hit-miss message to bi. At this point,
bi sends the query to the Index Service (IS).

For the IS, the standard cluster architecture is an array of Pi × Di processors or
index search nodes, where Pi indicates the level of text collection partitioning and Di

300 C. Gómez-Pantoja et al.

P0 P1

P2P3

q1

q2

q3

q4

q5

q6

w=15%

w=15%w=20%

w=50%

P0
P1

P2
P3

q1

q2

q3

q4

q5

q6

w=20%

w=25%
w=20%

w=35%

a

b

(a) (b)

Fig. 1. (a) Consistent hashing assignment; (b) Our proposal for load balancing

the level of text collection replication. The use of this 2D array is as follows: each
query is sent to all of the Pi partitions and, in parallel, a random replica in each partition
determines the local top K query results. These results are then collected together by the
FS to determine the global top K results for the query. Each index search node contains
an inverted file which is a data structure used to efficiently map from query terms to
relevant documents.

The FS and IS do not experience significant imbalance. Newly arriving queries are
evenly distributed on the FS nodes. When a query is solved in the IS, all partitions work
in parallel to produce the local top K results in each partition, so a query generates
almost the same load in all IS partitions. Neither of these two services face serious risks
of imbalance. Given the access pattern to CS partitions and the bias of user queries, the
probability of significant imbalance is high in this service as we show below.

The only service in which data (inverted index and text) must be distributed before
the operation is the IS. The CS populates its distributed memory with query results
on-the-fly, and the FS only handles small data related to current query routing.

3 Caching Service

All memory space of CS nodes is divided into blocks (typically 4KB), and each block
stores query terms and their associated top K results (HTML page). Each CS node
follows an eviction policy when it is full.

The distribution of items is implemented with consistent hashing [9], which parti-
tions the query space into P independent subsets (each subset can be seen as a non-
overlapping arc in a ring (see Figure 1(a)). The idea is that each partition handles all
queries (each query is assigned to one point in the ring by means of hashing) that inter-
sect its arc. Figure 1(a) illustrates an assignment following an equidistant distribution
of points (please ignore for now the small white ovals), and the assignment indicates
that partition P1 serves queries q1 and q2.

The decision of how many partitions depends on the hit ratio we want to reach and the
global set of queries (namely, the number of distincts queries in skewed distributions).

A Fault-Tolerant Cache Service for Web Search Engines: RADIC Evaluation 301

The more diverse the query space, the more partitions are needed because each node
holding a partition has limited capacity. But dimensioning the number of partitions is
not the only decision, also it is necessary to consider the volume of queries per unit of
time that one node can accept. To cope with this later issue, replication is introduced as
a form to spread the load of a particular partition; also it helps to provide fault-tolerance.
This translates into D replicas for each partition. The underlying idea is to select one of
the P partitions via consistent hashing, and then select one of its D replicas at random.

To reach a consistent state (all replicas of one partition), we can use an optimistic
protocol [13] in each partition where replicas are guaranteed to converge after a period
of time. We choose this kind of protocol instead of a protocol that provides strong
consistency, because this later solution can saturate the network.

The first baseline approach we study, called Baseline DAC (Amazon Dynamo and
Chord), can be seen as a matrix of P × D nodes. The location process works as fol-
lows: consistent hashing to select a partition, then we select one random replica. Each
partition runs an optimistic consistency protocol.

The previous strategy has a configuration that can be prone to variations in the user
query traffic (for example, bursty queries) and nodes failures. To control the load im-
balance produced by Baseline DAC, we can use a Greedy algorithm to move replicas
between partitions. The key idea is to measure the utilization at partition level each
Δ units of time, and then we decide whether one partition needs more replicas taking
into consideration the output of the Greedy algorithm. We call this strategy Baseline
DR (Dynamic Reallocation). The location process is the same as Baseline DAC. Also
each partition runs an optimistic protocol. We use these two strategies as a basis for
comparison. More details can be found in [7].

Having fixed points in the CHR1 is not a good policy. Our solution consists in using
the same P×D matrix and a CHR at partition level (i.e., P partitions/arcs), but allowing
arc lengths to dynamically change in size to split traffic between neighboring partitions.

Firstly, the ring is divided into small equally-sized buckets to discretize the range
covered by each arc. Each partition covers an arc of size 1/P of the ring and is re-
sponsible of a disjoint set of adjacent buckets as shown in Figure 1(a). Like the strategy
Baseline DR, the service utilization is reported every Δ units of time to the FS. If the
efficiency2 is less than a predefined threshold T , a load balancing algorithm that consid-
ers each partition utilization is triggered in the FS. The output of the algorithm is a set of
bucket movements between neighboring partitions. This prevents all cache entries from
being invalidated because only a small number of queries change of partition. Namely,
those inside the buckets moved.

The threshold T used in our proposal and the DR strategy defines the maximum
degree of imbalance to be tolerated. When the efficiency is below the threshold T , the
balancing process is triggered.

Our proposal starts with an initial uniform distribution of the buckets as shown in
Figure 1(a). Each partition handles four contiguous buckets. When measuring utilization,
we detect that partition P1 is processing half of the system load. Figure 1(b) shows the
effect of moving one bucket from P1 to P0 and one from P1 to P2 (neighbors of P1).

1 Consistent hashing ring.
2 The efficiency is defined as the average load divided by the maximum load.

302 C. Gómez-Pantoja et al.

The arc a belongs to P0 and arc b belongs to P2, meaning that P0 and P2 are now in
charge of more queries which decreases the load of P1. An advantage of this strategy
is that only little portions of cache entries are invalidated when buckets are moved.
Namely, those with consistent hashing values falling in the range of the buckets moved
to neighboring partitions.

The method to re-distribute the buckets is a diffusion algorithm and it is based on
the Sender Initiated Diffusion (SID) algorithm presented in [17]. In this algorithm each
overloaded partition distributes excess of load to neighbors with less load. The authors
show that in a system with P partitions and load L unevenly distributed, the algorithm
will eventually converge to load L/P in each partition and also it is stable.

Replicas associated with each partition are handled as follows. When a FS node
selects partition A for query q, we apply a second hash function over the query terms to
select one replica from A. This strategy increases the total number of entries available
for caching different items across the replicas. This increases overall hit ratio but also
node failures are expected to enhance its effects on hit ratio reduction.

To provide fault-tolerance, we use the RADIC framework [14] to efficiently replicate
selected queries. It is based on two components: Protectors and Observers which we
propose to use as follows.

Each partition runs a separate RADIC process. Every δ units of time all Observers
send their checkpoint to the corresponding Protector. If node mi belonging to partition
A fails, all requests to mi are re-directed to its Protector mj allocated in the same parti-
tion. In this case, mj processes its own queries and those originally directed to mi. The
load increment in partition A is not a severe problem due to the balancing algorithm we
apply on the partitions. The imbalance generated by a faulty node mi will be corrected
decreasing the range of partition A. Performance degradation is also controlled as the
most frequent entries of node mi are likely to be already checkpointed in its Protector
mj when the failure takes place, so this node will cover the most important queries.

As said, only the most frequent queries in all nodes mi are protected. Copying all
cache entries to the Protector and doubling the number of entries in each node, is not
feasible. For the purpose of comparison, to be fair to other strategies, we decrease the
available cache entries in each node to make space to hold the checkpoints. From empir-
ical evidence, we conclude that the best distribution in each CS node is 70% of memory
space to hold cache entries and the remaining 30% of space to hold checkpoints.

Note that queries tend to be the same between checkpoints in any particular node,
since the queries selected to be part of the checkpoint are the most accessed of that
node. Hence, instead of forcing the sending of all cache entries to its Protector, only the
modifications are sent to it. To this end, each node can log only modifications: priority
change, entry eviction and item insertion. This decreases communication.

4 Evaluation through Simulation

To simulate the strategies described above, we have modeled and implemented discrete
event simulators that are able to precisely predict a set of metrics. The methodology
to build the simulator is based on the facts that (i) the major operations in our context
are coarse-grained, and (ii) given our architectural design, a request in any of the nodes

A Fault-Tolerant Cache Service for Web Search Engines: RADIC Evaluation 303

of a specific service takes almost the same amount of resources. The first step is the
identification of the most important operations evolved in query processing (resource
utilization). Then, we profile these operations and insert their costs to a discrete event
simulator. We have previously used and validated this claim in [10]. In conclusion, we
simulate trace-driven events, where the traces are benchmarked from real executions on
a search engine using query logs of commercial WSEs.

We perform the experiments using a one-day real query log from a commercial
search engine (as on April 1st, 2011). The query log comprises 68,019,311 queries.
We configured the WSE as follows: (i) the FS comprises 10 replicas; (ii) the CS has
P = 20 partitions and D = 4 replicas; and (iii) the IS possesses 50 partitions and 20
replicas (in order to simulate a complete inverted file loaded into RAM). Each CS node
has 100,000 entries for cache. The time interval Δ to measure the partition utilization
is 5 minutes and the efficiency threshold T is set to 95%. In our proposal, the service
checkpoint is passed every δ = 10 minutes.

Two of the most important metrics are Average Query Response Time and Hit Ratio
of the CS. The first metric shows how the strategies behave under the occurrence of
failures, while the second indicates the percentage of answers found in cache. We do
not only show the cases of failure, but as well the results without failures for compar-
ison purposes. We start the evaluation with 1, 2 and 3 random failures of CS nodes.
Furthermore, we examine a special case, where 10% of CS nodes fail.

In all experiments, failures occur between x = 640 and x = 800. Note that the
nodes where failures were injected are randomly chosen and are not re-incorporated by
the service. The measurement starts with the first injected failure.

We labeled the curves in the following figures as “Baseline DAC”, which is the
Baseline Amazon Dynamo and Chord, and “Baseline DR”, which stands for Baseline
Dynamic Reallocation.

Figure 2(a) shows the average query response while no failures were triggered. Three
different trends can be clearly identified in steady state (from x = 480): (i) the Baseline
DR strategy shows an average of 98 [ms], (ii) the Baseline DAC shows an average of 95
[ms] and (iii) our approach outperforms both with an average of 83 [ms]. This presents
15.3% and 12.6% better query response time than the Baseline DAC and Baseline DR,
respectively.

Figure 2(c) shows the results in the case that three failures occur. Here, as well as in
Figure 2(b) and (d), it can be observed that the Baseline DR has the worst performance.
The reason of this behavior is that the movements of machines between partitions is a
disproportionate action, which implies that all entries of the moving nodes are lost (they
are not useful for the new partition). The figures reflect the impact. On the other hand,
the Baseline DAC as well as our approach present small variations in performance.

A special case is shown in Figure 2(d), in which 8 nodes are randomly chosen to
stop. This is an extreme case, since 10% of CS nodes are lost. In this case, the be-
havior of Baseline DAC remains almost constant. While it is true that our approach
experiences an increase of 9% (from 85 to 93 [ms]), it still outperforms the Baseline
DAC. Moreover, our approach of dynamic load balancing helps to reduce the average
query time. For this reason, a decrease of query time can be observed towards the end of
Figure 2(d). Considering this metric, we have demonstrated that the proper combination

304 C. Gómez-Pantoja et al.

 0.080

 0.085

 0.090

 0.095

 0.100

 0.105

 0.110

 0.115

 0.120

 0 160 320 480 640 800 960 1120 1280 1440

A
ve

ra
ge

 Q
ue

ry
 R

es
po

ns
e

T
im

e
[s

]

Time [min]

Baseline DAC
Baseline DR

Proposal

 0.080

 0.085

 0.090

 0.095

 0.100

 0.105

 0.110

 0.115

 0.120

 0 160 320 480 640 800 960 1120 1280 1440

A
ve

ra
ge

 Q
ue

ry
 R

es
po

ns
e

T
im

e
[s

]

Time [min]

Baseline DAC
Baseline DR

Proposal

(a) (b)

 0.080

 0.085

 0.090

 0.095

 0.100

 0.105

 0.110

 0.115

 0.120

 0 160 320 480 640 800 960 1120 1280 1440

A
ve

ra
ge

 Q
ue

ry
 R

es
po

ns
e

T
im

e
[s

]

Time [min]

Baseline DAC
Baseline DR

Proposal

 0.080

 0.085

 0.090

 0.095

 0.100

 0.105

 0.110

 0.115

 0.120

 0 160 320 480 640 800 960 1120 1280 1440

A
ve

ra
ge

 Q
ue

ry
 R

es
po

ns
e

T
im

e
[s

]

Time [min]

Baseline DAC
Baseline DR

Proposal

(c) (d)
Fig. 2. Evaluation of Average Query Response Time: (a) zero, (b) one, (c) three and (d) eight
failures (10%). In cases of failure, they are triggered between x = 640 and x = 800 minutes.

of dynamic load balancing and a methodology to protect valuable information (RADIC)
is important to consider during the design and deployment of caching services. Table 1
summarizes the improvements that we achieved through our approach in all aforemen-
tioned cases.

The Figure 3(a) illustrates the hit ratio considering the different options. The perfor-
mance of Baseline DAC and Baseline DR is similar, having a hit rate between 25% and
30% once the steady state is reached. The optimized utilization of cache entries by our
strategy is another important fact. Using our strategy almost all entries show higher hit
ratio, while information is only replicated for protection purpose. The proactive repli-
cation of queries helps to keep a similar hit rate in case of faults, even in situations
where more than one failure occurs (Figure 3(b), (c) and (d)). Despite the failures, our
proposal outperforms the other strategies in all cases and is in addition just slightly af-
fected. Figure 3(c) shows the same behavior as before (hit ratio improved by 25% on
average compared to Baseline DAC).

Figure 3(d) shows results with greater variation in all cases. This is due to imbalance
issues that emerge when a large number of machines fail. The objective of reaching
(and keeping) a better hit ratio compared to other strategies is accomplished, despite
the high number of failures. See Table 1 for more results.

A Fault-Tolerant Cache Service for Web Search Engines: RADIC Evaluation 305

Table 1. Percentage of improvements of our Proposal against Baseline DAC and Baseline DR
considering Figure 2 and 3. Values are obtained while the services were in a steady state (after
failures).

Average Query Time Hit Ratio
Baseline DAC Baseline DR Baseline DAC Baseline DR

Zero Failures 12.6% 15.3% 31% 46%
One Failure 8.4% 13.0% 27% 60%

Three Failures 8.4% 16.3% 32% 94%
Eigth Failures 7.2% 12.7% 37% 105%

 0.05

 0.10

 0.15

 0.20

 0.25

 0.30

 0.35

 0.40

 0.45

 0 160 320 480 640 800 960 1120 1280 1440

H
it

R
at

io
 [

%
]

Time [min]

Baseline DAC
Baseline DR

Proposal
 0.05

 0.10

 0.15

 0.20

 0.25

 0.30

 0.35

 0.40

 0.45

 0 160 320 480 640 800 960 1120 1280 1440

H
it

R
at

io
 [

%
]

Time [min]

Baseline DAC
Baseline DR

Proposal

(a) (b)

 0.05

 0.10

 0.15

 0.20

 0.25

 0.30

 0.35

 0.40

 0.45

 0 160 320 480 640 800 960 1120 1280 1440

H
it

R
at

io
 [

%
]

Time [min]

Baseline DAC
Baseline DR

Proposal
 0.05

 0.10

 0.15

 0.20

 0.25

 0.30

 0.35

 0.40

 0.45

 0 160 320 480 640 800 960 1120 1280 1440

H
it

R
at

io
 [

%
]

Time [min]

Baseline DAC
Baseline DR

Proposal

(c) (d)
Fig. 3. Evaluation of Average Hit Ratio: (a) zero, (b) one, (c) three, and (d) eight failures (10%).
In case of failures, they are triggered between x = 640 and x = 800 minutes.

4.1 Analysis

We have shown that a better organization of resources, by taking proactive actions (pro-
tect important queries) and dynamically balancing load, are important aspects to reach
lower response time and higher hit ratios. We argue that the most important factor to
achieve a high throughput is a suitable load balancing strategy. Nevertheless, perfor-
mance grows even more when cache entries are better administered and the consistency
protocol is avoided. This technique in conjunction with the protection of queries, im-
proves the performance in all aspects as examined above through the average query

306 C. Gómez-Pantoja et al.

time and hit ratio. Finally, this two techniques help to decrease the impact of failures in
case that an organization is used, which exploits all available memory.

Also, the previous results demonstrated the benefits and limits of our proposal. At
first, our strategy diminishes its performance in case of failures, but the dynamic load
balancing helps to overcome this situation quickly. Moreover, it remains the best strat-
egy. Secondly, the baseline DAC is almost not affected by failures because of the repli-
cation, but at the same time it does not utilize the resources properly, and hence this
strategy does not attain the best results. Finally, there is a trade-off between repli-
cation and performance, and our proposal certainly points in the following direction:
only replicate the most frequent queries and use them in case of failures following the
RADIC approach.

5 RADIC Implementation

This section describes our RADIC [14] implementation and how it works in a real
setting. As we mentioned above, this strategy allows us to integrate the protection of
important queries to be used in case of failures. To test RADIC performance, we have
implemented a C++/MPI prototype of a CS with RADIC. First of all, each processing
node or processor can be seen as a container of entries with a limited capacity that
follows an eviction policy when it is full. Well-known algorithms for this purpose are
LRU, LFU, SDC and PDC [11]. Regardless of the strategy, in all cases important cache
entries can be identified. To decide which is the next entry to be replaced, all algorithms
use a priority queue. Memcached [5] follows the LRU policy by default (other strategies
can be used).

In our service, we designed a priority queue in conjunction with a hash table to
implement a LFU strategy. The choice of the LFU strategy is made to simplify the
selection of the most frequent queries, which are the ones to be protected by RADIC.

Following the WSE architecture, only one node of the Front-End Service is respon-
sible for triggering the checkpoint process (the decision is centralized at the FS side).
Namely, each δ units of time the FS node sends a message to all CS nodes indicating
that they must start the checkpoint process. This process consists of three stages in each
node CSi: (i) CSi gets the most important queries from its memory, which translates
into N pairs <query,answers>; (ii) CSi sends them to its protector node using MPI;
(iii) CSi waits for the checkpoint (N pairs) from the node that it is protecting; and
(iv) CSi stores the received checkpoint in its memory (a separate area of memory). All
these phases do not affect the query processing in the node (we control the concurrent
access to the structures). As we mentioned above, a node only protects a node of its own
partition, in this way the protection on each particion (and their replicas) is independent
of other partitions.

To study the behaviour in case of failures, we did not need a fault-tolerant version
of MPI, because the routing and handling of queries belongs to the FS and only this
service needs to know when a node falls. Failing nodes are selected randomly and, for
the sake of simplicity, we “simulate” a failure sending a MPI message to the failing
nodes (to stop the processing), and then updating the state of active nodes in the FS
(routing tables). Once a failure is detected in the FS, all requests to failing nodes are

A Fault-Tolerant Cache Service for Web Search Engines: RADIC Evaluation 307

12000

10000

8000

6000

4000

2000

 0 2000 4000 6000 8000 10000

T
im

e
[m

se
c]

Step

Radic
No Radic

 0

 0.2

 0.4

 0.6

 0.8

 1

1000080006000400020000

H
it

 R
at

io
 [

%
]

Step

Radic
No Radic

Fig. 4. Real deployments to evaluate overhead with failures: (a) running time of the complete
caching service, and (b) hit ratio of a single partition of the caching service

routed to the protector of them following the RADIC algorithms/tables. As the protector
maintains information regarding the failing nodes (checkpoint), it starts to process the
redirected requests taking into account this information. This helps to preserve the hit
ratio in case of faults.

5.1 RADIC Overheads

An important performance metric in a fault-tolerant system is the overhead imposed
by the protection scheme relative to the same system without a fault tolerance strategy.
Hereinafter, we evaluate the RADIC overheads through an actual implementation run-
ning in our CS service. The implementation is therefor deployed to a cluster of proces-
sors (cluster composed of 20 nodes connected by an InfiniBand switch). To effectively
measure overheads and to therefor achieve a situation in which there are no queries that
cause imbalance, we implemented the baseline approach (namely, the P × D matrix
described in Subsection 3) with the RADIC system running in background.

We ran the complete log described in Section 4 in a caching service with P=5 parti-
tions and D=4 replicas. We measured the time required to finish a set of queries and the
resulting hit ratio (each measurement is a point in the X-axis, and only the first 10,000
points are plotted). Furthermore, we injected two failures in the system (x=1,500 and
x=6,000). After the failures, nodes are re-inserted in the service after 100 y 500 steps,
respectively. Note, that the implementation without RADIC has 100,000 cache entries
per node, while the implementation with RADIC has 95,000 cache entries and 5,000
for checkpoints.

Figure 4(a) shows the time required to finish the queries. The overhead imposed by
RADIC is 1.8% on average, what does not represent a big impact on the service. The
checkpoint takes place approximately every 1,000 steps and only the top 5% of the
most important queries are checkpointed. We optimized the checkpointing process by
processing it through a pipeline: multiple steps are used to send the checkpoint to the
Protector. The overhead and the checkpoints become important when failures occur and
when queries are protected. Figure 4(b) displays the results in terms of average hit ratio
inside a partition when failures occur in the same partition (D=4). It is clear that the hit
ratio is less affected by failures since the implementation of RADIC allows to continue

308 C. Gómez-Pantoja et al.

 0

 0.2

 0.4

 0.6

 0.8

 1.0

 1.2

2 3 4 5

T
hr

ou
gh

pu
t [

qu
er

ie
s/

s]

Replicas

Nothing
Radic-1

Radic-10
Optimistic-1

Optimistic-10
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000 6000 7000

Pa
rt

iti
on

 L
oa

d

Time [min]

Fig. 5. (a) Evaluation of a real implementation of the Optimistic Protocol and the RADIC Pro-
posal (Section 3) to test the scalability of one partition. (b) Load assignment to 20 partitions when
we run 300 millions of queries issued during May 1-5, 2011.

the operation using the checkpointed query results in the Protector of the failing node.
The average hit ratio of the partition using RADIC is 47.2% and 46% without RADIC
(an increase of 2.6% in the presence of failures). We would like to remark that the results
of this section were obtained with the same baseline strategy, which was extended with
RADIC to expose its inherent overheads relative to the same strategy operating without
RADIC.

Figure 5(a) shows results obtained with actual implementations of the consistency
protocols. We ran these experiments in a cluster of processors connected by a commod-
ity switch, taking care that each replica is allocated to a different processing node so
that communication among processors takes place through the communication network.
The purpose of these experiments is to evaluate the effects of extra communication re-
quired to keep consistency across the replicas of each partition at running time. The
curve labeled “nothing” is the best that a protocol can do as in this case no communi-
cation bandwidth is used to replicate cache entries. They just arrive to a target replica
and a search in the cache is executed. Here it is not relevant whether there is a cache hit
for any query or not. Note that each replica is assumed to receive the same number of
queries. This implies that as the number of replicas grows, more queries are processed
in total. The remaining curves are showing the results of RADIC and the optimistic
protocol for cases in which the consistency protocol is executed each 1 and 10 minutes.
In both cases, the RADIC protocol outperforms the optimistic one. For 10 minute inter-
vals the RADIC protocol achieves a performance quite similar to the optimal case. The
overhead in terms of memory consumed by checkpoints is negligible because hit rate is
not affected significantly keeping constant the total number of cache entries.

6 Conclusions

We conclude by referring to Figure 5(b) which shows that queries tend to produce sig-
nificant imbalance when no strategy is used to load balance the amount of queries that
receive each CS node.

We have shown that load balancing and protection of queries can help to improve
the performance of WSEs. On the one hand, we use a load balancing algorithm to

A Fault-Tolerant Cache Service for Web Search Engines: RADIC Evaluation 309

cope with user query variations and faulty nodes, this is a reactive action. Then, we
move forward proposing the application of RADIC methodology to protect valuable
information, which is a proactive action.

The objective of this paper was twofold: (i) analyze the resilience of our proposal,
and (ii) analyze the performance and usefulness of RADIC framework. In section 4, the
experimental results show that our proposal outperforms the commonly used baseline
alternatives by a wide margin as shown in Figure 2 and 3 ((a) no failures; (b), (c), (d)
with failures). This is because our proposal is able to significantly reduce the imbalance
shown in Figure 5(b). Notice that our proposal can be easily extended to clusters with
heterogeneous nodes since load balance is made considering only the utilization of
processors, which can be determined by performing benchmarks on individual nodes
and stablishing a relationship between incomming query traffic and utilization.

Finally, in section 5 we evidence that our RADIC implementation imposes a very low
overhead to the query processing tasks, which shows its competitiveness and usefulness
in the context of caching services. To the best of our knowledge, there are no previous
works that addresses the protection of queries.

Acknowledgements. This research has been supported by the MICINN Spain under
contract TIN2007-64974 and the MINECO (MICINN) Spain under contract TIN2011-
24384, and partially funded by FONDEF project D09I1185. The first author (CG) has
been supported by a Chilean PhD scholarship from CONICYT.

References

1. Baeza-Yates, R., Gionis, A., Junqueira, F., Murdock, V., Plachouras, V., Silvestri, F.: The
impact of caching on search engines. In: SIGIR 2007, pp. 183–190 (2007)

2. Bienkowski, M., Korzeniowski, M., auf der Heide, F.M.: Dynamic Load Balancing in Dis-
tributed Hash Tables. In: Castro, M., van Renesse, R. (eds.) IPTPS 2005. LNCS, vol. 3640,
pp. 217–225. Springer, Heidelberg (2005)

3. Breslau, L., Cue, P., Cao, P., Fan, L., Phillips, G., Shenker, S.: Web caching and zipf-like
distributions: Evidence and implications. In: INFOCOM, pp. 126–134 (1999)

4. DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin, A., Siva-
subramanian, S., Vosshall, P., Vogels, W.: Dynamo: amazon’s highly available key-value
store. SIGOPS 41, 205–220 (2007)

5. Fitzpatrick, B.: Distributed caching with memcached. Linux J. (2004)
6. Gan, Q., Suel, T.: Improved techniques for result caching in web search engines. In: WWW

2009, pp. 431–440 (2009)
7. Gómez-Pantoja, C., Gil-Costa, V., Rexachs, D., Marin, M., Luque, E.: A fault-tolerant cache

service for web search engines. In: ISPA 2012 (to appear, 2012)
8. Karger, D., Lehman, E., Leighton, T., Panigrahy, R., Levine, M., Lewin, D.: Consistent hash-

ing and random trees: distributed caching protocols for relieving hot spots on the world wide
web. In: ACM STOC 1997, pp. 654–663 (1997)

9. Karger, D., Sherman, A., Berkheimer, A., Bogstad, B., Dhanidina, R., Iwamoto, K., Kim,
B., Matkins, L., Yerushalmi, Y.: Web caching with consistent hashing. In: WWW 1999,
pp. 1203–1213 (1999)

10. Marin, M., Gil-Costa, V., Gomez-Pantoja, C.: New caching techniques for web search
engines. In: HPDC 2010, pp. 215–226 (2010)

11. Perego, T.F.R., Silvestri, F., Orlando, S.: Boosting the performance of web search engines:
Caching and prefetching query results by exploiting historical usage data. In: ACM TOIS
2006, pp. 51–78 (2006)

310 C. Gómez-Pantoja et al.

12. Raiciu, C., Huici, F., Rosenblum, D.S., Handley, M.: ROAR: Increasing the flexibility and
performance of distributed search. In: SIGCOMM 2009, pp. 291–302 (2009)

13. Saito, Y., Shapiro, M.: Optimistic replication. ACM Comput. Surv. 37, 42–81 (2005)
14. Santos, G., Duarte, A., Rexachs, D., Luque, E.: Providing Non-stop Service for Message-

Passing Based Parallel Applications with RADIC. In: Luque, E., Margalef, T., Benı́tez, D.
(eds.) Euro-Par 2008. LNCS, vol. 5168, pp. 58–67. Springer, Heidelberg (2008)

15. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A scalable peer-
to-peer lookup service for internet applications. SIGCOMM 31, 149–160 (2001)

16. Surana, S., Godfrey, B., Lakshminarayanan, K., Karp, R., Stoica, I.: Load balancing in dy-
namic structured peer-to-peer systems. Perform. Eval. 63, 217–240 (2006)

17. Willebeek-LeMair, M., Reeves, A.: Strategies for dynamic load balancing on highly parallel
computers. IEEE Transactions on Parallel and Distributed Systems 4(9), 979–993 (1993)

Topic 6: Grid, Cluster and Cloud Computing

Erik Elmroth, Paraskevi Fragopoulou, Artur Andrzejak, Ivona Brandic,
Karim Djemame, and Paolo Romano

Topic Committee

Grid and cloud computing have changed the IT landscape in the way we ac-
cess and manage IT infrastructures. Both technologies provide easy-to-use and
on-demand access to large-scale infrastructures. Grid and cloud computing are
major research areas with strong involvement from both academia and industry.
Although significant progress has been made in the design, deployment, oper-
ation and use of such infrastructures, many key research challenges remain to
achieve the goal of user-friendly, efficient, and reliable grid and cloud infras-
tructures. Research issues cover many areas of computer science to address the
fundamental capabilities and services that are required in a heterogeneous envi-
ronment, such as adaptability, scalability, reliability and security, and to support
applications as diverse as ubiquitous local services, enterprise-scale virtual orga-
nizations, and internet-scale distributed supercomputing. While there are several
differences, grid and cloud computing are closely related in their research issues.
Both areas will greatly benefit from interactions with the many related areas
of computer science, making Euro-Par an excellent venue to present results and
discuss issues.

The issues to be covered include but are certainly not limited to the following:
middleware; applications and platforms; interoperability and portability; aggre-
gation and federation of grids and clouds; efficient energy usage of resources;
resource/service/information discovery; resource management and scheduling;
programming models, tools, and algorithms; dependability, adaptability, and
scalability; security for grids and clouds; workflow management; accounting,
billing and business models; automated or autonomic management of resources
and applications; quality-of-service and Service-Level-Agreement.

– The paper entitled Scalable Reed-Solomon-based Reliable Local Storage for
HPC Applications on IaaS Clouds by Leonardo Bautista Gomez, Bogdan
Nicolae, Naoya Maruyama, Satoshi Matsuoka and Franck Cappello, intro-
duces a novel persistency technique that leverages Reed-Solomon (RS) en-
coding to save data in a reliable fashion on IaaS Cloud computing platforms
to be used for HPC applications. Compared to traditional approaches that
rely on block replication, this technique demonstrates about 50% higher
throughput while reducing network bandwidth and storage utilization by a
factor of 2 for the same targeted reliability level. This is achieved both by
modeling and real life experimentation on hundreds of nodes.

– Subsequently, the paper Caching VM Instances for Fast VM Provisioning:
A Comparative Evaluation, by Pradipta De, Manish Gupta, Manoj Soni

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 311–312, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

312 E. Elmroth et al.

and Aditya Thatte from IBM Research India, presents a method to over-
come the delays in transfer and booting time for the preparation of VMs
in cloud environments. Alternatively, a VM is prepared a priori, and saved
in standby state in a “cache” space collocated with the compute nodes. On
receiving a matching request, the VM from cache is instantly served to the
user, thereby reducing service time. Based on usage data collected from an
enterprise cloud, and through simulation, it is shown that a reduction of 60%
in service time is achievable.

– The paper Improving Scheduling Performance using a Q-Learning-based
Leasing Policy for Clouds by Alexander Fölling and Matthias Hofmann
from TU Dortmund University, presents a reinforcement learning-based pol-
icy which controls the maximum leasing size of cloud computing resources
with regard to the current resource/workload state and the balance between
scheduling benefits and costs in an online adaptive fashion. Furthermore, it
provides an appropriate model to evaluate such policies and presents heuris-
tics to determine upper and lower reference values for the performance eval-
uation under the given model. Using event driven simulation and real work-
load traces, the authors were able to investigate the dynamics of the learning
policy and to demonstrate the adaptivity on workload changes.

– Finally, the paper Impact of Variable Priced Cloud Resources on Scientific
Workflow Scheduling by Simon Ostermann, Radu Prodan from the Univer-
sity of Innsbruck, analyzes the problem of provisioning Cloud instances to
large scientific workflows that do not benefit from sufficient Grid resources
as required by their computational requirements. An extension is proposed
to the dynamic critical path scheduling algorithm to deal with the general
resource leasing model encountered in today’s commercial Clouds. The avail-
ability of the cheaper and unreliable Spot instances is analyzed and their
potential to complement the unavailability of Grid resources for large work-
flow executions are studied. Experimental results demonstrate that Spot in-
stances represent a 60% cheaper but equally reliable alternative to Standard
instances provided that a correct user bet is made.

We would like to take the opportunity of thanking the authors who submitted a
contribution, as well as the Euro-Par Organizing Committee, and the external
referees with their useful comments, whose efforts have made this conference and
this topic possible.

Scalable Reed-Solomon-Based Reliable Local Storage
for HPC Applications on IaaS Clouds

Leonardo Bautista Gomez1, Bogdan Nicolae2, Naoya Maruyama5,
Franck Cappello2,3, and Satoshi Matsuoka1,4

1 Tokyo Institute of Technology, Japan
2 INRIA, France

3 University of Illinois at Urbana Champaign, USA
4 National Institute of Informatics, Japan

5 RIKEN AICS, Japan

Abstract. With increasing interest among mainstream users to run HPC appli-
cations, Infrastructure-as-a-Service (IaaS) cloud computing platforms represent
a viable alternative to the acquisition and maintenance of expensive hardware,
often out of the financial capabilities of such users. Also, one of the critical
needs of HPC applications is an efficient, scalable and persistent storage. Un-
fortunately, storage options proposed by cloud providers are not standardized
and typically use a different access model. In this context, the local disks on
the compute nodes can be used to save large data sets such as the data gener-
ated by Checkpoint-Restart (CR). This local storage offers high throughput and
scalability but it needs to be combined with persistency techniques, such as block
replication or erasure codes. One of the main challenges that such techniques face
is to minimize the overhead of performance and I/O resource utilization (i.e., stor-
age space and bandwidth), while at the same time guaranteeing high reliability
of the saved data. This paper introduces a novel persistency technique that lever-
ages Reed-Solomon (RS) encoding to save data in a reliable fashion. Compared
to traditional approaches that rely on block replication, we demonstrate about
50% higher throughput while reducing network bandwidth and storage utiliza-
tion by a factor of 2 for the same targeted reliability level. This is achieved both
by modeling and real life experimentation on hundreds of nodes.

1 Introduction

In recent years High Performance Computing (HPC) applications have seen an increas-
ing adoption among mainstream users, both in academia and industry. Unlike “hero”
applications that are designed to run on powerful (and expensive!) supercomputers,
mainstream users typically need to run medium-sized jobs that need no more than a cou-
ple of thousands of cores. For these types of jobs, Infrastructure-as-a-Service (IaaS) [4]
cloud platforms present a viable alternative to purchasing dedicated resources: with
thousands of virtual machines (VMs) routinely allocated by large IaaS providers [2],
users can easily lease a virtual environment on the cloud for their HPC applications.

However, running HPC applications in an efficient fashion on IaaS clouds is chal-
lenging. One such open challenge is how to handle storage. Unlike supercomputing in-
frastructure, where storage is typically handled using a POSIX-compatible parallel file

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 313–324, 2012.
© Springer-Verlag Berlin Heidelberg 2012

314 L. Bautista Gomez et al.

system (e.g., GPFS [22] or PVFS [10]), IaaS clouds feature a large variety of specialized
storage solutions that are not standardized, which makes it difficult to port HPC appli-
cations. Furthermore, these storage services are often geared towards high-availability
rather than high performance, not to mention that they incur costs proportional to the
I/O space and bandwidth utilization. One solution to this problem is to rely on the local
storage available to the VM instances. In a common IaaS configuration, local storage is
plentiful (several hundreds of GB), up to an order of magnitude faster [17] and does
not incur any extra operational costs. Furthermore, most HPC applications can directly
take advantage of local storage or require little modifications to do so, which greatly
increases scalability.

Despite its obvious advantages, local storage has a major issue: it relies on com-
modity components that are prone to failures [24]. Even if local disks did not fail, they
would become inaccessible if their hosting compute nodes failed, effectively leading to
loss of data. As a consequence, we need to deal with the reliability of local storage in
order to be able to leverage it in our context. However, this invariably introduces an ad-
ditional overhead, both performance-wise and resource-wise. Current cloud storage ser-
vices achieve reliability and availability by replicating data, often three or more copies.
However, data replication is highly space and bandwidth consuming, and it leads to an
inefficient use of available resources. In this paper we explore the use of Reed-Solomon
(RS) [21] based erasure encoding to address the reliability requirement for local storage
in a scalable and efficient fashion. We aim to achieve a low overhead for our scheme,
such that it can sustain a high I/O data access throughput and a high reliability level
with minimal storage space and bandwidth utilization.

Our contributions can be summarized as follows:

– We propose a novel Reed-Solomon based encoding algorithm specifically opti-
mized to conserve total system bandwidth in scenarios where large amounts of data
are concurrently dumped to the local disks, which ultimately diminishes operational
costs and frees up more bandwidth for the applications themselves. (Section 3.1)

– We introduce a formal model to compare data-replication and RS encoding analyt-
ically in order to predict the storage space and network bandwidth utilization for
different levels of reliability. (Section 4)

– We show how to implement our approach in practice by integrating it into BlobCR
[19], a distributed checkpoint-restart framework that is specifically designed to take
persistent snapshots of local storage for HPC applications that are running on IaaS
clouds. (Section 3.2)

– We evaluate our approach experimentally on hundreds of nodes of the Grid’5000
testbed [7], both with synthetic benchmarks and a real-life application. These ex-
periments demonstrate significant improvement in performance and resource uti-
lization when compared to replication for the same reliability level. (Section 5)

2 Related Work

There is a rich storage ecosystem around IaaS clouds. Cloud providers typically offer
their own storage solutions, which are not standardized and expose a different access

Scalable Reed-Solomon-Based Reliable Local Storage for HPC Applications 315

model than POSIX: key-value stores based on REST-ful access APIs [3], distributed
file systems specialized for MapReduce workloads [23], database management sys-
tems [14], etc. Besides the disadvantages presented in Section 1, most of these solutions
are optimized for high-availability, under the assumption that data is frequently read and
only seldom updated. HPC applications on the other hand typically generate new data
often and need to read it back only rarely (e.g. checkpointing). The idea of leveraging
local storage for HPC applications running on IaaS clouds in a reliable fashion was in-
troduced before by our previous work: we presented BlobCR [19], a checkpoint-restart
framework that is able to take snapshots of local storage that survive failures. However,
in order to survive failures, BlobCR relies on replication, which can lead to excessive
use of storage space and bandwidth.

Different studies of block replication and erasure codes were performed before in
the context of RAID systems [8], whose implementation is at hardware level, as well
as for distributed data storage [25] implemented at the software level. More recently,
DiskReduce [12] and Zhe Zhang et al. [26] study the feasibility of replacing three-way
replication with erasure codes in cloud storage / large data centers. They are probably
the closest work to the technique proposed in this paper, going in a similar direction
and complementing our own approach: while they focus on space reduction and perfor-
mance, in this work we focus on limiting the network bandwidth consumption as much
as possible by using a novel low-communication RS encoding, which significantly de-
creases the application performance overhead.

RS encoding algorithms [15,11] similar to the proposal presented in our previous
work create encoding groups that encompass blocks stored on different nodes. Other
encoding techniques, such as bitwise XOR [16] also encode distributed blocks. Such
algorithms are suitable for scenarios such as coordinated checkpoint where multiple
distant processes need to reliably store data at the same time; in such context, distributed
blocks of data can be encoded after synchronization. However, these algorithms cannot
be used for a storage system where isolated writes will need to be performed without
imposing any synchronization with other processes. Therefore, a fundamental algorithm
change is necessary in order to encode isolated blocks of data.

3 Our Approach: A RS-Encoding Algorithm Proposal

In this section we introduce a novel low-communication RS encoding algorithm that
guarantees high reliability with a low bandwidth consumption. The key observation
leading to this choice is the widening gap between the cost of computational power
and network bandwidth, for which reason we try to conserve network bandwidth at the
expense of slightly higher CPU utilization.

We start with a quick overview of the RS encoding. As we can see in Figure 1(a),
the RS encoding takes a data vector and encodes it by performing a matrix-vector mul-
tiplication with a distribution matrix. To recover any m failures, any sub-square matrix
of the distribution matrix (including minor) must be non-singular. Thus, in practice we
usually use a Cauchy or a Vandermonde matrix [20]. While using RS encoding to en-
code distributed data, the data vector is composed by blocks of data of distant nodes.
In Figure 1(b), we can see the data to be encoded in the case of diskless checkpoint-
ing. Each process Pi holds blocks of data Bi j where j is the block index, going from

316 L. Bautista Gomez et al.

(a) Reed-Solomon encoding (b) Reed-Solomon for distributed data

Fig. 1. Reed-Solomon encoding study

1 to NB (Number of Blocks in the checkpoint file). The first data vector will be com-
posed of the first block of each checkpoint file, the second vector of the second block
of each checkpoint file, and so on. There are several ways to implement this compu-
tation, for example, one can use MPI reductions [15], a pipeline algorithm [11] or the
star algorithm proposed in our previous work [13]. However, all these algorithms re-
quire synchronizations while encoding the data. Furthermore, these algorithms produce
as much (or more) communications than data replication; therefore, none of them is
suitable for our purpose.

3.1 Low-Communication RS Encoding Algorithm

In an ideal setting where all m encodings generated by RS are stored on different nodes
(assuming that the data blocks themselves are stored on different nodes as well), the
system can tolerate m simultaneous erasures. However, this ideal scenario is costly in
terms of resource utilization, as it results in the need to employ dedicated parity nodes.
Thus, to leverage the available resources better, one idea is to store the encodings on
the same nodes where the data itself is stored. The distributed algorithm (Algorithm 1)
presented in our previous work [13,5] illustrates this idea. We propose to generate as
many encodings as the group size (m = k), while evenly distributing the encodings
among the same nodes where the data blocks are stored. Thus, one node failure will
lead to two erasures and each group will be able to tolerate up to 50% of failed nodes.

In order to avoid synchronizations between processes during the encoding, we pro-
pose a novel low-communication algorithm (Algorithm 2). Instead of encoding the ith

block of each one of the k nodes, we encode the first k blocks of each node and then we
scatter the k blocks of original data plus the k encodings on the k nodes of the group.
Notice that both algorithms encode the same amount of data and store all the original
and parity data on the encoding nodes, thus offering the same level of reliability.

With respect to bandwidth consumption, Algorithm 1 needs to transfer NB∗m blocks
in total. Since m = k, its communication cost is thus CommAlg1 = NB∗ k. On the other
hand, for Algorithm 2 we have CommAlg2 =

NB
k ∗ k ∗2 = NB∗2. By comparing the two

Scalable Reed-Solomon-Based Reliable Local Storage for HPC Applications 317

Algorithm 1. Distributed RS encod-
ing algorithm
1: � r : the process rank
2: � NB : the number of blocks
3: � k : the group size
4: � m : the number of encodings
5: for i← 1..NB do
6: Bri ← read ith block
7: for j ← 1..m do
8: T ←M(r+ j)r ∗Bri
9: Send T to Pr+ j

10: F ← Recv from Pr− j

11: Eri ← Eri +F
12: end for
13: writeEri

14: end for

Algorithm 2. Low-communication RS en-
coding algorithm
1: for i ← 0..(NB/k)−1 do
2: for j ← 1..k do
3: Br(i∗k+ j) ← read (i∗k+ j)th block
4: end for
5: for j ← 1..k do
6: for l ← 1..m do
7: Ei j ← Ei j +Mjl ∗Br(i∗k+l)
8: end for
9: end for

10: for j ← 1..k do
11: Send Br(i∗k+ j+r) and Ei(j+r) to Pj+r
12: Recv FB j and FE j from Pj−r
13: Write FB j and FE j

14: end for
15: end for

formulas one can easily notice that the low-communication algorithm is more band-
width friendly than the distributed algorithm. Particularly, in the case of the distributed
algorithm the data transferred over the network will increase proportionally with the
group size k, while the low-communication algorithm will keep it constant.

Figure 2(a) shows a performance comparison and time breakdown of both encod-
ing algorithms measured on Tsubame2 [1], for different numbers of cores (96 and 192
cores). Although communications and computation are overlapped in both cases, the
low-communication algorithm is 24% faster because of the data locality. Reducing com-
munications not only decreases the stress on the network but also increases cache effi-
ciency. For isolated writes on a storage system, one can design a system that implements
a multi-stage striping: each chunk of data that makes up the local storage can be itself
divided into the k blocks that are fed to the low-communication encoding algorithm.

3.2 Integration in Practice

In order to illustrate the benefits of the algorithm presented in the previous section in
practice, we have integrated our approach into BlobCR [19], a distributed checkpoint-
restart framework based on BlobSeer [18] that is specifically designed to take persis-
tent snapshots of local storage for HPC applications that are running on IaaS clouds.
BlobCR exposes local storage to the VM instances as virtual disks that can be attached
to them. The initial content of the virtual disk is striped into chunks and stored in a
distributed fashion among the participating storage elements. Whenever a virtual disk
is attached to a VM instance, an initially empty mirror of it is created on the local disk.
Reads to the virtual disk fetch any remote chunks not present in the mirror, gradually
filling it on-demand. Writes to the virtual disk are always performed on the mirror. A
special primitive can be used to persistently save the mirror as a new snapshot of the
virtual disk that is globally shared. This is done by distributing all locally modified

318 L. Bautista Gomez et al.

chunks among the storage elements, then by consolidating these changes using cloning
and shadowing.

In order to provide high reliability for the chunks that make up the disk snapshots,
BlobCR relies on the reliability scheme implemented in BlobSeer, which by default is
replication: each chunk is stored to multiple local disks. We implemented an alterna-
tive reliability scheme based on the algorithm presented in Section 3.1 which was then
integrated into BlobSeer. More precisely, instead of replicating each chunk to multiple
local disks, we perform a second level of striping that splits each chunk into k small,
equally sized blocks. These blocks form a group to which erasure coding is applied in
order to obtain a second group of k blocks that hold parity information. Once this step
has completed, we distribute the 2∗k blocks among a set of 2∗k different remote disks.

(a) Performance of Algorithm 1 vs. Algo-
rithm 2 (1 GB/core)

(b) Reliability of replication vs. RS encoding
(1000 nodes)

Fig. 2. Performance compared to previous work and reliability modeling

4 Reliability, Storage and Network Bandwidth Study

In this section we develop a model to predict the performance, storage and network
bandwidth cost of both approaches (data replication and RS encoding) for comparable
levels of reliability. As explained in Section 3, the distributed encoding algorithm is not
suitable for storage systems, therefore we do not include it in this comparison.

First, we focus on the reliability level of both approaches. We use the reliability
model presented in our previous work [6] to compute the probability of catastrophic
failures, i.e., failures that lead to unrecoverable data loss. This will depend on the num-
ber of simultaneous erasures and the probability of those erasures to hit the replicated
or parity data of a given data chunk. Figure 2(b) shows the difference of reliability for
five different settings: our approach using a group size of four and eight (denoted rs-4
and rs-8) vs. replication using a replication factor of two, three and four (denoted rep-2,
rep-3 and rep-4 respectively). Notice that rep-4 comes very close (without surpassing)
to rs-4 in terms of reliability only when the replication factor reaches 4. For this reason,
we consider rep-4 and rs-4 comparable in terms of reliability for the rest of this paper.

Scalable Reed-Solomon-Based Reliable Local Storage for HPC Applications 319

A fair comparison between both techniques should study the storage overhead and
performance overhead necessary to guarantee a comparable level of reliability. The
replication technique replicates chunks of data and stores them on multiple remote
disks. Similarly, the RS encoding technique generates parity data and stores it on mul-
tiple remote nodes. Let us assume that we want to reliably write a chunk of z bytes of
data. We assume a replication factor of k and an RS encoding group size of k. In the
replication approach we store a total of Strrep = z∗ k bytes of data. In contrast, for the
RS technique we need to split the chunk in k blocks, encode them and finally store a
total of Strrs = k ∗ z

k ∗ 2 = z ∗ 2 bytes in the system. As we can see, the replication ap-
proach becomes prohibitively expensive quickly, while RS encoding is scalable in terms
of storage. In addition, the amount of data transferred over the network is equal to the
amount of data stored for both approaches, which means that data replication transfers
more data than RS encoding for a similar level of reliability. For instance, rep-4 trans-
fers and stores two times more data than rs-4. However, we also should notice that the
RS technique imposes an overhead due to the encoding work. In the next section we
measure and compare the performance overhead of both approaches.

5 Experimental Evaluation

This section evaluates the benefits of our proposal both in synthetic settings and for
scientific HPC applications.

5.1 Experimental Setup

The experiments were performed on Grid’5000 [7], an experimental testbed for dis-
tributed computing that federates nine sites in France. We used 100 nodes of the griffon
cluster from the Nancy site, each of which is equipped with a quadcore Intel Xeon
X3440 x86 64 CPU with hardware support for virtualization, local disk storage of
278 GB (access speed !55 MB/s using SATA II AHCI driver) and 16 GB of RAM.
The nodes are interconnected with Gigabit Ethernet (measured 117.5 MB/s for TCP
sockets with MTU = 1500 B with a latency of !0.1 ms).

The hypervisor running on all compute nodes is KVM 0.14.0, while the operating
system is a recent Debian Sid Linux distribution. For all experiments, a 2 GB raw disk
image file based on the same Debian Sid distribution was used to boot the guest oper-
ating system of the virtual machine instances that run the user application.

5.2 Synthetic Benchmarks

Our first series of experiments evaluates the performance of our approach vs. replication
in two synthetic benchmarking scenarios. We compare the same five settings as in Sec-
tion 4. In all five settings we aim to measure the maximal theoretical performance levels
that can be achieved during checkpointing. We chose checkpointing because it is one of
the tasks that stress the most the storage. More specifically, we measure the sustained
throughput when checkpointing local modifications to the virtual disk that amount to
512MB. We omit running any application in parallel with the checkpointing process in

320 L. Bautista Gomez et al.

 0

 20

 40

 60

 80

 100

128K 256K 512K 1024K 2048K

T
hr

ou
gh

pu
t (

M
B

/s
)

Block size

rep-2
rep-3
rep-4

rs-4
rs-8

(a) Single checkpointer, variable chunk size

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50 60 70 80

A
ve

ra
ge

 th
ro

ug
hp

ut
 (

M
B

/s
)

Number of concurrent checkpointers

rep-2
rep-3
rep-4

rs-4
rs-8

(b) Increasing nr. of concurrent checkpoint-
ers, fixed chunk size (512K)

Fig. 3. Our approach vs. replication: Sustained throughput when checkpointing 512MB worth of
data (no computation running in parallel)

order to better control the experimental setting and eliminate any influence caused by
the computation. Instead, the local modifications are simply randomly generated data
that is written to the virtual disk before checkpointing.

The first benchmarking scenario evaluates how the chunk size impacts the sustained
throughput. To this end, we deploy BlobCR on all available nodes (100) and run a
single checkpointing process in each of the five settings using a variable chunk size,
ranging from 128K to 2048K. The results are depicted in Figure 3(a). As expected, rep-
2, rep-3 and rep-4 roughly achieve 1/2, 1/3 and 1/4 of the maximal throughput, with
a slightly increasing trend as the chunk size gets larger (which is the consequence of
fewer messages and thus lower overhead due to latency). This trend is observable for
rs-4 and rs-8 too, slightly more pronounced due to the larger number of messages (i.e.
4 and 8 respectively per chunk).

When comparing our approach to replication, the advantage of lower amount of data
transfer is clearly visible: for 2048K chunks, rs-4 achieves a throughput that is 38%
higher than rep-4 while guaranteeing a comparable reliability level. At the same time,
it reduces bandwidth and storage space utilization by more than 100% as predicted by
our model (See Section 4). Comparing rs-4 to rep-2 (which consumes the same amount
of bandwidth and storage space), we observe a decrease in throughput of less than 20%.
This overhead is a worthwhile investment, considering that rs-4 increases the reliability
level over rep-2 by several orders of magnitude. Even for small chunk sizes (going
as low as 128KB), the advantage of our approach is clearly visible: the throughput
achieved by rs-4 is only 24% lower than rep-2 and more than 25% higher than rep-
4. Finally, we note better scalability for our approach: rs-8 is already 33% faster than
rep-4, while increasing the reliability level yet again several orders of magnitude.

So far we have analyzed our approach vs. replication for a single checkpointing
process only. Our second benchmarking scenario evaluates how the five settings com-
pare in a highly concurrent setting where an increasing number of checkpointing pro-
cesses need to save the checkpointing data simultaneously and thus compete for the
system bandwidth. We fix the chunk size to 512K and gradually increase the number of

Scalable Reed-Solomon-Based Reliable Local Storage for HPC Applications 321

checkpointing processes, from one up to 75, while measuring the average sustained
throughput. These results are represented in Figure 3(b).

As can be observed, all five approaches suffer a performance degradation with in-
creasing number of checkpointing processes. In case of rep-2, the throughput drops
from 47 MB/s to little over 20 MB/s. Although starting lower than rep-2, both rs-4 and
rs-8 catch up with rep-2 under concurrency: the average throughput drops to 20 MB/s
and 19 MB/s respectively. This shows that competition for system bandwidth effec-
tively hides the encoding overhead of our approach at larger scales, enabling it to be
more scalable: we sustain virtually the same throughput as rep-2 for the same storage
space and bandwidth utilization, albeit at a much higher resilience level. Compared to
rep-3 and rep-4, where the throughput drops to little over 10 MB/s, we can observe an
even more dramatic improvement than in the case of a single checkpointing process: we
sustain a throughput almost 100% higher while keeping the same reliability level (rs-4)
and even increasing it several levels of magnitude (rs-8).

5.3 Real-Life Application: CM1

In the previous section we have evaluated the throughput of our persistent storage under
concurrency for an ideal environment where no application is running. However, in
real life the application continues running after requesting a virtual disk snapshot to
be taken, while the virtual disk snapshot is persisted in the background. This limits
the amount of resources available to the persistency process: (1) there is less overall
available system bandwidth, as the application generates network traffic; (2) there is
less available computational power on each compute node, as the application processes
run inside the virtual machine and consume CPU.

To illustrate the impact of these limitations in real life, we have chosen CM1: a
three-dimensional, non-hydrostatic, non-linear, time-dependent numerical model suit-
able for idealized studies of atmospheric phenomena. This application is used to study
small-scale phenomena that occur in the atmosphere of the Earth (such as hurricanes)
and is representative of a large class of HPC applications that perform stencil (nearest-
neighbor) computations.

 0

 5

 10

 15

 20

 25

 30

 0 50 100 150 200 250 300

C
he

ck
po

in
tin

g
th

ro
ug

hp
ut

 (
M

B
/s

)

Number of processes

rs-4
rep-4

(a) Asynchronous checkpointing throughput
(higher is better)

 0

 20

 40

 60

 80

 100

 120

 140

 0 50 100 150 200 250 300

C
om

pl
et

io
n

tim
e

(s
)

Number of processes

rs-4
rep-4

(b) Time to finish running the application
(lower is better)

Fig. 4. Our approach vs. replication: Performance in the real world (CM1)

322 L. Bautista Gomez et al.

We perform a weak scalability experiment that solves an increasingly large problem
(constant workload per core), starting from 16 processes up to 256 processes. As input
data for CM1, we have chosen a 3D hurricane that is a version of the Bryan and Rotunno
simulations [9]. The processes are distributed in pairs of four among virtual machine
instances that are allotted 4 cores, such that each process has its own dedicated core.
This represents the worst case scenario for our approach, as the block encoding must
compete with the application processes. We compare two approaches that offer the same
reliability level: rs-4 and rep-4. The checkpointing frequency is fixed such that a single
checkpoint is taken throughout the application run-time.

The results are depicted in Figure 4. As expected, the average checkpointing through-
put (Figure 4(a)) is smaller than in the ideal case (See Section 5.2) and drops with
increasing number of processes. The combined effects of both concurrent checkpoint-
ing and application communication quickly saturate the system bandwidth in the case
of rep-4, which leads to a dramatic drop in average checkpointing throughput from
22 MB/s to 8 MB/s. Our approach on the other hand is more scalable: it presents a drop
from 16 MB/s to 12 MB/s. Unlike the ideal case, this time rs-4 is significantly slower
because less computation power is available for encoding. Nevertheless, it is still 50%
faster than rep-4 in the worst case and has the potential to become even 150% faster if
a dedicated core can be spared for the encoding. Taking a look at the completion times
(Figure 4(b)), rs-4 is again much more scalable: the completion time increases from
60s to 100s, which is 35% less than the increase observed in the case of rep-4 (135s).
This advantage of rs-4 over rep-4 can be traced back to the twice as lower bandwidth
consumption, which effectively increases the bandwidth available to the application.

6 Conclusions

A large class of HPC applications can take advantage of local storage in order to im-
prove performance and scalability while reducing resource utilization, however doing
so raises reliability issues. In this paper we have presented a scalable Reed-Solomon
based algorithm that provides a high degree of reliability for local storage at the cost of
very low computational overhead and using a minimal amount of communication.

We demonstrated the benefits of our approach both theoretically through a perfor-
mance and resource utilization model, as well as in practice through extensive experi-
ments performed on the G5K testbed. Compared to transitional approaches that rely on
replication, we show up to 50% higher throughput and 2x lower bandwidth / storage
space consumption for the same reliability level, which improves overall performance
of a real life HPC application (CM1) up to 35%.

Based on these results, we plan to explore in future work the issue of reliability
of local storage in greater detail. In particular, we are investigating how to extend our
approach to enable high availability of data under concurrent read scenarios: in this
context, parity information could be used to avoid contention to the original data. This
is important for a large number of HPC applications that need to share the same initial
datasets between processes.

Scalable Reed-Solomon-Based Reliable Local Storage for HPC Applications 323

Acknowledgments. This work was supported in part by the ANR-10-01-SEGI project,
the ANR-JST FP3C project and the Joint Laboratory for Petascale Computing, an
INRIA-UIUC initiative. The experiments presented in this paper were carried out us-
ing the Grid’5000/ALADDIN-G5K experimental testbed, an initiative of the French
Ministry of Research through the ACI GRID incentive action, INRIA, CNRS and RE-
NATER and other contributing partners (see http://www.grid5000.fr/).

References

1. Tsubame2, http://tsubame.gsic.titech.ac.jp
2. Amazon Elastic Compute Cloud (EC2), http://aws.amazon.com/ec2/
3. Amazon Simple Storage Service (S3), http://aws.amazon.com/s3/
4. Armbrust, M., Fox, A., Griffith, R., Joseph, A., Katz, R., Konwinski, A., Lee, G., Patterson,

D., Rabkin, A., Stoica, I., Zaharia, M.: A view of cloud computing. Commun. ACM 53,
50–58 (2010)

5. Bautista-Gomez, L.A., Nukada, A., Maruyama, N., Cappello, F., Matsuoka, S.: Low-
overhead diskless checkpoint for hybrid computing systems. In: HiPC 2010: Proceedings
of the 2010 International Conference on High Performance Computing, Goa, India, pp. 1–10
(2010)

6. Bautista-Gomez, L.A., Tsuboi, S., Komatitsch, D., Cappello, F., Maruyama, N., Matsuoka,
S.: FTI: high performance fault tolerance interface for hybrid systems. In: SC 2011: 24th
International Conference for High Performance Computing, Networking, Storage and Anal-
ysis, Seattle, USA, pp. 32:1–32:12 (2011)

7. Bolze, R., Cappello, F., Caron, E., Daydé, M., Desprez, F., Jeannot, E., Jégou, Y., Lanteri, S.,
Leduc, J., Melab, N., Mornet, G., Namyst, R., Primet, P., Quetier, B., Richard, O., Talbi, E.G.,
Touche, I.: Grid’5000: A large scale and highly reconfigurable experimental grid testbed. Int.
J. High Perform. Comput. Appl. 20, 481–494 (2006)

8. Brown, A., Patterson, D.A.: Towards availability benchmarks: a case study of software raid
systems. In: ATEC 2000: Proceedings of the USENIX Annual Technical Conference, pp.
22:1–22:15. USENIX Association, San Diego (2000)

9. Bryan, G.H., Rotunno, R.: The maximum intensity of tropical cyclones in axisymmetric
numerical model simulations. Journal of the American Meteorological Society 137, 1770–
1789 (2009)

10. Carns, P.H., Ligon, W.B., Ross, R.B., Thakur, R.: PVFS: A parallel file system for Linux
clusters. In: Proceedings of the 4th Annual Linux Showcase and Conference, Atlanta, USA,
pp. 317–327 (2000)

11. Chen, Z., Dongarra, J.: A scalable checkpoint encoding algorithm for diskless checkpoint-
ing. In: HASE 2008: Proceedings of the 11th IEEE High Assurance Systems Engineering
Symposium, pp. 71–79. IEEE Computer Society, Nanjing (2008)

12. Fan, B., Tantisiriroj, W., Xiao, L., Gibson, G.: Diskreduce: Raid for data-intensive scalable
computing. In: PDSW 2009: Proceedings of the 4th Annual Workshop on Petascale Data
Storage, pp. 6–10. ACM, Portland (2009)

13. Gomez, L.A.B., Maruyama, N., Cappello, F., Matsuoka, S.: Distributed diskless checkpoint
for large scale systems. In: CCGRID 2010: Proceedings of the 10th IEEE/ACM Interna-
tional Conference on Cluster, Cloud and Grid Computing, CCGRID 2010, pp. 63–72. IEEE
Computer Society, Melbourne (2010)

14. Lakshman, A., Malik, P.: Cassandra: A decentralized structured storage system. SIGOPS
Oper. Syst. Rev. 44, 35–40 (2010)

http://www.grid5000.fr/
http://tsubame.gsic.titech.ac.jp
http://aws.amazon.com/ec2/
http://aws.amazon.com/s3/

324 L. Bautista Gomez et al.

15. da Lu, C.: Scalable Diskless Checkpointing for Large Parallel Systems. Ph.D. thesis, Univ.
of Illinois at Urbana-Champaign (2005)

16. Moody, A., Bronevetsky, G., Mohror, K., de Supinski, B.R.: Design, modeling, and evalu-
ation of a scalable multi-level checkpointing system. In: SC 2010: Proceedings of the 23rd
International Conference for High Performance Computing, Networking, Storage and Anal-
ysis, pp. 1–11. IEEE Computer Society, New Orleans (2010)

17. Nadgowda, S.J., Sion, R.: Cloud Performance Benchmark Series: Amazon EBS, S3, and EC2
Instance Local Storage. Tech. rep., Stony Brook University (2010)

18. Nicolae, B., Antoniu, G., Bougé, L., Moise, D., Carpen-Amarie, A.: BlobSeer: Next-
generation data management for large scale infrastructures. J. Parallel Distrib. Comput. 71,
169–184 (2011)

19. Nicolae, B., Cappello, F.: BlobCR: Efficient Checkpoint-Restart for HPC Applications on
IaaS Clouds using Virtual Disk Image Snapshots. In: SC 2011: 24th International Confer-
ence for High Performance Computing, Networking, Storage and Analysis, Seattle, USA,
pp. 34:1–34:12 (2011)

20. Plank, J., Xu, L.: Optimizing cauchy reed-solomon codes for fault-tolerant network storage
applications. In: Fifth IEEE International Symposium on Network Computing and Applica-
tions, NCA 2006, pp. 173–180 (July 2006)

21. Reed, I.S., Solomon, G.: Polynomial codes over certain finite fields. Journal of the Society
for Industrial and Applied Mathematics 8(2), 300–304 (1960)

22. Schmuck, F., Haskin, R.: GPFS: A shared-disk file system for large computing clusters. In:
FAST 2002: Proceedings of the 1st USENIX Conference on File and Storage Technologies,
Monterey, USA (2002)

23. Shvachko, K., Huang, H., Radia, S., Chansler, R.: The Hadoop distributed file system. In:
MSST 2010: 26th IEEE Symposium on Massive Storage Systems and Technologies, pp.
1–10 (2010)

24. Vishwanath, K.V., Nagappan, N.: Characterizing cloud computing hardware reliability. In:
SoCC 2010: Proceedings of the 1st ACM Symposium on Cloud Computing, Indianapolis,
USA, pp. 193–204 (2010)

25. Weatherspoon, H., Kubiatowicz, J.D.: Erasure Coding Vs. Replication: A Quantitative Com-
parison. In: Druschel, P., Kaashoek, M.F., Rowstron, A. (eds.) IPTPS 2002. LNCS, vol. 2429,
pp. 328–338. Springer, Heidelberg (2002)

26. Zhang, Z., Deshpande, A., Ma, X., Thereska, E., Narayanan, D.: Does erasure coding have a
role to play in my data center? Tech. Rep. MSR-TR-2010-52, Microsoft Research (2010)

Caching VM Instances for Fast VM Provisioning:
A Comparative Evaluation

Pradipta De1, Manish Gupta1, Manoj Soni2, and Aditya Thatte1

1 IBM Research India, New Delhi
{pradipta.de,gmanish,adthatte}@in.ibm.com

2 Georgia Institute of Technology, Atlanta, GA, USA
manojsoni@gatech.edu

Abstract. One of the key metrics of performance in an infrastructure cloud is
the speed of provisioning a virtual machine (or a virtual appliance) on request.
A VM is instantiated from an image file stored in the image repository. Since
the image files are large, often GigaBytes in size, transfer of the file from the
repository to a compute node running the hypervisor can take time in the order of
minutes. In addition to it, booting an image file can be a time consuming process if
several applications are pre-installed. Use of caching to pre-fetch items that may
be requested in future is known to reduce service latency. In order to overcome
the delays in transfer and booting time, we prepare a VM a priori, and save it in a
standby state in a “cache” space collocated with the compute nodes. On receiving
a matching request, the VM from the cache is instantly served to the user, thereby
reducing service time. In this paper, we compare multiple approaches for pre-
provisioning and evaluate their benefits. Based on usage data collected from an
enterprise cloud, and through simulation, we show that a reduction of 60% in
service time is achievable.

1 Introduction

Time to service a request for a new virtual machine in a cloud can often require several
minutes. The complete workflow beginning with receiving a request till a new virtual
machine is delivered to the user, follows a number of steps. First, the requested machine
image template from which the VM must be instantiated is looked up in the image
repository, then the image template file is copied to a compute host and the VM is
then booted up. Image template files are very large in size, often in GigaBytes range.
Transferring such large files over the network is time consuming. In addition to it, the
boot process can be slow depending on the number of pre-installed components in the
image. Due to these bottlenecks [8,19], servicing a provisioning request can take a long
time.

In order to speed up virtual server provisioning, there have been approaches to expe-
dite the transfer of the large template files using different streaming techniques [4, 18].
Caching of the template files at the compute nodes to mask the transfer latency has also
been explored [8]. To reduce the boot time, one approach is to instantiate a VM, and
store it in a standby mode in the cache. This saves the time to create an instance from
a template and boot the VM. In essence, an inventory of readily deliverable VMs are
maintained based on user request patterns.

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 325–336, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

326 P. De et al.

In this work, we compare 3 techniques for pre-provisioning VM instances. Given
a fixed size cache space, each technique comes up with the composition of the inven-
tory. In other words, for a template type, the expected number of VM instances to be
requested is calculated and pre-provisioned. If a request matches a pre-provisioned VM
instance, it is delivered with minimal delay to the user. The cache or VM inventory
space is freed up when a VM instance is delivered to a user. The inventory is replen-
ished periodically with new VM instances. We have analyzed the server request trace
from an enterprise-wide cloud deployment to study the request pattern. We compare
three approaches to highlight the benefits of each technique in maintaining the inven-
tory or cache of VM instances for reducing the server provisioning time in cloud.

The rest of the paper is organized as follows. In Section 2, we present literature
related to caching in different contexts. In Section 3, we present an overview of the
cloud architecture, along with our simulation approach. Section 4 presents the pre-
provisioning methodologies. In Section 5, we present detailed simulation results show-
ing the benefits of pre-provisioning. Finally we conclude in Section 6.

2 Related Work

Caching as a technique has been extensively researched, specially in the domain of
operating system and design of memory hierarchies. Our focus is more on the use of
caching techniques in the context of cloud.

Web Caching and CDN: Application of caching serve content that is accessed repet-
itively over the Internet has been well studied [6]. Pre-fetching web resources by an-
ticipating future trends is a challenging problem. Usage prediction methods, that apply
clustering [11], neural networks [13], have proved to be of limited benefit. [6] reports
that cache hit rates can rarely cross 40-50%. Instead of tackling the problem of usage
prediction using standard methods, in this work we gain insight into the peculiarities of
a trace to leverage the usage pattern.

In web caching, often the most common cache replacement strategy of replacing
the Least-Recently-Used (LRU) item works quite well, as shown in [16]. However, in
a cloud, requests from one user may arrive in bursts, therefore, the replacement policy
may be inefficient if replacement is performed one item at a time. Rather, in our strategy
we predict the most suitable set of image templates, as well as, the number of VM
instances of each type.

Content Delivery Networks(CDN) uses caching at Internet scale. The key idea in
CDN is to push content closer to the user before a request arrives. [12] proposes schedul-
ing algorithms to push content in a timely manner to proxy cache servers, while [1]
discusses a cooperative cache management scheme to maximize traffic volume served
from the cache. These schemes can be useful in pushing the cloud images nearer to the
user, but we are also interested in maintaining multiple instances of a template.

Caching in Cloud Context: Caching machine image templates has been studied in grid
and cluster environments. In [8], Emeneker et al. show that caching of a virtual image
can speed up execution of parallel jobs. However, they do not explore the pros and cons
of different caching approaches.

Caching VM Instances for Fast VM Provisioning: A Comparative Evaluation 327

Predictive methods are used more frequently in cloud context in order to manage
resource requirement. Tackling the problem of when to scale resources by adding more
VMs, or how many resources to apportion to a cloud setup has been addressed by sev-
eral works. In [2], the authors develop a forecasting method to predict resource demand
in a cloud by using historic data. An approach to auto-scale during flash crowds is pre-
sented in [20]. Use of cloning or de-duplication techniques to quickly add new VMs
have been addressed in [10]. In our method, we deliver the server instance instantly if
there is a cached VM instance matching the request to avoid the overhead of cloning.

Several works identify that fetching an image from a central repository takes up sig-
nificant proportion of the service time of a request [8,19]. A BitTorrent-like distribution
system has been proposed to speed up image delivery in [4]. A similar image streaming
approach, by breaking up an image in chunks, has been proposed in [18]. We are com-
plementary to these schemes since we can leverage the speedy distribution of the image
once it has been identified by our scheme.

Moka5 provides a solution for desktop virtualization, where desktop snapshots are
generated at regular intervals and stored in a central repository [3, 14]. However, it
assumes a large storage repository and does not present any intelligent caching mech-
anism to speed up the delivery of images. Similarly, Eucalyptus cloud management
system mentions the use of caching without providing details [9, 15]. Even, Amazon
mentions that frequent users will have the benefit of a faster turnaround time which
hints at underlying caching. IBM Workload Deployer, previously known as WebSphere
CloudBurst Appliance, also mentions the use of caching [5]. However, caching prepared
VM instances, as opposed to image templates, distinguishes our work.

Inventory Management: A close look at our technique reveals that it is closest in
design to an inventory management system. Whenever a matching request arrives, an
instance of an image template is used up, and the inventory (cache) must be replenished
efficiently at a minimum cost. The problem of lot sizing in inventory management [7]
deals with selecting the appropriate quantities of each item to be provisioned in the
inventory. Similar to inventory management, it is necessary to predict the appropriate
number of each image template to be kept in the cache.

3 System Model and Assumptions

A typical cloud setup maintains a farm of compute nodes. The compute nodes are used
to instantiate virtual machines from user-specified image templates, which are stored in
an image repository. When a user makes a request for a new server instance, the request
is first intercepted by the cloud provisioning engine. The provisioning engine checks
for the available image type in the repository, and initiates a transfer of the image to
a compute host. Once the image is transferred to a compute host, it is expanded, and
booted to create an instance of a virtual machine. The SAN store is used for provid-
ing the user data space, similar to Amazon’s Elastic Block Storage (EBS). Besides the
provisioning requests, a user may also request deletion of an instance. Fig. 1 shows the
different components of the cloud architecture.

328 P. De et al.

Fig. 1. Cloud architecture overview showing different functional components

3.1 Simulation Model

We model the cloud provisioning engine as a multi-server queuing system. Each server
is modeled such that it handles a thread to service a request in the provisioning engine.
Assuming infinite servers in the model, we can accurately compute the time to service
each request, referred to as service time, since there is no delay in the queue. In order
to model the service time of each request, we introduce a start-event and finish-event
for each event type. For example, a provision request is modeled using a start and finish
event for that type. Corresponding events for deletion requests are introduced.

User Request Queue
(ProvisionReqs,DeleteReqs)

Request
type

Exists in
cache

Provision Request

Trigger cache policies
For update

updateCacheDecisions(){
run MFU policy;
run Burst policy;
run InterArrival Policy;
determine CacheDecisions;

}

Current user request

CacheUpdateDecisions

Delivery from Cache

Normal Provisioning

Yes

No

User request
pending

Cache update
required

Queue
empty

END

Yes

No

Yes

Initiate cache update
Yes

No

No

Normal Deletion

Deletion Request

Fig. 2. Flowchart showing the steps in the simulator

In order to quantify the benefits of pre-provisioning, events denoting cache pre-filling
event and cache entry deletion event are introduced. We assume that a fixed amount of
space is available for pre-provisioning; therefore, we can only pre-provision a fixed
number of VM instances. Before inserting a new VM instance, that are determined by
the cache update policies, an instance may be deleted from the cache. The pre-fetch
action never blocks a request already queued in the provisioning engine. However, once

Caching VM Instances for Fast VM Provisioning: A Comparative Evaluation 329

a pre-provision action is triggered, it must complete before releasing the thread. If a
user request arrives while pre-fetching is in progress, then the user request must wait,
thereby increasing its service time. Fig. 2 shows the flowchart for the simulator.

4 Pre-provisioning Techniques

In this section, we present the techniques for selection of the cache composition at
periodic intervals. First an analytical model is explained to motivate the approaches,
followed by three main approaches for selection of items to place in the cache.

4.1 Analytical Model for Pre-provisioning

The provisioning engine is modeled as a single server queue, with an additional cache
entity that can store exactly one VM instance at a time. Request arrival for image-
type-1(I1), and image-type-2(I2) follows Poisson distribution, with rates λ1 and λ2

respectively. The service time for each server request is image-type dependent, and
exponentially distributed with rates, μ1 and μ2 respectively. A pre-provisioned instance
is fetched and cached only if the cache is empty and there is no pending user request in
the queue. If a request for a server instance arrives before the pre-provisioning request
is complete, the pre-provisioning request is canceled, thereby leaving the cache empty.
The cache entry is purged if there is a cache miss. On cache hit, the request is serviced
instantaneously, implying zero service time.

The caching policy can be stated as follows: Create an instance of I1 with probability
p, otherwise create an instance of I2 with probability (1 − p) whenever the system is
detected to be idle. Our aim is to find the value of p such that it minimizes the average
end-to-end provisioning time for the requests.

Theorem 1. Under the stated assumptions, the optimal policy is to set p = 1, other-
wise set p = 0, if the following condition holds.

λ1

λ1+λ2+μ1
> λ2

λ1+λ2+μ2

Proof. Since the arrival and service processes are memory-less, due to our assumption,
therefore, the evolution of the process does not depend on past history. Minimizing the
expected service time is equivalent to maximizing the reduction in service time by using
the cache. The reduction in expected service time can be represented as:

p(μ1

λ1+λ2+μ1
)(λ1

λ1+λ2
) 1
μ1

+ (1− p)(μ2

λ1+λ2+μ2
)(λ2

λ1+λ2
) 1
μ2

The first and second terms in the expression corresponds to time reduction when I1 and
I2 are chosen respectively. Within each block in the expression, μ1

λ1+λ2+μ1
corresponds

to the probability that pre-provisioning I1 completes before next request arrival; λ1

λ1+λ2

denotes probability of arrival of I1 request before I2 request; and 1
μ1

is the expected
savings. The expression has the structure pA + (1− p)B where A > 0 and B > 0 are
constants. Now if A > B then the expression will be maximized by choosing p = 1
otherwise by choosing p = 0. ��

330 P. De et al.

If the service rates for two image types are identical (μ1 = μ2), then I1 would be the
optimal choice for cache if λ1

λ1+λ2
> λ2

λ1+λ2
, and vice versa. Given a window of R

requests from history, an image type with the highest request count within the window
should be cached.

Following notations are used henceforth to explain the techniques.
R := number of user requests asking for new image instances within a given time win-
dow
N := number of image templates used to create the R requests within a given time win-
dow
fij := 1 if the jth request is for the template i, otherwise 0
C := Maximum number of image instances that can be kept in the pre-provisioned in-
ventory

4.2 Techniques for Pre-provisioning

Most-Frequently-Used (MFU) strategy leverages the insight of popularity based caching
from Section 4.1. Within a window of R past requests, it computes the requests for type
i as fi =

∑
1≤j≤R fij . The order of importance of an image is proportional to fi. Now,

given a cache size of C, the cache is completely filled up using the following formula:

Ci = wi ∗ C, (1)

where wi is computed as,

wi =

∑
1≤j≤R fij∑

1≤i≤N

∑
1≤j≤R fij

(2)

The MFU approach implicitly assumes that the request distribution for an image type is
stationary within the history window. In practice, the popularity of an image may fade
over time, thereby falsifying the stationarity assumption necessary for MFU to perform
effectively. If time elapsed since the last request for an image template is large, then we
can assume that the likelihood of a request for that image template is low. Thus, it is
required to take into account the time of arrival of a request while selecting the cache
composition.

In Most-Recently-Used(MRU) approach, we adjust wi for a template i by attenuat-
ing the contribution of instances whose requests are older. Values can be attenuated
by applying different functions. For instance, a naive approach is to reduce the values
proportional to the time elapsed since the arrival of an instance request for a specific
type. Alternatively, one can assign high importance to recent image types with the as-
sumption that image types go out of fashion very quickly. The attenuated weight, w′

i,
factoring in the temporal aspect, is expressed as,

w′
i =

∑
1≤j≤R A(j, fij)∑

1≤i≤N

∑
1≤j≤R A(j, fij)

(3)

where, A(x, y) is the attenuation function and can be expressed as, A(x, y) = y ∗
exp(−x). The new weights, w′

i, are used in Eqn-1 to compute the number of instances
of an image template to be cached.

Caching VM Instances for Fast VM Provisioning: A Comparative Evaluation 331

In MFU and MRU, selection is based on the popularity of an image and the available
cache size. If the cache size is large, MFU and MRU may populate the cache with a large
count of VMs of a template, although in practice, the maximum request count for the
template is lower than the cached count. This allows the opportunity to fill the cache
more judiciously, thereby saving the resource wastage for deleting an unused cache
entry during next refresh. Burst Adjustment(BA) technique, finds the largest burst, Bi,
that an image template i has encountered in the request history of R requests, and then
uses Bi to limit the number of VM instances for image template i in cache. Represented
mathematically, the number of VM instances of image type i in cache, is:

Burst adjusted Ci = min(w′
i ∗ C, Bi) (4)

Note that the selection step in Eqn-2 or Eqn-4 computes fractional numbers. During
actual provisioning, VM instances occupy integral values, derived by rounding the frac-
tions. This leads to some VM instances, with a low fractional value, being dropped from
selection while allocating in decreasing order of the count. A simple example, where
the cache can store 10 VM instances, illustrates the effect of rounding. At the end of
BA technique, VMs of 3 image types are to be cached with instance count [6.7, 2.6,
0.7] respectively. Rounding the values changes the allocation to [7, 3, 0] respectively,
thereby discarding the third image type, thus affecting the cache hit rate.

5 Experimental Evaluation

In this section, we show the results of evaluating the pre-provisioning approaches using
simulation. We explain the simulation parameters, and provide a summary of the RC2
trace data which helps in understanding the results.

5.1 Simulation Parameters

Table 1 shows the simulation parameters used in the experiments. Three key parame-
ters are: (a) cache size denotes the total number of instances of VMs that can be pre-
provisioned, (b) history window denotes the number of past requests that are taken into
consideration while computing the cache composition, (c) pool-size denotes the num-
ber of available threads or resources that can be dedicated for computations such as
deletion, pre-provisioning. Cache-update-interval parameter is used to trigger the com-
putation of cache composition periodically.

Few other parameters relevant for evaluating the caching techniques are: (i) cache
entry insertion time accounts for the time to fetch an image from repository and place
it in the cache, (ii) cache entry deletion time accounts for the time to delete an entry
from the cache, (iii) service time on cache hit accounts for the time to deliver a cached
instance to the user request. Cache hit service time is non-zero because some user-
defined configurations may need to be set up prior to delivering the VM to the user.

The MRU technique uses an attenuation function to assign higher importance to the
recent requests. A negative exponential function with a mean of 10.0 is used(refer Eqn-
3). In the BA technique, we compute the burst size by clustering all requests of an image
type that arrive within the cluster size of burst.

332 P. De et al.

Table 1. Simulation Parameters

Simulation Parameter Parameter Value
Cache Size 30 (or as mentioned)

History Window 1000 (or as mentioned)
Pool Size 100 (or as mentioned)

Cache Update Interval 15 mins
Cache Entry Insertion time 10 mins
Cache Entry Deletion time 2 mins

Servicing time on Cache Hit 2 mins
MRU Policy Parameter 10.0
Cluster Size for Burst 11 mins

5.2 RC2 Trace Summary

We collected a 1 year request log from the Research Compute Cloud (RC2), which is a
cloud computing platform for use by the worldwide IBM Research community [17]. It
serves on average 200 active users and 800 VM instances per month, with a user base
of 700 users. 10200 requests were logged during the 1-year observation period. For
each request, the time of arrival of the provision request and deletion request, as well
as, the time taken to provision the request is collected. Provision time is the end-to-end
time from the request arrival to the user being notified of successful deployment of the
virtual machine.

1088 unique image types were requested by 743 different users over the 1-year pe-
riod. Less than 10 server instances were requested for 890 image templates, with just a
single request for 453 image types, making request density for an image template quite
sparse. Requests for the top 15 image types constitute only 26% of the total requests
serviced. Another trend in request arrival is the presence of requests for an image type
arriving in bursts, which could happen when a multi-tier application is being set up with
similar servers. Even if one request from this group takes longer, it will force the user
to wait. Therefore, an efficient caching strategy must try to provision all the instances
during a burst.

5.3 Simulation Results: Using RC2 Trace Data

We compare the cache hit ratio with a varying cache size, as shown in Fig. 3. Beyond
a cache size of 20, the BA technique outperforms all other techniques. When the cache
size is less than 20, then according to Eqn-4, the MRU method performs better than the
BA technique; thereby the results for both of them are identical.

Results for varying history window are shown in Fig. 4 The LRU method is not
impacted by a varying history window because it always replaces the least recently
used entry from the cache without looking at the history. The MFU technique may
degrade in performance with an increasing history window because when the history
size is increased, several image types which are old are often never requested again.
Therefore, giving equal importance to all requests, without taking temporal aspect into
account, leads to a degraded performance for MFU. The performance improves as soon

Caching VM Instances for Fast VM Provisioning: A Comparative Evaluation 333

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

Fixed History Size of 1000 requests
No queuing delay for a request

Cache Size (No of Entries)

C
ac

he
 H

it
R

at
io

 (
%

)

MFU
MRU
Burst
LRU

Fig. 3. Comparison of different techniques on
RC2 trace data, where cache size is varied

0 500 1000 1500
25

30

35

40

45

50

55

60

Fixed Cache Size of 30 entires
No queuing delay for a request

History Window (No of Requests)

C
ac

he
 H

it
R

at
io

 (
%

)

MFU
MRU
Burst
LRU

Fig. 4. Comparison of different techniques on
RC2 trace data, where history window is
varied

as MRU is applied along with the MFU method. However, MRU also may end up over-
allocating instances for an image type. BA reduces the number of instances of an image
type to be pre-provisioned, thereby creating room to cache more image types.

0 20 40 60 80 100
6

8

10

12

14

16

18

Fixed History Size of 1000 requests
No queuing delay for a request

Cache Size (No of Entries)

A
ve

ra
ge

 S
er

vi
ce

 T
im

e
(m

in
ut

es
)

MFU
MRU
Burst
LRU
No Pre−Provisioning

Fig. 5. Plot shows the average service time for
provisioning a request

0 20 40 60 80 100
0

20

40

60

80

100

Cache Size (No of Entries)

M
is

s
du

e
to

 P
ol

ic
y

R
ej

ec
tio

n
of

 Id
(%

 o
f T

ot
al

 R
eq

ue
st

s)

MFU
MRU
Burst

Fig. 6. Reduction in misses, due to the policy
rejecting an image id, as the cache size is in-
creased

We also report the improvement in service time with caching. Without pre-provsioning,
the average service time for a request is 18 minutes. When pre-provisioning is applied,
the average service time can be reduced to as low as 6 minutes for some configurations,
as shown in Fig 5. The best case with a history size of 1000 requests is recorded when
the cache size is 100 and burst adjustment policy is applied. The reduction in service
time is 62%. If we consider a more realistic cache size of 30 entries of an average size
of 30 GB, requiring total space of approximately 1 TB, then the reduction of 51% in
service time is still significant.

334 P. De et al.

5.4 Reasons for Cache Misses

Cache misses are due to several reasons, some of which are unavoidable, viz. a request
for a template is received for the first time. Choice of history window size impacts misses
since a larger history window provides a larger set of image types being requested.
Third type of miss occurs due to rounding.. Since some image types ends up with a
zero allocation, therefore, it may lead to a cache miss if a request for the discarded
type arrives despite the policy correctly inferring the importance of the image type. In
addition to this, if request inter-arrival time is short, then although the caching decision
may be accurate, the time for pre-provisioning is insufficient.

0 500 1000 1500
0

5

10

15

20

25

30

35

40

History Window Size (no of entries)

M
is

s
du

e
to

 Id
 M

is
si

ng
 in

 H
is

to
ry

 W
in

do
w

(%
 o

f T
ot

al
 R

eq
ue

st
s)

Burst Adjustment

Fig. 7. Reduction in misses, due to the absence
of an image type in the history window, as his-
tory window size is increased

0 2000 4000 6000 8000 10000 12000
0

100

200

300
Unique Image Types within a history window of 1000 requests

#U
ni

qu
e

Im
ag

e
T

yp
es

0 2000 4000 6000 8000 10000 12000
0

20

40

60

80
Hit Ratio is computed over a window of last 1000 requests

Provision Requests in Chronological order

H
it

R
at

io

Fig. 8. Cache Hit Ratio computation over a
rolling window where rolling window is 1000
entries. Graph also shows the number of
unique image types in the window.

Fig. 6 shows that as the cache size is increased, it allows more space to accommodate
larger number of image types. Thus while performing the integral allocation step in
caching; lesser number of image types are rejected, thereby increasing the number of
hits. In case of BA, since the policy trims the number of instances to be kept for each
image type to the maximum size of burst observed, therefore, it helps in accommodating
instances of more image types. Therefore, number of misses due to the policy rejecting
an image type is lowest for the burst adjustment (BA) method.

Fig. 7 shows that as the history window size is increased, it allows the cache policy to
view more image types, therefore helping the caching policy to take more image types
into account while deciding the cache composition. It can be inferred from the figure
that with a higher history window size the misses will reduce.

We also investigate the evolution of the cache hit ratio over a period of time. In Fig. 8,
we consider a sliding window of 1000 requests, to observe the change in cache hit ratio.
We also plot the number of unique image types present in the same history window.
The graph confirms our observation that as the number of unique image types increases
within a history window, it leads to a drop in the cache hit ratio.

Caching VM Instances for Fast VM Provisioning: A Comparative Evaluation 335

0 20 40 60 80 100
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cache Size (No of Entries)

#D
el

et
io

ns
/#

In
se

rt
io

ns

MFU
MRU
Burst

Fig. 9. Ratio of number of deletions to num-
ber of insertions in the cache. Lower ratio in-
dicates that the time wasted for deletion was
saved during an insertion.

0 20 40 60 80 100
200

300

400

500

600

700

800

900

1000

1100

Cache Size (No of Entries)

N
um

be
r

of
 M

is
se

s
D

ue
 to

 C
ac

hi
ng

 In
−

P
ro

gr
es

s

MFU
MRU
Burst

Fig. 10. Number of misses due to caching in-
progress for the RC2 traces having a total of
10210 requests

5.5 Gains Demystified

Deletion of a VM instance from the cache implies that the VM instance was provisioned
unnecessarily. It wastes the time to pre-provision, as well as, time is spent in deleting it,
thereby delaying the insertion of a new VM instance. In BA, since we are conservative
in placing a VM instance into the cache, therefore, it reduces the number of deletions.
When we compare the number of deletions, with respect to the number of insertions,
per policy, we observe that this ratio is lower for the BA compared to the MRU policy,
as shown in Fig 9.

Although MFU policy shows a significantly low deletion to insertion ratio, it still
performs worse overall because it suffers due to the choice of image templates. Fig. 6
earlier shows that the MFU policy suffers mainly due to rejection of a number of image
types when the integral allocation step is applied.

Despite an accurate prediction of the future arrival of requests by a policy, it still may
not show the result, if the pre-provisioning of the instance does not complete before the
next arrival. Often inter-arrival time between requests for an image type is shorter than
the time to complete a pre-provisioning request. In our simulation, we assume that if the
caching is in progress then it is a cache miss. Fig. 10 shows for each policy the number
of requests which recorded a miss although the image instance was being cached.

6 Conclusion

Typically, it takes time in order of minutes to provision a new VM in cloud. Transfer of
the large image template file from an image repository to a compute node, and booting
are the main causes of delay in the provisioning workflow. We apply caching to alleviate
the problem. Using request logs, we determine the image templates which will be high
in demand, and also estimate the number of requests for each image type. Thus we
can pre-provision VM instances by preparing and storing them in standby mode in the
cache. On receiving a matching request, a cached VM is readily delivered to the user.
We have compared 3 different techniques for selection of the cached VM instances.

336 P. De et al.

Under specific configurations, service time to deploy a virtual machine can be reduced
by 60% as compared to a no cache enabled scenario.

References

1. Borst, S., Gupta, V., Walid, A.: Distributed caching algorithms for content distribution net-
works. In: INFOCOM (2010)

2. Caron, E., Desprez, F., Muresan, A.: Forecasting for grid and cloud computing on-demand
resources based on pattern matching. In: Proceedings of the 2010 IEEE Second International
Conference on Cloud Computing Technology and Science, CLOUDCOM 2010 (2010)

3. Chandra, R., Zeldovich, N., Sapuntzakis, C., Lam, M.S.: The collective: a cache-based sys-
tem management architecture. In: Proceedings of the 2nd Conference on Symposium on
Networked Systems Design & Implementation, NSDI (2005)

4. Chen, Z., Zhao, Y., Miao, X., Chen, Y., Wang, Q.: Rapid provisioning of cloud infrastructure
leveraging peer-to-peer networks. In: ICDCS Workshops (2009)

5. IBM Workload Deployer,
http://www-01.ibm.com/software/webservers/workload-deployer/

6. Davison, B.D.: A web caching primer. IEEE Internet Computing 5 (July 2001)
7. Drexl, A., Kimms, A.: Lot sizing and scheduling – survey and extensions. European Journal

of Operational Research 99(2) (1997)
8. Emeneker, W., Stanzione, D.: Efficient virtual machine caching in dynamic virtual clusters.

In: SRMPDS Workshop, ICAPDS 2007 Conference (2007)
9. Eucalyptus Systems, http://www.eucalyptus.com/

10. Lagar-Cavilla, H.A., Whitney, J.A., Scannell, A.M., Patchin, P., Rumble, S.M., de Lara, E.,
Brudno, M., Satyanarayanan, M.: Snowflock: rapid virtual machine cloning for cloud com-
puting. In: EuroSys (2009)

11. Lin, J., Huang, T., Yang, C.: Research on web cache prediction recommend mechanism based
on usage pattern. In: Proceedings of the First International Workshop on Knowledge Discov-
ery and Data Mining (2008)

12. Liran, R.C.: Scheduling algorithms for a cache pre-filling content distribution network (2002)
13. Makkar, P., Gulati, P., Sharma, A.: A novel approach for predicting user behavior for improv-

ing web performance. International Journal on Computer Science and Engineering 02(04)
(2010)

14. MokaFive Desktop Management Simplified, http://www.moka5.com/
15. Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G., Soman, S., Youseff, L., Zagorodnov,

D.: Eucalyptus: A technical report on an elastic utility computing archietcture linking your
programs to useful systems. Tech. Rep. 2008-10, UCSB Computer Science Technical Report
(October 2008)

16. Podlipnig, S., Böszörmenyi, L.: A survey of web cache replacement strategies. ACM Com-
put. Surv (2003)

17. Ryu, K.D., Zhang, X., Ammons, G., Bala, V., Berger, S., Da Silva, D.M., Doran, J., Franco,
F., Karve, A., Lee, H., Lindeman, J.A., Mohindra, A., Oesterlin, B., Pacifici, G., Pendarakis,
D., Reimer, D., Sabath, M.: Rc2-a living lab for cloud computing. In: Proceedings of the 24th
International Conference on Large Installation System Administration, LISA 2010 (2010)

18. Shi, L., Banikazemi, M., Wang, Q.B.: Iceberg: An image streamer for space and time efficient
provisioning of virtual machines. In: Proceedings of the 2008 International Conference on
Parallel Processing - Workshops (2008)

19. Sotomayor, B., Keahey, K., Foster, I.: Combining batch execution and leasing using virtual
machines. In: Proceedings of the 17th International Symposium on High Performance Dis-
tributed Computing, HPDC (2008)

20. Zhu, J., Jiang, Z., Xiao, Z.: Twinkle: A fast resource provisioning mechanism for internet
services. In: INFOCOM, pp. 802–810 (2011)

http://www-01.ibm.com/software/webservers/workload-deployer/
http://www.eucalyptus.com/
http://www.moka5.com/

Improving Scheduling Performance
Using a Q-Learning-Based Leasing Policy for Clouds

Alexander Fölling1 and Matthias Hofmann2

1 Robotics Research Institute, TU Dortmund University, 44221 Dortmund, Germany
alexander.foelling@tu-dortmund.de

2 D-Grid GmbH, 44221 Dortmund, Germany
matthias.hofmann@d-grid-gmbh.de

Abstract. Academic data centers are commonly used to solve the major amount
of scientific computing. Depending on upcoming research projects the user gen-
erated workload may change. Especially in phases of high computational demand
it may be useful to temporarily extend the local site. This can be done by leas-
ing computing resources from a cloud computing provider, e.g. Amazon EC2, to
improve the service for the local user community. We present a reinforcement
learning-based policy which controls the maximum leasing size with regard to
the current resource/workload state and the balance between scheduling benefits
and costs in an online adaptive fashion. Further, we provide an appropriate model
to evaluate such policies and present heuristics to determine upper and lower ref-
erence values for the performance evaluation under the given model. Using event
driven simulation and real workload traces, we are able to investigate the dynam-
ics of the learning policy and to demonstrate the adaptivity on workload changes.
By showing its performance as a ratio between costs and scheduling improve-
ment with regard to the upper and lower reference heuristics we prove the benefit
of our concept.

1 Introduction

The increase of applications in the area of HPC also increases the need for computa-
tional resources and effective management of such resources. Nowadays, the resource
demand of scientific workload is justified by explicitly funded academic data centers or
commercial data centers which are scaled for the average workload to balance operating
costs and service quality provided to the local user community. With the new paradigm
of cloud computing this rigid resource scaling can be replaced by a hybrid infrastructure
which combines the advantages of local HPC resources with the potentially unlimited
scalability of resources within the cloud on a pay-per-use basis [1].

In this infrastructure, academic data centers are able to temporarily extend their lo-
cal computing power through cloud resources to execute waiting tasks within the cloud.
This way, the data center is able to provide a better service to its local scientific commu-
nity by decreasing the time researchers have to wait for their job executions in exchange
for leasing fees. Besides the technical implementation, a hybrid infrastructure needs ef-
ficient cloud leasing management and scheduling algorithms which support data center
administrators to gain performance benefits, e.g. decreasing wait time, and to control

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 337–349, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

338 A. Fölling and M. Hofmann

the costs for using cloud resources. Our work addresses this problem by introducing a
reinforcement learning-based leasing policy. This policy adaptively steers a maximum
leasing size depending on past scheduling decisions and workload characteristics in an
online fashion and without any prior knowledge.

In the remainder of this paper we present the hybrid system model, the used workload
traces, and the used performance metrics in Section 2 as basis for the investigation
of reference heuristics in Section 3. After describing the important fundamentals in
reinforcement learning (RL) (Section 4) and its use in our leasing policy (Section 5) we
evaluate the performance of our approach with regard to the upper and lower reference
performance in Section 6. In the subsequent Section 7 we provide some related work
with reference to the technical inplementation, costs and performance in the cloud, and
leasing strategies. In the end, we conclude and describe our future research perspective
in Section 8.

2 System Model

As foundation for our learning policy and reference heuristics we introduce the consid-
ered system model and all assumptions or restrictions we make for simulation.

The system model can be separated into several distinct parts. The first one is a local
scheduling system that describes local machines, job characteristics, and local schedul-
ing strategies. The second part contains workload traces, criteria for their selection, and
reference simulation results. The third part represents the extension of local by cloud
resources and the last part describes performance metrics to evaluate the performance
of a cloud leasing policy.

2.1 Local Scheduling System

As local scheduling system we assume a single academic data center with its local re-
source management system (LRMS). Figure 1 shows that the LRMS serves as submis-
sion point for the local user community. The submitted jobs are appended to a local job

Academic Data Center

LRMS

1
Nodes

t

Submit

User
community

5 10 15 20

EASY

Fig. 1. Local System Model

queue. As scheduling heuristic for the LRMS we use EASY backfilling which is known
to create efficient local schedules and commonly used in implemented LRMS [2].
EASY allocates the jobs to the M homogeneous resources in an online fashion. That
means the jobs are submitted over time and after submission only the release time, de-
gree of parallelism, and estimated runtime of every job are known whereas the actual
runtime is unknown at scheduling decision time.

Improving Scheduling Performance Using a Q-Learning-Based Leasing Policy 339

We decided to use homogeneous resources according to Fölling et al. [3,4] to reduce
the complexity of the system model and focus our research on the efficient usage of
cloud resources. In addition, data scheduling is beyond the scope of our paper, and
hence the communication delays during the transfer of jobs between local and/or cloud
nodes is neglected. In academic data centers the submitted jobs are usually scientific
-sometimes parallel- rigid batch jobs which are neither moldable nor malleable and
cannot be preempted during execution. Consequently, we assume the very same job
model for our simulations.

2.2 Workload Traces

Table 1. Workload characteristics

Identifier archive #Jobs M Util months
no. in %

KTH 8 28479 100 68.9 11
CTC 6 77199 430 66.2 11
SDSC 20 74903 1664 60.1 11

To represent the local user com-
munity in a realistic way we select
three different real workload traces
from Feitelson’s parallel work-
loads archive [5] with regard to
four different criteria. The utiliza-
tion of the traces has to be high
enough to motivate cloud leasing
at all. The length of the traces must

be similar to make the benefits of the model and policies comparable. We want to reach
a preferably high differentiation in the amount of local resources for the different work-
loads. As we want to discover the system dynamics and the behaviour of policies under
the hybrid model in a first attempt we try to keep the simulation overhead comparatively
small.

This prohibits workloads with too many local nodes and too many submitted jobs
per time. Table 1 shows the characteristics of the three workloads. The last trace was
shorted from 13 to 11 months with regard to the criteria of similar length.

2.3 Extending the Resource Space

To include cloud resources for job execution in the simulation model we introduce a new
local scheduling strategy which coordinates the use of cloud resources. This transfer

1
1 5 10

Academic Data Center

LRMS

1
Nodes

t

3 2

Submit

User
community

5 10 15 20

EASY+
T Strategy1

Leasing
Policy

1

steer

system
information

Nodes

Fig. 2. Example system state with extended resource in the hybrid model

340 A. Fölling and M. Hofmann

strategy is placed at the LRMS (see Figure 2) and is executed after the local scheduling
algorithm EASY. It transfers waiting jobs from the local queue into the cloud if they are
immediately executable within the cloud.

Whether a job is immediately executable in the cloud depends on the maximum size
of the virtual cluster V which is steered by the leasing policy. A leasing policy period-
ically collects system state metrics from the LRMS and adjusts V for the next period
respectively. V restricts the amount of cloud resources that can be used by the transfer
strategy to execute jobs within the cloud. Thus, the strategy is allowed to dynamically
startup only 0 to V virtual machines within a given period.

In the example a possible state of the system with V = 10 is shown. Therein, some
jobs with different degree of parallelism in the LRMS job queue and a single job (1) can
be observed, which is currently transferred by the transfer strategy to get executed in the
cloud. For this jobs, five additional cloud nodes have to be leased. With the additional
nodes the current value of V is not exceeded. Neither the next job within the queue (2)
nor the last one (3) are immediately executable within the cloud because there is only
one additional node leasable.

For completeness, during the simulation multisite execution is not allowed, hence
parallel jobs cannot be executed on local and cloud resources at the same time. Thus,
a single job is started on cloud resources without any wait time but causing execution
costs, or it is scheduled at local resources and may wait until its execution but does not
produce any costs at all.

We assume the cloud nodes as uniform to the local nodes in terms of processing
speed. This model—Iosup et al. [6] call it ”source-like performance”—is very opti-
mistic as the runtime of an application is usually related to the performance decrease
caused by the virtualization overhead. According to Iosup et al., the model is ”[...] use-
ful for assessing the theoretical performance of future and more mature clouds”.

2.4 Performance Objective Metric

As we want to improve the quality of service for our local user community we choose
their jobs’ wait time as one factor for our performance objective metric. It is calculated
as the sum of all wait times during simulation. The second factor represents the costs
of providing a better service using cloud resources. With using more cloud resources
we can expect the total wait time (twt) decreasing and costs (c) increasing while using
less cloud resources may lead to a higher total wait time with lower costs. Those two
contrary performance objectives have to be combined to make schedules—created by
different policies—comparable. Whereas the total wait time can be calculated by adding
the single wait times of all scheduled jobs the basis for the costs criterion has to be
discussed in detail.

Generally, cloud computing costs can be separated into three classes which are the
uptime costs for VM-instances, the costs for stored data, and the costs for data transfers
into and from the cloud. As data scheduling is beyond the scope of this work (see Sub-
section 2.1) the costs for data transfers is neglected. In addition, we neglect the costs
for storing data because we assume that cloud nodes can be directly instantiated with

Improving Scheduling Performance Using a Q-Learning-Based Leasing Policy 341

a preconfigured cluster-image, e.g. customized Amazon AMI [7]. Further, the image
with all stored data, e.g. Amazon EBS, can be deleted when the instance is not needed
anymore. This way, storage costs only appear for running virtual cluster nodes, and
hence are just a scaling factor for the uptime costs. Thus, we reduce our cost factor to
the resource usage for jobs running in the cloud.

1
2

4 6

1 5 10 15

old
Nodes

t

Fig. 3. Example Schedule

Job rj mj pj pj ·mj c

old 0 13 42 546 26

1 40 4 7 28 28

2 40 7 2 14 14

4 45 5 6 30 25

6 46 6 6 36 24

Fig. 4. Characteristics of jobs with release time rj ,
parallel machines mj , and runtime pj

Figure 3 shows a Schedule and Fig-
ure 4 shows workload characteristics
for an example cost calculation with
V = 15 for an evaluation interval
[40, 50] seconds and five scheduled
jobs which consume 117 cpu seconds
in the cloud (The shaded areas rep-
resent costs in surrounding time in-
tervals). Both twt and c are abso-
lute values with different ranges and
hence must be normalized before be-
ing combined. Normalizing those ab-
solute values is only possible if the
maxima are known. In this sense we
are able to express each absolute value
as percentual part of its corresponding
maximum. To calculate the maximum
for twt we simulate a whole workload
with V = 0 and thus force the LRMS
to perform local scheduling only. The
resulting total wait time is refered as
twtref . To calculate the maximum for
c we leave V unrestricted (V → ∞)
and refer the result as cref . Now, we

are able to normalize every absolute result pair (twt,c) of every schedule by calculating
a percentage value (twt%,c%) with regard to the maximum values (twtref ,cref).

Alternative to twt% we can calculate the improvement in total waittime as
twtimp% = 100− (twt%).
Then, the proposed combination of twt and c called balance is calculated as balance =
twtimp%− c%. A low or even negative balance indicates less economic efficiency and
the solution with the biggest balance is most effective from an economical point of
view.

This balance metric is the central component of all following evaluations. It is
used to show the lower and upper performance reference values of simple heuristics
as described in the following section. Likewise, it is used within the proposed learning
policy.

342 A. Fölling and M. Hofmann

3 Performance Reference Evaluation

10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

ba
la

nc
e

constant V

Fig. 5. Balance for all different constant V ∈
[0, 100] in simulations of the KTH workload.

To evaluate the performance of our later
defined learning approach we first need
to determine reference balance values for
the proposed model. Therefore, we evalu-
ate two simple heuristics to determine an
upper reference value for balance by an
offline brute force analysis and a lower
reference value for balance with help of
a randomized online leasing policy ap-
proach. These upper and lower reference
values are not upper and lower bounds in
the mathematical sense. They are just ref-
erence values to ease the assessment of

reached strategy results. During the brute force analysis we simulate all workloads with
constant settings for V during the whole workload. As we do not know which value
range is appropriate for setting V we tested all settings from 0 to M (M is the number
of local nodes of the traced machine; See Section 2.2). Figure 5 exemplarily shows the
results in balance for all different V -configurations for the KTH workload. Although
the figure only shows the analysis results for the KTH workload, they are typical for
the proposed model due to similar characteristics for other workloads. They show rapid
balance increasement by extending the local resources in the first V -configurations
which then reaches its zenith for a specific V . Above this V the scheduling perfor-
mance may indeed increase further but this is done under disproportional increasement
of the percentual costs and is thus less efficient regarding balance.

Table 2. Results for all three constant V analysis.

Identifier Best V twtimp% c% balance
KTH 31 70.38 45.39 25
CTC 62 58.46 30.43 28
SDSC05 184 51.53 30.14 21.4

Table 3. Results of all workloads and 1000 simulations.

Identifier Average Best outlier
of 1000 of 1000

KTH 14 20
CTC 11 18
SDSC05 5 11

Table 2 contains statistical re-
sults for constant V evaluations
and all evaluated workloads. Ev-
ery row represents the best V -
configuration found during brute
force analysis. Beside this config-
uration the values for twtimp%,
c%, and the resulting balance are
given. The potential in increasing
the scheduling performance with
regard to the upcoming costs is
different between the three work-
loads but very high in all cases.
The KTH, for example, is able to
decrease its cumulative wait time
by more than 70% compared to a
local scheduling simulation. Nev-
ertheless, these balance-results for

every workload can be interpreted as a brute force calculated upper reference value as
the best configuration is only known at the end of the simulation.

Improving Scheduling Performance Using a Q-Learning-Based Leasing Policy 343

To get a low reference value for the learning performance we first have to define the
term ”online leasing policy”. The underlying decision problem—which value should be
set for V —is divided in predetermined evaluation steps from time t to time t′ with a step
length span. This length is a constant value for the whole simulation. Thus, the policy is
periodically queried for a new setting of V during the simulation (t

span→ t′
span→ t′′

span→
...). The simplest way to model such an online leasing policy—and our lower reference
heuristic at the same time—is letting the policy choose V for each step t→ t′ randomly.
According to the brute force analysis, we simulate all workloads with an appropriate
range for eligible V -configurations depending on the original traced machine from 0
to M . We choose the length of an evaluation step span as one day arbitrarily1. As the
policy decisions are randomized we repeat the simulations 1000 times and trace the
balance results for all of them. We use the average of all results in each setup as lower
reference value for the evaluation of our learning approach, whereas the best outliers
are of interest, too. Both information are listed in Table 3. The objective for our learning
cloud leasing policy is to achieve a higher balance than the random heuristic but similar
to the offline calculated results of the best constant V -configuration.

4 Reinforcement Learning

Before we explain our adaptive cloud leasing policy we introduce some background on
reinforcement learning (RL).

In temporal difference learning, the one-step Q-learning [8] approach is applied us-
ing two basic concepts. The first concept is the separation of a continuing—potentially
infinite—learning task in distinct learning steps t→ t′. At the beginning of every step,
the learning agent is in a specific state st ∈ S with S as finite set of states and chooses
one action at from a finite repertoire of actions A. At the end of a step2 the agent senses
a new state st′ ∈ S and a reward signal rt′ .

The second concept is the use of a function to store the current expected reward for
each action at a given state. After each learning step this Q-value function is updated
using the update Rule 1.

Q(st, at)← Q(st, at) + α
[
rt′ + γmax

a∈A
Q(st′ , a)︸ ︷︷ ︸

sensed reward

−Q(st, at)
]

(1)

The update depends on the difference of the new sensed reward and the old expected
one Q(st, at). The new sensed reward at time t′ is further separated in the reward sig-
nal rt′ , and the expected reward at time t′ under the sensed state st′ modeled as term
γmaxa∈AQ(st′ , a). In this term the maximum Q-value of all actions for the new sensed
state st′ represents the best expected reward among all actions at the new state. This
term is weighted by the discount rate γ and thus the influence of the expected (future)
reward on the current reward can be parameterized. Further, this whole temporal differ-
ence is weighted by the learning rate α ∈ [0, 1]. This parameter is usually scaled down

1 The same setting for span will be used for the later learning approach either.
2 End of a configured time interval or some special event.

344 A. Fölling and M. Hofmann

from learning step to learning step to decrease the influence of the temporal difference
over time and hence to assure convergence of the learning approach. In infinite learning
tasks it can also be constant to keep the adaptivity of the learning algorithm stable.
The current Q-values of the actions at state st impact the decision which one is choosen
for the next learning step.

5 Adaptive Cloud Leasing Policy

Our goal is to model a cloud leasing policy to steer the configuration of V with regard
to the economical balance metric in an online manner. In comparison to other machine
learning approaches (Genetic Programming, Artificial Neural Networks, Decision Tree
Learning) RL appears to be best suitable for the underlying problem since the learning
is done online without any expert knowledge about the system and with comparatively
small computational demand.
To model the policy we consider each possible V -configuration as eligible action a
during the reinforcement learning process. Further, we reduce the set of states S to one
single state to limit the search space to A · S. With these assumptions we can simplify
the Q-value function update Rule 1 to the Rule 2.

Q(Vt)← Q(Vt) + α
[
rt′ + γmax

V
Q(V)−Q(Vt)

]
(2)

In this rule, the Q-value of the configuration Vt is updated which has been choosen at
the beginning of the learning step with help of the old Q-value, the learning parameters
α and γ, and the a reward signal rt′ . We decided to set α and γ to 0.1 according to
several Q-Learning settings of Sutton and Barto [8].

To model the immediate reward signal rt′ we have to implement a concept to simu-
late all different V -configurations in parallel. At the beginning t of each cloud policy
evaluation step the current schedule and the queue are cloned for every possible V -
configuration. During the evaluation step t → t′ each clone is simulated with its as-
sociated configuration for V and every new submitted job is forwarded to all of them.
Although, all clones had to schedule the very same jobs, this could lead to different sched-
ules at the end of the evaluation step. Consequently, each clone produces its own results
in total wait time twt and costs c (See Section 2.4). With help of two additional simula-
tions (V = 0 and V → ∞) that are simulated during each evaluation step we are able
to calculate the balance for each clone. A high balance indicates that the used config-
uration of V during the learning step has been more economical than that with a lower
one.

To express this fact through a reward signal rt′ we interpolate the balance-values of
all clones analog to the interval of minimum and maximum reached balance. This way,
the V -configuration of the best clone gets a reward of rV,t′ = 1 and that with the worst
clone a reward of 0.

Having the rewards rV,t′ for all parallel clones we are able to update all Q-values
and not only that one of the choosen action Vt (See update Rule 2).

Afterwards, the policy chooses the next action by taking the one with the highest new
Q-value. This behaviour is reasonable in our scenario as we are evaluating all possible

Improving Scheduling Performance Using a Q-Learning-Based Leasing Policy 345

actions at the same time. If there are multiple actions with the highest value, we choose
the one with the smallest V -configuration. For the next evaluation step t′ → t′′ the
clone of the previous choosen action Vt serves as draft for the new clones. In a real
application of the leasing policy the parallel evaluation of all possible configurations
could be made during the learning step and hence the decision time and replication of
datastructures tend to be zero. Even the simulation of a whole 11-month workload on
a single commodity Intel(R)Core(TM)-i5 machine with 4 GB RAM is comparatively
short (from 2 up to 30 minutes depending on workload and simulated machine size—
KTH, CTC, or SDSC05).

Evaluating all V -configurations and choosing the best one enables us to avoid ran-
dom influences in our simulations. This is advantageous to investigate the basic be-
haviour of the approach and to evaluate different settings for the assumed policy pa-
rameters (span,α,γ). This way we are able to achieve a good learning performance
even for short traces and thus a limited amount of learning steps. However, it leads to a
huge simulation complexity for traces with a realtively big amount of local nodes (e.g.
bigger than 1664).

6 Policy Evaluation

As mentioned before, we evaluate our learning approach with a learning step length of
one day for all three test workloads. Table 4 gives an overview on the metric results for
the simulations.

Table 4. Results of the Q-Learning approach

Identifier WT impr. Costs balance Low/Up
in % in % Ref.-value

KTH 46.54 22.31 24.23 14/25
CTC 46.66 23.67 22.99 11/28
SDSC05 34.44 20.69 13.75 5/21.4

The balance value lies between
the results for constant V and the
randomized leasing policy in all
three setups. Every learning simu-
lation succeeds to reach a balance
value larger than the average and
even the best random experiment
of 1000 simulations. This proves
the positive influence of the rein-

forcement learning approach regarding the economical performance of the system.
However, the learning approach is not able to reach balance results near the upper
reference value because the knowledge about the system is limited. Figure 6 shows the
evolution of the overall balance during the 11-months simulation of the KTH workload
for the best constant V -configuration (V = 31), the mean balance of all 1000 random
policy evaluations, and the learning approach in comparison.

In the reference case the decision of the policy is always V = 31 and no alternative
decisions are allowed. Thus, the achievable performance in balance only depends on
the workload characteristics. There are many situations where V = 31 coincidentally is
a good configuration which leads to a high overall balance = 25 at the end of the simu-
lation. In contrast, the learning policy has to evaluate the differentV -configurations first
before it finds out appropriate configurations. However, in the last two-thirds of the sim-
ulation it is observable that the learning policy approximates the balance quality of the
upper reference heuristic. In addition, it converges to a stable balance in the second half
of the simulation. The learning controller is able to adapt its behaviour to the changing

346 A. Fölling and M. Hofmann

0 50 100 150 200 250 300 350
-10

0

10

20

30

days

ba
la

nc
e

constant V=31
mean for random leasing policy
and 1000 simulations
Q-learning

Fig. 6. Overall balance trace in comparison for constant V = 31, random policy, and Q-learning
during KTH-simulation

workload and to produce similar or from time to time even better decisions than choos-
ing a fixed configuration for the whole workload (better balance within the interval 30
to 50 days). Although, finding the best fixed configuration needs an offline evaluation
of all possible configuration whereas the learning controller succeeds to get a high bal-
ance at the very first run without any knowledge. This is noteworthy as reinforcement
learning is usually able to learn useful strategies only by training the system with a huge
count of episodes (or walks) whereas the resulting knowledge of each episode serves as
input for the next training episode.

In addition, learning is done while keeping the costs under one quarter of the maxi-
mum while increasing the scheduling performance by 34−46% depending on the input
workload.

7 Related Work

Chester et al. [9] investigate a system for allocating server resources to applications
dynamically, thus allowing applications to automatically adapt to variable workloads.
Similiar work was done by Chase et al. [10]. They develop a cluster manager that al-
locates servers from a common pool to multiple virtual cluster environments. The use
of virtualisation technology has also been explored [11] to scale, adapt, and share re-
sources on the same host machine or local computing infrastructure. To improve Quality
of Service by reducing the job wait time, the idea of accessing additional resources from
a cloud has become increasingly popular. Marshall et. al. [12] invent a cloud model by
ensuring elastic provisioning of ressources and dealing with issues such as security and
data privacy. Moreover, they involve and evaluate different policies to avoid under- and
over-provisioning. A prominent example of exploiting clouds for scientific applications
was further investigated by Deelman et al. [13]. They elaborate the costs of doing sci-
ence in the cloud by simulations based on the fees of Amazon EC2 computational as
well as Amazon S3 storage service. While running the same workload in different exe-
cution models they have shown that cloud computing can be applied in a cost-effective
fashion especially for data-intensive applications. The tradeoff between cost and per-
formance in the cloud context is a central aspect in various other publications such as
[14], [15], [16], [17], and [18].

Improving Scheduling Performance Using a Q-Learning-Based Leasing Policy 347

While our approach dynamically steers a maximum size of resources to be leased
from the cloud by using a reinforcement learning algorithm, Buyya et al. [19] evalu-
ate different so called strategy sets which compose of local scheduling and redirection
strategies. Other publications show that reinforcement learning is a widely used method
in the context of grid scheduling [20] and adaptive resource allocation [11], [21], [22]
while reinforcement learning in the context of cloud leasing management appears as a
new topic.

8 Conclusion

This paper proposes an adaptive learning-based cloud leasing policy that is evaluated in
a simulated hybrid infrastructure comprising of a local and a cloud system.

A cloud leasing policy is responsible for steering the amount of additional cloud
resources and tries to optimize the trade-off between extra costs and scheduling perfor-
mance. This trade-off is formalised in a balance metric which is used for evaluation.
Two heuristics that provide reference values are defined in order to examine the perfor-
mance of our policy. We observe that the learning approach almost reaches the balance
of the upper reference value the longer the learning is applied. The job scheduling per-
formance of our cloud leasing policy is also compared with a scenario in which every
job is computed on local resources. This comparison shows an improvement of about
34− 46% less wait time under comparatively small costs for every workload.

Using parallel evaluation of all leasing sizes during a learning step—as we do in
here—leads to huge simulation complexity as the count of reasonable configurations
increases with the size of the given academic data centers. In this work, relatively small
reference data centers and associated workloads are used for the evaluation. However,
the size of modern data centers is often much larger (K Computer with 705024 Cores)3.
Thus, future work will focus on the incorporation of strategies into the policy which
keep the number of parallel evaluations low while retaining good balance results. One
approach in this regard is the appliance of ε-greedy [8] strategies to ensure explorational
behaviour in a limited part of the search space instead of evaluating the whole search
space at every step. This also needs further investigations in the configuration of param-
eters like the learning evaluation step or reinforcement learning parameters. To make
the model more realistic, our future work will consider a heterogenous resource model
for data centers and cloud providers and will account for realistic VM performance
models rather than the mentioned ”source-like performance” model.

Acknowledgment. This work was partially funded by the German Federal Ministry of
Education and Research (BMBF) under grant #01IG08006.

References

1. Ostermann, S., Prodan, R., Fahringer, T.: Extending grids with cloud resource management
for scientific computing. In: 10th IEEE/ACM International Conference on Grid Computing
(Grid 2009), pp. 42–49. IEEE Press (2009)

3 http://www.top500.org

http://www.top500.org

348 A. Fölling and M. Hofmann

2. Feitelson, D.G., Weil, A.M.: Utilization and predictability in scheduling the IBM SP2 with
backfilling. In: Proceedings of the 12th International Parallel Processing Symposium and
the 9th Symposium on Parallel and Distributed Processing, pp. 542–547. IEEE Computer
Society Press (1998)

3. Fölling, A., Grimme, C., Lepping, J., Papaspyrou, A.: Robust load delegation in service
grid environments. IEEE Transactions on Parallel and Distributed Systems 21(9), 1304–1316
(2010)

4. Fölling, A., Grimme, C., Lepping, J., Papaspyrou, A.: Connecting community-grids by sup-
porting job negotiation with coevolutionary fuzzy-systems. Soft Computing - A Fusion of
Foundations, Methodologies and Applications 15, 2375–2387 (2011)

5. Feitelson, D.G.: Parallel workload archive (March 2011),
http://www.cs.huji.ac.il/labs/parallel/workload/

6. Iosup, A., Ostermann, S., Yigitbasi, N., Prodan, R., Fahringer, T., Epema, D.: Performance
analysis of cloud computing services for many-tasks scientific computing. IEEE Transactions
on Parallel and Distributed Systems 22, 931–945 (2011)

7. Nishimura, H., Maruyama, N., Matsuoka, S.: Virtual clusters on the fly—fast, scalable, and
flexible installation. In: Proceedings of the Seventh IEEE International Symposium on Clus-
ter Computing and the Grid (CCGrid 2007), pp. 549–556. IEEE Computer Society, Wash-
ington, DC (2007)

8. Sutton, R.S., Barto, A.G.: Reinforcement Learning - An Introduction, 4th edn. The MIT
Press (1998)

9. Chester, A., Xue, J.W.J., He, L., Jarvis, S.: A system for dynamic server allocation in appli-
cation server clusters. In: Proceedings of the 2008 IEEE International Symposium on Parallel
and Distributed Processing with Applications, pp. 130–139. IEEE Computer Society, Wash-
ington, DC (2008)

10. Chase, J.S., Irwin, D.E., Grit, L.E., Moore, J.D., Sprenkle, S.E.: Dynamic virtual clusters in a
grid site manager. In: International Symposium on High Performance Distributed Computing
(HPDC 2003), pp. 90–100 (June 2003)

11. Rao, J., Bu, X., Xu, C.Z., Wang, L., Yin, G.: Vconf: a reinforcement learning approach to
virtual machines auto-configuration. In: Proceedings of the 6th International Conference on
Autonomic Computing (ICAC 2009), pp. 137–146. ACM, New York (2009)

12. Marshall, P., Keahey, K., Freeman, T.: Elastic site: Using clouds to elastically extend site
resources. In: 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Com-
puting (CCGrid), pp. 43–52 (2010)

13. Deelman, E., Singh, G., Livny, M., Berriman, B., Good, J.: The cost of doing science on
the cloud: the montage example. In: Proceedings of the 2008 ACM/IEEE Conference on
Supercomputing, pp. 1–12. IEEE Press, Piscataway (2008)

14. Genaud, S., Gossa, J.: Cost-wait trade-offs in client-side resource provisioning with elastic
clouds. In: 4th IEEE International Conference on Cloud Computing (CLOUD), pp. 1–8.
IEEE (2011)

15. Mao, M., Li, J., Humphrey, M.: Cloud auto-scaling with deadline and budget constraints. In:
11th IEEE/ACM International Conference on Grid Computing (GRID), pp. 41–48. IEEE,
Brussels (2010)

16. Ostermann, S., Iosup, A., Yigitbasi, N., Prodan, R., Fahringer, T., Epema, D.: A performance
analysis of ec2 cloud computing services for scientific computing. In: Cloud Computing.
LNICST, vol. 34, pp. 115–131. Springer, Heidelberg (2010)

17. Rehr, J.J., Vila, F.D., Gardner, J.P., Svec, L., Prange, M.: Scientific computing in the cloud.
Computing in Science and Engineering 12, 34–43 (2010)

http://www.cs.huji.ac.il/labs/parallel/workload/

Improving Scheduling Performance Using a Q-Learning-Based Leasing Policy 349

18. Fenn, M., Holmes, J., Nucciarone, J.: A performance and cost analysis of the amazon elastic
compute cloud cluster compute instance. Research Computing and Cyberinfrastructure
Group, Penn State University, Tech. Rep. (2011),
http://rcc.its.psu.edu/education/white_papers/cloud_report.pdf

19. de Assuncao, M.D., di Costanzo, A., Buyya, R.: Evaluating the cost-benefit of using cloud
computing to extend the capacity of clusters. In: Proceedings of the 18th ACM Interna-
tional Symposium on High Performance Distributed Computing (HPDC 2009), pp. 141–150.
ACM, New York (2009)

20. Zeng, B., Wei, J., Liu, H.: Dynamic grid resource scheduling model using learning agent. In:
Proceedings of the 2009 IEEE International Conference on Networking, Architecture, and
Storage (NAS 2009), pp. 67–73. IEEE Computer Society, Los Alamitos (2009)

21. Galstyan, A., Czajkowski, K., Lerman, K.: Resource allocation in the grid using reinforce-
ment learning. In: International Joint Conference on Autonomous Agents and Multiagent
Systems, vol. 3, pp. 1314–1315. IEEE Computer Society, Los Alamitos (2004)

22. Vengerov, D.: A reinforcement learning approach to dynamic resource allocation. Sun Mi-
crosystems Laboratories, Tech. Rep. (2005)

http://rcc.its.psu.edu/education/white_papers/cloud_report.pdf

Impact of Variable Priced Cloud Resources
on Scientific Workflow Scheduling

Simon Ostermann and Radu Prodan

Institute of Computer Science, University of Innsbruck,
Technikerstr. 21a, 6020 Innsbruck, Austria

Abstract. We analyze the problem of provisioning Cloud instances to large sci-
entific workflows that do not benefit from sufficient Grid resources as required by
their computational requirements. We propose an extension to the dynamic crit-
ical path scheduling algorithm to deal with the general resource leasing model
encountered in today’s commercial Clouds. We analyze the availability of the
cheaper and unreliable Spot instances and study their potential to complement
the unavailability of Grid resources for large workflow executions. Experimen-
tal results demonstrate that Spot instances represent a 60% cheaper but equally
reliable alternative to Standard instances provided that a correct user bet is made.

Keywords: Cloud computing, Grid computing, Spot instances, Scheduling,
Scientific workflows, Performance, Cost.

1 Introduction

From the rather broad amount of definitions and interpretations of the term Cloud com-
puting, the scientific computing community mostly focuses on the Infrastructure as a
Service (IaaS) interpretation characterized by leasing of computation, storage, message
queues, databases, and other raw resources from specialized providers. In this context,
scientific workflows emerged in the last decade as a highly successful paradigm for pro-
gramming loosely-coupled high-performance computing infrastructures such as com-
putational Grids and Clouds. In this paper, we study the possibility of extending Grid
infrastructures with IaaS Cloud resources to improve the execution of large workflow
applications that do not have sufficient Grid resources available for their computational
demands. We design an extension to the Dynamic Critical Path (DCP) algorithm which
demonstrated in previous work [1] better results compared to other existing heuris-
tic strategies for most types of workflows and independent of their size, in particular
when the resource availability frequently changes or when using dynamic and unreli-
able heterogeneous resources. We build such an environment by using a combination
of a set of cluster resources offered by the Austrian Grid, complemented on-demand
by ”pay-as-you-go” Cloud resources offered by Amazon EC2. Besides the Standard in-
stances rented at a fixed price per hour, Amazon gives the possibility to bet on unused
resources called Spot instances (SIs) and rent them at variable prices with no reliability
guaranteed. To support workflow execution in such hybrid environment, we extend the
DCP algorithm in three directions: (1) Rescheduling deciding when to start the Cloud

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 350–362, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Variable Priced Cloud Resource Scheduling 351

instances to complement the unavailability of free Grid resources; (2) Cloud choice de-
termining the type and maximum amount of Cloud resources to be provisioned, and
the price bet for SIs; (3) Prescheduling trying to minimize the impact of the scheduling
overhead in case of a large number of activities. We analyze the Spot prices offered by
Amazon EC2 and their impact to the overall workflow execution time. We find that SIs
have good potential to improve the workflow execution with a significant cost reduction
for longtime usage, provided that a correct price bet is made.

2 Model

2.1 Resource Model

We adopt the resource model of Amazon EC2 that offers different resources called in-
stances of different types, where we shown the three used ones in Table 1. The processor
speed of these instances is quantified with a metric called Elastic Compute Unit (ECU)
equivalent to the speed of an Opteron 2007 processor with approximately 1.2Ghz. Ad-
ditionally, there are three pricing models for renting these resource:

– Standard instances let the customer pay for compute capacity by the hour with no
long-term commitments.

– Spot instances (SIs) allow customers to bid on unused Amazon EC2 capacity and
run those instances for as long as their bid exceeds the current spot price. The spot
price changes periodically based on supply and demand, and customers whose bids
exceed/meet the spot price gain/loose access to the SIs;

– Reserved instances give customers the option to make a one-time payment for each
instance they want to reserve for one or three years and receive in-turn a significant
discount on the hourly charge.

We analyzed first the Reserved instance prices which are cheaper than the Standard in-
stances if their usage is in the interval of [167.3, 173.1] days for one year reservations,
and [252.5, 265.2] days for three year reservations. Since this high utilization require-
ment does not match our execution scenarios characterized by occasional execution of
experimental workflow sets, we concentrate our work on the SIs as a cheap and more
interesting alternative (see Section 4).

2.2 Application Model

We focus in this paper on scientific workflow applications that can benefit from addi-
tional Cloud resources if there are no sufficient Grid resources to support their compu-
tational requirements. We model a scientific workflow WS = (AS,DS) as a set AS of

Table 1. Overview of used Amazon EC2 Linux resources and prices for the US-East area as of
1.2.2012; Spot prices are averaged over the last 12 months

ECUs RAM Archi. I/O Disk Standard Cost Spot price Reserved Reservation
Name (Cores) [GB] [bit] Performance [GB] [$/h] [$/h] Cost [$/h] Cost [$/j, $/3j]
m1.large 4 (2) 7.5 64 High 850 0.34 0.2124 0.12 910, 1400
c1.xlarge 20 (8) 7.0 64 High 1,690 0.68 0.3151 0.24 1820, 2800
cc1.4xlarge 33.5 (8) 23 64 10 Gigabit 1690 1.30 0.6797 0.56 4290, 6590

352 S. Ostermann and R. Prodan

legacy codes called activities interconnected in a directed acyclic graph through control
flow and data flow dependencies DS. With no loss of generality, we assume that the
workflow has one initial and one final activity which has no pre- or successors. As most
legacy applications do not support checkpointing, we assume that this support is not
available. This restriction means that, when a SI is terminated, the intermediate results
of the currently running computational activities are also lost.

To model and estimate the execution time of workflow activities on Grid/Cloud re-
sources, we use a simple performance modeling and prediction service tuned for our
pilot applications that we presented in [2]. We use the benchmarks presented in [3] to
model the performance of EC2 instances.

2.3 Dynamic Critical Path Algorithm

Algorithm 1. DCP algorithm.
Require: W = (AS,DS): workflow application,

RS: resource set
Ensure: : Schedule W on RS
1: Compute EST and LST for all activities on all re-

sources
2: while Not all activities are scheduled do
3: Select A ∈ AS : min(LSTA − ESTA)

and min(ESTA)
4: if LSTA = ESTA then
5: onCP ← true
6: else
7: onCP ← false
8: end if
9: SelectResource(A, onCP,RS)
10: Update ESTAandLSTA, ∀A ∈ AS
11: end while

Dynamic Critical-Path Scheduling (DCP) is a
static scheduling algorithm for allocating task
graphs to fully connected multiprocessors [4],
which demonstrated in previous work [1] bet-
ter results compared to other existing heuris-
tic strategies for most types of workflows and
independent of their size, in particular when
the resource availability frequently changes
or when using dynamic and unreliable hetero-
geneous resources. The algorithm is based on
the dynamic calculation of the critical path
(CP) in each step. The CP is defined as the
set of interconnected activities from the initial
to the final activity with the maximum aggre-
gated computation and communication costs. The workflow could achieve a minimum
execution time if the CP is scheduled on the resources that deliver its earliest completion
time (ECT) and all other activities are executed in parallel to the CP.

Algorithm 1 briefly outlines the DCP pseudocode that takes a workflow as input
parameter and maps its activities onto the available resources for execution. First, it
calculates the earliest possible start time (EST) and latest possible start time (LST) for
all activities on all resources (line 1), which allows the identification of the CP. Then, the
activity A with the minimumESTA and the minimum start flexibility (LSTA−ESTA)
is chosen for scheduling (line 3). The activities for which LSTA = ESTA are on
the critical path and will therefore be scheduled first. Each activity is scheduled on
the resource delivering its ECT such that the LST and EST are satisfied (line 9). The
SelectResource function (explained in Section 5.1) needs to consider if the activity is on
the CP, in which case it reconsiders the already scheduled activities as the CP may have
changed. This is indicated by the boolean onCP variable, set to true if LSTA = ESTA

(lines 4–8). Depending on the scheduled activities, the EST and LST are recalculated for
all activities and the algorithm repeats until all activities are scheduled (lines 10− 11).

Variable Priced Cloud Resource Scheduling 353

3 Related Work

There are a number of important projects showing a growing interest in Cloud comput-
ing in the scientific and open source communities. The Nimbus [5] package provides a
scientific Cloud middleware deployed in an informal group of four university Clouds
called Science Cloud. Hadoop [6] is a toolkit for distributed computing allowing map-
reduce applications to be developed and executed in a complete tool chain that supports
Cloud resources and Grids. A commercial open-source implementation of a Cloud mid-
dleware compatible with EC2 is provided by Eucalyptus [7].

In [8], the impact of checkpointing when using unreliable Cloud resources is an-
alyzed. However, scientific applications often consist of legacy codes that do not the
support checkpointing mechanism needed for such an approach. Our solution shows
that there is potential for using unreliable SIs even without checkpointing.

Other approaches [9] used Cloud resources to extend clusters when more requests
need to be processed than the cluster can handle. A simple load balancer submits jobs
either to the cluster or to the Cloud, while in our approach the Cloud instances are
completely integrated into the resource pool.

In [10], several BPEL extensions for using Cloud resources in cases of peak load sit-
uations are proposed. The approach does not optimize the use of the Cloud resources,
nor is well-suited for massively parallel applications, as one of the constrains of the pro-
posed extensions is that execution servers may handle multiple requests simultaneously.
In contrast, scientific applications are mostly designed to utilize dedicated resources.

The work presented in [11] is comparable to our approach, but focuses on fault toler-
ant scheduling that does not optimize the schedule for Cloud use and cost. Our approach
is optimizing these metrics with support for cheaper SIs.

An extension of the Torque job manager to add Cloud resources to clusters is pre-
sented in [12]. Our approach could interoperate with such job manager by integrating
cluster, Clouds and Grid in one single computing environment. Similar work has been
done in [13] where clusters can dynamically extend their capacity with Cloud resources
upon peak usage to meet given service level agreements. This gives to resource owners
control over the Cloud usage and gives no transparency of the cost to the enduser, like
the scheduler we proposed in this paper.

4 Spot Price Analysis

Most Cloud providers offer resources for a fixed price on an hourly basis. Since re-
cently, Amazon EC2 introduced SI with a market-oriented dynamic pricing to better
utilize the unused resources from their resource pool and we analyze them as a case
study for variable prices in general. SI have a dynamic price that changes periodically
based on their supply and customer’s demands and bids. If the Spot price exceeds the
user’s bet, the instance is automatically terminated and the user does not have to pay
for the last uncompleted billing interval. In the following, we analyze the Spot prices
for all available instance types for the last 12 months. Since 7.2011, SI have different
prices for the different availability zones of a region. Nevertheless, the data we collected
until now does not show any significant difference from the overall pricing. The shown

354 S. Ostermann and R. Prodan

c1.medium c1.xl cc1.4xl cg1.4xl

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Instance Type

S
p

o
t

p
ri

ce
 [

$/
h

]

(a) Newer instance types.

m1.small m1.m m1.xl m2.xl m2.2xl m2.4xl

0.
0

0.
5

1.
0

1.
5

Instance Type

S
p

o
t

p
ri

ce
 [

$/
h

]
(b) Original (older) instance types.

Fig. 1. EC2 Spot price analysis for the time period 22.1.2011 – 1.2.2012

methods to analyze the impact of the user bet on the reliability could be applied to other
providers once they introduce similar resource models.Spot prices can be queried us-
ing the command line tools provided by Amazon EC2. Users accessing the EC2 Cloud
can request Spot price information of any instance type, region, operating system and
availability zone.

Figure 1 shows box-plots of the different instance types and their prices. We re-
moved some of the outliers in Figure 1a, as the cg1.4xlarge instance had one single
Spot price of $7.0 and two to four of $2.0, $2.45, $3.0, $4.0, $5.0, $6.0 and $7.0 per
hour, while all other prices were lower than $1.00. We do not show the outliers in Fig-
ure 1b for the m2.4xlarge instance ($2.0 and $3.0 per hour), which only occurred
once in the monitored time period. As the markers for the percentile of the dataset
show, the Spot prices are stable for the m1.small, c1.medium, m2.xlarge,
and m2.2xlarge instances. For the other six instance types, the price ranges are
larger as shown by the visible whiskers, especially for the six xlarge types (except
m2.xlarge). Not only the price fluctuations are important, but also the time periods
for which the prices are valid, which we analyze in Figure 2. For a user who wants to
use a SI for several hours or days, not only the maximum price to be payed is of interest,
but also the average price resulting from the overall usage which approximates the cost
to be payed. We analyzed the following metrics for all instance types:

– user bet is the price that a user will to pay for the execution of one SI for one hour;
– average cost is the hourly price a user has to pay for the SI if it were executed using

his bet averaged over the complete timespan of our analysis;
– maximum Spot price is the maximum SI cost encountered still below the user bet;
– unavailability count represents the total number of shutdowns that occur when try-

ing to run a SI with the user bet for the whole time period;
– total uptime sums the total time an instance was executed over the analyzed period

with the given user bet;

Variable Priced Cloud Resource Scheduling 355

 0

 1000

 2000

 0 1 2 3 4 5
 0

 2

 4

U
n
a
v
a
ila

b
ili

ty
 c

o
u
n
t

User bet [$/hour]

Average cost
Spot price

Unavailability count

 0

 2000

 4000

 6000

 8000

 0 1 2 3 4 5

T
im

e
 [
h
o
u
r]

Total uptime
Maximum downtime

Average availability

User bet [$/hour]

C
o
s
t
[$

/h
o
u
r]

(a) The c1.xlarge instance type.

 0

 400

 800

 0 1 2 3 4 5 6 7
 0

 2

 4

 6

U
n

a
v
a

ila
b

ili
ty

 c
o

u
n

t

C
o

s
t

[$
/h

o
u

r]

Average cost
Spot price

Unavailability count

 0

 2000

 4000

 0 1 2 3 4 5 6 7

T
im

e
 [

h
o

u
r]

Total uptime
Maximum downtime

Average availability

User bet [$/hour]

User bet [$/hour]

(b) The cg1.4xlarge instance type.

Fig. 2. Instance uptime and average price analysis from 22.1.2011 until 1.2.2012

– maximum downtime is the longest time period where the market price of a SI was
above the user bet;

– average availability is the time between each enforced shutdown averaged across
the unavailability count.

Due to space limitations, we only present the two most interesting instances:
c1.xlarge as the mostly used instance and cg1.4xlarge as the most expensive
and fluctuating.

Figure 2a shows that for the c1.xlarge instance, the user bet has an insignificant
influence on the average price to be paid for its long-term usage. The top chart shows
that for a low bet close to $0.22 per hour, the unavailability count can reach a peak
value of 2200 which rapidly decreases when increasing the bet. We conclude that the
user shall be more generous in his bet to obtain a reliable infrastructure. The maximum
Spot price follows a step function showing jumps in the market prices (for example
there were no prices between $1.0 and $1.36). The bottom chart illustrates that the total
uptime grows as soon as the lowest market price of 0.22 is met and reaches a value of
98% at $0.252 per hour. The maximum downtime never took longer than 32 hours for a
user bet over $0.24 per hour. The average availability grows to a value of 125 hours for
a user bet of $0.68 per hour and raises further except for user bets between [$1.5, $2.0]
per hour for which it slightly decreases as the unavailability count grows from 16 to 20.

In Figure 2b we analyze the new cg1.4xlarge instance type, currently only avail-
able in one of the eight regions of EC2 and since 6.4.2011. The top chart shows that the
average cost increases by 14% for the analyzed period if the user bet is increased from
$3.0 to $4.0 per hour. The maximum SI cost is increasing again stepwise, as in the case
of the c1.xlarge instance. For a user bet close to $0.74 per hour, the unavailability
count reaches a peak value of 833 and decreases slower than for the c1.xlarge in-
stance when increasing the bet. We conclude that the user shall be more generous with
this type and bet about $1.2 per hour to obtain a reliable SI. The bottom chart shows
that the user bet has a higher influences on total uptime as market price fluctuations are
higher. The maximum downtime for user bets up to $4 per hour is above 407 hours and

356 S. Ostermann and R. Prodan

reduces to 113 hours with bets over $4. The average availability is again related to the
unavailability count and fluctuates up to a bet of $2.45 per hour where it reaches 998
hours. Nevertheless, it shows significants improvement starting from $2.0 per hour.

The values we were able to gather from this analysis are used to estimate the recom-
mended user bet for SI that are required to get reliable results.

5 Dynamic Critical Path for Clouds

We extend the DCP full-ahead scheduling algorithm for minimizing the workflow make-
span in a dynamic environment that uses Cloud SIs if the Grid resources are not suffi-
cient for executing large workflows. If the Spot price increases to a higher value than,
the user bet, a rescheduling action is triggered to move activities from the SIs that are
terminated. The Spot price is then monitored every minute using a pull mechanism until
the market price is below the user bet and a new instances can be requested. A price
buffer is added to the market price to avoid constant rescheduling when the price is
fluctuating close to the user bet. If the new price is lower, the scheduler will reschedule
the workflow again, compare the expected execution time and cost with the previous
schedule, and use the better mapping for the activities that have not been yet submitted.

5.1 DCP-C Algorithm

The DCP-C algorithm (see Algorithm 2) is based on the original DCP presented in
Section 2.3. We extend in this paper the SelectRessource(Ai, onCP) function called by
the main loop for mapping each activity Ai, where the onCP boolean variable indicates
whether the activity is on the CP. For each available resource (line 3), the EST is first
calculated using Algorithm 3 (lines 4–7) which considers whether the activity is on the
CP or not. Afterwards, the child with the minimum LST − EST difference is chosen
(line 9) and a slot that fulfills its EST and LST is searched (line 10). The resource that
delivers the minimum EST sum of the two activities is then chosen for scheduling.

We extended the FindSlot function for finding a free resource slot that satisfies the
EST and LST constraints of an activity to support Cloud resources, in particular SI
targeted by our work. We achieved this by adding a new resource type called NewCloud.
If a task is mapped to a new Cloud instance, we add the startup latency of this resource
(i.e. premeasured virtual machine deployment and boot times) to the estimated EST
(lines 2–4), which we determine based on our previous benchmark analysis work [3].
The scheduler then looks for a resource slot that allows the execution of the activity Ai

within its range [EST,LST] (lines 6 − 8) and returns an infinite start time if none is
available. If the task is on the CP, the scheduler needs to consider the already mapped
activities and maybe even delay some of them if the CP has been changed (lines 9−11).
Otherwise, the scheduler needs to check that no dependencies are violated by the new
slot (line 12). Finally, the function returns the start time of the found timeslot (line 13).

In the following, we present three simple optimizations aiming to reduce the
makespan of large workflows running on Grid resources complemented with on-
demand dynamic SIs: rescheduling, Cloud choice, and prescheduling.

Variable Priced Cloud Resource Scheduling 357

Algorithm 2. SelectResource function.
Require: : Ai: workflow activity; onCP : flag set true if

Ai ∈ CP ; RS: resource set;
Ensure: : Schedule Ai to one resource in RS
1: S ← null
2: EST2 ← ∞
3: for all R ∈ RS do
4: ESTi ← FindSlot(Ai, R, false)
5: if ESTi = ∞ and onCP then
6: ESTi ← FindSlot(Ai, R, true)
7: end if
8: if ESTi �= ∞ then
9: Select Ac ∈ successor (Ai) :

min (LSTc − ESTc)
10: cST ← FindSlot(Ac, R, false)
11: if cST + ESTi < EST2 then
12: S ← R
13: EST2 ← cST + ESTi

14: end if
15: end if
16: end for
17: Schedule Ai to S

Algorithm 3. FindSlot function.
Require: : A: workflow activity; R: resource; onCP : flag

set true if Ai ∈ CP ;
Ensure: : start time of Ai on R;
1: Calculate EST and LST of A on R
2: if R = NewCloud then
3: EST ← EST + CloudLatency
4: end if
5: (Start, End) ← Get−Slot(A,R,EST, LST)

6: if [Start, End] �⊂ [EST,LST] then
7: return ∞
8: end if
9: if onCP then
10: Check if CP has changed and activities no longer

on CP need delay
11: end if
12: Check if schedule does not violate dependencies
13: return Start

5.2 Rescheduling

There may appear situations during workflow execution when additional shared Grid
resources become available, or when Spot prices change so that some instances may
get terminated or additional ones started. This is detected by the scheduler that continu-
ously monitors the Spot price, compares it with the user bet, and triggers a rescheduling
operation to adjust the mapping of activities to the new infrastructure configuration. To
perform rescheduling, the scheduler marks each activity as not scheduled except for the
finished and currently running ones, and maps unexecuted subworkflow again using the
proposed DCP-C algorithm. The user sets a price buffer that adds additional inertia to
the mechanism to keep the number of rescheduling operations within reasonable limits.

5.3 Cloud Choice

In our model, an important task of the scheduler is to dynamically complement the Grid
infrastructure with additional Cloud resources during runtime if this presents potential
for improving the workflow execution. In our case, this happens when the amount of
Grid resources are insufficient for executing large workflow parallel regions that need
to be serialized. The scheduler detects this situation when there are no free slots on the
resource an activity gets mapped to, which results in an increase in the planed starttime.
In selecting a new Cloud instance, the scheduler takes two important decisions: (1) the
instance type to lease from the Cloud provider, and (2) the number of such instances.

Selecting the instance type requires analysis of three important metrics: resource
speed, cost, and reliability. If the total budget available for a workflow is known, the
scheduler estimates the overall makespan on the Grid resources, and approximates the
hourly budget required. Then, it uses this information to decide which instance type to
use (representing the speed and cost parameters), including whether it should be a SI or
a Standard instance (representing reliability and cost). Based on our trace data analyzed

358 S. Ostermann and R. Prodan

in Section 4, the scheduler will prefer SIs as long as their current market price is below
the Standard price. The Spot prices are in average up to 60% lower than the regular
costs (see Table 1) allowing cheaper executions with a similar reliability. To keep the
complexity of the DCP-C algorithm low, this functionality is hidden in the CloudLa-
tency parameter when calculating the EST on the NewCloud (line 3 in Algorithm 3).
We quantify the speed of a Grid resource or Cloud instance in Elastic Compute Units
(ECU), which we compute based on our previous Cloud benchmarking work [3]. Us-
ing this unit, we compare the resource speeds and predict the activity execution times
for our computation-intensive workflows. When selecting the Cloud instance type, we
use the maximum number of parallel activities and the total amount of available Grid
resources. Since Cloud instances are only offered in bulks of cores, we use a minimum
resource utilization input by the user to estimate the amount of Cloud instances needed.

5.4 Prescheduling

The DCP-C algorithm has an O(N3) complexity, where N is the number of activities,
and has a non-negligible execution time for workflows with a large number of activities.
To minimize the impact of this overhead on the execution time for large workflows
(above 1000 activities), the scheduler does first an immediate mapping of the initial
activities (most likely to be on the CP) on the fastest resources, before calling the DCP-
C algorithm in a rescheduling-similar manner. With this hybrid approach we are able to
obtain good scheduling results combined with a reduced scheduling overhead.

6 Evaluation

We designed and implemented the methods presented in this paper in the ASKALON
environment [14] designed to support scientists in modeling, scheduling, and executing
scientific workflows in Grid and Cloud infrastructures. The Cloud support is enabled
through a back-end interface to the Eucalyptus middleware, compliant with the EC2 in-
terface. To support a large number of experiments required to validate new methods, we
interfaced the ASKALON enactment engine to the GroudSim [15] simulator that en-
ables deterministic simulations of applications comprising job executions, file transfers,
cost calculations, and background load on of Grid and Cloud computing infrastructures.

We used GroudSim to simulate three sites of the Austrian Grid environment and the
instance types offered by Amazon EC2 (see Tables 1 and 2). We assumed a standard
Amazon account which allows us to acquire a maximum of 20 instances, which results
in a total of 160 cores when using the cc1.4xlarge instance type. We used the
ASKALON environment interfaced to GroudSim to simulate two real-world scientific
workflows from the material science and hydrological domains with different structure,
number of activities, and computational requirements. Each workflow is characterized
by a parameter x defining the “parallelization size”, which determines the total number
N of workflow activities. We used this parameter to simulate workflows of different
sizes (small to very large), which we executed first in a pure Grid environment and then
by using on-demand Cloud resources.

Variable Priced Cloud Resource Scheduling 359

Table 2. Simulated Austrian Grid resources

Grid site Location Cores Speed [ECU]

karwendel Innsbruck 80 2.5
altix1.uibk Innsbruck 16 1.5
altix1.jku Linz 64 2.0

To model and estimate the execu-
tion time of workflow activities on
Grid/Cloud resources, we use a simple
performance modeling and prediction
service tuned for our pilot applications
that we presented in [2]. To better quan-
tify the computational performance of one ECU we use the performance benchmarks
and models from previous work [3]. The average size of a file transfer in our workflows
is of around 100 kilobytes, which is insignificant compared to the total computation
time. Staging files into the Cloud is mostly free of charge, while staging files out of
the Cloud cost around $0.12 per gigabyte, resulting in a negligible influence on the ag-
gregated workflow cost. In all experiments, we selected from the historical data from
EC2 an interval with high SI prices to study the impact of instance termination and the
resulting rescheduling.

6.1 Wien2k

Wien2k is a material science workflow for performing electronic structure calculations
of solids.The Wien2k workflow contains two parallel sections of size x, with sequential
synchronization activities in between (see Figure 3a). The total number of activities in
a Wien2k workflow is: Nwien2k = 2 · x+ 3.

Figure 4a shows our simulation results for scheduling and executing Wien2k work-
flow with different parallelization sizes. The chart first shows that using additional
Cloud instances brings significant improvements in the execution time of this workflow.
The faster instance types are selected by the scheduler and the more cores are added to
the resource pool, the lower the execution time of the workflow gets. Using user bets of
$0.35 for m1.large, $0.68 for c1.xlarge and $1.01 for cc1.4xlarge instances
gives us a 99% reliability according to our analysis in Section 4 (meaning a value in
the area of high availability with acceptable average prices). This means that there will
be no reschedules in the execution on the SIs resulting in identical curves as when us-
ing the Standard instances. The cost for using SIs is about 60% cheaper than using the
Standard instances for the same executions (see Table 1). The figure also shows that
choosing lower user bets of $0.125 for m1.large, $0.25 for c1.xlarge and 0.58
$ for cc1.4xlarge instances closer to the Spot price increases the completion time
due to SI unavailability and rescheduling operations (e.g. for the cc1.4xlarge in-
stances with a parallelization size of 388). In the worse case, the same execution times
as when using Grid resources only are obtained, meaning that the SIs have been paid
with no benefit. Smaller workflows with x < 200 or 80 hours of runtime finish before
any SI gets terminated which produces overlapping lines in the chart.

6.2 Invmod

Invmod [16] is a hydrological application that uses the Levenberg-Marquardt algorithm
to minimize the least squares of the differences between the measured and the simu-
lated runoff for a determined time period. The Invmod workflow displayed in Figure 3b

360 S. Ostermann and R. Prodan

first

secondsecond second second

third

last

fourthfourth fourth fourth

(a) Wien2k with x = 4. (b) Invmod with x = rand runs .

Fig. 3. Scientific workflows

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 0 100 200 300 400 500 600

R
un

tim
e

[h
ou

rs
]

Parallelisation size [x]

Grid
Grid + m1.large

Grid + m1.large 0.125
Grid + c1.xlarge

Grid + c1.xlarge 0.25
Grid + cc1.4xlarge

Grid + cc1.4xlarge 0.58

(a) Wien2k

 6

 9

 12

 15

 18

 21

 24

 27

 30

 33

 36

 39

 0 20 40 60 80 100 120 140 160 180 200

R
u

n
ti
m

e
 [

h
o

u
rs

]

Parallelisation size [x]

Grid
Grid + m1.large

Grid + m1.large 0.125
Grid + c1.xlarge

Grid + c1.xlarge 0.25
Grid + cc1.4xlarge

Grid + cc1.4xlarge 0.58

(b) Invmod

Fig. 4. Execution times of different parallelization sizes and instance types

consists of two levels of parallelism: (1) the outermost parallel loop consists of a num-
ber of random runs x (parallelization size) that perform a local search optimization (in
a sequential loop) starting from a random initial solution; (2) alternative local changes
are examined for each calibrated parameter in parallel in the inner nested parallel loop.
The total number of jobs in an Invmod workflow is: Ninvmod = 13 · x+ 2.

Figure 4b shows our experiments results with the Invmod workflow. Since this
workflow has a higher complexity than Wien2k, the benefits are smaller when slower
m1.large instances are added to the resource pool. On the other hand, the impact of
the cluster resources cc1.4xlarge is higher, as they outperform the available Grid
hardware by their speed and core amount (20 · 8 = 160 cores). Similar to the Wien2k
workflow, a correct user bet for SIs can bring similar performance results with over
60% cost reduction (see Table 3). The m1.large executions show that for some par-
allelization sizes (x = 140 or x = 150) the performance of the workflow running on SIs

Variable Priced Cloud Resource Scheduling 361

that get terminated can be as low as a Grid only execution. SIs can be again detrimental
when setting a too low user bid for all three instance types as compared to Standard
instances. In rare cases, rescheduling triggers an improvement in execution time due to
the better mappings for the remaining subworkflows obtained by the CP heuristic.

7 Conclusion

Table 3. Cost comparison when using Spot and Standard
instances

Workflow Size [x] Instance Type Cost [$] Spot price [$] saved [%]

wien2k 400 m1.large 439.28 167.743 61.81
wien2k 200 cc1.4xlarge 1771.2 648.818 63.37
invmod 140 c1.xlarge 171.36 64.726 62.23
invmod 160 cc1.4xlarge 385.6 154.047 60.05

The choice of the correct Cloud
instance is critical when running
scientific application in the Cloud.
While cheaper resources might
look attractive, their slow charac-
teristics degrade the performance
in such a way that the overall exe-
cution time is not significantly im-
proved and in the worst case even decreased. In this paper we analyzed the potential of
using SIs for improving the performance of real-world scientific workflows that suf-
fer from the insufficient Grid resources compared to their computational demand. We
first collected and analyzed the characteristics of the Spot prices over a period of 12
months and found out that they are quite stable for the different instance types offered
by Amazon. Furthermore, SIs offer over 99% availability when the user makes a cor-
rect bet of $0.35 for m1.large, $0.68 for c1.xlarge and $1.01 for cc1.4xlarge
instances with a average price far below the standard price. Then, we extended the Dy-
namic Critical Path algorithm for Cloud environments using three simple extensions:
rescheduling, Cloud choice, and prescheduling. We learned that SI can bring significant
improvements similar to the Standard instances to the execution of scientific workflows
in hybrid Grid-Cloud environment, provided that the correct user bet is made. Cost-
wise, SIs can bring over 60% reduction in costs if correctly used. With the upcoming
Spot price per availability zone, there will be even more room for improving the execu-
tion cost by dynamically choosing the cheapest zone for the end-user.

Acknowledgment. The research was funded by the Austrian Science Fund (FWF):
TRP 72-N23 and the Standortagentur Tirol: RainCloud.

References

1. Rahma, M., Venugopal, S., Buyya, R.: A Dynamic Critical Path Algorithm for scheduling
Scientific Workflow Applications on Global Grids. In: eScience, pp. 35–42. IEEE Computer
Society (2007)

2. Nadeem, F., Yousaf, M., Prodan, R., Fahringer, T.: Soft benchmarks-based application per-
formance prediction using a minimum training set. In: e-Science. IEEE Computer Society
Press (2006)

3. Iosup, A., Ostermann, S., Yigitbasi, N., Prodan, R., Fahringer, T., Epema, D.: Perfor-
mance Analysis of Cloud Computing Services for Many-Tasks Scientific Computing. IEEE
TPDS 22(6), 931–945 (2011)

362 S. Ostermann and R. Prodan

4. Kwok, Y.-K., Ahmad, I.: Dynamic Critical-Path Scheduling: An effective Technique for al-
locating Task Graphs to Multiprocessors. IEEE TPDS 7(5), 506–521 (1996)

5. Keahey, K., Freeman, T., Lauret, J., Olson, D.: Virtual Workspaces for Scientific Applica-
tions. In: Scientific Discovery through Advanced Computing, Boston (June 2007)

6. Apache, Apache Hadoop Project develops open-source Software for Reliable, Scalable, Dis-
tributed Computing (May 2010), http://hadoop.apache.org/

7. Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G., Soman, S., Youseff, L., Zagorodnov,
D.: Eucalyptus: A Technical Report on an Elastic Utility Computing Architecture Linking
Your Programs to Useful Systems. UCSB Computer Science. Tech. Rep. 2008-10 (2008)

8. Sangho, Y., Kondo, D., Andrzejak, A.: Reducing Costs of Spot Instances via Checkpointing
in the Amazon Elastic Compute Cloud. In: CLOUD, pp. 236–243. IEEE (2010)

9. Assuncao, A.C.M., Buyya, R.: Evaluating the Cost-Benefit of using Cloud Computing to
Extend the Capacity of Clusters. In: HPCC. ACM (2009)

10. Dörnemann, T., Juhnke, E., Freisleben, B.: On-demand Resource Provisioning for BPEL
Workflows using Amazon’s Elastic Compute Cloud. In: CCGrid, pp. 140–147. IEEE Com-
puter Society (2009)

11. Ramakrishnan, L., Koelbel, C., Kee, Y.-S., Wolski, R., Nurmi, D., Gannon, D., Obertelli, G.,
YarKhan, A., Mandal, A., Huang, T.M., Thyagaraja, K., Zagorodnov, D.: Vgrads: enabling
e-Science Workflows on Grids and Clouds with Fault Tolerance. In: SC. ACM (2009)

12. Marshall, P., Keahey, K., Freeman, T.: Elastic Site: Using Clouds to Elastically Extend Site
Resources. In: CCGrid, pp. 43–52. IEEE (2010)

13. Blanco, C.V., Huedo, E., Montero, R.S., Llorente, I.M.: Dynamic Provision of Computing
Resources from Grid Infrastructures and Cloud Providers. In: GPC Workshops, pp. 113–120.
IEEE Computer Society (2009)

14. Fahringer, T., Prodan, R., Duan, R., Nerieri, F., Podlipnig, S., Qin, J., Siddiqui, M., Truong,
H.L., Villazón, A., Wieczorek, M.: ASKALON: A Grid application development and com-
puting environment. In: GRID, pp. 122–131. IEEE (2005)

15. Ostermann, S., Plankensteiner, K., Prodan, R.: Using a New Event-based Simulation Frame-
work for Investigating Different Resource Provisioning Methods in Clouds. Scientific Pro-
gramming Journal 19(2-3), 161–178 (2011)

16. Cullmann, J., Mishra, V., Peters, R.: Flow analysis with WaSiM-ETH - model parameter
sensitivity at different scales. Advances in Geosciences 9, 73–77 (2006)

http://hadoop.apache.org/

Topic 7: Peer to Peer Computing

Alberto Montresor, Evaggelia Pitoura, Anwitaman Datta, and Spyros Voulgaris

Topic Committee

Peer-to-peer (P2P) systems enable computers to share information and other
resources with their networked peers in large-scale distributed computing en-
vironments. The resulting overlay networks are inherently decentralized, self-
organizing, and self-coordinating. Well-designed P2P systems should be adaptive
to peer arrivals and departures, resilient to failures, tolerant to network perfor-
mance variations, and scalable to huge numbers of peers (tens of thousands
to millions). As P2P research becomes more mature, new challenges emerge
to support complex and heterogeneous decentralized environments for sharing
and managing data, resources, and knowledge with highly dynamic and unpre-
dictable usage patterns. This topic provides a forum for researchers to present
new contributions to P2P systems, technologies, middleware, and applications
that address key research issues and challenges.

This year, three papers have been accepted for publication in the peer-to-peer
track. Each paper was evaluated by four referees.

The paper ID-Replication for Structured Peer-to-Peer Systems by Tallat
Shafaat, Bilal Ahmad, and Seif Haridi from the Royal Institute of Technology
(KTH), Sweden, discusses the shortcomings of existing replication schemes in
DHTs and proposes a new technique called ID-Replication. ID-Replication is
less sensitive to churn compared to the state-of-the-art techniques, and allows
to vary the replication degree depending on the popularity of the keys.

The paper Changing the Unchoking Policy for an Enhanced BitTorrent by
Vaggelis Atlidakis, Mema Roussopoulos and Alex Delis from the University of
Athens, Greece, proposes a novel optimistic unchoking approach for BitTorrent
that takes into consideration the number of peers currently interested in down-
loading from a client that is to be unchoked, and favors those having few peers
interested in downloading data from them, to trigger the interest of additional
peers.

The paper Peer-to-Peer Multi-Class Boosting by István Hegedüs, Róbert Busa-
Fekete, Róbert Ormándi, Márk Jelasity, and Balázs Kégl from the University of
Szeged, Hungary, and the University of Paris-Sud, France, deals with the prob-
lem of data mining over large-scale fully distributed databases, where each node
stores only one data record. The authors extends their previous work on gossip-
based machine learning by considering a well-known boosting technique.

We would like to take the opportunity of thanking the authors who submitted
a contribution, as well as the Euro-Par Organizing Committee, and the exter-
nal referees with their highly useful comments, whose efforts have made this
conference and this topic possible.

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, p. 363, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

ID-Replication

for Structured Peer-to-Peer Systems�

Tallat M. Shafaat1, Bilal Ahmad1, and Seif Haridi2

1 KTH - Royal Institute of Technology, Sweden
2 Swedish Institute of Computer Science, Sweden

{tallat,bilala,haridi}@kth.se

Abstract. Structured overlay networks, like any distributed system, use
replication to avoid losing data in the presence of failures. In this paper,
we discuss the short-comings of existing replication schemes and pro-
pose a technique for replication, called ID-Replication. ID-Replication al-
lows different replication degrees for keys in the system, thus allowing
popular data to have more copies. We discuss how ID-Replication is
less sensitive to churn compared to existing replication schemes, which
makes ID-Replication better suited for building consistent services on
top of overlays compared to other schemes. Furthermore, we show why
ID-Replication is simpler to load-balance and more secure compared to
successor-list replication. We evaluate our scheme in detail, and compare
it with successor-list replication.

1 Introduction

Structured overlay networks provide the infrastructure used to build scalable
and fault-tolerant key-value stores, e.g. Cassandra [9]. While scalability comes
with using consistent hashing, fault-tolerance is achieved by replication. There
are different strategies for replication in overlays, such as successor-list replica-
tion [17], using multiple hash functions, and symmetric replication [3]. Out of
these, successor-list replication is the most popular and widely used in ring-based
overlays. For instance, overlays including Chord [17], Pastry [14] (with a minor
modification), and Cassandra [9], all use successor-list replication.

It turns out that successor-list (SL) replication has some drawbacks. SL-
replication is highly sensitive to churn; hence a single node join or failure event
results in updating multiple replication groups. Furthermore, the replication de-
gree has to be constant throughout the system, restricting popular/hot data from
having more replicas. Next, SL-replication is inherently difficult to load-balance.
Finally, SL-replication is less secure and presents a bottleneck since there is a
master replica of each replication group and all requests for that group have to
go through the master replica. We discuss these issues in detail in Section 2.1.

In this paper, we propose a replication strategy called ID-Replication. ID-
Replication does not suffer from the afore-mentioned drawbacks of SL-replication.

� We would like to thank Cosmin Arad, Ahmad Al-Shistawy and Niklas Ekström for
their valuable discussions and feedback.

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 364–376, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

ID-Replication for Structured Peer-to-Peer Systems 365

It allows varied replication degrees in the system, and requests do not need to
go through the master replica. ID-Replication gives more control to an adminis-
trator, without hampering self-management. Furthermore, ID-Replication is less
sensitive to churn, thus being better suited to be used for building consistent
services and in asynchronous networks where false failure detections are a norm.
Since we use a generic design, ID-Replication can be used in any structured
overlay network.

In this paper, we discuss the short-comings of popular existing replication
schemes. We explain ID-Replication in detail and discuss the ideology be-
hind the design decisions. We perform a thorough evaluation and compare ID-
Replication to SL-replication.

2 Preliminaries

An overlay makes use of an identifier space, which for our purposes is defined
as a set of integers {0, 1, · · · ,N − 1}, where N is some apriori fixed, large, and
globally known integer. This identifier space is perceived as a ring that wraps
around at N − 1. Each node in the system has a unique identifier from the
identifier space. The successor of a node with identifier p is the first node found
going in clockwise direction on the ring starting at p. Similarly, the predecessor of
a node with identifier q is the first node met going in anti-clockwise direction on
the ring starting at q. The successor-list of a node m consists of m’s c immediate
successors, where c is typically set to log2(s), where s is the network size.

Each node q is responsible for storing keys between q’s predecessor and q.
For a replication degree of r in SL-replication, a key k is stored on the node q
that is responsible for storing k, and r− 1 immediate successors of q. In essence,
the key is stored on the responsible node q, and the first r − 1 members of q’s
successor-list (see Figure 1). In Fig 1, node 30 is responsible for storing keys
k ∈ (20, 30], and k are replicated on {30, 35, 40}, which is called the replica
group for k. As nodes join and leave the system, the successor, predecessor and
successor-lists are updated, leading to changes in the replica groups and transfer
of keys between nodes.

Fig. 1. Successor-list replication with replication degree 3. The replication group for
keys ∈ [21, 30] is {30, 35, 40}. Similarly, responsibility of node 35, i.e. (30, 35], is repli-
cated on 3 nodes encountered clockwise from 35, i.e. 35, 40 and 45.

366 T.M. Shafaat, B. Ahmad, and S. Haridi

Fig. 2. A new node 33 joins in a system using successor-list replication and degree 3.
6 nodes are involved in making changes, and 4 replication groups have to be updated.

2.1 Problems with Existing Schemes

Replica Groups Affected by Churn: Churn - node joins and failures - is considered
a norm in P2P systems. A desirable behaviour is that a churn event should
not effect the configuration of an overlay greatly. In SL-replication, the unit of
replication is a node’s assigned key space, also known as the node’s responsibility.
For instance in Fig. 1, the key space assigned to node 30 is (20, 30], which is
replicated on 35 and 40. Consequently, for a replication degree of r, each node
replicates r node responsibilities going anti-clockwise.

When a new node joins the overlay, it divides a node responsibility range into
two ranges. Similarly, a node failure results in merger of two node responsibilities.
Since each node responsibility range is replicated on r nodes, and each node
replicates r ranges, a single churn event results in reconfiguration of r replication
groups. Furthermore, a join event involves action on behalf of 2× r nodes, and
a failure involves action on behalf of (2× r)− 1 nodes. This is shown in Figure 2
where a new node 33 joins the system in a state shown in Figure 1. Replication
groups G1, G2, and G3 need to be updated, and nodes 20, 30, 33, 35, 40, 45 are
involved in such updates.

This approach has multiple drawbacks. First, a single churn event is overly
complicated, involving many nodes. Second, consistent services built on top of
overlays require consistent views of replication groups. For instance, Scatter [4]
and Etna [12], both require consensus whenever a replication group changes. A
high number of reconfigurations for a single churn event is undesirable. Lastly,
the time duration needed to stabilize for a single churn event is very high.

Load-Balancing: We argue that SL-replication is complicated to load-balance.
Consider an unbalanced system, such as the one depicted in Figure 1. It is
unbalanced in-terms of keys since node 30 is storing 10 keys while all other
nodes are storing 5 keys. A simple load-balancing mechanism, such as [8], would
move node 30 counter-clockwise to handover responsibility of some keys to 35,
or move 20 clockwise so that 20 takes over responsibility of some keys from 30.
Since keys ∈ (20, 30] are replicated on 3 nodes, such a movement will reduce
load from one replica node only. Hence, r node movements on the identifier ring
are needed to balance the load of one key range.

ID-Replication for Structured Peer-to-Peer Systems 367

Security: In SL-replication, all requests for a key k end up on the node n respon-
sible for k. This has two drawbacks. First, it is difficult to load-balance requests
since all requests for k pass through n before they can be routed to a replica.
Hence, n becomes a bottleneck. Second, if n is an adversary, it can launch a
malicious attack [16].

Symmetric Replication: In Symmetric Replication [3], keys are stored symmet-
rically on the identifier space using equivalence classes. This leads to requiring
a complicated bulk operation for retrieving all keys in a given range. Node joins
and failures have to use such a bulk operation to find data to be replicated.

3 ID-Replication

In this section, we describe a replication scheme for ring-based overlays, called
ID-Replication. We first provide an overview of ID-Replication, give a detailed
algorithmic specification, and then discuss its desirable properties.

3.1 Overview

We set out to design a replication scheme that is less sensitive to churn in terms of
the number of replication groups that need to be reconfigured. In ID-Replication,
we use sets of nodes, called groups, instead of individual nodes as the building
blocks for the overlay. Instead of partitioning the identifier space amongst nodes,
we partition the identifier space among groups. Thus, compared to the simple
structured overlay model where nodes are responsible for key ranges, we assign
responsibility ranges to groups. Consequently, groups are assigned identifiers.
The idea of using groups instead of nodes can be applied to the majority of the
overlays. For the sake of simplicity, we use Chord-like notation in this paper.

All nodes within a group have the same identifier as the group. To distinguish
nodes within a group, each node also has a group-local identifier. The group-
local identifiers of nodes only need to be unique within the group. For efficient
routing, each node maintains long range links, such as fingers in Chord.

The model of ID-Replication is shown in Figure 3. There are five groups on the
identifier space: 20, 30, 35, 40 and 45. The successor of a group is the first group
encountered going clockwise from that group, e.g. group 40 is the successor of
group 35. Similarly, the predecessor of a group is the first group encountered
going anti-clockwise, e.g. 30 is the predecessor of 35. A group is responsible
for the key range from its predecessor to itself, e.g. group 35 is responsible for
keys ∈ (30, 35].

Each group is composed of a number of nodes, e.g. group 30 contains nodes
{1, 2, 3}. The nodes of a group are the replicas for the keys that the group is
responsible for. The size of each group is specified using two parameters: rmin

and rmax. Thus, the replication degree of keys is always between rmin and rmax.
To maintain the ring under dynamism, we employ a modified version of pe-

riodic stabilization [17] that operates on groups instead of nodes. Furthermore,

368 T.M. Shafaat, B. Ahmad, and S. Haridi

we use gossiping between nodes in a group to synchronize the view of the group
among the group members.

We use two operations for reconfiguring groups: Merge and Split. When the
size of a group G1 drops below rmin, we need to merge G1’s members with
another group G2 such that the size of the merged group should be less than
rmax. The merged group G = G1 ∪G2 retains the identifier of G2.

When the size of a group G becomes larger than rmax, we need to split it into
two groups, G1 and G2, such that the size of each split group is larger than or
equal to rmin. The identifiers of G1 and G2 are calculated in a way to increase
the load-balance in the system.

A failure of a node can trigger a merge. Similarly, a new node joins an existing
group, which can result in a split.

Fig. 3. A configuration of ID-Replication. Replica groups are denoted by a single iden-
tifier on the identifier space ring. Nodes in a replica group G1 are responsible for storing
keys between G1’s predecessor replica group’s identifier and G1. Nodes within a replica
group are differentiated by using group-local identifiers (1, 2, and 3 in the figure).

3.2 Algorithm

We give a full specification of ID-Replication as Algorithm 1 and 2 in an rpc-
notation. Each node stores a group-local identifier lid, a group identifier id, and
a set of nodes in its group, group. An rpc-call is denoted by ‘::’. For instance,
m::id denotes the value of id on node m.

A new node n joins the system by attempting to become a member of a group
of size less than rmax to avoid a split operation. Ideally, n should join the lowest-
sized group. Such a group can be found in a best-effort manner by a random
walk, or by maintaining directories that store such information (as in [5]). If a
group with less than rmax members is not found, n will join a group causing it
to split into two.

Nodes maintain successor-lists to preserve the ring-geometry amid churn. The
difference between Chord and ID-Replication successor-lists is that the lists are
composed of successive groups instead of successive nodes. If all nodes in the
successor group of G fail or merge with another group,G points to the next group
in the successor-list (Algo 1, line 13). For ring and successor-lists maintenance, we
use an algorithm similar to Chord’s periodic stabilization, where nodes belonging
to a group periodically stabilize the ring with nodes in their successor group
(Algo 1, lines 15–27).

ID-Replication for Structured Peer-to-Peer Systems 369

Algorithm 1. ID-Replication(part 1): Periodic stabilization for joins and failures

� ‘::’ denotes a remote procedure call
1: n.join(seed) � Periodically retried with new seed if request fails
2: seed::join request(n)
3:
4: n.join request(m)
5: if |group| < rmax then � if n’s replica group has space
6: group := group ∪ {m}
7: m :: 〈id, group〉 := 〈id, group〉 � Set joining node’s id and group

8:
9: n.node failure(f) � Node f failed
10: group := group− {f}
11: pred.group := pred.group− {f}
12: succ.group := succ.group− {f}
13: if succ.group == {} then
14: succ := next in successor groups()

15:
� Periodically check for new successor and predecessor groups

16: n.stabilize ring()
17: random succ := select random(succ.group, 1) � Select a random node
18: 〈x.id, x.group〉 := rand succ :: pred.〈id, group〉
19: if x.id ∈ (id, succ.id) then
20: 〈succ.id, succ.group〉 := 〈x.id, x.group〉
21: succ.group := select random(succ.group, 1):: group � Update my view
22: ∀p ∈ succ.group do p :: notify(n, id, group)
23:
24: n.notify(src, pid, pgroup)
25: if pid ∈ (pred.id, id) or src ∈ pred.group then
26: 〈pred.id, pred.group〉 := 〈pid, pgroup〉
27:

Say the size of a group Gsize is more than rmin. In such a case, even if
Gsize − rmin nodes, called standby nodes, leave the group, it will neither violate
the replication degree nor require a merge operation. These standby nodes can
potentially become part of a group in which a node fails. Hence, standby nodes
advertise themselves (Algo 2, lines 16–17) by either gossiping, or periodically
updating their address information into directories (as in [5]).

Each node n periodically checks if the size of its group, Gsize, is between
rmin and rmax. If Gsize is smaller than rmin, then n searches for a standby node
by gossiping or contacting a directory, and tries to include it in n’s group. If a
standby node cannot be found, n triggers a merge operation (Algo 2, lines 7–14).
A merger is required in this case to maintain a replication degree of at least rmin.
Similarly, if Gsize is larger than rmax, n initiates the split operation by dividing
the group into two groups (Algo 2, lines 1–6). Furthermore, n periodically gossips
with its group members to synchronize their view of the group, and can use anti-
entropy to update data items.

370 T.M. Shafaat, B. Ahmad, and S. Haridi

Algorithm 2. ID-Replication(part 2): Split and Merge operations

� Periodically attempt to keep rmin < |group| < rmax

1: every γ time units and |group| > rmax at n � Split operation
2: peers to split := get top(sort(group), rmin) � Get rmin nodes with lowest lid
3: ∀ p ∈ peers to split do p::〈id, group〉 := 〈new key, peers to split〉
4: peers to retain := group− peers to split
5: ∀ p ∈ peers to retain do p::〈id, group〉 := 〈id, peers to retain〉
6: end event

7: every γ time units and |group| < rmin at n � Due to failures
8: node := search standby node()
9: if node = nil then � Search failed, Merge with successor group
10: 〈new id, new group, new succ〉 := 〈succ.id, succ.group∪group, succ :: succ〉
11: ∀ p ∈ new group do p::〈id, group, succ〉 := 〈new id, new group, new succ〉
12: else � Make the standby node part of n’s group
13: node::〈id, group, succ, pred〉 := 〈id, group ∪ {node}, succ, pred〉
14: end event

15: every δ time units at n � Periodically synch view with group-mates
16: if index of(n, sort(group)) > rmin then
17: publish as standby node(n)

18: gossip view(group) � Synchronize group view (& data) with group members
19: end event

3.3 Discussion

As we discuss in Section 3.1 and evaluate in Section 4, ID-Replication requires
less replication group reconfigurations per churn event. This makes ID-Replication
ideal for building a consistent DHT. Each replication group can be considered as
a replicated state machine and operations are performed on the data in a total
order within the group. To handle dynamism, we need to support the merge and
split operations where the view of a group changes. For this, we can use a re-
configurable replicated state machine, such as SMART [11]. Using SMART with
SL-replication is both complicated and expensive as replicated state machines
are implemented using Consensus. Since ID-Replication requires fewer replica-
tion group reconfigurations per churn event, it will require fewer instances of
consensus. Furthermore, in an asynchronous system, false failure suspicions are
very common, which will trigger much more reconfiguration requests in SL-
replication.

ID-Replication allows the system user to have different replication degrees
for different keys. We use two parameters, rmin and rmax, to control the repli-
cation degree. For a given range, the number of replicas is at least rmin and
at most rmax. Thus, popular or critical data can have more copies than other
data by setting higher values of rmin and rmax for the corresponding key range.
Furthermore, requests do not need to go through a master replica. Hence, ID-
Replication does not have any bottlenecks, and requests can be load-balanced

ID-Replication for Structured Peer-to-Peer Systems 371

across all replicas. Finally, such a design avoids the security vulnerabilities of
SL-replication [16].

Owing to the design of ID-Replication, a system administrator has much more
control over the system compared to SL-replication. For instance, the admin-
istrator can control how many and which machines should serve a particular
key-range. This also allows the usage of specialized hardware for handling re-
quests for certain keys. On the contrary, a node in SL-replication is responsible
for replicating multiple key ranges (r key partitions anti-clockwise), making it
harder to control.

Routing tables, e.g. fingers in Chord, can also be build using groups. Each
routing pointer can point to a group, containing addresses of multiple nodes.
Greedy routing can be done on group identifiers, and a lookup can be routed
to a random node in the group. For fault-tolerance and better performance, a
lookup can be routed by forwarding in parallel to all nodes in the groups at each
hop, and considering only the first reply. While such a mechanism consumes
more bandwidth, it (a) is more reliable as it can tolerate failure of nodes in the
path, and (b) has lower latency as the lookup can exploit multiple paths. Such
parallel lookup techniques have also been proposed for Chord like overlays [10].

4 Evaluation

To evaluate our work, we simulated both ID-Replication and SL-replication in
Kompics [2]. The simulations were performed with an initial network size of
2000 nodes, using the King dataset [6] for message latencies between the nodes.
Each experiment had the following structure: we initialized the overlay with
2000 nodes. Once the overlay converged, we subjected it to 2000 churn events
(1000 joins and 1000 failures), and measured the metrics till the topology con-
verged. The lifetimes of nodes had a poisson distribution, and each node failure
was followed by a join event. We evaluated both replication schemes under var-
ious levels of churn by changing the median parameter of poisson distribution
for the lifetimes. A higher median lifetime results in lower churn rate. We per-
formed simulations for periodic stabilization periods of 30 and 60 seconds. The
experiment results for both stabilization rates were the same, so we omit graphs
for stabilization delay of 60 seconds due to space restrictions. We simulated 3
directories for nodes to publish and find standby nodes, and used a value of
rmax = 2× rmin. Such directories can be implemented by using predefined keys,
and storing information under those keys [5]. We repeated each experiment for
10 seeds and report the averages.

4.1 Replication Groups Restructured

We measured the number of replication groups that need to be reconfigured due
to the churn events (see Figure 4). The x-axis shows the median lifetime used
for nodes, while the y-axis depicts the number of replication groups restructured
per churn event. As analyzed earlier, the figure shows that there are r number

372 T.M. Shafaat, B. Ahmad, and S. Haridi

10 20 30 40 50 60
1

2

3

4

5

6

7

Nodes median lifetime [mins]

G
ro

up
s

re
st

ru
ct

ur
ed

/c
hu

rn
 e

ve
nt SL−rep, r=7

SL−rep, r=5
SL−rep, r=3
ID−rep, r

min
=7

ID−rep, r
min

=5

ID−rep, r
min

=3

Fig. 4. Number of replica-
tion groups restructured per
churn event

10 20 30 40 50 60

4

6

8

10

12

Nodes median lifetime [mins]

N
od

es
 in

vo
lv

ed
/c

hu
rn

 e
ve

nt
Fig. 5. Number of nodes in-
volved in updates for each
churn event

10 20 30 40 50 60
10

15

20

25

30

35

Nodes median lifetime [mins]

K
ey

s
re

sh
uf

fle
d/

ch
ur

n
ev

en
t

Fig. 6. Number of keys
transferred between nodes
converge for both schemes

of reconfigurations per churn event for SL-replication, while the corresponding
value stays close to one for ID-Replication. In this case, ID-Replication does not
depend on the replication degree whereas SL-replication does. SL-replication
has lower restructuring count at higher churn rates than lower rates. The reason
being that at high churn, simultaneous node failures in a replica group can mask
the cost of multiple node failures with the cost of a single node failure, since, all
the failed nodes will be replaced in a single periodic stabilization round.

ID-Replication has a very low group restructuring cost and is unaffected by
both r and churn rate because majority of churn events restructure only one
group. Splits, merges and standby node movement restructure two groups. Since
these events occur at a low frequency, the restructuring cost stays low.

4.2 Nodes Involved in Updates

Each churn event requires action on behalf of a certain number of nodes. In this
experiment, we counted the number of nodes involved in the reconfiguration
updates. This count is depicted in Figure 5, normalised against the number of
churn events. As analyzed in Section 2.1, the count for SL-replication approaches
2 × r. Since ID-Replication involves only one group for a single churn event
(excluding splits and merges), the number of nodes involved to handle churn
stays close to r. It is noteworthy that the performance of ID-Replication improves
as the mean life time of nodes increases, which is opposite to SL-replication
behaviour. At lower churn rates, the number of splits and merges is reduced
because of the join mechanism of ID-Replication where new nodes try to join
groups with low node count. Since at low churn rates the topology changes
very slowly, nodes take better decisions about which group to join. This reduces
splits and merges, thus resulting in fewer nodes involved at low churn rates. Such
behaviour makes ID-Replication ideal for managed systems in data-centers and
cloud computing where the churn rate is low.

ID-Replication for Structured Peer-to-Peer Systems 373

4.3 Keys Reshuffled

Next, we evaluate the number of keys that have to be transferred between nodes.
Figure 6 shows the comparison between SL-replication and ID-Replication with-
respect-to the number of keys re-shuffled per churn event. At lower churn rates,
both SL-replication and ID-Replication converge to the same value. However,
the two replication schemes behave differently at higher churn rates.

The reason behind SL-replication’s reduced cost at high churn rate is because
nodes become aware of the change in their responsibilities after each periodic
stabilization step. Now, when the mean lifetime of nodes is very short it may
happen that a failed node is replaced by a new node, before other nodes had the
chance to detect its failure. This way the join event masks the cost associated
with the failure of the node. Furthermore, a new node may fail shortly after
joining (within a periodic stabilization window) without anyone noticing its join
and failure, thus avoiding key re-shuffling.

The increased cost of ID-Replication at high churn is due to a high merge
rate. Merge is costly in terms of keys re-shuffled as it results in transferring keys
of two responsibility ranges by all members of the two groups being merged. On
the other hand, the movement of a standby node requires the transfer of one
responsibility range only once. When the churn rate is higher than the rate at
which the standby nodes are being advertized, the number of merge operations
is naturally higher. However, when the churn rate becomes comparable to the
rate of publication of standby nodes, the system involves more standby node
movements and thus reducing the number of merge operations. This phenomena
is depicted in Figure 7, illustrating the number of splits, merges, and standby
node movements per churn event. The figure shows that as the mean lifetime of
nodes is increased (churn rate is reduced), the rate of standby node movements
increases, which results in a decreased merge rate. Furthermore, at low churn
rates, the search for lowest size group gets better results. This experiment sug-
gests that for higher rates of churn, the rate of updating the directories with
group-size and standby node information should be higher as well. It is worth
noting that a lifetime of 10 minutes is considered a very high churn rate for a
DHT.

4.4 Overhead of Maintaining Groups

ID-Replication maintains groups using a gossiping protocol such as Cyclon [18],
which adds to the maintenance cost. Cyclon is inexpensive, especially given that
the group sizes are small and the churn rates are moderate in cloud environments.
We used a gossip rate equal to the periodic stabilization rate (30 seconds), and
measured maintenance cost for various network sizes. Our results show that the
gossiping overhead is approximately the same as periodic stabilization. Hence,
using ID-Replication doubles the maintenance bandwidth requirement and the
number of messages exchanged is almost 1.7 times higher. The maintenance cost
is still moderate and negligible given today’s interconnects.

374 T.M. Shafaat, B. Ahmad, and S. Haridi

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 10 20 30 40 50 60

M
er

ge
s,

Sp
lit

s,
St

an
db

y
no

de
s

/c
hu

rn
 e

ve
nt

Node median lifetime (minutes)

Merges
Splits

Standby node movement

Fig. 7. The number of standby
node movements increases with de-
creasing churn rate, thus reducing
group merges

0 10 20 30 40
0

100

200

300

400

500

600

700

Time [mins]

N
um

be
r

of
 g

ro
up

s

Group size 3
Group size 4
Group size 5

Fig. 8. Number of groups for
sizes between 3 (rmin) and 6
(rmax)

4.5 Evolution of Groups

Finally, we evaluated the size of groups over time, where it is desirable that the
group sizes are close to rmin. Figure 8 shows the number of groups for each size
between rmin and rmax over time for a poisson churn with mean 60 minutes.
The figure confirms that most of the groups have a size of 3, which is rmin. We
observed similar trends for other churn rates as well, which we omit here due to
space constraints.

5 Related Work

Symmetric replication [3] proposes an alternative replication scheme for struc-
tured overlays. However, it requires a bulk search operation to find all data items
in a key range for every join and fail event. Such a bulk operation is complex,
requires extra messages, and induces a delay before the churn event is completely
catered. In contrast, we do not require any such bulk operation.

Scatter [4] uses a similar scheme for achieving consistency in DHTs. Com-
pared to our scheme, they further sub-divide the groups to differentiate between
key responsibilities of each node. Furthermore, they do not evaluate or argue for
the usefulness of their scheme. We provide algorithmic specification of our work,
backed by design decisions and evaluation with comparison to SL-replication.

P-Grid [1] uses a notion called structural replication, where nodes form groups
and data is replicated among nodes in these groups. Like ID-Replication, different
groups can have different replication degrees. The geometry of P-Grid is a tree,
while we give a solution for overlays with a ring geometry, which is the geometry
of a majority of structured overlays. Compared to P-Grid, our solution uses
consistent hashing [7], thus leveraging properties of consistent hashing such as
self-management, load balancing, and minimized repartitioning of data under
churn.

Agyaat [15] proposes to use groups of nodes, called clouds, to provide mutual
anonymity in structured overlays. Compared to ID-replication, Agyaat main-
tains an R-Ring and an overlay with the clouds, which is more complicated and

ID-Replication for Structured Peer-to-Peer Systems 375

requires some nodes to be part of two overlays. A similar approach is taken by
Narendula et al. [13], where nodes form sub-overlays with trusted nodes for
better access control in P2P data management.

6 Conclusion

This paper discusses popular approaches employed for replication in structured
overlay networks, including successor-list replication and symmetric replication,
and outlines their drawbacks. We present the design, algorithmic specification,
and evaluation of ID-Replication, a replication scheme for structured overlays
that does not suffer from the afore-mentioned problems. It does not require
requests to go through a particular replica. Furthermore, ID-Replication allows
different replication degrees for different key ranges. This allows for using higher
number of replicas for hotspots and critical data. We provide detailed evaluation
of ID-Replication, and compare it with SL-replication. Our results show that ID-
Replication is less sensitive to churn than SL-replication, which makes it better
suited for building consistent services and for working in asynchronous networks
where inaccurate failure detections are a norm.

Future Work: Due to its low sensitivity to churn, a possible step forward would
be to build a consistent key-value store using ID-Replication. Each replication
group can act as a replicated state machine, where operations are performed in
a total order on the replicas. Since replica groups change with dynamism, we
propose using a reconfigurable replicated state machine such as SMART [11].

References

1. Aberer, K., Cudré-Mauroux, P., Datta, A., Despotovic, Z., Hauswirth, M.,
Punceva, M., Schmidt, R.: P-Grid: a self-organizing structured P2P system. SIG-
MOD Record 32(3), 29–33 (2003)

2. Arad, C., Dowling, J., Haridi, S.: Developing, simulating, and deploying peer-to-
peer systems using the Kompics component model. In: COMSWARE 2009 (2009)

3. Ghodsi, A., Alima, L.O., Haridi, S.: Symmetric Replication for Structured Peer-to-
Peer Systems. In: Moro, G., Bergamaschi, S., Joseph, S., Morin, J.-H., Ouksel, A.M.
(eds.) DBISP2P 2005 and DBISP2P 2006. LNCS, vol. 4125, pp. 74–85. Springer,
Heidelberg (2007)

4. Glendenning, L., Beschastnikh, I., Krishnamurthy, A.: Scalable Consistency in
Scatter. In: ACM SOSP, pp. 15–28 (2011)

5. Godfrey, B., Lakshminarayanan, K., Surana, S., Karp, R., Stoica, I.: Load balancing
in dynamic structured P2P systems. In: Proceedings of the 23rd Conference of the
IEEE Computer and Communications Societies (2004)

6. Gummadi, K.P., Saroiu, S., Gribble, S.D.: King: estimating latency between arbi-
trary internet end hosts. In: IMW 2002: Proceedings of the 2nd ACM SIGCOMM
Workshop on Internet Measurment, pp. 5–18. ACM, New York (2002)

7. Karger, D., Lehman, E., Leighton, T., Panigrahy, R., Levine, M., Lewin, D.: Con-
sistent hashing and random trees: distributed caching protocols for relieving hot
spots on the world wide web. In: STOC, pp. 654–663. ACM (1997)

376 T.M. Shafaat, B. Ahmad, and S. Haridi

8. Karger, D.R., Ruhl, M.: Simple Efficient Load Balancing Algorithms for Peer-to-
Peer Systems. In: Voelker, G.M., Shenker, S. (eds.) IPTPS 2004. LNCS, vol. 3279,
pp. 131–140. Springer, Heidelberg (2005)

9. Lakshman, A., Malik, P.: Cassandra: a decentralized structured storage system.
SIGOPS Oper. Syst. Rev. 44, 35–40 (2010)

10. Leong, B., Liskov, B., Demaine, E.D.: Epichord: Parallelizing the chord lookup
algorithm with reactive routing state management. Computer Communica-
tions 29(9), 1243–1259 (2006)

11. Lorch, J.R., Adya, A., Bolosky, W.J., Chaiken, R., Douceur, J.R., Howell, J.: The
smart way to migrate replicated stateful services. In: EuroSys (2006)

12. Muthitacharoen, A., Gilbert, S., Morris, R.: Etna: a Fault-tolerant Algorithm for
Atomic Mutable DHT Data. Mit technical report, MIT (June 2005)

13. Narendula, R., Miklós, Z., Aberer, K.: Towards access control aware p2p data
management systems. In: EDBT/ICDT Workshops, pp. 10–17 (2009)

14. Rowstron, A., Druschel, P.: Pastry: Scalable, Decentralized Object Location, and
Routing for Large-Scale Peer-to-Peer Systems. In: Guerraoui, R. (ed.) Middleware
2001. LNCS, vol. 2218, pp. 329–350. Springer, Heidelberg (2001)

15. Singh, A., Gedik, B., Liu, L.: Agyaat: mutual anonymity over structured p2p net-
works. Internet Research 16(2), 189–212 (2006)

16. Sit, E., Morris, R.: Security Considerations for Peer-to-Peer Distributed Hash Ta-
bles. In: Druschel, P., Kaashoek, M.F., Rowstron, A. (eds.) IPTPS 2002. LNCS,
vol. 2429, pp. 261–269. Springer, Heidelberg (2002)

17. Stoica, I., Morris, R., Liben-Nowell, D., Karger, D.R., Kaashoek, M.F., Dabek,
F., Balakrishnan, H.: Chord: a scalable peer-to-peer lookup protocol for internet
applications. IEEE/ACM Transactions on Networking (TON) 11(1), 17–32 (2003)

18. Voulgaris, S., Gavidia, D., van Steen, M.: Cyclon: Inexpensive membership man-
agement for unstructured p2p overlays. J. Network Syst. Manage. 13(2), 197–217
(2005)

Changing the Unchoking Policy

for an Enhanced Bittorrent

Vaggelis Atlidakis, Mema Roussopoulos, and Alex Delis

University of Athens, Athens, 15784, Greece
{v.atlidakis,mema,ad}@di.uoa.gr

Abstract. In this paper, we propose a novel optimistic unchoking ap-
proach for the BitTorrent protocol whose key objective is to improve the
quality of inter-connections amongst peers. In turn, this yields enhanced
data distribution without penalizing underutilized and/or idle peers. The
suggested policy takes into consideration the number of peers currently
interested in downloading from a client that is to be unchoked. Our con-
jecture is that clients having few peers interested in downloading data
from them should be favored with optimistic unchoke intervals. This will
enable the clients in question to receive data since they become unchoked
faster and consequently, they will trigger the interest of additional peers.
In contrast, clients with plenty of “interested” peers should enjoy a lower
priority to be selected as “planned optimistic unchoked” as they likely
have enough data to forward and have saturated their uplinks. In this
context, we increase the aggregate probability that the swarm obtains a
higher number of interested-in-cooperation and directly-connected peers
leading to improved peer inter-connection. Experimental results indicate
that our approach significantly outperforms the existing optimistic un-
choking policy.

Keywords: Peer-to-peer, Content Distribution, Unchoking.

1 Introduction

Peer-to-peer applications remain of crucial importance as there is still a grow-
ing trend for exchange of large multimedia files, voice-over-IP and broadcasting
of TV-quality programs in the World Wide Web. Content delivery networks
based on the traditional client-server model were shown not to scale for large
content sharing aggregations. Most of their limitations emanate from the lack
of bandwidth that causes bottlenecks in light of heavy requests. In addition,
quality of service at the client side inadvertently suffers when servers experience
substantial loads. In contrast, highly decentralized peer-to-peer models do not
distinguish the role of providers and consumers as peers play a dual role by being
both a server and/or a client at times. The absence of a centralized authority
also constitutes the foundation for scalable and adaptive applications.

Nowadays, BitTorrent [2] is the most popular peer-to-peer protocol, account-
ing for approximately 27-55% of all Internet traffic depending on geographical

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 377–388, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

378 V. Atlidakis, M. Roussopoulos, and A. Delis

location, according to [1]. In the pre-BitTorrent era, Napster, Gnutella and Fast-
Track were widely-used protocols for transferring multimedia files, such as mp3’s,
movies, and software. However, their centralized indexing methods and/or the
lack of a tit-for-tat schema among peers prevented them from being an effective
competitor to BitTorrent ’s dominance.

The BitTorrent protocol [2] operates at three different layers: At the swarm
layer, a peer contacts a tracker to join a swarm and receive a list of other peers to
whom to connect. At the neighborhood layer, the core reciprocation mechanism
is implemented, which forces peers to share any received data in order to receive
downloading slots from counterparts. This is done locally, without any help from
a centralized mechanism and constitutes the fundamental choice for the incentive
policy in use. At the data layer, a file is viewed as a concatenation of fixed-size
pieces that are requested in a rarest-first policy to ensure the highest degree
of content replication. In this paper, we focus at the neighborhood layer and
modify the neighborhood selection mechanism of the protocol known as peer
unchoking; this includes regular unchoking and optimistic unchoking. Regular
unchoking is the basic mechanism that implements a tit-for-tat schema that
allocates bandwidth preferably to peers sending data and penalizes free-riders.
Periodically, every peer sorts its uploaders according to the rate they provide
data and allocates downloading slots only to the top-three uploaders. Peers not
uploading data are excluded from this process, and therefore, they receive no
reciprocation. Optimistic unchoking ensures that new peers have a chance of
downloading one first piece without having sent any themselves.

The question we seek to answer in this paper is how an uploader should allo-
cate its optimistic unchoke interval to downloaders to achieve the most aggregate
benefit in a swarm. The existing optimistic unchoking policy uses a round-robin
approach giving priority to more recently connected peers [2]. This approach
guarantees at least one bootstrapping interval for any new peer, regardless of
the situation (i.e., dynamics) in which it finds itself. In a set of newly connected
peers, some of them may already possess data blocks, while others do not. Those
who possess highly-demanded data are more likely to receive data requests, thus
immediately contributing to the swarm. In contrast, peers without data on high-
demand or no data at all are more likely to be underutilized. Our proposal is
that clients having few peers interested in downloading data, should be favored
with optimistic unchoke intervals. In turn, this approach enables the clients in
discussion to receive data since they get unchoked and so, they may trigger
the interest of additional peers. To this end, we check the number of interested
initiated connections a client maintains and select as the planned optimistic un-
choked node the one with the least number of interested connections. Uploading
clients with few peers interested in downloading from them, receive data in order
to trigger global interest and attract block requests. In the long run, the peers
in question will be rewarded with additional bandwidth from others due to reg-
ular unchoking tit-for-tat schema and will stop being idle. As a matter of fact,
more peers will participate in the distribution of data, asserting a high quality
of inter-connection of peers.

Changing the Unchoking Policy for an Enhanced Bittorrent 379

We examine a number of key factors that help our approach enhance the
performance of the native BitTorrent protocol. These include the number of
peers acting as intermediates, decongestion in seeders, contribution of aggregate
seeders and peers, and altruism presented by peers. The contributions of our
work are:

1. enhancement of the BitTorrent protocol that collectively enables an increase
in peer content contribution. A high number of peers now act as interme-
diaries as under-utilized peers have a higher priority to receive optimistic
unchoke intervals.

2. decongestion of seeders as fewer peers remain idle and so the load on seeders
eases up considerably.

Although prior related research has been carried out in a number of aspects
including reciprocity mechanisms [6, 8], tit-for-tat schemas to discourage free
riding [14], and incentives policies in [12, 7], our work is to the best of our
knowledge the first effort to adopt an alternative optimistic unchoking policy.
Previous research has suggested solutions regarding the modification of the regu-
lar unchoking policy, and has introduced techniques to encourage peers to act as
uploaders and to discard idle peers. Our work, however, is the very first to modify
the optimistic unchoking policy to encourage cooperation of peers. Our purpose
is to treat underutilized uploaders as nodes that lack data to upload, rather than
consider them to be selfish free-riders. It is the first time that uploaders are able
to locate idle peers and “reward” them with optimistic unchoking slots; no cen-
tral authority point is used to locate idle peers. Our new optimistic unchoking
policy increases the number of interested-in-cooperation and directly-connected
peers. In this manner, the quality of inter-connection of peers is improved and
a high number of peers now act as data intermediaries, rather than remain idle.
Via experimental evaluation and comparison of our protocol with the native Bit-
Torrent, we show a significant increase in upload bandwidth offered by peers.
We also show that a noteworthy number of peers upload more blocks than down-
load, so we claim that our protocol modification yields an increase in altruism
presented by peers.

The rest of the paper is organized as follows: Section 2 discusses the key
features of our proposed enhanced BitTorrent scheme and Section 3 presents
our main experimental results. Section 4 outlines related work while concluding
remarks are found in Section 5.

2 Enhanced BitTorrent

In this section, we outline our proposed peer unchoking policy by first introducing
the messages used by our enhanced BitTorrent protocol. We then introduce and
analyze the ratio of interest, and the algorithms used for our unchoking policy.
Finally, we give an overview of our enhanced BitTorrent system.

380 V. Atlidakis, M. Roussopoulos, and A. Delis

2.1 Enhanced BitTorrent Messages

The messages of the native BitTorrent protocol can be categorized into: swarm-
oriented, state-oriented and data-oriented messages. To implement our enhanced
BitTorrent protocol we use the messages of the original BitTorrent protocol, but
we augment the have state-oriented message with an additional float value. The
latter corresponds to the ratio of interest (Section 2.2) of the sender of the have
message and helps us implement our enhanced unchoking policy.

Table 1 summarizes the swarm-oriented messages that are exchanged between
peers and the tracker. These messages are helpful to the tracker so that it can
maintain an up-to-date mapping of the dynamics of the swarm. Swarm-oriented
messages are also helpful to peers to help them locate each other in a timely
fashion. The messages in this group contain no downloadable data.

Table 1. Swarm-oriented Messages

join: A peer interested in joining a swarm sends this message to the tracker. This message contains
metadata of the respective file and contact information of the sender
join response: The tracker sends this message in response to join; no payload.
peerset: A peer sends this message to the tracker to request the contact information of other peers
participating in the swarm; no payload.
peerset response: The tracker sends this message in response to peerset. This message contains
a list of listening IP–addresses and ports of peers participating in the swarm.
leave: A peer sends this message to inform the tracker that it is leaving the swarm.

The group of messages sent among cooperating peers is depicted in Table 2.
We refer to these as state-orientedmessages that help achieve cooperation among
peers and implement the peer unchoking policy. All messages of Table 2 contain
no downloadable data but designate when peers must exchange data or not.
More specifically when peer A dispatches a choke message to peer B, the latter
must not send any data-orientedmessages back to A. B must receive an unchoke
message from A in order to commence sending new data-oriented messages.

Furthermore, a peer will send an unchoke message only to remote peers that
have previously sent an interested message. Peer A is interested in receiving
data from peer B, if B possesses data pieces that A does not possess. Have
and bitfield messages indicate the arrival of a new piece and the set of pieces
possessed by a peer, respectively.

Finally, Table 3 summarizes the data-oriented messages that are sent between
unchoked peers (i.e., peers that are exchanging data).

2.2 Peer Unchoking - Ratio of Interest

We define the ratio of interest RIp of a peer p to be RIp =
intp
np

, where intp is the

number of interested connections p maintains, from a total of np initiated con-
nections. The number of interested connections maintained by a peer may help
project the number of data requests the peer in question will ultimately receive
provided that data requests are received only via initiated connections marked

Changing the Unchoking Policy for an Enhanced Bittorrent 381

Table 2. State-oriented Messages

choke: Peer A sends this message to remote peer B to inform B that it is choked by A. Consequently,
B must not send any data-oriented messages to A; no payload.
unchoke: Peer A sends this message to remote peer B to inform B that it is no longer choked by
A. Consequently, B may send data-oriented messages to A; no payload.
interested: Peer A sends this message to remote peer B when A is interested in receiving data from
B; no payload.
have: Peer A sends this message to every connected remote peer to inform it that it has received
a new piece or to acknowledge the sender of a piece. The payload of this message is an integer
identifying received piece, and a float corresponding to ratio of interest of A.
bitfield: Peer A sends this message after establishing a new connection to inform remote peer B
about pieces it possesses; variable length payload that is a bitmap indicating valid blocks of A.
handshake: Peer A sends this message to establish connection with peer B. Payload includes file
identifier and peer identifier of peer A.

Table 3. Data-oriented Messages

request: The sender of this message includes 3 integers denoting requested piece, block within piece
and block length.
piece: The sender of this message includes an integer that is the position of requested piece, block’s
offset within piece and requested data block.
cancel: The sender of this message informs the recipient that it is no longer interested in a previously
requested block of a piece. Payload consisting of 3 integers indicating piece index, block offset and
block length.

as interested. It is evident that peers with a low ratio of interest receive few
data requests and it is likely that they are underutilized and/or idle. To prevent
peers from remaining idle, every time an optimistic unchoke is to be performed
we select the peer p with the minimum RIp to be the planned optimistic un-
choked peer. In the long run, our optimistic unchoking policy is effective as idle
peers initially unable to act as intermediaries and content replicators, will be
unchoked earlier than in the native BitTorrent protocol where the unchoking
policy is based on random choice. The peers that have saturated their uplinks
will be decongested as more clients will act as content intermediaries. We an-
ticipate that our approach will be most effective when we rotate the planned
optimistic unchoked peer in a prioritized way, yielding the right-of-way to fresh
peers and peers with minimum interest ratios. To the best of our knowledge
this is the first time such a technique is suggested. Our suggested approach does
not bypass the tit-for-tat schema, since it does not modify regular unchoking; it
rather offers an alternative to improve the quality of inter-connection of peers.
An improvement in the quality of inter-connection is attained as soon as an in-
crease in the number of directly-connected and interested-in-cooperation peers
is achieved. The benefit obtained from our approach is demonstrated in section 3
where we compare the unchoking policies of our enhanced BitTorrent and the
native BitTorrent protocol.

2.3 Algorithms

Our enhanced BitTorrent protocol invokes Algorithms 1 and 2 when a client
is in leech and seed state respectively. These two algorithms are invoked every

382 V. Atlidakis, M. Roussopoulos, and A. Delis

10 seconds, every time a peer disconnects from the local client, and when an
unchoked peer becomes interested or uninterested. The above timing and event-
driven settings are inline with the directives of the BitTorrent protocol [2]. As
soon as these two algorithms are invoked, a “new round” starts; the number that
designates a round ranges from 1 to 3.

Algorithm 1, invoked when a peer is in leech state, takes as input the set of
remote Downloaders of the local client, the set of remote Uploaders to the local
client and the vector RIp denoting the ratio of interest of each remote peer p. No
explicit output is produced. The effect however of the algorithm is the realization
of our suggested peer unchoking policy. RIp vector is updated every time a have
message is sent from a remote peer p to the local client. Peers having sent data
to the local client are sorted according to their uploading rate and the top three
are kept unchoked, called regular unchoked peers (RU). Every third round, the
remote peer with minimum RI is selected as planned optimistic unchoked (OU)
and kept unchoked from the local client (for 30 seconds). If planned optimistic
unchoked is a member of the regular unchoked peers, a new interested peer must
be added to the regular unchoked set. Note that uninterested peers may be
selected unchoked until an interested peer is added to the regular unchoked set.
However, only four interested peers remain unchoked in the same round.

Algorithm 1 peer unchoking algorithm for client in leech state
Input: Uploaders, Downloaders, RIp∈Downloaders

1: Interested ← {p : ∀p ∈ Downloaders AND p interested in local client}
2: if round = 1 then
3: OU ← {p : Min{RIp}∀p ∈ Interested}
4: unchoke OU
5: end if
6: RU ← {p : p ∈ Top3 Uploaders}
7: for p ∈ Interested do
8: if p ∈ RU then
9: unchoke p
10: else
11: choke p
12: end if
13: end for
14: if OU ⊆ RU then
15: repeat
16: choose p ∈ Downloaders
17: unchoke p
18: until p ∈ Interested
19: end if

Algorithm 2, invoked when a peer is in seed state, takes as input the set
of remote Downloaders of the local client as well as the vector RIp. Again
no explicit output is returned. Peers with pending block requests are sorted
according to the time they were last unchoked (most-recently-first). Remaining
peers are sorted according to their downloading rates (those displaying highest
rates are given priority), and are appended to the above set of sorted peers.
During two rounds (out of three), the algorithm keeps unchoked the three first
peers (RU); moreover, it keeps unchoked the peer p with the minimum RIp (OU).
In the third round, the algorithm keeps unchoked the first four peers (RU).

Changing the Unchoking Policy for an Enhanced Bittorrent 383

Algorithm 2 peer unchoking algorithm for client in seed state
Input: Downloaders,RIp∈Downloaders

1: temp1 ← {p : ∀p ∈ Downloaders AND has pending requests OR recently unchoked}
2: sort temp1 according to last unchoke time
3: temp2 ← {p : ∀p ∈ Downloaders AND p /∈ temp1}
4: sort temp2 according to downloading rate
5: if round = 1, 2 then
6: RU ← {pi=1,2,3 ∈ temp1 + temp2}
7: OU ← {p : Min{RIp}∀p ∈ temp1 + temp2}
8: unchoke OU
9: else
10: RU ← {pi=1,2,3,4 ∈ temp1 + temp2}
11: end if
12: for p ∈ D do
13: if p ∈ RU then
14: unchoke p
15: else
16: choke p
17: end if
18: end for

2.4 Overview of Enhanced BitTorrent

The initial seeder publishes to the tracker the .torrent file including metadata
describing the file to be distributed. The initial seeder possesses a full copy of
the designated file and is the first uploader in the swarm. A fresh peer wish-
ing to join the swarm must contact the tracker (HTTP plain text messages) to
obtain the .torrent file and a peer set of, typically, 50 peers to whom to con-
nect. Afterwards, the fresh peer establishes TCP connections with peers in its
peer set. Each peer is multi-threaded and asynchronously downloads/uploads
data from/to multiple counterparts, without exceeding a threshold of 40 initi-
ated connections. Enhanced BitTorrent peers maintain bitmaps to keep track
of missing and obtained data pieces; pieces are requested using the rarest-first
policy. Uploaders maintain a vector of ratios of interest of all peers. Optimistic
unchoking is a process that “rewards” underutilized and/or idle peers with op-
timistic unchoke slots. Fresh peers are also rewarded with optimistic unchoke
intervals from our unchoking policy to acquire initial data. Our purpose is to
prevent peers with low ratios of interest from being idle and to motivate them
to act as data intermediaries. Furthermore, the regular unchoking policy facili-
tates the formation of clusters of peers with similar bandwidth. Upon completion
of downloading, each peer reports its downloading statistics for the file to the
tracker, and may be selfish and leave the swarm or altruistic and become an
additional seeder.

3 Evaluation

To evaluate our enhanced BitTorrent protocol, we have implemented in Python
a respective client as well as a tracker. Our implementation of both the client
and the tracker run in Windows7, Linux and MacOS. For our experiments, we
used 40 workstations, each featuring a 1GHz clock and 1GB memory running
GNU/Linux. The workstations are attached to a local Ethernet network running

384 V. Atlidakis, M. Roussopoulos, and A. Delis

at 100Mps. Our key experimental objectives were to: a) measure the number of
directly-connected and interested-in-cooperation peers to compare the quality of
peer inter-connections for both our enhanced and the native BitTorrent, b) ex-
amine pieces uploaded from leechers and seeders to evaluate the decongestion of
seeders achieved by our enhanced BitTorrent, and c) ascertain the degree of al-
truism attained by leechers in our enhanced BitTorrent. During experimentation
we used an 700MB test file, 512KB pieces were shared among peers and each
peer maintained 40 initiated connections. In steady state a swarm of as many
as 150 peers was formed. In all our experiments, seeders joined swarms before
leechers; the former had a full copy of the file to be distributed, while the latter
had no data at all.

Ratio of Interest

In this section, we examine the ratio of interest of peers, as defined in section 2.2.
From a peer’s local perspective, the ratio of interest indicates the amount of data
requests a peer will receive from others. From a global perspective, the ratio of
interest reflects the quality of inter-connection of peers. In this regard, the benefit
of our approach is depicted by Figs. 1(a) and 1(b) that illustrate the ratios
of interest and number of Interested connections maintained by peers over the
duration of the experiment. In both cases, swarms are formed from 130 leechers

 0

 0.25

 0.5

 0.75

 1

 1.25

 0 100 200 300 400 500 600
 0

 10

 20

 30

 40

 50

R
at

io
 o

f
in

te
re

st

N
um

be
r

of
 in

te
re

st
ed

 c
on

ne
ct

io
ns

time(seconds)

interested connections

(a) Enhanced BitTorrent

 0

 0.25

 0.5

 0.75

 1

 1.25

 0 500 1000 1500 2000
 0

 10

 20

 30

 40

 50

R
at

io
 o

f
in

te
re

st

N
um

be
r

of
 in

te
re

st
ed

 c
on

ne
ct

io
ns

time(seconds)

interested connections

(b) native BitTorrent

Fig. 1. Ratios of interest of peers and Interested connections under (a) our enhanced
and (b) the native BitTorrent protocol. Initiated connections maintained per-peer are
fixed at 40 and the ratio of interest is RI ≤ 1 for both cases. The average ratio of
interest is at 0.30 and 0.22 in (a) and (b) respectively.

and 15 seeders; 90% of peers join a swarm within 100 seconds. In Fig. 1(a), which
corresponds to the enhanced BitTorrent protocol, the average ratio of interest
is 0.30 per peer, while in Fig. 1(b), which corresponds to the native BitTorrent
protocol, the average ratio of interest is 0.22 per peer. Moreover, before 500
seconds in Fig. 1(a), there is a higher coverage of interested connections than that
of Fig. 1(b). In the first case, all peers act as intermediaries (downloading and

Changing the Unchoking Policy for an Enhanced Bittorrent 385

uploading) and the ratio of interest is high until the completion of downloading.
After completion of downloading, the ratio of interest is uniformly decreased. In
the second case, there are underutilized peers with a low ratio of interest. This
ratio of interest of idle peers becomes even lower and asymptotically reaches zero
as soon as the majority of peers completes downloading. As a matter of fact,
the enhanced BitTorrent displays a higher number of directly-connected and
interested-in-cooperation peers than its native counterpart. An improved inter-
connection of peers is achieved as the new unchoking policy, as implemented by
Algorithms 1 and 2, maximizes the ratio of interest and provides idle peers with
data. In turn, idle peers act as additional data intermediaries and “trigger” the
interest of other peers. In contrast, the unchoking policy of the native BitTorrent
protocol has no mechanism to locate idle peers and essentially does not “prod”
them to cooperate with others.

Uploading Contribution/Altruism of Leechers

In this section, we compare the uploading contribution of leechers of both pro-
tocols. We also examine the altruism presented by leechers that we define as
the ratio: pieces uploaded/pieces downloaded. Figures 2(a) and 2(b) illustrate
the number of pieces uploaded as a function of pieces downloaded, and the line
ε : y = x which distinguishes between leechers with (i) altruism ≥ 1 and (ii)
altruism ≤ 1. In both cases, we use swarms that consist of 15 seeders and 130
leechers. Leechers join the swarms in flash-crowds and download a fixed number
of pieces to obtain a full copy of the distributed file. Although in the enhanced
BitTorrent (Fig. 2(a)) there is a non-negligible number of peers clustered into
area (i), there are only a handful of peers in the same area in the native BitTor-
rent (Fig. 2(b)). In the first case, “altruistic” leechers upload more than 2, 500
pieces, but in the second case leechers can upload at most 1, 300 pieces. The

 500

 1000

 1500

 2000

 2500

 3000

 500 1000 1500

pi
ec

es
 u

pl
oa

de
d

pieces downloaded

(ii) altruism < 1

(i) altruism > 1

instant altruism
y=x

(a) enhanced BitTorrent

 500

 1000

 1500

 2000

 2500

 3000

 500 1000 1500

pi
ec

es
 u

pl
oa

de
d

pieces downloaded

(ii) altruism < 1

(i) altruism > 1

instant altruism
y=x

(b) native BitTorrent

Fig. 2. Altruism presented by leechers under (a) the enhanced and (b) the native
BitTorrent protocol. In the first case, many leechers upload more data than they
download (altruism> 1). In the second case, leechers display non-altruistic behavior
(altruism< 1).

386 V. Atlidakis, M. Roussopoulos, and A. Delis

 2⋅104

 4⋅104

 6⋅104

 8⋅104

 1⋅105

leechers seeders

U
pl

oa
di

ng
 c

ap
ac

ity
 (

M
B

) Native BT
Enhanced BT

 6⋅104

 7⋅104

 1⋅104

 2⋅104

Fig. 3. Aggregate uploading contribution of leechers and seeders under the enhanced
and the native BitTorrent protocol. Under the enhanced BitTorrent protocol, leechers
upload 68 GB of data and under the native BitTorrent protocol leechers upload 58GB
of data.

leechers found in the area (i) act more as uploaders than downloaders. These
leechers decongest seeders and provide the swarm with additional uploading ca-
pacity of up to 10GB. As Fig. 3 shows, in the native protocol, seeders uploaded
20GB of data and leechers uploaded 60GB of data. Under the enhanced Bit-
Torrent, seeders uploaded 10GB and leechers uploaded 70GB, for the respective
experiment. Our approach thus achieves an increase in the contribution of leech-
ers without involving any complex incentive policy. This is in-line with our key
objective to encourage underutilized peers to act as data intermediaries, rather
than penalize them. To this end, uploaders unchoke underutilized leechers in
an altruistic manner. In turn, underutilized leechers obtain data to upload, and
ultimately, provide the swarm with additional uploading capacity.

4 Related Work

A number of techniques have been suggested to improve the performance of
the native BitTorrent [3] protocol including bartering-based approaches among
peers, and incentive-based policies. In [6, 8], indirect and direct reciprocity mech-
anisms are examined so that peers exploit their own data contributions to obtain
data from others. Our approach differs from the above efforts as we suggest an
unchoking policy in which peers do not exploit their contribution to obtain data.
Under our enhanced BitTorrent protocol, peers altruistically offer data to un-
derutilized and/or idle counterparts. In [12], the issue of incentive compatibility
was re-examined. The authors showed that even though the tit-for-tat approach
was intended to discourage free-riding, the performance of BitTorrent has very
little to do with this fact. Also through the release of the BitTyrant client, the
conjecture of whether incentives build robustness in BitTorrent is evaluated.
Incentives in BitTorrent systems are also studied in [7], where the unchoking
algorithm of native BitTorrent is evaluated. This work shows that regular un-
choking facilitates the formation of clusters of peers with similar bandwidth,
which is also the case in our enhanced BitTorrent protocol.

Changing the Unchoking Policy for an Enhanced Bittorrent 387

A variety of mechanisms for preventing free-riding in P2P file-sharing systems
are applied in [14, 16, 11]. Although applying mechanisms to discourage free-
riding is essential to steering more peers to act as data intermediaries, it does
not address the problem of locating peers with no initial data to upload. With
our improved unchoking policy, uploaders immediately locate and furnish data
to peers with no initial data blocks.

Neighborship consistency is defined as the ratio between the number of known
nodes and the number of actual nodes within a node’s area of interest and can be
used to measure the quality or connectivity in P2P systems [5]. To compliment
neighborship, in our enhanced BitTorrent protocol we define ratio of interest
(Section 2.2) and use this metric to decide which peer should be selected as
planned optimistic unchoked. In [15], the use of altruism in P2P networks is
examined; altruism is defined via a parameter that reflects benefit obtained for
a peer’s contribution. A peer selectively decides the level of its own contribution
and demands to download a specific amount of data; the amount of data a
peer demands is proportional to its contribution. In our enhanced BitTorrent
approach, a peer decides which peer to unchoke in order to maximize its ratio of
interest. Benefit obtained from our unchoking policy is examined collectively. We
increase the number of directly-connected and interested-in-cooperation peers in
an attempt to build a robust swarm.

There have also been proposals for new models that essentially suggest Bit-
Torrent -like protocols [4, 13, 10, 11, 9]. However, our work is the first to suggest
a modification to the optimistic unchoking policy that collectively increases the
number of peers acting as intermediaries and decongests seeders.

5 Conclusion

In this paper, we present the enhanced BitTorrent protocol whose unchoking pol-
icy better harnesses underutilized peers that have few clients interested in down-
loading data from them. Our proposal involves uploaders allocating optimistic
unchoking slots to underutilized peers. This policy enables peers to obtain data
and essentially act as content intermediaries, rather than remain idle. Experi-
mentation with leecher and tracker prototypes shows that our approach achieves
improved quality of inter-connection amongst peers compared with the native
BitTorrent protocol. Under our enhanced BitTorrent protocol, the number of
directly-connected and interested-in-cooperation peers increases significantly. A
substantial portion of the peers in question act as data intermediaries and con-
sequently, better peer content distribution is achieved. Moreover, our modified
BitTorrent protocol has the effect of creating altruistic leechers who act more
as uploaders than downloaders. The net result is that these altruistic leechers
furnish uploading capacity that helps relieve the burden of seeders.

Acknowledgments. We would like to thank Y. Mimiyannis, Y. Kamonas, C.
Christou and A. Sevastidou for their help during our experimentation as well
as the anonymous reviewers for their fruitful feedback. This work was partially
funded by the iMarine EU-FP6 project.

388 V. Atlidakis, M. Roussopoulos, and A. Delis

References

[1] Internet Study. http://www.ipoque.com/en/resources/internet-studies
[2] The Bittorrent Protocol. http://www.bittorrent.org/beps
[3] B. Cohen: Incentives Build Robustness in BitTorrent. In: IPTPS. Berkeley, CA

(February 2003)
[4] Chow, A.L.H., Golubchik, L., Misra, V.: BitTorrent: An Extensible Heterogeneous

Model. In: INFOCOM. pp. 585–593. Rio De Janeiro, Brazil (April 2009)
[5] Jiang, J., Chiou, J., Hu, S.: Enhancing Neighborship Consistency for Peer-to-

Peer Distributed Virtual Environments. In: IEEE–ICDCS Workshops. Toronto,
Canada (June 2007)

[6] Landa, R., Griffin, D., Clegg, R., Mykoniati, E., Rio, M.: A Sybilproof Indirect
Reciprocity Mechanism for Peer-to-Peer Networks. In: INFOCOM. pp. 343–351.
Rio De Janeiro, Brazil (April 2009)

[7] Legout, A., Liogkas, N., Kohler, E., Zhang, L.: Clustering and Sharing Incentives
in BitTorrent Systems. In: SIGMETRICS. pp. 301–312. San Diego, CA (June
2007)

[8] Menasché, D., Massoulié, L., Towsley, D.: Reciprocity and Barter in Peer-to-Peer
Systems. In: INFOCOM. San Diego, CA (March 2010)

[9] Meulpolder, M., Epema, D.H., Sips, H.: Replication in bandwidth-symmetric Bit-
Torrent Networks. In: 22nd IEEE Int. Parallel and Distributed Processing Sym-
posium (IPDPS’08). pp. 1–8. Miami, FL (April 2008)

[10] M.Y., Yang, Y.: An Efficient Hybrid Peer-to-Peer System for Distributed Data
Sharing. IEEE Transactions on Computers 59(9), 1158–1171 (September 2010)

[11] Peterson, R., Sirer, E.: AntFarm: Efficient Content Distribution with Managed
Swarms. In: NSDI. pp. 107–122. Boston, MA (April 2009)

[12] Piatek, M., Isdal, T., Anderson, T., Krishnamurthy, A., Venkataramani, A.: Do
Incentives Build Robustness in BitTorrent? In: 4th USENIX Symposium on Net-
worked Systems Design & Implementation. Cambridge, MA (April 2007)

[13] Ren, S., Tan, E., Luo, T., Chen, S., Guo, L., Zhang, X.: TopBT: A Topology-Aware
and Infrastructure-Independent BitTorrent Client. In: INFOCOM. pp. 1523–1531.
San Diego, CA (March 2010)

[14] Shin, K., Reeves, D., Rhee, I.: Treat-before-Trick: Free-Riding Prevention for
BitTorrent-like Peer-to-Peer Networks. In: 23rd IEEE Int. Symposium on Par-
allel and Distributed Processing (IPDPS’09). pp. 1–12. Rome, Italy (May 2009)

[15] Vassilakis, D.K., Vassalos, V.: An Analysis of Peer-to-peer Networks with Altru-
istic Peers. Peer-to-Peer Networking and Applications 2(2), 109–127 (June 2009)

[16] Yang, M., Feng, Q., Dai, Y., Zhang, Z.: A Multi-Dimensional Reputation System
Combined with Trust and Incentive Mechanisms in P2P File Sharing Systems. In:
IEEE–ICDCS Workshops. Toronto, Canada (June 2007)

http://www.ipoque.com/en/resources/internet-studies
http://www.bittorrent.org/beps

Peer-to-Peer Multi-class Boosting�

István Hegedűs1, Róbert Busa-Fekete1,2,
Róbert Ormándi1, Márk Jelasity1, and Balázs Kégl2,3

1 Research Group on AI, Hungarian Acad. Sci. and Univ. of Szeged, Hungary
{ihegedus,busarobi,ormandi,jelasity}@inf.u-szeged.hu

2 Linear Accelerator Laboratory (LAL), University of Paris-Sud,
CNRS Orsay, 91898, France

3 Computer Science Laboratory (LRI), University of Paris-Sud,
CNRS and INRIA-Saclay, 91405 Orsay, France

balazs.kegl@gmail.com

Abstract. We focus on the problem of data mining over large-scale fully
distributed databases, where each node stores only one data record. We
assume that a data record is never allowed to leave the node it is stored
at. Possible motivations for this assumption include privacy or a lack of a
centralized infrastructure. To tackle this problem, earlier we proposed the
generic gossip learning framework (GoLF), but so far we have studied only
basic linear algorithms. In this paper we implement the well-known boost-
ing technique in GoLF. Boosting techniques have attracted growing at-
tention in machine learning due to their outstanding performance in many
practical applications. Here, we present an implementation of a boosting
algorithm that is based on FilterBoost. Our main algorithmic contribu-
tion is a derivation of a pure online multi-class version of FilterBoost,
so that it can be employed in GoLF. We also propose improvements to
GoLF, with the aim of maximizing the diversity of the evolving models
gossiped in the network, a feature that we show to be important. We eval-
uate the robustness and the convergence speed of the algorithm empiri-
cally over three benchmark databases. We compare the algorithm with the
sequential AdaBoost algorithm and we test its performance in a failure
scenario involving message drop and delay, and node churn.

Keywords: P2P, gossip, multi-class classification, boosting, FilterBoost.

1 Introduction

Making data analysis possible in fully distributed systems via data mining tools
has been an important research direction in the past decade. Tasks such as in-
formation retrieval, recommendations, detecting spam, vandalism and intrusion
require sophisticated models that are based on large amounts of data. This data
is often generated in a fully distributed fashion on routers, PCs, smart phones
or sensor nodes. In many cases local data cannot be collected centrally due to
privacy constrains or due to the lack of computing infrastructure.

� M. Jelasity was supported by the Bolyai Scholarship of the Hungarian Academy of
Sciences. This work was partially supported by the FET programme FP7-COSI-ICT
of the European Commission through project QLectives (grant no.: 231200) and by
the ANR-2010-COSI-002 grant of the French National Research Agency.

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 389–400, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

390 I. Hegedűs et al.

In this paper we are concerned with the scenario in which there is a very
large number of nodes, all of which store small amounts of data, such as personal
profiles or recent sensor readings. In our previous work, we have proposed the
gossip learning framework (GoLF) for data mining in such environments [19,20].
The basic idea is that models perform random walks in the network, while being
improved by an arbitrary online learning method. Convergence can be improved
significantly if nodes combine the models that pass through them, or if they use
other techniques such as voting. In this framework we have so far only studied
learning linear models.

In this paper we develop a boosting algorithm, which proves the viability of gos-
sip learning also for implementing state-of-the-art machine learning algorithms.
In a nutshell, a boosting algorithm constructs a classifier in an incremental fash-
ion by adding simple classifiers (that is, weak classifiers) to a pool. The weighted
vote of the classifiers in the pool determines the final classification.

Our contributions are the following. First, to enable P2P boosting via gossip,
we derive a purely online multi-class boosting algorithm that can be proven to
minimize a certain negative log likelihood function. We also introduce efficient
multi-class weak learners to be used by the online boosting algorithm. Second,
we improve GoLF to make sure that the diversity of the models in the network
is preserved. This makes it meaningful to spread the current best model in the
network; a technique we propose to improve local prediction performance. Finally,
we perform simulation experiments where we study our algorithm under extreme
message drop, message delay and node churn to prove its robustness.

2 System Model and Data Distribution

Our system model is a network of computers (peers). Each node in the network
has a unique network address and can communicate with other nodes through
messages if the address of the target node is locally available. We also assume that
a peer sampling service is available that provides addresses of random available
peers at any time. Here we use Newscast [26] as our peer sampling service.
Messages can be delayed or dropped, moreover, new nodes can join and leave the
network without any warning. We assume that when a node rejoins the network
it has the same state as at the time of going offline.

Regarding data distribution, we assume that the data records are distributed
horizontally, that is, all the nodes store full records. At the same time, all the
nodes store only very few records, perhaps only a single record. This excludes
the possibility of any local statistical processing of the data. Another important
assumption is that the data never leave the nodes, that is, it is not allowed to
collect the data centrally due to privacy or infrastructural constraints.

3 Background and Related Work

The problem we tackle in this paper is supervised classification that can be
formally defined as follows. We are given a training database in the form of
a set of training instances. Each training instance consists of a feature vector
and a corresponding class label. Let us denote this training dataset by S =
{(x1,y1), . . . , (xn,yn)} ⊂ R

d × {−1, +1}K, where d is the dimension of the
problem and K defines the number of classes. The goal of the classification prob-
lem is to find a function f : R

d → {−1, +1}K that can correctly classify any

Peer-to-Peer Multi-class Boosting 391

Algorithm 1. Skeleton of original GoLF learning protocol
1: currentModel ← initModel()
2: loop
3: wait(Δ)
4: p ← selectPeer()
5: sendModel(p, currentModel)

6: procedure onReceiveModel(m)
7: m.updateModel(x, y)
8: currentModel ← m

samples, including those not in the training set, with high probability (gener-
alization). In multi-class classification problems—where K > 2—one and only
one of the elements of yi is +1, whereas in multi-label (or multi-task) classi-
fication yi is arbitrary, meaning that the observation xi can belong to several
classes at the same time. In the former case we will denote the index of the cor-
rect class by �(xi). In classical multi-class classification the elements of f(x) are
treated as posterior scores corresponding to the labels, so the predicted label is
�̂(x) = arg max�=1,...,K f�(x) where f�(x) is the �th element of f(x). The function
f is called the model of the data.

As mentioned before, in this paper we focus on online boosting in GoLF.
A few proposals for online boosting algorithms are known. An online version
of AdaBoost [11] is introduced in [8] that requires a random subset from the
training data for each boosting iteration, and the base learner is trained on this
small sample of the data. The algorithm has to sample the data according to
a non-uniform distribution making it inappropriate for pure online training. A
gradient–based online algorithm is presented in [3], which is an extension of
Friedman’s gradient–based framework [12]. However, their approach is for bi-
nary classification, and it is not obvious how it can be extended to multi-class
problems. Another notable online approach is Oza’s online algorithm [21] whose
starting point is AdaBoost.M1 [10]. However, AdaBoost.M1 requires the base
learning algorithm to achieve 50% accuracy for any distribution over the training
instances. This makes it impractical in multi-class classification since most of the
weak learners used as a base learner do not satisfy this condition.

We also discuss work related to fully distributed P2P data mining in general.
We note that we do not overview the extensive literature of parallel machine
learning algorithms because they have a completely different underlying system
model and motivation. We do not discuss those distributed machine learning
approaches either that assume the availability of sufficient local data to build
models locally (a survey can be found in [22]).

One notable and relevant research direction is gossip–based algorithms where
convergence to global functions over fully distributed data is achieved through
local communication. Perhaps the simplest example is gossip–based averaging
[14,16], where the gossip approach is extremely robust, scalable, and efficient.
However, gossip algorithms support more sophisticated algorithms that compute
more complex global functions. Examples include the EM algorithm [17], LDA [2]
or PageRank [13]. Numerous other P2P machine learning algorithms have also
been proposed, as in [18,25]. A survey of many additional ideas can be found
in [7]. This work builds on the Gossip Learning Framework (GoLF) [19,20], which
offers an abstraction to implement a wide range of machine learning algorithms.

The skeleton of GoLF is shown in Alg. 1. This algorithm runs on each node.
The algorithm consists of an active loop that runs periodically and an event
handler (onReceiveModel) which is called when a new model arrives. The
models take random walks over the network by selecting a random node (line 4)

392 I. Hegedűs et al.

Algorithm 2. FilterBoost(Init(),Update(·, ·, ·, ·), T, C)
1: f (0)(x) ← 0
2: for t ← 1 → T do
3: Ct ← C log(t + 1)

4: h(t)(·) ← Init
()

5: for t′ ← 1 → Ct do � Online base learning
6: (

x, y, w
) ← Filter

(
f (t−1)(·)) � Draw a weighted random instance

7: h(t)(·) ← UPDATE
(
x, y,w, h(t)(·))

8: γ ← 0, W ← 0
9: for t′ ← 1 → Ct do � Estimate the edge on a filtered data

10: (
x, y, w

) ← Filter
(
f (t−1)(·)) � Draw a weighted random instance

11: γ ← γ +
∑ K

� w�h
(t)
� (x)y�, W ← W +

∑ K
� w�

12: γ ← γ/W � Normalize the edge
13: α(t) ← 1

2 log 1+γ
1−γ

14: f (t)(·) = f (t−1)(·) + α(t)h(t)(·)
15: return f (T)(·) =

∑T
t=1 α(t)h(t)(·)

16: procedure Filter(f(·))
17: (x,y) ← RandomInstance() � Draw random instance
18: for � ← 1 → K do

19: w� ← exp
(

f�(x)−f�(x)(x)
)

∑K
�′=1

exp
(

f
�′ (x)−f�(x)(x)

)
20: return (x, y, w)

and jumping there (line 5). Procedure onReceivedModel updates the received
model using the training sample stored by the node (line 7, where x and y repre-
sent a training example and the corresponding class label, respectively). It then
stores the model as the current model (line 8). In this skeleton the model is an
abstract class which provides the update possibility. We note that models can
also be combined [20] or they can interact through ensemble learning techniques
(like voting) [19], which results in a substantial performance improvement. Re-
garding model interaction, additional details will be given later in relation to the
boosting algorithm.

4 Multi-class Online FilterBoost

This section introduces our main contribution, a multi-class online boosting al-
gorithm that can be applied in GoLF. We build on FilterBoost [5] where the
main idea is to filter (sample) the training examples in each boosting iteration
and to give the base learner only this smaller, filtered subset of the original train-
ing dataset, leading to fast base learning. The performance of the base classifier
is also estimated on an additional random subset of the training set resulting in
further improvement in speed.

Our formulation of the FilterBoost algorithm is given as Alg. 2. This is not
yet in a form to be applied in GoLF, but the transformation is trivial as discussed
in Section 6. This fully online formulation is equivalent to FilterBoost, except
that it handles multi-class problems as well. To achieve this, while ensuring that
the algorithm can still be theoretically proven to converge, our key contribution
is the derivation of a new weight formula calculated in line 19. First we introduce
this formula, then we explain Alg. 2 in more detail.

A boosting algorithm can be thought of as a minimization algorithm of an
appropriately defined target function over the space of models. The target func-
tion is related to the classification error over the training dataset. The key idea is

Peer-to-Peer Multi-class Boosting 393

that we select an appropriate target function that will allow us to both derive an
appropriate weight, as well as argue for convergence. Inspired by the logistic re-
gression approach of [6], we will use the following negative log likelihood function
as our target function:

RL

(
f
)

= −
n∑

i=1

ln
exp
(
f�(xi)(xi)

)
K∑

�′=1

exp
(
f�′(xi)

) =
n∑

i=1

ln

⎡⎣1 +
K∑

� �=�(xi)

exp
(
f�(xi)− f�(xi)(xi)

)⎤⎦
(1)

Note that the FilterBoost algorithm returns a vector-valued classifier f : R
d →

R
K . The rest of the definitions and notations were introduced in Section 3.
FilterBoost builds the final classifier f as a weighted sum of base classifiers

h(t) : R
d → {−1, +1}K returned by a base learner algorithm which has to be

able to handle weighted training data. The class-related weight vector assigned
to xi in iteration t is denoted by w(t)

i and its �th element is denoted by w
(t)
i,� . It

can be shown that selecting w
(t)
i,� so that it is proportional to the output of the

current strong classifier

w
(t)
i,� =

exp
(
f

(t)
� (xi)− f

(t)
�(xi)

(xi)
)

∑K
�′=1 exp

(
f

(t)
�′ (xi)− f

(t)
�(xi)

(xi)
) . (2)

ensures that our target function in (1) will decrease in each boosting iteration.
The proof is outlined in the Appendix.

The pseudocode of FilterBoost is shown in Alg. 2. Here, the algorithm is
implemented according to the practical suggestions given in [5]: first, the number
of randomly selected instances is C log(t + 1) in the tth iteration (where C is
a constant parameter), and second, in the Filter method the instances are
first randomly selected then re-weighted based on their scores given by f (t)(·).
Procedure Init() initializes the parameters of the base classifier (line 4), and
Update(·, ·, ·, ·) updates (line 7) the parameter of the base classifier using the
current training instance x given by Filter(·). The input parameter T is the
number of iterations, and C controls the number of instances used in one boosting
iteration. α(t) is the base coefficient, h(t)(·) is the vector-valued base classifier,
and f (T)(·) is the final (strong) classifier. Procedure RandomInstance() selects
a random instance from the training data X,Y.

Let us point out that there is no need to store more than one training instance
anywhere during execution. Second, the algorithm does not need any global in-
formation about the training data, such as the size, so this implementation can
be readily applied in a pure online environment.

5 Multi-class Online Base Learning

For the online version of FilterBoost, we need to propose online base learners
as well. In FilterBoost, for theoretical reasons, the base classifiers are restricted
to output discrete predictions in {−1, +1}K and, in addition, they have to mini-
mize the weighted exponential loss

E
(
h, f (t)

)
=

n∑
i=1

K∑
�=1

w
(t)
i,� exp

(−h�(xi)yi,�

)
. (3)

394 I. Hegedűs et al.

We follow this approach and, in addition, we build on our base learning frame-
work [15] and assume that the base classifier h(x) is vector-valued and represented
ashΘ(x) = sign(vϕΘ(x)), parameterizedbyv ∈ R

K (the vote vector), and ϕΘ(x) :
R

d → R, a scalar base classifier parameterized by Θ. The coordinate-wise sign
function is defined as sign : R

K → {−1, +1}K. In this framework, learning con-
sists of tuning Θ and v to minimize the weighted exponential loss (3).

Since it is hard to optimize the non-differentiable function hΘ even in batch
mode, we take into account only ĥΘ(x) = vϕΘ(x). This approach is heuristic as
it is hard to say anything about the relation between E

(
hΘ, f (t)

)
and E

(
ĥΘ, f (t)

)
,

but in practice this base learning approach performs quite well.
Since ϕΘ(·) is differentiable, the stochastic gradient descent (SGD) [4] algo-

rithm provides a convenient way to train the base learner in an online fashion.
The SGD algorithm updates the parameters iteratively based on one training
instance at a time. Let us denote Q(x,y,w,v, Θ) =

∑K
�=1 w� exp

(− y�v�ϕΘ(x)
)
.

Then the gradient based parameter update can be calculated as follows:

Θ(t′+1) ← Θ(t′) + γ(t′)�ΘQ(x,y,w,v, Θ) (4)

v(t′+1) ← v(t′) + γ(t′)�vQ(x,y,w,v, Θ) (5)

This update rule can be used in line 7 of FilterBoost to update the base classi-
fier. A simple decision stump or AdaLine [27] can be easily accommodated to this
multi-class base learning framework. In the following we derive the update rules
for a decision stump, that is, a one-decision two-leaf decision tree having the form

ϕj,b(x) =
{

1 if x(j) ≥ b,

−1 otherwise,
(6)

where j is the index of the selected feature and b is the decision threshold. Since
ϕj,b(x) is not differentiable with respect to b, we decided to approximate it by
the differentiable sigmoidal function, whose parameters can be tuned using SGD.
The sigmoidal function can be written as

sj,θ(x) = sj,(c,d)(x) =
1

1 + exp
(− cx(j) − d

) .
where Θ = (c, d). And ϕj,b(·) can be approximated by ϕj,b(x) ≈ 2sj,θ(x) − 1.
Then the weighted exponential loss of this so-called sigmoidal decision stump for
a single instance can be written as

Qj = Qj (x,y,w,v, Θ) =
K∑

�=1

w� exp (−v� (2sj,θ(x) − 1) y�)

and its partial derivatives are

∂Qj

∂v�
= − exp (−v� (2sj,θ(x)− 1) y�)w� (2sj,θ(x) − 1) y�

∂Qj

∂c
= −2

K∑
�=1

exp (−v� (2sj,θ(x) − 1) y�)w�v�y�x
(j)sj,θ(x) (1− sj,θ(x))

∂Qj

∂d
= −2

K∑
�=1

exp (−v� (2sj,θ(x) − 1) y�)w�v�y�sj,θ(x) (1− sj,θ(x))

Peer-to-Peer Multi-class Boosting 395

The initial value of c and d were set to 1 and 0, respectively (line 4 of Alg. 2).
So far, we implicitly assumed that the index of feature j is given. To choose

j, we trained sigmoidal decision stumps in parallel for each feature and we es-
timated the edge of each of them using the sequential training data as γ̂j =∑Ct

t′=1

∑K
�=1 wt′,�yt′,�sign

(
v
(t′)
� ϕ

j,Θ
(t′)
j

(xt′)
)
. Finally, we chose the feature with the

highest edge estimate j∗ = argmaxj γ̂j .
In every boosting iteration we also train a constant learner (also known as y-

intercept) and use it if its edge is higher than the edge of the best decision stump
we found. The output of the constant learner does not depend on the input vector
x, that is ϕ(·) ≡ 1, in other words it returns the vote vector v itself. Thus only
v has to be learnt but this can be done easily by calculating the classwise edge
v� =

∑Ct

t′=1 wt′,�yt′,�.

6 GoLF Boosting

In order to adapt Alg. 2 to GoLF (Alg. 1), we need to define the permanent state
of the FilterBoost model class, and we need to provide an implementation of
the updateModel method. This is rather straightforward: the model instance
has to store the the actual strong learner f (t) as well as the state of the inner
part of the two for loops in Alg. 2 so that updateModel could simulate these
loops every time a new sample is processed.

This way, every model that is performing a random walk is theoretically guar-
anteed to converge so long as we assume that peer sampling works perfectly.
However, there is a catch. Since in each iteration some nodes will receive more
than one model, while others will not receive any, and since the number of models
in the network is kept constant if there is no failure (since in each iteration all
the nodes send exactly one model) it is clear that the diversity of models will
decrease. That is, some models get replicated, while others “die out”. Introduc-
ing failure makes things a lot worse, since we can lose models due to message
loss, delay, and churn as well, which speeds up homogenization. This is a prob-
lem, because diversity is important when we want to apply techniques such as
combination or voting [19,20]. Without diversity these important techniques are
guaranteed not to be effective.

The effects of decreasing diversity are negligible during the timespan of a few
gossip cycles, but a boosting algorithm needs a relatively large number of cycles
to converge (which is not a problem, since the point of boosting is not speed,
but classification quality). So we need to tackle the loss of diversity. We propose
Alg. 3 to deal with this problem.

This protocol works as follows. A node sends models in an active cycle (line 4)
only in two cases: it sends the last received model if there was no incoming model
until 10 active cycles (line 6), otherwise it sends all of the models received since
the last cycle (line 13). If there is no failure, then this protocol is guaranteed to
keep the diversity of models, since all the models in the network will perform
independent random walks. Due to the Poisson distribution of the number of
incoming models in one cycle, the probability of bottlenecks is diminishing, and
for the same reason the probability that a node does not receive messages for 10
cycles is also practically negligible.

If the network experiences message drop failures or churn, then the number
of models circulating in the network will converge to a smaller value due to the

396 I. Hegedűs et al.

Algorithm 3. Diversity Preserving GoLF
1: currentModel ← initModel()
2: modelQueue.add(currentModel)
3: counter ← 0
4: loop
5: wait(Δ)
6: if modelQueue.isEmpty() then
7: if counter = 10 then
8: p ← selectPeer()
9: sendModel(p, currentModel)

10: counter ← 0
11: else
12: counter ← counter + 1

13: else
14: for all m ∈ modelQueue do
15: p ← selectPeer()
16: sendModel(p, m)
17: modelQueue.remove(m)

18: counter ← 0

19: procedure onReceiveModel(m)
20: m.updateModel(x, y)
21: modelQueue.add(m)
22: currentModel ← m

10 cycle waiting time, and the diversity can also decrease, since after 10 cycles a
model gets replicated in line 9. Interestingly, this is actually useful because if the
diversity is low, it makes sense to circulate fewer models and to wait most of the
time, since information is redundant anyway. Besides, with reliable communica-
tion channels that eliminate message drop (but still allow for delay), diversity
can still be maintained.

Finally, note that if there is no failure, Alg. 3 has the same total message
complexity as Alg. 1 except for the extremely rare messages sent in line 4. In
case of failure, the message complexity decreases as a function of failure rate;
however, the remaining random walks do not get slower relative to Alg. 1, so the
convergence rate remains the same on average, at least if no model-combination
techniques are used.

7 Experimental Results

In our experiments we examined the performance of our proposed algorithm as
a function of gossip cycles, which is about the same as the number of training
samples seen by any particular model. To validate the algorithm, we compared it
with three baseline multi-class boosting algorithms, all using the same decision
stump (DS) weak learner. The first one is the multi-class version of the well
known AdaBoost [24] algorithm, the second one is the original FilterBoost [5]
method implemented for a single processor, with the setting C = 30, and the
third one is the online version of FilterBoost (Alg. 2). We used three multi-
class classification benchmark datasets to evaluate our method, namely the CTG,
the PenDigits and the Segmentaion databases. These were taken from the UCI
repository [9] and have different size, number of features, class distributions and
characteristics. The basic properties of the datasets can be found in Table 1.

Table 1. The main properties of the data sets, and the prediction errors of the baseline
algorithms

CTG PenDigits Segmentation
Training set size 1,701 7494 2100
Test set size 425 3,492 210
Number of features 21 16 19
Class labels 1325/233/143 10 classes (uniform) 7 classes (uniform)
AdaBoost (DS) 0.109347 0.060715 0.069048
FilterBoost (DS, C30) 0.094062 0.071657 0.062381

Peer-to-Peer Multi-class Boosting 397

 0.1
 0.12
 0.14
 0.16
 0.18

 0.2
 0.22
 0.24

 100 1000 10000 100000 1e+06

E
rr

or
 R

at
e

Num. of Samples

CTG - C Trade-off

C=5
C=10
C=30

C=100 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 100 1000 10000 100000 1e+06

E
rr

or
 R

at
e

Num. of Samples

PenDigits - C Trade-off

C=5
C=10
C=30

C=100 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 100 1000 10000 100000 1e+06

E
rr

or
 R

at
e

Num. of Samples

Segmentation - C Trade-off

C=5
C=10
C=30

C=100

Fig. 1. The effect of parameter C in online FilterBoost (Alg. 2)

 0.1
 0.12
 0.14
 0.16
 0.18

 0.2
 0.22
 0.24
 0.26

 100 1000 10000 100000 1e+06

Er
ro

r R
at

e

Num. of Samples

CTG - Comparision

AdaBoost
FilterBoost
Online FB 0.1

 0.12
 0.14
 0.16
 0.18

 0.2
 0.22
 0.24
 0.26

 100 1000 10000 100000 1e+06

Er
ro

r R
at

e

Num. of Samples

CTG - P2P Results

P2P FB AF
Online FB

P2P FB

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 100 1000 10000 100000 1e+06

Er
ro

r R
at

e

Num. of Samples

PenDigits - Comparision

AdaBoost
FilterBoost
Online FB 0.1

 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 100 1000 10000 100000 1e+06

Er
ro

r R
at

e

Num. of Samples

PenDigits - P2P Results

P2P FB AF
Online FB

P2P FB

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 1000 10000 100000 1e+06

Er
ro

r R
at

e

Num. of Samples

Segmentaion - Comparision

AdaBoost
FilterBoost
Online FB

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 1000 10000 100000 1e+06

Er
ro

r R
at

e

Num. of Samples

Segmentaion - P2P Results

P2P FB AF
Online FB

P2P FB

Fig. 2. Comparison of boosting algorithms (left column) and P2P simulations (right
column). FB and AF stand for FilterBoost and the “all failures” scenario, respectively.

In the P2P experiments we used the PeerSim [23] simulation environment to
model message delay, drop and peer churn. We used two scenarios: a perfect net-
work without any delay, drop or churn; and a scenario with heavy failure where
the message delay was drawn uniformly at random from the interval [Δ; 10Δ],
a message was dropped with a probability of 0.5 and the online/offline session
lengths of peers were modeled using a real P2P bittorrent trace [1]. As our per-
formance metric, we applied the well known 0-1 error (or error rate), which is
the proportion of test instances that were incorrectly classified.

398 I. Hegedűs et al.

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 100 1000 10000 100000

Er
ro

r R
at

e

Num. of Samples

Diversity Preserving GoLF

Estimated Min.
Average

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 100 1000 10000 100000

Er
ro

r R
at

e

Num. of Samples

Original GoLF

Estimated Min.
Average

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 100 1000 10000 100000

Er
ro

r R
at

e

Num. of Samples

Online FilterBoost

Estimated Min.
Average

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 100 1000 10000 100000
Er

ro
r R

at
e

Num. of Samples

Comparison of Minimums

Original GoLF
Div. Pres. GoLF

Online FB

Fig. 3. The improvement due to estimating the best model based on training perfor-
mance. The Segmentation dataset is shown.

Figure 1 illustrates the effect of parameter C. Larger values result in slower
convergence but better eventual performance. The setting C = 30 represents a
good tradeoff in these datasets, so from now on we fix this value.

We compared our online boosting algorithm to baseline algorithms as can be
seen in Figure 2 (left hand side). The figure shows that the algorithms converge
to a similar error rate, which was expected. Moreover, our online FilterBoost
converges faster than the AdaBoost algorithm and it has almost the same con-
vergence rate as that for the sequential FilterBoost method. Note that since two
of these algorithms are not online, we had to approximate the number of (not
necessarily different) training samples used in one boosting iteration. We used a
lower bound to be conservative.

In our P2P evaluations of GoLF Boosting we used the mean error rate of 100
randomly selected nodes in the network to approximate the performance of the
algorithm. Figure 2 (right hand side) shows that without failure the performance
is very similar to that of our online FilterBoost algorithm. Moreover, in the
extreme failure scenario, the algorithm still converges to the same error rate,
although with a delay. This delay can be accounted for using a heuristic argument:
since message delay in itself represents a slowdown of a factor of 5 on average,
message drop and churn contributes approximately another factor of 2.

Finally, we demonstrate a novel way of exploiting model diversity (see Sec-
tion 6): through gossip-based minimization one can spread the model with the
best training performance, thus the best model can be made available to all nodes
at all times. Figure 3 demonstrates this technique for different algorithms. We in-
clude results over the segmentation database only, the other two datasets produce
similar results.

The top left plot shows results with GoLF Boosting. It can be seen that
the best model based on training performance is not necessarily the best over
the test set, but it is reasonably good, and results in a speedup of about a factor
of 2. The top right plot belongs to the original GoLF implementation (Alg. 1).
Due to the complete lack of diversity, the best model’s performance is almost

Peer-to-Peer Multi-class Boosting 399

identical to the average one. The bottom left plot is a baseline experiment that
represents the case with the maximal possible diversity, based on 100 completely
independent runs of the online FilterBoost algorithm. Finally, the bottom
right plot collects the most interesting curves from the other three plots allowing
a better comparison.

8 Conclusions

We demonstrated that the GoLF is suitable for the implementation of multi-
class boosting. The significance of this result is that boosting is a state-of-the-art
machine learning technique from the point of view of the quality of the learned
models, which is now available in the P2P system model with fully distributed
data. To achieve this, we proposed a modification of FilterBoost that allows it
to learn multi-class models in a purely online fashion, and we proved theoretically
that the resulting algorithm optimizes a suitably defined negative log likelihood
measure. Our experimental results demonstrate the robustness of the method.
We also identified the lack of model diversity as a potential problem with GoLF.
We provided a solution that was demonstrated to be effective in preserving the
difference between the best model and the average models; this allowed us to
propose spreading the best model as a way to benefit from the large number of
models in the network.

References

1. Filelist. http://www.filelist.org (2005)
2. Asuncion, A.U., Smyth, P., Welling, M.: Asynchronous distributed estimation of

topic models for document analysis. Statistical Methodology 8(1), 3 – 17 (2011)
3. Babenko, B., Yang, M., Belongie, S.: A family of online boosting algorithms. In:

Computer Vision Workshops (ICCV Workshops). pp. 1346–1353 (2009)
4. Bottou, L.: Large-scale machine learning with stochastic gradient descent. In: Intl.

Conf. on Computational Statistics. vol. 19, pp. 177–187 (2010)
5. Bradley, J., Schapire, R.: FilterBoost: Regression and classification on large

datasets. In: Advances in Neural Information Processing Systems. vol. 20. The MIT
Press (2008)

6. Collins, M., Schapire, R., Singer, Y.: Logistic regression, AdaBoost and Bregman
distances. Machine Learning 48, 253–285 (2002)

7. Datta, S., Bhaduri, K., Giannella, C., Wolff, R., Kargupta, H.: Distributed data
mining in peer-to-peer networks. IEEE Internet Comp. 10(4), 18–26 (July 2006)

8. Fan, W., Stolfo, S.J., Zhang, J.: The application of AdaBoost for distributed, scal-
able and on-line learning. In: Proc. 5th ACM SIGKDD Intl. Conf. on Knowledge
Discovery and Data Mining. pp. 362–366 (1999)

9. Frank, A., Asuncion, A.: UCI machine learning repository (2010)
10. Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In: Ma-

chine Learning: Proc. Thirteenth Intl. Conf. pp. 148–156 (1996)
11. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning

and an application to boosting. J. of Comp. and Syst. Sci. 55, 119–139 (1997)
12. Friedman, J.: Stochastic gradient boosting. Computational Statistics and Data

Analysis 38(4), 367–378 (2002)
13. Jelasity, M., Canright, G., Engø-Monsen, K.: Asynchronous distributed power it-

eration with gossip-based normalization. In: Euro-Par 2007. LNCS, vol. 4641, pp.
514–525. Springer (2007)

http://www.filelist.org

400 I. Hegedűs et al.

14. Jelasity, M., Montresor, A., Babaoglu, O.: Gossip-based aggregation in large dy-
namic networks. ACM Trans. on Computer Systems 23(3), 219–252 (August 2005)

15. Kégl, B., Busa-Fekete, R.: Boosting products of base classifiers. In: Intl. Conf. on
Machine Learning. vol. 26, pp. 497–504. Montreal, Canada (2009)

16. Kempe, D., Dobra, A., Gehrke, J.: Gossip-based computation of aggregate informa-
tion. In: Proc. 44th Annual IEEE Symposium on Foundations of Computer Science
(FOCS’03). pp. 482–491. IEEE Computer Society (2003)

17. Kowalczyk, W., Vlassis, N.: Newscast EM. In: 17th Advances in Neural Information
Processing Systems (NIPS). pp. 713–720. MIT Press, Cambridge, MA (2005)

18. Luo, P., Xiong, H., Lü, K., Shi, Z.: Distributed classification in peer-to-peer net-
works. In: Proc. 13th ACM SIGKDD Intl. Conf. on Knowledge discovery and data
mining (KDD’07). pp. 968–976. ACM, New York, NY, USA (2007)

19. Ormándi, R., Hegedűs, I., Jelasity, M.: Asynchronous peer-to-peer data mining
with stochastic gradient descent. In: Euro-Par 2011. LNCS, vol. 6852, pp. 528–540.
Springer (2011)

20. Ormándi, R., Hegedüs, I., Jelasity, M.: Efficient p2p ensemble learning with linear
models on fully distributed data. CoRR abs/1109.1396 (2011)

21. Oza, N., Russell, S.: Online bagging and boosting. In: Proc. Eighth Intl. Workshop
on Artificial Intelligence and Statistics (2001)

22. Park, B.H., Kargupta, H.: Distributed data mining: Algorithms, systems, and ap-
plications. In: Ye, N. (ed.) The Handbook of Data Mining. CRC Press (2003)

23. PeerSim: http://peersim.sourceforge.net/
24. Schapire, R.E., Singer, Y.: Improved boosting algorithms using confidence-rated

predictions. Machine Learning 37(3), 297–336 (1999)
25. Siersdorfer, S., Sizov, S.: Automatic document organization in a P2P environment.

In: Advances in Information Retrieval, LNCS, vol. 3936, pp. 265–276. Springer
(2006)

26. Tölgyesi, N., Jelasity, M.: Adaptive peer sampling with newscast. In: Euro-Par 2009.
LNCS, vol. 5704, pp. 523–534. Springer (2009)

27. Widrow, B., Hoff, M.E.: Adaptive Switching Circuits. In: 1960 IRE WESCON Con-
vention Record. vol. 4, pp. 96–104 (1960)

Appendix

The second order expansion of multi-class negative log likelihood for fixed α and
h(x) = 0 can be written as

RL

(
f (t) + αh

)
= ln

⎛⎝1 +
K∑

� �=�(x)

F f (t)

� (x)

⎞⎠− K∑
�

F f (t)

� (x)∑K
�′=1 F f (t)

�′ (x)
αy�h�(x)

+
1
2

K∑
�=1

αy�

(
1 +

∑
�′ �=� F f (t)

�′ (x)
)
− α2

=1︷ ︸︸ ︷
y2

� h2
�(x)F f (t)

� (x)

1 +
∑

�′ �=�F f (t)
�′ (x)

where F f (t)

� (x) = exp
(
f

(t)
� (x)−f

(t)
�(x)(x)

)
. Let us note that the last term does not

depend on h(·), consequently minimizing this approximation of RL

(
f (t) + αh

)
with respect to h(x) is equivalent to maximizing the weighted accuracy and the
weight of the �th label is

w
(t)
� =

F f (t)

� (x)∑K
�′=1 F f (t)

�′ (x)
=

exp
(
f

(t)
� (x) − f

(t)
�(x)(x)

)
∑K

�′=1 exp
(
f

(t)
�′ (x) − f

(t)
�(x)(x)

)

Topic 8: Distributed Systems and Algorithms

Andrzej Goscinski, Marios Mavronicolas, Weisong Shi, and Teo Yong Meng

Topic Committee

The increasing significance of Distributed Computing becomes more and more
crucial with the prevail of technological advances that make Global Computing a
reality in modern world. Indeed, it is hard to imagine some application or com-
putational activity and process that falls outside Distributed Computing. With
the large advent of distributed systems, we are faced with the real challenges of
distributed computation: How do we cope with asynchrony and failures? How
(and how well) do we achieve load balancing? How do we model and analyze ma-
licious and selfish behavior? How do we address mobility, heterogeneity and the
dynamic nature of participating processes? What can we achieve in the presence
of disconnecting operations that cause network partitioning?

These and many more are some of the questions that are routinely scrutinized
under the light of current research in Distributed Systems and Algorithms, the
well-known Topic 8 of Europar. This Europar topic provides a forum for both
research and development, of interest to both academia and industry, to present
and discuss novel approaches to Distributed Computing and its relation and
connection to Parallel Processing. The Europar 2012 Call for Papers encouraged
submission of papers accross the whole spectrum of Distributed Systems and
Algorithms, with emphasis on several classical and currently popular subareas.

This year five papers were accepted. The paper Towards Load Balanced Dis-
tributed Transactional Memory, by G. Sharma and C. Busch, considers the prob-
lem of implementing transactional memory in d-dimensional mesh networks. It
presents and analyzes multibend, a novel load balanced directory-based proto-
col, which is designed for the data-flow distributed implementation of software
transactional memory. The paper CUDA-For-Clusters: A System for Efficient
Execution of CUDA Kernels on Multi-Core Clusters, by R. Prabhakar, G. Ra-
maswamy and M. J. Thazhuthaveetil, presents and explores CUDA as a pro-
gramming language for multicores and develops in this way CUDA-For-Clusters
(CFC), a framework that transparently orchestrates execution of CUDA kernels
on a cluster of multi-core machines. The paper From a Store-collect Object and
Ω to Efficient Asynchronous Consensus, by M. Raynal and J. Stainer, presents
an efficient algorithm to build a consensus object, which is based on an Ω failure
detector (to obtain liveness) and a store-collect object (to maintain its safety).
The paper An Investigation into the performance of reduction algorithms un-
der load imbalance, by P. Marendic, J. Lemeire, T. Haber, D. Vucinic, and P.
Schelkens, investigates contexts where it is not guaranteed that all processes start
reduction at about the same time; this is a common context in practice, where
significant load imbalances may occur and affect the performance of algorithms.
The paper investigates the impact of such imbalances on the most commonly
employed reduction algorithms and propose a new algorithm specifically adapted

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 401–402, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

402 A. Goscinski et al.

for such contexts. The paper Achieving Reliability in Master-worker Computing
via Evolutionary Dynamics, by E. Christoforou, A. Fernández Anta, C. Geor-
giou, M. A. Mosteiro and A. Sánchez, consider Internet-based Master-Worker
Computations where a master process sends tasks, across the Internet, to worker
processes; workers execute and report back some result but they are not trust-
worthy. To this respect, the paper models such computations using evolutionary
dynamics and studies the conditions under which the master can reliably obtain
tasks results. The paper develops and analyzes an algorithmic mechanism that
uses reinforcement learning to provide workers with the necessary incentives to
eventually become truthful.

We would like to take this opportunity to thank all authors who submitted
their work to Topic 8 of Europar 2012, all external referees who assisted us, and
all people involved in organizing the review process for their hard work.

Towards Load Balanced Distributed Transactional
Memory

Gokarna Sharma and Costas Busch

Department of Computer Science, Louisiana State University
Baton Rouge, LA 70803, USA

{gokarna,busch}@csc.lsu.edu

Abstract. We consider the problem of implementing transactional memory in
d-dimensional mesh networks. We present and analyze MultiBend, a novel load
balanced directory-based protocol, which is designed for the data-flow distributed
implementation of software transactional memory. It supports three basic op-
erations, publish, lookup, and move, on a shared object. A pleasing aspect of
MultiBend is that it is load balanced (minimizes maximum node and edge uti-
lization) which is achieved by using paths of multiple bends in the mesh. This
protocol guarantees an O(d2 log n) approximation for the load and also for the
distance stretch of move requests, where n is the number of nodes in the network.
For fixed d, both the load and the move stretch are optimal within a constant and
a loglog factor, respectively. It also guarantees O(d2) approximation for lookup
requests which is optimal within a constant factor for fixed d. To the best of our
knowledge, this is the first distributed directory protocol that is load balanced.

1 Introduction

In distributed networked systems processors are the nodes of a network which com-
municate through a message passing environment. We assume that there is a shared
memory address space, which is equally split among the processors. Each processor
has its own cache, where copies of objects reside. In Transactional Memory (TM)
[10,9,16,8,12] a transaction represents a sequence of shared memory operations (i.e.,
reads and writes) that are all performed atomically. The individual entries at the shared
memory, called objects, can be shared by multiple transactions on different network
nodes. A transaction can either commit (i.e., take effect) or abort (i.e., have no effect
at all). If a transaction aborts, it is typically restarted until it commits. When a transac-
tion running at a processor node issues a read or write operation for a shared memory
location, the data object at that location is loaded into the processor-local cache.

We consider the data-flow distributed implementation of software transactional
memory (DTM) suggested by Herlihy and Sun [11], where transactions are immobile
(i.e., running at some particular node) and shared objects are moved to those nodes that
need them. In DTM, transactions can only operate on local shared objects and, if re-
mote shared objects are required, the transaction must communicate with one or more
remote processor nodes. Some distributed cache-coherence mechanism should ensure
that shared objects remain consistent, i.e., writing to an object automatically locates
and invalidates other cached copies of that object. A DTM protocol typically supports

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 403–414, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

404 G. Sharma and C. Busch

(a) Initially, owner v
publishes the object

(b) The request con-
tinues up phase

(c) The request con-
tinues down phase

(d) Object is moved
directly from v to u

Fig. 1. Illustration of MultiBend for a move request issued by node u for the object at node v,
where the nodes shown are leader nodes of the respective sub-meshes

three kinds of operations: (i) publish operation which allows a node which created an
object in its memory space to publish it so that other nodes in the network can find it;
(ii) lookup operation, the protocol should locate the current copy of the object and move
it to the requesting node’s cache (shared access), without modifying the old copy; (iii)
move operation, where a transaction attempts to access an object to update explicitly
the DTM protocol should locate the current cached copy of the object and move it to
the requesting node’s cache invalidating the old copy. [3,17] also studied DTM.

Typically the performance of a DTM protocol is measured with respect to the
communication cost, which is the total number of messages sent in the network. The
communication cost for an operation (resp. for a set of operations) is compared to the
optimal communication cost for that operation (resp. for that set of operations) to pro-
vide an approximation ratio, which is generally referred to as stretch. In the context of
DTM, previous approaches [6,17,3,11,15] focused only on stretch bounds for various
network topologies (Table 1 summarizes their properties) and they do not control the
congestion. The network congestion can also affect the overall performance of the al-
gorithm and sometimes it is a major bottleneck. We measure the network congestion as
the worst node or edge utilization (the maximum number of times the object requests
use any edge or node in the network while accessing the shared object).

Contributions. We present MultiBend, a DTM protocol that is suitable for d-
dimensional mesh networks and is load balanced in the sense that it minimizes the
congestion (maximum node and edge utilization), and at the same time maintains low
stretch. Mesh networks are appealing due to their use in parallel, distributed, and high-
performance computing. The low stretch is achieved through a novel labeled hierarchi-
cal directory-based approach which we first introduced in [15] for general networks and
we adapted it here appropriately for the mesh network. The load balancing is achieved
through an oblivious routing approach (e.g., [13,4,5]) for communication between dif-
ferent hierarchy level leader nodes. In particular, we use the oblivious routing algorithm
in Busch et al. [5] that gives near optimal congestion while maintaining small path
length stretch in the mesh networks.

For the performance analysis of MultiBend, we consider sequential and concurrent
execution of requests. For the move operations in both the cases, MultiBend guarantees
O(d2 logn) amortized stretch and O(d2 logn) approximation of the optimal conges-
tion on any node or any edge in d-dimensional mesh networks, where n is the number

Towards Load Balanced Distributed Transactional Memory 405

Table 1. Comparison of DTM protocols, where n, S∗, and D, respectively, are the number of
nodes, stretch, and the diameter of the network kind on which they operate

Protocol Stretch Network
Kind

Load Bal-
anced

Runs On

Arrow [6] O(SST) = O(D) General No Spanning tree
Relay [17] O(SST) = O(D) General No Spanning tree
Combine [3] O(SOT) = O(D) General No Overlay tree
Ballistic [11] O(logD) Constant-

doubling
No Hierarchical directory with

independent sets
Spiral [15] O(log2 n · logD) General No Hierarchical directory with

sparse covers
MultiBend O(log n) 2-D mesh Yes Hierarchical decomposition
(this paper) O(d2 log n) d-D mesh of the mesh

of nodes in the mesh. For fixed d, the move stretch is optimal within a loglog factor
comparing to the Ω(log n/ log logn) lower bound by Alon et al. [1]; the congestion
approximation is also optimal within a constant factor in light of the Ω(C

∗
d logn) lower

bound on the approximation ratio of an oblivious algorithm due to Maggs et al. [13].
The communication cost of the publish operation is proportional to the diameter of the
network (i.e.,O(n)) and it is a fixed initial cost which is only considered once and com-
pensated by the costs of the move (or lookup) operations which are issued thereafter.
Note that lookup operations have always O(d2) stretch even when considered individ-
ually while their overall congestion is O(d2 logn) approximation in the d-dimensional
mesh. To the best of our knowledge, this is the first DTM protocol that achieves low
stretch in a load balanced way. It has been shown that the stretch and the congestion
cannot be controlled simultaneously in general networks [5].

Techniques. For simplicity, consider an 2-dimensional n = m × m mesh network
and one shared object; the general case for d-dimensional mesh is given in Section 6.
(We consider transactions with only one shared object which is typical in the DTM
literature [3,11,17,6,15]. A protocol for one object can be generalized to accommodate
transactions with multiple objects by appropriately replicating that protocol in such a
way that the replication avoids livelock of transactions.) MultiBend is a directory-based
consistency protocol implemented on a hierarchy of sub-meshes (as clusters). There are
k + 1 = O(log n) levels such that side lengths of the sub-meshes increase by a factor
of 2 between two consecutive levels. In each sub-mesh one node is chosen to act as
a leader to communicate with different level sub-meshes. At the bottom level (level
0) each sub-mesh consists of individual nodes, while at the top level (level k) there
is a single sub-mesh for the whole graph with a special leader node called root. The
hierarchy forms a tree of leaders such that higher level leaders have as children the
lower level leaders. Only the bottom level nodes can issue requests (publish, lookup,
and move) for the shared object, while the nodes in higher levels are used to propagate
the requests in the graph. (The difference between Spiral [15] and MultiBend is that
Spiral uses sparse covers as clusters while MultiBend uses sub-meshes as clusters.)

The protocol maintains a directory path which is directed from the root to the bottom-
level node that owns the shared object. The directory path is updated whenever the

406 G. Sharma and C. Busch

object moves from one node to another. As soon as the object is created by some bottom
level node, it publishes the object by visiting its sequence of increasingly higher level
leaders path towards the root, making each parent pointing to its child leader (Fig. 1a).
These leader pointers correspond to path segment between the leaders and the concate-
nation of these path segments form the initial directory path. A move request from a
node is served by following leader ancestors of that node, setting downward links to-
ward it until it intersects the directory path to the owner node, and resetting the directory
path it follows while descending towards the owner (Figs. 1b−1c); the directory path
now points to the requesting node. As soon as the move reaches the owner, the object
is forwarded to the requester along some shortest path in the mesh (Fig. 1d). A lookup
operation is served similar to move without modifying the directory path.

In order to route the request between two consecutive leaders, we use multi-bend
paths. In the oblivious routing algorithm of [5] they use a one-bend path between pairs
of randomly selected nodes in the mesh. A one-bend path consists of two straight lines,
one line in each dimension which meet at a corner where the bend occurs. Following
[5], we use at most two-bend paths between leaders. The one-bend path is sufficient
when the parent sub-mesh completely contains the child sub-mesh (they are at different
level). There is an attribute in our algorithm where every level has actually two sub-
levels with possibly the same side length sub-meshes (at least one same side length).
For this a two-bend path is needed between the leaders of the same level sub-meshes.

The concatenation of the one-bend or two-bend paths form multi-bend paths. In or-
der to obtain low congestion, every time we access the leader node of the sub-mesh
we immediately replace it with another leader chosen uniformly at random among the
nodes in the sub-mesh. The directory is then updated appropriately with the new leader
information by updating the parent and children leaders. We note that the update cost
is low in comparison to the cost of serving the requests because only the information
in the nearby region needs to be updated due to the new leader. We argue that this step
is necessary to control the congestion. This is because when a fixed leader is used, the
node congestion on that leader is proportional to the number of requests that visit that
leader. Moreover, in the fixed leader case, edge congestion can also be proportional to
the number of requests as all the requests use fixed edges along the shortest path be-
tween two subsequent leaders. We also note that, using this random leader approach, if
the congestion requirement on edges (or nodes) can be relaxed by the factor of κ, then
leader change is only needed after every κ requests.

Outline of Paper. We proceed with network model and preliminaries in Section 2.
In Section 3, we give hierarchy construction for the 2-dimensional mesh. We present
MultiBend protocol in Section 4 and analyze it in Section 5. In Section 6, we extend
MultiBend for the d-dimensional mesh. (Many proofs and details are omitted due to
space restrictions.)

2 Network Model and Preliminaries

We begin with some necessary definitions which are adapted from [5,15]. We represent
a distributed network as a d-dimensional mesh. The d-dimensional mesh M = (V,E)
is a d-dimensional grid of nodes (network machines) V , where |V | = n, with side

Towards Load Balanced Distributed Transactional Memory 407

length mi in each dimension such that n =
∏d

i=1 mi, and edges (interconnection links
between machines) E ⊆ V ×V . Each computing node u ∈ V is connected with each of
its 2d neighbors (except the nodes at the boundaries of the mesh). We denote by |E| the
number of edges in M . A path p in M is a sequence of nodes with respective sequence
of edges connecting the nodes, such that the length of the path p, denoted length(p), is
the number of edges it uses. A sub-path of p is any path obtained by a subsequence of
consecutive edges in p; we may also refer to a sub-path as a fragment of p. Let dist(u, v)
denote the shortest path length (distance) between nodes u and v.

Consider a routing problem Π defined as a set of pairs of source and destination
nodes. A routing algorithm for Π provides paths from every source to its respective
destination. An algorithm is oblivious if the path choice for each pair of source desti-
nation is independent of the path choices of any other pair. The edge congestion C for
any set of paths is the maximum congestion on any edge (link) of the network. Let C∗

denote the optimal congestion attainable by any routing algorithm. We have symmetric
definitions for node congestion. For a sub-meshM ′ ⊆M (i.e.,M ′ is any mesh that con-
tains inside M), let out(M ′) denote the number of edges at the boundary of M ′, which
connect nodes in M ′ with nodes outside M ′. For routing problem Π , we define the
boundary congestion as follows. Consider some sub-mesh M ′ of the network M . Let
Π ′ denote the messages (pairs of sources and destinations) in Π which have either their
source or destination in M ′, but not both. All the messages in Π ′ will cross the bound-
ary of M ′. The paths of these messages will cause congestion at least |Π ′|/out(M ′).
Define the boundary congestion of M ′ to be B(M ′, Π) = |Π ′|/out(M ′). For problem
Π , the boundary congestion B = maxM ′⊆M B(M ′, Π). Clearly, C∗ ≥ B.

We bound the stretch of the MultiBend protocol, which is the ratio of the total com-
munication cost for a request (or for a set of requests) to the optimal cost for that oper-
ation (or for that set of requests). The congestion is the maximum number of times any
node or edge is used by the object requests. We assume that M represents a network
in which nodes do not crash, it implements FIFO communication between nodes (i.e.
no overtaking of messages occurs), and messages are not lost. We also assume that,
upon receiving a message, a node is able to perform a local computation and send a
message in a single atomic step. TM memory proxy module [11] at each node provides
interfaces both to the transactions at that node and to the proxies at other nodes on how
to publish and access shared objects (details in [11,15]). The conflicts, if any, between a
local transaction and a transaction running in some other node, in accessing the object,
is resolved using well-known contention managers, e.g., [7,2,14].

3 Hierarchical Directory for the 2-Dimensional Mesh

We describe how to represent the 2-dimensional mesh M with equal side lengths m =
2k, k ≥ 0, as a hierarchy of sub-meshes (we discuss the d-dimensional case later in
Section 6). We decompose M into two types of sub-meshes, type-1 and type-2 (see
Fig. 2), as given below, adapting some notions from [5].
− Type-1 sub-meshes. There are k + 1 levels of type-1 sub-meshes,
 = 0, 1, · · · , k.

The mesh M itself is the only level k sub-mesh. Every level
 sub-mesh can be par-
titioned into 4 sub-meshes by dividing each side by 2. Each resulting sub-mesh is a

408 G. Sharma and C. Busch

Fig. 2. Decomposition for the 23 × 23 2-dimensional mesh. The arrows show the parent sub-
meshes of a node u in its multi-bend path towards the root at level 3.

type-1 sub-mesh at level
−1. According to this decomposition, at level
, there are 22�

sub-meshes each with side length m� = 2k−�. Note that the level 0 sub-meshes are the
individual nodes of the mesh.
− Type-2 sub-meshes. There are k−1 levels of type-2 sub-meshes,
 = 1, · · · , k−1.

The type-2 sub-meshes at level
 are obtained taking the type-1 sub-meshes and shifting
them by m�/2 simultaneously in both dimensions. Some of the shifted sub-meshes may
have to be truncated at the borders of M .

We assign integer sub-levels to different type sub-meshes at each level. As there are
only two types of sub-meshes at any level 0 <
 < k, we assign sub-level 1 to type-2
and sub-level 2 to type-1 sub-meshes (Fig. 2). For levels 0 and k we have only one
sub-level as there are only type-1 sub-meshes. (i, j) denotes the level i sub-level j.

We now define a hierarchy of leveled sub-meshes. The sub-mesh hierarchy Z =
{Z0, Z1, . . . , Zk}, is a hierarchy of k + 1 levels of sub-meshes such that: (i) At level k
all nodes in M belong to exactly one sub-mesh, i.e., mesh M itself is the only level k
sub-mesh; (ii) At level 0 each node in M is the one sub-mesh by itself; and (iii) In any
level i, 1 ≤ i ≤ k − 1, Zi contains type-1 and type-2 sub-meshes of level i.

Multi-bend Paths. We define a path p(u) for each node u ∈ V which is a “multi-bend”
path of u. The path p(u) is built by visiting the leader nodes in all the sub-meshes
that u belongs to starting from level 0 up to k. In each level, the sub-meshes are visited
according to the order of their sub-levels. From an abstract point of view, the path bends
(changes dimensions) multiple times while it visits sub-mesh leaders of higher levels.

In every sub-mesh X we choose a leader node arbitrarily at the initialization of Z
which we denote as
(X). If one node is the leader on many sub-level sub-meshes, we
add a virtual copy node of it and create a virtual link between the virtual copy and y
itself in subsequent sub-meshes. Denote the leader of sub-level (i, j) sub-mesh Xi,j(u)
as
i,j(u) =
(Xi,j(u)). Since the top most Zk consists of a single sub-level it has a
unique leader which we denote
k,0(u) = r (the root). Trivially, every node u ∈ V is a
leader of its own sub-mesh at level 0,
0,1(u) = u. Note that
(X) is changed for every
request by electing a new leader uniformly at random among the nodes of X . This step
is necessary to minimize the congestion among the nodes and edges.

For any pair of nodes u, v ∈ V , let s(u, v) denote a dimension-by-dimension
(i.e., change in path from one dimension to other dimension in every bend)
shortest path (an at most two-bend path) from u to v. For any set of nodes
u1, u2, . . . , uf ∈ V , let s(u1, u2, . . . , uf) denote the concatenation of shortest paths
s(u1, u2), s(u2, u3), . . . , s(uf−1, uf). Formally, the multi-bend path of node u is:
p(u) = s(u,
1,1(u),
1,2(u), . . . ,
k−1,1(u),
k−1,2(u), r).

Towards Load Balanced Distributed Transactional Memory 409

We say that two multi-bend paths intersect if they have a common node. We also say
that two multi-bend paths intersect at level i if they visit the same leader node at level i
(they may intersect outside leaders but we do not consider that). Therefore,

Lemma 1 (Sharma et al. [15]). For any two nodes u, v ∈ V , their multi-bend paths
p(u) and p(v) intersect at level at most min{k, �log(dist(u, v))�+ 1}.

Canonical Paths. We need later paths obtained from fragments of
multi-bend paths; the fragments are formed while the object moves.
These paths start at level 0 and may go up to the root. We will
refer to such paths as canonical. As shown in the figure on the
right, the newly formed path from w to v6 is a canonical path that
obtained from the fragment of p(w) from w to u2, the fragment
of p(u) from u2 to v4, and the fragment of p(v) from v4 to v6.
Formally, a canonical path q up to sub-level (α, β) ≤ (k, 1) is
q = s(x0,2, x1,1, x1,2, x2,1, x2,2, . . . , xα,β), such that xi,j’s are leader
nodes along the path. A canonical path can be either partial when the
top node is below level k (below the root), or full when the top node
is the root. A multi-bend path p(u) is a full canonical path. Any prefix
of a multi-bend path is a partial canonical path. The path q up to level α is the concate-
nation of paths constructed by the 2 bend dimension to dimension paths in sub-meshes
of (at least one) sides 21, 22, · · · , 2α, which sums at most length(q) ≤ 2α+3. Thus,

Lemma 2. For any canonical path q up to level α, length(q) ≤ 2α+3.

4 The MultiBend Algorithm

We present the MultiBend protocol (Algorithm 1) which implements a DTM for shared
objects over a 2-dimensional mesh graphM . Consider some shared object ξ. The proto-
col guarantees that any moment of time only one node holds the shared object ξ which
is the owner of the object. The owner is the only node who can modify the object (write
the object); the other nodes can only access the object for read.

The basic idea is to maintain a directory path in a sub-mesh hierarchy Z , which
is a directed path from the root node r to the bottom-level node that currently owns
the shared object ξ. Initially, the directory path is formed from the multi-bend path
p(v) of the creator node v when it issues the publish(ξ) operation by assigning pointers
along the edges of p(v) directed toward v (Fig. 1a shows hierarchyZ after a successful
publish operation). The pseudo-code for publish is given in Lines 1–2 of Algorithm 1.

We define the notion of parent node before giving details of lookup and move. We
denote parent node y of a node x in the multi-bend path p(u) as y = parentp(u)(x), i.e.,
if y is the sub-level (i, j) sub-mesh leader in p(u) then x is the leader of the immediate
lower sub-level sub-mesh leader. Note that the leader of a level 0 sub-mesh is the node
itself. Each node knows its parent in the hierarchy, except the root, whose parent is
⊥ (null). A node might have a link (a downward pointer) towards one of its children
(otherwise ⊥); the link at the root is not ⊥.

Lets assume a lookup(ξ) and a move(ξ) operation issued by a nodeu. Both operations
are implemented in two phases: (i) in the up phase, a request message is sent from u

410 G. Sharma and C. Busch

Algorithm 1. MultiBend protocol

1: When y receives m = 〈v, up, publish〉 from x: // Publish operation
2: set y.link = x; if y is not a root node then send m to parentp(v)(y);

3: When y receives m = 〈u, phase, lookup〉 from x: // Lookup operation
4: if m = 〈u, up, lookup〉 then // lookup up phase
5: if y.link = ⊥ then
6: if y.slink list is empty then
7: elect a leader w at sub-mesh containing parentp(u)(y); send m to w;
8: else elect a leader w at sub-mesh containing first pointer of y.slink list; send

〈u, down, lookup〉 to w;
9: else elect a leader w at sub-mesh containing y.link; send 〈u,down,lookup〉 to w;

10: if m = 〈u, down, lookup〉 then // lookup down phase
11: if y is a leaf node then
12: send the read-only copy of ξ to u and remember u;
13: else elect a leader w at sub-mesh containing y.link; send m to w;

14: When y receives m = 〈u, phase, move〉 from x: // Move operation
15: if m = 〈u, up, move〉 then // move up phase
16: assign oldlink ← y.link and set y.link = x;
17: add y in slink list of y’s special patent;
18: if oldlink = ⊥ then
19: elect a leader w at sub-mesh containing parentp(u)(y); sendm to w;
20: else send 〈u, down, move〉 to oldlink;
21: if m = 〈u, down, move〉 then // move down phase
22: if y is in the slink list then erase y from slink;
23: if y is not a leaf node then oldlink ← y.link; y.link ← ⊥; sendm to oldlink;
24: else send the writable copy of ξ to u;
25: invalidate(ξ) from the owner node v and the read-only copies from other nodes;

26: Leader election procedure:
27: select a node w in the sub-mesh containing leader z uniformly at random;
28: copy information at old leader z to new leader w;
29: inform the parent and child of z about the new leader w;
30: construct a sub-path pi from wi−1 to w by picking a dimension by dimension

shortest path (where the sub-path is either one-bend or two-bend);

upward in the hierarchy Z along the multi-bend path p(u) towards the root r until the
request intersects at a node (i.e. node x) with the directory path; (ii) in the down phase,
the request message follows the directory path from node x to the object owner; then
the owner sends a copy of ξ to u (along some shortest path in M). For the lookup it is
a read-only copy of ξ without modifying the hierarchy (see Lines 3–13 of Algorithm
1). But, for the move it is a writable copy invalidating the old copy of ξ and modifying
the directory path (Figs. 1b−1d). In the up phase, the move sets the directions of the
edges in the fragment of p(u) between u and x to point toward u. In the down phase
it deletes the downward pointers (or links) in the fragment of the directory path from
x to v. Now the new directory path points toward u. When the down phase reaches
v, u obtains a copy of the object (see Lines 14–25 of Algorithm 1). This process has
resulted to a canonical directory path that consists of two multi-bend path fragments, a

Towards Load Balanced Distributed Transactional Memory 411

fragment of u’s multi-bend path between r and x and a fragment of v’s multi-bend path
between x and u. Subsequent move operations may result into further fragmentation of
the directory path into multiple (more than two) multi-bend path fragments.

Need of Special Parent. A lookup request may not find immediately the directory path
to ξ, even if the lookup originates near the owner node of ξ. This is because after several
move operations the directory path may become highly fragmented. The notion of a
special parent node helps to avoid this situation and guarantee efficient lookups, such
that whenever a downward link is formed at a node z the special parent of z is also
informed about z holding a downward pointer. A special-parent node of y, denoted as
sparentp(u)(y), at sub-level (i, j) in the multi-bend path p(u) is the leader node of one
of the sub-meshes X ∈ Zη(u) at level η, where η = i+ 4, i.e., sparentp(u)(y) is some
ancestor node of y at level η in p(u). Every node knows its special parent and has slink
(downward pointer) towards special-child node from its special-parent sparentp(u)(y)
(otherwise it is⊥). We maintain a list of slink pointers if one node is the special parent
for several sub-meshes. The special parent is selected in such a way that any nearby
lookup, close to z will either reach z or its special parent. We will prove that lookups
are always efficient using special parents (see Lines 6,8,17, and 22 of Algorithm 1).

Load Balancing. MultiBend (Algorithm 1) uses a leader election procedure (Lines 26–
30 of Algorithm 1) such that lookup and move requests can be served in a load balanced
way. The procedure works as follows: Let z be a leader node of the sub-mesh M ′ in Z .
We elect a new leader at M ′ by selecting a node w ∈ M ′ uniformly at random. After
the leader is elected, the information at old leader z is moved to new leader w and the
parent and child of z are informed about the new leader w. The pointers inside M ′ are
also updated to point to the new leader. After that, sub-path pi from wi−1 (a leader of
the sub-mesh that is sending a message to M ′) to w is formed by picking a dimension by
dimension shortest path; the sub-path pi is one-bend if sub-mesh containing w and the
sub-mesh containing wi−1 are both type-1 sub-meshes, otherwise, pi is of at most two
bend path. If the sub-path is the two-bend path then it is picked by a random ordering
of dimensions on a random node. The lookup uses this procedure in Lines 7,8,9, and 13
of Algorithm 1. The move invokes it at Line 19 of Algorithm 1.

We observe that at any time a request locks at most three nodes (level prev(i, j),
(i, j), and next(i, j)) along the multi-bend path or a downward path. In concurrent
situations this may be a problem; but we describe how we handle concurrent requests
efficiently later in Sections 5 and 6. Note also that the special parent node doesn’t need
to be locked because only one specific slink pointer value needs to be updated.

5 Performance

We give the stretch and congestion analysis of MultiBend for sequential executions; the
stretch and congestion analysis for concurrent executions is deferred to the full paper
due to space limitations. Moreover, the correctness proof is omitted as it can be extended
from [3,11,15].

412 G. Sharma and C. Busch

Move Cost. We now give the analysis of MultiBend in sequential executions. Lets
define a sequential execution of a set E of l+ 1 object ξ requests E = {r0, r1, · · · , rl},
where r0 is the initial publish request and the rest are the subsequent move requests.

For the sake of analysis, similar as in [15], we define a two-dimensional array B
of size (k + 1) × (l + 1), where k + 1 and l + 1 are the number rows and columns,
respectively. The k+1 rows of B can be denoted as {row0, row1, · · · , rowk} , and the
l + 1 columns of B can be denoted as {col0, col1, · · · , col l}. All the locations of the
array are initially empty (⊥). We fix that [0, 0] is the lower left corner element and [k, l]
be the upper right corner element. The levels visited by each request ri in the hierarchy
Z while searching for the object are registered in each col i, 0 ≤ i ≤ l. The maximum
level reached by a request ri in Z is called the peak level for that request. We have
that l ≤ k. The peak level reached by r0 (the publish request) is always k and r0 is
registered at all the locations of col0 starting from col0[0] to col0[k].

Let A∗(E) denote the optimal cost for serving requests in E and A(E) de-
note the total communication cost using the MultiBend. We will bound the stretch
maxE A(E)/A∗(E). For any c, d, 0 ≤ c < d ≤ l, a valid pair W j

(c,d) of two non-

empty entries in row j , 0 ≤ j ≤ h is defined as W j
(c,d) = (row j [c], row j [d]), such that

row j [c] �= ⊥ and row j [d] �= ⊥, and ∀e, c < e < d, row j [e] = ⊥. In other words,
W j

(c,d) is a pair of two subsequent non-empty entries in a row. Moreover, we denote by
Sj the total count of the number of entries row j [i], 0 ≤ i ≤ l, such that row j [i] �= ⊥,
and byWj the total number of non-empty pairs (W j

(c,d)) in it. We have that Wj = Sj−1.

Theorem 1. The move stretch of MultiBend is O(logn) for sequential executions.

Proof (sketch). Let A∗
h(E) be the optimal communication cost for level h in the hierar-

chy Z . According to the execution setup, Sh are the number of requests in E that reach
level h, and Wh are the total number of valid pairs at that level. For any two subsequent
requests that originate from nodes u and v and reach level h, dist(u, v) ≥ 2h−1 (accord-
ing to Lemma 1), since otherwise their multi-bend paths would intersect at level h− 1
or lower. Therefore A∗

h(E) ≥Wh2
h−1 ≥ (Sh− 1)2h−1, as Wh = Sh− 1. Considering

all the levels from 1 to k, A∗(E) ≥ max1≤h≤k A
∗
h(E) ≥ max1≤h≤k(Sh − 1)2h−1.

Similarly, let Ah(E) be the total communication cost of MultiBend for all the re-
quests in E that reach level h in the hierarchy Z , while probing the shared object in
their up phase. We have that Ah(E) ≤ (Sh − 1)2h+3 (Lemma 2). By combining the
cost for each level, A(E) =

∑k
h=1Ah(E) ≤

∑k
h=1(Sh − 1)2h+3. We do not need to

consider level 0 for A∗(E) and A(E) because there is no communication at that level.
Since the execution E is arbitrary and

∑k
h=1(Sh − 1)2h+3 ≤ k ·max1≤h≤k(Sh −

1)2h+3, maxE A(E)/A∗(E) ≤ 16 · k = O(log n), as k = �logn�+ 1. ��

Congestion. We relate the congestion of the paths selected by MultiBend to the optimal
congestion C∗. In particular, we prove the following theorem (this bound is valid for
both move and lookup operations, as both do random leader change in the same way):

Theorem 2. MultiBend achievesO(log n) approximation on congestion w.h.p.

Proof (sketch). Recall that every request to predecessor nodes are routed by MultiBend
by selecting some paths. Precisely, these paths are the multi-bend paths. Let e denote an

Towards Load Balanced Distributed Transactional Memory 413

edge in the mesh graph M and C(e) denote the load on e (the number of times the edge
e is used by the paths of the requests). We bound the probability that some multi-bend
path uses edge e. Consider the formation of a sub-path pi from a sub-mesh M1 to a
sub-mesh M2, such that M1 ⊆M2 and e is a member of M2. If M1 is of type-1 then all
of its sides are equal to m�, where
 is the level of M1. Then the sub-path pi uses edge
e with probability at most 2/m�. Moreover, a one-bend sub-path is enough to route the
request from M1 to M2.

Let P ′ be the set of paths that go from M1 to M2 (or vice-versa). Let C′(e) denote
the congestion that the messages P ′ cause on e. Using the similar argument as given
in previous paragraph for an edge e, the upper bound in C′(e), denoted as E[C′(e)],
is bounded by E[C′(e)] ≤ 2|P ′|/m�. Moreover, from the definition of the boundary
congestion B ≥ B(M1, Π) ≥ |P ′|/out(M1). Thus, C∗ ≥ |P ′|/out(M1). Since M1

has all sides of length m� nodes, out(M1) ≤ 4m�. Therefore, E[C′(e)] ≤ 8C∗. We
charge this congestion to sub-mesh M2. Between every sub-level (i, 2) sub-meshes,
1 ≤ i ≤ k − 1, as M1 of sub-level (i, 2) is completely contained in M2 of sub-level
(i + 1, 2) and there are at most k < logn + 2 levels, the expected congestion on edge
e, denoted as E[C(e)], is bounded by E[C(e)] ≤ 8C∗(logn+ 2).

According to our construction, there is one type-2 sub-mesh M ′
1 between every two

type-1 sub-meshes M1 and M2 in the sub-mesh hierarchy. As the type-2 sub-mesh M ′
1

may not be the proper subset of M2, the set of paths from M1 to M ′
1 may go through

four possible type-2 sub-meshes and they may bend at most two times before they reach
to the leader node of M2. This will increase the congestion by at most the factor of 4
between every two type-1 sub-meshes M1 and M2. Moreover, as we know only sub-
meshes up to level k < logn+2 can contribute to the congestion on edge e and there are
at most (logn+2) levels of type-2 sub-meshes, E[C(e)] increases by a constant factor
only due to the type-2 sub-meshes. As every request selects its path independently of
every other request (Lines 26–30 of Algorithm 1), using standard Chernoff bound, we
obtain a concentration result on the congestion C. ��

Publish Cost. We can prove the following theorem for any publish operation.

Theorem 3. The publish operation has communication cost O(n).

Lookup Cost. It can be shown that a lookup request r from w finds either the directory
path to the owner v (dist(w, v) ≤ 2i) or a slink to the directory path towards v at level
at most η, where η = i+ 4. Therefore, we obtain:

Theorem 4. The stretch of MultiBend is constant for a lookup operation.

6 Extension to the d-Dimensional Mesh

We outline the alternative decomposition that has O(d2 logn) approximation for both
the path stretch and the congestion in d-dimensional mesh networks. The decom-
position will have type-1 sub-meshes and other shifted sub-meshes. We set λ =
max{1,m�/2

�log d+1�}, where m� is the side length of the level
 type-1 sub-mesh.

414 G. Sharma and C. Busch

The type-1 sub-meshes are shifted by (j− 1)λ nodes in each dimension to get the type-
j sub-meshes. According to this decomposition, there will be at most 2(d+1) different
types of sub-meshes at any level. The hierarchy Z is formed similar to 2-dimensional
mesh but now there will be 2d+ 1 sub-levels. The multi-bend and canonical paths can
also be defined similar to Section 3. We summarize the performance bounds below:

Theorem 5. In d-dimensional mesh networks, MultiBend has O(d2 logn) amortized
stretch for move operations andO(d2 logn) approximation on congestion w.h.p. More-
over, the publish operation has cost O(n) and the lookup operation has stretch O(d2).

References

1. Alon, N., Kalai, G., Ricklin, M., Stockmeyer, L.J.: Lower bounds on the competitive ratio for
mobile user tracking and distributed job scheduling. Theor. Comput. Sci. 130(1), 175–201
(1994)

2. Ansari, M., Luján, M., Kotselidis, C., Jarvis, K., Kirkham, C., Watson, I.: Steal-on-abort:
Improving transactional memory performance through dynamic transaction reordering. In:
HiPEAC. pp. 4–18 (2009)

3. Attiya, H., Gramoli, V., Milani, A.: A provably starvation-free distributed directory protocol.
In: SSS. pp. 405–419 (2010)

4. Azar, Y., Cohen, E., Fiat, A., Kaplan, H., Räcke, H.: Optimal oblivious routing in polynomial
time. J. Comput. Syst. Sci. 69(3), 383–394 (2004)

5. Busch, C., Magdon-Ismail, M., Xi, J.: Optimal oblivious path selection on the mesh. IEEE
Trans. Comput. 57(5), 660–671 (2008)

6. Demmer, M.J., Herlihy, M.: The arrow distributed directory protocol. In: DISC. pp. 119–133
(1998)

7. Guerraoui, R., Herlihy, M., Pochon, B.: Toward a theory of transactional contention man-
agers. In: PODC. pp. 258–264 (2005)

8. Hammond, L., Carlstrom, B.D., Wong, V., Chen, M., Kozyrakis, C., Olukotun, K.: Transac-
tional coherence and consistency: Simplifying parallel hardware and software. IEEE Micro
24(6), 92–103 (2004)

9. Herlihy, M., Luchangco, V., Moir, M., Scherer, III, W.N.: Software transactional memory for
dynamic-sized data structures. In: PODC. pp. 92–101 (2003)

10. Herlihy, M., Moss, J.E.B.: Transactional memory: architectural support for lock-free data
structures. SIGARCH Comput. Archit. News 21(2), 289–300 (1993)

11. Herlihy, M., Sun, Y.: Distributed transactional memory for metric-space networks. Distrib.
Comput. 20(3), 195–208 (2007)

12. Kotselidis, C., Ansari, M., Jarvis, K., Luján, M., Kirkham, C., Watson, I.: Distm: A software
transactional memory framework for clusters. In: ICPP. pp. 51–58 (2008)

13. Maggs, B., auf der Heide, F.M., Voecking, B., Westermann, M.: Exploiting locality for data
management in systems of limited bandwidth. In: FOCS. pp. 284–293 (1997)

14. Sharma, G., Busch, C.: A competitive analysis for balanced transactional memory workloads.
Algorithmica 63(1-2), 296–322 (2012)

15. Sharma, G., Busch, C., Srinivasagopalan, S.: Distributed transactional memory for general
networks. In: IPDPS, pp. 1045–1056 (2012)

16. Shavit, N., Touitou, D.: Software transactional memory. Distrib. Comput. 10(2), 99–116
(1997)

17. Zhang, B., Ravindran, B.: Brief announcement: Relay: A cache-coherence protocol for dis-
tributed transactional memory. In: OPODIS. pp. 48–53 (2009)

CUDA-For-Clusters:

A System for Efficient Execution
of CUDA Kernels on Multi-core Clusters

Raghu Prabhakar1,�, R. Govindarajan2, and Matthew J. Thazhuthaveetil2

1 University of California, Los Angeles
raghu@cs.ucla.edu

2 Supercomputer Education and Research Centre,
Indian Institute of Science, Bangalore, India

{govind,mjt}@serc.iisc.ernet.in

Abstract. Rapid advancements in multi-core processor architectures
coupled with low-cost, low-latency, high-bandwidth interconnects have
made clusters of multi-core machines a common computing resource.
Unfortunately, writing good parallel programs that efficiently utilize all
the resources in such a cluster is still a major challenge. Various program-
ming languages have been proposed as a solution to this problem, but
are yet to be adopted widely to run performance-critical code mainly due
to the relatively immature software framework and the effort involved in
re-writing existing code in the new language. In this paper, we motivate
and describe our initial study in exploring CUDA as a programming
language for a cluster of multi-cores. We develop CUDA-For-Clusters
(CFC), a framework that transparently orchestrates execution of CUDA
kernels on a cluster of multi-core machines. The well-structured nature
of a CUDA kernel, the growing popularity, support and stability of the
CUDA software stack collectively make CUDA a good candidate to be
considered as a programming language for a cluster. CFC uses a mixture
of source-to-source compiler transformations, a work distribution run-
time and a light-weight software distributed shared memory to manage
parallel executions. Initial results on running several standard CUDA
benchmark programs achieve impressive speedups of up to 7.5X on a
cluster with 8 nodes, thereby opening up an interesting direction of re-
search for further investigation.

Keywords: CUDA, Multi-Cores, Distributed Programming,
Distributed Systems, Clusters, Software Distributed Shared Memory.

1 Introduction

Clusters of multi-core nodes have become a common HPC resource due to their
scalability and attractive performance/cost ratio. Such compute clusters typi-
cally have a hierarchical design with nodes containing shared-memory multi-core

� The author was affiliated with the Indian Institute of Science during this work.

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 415–426, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

416 R. Prabhakar, R. Govindarajan, and M.J. Thazhuthaveetil

processors interconnected via a network infrastructure. While they provide an
enormous amount of computing power, writing parallel programs to efficiently
utilize all the cluster resources remains a daunting task. For example, intra-node
communication between tasks scheduled on a single node is much faster than
inter-node communication, hence it is desirable to structure code in a way so
that most of the communication takes place locally. Interconnect networks have
large bandwidth and are suitable for heavy, bursty data transfers. This task of
manually orchestrating the execution of parallel tasks efficiently and managing
multiple levels of parallelism is difficult. A popular programming choice is a hy-
brid approach [10] using multiple programming models like OpenMP[5] (intra-
node) and MPI[20] (inter-node) to explicitly manage locality and parallelism.
The challenge lies in writing parallel programs that can readily scale across sys-
tems with steadily increasing numbers of both cores per node and nodes in the
cluster. Various programming languages and models that have been proposed
as a solution to this problem ([11], [12] etc.,) are yet to be adopted widely due
to the effort involved in porting applications to the new language as well as the
constantly changing software stack supporting the languages.

GPGPU computation has attracted the attention of software developers and
researchers off-late, and has been facilitated mainly by NVIDIA’s CUDA [3] and
OpenCL [4]. In particular, CUDA has become a popular language as evident from
an increasing number of users [3] and benchmarks [6] [13]. However, CUDA is a
shared memory programming model designed in tandem with the CUDA archi-
tecture which consists of homogeneous cores. Therefore intuitively, CUDA does
not seem to fit the bill to program distributed machines. However, the semantics
of CUDA enforce a structure on parallel kernels where communication between
parallel threads is guaranteed to take place correctly only if the communicat-
ing threads are part of the same thread block, through some block-level shared
memory. From a CUDA thread ’s perspective, the global memory offers a relaxed
consistency that guarantees coherence only across kernel invocations, and hence
no communication can reliably take place through global memory within a ker-
nel invocation. Such a structure naturally exposes data locality information that
can readily benefit from the multiple levels of hardware-managed caches found
in conventional CPUs. In fact, previous works such as [21] and [22] have shown
the effectiveness using CUDA to program multi-core shared memory CPUs, and
similar research has been performed on OpenCL as well [16]. There has also been
some recent work on using OpenCL to program heterogeneous CPU/GPU clus-
ters [17]. More recently, a compiler that implements CUDA on multi-core x86
processors has been released commercially by the Portland Group [7]. CUDA
has evolved into a very mature software stack with efficient supporting tools like
debuggers and profilers, making application development and deployment easy.

Considering the factors of programmability, popularity, scalability, support
and expressiveness, we believe that CUDA can be used as a single language to
efficiently program a cluster of multi-core machines. From a utility perspective,
establishing an execution flow from CUDA to a distributed system would imme-
diately enable many CUDA programs to achieve speedups on commodity cluster

CUDA-For-Clusters (CFC) 417

machines. In this paper, we explore this idea and describe CFC, a framework to
execute CUDA kernels can be efficiently and in a scalable fashion on a cluster
of multi-core machines. As the thread-level specification of a CUDA kernel is
too fine grained to be profitably executed on a CPU, we employ compiler tech-
niques described in [22] to serialize threads within a block and transform the
kernel code into a block-level specification. The independence and granularity
of thread blocks makes them an attractive schedulable unit on a CPU core. As
global memory in CUDA provides only a relaxed consistency, we show it can be
realized by a lightweight software distributed shared memory (DSM) that pro-
vides an abstraction of a single shared address space across the compute cluster
nodes. Finally, we describe our work-partitioning runtime that distributes thread
blocks across all cores in the cluster. We evaluate our framework using several
standard CUDA benchmark programs from the Parboil benchmark suite [6] and
the NVIDIA CUDA SDK [2] on a compute cluster with eight nodes. We achieve
promising speedups ranging from 3.7X to 7.5X compared to a baseline multi-
threaded execution (around 56X compared to a sequential execution). We claim
that CUDA can be successfully and efficiently used to program a compute cluster
and thus motivate further exploration in this area.

The rest of this paper is organized as follows: Section 2 provides the necessary
background. In Section 3, we describe the CFC framework in detail. In Section
4, we describe our experimental setup and evaluate our framework. Section 5
discusses related work. In section 6 we discuss possible future directions and
conclude.

2 Background

2.1 CUDA Programming Model

The CUDA programming model provides a set of extensions to the C program-
ming language enabling programmers to execute functions on a GPU. Such func-
tions are called kernels. Each kernel is executed on the GPU as a grid of thread
blocks. The grid size and block size are specified by the programmer during invo-
cation. Data transfer between the main memory and GPU DRAM is performed
explicitly using CUDA APIs. Each block is scheduled to execute on one stream-
ing multiprocessor (SM) on the GPU. Each SM contains a number of scalar
processors (SP), a large register file and some scratch pad memory. Thread-
private variables are stored in registers in each SM. Read-only GPU data that
has been declared as constant is mapped to a different constant memory. Pro-
grammers can use shared memory - which is a low-latency, user-managed scratch
pad memory - to store frequently accessed data. Shared memory data is visible to
all the threads within the same block.The syncthreads construct provides barrier
synchronization across threads within the same block.

Each thread block in a kernel grid gets scheduled independently on the SM
that it is assigned to. The programmer must be aware that a race condition
potentially exists if two or more thread blocks are operating on the same global

418 R. Prabhakar, R. Govindarajan, and M.J. Thazhuthaveetil

memory address and at least one of them is performing a write/store opera-
tion. This is because there is no control over when the competing blocks will
get scheduled. CUDA’s atomic primitives can be used only to ensure that the
accesses are serialized in some arbitrary order, but there is no mechanism to
communicate globally across blocks in a single kernel invocation.

2.2 Compiler Transformations

As the per-thread code specification of a CUDA kernel is too fine grained to be
scheduled profitably on a CPU, we first transform the kernel into a per-block
code specification using transformations described in the MCUDA framework
[22]. Logical threads within a thread block are serialized, i.e., the kernel code
is executed in a loop with one iteration for each thread in the block. Loop
boundaries provide implicit barrier synchronization. Hence, syncthreads() is
implemented using a technique called deep fission. The single thread loop nest
is split into two separate loops at the point of invocation of syncthreads(),
thereby preserving CUDA’s execution semantics. Thread-local variables that are
live across such synchronization boundaries are expanded into an array so that
each logical thread can maintain its state correctly. Thread-private variables
are replicated selectively, avoiding unnecessary duplication while preserving each
thread’s instance of the variable. The end result of all transformations is a block-
level specification of the CUDA kernel that can be compiled and executed on
a CPU. [22] has further details on these transformations. A CUDA kernel is
composed of several blocks, and is executed by calling the above function several
times in a loop. The next section describes how we distribute this execution
across nodes using MPI and OpenMP.

3 CUDA for Clusters (CFC)

In this section, we describe CFC in detail. Section 3.1 describes CFC’s work
partitioning runtime scheme. Section 3.2 describes CFC-SDSM, the Software
DSM that used to realize CUDA global memory in a compute cluster.

3.1 Work Distribution

Executing a kernel involves executing the per-block code fragment for all block
indices, as specified in the kernel’s execution configuration. In this initial work,
we employ a simple work distribution scheme that divides the set of block indices
into contiguous, disjoint subsets called block index intervals. The number of
blocks assigned to each node is determined by the number of executing nodes,
which is specified as a parameter during execution. If there are more blocks
than nodes (as is usually the case), each node gets assigned more than one
block. For the example in Fig. 1, the set of block indices 0 – 7 has been split
into four contiguous, disjoint subsets {0, 1}, {2, 3}, {4, 5} and {6, 7}, which are
scheduled to be executed by nodes N1, N2, N3 and N4 respectively. OpenMP is

CUDA-For-Clusters (CFC) 419

dim3 dg(4,2);
dim3 db(128);
kernel<<<dg,db>>>(params)

for(i=0; i<8;i++)
perBlockCCode(params,i,db,dg)

blocksPerNode=2
start=nodeRank*blocksPerNode

#pragma omp parallel for
for(i=start; i<start+blocksPerNode;i++)
 perBlockCCode(params,i,db,dg)

Fig. 1. Structure of the CFC framework. The pseudo-code for kernel invocation at each
stage is shown on the right for clarity.

used within each node to execute the assigned work units in parallel on multiple
cores. For example, in Fig. 1, within each node the assigned blocks are executed
in parallel using multiple threads on cores P1 and P2. The thread blocks are
thus distributed uniformly irrespective of the size of the cluster or number of
cores in each cluster node.

3.2 CFC-SDSM

CFC supports CUDA kernel execution on a cluster by providing the global
CUDA address space through a software abstraction layer, called CFC-SDSM.
We begin by noting CUDA kernels with data races produce unpredictable re-
sults on a GPU. However, global data is coherent at kernel boundaries; all thread
blocks see the same global data when a kernel commences execution. We there-
fore enforce a relaxed consistency semantics[8] in CFC-SDSM that ensures co-
herence of global data at kernel boundaries. Thus, for a data-race free CUDA
program, CFC-SDSM guarantees correct execution, but provides no such guaran-
tees for racy programs. Constant memory is maintained as separate local copies
on every node.

As the size of objects allocated in global memory can be large, CFC-SDSM
operates at page-level granularity. Table 1 describes the meta information stored
by CFC-SDSM for each page of global data in its page table.

CFC-SDSM Operation CFC-SDSM treats all memory allocated using cu-
daMalloc as global data. Each allocation call typically populates several entries
in the CFC-SDSM table. Every memory allocation is performed starting at a
page boundary using mmap. At the beginning of any kernel invocation, CFC-
SDSM marks every global memory page to be read-only. Thus, any write to a
global page within the kernel results in a segmentation fault which is handled by
CFC-SDSM’s SIGSEGV handler. The segmentation fault handler first examines

420 R. Prabhakar, R. Govindarajan, and M.J. Thazhuthaveetil

Table 1. Structure of a CFC-SDSM page table entry

Field Description

pageAddr Starting address of the page.
pnum A unique number (index) given to each page, used during synchronization.
written 1 if the corresponding page was written, else 0.
twinAddr Starting address of the page’s twin.

the address causing the fault. The fault could either be due to (i) a valid write
access to a global memory page that is write-protected, or (ii) an illegal address
caused by an error in the source program. In the latter case, the handler prints
a stack trace onto standard error and aborts execution. If the fault is due to the
former, the handler performs the following actions:

– Set the written field of the corresponding CFC-SDSM table entry to 1.
– Create a replica of the current page, called its twin. Store the twin’s address

in the corresponding CFC-SDSM table entry.
– Grant write access to the corresponding page and return.

In this way, at the end of the kernel’s execution, each node is aware of the global
pages it has modified. Note that within each node, the global memory pages
and CFC-SDSM table are shared by all executing threads, and hence all cores.
So, the SIGSEGV handler overhead is incurred only once for each global page
in a kernel, irrespective of the number of threads/cores writing to it. Writes
by a CPU thread/thread block are made visible to other CPU threads/thread
blocks executing in the same node by the underlying hardware cache coherence
mechanism, which holds across multiple sockets of a node. Therefore, no special
treatment is needed to handle shared memory.

The information of global pages that have been modified within a kernel
has to be communicated globally to all other nodes at kernel boundaries. To
accomplish this, each node constructs a vector called writeVector specifying the
set of global pages written by the node during the last kernel invocation. The
writeVectors are communicated to other nodes using an all-to-all broadcast.
Every node then computes the summation of all writeVectors. We perform this
vector collection-summation operation using MPI Allreduce[20]. At the end of
this operation, each node knows the number of modifiers of each global page. For
instance, writeV ector[p] == 0 means that the page having pnum = p has not
been modified, and hence can be excluded from the synchronization operation.

Pages having writeVector[pnum] == 1 have just one modifier. For such pages,
the modifying node broadcasts the up-to-date page to every other cluster node
To reduce broadcast overheads, all the modified global pages at a node are
grouped together in a single broadcast from that node. The actual page broadcast
operation is implemented using MPI Bcast.

For pages that have more than one modifier, each modifier must communicate
its modifications to other cluster nodes. CFC-SDSM accomplishes this by diff ing
the modified page with its twin page created by the SIGSEGV handler in each

CUDA-For-Clusters (CFC) 421

modifier node. In CFC-SDSM, each modifier node other than node 0 computes
the diff s and sends them to node 0, which collects all the diff s and applies
them to the page in question. Diff ing is an inexpensive operation that is easily
performed using a bitwise xor operation. Node 0 then broadcasts the up-to-date
page to every other node. The coherence operation ends with each node receiving
the modified pages and updating the respective pages locally.

We show in section 4 that centralizing the diff ing process at node 0 does not
cause much of a performance bottleneck mainly because the number of pages
with multiple modifiers is relatively less. For pages with multiple modifiers, CFC-
SDSM assumes that the nodes modified disjoint chunks of the page. If multiple
nodes have modified overlapping regions in a global page the program has a data
race, and under CUDA semantics the results are unpredictable. CFC-SDSM does
not guarantee correctness for such programs.

3.3 Lazy Update

Broadcasting every modified page to every other node creates a high volume of
network traffic, which is unnecessary most of the times. We therefore implement
a lazy update optimization in CFC-SDSM where modified pages are sent to
nodes lazily on demand. CFC-SDSM uses lazy update if the total number of
modified pages across all nodes exceeds a certain threshold. We have found that
a threshold of 2048 works reasonably well for many benchmarks (see section
4). In lazy update, global data is updated only on node 0 and no broadcast is
performed. Instead, in each node n, read permission is set for all pages p that
were modified only by n (since the copy of page p is up-to-date in node n), and
the write permission is reset as usual. If a page p has been modified by some
other node(s), node n’s copy of page p is stale. Hence, CFC-SDSM invalidates p
by removing all access rights to p in n. Pages which have not been modified by
any node are left untouched (with read-only access rights). At the same time,
on node 0, a server thread is forked to receive and service lazy update requests
from other nodes. In subsequent kernel executions, if a node tries to read from an
invalidated page (i.e. a page modified by some other node in the previous kernel
call), a request is sent to the daemon on node 0 with the required page’s pnum.
In section 4, we show that the lazy update scheme offers appreciable performance
gains for a benchmark with a large number of global pages.

4 Performance Evaluation

In this section, we evaluate CFC using several representative benchmarks from
standard benchmark suites.

4.1 Experimental Setup

For this study, we performed all experiments on an eight-node cluster, where
each node is running Debian Lenny Linux. Nodes are interconnected by a high-
bandwidth Infiniband network. Each node is comprised of two quad-core Intel
Xeon processors running at 2.83GHz, thereby having eight cores.

422 R. Prabhakar, R. Govindarajan, and M.J. Thazhuthaveetil

Compiler Framework. Fig. 2 shows the structure the CFC compiler frame-
work. We use optimization level O3 in all our experiments.

Fig. 2. Structure of the compiler framework

Benchmarks. We used five benchmark applications and one kernel. Four are
from the Parboil Benchmark suite [6]. Blackscholes and the Scan kernel are
applications from the NVIDIA CUDA SDK[2]. The benchmarks are from dif-
ferent computing disciplines, and are representative of present day workloads,
all of which have mature CUDA implementations in standard benchmark suites.
Table 2 briefly describes each benchmark.

Table 2. Benchmarks and description

Benchmark Description

cp Coulombic potential computation over one plane in a 3D grid, 100000 atoms
mri-fhd FHd computation using in 3D MRI reconstruction, 40 iterations
tpacf Two point angular correlation function
blackscholes Call and put prices using Black-Scholes formula, 50000000 options, 20 iterations
scan Parallel prefix sum, 25600 integers, 1000 iterations
mri-q Q computation in 3D MRI reconstruction, 40 iterations

Performance Metrics. In all our experiments, we keep the number of threads
equal to the number of cores on each node (eight threads per node in our cluster).
We haven’t explored variable number of threads per node. We define speedup of
an n node execution as:

speedup =
tbaseline

tCLUSTER
(1)

, where tbaseline represents the baseline multi-threaded execution time on one
node, and tCLUSTER represents execution time in the CFC framework on n
nodes. The baseline uses a single node and hence requires only OpenMP (and
not MPI). The baseline can only gain because of this, thereby ensuring fairness
in comparison. Observe that the speedup is computed for a cluster of n nodes
(i.e., 8n cores) relative to performance on one node (i.e., 8 cores). In effect, for
n = 8, the maximum obtainable speedup would be 8. Each benchmark has been
run 10 times, and the median value is reported.

CUDA-For-Clusters (CFC) 423

4.2 Results

Table 3 shows the number of pages of global memory as well as the number of
modified pages. Our benchmark set has a mixture of large and small working
sets along with varying percentages of modified global data, thus covering a
range of GPGPU behavior suitable for studying an implementation such as ours.
Benchmark speedups are shown in Fig. 3. Fig. 3(a) shows speedups with the lazy

Table 3. Number of pages of global memory declared and modified in each benchmark

Benchmark Global pages Modified % Unmodified

Cp 1024 1024 0

Mri-fhd 1298 510 60.7

Tpacf 1220 8 99.3

BlackScholes 244145 97658 60

Mri-q 1286 508 60.49

Scan 50 25 50

Fig. 3. Comparison of execution times of various benchmark applications on our sys-
tem. (a) shows normalized speedups on a cluster with 8 nodes without lazy update.
(b) shows the performance of BlackScholes with the lazy update optimization.

update optimization disabled for all the benchmarks, while 3(b) shows speedups
for the BlackScholes benchmark when the lazy update optimization is enabled.
As we have set a threshold of at-least 2048 global pages to trigger CFC-SDSM
to operate in lazy mode, only blackscholes triggers this operation. Any number
of pages less than this can easily be handled by CFC-SDSM in the normal mode,
and the experimental results demonstrate it. Hence we study the lazy update
effect only on Blackscholes. We make the following observations:

– Our implementation has low runtime overhead. Observe the speedups for
n = 1, i.e., the second bar. In almost all cases, this value is close to the
baseline. BlackScholes slows down by about 14% due to its large global
data working set.

424 R. Prabhakar, R. Govindarajan, and M.J. Thazhuthaveetil

– The Cp benchmark shows very high speedups in spite of having a high
percentage of global data pages being modified. Cp is a large benchmark
with lots of computations that can utilize many nodes efficiently.

– The Scan benchmark illustrates the effect of a CUDA kernel design on its
performance on a cluster. Originally, the Scan kernel is small where only
512 elements are processed per kernel. Spreading such a small kernel’s exe-
cution over many nodes was an overkill and provided marginal performance
gains comparable to Blackscholes in Fig. 3(a). However, after the kernel was
modified (coarsened or fattened) to processes 25600 elements per kernel, we
achieve the speedups shown in 3(a).

– The BlackScholes benchmark shows scalability, but low speedups. Due to
the large volume of network traffic it generates, this benchmark benefits from
lazy update. On a cluster with 8 nodes, we obtain a speedup of 3.7X with
lazy update, compared to 2.17X without lazy update. This suggests that
the performance gained by reducing interconnect traffic compensates for the
overheads incurred by creating the daemon thread. We have observed that
for this application, invalidated pages are never read in any node.

– We can observe network overhead specifically only in BlackScholes where
we’ve overloaded CFC-SDSM with many pages. The lazy update scheme
seems to work pretty well even for large memory sizes. We would like to
explore potential problems when we scale this to hundreds of nodes in the
future.

– Across the benchmarks, our runtime approach to extend CUDA programs
to clusters has achieved speedups ranging from 3.7X to 7.5X on an 8 node
cluster.

In summary, we are able to achieve appreciable speedup and a good scaling
efficiency (upto 95%) with number of nodes in the cluster. While an 8-node
cluster is not a very big cluster, it serves as a reasonable platform to demonstrate
the effectiveness of CFC. Future work will deal with studying larger clusters and
problems arising from that.

5 Related Work

We briefly discuss a few previous works related to programming models, using
CUDA on non-GPU platforms and software DSMs. The Partitioned Global Ad-
dress Space family of languages (Chapel[11], X10[12] etc.) aims to combine the
advantages of both message-passing and shared-memory models. Intel’s Concur-
rent collections [1] is another shared memory programming model that aims to
abstract the description of parallel tasks.

Previous works like [7], [14] and [22] use either compiler techniques or binary
translation to execute kernels on x86 CPUs. In all the works mentioned here,
CUDA kernels have been executed on single shared-memory hardware.

Various kinds of software DSMs have been suggested in literature like [9], [15],
[18], and [19], to name a few. CFC-SDSM differs from the above works in the
sense that locks need not be acquired and released explicitly by the programmer.

CUDA-For-Clusters (CFC) 425

All global memory data is ‘locked’ just before kernel execution and ‘released’
immediately after, by definition. Also, synchronization operation proceeds either
eagerly or lazily, depending on the total size of global memory allocated. This
makes our DSM very lightweight and simple.

6 Conclusions and Future Work

In this paper, we have presented an initial study in exploring CUDA as a lan-
guage to program clusters of multi-core machines. We have implemented CFC,
a framework that uses a mixture of compiler transformations, work distribu-
tion runtime and a lightweight software DSM to collectively implement CUDA’s
semantics on a multi-core cluster. We have evaluated our implementation by
running six standard CUDA benchmark applications to show that there are in-
deed promising gains that can be achieved.

Many interesting directions can be pursued in the future. One direction could
be towards optimizing network usage by building a static communication cost
estimation model or tracking global memory access patterns that can be used by
the runtime to schedule blocks across nodes appropriately. Another interesting
and useful extension to this work would be to consider GPUs on multiple nodes
as well, along with multi-cores. Automatic compile-time kernel coarsening and
automatic kernel execution configuration tuning are other interesting areas.

References

1. Intel concurrent collections for c++, http://software.intel.com/en-us/articles/
intel-concurrent-collections-for-cc/

2. Nvidia cuda c sdk, http://developer.download.nvidia.com/compute/cuda/sdk
3. Nvidia cuda zone, http://www.nvidia.com/cuda
4. Opencl overview,

http://www.khronos.org/developers/library/overview/opencl_overview.pdf

5. Openmp specifications, version 3.0,
http://openmp.org/wp/openmp-specifications/

6. The parboil benchmark suite,
http://impact.crhc.illinois.edu/parboil.php

7. The portland group, http://www.pgroup.com
8. Adve, S.V., Gharachorloo, K.: Shared memory consistency models: A tutorial.

IEEE Computer 29, 66–76 (1995)
9. Amza, C., Cox, A.L., Dwarkadas, S., Keleher, P., Lu, H., Rajamony, R., Yu, W.,

Zwaenepoel, W.: Treadmarks: Shared memory computing on networks of worksta-
tions. Computer 29(2), 18–28 (1996)

10. Cappello, F., Etiemble, D.: Mpi versus mpi+openmp on ibm sp for the nas bench-
marks. In: Proceedings of the 2000 ACM/IEEE Conference on Supercomput-
ing (CDROM), Supercomputing 2000. IEEE Computer Society, Washington, DC
(2000)

11. Chamberlain, B., Callahan, D., Zima, H.: Parallel programmability and the chapel
language. Int. J. High Perform. Comput. Appl. 21(3), 291–312 (2007)

http://software.intel.com/en-us/articles/intel-concurrent-collections-for-cc/
http://software.intel.com/en-us/articles/intel-concurrent-collections-for-cc/
http://developer.download.nvidia.com/compute/cuda/sdk
http://www.nvidia.com/cuda
http://www.khronos.org/developers/library/overview/opencl_overview.pdf
http://openmp.org/wp/openmp-specifications/
http://impact.crhc.illinois.edu/parboil.php
http://www.pgroup.com

426 R. Prabhakar, R. Govindarajan, and M.J. Thazhuthaveetil

12. Charles, P., Grothoff, C., Saraswat, V., Donawa, C., Kielstra, A., Ebcioglu, K.,
von Praun, C., Sarkar, V.: X10: an object-oriented approach to non-uniform clus-
ter computing. In: OOPSLA 2005: Proceedings of the 20th Annual ACM SIGPLAN
Conference on Object-oriented Programming, Systems, Languages, and Applica-
tions, pp. 519–538. ACM, New York (2005)

13. Danalis, A., Marin, G., McCurdy, C., Meredith, J.S., Roth, P.C., Spafford, K., Tip-
paraju, V., Vetter, J.S.: The scalable heterogeneous computing (shoc) benchmark
suite. In: Proceedings of the 3rd Workshop on General-Purpose Computation on
Graphics Processing Units, GPGPU 2010, pp. 63–74. ACM, New York (2010)

14. Diamos, G.F., Kerr, A.R., Yalamanchili, S., Clark, N.: Ocelot: a dynamic opti-
mization framework for bulk-synchronous applications in heterogeneous systems.
In: PACT 2010: Proceedings of the 19th International Conference on Parallel Ar-
chitectures and Compilation Techniques, pp. 353–364. ACM, New York (2010)

15. Gelado, I., Stone, J.E., Cabezas, J., Patel, S., Navarro, N., Hwu, W.M.W.: An
asymmetric distributed shared memory model for heterogeneous parallel systems.
SIGARCH Comput. Archit. News 38(1), 347–358 (2010)

16. Gummaraju, J., Morichetti, L., Houston, M., Sander, B., Gaster, B.R., Zheng, B.:
Twin peaks: a software platform for heterogeneous computing on general-purpose
and graphics processors. In: Proceedings of the 19th International Conference
on Parallel Architectures and Compilation Techniques, PACT 2010, pp. 205–216.
ACM, New York (2010)

17. Kim, J., Seo, S., Lee, J., Nah, J., Jo, G., Lee, J.: Opencl as a programming model
for gpu clusters. In: LCPC 2011: Proceedings of the 24th International Workshop
on Languages and Compilers for Parallel Computing, (2011)

18. Li, K., Hudak, P.: Memory coherence in shared virtual memory systems. ACM
Trans. Comput. Syst. 7(4), 321–359 (1989)

19. Manoj, N.P., Manjunath, K.V., Govindarajan, R.: Cas-dsm: a compiler assisted
software distributed shared memory. Int. J. Parallel Program. 32(2), 77–122 (2004)

20. Snir, M., Otto, S., Huss-Lederman, S., Walker, D., Dongarra, J.: MPI-The Com-
plete Reference, Volume 1: The MPI Core. MIT Press, Cambridge (1998)

21. Stratton, J.A., Grover, V., Marathe, J., Aarts, B., Murphy, M., Hu, Z., Hwu,
W.M.W.: Efficient compilation of fine-grained spmd-threaded programs for multi-
core cpus. In: CGO 2010: Proceedings of the 8th Annual IEEE/ACM International
Symposium on Code Generation and Optimization, pp. 111–119. ACM, New York
(2010)

22. Stratton, J.A., Stone, S.S., Hwu, W.-M.W.: Mcuda: An efficient implementation
of cuda kernels for multi-core cpus, pp. 16–30 (2008)

From a Store-Collect Object and Ω

to Efficient Asynchronous Consensus

Michel Raynal1,2 and Julien Stainer2

1 Institut Universitaire de France,
2 IRISA, Université de Rennes 1, France

{raynal,Julien.Stainer}@irisa.fr

Abstract. This paper presents an efficient algorithm that build a consensus ob-
ject. This algorithm is based on an Ω failure detector (to obtain consensus live-
ness) and a store-collect object (to maintain its safety). A store-collect object
provides the processes with two operations, a store operation which allows the
invoking process to deposit a new value while discarding the previous value it
has deposited and a collect operation that returns to the invoking process a set
of pairs (i, val) where val is the last value deposited by the process pi. A store-
collect object has no sequential specification.

While store-collect objects have been used as base objects to design wait-free
constructions of more sophisticated objects (such as snapshot or renaming ob-
jects), as far as we know, they have not been explicitly used to built consensus
objects. The proposed store-collect-based algorithm, which is round-based, has
several noteworthy features. First it uses a single store-collect object (and not an
object per round). Second, during a round, a process invokes at most once the
store operation and the value val it deposits is a simple pair 〈r, v〉 where r is a
round number and v a proposed value. Third, a process is directed to skip rounds
according to its view of the current global state (thereby saving useless compu-
tation rounds). Finally, the algorithm benefits from the adaptive wait-free imple-
mentations that have been proposed for store-collect objects, namely, the number
of shared memory accesses involved in a collect operation is O(k) where k is the
number of processes that have invoked the store operation. This makes the pro-
posed algorithm particularly efficient and interesting for multiprocess programs
made up of asynchronous crash-prone processes that run on top of multicore ar-
chitectures.

Keywords: Asynchronous shared memory system, Building block, Concurrent
object, Consensus, Distributed algorithm, Eventual leader, Failure detector, Fault-
tolerance, Modularity, Multicore systems, Process crash, Store-collect object.

1 Introduction

1.1 On the Implementation of Consensus Objects

Consensus object and its universality An implementation of any object (or service) is
wait-free if the crash of any number of processes does not prevent the other processes
from terminating their operation invocations on the constructed object [13]. It has been
shown by M. Herlihy [13] that consensus objects are universal when one has to design

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 427–438, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

428 M. Raynal and J. Stainer

wait-free implementation of any object (or service) defined from a sequential specifi-
cation. This means that, as soon as we are provided with consensus objects and atomic
read/write registers, it is possible to design algorithms (called universal constructions)
that build wait-free implementations of any concurrent object defined by a sequential
specification. Such implementations are said to be linearizable [14].

A consensus object is a one-shot object that provides the processes with a single
operation denoted propose() (one-shot means that a process invokes at most once the
operation propose() on a consensus object). When a process invokes propose(v), we say
that it “proposes v”. A consensus object allows processes to agree (if the processes of a
multiprocess program do not have to agree in one way or another, they are independent
and do not constitute a distributed computation). More specifically a consensus object
is defined as follows. Each process is assumed to propose a value and has to decide
a value in such a way that the following properties are satisfied: each correct process
which invokes propose() decides a value (wait-free termination), a decided value is a
proposed value (validity) and no two processes decide different values (agreement).

Consensus impossibility and ways to circumvent it. While consensus objects are
fundamental objects for the design and the implementation of crash-prone distributed
systems, the bad news is that they cannot be wait-free implemented in asynchronous
systems. Wait-free means here “whatever the number of process crashes”. Moreover,
this impossibility is independent of the underlying communication medium, which
means that it holds for both read/write shared memory systems [18] and asynchronous
message-passing systems [8]).

Several approaches to circumvent this impossibility have been investigated in the
context of read/write shared memory systems. One consists in enriching the system
model by providing the processes with registers stronger (from a computability point
of view) than read/write atomic registers. This approach has given rise to the notion of
consensus number introduced and developed by Herlihy [13]. An object X has consen-
sus number n if n is the largest integer such that it is possible to wait-free implement
n-process consensus objects from atomic read/write registers and objects X . If X al-
lows to wait-free implement n-process consensus for any value of n > 0, the consensus
number of the object X is +∞. It is shown it in [13] that there are objects (such as
compare&swap or LL/SC registers) whose consensus number is +∞.

Another approach consists in enriching the base read/write system with a failure de-
tector [4]. Intuitively, a failure detector can be seen as a distributed module that provides
each process with information on failures. According to the type and the quality of this
information, several failure detectors can be defined. Failure detectors have initially
been proposed for message-passing systems before being used in shared memory sys-
tems [17]. One of the most important result associated with the failure detector-based
approach is the proof that the failure detector denoted Ω is the one that captures the min-
imal information on failures that allows processes to wait-free implement a consensus
object despite asynchrony and process crashes [3]. A failure detector Ω is character-
ized by the following behavioral property: after a finite but unknown and arbitrary long
period, Ω provides forever the processes with the same (non-crashed) leader.

Modular approach: on the liveness side. Implementations of consensus objects have to
ensure that a single among the proposed values is decided (safety) and that each process

From a Store-Collect Object 429

that proposes a value and does not crash eventually decides despite the behavior of the
other processes (wait-freedom).

Interestingly, when considering round-based algorithms (i.e., algorithms in which the
processes execute asynchronously a sequence of rounds), the safety and wait-freedom
properties of a consensus object can be ensured by different means, i.e., by different
object types. More precisely, the eventual leadership property provided by Ω can be
used to ensure that at least one process will terminate (thereby entailing the termination
of the other processes). Hence, an Ω failure detector constitutes a liveness building
block on which implementations of consensus objects can rely in order to obtain the
wait-freedom property.

Modular approach: on the safety side. To our knowledge three types of read/write-
based objects that ensure the safety properties of a consensus object have been pro-
posed.

The first (which is given the name alpha in [12,21]) has been proposed by Lam-
port in [16] in the context of message-passing systems and adapted to the read/write
shared memory model by Lamport & Gafni [10]. An alpha object is a round-based ab-
straction which has a single operation denoted deposit(). Round-based means that the
specification of deposit() involves the round number which is passed as a parameter.
This operation takes also a value as input parameter and returns a proposed value or a
default value ⊥ indicating that the current invocation is aborted. An alpha object is im-
plemented with an array of n shared single-writer/multi-reader registers where n is the
total number of processes. Each register contains two round numbers plus a proposed
value or the default value ⊥.

The second object, denoted adopt-commit has been introduced by Gafni [9]. It is
a round-free object: its specification does not depend on round numbers, and its im-
plementation requires two arrays of size n asynchronously accessed by each process
one after the other. As adopt-commit objects are round-free, each round of an adopt-
commit-based consensus algorithm requires its own adopt-commit object and, when it
executes a round, a process accesses only the corresponding adopt-commit object.

A third object that has used to ensure the safety property of a consensus object is the
weak set object type proposed by Delporte & Fauconnier [5]. This object is a set from
which values are never withdrawn. Similarly to adopt-commit objects, these sets are
round-free objects but, differently from them, during each round a process is required
to access three distinct sets (the ones associated to the previous, the current and the next
rounds).

1.2 Content of the Paper

Step complexity and number of objects. The step complexity (number of shared mem-
ory accesses) involved by each invocation of an operation on an alpha, adopt-commit
or weak set object is O(n).

On another side, the consensus algorithms based on adopt-commit or weak set ob-
jects requires one such object per round and, due the very nature of Ω, the number of
rounds that have to be executed before processes decide is finite but can can be arbi-
trary large. This means that the number of adopt-commit or weak set objects used in an

430 M. Raynal and J. Stainer

execution cannot be bounded and, consequently, these objects have to be dynamically
created. (Due to the distributed nature of the computation and the possibility of failures,
such dynamic object creations are much more difficult to manage than iterative or re-
cursive objects creation in sequential or parallel failure-free computing.) Interestingly,
alpha-based consensus algorithms (e.g., [10,11,16]) needs a single alpha object.

A question. Hence, the question: Is it possible to design a consensus object from Ω
(for the consensus liveness part) and (for the consensus safety part) an object such that
(a) a single instance of this object is necessary (as in alpha-based consensus) and (b)
whose step complexity of each operation is adaptive (i.e. depends on the number of
processes that have invoked operations and not on the total number of processes)? The
paper answers positively the previous question. To that end it considers store-collect
objects.

Store-collect object. Such an object, which can be seen as an array with an entry per
process, provides processes with two operations denoted store() and collect(). The first
operation allows a process to deposit a new value in the store-collect object, this new
value overwriting the value it has previously deposited. The second operation is an
asynchronous read of the last values deposited by each process. A store-collect object
has no sequential specification.

While a store-collect object has a trivial wait-free implementation based on an array
of size n with operations whose step complexity is O(n), in a very interesting way,
efficient adaptive wait-free implementations have been proposed. As an example, when
considering the implementation described in [2], the step complexity of each invocation
of collect() is O(k) where k, 1 ≤ k ≤ n, is the number of processes that have previously
invoked the operation store()) and the step complexity of each invocation of store() by
a process is O(1) but for its first invocation which can be up to O(k).

A variant of a store-collect object is one in which the operations store() and collect()
are merged to obtain a single operation denoted store collect() (whose effect is similar
to store() followed by collect()). A wait-free implementation of such a variant is de-
scribed in [6] where it is shown that in some concurrency patterns the step complexity
of store collect() is O(1).

Content of the paper. The paper presents an algorithm that wait-free implements a
consensus object from Ω (building block for wait-free termination) and a single store-
collect object (building block for consensus safety).

When compared to consensus algorithms that needs an unbounded number of adopt-
commit or weak set objects, the proposed algorithm (similarly to alpha-based consensus
algorithms [10,12,16]) needs a single base (store-collect) object. Moreover, when com-
pared to alpha-based algorithms, it has several noteworthy features. (a) A better step
complexity (measured as the number of accesses to the shared memory) during each
round. (b) The fact that an entry of the store-collect object has only two components (a
round number plus a proposed value) while an entry of an alpha object has three com-
ponents (two round numbers plus a proposed value). And (c) the fact that the next round
executed by a process is dynamically computed from its current view of the global state
and not a priori defined from a predetermined sequence (thereby allowing a process to

From a Store-Collect Object 431

skip useless computation rounds). It is important to notice that, while the algorithm is
relatively simple, the proof that a single value is decided is not trivial.

Hence, the paper presents a new consensus algorithm suited to shared memory sys-
tems which, from an efficiency point of view, compares favorably with existing algo-
rithms. It is important to notice that, with the advent of multicore architectures, the
design of such efficient fault-tolerant algorithms become a real challenge.

Roadmap. The paper is made up of 4 sections. Section 2 presents the computation
model (base read/write registers, store-collect object and Ω), and the consensus ob-
ject. Then, Section 3 describes, discusses and proves correct an efficient algorithm that
builds a consensus object from Ω and a single store-collect object as underlying build-
ing blocks. Finally, Section 4 concludes the paper.

2 Computation Model

2.1 Crash-Prone Asynchronous Processes

The system is made up of a set Π of n sequential processes denoted p1, . . . , pn. The
integer i is the index of the process pi. The processes are asynchronous which means
that each process proceeds at its own speed which can vary arbitrarily. The execution
of a sequential process is represented by a sequence of steps which are accesses to its
local memory or to the shared memory (see below).

Any number of processes may crash. A crash is a premature halt. After it has crashed
(if ever it does) a process executes no more step. It is only assumed that a process that
does not crash eventually executes its next step as defined by the code of its algorithm.
Given an execution, a process that crashes is said to be faulty, otherwise it is correct.

2.2 Cooperation Model

¿From a notational point of view, the names of the objects shared by the processes are
denoted with upper case letters (e.g., DEC) while the name of a local variable of a
process pi is denoted with lower case letters with i as a subscript (e.g., seti).

Cooperation objects: an atomic register and a store-collect object. The processes co-
operate through an atomic multi-writer/multi-reader register denoted DEC (initialized
to the default value ⊥) and a single store-collect object denoted MEM . Such an object
contains a set of pairs (i, v) where i is a process index and v a value. For any i, this set
contains at most one pair (i,−). Initially, a store-collect object is empty.

The operation store() and collect(). As indicated in the introduction, such an object has
two operations denoted store() and collect(). A process pi invokes MEM .store(val) to
deposit the value val, i.e., the pair (i, val) is added to the store-collect and overwrites
the previous pair (i,−) (if any)1. Hence, when (i, val) belongs to the store-collect ob-
ject, val is the last value stored by the process pi.

1 In the algorithm proposed in Section 3 a value val is a pair made up of a round number r and
a proposed value v. To prevent confusion, the notation (−,−) is used for a pair written into a
store-collect object, while the notation 〈−,−〉 is used for a pair val.

432 M. Raynal and J. Stainer

A process invokes MEM .collect() to obtain a value of the store-collect object. The
set that is returned is called a view and contains the latest pairs deposited by the pro-
cesses that have invoked MEM .store().

Partial order on the views. To define precisely the notion of “latest” pairs returned in
a view, we use the following partial order relation on views. Let view1 and view2 be
two views. The notation view1 ≤ view2 means that, for for every i such that (i, v1) ∈
view1, we have (i, v2) ∈ view2, where the invocation MEM .store(v2) by pi is issued
after (or is) its invocation MEM .store(v1).

Properties of the operations store() and collect() The invocations of these operations
satisfy the following properties.

– Validity. Let col be an invocation of collect() that returns the set view. For any
(i, v) ∈ view, there is an invocation store(v) issued by the process pi that has
started before the invocation col terminates.
This property means that a collect() operation can neither read from the future, nor
output values that have never been deposited.

– Partial order consistency. Let col1 and col2 be two invocations of the operation
collect() that return the views view1 and view2, respectively. If col1 terminates
before col2 starts, then view1 ≤ view2.
This property expresses the mutual consistency of non-concurrent invocations of
the operation collect(): an invocation of collect() cannot obtain values older than
the values obtained by a previous invocation of collect(). On the contrary, there is
no constraint on the views returned by concurrent invocations of collect() (hence
the name partial order for that consistency property).

– Freshness. Let st and col be invocations of store(v) and collect() issued by pi and
pj , respectively, such that st has terminated before col starts. The view returned by
pj contains a pair (i, v′) such that v′ is v or a value deposited by pi after v.
This property expresses the fact that the views returned by the invocations of collect()
are up to date in the sense that, as soon as a value has been deposited, it cannot be
ignored by future invocations of collect(). If store(v) is executed by a process pi,
the pair (i, v) must appear in a returned view (provided there are enough invoca-
tions of collect()) unless v has been overwritten by a more recent invocation of
store() issued by pi.

– Wait-free termination. Any invocation of an operation by a process that does not
crash terminates.

It is easy to see from these properties that a store-collect object has no sequential spec-
ification (two invocations of collect() which obtain incomparable views cannot be or-
dered).

Wait-free implementations of store-collect objects. Such implementations are described
in several papers (see Chapter 7 of [21] for a survey). The implementations described
in [1,2] are based on atomic read/write registers. As noticed in the introduction, they are
adaptive to the number k of processes that have invoked the operation store(). Let the
step complexity of an operation be the maximum number of shared memory accesses it

From a Store-Collect Object 433

can issue. When considering the implementation presented in [2], the step complexity
of an invocation of collect() or of the first invocation of store() by a process is O(k)
and the step complexity of the other invocations of store() by the same process is O(1).

Fast store-collect object Such an object, introduced in [6], is a store-collect object
where the store() and the collect() operations are merged into a single operation de-
noted store collect(). This object is particularly interesting when a process invokes re-
peatedly store() followed by collect() without executing other steps in between, which
is exactly what the store-collect-based consensus algorithm presented in Section 3 does.

An implementation of such a store-collect object is presented in [6], where the step
complexity of an invocation of store collect() converges to O(1) when, after some time,
a single process invokes that operation2.

2.3 The Failure Detector Ω

This failure detector, which has been informally defined in the Introduction, has been
proposed and investigated in [3]. It provides each process pi with a read-only variable
denoted leaderi that always contains a process index. The set of these variables satis-
fies the following property.

– Eventual leadership. There is a finite time τ after which the local variables leaderi
of all the correct processes contain the same process index and this index is the
index of a correct process.

It is important to notice that, before time τ , there is an anarchy period during which the
variables leaderi can have arbitrary values (e.g, there no common leader and crashed
processes can be leaders). Moreover, τ can be arbitrarily large and is never explicitly
known by the processes.

As already indicated, Ω is the weakest failure detector that allows a consensus object
to be wait-free implemented [3]. Moreover, as consensus cannot be solved in a pure
asynchronous read/write system prone to process crashes, it follows that such a system
has to be enriched with time-related behavioral assumptions in order Ω can be built.
Examples of such assumptions and associated Ω algorithms are described in [7].

Notation The previous read/write system model enriched with the additional com-
putability power provided by Ω is denotedASM[Ω].

3 The Store-Collect-Based Consensus Algorithm

This section presents and proves correct an algorithm that implements the operation
propose() of a consensus object CONS . As previously announced, this construction is
based on a store-collect object to ensure the consensus safety properties and a failure
detector Ω to guarantee its wait-free termination property.

2 As we will see, this is exactly what does occur in the proposed algorithm after Ω elects forever
the same correct process.

434 M. Raynal and J. Stainer

3.1 Description of the Algorithm

Internal representation of the consensus object The two base objects used in the algo-
rithm have been introduced in Section 2.2. The aim of the atomic register DEC is to
contain the decided value. The aim of the store-collect object MEM is to guarantee that
no two different values are decided.

The algorithm implementing the operation propose(). Algorithm 1 is a round-based
asynchronous algorithm. A process pi invokes CONS .propose(vi) where vi is the
value it proposes. Its invocation terminates when it executes the statement return(DEC)
where DEC contains the value it decides (line 17).

The local variable ri contains the current round number of pi while esti contains
its current estimate of the decision value (these local variables are initialized at line 1).
A process executes a while loop (lines 2-16) until it decides (or crashes). Moreover, it
executes the loop body (lines 4-14) only if it is currently considered as a leader by Ω
(predicate of line 3).

When it is considered as a leader, pi does the following. First it stores its current local
state 〈ri, esti〉 into the store-collect object MEM and then reads its current content
by invoking MEM .collect() (line 4). (Let us observe that line 4 can be replaced by
the single statement memi ← MEM .store collect(〈ri, esti〉) if one wants to use a
fast store-collect object instead of a more general store-collect object.) Let us notice
that line 4 is the only line where pi accesses the store-collect object, i.e., the part of
the shared memory related to the consensus safety property. All the other statements
executed by pi in a round (but the write into DEC if it decides) are local statements.

operation CONS .propose(vi) is
(1) ri ← 1; esti ← vi;
(2) while (DEC = ⊥) do
(3) if (leaderi = i) then
(4) MEM .store(〈ri, esti〉); viewi ← MEM .collect();
(5) memi ← { 〈r, v〉 | (−, 〈r, v〉) ∈ viewi };
(6) rmaxi ← max{r | 〈r,−〉 ∈ memi};
(7) if (ri = rmaxi)
(8) then seti ← {v | 〈r, v〉 ∈ memi where r ∈ {rmaxi, rmaxi − 1}};
(9) if (ri > 1) ∧ (seti = {esti})
(10) then DEC← esti
(11) else ri ← ri + 1
(12) end if
(13) else esti ← v such that 〈rmaxi, v〉 ∈ memi; ri ← rmaxi

(14) end if
(15) end if
(16) end while;
(17) return(DEC)
end operation.

Algorithm 1: The store/collect-based consensus operation propose()

From a Store-Collect Object 435

Then, pi stores into memi the pairs 〈r, v〉 contained in the view viewi it has obtained
(line 5) and computes the greatest round rmaxi that, from its point of view, has ever
been attained (line 6). Its behavior depends then on the fact that it is or not late with
respect to rmaxi.

– If it is late (ri < rmaxi), pi jumps to the round rmaxi and adopts as new estimate a
value that is associated with rmaxi in the view it has previously obtained (line 13).

– If it is “on time” from a round number point of view (ri = rmaxi), pi checks if it
can write a value into DEC and decide. To that end, it executes lines 8-12. It first
computes the set seti of the values that are registered in the store-collect object
with a round number equal to rmaxi or rmaxi − 1, i.e., the values registered by
the processes that (from pi’s point of view) have attained one of the last two rounds.
If pi has passed the first round (ri > 1) and its set seti contains only the value kept
in esti, it writes it into DEC (line 10) just before deciding at line 17. If it cannot
decide, pi proceeds to the next round without modifying its estimate esti (line 11).

Hence, the base principle on which rests this algorithm is pretty simple to state. (It is
worth noticing that this principle is encountered in other algorithms that solve other
problems such as termination detection of distributed computations). This principle
can be stated as follows: processes execute asynchronous rounds (observation periods)
until a process sees two consecutive rounds in which “nothing which is relevant has
changed”.

3.2 Discussion

A particular case It is easy to see that, when all processes propose the same value, no
process decides in more than two rounds whatever the pattern failure and the behavior
of Ω. Similarly, only two rounds are needed when Ω elects a correct common leader
from the very beginning. In that sense, the algorithm is optimal from a “round number”
point of view [15].

On the management of round numbers In adopt-commit-based or alpha-based consen-
sus algorithms, the processes that execute rounds do execute a predetermined sequence
of rounds3. Differently, the proposed algorithm allows a process pi that executes rounds
to jump from its current round ri to the round rmaxi which can be arbitrarily large
(line 13). These jumps make the algorithm more efficient. More specifically, let us con-
sider a time τ of an execution such that (a) up to time τ , when a process executes line 9,
the decision predicate is never satisfied, (b) processes have executed rounds and mr
is the last round that has been attained at time τ , (c) from time τ , Ω elects the same
correct leader p� at any process pi, and (d) p� starts participating at time τ . It follows
from the algorithm that p� executes the first round during which it updates r� to mr,
and then (according to the values in the store-collect MEM) at most either the rounds
mr and mr + 1 or the rounds mr, mr + 1 and mr + 2. As the sequence of rounds is
not predetermined, p� saves at least mr − 2 rounds.

3 In an adopt-commit-based algorithm each process that executes rounds does execute the pre-
determined sequence of rounds numbered 1, 2, etc., while, in an alpha-based algorithm each
process pi that executes rounds does execute the predetermined sequence of rounds numbered
i, i+ n, i+ 2n, etc.

436 M. Raynal and J. Stainer

3.3 Proof of the Algorithm

This proof is based only on the properties of Ω and the store-collect object MEM . It
does not require MEM to be built from atomic registers (they can be regular registers
only). Due to page limitation, the missing proofs can be found in [22].

Lemma 1. If a process invokes first MEM .store(〈r,−〉) and laterMEM .store(〈r′,−〉),
we have r′ > r.

Lemma 2. Let r > 1. If a process pi invokes MEM .store(〈r, v〉) at time τ , then there
is a process pj that has invoked MEM .store(〈r − 1, v〉) at a time τ ′ < τ .

Lemma 3. A decided value is a proposed value.

Lemma 4. No two processes decide different values.

Proof . As a decided value is a value that has been written into DEC and a process
writes at most once into DEC , the proof consists in showing that distinct processes do
not write different values into DEC .

Preliminary definitions. Let viewr
i be the value of viewi obtained by pi during

round r. Let τ(i, r, b, st) and τ(i, r, e, st) be the time instants at which process pi starts
and terminates, respectively, the invocation of the operation store() during round r.
τ(i, r, b, c
) and τ(i, r, e, c
) have the same meaning when considering the invocation
of the operation collect().

Let r be the first round during which processes write into DEC , pi one of these
processes and v the value it writes. Let us observe that, due to line 9, r > 1; hence
r− 1 exists. We claim that, for any w such that (−, 〈r, w〉) is returned by an invocation
of collect() we have w = v (Claim C1). It follows (a) from this claim that no process
can decide a value different from v at round r and (b) from this claim, Lemma 1 and
Lemma 2 that no process ever writes 〈r′, w〉 with r′ > r and w �= v. Consequently, no
value different from v can be decided which proves the consensus agreement property.

Proof of the claim C1. Let w be any value such that (−, 〈r, w〉) is returned by an in-
vocation of collect(). To prove the claim (i.e., w = v), let us consider the following
definition given for each value w.
1. Let τ(kw , rw, e, c
) be the first time instant at which a process (let pkw denote this

process) returns from an invocation of collect() (let rw denote the corresponding
round) and the view it obtains is such that (−, 〈r, w〉) ∈ viewrw

kw
.

2. Let jw be a process index such that (jw, 〈r, w〉) ∈ viewrw
kw

(hence pjw invokes
store(〈r, w〉)).

We claim (Claim C2, proved in [22]) that (a) pjw executes round r − 1, and during that
round both (b) invokes store(〈r− 1, w〉) and (c) executes line 11 (i.e., rjw ← rjw +1).

To prove the claim C1, let us consider any process pi that writes into DEC at round r
(the first round during which processes write into DEC). This process obtained viewr

i

when it invoked collect() at round r. Considering any value w and its associated process
pjw as previously defined, we analyze the different cases which can occur according to
value r′ such that (jw, 〈r′, v′〉) ∈ viewr

i or the fact that no pair (jw,−) belongs to
viewr

i .

From a Store-Collect Object 437

– (jw, 〈r′,−〉) is such that r′ > r. This case is not possible because otherwise we
would have rmaxi ≥ r′ > r when pi executes round r and it would consequently
execute line 13 and not line 10 (the line at which it writes into DEC).

– (jw, 〈r′, v′〉) is such that r′ = r. In that case, it follows from line 8 and the predicate
evaluated by pi at line 9 that we necessarily have v′ = v. Moreover, as pjw writes
at most once in a round (Lemma 1), it follows from the definition of jw (see Item 2
above) that v′ = w. Hence, w = v.

– (jw, 〈r′, v′〉) is such that r′ = r− 1. In that case, it follows from Item (b) of Claim
C2 that pjw has invoked store(〈r − 1, w〉). Then the proof is the same as in the
previous case, and we have w = v.

– (jw, 〈r′, v′〉) is such that r′ < r − 1 or there is no pair (jw,−) in viewr
i .

It then follows from Item (a) of Claim C2 that pjw executes the round r− 1 and we
have then τ(i, r, b, c
) < τ(jw , r−1, e, st) (otherwise the freshness property of the
store-collect object would be violated). According to the sequential code executed
by pjw and pi we consequently have

τ(i, r, e, st) < τ(i, r, b, c
) < τ(jw , r − 1, e, st) < τ(jw , r − 1, b, c
).

It then follows from the previous line, the freshness property of the store-collect
object and the fact that pi does not write the store-collect object after it has written
into DEC , that (i, 〈r, v〉) ∈ viewr−1

jw
. Consequently, pjw reads 〈r,−〉 during round

r− 1, it executes line 13 which contradicts Item (c) of Claim C2 (which states that
pjw executes line 11 during round r − 1). Hence, this case cannot appear, which
concludes the proof of Claim C1.

�Lemma 4

Lemma 5. Let assume that the eventual leader elected by Ω participates. Any correct
process decides a value.

The next theorem follows from Lemma 3, Lemma 4 and Lemma 5.

Theorem 1. Let assume that the eventual leader elected by Ω participates. Algorithm 1
is a wait-free implementation of a consensus object in the system model ASM[Ω].

4 Conclusion

This paper was motivated by the use of store-collect objects to build a consensus object.
It has presented such an algorithm based on a single store-collect object in which a value
stored by a process is a simple pair made up of a round number and a proposed value.
Due to the fact that it uses a single store-collect object, the algorithm is practically inter-
esting. Moreover, as it can benefit from the adaptive wait-free implementations that have
been proposed for store-collect objects and it directs processes to skip rounds (thereby
saving “useless” computation), this consensus algorithm is also particularly efficient
and relevant for practical implementations. These features, together with its simplicity,
make it attractive for multiprocess programs made up of asynchronous crash-prone pro-
cesses that run on top of multicore architectures.

Acknowledgments. This work has been supported by the French ANR project DIS-
PLEXITY devoted to computability and complexity in distributed computing.

438 M. Raynal and J. Stainer

References

1. Afek Y., Stupp G., Touitou D., Long-lived adaptive collect with applications. Proc. 40th IEEE
Symposium on Foundations of Computer Science Computing (FOCS’99), IEEE Computer
Press, pp. 262-272, 1999.

2. Attiya H., Fouren A. and Gafni E., An adaptive collect algorithm with applications. Dis-
tributed Computing, 15(2):87-96, 2002.

3. Chandra T., Hadzilacos V. and Toueg S., The weakest failure detector for solving consensus.
Journal of the ACM, 43(4):685-722, 1996.

4. Chandra T. and Toueg S., Unreliable failure detectors for reliable distributed systems. Journal
of the ACM, 43(2):225-267, 1996.

5. Delporte-Gallet C. and Fauconnier H., Two consensus algorithms with atomic registers and
failure detector Ω. Proc. 10th Int’l Conference on Distributed Computing and Networking
(ICDCN’09), Springer Verlag #5408, pp. 251-262, 2009.

6. Englert B. and Gafni E., Fast collect in the absence of contention. Proc. IEEE Int’l Confer-
ence on Distributed Computing Systems (ICDCS’02), IEEE Press, pp. 537-543, 2002.

7. Fernández A., Jiménez E., Raynal M. and Trédan G., A timing assumption and two t-resilient
protocols for implementing an eventual leader service in asynchronous shared-memory sys-
tems. Algorithmica, 56(4):550-576, 2010.

8. Fischer M.J., Lynch N.A. and Paterson M.S., Impossibility of distributed consensus with one
faulty process. Journal of the ACM, 32(2):374-382, 1985.

9. Gafni E., Round-by-round fault detectors: unifying synchrony and asynchrony. Proc. 17th
ACM Symp. on Principles of Distr. Computing (PODC’98), ACM Press, pp. 143-152, 1998.

10. Gafni E. and Lamport L., Disk Paxos. Distributed Computing, 16(1):1-20, 2003.
11. Guerraoui R. and Raynal M., The information structure of indulgent consensus. IEEE Trans-

actions on Computers. 53(4):453-466, 2004.
12. Guerraoui R. and Raynal M., The alpha of indulgent consensus. The Computer Journal,

50(1):53-67, 2007.
13. Herlihy M.P., Wait-free synchronization. ACM Transactions on Programming Languages

and Systems, 13(1):124-149, 1991.
14. Herlihy M.P. and Wing J.L., Linearizability: a correctness condition for concurrent objects.

ACM Transactions on Programming Languages and Systems, 12(3):463-492, 1990.
15. Keidar I. and Rajsbaum S., On the cost of fault-tolerant consensus when there are no faults.

ACM SIGACT News, Distributed Computing Column, 32(2):45-63, 2001.
16. Lamport L., The part-time parliament. ACM Trans. on Comp. Syst., 16(2):133-169, 1998.
17. Lo W.-K. and Hadzilacos V., Using failure detectors to solve consensus in asynchronous

shared memory systems. Proc. 8th Int’l Workshop on Distributed Algorithms (WDAG’94),
Springer Verlag #857, pp. 280-295, 1994.

18. Loui M. and Abu-Amara H., Memory requirements for for agreement among Unreliable
Asynchronous processes. Advances in Computing Research, 4:163-183, JAI Press Inc., 1987.

19. Mostéfaoui A. and Raynal M., Leader-based consensus. Parallel Processing Letters,
11(1):95-107, 2001.

20. Raynal M., Communication and agreement abstractions for fault-tolerant asynchronous dis-
tributed systems. Morgan & Claypool Publishers, 251 p., 2010 (ISBN 978-1-60845-293-4).

21. Raynal M., Concurrent programming: algorithms, principles and foundations. To appear,
Springer, 420 pages, 2012.

22. Raynal M. and Stainer J., ¿From a store-collect object and Ω to efficient asynchronous con-
sensus. Tech Report #1987, 19 pages, IRISA/INRIA, Université de Rennes 1 (France), 2011.

An Investigation into the Performance

of Reduction Algorithms under Load Imbalance

Petar Marendić1,2, Jan Lemeire1,2, Tom Haber3,
Dean Vučinić1,2, and Peter Schelkens1,2

1 Vrije Universiteit Brussel (VUB), ETRO Dept.,
Pleinlaan 2, B-1050 Brussels, Belgium

petar.marendic@vub.ac.be
2 Interdisciplinary Institute for Broadband Technology (IBBT), FMI Dept., Gaston

Crommenlaan 8 (box 102), B-9050 Ghent
3 EDM, UHasselt, Diepenbeek
tom.haber@uhasselt.ac.be

Abstract. Today, most reduction algorithms are optimized for balanced
workloads; they assume all processes will start the reduction at about the
same time. However, in practice this is not always the case and significant
load imbalances may occur and affect the performance of said algorithms.
In this paper we investigate the impact of such imbalances on the most
commonly employed reduction algorithms and propose a new algorithm
specifically adapted to the presented context. Firstly, we analyze the
optimistic case where we have a priori knowledge of all imbalances and
propose a near-optimal solution. In the general case, where we do not
have any foreknowledge of the imbalances, we propose a dynamically
rebalanced tree reduction algorithm. We show experimentally that this
algorithm performs better than the default OpenMPI and MVAPICH2
implementations.

Keywords: MPI, imbalance, collective, reduction, process skew, bench-
marking.

1 Introduction

The reduction algorithm - extracting a global feature from distributed data such
as the sum of all values - is a common and important communication operation.
However, it has two downsides which degrade the performance of a parallel pro-
gram. Firstly, all of the reduction algorithms scale superlinearly as a function of
the number of processors, as shown later on in the text. Secondly, any reduction
operation breaks the independence of process execution, as it requires a global
process synchronization. Unless of course if the reduction could be performed in
the background, i.e. asynchronously - a case we will not consider here. Reduction
algorithms are vulnerable to load imbalances in the sense that if one process is
delayed before starting the reduction, the execution of part of the reduction will
also be delayed. One can however change the order in which process subresults

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 439–450, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

440 P. Marendić et al.

are combined so that this concomitant delay is significantly reduced. In the ex-
treme case where the imbalance dwarfs the combination times, this delay can be
effectively eliminated.

1.1 Performance Cost Model

For analytical evaluation and comparison of various reduction algorithms we will
employ a simple flat model as defined by [1] wherein there are p participating
processes and each process has an input vector size of n bytes. We denote the
local computation cost for one binary operation on two vector bytes as γ[sB−1].
Communication time is modeled as α+ nβ, where α is per message latency and
β[sB−1] per byte transfer time.

We further assume that any process can send and receive one message at the
same time, so that p parallel processes can send p messages in parallel.

The next section discusses the state-of-the art on reduction algorithms and
the effect of load imbalances. In section 3 we present a static load balancing al-
gorithm, while in section 4 we propose a new dynamic load balancing algorithm.
Section 5 presents the experimental results.

2 Reduction

By definition, a reduction operation combines elements of a data vector residing
on each of the participating processes by application of a specified reduction
operation (e.g. maximum or sum), and returns the combined values in the output
vector of a distinguished process (the root).

All reduction operators are required to be associative, but not necessarily com-
mutative. However it is always beneficial to know whether a particular operator
is commutative as there are faster ways of performing a reduction in that case.

One interesting case where a non-commutative operator arises is in the image
compositing step of a distributed raytracingalgorithm. In such an algorithmglobal
data is distributed across processes and eachprocess generates an image of its share
of that data. To produce the final image, a composition needs to be performed on
the produced images. This composition is a complex reduction step using the so-
called ’over’ operator and needs to happen in the correct back-to-front order.

The reduction that we’ve thus far been talking about is actually known as
all-to-one reduction [2] since the end result is sent to one distinguished process.
Variants of the reduction operation are the allreduce and reduce-scatter

2.1 Related Work

The simplest implementation of an all-to-one reduce is to have all processes send
their local result to the root and the root combine these subresults in the next
step. This approach is known as Linear Reduction Algorithm. It usually results
in a bottleneck at the root process. Using our cost model, the complexity of this
algorithm can be expressed as:

T (n, p) = (p− 1)(α+ nβ + nγ) (1)

An Investigation into the Performance 441

One straightforward way to eliminate this bottleneck is to employ a divide and
conquer strategy that will order all participating processes in a binary tree and
where at each step half of the processes will finish their work. This Binary
Tree Reduction algorithm is efficient for small message sizes but suffers from
suboptimal load balance, as the execution time is:

T (n, p) = �log2 p�(α+ nβ + nγ) (2)

Another variation on this idea is Binomial Tree Reduction where a binomial tree
structure is used instead of a binary tree. This structure has the advantage of
producing less contention on root nodes over that of the binary tree.

Other well known algorithms are Direct-Send and Scatter-Gather. In direct-
send, every process is responsible for 1

p th of the data vector and scatters the
remaining chunks to their corresponding processes. In the second stage, once
all processes have reduced the chunks they had received, a gather operation is
performed on these subresults to form the result vector at the root process.
This approach will result with maximal utilization of active computational re-
sources, and with only a single communication step. However, it will also gener-
ate p× (p− 1) messages to be exchanged among all participating processes. In a
communication network where each of the participating processes are connected
by network links, this will likely generate link contention as multiple processes
will simultaneously be sending messages to the same process [3]. The execution
time for direct-send is:

T (n, p) = p× (p− 1)(α+
n

p
β) + nγ (3)

It should be noted that this only states the time to perform a Reduce-Scatter, i.e.
having the result vector scattered across participating processes. To implement
an All-to-One reduction we need to follow up the reduce-scatter step by a gather
to the root, which is typically performed with a binomial tree algorithm. Reduce-
scatter can be also be performed by other well known methods, such as Binary
Swap or Radix-k algorithms. Another well-performing algorithm of this type is
Rabenseifner’s algorithm which was shown to perform well with longer message
sizes [4,1,5].

T (n, p) = 2 log2 pα+ nβ + (1− 1

p
)(nβ + nγ), where p = 2x, x ∈ N (4)

This algorithm is considerably more efficient than the binary tree reduction when
the complexity of the reduction operation is significant.

As far as we know, no work has been done on analyzing and optimizing re-
duction algorithms under load imbalances. We will show in the following chapter
that this leaves many real world scenarios unaccounted for.

2.2 Load Imbalances

We can identify three sources of imbalances:

442 P. Marendić et al.

– (Type 1) imbalances in the phase that precedes reduction
– (Type 2) imbalances in the amount of data that is sent at each step
– (Type 3) imbalances in the completion time of the combination operation.

The distributed raytracing algorithm we previously mentioned is a nice example
of type 1, 2 and 3 imbalance occurrences. As it is typical for applications of
this sort to generate images in the multi megapixel range, compression schemes
are often employed to reduce the amount of data to be sent across the network.
The time to combine these images using the over operator is a linear function of
their size, where the effective size of the image is measured in non-black, that is
relevant only pixels. Since this size varies across processes, the time to combine
such images will vary as well.

3 Static Load Balancing under Perfect Knowledge

Here we assume perfect knowledge of the load imbalances and the time reduction
phases will be finished. We analyze which reduction scheme gives the minimal
completion time. For the communication and combination step we assume one
of the following two performance models. The one of Fig. 1 is based on three
parameters σ, τ and ψ, while the one of Fig. 2 is a simplification in which τ = 0.
We assume that the three parameters are constant during the total reduction.
The parameters incorporate α, β and γ discussed before. Parameter σ denotes
the time which is consumed on the sending process. Parameter τ denotes the
time in which the sending process has already started the communication, but
the receiving process does not yet have to participate, in the sense that no
cycles are consumed. This happens if the message has not arrived yet or part
of the receiving is performed in the background. These cycles can be used for
other computations, so during τ , the receiving process might be busy with other
things. We then assume that the receiving process is ready after τ . After that, it
consumed ψ cycles to finish the communication and combination phase. When
the receiving process would not be ready after τ , the phase will start when ready
and still consume ψ. Not that ψ includes the receiving and combination phase.

Fig. 1. Performance model of a communi-
cation and combination phase

Fig. 2. Simplified performance model of a
communication and combination phase

Under these assumptions, we propose the following algorithm. The algorithm
is executed by each process when it starts the reduction.

An Investigation into the Performance 443

Algorithm 1. The static optimized reduction algorithm

While step S2 has not been performed, do the following

C check if another process has sent its subresults to you

S1 if so, receive it and accumulate it with own subresult
S2 if not, send own subresult to the first process that will be executing check

C

Under the assumption of ‘perfect knowledge’ we know during step S2 which
process will be first to be ready to receive a message. Secondly, in step C we
assume that we can test without cost that there is a message on the way. We
neglect the fact that the test for an incoming message (a ‘MPI Probe call’) could
give a negative answer while process just has posted a message which is not yet
detectable by the receiving process.

The algorithm gives the optimal reduction when using the simplified perfor-
mance model.

Lemma 1. The static optimized reduction algorithm (Alg. 1) gives the minimal
completion time under the simplified performance model.

Proof. At S2, a process has to decide to whom sending its subresults. By sending
it to the first process ready to receive (step C), say process 2 at t2, the receiving
and combination will be ready first, at t2 +ψ. By sending it to another process,
ready at t3 with t2 < t3, the merge step will only be ready later, at t3 + ψ.
This would not give an advantage. Process 2 could start sending its subresults
at t2 to process 4, which will finish at t4 + ψ. But this is not faster than any
other process that would merge with process 4. The earliest that this can finish
is t4 + ψ. In this way we have proven that no other choice of receiving process
can complete the reduction earlier.

Alg. 1 is, however, not always optimal for the first communication model. In
some very specific cases, an alternative merge order gives a better completion
time. Consider the case shown in Fig. 3. P1 sends its data to P2 (the first one
to finish next) and P3 merges with P4. A better merge order is shown in Fig. 4.
Here P1 communicates with P3 instead and P2 with P4. The first message (P1
to P3) arrives later but the second one (P2 to P4) arrives earlier than in the
first scheme. Due to the configuration of the imbalances in P5, P6, P7 and P8,
this gives rise to a merge order which finishes τ earlier.

Hence, the given algorithm is suboptimal. Nonetheless, it will be optimal in
most cases. Only in exceptional fine-tuned cases, alternative schemes will exist.
Moreover, the difference with the optimal completion time will be small because
we expect τ to be quite small. Concluding, in most cases, the algorithm will
be optimal. In the exceptional, suboptimal cases the algorithm will be approxi-
mately optimal.

444 P. Marendić et al.

Fig. 3. Case in which the static load balancing algorithm is not optimal

Fig. 4. Alternative merge order which completes faster than the static load balancing
algorithm

It must be stressed that this algorithm is impractical, since the knowledge
on when processes will be ready will not be present (it is difficult to predict
and would in general lead to too much overhead to communicate). On the other
hand, the algorithm gives a hint of how the optimal reduction would have been.
Every solution can be compared to it.

4 Dynamic Load Balancing

Our initial idea was to take a regular binary tree reduction algorithm and augment
it by installing a timeout period at each node of the tree. Should at any time a
node time out waiting on data from its children, it would delegate these busy child
nodes to its parent, reducing the number of steps their messages will eventually
have to take on their way to the root. This process would continue until the root
node received contribution from all nodes. Benchmarking however showed that
this algorithm lacked robustness, as it was hard to pick a proper timeout value for
varying vector sizes, process numbers and operator complexities.

We therefore turned our attention to a more deterministic algorithm that
although tree-based was capable of dynamically reconfiguring its structure to
minimize the effect an imbalance might have. The algorithm allows neighbours
that are ready to start combining their subresults. The processes are ordered
in a linear sequence and will send their local subresult to their right neighbour
when finished, as described by Algorithm 2. Since the right neighbour might
already have terminated, first a handshake is performed by sending a completion

An Investigation into the Performance 445

message and waiting for the handshake message. Once a process is finished,
its left neighbour should be redirected to its ‘current’ right neighbour. This is
illustrated by the example run shown in Fig. 5.

Algorithm 2. Local reduction algorithm

S1 Initialize left and right neighbours according to the neighbours in the predefined
linear ordering of the processes. The processes at the head or tail do not have
left or right neighbour respectively.

S2 Send completion message to right neighbour.
S3 Wait for incoming messages.

S3.1 On receipt of completion message, initiate handshake.
S3.2 On receipt of redirect message, change right to new node.

S4 Complete handshake, exchange data and perform reduction. Change left to
sender’s left neighbour.

S5 If data was received goto 3
S6 Wait for message from right neighbour and redirect to left.

Fig. 5. Example run of the local reduction algorithm

5 Experimental Results

We devised an experiment with the primary purpose of ordering several well
known algorithms in terms of their performance under various conditions of
load imbalance. Our benchmarking scheme was as follows: before running the
actual timed benchmark for a given algorithm, we perform a single warm up
run; second, we synchronize the participating processes with a single call to
MPI::Barrier; third, we sleep each process for delay milliseconds, where delay is
a time offset that we distribute individually across participating processes using
one of the schemes enumerated below; then, we run the algorithm k times for

446 P. Marendić et al.

each predefined operator, where k is a parameter to our benchmark program,
random shuffling the data vector between each iteration. Finally, we repeat this
process r times, each time random generating a new data vector and a new time
offset for each participating process.

5.1 Completion Time

In ideal conditions, where no load imbalances and process skew are present, the
completion time of a reduction operation should typically be measured from its
initiation till its termination at the root process, as this best reflects the time a
given user would have to wait before the results of a reduction operation become
available to him.

However, in real-life applications it is rarely the case that all participating pro-
cesses begin the reduction at the same time, even when they have been explicitly
synchronized with a call to MPI::Barrier [6]. To compound matters, we explicitly
introduce process skew ensuring that participating processes will be initiating and
completing their share of the reduction operation at different time instances.

With this in mind, and having resolved to report only a single number as the
elapsed time of a reduction operation, several different schemes of reducing the
initiation and termination times at each process present themselves. [7] and [6]
enumerate the following approaches

T1 the time needed at a designated process (termination - initiation time at
root)

T2 maximum of the times on all participating processes
T3 the time between the initiation of the earliest process and the termination

of the last
T4 the average time of all processes
T5 minimimum of the times on all participating processes

One can however also take into account the imbalance time of a given process,
and treat both this time and the reduction time as one unit of interest, as would
be the case in image rendering where the imbalance time is the time required to
generate an image of the local data and the reduction time, the time to perform
image compositing that results with an image of global data. Thus we decided
to report the mean time T1 plus the imbalance time at root process, across r
iterations.

5.2 Benchmark Parameters

To study the performance of reduction algorithms we developed a test suite that
can create workloads controlled by the following parameters:

– Statistical imbalance distributions:
• a Gaussian distribution with mean m and standard deviation s.
• a Gamma distribution with mean m=θ.k, where θ is the scale parameter
and k the shape parameter. It is frequently used as a probability model
for waiting times.

An Investigation into the Performance 447

– data vectors sizes. No imbalances were generated (Type 2).
– reduction operator complexity. No imbalances were generated (Type 3), com-

pletion time was a function of vector size.

We decided to take into consideration imbalances of type 1 only, as it is our
opinion that they are most representative of real life scenarios.

We included the following algorithms into our analysis:

1. Binary Tree Reduction
2. OpenMPI’s and MPICH’s default implementation
3. All-to-All followed by local reductions and final gather to root
4. Our local reduction algorithm

The experiments were performed on a cluster machine available in the Intel
Exascience lab, Leuven. It is a 32 node cluster with 12 cores per node (2 x
Xeon X5660 processor with γ = 1.79 10−10s defined as 2/Rpeak with Rpeak

the theoretical maximum floating point rate of the processing cores) and QDR
Infiniband interconnect (measured MPI bandwidth of ∼ 3500MB/s, α = 3.13
μs, β = 0.00263μs)

5.3 Performance of Default Implementation

Our tests have shown that the default implementation of the reduction algo-
rithm under MVAPICH2, when tested without any load imbalances, is consis-
tently slower than our All-to-All reduce implementation. Even though we don’t
report the timings here, we have run the same battery of tests on OpenMPI as
well, but the ranking of the tested algorithms was unchanged. In addition, we
checked the performance of the default implemented Reduce-Scatter algorithm
and have confirmed that it too is faster than the default Reduce algorithm. This
leads us to believe that the default implementation is in fact a binomial tree re-
duction algorithm that performs well for small vector sizes only. This is a rather
surprising revelation considering that significantly better algorithms have been
published more than 5 years ago [4,1,5].

5.4 Impact of Data Size

For small vector sizes, the default implementation was regularly the fastest,
scaling very well with increasing number of processors which is indicative of
binomial tree reduction. On the other hand, for big and very big vectors the
All-to-All (and Reduce-Scatter) algorithms outperform everyone else thanks to
their linear γ factor scaling (Eq. 4). We should point out that All-to-All reduce
can only be applied if the data vector can be sliced - something that is not always
feasible with custom user defined data. In such case the only recourse is to revert
to the binomial tree algorithm. Our benchmarks have shown that for reasonably
big vectors the local reduce algorithm is of approximately the same performance
as the default implementation and considering its superior performance under
load imbalance we can confidently state that in this case it is the more robust
algorithm of the two.

448 P. Marendić et al.

5.5 Impact of Reduction Operator’s Complexity

Reading the relevant literature, one cannot escape the sentiment that little re-
search has been performed in evaluating the performance of reduction algorithms
with operators of varying complexity. We decided therefore to include into our
tests two operators: std::plus and a special operator that is two orders of magni-
tude slower. Additionally, for sake of generality we assumed that both of these
operators are non-commutative. The significant disparity in complexity of these
two operators made it immediately apparent how inadequate the default im-
plementation is, as it was completely outperformed by All-to-All (and Reduce-
Scatter) implementations with execution times up to 6 times slower and with
significantly worse scaling as visible in Fig. 7. It was however consistently faster
than our local reduce algorithm in test runs without imbalance.

5.6 Impact of Load Imbalances

To test the impact of load imbalances, we identified two interesting cases:

1. there is a single slow process.
2. imbalances are distributed according to a gamma distribution for which k=2

and θ=0.5, where the 90th percentile was 2.7 the mean imbalance.

In the first case where one of the processes is experiencing a slowdown, our local
reduction algorithm proves itself as the best performer, often exhibiting flat scal-
ing due to its ability to hide communication and computation overheads behind
the incurred imbalance (see Fig. 8). The improvement we were able to achieve
with our algorithm is dependent on the ratio of imbalance time and the time to
reduce two vectors as is visible from Table 1. However, when the imbalances are
distributed according to a gamma distribution law the local reduction algorithm
only remains competitive up to and including vector size of 4MB (see Fig. 9).
For a 40MB vector, the All-to-All implementation was the fastest.

Table 1. Speedup obviously depends on the imbalance time. Here, the time to reduce
two vectors was 4 ms. All runtimes are reported in seconds.

128 processors with a 1024000 elements vector

Imbalances in ms

Algorithm 10 20 30 40 60

LocalReduce 0.0466108 0.0458913 0.0466785 0.050597 0.0695058

Default 0.0502286 0.0599159 0.0696198 0.079698 0.0996538

Speedup 1.08 1.32 1.49 1.56 1.43

An Investigation into the Performance 449

Fig. 6. Performance result for a 220 ele-
ments vector using operator std::plus

Fig. 7. Performance result for a 220 ele-
ments vector using special slow operator

Fig. 8. Performance result for a 220 ele-
ments vector using operator std::plus with
an imbalance of 120ms at one node

Fig. 9. Performance result for a 220 ele-
ments vector using operator std::plus with
gamma distributed imbalances

6 Conclusions

We can establish two important conclusions: when designing reduction algo-
rithms one should take into account operators significantly more complex than
std::plus, as our tests have confirmed that algorithms well suited for cheap oper-
ations do not necessarily perform as well when expensive operations come into
play; secondly, load imbalances do impact the performance of state-of-the art
reduction algorithms and there are ways, as we have shown, to mitigate this.

The next step should be to investigate what benefits could be achieved by
using the ideas here presented in a real world scenario such as a distributed
raytracing algorithm that exhibits all three identified types of imbalances and
verifying whether the results obtained with these synthetic tests are indeed rel-
evant.

450 P. Marendić et al.

Acknowledgments. This work is funded by Intel and by the Institute for the
Promotion of Innovation through Science and Technology in Flanders (IWT), in
the context of the Exascience lab.

References

1. Rabenseifner, R., Träff, J.L.: More Efficient Reduction Algorithms for Non-Power-of-
Two Number of Processors in Message-Passing Parallel Systems. In: Kranzlmüller,
D., Kacsuk, P., Dongarra, J. (eds.) EuroPVM/MPI 2004. LNCS, vol. 3241, pp.
36–46. Springer, Heidelberg (2004)

2. Kumar, V., Grama, A., Gupta, A., Karypis, G.: Introduction to Parallel Computing.
Benjamin/Cummings, Redwood City (1994)

3. Yu, H., Wang, C., Ma, K.L.: Massively parallel volume rendering using 2-3 swap im-
age compositing. In: Proceedings of IEEE/ACM Supercomputing 2008 Conference,
SC (2008)

4. Thakur, R., Rabenseifner, R., Gropp, W.: Optimization of collective communica-
tion operations in MPICH. International Journal of High Performance Computing
Applications 19(1), 49–66 (2005)

5. Rabenseifner, R.: Optimization of Collective Reduction Operations. In: Bubak, M.,
van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2004, Part I. LNCS,
vol. 3036, pp. 1–9. Springer, Heidelberg (2004)

6. Hoefler, T., Schneider, T., Lumsdaine, A.: Accurately measuring overhead, com-
munication time and progression of blocking and nonblocking collective operations
at massive scale. International Journal of Parallel, Emergent and Distributed Sys-
tems 25(4), 241–258 (2010)

7. Worsch, T., Reussner, R., Augustin, W.: On Benchmarking Collective MPI
Operations. In: Kranzlmüller, D., Kacsuk, P., Dongarra, J., Volkert, J. (eds.)
PVM/MPI 2002. LNCS, vol. 2474, pp. 271–279. Springer, Heidelberg (2002)

Achieving Reliability in Master-Worker

Computing via Evolutionary Dynamics

Evgenia Christoforou1, Antonio Fernández Anta2, Chryssis Georgiou1,
Miguel A. Mosteiro3, and Angel (Anxo) Sánchez4

1 University of Cyprus, Nicosia, Cyprus
2 Institute IMDEA Network & Univ. Rey Juan Carlos, Madrid, Spain

3 Rutgers University, Piscataway, NJ, USA & Univ. Rey Juan Carlos, Madrid, Spain
4 Universidad Carlos III de Madrid, Madrid, Spain & BIFI Institute, Zaragoza, Spain

Abstract. This work considers Internet-based task computations in
which a master process assigns tasks, over the Internet, to rational work-
ers and collect their responses. The objective is for the master to obtain
the correct task outcomes. For this purpose we formulate and study
the dynamics of evolution of Internet-based master-worker computations
through reinforcement learning.

1 Introduction

Motivation: As an alternative to expensive supercomputing parallel machines,
Internet is a feasible computational platform for processing complex compu-
tational jobs. Several Internet-based applications operate on top of this global
computation infrastructure. Examples are volunteer-based “@home” projects [2]
such as SETI and profit-seeking computation platforms such as Amazon’s Me-
chanical Turk.

Although the potential is great, the use of Internet-based computing is limited
by the untrustworthy nature of the platform’s components [2]. In SETI, for
example, there is a machine, call it the master, that sends tasks, across the
Internet, to volunteers’ computers, call them workers, that execute and report
back some result. However, these workers may not be trustworthy and it might be
at their best interest to report incorrect results; that is, workers, or their owners,
can be viewed as rational [1,14]. In SETI, the master attempts to minimize the
impact of these bogus results by assigning the same task to several workers and
comparing their outcomes (i.e., redundant task allocation is employed [2]).

Prior work [8,9,18] has shown that it is possible to design algorithmic mecha-
nisms with reward/punish schemes so that the master can reliably obtain correct
task results. We view these mechanisms as one-shot in the following sense: In a
round, the master sends a task to be computed to a collection of workers, and
the mechanism, using auditing and reward/punish schemes guarantees (with
high probability) that the master gets the correct task result. For another task
to be computed, the process is repeated (with the same or different collection of
workers) but without taking advantage of the knowledge gained.

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 451–463, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

452 E. Christoforou et al.

Given a long running computation (such as SETI-like master-worker compu-
tations), it can be the case that the best interests, and hence the behavior of the
workers, might change over time. So, one wonders: Would it be possible to design
a mechanism for performing many tasks, over the course of a possibly infinite
computation, that could positively exploit the repeated interaction between a
master and the same collection of workers?

Our Approach: In this work we provide a positive answer to the above question.
To do so, we introduce the concept of evolutionary dynamics under the biologi-
cal and social perspective and relate them to Internet-based master-worker task
computing. More specifically, we employ reinforcement learning [4, 15] to model
how system entities or learners interact with the environment to decide upon a
strategy, and use their experience to select or avoid actions according to the con-
sequences observed. Positive payoffs increase the probability of the strategy just
chosen, and negative payoffs reduce this probability. Payoffs are seen as param-
eterizations of players’ responses to their experiences. Empirical evidence [3, 5]
suggests that reinforcement learning is more plausible with players that have in-
formation only on the payoffs they receive; they do not have knowledge of the
strategies involved. This model of learning fits nicely to our master-worker com-
putation problem: the workers have no information about themaster and the other
workers’ strategies and they don’t know the set of strategies that led to the payoff
they receive. The workers have only information about the strategies they choose
at each round of the evolution of the system and their own received payoffs. The
master also has minimal information about the workers and their intentions (to
be truthful or not). Thus, we employ reinforcement learning for both the master
and the workers in an attempt to build a reliable computational platform.

Our Contributions

1. We initiate the study of the evolutionary dynamics of Internet-based master-
worker computations through reinforcement learning.

2. We develop and analyze a mechanism based on reinforcement learning to be
used by the master and the workers. In particular, in each round, the master
allocates a task to the workers and decides whether to audit or not their
responses with a certain probability pA. Depending on whether it audits or
not, it applies a different reward/punish scheme, and adjusts the probability
pA for the next round (a.k.a. the next task execution). Similarly, in a round,
each worker i decides whether it will truthfully compute and report the cor-
rect task result, or it will report an incorrect result, with a certain probability
pCi. Depending on the success or not of its decision, measured by the increase
or the decrease of the worker’s utility, the worker adjusts probability pCi for
the next round.

3. We show necessary and sufficient conditions under which the mechanism en-
sures eventual correctness, that is, we show the conditions under which, after
some finite number of rounds, the master obtains the correct task result in ev-
ery round, with minimal auditing, while keeping the workers satisfied (w.r.t.
their utility). Eventual correctness can be viewed as a form of Evolutionary

Achieving Reliability in Master-Worker Computing 453

Stable Strategy [6,10] as studied in Evolutionary Game Theory: even if a “mu-
tant” worker decides to change its strategy to cheating, it will soon be brought
back to an honest strategy.

4. Finally, we show that our mechanism, when adhering to the above-mentioned
conditions, reaches eventual correctness quickly. In particular, we show analyt-
ically, probabilistic bounds on the convergence time, as well as bounds on the
expected convergence time. Our analysis is complemented with simulations.

Background and Related Work: Evolutionary dynamics were first studied
in evolutionary biology, as a tool to studying the mathematical principles ac-
cording to which life is evolving. Many fields were inspired by the principles of
evolutionary dynamics; our work is inspired by the dynamics of evolution as a
mean to model workers’ adaptation to a truthful behavior.

The dynamics of evolution have mainly been studied under the principles of
Evolutionary Game Theory (EGT) [11]. In EGT the concept of evolutionarily
stable strategy (ESS) is used [6, 10]. A strategy is called evolutionary stable if,
when the whole population is using this strategy, any group of invaders (mu-
tants) using a different strategy will eventually die off over multiple generations
(evolutionary rounds). It is shown [10] that an ESS is a Nash Equilibrium, but
the reverse is not true.

While evolution operates on the global distribution of strategies within a
given population, reinforcement learning [15] operates on the individual level of
distribution over strategies of each member of the population. There are sev-
eral models of reinforcement learning. A well-known model is the Bush and
Mosteller’s model [4]. This is an aspiration-based reinforcement learning model
where negative effects on the probability distribution over strategies are pos-
sible, and learning does not fade with time. The player’s adapt by comparing
their experience with an aspiration level. In our work we adapt this reinforcement
learning model and we consider a simple aspiration scheme where aspiration is
fixed by the workers and does not change during the evolutionary process.

Phelps, McBurney and Parsons [13] discusses the concept of Evolutionary
Mechanism Design. The evolutionary mechanism has a continues interaction
and feedback from the current mechanism, as opposed to classical mechanism
design [12] than when the mechanism is introduced in the system, it remains in
the same Nash Equilibrium forever. In some way, our mechanism can be seen as
an evolutionary mechanism, since the probability of auditing of the master and
the probability of cheating of the workers, change, which is similar to changing
the mechanism.

An extended account on related work (discussing applications of game theory
to distributed computing, the concept of combinatorial agencies, the BAR model,
etc.) can be found in [17].

2 Model and Definitions

Master-Worker Framework: We consider a distributed system consisting of
a master processor that assigns, over the Internet, computational tasks to a set

454 E. Christoforou et al.

of n workers (w.l.o.g., we assume that n is odd). In particular, the computation
is broken into rounds, and in each round the master sends a task to the work-
ers to compute and return the task result. The master, based on the workers’
replies, must decide on the value it believes is the correct outcome of the task
in the same round. The tasks considered in this work are assumed to have a
unique solution; although such limitation reduces the scope of application of the
presented mechanism [16], there are plenty of computations where the correct
solution is unique: e.g., any mathematical function.

Following Abraham et al. [1], and Shneidman and Parkes [14], we assume
that workers are rational, that is, they are selfish in a game-theoretic sense
and their aim is to maximize their benefit (utility) under the assumption that
other workers do the same. In the context of this paper, a worker is honest
in a round, when it truthfully computes and returns the task result, and it
cheats when it returns some incorrect value. So, a worker decides to be honest
or cheat depending on which strategy maximizes its utility. We denote by prCi

the probability of a worker i cheating in round r. This probability is not fixed,
the worker adjusts it over the course of the computation.

While it is assumed that workers make their decision individually and with no
coordination, it is assumed that all the workers that cheat in a round return the
same incorrect value (as done, for example, in [7] and [8]). This yields a worst
case scenario (and hence analysis) for the master with respect to obtaining the
correct result using mechanisms where the result is the outcome of voting; it
subsumes models where cheaters do not necessarily return the same answer. (In
some sense, this can be seen as a cost-free, weak form of collusion.)

Auditing, Payoffs, Rewards and Aspiration: To “persuade” workers to
be honest, the master employs, when necessary, auditing and reward/punish
schemes. The master, in a round, might decide to audit the response of the
workers (at a cost). In this work, auditing means that the master computes the
task by itself, and checks which workers have been honest. We denote by pA the
probability of the master auditing the responses of the workers. The master can
change this auditing probability over the course of the computation. However,
unless otherwise stated, we assume that there is a value pmin

A > 0 so that at all
times pA ≥ pmin

A .
Furthermore, the master can reward and punish workers, which can be used

(possibly combined with auditing) to encourage workers to be honest. When the
master audits, it can accurately reward and punish workers. When the master
does not audit, it decides on the majority of the received replies, and it rewards
only the majority. We refer to this as the Rm reward scheme.

The payoff parameters considered in this work are detailed in Table 1. Note
that the first letter of the parameter’s name identifies whose parameter it is.
M stands for master and W for worker. Then, the second letter gives the type
of parameter. P stands for punishment, C for cost, and B for benefit. Observe
that there are different parameters for the rewardWBY to a worker and the cost
MCY of this reward to the master. This models the fact that the cost to the
master might be different from the benefit for a worker.

Achieving Reliability in Master-Worker Computing 455

Table 1. Payoffs. The parameters are non-negative.

WPC worker’s punishment for being caught cheating

WCT worker’s cost for computing the task

WBY worker’s benefit from master’s acceptance

MPW master’s punishment for accepting a wrong answer

MCY master’s cost for accepting the worker’s answer

MCA master’s cost for auditing worker’s answers

MBR master’s benefit from accepting the right answer

We assume that, in every round, a worker i has an aspiration ai, that is, the
minimum benefit it expects to obtain in a round. In order to motivate the worker
to participate in the computation, the master must ensure that WBY ≥ ai; in
other words, the worker has the potential of its aspiration to be covered. We
assume that the master knows the aspirations. This information can be included,
for example, in a contract the master and the worker agree on, prior to the start
of the computation.

Note that, among the parameters involved, we assume that the master has the
freedom of choosing WBY and WPC ; by tuning these parameters and choosing
n, the master can achieve the goal of eventual correctness. All other parameters
can either be fixed because they are system parameters or may also be chosen
by the master (except the aspiration, which is a parameter set by each worker).

Eventual Correctness: The goal of the master is to eventually obtain a reliable
computational platform. In other words, after some finite number of rounds, the
system must guarantee that the master obtains the correct task results in every
round with probability 1. We call such property eventual correctness.

3 Algorithmic Mechanism

We now detail the algorithms run by the Master and the workers.

Master’s Algorithm: The master’s algorithm begins by choosing the initial
probability of auditing. After that, at each round, the master sends a task to all
workers and, when all answers are received (a reliable network is assumed), the
master audits the answers with probability pA. In the case the answers are not
audited, the master accepts the value contained in the majority of answers and
continues to the next round with the same probability of auditing. In the case the
answers are audited, the value pA of the next round is reinforced (i.e., modified
according to the outcome of the round). Then, the master rewards/penalizes the
workers appropriately. The master initially has scarce or no information about
the environment (e.g., workers initial pC). The initial probability of auditing will
be set according to the information the master possesses. For example if it has
no information about the environment, a safe approach may be to initially set
pA = 0.5.

Observe that, when the answers are not audited, the master has no informa-
tion about the number of cheaters in the round. Thus, the probability pA remains

456 E. Christoforou et al.

Algorithm 1 Master’s Algorithm

pA ← x, where x ∈ [pmin
A , 1]

for r ← 1 to ∞ do
send a task T to all workers in W
upon receiving all answers do
audit the answers with probability pA
if the answers were not audited then
accept the majority

else
p′A ← pA + αm(cheaters(r)/n− τ)

pA ← min{1,max{pmin
A , p′A}}

∀i ∈ W : pay/charge Πito worker i

Algorithm 2 Algorithm for Worker i

pCi ← y, where y ∈ [0, 1]
for r ← 1 to ∞ do
receive a task T from the master
set Si ← −1 with probability pCi, and

Si ← 1 otherwise
if Si = 1
then σ ← compute(T)

else σ ← arbitrary solution
send response σ to the master
get payoff Πi

p′Ci ← pCi − αw(Πi − ai)Si

pCi ← max{0,min{1, p′Ci}}

the same as in the previous round. When the answers are audited, the master
can safely extract the number of cheaters. Then, the master adapts the auditing
probability pA according to this number. (We denote by cheaters(r) the num-
ber of cheaters in round r.) Observe that the algorithm guarantees pA ≥ pmin

A .
This, combined with the property pmin

A > 0 will prevent the system to fall in
a permanent set of “bad” states where pA = 0 and pC > 0. A discount factor,
which we call tolerance and denote by τ , expresses the master’s tolerable ratio of
cheaters (typically, we will assume τ = 1/2). Hence, if the proportion of cheaters
is larger than τ , pA will be increased, and otherwise, pA will be decreased. The
amount by which pA changes depends on the difference between these values,
modulated by a learning rate αm. This latter value determines to what extent
the newly acquired information will override the old information. (For example,
if αm = 0 the master will never adjust pA.)

Workers’ Algorithm: The workers’ algorithm begins with each worker i de-
ciding an initial probability of cheating pCi. At each round, each worker receives
a task from the master and, with probability 1 − pCi calculates the task, and
replies to the master with the correct answer. If the worker decides to cheat, it
fabricates an answer, and sends the incorrect response to the master. We use a
flag Si to model the decision of a worker i to cheat or not. After receiving its
payoff (detailed in the analysis section), each worker i changes its pCi according
to the payoff Πi received, the chosen strategy Si, and its aspiration ai. Observe
that the workers’ algorithm guarantees 0 ≤ pCi ≤ 1. The workers have a learn-
ing rate αw. We assume that all workers have the same learning rate, that is,
they learn in the same manner (see also the discussion in [15]; the learning rate
is called step-size there); note that our analysis can be adjusted to accommodate
also workers with different learning rates.

Achieving Reliability in Master-Worker Computing 457

4 Analysis

We now analyze the mechanism, which is composed of the Master’s and the
workers’ algorithms presented in the previous section. We first model the evo-
lution of the mechanism as a Markov Chain, and then we prove necessary and
sufficient conditions for achieving eventual correctness. Then, we provide ana-
lytical evidence that convergence to eventual correctness can be reached rather
quickly. Observe in Algorithms 1 and 2 that there are a number of variables
that may change in each round. We will denote the value of a variable X after
a round r with a superindex r as Xr.

4.1 The Mechanism as a Markov Chain

We analyze the evolution of the master-workers system as a Markov chain. To
do so, we first define the set of states and the transition functions:

Let the state of the Markov chain be given by the vector of probabilities
(pA, pC1, pC2, . . . , pCn). Then, the state after round r is (prA, p

r
C1, p

r
C2, . . . , p

r
Cn).

Observe from Algorithms 1 and 2 that any state (pA, pC1, pC2, . . . , pCn) in which
pA ∈ [pmin

A , 1], and pCi ∈ [0, 1] for each worker i, is a possible initial state of the
Markov chain. The workers’ decisions, the number of cheaters, and the payoffs
in round r are the stochastic outcome of the probabilities used in round r. Then,
restricted to prA ∈ [pmin

A , 1] and prCi ∈ [0, 1], we can describe the transition
function of the Markov chain in detail. For each subset of workers F ⊆ W ,
P (F) =

∏
j∈F pr−1

Cj

∏
k/∈F (1− pr−1

Ck) is the probability that the set of cheaters is
exactly F in round r. Then, we have the following.

– With probability pr−1
A · P (F), the master audits when the set of cheaters is

F , and then, (0) the master updates pA as prA = pr−1
A + αm(|F |/n− τ), and

(1) each worker i ∈ F updates pCi as p
r
Ci = pr−1

Ci − αw(ai +WPC), (2) each
worker i /∈ F updates pCi as p

r
Ci = pr−1

Ci + αw(ai − (WBY −WCT)).
– With probability (1−pr−1

A)P (F), the master does not audit when F is the set
of cheaters. Then, the master does not change pA and the workers update pCi

as follows. For each i ∈ F , (3) if |F | > n/2 then prCi = pr−1
Ci +αw(WBY −ai),

(4) if |F | < n/2 then prCi = pr−1
Ci − αw · ai, and for each i /∈ F , (5) if

|F | > n/2 then prCi = pr−1
Ci + αw(ai + WCT), (6) if |F | < n/2 then prCi =

pr−1
Ci + αw(ai − (WBY −WCT)).

The following terminology will be used throughout. Let a covered worker be one
that is paid at least its aspiration ai and the computing cost WCT . In any given
round r, let an honest worker be one for which pr−1

C = 0. Let an honest state be
one where the majority of workers are honest. Let an honest set be any set of
honest states. We refer to the opposite cases as uncovered worker, cheater worker
(pr−1

C = 1), cheat state, and cheat set respectively.

4.2 Conditions for Eventual Correctness

We show the conditions under which the system can guarantee eventual correct-
ness. We begin with some terminology. Let a set of states S be called closed if,

458 E. Christoforou et al.

once the chain is in any state s ∈ S, it will not move to any state s′ /∈ S. (A
singleton closed set is called an absorbing state.) For any given set of states S,
we say that the chain reaches (resp. leaves) the set S if the chain reaches some
state s ∈ S (resp. reaches some state s /∈ S).

In order to show eventual correctness, we must show eventual convergence to
a closed honest set. Thus, we need to show (i) that there exists at least one such
closed honest set, (ii) that all closed sets are honest, and (iii) that one honest
closed set is reachable from any initial state. Omitted proofs are given in [17].

Lemma 1. Consider any set of workers Z ⊆ W such that ∀i ∈ Z : WBY ≥ ai.
If |Z| > n/2, then the set of states

S = {(pA, pC1, . . . , pCn)|(pA = 0) ∧ (∀w ∈ Z : pCw = 1)},

is a closed cheat set.

Given (ii) above, the necessity of pmin
A > 0 is motivated by the above lemma.

Hence, pA > 0 is assumed for the rest of the analysis.

Lemma 2. If there exists a set of workers Z ⊆ W such that |Z| > n/2 and
∀i ∈ Z : WBY < ai +WCT , then no honest set is closed.

Given (i) above, the necessity of a covered majority is motivated by Lemma 2.
Hence, in the remainder we assume that the majority of workers are covered.

Lemma 3. Consider any set of workers Z ⊆ W such that ∀i ∈ Z : WBY ≥
ai +WCT and ∀j /∈ Z : WBY < aj +WCT . If |Z| > n/2, then the set of states

S = {(pA, pC1, . . . , pCn)|∀w ∈ Z : pCw = 0},
is a closed set.

Hence Lemma 3 proves (i) above. We continue with the proof of the other prop-
erties.

Lemma 4. Consider any set of workers Z ⊆ W such that ∀i ∈ Z : WBY ≥
ai +WCT and ∀j /∈ Z : WBY < aj +WCT . Then, for any set of states

S = { (pA, pC1, . . . , pCn)|∃Y ⊆W : (|Y | > n/2) ∧ (∀w ∈ Y : pCw = 0) ∧ (Z � Y)},

S is not a closed set.

Lemma 5. Consider any set of workers Z ⊆ W such that ∀i ∈ Z : WBY ≥
ai +WCT and ∀j /∈ Z : WBY < aj +WCT . If |Z| > n/2 and pA > 0, then for
any set of states

S = {(pA, pC1, . . . , pCn)|∃Y ⊆W : (|Y | > n/2) ∧ (∀w ∈ Y : pCw > 0)},
S is not a closed set.

Together, Lemma 4 and 5 prove (ii), and also (iii) because, if only honest sets
are closed, then there is a way of going from non-honest sets to one of them.
Lemmas 3–5 give the overall result:

Achieving Reliability in Master-Worker Computing 459

Theorem 1. If pA > 0 then, in order to guarantee with positive probability that,
after some finite number of rounds, the system achieves eventual correctness, it

is necessary and sufficient to set WBY ≥ ai +WCT for all i ∈ Z in some

set Z ⊆W such that |Z| > n/2.

The above theorem shows that there is a positive probability of reaching some
state after which correctness can be guaranteed, as long as for a chosen majority
of workers, the payment is enough to cover their aspiration and cost of performing
the task.

Remark: From Algorithm 1 it is easy to see that once the closed set S =
{(pA, pC1, . . . , pCn)|∀w ∈ Z : pCw = 0} is reached, eventually pA = pmin

A and
stays such forever.

4.3 Convergence Time

Theorem 1 shows necessary and sufficient conditions to achieve eventual correct-
ness. However, in order to have a practical system, it is necessary to bound the
time taken to achieve it, which we call the convergence time. In other words,
starting from any initial state, we want to compute the number of rounds that
takes to the Markov chain to reach an honest closed set. In this section, we show
bounds on the convergence time. Omitted proofs are given in [17].

Expected Convergence Time: Let C be the set of all covered workers. We
assume, as required by Theorem 1, that |C| > n/2. From transitions (1) and
(2) in the Markov chain definition, it can be seen that it is enough to have a
consecutive sequence of 1/(αw min{WBY−ai−WCT ,WPC+ai}), ∀i ∈ C, audits
to enforce pC = 0 for all covered workers. Which gives the following upper bound
on the convergence time.

Theorem 2. The expected convergence time is at most ρ/(pmin
A)ρ, where ρ =

1/(αw mini∈C{WBY−ai−WCT ,WPC+ai}) and C is the set of covered workers.

The upper bound shown in Theorem 2 may be too pessimistic for certain values
of the parameters. The following theorem provides a tighter bound under certain
conditions.

Theorem 3. Let us define, for each worker i, deci � αw min{WPC+ai,WBY−
WCT −ai}, and inci � αw max{WBY−ai,WCT +ai}. Let C be the set of covered
workers. If pmin

A = maxi∈C{inci/(inci + deci)} + ε, for some 0 < ε < 1 −
maxi∈C{inci/(inci + deci)}, the expected convergence time is 1/(εmini∈C deci).

The following corollary is derived from the previous theorem for a suitable sce-
nario.

Corollary 1. If WPC + ai ≥ WBY −WCT − ai and WBY − ai ≤ WCT + ai,
∀i ∈ C, and if

pmin
A =

WCT +maxi∈C ai
WBY

+ ε,

460 E. Christoforou et al.

where C is the set of covered workers and 0 < ε < 1−(WCT +maxi∈C ai)/WBY ,
then the expected convergence time is ρ/ε, where ρ = 1/(αw(WBY − WCT −
maxi∈C ai)).

Probabilistic Bound on the Number of Rounds for Convergence: We
show now that, under certain conditions on the parameters of the system, it
is possible to bound the probability to achieve convergence and the number of
rounds to do so. Assume that p0A > 0. Since pA is not changed unless the master
audits, we have the following.

Lemma 6. Let p0A = p > 0. Then, the master audits in the first ρ = ln(1/ε1)/p
rounds with probability at least 1− ε1, for any ε1 ∈ (0, 1).

Let us assume that the system parameters are such that, for all workers i,
αw(WPC + ai) ∈ [0, 1] and αw(WBY − WCT − ai) ∈ (0, 1] (all workers are
covered). Let us define dec cheater � αw mini{WPC + ai} and dec honest �
αw mini{WBY −WCT − ai}. From transitions (1) and (2) we derive the follow-
ing lemma.

Lemma 7. Let r be a round in which the master audits, and F be the set of
cheaters in round r. Then,

prCi ≤ 1− αw(WPC + ai) ≤ 1− dec cheater, ∀i ∈ F

prCj ≤ 1− αw(WBY −WCT − aj) ≤ 1− dec honest, ∀j /∈ F

Denoting the sum of all cheating probabilities before a round r as P r−1 �
∑
i

pr−1
Ci .

Lemma 8. Let r be a round in which the master audits such that P r−1 > n/3. If
dec cheater ≥ dec honest and dec cheater+3·dec honest ≥ 8/3, then P r ≤ n/3
with probability at least 1− exp(−n/96).

Let us now define deci � αw min{ai,WBY −WCT − ai}. Let, dec � mini deci.
Assume WPC ≥ 0 and ai ≥ 0, for all workers.

Lemma 9. Consider a round r such that P r−1 ≤ n/3. Then, with probability
at least 1− exp(−n/36) each worker i has prCi ≤ max{0, pr−1

Ci − dec}, and hence
P r ≤ n/3.

Lemmas 6–9 lead to the following result:

Theorem 4. Assume αw(WPC +ai) ∈ [0, 1] and αw(WBY −WCT −ai) ∈ (0, 1]
for all workers i. (Observe that all workers are covered.) Let dec cheater �
αw mini{WPC + ai}, dec honest � αw mini{WBY − WCT − ai}, and dec �
αw mini{ai,WBY − WCT − ai}. If p0A = p > 0, dec cheater ≥ dec honest
and dec cheater + 3 · dec honest ≥ 8/3, then eventual convergence is reached
in at most ln(1/ε1)/p + 1/dec rounds, with probability at least (1 − ε1)(1 −
exp(−n/96))(1− exp(−n/36))1/dec, for any ε1 ∈ (0, 1).

Achieving Reliability in Master-Worker Computing 461

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 200 400 600 800 1000 1200 1400 1600

pC

time

worker1
worker2
worker3
worker4
worker5
worker6
worker7
worker8
worker9

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 200 400 600 800 1000 1200 1400 1600

pC

time

worker1
worker2
worker3
worker4
worker5
worker6
worker7
worker8
worker9

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 10 20 30 40 50 60 70 80 90 100

pC

time

worker1
worker2
worker3
worker4
worker5
worker6
worker7
worker8
worker9

(a) (b) (c)

Fig. 1. Cheating probability for the workers as a function of time (number of rounds)
for parameters WPC = 0, WCT = 0.1 and ai = 0.1. (a) α = 0.01, WBY = 1; (b)
α = 0.1, WBY = 1; (c) α = 0.1, WBY = 2.

5 Simulations

In this section we complement the theoretical analysis with simulations. Our
analytical upper bounds on convergence time correspond to worst case scenarios.
Here we present simulations for a variety of parameter combinations likely to
occur in practice. We have created our own simulation setup by implementing
our mechanism; technical details can be found in [17]. Each depicted plot value
represents the average over 10 executions of the implementation.

We choose sensible parameter values, likely to be encountered in real appli-
cations. In particular, the number of workers has been set to nine (providing
majority). Nine workers seems like an appropriate workforce, compared to Seti-
like systems using three workers. The initial cheating probability of each worker
i is not known, and therefore we have set it at pCi = 0.5 as a reasonable as-
sumption. Similarly, we have set pA = 0.5 as the master’s initial probability of
auditing. The minimum probability of cheating is set to be pmin

A = 0.01 and
tolerance τ = 0.5, hence the master will not tolerate a majority of cheaters.

The payoffs for the workers are set using WBY ∈ {1, 2} as our normalizing
parameter and we take in analogyWPC = 0 and WCT = 0.1 as realistic values to
explore the effects of these choices. The aspiration is a parameter defined by the
workers in an idiosyncratic manner; for simplicity, here we consider all workers
having the same aspiration level ai = 0.1. The values of the aspiration and WCT
satisfy the necessary conditions of Theorem 1 and hence eventual convergence
is reached. Finally, we consider the same learning rate for the master and the
workers, i.e., α = αm = αw. The learning rate, as discussed for example in [15]
(called step-size there), for practical reasons it can be set to a small constant
value; experimentally we notice that high values make the learning unstable. So
we consider α ∈ {0.1, 0.01}. A rich account of our results, on several scenarios
under different parameter values (providing as well more intuition on system
parameters e.g., tolerance) can be found in [17].

Figure 1 shows that convergence can be reached very quickly (in a few hundred
rounds) even if no punishment is given to the workers caught cheating, and the
number of workers and WBY are small. We also notice that a slightly higher
value of α can make the convergence time shorter.

462 E. Christoforou et al.

Comparing Figures 1(b) with 1(c) we observe that for a specific set of pa-
rameter values, a larger WBY leads to a shorter convergence time. Interestingly,
this observation points out to a trade-off between convergence time and the cost
the master has for reaching faster convergence and maintaining it. In this way,
the master could choose between different protocols estimating the cost of the
auditing during the whole interval to convergence: less auditing leads to larger
convergence times, so it is not clear in principle what is going to be optimal.

6 Conclusions

This work applies reinforcement learning techniques to formulate the evolution
of Internet-based master-worker computations. The mechanism developed is pre-
sented and analyzed. In particular we show that under necessary and sufficient
conditions, the master reaches a state after which the correct task result is re-
ceived at each round, with minimal cost. In addition we show that such state
can be reached quickly. The convergence analysis is complemented with simula-
tions; our simulation results suggest that when having a positive reinforcement
learning (i.e., WPC = 0) the master can reach fast convergence, while apply-
ing negative reinforcement learning (i.e., WPC = {1, 2}) provides even faster
convergence (see [17]). In fact, we may conclude that applying only negative
reinforcement is enough to have fast convergence.

Acknowledgments. This work is supported by the Cyprus Research Promo-
tion Foundation grant TΠE/ΠΛHPO/0609(BE)/05, NSF grants CCF-0937829,
CCF-1114930, Comunidad de Madrid grant S2009TIC-1692, Spanish MOSAICO
and RESINEE grants and MICINN grant TEC2011-29688-C02-01, and National
Natural Science Foundation of China grant 61020106002. We thank Carlos Diuk
for useful discussions.

References

[1] Abraham, I., Dolev, D., Goden, R., Halpern, J.Y.: Distributed computing meets
game theory: Robust mechanisms for rational secret sharing and multiparty com-
putation. In: Proc. of PODC 2006, pp. 53–62 (2006)

[2] Anderson, D.: BOINC: A system for public-resource computing and storage. In:
Proc. of GRID 2004, pp. 4–10 (2004)

[3] Bendor, J., Mookherjee, D., Ray, D.: Aspiration-based reinforcement learning in
repeated interaction games: An overview. International Game Theory Review 3(2-
3), 159–174 (2001)

[4] Bush, R.R., Mosteller, F.: Stochastic Models for Learning. Wiley (1955)

[5] Camerer, C.F.: Behavioral game theory: Experiments in strategic interaction.
Roundtable Series in Behavioral Economics (2003)

[6] Easley, D., Kleinberg, J.: Networks, Crowds, and Markets: Reasoning About a
Highly Connected World. Cambridge University Press (2010)

[7] Fernández, A., Georgiou, C., Lopez, L., Santos, A.: Reliably executing tasks in
the presence of untrusted processors. In: Proc. of SRDS 2006, pp. 39–50 (2006)

Achieving Reliability in Master-Worker Computing 463

[8] Fernández Anta, A., Georgiou, C., Mosteiro, M.A.: Designing mechanisms for
reliable Internet-based computing. In: Proc. of NCA 2008, pp. 315–324 (2008)

[9] Fernández Anta, A., Georgiou, C., Mosteiro, M.A.: Algorithmic Mechanisms for
Internet-based Master-Worker Computing with Untrusted and Selfish Workers.
In: Proc. of IPDPS 2010, pp. 1–11 (2010)

[10] Gintis, M.C.: Game Theory Evolving. Princeton University Press (2000)
[11] Maynard Smith, J.: Evolution and the Theory of Games. Cambridge U. Press

(1982)
[12] Nisan, N., Ronen, A.: Algorithmic mechanism design. Games and Economic Be-

havior 35, 166–196 (2001)
[13] Phelps, S., McBurney, P., Parsons, S.: Evolutionary mechanism design: A review.

Journal of Autonomous Agents and Multi-Agent Systems (2010)
[14] Shneidman, J., Parkes, D.C.: Rationality and Self-interest in P2P Networks.

In: Kaashoek, F., Stoica, I. (eds.) IPTPS 2003. LNCS, vol. 2735, pp. 139–148.
Springer, Heidelberg (2003)

[15] Szepesvári, C.: Algorithms for Reinforcement Learning. Synthesis Lectures on Ar-
tificial Intelligence and Machine Learning. Morgan & Claypool Publishers (2010)

[16] Taufer, M., Anderson, D., Cicotti, P., Brooks, C.L.: Homogeneous redundancy:
a technique to ensure integrity of molecular simulation results using public com-
puting. In: Proc. of IPDPS 2005 (2005)

[17] Technical report of this work, TR-12-02, Dept. of Computer Science, University of
Cyprus (February 2012), http://www.cs.ucy.ac.cy/~chryssis/EvolMW-TR.pdf

[18] Yurkewych, M., Levine, B.N., Rosenberg, A.L.: On the cost-ineffectiveness of re-
dundancy in commercial P2P computing. In: Proc. of CCS 2005, pp. 280–288
(2005)

http://www.cs.ucy.ac.cy/~chryssis/EvolMW-TR.pdf

Topic 9: Parallel and Distributed Programming

Sergei Gorlatch, Rizos Sakellariou, Marco Danelutto, and Thilo Kielmann

Topic Committee

This topic provides a forum for the presentation of the latest research results and
practical experience in parallel and distributed programming in general, except
for work specifically targeting multicore and manycore architectures, which has
matured to becoming a Euro-Par topic of its own.

The challenge addressed by the topic is how to produce correct, portable par-
allel software with predictable performance on existing and emerging parallel and
distributed architectures. This requires advanced algorithms, realistic modeling,
efficient design tools, high-level programming abstractions, high-performance im-
plementations, and experimental evaluation. Related to these central needs, it is
also important to address methods for reusability, performance prediction, large-
scale deployment, self-adaptivity, and fault-tolerance. Given the rich history in
this field, practical applicability of proposed methods, models, algorithms, or
techniques is a key requirement for timely research.

Each submission was reviewed by at least four reviewers and, finally, we were
able to select 7 high-quality papers, one of them as distinguished paper. The pre-
sented research spans the broad scope, ranging from low-level issues like transac-
tional access to shared memory and dynamic thread mapping, over algorithmic
methods for partitioning and fault-tolerance, all the way up to scalable collective
operations and pipelined MapReduce.

We are proud of the ambitious scientific program that we managed to assemble
for this topic. Of course, this was only possible by combining the efforts of
many people. We would like to take the opportunity to thank the authors who
submitted their contributions, the external referees who have made the efficient
selection process possible, and the conference organizers for a perfectly organized
and very pleasant cooperation.

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, p. 464, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Dynamic Thread Mapping Based on Machine Learning
for Transactional Memory Applications

Márcio Castro1, Luı́s Fabrı́cio Wanderley Góes2,
Luiz Gustavo Fernandes3, and Jean-François Méhaut1

1 INRIA - CEA - LIG Laboratory - Grenoble University,
ZIRST 51, avenue Jean Kuntzmann, 38330 Montbonnot Saint Martin, France

{marcio.castro,jean-francois.mehaut}@imag.fr
2 Department of Computer Science - Pontifical Catholic University of Minas Gerais,

Av. Dom José Gaspar, 500, Belo Horizonte, MG, Brazil
lfwgoes@pucminas.br

3 PPGCC - Pontifical Catholic University of Rio Grande do Sul,
Av. Ipiranga, 6681 - Prédio 32, Porto Alegre, RS, Brazil

luiz.fernandes@pucrs.br

Abstract. Thread mapping is an appealing approach to efficiently exploit the
potential of modern chip-multiprocessors. However, efficient thread mapping re-
lies upon matching the behavior of an application with system characteristics. In
particular, Software Transactional Memory (STM) introduces another dimension
due to its runtime system support. In this work, we propose a dynamic thread
mapping approach to automatically infer a suitable thread mapping strategy for
transactional memory applications composed of multiple execution phases with
potentially different transactional behavior in each phase. At runtime, it profiles
the application at specific periods and consults a decision tree generated by a Ma-
chine Learning algorithm to decide if the current thread mapping strategy should
be switched to a more adequate one. We implemented this approach in a state-
of-the-art STM system, making it transparent to the user. Our results show that
the proposed dynamic approach presents performance improvements up to 31%
compared to the best static solution.

Keywords: transactional memory, dynamic thread mapping, machine learning.

1 Introduction

Thread mapping is an appealing approach to efficiently exploit the potential of modern
chip-multiprocessors by making better use of cores and memory hierarchy. It allows
multithreaded applications to amortize memory latency and/or reduce memory con-
tention. However, efficient thread mapping relies upon matching the behavior of an
application with system characteristics.

Software Transactional Memory (STM) appears as a promising concurrency control
mechanism for those modern chip-multiprocessors. It allows programmers to write par-
allel code as transactions, which are guaranteed to execute atomically and in isolation
regardless of eventual data races [3,9]. At runtime, transactions are executed specula-
tively and the STM runtime system continuously keeps track of concurrent accesses
and detects conflicts. Conflicts are then solved by re-executing conflicting transactions.

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 465–476, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

466 M. Castro et al.

However, due to its runtime support, applications can behave differently depending on
the characteristics of the underlying STM system. Thus, the prediction of a suitable
thread mapping strategy for a specific application/STM system becomes a daunting
task.

Our previous work focused on a machine learning-based approach to statically in-
fer a suitable thread mapping strategy for transactional memory applications [2]. This
means that the predicted thread mapping strategy is applied once at the beginning and
does not change during the execution of the application. We demonstrated that this ap-
proach improved the performance of all STAMP applications [10], since most of the
transactions within each application usually have very similar behavior.

We have constantly seen efforts for a wider adoption of Transactional Memory (TM).
For instance, the latest version of the GNU Compiler Collection (GCC 4.7) now sup-
ports TM primitives and new BlueGene/Q processors have hardware support for TM.
Moreover, Intel recently released details of the Transactional Synchronization Exten-
sions (TSX) for the future multicore processor code-named “Haswell”. Thus, it is ex-
pected that more complex applications will make use of TM in a near future. In those
cases, static thread mapping will no longer improve the performance of those applica-
tions, emerging the necessity of dynamic or adaptive approaches.

In this paper, we propose a dynamic approach to do efficient thread mapping on STM
applications composed of more diverse workloads. These workloads may go through
different execution phases, each phase with potentially different transactional charac-
teristics. At runtime, we gather useful information from the application, STM system
and platform at specific periods. At the end of each profiling period, we rely on a de-
cision tree previously generated by a Machine Learning (ML) algorithm to decide if
the current thread mapping strategy should be switched to a more adequate one. This
dynamic approach was implemented within TinySTM [5] as a module, so the core of
TinySTM remains unchanged and it is transparent to the user. Our results show that
the dynamic approach is up to 31% better than the best static thread mapping for those
applications.

The rest of this paper is organized as follows. Section 2 further describes STM and
our previous work. In Section 3, we propose our dynamic thread mapping mechanism.
Section 4 evaluates our dynamic thread mapping on several applications. Finally, Sec-
tion 5 presents related work and Section 6 concludes.

2 Background

2.1 Software Transactional Memory

Transactional Memory is an alternative synchronization solution to the classic mecha-
nisms such as locks and mutexes [9]. It removes from the programmer the burden of
correct synchronization of threads on data races and provides an efficient model for
extracting parallelism from the applications.

Transactions are portions of code that are executed atomically and with isolation.
Concurrent transactions commit successfully if their accesses to shared data did not
conflict with each other; otherwise some of the conflicting transactions will abort and
none of their actions will become visible to other threads. Conflicts can be detected

Dynamic Thread Mapping Based on Machine Learning 467

during the execution of transactions when the TM system uses an eager conflict detec-
tion policy whereas they are only detected at commit-time when the system uses a lazy
conflict detection policy.

When a transaction aborts, the runtime system rollbacks some of the conflicting
transactions. The choice among the conflicting transactions is done according to the
conflict resolution policies implemented in the runtime system. Two common alterna-
tives are to squash one of the conflicting transactions immediately (suicide strategy) or
to wait for a time interval before restarting the conflicting transaction (backoff strategy).

Transactional Memory can be software-only, hardware-only or hybrid. In this work
we are interested in STM since hardware and hybrid solutions are not yet available in
commercial processors. This allows us to carry out experiments in current platforms
without relying on simulations.

2.2 Static Thread Mapping Based on Machine Learning

Our previous work proposed a machine learning-based approach to predict a suitable
thread mapping for TM applications [2]. It was composed of the following steps (Figure
1). Firstly, we profiled several TM applications from the STAMP benchmark suite [10]
considering characteristics from the application, STM system and platform to build
a set of input instances. Then, a Decision Tree Learning method (ID3) [11] was fed
with these input instances and trained. The ID3 algorithm outputted a decision tree
(predictor) capable of infering a thread mapping strategy for new unobserved instances.

Application
Profiling

Learning
Process

Input instances

Predictor

New instance

Thread mapping

Training phase

Fig. 1. Overview of our machine learning-based approach

We evaluated the performance of all TM applications from STAMP when apply-
ing the predicted thread mapping strategies statically. This means that the strategy is
applied at the beginning and remains unchanged during the whole execution of the
application. Our results showed that our approach usually makes correct predictions
[2]. However, a deeper analysis of STAMP applications revealed that most of them do
not have multiple phases with different transactional characteristics. For the upcoming
complex workloads, there may not exist a single best thread mapping strategy that de-
livers the best performance for all phases. In the next section we present our solution
to tackle this problem, which employs a dynamic approach adapted for more complex
applications.

3 Dynamic Thread Mapping for Transactional Memory

As we previously stated, we will naturally face more complex TM applications due to
the wider adoption of TM. These applications will probably have multiple execution

468 M. Castro et al.

phases with a different transactional behavior in each phase. Thus, we need a more
dynamic thread mapping approach able to identify these different phases and switch to a
more adequate thread mapping strategy during the execution. In the following sections,
we explain the basic concepts of our dynamic approach as well as its implementation
within a state-of-the-art STM system.

3.1 Proposed Approach

Our dynamic thread mapping approach is based on the fact that the performance of a
TM application is not only governed by its characteristics but also by the characteristics
of the TM system and platform. Those characteristics must be taken into account to
choose a thread mapping strategy adapted to behavior of the workload. Thus, we con-
sider the following criteria that have an important impact on the performance of TM
applications:

– Transactional time ratio: fraction of the time spent inside transactions to the total
execution time;

– Abort ratio: fraction of the number of aborts to the number of transactions issued
(aborted + committed);

– Conflict detection policy: eager or lazy;
– Conflict resolution policy: suicide or backoff;
– Last-level cache miss ratio: fraction of the number of cache misses to the number

of accesses on the last-level cache.

We considered these criteria while profiling the STAMP applications to build a thread
mapping predictor as briefly described in Section 2.2. We trained the ID3 learning al-
gorithm with two sets of input instances. The difference between them comes from
the complexity of the memory hierarchy of the underlying platform. The predictor is
represented in Figure 2.

The subtree on the left considers a single level of shared L2 caches whereas the
subtree on the right considers a more complex memory hierarchy with two levels of
shared caches (L2 and L3). Internal nodes represent our criteria (rectangles). Leaves
represent the thread mapping strategy to be applied (rounded rectangles).

The predictor chooses a thread mapping strategy among four possible configurations:
scatter, compact, round-robin and linux. Scatter distributes threads across different pro-
cessors avoiding cache sharing between cores in order to reduce memory contention.
In contrast, compact places threads on sibling cores that share all levels of the cache
hierarchy. The round-robin strategy is an intermediate solution in which threads share
higher levels of cache (i.e., L3) but not the lower ones (i.e., L2). Finally, linux is the
default scheduling strategy implemented by the operating system.

Since most of the considered characteristics can vary during the execution of appli-
cations composed of several phases, they need to be profiled at runtime. We thus use
profiling to gather the information needed by the predictor at specific periods. We spec-
ify two periods: the profiling period and the interval between profilings. These values
are specified by the number of committed transactions instead of time. This guarantees
that our measures occur when transactions are being executed. We use a hill-climbing

Dynamic Thread Mapping Based on Machine Learning 469

Tx Time
Ratio

Tx Abort
Ratio

high

TM Conflict
Resolution

compact

medium
low

scatter compact

suicide backoff

compact scatter

medium
low

LLC Miss
Ratio

high

scatter

low

TM Conflict
Resolution

medium/high

scatter round-robin

suicide backoff

Tx Abort
Ratio

LLC Miss
Ratio

high

compact

medium

round-robin

medium/high

TM Conflict
Detection

low

linux

lazy

TM Conflict
Resolution

eager

compact round-robin

backoff suicide

round-robin

low

Memory
Hierarchy

one level of
shared caches

two levels of
shared caches

Fig. 2. Thread mapping predictor based on machine learning

strategy to adapt those values during the execution. We start with short periods and we
double them each time the predicted thread mapping strategy was not changed. This
is done until a maximum interval size is reached. When the thread mapping strategy
is changed due to a phase transition, we reset them to their initial values and the hill-
climbing strategy is restarted.

3.2 Implementation

For our solution to be transparent to users, we decided to implement it within a STM
system. We chose TinySTM [5] among other STM systems because it is lightweight,
efficient and its implementation has a modular structure that can be easily extended with
new features. Figure 3 shows the organization schema of TinySTM and as well as our
dynamic thread mapping module and its main components.

STM core Modules

TinySTM
mod_mem

Dynamic Memory Management

mod_stats
Statistics of Transactions

mod_dtm
Dynamic Thread Mapping

... Hardware Topology Analyzer

Thread Mapping Predictor
Transaction Profiler

Fig. 3. Implementation of our dynamic thread mapping in TinySTM

Basically, TinySTM is composed of a STM core in which most of the STM code
is implemented, and some additional modules. These modules implement basic fea-
tures such as the dynamic memory management (mod_mem) and transaction statistics

470 M. Castro et al.

(mod_stats). We added a new module called mod_dtm that extends TinySTM to per-
form dynamic thread mapping transparently. Our module combines the following three
main components:

Hardware topology analyzer uses the Hardware Locality (hwloc) library [1] to
gather useful information from the underlying platform topology (i.e., the hierarchy of
caches and how they are shared among the cores). Such information is used to correctly
apply the thread mapping strategies.

Thread mapping predictor relies on the decision tree shown in Figure 2 to predict
the thread mapping strategy. At the end of each profiling period, the tree is traversed
using the profiled information from the transaction profiler and the resulting thread
mapping strategy is then applied.

Transaction profiler performs runtime profiling during specific periods to gather
information from hardware counters and transactional basic statistics. Its pseudo-code
is depicted in Figure 4. The cache miss ratio is obtained through the Performance Ap-
plication Programming Interface (PAPI) [12] to access hardware counters. We maintain
two counters to calculate the abort ratio (named Aborts and Commits). The transac-
tional time ratio is an approximation obtained by measuring the time spent inside and
outside transactions.

// on transaction start

if is profiling period then
if first tx in this period then

StartPapi(LLCAccess, LLCMiss);
ProfileTime ← GetClock();

end
TxTime ← GetClock();

end

// on transaction abort

if is profiling period then
Aborts ← Aborts + 1;

end

// on transaction commit

if is profiling period then
TxTime ← GetClock()− TxTime;
TotalTxTime ← TotalTxTime+ TxTime;
Commits ← Commits + 1;
if last tx in this period then

StopPapi(LLCAccess, LLCMiss);
ProfileTime ← GetClock()− ProfileTime;
TotalNonTxTime ← ProfileTime − TotalTxTime;
ThreadMapping ← TMPredictor();
ResetAllCounters();

end

end

Fig. 4. Transaction profiler pseudo-codes

TinySTM allows the inclusion of user-defined extensions. In our case, we instru-
mented three basic TM operations that are called when transactions start (start),
when they are rollbacked in case of conflicts (abort) and when they finish successfully
(commit). Thus, every call to these operations is intercepted by our module, which exe-
cutes the transaction profiler during the profilling periods and calls the thread mapping
predictor to switch the thread mapping strategy when necessary.

When a TM application is executed, only one thread among all concurrent running
threads is chosen to be the transaction profiler. The reason for that is threefold: (i)
it considerably reduces the intrusiveness on the overall system, so the behavior of the
application is not changed; (ii) we do not need to use extra synchronization mechanisms
to guarantee reliable measures among concurrent threads; and (iii) most workloads of
current TM applications are uniformly distributed among the threads. However, our

Dynamic Thread Mapping Based on Machine Learning 471

implementation can be adapted to gather information from all threads. This may be
necessary for non-SPMD applications, where different threads execute different flows
of control.

4 Experimental Evaluation

In this section, we demonstrate that our dynamic thread mapping can benefit from ap-
plications composed of multiple execution phases with potentially different transac-
tional behavior on each one. First, we describe our experimental setup as well as the
set of characteristics we considered to create TM applications composed of multiple
phases. Afterwards, we compare our performance gains with static solutions. Finally,
we present a deeper analysis of our mechanism.

4.1 Experimental Setup

Since most of the transactions within each STAMP application usually have very sim-
ilar behavior, they are not suitable for the evaluation of our dynamic thread mapping
approach. For this reason, we used EigenBench [8] to create new TM applications with
different phases. This micro-benchmark allows a thorough exploitation of the orthogo-
nal space of TM applications characteristics.

Varying all possible orthogonal TM characteristics involves a high-dimensional search
space [8]. Thus, we decided to vary 4 out of 8 orthogonal characteristics that govern the
behavior of TM applications. We used the first three (transaction length, contention
and density) to create a set of workloads (Table 1). Since we assume two possible
discrete values for each one, we can create a total of 23 distinct workloads (named
W1,W2, . . . ,W8) by combining those values. It is important to mention that these val-
ues were obtained after an empirical study based on several experiments with different
configurations of TinySTM (conflict detection and resolution policies) and EigenBench
parameters. The fourth orthogonal characteristic is concurrency and it is further dis-
cussed in Section 4.3.

Table 1. TM orthogonal characteristics used to compose our set of workloads

Characteristic Definition Values

Tx Length number of shared accesses per transaction
short (≤ 64)
long (≥ 128)

Contention probability of conflict
low-conflicting (< 30%)
contentious (≥ 30%)

Density fraction of the time spent inside transactions sparse (< 80%)
to the total execution time dense (≥ 80%)

Concurrency number of concurrent threads/cores 2 – 16

We conducted our experiments on a multi-core platform based on four six-core
2.66GHz Intel Xeon X7460 processors and 64 GB of RAM running Linux 2.6.32. Each
processor has 16MB of shared L3 cache and each group of two cores shares a L2 cache
(3MB). TinySTM and all applications were compiled with GCC 4.4.5 using -O3. All
results in the following sections are based on arithmetic means of 30 runs.

472 M. Castro et al.

4.2 Dynamic Thread Mapping vs. Static Thread Mapping

Our first set of experiments explores the effectiveness of our dynamic thread mapping
in comparison to the thread mapping strategies individually. We derived a set of appli-
cations from the 8 distinct workloads discussed in Section 4.1. We fixed the number of
phases to 3, thus each application will be composed of three workloads. Therefore, all
possible applications composed of three distinct workloads is determined by the number
of k-combinations from a given set of n elements, i.e., Cn

k = C8
3 , which results in 56

applications (named A1, A2, . . . , A56). Thus, the set of applications can be represented
as follows: A1 = {W1,W2,W3}, A2 = {W1,W2,W4}, . . ., A56 = {W5,W6,W7}.
Phases (workloads) are parallelized using Pthreads and there is no synchronization bar-
rier between phases, i.e., threads may not be computing the same workload at the same
time.

Dynamic / Best single thread mapping Dynamic / Worst single thread mapping

-10
 0

 10
 20
 30
 40
 50
 60
 70

A
1

A
2

A
3

A
4

A
5

A
6

A
7

A
8

A
9

A
10

A
11

A
12

A
13

A
14

A
15

A
16

A
17

A
18

A
19

A
20

A
21

A
22

A
23

A
24

A
25

A
26

A
27

A
28

R
el

at
iv

e
ga

in
 (

%
)

-10
 0

 10
 20
 30
 40
 50
 60
 70

A
29

A
30

A
31

A
32

A
33

A
34

A
35

A
36

A
37

A
38

A
39

A
40

A
41

A
42

A
43

A
44

A
45

A
46

A
47

A
48

A
49

A
50

A
51

A
52

A
53

A
54

A
55

A
56

R
el

at
iv

e
ga

in
 (

%
)

Fig. 5. Relative gains of our dynamic thread mapping compared to the best and worst single
thread mappings. We considered applications composed of 3 phases (A1 to A56).

We ran all the applications with each one of the static thread mappings (compact,
round-robin and scatter), the Linux default scheduling strategy and our dynamic ap-
proach. Figure 5 presents the relative gains of our dynamic thread mapping when com-
pared to the best and worst single thread mappings. The relative gain is given by
1 − xd ÷ xs, where xd and xs are mean execution times of 30 executions using the
dynamic and the best/worst single thread mapping, respectively. Thus, positive values
mean performance gains whereas negative values mean performance losses. All appli-
cations were executed with 4 threads and TinySTM was configured with lazy conflict
detection and backoff conflict resolution.

We can draw at least two important conclusions from these results. Firstly, the thread
mapping strategy had an important impact on the performance. This can be easily ob-
served when comparing the relative gains between the best and worst single thread
mappings. Secondly, our dynamic thread mapping usually improved the performance

Dynamic Thread Mapping Based on Machine Learning 473

of the applications by switching to an adequate thread mapping strategy in each phase.
We achieved performance gains up to 31% and 62%, when comparing to the best and
worst single thread mappings respectively. However, our dynamic thread mapping did
not deliver performance improvements on 3 applications and presented some perfor-
mance losses in 8 applications when comparing with the best single thread mapping
strategy. In the case of A10, A11 and A46, a single thread mapping strategy (compact)
was best for all phases, thus we cannot expect performance improvements by using
our dynamic approach. The performance losses were due to wrong decisions of the
predictor, which did not select the best thread mapping strategy on all phases. The max-
imum performance loss was about 8% (A43). One reason for that may come from the
characteristics that we take into account in training phase and profiling. We leave the
discussion of other possible characteristics to enrich the predictions to future work.

4.3 Varying Concurrency

Our second set of experiments focuses on the performance impacts of the thread map-
ping strategies when varying the number of threads. We selected 4 interesting cases.
Cases 1 and 2 are applications that presented a single best thread mapping strategy for
all thread counts. Cases 3 and 4 are applications whose the best single thread mapping
varied according to the number of threads.

Number of threads

Case 1 (A1) Case 2 (A47)

Case 3 (A50) Case 4 (A6)

 10

 15

 20

 25

 30

 35

2 4 8 16
 5

 10

 15

 20

 25

2 4 8 16

 10

 15

 20

 25

 30

 35

2 4 8 16
 10

 15

 20

 25

 30

 35

 40

2 4 8 16

E
xe

cu
tio

n
tim

e
(s

)

Compact
Round-Robin

Scatter
Linux

Dynamic

Fig. 6. Execution times when varying the number of threads

Figure 6 compares the execution times of the four single thread mapping strate-
gies with our dynamic thread mapping mechanism. Results represent mean execution
times of 30 executions with 95% confidence intervals. We do not consider more than 16
threads for two reasons: (i) placing threads on different cores when all available cores
are used does not impact the overall performance because the applications tend to com-
municate uniformly, and (ii) most of our workloads did not scale beyond 16 threads.

In Case 1, the best single thread mapping for all thread counts was compact whereas
in Case 2 it was scatter. In both cases our dynamic thread mapping presented lower exe-
cution times for most of the thread counts. Case 3 represents a scenario in which the best

474 M. Castro et al.

single thread mapping strategy relied on the number of threads (scatter, round-robin,
compact and linux with 2, 4, 8 and 16 threads respectively). In case 4, we observed that
compact was best for low thread counts whereas linux was best for high thread counts.
In both cases 3 and 4, our dynamic thread mapping usually resulted in better results
than single thread mappings.

4.4 Dynamic Thread Mapping in Action

In order to observe how our dynamic thread mapping reacts when it encounters several
different phases, we created a single application composed of all the 8 distinct work-
loads. We then executed this application with our dynamic thread mapping while tracing
the information obtained by the transaction profiler at the end of each profiling period.
Figure 7 shows the variance of the profiled metrics during the execution with 4 threads.
Vertical bars represent the intervals in which each thread mapping strategy was applied.

compact scatter compact scatter r-r compact scatter r-r compact scatterlinux

Number of commited transactions

R
at

io
 (%

)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

100

0 1x105 2x105 3x105 4x105 5x105 6x105 7x105 8x105

Abort Ratio
Tx Time Ratio

LLC Miss Ratio

Fig. 7. Profiled metrics during the execution of an application with 8 phases

At the beginning, our dynamic thread mapping mechanism applies linux as its default
strategy and profiles some transactions. After the first profiling period, the predictor de-
cided to apply compact and did not switch to another strategy until it reached a different
phase near 1× 105. At this point, the predictor switched to scatter. Overall, the predic-
tor detected more than 8 phases due to the variance of some profiled metrics but it
still detected correctly the 8 main phase changes, reacting by applying a suitable thread
mapping strategy for each phase. We can also observe that the variance of the profiled
metrics confirms the fact that the 8 workloads have distinct characteristics.

5 Related Work

Thread Mapping. In [15], the authors presented a process mapping strategy for MPI
applications. The strategy used a graph partitioning algorithm to generate an appro-

Dynamic Thread Mapping Based on Machine Learning 475

priate process mapping for an application. The proposed strategy was then compared
with compact and scatter. In [4], two thread mapping algorithms were proposed. These
algorithms relied on memory traces extracted from benchmarks to find data sharing
patterns between threads. These patterns were extracted by running the workloads on a
simulator. The proposed approach was compared to compact, scatter and other strate-
gies. In [7], the authors proposed a dynamic thread mapping strategy for regular data
parallel applications implemented with OpenMP. The strategy considered the machine
description and the application characteristics to map threads to processors and it was
evaluated using simulations. Contrary to these works, our mechanism relies on ma-
chine learning to predict the thread mapping strategy without simulations. Instead, we
use hardware counters and software libraries to gather information about the platform
and applications.

Machine Learning. In [6], authors proposed a ML-based compiler model that accu-
rately predicts the best partitioning of data-parallel OpenCL tasks. Static analysis was
used to extract code features from OpenCL programs. These features were used to feed
a ML algorithm which was responsible for predicting the best task partitioning among
GPUs and CPUs. In [13], the authors proposed a two-staged parallelization approach
combining profiling-driven parallelism detection and ML-based mapping to generate
OpenMP annotated parallel programs. In this method, first they used profiling to iden-
tify portions of code that can be parallelized. Afterwards, they applied a previously
trained ML-based prediction mechanism to each parallel loop candidate in order to
select a scheduling policy from the four options implemented by OpenMP (cyclic, dy-
namic, guided or static). In [14], the authors proposed a ML-based approach to do
thread mapping on parallel applications developed with OpenMP. The proposed solu-
tion was capable of predicting the ideal number of threads and the scheduling policy for
an application. This approach was compared with the default OpenMP runtime through
experiments on a Cell platform. In contrast to those works, we target a different do-
main of applications, i.e., STM applications. These applications can be more sensitive
to thread mapping due to their complex memory access patterns and effects of the un-
derlying STM system.

6 Conclusion

In this paper, we proposed a dynamic thread mapping approach based on Machine
Learning for TM applications. We focused on TM applications composed of multi-
ple execution phases with potentially different transactional behavior in each phase.
We defined and implemented this mechanism in a state-of-art STM system, making it
transparent to the user. To the best of our knowledge, our work is the first to implement
dynamic thread mapping for TM applications.

Our results showed that there is not a single thread mapping strategy adapted for all
those complex applications. Instead, we could deliver a solution capable of detecting
phase changes during the execution of the applications and then predicting a suitable
thread mapping strategy adapted for each phase. We achieved performance improve-
ments up to 31% in comparison to the best single strategy.

476 M. Castro et al.

As future work, we aim at extending our predictor to consider a broader range of
STM conflict detection and resolution policies. Additionally, we intend to consider
more orthogonal TM characteristics to build even more diverse applications. Conse-
quently, we can extend the evaluation of our approach over more diverse scenarios.
Finally, we plan to use other machine learning algorithms to build new thread mapping
predictors and compare their performances.

References

1. Broquedis, F., Clet-Ortega, J., Moreaud, S., Goglin, B., Mercier, G., Thibault, S.: hwloc: a
Generic Framework for Managing Hardware Affinities in HPC Applications. In: PDP, pp.
180–186. IEEE Computer Society, Pisa (2010)

2. Castro, M., Góes, L.F.W., Ribeiro, C.P., Cole, M., Cintra, M., Méhaut, J.F.: A Machine
Learning-Based Approach for Thread Mapping on Transactional Memory Applications. In:
HiPC. IEEE Computer Society, Bangalore (2011)

3. Castro, M., Georgiev, K., Marangonzova-Martin, V., Méhaut, J.F., Fernandes, L.G., Santana,
M.: Analysis and Tracing of Applications Based on Software Transactional Memory on Mul-
ticore Architectures. In: PDP, pp. 199–206. IEEE Computer Society, Aya Napa (2011)

4. Diener, M., Madruga, F., Rodrigues, E., Alves, M., Schneider, J., Navaux, P., Heiss, H.U.:
Evaluating Thread Placement Based on Memory Access Patterns for Multi-core Processors.
In: HPCC, pp. 491–496. IEEE Computer Society, Melbourne (2010)

5. Felber, P., Fetzer, C., Riegel, T.: Dynamic Performance Tuning of Word-Based Software
Transactional Memory. In: PPoPP, pp. 237–246. ACM, NY (2008)

6. Grewe, D., O’Boyle, M.F.P.: A Static Task Partitioning Approach for Heterogeneous Sys-
tems Using OpenCL. In: Knoop, J. (ed.) CC 2011. LNCS, vol. 6601, pp. 286–305. Springer,
Heidelberg (2011)

7. Hong, S., Narayanan, S.H.K., Kandemir, M., Özturk, O.: Process Variation Aware Thread
Mapping for Chip Multiprocessors. In: DATE, pp. 821–826. IEEE Computer Society, Nice
(2009)

8. Hong, S., Oguntebi, T., Casper, J., Bronson, N., Kozyrakis, C., Olukotun, K.: Eigenbench:
A Simple Exploration Tool for Orthogonal TM Characteristics. In: IISWC, pp. 1–11. IEEE
Computer Society, Atlanta (2010)

9. Larus, J., Rajwar, R.: Transactional Memory. Morgan & Claypool (2006)
10. Minh, C.C., Chung, J., Kozyrakis, C., Olukotun, K.: STAMP: Stanford Transactional Appli-

cations for Multi-Processing. In: IISWC, pp. 35–46. IEEE Computer Society, Seattle (2008)
11. Quinlan, J.R.: Induction of Decision Trees. Machine Learning 1, 81–106 (1986)
12. Terpstra, D., Jagode, H., You, H., Dongarra, J.: Collecting Performance Data with PAPI-C.

In: Parallel Tools Workshop, pp. 157–173. Springer, Berlin (2010)
13. Tournavitis, G., Wang, Z., Franke, B., O’Boyle, M.F.: Towards a Holistic Approach to Auto-

Parallelization: Integrating Profile-Driven Parallelism Detection and Machine-Learning
Based Mapping. ACM SIGPLAN Not. 44, 177–187 (2009)

14. Wang, Z., O’Boyle, M.F.: Mapping Parallelism to Multi-cores: A Machine Learning Based
Approach. ACM SIGPLAN Not. 44, 75–84 (2009)

15. Zhang, J., Zhai, J., Chen, W., Zheng, W.: Process Mapping for MPI Collective Communica-
tions. In: Sips, H., Epema, D., Lin, H.-X. (eds.) Euro-Par 2009. LNCS, vol. 5704, pp. 81–92.
Springer, Heidelberg (2009)

A Checkpoint-on-Failure Protocol

for Algorithm-Based Recovery in Standard MPI

Wesley Bland, Peng Du, Aurelien Bouteiller, Thomas Herault,
George Bosilca, and Jack Dongarra

Innovative Computing Laboratory, University of Tennessee
1122 Volunteer Blvd., Knoxville, TN 37996-3450, USA

{bland,du,bouteill,herault,bosilca,dongarra}@eecs.utk.edu

Abstract. Most predictions of Exascale machines picture billion way
parallelism, encompassing not only millions of cores, but also tens of
thousands of nodes. Even considering extremely optimistic advances in
hardware reliability, probabilistic amplification entails that failures will
be unavoidable. Consequently, software fault tolerance is paramount to
maintain future scientific productivity. Two major problems hinder ubiq-
uitous adoption of fault tolerance techniques: 1) traditional checkpoint
based approaches incur a steep overhead on failure free operations and
2) the dominant programming paradigm for parallel applications (the
MPI standard) offers extremely limited support of software-level fault
tolerance approaches. In this paper, we present an approach that relies
exclusively on the features of a high quality implementation, as defined by
the current MPI standard, to enable algorithmic based recovery, without
incurring the overhead of customary periodic checkpointing. The validity
and performance of this approach are evaluated on large scale systems,
using the QR factorization as an example.

1 Introduction

The insatiable processing power needs of domain science has pushed High Perfor-
mance Computing (HPC) systems to feature a significant performance increase
over the years, even outpacing “Moore’s law” expectations. Leading HPC sys-
tems, whose architectural history is listed in the Top500 1 ranking, illustrate the
massive parallelism that has been embraced in the recent years; current number
1 – the K-computer – has half a million cores, and even with the advent of GPU
accelerators, it requires no less than 73,000 cores for the Tsubame 2.0 system
(#5) to breach the Petaflop barrier. Indeed, the International Exascale Software
Project, a group created to evaluate the challenges on the path toward Exascale,
has published a public report outlining that a massive increase in scale will be
necessary when considering probable advances in chip technology, memory and
interconnect speeds, as well as limitations in power consumption and thermal
envelope [6]. According to these projections, as early as 2014, billion way par-
allel machines, encompassing millions of cores, and tens of thousands of nodes,

1 www.top500.org

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 477–488, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

www.top500.org

478 W. Bland et al.

will be necessary to achieve the desired level of performance. Even considering
extremely optimistic advances in hardware reliability, probabilistic amplification
entails that failures will be unavoidable, becoming common events. Hence, fault
tolerance is paramount to maintain scientific productivity.

Already, for Petaflop scale systems the issue has become pivotal. On one hand,
the capacity type workload, composed of a large amount of medium to small scale
jobs, which often represent the bulk of the activity on many HPC systems, is
traditionally left unprotected from failures, resulting in diminished throughput
due to failures. On the other hand, selected capability applications, whose signif-
icance is motivating the construction of supercomputing systems, are protected
against failures by ad-hoc, application-specific approaches, at the cost of strain-
ing engineering efforts, translating into high software development expenditures.
Traditional approaches based on periodic checkpointing and rollback recovery,
incurs a steep overhead, as much as 25% [15], on failure-free operations. Forward
recovery techniques, most notably Algorithm-Based Fault Tolerant techniques
(ABFT), are using mathematical properties to reconstruct failure-damaged data
and do exhibit significantly lower overheads [13]. However, and this is a major is-
sue preventing their wide adoption, the resiliency support ABFT demands from
the MPI library largely exceeds the specifications of the MPI standard [16] and
has proven to be an unrealistic requirement, considering that only a handful of
MPI implementations provide it.

The current MPI-2 standard leaves open an optional behavior regarding fail-
ures to qualify as a “high quality implementation.” According to this specifica-
tion, when using the MPI ERRORS RETURN error handler, the MPI library
should return control to the user when it detects a failure. In this paper, we
propose the idea of Checkpoint-on-Failure (CoF) as a minimal impact feature to
enable MPI libraries to support forward recovery strategies. Despite the default
application-wide abort action that all notable MPI implementations undergo in
case of a failure, we demonstrate that an implementation that enables CoF is
simple and yet effectively supports ABFT recovery strategies that completely
avoid costly periodic checkpointing.

The remainder of this paper is organized as follows. The next section presents
typical fault tolerant approaches and related works to discuss their requirements
and limitations. Then in Section 3 we present the CoF approach, and the mini-
mal support required from the MPI implementation. Section 4 presents a prac-
tical use case: the ABFT QR algorithm and how it has been modified to fit
the proposed paradigm. Section 5 presents an experimental evaluation of the
implementation, followed by our conclusions.

2 Background and Related Work

Message passing is the dominant form of communication used in parallel ap-
plications, and MPI is the most popular library used to implement it. In this
context, the primary form of fault tolerance today is rollback recovery with peri-
odical checkpoints to disk. While this method is effective in allowing applications

Checkpoint-on-Failure Protocol 479

to recover from failures using a previously saved state, it causes serious scala-
bility concerns [2]. Moreover, periodic checkpointing requires precise heuristics
for fault frequency to minimize the number of superfluous, expensive protective
actions [17,10,14,4,1]. In contrast, the work presented here focuses on enabling
forward recovery. Checkpoint actions are taken only after a failure is detected;
hence the checkpoint interval is optimal by definition, as there will be one check-
point interval per effective fault.

Forward recovery leverages algorithms properties to complete operations de-
spite failures. In Naturally Fault Tolerant applications, the algorithm can com-
pute the solution while totally ignoring the contributions of failed processes.
In ABFT applications, a recovery phase is necessary, but failure damaged data
can be reconstructed only by applying mathematical operations on the remaining
dataset [12]. A recoverable dataset is usually created by initially computing re-
dundant data, dispatched so as to avoid unrecoverable loss of information from
failures. At each iteration, the algorithm applies the necessary mathematical
transformations to update the redundant data (at the expense of more commu-
nication and computation). Despite great scalability and low overhead [13,8], the
adoption of such algorithms has been hindered by the requirement that the sup-
port environment must continue to consistently deliver communications, even
after being crippled by failures.

The current MPI Standard (MPI-2.2, [16]) does not provide significant help to
deal with the required type of behavior. Section 2.8 states in the first paragraph:
“MPI does not provide mechanisms for dealing with failures in the communica-
tion system. [. . .] Whenever possible, such failures will be reflected as errors in
the relevant communication call. Similarly, MPI itself provides no mechanisms
for handling processor failures.” Failures, be they due to a broken link or a dead
process, are considered resource errors. Later, in the same section: “This doc-
ument does not specify the state of a computation after an erroneous MPI call
has occurred. The desired behavior is that a relevant error code be returned, and
the effect of the error be localized to the greatest possible extent.” So, for the
current standard, process or communication failures are to be handled as errors,
and the behavior of the MPI application, after an error has been returned, is
left unspecified by the standard. However, the standard does not prevent imple-
mentations from going beyond its requirements, and on the contrary, encourages
high-quality implementations to return errors, once a failure is detected. Unfor-
tunately, most of the implementations of the MPI Standard have taken the path
of considering process failures as unrecoverable errors, and the processes of the
application are most often killed by the runtime system when a failure hits any
of them, leaving no opportunity for the user to mitigate the impact of failures.

Some efforts have been undertaken to enable ABFT support in MPI. FT-
MPI [9] was an MPI-1 implementation which proposed to change the MPI se-
mantic to enable repairing communicators, thus re-enabling communications for
applications damaged by failures. This approach has proven successful and ap-
plications have been implemented using FT-MPI. However, these modifications

480 W. Bland et al.

were not adopted by the MPI standardization body, and the resulting lack of
portability undermined user adoption for this fault tolerant solution.

In [11], the authors discuss alternative or slightly modified interpretations of
the MPI standard that enable some forms of fault tolerance. One core idea is
that process failures happening in another MPI world, connected only through an
inter-communicator, should not prevent the continuation of normal operations.
The complexity of this approach, for both the implementation and users, has
prevented these ideas from having a practical impact. In the CoF approach, the
only requirement from the MPI implementation is that it does not forcibly kill
the living processes without returning control. No stronger support from the MPI
stack is required, and the state of the library is left undefined. This simplicity
has enabled us to actually implement our proposition, and then experimentally
support and evaluate a real ABFT application. Similarly, little effort would be
required to extend MPICH-2 to support CoF (see Section 7 of the Readme2).

3 Enabling Algorithm-Based Fault Tolerance in MPI

3.1 The Checkpoint-on-Failure Protocol

In this paper, we advocate that an extremely efficient form of fault tolerance
can be implemented, strictly based on the MPI standard, for applications capa-
ble of taking advantage of forward recovery. ABFT methods are an example of
forward recovery algorithms, capable of restoring missing data from redundant
information located on other processes. This forward recovery step requires com-
munication between processes, and we acknowledge that, in light of the current
standard, requiring the MPI implementation to maintain service after failures is
too demanding. However, a high-quality MPI library should at least allow the
application to regain control following a process failure. We note that this con-
trol gives the application the opportunity to save its state and exit gracefully,
rather than the usual behavior of being aborted by the MPI implementation.

Algorithm 1. The Checkpoint-on-Failure Protocol

1. MPI returns an error on surviving processes
2. Surviving processes checkpoint
3. Surviving processes exit
4. A new MPI application is started
5. Processes load from checkpoint (if any)
6. Processes enter ABFT dataset recovery
7. Application resumes

?

ABFT
Recovery

1

2
3

4

5 6
7

Based on these observations, we propose a new approach for supporting ABFT
applications, called Checkpoint-on-Failure (CoF). Algorithm 1 presents the steps

2 http://www.mcs.anl.gov/research/projects/mpich2/documentation/

files/mpich2-1.4.1-README.txt

http://www.mcs.anl.gov/research/projects/mpich2/documentation/files/mpich2-1.4.1-README.txt
http://www.mcs.anl.gov/research/projects/mpich2/documentation/files/mpich2-1.4.1-README.txt

Checkpoint-on-Failure Protocol 481

involved in the CoF method. In the associated explanatory figure, horizontal
lines represent the execution of processes in two successive MPI applications.
When a failure eliminates a process, other processes are notified and regain
control from ongoing MPI calls (1). Surviving processes assume the MPI library
is dysfunctional and do not further call MPI operations (in particular, they do
not yet undergo ABFT recovery). Instead, they checkpoint their current state
independently and abort (2, 3). When all processes exited, the job is usually
terminated, but the user (or a managing script, batch scheduler, runtime support
system, etc.) can launch a new MPI application (4), which reloads processes
from checkpoint (5). In the new application, the MPI library is functional and
communications possible; the ABFT recovery procedure is called to restore the
data of the process(es) that could not be restarted from checkpoint (6). When
the global state has been repaired by the ABFT procedure, the application is
ready to resume normal execution.

Compared to periodic checkpointing, in CoF, a process pays the cost of cre-
ating a checkpoint only when a failure, or multiple simultaneous failures have
happened, hence an optimal number of checkpoints during the run (and no check-
point overhead on failure-free executions). Moreover, in periodic checkpointing,
a process is protected only when its checkpoint is stored on safe, remote storage,
while in CoF, local checkpoints are sufficient: the forward recovery algorithm re-
constructs datasets of processes which cannot restart from checkpoint. Of course,
CoF also exhibits the same overhead as the standard ABFT approach: the ap-
plication might need to do extra computation, even in the absence of failures, to
maintain internal redundancy (whose degree varies with the maximum number
of simultaneous failures) used to recover data damaged by failures. However,
ABFT techniques often demonstrate excellent scalability; for example, the over-
head on failure-free execution of the ABFT QR operation (used as an example
in Section 4) is inversely proportional to the number of processes.

3.2 MPI Requirements for Checkpoint-on-Failure

Returning Control over Failures: In most MPI implementations,
MPI ERRORS ABORT is the default (and often, only functional) error
handler. However, the MPI standard also defines the MPI ERRORS RETURN
handler. To support CoF, the MPI library should never deadlock because
of failures, but invoke the error handler, at least on processes doing direct
communications with the failed process. The handler takes care of cleaning up
at the library level and returns control to the application.

Termination after Checkpoint: A process that detects a failure ceases to use
MPI. It only checkpoints on some storage and exits without calling MPI Finalize.
Exiting without calling MPI Finalize is an error from the MPI perspective, hence
the failure cascades and MPI eventually returns with a failure notification on
every process, which triggers their own checkpoint procedure and termination.

482 W. Bland et al.

3.3 OpenMPI Implementation

OpenMPI is an MPI 2.2 implementation architected such that it contains two
main levels, the runtime (ORTE) and the MPI library (OMPI). As with most
MPI library implementations, the default behavior of OpenMPI is to abort after
a process failure. This policy was implemented in the runtime system, preventing
any kind of decision from the MPI layer or the user-level. The major change
requested by the CoF protocol was to make the runtime system resilient, and
leave the decision in case of failure to the MPI library policy, and ultimately to
the user application.

Failure Resilient Runtime: The ORTE runtime layer provides an out-of-band
communication mechanism (OOB) that relays messages based on a routing pol-
icy. Node failures not only impact the MPI communications, but also disrupt
routing at the OOB level. The default routing policy in the Open MPI runtime
has been amended to allow for self-healing behaviors; this effort is not entirely
necessary, but it avoids the significant downtime imposed by a complete rede-
ployment of the parallel job with resubmission in queues. The underlying OOB
topology is automatically updated to route around failed processes. In some
routing topologies, such as a star, this is a trivial operation and only requires
excluding the failed process from the routing tables. For more elaborate topolo-
gies, such as a binomial tree, the healing operation involves computing the closest
neighbors in the direction of the failed process and reconnecting the topology
through them. The repaired topology is not rebalanced, resulting in degraded
performance but complete functionality after failures. Although in-flight mes-
sages that were currently “hopping” through the failed processes are lost, other
in-flight messages are safely routed on the repaired topology. Thanks to self-
healing topologies, the runtime remains responsive, even when MPI processes
leave.

Failure Notification: The runtime has been augmented with a failure detection
service. To track the status of the failures, an incarnation number has been
included in the process names. Following a failure, the name of the failed process
(including the incarnation number) is broadcasted over the OOB topology. By
including this incarnation number, we can identify transient process failures,
prevent duplicate detections, and track message status. ORTE processes monitor
the health of their neighbors in the OOB routing topology. Detection of other
processes rely on a failure resilient broadcast that overlays on the OOB topology.
This algorithm has a low probability of creating a bi-partition of the routing
topology, hence ensuring a high accuracy of the failure detector. However, the
underlying OOB routing algorithm has a significant influence on failure detection
and propagation time, as the experiments will show. On each node, the ORTE
runtime layer forwards failure notifications to the MPI layer, which has been
modified to invoke the appropriate MPI error handler.

Checkpoint-on-Failure Protocol 483

4 Example: The QR Factorization

In this section, we propose to illustrate the applicability of CoF by consider-
ing a representative routine of a widely used class of algorithms: dense linear
factorizations. The QR factorization is a cornerstone building block in many
applications, including solving Ax = b when matrices are ill-conditioned, com-
puting eigenvalues, least square problems, or solving sparse systems through the
GMRES iterative method. For an M ×N matrix A, the QR factorization pro-
duces Q and R, such that A = QR and Q is an M×M orthogonal matrix and R
is an M ×N upper triangular matrix. The most commonly used implementation
of the QR algorithm on a distributed memory machine comes from the ScaLA-
PACK linear algebra library [7], based on the block QR algorithm. It uses a 2D
block-cyclic distribution for load balance, and is rich in level 3 BLAS operations,
thereby achieving high performance.

4.1 ABFT QR Factorization

In the context of FT-MPI, the ScaLAPACK QR algorithm has been rendered
fault tolerant through an ABFT method in previous works [8]. This ABFT al-
gorithm protects both the left (Q) and right (R) factors from fail-stop failures
at any time during the execution. At the time of failure, every surviving pro-
cess is notified by FT-MPI. FT-MPI then spawns a replacement process that
takes the same grid coordinates in the P ×Q block-cyclic distribution. Missing
checksums are recovered from duplicates, a reduction collective communication
recovers missing data blocks in the right factor from checksums. The left factor
is protected by the Q-parallel panel checksum, it is either directly recovered from
checksum, or by recomputing the panels in the current Q-wide section (see [8]).
Although this algorithm is fault tolerant, it requires continued service from the
MPI library after failures – which is a stringent requirement that can be waived
with CoF.

4.2 Checkpoint-on-Failure QR

Checkpoint Procedure: Compared to a regular ABFT algorithm, CoF requires
a different checkpoint procedure. System-level checkpointing is not applicable,
as it would result in restoring the state of the broken MPI library upon restart.
Instead, a custom MPI error handler invokes an algorithm specific checkpoint
procedure, which simply dumps the matrices and the value of important loop
indices into a file.

State Restoration: A ScaLAPACK program has a deep call stack, layering func-
tions from multiple software packages, such as PBLAS, BLACS, LAPACK and
BLAS. In the FT-MPI version of the algorithm, regardless of when the failure is
detected, the current iteration of the algorithm must be completed before enter-
ing the recovery procedure. This ensures an identical call stack on every process
and a complete update of the checksums. In the case of the CoF protocol, failures

484 W. Bland et al.

interrupt the algorithm immediately, the current iteration cannot be completed
due to lack of communication capabilities. This results in potentially diverging
call stacks and incomplete updates of checksums. However, because failure no-
tification happens only in MPI, lower level, local procedures (BLAS, LAPACK)
are never interrupted.

To resolve the call stack issue, every process restarted from checkpoint un-
dergoes a “dry run” phase. This operation mimics the loop nests of the QR
algorithm down to the PBLAS level, without actually applying modifications to
or exchanging data. When the same loop indices as before the failure are reached,
the matrix content is loaded from the checkpoint; the state is then similar to that
of the FT-MPI based ABFT QR after a failure. The regular recovery procedure
can be applied: the current iteration of the factorization is completed to update
all checksums and the dataset is rebuilt using the ABFT reduction.

5 Performance Discussion

In this section, we use our OpenMPI and ABFT QR implementations to evaluate
the performance of the CoF protocol. We use two test platforms. The first ma-
chine, “Dancer,” is a 16-node cluster. All nodes are equipped with two 2.27GHz
quad-core Intel E5520 CPUs, with a 20GB/s Infiniband interconnect. Solid State
Drive disks are used as the checkpoint storage media. The second system is the
Kraken supercomputer. Kraken is a Cray XT5 machine, with 9,408 compute
nodes. Each node has two Istanbul 2.6 GHz six-core AMD Opteron processors,
16 GB of memory, and are connected through the SeaStar2+ interconnect. The
scalable cluster file system “Lustre” is used to store checkpoints.

5.1 MPI Library Overhead

One of the concerns with fault tolerance is the amount of overhead introduced by
the fault tolerance management additions. Our implementation of fault detection
and notification is mostly implemented in the non-critical ORTE runtime. Typ-
ical HPC systems feature a separated service network (usually Ethernet based)
and a performance interconnect, hence health monitoring traffic, which happens
on the OOB service network, is physically separated from the MPI communica-
tions, leaving no opportunity for network jitter. Changes to MPI functions are
minimal: the same condition that used to trigger unconditional abort has been
repurposed to trigger error handlers. As expected, no impact on MPI bandwidth
or latency was measured (Infiniband and Portals results not shown for lack of
space). The memory usage of the MPI library is slightly increased, as the incar-
nation number doubles the size of process names; however, this is negligible in
typical deployments.

5.2 Failure Detection

According to the requirement specified in Section 3.2, only in-band failure de-
tection is required to enable CoF. Processes detecting a failure checkpoint then

Checkpoint-on-Failure Protocol 485

exit, cascading the failure to processes communicating with them. However, no
recovery action (in particular checkpointing) can take place before a failure has
been notified. Thanks to asynchronous failure propagation in the runtime, re-
sponsiveness can be greatly improved, with a high probability for the next MPI
call to detect the failures, regardless of communication pattern or checkpoint
duration.

 1

 1.5

 2

 2.5

 3

 3.5

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

D
et

ec
ti

o
n

 T
im

e
(m

s)

Rank

Failure injected at:
rank 1 (Low)
rank 8 (Middle)
rank 15 (High)

(a) Linear OOB Routing

 1

 1.5

 2

 2.5

 3

 3.5

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

D
et

ec
ti

o
n

 T
im

e
(m

s)
Rank

Failure injected at:
rank 1 (Low)
rank 8 (Middle)
rank 15 (High)

(b) Binomial OOB Routing

Fig. 1. Failure detection time, sorted by process rank, depending on the OOB overlay
network used for failure propagation

We designed a micro-benchmark to measure failure detection time as experi-
enced by MPI processes. The benchmark code synchronizes with an MPI Barrier,
stores the reference date, injects a failure at a specific rank, and enters a ring al-
gorithm until the MPI error handler stores the detection date. The OOB routing
topology used by the ORTE runtime introduces a non-uniform distance to the
failed process, hence failure detection time experienced by a process may vary
with the position of the failed process in the topology, and the OOB topology.
Figure 1(a) and 1(b) present the case of the linear and binomial OOB topologies,
respectively. The curves “Low, Middle, High” present the behavior for failures
happening at different positions in the OOB topology. On the horizontal axis
is the rank of the detecting process, on the vertical axis is the detection time
it experienced. The experiment uses 16 nodes, with one process per node, MPI
over Infiniband, OOB over Ethernet, an average of 20 runs, and the MPI barrier
latency is four orders of magnitude lower than measured values.

In the linear topology (Figure 1(a)) every runtime process is connected to
the mpirun process. For a higher rank, failure detection time increases linearly
because it is notified by the mpirun process only after the notification has been
sent to all lower ranks. This issue is bound to increase with scale. The binomial
tree topology (Figure 1(b)) exhibits a similar best failure detection time. How-
ever, this more scalable topology has a low output degree and eliminates most
contentions on outgoing messages, resulting in a more stable, lower average de-
tection time, regardless of the failure position. Overall, failure detection time is
on the order of milliseconds, a much smaller figure than typical checkpoint time.

486 W. Bland et al.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

20k 40k 60k 80k 100k

P
er

fo
rm

an
ce

 (
T

fl
o

p
s/

s)

Matrix Size (N)

ScaLAPACK QR
CoF-QR (w/o failure)
CoF-QR (w/1 failure)

Fig. 2. ABFT QR and
one CoF recovery on
Kraken (Lustre)

 0

 100

 200

 300

 400

 500

 600

 700

 800

10k 20k 30k 40k 50k

P
er

fo
rm

an
ce

 (
G

fl
o

p
s/

s)

Matrix Size (N)

ScaLAPACK QR
CoF-QR (w/o failure)
CoF-QR (w/1 failure)

Fig. 3. ABFT QR and
one CoF recovery on
Dancer (local SSD)

 0

 1

 2

 3

 4

 5

 6

 7

20k 25k 30k 35k 40k 45k 50k

A
p

p
lic

at
io

n
 T

im
e

S
h

ar
e

(%
)

Matrix Size (N)

Load Checkpoint
Dump Checkpoint

ABFT Recovery

Fig. 4. Time breakdown
of one CoF recovery on
Dancer (local SSD)

5.3 Checkpoint-on-Failure QR Performance

Supercomputer Performance: Figure 2 presents the performance on the Kraken
supercomputer. The process grid is 24×24 and the block size is 100. The CoF-QR
(no failure) presents the performance of the CoF QR implementation, in a fault-
free execution; it is noteworthy, that when there are no failures, the performance
is exactly identical to the performance of the unmodified FT-QR implementa-
tion. The CoF-QR (with failure) curves present the performance when a failure
is injected after the first step of the PDLARFB kernel. The performance of the
non-fault tolerant ScaLAPACK QR is also presented for reference.

Without failures, the performance overhead compared to the regular ScaLA-
PACK is caused by the extra computation to maintain the checksums inherent
to the ABFT algorithm [8]; this extra computation is unchanged between CoF-
QR and FT-QR. Only on runs where a failure happened do the CoF protocols
undergoe the supplementary overhead of storing and reloading checkpoints. How-
ever, the performance of the CoF-QR remains very close to the no-failure case.
For instance, at matrix size N=100,000, CoF-QR still achieves 2.86 Tflop/s after
recovering from a failure, which is 90% of the performance of the non-fault toler-
ant ScaLAPACK QR. This demonstrates that the CoF protocol enables efficient,
practical recovery schemes on supercomputers.

Impact of Local Checkpoint Storage: Figure 3 presents the performance of the
CoF-QR implementation on the Dancer cluster with a 8 × 16 process grid. Al-
though a smaller test platform, the Dancer cluster features local storage on nodes
and a variety of performance analysis tools unavailable on Kraken. As expected
(see [8]), the ABFT method has a higher relative cost on this smaller machine.
Compared to the Kraken platform, the relative cost of CoF failure recovery is
smaller on Dancer. The CoF protocol incurs disk accesses to store and load
checkpoints when a failure hits, hence the recovery overhead depends on I/O
performance. By breaking down the relative cost of each recovery step in CoF,
Figure 4 shows that checkpoint saving and loading only take a small percentage
of the total run-time, thanks to the availability of solid state disks on every node.

Checkpoint-on-Failure Protocol 487

Since checkpoint reloading immediately follows checkpointing, the OS cache sat-
isfy most disk access, resulting in high I/O performance. For matrices larger than
N=44,000, the memory usage on each node is high and decrease the available
space for disk cache, explaining the decline in I/O performance and the higher
cost of checkpoint management. Overall, the presence of fast local storage can
be leveraged by the CoF protocol to speedup recovery (unlike periodic check-
pointing, which depends on remote storage by construction). Nonetheless, as
demonstrated by the efficiency on Kraken, while this is a valuable optimization,
it is not a mandatory requirement for satisfactory performance.

6 Concluding Remarks

In this paper, we presented an original scheme to enable forward recovery using
only features of the current MPI standard. Rollback recovery, which relies on
periodic checkpointing has a variety of issues. The ideal period of checkpoint, a
critical parameter, is particularly hard to assess. Too short a period wastes time
and resources on unnecessary Input/Output. Overestimating the period results
in dramatically increasing the lost computation when returning to the distant
last successful checkpoint. Although Checkpoint-on-Failure involves checkpoint-
ing, it takes checkpoint images at optimal times by design: only after a failure
has been detected. This small modification enables the deployment of ABFT
techniques, without requiring a complex, unlikely to be available MPI imple-
mentation that itself survives failures. The MPI library needs only to provide
the feature set of a high quality implementation of the MPI standard: the MPI
communications may be dysfunctional after a failure, but the library must return
control to the application instead of aborting brutally.

We demonstrated, by providing such an implementation in OpenMPI, that
this feature set can be easily integrated without noticeable impact on communi-
cation performance. We then converted an existing ABFT QR algorithm to the
CoF protocol. Beyond this example, the CoF protocol is applicable on a large
range of applications that already feature an ABFT version (LLT, LU [5], CG [3],
etc.). Many master-slave and iterative methods enjoy an extremely inexpensive
forward recovery strategy where the damaged domains are simply discarded, and
can also benefit from the CoF protocol.

The performance on the Kraken supercomputer reaches 90% of the non-fault
tolerant algorithm, even when including the cost of recovering from a failure
(a figure similar to regular, non-compliant MPI ABFT). In addition, on a plat-
form featuring node local storage, the CoF protocol can leverage low overhead
checkpoints (unlike rollback recovery that requires remote storage).

The MPI standardization body, the MPI Forum, is currently considering
the addition of new MPI constructs, functions and semantics to support fault-
tolerant applications3. While these additions may decrease the cost of recovery,
they are likely to increase the failure-free overhead on fault tolerant application

3 https://svn.mpi-forum.org/trac/mpi-forum-web/wiki/FaultToleranceWikiPage

https://svn.mpi-forum.org/trac/mpi-forum-web/wiki/FaultToleranceWikiPage

488 W. Bland et al.

performance. It is therefore paramount to compare the cost of the CoF proto-
col with prospective candidates to standardization on a wide, realistic range of
applications, especially those that feature a low computational intensity.

References

1. Cappello, F., Casanova, H., Robert, Y.: Preventive migration vs. preventive check-
pointing for extreme scale supercomputers. PPL 21(2), 111–132 (2011)

2. Cappello, F., Geist, A., Gropp, B., Kalé, L.V., Kramer, B., Snir, M.: Toward ex-
ascale resilience. IJHPCA 23(4), 374–388 (2009)

3. Chen, Z., Fagg, G.E., Gabriel, E., Langou, J., Angskun, T., Bosilca, G., Dongarra,
J.: Fault tolerant high performance computing by a coding approach. In: Pro-
ceedings of the Tenth ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP 2005, pp. 213–223. ACM, New York (2005)

4. Daly, J.T.: A higher order estimate of the optimum checkpoint interval for restart
dumps. Future Gener. Comput. Syst. 22, 303–312 (2006)

5. Davies, T., Karlsson, C., Liu, H., Ding, C., Chen, Z.: High Performance Linpack
Benchmark: A Fault Tolerant Implementation without Checkpointing. In: Proceed-
ings of the 25th ACM International Conference on Supercomputing (ICS 2011).
ACM (2011)

6. Dongarra, J., Beckman, P., et al.: The international exascale software roadmap.
IJHPCA 25(11), 3–60 (2011)

7. Dongarra, J.J., Blackford, L.S., Choi, J., et al.: ScaLAPACK user’s guide. Society
for Industrial and Applied Mathematics, Philadelphia (1997)

8. Du, P., Bouteiller, A., Bosilca, G., Herault, T., Dongarra, J.: Algorithm-based Fault
Tolerance for Dense Matrix Factorizations. In: 17th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming. ACM (2012)

9. Fagg, G.E., Dongarra, J.: FT-MPI: Fault Tolerant MPI, Supporting Dynamic Ap-
plications in a Dynamic World. In: Dongarra, J., Kacsuk, P., Podhorszki, N. (eds.)
PVM/MPI 2000. LNCS, vol. 1908, p. 346. Springer, Heidelberg (2000)

10. Gelenbe, E.: On the optimum checkpoint interval. JoACM 26, 259–270 (1979)
11. Gropp, W., Lusk, E.: Fault tolerance in message passing interface programs. Int.

J. High Perform. Comput. Appl. 18, 363–372 (2004)
12. Huang, K.H., Abraham, J.A.: Algorithm-based fault tolerance for matrix opera-

tions. IEEE Transactions on Computers 100(6), 518–528 (1984)
13. Luk, F.T., Park, H.: An analysis of algorithm-based fault tolerance techniques.

Journal of Parallel and Distributed Computing 5(2), 172–184 (1988)
14. Plank, J.S., Thomason, M.G.: Processor allocation and checkpoint interval selec-

tion in cluster computing systems. JPDC 61, 1590 (2001)
15. Schroeder, B., Gibson, G.A.: Understanding Failures in Petascale Computers. Sci-

DAC, Journal of Physics: Conference Series 78 (2007)
16. The MPI Forum. MPI: A Message-Passing Interface Standard, Version 2.2. Tech-

nical report (2009)
17. Young, J.W.: A first order approximation to the optimum checkpoint interval.

Commun. ACM 17, 530–531 (1974)

Hierarchical Partitioning Algorithm

for Scientific Computing
on Highly Heterogeneous CPU + GPU Clusters

David Clarke1, Aleksandar Ilic2, Alexey Lastovetsky1, and Leonel Sousa2

1 School of Computer Science and Informatics, University College Dublin,
Belfield, Dublin 4, Ireland

2 INESC-ID, IST/Technical University of Lisbon, Rua Alves Redol, 9, 1000-029
Lisbon, Portugal

Abstract. Hierarchical level of heterogeneity exists in many modern
high performance clusters in the form of heterogeneity between comput-
ing nodes, and within a node with the addition of specialized accelerators,
such as GPUs. To achieve high performance of scientific applications on
these platforms it is necessary to perform load balancing. In this paper
we present a hierarchical matrix partitioning algorithm based on realistic
performance models at each level of hierarchy. To minimise the total ex-
ecution time of the application it iteratively partitions a matrix between
nodes and partitions these sub-matrices between the devices in a node.
This is a self-adaptive algorithm that dynamically builds the performance
models at run-time and it employs an algorithm to minimise the total
volume of communication. This algorithm allows scientific applications
to perform load balanced matrix operations with nested parallelism on
hierarchical heterogeneous platforms. To show the effectiveness of the
algorithm we applied it to a fundamental operation in scientific parallel
computing, matrix multiplication. Large scale experiments on a hetero-
geneous multi-cluster site incorporating multicore CPUs and GPU nodes
show that the presented algorithm outperforms current state of the art
approaches and successfully load balance very large problems.

Keywords: parallel applications, heterogeneous platforms, GPU, data
partitioning algorithms, functional performance models, matrix multipli-
cation.

1 Introduction

In this paper we present a matrix partitioning algorithm for load balancing par-
allel applications running on highly heterogeneous hierarchical platforms. The
target platform is a dedicated heterogeneous distributed memory platform with
multi level hierarchy. More specifically, we focus on a platform with two lev-
els of hierarchy. At the top level is a distributed memory cluster of heteroge-
neous nodes, and at the lower level, each node consists of a number of devices
which may be a combination of multicore CPUs and specialized accelerators/co-
processors (GPUs). We refer to both nodes and devices collectively as processing

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 489–501, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

490 D. Clarke et al.

elements. The applications we target perform matrix operations and are charac-
terised by discretely divisible computational workloads where the computations
can be split into independent units, such that each computational unit requires
the same amount of computational work. In addition, computational workload
is directly proportional to the size of data and dependent on data locality. High
performance of these applications can be achieved on heterogeneous platforms
by performing load balancing at each level of hierarchy. Load balancing ensures
that all processors complete their work within the same time. This requirement
is satisfied by partitioning the computational workload unevenly between pro-
cessing elements, at each level of hierarchy, with respect to the performance of
that element.

In order to achieve load balancing on our target platform, the partitioning al-
gorithm must be designed to take into account both the hierarchy and the high
level of heterogeneity of the platform. In contrast to the traditional, CPU-only
distributed memory systems, highly heterogeneous environments employ devices
which have fundamental architectural differences. The ratio of performance dif-
ferences between devices may be orders of magnitude more than the ratio be-
tween traditional heterogeneous platforms; moreover this ratio can vary greatly
with a change in problem size. For example, accelerators need to physically load
and offload portions of data on which computations are performed in order to
ensure high performance and full execution control, and the executable problem
size is limited by the available device memory. Finally, architectural differences
impose new collaborative programming challenges, where it becomes necessary
to use different programming models, vendor-specific tools and libraries in order
to approach the per-device peak performance. However, even if some of the al-
ready existing collaborative execution environments are used (such as OpenCL,
StarPU [1] or CHPS [11]), the problem of efficient cross-device problem parti-
tioning and load balancing still remains.

The work proposed herein takes into account this complex heterogeneity by
using realistic performance models of the employed devices and nodes. The model
of each device or node is constructed by measuring the real performance of the
application when it runs on that device or node. Thus, they are capable of in-
trinsically encapsulating all the above-mentioned architectural and performance
diversities. Traditional partitioning algorithms define the performance of each
processor by a single number. We refer to this simplistic model of processor
performance as a constant performance model (CPM). The functional perfor-
mance model (FPM), proposed in [16], is a more realistic model of processor
performance, where processor speed is a function of problem size. Partitioning
algorithms which use these FPMs always achieve better load balancing than
traditional CPM-based algorithms.

The main contribution of this work is a new hierarchical matrix partitioning
algorithm, based on functional performance models, which performs load bal-
ancing at both the node and device levels. This algorithm performs a one to
one mapping of computational workload and data to nodes and a one to one
mapping of workload to devices. The device level partitioning is performed on

Hierarchical Partitioning Algorithm for Scientific Computing 491

each node by sub-partitioning workload assigned to that node. In contrast to the
some state of the art approaches, this algorithm does not require any a priori
information about the platform, instead all required performance information
is found by performing real benchmarks of the core computational kernel of an
application.

To the best of our knowledge this is the first work that targets large scale parti-
tioning problems for hierarchical and highly heterogeneous distributed systems.
To show the effectiveness of the proposed algorithm we applied it to parallel
matrix multiplication, which is representative of the class of computationally
intensive parallel scientific applications that we target. Experiments on 3 in-
terconnected computing clusters, using a total of 90 CPU+GPU heterogeneous
nodes, showed that, for a wide range of problem sizes, the application based on
FPM-based partitioning outperformed applications based on CPM algorithms.

The rest of the paper is organized as follows. In Section 2, we discuss related
work. In Section 3, we propose hierarchical partitioning algorithm for highly
heterogeneous CPU+GPU clusters. The experimental results are presented in
Section 4. Finally, concluding remarks are given in Section 5.

2 Related Work

Divisible load theory(DLT), surveyed in [21], defines a class of applications char-
acterised by workload that can be divided into discrete parts for parallel com-
putation. The applications we target belong to this class. Scheduling and work
stealing algorithms [7,3,20], often used in DLT, move workload between pro-
cessing elements, during execution of the application, to achieve load balancing.
However, on distributed memory platforms, such an approach can incur a high
cost of data migration with applications where data locality is important. More-
over we are not aware of any dynamic-scheduling/work-stealing matrix multipli-
cation application for highly heterogeneous distributed memory platforms.

A different class of load balancing algorithms are partitioning algorithms, also
known as predicting-the-future; so called because they rely on performance mod-
els as input to predict the future execution characteristics of the application. The
global workload is partitioned between the available processing elements. Tra-
ditional partitioning algorithms [2,8,10,14,18,19] model processor performance
by a single positive number and partition workload proportionally. We refer to
these simplistic models as constant performance models (CPM).

The partitioning algorithm proposed in this paper predicts future performance
by using more realistic functional performance models (FPM) [16]. This algo-
rithm is designed to be self-adaptable [17], making it suitable for applications for
which each run is considered to be unique because of a change of input parame-
ters or execution on a unique subset of hardware. This is achieved by dynamically
building partial estimates of the full speed functions to the required degree of
accuracy. It has been shown in [5] that applications using partitioning based on
FPMs can outperform applications based on CPMs. In [12], we investigated the
potentials of hierarchical divisible load scheduling on our target platform using

492 D. Clarke et al.

the master-worker paradigm. Experiments on a network of off-the-shelf heteroge-
neous desktops (CPU + GPU), shows the benefit of using realistic performance
models to load balance and efficiently overlap computations and communica-
tions at the GPU device level. In this paper, we focus on load balancing with
respect to computational performance of processing elements, and to this end,
we do not measure the interconnect speed between each pair of processing el-
ements; instead we arrange elements such that the communication volume is
minimised [2].

Several scientific studies have already dealt with the problems investigated
herein, but only partially. For example, MAGMA [9] is a library for matrix al-
gebra for GPU and multicore which uses scheduling for load balancing, but only
on a single node. In terms of the target platform, [15,13] consider homogeneous
multi-GPU cluster systems without CPUs, whereas [6] is designed for a homo-
geneous hierarchical platform.

3 Hierarchical Matrix Partitioning Algorithm

A typical computationally intensive parallel scientific application performs the
same iterative core computation on a set of data. The general scheme of such
an application can be summarised as follows: (i) all data is partitioned over pro-
cessing elements, (ii) some independent calculations are carried out in parallel,
and (iii) some synchronisation takes place. High performance on a distributed
memory, hierarchical heterogeneous platform, for such an application, is achieved
by partitioning workload in proportion to the speed of the processing elements.
The speed of a processing element is best represented by a continuous function
of problem size [5]. These FPMs are built empirically for each application on
each processing element.

Building these speed functions for the full range of potential problem sizes
can be expensive. To reduce this cost and allow the parallel application to be
self adaptable to new platforms we make two optimisations: (i) many compu-
tationally intensive scientific applications repeat the same core computational
kernel many times on different data; to find the performance of this application
for a given problem size it is only necessary to benchmark one representative
iteration of the kernel; (ii) partial estimates of the speed functions may be built
at application run-time to a sufficient level of accuracy to achieve load balanc-
ing [17].

Our target platform is a two level hierarchical distributed platform with q
nodes, Q1, . . . , Qq, where a node Qi has pi devices, Pi1, . . . , Pipi . The problem
to be solved by this algorithm is to partition a matrix between these nodes and
devices with respect to the performance of each of these processing elements. The
proposed partitioning algorithm is iterative and converges towards an optimum
distribution which balances the workload. It consists of two iterative algorithms,
inter-node partitioning algorithm (INPA) and inter-device partitioning algorithm
(IDPA). The IDPA algorithm is nested inside the INPA algorithm.

Hierarchical Partitioning Algorithm for Scientific Computing 493

Without loss of generality we will work with square N × N matrices. We
introduce a blocking factor b to allow optimised libraries to achieve their peak
performance as well as reducing the number of communications. For simplicity
we assume N to be a multiple of b, hence there is a total of W computational
units to be distributed, where W = (N/b)× (N/b).

The INPA partitions the total matrix into q sub-matrices to be processed on
each heterogeneous computing node. The sub-matrix owned by node Qi has an
area equal to wi × b × b, where w1 + . . . + wq = W. The Geometric partitioning
algorithm (GPA) uses experimentally built speed functions to calculate a load
balanced distribution w1, . . . , wq. The shape and ordering of these sub-matrices
is calculated by the communication minimising algorithm (CMA). The CMA
uses column-based 2D arrangement of nodes and outputs the heights bmi and
widths bni for each of the q nodes, such that mi × ni = wi, bm = b ×m and
bn = b × n (Fig. 1(a)). This two dimensional partitioning algorithm uses a
column-based arrangement of processors. The values of mi and ni are chosen so
that the column widths sum up to N and heights of sub-matrices in a column
sum to N .

The IDPA iteratively measures, on each device, the time of execution of the
application specific core computational kernel with a given size while converging
to a load balanced inter-device partitioning. It returns the kernel execution time
of the last iteration to the INPA. IDPA calls the GPA to partition the sub-matrix
owned by Qi into vertical slices of width dij , such that di1 + . . . + dip = bni

(Fig. 1(b)) to be processed on each device within a Qi node. Device Pij will be
responsible for doing matrix operations on bmi × dij matrix elements.

… …

N

N

b

b

Qi

bni

bmi

M

Pij

dij

Mi

Mi
bni

bmi

(a) (b)

Fig. 1. Two level matrix partitioning scheme: (a) two dimensional partitioning between
the nodes; (b) one dimensional partitioning between devices in a node

We now present an outline of a parallel application using the proposed hier-
archical partitioning algorithm. The partitioning is executed immediately before
execution of the parallel algorithm. The outline is followed by a detailed descrip-
tion of the individual algorithms.

494 D. Clarke et al.

INPA
(
IN: N, b, q, p1, . . . , pq OUT: {mi, ni, di1, . . . , dip}qi=1

) {
WHILE inter-node imbalance

CMA
(
IN: w1, . . . , wq OUT: (m1, n1), . . . , (mq, nq)

)
;

On each node i (IDPA):
WHILE inter-device imbalance

On each device j: kernel
(
IN: bmi, bni, dij OUT: tij

)
;

GPA
(
IN: pi, bni, piFPMs OUT: di1, . . . , diq)

)
;

END WHILE
GPA

(
IN: q, W , qFPMs OUT: w1, . . . , wq

)
;

END WHILE
}
Parallel application

(
IN: {mi, ni, di1, . . . , dip}qi=1, . . .

)
Inter-Node Partitioning Algorithm (INPA)
Run in parallel on all nodes with distributed memory. Inputs: square matrix size
N , number of nodes q, number devices in each node p1, . . . , pq and block size b.

1. To add initial small point to the model, each node, in parallel, invokes the
IDPA with an input (pi, bmi = 1, bni = 1). This algorithm returns a time
which is sent to the head node.

2. The head node calculates speeds from these times as si(1) = 1/ti(1) and
adds the first point, (1, s(1)), to the model of each node.

3. The head node then computes the initial homogeneous distribution by di-
viding the total number of blocks, W , between processors wi = W/q.

4. The CMA is passed w1, . . . , wq and returns the inter-node distributions
(m1, n1), . . . , (mq, nq) which are scattered to all nodes.

5. On each node, the IDPA is invoked with the input (pi, bmi, bni) and the
returned time ti is sent to the head node.

6. IF max
1≤i,j≤q

∣∣∣ ti(wi)−tj(wi)
ti(wi)

∣∣∣ ≤ ε1 THEN the current inter-node distribution

solves the problem. All inter-device and inter-node distributions are saved
and the algorithm stops;
ELSE the head node calculates the speeds of the nodes as si(wi) = wi/ti(wi)
and adds the point (wi, si(wi)) to each node-FPM.

7. On the head node, the GPA is given the node-FPMs as input and returns a
new distribution w1, . . . , wq

8. GOTO 4

Inter-Device Partitioning Algorithm (IDPA)
This algorithm is run on a node with p devices. The input parameters are p and
the sub-matrix sizes bm, bn. It computes the device distribution d1, · · · , dp and
returns the time of last benchmark.

1. To add an initial small point to each device model, the kernel with param-
eters (bm, bn, 1) is run in parallel on each device and its execution time is
measured. The speed is computed as sj(1) = 1/tj(1) and the point (1, sj(1))
is added to each device model.

Hierarchical Partitioning Algorithm for Scientific Computing 495

2. The initial homogeneous distribution dj = bn/p, for all 1 ≤ j ≤ p is set.
3. In parallel on each device, the time tj(dj) to execute the kernel with param-

eters (bm, bn, dj) is measured.
4. IF max

1≤i,j≤p

∣∣∣ ti(di)−tj(dj)
ti(di)

∣∣∣ ≤ ε2 THEN the current distribution of computations

over devices solves the problem. This distribution d1, · · · , dp is saved and
max

1≤j≤p
tj(dj) is returned;

ELSE the speeds sj(dj) = dj/tj(dj) are computed and the point (dj , sj(dj))
is added to each device-FPM.

5. The GPA takes bn and device-FPMs as input and returns a new distribution
d1, . . . , dp.

6. GOTO 3

Geometric Partitioning Algorithm (GPA)
The geometric partitioning algorithm presented in [16] can be summarised as
follows. To distribute n computational units between p processing elements, load
balancing is achieved when all elements execute their work within the same time:
t1(x1) ≈ t2(x2) ≈ . . . ≈ tp(xp). This can be expressed as:{ x1

s1(x1)
≈ x2

s2(x2)
≈ . . . ≈ xp

sp(xp)

x1 + x2 + . . . + xp = n
(1)

The solution of these equations, x1, . . . , xp, can be represented geometrically
by intersection of the speed functions with a line passing through the origin of
the coordinate system. Any such line represents an optimum distribution for
a particular problem size. Therefore, the space of solutions of the partitioning
problem consists of all such lines. The two outer bounds of the solution space
are selected as the starting point of algorithm. The upper line represents the
optimal distribution for some problem size nu < n, while the lower line gives
the solution for nl > n. The region between two lines is iteratively bisected.
The bisection line gives the optimum distribution for the problem size nm. If
nm < n, then bisection line becomes the new upper bound, else it becomes the
new lower bound. The algorithm iteratively progresses until converging to an
integer solution to the problem.

Communication Minimising Algorithm (CMA)
This algorithm is specific to communication pattern of application and the topol-
ogy of the communication network. It takes as input the number of computa-
tional units, wi, to assign to each processing element and arranges them in such
away, (mi, ni), as to minimise the communication cost. For example, for matrix
multiplication, A ×B = C, the total volume of data exchange is minimised by
minimising the sum of the half perimeters H =

∑q
i=1(mi +ni). A column-based

restriction of this problem is solved by an algorithm presented in [2].

4 Experimental Results

To demonstrate the effectiveness of the proposed algorithm we used parallel ma-
trix multiplication as the application. This application is hierarchical and uses

496 D. Clarke et al.

nested parallelism. At the inter-node level it uses a heterogeneous modification of
the two-dimensional blocked matrix multiplication [4], upon which ScaLAPACK
is based. At the inter-device level it uses one-dimensional sliced matrix multi-
plication. It can be summarised as follows: to perform the matrix multiplication
C = A×B, square dense matrices A, B and C are partitioned into sub-matrices
A′, B′, C′ (Fig. 2(a)), according to the output of the INPA. The algorithm has
N/b iterations, within each iteration, nodes with sub-matrix A′ that forms part
of the pivot column will send their part horizontally and nodes with sub-matrix
B′ that forms part of the pivot blocks from the pivot row will broadcast their
part vertically. All nodes will receive into a buffer A(b) of size bmi × b and B(b)

of size b × bni. Then on each node Qi with devices Pij , for 0 ≤ j < pi, de-
vice Pij will do the matrix operation C′

j = C′
j + A(b) × B(b)j where sub-matrix

C′
j is of size bmi × dij and sub-matrix B′

j is of size b × dij (Fig. 2(b)). There-
fore the kernel that is benchmarked for this application is the dgemm operation
C′

j = C′
j + A(b) ×B(b)j .

The Grid’5000 experimental testbed proved to be an ideal platform to test
our application. We used 90 dedicated nodes from 3 clusters from the Grenoble
site. 12 of these nodes from the Adonis cluster included NVIDIA Tesla GPUs.
The remaining nodes where approximately homogeneous. In order to increase
the impact of our experiments we chose to utilise only some of the CPU cores on
some machines (Table 1). Such an approach is not unrealistic since it is possible
to book individual CPU cores on this platform. For the local dgemm routine
we used high performance vendor-provided BLAS libraries, namely Intel MKL
for CPU and CUBLAS for GPU devices. Open MPI was used for inter-node
communication and OpenMP for inter-device parallelism. The GPU execution
time includes the time to transfer data to the GPU. For these experiments,
an out of core algorithm is not used when the GPU memory is exhausted. All
nodes are interconnected by a high speed InfiniBand network which reduces the
impact of communication on the total execution time, for N = 1.5 × 105 all
communications (including wait time due to any load imbalance) took 6% of
total execution time. The full functional performance models of nodes, Fig. 3,
illustrate the range of heterogeneity of our platform.

Q1

Q2

Q3

...

Qi-1

Qi+1

…

…

...

Qq

Qi

Q1

Q2

Q3

...

Qi+1

…

…

...

Qq

Qi

Q1

Q3

...

Qi-1

Qi+1

…

…

...

Qq

Qi

A B C ...

A(b)

Pij

... ...Pij

B(b)

C'A' B' C'A(b)

B(b)

(a) (b)

...

Fig. 2. Parallel matrix multiplication algorithm: (a) two-dimensional blocked matrix
multiplication between the nodes; (b) one-dimensional matrix multiplication within a
node

Hierarchical Partitioning Algorithm for Scientific Computing 497

Table 1. Experimental hardware setup using 90 nodes from three clusters of the Greno-
ble site from Grid’5000. All nodes have 8 CPU cores, however, to increase heterogeneity
only some of the CPU cores are utilised as tabulated below. One GPU was used with
each node from the Adonis cluster, 10 nodes have Tesla T10 GPU and 2 nodes have
Tesla C2050 GPU, and an CPU core was devoted to control execution on the GPU.
As an example, we can read from the table that two Adonis nodes used only 1 GPU
and 6 Edel nodes used just 1 CPU core. All nodes are connected with InfiniBand 20G
& 40G.

Cores: 0 1 2 3 4 5 6 7 8 Nodes CPU Cores GPUs Hardware

Adonis 2 1 1 1 1 1 2 3 0 12 48 12 2.27/2.4GHz Xeon, 24GB
Edel 0 6 4 4 4 8 8 8 8 50 250 0 2.27GHz Xeon, 24GB
Genepi 0 3 3 3 3 4 4 4 4 28 134 0 2.5GHz Xeon, 8GB

Total 90 432 12

 0

 20

 40

 60

 80

 100

 120

 140

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000

S
pe

ed
 (

G
F

LO
P

S
)

Problem Size wi (b × b blocks updated)

adonis 7CPU + 1GPU
adonis 1CPU + 1GPU
adonis 0CPU + 1GPU

genepi 8CPU
genepi 4CPU
genepi 1CPU

edel 8CPU
edel 4CPU
edel 1CPU

Fig. 3. Full functional performance models for a number of nodes from Grid’5000
Grenoble site. Problem size is in number of b × b blocks of matrix C updated by a
node. For each data point in the node model it was necessary to build device models,
find the optimum inter-device distribution and then measure the execution time of the
kernel with this distribution.

Before commencing full scale experiments it was necessary to find an appro-
priate block size b. A large value of b allows the optimised BLAS libraries to
achieve their peak performance as well as reducing the number of communica-
tions, while a small value of b allows fine grained load balancing between nodes.
We conducted a serious of experiments, using one Adonis node with 7 CPU
cores + 1GPU, for a range of problem sizes and a range of values of b. The
IDPA was used to find the optimum distribution between CPU cores and GPU.
As shown in Fig. 4, a value of b = 128 achieves near-peak performance, espe-
cially as N increases, while still allowing reasonably fine grained inter-node load
balancing. For all subsequent experiments we used b = 128.

In order to demonstrate the effectiveness of the proposed FPM-based parti-
tioning algorithm we compare it against 3 other partitioning algorithms. All four

498 D. Clarke et al.

 0

 20

 40

 60

 80

 100

 120

 1 2 4 8 16 32 64 128
 256

 512
 1024

 2048
 4096

S
pe

ed
 (

G
F

LO
P

S
)

Block size b

b = 128

N = 1024
N = 2048
N = 5120
N = 12288

Fig. 4. Overall node performance obtained for different ranges of block and problem
sizes when running optimal distribution between 7 CPU cores and a GPU

algorithms invoke the communication minimisation algorithm and are applied to
an identical parallel matrix multiplication application. They differ on how load
balancing decisions are made.

– Multiple-CPM Partitioning uses the same algorithm as proposed above,
with step 7 of the INPA and step 5 of the IDPA replaced with wi = W× si∑

q si

and dj = bn × sj∑
p sj

respectively, where si and sj are constants. This is
equivalent to the approach used in [8,19,18].

– Single-CPM Partitioning does one iteration of the above multiple-CPM
partitioning algorithm. This is equivalent to the approach used in [10,2].

– Homogeneous Partitioning uses an even distribution between all nodes:
w1 = w2 = · · · = wq and between devices in a node: di1 = di2 = · · · = dipi .

Fig. 5 shows the speed achieved by the parallel matrix multiplication applica-
tion when the four different algorithms are applied. It is worth emphasizeing
that the performance results related to the execution on GPU devices take into
account the time to transfer the workload to/from the GPU. The speed of the
application with the homogeneous distribution is governed by the speed of the
slowest processor (a node from Edel cluster with 1CPU core). The Single-CPM
and multiple-CPM partitioning algorithms are able to load balance for N up to
60000 and 75000 respectivly, however this is only because the speed functions
in these regions are horozontal. In general, for a full range of problem sizes, the
simplistic algorithms are unable to converge to a balanced solution. By chance,
for N = 124032, the multiple-CPM algorithm found a reasonably good parti-
tioning after many iterations, but in general this is not the case. Meanwhile the
FPM-based partitioning algorithm reliably found good partitioning for matrix
multiplication involving in excess of 0.5TB of data.

Hierarchical Partitioning Algorithm for Scientific Computing 499

 0

 1

 2

 3

 4

 5

 0 20 40 60 80 100 120 140 160

S
pe

ed
 (

T
er

a
F

LO
P

S
)

Matrix size N (× 103)

FPM Partitioning
Multiple-CPM Partitioning

Single-CPM Partitioning
Homogeneous Partitioning

Fig. 5. Absolute speed for a parallel matrix multiplication application based on four
partitioning algorithms. Using 90 heterogeneous nodes consisting of 432 CPU cores and
12 GPUs from 3 dedicated clusters.

5 Conclusions

In this paper a novel hierarchical partitioning algorithm for highly heterogeneous
(CPU+GPU) clusters was presented. The algorithm load balances an application
run on a hierarchical platform by optimally partitioning the workloads at both
levels of hierarchy, i.e. nodes and processing devices. The presented approach is
based on realistic functional performance models of processing elements which
are obtained empirically in order to capture the high level of platform’s hetero-
geneity. The efficiency of the proposed algorithm was tested in a real system
consisting of 90 highly heterogeneous nodes in 3 computing clusters and com-
pared to similar approaches for a parallel matrix multiplication case. The results
show that the presented algorithm was not only capable of minimising the overall
communication volume in such a complex environment, but it was also capable
of providing efficient load balancing decisions for very large problem sizes where
similar approaches were not able to find the adequate balancing solutions. Fu-
ture work will include an out of core device kernel for when the memory limit
of a device is reached; a communication efficient inter-device partitioning and
multi-GPU experimental results.

Acknowledgments. This publication has emanated from research conducted
with the financial support of Science Foundation Ireland under Grant Number
08/IN.1/I2054. This work was supported by FCT through the PIDDAC Program
funds (INESC-ID multiannual funding) and a fellowship SFRH/BD/44568/2008.
Experiments were carried out on Grid’5000 developed under the INRIA AL-
ADDIN development action with support from CNRS, RENATER and several
Universities as well as other funding bodies (see https://www.grid5000.fr). This
work was also partially supported by the STSM COST Action IC0805.

500 D. Clarke et al.

References

1. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.-A.: StarPU: A Unified
Platform for Task Scheduling on Heterogeneous Multicore Architectures. In: Sips,
H., Epema, D., Lin, H.-X. (eds.) Euro-Par 2009. LNCS, vol. 5704, pp. 863–874.
Springer, Heidelberg (2009)

2. Beaumont, O., Boudet, V., Rastello, F., Robert, Y.: Matrix Multiplication on Het-
erogeneous Platforms. IEEE Trans. Parallel Distrib. Syst. 12(10), 1033–1051 (2001)

3. Blumofe, R., Leiserson, C.: Scheduling multithreaded computations by work steal-
ing. JACM 46(5), 720–748 (1999)

4. Choi, J.: A new parallel matrix multiplication algorithm on distributed-memory
concurrent computers. Concurrency: Practice and Experience 10(8), 655–670
(1998)

5. Clarke, D., Lastovetsky, A., Rychkov, V.: Column-Based Matrix Partitioning for
Parallel Matrix Multiplication on Heterogeneous Processors Based on Functional
Performance Models. In: Alexander, M., D’Ambra, P., Belloum, A., Bosilca, G.,
Cannataro, M., Danelutto, M., Di Martino, B., Gerndt, M., Jeannot, E., Namyst,
R., Roman, J., Scott, S.L., Traff, J.L., Vallée, G., Weidendorfer, J. (eds.) Euro-Par
2011, Part I. LNCS, vol. 7155, pp. 450–459. Springer, Heidelberg (2012)

6. Dongarra, J., Faverge, M., Herault, T., Langou, J., Robert, Y.: Hierarchi-
cal qr factorization algorithms for multi-core cluster systems. Arxiv preprint
arXiv:1110.1553 (2011)

7. Drozdowski, M., Lawenda, M.: On Optimum Multi-installment Divisible Load Pro-
cessing in Heterogeneous Distributed Systems. In: Cunha, J.C., Medeiros, P.D.
(eds.) Euro-Par 2005. LNCS, vol. 3648, pp. 231–240. Springer, Heidelberg (2005)

8. Galindo, I., Almeida, F., Bad́ıa-Contelles, J.M.: Dynamic Load Balancing on Dedi-
cated Heterogeneous Systems. In: Lastovetsky, A., Kechadi, T., Dongarra, J. (eds.)
EuroPVM/MPI 2008. LNCS, vol. 5205, pp. 64–74. Springer, Heidelberg (2008)

9. Horton, M., Tomov, S., Dongarra, J.: A class of hybrid lapack algorithms for mul-
ticore and gpu architectures. In: SAAHPC, pp. 150–158 (2011)

10. Hummel, S., Schmidt, J., Uma, R.N., Wein, J.: Load-sharing in heterogeneous
systems via weighted factoring. In: SPAA 1996, pp. 318–328. ACM (1996)

11. Ilic, A., Sousa, L.: Collaborative execution environment for heterogeneous parallel
systems. In: IPDPS Workshops and Phd Forum (IPDPSW), pp. 1–8 (2010)

12. Ilic, A., Sousa, L.: On realistic divisible load scheduling in highly heterogeneous
distributed systems. In: PDP 2012, Garching, Germany (2012)

13. Jacobsen, D.A., Thibault, J.C., Senocak, I.: An MPI-CUDA Implementation for
Massively Parallel Incompressible Flow Computations on Multi-GPU Clusters. In:
AIAA Aerospace Sciences Meeting Proceedings (2010)

14. Kalinov, A., Lastovetsky, A.: Heterogeneous Distribution of Computations while
Solving Linear Algebra Problems on Networks of Heterogeneous Computers. In:
Sloot, P.M.A., Hoekstra, A.G., Bubak, M., Hertzberger, B. (eds.) HPCN-Europe
1999. LNCS, vol. 1593, pp. 191–200. Springer, Heidelberg (1999)

15. Kindratenko, V.V., et al.: GPU clusters for high-performance computing. In:
CLUSTER, pp. 1–8 (2009)

16. Lastovetsky, A., Reddy, R.: Data Partitioning with a Functional Performance
Model of Heterogeneous Processors. Int. J. High Perform. Comput. Appl. 21(1),
76–90 (2007)

17. Lastovetsky, A., Reddy, R., Rychkov, V., Clarke, D.: Design and implementation of
self-adaptable parallel algorithms for scientific computing on highly heterogeneous
HPC platforms. Arxiv preprint arXiv:1109.3074 (2011)

Hierarchical Partitioning Algorithm for Scientific Computing 501

18. Legrand, A., Renard, H., Robert, Y., Vivien, F.: Mapping and load-balancing iter-
ative computations. IEEE Transactions on Parallel and Distributed Systems 15(6),
546–558 (2004)

19. Mart́ınez, J., Garzón, E., Plaza, A., Garćıa, I.: Automatic tuning of iterative com-
putation on heterogeneous multiprocessors with ADITHE. J. Supercomput. (2009)

20. Quintin, J.-N., Wagner, F.: Hierarchical Work-Stealing. In: D’Ambra, P., Guarra-
cino, M., Talia, D. (eds.) Euro-Par 2010, Part I. LNCS, vol. 6271, pp. 217–229.
Springer, Heidelberg (2010)

21. Veeravalli, B., Ghose, D., Robertazzi, T.G.: Divisible load theory: A new paradigm
for load scheduling in distributed systems. Cluster Computing 6, 7–17 (2003)

Encapsulated Synchronization and Load-Balance

in Heterogeneous Programming

Yuri Torres, Arturo Gonzalez-Escribano, and Diego Llanos

Departamento de Informatica, Universidad de Valladolid
{yuri.torres,arturo,diego}@infor.uva.es

Abstract. Programming models and techniques to exploit parallelism
in accelerators, such as GPUs, are different from those used in traditional
parallel models for shared- or distributed-memory systems. It is a chal-
lenge to blend different programming models to coordinate and exploit
devices with very different characteristics and computation powers. This
paper presents a new extensible framework model to encapsulate run-
time decisions related to data partition, granularity, load balance, syn-
chronization, and communication for systems including assorted GPUs.
Thus, the main parallel code becomes independent of them, using inter-
nal topology and system information to transparently adapt the com-
putation to the system. The programmer can develop specific functions
for each architecture, or use existent specialized library functions for dif-
ferent CPU-core or GPU architectures. The high-level coordination is
expressed using a programming model built on top of message-passing,
providing portability across distributed- or shared-memory systems. We
show with an example how to produce a parallel code that can be used
to efficiently run on systems ranging from a Beowulf cluster to a machine
with mixed GPUs. Our experimental results show how the run-time sys-
tem, guided by hints about the computational-power ratios of different
devices, can automatically part and distribute large computations across
heterogeneous systems, improving the overall performance.

1 Introduction

Currently, heterogeneous systems provide computing power using mixed types of
devices and architectures, such as CPU-cores, GPUs or FPGAs [6,10]. General-
Purpose Programming for devices such as GPUs (GP-GPU) has been simplified
by the introduction of higher level data parallel languages, such as CUDA or
OpenCL. However, to obtain efficient codes the programmer needs knowledge
about the underlying target architecture, and how it relates to the programming
model. The intrinsic complexity of the code generation for heterogeneous sys-
tems increases every time we add any different hardware device. Thus, it is an
important goal to devise abstractions and tools that allow the programmer to
blend the different programming models involved, also simplifying the tasks of
data-distribution and device coordination across an heterogeneous system.

In previous works we presented Hitmap [3,5], a library to support both data
and task parallelism in distributed-memory environments, through manipulation

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 502–513, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Encapsulated Synchronization and Load-Balance 503

and mapping of hierarchical tiling arrays Hitmap features an extensible plug-in
system that allows the programmer to choose among different data-partition
and distribution techniques, or easily program and reuse new ones. It provides
functionalities for tile communication, allowing to build complex and scalable
communication patterns in terms of the results of the mapping functions.

This paper presents a new framework model to encapsulate run-time deci-
sions related to data partition, granularity, load balance, synchronization, and
communication for heterogeneous systems. It introduces a new abstraction layer
in the conceptual structure of Hitmap. More precisely, in this work we present
the following contributions:

(1) We propose a new plug-ins layer to encapsulate the decisions related
to map tile computations to specific accelerator devices. We discuss how load-
balancing techniques relate to the different plug-ins layers.

(2) We introduce a high-level API that selects the proper kernel for a given de-
vice, and hides all details of synchronization and communication between logical
processes and accelerators.

(3) We discuss an implementation of this framework model currently support-
ing distributed-memory clusters of multicore CPUs and NVIDIA GPUs.

(4) We show with an example how to produce a single parallel code that
adapts the computation to efficiently run on systems ranging from a Beowulf
cluster to a machine with mixed GPUs. Our experimental results show how the
run-time system can automatically part and distribute large computations across
very different devices, improving the performance of a homogeneous approach.

The rest of the paper is organized as follows. Section 2 discusses some previous
approaches and their limitations. Section 3 introduces our conceptual approach.
Section 4 describes the architecture of our solution and the design problems
faced. Section 5 shows a case study. In section 6 we present a performance
evaluation of the case study with a load-balancing strategy in different scenarios.
Finally, section 7 discusses some conclusions and future work.

2 Related Work

Several research groups are working in the problem of simplifying heterogeneous
programming without sacrificing hardware accelerators performance.

Quintana-Ort́ı et al. [11] presented the FLAME programming model. It focus
on programming dense linear algebra operations on complex platforms, including
multicore processors, and hardware accelerators such as GPUs, and Cell B.E.
FLAME abstracts the target accelerator architecture. It divides the parallelism
in two levels, the first one considering each accelerator device as a computation
unit (coarse-grain parallelism), and the second one considering each hardware
accelerator as a set of multiple cores (fine-grain parallelism). They rely on the
BLAS library to exploit this second level. Besides the limited application domain,
global configuration parameters are fixed, while it has been shown that it is
important to adapt them to the particular thread memory access pattern [14].

504 Y. Torres, A. Gonzalez-Escribano, and D. Llanos

MCUDA [13] is a framework to mix CPU and GPU programming. In MCUDA
it is mandatory to define kernels for all available devices. No data distribution
policy is provided, and the toolkit can not make any assumption about the
relative performance of the supported devices. Introducing any of these features
would involve a redesign of the framework. Other works [8,15] try to exploit at
the same time CPU and GPU devices, attempting to obtain good load balancing
with the help of heuristics. Data structures partition and manipulation is not
abstracted and they do not support flexible mechanisms to add new partition and
layout policies. Finally, papers as [9,2] use MPI and CUDA parallel programming
model in order to exploit all GPUs devices in heterogeneous systems. However,
the authors do not abstract the use of both models and the target underlying
hardware details.

Chapel [1], a PGAS language, proposes a transparent plug-in system for do-
main partitions in generic systems. The PGAS approach tries to hide the com-
munication issues to the programmer. Thus, efficient aggregated communications
can not be directly expressed, and most of the times can not be automatically
derived from generic codes. Contributors to Chapel are currently working in
prototyped layouts to generate array allocations, data transfers, and parallel op-
erations in CUDA. However, they do not offer a different layer for accelerator
partition policies, or synchronization among different CPU and GPU devices.

3 Conceptual Approach

Heterogeneous systems can be built with very different hardware devices (CPU-
cores, accelerators) in several nodes interconnected in a distributed environment.
Portable codes for such systems should implement parallel algorithms abstract-
ing them from the mapping activities that adapt the computation to the plat-
form. Thus, the programming model should encapsulate the mapping techniques
and the CPU/accelerator synchronization with appropriate abstractions.

We propose a programming framework based on: (1) Several layers of plug-
in modules that encapsulate the mapping functions; and (2) functionalities to
build the coordination (synchronization and communication) structures of the
algorithms, which are transparently adapted at run-time in terms of the results
of the mapping functions.

Hitmap [3,5] is a parallel programming library where partition policies are
implemented through a set of plug-ins with a common interface. The program-
mer may select, or change the chosen plug-in in the program code, using only
its name. Hitmap automatically associates logical processes to processing nodes.
The data-partition plug-in interface returns an object containing information
about which parts of the data are mapped to the logical process, taking into
account the neighbourhood relationships of a virtual topology. Coordination
patterns are built with high-level point-to-point or collective tile communica-
tions, using the results stored in the map objects. If partition details change,
the communication structure will reflect the changes automatically. Thus, the
coordination among processes may be programmed in an abstract form, inde-
pendently of the target system topology.

Encapsulated Synchronization and Load-Balance 505

Data distribution and layout

Coordination of processes

Partition for local device
(Core, GPU, ...)

Coordination CPU/Accelerator

Memory access patterns C
o

o
rd

in
at

io
n

 le
ve

ls

M
ap

p
in

g
 le

ve
ls

Fig. 1. Mapping/Coordination levels. White boxes show the original Hitmap approach.

Our work extends the Hitmap approach. Figure 1 shows the different mapping
levels of the original Hitmap, and our proposed extension. Hitmap has a single
level of data-partition and layout. It is designed to encapsulate coarse-grain
mapping techniques, appropriate for distributed-memory nodes.

We propose to add a second, middle-grain partitioning level that allows to
adapt the local part of data to the specific characteristics and architecture of
the actual device associated to the logical process by the virtual topology. The
programmer naturally introduces a third level of mapping inside the kernel code
by implementing specific thread-level memory access patterns.

The second-level mapping plug-ins use information about the device and the
global memory access pattern of the kernel, to generate domain partitions that
exploit locality, maximum occupancy, coalescence, or other device properties that
affects performance. The result is an object encapsulating information about a
partition of the local computation in a grid of blocks. The same abstraction can
be used for techniques of very different nature: CPU-cores, GPUs, or other kind
of accelerator. Finally, the coordination, data movement between the CPU and
accelerators, and kernel launch, can be automatized by a run-time system, using
the second-level partition results. Padding can be automatically added to tiles
if needed to properly align data to the memory banks of the particular device,
alleviating memory bottlenecks, and improving cache use.

This approach can be used together with techniques to automatically generate
kernels for different architectures from common specifications (see e.g. [12,4]),
avoiding the current need to supply optimized kernels for all the architectures
that compose the target heterogeneous system, By encapsulating the CPU/ac-
celerator coordination in a transparent system, we also allow to integrate as ker-
nels libraries specifically optimized for a given architecture, such as CUBLASfor
GPUs. We also promote the abstraction of hierarchical tiles to specific pro-
gramming languages for accelerators (in this work we use CUDA as a proof
of concept, doing this exercise for more generic languages such as OpenCL is
straightforward). Thus, we introduce a common array abstraction, simplifying
the porting of code between CPU cores and accelerators.

This conceptual framework has been implemented adding new functionalities
to the Hitmap library, without modifying the original structure. This imposes a
minimal impact on the original Hitmap codes. The original Hitmap code takes

506 Y. Torres, A. Gonzalez-Escribano, and D. Llanos

care of the coordination of processes in the higher level. The new extension
takes care of adapting the local parts to the device automatically assigned to
the logical process. Plug-ins with new mapping techniques may be included and
tested without modifying the framework implementation.

4 Design and Implementation

We have developed a prototype implementation of this framework extending
Hitmap. In this section we describe some design and implementation considera-
tions, and problems solved.

The original Hitmap library was written in C language. Nevertheless, it has
and object-oriented design, and future releases could provide a neater C++
interface. Hitmap is designed to manipulate hierarchical tiling arrays. The Hit-
Shape class implements tile domains. A shape object represents a subspace of
array indexes defined as an n-dimensional rectangular parallelotope. Its limits
are determined by n Signature objects. Each Signature is a tuple of three integer
numbers (begin, end, and stride), representing the indexes in a domain axis.

Hitmap defines an API for data-partition modules, named Layout plug-ins.
It defines a wrapper function that links the main code with the chosen plug-
in. The Layout plug-ins receive as parameters: (1) a virtual topology object
(HitTopology), (2) a domain to be mapped (a HitShape object), and (3) optional
parameters for the specific technique. They return a HitLayout object containing
a local domain (another HitShape), information about neighbor relations, and
other mapping details. These objects are used as parameters in the constructors
of HitComm objects that express tile communications across logical processes.

Partitions. We follow the same approach for the new second-level Partition
plug-ins. The wrapper function is similar, but also selects different implementa-
tions of the same plug-in name depending on the architecture of the target de-
vice. Our current wrapper differences between CPU-cores, and different Nvidia’s
CUDA supported architectures.

The Hitmap initialization function gathers information about the particular
system devices and builds an internal physical topology object. The virtual topol-
ogy constructors attach each logical process to one device, storing its informa-
tion. The Partition plug-ins receive as parameters: (1) the attached device data;
(2) a HitLayout object with information of the local domain to be mapped. Op-
tional parameters indicating the memory-access patters of the low-level threads
can be supplied. The result is a new HitPartition containing information about
block shapes, grid sizes, and information to generate tile paddings if needed.

As example, we have implemented a trivial partition plug-in. The CPU-cores
implementation simply creates a grid with one element containing the full local
shape. The GPU implementations split the local domain in rectangular blocks
with 1 × 512 threads. This is appropriate for computations that access data
linearly in both Nvidia’s architectures [14]. For specific grid sizes an extra block
is added at the end of each row to alleviate GPU memory contention effects.
More sophisticated policies can be integrated as new plug-ins.

Encapsulated Synchronization and Load-Balance 507

Assigning Several Logical Processes to the Same Device. We have in-
troduced a new technique in the virtual topology modules of Hitmap. It allows
to assign more than one logical process to the same device. It has two purposes.
As a potential load-balancing technique (see section 6), and to transparently use
accelerators to perform large computations whose data do not directly fit in the
accelerator global memory. Thus, the full computation is done in smaller parts,
coordinated by the Hitmap upper-level communication structures.

Kernel Definition and Launch. We provide a macro function to define with
a common interface the function headers of different kernel versions for different
architectures. The following example shows the headers of two implementations
(one for CPU-cores, another for pre-Fermi GPUs) of the same kernel:

hit_kernelDefinition(CORE, mmult, HitTile_float *A, HitTile_float *B, HitTile_float *C) {
hit_kernelDefinition(GPU_R1, mmult, HitTile_float *A, HitTile_float *B, HitTile_float *C) {

We have developed one function that transparently do the coordination with the
assigned device. It receives as parameters the kernel name, a partition object,
and the kernel parameters, indicating which ones are inputs and outputs. See
the example in Fig. 2. This function deals with linking issues of kernels written if
specific languages. For example, the launch of a kernel for an Nvidia GPU needs
a special syntax and the launching code has to be compiled with the CUDA
compiler. We use internal wrapper functions with different implementations for
different architectures. Each implementation is compiled with the proper tools
before linking. A selection mechanism checks at run-time the assigned device
architecture and calls the appropriate implementation for the local device.

For CPU-cores the wrapper simply calls the proper C function passing the
indicated arguments. For accelerators the process is more complex, and involves
communication between the main system memory and the device memory. We
have implemented the synchronization with Nvidia’s GPUs with the following
stages: (1) Move to the GPU memory the input tiles (the data and the tile
handler structure). Padding restrictions expressed in the HitPartition object are
applied to the memory allocation in this step. (2) Launch the kernel, using the
grid parameters from the Partition object, passing the pointers to the new tile
handlers in GPU memory. (3) Copy data from output GPU-memory tiles to the
CPU, eliminating padding if needed. Finally, a mutual exclusion mechanisms
has been added in the kernel launch function to allow several processes assigned
to the same device to coordinate themselves for the use of the device.

These abstractions completely encapsulate the synchronization and coordi-
nation between CPU and different devices, such as cores and accelerators. The
same primitive call automatically invokes CPU-core functions written in plain
C language, or launches CUDA kernels.

Running the Programs. Hitmap programs are started like any MPI program,
using the mpiexec command. The MPI hosts file is used to select the machines
where the processes are started. Processes in the same machine are automatically

508 Y. Torres, A. Gonzalez-Escribano, and D. Llanos

attached to CPU-cores or GPU devices. If data do not fit into the memory of an
accelerator device, more MPI processes are required to obtain a finer partition.

5 Case Study

In this section we show with an example how Hitmap abstractions lead to codes
which are independent of the encapsulated mapping techniques. We have chosen
the Cannon’s algorithm for matrix multiplication (see e.g. [7]). It is a task-
parallel algorithm focused on reducing local memory usage for distributed sys-
tems. Thus, it shows the interaction of different levels of parallelism.

In Cannon’s algorithm the available processes are organized in a perfect square
topology to generate neighbor relations. Each matrix A, B and C is divided into
rectangular blocks, distributing them across processes. It starts with an initial
communication stage to relocate A and B blocks in a circular shift (Aij = Ai(j−i),
and Bij = B(i−j)j). On each step, every process multiply its local blocks of A
and B, accumulating the partial results in the local block of C. It then sends the
used block of A to the leftward process, and the used block of B to the upward
process, both in a circular shift. There are as many communication-computation
steps as the square-root of the number of total processes.

Figure 2 shows the Cannon’s matrix multiplication algorithm implemented
with the Hitmap library for heterogeneous systems. We use float base elements.
The code is the same used in previous versions of Hitmap for distributed-memory
systems except lines 40–41 (that encapsulate the low-level partition for the as-
signed device), and lines 47 and 50, that encapsulates the coordination between
the CPU and the accelerators.

Lines 3–6 declare the full domain of the three matrices with a global-view
approach. Memory is not yet allocated. Line 9 builds a virtual topology enforcing
a perfect square of processes, as required by the algorithm. Lines 12–14 create
layout objects that distribute the matrices domains across the virtual topology.
The layout plug-in modules used are different for the three matrices. Figure 3
shows a diagram of the resulting layouts. Matrix B uses a classical block data
partition, with evenly sized parts. Matrices C and A use a load-balancing plug-in
technique. The rows dimension is split unevenly according to a Balance factor,
decided in terms of the relative computing power of the device types as recorded
in the low-level topology description. Currently, it is experimentally determined.

In lines 17–21 each logical process creates and allocates the local part of the
matrices. Thanks to the maxShape padding function, n and m do not need to be
exact multiples of the number of processes in a given axis. Lines 24–26 read in
parallel the tiles of the input matrices. The C matrix is initialized with 0 values.

Lines 29–32 perform the initial relocating stage prescribed by the Cannon’s
algorithm, shifting A and B tiles. Lines 35–37 build the shifting communication
pattern that will be used between the computation stages. The layout objects
and the tiles provide all the information needed to internally find neighbors and
build MPI derived data types to optimize the communications. Thus, communi-
cations are adapted to the partition transparently. For this example we choose

Encapsulated Synchronization and Load-Balance 509

1 ���� cannonsMM(��� n, ��� m, ��� p) {
2 /* 1. DECLARE FULL MATRICES WITHOUT MEMORY */
3 �����	
����	
 A, B, C;
4 hit_tileDomain(&A, �	���, 2, n, m);
5 hit_tileDomain(&B, �	���, 2, m, p);
6 hit_tileDomain(&C, �	���, 2, n, p);
7

8 /* 2. CREATE VIRTUAL TOPOLOGY */
9 �������	��� topo = hit_topology(plug_topSquare);

10

11 /* 3. COMPUTE PARTITIONS */
12 ��������� layC = hit_layout(plug_layBlocksLB, topo, C, 0);
13 ��������� layA = hit_layoutWrap(plug_layBlocksLB, topo, A, 0);
14 ��������� layB = hit_layoutWrap(plug_layBlocks, topo, B);
15

16 /* 4. CREATE AND ALLOCATE TILES */
17 �����	
����	
 tileA, tileB, tileC;
18 hit_tileSelectNoBoundary(&tileA, &A, hit_layMaxShape(layA,1));
19 hit_tileSelectNoBoundary(&tileB, &B, hit_layMaxShape(layB,0));
20 hit_tileSelect(&tileC, &C, hit_layShape(layC));
21 hit_tileAlloc(&tileA); hit_tileAlloc(&tileB); hit_tileAlloc(&tileC);
22

23 /* 5. INITIALIZE MATRICES */
24 hit_tileFileRead(&tileA, "matrixA.dat");
25 hit_tileFileRead(&tileB, "matrixB.dat");
26 �	��� aux=0; hit_tileFill(&tileC, &aux);
27

28 /* 6. INITIAL ALIGNMENT PHASE */
29 ������m commRow = hit_comShiftDim(layA, 1, -hit_layRank(layA,0), &tileA);
30 ������m commCol = hit_comShiftDim(layB, 0, -hit_layRank(layB,1), &tileB);
31 hit_comDo(commRow); hit_comDo(commCol);
32 hit_comFree(commRow); hit_comFree(commCol);
33

34 /* 7. REUSABLE COMM PATTERN */
35 �������
�� shift = hit_pattern(HIT_PAT_UNORDERED);
36 hit_patternAdd(&shift, hit_comShiftDim(layA, 1, 1, &tileA));
37 hit_patternAdd(&shift, hit_comShiftDim(layB, 0, 1, &tileB));
38

39 /* 8. COMPUTE DEVICE PARTITION USING ACCESS PATTERN INFO */
40 ������������ parts = hit_partition(plug_partBlocks, hit_layShape(layC),
41 2, hit_shape(2, ALL, THIS), hit_shape(2, THIS, ALL));
42

43 /* 9. DO COMPUTATION */
44 ��� loopIndex;
45 ��� loopLimit = max(hit_layNumActives(layA,0), hit_layNumActives(layB,1));
46 ��� (loopIndex = 0; loopIndex < loopLimit-1; loopIndex++) {
47 hit_kernelLaunch(mmult, parts, 3, IN, tileA, IN, tileB, INOUT, tileC);
48 hit_patternDo(shift);
49 }
50 hit_kernelLaunch(mmult, parts, 3, IN, tileA, IN, tileB, INOUT, tileC);
51

52 /* 11. WRITE RESULT */
53 hit_tileFileWrite(&tileC, "matrixC.dat");
54

55 /* 12. FREE RESOURCES */
56 hit_partitionFree(parts);
57 hit_layFree(layA); hit_layFree(layB); hit_layFree(layC);
58 hit_patternFree(&shift);
59 hit_topFree(topo);
60 }

Fig. 2. Heterogeneous Hitmap implementation of Cannon’s matrix multiplication

510 Y. Torres, A. Gonzalez-Escribano, and D. Llanos

A

B

m1 m2k1 k2

k1

k2

=

C

m1 m2

n1 n1

n2 n2
x

Balance factor = n1 / (n1+n2)

Fig. 3. Load balancing layout scheme in the Cannon’s matrix multiplication example

synchronous communication to avoid the need of double buffers, exploiting our
full system memory to do larger computations.

Lines 40–41 generate a partition object tailored to the device assigned to the
logical process. Line 41 is a shape expression that represents the global memory
access pattern; indicating, in relative coordinates, which elements are accessed by
a thread. Lines 44–50 implement the main loop of the algorithm. The computation
stage of the last iteration has been unrolled to avoid the last unneeded commu-
nication stage. The computation is launched by the hit kernelLaunch primitive,
independently of the actual device. The shifting communication pattern is acti-
vated by the hit patterDo primitive. Line 53 writes the output matrix tiles to a
file in parallel. Lines 56–59 free all the Hitmap resources before finishing.

6 Experimental Work

We have designed experimental work to show that: (1) Our new abstractions do
not impose a significant overhead on the computation; and (2) this framework
allows to easily exploit different devices to obtain performance benefits.

In order to show the efficiency of the Hitmap codes, we have manually devel-
oped and optimized reference codes for matrix multiplication: (a) A direct MPI
implementation of the Cannon’s algorithm (see [7]); and (b) a direct CUDA im-
plementation that may also split and multiply the matrices block by block if
they are too big to fit in the GPU device memory.

For our experiments we have used two different platforms. The first one is
a Beowulf cluster with up to 18 dual-core PC computers. The second one is
an Intel(R) Core(TM) i7 CPU 960, 3.20GHz with active hyper-threading. This
system has two GPUs: a GeForce 8500 GT, and a GerForce 9600 GT, both
managed by the CUDA driver included in the 4.0 toolkit. From now on, we
identify the different available devices in this machine with the following letters:
(A) GeForce 9600 GT; (B) GeForce 8500 GT; (C) Cores of the CPU.

We select several matrix sizes: N = M = 2048, 8192, 12288. The first size is
small enough to allocate the three matrices in any of the devices of both systems.
The second size cannot be fully allocated on the second GPU (device B) of the
mixed CPU-GPU machine. The last size cannot be allocated in any of the GPUs.

Encapsulated Synchronization and Load-Balance 511

 3

 10

 30

 100

 300

 1 4 9 16 25 36

E
xe

cu
tio

n
tim

e
(s

ec
.)

Processors

Beowulf cluster (2048x2048)

Hitmap
Manual

 8

 11

 16

 22

 0.5 0.6 0.7 0.8 0.9 1

E
xe

cu
tio

n
tim

e
(s

ec
.)

Balance facor

Mixed CPU-GPU platform (2048x2048)

Manual - A
Hitmap - A3 B1
Hitmap - A2 B2
Hitmap - A3 C1
Hitmap - A2 C2

 400

 800

 1600

 3200

 0.5 0.6 0.7 0.8 0.9 1

E
xe

cu
tio

n
tim

e
(s

ec
.)

Balance facor

Mixed CPU-GPU platform (8192x8192)

Manual - A
Hitmap - A3 B1
Hitmap - A2 B2
Hitmap - A3 C1
Hitmap - A2 C2

 1400

 3000

 6000

 12000

 0.5 0.6 0.7 0.8 0.9 1

E
xe

cu
tio

n
tim

e
(s

ec
.)

Balance facor

Mixed CPU-GPU platform (12288x12288)

Manual - A4
Hitmap - A3 B1
Hitmap - A2 B2
Hitmap - A3 C1
Hitmap - A2 C2

Fig. 4. Experimental work results

We also test using modified sizes (e.g. N = M = 2039, 2057), that our padding
mechanisms do not impose a significant performance effect on the results.

Figure 4 presents execution times obtained in different scenarios. Notice that
all y-axis are in logarithmic scale. The experiments in the Beowulf cluster show,
even for the small matrix size, that Hitmap implementations have the same
scalability and overall performance than the manually optimized MPI code. A
minimal Hitmap performance overhead is observed in all our experimental work.

In the more heterogeneous machine the best performance results are obtained
for a small number of processes. Remind that Cannon’s algorithm forces more
synchronization stages when the number of processes increase. Thus, for Can-
non’s algorithm, more MPI processes lead to bigger communication overhead,
while reducing the computation load of each task. In this machine, our exper-
iments show the best results for four MPI processes. We show results for the
following scenarios. Reference code: (A) Manually developed CUDA code, ex-
ecuting the whole computation with only one kernel launch in device A, the
fastest GPU; (A4) For matrices that do not fit in the GPU device memory, the
reference code parting the matrices in four even parts and executing the compu-
tation in several kernel launches. Hitmap code: Changing the topology module
we can easily experiment with different assignments of devices to logical pro-
cesses. (A3-B1) Mixed GPUs: 3 processes mapped to device A, and 1 process to

512 Y. Torres, A. Gonzalez-Escribano, and D. Llanos

device B; (A2-B2) Mixed GPUs: 2 processes mapped to device A, and 2 process
to device B; (A3-C1) GPU and core: 3 processes mapped to device A, and 1
process to one CPU-core; (A2-C2) GPU and cores: 2 processes mapped to de-
vice A, and 2 processes, each one mapped to a different CPU-core. For all the
experiments with GPUs and Hitmap we have manipulated the partition plug-in
to experiment with different load-balance factors, between 0.5 and 0.975.

Consider the execution time of the reference CUDA code (A and A4). The
results show that it is always possible to improve these performance results with
the Hitmap code, exploiting heterogeneity with more than one device. The re-
sults for the small matrix size are more unstable, and impacted by the kernel
initialization times, including the communication between CPU and GPU. How-
ever, as the matrix size increases, the results are more stable, and show exactly
the same trends. We obtain performance improvements of up to 10% for the
small matrices, and a consistent best improvement of 20.5% for medium and big
input data sizes. Traces of the executions show that the MPI communication
times are always less than 10% of the total execution time for the small matrix
size. And their impact quickly decreases as the data input size grows.

On the left part of the plots (load-balance factor 0.5), the load is evenly dis-
tributed, not taking into account the different computing powers of the devices.
The critical path is dominated by the slower devices. As the load-balance factor
grows, the balance is improved proportionally reducing the total execution time.
After the optimum balance point is found, an increase of the factor leads to too
few computation on the slower devices. Thus, the critical path is dominated by
the fastest device, proportionally reducing performance again.

An important question is: Is it possible to predict the best load-balance factor
for a given set of devices? Profiling tests with simple benchmarks show that the
relative computing power between devices A and B is approximately r = 3.826;
and between device A and a core (device C) it is r = 14.153. In order to assign
to each device a computation proportional to its relative computing power, the
load-balance factor may be calculated as LB = r/(r+1) for the A2 scenarios, and
LB = (r − 1)/(r + 1) for the A3 scenarios. The experimental results show that,
for big enough matrices, this estimation is always a little lower than the value
that leads to the best performance: 10% in both A3 scenarios, 2% and 6% on A2
scenarios. A more sophisticated model, taking into account the synchronization
stages, is needed to automatically predict the best factor in the Layout plug-ins.

7 Conclusion

In this paper we present a new framework for heterogeneous programming. It
encapsulates the mapping techniques into plug-ins at two different layers of ab-
straction: one related to logical processes coordination, and another related to
adapting the computations to the inherent parallelism and architecture details
of the actual device associated to each logical process. We propose a high-level
API that transparently deals with all the details of communication and syn-
chronization between logical processes and accelerator devices, such as GPUs.

Encapsulated Synchronization and Load-Balance 513

This framework allows to generate codes which are transparently adapted to
heterogeneous systems with mixed types of accelerator devices.

Current on-going work involves: (1) Introducing in the framework more sophis-
ticated mapping policies that better exploit CPU-cores and GPU architecture
information; and (2) test the applicability of these techniques to more types of
programs, including well-know benchmarks and real applications.

References

1. Chamberlain, B., Deitz, S., Iten, D., Choi, S.E.: User-defined distributions and
layouts in Chapel: Philosophy and framework. In: 2nd USENIX Workshop on Hot
Topics in Parallelism (June 2010)

2. Kui Chen, Q., Kang Zhang, J.: A stream processor cluster architecture model with
the hybrid technology of mpi and cuda. In: ICISE 2009, pp. 86–89 (December 2009)

3. de Blas Cartón, C., Gonzalez-Escribano, A., Llanos, D.R.: Effortless and Efficient
Distributed Data-Partitioning in Linear Algebra. In: HPCC 2011, pp. 89–97. IEEE
(September 2010)

4. Farooqui, N., Kerr, A., Diamos, G.F., Yalamanchili, S., Schwan, K.: A framework
for dynamically instrumenting GPU compute applications within GPU Ocelot. In:
GPGPU, p. 9 (2011)

5. Fresno, J., Gonzalez-Escribano, A., Llanos, D.R.: Automatic Data Partitioning
Applied to Multigrid PDE Solvers. In: PDP 2011, pp. 239–246. IEEE (February
2011)

6. Gelado, I., Stone, J.E., Cabezas, J., Patel, S., Navarro, N., Mei, W.: An asymmetric
distributed shared memory model for heterogeneous parallel systems. In: ASPLOS
2010, pp. 347–358. ACM, New York (2010)

7. Grama, A., Gupta, A., Karypis, G., Kumar, V.: Introduction to Parallel Comput-
ing, 2nd edn. Addison Wesley (2003)

8. Hong, C., Chen, D., Chen, W., Zheng, W., Lin, H.: MapCG: writing parallel pro-
gram portable between CPU and GPU. In: PACT 2010, pp. 217–226. ACM, New
York (2010)

9. Karunadasa, N., Ranasinghe, D.: Accelerating high performance applications with
cuda and mpi. In: ICIIS 2009, pp. 331–336 (December 2009)

10. Luk, C.K., Hong, S., Kim, H.: Qilin: Exploiting parallelism on heterogeneous mul-
tiprocessors with adaptive mapping. In: MICRO-42, pp. 45–55 (December 2009)

11. Quintana-Ort́ı, G., Igual, F.D., Quintana-Ort́ı, E.S., van de Geijn, R.A.: Solving
dense linear systems on platforms with multiple hardware accelerators. In: PPoPP
2009, pp. 121–130. ACM, New York (2009)

12. Singh, S.: Computing without processors. Commun. ACM 54, 46–54 (2011)
13. Stratton, J.A., Stone, S.S., Hwu, W.-M.W.: MCUDA: An Efficient Implementation

of CUDA Kernels for Multi-core CPUs. In: Amaral, J.N. (ed.) LCPC 2008. LNCS,
vol. 5335, pp. 16–30. Springer, Heidelberg (2008)

14. Torres, Y., Gonzalez-Escribano, A., Llanos, D.R.: Using Fermi architecture knowl-
edge to speed up CUDA and OpenCL programs. In: Proc. ISPA 2012, Leganes,
Madrid, Spain (2012)

15. Yao, P., An, H., Xu, M., Liu, G., Li, X., Wang, Y., Han, W.: CuHMMer: A load-
balanced CPU-GPU cooperative bioinformatics application. In: HPCS 2010, pp.
24–30 (July 2010)

Transactional Access to Shared Memory

in StarSs, a Task Based Programming Model

Rahulkumar Gayatri1,2, Rosa M. Badia1,3,
Eduard Ayguade1,2, Mikel Luján4, and Ian Watson4

1 Barcelona Supercomputing Center, Barcelona, Spain
{rgayatri,rosa.m.badia,eduard.ayguade}@bsc.es

2 Universitat Politècnica de Catalunya, Spain
3 Artificial Intelligence Research Institute (IIIA),
Spanish National Research Council (CSIC), Spain

4 University of Manchester, UK
{mikel.lujan@manchester.ac.uk,watson@cs.man.ac.uk}

Abstract. With an increase in the number of processors on a single
chip, programming environments which facilitate the exploitation of par-
allelism on multicore architectures have become a necessity. StarSs is a
task-based programming model that enables a flexible and high level
programming. Although task synchronization in StarSs is based on data
flow and dependency analysis, some applications (e.g. reductions) require
locks to access shared data.

Transactional Memory is an alternative to lock-based synchronization
for controlling access to shared data. In this paper we explore the idea of
integrating a lightweight Software Transactional Memory (STM) library,
TinySTM , into an implementation of StarSs (SMPSs). The SMPSs run-
time and the compiler have been modified to include and use calls to
the STM library. We evaluated this approach on four applications and
observe better performance in applications with high lock contention.

1 Introduction

Over the past decade, single-core processors ran into three walls, namely ILP
(Instruction Level Parallelism), power and memory. The ensuing stalemate led
to the trend of placing multiple slower processors on a single chip. But achieving
good performance on these architectures is hard. It often requires programmers
to rewrite the code or implement algorithms anew. In multi-core programming,
the programmer’s efforts are directed towards hardware details, such as move-
ment of data between processors and synchronization, than on the details of the
algorithm. Every new architecture additionally comes with its associated SDK,
which raises the issue of portability. Hence, what is needed now are programming
environments, i.e. sets of compilers, runtimes and communication libraries, that
make multi-core programming easier while achieving maximum performance.
The effectiveness of such a programming model can be evaluated using the fol-
lowing measures:

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 514–525, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Transactional Access to Shared Memory in StarSs 515

– Performance of an application using the programming model versus the na-
tive SDK

– Level of complexity exposed to the programmer.
– Increase in number of lines compared to sequential program
– Use of specific API calls

– Ease of portability of applications.

OpenMP [5] is a widely used programming model for share memory archi-
tectures. It supports multi-platform multiprocessor programming in C, C++,
and Fortran. Cilk [7] is a similar programming model developed at MIT. Both
OpenMP and Cilk support task-based and loop-based parallelism but neither
performs task-based data dependence analysis. Magma [4] is a programming
language designed to investigate algebraic, geometric and combinatorial struc-
tures. It is not intended for general-purpose programming since its structure is
preconditioned for linear algebra problems.

StarSs[9] is a programming environment for parallel architectures such as
Symmetric Multiprocessors (SMP), the Cell Broadband Engine (Cell B./E.),
Graphical Processing Units (GPU) and clusters. An application written with
this programming model, can be executed on any of the architectures mentioned
above with no change to the code, effectively achieving portability. In this paper
we focus on SMPSs [10], the implementations of StarSs for SMP.

SMPSs allows programmers to write sequential applications, while the runtime
exploits the inherent concurrency and schedules tasks to different cores of an
SMP. We will have more to say on this topic in Section 2. In order to protect the
atomicity of shared memory locations, SMPSs uses locks. But locks suffer from
the traditional drawbacks of:

– Deadlock - two tasks trying to lock two different objects, each getting access
to one and waiting for the other one to be released.

– Livelock - similar to deadlock, except that the state of a livelocked process
changes constantly, although without progressing.

– Priority Inversion - a high-priority thread blocked by a low-priority thread.

Software Transactional Memory (STM) is an alternative method to lock-based
synchronization for accessing shared-memory locations. To this end a program
wraps operations (i.e., reads and writes) in a transaction and STM guarantees
that either all the operations in the transaction occur or none. It is a non-
blocking approach where a transaction tentatively updates shared memory. If
successful it makes the changes permanent and visible to other transactions, else
the transaction aborts and restarts [8]. This opportunistic strategy helps us in
avoiding problems arising from locks.

There are many TM systems available which allow programmers to access and
modify data through transactions. The Intel C++ STM compiler provides exten-
sions to its C++ compiler with support for STM language extensions [1]. RSTM
is a set of STM systems available from the Rochester Synchronization Group. It
consists of different library implementations and a smart-pointer API for rela-
tively transparent access to STM, and requires no compiler changes. TinySTM

516 R. Gayatri et al.

[6] is a word-based STM implementation of the LSA algorithm, available from
the University of Neuchatel. In this paper we explore the idea of integrating
TinySTM into SMPSs, as a replacement to locks for synchronizing simultaneous
access to critical memory locations. The rest of the paper is organized as follows:
Section 2 explains the basic framework of SMPSs, Section 3 discusses STM and
TinySTM, Section 4 presents our idea of integrating TinySTM in SMPSs, Sec-
tion 5 evaluates and characterizes the performance of our idea. section 6 presents
the conclusions and section 7 discusses the future work that we intent to do.

2 SMPSs

SMP Superscalar (SMPSs) consists of a source-to-source compiler and a run-
time library. The programmer annotates the sequential code and marks tasks or
units of computation using pragmas provided by the SMPSs compiler. During
execution, the SMPSs runtime analyzes the data accesses of these tasks, but
does not immediately perform the corresponding computation. Instead it builds
a Task Dependency Graph(TDG), where each node represents a task instance,
and edges denote dependencies between tasks. SMPSs uses the TDG to schedule
tasks to cores. Independent tasks, i.e. tasks without incoming edges can execute
in parallel.

2.1 SMPSs Syntax

As mentioned previously, the programmer typically annotates the functions using
pragmas and declares tasks:

1 #pragma css task [clauses]
2 function definition / function declaration

Listing 1.1. Syntax of a Task Declaration

The clauses indicate the type of access that a task performs for each parameter.
Every task parameter must appear in one of the clause, along with its dimensions.
SMPSs supports the following clauses in the task pragma:

1 The list of main clauses is the following:
2 input ([list of parameters])
3 output ([list of parameters])
4 inout ([list of parameters])
5 reduction ([list of parameters])

The runtime builds a TDG based on the directionality of the parameters. Shown
below is an example of a task pragma:

1 #pragma css task input(A[NB][NB],B[NB][NB],NB) inout(C[NB][NB])
2 void matmul(float *A, float *B, float *C, unsigned long NB)

Transactional Access to Shared Memory in StarSs 517

2.2 The Reduction Clause

Although the SMPSs runtime only schedules independent tasks for parallel ex-
ecution, the programming model supports a reduction-clause which allows par-
allel updates to a specified memory regions. The runtime does not insert an
edge in the TDG in this case. Responsibility falls on the programmer to access
shared memory in the critical section using lock and unlock pragmas provided
by SMPSs, for example:

1 #pragma css task input (n, j, a[n]) inout (results) reduction (results)
2 void nqueens_ser_task(int n, int j, char *a, int *results)
3 {
4
5 #pragma css mutex lock (results)
6 *results = *results + local_sols;
7 #pragma css mutex unlock (results)
8
9 }

Listing 1.2. Example of reduction

In the above Listing 1.2, the reduction applies to the variable results, which
implies the latter can be updated simultaneously by different tasks. Hence the
atomicity of the updates need to be guaranteed by lock and unlock pragmas.

3 Software Transactional Memory

Software Transactional Memory (STM) is an optimistic approach to manage
concurrent accesses to shared memory locations. When two different transac-
tions simultaneously try to update the same memory location, STM detects a
conflict and allows only one of the transactions to complete successfully. The
other transaction is either delayed or aborted. The delaying or aborting of the
transaction is also called rollback and the transaction is called the conflicting
transaction. The idea was first implemented by Shavit and Touitou [12]. STM
simplifies the implementation of shared memory access since each transaction
can now be viewed as an isolated series of operations. Every transaction is com-
posed of 4 basic steps:

1. Start of a transaction.
2. Load values from memory into the current transactional environment.
3. Store values back to memory.
4. Commit the results.

Different STM libraries check for conflicts at different steps, depending on their
implementation and design. Conflicts can be handled in various ways. The deci-
sion of which transaction should be allowed to complete and which should roll
back, depends on the contention manager being used.

STM places limitations on the kind of operations that can be executed in
a transaction. Only operations that can be rolled back should be employed,
whereas for example I/O operations (like printf(””) in C) cannot be included
in a transaction. The use of STM implies a performance degradation due to the
overhead incurred in the roll back of transactions.

518 R. Gayatri et al.

3.1 TinySTM

TinySTM[6] is a word based STM library based on the atomic ops library[3]. It
implements a single version, word-based variant of the Lazy Snapshot
Algorithm(LSA)[11]. Like most STM implementations TinySTM uses a shared
array of locks to manage concurrent memory accesses. It maps addresses to
locks, via a hash function, and uses a shared counter to maintain the timestamp
validity of memory locations in transactions. It has three strategies to access
memory:

1. WRITE BACK ETL - locks are acquired during encounter time.
2. WRITE BACK CTL - locks are only acquired during commit.
3. WRITE THROUGH - directly updates memory and maintains an undo log

for rollbacks.

In order to decide which transaction should roll back in case of a conflict,
TinySTM has several built in contention managers:

1. CM SUICIDE - Abort the transaction that detects the conflict.
2. CM DELAY - Similar to CM SUICIDE, but the rolled back transaction waits

until the contended lock has been released.
3. CM BACKOFF - Like CM SUICIDE, but delay restarting the transaction

for a random time.
4. CM AGGRESSIVE - Kill the other transaction.

We use WRITE BACK CTL to access memory with TinySTM in SMPSs.
This choice is in line with our future work, where we plan to introduce the

speculative execution of tasks in SMPSs. Tasks will execute speculatively, but the
committing of the results is postponed to later stages. For handling conflicts we
use the CM DELAY contention manager. CM DELAY restarts the rolled back
transaction when the contended lock is released. As such we avoid the possibility
of a transaction being rolled back repeatedly because of the same contention.

4 Integrating TinySTM in SMPSs

In order to incorporate TinySTM library calls in SMPSs applications, the library
in question has to be initialized and threads have to be made as transactional
threads. The initialization of TinySTM library (stm init) takes place in the main
thread of SMPSs and each SMPSs thread registers itself as a transactional thread
(stm init thread). In order to replace locks with STM, the operations executed
between lock and unlock pragmas must be wrapped in a transaction. The mem-
ory locations accessed in this region must be updated using STM calls. An SMP
thread finally must commit the result of these operations and make them per-
manent. For example, the code of Listing 1.2 is transformed into :

Transactional Access to Shared Memory in StarSs 519

1 #pragma css task input (n, j, a[n]) inout (results) reduction (results)
2 void nqueens_ser_task(int n, int j, char *a, int *results)
3 {
4
5 sigjmp_buf* jump = stm_start(NULL); // start the transaction
6 if(jump != NULL)
7 setjmp (*jump , 0); // save stack context
8 int buffer += stm_load_int(results) + local_sols;
9 stm_store_int(results , buffer);

10 stm_commit(); // commit transaction
11 ...
12 }

Listing 1.3. Implementation of Listing 1.2 with TinySTM library calls

As soon as a transaction starts (line 5 of Listing 1.3), the stack context is saved
using a call to setjmp (line 7 of Listing 1.3). Critical memory locations are loaded
into the current transactional context via calls to TinySTM (line 8 of Listing
1.3). The SMP thread performs the updates and at the end, stores the results and
commits the transaction (lines 9 and 10). If it detects a conflict while commit-
ting the results, then it performs a longjmp and the execution is restarted from
the location of the associated setjmp. In Listing 1.3., we inserted the transac-
tional calls to the TinySTM library manually. But our objective is to implement
transactional access to shared memory locations in SMPSs, without burdening
the programmer with these implementation details. TinySTM calls then have to
be performed from the SMPSs runtime or inserted by the compiler. Instead of
adding new pragmas for this purpose, we decided to modify the implementation
of the existing lock and unlock pragmas.

When The SMPSs compiler processes the lock and unlock pragmas, it replaces
them with runtime calls to css lock and css unlock respectively. css lock locks the
parameter passed to the lock pragma while css unlock unlocks it. The basic idea
is to start a transaction when a lock pragma is encountered and to commit the
results with the corresponding unlock pragma. Its implementation in the SMPSs
library is troublesome, due to the use of stack calls of setjmp and longjmp by
TinySTM. This restricts the start and end of a transaction to the same stack
frame.

As the locking pragmas map to different functions in the SMPSs runtime, the
stack context changes between the occurrence of a lock and its associated unlock.
If we modify the runtime such that a transaction is started from css lock and the
results committed in css unlock, conflicting transaction will not be rolled back
correctly.

Instead the SMPSs compiler was modified to insert transactional calls to the
TinySTM library. A transaction is started when a thread acquires a lock and the
address to be locked is loaded into the transactional environment. The compiler
creates a local variable and assigns it the memory address passed to the lock
pragma. All updates are performed on this local variable. When the thread re-
leases the lock for the memory location, i.e. at the location of an unlock pragma,
the value of the local variable is stored back into the memory address and the
transaction is committed. If another thread, and hence a different transaction,

520 R. Gayatri et al.

has modified the shared memory location since the time it was loaded into the
local variable, the transaction is rolled back and restarted.

Below we show how the compiler transforms lock and unlock pragmas for
Listing 1.2:

Fig. 1. Compiler generated code of Listing 1.2

The local variable is private to the thread and its scope is the task scope, i.e.,
this variable is alive only within this instance of the task.

We observed that in some applications it is more efficient to load multiple
shared memory addresses into a single transaction rather than to generate a
separate transaction for every address. Therefore we extended the lock pragma to
accept more than one address and load them into a single transactional context.
An example of multiple memory locations passed to a single lock pragma is
shown in Listing 1.4.

5 Results

To evaluate the performance of our implementation, we executed 4 benchmark
programs and the results are compared between SMPSs applications using locks
and STM. The applications chosen are:

– NQueens - of placing chess queens on a n*n board such that no queens attack
each other. The problem size of the results presented is a chess board of size
14*14 . The problem can have more than one unique solution. The critical
section in this application was when updating the number of unique solutions
that the problem has.

– Gmeans - a data mining algorithm to find clusters in a dataset. It returns the
number of Gaussian distributions and their centers contained in the dataset.
The atomicity in this application is required while updating the centers of
clusters in the data set.The problem size is a data set of 10 million points
of 10 dimensions each. It was observed that the application was not scaling
with more than 8 threads.

Transactional Access to Shared Memory in StarSs 521

– Matrix Multiplication - In this application the values of resultant matrix are
simultaneously updated by different tasks. Hence, while storing the results
a lock needs to be acquired on element of the matrix. The dimensions of the
matrix are (128*16) * (128*16).

– Specfem3D - the algorithm simulates seismic wave propagation in sedimen-
tary basins or any other regional geological model. In this application, locks
are used in two different stages, once while localizing the data in tasks from
global vectors and again while summing the values from each tasks in the
global mesh. The global mesh is accessed both directly and indirectly which
leads to conflicting accesses of the same position some times.

5.1 Performance Evaluation

The performance evaluation is shown below:

 0

 20

 40

 60

 80

 100

 120

 140

 160

1 2 3 4 5 6 7 8 10 12 16 20 24

T
im

e[
se

co
nd

s]

Number of threads

NQueens: transactions vs locks
STM

LOCKS

 100

 105

 110

 115

 120

 125

 130

 135

1 2 3 4 5 6 7 8

T
im

e[
se

co
nd

s]

Number of threads

Gmeans: transactions vs locks
STM

LOCKS

 0

 20

 40

 60

 80

 100

 120

 140

1 2 3 4 5 6 7 8 10 12 16 20 24

T
im

e[
se

co
nd

s]

Number of threads

Matrix Multiplication: transactions vs lock
STM

LOCKS

 0

 50

 100

 150

 200

 250

 300

 350

 400

1 2 3 4 5 6 7 8 10 12 16 20 24

T
im

e[
se

co
nd

s]

Number of threads

Specfem3D: transactions vs locks
STM

LOCKS

Fig. 2. Performance comparison between SMPSs examples using Transactions and
Locks

The above mentioned applications were executed on an Intel(R) Xeon(R)
E7450@2.40GHz machine with 24 cores. Thread affinity was controlled by as-
signing one thread to each core. From Fig.2., we observe that in Nqueens and
Gmeans applications STM performs better than locks, whereas in matrix multi-
plication example, the execution timings are nearly similar. In Specfem3D, even
though locks perform better than STM, we observe that the STM version scales.
We hope that with further optimizations and better hardware support, STM
will have higher performance.

522 R. Gayatri et al.

5.2 Performance Characterization

While using STM, with increasing number of threads there is a higher probability
of transactions conflicting with each other. Since more threads try to simultane-
ously update the shared memory locations, more conflicts occur resulting in more
rollbacks. Hence we analyzed the behavior of above mentioned applications with
increasing number of threads. We used Paraver[2], a flexible visualization tool
to analyze characteristics of transactions generated while running the applica-
tions. SMPSs runtime generates performance trace-files if tracing flag is enabled
during compilation. These traces can be analyzed using paraver. Transaction
specific events such as time spent in executing operations in a transaction, time
spent in commit and rollback were added to paraver tracefile. Shown below is
analysis of time spent by applications in different phases of transaction when
executed with varying number of threads.

Fig. 3. Time spent in different phases of transaction

From Fig.3., we can observe that in NQueens and Gmeans applications, time
spent in rollback is minimal. This is the main reason for their better performance
when compared to their lock based implementations. We can also observe that
in Gmeans application, threads spend longer time in commit compared to oper-
ations executed in transactions. The reason is, since every point in the data set
is of multiple dimensions, while committing the results of updated centers the

Transactional Access to Shared Memory in StarSs 523

value of each dimension has to be committed. This leads to higher amount of time
being spent in commit. We can also observe that matmul and specfem3D spend
significantly more time in rollback, compared to the other two benchmarks. As
rollback contributes to run-time overhead and thus to the overall execution time,
the performance decreases accordingly. However, the rollback overhead does not
increase linearly with the number of threads. The potential for contention, and
hence rollback, of an application is bounded by the amount of parallelism it
admits. The latter is a characteristic of the TDG of an application, not of the
number of resources (like the number of threads) with which one chooses to ex-
ecute. This observation gives us optimism that, with further optimizations and
better hardware support, we can further improve the performance of our parallel
programming model using STM.

As mentioned earlier sometimes it is more efficient to update multiple shared
memory locations in a single transaction compared to generating one transaction
for every single address. The trade-off is, to create multiple smaller transactions
and thus spend more time in start and commit of transactions versus longer
transactions and hence longer time in rollbacks in case of a conflict. In Specfem3D
instead of updating 3 different memory locations separately we updated all 3 in
a single transaction. Shown below is a snippet of the code.

1 //3 Transactions
2 #pragma css mutex lock((temp_x))
3 *(temp_x) += sum_terms[elem][k][j][i][X];
4 #pragma css mutex unlock ((temp_x))
5
6 #pragma css mutex lock((temp_y))
7 *(temp_y) += sum_terms[elem][k][j][i][Y];
8 #pragma css mutex unlock ((temp_y))
9

10 #pragma css mutex lock((temp_z))
11 *(temp_z) += sum_terms[elem][k][j][i][Z];
12 #pragma css mutex unlock ((temp_z))
13
14 //1 big transaction
15 #pragma css mutex lock(temp_x,temp_y ,temp_z)
16 *(temp_x) += sum_terms[elem][k][j][i][X];
17 *(temp_y) += sum_terms[elem][k][j][i][Y];
18 *(temp_z) += sum_terms[elem][k][j][i][Z];
19 #pragma css mutex unlock(temp_x ,temp_y ,temp_z)

Listing 1.4. Specfem3D

We observed that it was more optimal to update three different shared memory
locations in a single transaction compared to creating a transaction for each of
them. Shown in Fig.4., is how in Specfem3D these two approaches affected the
number of rollbacks:

While in this case longer transactions performed better, sometimes they can
degrade the performance due to longer rollback time.

524 R. Gayatri et al.

Fig. 4. Specfem3D : Number of rollbacks

6 Conclusion

To keep pace with Moore’s law, the trend in the processor industry is to place
multiple processors on a single chip. To completely utilize this power, the need of
the hour is of programming models offering an easier way to exploit parallelism.
StarSs is one such programming model for widely used multicore architectures. It
uses lock based synchronization during simultaneous updates of shared memory.
STM is an alternative shared memory synchronization technique. It is optimistic
in nature and simplifies concept of concurrent access to shared memory. We in-
tegrate TinySTM, a lightweight STM library with SMPSs (one implementation
of StarSs) and replace locks with transactions in SMPSs applications. The re-
sults were optimistic with higher performance in applications with high lock
contention.

7 Future Work

We plan to use STM to speculatively execute tasks. SMPSs provides program-
mers with synchronization constructs such as barriers and wait-on(wait for a
particular variable or memory location to be updated before continuing execu-
tion). Such constructs lead to problems of load balancing. Hence we plan to
introduce speculation using STM. In cases where there is a control dependency
between tasks and not data dependency, we can use STM to speculate and ex-
ecute tasks but postpone the committing of their results till the dependency is
resolved.

Acknowledgements. We thankfully acknowledge the support of the European
Commission through the TERAFLUX project (FP7-249013) and the HiPEAC-2
Network of Excellence (FP7/ICT 217068), the support of the Spanish Ministry
of Education (TIN2007-60625, CSD2007-00050 and FI program) and the Gen-
eralitat de Catalunya (2009- SGR-980).

Transactional Access to Shared Memory in StarSs 525

References

1. http://software.intel.com/en-us/articles/intel-c-stm-compiler-

prototype-edition-20/

2. http://www.bsc.es/media/1364.pdf

3. http://www.hpl.hp.com/research/linux/atomicops/

4. magma.maths.usyd.edu.au/magma/pdf/intro.pdf

5. Duran, A., Perez, J.M., Ayguadé, E., Badia, R.M., Labarta, J.: Extending the
OpenMP Tasking Model to Allow Dependent Tasks. In: Eigenmann, R., de Supin-
ski, B.R. (eds.) IWOMP 2008. LNCS, vol. 5004, pp. 111–122. Springer, Heidelberg
(2008)

6. Felber, P., Fetzer, C., Riegel, T.: Dynamic performance tuning of word-based soft-
ware transactional memory. In: PPoPP 2008, Salt Lake City, Utah, USA. ACM
(2008)

7. Frigo, M., Leiserson, C.E., Randall, K.H.: The implementation of the cilk-5 multi-
threaded language. In: Proceedings of the 1998 ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI 1998, Montreal, Canada.
ACM (1998)

8. Harris, T., Larus, J., Rajwar, R.: Transactional Memory, 2nd edn. Morgan and
Claypool Publishers (2010)

9. Perez, J.M., Badia, R.M., Labarta, J.: A dependency-aware task-based program-
ming environment for multi-core architectures. In: IEEE Int. Conference on Cluster
Computing, pp. 142–151 (September 2008)

10. Perez, J.M., Badia, R.M., Labarta, J.: Handling task dependencies under strided
and aliased references. In: Proceedings of the 24th ACM International Conference
on Supercomputing, ICS 2010, pp. 263–274. ACM, New York (2010)

11. Riegel, T., Felber, P., Fetzer, C.: A lazy snapshot algorithm with eager validation.
In: Proceedings of the 20th International Symposium on Distributed Computing

12. Shavit, N., Touitou, D.: Software transactional memory. In: 14th ACM Sympo-
sium on the Principles of Distributed Computing, Ottowa, Ontario, Canada. ACM
(1995)

http://software.intel.com/en-us/articles/intel-c-stm-compiler-prototype-edition-20/
http://software.intel.com/en-us/articles/intel-c-stm-compiler-prototype-edition-20/
http://www.bsc.es/media/1364.pdf
http://www.hpl.hp.com/research/linux/atomicops/
magma.maths.usyd.edu.au/magma/pdf/intro.pdf

On-the-Fly Task Execution for Speeding Up
Pipelined MapReduce

Diana Moise1, Gabriel Antoniu1, and Luc Bougé2

1 INRIA Rennes - Bretagne Atlantique / IRISA, France
2 ENS Cachan - Brittany / IRISA, France

Abstract. The MapReduce programming model is widely acclaimed as a key
solution to designing data-intensive applications. However, many of the compu-
tations that fit this model cannot be expressed as a single MapReduce execu-
tion, but require a more complex design. Such applications consisting of multiple
jobs chained into a long-running execution are called pipeline MapReduce ap-
plications. Standard MapReduce frameworks are not optimized for the specific
requirements of pipeline applications, yielding performance issues. In order to
optimize the execution on pipelined MapReduce, we propose a mechanism for
creating map tasks along the pipeline, as soon as their input data becomes avail-
able. We implemented our approach in the Hadoop MapReduce framework. The
benefits of our dynamic task scheduling are twofold: reducing job-completion
time and increasing cluster utilization by involving more resources in the compu-
tation. Experimental evaluation performed on the Grid’5000 testbed, shows that
our approach delivers performance gains between 9% and 32%.

Keywords: MapReduce, pipeline MapReduce applications, intermediate data
management, task scheduling, Hadoop, HDFS.

1 Introduction

The MapReduce abstraction has revolutionized the data-intensive community and has
rapidly spread to various research and production areas. Google introduced MapRe-
duce [8] as a solution to the need to process datasets up to multiple terabytes in size on
a daily basis. The goal of the MapReduce programming model is to provide an abstrac-
tion that enables users to perform computations on large amounts of data.

The MapReduce abstraction is inspired by the “map” and “reduce” primitives com-
monly used in functional programming. When designing an application using the
MapReduce paradigm, the user has to specify two functions: map and reduce that are
executed in parallel on multiple machines. Applications that can be modeled by the
means of MapReduce, mostly consist of two computations: the “map” step, that applies
a filter on the input data, selecting only the data that satisfies a given condition, and the
“reduce” step, that collects and aggregates all the data produced by the first phase. The
MapReduce model exposes a simple interface, that can be easily manipulated by users
without any experience with parallel and distributed systems. However, the interface is
versatile enough so that it can be employed to suit a wide range of data-intensive ap-
plications. These are the main reasons for which MapReduce has known an increasing
popularity ever since it was introduced.

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 526–537, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

On-the-Fly Task Execution for Speeding Up Pipelined MapReduce 527

An open-source implementation of Google’s abstraction was provided by Yahoo!
through the Hadoop [5] project. This framework is considered the reference MapRe-
duce implementation and is currently heavily used for various purposes and on several
infrastructures. The MapReduce paradigm has also been adopted by the cloud comput-
ing community as a support to those cloud-based applications that are data-intensive.
Cloud providers support MapReduce computations so as to take advantage of the huge
processing and storage capabilities the cloud holds, but at the same time, to provide the
user with a clean and easy-to-use interface. Amazon released ElasticMapReduce [2], a
web service that enables users to easily and cost-effectively process large amounts of
data. The service consists of a hosted Hadoop framework running on Amazon’s Elastic
Compute Cloud (EC2) [1]. Amazon’s Simple Storage Service (S3) [3] serves as stor-
age layer for Hadoop. AzureMapReduce [9] is an implementation of the MapReduce
programming model, based on the infrastructure services the Azure cloud [6] offers.
Azure’s infrastructure services are built to provide scalability, high throughput and data
availability. These features are used by the AzureMapReduce runtime as mechanisms
for achieving fault tolerance and efficient data processing at large scale.

MapReduce is used to model a wide variety of applications, belonging to numer-
ous domains such as analytics (data processing), image processing, machine learning,
bioinformatics, astrophysics, etc. There are many scenarios in which designing an ap-
plication with MapReduce requires the users to employ several MapReduce processing.
These applications that consist of multiple MapReduce jobs chained into a long-running
execution, are called pipeline MapReduce applications. In this paper, we study the char-
acteristics of pipeline MapReduce applications, and we focus on optimizing their exe-
cution. Existing MapReduce frameworks manage pipeline MapReduce applications as
a sequence of MapReduce jobs. Whether they are employed directly by users or through
higher-level tools, MapReduce frameworks are not optimized for executing pipeline ap-
plications. A major drawback comes from the fact that the jobs in the pipeline have to
be executed sequentially: a job cannot start until all the input data it processes has been
generated by the previous job in the pipeline.

In order to speed up the execution of pipelined MapReduce, we propose a new mech-
anism for creating “map” tasks along the pipeline, as soon as their input data becomes
available. Our approach allows successive jobs in the pipeline to overlap the execution
of “reduce” tasks with that of “map” tasks. In this manner, by dynamically creating and
scheduling tasks, the framework is able to complete the execution of the pipeline faster.
In addition, our approach ensures a more efficient cluster utilization, with respect to
the amount of resources that are involved in the computation. We implemented the pro-
posed mechanisms in the Hadoop MapReduce framework [5] and evaluated the benefits
of our approach through extensive experimental evaluation.

In section 2 we present an overview of pipelined MapReduce as well as the scenarios
in which this type of processing is employed. Section 3 introduces the mechanisms we
propose and shows their implementation in Hadoop. Section 4 is dedicated to the exper-
iments we performed; we detail the environmental setup and the scenarios we selected
for execution in order to measure the impact of our approach. Section 5 summarizes the
contributions of this work and presents directions for future work.

528 D. Moise, G. Antoniu, and L. Bougé

2 Pipeline MapReduce Applications: Overview and Related Work

Many of the computations that fit the MapReduce model, cannot be expressed as a sin-
gle MapReduce execution, but require a more complex design. These applications that
consist of multiple MapReduce jobs chained into a long-running execution, are called
pipeline MapReduce applications. Each stage in the pipeline is a MapReduce job (with
2 phases, “map” and “reduce”), and the output data produced by one stage is fed as
input to the next stage in the pipeline. Usually, pipeline MapReduce applications are
long-running tasks that generate large amounts of intermediate data (the data produced
between stages). This type of data is transferred between stages and has different char-
acteristics from the meaningful data (the input and output of an application). While the
input and output data are expected to be persistent and are likely to be read multiple
times (during and after the execution of the application), intermediate data is transient
data that is usually written once, by one stage, and read once, by the next stage.

However, there are few scenarios in which users directly design their application as a
pipeline of MapReduce jobs. Most of the use cases of MapReduce pipelines come from
applications that translate into a chain of MapReduce jobs. One of the drawbacks of the
extreme simplicity of the MapReduce model is that it cannot be straightforwardly used
in more complex scenarios. For instance, in order to use MapReduce for higher-level
computations (for example, the operations performed in the database domain) one has
to deal with issues like multi-stage execution plan, branching data-flows, etc. The trend
of using MapReduce for database-like operations led to the development of high-level
query languages that are executed as MapReduce jobs, such as Hive [14], Pig [12],
and Sawzall [13]. Pig is a distributed infrastructure for performing high-level analy-
sis on large data sets. The Pig platform consists of a high-level query language called
PigLatin and the framework for running computations expressed in PigLatin. PigLatin
programs comprise SQL-like high-level constructs for manipulating data that are inter-
leaved with MapReduce-style processing. The Pig framework compiles these programs
into a pipeline of MapReduce jobs that are executed within the Hadoop environment.

The scenarios in which users actually devise their applications as MapReduce
pipelines, involve binary data whose format does not fit the high-level structures of the
aforementioned frameworks. In order to facilitate the design of pipeline MapReduce
applications, Cloudera recently released Crunch [4], a tool that generates a pipeline of
MapReduce jobs and manages their execution. While there are several frameworks that
generate pipeline MapReduce applications, few works focus on optimizing the actual
execution of this type of applications. In [11], the authors propose a tool for estimat-
ing the progress of MapReduce pipelines generated by Pig queries. The Hadoop Online
Prototype (HOP) [7] is a modified version of the Hadoop MapReduce framework that
supports online aggregation, allowing users to get snapshots from a job as it is being
computed. HOP employs pipelining of data between MapReduce jobs, i.e., the reduce
tasks of one job can optionally pipeline their output directly to the map tasks of the next
job. However, by circumventing the storing of data in a distributed file system (DFS)
between the jobs, fault tolerance cannot be guaranteed by the system. Furthermore, as
the computation of the reduce function from the previous job and the map function of
the next job cannot be overlapped, the jobs in the pipeline are executed sequentially.

On-the-Fly Task Execution for Speeding Up Pipelined MapReduce 529

3 Introducing Dynamic Scheduling of Map Tasks in Hadoop

3.1 Motivation

In a pipeline of MapReduce applications, the intermediate data generated between the
stages represents the output data of one stage and the input data for the next stage. The
intermediate data is produced by one job and consumed by the next job in the pipeline.
When running this kind of applications in a dedicated framework, the intermediate data
is usually stored in the distributed file system that also stores the user input data and the
output result. This approach ensures intermediate data availability, and thus, provides
fault tolerance, a very important factor when executing pipeline applications. However,
using MapReduce frameworks to execute pipeline applications raises performance is-
sues, since MapReduce frameworks are not optimized for the specific features of in-
termediate data. The main performance issue comes from the fact that the jobs in the
pipeline have to be executed sequentially: a job cannot start until all the input data it
processes has been generated by the job in the previous stage of the pipeline. Conse-
quently, the framework runs only one job at a time, which results in inefficient cluster
utilization and basically, a waste of resources.

3.2 Executing Pipeline MapReduce Applications with Hadoop

The Hadoop project provides an open-source implementation of Google’s MapReduce
paradigm through the Hadoop MapReduce framework [5,15]. The framework was de-
signed following Google’s architectural model and has become the reference MapRe-
duce implementation. The architecture is tailored in a master-slave manner, consisting
of a single master jobtracker and multiple slave tasktrackers. The jobtracker’s main
role is to act as the task scheduler of the system, by assigning work to the tasktrackers.
Each tasktracker disposes of a number of available slots for running tasks. Every active
map or reduce task takes up one slot, thus a tasktracker usually executes several tasks
simultaneously. When dispatching “map” tasks to tasktrackers, the jobtracker strives at
keeping the computation as close to the data as possible. This technique is enabled by
the data-layout information previously acquired by the jobtracker. If the work cannot be
hosted on the actual node where the data resides, priority is given to nodes closer to the
data (belonging to the same network rack). The jobtracker first schedules “map” tasks,
as the reducers must wait for the “map” execution to generate the intermediate data.

Hadoop executes the jobs of a pipeline MapReduce application in a sequential man-
ner. Each job in the pipeline consists of a “map” and a “reduce” phase. The “map”
computation is executed by Hadoop tasktrackers only when all the data it processes is
available in the underlying DFS. Thus, the mappers are scheduled to run only after all
the reducers from the preceding job have completed their execution. This scenario is
also representative for a Pig processing: the jobs in the logical plan generated by the
Pig framework are submitted to Hadoop sequentially. In consequence, at each step of
the pipeline, at most the “map” and “reduce” tasks of the same job are being executed.
Running the mappers and the reducers of a single job involves only a part of the cluster
nodes. The rest of the computational and storage cluster capabilities remains idle.

530 D. Moise, G. Antoniu, and L. Bougé

3.3 Our Approach

In order to speed-up the execution of pipeline MapReduce applications, and also to
improve cluster utilization, we propose an optimized Hadoop MapReduce framework,
in which the scheduling is done in a dynamic manner. For a better understanding of
our approach, we first detail the process through which “map” and “reduce” tasks are
created and scheduled in the original Hadoop MapReduce framework.

Client Jobtracker
submit job

create Map
and Reduce tasks

add job to
scheduling queue

dispatch

tasks

Fig. 1. Job submission process in Hadoop

Figure 1 displays the job submission process. The first step is for the user to specify
the “map” and “reduce” computations of the application. The Hadoop client generates
all the job-related information (input and output directories, data placement, etc.) and
then submits the job for execution to the jobtracker. On the jobtracker’s side, the list
of “map” and “reduce” tasks for the submitted job is created. The number of “map”
tasks is equal to the number of chunks in the input data, while the number of “reduce”
tasks is computed by taking into account various factors, such as the cluster capacity,
the user specification, etc. The list of tasks is added to the job queue that holds the jobs
to be scheduled for execution on tasktrackers. In the Hadoop MapReduce framework,
the “map” and “reduce” tasks are created by the jobtracker when the job is submitted
for execution. When they are created, the “map” tasks require to know the location of
the chunks they will work on.

In the context of multiple jobs executed in a pipeline, the jobs are submitted by the
client to the jobtracker sequentially, as the chunk-location information is available only
when the previous job completes. Our approach is based on the remark that a “map”
task is created for a single input chunk. It only needs to be aware of this very chunk
location. Furthermore, when it is created, the only information that the “map” task
requires, is the list of nodes that store the data in its associated chunk. We modified
the Hadoop MapReduce framework to create “map” tasks dynamically, that is, as soon
as a chunk is available for processing. This approach can bring substantial benefits to
the execution of pipeline MapReduce applications. Since the execution of a job can start
as soon as the first chunk of data is generated by the previous job, the total runtime is
significantly reduced. Additionally, the tasks belonging to several jobs in the pipeline
can be executed at the same time, which leads to a more efficient cluster utilization.

The modifications and extensions of the Hadoop MapReduce framework that we
propose, are further presented and summarized on Figure 2.

On-the-Fly Task Execution for Speeding Up Pipelined MapReduce 531

Fig. 2. Dynamic creation of “map” tasks

Algorithm 1. Report output size (on tasktracker)
1: procedure COMMITTASK

2: (size, files) ← tasktracker.writeReduceOutputData()
3: jobtracker.transmitOutputInfo(size, files)
4: end procedure

Job-Submission Process

Client side. On the client side, we modified the submission process between the Hadoop
client and the jobtracker. Instead of waiting for the execution to complete, the client
launches a job monitor that reports the execution progress to the user. With this ap-
proach, a pipeline MapReduce application employs a single Hadoop client to run
the application. The client submits all the jobs in the pipeline from the beginning,
instead of submitting them sequentially, i.e., the modified Hadoop client submits
the whole set of jobs job1...jobn for execution.

Jobtracker side. The job-submission protocol is similar to the one displayed on Fig-
ure 1. However, at submission time, only the input data for job1 is available in
the DFS. Regarding job2...jobn, the input data has to be generated throughout the
pipeline. Thus, the jobtracker creates the set of “map” and “reduce” tasks only for
job1. For the rest of the jobs, the jobtracker creates only “reduce” tasks, while
“map” tasks will be created along the pipeline, as the data is being generated.

Job Scheduling

Tasktracker side: For a jobi in the pipeline, the data produced by the job’s “reduce”
phase (reducei) represents the input data of jobi+1’s “map” task (mapi+1). When
reducei is completed, the tasktracker writes the output data to the backend storage.
We modified the tasktracker code to notify the jobtracker whenever it successfully
completes the execution of a “reduce” function: the tasktracker informs the job-
tracker about the size of the data produced by the “reduce” task.

532 D. Moise, G. Antoniu, and L. Bougé

Algorithm 2. Update job (on jobtracker)
1: procedure TRANSMITOUTPUTINFO(size, files)
2: invoke updateJob(size, files) on taskscheduler
3: end procedure

4: procedure UPDATEJOB(size, files)
5: for all job ∈ jobQueue do
6: dir ← job.getInputDirectory()
7: if dir = getDirectory(files) then
8: if writtenBytes.contains(dir) = False then
9: writtenBytes.put(dir, size)

10: else
11: allBytes ← writtenBytes.get(dir)
12: writtenBytes.put(dir, allBytes+ size)
13: end if
14: allBytes ← writtenBytes.get(dir)
15: if allBytes ≥ CHUNK SIZE then
16: b ← job.createMapsForSplits(files)
17: writtenBytes.put(dir, allBytes− b)
18: else
19: job.addToPending(files)
20: end if
21: end if
22: end for
23: end procedure

Jobtracker side: In our modified framework, the jobtracker keeps track of the out-
put data generated by reducers in the DFS. This information is important for the
scheduling of the jobs in the pipeline, as the output directory of jobi is the in-
put directory of jobi+1. Each time data is produced in jobi’s output directory, the
jobtracker checks to see if it can create new “map” tasks for jobi+1. If the data
accumulated in jobi+1’s input directory is at least of the size of a chunk, the job-
tracker creates “map” tasks for the newly generated data. For each new chunk, the
jobtracker creates a “map” task to process it. All the “map” tasks are added to the
scheduling queue and then dispatched to idle tasktrackers for execution.

The modifications on the tasktracker side are described in Algorithm 1. We extended
the code with a primitive that sends to the jobtracker the information about the “reduce”
output data: the files written to the DFS and the total size of the data. Algorithm 2
shows the process of updating a job with information received from tasktrackers. The
algorithm is integrated in the jobtracker code, mainly in the scheduling phase. The
jobtracker also plays the role of task scheduler. It keeps a list of data written to the
input directory of each job. For each received update, the jobtracker checks if the data
in the job’s input directory reaches at least a chunk in size (64 MB default). If it is the
case, “map” tasks will be created, one per each new data chunk. Otherwise, the job’s
information is stored for subsequent processing. The mechanism of creating “map”
tasks is presented in Algorithm 3, executed by the jobtracker, and integrated into the job

On-the-Fly Task Execution for Speeding Up Pipelined MapReduce 533

Algorithm 3. Create map tasks (on job)
1: procedure ADDTOPENDING(files)
2: pendingF iles.addAll(files)
3: end procedure

4: function CREATEMAPSFORSPLITS(files) returns splitBytes
5: pendingF iles.addAll(files)
6: splits ← getSplits(pendingF iles)
7: pendingF iles.clear()
8: newSplits ← splits.length
9: jobtracker.addWaitingMaps(newSplits)

10: for i ∈ [1..newSplits] do
11: maps[numMapTasks+ i] ← newMapTask(splits[i])
12: end for
13: numMapTasks ← numMapTasks+ newSplits
14: notifyAllReduceTasks(numMapTasks)
15: for all s ∈ splits do
16: splitBytes ← splitBytes+ s.getLength()
17: end for
18: return splitBytes
19: end function

code. We extended the code so that each job holds the list of files that were generated
so far in the job’s input directory. When the jobtracker computes that at least a chunk of
input data has been generated, new “map” tasks are created for the job. The data in the
files is split into chunks. A “map” task is created for each chunk and the newly launched
tasks are added to the scheduling queue. The jobtracker also informs the “reduce” tasks
that the number of “map” tasks has changed. The reducers need to be aware of the
number of mappers of the same job, as they have to transfer their assigned part of the
output data from all the mappers to their local disk.

4 Evaluation

We validate the proposed approach through a series of experiments that compare the
original Hadoop framework with our modified version, when running pipeline applica-
tions.

4.1 Environmental Setup

The experiments were carried out on the Grid’5000 [10] testbed. The Grid’5000 project
is a widely-distributed infrastructure devoted to providing an experimental platform
for the research community. The platform is spread over 10 geographical sites located
through on French territory and 1 in Luxembourg. For our experiments, we employed
nodes from the Orsay cluster of the Grid’5000. The nodes are outfitted with dual-core
x86 64 CPUs and 2 GB of RAM. Intra-cluster communication is done through a 1 Gbps

534 D. Moise, G. Antoniu, and L. Bougé

Ethernet network. We performed an initial test at a small scale, i.e., 20 nodes, in order to
assess the impact of our approach. The second set of tests involves 50 nodes belonging
to the Orsay cluster.

4.2 Results

The evaluation presented here focuses on assessing the performance gains of the opti-
mized MapReduce framework we propose, over the original one. To this end, we de-
veloped a benchmark that creates a pipeline of n MapReduce jobs and submits them to
Hadoop for execution. Each job in the pipeline simulates a load that parses key-value
pairs from the input data and outputs 90% of them as final result. In this manner, we
manage to obtain a long-running application that generates a large amount of data, al-
lowing our dynamic scheduling mechanism to optimize the execution of the pipeline.
The computation itself is not relevant in this case, as our goal is to create a scenario
in which enough data chunks are generated along the pipeline so that “map” tasks can
be dynamically created. We run this type of application first with the original Hadoop
framework, then with our optimized version of Hadoop. In both cases, we measure the
pipeline completion-time and compare the results.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 1 2 3 4 5 6 7 8 9

T
im

e
(s

)

No of jobs

Original Hadoop
Modified Hadoop

Fig. 3. Completion time for short-running pipeline applications

Short-Running Pipeline Applications

In a first set of experiments, we run the benchmark in a small setup involving 20 nodes,
on top of which HDFS and Hadoop MapReduce are deployed as follows: a dedicated
machine is allocated for each centralized entity (namenode, jobtracker), a node serves
as the Hadoop client that submits the jobs, and the rest of 17 nodes represent both
datanodes and tasktrackers. At each step, we keep the same deployment setup and we
increase the number of jobs in the pipeline to be executed. The first test consists in
running a single job, while the last one runs a pipeline of 9 MapReduce jobs. The
application’s input data, i.e., job1’s input data, consists of 5 data chunks (a total of
320 MB). Jobi keeps 90% of the input data it received from jobi−1. In the case of the
9-job pipeline, this data-generation mechanism leads to a total of 2 GB of data produced
throughout the pipeline, out of which 1.6 GB account for intermediate data.

On-the-Fly Task Execution for Speeding Up Pipelined MapReduce 535

Figure 3 shows the execution time of pipeline applications consisting of an increasing
number of jobs (from 1 to 9), in two scenarios: when running on top of the original
Hadoop, and with the pipeline-optimized version we proposed. In the first case, the
client sequentially submits the jobs in the pipeline to Hadoop’s jobtracker, i.e., waits for
the completion of jobi before submitting jobi+1. When using our version of Hadoop,
the client submits all the jobs in the pipeline from the beginning, and then waits for the
completion of the whole application. As expected, the completion time in both cases
increases proportionally to the number of jobs to be executed. However, our framework
manages to run the jobs faster, as it creates and schedules “map” tasks as soon as a chunk
of data is generated during the execution. This mechanism speeds-up the execution of
the entire pipeline, and also exhibits a more efficient cluster utilization. Compared to
the original Hadoop, we obtain a performance gain between 26% and 32%.

 1500

 2000

 2500

 3000

 3500

 10 15 20 25 30 35

T
im

e
(s

)

No of jobs

Original Hadoop
Modified Hadoop

Fig. 4. Completion time for long-running pipeline applications

Long-Running Pipeline Applications

The first experiment we presented was focused on pipeline applications that consist of a
small up to a medium number of jobs (1 to 9). Due to the long-running nature of pipeline
applications and considering the significant size of the intermediate data our benchmark
generates, we performed experiments with larger applications and larger datasets in a
different setup, including 50 nodes. HDFS and Hadoop MapReduce are deployed as for
the previous experiment, employing thus 47 tasktrackers. The size of the input data for
each pipeline application amounts to 2.4 GB (40 data chunks). We vary the number of
jobs to be executed in each pipeline, from 10 to 35. For the longest-running application,
the generated data add up to a total of 24.4 GB.

The results for this setup are displayed on Figure 4. Consistently with the previous
results, our approach proves to be more efficient for long-running applications as well.
The performance gains vary between 9% and 19% in this scenario. The benefits of
our optimized framework have a smaller impact in this case, because of the data size
involved in the experiment. Since more chunks are used as input, and substantially more
chunks are being generated throughout the pipeline, a large part of the tasktrackers is
involved in the current computation, leaving a smaller number of resources available
for dynamically running created “map” tasks.

536 D. Moise, G. Antoniu, and L. Bougé

 700

 750

 800

 850

 900

 950

 1000

 1050

 10 15 20 25 30 35 40 45

T
im

e
(s

)

No of nodes

Original Hadoop
Modified Hadoop

Fig. 5. Impact of deployment setup on performance

Scaling Out

In the context of pipeline applications, the number of nodes involved in the Hadoop
deployment can have a substantial impact on completion time. Furthermore, consider-
ing our approach of dynamic scheduling “map” tasks, the scale of the deployment is
an important factor to take into account. Thus, we performed an experiment in which
we vary the number of nodes employed by the Hadoop framework. At each step, we
increase the number of nodes used for the deployment, such that the number of task-
trackers that execute “map” and “reduce” tasks is varied from 10 to 45. In each setup,
we run the aforementioned benchmark with a fixed number of 7 jobs in the pipeline.
The input data is also fixed, consisting of 25 chunks of data, i.e., 1.5 GB.

Figure 5 shows the completion time of the 7-job pipeline when running with both
original Hadoop and modified Hadoop, while increasing the deployment setup. As the
previous experiments also showed, our improved framework manages to execute the
jobs faster than the original Hadoop. In both cases, as more nodes are added to the
deployment, the application is executed faster, as more tasktrackers can be used for
running the jobs. However, increasing the number of nodes yields performance gains up
to a point, which corresponds to 25 tasktrackers for the original Hadoop. This number is
strongly related to the number of chunks in the input data, since the jobtracker schedules
a tasktracker to run the “map” computation on each chunk. For the modified Hadoop,
the point after which expanding the deployment does not prove to be profitable any
longer, is higher than for the original Hadoop. The reason for this behavior lies in the
scheduling approach of both frameworks: in original Hadoop, the scheduling of jobs is
done sequentially, while in modified Hadoop, the “map” tasks of each job are scheduled
as soon as the data is generated. The completion time starts to increase in both cases
after a certain point, as the overhead of launching and managing a larger number of
tasktrackers overcomes the advantage of having more nodes in the deployment.

5 Conclusions

In this paper we address a special class of MapReduce applications, i.e., applications
that consist of multiple jobs executed in a pipeline. In this context, we focus on

On-the-Fly Task Execution for Speeding Up Pipelined MapReduce 537

improving the performance of the Hadoop MapReduce framework when executing
pipelines. Our proposal consists mainly of a new mechanism for creating tasks along
the pipeline, as soon as their input data become available. This dynamic task scheduling
leads to an improved performance of the framework, in terms of job completion time.
In addition, our approach ensures a more efficient cluster utilization, with respect to the
amount of resources involved in the computation. The approach presented in this paper
can be further extended so as to allow the overlapping of several jobs in the pipeline.
However, this aspect would require careful tuning of the scheduling of tasks in MapRe-
duce frameworks. Deciding whether to execute reducers for the current job or to start
mappers for the next jobs is a crucial aspect that requires complex metrics. As future
direction, we also plan to validate the proposed approach through experiments with
higher-level frameworks in the context of pipelined MapReduce, such as Pig.

Acknowledgments. This work was supported in part by the Agence Nationale de
la Recherche (ANR) under Contract ANR-10-SEGI-01 (MapReduce Project). The
experiments presented in this paper were carried out using the Grid’5000 testbed,
an initiative of the French Ministry of Research through the ACI GRID incen-
tive action, INRIA, CNRS and RENATER and other contributing partners (see
http://www.grid5000.org/).

References

1. Amazon Elastic Compute Cloud (EC2), http://aws.amazon.com/ec2/
2. Amazon Elastic MapReduce, http://aws.amazon.com/elasticmapreduce/
3. Amazon Simple Storage Service (S3), http://aws.amazon.com/s3/
4. Crunch, https://github.com/cloudera/crunch
5. The Hadoop MapReduce Framework, http://hadoop.apache.org/mapreduce/
6. The Windows Azure Platform, http://www.microsoft.com/windowsazure/
7. Condie, T., Conway, N., Alvaro, P., et al.: Mapreduce online. In: Procs. of NSDI 2010, Berke-

ley, CA, USA, p. 21. USENIX Association (2010)
8. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. Commu-

nications of the ACM 51(1), 107–113 (2008)
9. Gunarathne, T., Wu, T.-L., Qiu, J., Fox, G.: MapReduce in the Clouds for Science. In: Procs.

of CLOUDCOM 2010, Washington, DC, pp. 565–572 (2010)
10. Jégou, Y., Lantéri, S., Leduc, J., et al.: Grid’5000: a large scale and highly reconfigurable

experimental Grid testbed.. Intl. Journal of HPC Applications 20(4), 481–494 (2006)
11. Morton, K., Friesen, A., Balazinska, M., Grossman, D.: Estimating the progress of MapRe-

duce pipelines. In: Procs. of ICDE, pp. 681–684. IEEE (2010)
12. Olston, C., Reed, B., Srivastava, U., et al.: Pig Latin: a not-so-foreign language for data

processing. In: Procss of SIGMOD 2008, pp. 1099–1110. ACM, NY (2008)
13. Pike, R., Dorward, S., Griesemer, R., Quinlan, S.: Interpreting the data: Parallel analysis with

Sawzall. Scientific Programming Journal 13, 277–298 (2005)
14. Thusoo, A., Sarma, J.S., Jain, N., et al.: Hive: A warehousing solution over a MapReduce

framework. In: Procs. of VLDB 2009, pp. 1626–1629 (2009)
15. White, T.: Hadoop: The Definitive Guide. O’Reilly Media, Inc. (2009)

http://www.grid5000.org/
http://aws.amazon.com/ec2/
http://aws.amazon.com/elasticmapreduce/
http://aws.amazon.com/s3/
https://github.com/cloudera/crunch
http://hadoop.apache.org/mapreduce/
http://www.microsoft.com/windowsazure/

Assessing the Performance and Scalability

of a Novel Multilevel K-Nomial Allgather
on CORE-Direct Systems

Joshua S. Ladd, Manjunath Gorentla Venkata,
Richard Graham, and Pavel Shamis

Computer Science and Mathematics Division
Oak Ridge National Laboratory

One Bethel Valley Road
Oak Ridge, TN 37831, USA

laddjs@ornl.gov

Abstract. In this paper, we propose a novel allgather algorithm,
Reindexed Recursive K-ing (RRK), which leverages flexibility in the al-
gorithm’s tree topology and ability to make asynchronous progress cou-
pled with Core-Direct communication offload capability to optimize the
MPI Allgather for Core-Direct enabled systems. In particular, the RRK
introduces a reindexing scheme which ensures contiguous data transfers
while adding only a single additional send and receive operation for any
radix, k, or communicator size, N. This allows us to improve algorithm
scalability by avoiding the use of a scatter/gather elements (SGE) list
on InfiniBand networks. The implementations of the RRK algorithm
and its evaluation shows that it performs and scales well on Core-Direct
systems for a wide range of message sizes and various communicator
configurations.

Keywords: Collectives, MPI, Allgather, CORE-Direct.

1 Introduction

The MPI Allgather operation, in which each rank must share a message with
all other ranks, falls within the class of all-to-all collective communications. The
allgather is an important operation employed in such varied applications as par-
allel matrix multiplication and video compression algorithms. While much work
has been done on developing good allgather algorithms for a broad range of net-
works and data sizes, several caveats exist that leave many questions open for
exploration on how to best achieve good performance for an arbitrary communi-
cator size, message length, and communication substrate. In particular, several
implementors have recommended the use of logarithmic algorithms for latency
sensitive small message operations and linear algorithms for bandwidth bound
large message operations. For the current class of logarithmic algorithms one
must circumvent one of two obstacles: dealing with the non power-of-two case,
or dealing with packing and unpacking noncontiguous data.

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 538–549, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Assessing the Performance and Scalability 539

In this paper, we focus on optimizing the MPI Allgather collective opera-
tion by 1) introducing a novel logarithmic allgather algorithm 2) making the
algorithm hierarchy aware, and 3) leveraging Mellanox Technologies’ CORE-
Direct capability which provides the capability to fully offload a linked list of
network operations to the host channel adapter (HCA).

The novel algorithm introduced is the Reindexed Recursive K-ing (RRK)
algorithm. The novelty is two-fold; first, so far as we are aware, no one has
implemented a general k-nomial allgather algorithm, a feature we believe could
be leveraged on emerging networks, and second, the way in which the algorithm
handles the non power-of-k case requires no additional steps and need not make
concessions for noncontiguous data. It’s possible to implement recursive k-ing on
CORE-Direct systems by leveraging scatter-gather hardware via scatter/gather
lists (SGE) and using this to handle the non power-of-k case, however, this
limits the scalability of the algorithm due to limitations on the maximum size
of an SGE list. It’s with this constraint in mind that we propose an alternative
algorithmic approach to handle the generic non power-of-k case.

All algorithms presented herein have been implemented within the Cheetah
framework [6] in order to design hierarchy aware implementations. We compare
the non power-of-2 performance to Open MPI’s Bruck implementation [4]. We in-
vestigate the cost and benefit of pipelining fragments for the three-level allgather
when messages are too large to fit in preregistered library buffers. We also revisit
the comparison between logarithmic versus linear algorithms for large messages
this time on CORE-Direct enabled systems by comparing the performance of the
one level zero-copy RRK allgather to the performance of the one level, zero-copy
neighbor exchange.

The rest of this paper is organized as follows. In Section 2 we give describe
the background and related works, in Section 3 we give an overview of the design
and implementation of the algorithms. In section 4 we present results and finally,
in Section 5 we discuss our results and give concluding remarks.

2 Background

All-to-all collectives have been extensively studied, a survey of all-to-all collec-
tives on various networks with various communication modes can be found in
[5], [8]. Some of the earliest work on optimizing the allgather for modern mes-
sage passing systems was done by Bruck et al. [2]. From this work emerged the
well-known and oft implemented “Bruck” algorithm. Träff et al. have studied the
allgather extensively; they proposed to optimize this operation for large SMP
systems by implementing a shared-memory aware algorithm as well as intro-
ducing a logarithmic-linear hybrid allgather [13]. Benson et al. [1] have studied
both recursive doubling and dissemination based allgather algorithms. The lat-
ter algorithm must deal with noncontiguous data and the former handles the
non power-of-two case with with a modified recursive doubling algorithm that
can require up to 2 ∗ �log(n)� steps. Kandalla et al. have explored a multi-leader

540 J.S. Ladd et al.

algorithm thereby extending the notion of hierarchy to more effectively utilize
modern high-speed interconnects. Sur et al. implemented Remote Direct Memory
Access (RDMA) based allgather algorithms for InfiniBand (IB) systems to im-
plement allgather for IB based clusters [12]. Hierarchical algorithms have been
proposed by several authors, including Sanders, Träff, and Kandalla [10] [13]
[11]. Chen et al. [3] studied several common allgather algorithms on terascale
Linux clusters with fast ethernet and proposed a linear time neighbor exchange
algorithm for the large message allgather.

3 Algorithm Design

In this section, we describe the allgather algorithms designed and implemented.
Throughout this paper, with the exception of the neighbor exchange, the al-
gorithms under examination implement a general k-nomial exchange pattern.
Recursive k-ing, as we have dubbed it, is a logarithmic algorithm which has
logk(N) steps, where on each step each rank performs a pair-wise exchange with
(k − 1) peers.

3.1 Reindexed Recursive K-ing (RRK)

Recursive k-ing is a generalization of the well known recursive doubling algo-
rithm. Whereas recursive doubling’s communication pattern is encoded in a bi-
nomial tree, as the name suggests, recursive k-ing’s pattern is encoded in a k-
nomial tree. To begin the description, first, consider the case where the number
of ranks, N , is a power of the radix, k, i.e. N = kp. Then the algorithm consists
of p steps where on each step every rank communicates in pair-wise fashion with
(k − 1) peers, namely with those at distances ki, 2ki, 3ki, ..., (k − 1)ki away. In
a recursive k-ing allgather of input size s bytes, at step i, each rank sends and
receives s ∗ ki bytes to and from each of the (k − 1) peers.

1 2 3

4 5

6

7 8

(1)

(3) 11 12

0

(2) (4) (6)

(8) (9)

(10)

(11) (12)

9

10 (5) (7)

Fig. 1. An incomplete 3-nomial tree consisting of 13 nodes. R is contained in the right
hand box and its mapping into T0 is contained in the left box. The relabeled node
values appear in parentheses next to the original labels.

Assessing the Performance and Scalability 541

For the non power-of-k case we introduce a reindexing scheme which ensures
contiguous data transfers during the communication phase. ConsiderN processes
where kp < N < kp+1 and divide the processes into complete or full subtrees of
size kp. There are m < k such subtrees, denoted here as: T0, T1, ..., Tm−1. There
exists a single, incomplete, remainder subtree of size N − mkp < kp, denoted
here as R. We define a set of N−mkp proxies within the complete subtree T0 by
performing the following regrouping. Starting at the root of T0, we redistribute
the nodes of the tree in T0 and R so that, rank 0 remains the root of T0, rank
1 is the root of subtree R, rank 2 is the first leaf in T0, rank 3 is the first leaf
in R, and so on. We continue this way, redistributing in round robin fashion
between T0 and R until R is a subtree whose nodes are physically composed of
the first N − mkp odd ranks, and T0 is a subtree whose first N −mkp nodes
are composed of the first N −mkp even ranks. Starting with rank N −mkp we
sequentially fill out each subtree, Ti. The first N −mkp nodes in T0 are natural
proxies for the nodes in R since elements of T0 would be connected to the nodes
of R in this way at step p+1 if N = kp+1. In the first step of the algorithm, all
nodes in R send their data to their naturally connected proxy in T0. It follows by
induction on p that each full subtree, Ti, may apply recursive k-ing independent
of any other subtree, Tj . In this way, after p steps, every member of subtree Ti

has all of the data contributed by all nodes in Ti and the data is contiguous.
On step p+ 1, each node in Ti has a unique communication partner in subtree
Tj for all j �= i. Each node performs (m − 1) < (k − 1) pairwise exchanges,
at the conclusion of which all ranks within T0 ∪ T1 ∪ ... ∪ Tm−1 have all of the
data. In the last step, the proxy nodes in T0 send the full message back to the
extra nodes in R. This algorithm has p+ 3 distinct communication phases, and
requires, at most, (p + 1)(k − 1) send/receives all but one set being pair-wise.
Figure 1 shows the positions of the ranks in an incomplete 3-nomial tree before
and after regrouping. This scheme is appealing since, by construction, it ensures
contiguous data by pairing proxy ranks with their consecutive counterparts who
have been placed logically in the incomplete remainder tree R.

3.2 Small Message Algorithms

For small messages, defined as those where the received message can fit entirely
within a single library buffer, we have implemented a hierarchical method. For
an n-level hierarchy, we gather the data up n − 1 distinct k-nomial trees, the
radices can be chosen independently allowing one to choose an optimal radix for
each communication substrate. The same reindexing is employed by the gather
operation to deal with any extra ranks. The RRK allgather is executed at level n.
Subsequent to this, the data is broadcast down the n− 1 levels and copied from
the library buffer back into the user’s space. If the buffer space is exhausted,
then we fall back on a pipelined fragmentation scheme.

RRK Implementations. We have implemented two separate RRK algorithms
for the purposes of this study; the first is the CORE-Direct -RRK or offloaded

542 J.S. Ladd et al.

RRK. A complete overview of CORE-Direct ’s capabilities is beyond the scope of
this paper and we refer the reader to [7] for a complete overview of the CORE-
Direct queue structure. For the small message CORE-Direct -RRK we employ
remote direct memory access (RDMA) calls with sender-side “put” with immedi-
ate data to transfer the data into remote pre-registered buffers. The immediate
data is used to generate a completion queue entry which is used by the host
channel adapter (HCA) for collective communication management. Processes
that participate in this collective create a list of network tasks which is posted
to a management queue (MQ), which in turn posts to the appropriate queue
pair (QP). After the post, the CORE-Direct HCA progresses the collective com-
pletely freeing the CPU for other work save for polling on collective completion.
We also implement a point-to-point RRK (p2p-RRK) which involves the same
communication patterns, but implements non-blocking send/receive semantics
atop Open MPI’s point-to-point layer to achieve data transfers.

3.3 Large Message Algorithms

For CORE-Direct systems we have implemented a zero-copy CORE-Direct -RRK
algorithm that does not copy data into library buffers but instead works entirely
in the user’s buffer space. This implementation employs send/receive semantics
instead of RDMA. In order to ensure that the receiver’s buffer is ready at any
given step, we implement a rendezvous protocol via ready-to-receive messages
(RTR). After a receiver posts a receive, it must inform the sender that it is
“ready-to-receive” by sending an RTRmessage to a buffer that was pre-posted by
the sender. This coordinated exchange happens on each exchange. Furthermore,
user buffers must be registered with the HCA in order to pin the memory and
perform various address translations. Messages must be quite large in order to
amortize the cost of the rendezvous and registration.

For comparison, we have implemented the linearly scaling zero copy CORE-
Direct neighbor exchange (NX) algorithm whose data pattern was first described
in [3]. In this algorithm, processes perform pairwise exchange alternating between
left and right-most neighbors. We again implement a rendezvous protocol via
RTR messages to ensure buffers are ready to receive.

4 Results

In this section, we assess the performance of the small message RRK implemen-
tations including: the single level RRK implementations without fragmentation,
the hierarchical RRK with fragmentation enabled, and the zero copy large mes-
sage RRK and NX algorithms.

4.1 System Configuration

For all experiments conducted herein, we used the Hyperion system, which is a
1,152 node test-bed for experimenting with high-performance computing tech-
nologies installed at Lawrence Livermore National Laboratory. The partition

Assessing the Performance and Scalability 543

that we used for our experiments is comprised of 64 nodes where each node con-
tains two sockets each, with four Intel Xeon 2.5 GHz processor cores. Each node
contains10 GB of memory and a CORE-Direct HCA.

Each Hyperion node runs an instance of CHAOS, an Open Mosix based op-
erating system, with kernel version 2.6.18. For latency measurements, each node
was configured with eight MPI process and the performance was measured on
up to 512 processes. For overlap experiments, each node was configured with one
process per node with 64 nodes active.

4.2 Single Level Performance

In this experiment, we ran both the p2p-RRK and the CORE-Direct -RRK to-
gether over a range of data sizes and radices up to 128 processors on Hyperion.
The choice of data sizes presented is a measured balance between the size of
library buffers used and the size of the final message which is a product of the
number of cores and input message size. We considered 1 byte message sizes for
small data, 128 bytes and 512 bytes for medium message size and 1024 bytes for
medium-large message size. We intentionally did not go beyond this because we
did not want to engage the fragmentation logic. We will look at larger message
sizes as well as the effects of fragmentation later in the paper. In each experi-
ment and for each of the two implementations, we considered a range of different
radices namely, r = {2, 3, 4}.

0

20

40

60

80

100

120

0 20 40 60 80 100 120 140

La
te

nc
y

(m
ic

ro
se

c.
)

Processor cores

p2p r = 2
IB-off r = 2

p2p r = 3
IB-off r = 3

p2p r = 4
IB-off r = 4

0

50

100

150

200

0 20 40 60 80 100 120 140

La
te

nc
y

(m
ic

ro
se

c.
)

Processor cores

p2p r = 2
IB-off r = 2

p2p r = 3
IB-off r = 3

p2p r = 4
IB-off r = 4

Fig. 2. Performance versus the radix for the single level RRK allgather implementa-
tions. On the left, latency is shown for the single byte allgather as the number of cores
increases. On the right, the 128 byte allgather latency is presented.

Figure 2 shows the results of both the 1 byte and 128 byte experiments.
At 128 processors the p2p-RRK with radix 2 is the superior performer with an
average latency of 16.44 μ-sec. It outperforms the radix 3 and 4 cases of the same
implementation by 13% and 64% respectively. The radix 2 CORE-Direct -RRK
performs the best amongst the three CORE-Direct -RRK curves with a latency
of 75.87 μ-sec. It outperforms the radix 3 and 4 cases of the same implementation

544 J.S. Ladd et al.

0

100

200

300

400

500

0 20 40 60 80 100 120 140

La
te

nc
y

(m
ic

ro
se

c.
)

Processor cores

p2p r = 2
IB-off r = 2

p2p r = 3
IB-off r = 3

p2p r = 4
IB-off r = 4

0

200

400

600

800

1000

0 20 40 60 80 100 120 140

La
te

nc
y

(m
ic

ro
se

c.
)

Processor cores

p2p r = 2
IB-off r = 2

p2p r = 3
IB-off r = 3

p2p r = 4
IB-off r = 4

Fig. 3. Performance versus the radix for the single level RRK allgather implementa-
tions. On the left, latency is shown for the 512 byte allgather as the number of cores
increases. On the right, the 1024 byte allgather latency is presented.

by 3.4% and 44% respectively. However, the radix 2 p2p-RRK outperforms the
CORE-Direct -RRK by 361.4%.

Figure 2 also shows the 128 byte allgather results. At 128 ranks, the radix
3 p2p-RRK achieve the best performance with an average latency of 110 μ-sec.
The second best performer is the radix 3 CORE-Direct -RRK with an average
latency of 132.5 μ-sec. In this case, the radix 3 p2p-RRK outperforms the radix
2 and 4 p2p-RRK by 27% and 23% respectively. The radix 3 CORE-Direct -RRK
outperforms the radix 2 and 4 CORE-Direct -RRK by 4.8% and 26% respectively.
The radix 3 p2p-RRK outperforms the radix 3 CORE-Direct -RRK by about
20%. It is interesting to note that 128 is neither a power of 3 or 4, and, as a
result, these experiments engage the extra rank logic for radix 3 and 4.

Figure 3 shows the latency as a function of the number of processor cores for
the 512 byte and 1024 byte allgather. In this experiment, we see quite a different
trend than for the small data. For 512 bytes at 128 cores, the best performing
algorithms are the radix 2 and radix 3 CORE-Direct -RRK algorithms which have
latencies of 344.5 μ-sec and 347 μ sec respectively. They outperform the best
performing p2p-RRK, radix 3, by about 8 % and outperform the radix 2 RRK
(recursive doubling) by 25%. Interestingly, the radix 3 p2p-RRK outperforms
recursive doubling by 16.2%. The same trend persists for the 1024 byte allgather.
There is nearly a tie for top performer between radix 3 and radix 2 CORE-Direct -
RRK beating the radix 3 p2p-RRK by 24%. Again, we see the radix 3 p2p-RRK
outperform recursive doubling (radix 2 p2p-RRK) by 12.5%.

4.3 Single Level Non Power-of-2 Performance

As seen in the previous section, the performance for non power-of-k ranks can
be quite good. To determine how effective our reindexing strategy is we compare
the performance of the radix 2 p2p-RRK against Open MPI’s non power-of-two

Assessing the Performance and Scalability 545

10

20

30

40

50

60

0 100 200 300 400 500

La
te

nc
y

(m
ic

ro
se

c.
)

Processor cores

Bruck default tuning
Bruck optimized tuning

RRK
0

50

100

150

200

250

0 100 200 300 400 500

La
te

nc
y

(m
ic

ro
se

c.
)

Processor cores

Bruck default tuning
Bruck optimized tuning

RRK

Fig. 4. Performance as a function of the number of cores. On the left, 1 byte p2p-RRK
versus the optimized and default Bruck algorithm implemented in Open MPI’s Tuned
collectives for non power-of-two ranks. On the right, the same comparison is made at
64 bytes. The ranks considered are 30, 60, 100, 200, 500.

default allgather algorithm1 which is a Bruck algorithm also implemented with
non-blocking send/receives atop Open MPI’s point-to-point layer. We chose a
collection of non power-of-two communicator sizes, namely 30, 60, 100, 200, and
500 and measured the latency of both algorithms as a function of communicator
size.

It has been noted by multiple authors that pair-wise exchange should pro-
vide better performance on TCP networks due to the fact that TCP can op-
timize a pair-wise exchange by piggybacking data on ACK packets [1],[3]. We
observed a similar pair-wise exchange optimization in Open MPI’s byte trans-
fer layer (BTL). The OpenIB BTL implements internal flow-control algorithms
in order to control network load. Some parts of this algorithm utilize a piggy-
back credit exchange mechanism to optimize network utilization. OpenIB BTL’s
default tuning of this mechanism is not optimized for unidirectional communi-
cation patterns. As a result, allgather algorithms based on this pattern, e.g. a
Bruck allgather, may exhaust internal resources and cause substantial perfor-
mance degradation. In order to improve the Bruck allgather performance we
disabled the OpenIB BTL communication protocols that use piggyback credit
mechanisms, thereby allowing us to better account for actual algorithmic differ-
ences. In figure 4, the curve labeled “Bruck default” is the default performance
observed with no tuning, the curve labeled “Bruck optimized” is the observed
performance with piggbacking optimizations disabled. As evidenced in the fig-
ure, the radix 2 p2p-RRK outperforms the optimized Bruck algorithm by nearly
30% for a 1 byte allgather on 500 cores. For a 64 byte message size, the disparity
in performance decreases, however, the radix 2 p2p-RRK still outperforms the
optimized Bruck algorithm by 10.3%. Beyond this data size, fragmentation is
engaged and the comparison ceases to be fair.

1 Recursive doubling is Open MPI’s default allgather algorithm for power-of-two com-
municators.

546 J.S. Ladd et al.

4.4 Overlap Performance of CORE-Direct Implementations

To measure communication computation overlap, we extended the COMB bench-
mark suite developed by Lawry et al. [9], which studies asynchronous point-to-
point operations. The extensions allow one to use the benchmark suite to study
asynchronous collective operations, and to study overlap using a post-work-wait,
and a post-work-test-loop method.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 200000 400000 600000 800000 1e+06 1.2e+06

O
ve

rla
p

in
 P

er
ce

nt
ag

e

Message Size (bytes)

 CD-RRK
 p2p-RRK

0%

20%

40%

60%

80%

100%

 0 200000 400000 600000 800000 1e+06 1.2e+06

O
ve

rla
p

Message Size (bytes)

 CD-RRK Min
 CD-RRK Max
 CD-RRK Avg
 p2p-RRK Min
 p2p-RRK Max
 p2p-RRK Avg

Fig. 5. Overlap measurements for the one level CORE-Direct-RRK algorithms. The
poll method results are seen of the left and the wait method results are on the right.

With the post-work-test-loop method, each process posts the collective opera-
tion, and iterates over a series of work loops followed by a completion test, exiting
the work loop on test completion. Total completion time and total time spent in
the work loop are measured, using a CPU cycle counter to compute computation
cycles available. The work loop is a loop over the “nop” asm instruction, with
the loop range count used to control work-time.

In the post-work-wait method, each process posts the collective operation and
executes a pre-defined amount of work, and then waits for collective completion.
The test searches for the work-loop size that results in allgather operation latency
similar to that of the no-work loop latency measurement, starting at a size that
corresponds to about 10% of the no-work allgather, incrementing the work-loop
size. We consider the time available for computation, as time of the largest work-
loop that does not increase the allgather operation latency.

Figure 5 shows the CPU computation time available for the nonblocking
CORE-Direct -RKK and p2p-RKK allgather algorithms, as a function of mes-
sage size for the post-work-wait benchmark test executed across 64 processes.
The average, minimum, and maximum values are displayed for the HCA and
the CPU managed algorithms. As expected, the HCA managed allgather makes
available more CPU cycles. In a 128 bytes-per-process allgather operation, on
average, 58% of algorithm completion time is available for CPU work with the
CORE-Direct -RRK algorithm, whereas the CPU managed p2p-RRK algorithm
makes, on average, only 10% of the algorithm time available for application
CPU work. For large messages, the differences are much greater. As expected,

Assessing the Performance and Scalability 547

the HCA managed CORE-Direct -RRK algorithm makes available many more
CPU cycles. For a 2 megabytes-per-process allgather operation, on average, 95%
of algorithm completion time is available for CPU work with the CORE-Direct -
RRK algorithm, whereas for the CPU managed p2p-RRK algorithm, on average,
only 9.5% of the time is available for application work.

4.5 Hierarchical Performance versus Fragment Size

One option for dealing with large messages is to fragment the input data. Con-
ventional wisdom dictates that the fewer the fragments, the better the perfor-
mance. For large allgathers, fragmenting the data over multiple library buffers
is necessary in our hierarchical algorithm. In these experiments we consider a
three-level p2p-RRK and a three-level CORE-Direct -RRK made of shared mem-
ory socket and uniform memory access (UMA) subgroups below, and either a
p2p or CORE-Direct subgroup on top. In these experiments we vary the size of
the internal library buffers to determine an optimal size. Small buffers consume
fewer resources but require more fragments, large buffers result in a larger foot-
print but will result in less fragmentation. In figure 6, on the left, the latency as
a function of message size on 512 cores for the three-level p2p-RRK allgather is
shown. It’s no surprise that the larger the buffers, the better the performance,
due to the fact that larger buffers simply means fewer fragments. However, the
plot on the right in figure 6 tells a more interesting story, this shows the results
for the three-level CORE-Direct -RRK where we see a clear range of data sizes
where 16KB buffers provides superior performance over the large 64KB buffer,
by as much as 36.3% in the case of a 512 byte allgather. At 512 bytes on 512
cores, the final message size is 262,144 bytes which results in about 7 fragments
for the 64KB buffers and 17 fragments for the 16KB buffers.

101

102

103

104

105

106

107

108

100 101 102 103 104 105 106 107

La
te

nc
y

(m
ic

ro
se

c.
)

Message Size (Bytes)

8K
16K
32K
64K

101

102

103

104

105

106

107

100 101 102 103 104 105 106

La
te

nc
y

(m
ic

ro
se

c.
)

Message Size (Bytes)

zero-copy NX
zero-copy RRK
3-level RRK 8K

3-level RRK 16K
3-level RRK 32K
3-level RRK 64K

Fig. 6. On the left, performance versus message size for the three-level p2p-RRK with
various fragment sizes. On the right, performance versus message size for the three-level
CORE-Direct-RRK with various fragment sizes. Also depicted on the right, the per-
formance of the single-level zero-copy CORE-Direct-NX and zero-copy CORE-Direct-
RRK algorithm. In both plots, the number of cores employed is 512.

548 J.S. Ladd et al.

These observations can be explained as follows; in the three-level hierarchy we
much broadcast the result of each fragment back down and memcpy the result
out to the user. The CORE-Direct implementation allows us to overlap network
operations with CPU operations such as progressing broadcasts in shared mem-
ory and making system calls to copy data back to the user. In this particular
experiment, the pipeline depth was set to 5 fragments so both 64K and 16KB
buffers have an opportunity to fill the pipeline.

4.6 Zero Copy Performance

Figure 6 also contains the performance results of the zero copy CORE-Direct al-
gorithms. In this experiment, we compared only recursive doubling (k=2) with
the NX algorithm. At 512 cores the zero copy RRK outperforms the linearly
scaling NX up to message size 1024 bytes. After 1024 bytes, the NX algorithm
outperform the radix 2 RRK where at the largest sized measured, 200KB (100MB
final message size), the NX algorithm outperform the radix 2 RRK by 24%. For
the 200KB message the zero copy NX algorithm outperforms the best three-level
implementation by 145%.

5 Conclusion

We have presented a novel logarithmic allgather algorithm and have assessed its
performance and scalability on CORE-Direct enabled systems. The algorithm is
appealing since it handles the non power-of-k communicator by adding only a
single additional send and receive and ensures contiguous data transfers. This
strategy allows us to avoid using SGE lists for non contiguous data, which,
while effective, necessarily limits scalability. We have demonstrated the efficacy
of RRK’s reindexing by comparing it against Open MPI’s default non power-of-
two allgather. We have examined a range of algorithm parameters including the
radix and fragment size and have demonstrated excellent overlap characteristics.
We have demonstrated how to leverage overlap in the three-level hierarchical
implementation by pipelining smaller fragments allowing the CPU to perform
memcpys while the HCA makes simultaneous progress on network operations.

Acknowledgements. This research is sponsored by the Office of Advanced
Scientific Computing Research’s FASTOS program and the Math/CS Institute
EASI; U.S. Department of Energy, and performed at ORNL, which is managed
by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725. The HPC Ad-
visory Council (http://www.hpcadvisorycouncil.com) provided computational
resource for testing and data gathering.

References

1. Benson, G.D., Chu, C.-W., Huang, Q., Caglar, S.G.: A Comparison of MPICH All-
gather Algorithms on Switched Networks. In: Dongarra, J., Laforenza, D., Orlando,
S. (eds.) EuroPVM/MPI 2003. LNCS, vol. 2840, pp. 335–343. Springer, Heidelberg
(2003)

Assessing the Performance and Scalability 549

2. Bruck, J., Member, S., Tien Ho, C., Kipnis, S., Upfal, E., Member, S., Weathersby,
D.: Efficient algorithms for all-to-all communications in multi-port message-passing
systems. In: IEEE Transactions on Parallel and Distributed Systems, pp. 298–309
(1997)

3. Chen, J., Zhang, L., Zhang, Y., Yuan, W.: Performance evaluation of allgather
algorithms on terascale linux cluster with fast ethernet. In: Proceedings. Eighth
International Conference on High-Performance Computing in Asia-Pacific Region,
pp. 6–442 (July 2005)

4. Fagg, G., Bosilca, G., Pješivac-Grbović, J., Angskun, T., Dongarra, J.: Tuned:
An open mpi collective communications component. In: Distributed and Parallel
Systems, pp. 65–72. Springer, US (2007)

5. Fraigniaud, P., Lazard, E.: Methods and problems of communication in usual net-
works. Discrete Applied Mathematics 53, 79–133 (1994)

6. Graham, R., Venkata, M.G., Ladd, J., Shamis, P., Rabinovitz, I., Filipov, V.,
Shainer, G.: Cheetah: A framework for scalable hierarchical collective operations.
In: CCGRID 2011 (2011)

7. Graham, R.L., Poole, S., Shamis, P., Bloch, G., Bloch, N., Chapman, H., Kagan,
M., Shahar, A., Rabinovitz, I., Shainer, G.: Connectx-2 infiniband management
queues: First investigation of the new support for network offloaded collective op-
erations. In: CCGRID, pp. 53–62 (2010)

8. Hedetniemi, S.M., Hedetniemi, S.T., Liestman, A.L.: A survey of gossiping and
broadcasting in communication networks. Networks (1988)

9. Lawry, W., Wilson, C., Maccabe, A., Brightwell, R.: Comb: a portable benchmark
suite for assessing mpi overlap. In: 2002 IEEE International Conference on Cluster
Computing, pp. 472–475 (2002)

10. Sanders, P., Träff, J.L.: The Hierarchical Factor Algorithm for All-to-All Commu-
nication. In: Monien, B., Feldmann, R.L. (eds.) Euro-Par 2002. LNCS, vol. 2400,
p. 799. Springer, Heidelberg (2002)

11. Sur, S., Bondhugula, U.K.R., Mamidala, A.R., Jin, H.-W., Panda, D.K.: High
Performance RDMA Based All-to-All Broadcast for InfiniBand Clusters. In:
Bader, D.A., Parashar, M., Sridhar, V., Prasanna, V.K. (eds.) HiPC 2005. LNCS,
vol. 3769, pp. 148–157. Springer, Heidelberg (2005)

12. Sur, S., Jin, H.-W., Panda, D.K.: Efficient and scalable all-to-all personalized ex-
change for infiniband-based clusters. In: Proceedings of the 2004 International Con-
ference on Parallel Processing, ICPP 2004, pp. 275–282. IEEE Computer Society
(2004)

13. Träff, J.L.: Efficient Allgather for Regular SMP-Clusters. In: Mohr, B., Träff, J.L.,
Worringen, J., Dongarra, J. (eds.) PVM/MPI 2006. LNCS, vol. 4192, pp. 58–65.
Springer, Heidelberg (2006)

Topic 10: Parallel Numerical Algorithms

Iain Duff, Efstratios Gallopoulos, Daniela di Serafino, and Bora Ucar

Topic Committee

The solution of large-scale problems in Computational Science and Engineering
relies on the availability of accurate, robust and efficient numerical algorithms
and software that are able to exploit the power offered by modern computer
architectures. Such algorithms and software provide building blocks for proto-
typing and developing novel applications, and for improving existing ones, by
relieving the developers from details concerning numerical methods as well as
their implementation in new computing environments.

From the papers submitted to this year’s Europar, the topic of Parallel Nu-
merical Algorithms involving these themes attracted submissions from Europe,
Asia and the Africa. Each paper received at least four reviews and finally three
were selected for presentation following extensive discussions between members
of EUROPAR’s Program Committee.

Donfack, Grigori and Khabou present an algorithm for dense LU factorization
that is suitable for machines with multiple levels of parallelism and describe its
implementation on a cluster of multicore processors based on MPI and Pthreads.
Korch describes data-parallel implementations of ODE solvers, specifically ex-
plicit Adams-Bashforth methods. He examines locality and scalabiity and shows
how the careful use of pipelining can improve the locality of memory references.
Cotronis, Konstantinidis, Louka and Missirlis describe special local SOR meth-
ods optimized for GPUs.

Based on these interesting papers, this session provides a forum for the dis-
cussion of recent developments in the design and implementation of numerical
methods on modern parallel architectures such as multicores and GPU systems.

It is appropriate, at this time, to thank the authors who submitted papers to
the session and congratulate those whose papers were accepted. We are especially
grateful to the referees who provided us with carefully written and informative
reviews. Finally, we thank the Conference Organizers for providing the oppor-
tunity to the participants to present and discuss the state-of-the-art in Parallel
Processing on the beautiful island of Rhodes. In this Olympic year, our authors
took “hic Rhodus, hic salta” to heart as all papers demonstrate implementations
of numerical algorithms on advanced computer systems.

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, p. 550, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Avoiding Communication through a Multilevel

LU Factorization

Simplice Donfack, Laura Grigori, and Amal Khabou

INRIA Saclay-Ile de France,
Laboratoire de Recherche en Informatique, Université Paris-Sud

simplice.donfack@lri.fr, {laura.grigori,amal.khabou}@inria.fr

Abstract. Due to the evolution of massively parallel computers towards
deeper levels of parallelism and memory hierarchy, and due to the ex-
ponentially increasing ratio of the time required to transfer data, either
through the memory hierarchy or between different compute units, to
the time required to compute floating point operations, the algorithms
are confronted with two challenges. They need not only to be able to ex-
ploit multiple levels of parallelism, but also to reduce the communication
between the compute units at each level of the hierarchy of parallelism
and between the different levels of the memory hierarchy.

In this paper we present an algorithm for performing the LU factor-
ization of dense matrices that is suitable for computer systems with two
levels of parallelism. This algorithm is able to minimize both the vol-
ume of communication and the number of messages transferred at every
level of the two-level hierarchy of parallelism. We present its implemen-
tation for a cluster of multicore processors based on MPI and Pthreads.
We show that this implementation leads to a better performance than
routines implementing the LU factorization in well-known numerical li-
braries. For matrices that are tall and skinny, that is they have many
more rows than columns, our algorithm outperforms the corresponding
algorithm from ScaLAPACK by a factor of 4.5 on a cluster of 32 nodes,
each node having two quad-core Intel Xeon EMT64 processors.

Keywords: LU factorization, communication avoiding algorithms,
multiple levels of parallelism.

1 Introduction

Due to the evolution of massively parallel computers towards deeper levels of
parallelism and memory hierarchy, and due to an exponentially increasing ratio
of the time necessary to transfer data, either through the memory hierarchy or
between different compute units, to the time required to perform floating point
operations, the algorithms are confronted with two challenges. They need to be
able to exploit multiple levels of parallelism, and they also need to minimize
communication and synchronization at each level of the hierarchy of parallelism
and memory. The particularity of a computer system with multiple levels of par-
allelism is that a compute unit at a given level can be formed by several smaller

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 551–562, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

552 S. Donfack, L. Grigori, and A. Khabou

compute units connected together. A machine formed by nodes of multicore pro-
cessors can be seen as an example of a machine with two levels of parallelism.
An approach to exploit such an architecture for an existing algorithm consists of
identifying functions which are executed sequentially on a node, and then replac-
ing them by a call to their multithreaded version. This approach, based mainly
on combining MPI and threads, is easy to implement and has been used in many
applications, but can have several drawbacks. It can lead to more communication
and synchronization between MPI processes or between threads, load imbalance,
and in general a simple adaptation of an existing algorithm can cause an impor-
tant degradation of the overall performance on this type of architectures. For
such a computer system, there are two levels of communication: inter-node com-
munication, that is communication between two or more nodes, and intra-node
communication, that is communication performed inside each node. For both
types, an algorithm that takes into account at the design level the two levels of
parallelism can be able to reduce communication at every level.

Motivated by the increased cost of communication with respect to the cost of
computation [11], a new class of algorithms has been introduced in the recent
years for dense linear algebra, referred to as communication avoiding algorithms.
These algorithms, first proposed for dense LU factorization (CALU) [12] and QR
factorization (CAQR) [6], allow to minimize communication on a computer sys-
tem with one level of parallelism (or between two levels of fast and slow memory)
and are as stable as classic algorithms as for example implemented in LAPACK
[2] and ScaLAPACK [3]. They were shown to lead to good performance on dis-
tributed memory machines [6, 12], on multicore processors [7], and on grids [1]. In
the distributed version of CALU and CAQR, blocks of the input matrix are dis-
tributed among processors, and data is communicated via MPI messages during
the factorization. In the approach used for multicore processors [7], operations
on a block are performed as tasks, which are scheduled statically or dynamically
to the available cores. However, none of these algorithms has addressed the more
realistic model of today’s hierarchical parallel computers.

In this paper we introduce an algorithm for performing the LU factorization
of a dense matrix that is suitable for computer systems with two levels of par-
allelism, and that can be further extended to multiple levels of parallelism. We
refer to this algorithm as multilevel CALU. It can be seen as a generalization of
CALU [13, 12]. At each iteration of the initial 1-level CALU algorithm, a block
column, referred to as a panel, is factored and then the trailing matrix is up-
dated. A classic algorithm as Gaussian elimination with partial pivoting (GEPP)
is not able to minimize the number of messages exchanged during the factoriza-
tion. This is because of partial pivoting, which requires to permute the element of
maximum magnitude to the diagonal position at each step of the panel factoriza-
tion. To minimize communication, CALU uses tournament pivoting, a different
strategy shown to be very stable in practice [12]. With this strategy, the panel
factorization is performed in two steps. In the first step, tournament pivoting
uses a reduction operation to select a set of pivot rows from different blocks of
the panel distributed among different processors or different cores, where GEPP

Avoiding Communication through a Multilevel LU Factorization 553

is the operator used at each node of the reduction tree. In the second step, these
pivot rows are permuted to the top of the panel, and then the LU factorization
without pivoting of the panel is performed.

Multilevel CALU uses the same approach as CALU, and it is based on tourna-
ment pivoting and an optimal distribution of the input matrix among compute
units to reduce communication at the first level of the hierarchy. However, each
building block of CALU is itself a recursive function that allows to be optimal
at the next level of the hierarchy of parallelism. For the panel factorization, at
each node of the reduction tree of tournament pivoting, CALU is used instead of
GEPP to select pivot rows, based on an optimal layout adapted to the current
level of parallelism. We present this algorithm in section 2. We also model the
performance of our approach by computing the number of floating-point opera-
tions, the volume of communication, and the number of messages exchanged on
a computer system with two levels of parallelism. We show that our approach
is optimal at every level of the hierarchy and attains the lower bounds on com-
munication of the LU factorization (modulo polylogarithmic factors). The lower
bounds on communication for the multiplication of two dense matrices were in-
troduced in [14, 15] and were shown to apply to LU factorization in [6]. We
discuss how these bounds can be used in the case of two levels of parallelism.
Due to the multiple calls to CALU, multilevel CALU performs additional flops
compared to 1-level CALU. It is known in the literature that in some cases,
these extra flops can degrade the performance of a recursive algorithm (see for
example in [8]). However, for two levels of parallelism, the choice of the opti-
mal layout at each level of the hierarchy allows to keep the extra flops as a
lower order term. Furthermore, multilevel CALU may also change the stability
of the 1-level algorithm. We argue in section 3 through numerical experiments
that 2-level CALU specifically studied here is stable in practice. We also show
that multilevel CALU is up to 4.5 times faster than the corresponding routine
PDGETRF from ScaLAPACK tested in multithreaded mode on a cluster of
multicore processors.

2 CALU for Multiple Levels of Parallelism

In this section we introduce a multilevel communication avoiding LU factor-
ization, presented in Algorithm 1, that is suitable for a hierarchical computer
system with L levels of parallelism. Each compute unit at a given level i is formed
by Pi+1 compute units of level i + 1. Correspondingly, the memory associated
with a compute unit at level i is formed by the sum of the memories associated
with the Pi+1 compute units of level i+1. Level 1 is the first level and level L is
the last level of the hierarchy of parallelism. Later in this section we model the
communication cost of the algorithm for a computer system with two levels of
parallelism.

The goal of multilevel CALU is to minimize communication at every level
of a hierarchical system. It is based on a recursive approach, where at every
level of the recursion optimal parameters are chosen, such as optimal layout

554 S. Donfack, L. Grigori, and A. Khabou

and distribution of the matrix over compute units, optimal reduction tree for
tournament pivoting. Algorithm 1 receives as input the matrix A of size m× n,
the number of levels of parallelism in the hierarchy L, and the number of compute
units P1 that will be used at the first level of the hierarchy and that are organized
as a two-dimensional grid of compute units of size P1 = Pr1 × Pc1 . The input
matrix A is partitioned into blocks of size b1 × b1,

A =

⎛⎜⎜⎜⎝
A11 A12 . . . A1N

A21 A22 . . . A2N

...
...

...
AM1 AM2 . . . AMN

⎞⎟⎟⎟⎠ ,

where M = m/b1 and N = n/b1. The block size b1 and the dimension of the grid
Pr1×Pc1 are chosen such that the communication at the top level of the hierarchy
is minimized, by following the same approach as for the 1-level CALU algorithm
[12]. That is, the blocks of the matrix are distributed among the P1 compute units
using a two-dimensional block cyclic distribution over the two-dimensional grid
of compute units P1 = Pr1 × Pc1 (we will discuss later in this section the values
of Pr1 and Pc1) and tournament pivoting uses a binary reduction tree. At each
step of the factorization, a block of b1 columns (panel) of L is factored, a block
of b1 rows of U is computed, and then the trailing submatrix is updated. Each
of these steps is performed by calling recursively functions that will be able to
minimize communication at the next levels of the hierarchy of parallelism. Note
that Algorithms 1 and 2 do not detail the communication performed during
the factorization, which is triggered by the distribution of the data. By abuse
of notation, the permutation matrices need to be considered as extended by
identity matrices to the desired dimensions. For simplicity, we also consider that
the number of processors are powers of 2.

We describe in more detail now the panel factorization (line 8 of Algorithm 1)
computed by using mTSLU, described in Algorithm 2. It is a multilevel version
of TSLU, the panel factorization used in the 1-level CALU algorithm [13]. Let
B denote the first panel of size m × b1, which is partitioned into Pri blocks.
As in TSLU, mTSLU is performed in two steps. In the first step, a set of b1
pivot rows are selected by using tournament pivoting. In the second step, these
rows are permuted into the diagonal positions of the panel, and then the LU
factorization with no pivoting of the panel is computed. Tournament pivoting
uses a reduction operation, where at the leaves of the tree b1 candidate pivot rows
are selected from each block BI of B. Then a tournament is performed among
the Pri sets of candidate pivot rows to select the final pivot rows that will be
used for the factorization of the panel. At each node of the reduction tree, a new
set of candidate pivot rows is selected from the sets of candidate pivot rows of
the children nodes in the reduction tree. The initial 1-level TSLU uses GEPP
to select a set of candidate pivot rows. However this means that at the second
level of parallelism, the compute units involved in one GEPP factorization will
need to exchange O(b1) messages for each call to GEPP due to partial pivoting,
and hence the number of messages will not be minimized at the second level

Avoiding Communication through a Multilevel LU Factorization 555

of the hierarchy of parallelism. Differently from 1-level TSLU, multilevel TSLU
selects a set of rows by calling multilevel CALU, hence being able to minimize
communication at the next levels of parallelism. That is, at each phase of the
reduction operation every compute unit from the first level calls multilevel CALU
on its blocks with adapted parameters and data layout. At the last level of the
recursion, 1-level CALU is called (referred to in the algorithms as CALU).

Once the panel factorization is performed, the trailing submatrix is updated
using a multilevel solve for a triangular system of equations (referred to as dtrsm)
and a multilevel algorithm for multiplying two matrices (referred to as dgemm).
We do not detail here these algorithms, but one should use recursive versions of
Cannon [4], or SUMMA [10], or a cache oblivious approach [9] if the transfer of
data across different levels of the memory hierarchy is to be minimized as well
(with appropriate data storages).

Algorithm 1 mCALU: multilevel communication avoiding LU factorization

1: Input: m×n matrix A, level of parallelism i in the hierarchy, block size bi, number
of compute units Pi = Pri × Pci

2: if i == L then
3: [Πi, Li, Ui] = CALU(A, bi, Pi)
4: else
5: M = m/bi, N = n/bi
6: for K = 1 to N do
7: [ΠKK , LK:M,K , UKK] = mTSLU(AK:M,K , i, bi, Pri)
8: /* Apply permutation and compute block row of U */
9: AK:M,: = ΠKKAK:M,:

10: for each compute unit at level i owning a block AK,J , J = K + 1 to N do
in parallel

11: UK,J = L−1
KKAK,J /* call multilevel dtrsm on Pi+1 compute units */

12: end for
13: /* Update the trailing submatrix */
14: for each compute unit at level i owning a block AI,J of the trailing submatrix,

I, J = K + 1 to M,N do in parallel
15: AI,J = AI,J −LI,KUK,J /* call multilevel dgemm on Pi+1 compute units

*/
16: end for
17: end for
18: end if

2.1 Performance Model

In this section we present a performance model of the 2-level CALU factorization
of a matrix of size n × n in terms of the number of floating-point operations
(#flops), the volume of communication (#words moved), and the number of
messages exchanged (#messages) during the factorization. Let P1 = Pr1×Pc1 be
the number of processors and b1 be the block size at the first level of parallelism.
Each compute unit at the first level is formed by P2 = Pr2×Pc2 compute units at
the second level of parallelism. The total number of compute units at the second

556 S. Donfack, L. Grigori, and A. Khabou

Algorithm 2 mTSLU: multilevel panel factorization

1: Input: matrix B, level of parallelism i in the hierarchy, block size bi, number of
compute units Pri

2: Partition B on Pri blocks /* Here B = (BT
1 , BT

2 , ..., B
T
Pri

)T */

3: /*Each compute unit owns a block BI*/
4: for each block BI do in parallel
5: [ΠI , LI , UI] = mCALU(BI , i+ 1, bi+1, Pi+1)
6: Let BI be formed by the pivot rows, BI = (ΠIBI)(1 : bi, :)
7: end for
8: for level = 1 to log2(Pri) do
9: for each block BI do in parallel
10: if ((I − 1) mod 2level−1 == 0) then
11: [ΠI , LI , UI] = mCALU([BI ;BI+2level−1], i+ 1, bi+1, Pi+1)
12: Let BI be formed by the pivot rows, BI = (ΠI [BI ;BI+2level−1])(1 : b, :)
13: end if
14: end for
15: end for
16: Let ΠKK be the permutation performed for this panel
17: /* Compute block column of L */
18: for each block BI do in parallel
19: LI = BIU1(1 : bi, :)

−1 /* using multilevel dtrsm */
20: end for
21: end if

level is P = P1 · P2. Let b2 the block size at the second level of parallelism. We
note CALU(m, n, P, b) the routine that performs 1-level CALU on a matrix of
size m× n with P processors and a panel of size b.

We first consider the arithmetic cost of 2-level CALU. It is formed by the
factorization of the panel, the computation of a block row of U, and the update
of the trailing matrix, at each step k of the algorithm. To factorize the panel k
of size b1, we perform 1-level CALU on each block of the reduction tree, using
a grid of P2 smaller compute units and a panel of size b2. The number of flops
performed to factor the k-th panel is,

#flops(CALU(
nk

Pr1
, b1, P2, b2)) + logPr1 ·#flops(CALU(2b1, b1, P2, b2)),

where nk denotes the number of columns of the k-th panel. To perform the
rank-b1 update, first the input matrix of size n × n is divided into P1 blocks
of size n

Pr1
× n

Pc1
. Then each block is further divided among P2 compute units.

Hence each processor from level two computes a rank-b1 update on a block of
size n

Pr1×Pr2
× n

Pc1×Pc2
. It is then possible to estimate the flops count of this step

as a rank-b1 update of a matrix of size n× n distributed into Pr1.Pr2 × Pc1.Pc2

processors. The same reasoning holds for the arithmetic cost of the computation
of block row of U.

We estimate now the communication cost at each level of parallelism. At the
first level we consider the communication between the P1 compute units. This

Avoiding Communication through a Multilevel LU Factorization 557

corresponds to the communication cost of the initial 1-level CALU algorithm,
which is presented in detail in [12]. The size of the memory of one compute
unit at the first level is formed by the sum of the sizes of the memories of the
compute units at the second level. We consider here that this size is of O(n2/P1),
that is each node stores a part of the input and output matrices, and this is
sufficient for determining a lower bound on the volume of communication that
needs to be performed during our algorithm. However, the number of messages
that are transferred at this level depends on the maximum size of data that can
be transferred from one compute unit to another compute unit in one single
message. We consider here the case when the size of one single message is of
the order of n2/P1, which is realistic if shared memory is used at the second
level of parallelism. However, if the size of one single message is smaller, and it
can be as small as n2/P when distributed memory is used at the second level
of parallelism, the number of messages and the lower bounds presented in this
section need to be adjusted for the given memory size.

At the second level we consider in addition the communication between the P2

smaller compute units inside each compute unit of the first level. We note that
we consider Cannon’s matrix-matrix multiplication algorithm [4] in our model.
Here we detail the communication cost of the factorization of a panel k at the
second level of parallelism. Inside each node we first distribute the data on a grid
of P2 processors, then we apply 1-level CALU using P2 processors and a panel
of size b2:

#messagesk = #messages(CALU(nk
Pr1

, b1, P2, b2))

+ logPr1 ·#messages(CALU(2b1, b1, P2, b2)) + logP2 × (1 + logPr1),
#wordsk = #words(CALU(nk

Pr1
, b1, P2, b2))

+ logPr1 ·#words(CALU(2b1, b1, P2, b2)) + b21 logP2 × (1 + logPr1).

We estimate now the performance model for a square matrix using an optimal
layout, that is we choose values of Pri, Pci, and bi at each level of the hier-
archy that allow to attain the lower bounds on communication. By following
the same approach as in [12], for two levels of parallelism these parameters can
be written as Pr1 = Pc1 =

√
P1, Pr2 = Pc2 =

√
P2, b1 = n√

P1
log−2 P1, and

b2 = b1√
P2

log−2P2 = n√
P1P2

log−2P1log
−2P2. We note that P = P1 · P2. Table 1

presents the performance model of 2-level CALU. It shows that 2-level CALU at-
tains the lower bounds on communication of dense LU, modulo polylogarithmic
factors, at each level of parallelism.

2.2 Implementation on a Cluster of Multicore Processors

In the following we describe the specific implementation of these algorithms on
a cluster of nodes of multicore processors. At the top level, we have used a static
distribution of the data on the nodes, more specifically the matrix is distributed
using a two-dimensional block cyclic partitioning on a two-dimensional grid of
processors. This is similar to the distribution used in 1-level CALU [13], and
hence the communication between nodes is performed as in the 1-level CALU

558 S. Donfack, L. Grigori, and A. Khabou

Table 1. Performance estimation of parallel (binary tree based) 2-level CALU with
optimal layout. The matrix factored is of size n×n. Some lower-order terms are omitted.

Communication cost Lower bound Memory size
at the first level of parallelism

messages O(
√
P1 log

3 P1) Ω(
√
P1) O(n

2

P1
)

words O(n2
√

P1
logP1) Ω(n2

√
P1

) O(n
2

P1
)

Communication cost
at the second level of parallelism

messages O(
√
P log6 P1 +

√
P log3 P1 log

3 P2) Ω(
√
P) O(n

2

P
)

words O(n2
√

P
log3 P1 logP2) Ω(n2

√
P
) O(n

2

P
)

Arithmetic cost of 2-level CALU

flops 1
P

2n3

3
+ 3n3

2P log2 P
+ 5n3

6P log3 P
1
P

2n3

3

Fig. 1. Multilevel TSLU on a computer system with two levels of parallelism

factorization. For each node, the blocks are again decomposed using a two-
dimensional layout, and the computation of each block is associated with a task.
A dynamic scheduler is used to schedule the tasks to the available threads as
described in [7].

Figure 1 shows an example of execution of multilevel TSLU algorithm on a
cluster of 4 nodes, each node being formed by a 4 cores processor. The white
squares represent the nodes and the blue circles represent the cores inside a
node. We consider that a binary tree is used at each level of the hierarchy of
parallelism. The figure shows two levels of reduction tree. The red lines represent
communication between different nodes during one panel factorization, and the
blue lines represent synchronization between the different cores during one step
of a smaller panel factorization performed at the second level of parallelism.

3 Experimental Results

In this section we discuss first the stability of 2-level CALU, and then we evaluate
its performance on a cluster of multicore processors.

Avoiding Communication through a Multilevel LU Factorization 559

3.1 Stability

It was shown in [12] that CALU is as stable as GEPP in practice. Since 2-
level CALU is based on a recursive call to CALU, its stability can be different
from 1-level CALU. We present here a set of experiments performed on random
matrices and a set of special matrices that were also used in [12] for discussing
the stability of 1-level CALU, where a detailed description of these matrices
can be found. The size of the test matrices is varying from 1024 to 8192. We
use different combinations of the number of processors P1 and P2 and of the
panel sizes b1 and b2. We study both the stability of the LU decomposition
and of the linear solver, in terms of growth factor and three different backward
errors, the normwise backward error, the componentwise backward error, and
‖PA− LU‖/‖A‖. For all the test matrices, the worst growth factor obtained is
smaller than 102. Figure 2 shows the ratios of 2-level CALU’s backward errors to
those of GEPP. For almost all test matrices, 2-level CALU’s normwise backward
error is at most 3× larger that GEPP’s normwise backward error. However, for
special matrices the other two backward errors of 2-level CALU can be larger by
a factor of the order of 102 than the corresponding backward errors of GEPP. We
note that for several test matrices, at most two steps of iterative refinement are
used to attain the machine epsilon. These experiments show that 2-level CALU
exhibits a good stability, however further investigation is required if more than
two levels of parallelism are to be used.

Fig. 2. The ratios of 2-level CALU’s backward errors to GEPP’s backward errors

3.2 Performance of 2-Level CALU

We perform our experiments on a cluster composed of 32 nodes based on Intel
Xeon EMT64 processors running on Linux, each node is a two-socket, quad-core
processor. Each core has a frequency of 2.50 GHz. The cluster is part of Grid 5000
[5]. Both ScaLAPACK and multilevel CALU are linked with BLAS from MKL
10.1. We compare the performance of our algorithm with the corresponding rou-
tine from ScaLAPACK. Our algorithm is implemented using MPI and Pthreads.
In the experiments, P refers to the number of nodes (which corresponds to the
number of compute units P1 at the first level of parallelism described in section
2), T refers to the number of threads per node (which corresponds to the number
of compute units P2 at the second level of parallelism described in section 2),
and b1 and b2 are the block sizes used respectively at the first and the second

560 S. Donfack, L. Grigori, and A. Khabou

level of the hierarchy. The choice of the block size at each level depends on the
architecture, the number of levels in the hierarchy, and the input matrix size. In
our experiments, we empirically tune the block sizes b1 and b2. This tuning is
simple because we only have two levels of parallelism, but it should be replaced
by an automatic approach for multiple levels of parallelism.

At the second level of parallelism, 2-level CALU uses a grid T = Tr × Tc of
threads, where Tr is the number of threads on the vertical dimension working
on the panel, and Tc is the number of threads on the horizontal dimension. Here
we evaluate the performance of three different parametric choices, T = 8 × 1,
T = 4 × 2, and T = 2 × 4. We note that ScaLAPACK is executed over P MPI
processes, and in each node we call multithreaded BLAS routines with T threads.

Figure 3 shows the performance of 2-level CALU and GEPP as implemented
in ScaLAPACK for tall and skinny matrices with varying number of rows. We
observe that 2-level CALU is scalable and faster than ScaLAPACK. For a matrix
of size 106×1200, 2-level CALU is twice faster than ScaLAPACK. Furthermore,
an important loss of performance is observed for ScaLAPACK when m = 104,
while all the variants of 2-level CALU lead to good performance.

Fig. 3. Performance of 2-level CALU
and ScaLAPACK on P = 4× 8 nodes,
for matrices with n=1200, m varying
from 103 to 106, b1 = 150, and b2 =
MIN(b1, 100)

Fig. 4. Performance of 2-level CALU
and ScaLAPACK on P = Pr×1 nodes,
for matrices with n = b1 = 150, m =
105, and b2 = MIN(b1, 100)

Figure 4 shows the performance of 2-level CALU on tall and skinny matrices
with varying number of processors working on the panel factorization. Since
the matrix has only one panel, recursive TSLU is called at the top level of the
hierarchy and the adapted multhithreaded CALU is called at the second level.
We observe that for Pr = 4, 2-level CALU is 4.5 times faster than ScaLAPACK.
When Pr > 4, ScaLAPACK’s performance is at most 10 GFlops/s, while 2-level
CALU’s performance is up to 30 GFlops/s, that is twice faster. We note that for
Pr = 8, the variant T = 8× 1 is slightly better than the others. This shows the
importance of determining a good layout at runtime.

Avoiding Communication through a Multilevel LU Factorization 561

Fig. 5. Performance of 2-level CALU and ScaLAPACK on P = Pr × Pc nodes, for
matrices with m = n = 104, b1 = 150, and b2 = MIN(b1, 100)

Figure 5 shows the performance of 2-level CALU on a square matrix when
the number of processors varies. For each value of P , we use the same layout
for ScaLAPACK and at the top level of parallelism of 2-level CALU. The layout
at the second level is one of the three variants discussed previously. We observe
that all the variants of 2-level CALU are faster than ScaLAPACK. The variant
T = 2×4 is usually better than the others. This behavior has also been observed
for multithreaded 1-level CALU [7]. We recall that the matrix is partitioned into
Tr × N/b blocks. Thus increasing Tr increases the number of tasks and the
scheduling overhead, and this impacts the performance of the entire algorithm.

4 Conclusion

In this paper we have introduced a communication avoiding LU factorization
adapted for a computer system with two levels of parallelism, which minimizes
communication at each level of the hierarchy of parallelism in terms of both vol-
ume of data and number of messages exchanged during the decomposition. On
a cluster of multicore processors, that is a machine with two levels of parallelism
based on a combination of both distributed and shared memories, our exper-
iments show that our algorithm is faster than the corresponding routine from
ScaLAPACK. On tall and skinny matrices, a loss of performance is observed for
ScaLAPACK when the number of rows increases, while 2-level CALU shows an
improving speedup. Our performance model shows that 2-level CALU increases
the number of flops, words, and messages just by a polylogarithmic factor.

As future work, we plan to model and to evaluate the performance of our
algorithm for multiple levels of parallelism, and to extend the same approach to
other factorizations as QR. It will also be important to evaluate the usage of
autotuning for computing the optimal layout and the optimal block size at each
level of parallelism.

562 S. Donfack, L. Grigori, and A. Khabou

References

[1] Agullo, E., Coti, C., Dongarra, J., Herault, T., Langem, J.: QR factorization of
tall and skinny matrices in a grid computing environment. In: Parallel Distributed
Processing Symposium (IPDPS), pp. 1–11. IEEE (2010)

[2] Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Du
Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., Sorensen, D.: LAPACK
Users’ Guide. SIAM, Philadelphia (1999)

[3] Blackford, L.S., Choi, J., Cleary, A., D’Azevedo, E., Demmel, J., Dhillon, I., Don-
garra, J., Hammarling, S., Henry, G., Petitet, A., Stanley, K., Walker, D., Whaley,
R.C.: Scalapack: A linear algebra library for message-passing computers. In: SIAM
Conference on Parallel Processing (1997)

[4] Cannon, L.E.: A cellular computer to implement the Kalman filter algorithm. PhD
thesis, Montana State University (1969)

[5] Cappello, F., Desprez, F., Dayde, M., Jeannot, E., Jegou, Y., Lanteri, S., Melab,
N., Namyst, R., Primet, P.V.B., Richard, O., et al.: Grid5000: a nation wide
experimental grid testbed. International Journal on High Performance Computing
Applications 20(4), 481–494 (2006)

[6] Demmel, J., Grigori, L., Hoemmen, M., Langou, J.: Communication-optimal paral-
lel and sequential QR and LU factorizations. Technical Report UCB/EECS-2008-
89, University of California Berkeley, EECS Department, LAWN #204 (2008)

[7] Donfack, S., Grigori, L., Gupta, A.K.: Adapting communication-avoiding LU and
QR factorizations to multicore architectures. In: IEEE International Parallel and
Distributed Processing Symposium (IPDPS). IEEE (2010)

[8] Elmroth, E., Gustavson, F.: New Serial and Parallel Recursive QR Factorization
Algorithms for SMP Systems. In: K̊agström, B., Elmroth, E., Waśniewski, J., Don-
garra, J. (eds.) PARA 1998. LNCS, vol. 1541, pp. 120–128. Springer, Heidelberg
(1998)

[9] Frigo, M., Leiserson, C.E., Prokop, H., Ramachandran, S.: Cache-oblivious algo-
rithms. In: 40th Annual Symposium on Foundations of Computer Science, pp.
285–297 (1999)

[10] Van De Geijn, R.A., Watts, J.: SUMMA: Scalable Universal Matrix Multiplication
Algorithm. Concurrency Practice and Experience 9(4), 255–274 (1997)

[11] Graham, S.L., Snir, M., Patterson, C.A.: Getting up to speed: The future of su-
percomputing. National Academies Press (2005)

[12] Grigori, L., Demmel, J., Xiang, H.: CALU: A communication optimal LU factor-
ization algorithm. SIAM Journal on Matrix Analysis and Applications 32, 1317–
1350 (2011)

[13] Grigori, L., Demmel, J.W., Xiang, H.: Communication avoiding Gaussian elimi-
nation. In: Proceedings of the 2008 ACM/IEEE Conference on Supercomputing,
p. 29. IEEE Press (2008)

[14] Hong, J.-W., Kung, H.T.: I/O complexity: The red-blue pebble game. In: Pro-
ceedings of the Thirteenth Annual ACM Symposium on Theory of Computing.
ACM (1981)

[15] Irony, D., Toledo, S., Tiskin, A.: Communication lower bounds for distributed-
memory matrix multiplication. Journal of Parallel and Distributed Comput-
ing 64(9), 1017–1026 (2004)

Locality Improvement of Data-Parallel

Adams–Bashforth Methods
through Block-Based Pipelining of Time Steps

Matthias Korch

University of Bayreuth
Applied Computer Science 2
korch@uni-bayreuth.de

Abstract. Adams–Bashforth methods are a well-known class of explicit
linear multi-step methods for the solution of initial value problems of or-
dinary differential equations. This article discusses different data-parallel
implementation variants with different loop structures and communica-
tion patterns and compares the resulting locality and scalability. In par-
ticular, pipelining of time steps is employed to improve the locality of
memory references. The comparison is based on detailed runtime exper-
iments performed on parallel computer systems with different architec-
tures, including the two supercomputer systems JUROPA and HLRB II.

1 Introduction

Many time-dependent processes can be modeled by initial value problems (IVPs)
of ordinary differential equations (ODEs):

y′(t) = f(t,y(t)), y(t0) = y0, (1)

where y(t) ∈ IRn is the solution function to be computed for the interval t ∈
[t0, te], y0 is the given initial value, i.e., the initial state of the process to be
simulated at time t0, and f : IR×IRn → IRn is the given right-hand-side function,
which describes the rates of change of the process to be simulated.

This article considers Adams–Bashforth (AB) methods [2,5,6] on an equidis-
tant grid. At each time step κ = 0, 1, 2, . . ., these methods compute an approxi-
mation yκ+1 to the solution function at time tκ+1, y(tκ+1), using function results
of the last k preceding time steps and weights β1, . . . , βk according to the scheme

yκ+1 = yκ + h

k∑
l=1

βlf(tκ−l+1,yκ−l+1). (2)

AB methods belong to the class of explicit linear k-step or, more generally,multi-
step methods and are suitable for nonstiff IVPs (see [2,5,6] for a discussion of
stiffness and explicit vs. implicit methods).

Many parallel IVP solution methods have been proposed. An overview of the
fundamental work and further references can be found in [1]. Recent work on

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 563–576, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

564 M. Korch

parallel ODE methods includes variants of iterated Runge–Kutta methods [4]
and peer two-step methods [12]. Many of the parallel ODE methods proposed
concentrate on parallelism across the method, i.e., they provide a small number of
independent coarse-grained computational tasks inherent in the computational
structure of the method, for example, independent stages. Examples are Par-
allel Adams–Bashforth (PAB) and Parallel Adams–Moulton (PAM) methods
[13], which belong to the class of general linear methods [2]. Different parallel
execution schemes for these methods are investigated and discussed in [11].

This article focuses on the parallelism across the ODE system available
in classical k-step AB methods (2), i.e., the computation of the components
yκ+1,1, . . . , yκ+1,n of yκ+1 is distributed across the processing elements and per-
formed in data-parallel style. Different loop structures for (2) and correspond-
ing communication patterns for ODE systems with arbitrary coupling and for
ODE systems with a special coupling structure called limited access distance
are described, and the influence on locality and scalability is discussed. Double-
precision implementations have been written in C for shared and distributed
address space using POSIX Threads (Pthreads) and MPI, respectively. Starting
point were Pthread implementations [10], which have, for this article, been opti-
mized for NUMA (non-uniform memory access) architectures and been comple-
mented by MPI implementations. Scalability and locality have been investigated
using runtime experiments on several computer systems with different architec-
tures, including the two supercomputer systems HLRB II and JUROPA.

2 Parallel Implementation of General AB Solvers

2.1 Possible Loop Structures

Equation (2) leads to a doubly nested, fully permutable loop structure, since
one iteration over the summands βlf(tκ−l+1,yκ−l+1) for l = 1, . . . , k and one
iteration over the system dimension j = 1, . . . , n is required. It is sufficient to
compute one evaluation of the right-hand-side function f(tκ,yκ) per time step if
the function results of the previous k − 1 time steps are kept in memory. These
considerations lead to the following three loop structures:

j–l. The j-loop over the large system dimension is chosen as outer loop. The
l-loop to compute the j-th component of the vector yκ+1, yκ+1,j = yκ,j +

h
∑k

l=1 βlFl,j with Fl,j := fj(tκ−l+1,yκ−l+1) runs inside the j-loop. This
results in a high temporal locality for this vector component since its storage
location is reused in the partial sum updates.

l–j. The l-loop over the k steps of the AB method is chosen as outer loop. In each
iteration of the l-loop, a j-loop over the system dimension is executed, which
accesses the two vectors Fl := f(tκ−l+1,yκ−l+1) and yκ+1. This results in a
high spatial locality since cache lines of these two vectors can be reused for
subsequent vector components once they have been loaded into the cache.
Moreover, this loop structure can benefit from hardware prefetching, and its
access pattern is easily predictable by the hardware prefetcher.

Locality Improvement of Data-Parallel Adams–Bashforth Methods 565

Tiling. Since the two loops are fully permutable, they can also be tiled to
create an additional working space that fits in the cache. This leads to a
triply nested loop structure, where the outermost loop (j-loop) iterates over
the system dimension with stride B (tile size or block size). Inside the j-loop
runs the l-loop, which iterates over the k steps. The innermost loop (jj-
loop) again iterates over the system dimension and accesses the components
j, . . . , j+B− 1 of the two vectors Fl and yκ+1. Thus, a high spatial locality
results from the innermost loop iterating over two vectors with stride 1, but
also a high temporal locality results from the reuse of a block of size B of
the vector yκ+1 in successive iterations of the l-loop.

2.2 Parallelization

In data-parallel implementations, the system dimension 1, . . . , n is partitioned
among the processing elements. For highest spatial locality, a blockwise distri-
bution is appropriate, such that each of the p processing elements is assigned a
block of n/p consecutive components. As data structures, k − 1 function results
and the two approximation vectors yκ and yκ+1 have to be stored in memory. In
a sequential implementation, the function results can be stored in a (k − 1)× n
2D array that is used in a cyclic fashion such that f(tm+k−1,ym+k−1) overwrites
f(tm,ym). Similarly, yκ and yκ+1 can be stored in two 1D arrays of size n, the
pointers to which are swapped at each time step.

The 2D array holding the function results can be distributed to the processing
elements such that each processing element stores locally a partition of size
(k−1)×n/p of this 2D array. This is necessary in an MPI implementation because
of the separate address spaces. But even for shared address space, a distributed
storage of the function results in separate, thread-local (k − 1)× n/p 2D arrays
often is preferable, because it ensures that all function results associated with
a thread can be stored in local memory of the processing element on which
the thread is executed. This is particularly important on NUMA architectures.
Though the “first touch” policy applied by modern operating systems to support
NUMA will also move memory pages of shared arrays to local memory of the
thread that first writes to the page, shared data structures may lead to sharing
of memory pages and thus to remote memory accesses at the borders of the
data ranges of the threads. At a finer grained level, sharing of cache lines may
decrease performance even on UMA (uniform memory access) architectures.

For the two vectors yκ and yκ+1, distributed storage is not always possible or
preferable, because the function f has to be evaluated for yκ and, in the general
case, this function evaluation may use all components of yκ. Therefore, the gen-
eral shared-address-space implementations considered in this article implement
these two vectors as shared data structures. One barrier operation is required per
time step to prevent that threads start the function evaluation before all other
threads have computed their share of the argument vector. The MPI implemen-
tations require a replicated storage of the argument vector. Since each of the MPI
processes computes n/p components of the argument vector, it must be gathered
by all processes using a multibroadcast operation (MPI Allgatherv()). The

566 M. Korch

for (i = k - 1; i < steps; i++)
{

MPI_Allgatherv(Y_cur + first_elem, num_elems, MPI_DOUBLE,
Y_arg, counts, offsets, MPI_DOUBLE, MPI_COMM_WORLD);

for (j = first_elem; j <= last_elem; j += B)
{

for (jj = j; jj < j + B; jj++) Y_new[jj] = b[k - 1] * F[i % (k - 1)][jj];

for (l = 1; l < k - 1; l++)
for (jj = j; jj < j + B; jj++) Y_new[jj] += b[j] * F[(i - l) % (k - 1)][jj];

for (jj = j; jj < j + B; jj++) F[i % (k - 1)][jj] = f(jj, t0 + i * h, Y_arg);
for (jj = j; jj < j + B; jj++) Y_new[jj] += b[0] * F[i % (k - 1)][jj];
for (jj = j; jj < j + B; jj++) Y_new[jj] = Y_cur[jj] + h * Y_new[jj];

}

swap_vectors(&Y_new, &Y_cur);
}

Listing 1. General parallel MPI implementation with tiled loop structure

implementations considered in this article therefore store in each process n/p
components of yκ and yκ+1 and one additional array of size n, in which yκ is
gathered and which is then used as argument vector for the function evaluation.

Listing 1 shows a code fragment of a general parallel implementation of one
time step of an AB method with tiled loop structure that uses MPI as program-
ming environment. The loop structures j–l and l–j can be interpreted as special
cases of the tiled loop structure using B = 1 and B = n, respectively.

3 Reducing Parallel Overhead through Specialization

There are many sparse ODE systems where the components of yκ accessed by
a component function fj(tκ,yκ) are located nearby the index j. Examples are
ODE systems resulting from a spatial discretization of PDE systems by the
method of lines. This property is measured by the access distance d(f), which
is the smallest value b, such that all component functions fj(tκ,yκ) access only
the components {yκ,j−b, . . . , yκ,,j+b}. We say d(f) is limited if d(f)$ n.

For ODE systems with limited access distance, data-parallel implementations
with a blockwise data distribution only need to exchange d(f) components of yκ

at the left and at the right border of their data range. Using MPI as programming
environment, the expensive multibroadcast operation MPI Allgatherv() (cf.
Fig. 1) can be replaced by non-blocking single transfer operations (MPI Isend()
and MPI Irecv()), thus potentially overlapping communication with compu-
tations. Replicated storage of the argument vector for the function evaluation
using an array of size n is no longer required. Instead, the two arrays holding
the local parts of yκ and yκ+1 of size n/p are enlarged by d(f) at each border
to store the data received from the neighbor processes (ghost cells).

In shared-address-space implementations, it is desirable to avoid the high
costs of the global barriers (cf. Fig. 2). If the ODE system has a limited access

Locality Improvement of Data-Parallel Adams–Bashforth Methods 567

10
1

10
2

10
3

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

Number of processes

E
xe

cu
tio

n
tim

e
in

 s

minimum
average
maximum

Fig. 1. Execution time of the commu-
nication operation MPI Allgatherv()
for 8 · 106 vector elements on HLRB II

0 100 200 300 400 500
0

0.005

0.01

0.015

0.02

0.025

Number of threads

E
xe

cu
tio

n
tim

e
in

 s

cvbarrier, max
cvbarrier, avg
cvbarrier, min
PThread barrier, max
PThread barrier, avg
PThread barrier, min
qbarrier, max
qbarrier, avg
qbarrier, min

Fig. 2. Comparison of the execution time
of barrier operations on HLRB II (barrier
based on condition variables, Pthread
barrier, barrier based on busy waiting)

distance, only data from neighbor threads are required for the function evalua-
tion. Hence, it is sufficient to use locks for synchronization between neighbors.
Similar to the way communication and computation could be overlapped in an
MPI implementation, no waiting times for acquiring the locks occur if all threads
process the ODE components synchronously at the same speed.

While shared data structures are needed in general implementations where the
function evaluation may access all components of its argument vector, implemen-
tations specialized in a limited access distance can store the vectors yκ and yκ+1

in a distributed fashion similar to the MPI implementations, thus avoiding page
and cache line sharing. In this case, the data required from neighbor threads
have to be copied to ghost cells, which consumes CPU time.

4 Pipelining of Time Steps

The loop structures considered in Section 2.1 allow that the evaluation of the
right-hand-side function f(tκ,yκ) accesses all components of yκ. Next, a pipeline-
like loop structure covering several time steps of the AB method is described that
can be used for ODE systems with limited access distance to increase locality.
A similar approach has been proposed for the stages of embedded Runge–Kutta
methods [8], the corrector steps of iterated Runge–Kutta methods [7], and the
micro-steps of extrapolation methods [9].

The pipeline-like loop structure is based on a subdivision of all n-vectors into
nB = �n/B� blocks of size B. This subdivision is similar to the subdivision for
loop tiling, but, for the pipelining scheme to work, the block size must be larger
than the access distance, i.e., B ≥ d(f), and the number of blocks, nB, must be
at least as large as the pipeline length L.

Given this subdivision, the function evaluation of a block J ∈ {1, . . . , nB} of
yκ uses only components of the blocks J − 1, J , and J + 1 of yκ if these blocks

568 M. Korch

t0
t1
t2
t3
t4
t5
t6
t7
t8
t9
t10

P0 P1 P2 P3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

1 12 24 47 711 1115 1519 1923 23

3 35 58 812 1216 1620 2024 2427 27

6 69 913 1317 1721 2125 2528 2830 30

10 1014 1418 1822 2226 2629 2931 3132 32

23 2319 1915 1511 117 74 42 21 1

27 2724 2420 2016 1612 128 85 53 3

30 3028 2825 2521 2117 1713 139 96 6

32 3231 3129 2926 2622 2218 1814 1410 10

33 3334 3436 3639 3943 4347 4751 5155 55

35 3537 3740 4044 4448 4852 5256 5659 59

38 3841 4145 4549 4953 5357 5760 6062 62

42 4246 4650 5054 5458 5861 6163 6364 64

55 5551 5147 4743 4339 3936 3634 3433 33

59 5956 5652 5248 4844 4440 4037 3735 35

62 6260 6057 5753 5349 4945 4541 4138 38

64 6463 6361 6158 5854 5450 5046 4642 42

L

L

k

Fig. 3. Illustration of the pipeline-like processing of time steps in a data-parallel im-
plementation for nB = 32, p = 4, k = 3, and L = 4. Blocks that need to be exchanged
between processing elements are highlighted by thick borders.

exist, i.e., if 1 < J < nB. Now, due to the dependence pattern of the blocks,
a sequence of L successive time steps can be computed in a single sweep over
the system dimension using the block computation order displayed in Fig. 3.
In a data-parallel implementation, neighbor processing elements process their
pipelines in opposite directions so that during the initialization and the finaliza-
tion of the pipelines all data that have to be received from neighbor processing
elements are available before they are needed for a function evaluation.

Data-parallel implementations of the pipeline-like loop structure can use the
same distributed data structures and the same efficient communication pat-
terns as the specialized implementations optimized for limited access distance
described in Section 3.

A modification of the computation order to support ODE systems where the
access distance is limited only in a cyclic sense as it occurs in discretized PDE
systems with periodic boundary conditions is possible but not discussed here.

5 Storage and Working Spaces

Sequential implementations store k − 1 function results and the two vectors yκ

and yκ+1, which amounts to a total storage space of

Sseq(k, n) = (k + 1)n. (3)

All parallel implementations store n/p components of the k− 1 function results
per processing element. Differences in the storage space between the parallel
implementations result from how yκ and yκ+1 are handled. The general and
specialized shared-address-space implementations with shared storage of yκ and
yκ+1 require the same storage space as sequential implementations:

Ssas,ys(p, k, n) = p

[
(k − 1)

n

p

]
+ 2n = (k + 1)n. (4)

Locality Improvement of Data-Parallel Adams–Bashforth Methods 569

General MPI implementations store n/p components of yκ and yκ+1 in local
arrays, the pointers to which are swapped at every time step. Additionally, one
array of size n to collect yκ is used, which amounts to a total storage space of

Sdas,mbcast(p, k, n) = p

[
(k − 1)

n

p
+ 2

n

p
+ n

]
= (p+ k + 1)n. (5)

Specialized implementations for distributed address space which use neighbor-
to-neighbor communication and specialized implementations for shared address
space which store yκ and yκ+1 in a distributed fashion, need additional storage
space, compared with the sequential implementations, only for the ghost cells:

Sdas,single(p, k, n, d(f)) = Ssas,yd(p, k, n) = p

[
(k − 1)

n

p
+ 2

(
n

p
+ 2d(f)

)]
= (k + 1)n+ 4d(f)p.

(6)

Since all implementations iterate over all their data structures during one time
step, the storage space they require per processing element constitutes the most
significant working space of their loop structures. If the ODE system is large so
that not all data used by a processing element per time step fits in the cache,
the tiled or the pipeline-like loop structure can be expected to be more efficient,
because they create additional smaller working spaces that allow temporal reuse
of cache data.

The working space created by loop tiling, i.e., the size of one tile, consists
of k − 1 blocks of size B of the function results, one block of size B of yκ+1

computed in the current time step, and one block of size B + 2d(f) of yκ for
which the function is evaluated:

Wtile(k, d(f), B) = (k + 1)B + 2d(f). (7)

The most important working space created by the pipeline-like loop structure
using pipeline length L is the working space of one pipelining step, i.e., the
computation of one diagonal consisting of L blocks. This working space can be
viewed as being built up of L loop tiling working spaces, but components within
the access distance of the function evaluation partially overlap. The resulting
size of the working space is

Wpipe(k, d(f), B, L) = L(k + 1)B + 4d(f). (8)

6 Experimental Results and Discussion

6.1 Experimental Setup

In this article, we present selected experimental results measured on three com-
puter systems. Sequential jobs needed for empirical search of optimal block sizes
and pipeline lengths were run on a small cluster system consisting of 32 2-way
AMD Opteron DP 246 nodes with 64KB L1 data cache and 1024KB L2 cache.

570 M. Korch

n

B
lo

ck
 s

iz
e

Loop tiling, relative runtime

1 2 3 4 5

x 10
5

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

4

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

n

B
lo

ck
 s

iz
e

Loop tiling, relative L1 misses

1 2 3 4 5

x 10
5

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

4

1.2

1.4

1.6

1.8

2

2.2

n

B
lo

ck
 s

iz
e

Loop tiling, relative L2 misses

1 2 3 4 5

x 10
5

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

4

1

2

3

4

5

6

7

Blocksize

P
ip

el
in

e
le

ng
th

Pipelining, runtime per step and component in s

1000 2000 3000 4000 5000

5

10

15

20

25

30

35

40

45

50

5.2

5.4

5.6

5.8

6

6.2

6.4

6.6
x 10

−8

L1 100%
L1 75%
L2 100%
L2 75%
limit

Blocksize

P
ip

el
in

e
le

ng
th

Pipelining, L1 misses per step and component

1000 2000 3000 4000 5000

5

10

15

20

25

30

35

40

45

50

0.4

0.6

0.8

1

1.2

Blocksize

P
ip

el
in

e
le

ng
th

Pipelining, L2 misses per step and component

1000 2000 3000 4000 5000

5

10

15

20

25

30

35

40

45

50

0.05

0.1

0.15

0.2

0.25

0.3

Fig. 4. Sequential runtime and locality behavior of the tiled and the pipeline-like loop
structur on AMD Opteron DP 246. k = 4. Test problem: BRUSS2D-MIX. For the tiled
loop structure, the problem size is varied. For the pipeline-like loop structure, results
for problem size N = 130 (n = 33 800) are shown. Dark color indicates better behavior.

To compare the sequential and parallel implementations, results measured on the
two supercomputer systems JUROPA and HLRB II are shown. JUROPA (Jülich
Supercomputing Centre (JSC)) consists of 2 208 compute nodes equipped with
two quad-core Intel Xeon X5570 (Nehalem-EP) processors running at 2.93GHz
and interconnected by an Infiniband QDR network. The L1 data cache has a size
of 32KB; the L2 cache size is 256KB. The L3 cache is shared between the four
cores and has a size of 8MB. HLRB 2 (Leibniz Supercomputing Centre (LRZ)
Munich) is an SGI Altix 4700 system based on dual-core Itanium2 9040 (Mon-
tecito) processors running at 1.6GHz with a total number of 9 728 CPU cores.
The system is interconnected by an SGI NUMAlink 4 network and is divided
into 19 shared-memory partitions containing 512 cores. The L1 data cache has
a size of 16KB, but does not store floating point data. The L2 and the L3 cache
have a size of 256KB and 9MB, respectively. All cache levels are non-shared.

The test problems considered are BRUSS2D-MIX (2D Brusselator reaction-
diffusion equation [1,5]), which is derived from a first order 2D PDE system with
two variables using an N ×N grid and which has a system size of n = 2N2 and
an access distance of d(f) = 2N , and STRING (mechanical vibration of a string
[5]), which is derived from a second order 1D PDE system with one variable and
which has a system size of n = 2N and an access distance of d(f) = 3.

6.2 Choosing Blocksize and Pipeline Length

For the tiled loop structure, the runtime depends on the block size B. The upper
part of Fig. 4 illustrates the influence of the block size on the sequential runtime

Locality Improvement of Data-Parallel Adams–Bashforth Methods 571

10
2

10
4

10
6

10
8

1

1.5

2

2.5

3

3.5
x 10

−7 HLRB 2, BRUSS2D−MIX, k=6

n

R
un

tim
e

pe
r

st
ep

 a
nd

 c
om

po
ne

nt
 in

 s

j−l
l−j
tiling
pipel.

10
2

10
4

10
6

10
8

2

2.5

3

3.5

4

4.5

5

5.5
x 10

−8 JUROPA, BRUSS2D−MIX, k=6

n

R
un

tim
e

pe
r

st
ep

 a
nd

 c
om

po
ne

nt
 in

 s

j−l
l−j
tiling
pipel.

10
2

10
4

10
6

10
8

1

2

3

4

5

6
x 10

−8 JUROPA, STRING, k=6

n

R
un

tim
e

pe
r

st
ep

 a
nd

 c
om

po
ne

nt
 in

 s

j−l
l−j
tiling
pipel.

Fig. 5. Comparison of the normalized runtime of the sequential implementations

on an AMD Opteron DP 246 processor for the test problem BRUSS2D-MIX,
k = 4 and varying system sizes between n = 200 and n = 500 000. For this
example, small block sizes up to ≈ 1000 deliver the smallest execution time. But
the block size should not be too small, i.e., B � 100, so that it spans several
cache lines. This observation conforms with the working space model (7), which
suggests maximum block sizes between 1630 (n = 200) and 1238 (n = 500 000)
for a tile to fit in the L1 cache. In fact, Fig. 4 shows that in the ranges of the
block size with best execution times the smallest numbers of L1 misses occur.

The execution time of the pipeline-like loop structure is influenced by two
parameters: the block size and the pipeline length. The lower part of Fig. 4
illustrates this influence for the test problem BRUSS2D-MIX with problem size
N = 130 (n = 33 800) and k = 4 on an AMD Opteron DP 246 processor. Though
according to (8) it is possible to fit the working space of a pipelining step in the
L1 cache using pipeline length 5 or smaller, best performance, in this example,
is obtained for a pipeline length between about 10 and 20 and block sizes up to
1000. Generally, an area of good performance is framed by the working space
model (8) applied to the size of the L2 cache, but within this area neither the
block size nor the pipeline length should be chosen too large.

6.3 Influence of the Working Spaces on Sequential Performance

Figure 5 compares the sequential implementations on one processor core of
HLRB II and JUROPA using normalized runtime, i.e., the execution time per
step and component. For the loop tiling and the pipelining implementations, a
set of block sizes and pipeline lengths were precomputed using their working
space models, and the runtime of the best parameter choice is shown. Since the
function evaluation costs per component for the two test problems are indepen-
dent of the system size, an increase in the normalized runtime is usually caused
by working spaces of loops growing larger than a cache level. For small system
sizes, where all data structures used in a time step fit in the cache, general imple-
mentations can obtain a good performance. For larger system sizes, loop tiling
or pipelining is required for best performance. Pipelining performs best in the
range of system sizes where the pipelining working space (8) fits in the cache
but the overall working space of a time step (3) is too large to fit in the cache.

572 M. Korch

8 16 32 64 128 256 510
0

0.2

0.4

0.6

0.8

1

HRLB II, Pthreads, BRUSS2D−MIX, N=1500, n=4.5*106

Number of threads

E
ffi

ci
en

cy

j−l (barrier)
l−j (barrier)
tiling (barrier)
tiling (lock, ys)
tiling (lock, yd)
pipel. (lock, ys)
pipel. (lock, yd)

8 16 32 64 128 256 510
0

0.2

0.4

0.6

0.8

1

HRLB II, MPI, BRUSS2D−MIX, N=1500, n=4.5*106

Number of MPI processes

E
ffi

ci
en

cy

j−l (mbcast)
l−j (mbcast)
tiling (mbcast)
tiling (single)
pipel. (single)

8 16 32 64 128 256 500
0

0.2

0.4

0.6

0.8

1

1.2
JUROPA, MPI, BRUSS2D−MIX, N=1500, n=4.5*106

Number of MPI processes

E
ffi

ci
en

cy

j−l (mbcast)
l−j (mbcast)
tiling (mbcast)
tiling (single)
pipel. (single)

8 16 32 64 128 256 510
0

0.2

0.4

0.6

0.8

1

HRLB II, Pthreads, BRUSS2D−MIX, N=3000, n=1.8*107

Number of threads

E
ffi

ci
en

cy

j−l (barrier)
l−j (barrier)
tiling (barrier)
tiling (lock, ys)
tiling (lock, yd)
pipel. (lock, ys)
pipel. (lock, yd)

8 16 32 64 128 256 510 1020 2040
0

0.2

0.4

0.6

0.8

1

HRLB II, MPI, BRUSS2D−MIX, N=3000, n=1.8*107

Number of MPI processes

E
ffi

ci
en

cy

j−l (mbcast)
l−j (mbcast)
tiling (mbcast)
tiling (single)
pipel. (single)

8 16 32 64 128 256 512 1000
0

0.2

0.4

0.6

0.8

1

JUROPA, MPI, BRUSS2D−MIX, N=3000, n=1.8*107

Number of MPI processes

E
ffi

ci
en

cy

j−l (mbcast)
l−j (mbcast)
tiling (mbcast)
tiling (single)
pipel. (single)

8 16 32 64 128 256 510
0

0.2

0.4

0.6

0.8

1

HRLB II, Pthreads, STRING, N=8*106, n=1.6*107

Number of threads

E
ffi

ci
en

cy

j−l (barrier)
l−j (barrier)
tiling (barrier)
tiling (lock, ys)
tiling (lock, yd)
pipel. (lock, ys)
pipel. (lock, yd)

8 16 32 64 128 256 510 1020 2040
0

0.2

0.4

0.6

0.8

1

HRLB II, MPI, STRING, N=8*106, n=1.6*107

Number of MPI processes

E
ffi

ci
en

cy

j−l (mbcast)
l−j (mbcast)
tiling (mbcast)
tiling (single)
pipel. (single)

8 16 32 64 128 256 512 1024 4096
0

0.2

0.4

0.6

0.8

1

JUROPA, MPI, STRING, N=8*106, n=1.6*107

Number of MPI processes

E
ffi

ci
en

cy

j−l (mbcast)
l−j (mbcast)
tiling (mbcast)
tiling (single)
pipel. (single)

Fig. 6. Strong scalability of the Pthread and MPI implementations

6.4 Parallel Performance on Different Architectures

To investigate the strong scalability of the parallel implementations, Fig. 6 shows
selected experimental results measured on HLRB II and JUROPA. The compar-
ison is based on efficiency, i.e., execution time of the fastest sequential imple-
mentation divided by the execution time of the parallel implementation and
the number of processing elements. Thus, an efficiency of 1 is optimal. A set of
block sizes and pipeline lengths is precomputed and the best efficiency is shown,
similarly to the comparison of the sequential implementations.

The general MPI implementations, which need to use MPI Allgatherv(),
do not scale. The MPI pipelining implementation obtains a very high, nearly
constant efficiency (measured for STRING up to 4096 cores on JUROPA). A
loop tiling implementation that exploits limited access distance by using single
transfer operations is not as good as the pipelining implementation, in particular
for small numbers of processor cores, but it catches up with or even outperforms
the pipelining implementation as the number of processing elements is increased
and the amount of data processed by each processor core per time step decreases.

Locality Improvement of Data-Parallel Adams–Bashforth Methods 573

j−l l−j tiling
0

0.1

0.2

0.3

0.4

0.5

Implementation

E
ffi

ci
en

cy

256 threads, cvbarrier
256 threads, qbarrier
510 threads, cvbarrier
510 threads, qbarrier

tiling (yd) pipelining (yd)
0

0.2

0.4

0.6

0.8

1

Implementation

E
ffi

ci
en

cy

256 threads, memcpy
256 threads, fastbcopy
510 threads, memcpy
510 threads, fastbcopy

256 threads 510 threads
0

0.2

0.4

0.6

0.8

1

Implementation

E
ffi

ci
en

cy

tiling (ys)
tiling (yd)
pipelining (ys)
pipelining (yd)

Fig. 7. Influences on the scalability of Pthread implementations on HLRB II. Test
problem: BRUSS2D-MIX with N = 2000 (n = 8 · 106). k = 6. Left: Barrier operations.
Middle: Memory copy operations. Right: Distributed vs. shared storage.

The Pthread implementations could be investigated on HLRB II using up
to 510 threads. To improve the performance of the general implementations,
which need barrier operations, a barrier operation based on busy waiting [3]
was used (cf. Fig. 7 (left)). In contrast to the general MPI implementations, the
general Pthread implementations benefit from a parallel execution. Depending
on the test problem and the problem size, even several hundred threads can be
run efficiently. Using 256 threads and k = 6, speedups between 92 (j–l) and
121 (loop tiling) have been measured for BRUSS2D-MIX and N = 3000 and
between 62 (j–l) and 72 (loop tiling) for BRUSS2D-MIX and N = 1500. Using
510 threads, for STRING and N = 8 · 106, the general implementations even
reached speedups between 222 (j–l) and 445 (loop tiling).

The specialized Pthread implementations are even more efficient than the
general Pthread implementations but do not reach the performance of the spe-
cialized MPI implementations. In the example cases shown in Fig. 6 speedups
between 346 and 383 have been measured for BRUSS2D-MIX and N = 3000 and
between 464 and 489 for STRING using 510 threads. At least for BRUSS2D-
MIX, the implementations with distributed storage of yκ and yκ+1 are more
efficient than those with shared storage of these vectors (cf. Fig. 7 (right)). To
further improve these implementations, which have to copy data from neigh-
bor threads, the memcpy() operation from the standard C library was replaced
by the faster (internal) fastbcopy() operation of the SGI MPT library. This,
however, increased efficiency only marginally (cf. Fig. 7 (middle)). As for the MPI
implementations, pipelining is most efficient for smaller numbers of processing
elements, where the amount of data processed by each processing element is
larger than the cache.

7 Conclusions

Data-parallel implementations of Adams–Bashforth methods can be used effi-
ciently on hundreds and thousands of processing elements if the ODE system is
large enough. Since general MPI implementations require the use of multibroad-
casts, only specialized MPI implementations which exploit the specific structure

574 M. Korch

of the ODE system can reach high speedups. Pthread implementations also can
obtain significant speedups from a data-parallel execution, even for ODE systems
with arbitrary coupling, but the performance of the specialized MPI implemen-
tations is higher. If the amount of data processed per processing element at each
time step exceeds the cache size, locality optimizations such as loop tiling or
pipelining are required for best performance. Pipelining of time steps, as pro-
posed in this paper, outperforms standard loop tiling if the working space of
a pipelining steps fits in the cache. Efficient block sizes and pipeline lengths
can be chosen using a working space model. In future work, the most efficient
implementation, block size and pipeline length could be chosen automatically.

Acknowledgments. We thank the JSC and the LRZ Munich for providing
access to their supercomputer systems. This work was supported by the German
Research Foundation (DFG) [grant numbers RA 524/17-1 and RA 524/17-2].

References

1. Burrage, K.: Parallel and Sequential Methods for Ordinary Differential Equations.
Oxford University Press, New York (1995)

2. Butcher, J.C.: Numerical methods for ordinary differential equations, 2nd edn.
John Wiley & Sons, Chichester (2008)

3. Chen, J., Watson III, W.: Software barrier performance on dual quad-core Opterons.
In: Proceedings of the 2008 International Conference on Networking, Architecture,
and Storage, pp. 303–309. IEEE Computer Society (2008)

4. Cong, N.H., Xuan, L.N.: Twostep-by-twostep PIRK-type PC methods with con-
tinuous output formulas. J. Comput. Appl. Math. 221, 165–173 (2008)

5. Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I:
Nonstiff Problems, 2nd rev. edn. Springer, Berlin (2000)

6. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II: Stiff and
Differential-Algebraic Problems, 2nd rev. edn. Springer, Berlin (2002)

7. Korch, M., Rauber, T.W.: Locality Optimized Shared-Memory Implementations of
Iterated Runge-Kutta Methods. In: Kermarrec, A.-M., Bougé, L., Priol, T. (eds.)
Euro-Par 2007. LNCS, vol. 4641, pp. 737–747. Springer, Heidelberg (2007)

8. Korch, M., Rauber, T.: Parallel low-storage Runge-Kutta solvers for ODE systems
with limited access distance. Int. J. High Perf. Comput. Appl. 25(2), 236–255 (2011)

9. Korch, M., Rauber, T., Scholtes, C.: Scalability and locality of extrapolation
methods on large parallel systems. Concurrency Computat.: Pract. Exper. 23(15),
1789–1815 (2011)

10. Ley, K.: Parallele Implementierung und Analyse eines expliziten Adams-
Verfahrens. Bachelor’s thesis, University of Bayreuth (November 2010)

11. Rauber, T.W., Rünger, G.: Execution Schemes for Parallel Adams Methods.
In: Danelutto, M., Vanneschi, M., Laforenza, D. (eds.) Euro-Par 2004. LNCS,
vol. 3149, pp. 708–717. Springer, Heidelberg (2004)

12. Schmitt, B.A., Weiner, R., Jebens, S.: Parameter optimization for explicit parallel
peer two-step methods. Appl. Numer. Math. 59, 769–782 (2008)

13. van der Houwen, P.J., Messina, E.: Parallel Adams methods. J. Comput. Appl.
Math. 101, 153–165 (1999)

Parallel SOR for Solving the Convection

Diffusion Equation Using GPUs with CUDA

Yiannis Cotronis, Elias Konstantinidis,
Maria A. Louka, and Nikolaos M. Missirlis

Department of Informatics and Telecommunications,
University of Athens,

Panepistimiopolis, 15784, Athens, Greece
{cotronis,ekondis,mlouka,nmis}@di.uoa.gr

Abstract. In this paper we study a parallel form of the SOR method
for the numerical solution of the Convection Diffusion equation suitable
for GPUs using CUDA. To exploit the parallelism offered by GPUs we
consider the fine grain parallelism model. This is achieved by considering
the local relaxation version of SOR. More specifically, we use SOR with
red black ordering with two sets of parameters ωij and ω

′
ij . The param-

eter ωij is associated with each red (i+j even) grid point (ij), whereas

the parameter ω
′
ij is associated with each black (i+j odd) grid point (ij).

The use of a parameter for each grid point avoids the global communi-
cation required in the adaptive determination of the best value of ω and
also increases the convergence rate of the SOR method [3]. We present
our strategy and the results of our effort to exploit the computational
capabilities of GPUs under the CUDA environment. Additionally, a pro-
gram for the CPU was developed as a performance reference. Significant
performance improvement was achieved with the three developed GPU
kernel variations which proved to have different pros and cons.

Keywords: Iterativemethods, SOR,R/BSOR,GPUcomputing,CUDA.

Subject classification: AMS(MOS), 65F10, 65N20, CR:5.13.

1 Introduction

Traditionally, conventional processors have been used to solve computational
problems. Modern graphics processors (GPUs) have become coprocessors with
significantly more computational power than general purpose processors. Their
large computational potential has turned them to a special challenge for solv-
ing general-purpose problems with large computational burden. Thus, appli-
cation programming environments have been developed like the proprietary
CUDA (Compute Unified Development Architecture) by NVidia [16,12] and the
OpenCL (Open Computing Language) [20] which is supported by many hard-
ware vendors, including NVidia.

CUDA environment is rapidly evolving and a constantly increasing number
of researchers is adopting it in order to exploit GPU capabilities. It provides an
elegant way for writing GPU parallel programs, by using a kind of extended C

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 575–586, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

576 Y. Cotronis et al.

language, without involving other graphics APIs. In this paper we use GPUs
for the numerical solution of Partial Differential equations. In particular, we
consider the solution of the second order convection diffusion equation

Δu− f(x, y)
∂u

∂x
− g(x, y)

∂u

∂y
= 0 (1)

on a domain Ω = {(x, y)}|0 ≤ x ≤ 1, 0 ≤ y ≤ 1}, where u = u(x, y) is
prescribed on the boundary ∂Ω. The discretization of (1) on a rectangular grid
M1 ×M2 = N unknowns within Ω leads to

uij =
ijui−1,j + rijui+1,j + tijui,j+1 + bijui,j−1, (2)

i = 1, 2, . . . ,M1 , j = 1, 2, . . . ,M2

with

ij =
k2

2(k2 + h2)
(1 +

1

2
hfij) , rij =

k2

2(k2 + h2)
(1 − 1

2
hfij)

(3)

tij =
h2

2(k2 + h2)
(1− 1

2
kgij) , bij =

h2

2(k2 + h2)
(1 +

1

2
kgij),

where h = 1/(M1 + 1), k = 1/(M2 + 1), fij = f(ih, jk) and gij = g(ih, jk). For
a particular ordering of the grid points (2) yield a large, sparse, linear system of
equations of order N of the form

Au = b. (4)

The Successive Overrelaxation (SOR) iterative method, which is given by the
form

u
(n+1)
ij = (1 − ω)u

(n)
i,j + ω(
iju

(n+1)
i−1,j + riju

(n)
i+1,j + tiju

(n)
i,j+1 + biju

(n+1)
i,j−1) (5)

is an important solver for large linear systems [14], [15]. It is also a robust
smoother as well as an efficient solver of the coarsest grid equations in the multi-
grid method. However, the SOR method is essentially sequential in its original
form. Several parallel versions of the SOR method have been studied by coloring
the grid points [1], [13].

In order to use a parallel form of the SOR method with fine grain parallelism
we have to color the grid points red-black [1], [13] so that sets of points of the
same color can be computed in parallel. However, the parameter ω which accel-
erates the rate of convergence of SOR is computed adaptively in terms of u(n+1)

and u(n) [7]. This computation requires global communication between the pro-
cessors for each iteration. To overcome this problem local relaxation methods
are used [4], [5], [11]. In these methods each point in the grid has its own re-
laxation parameter ωij which is determined in terms of the local coefficients of
the PDE. In [2], [4], [5], the local SOR (LSOR) with different formulas for the

Parallel SOR for Solving the CD Equation Using GPUs with CUDA 577

optimum values of the relaxation parameters was studied numerically and com-
pared with the classic SOR method for the 5-point stencil. It was found that
LSOR possesses better convergence rate than SOR using only local communica-
tion. However, the first theoretical results about the convergence of LSOR were
presented in [11] under the assumption that the coefficient matrix is symmetric
and positive definite. Following a similar approach but using two different sets of
parameters ωij and ω′

ij for the red and black points, respectively, it was proved
in [3] that the local Modified SOR method (LMSOR) possesses a better rate of
convergence than LSOR for the 5-point stencil. This comparison was carried out
in case the eigenvalues of the Jacobi matrix possesses either real (real case) or
imaginary (imaginary case) eigenvalues.

The SOR method has been implemented on GPUs as applied to medical anal-
ysis [6] as well as to computational fluid dynamics [9] problems.

Our contribution is to explore the LMSOR method for the 5-point stencil ex-
ploiting the computational capabilities of GPUs under the CUDA environment.
In our study we used three different techniques to find the one that best exploits
the capabilities of the GPU.

The remainder of the paper is organized as follows. In section 2 we present
a general description of the LMSOR method. In section 3 we present its imple-
mentation in GPUs, in section 4 we present our performance results and finally,
in section 5, we state our remarks and conclusions.

2 The Local Modified SOR Method

The LSOR method was introduced by Ehrlich [4], [5] and Botta and Veldman
[2] in an attempt to further increase the rate of convergence of SOR. The idea
is based on letting the relaxation factor ω vary from equation to equation. This
means that each equation of (2) has its own relaxation parameter denoted by
ωij . Kuo et. al [11] combined LSOR with red black ordering and showed that
is suitable for parallel implementation on mesh connected processor arrays. In
[3] we generalized LSOR by letting two different sets of parameters ωij , ω

′
ij to

be used for the red (i + j even) and black (i + j odd) points, respectively. An
application of our method to (2) can be written as follows:

u
(n+1)
ij = (1 − ωij)u

(n)
ij + ωijJiju

(n)
ij , red points (6)

u
(n+1)
ij = (1 − ω

′
ij)u

(n)
ij + ω

′
ijJiju

(n+1)
ij , black points (7)

where
Jiju

(n)
ij = liju

(n)
i−1,j + riju

(n)
i+1,j + tiju

(n)
i,j+1 + biju

(n)
i,j−1 (8)

and Jij is called the local Jacobi operator. The parameters ωij , ω
′
ij are called

local relaxation parameters and (6)–(8) will be referred to as the local Modified
SOR (LMSOR) method. Note that if ωij = ω

′
ij , then (6), (7) reduce to the

LSOR method studied in [11]. Moreover, if ωij = ω
′
ij = ω (6), (7) degenerate

578 Y. Cotronis et al.

into the classical SOR method with red black ordering. Using Fourier analysis,
Boukas and Missirlis [3] proved that the optimum values of the local relaxation
parameters ω1,i,j and ω2,i,j for the LMSOR method in case the eigenvalues μij

of the local Jacobi operator Jij are all real or all imaginary are the following.

Case 1: μij are real. This case applies when
ijrij ≥ 0 and tijbij ≥ 0. The
optimum values of the LMSOR parameters are given by

ω1,i,j =
2

1− μijμij
+
√
(1− μ2

ij)(1− μ2
ij
)

and (9)

ω2,i,j =
2

1 + μijμij
+
√
(1− μ2

ij)(1− μ2
ij
)

where

μij = 2
(√

ijrijcosπh+
√
tijbijcosπk

)
(10)

and

μ
ij
= 2

(√

ijrijcos

π(1 − h)

2
+
√
tijbijcos

π(1 − k)

2

)
. (11)

Note that μij is the spectral radius of the local Jacobi operator Jij where

μij = 2

(√

ijrijcos

k1π

M1 + 1
+
√
tijbijcos

k2π

M2 + 1

)
, (12)

with k1 = 1, 2, . . . ,M1, k2 = 1, 2, . . . ,M2, for periodic boundary conditions.

Case 2: μij are imaginary. This case applies when
ijrij ≤ 0 and tijbij ≤ 0. The
optimum values of the LMSOR parameters are given by

ω1,i,j =
2

1− μijμij
+
√
(1 + μ2

ij)(1 + μ2
ij
)

and (13)

ω2,i,j =
2

1 + μijμij
+
√
(1 + μ2

ij)(1 + μ2
ij
)

where μij and μ
ij

are computed by (10) and (11), respectively.

3 Parallel Implementation

Implementations for the LMSOR method were developed for both the CPU and
GPU. The CPU version is a single threaded program, used as a performance ref-
erence for our experiments. In contrast, the GPU version is a massively parallel
program. The speedup that is observed between the sequential CPU program

Parallel SOR for Solving the CD Equation Using GPUs with CUDA 579

and the parallel GPU program is a sequential versus parallel program compari-
son, although not in the strict sense due to the GPU architectural differences.

As the solution of the Laplace equation using the red/black SOR method is
memory bound [10], this problem can also be characterized as memory bound.
Inspecting the computations by (6), (7) and (8) we note that, in case of good
cache behavior, each element needs to access roughly 8 elements (accesses to ui,j

count as 3, 2 reads and 1 write) per iteration (either red or black). The same
computation reveals also that 11 floating point operations are needed per ele-
ment. Thus, the ratio of floating point operations per accessed elements is 11/8,
and considering the use of double precision arithmetic, the ratio of floating point
operations per byte accesses is 11/(8× 8) ≈ 0.17. This ratio is quite low as the
GPUs are able to handle much more compute operations than memory access
operations [8]. For instance, the NVidia GTX480 has a double precision peak
performance of 168 GFlops and memory throughput of 177 GB/sec. Thus, a
balanced algorithm should perform at least ≈ 1 double precision floating point
operation per byte accessed. It should be noted that double precision operations
were applied in all developed programs of this work.

In the implementation of the LMSOR method, the parameters ωij and ω
′
ij

are precomputed on the CPU for two of the three developed kernels.
As our program implements a red/black ordering, it is beneficial to apply

reordering by color strategy into separate matrices in order to optimize per-
formance by coalescing [10], [17]. Points in a mesh are split into two different
matrices, one for the red points and one for the black. This strategy can improve
bandwidth utilization by improving locality and coalescing of memory accesses
and mostly, by utilizing all points contained in a memory segment, which is not
possible with a natural interleaved red/black ordering.

Moreover, our program utilizes 6 matrices during the computation procedure
(u, ω, l, r, t and b) as formulae (6), (7) and (8) indicate, all of which feature a
red/black ordering. In contrast, the solution of the Laplace equation with R/B
SOR requires accessing on a single matrix [10]. As the reordering strategy can
be applied on every red-black ordered matrix it is possible to apply it on all
6 matrices. This factor raises the importance of the use of point reordering by
color strategy.

In order to alleviate the high memory bandwidth requirements set by the
program, an alternative approach will be used. Some read-only matrices, having
their elements computed during the program initialization, can be eliminated by
replacing accesses on them with computations in the GPU kernel. As the GPU
has very high instruction throughput capability this trade-off can be beneficial.
In summary, LMSOR was implemented in three variations as three different ker-
nels. Each variation differs by the amount of redundant computations it performs
iteratively. All kernels employ the reordering by color strategy as it is expected
to be beneficial. These kernels are:

Kernel #1 - No Redundant Computations. All values required in (6),
(7) and (8) reside in matrices situated in the GPU device memory. Beyond
employing the reordering by color strategy, this kernel is the natural outcome

580 Y. Cotronis et al.

implementation as no extra computations are performed. Thus, the 6 aforemen-
tioned matrices are required in this scheme and about 8 element accesses per
computed element. As previously shown, the ratio of floating point operations
per byte accessed is 0.17, which is particularly low.

Kernel #2 - Redundant Computations of li,j, ri,j, ti,j , bi,j. The values of
the two matrices fi,j and gi,j multiplied by h, are precomputed and stored in two
matrices in the device memory. Thus, instead of 4 matrices for li,j , ri,j , ti,j and
bi,j we just need to keep 2 matrices only in device memory. Memory requirements
are lower since only 4 matrices are required to reside in device memory (for ui,j ,
ωi,j , fi,j and gi,j). However, it comes at a cost of extra operations needed to
recompute the required terms for the formula on every iteration. In this case,
each element requires 6 accesses and at least 11+4 = 15 floating point operations,
as formula (3) indicates. Now, the ratio is about 15/(6×8) = 0.31 flops per byte,
which is a more balanced ratio but still less than 1.0.

Kernel #3 - Redundant Computations of All Terms. In this implemen-
tation, recomputation is applied to the extreme point that all terms, excluding
ui,j , are recomputed in flight. The type of f and g functions is passed as a pa-
rameter to the kernel and all required terms are recomputed on every iteration.
In this case only 3 accesses per computed element are required. The required
flops are dependent on the selected f(x, y) and g(x, y) functions. A rough esti-
mate is that at least 15 + 30 = 45 flops are required plus the extra flops for the
computation of f(x, y) and g(x, y). An approximation of the least ratio value is
45/(3× 8) ≈ 1.9, which clearly exceeds 1. Thus, this kernel is compute bound,
as opposed to the previous kernels.

During computation only ui,j terms are accessed from memory and all other
terms are recomputed as required. Thus, this variation has the least memory re-
quirements of all kernels, as it requires only 1 matrix residing in device memory.
The performance of the GPU version relies on the global memory cache present
on Fermi GPU devices. As it has been shown [10] the global memory cache can
offer the potential of high performance without the need to utilize special mem-
ory types (i.e. shared memory or texture memory). Additionally, it accomodates
previously non-coalesced memory accesses with spacial locality. Therefore, the
application is not expected to run efficiently on older hardware, i.e. GT-200
based GPUs. On such architectures, an alternative approach should have been
chosen utilizing texture memory or shared memory of the device.

It should be noted that all implementations perform convergence checking on
every iteration which raises the execution overhead. Convergence checking in the
GPU kernel is implemented as a reduction of all computed maximum values. On
a production environment convergence checking should be avoided, at least on
most iterations, in order to attain peak performance.

The CPU version is a fairly straightforward implementation without employ-
ing any sophisticated access patterns. Elements are processed sequentially in
rows and no cache blocking has been employed.

Parallel SOR for Solving the CD Equation Using GPUs with CUDA 581

4 Performance Results

In order to test our theoretical results we considered the numerical solution of
(1) with u = 0 on the boundary of the unit square. The initial vector was chosen
as u(0)(x, y) = xy(1 − x)(1 − y). The solution of the problem above is zero. For
the purpose of comparison we considered the application of LMSOR method
with red black ordering, on CPU and GPU. In all cases the iterative process was
terminated when the criterion ||u(n) ||∞ ≤ 10−6 was satisfied. Various functions
for the coefficients f(x, y) and g(x, y) were chosen such that the eigenvalues μij to
be either real or imaginary. The type of eigenvalues for each case is indicated by
the tuple (# real, # imaginary) in the second row of each table. The coefficients
used in each problem are:

1. f(x, y) = Re(2x− 10)3, g(x, y) = Re(2y − 10)3

2. f(x, y) = Re(2x− 10), g(x, y) = Re(2y − 10)
3. f(x, y) = g(x, y) = Re · 104

where the Reynold operator Re = 10m, m = 0, 1, 2, 3 and 4.
All experiments were performed on a Linux environment. The CPU imple-

mentation was compiled with GCC version 4.4.4 on a 64bit environment, with
all essential optimization flags enabled (-O2 -fomit-frame-pointer -ftree-vectorize
-msse2 -msse -funroll-loops -fassociative-math -fno-signed-zeros -fno-trapping-
math -fno-signaling-nans). The GPU implementation was compiled using CUDA
Toolkit version 4.1 and GCC version 4.1.2 on a 64bit environment. The graphics
driver version was 295.53. The parameter ”–use fast math” had been used.

The hardware used for the experimental runs was an AMD Opteron 6180 SE
(2.5GHz), for the CPU executions. For the GPU executions, a Nvidia GTX-480
and a Tesla C2050 [19] were used. Both GPUs are Fermi architecture based, fea-
turing global memory cache which is essential for the performance of our kernel.

Three different series of experimental runs were performed, each investigating
the GPU and CPU implementations from a different aspect. The first series
of runs were performed in order to determine the most efficient out of the 3
developed kernels applying the LMSOR method. The second series of runs was
performed in order to compare the GPU version with the CPU version, for the
three problems, in terms of performance, on various Re values. The fluctuation
of Re values causes a varying number of required iterations to meet convergence.
The last series of runs was performed to measure the performance of the GPU
kernel and the CPU on one specific problem, on a wider range of mesh sizes
where the CPU version execution is heavily time-consuming.

In the results that follow, two different time measurements were carried out.
The first, referred as computation time, is the net computation time, without
extra overheads like the PCI-Express data transfer time overhead and, in case
of GPU kernels, the element reordering time overhead. The second, referred as
execution time, includes all the aforementioned overhead times. The function
used to measure time is the gettimeofday() function, which is available on Linux
platform.

582 Y. Cotronis et al.

4.1 Three Kernel Comparison

All kernels, of both methods, were executed in solving the three aforementioned
problems, on mesh size h = k = 1√

N+1
where

√
N = M1 = M2 = {402, 2002}.

The GPU used in this experiment was the GTX480. The results of the executions
are depicted on table 1. Large matrices are more important, as the GPUs are
optimized for massive parallelism and therefore suited for large array processing.
Thus, it is sensible to focus on the case where

√
N = 2002.

Table 1. Kernel comparison in LMSOR execution on GTX480, for
√
N = {402, 2002}

√
N = 402

√
N = 2002

f,g Experimental results #1 #2 #3 #1 #2 #3
(R,I) (0,161604) (0,4008004)

Iterations 412 412 412 1998 1998 1998
1 Computation time (secs) 0.0561 0.0503 0.1489 3.6108 2.9294 13.7794

Total execution time (secs) 0.0613 0.0541 0.1507 3.6636 2.9711 13.7940
Comp. time/iteration (msecs) 0.1361 0.1220 0.3614 1.8072 1.4662 6.8966

(R,I) (161604,0) (4008004,0)
Iterations 554 554 554 2704 2704 2704

2 Computation time (secs) 0.0752 0.0670 0.1889 4.9431 4.0572 17.4341
Total execution time (secs) 0.0812 0.0702 0.1905 4.9960 4.0987 17.4497

Comp. time/iteration (msecs) 0.1358 0.1209 0.3409 1.8281 1.5004 6.4475
(R,I) (0,161604) (0,4008004)

Iterations 1015 1015 1015 2018 2018 2018
3 Computation time (secs) 0.1372 0.1223 0.3429 3.6871 3.0273 12.9215

Total execution time (secs) 0.1418 0.1255 0.3442 3.7400 3.0668 12.9357
Comp. time/iteration (msecs) 0.1352 0.1204 0.3378 1.8271 1.5002 6.4031

As it is obvious from the results, kernel #3 presents the worst performance.
Kernel #2 seems to be the best performing of all. Although, it executes more
operations per computed element, it actually performs better (≈ 22%) than the
first one, revealing the memory throughput bottleneck in this program. On the
C2050 the improvement of kernel #2 was even more notable (25− 39%) due to
its higher double precision operation throughput.

The advantage of kernel #3 is its limited memory access requirements. Kernel
#1 makes use of 6

√
N ×

√
N matrices, one for each mesh. Kernel #2 makes

use of 4 matrices of the same order and kernel #3 makes use of just 1 matrix of
the same order. This makes it suitable for solving a large problem when memory
size is a critical limitation.

Due to the different memory access requirements of the 3 kernels, inspect-
ing the effective bandwidth can lead to misleading conclusions about the per-
formance of each kernel. As can be seen on table 2, some profiling data were
captured during one iteration of computation of red elements, for

√
N = 4002.

Bytes accessed by kernel were extrapolated by using the first two performance
counters. For kernel #1 the achieved effective bandwidth was estimated to be
almost 148GB/sec, computing about 2250 elements/sec. Kernel #2 achieved
calculating near 2800 elements by utilizing about 10GB/sec less bandwidth. In
contrast, kernel #3 suffers by low occupancy and instruction execution pressure.

Parallel SOR for Solving the CD Equation Using GPUs with CUDA 583

Table 2. Profiling on one iteration of red elements calculation on the GTX480, for√
N = 4002

kernel #1 kernel #2 kernel #3
fb subp0 read sectors 7204214 5102010 2013049
fb subp0 write sectors 1001454 1001464 1102356

gputime 3549.952 2871.936 12671.392
registers/thread 25 25 63

occupancy 0.667 0.667 0.333
Bytes accessed (extrapolated) 525162752 390622336 199385920

Bandwidth (GB/sec) 147.94 136.01 15.74
MegaElements/sec 2253.55 2785.58 631.34

Each kernel is characterized by different memory bandwidth requirements and
thus, it cannot be used as a direct comparison measure. Thus, pure bandwidth
does not expose the actual performance of these kernels.

4.2 CPU - GPU Comparison

In this series of executions the GPU kernel #2, and the CPU program were
compared, for both methods, in executions for various Re values. Matrix or-
der

√
N was kept constant (

√
N = 1002) and the program was executed for

Re={1000.0, 10000.0, 100000.0}. Results are depicted in table 3. It is worth to
note that the GPU version is constantly achieving an over ×50 speed-up over the
single threaded CPU version. The GPU shows a stable performance behavior by
computing elements at a rate of less than half a millisecond per iteration.

Table 3. Kernel comparison in LMSOR execution on GTX480, for
√
N = 1002, for

various values of Re, for the three problems, * indicates no convergence after 20000
iterations

Re = 1000.0 Re = 10000.0 Re = 100000.0
f,g Experimental results CPU GPU CPU GPU CPU GPU

(R,I) (0,1004004) (0,1004004) (0,1004004)
Iterations 2620 2620 5394 5394 6243 6243

1 Computation time (secs) 56.7055 1.1146 118.1573 2.2959 133.6569 2.6551
Total execution time (secs) 56.7055 1.1269 118.1573 2.3082 133.6569 2.6674

Comp. time/iteration (msecs) 21.6433 0.4254 21.9053 0.4256 21.4091 0.4253
Computation speedup 1.0000 50.8773 1.0000 51.4650 1.0000 50.3394

(R,I) (0,1004004) (0,1004004) (0,1004004)
Iterations 1003 1003 1112 1112 3170 3170

2 Computation time (secs) 21.0700 0.4266 23.9960 0.4728 69.4001 1.3464
Total execution time (secs) 21.0700 0.4369 23.9960 0.4831 69.4001 1.3568

Comp. time/iteration (msecs) 21.0070 0.4253 21.5791 0.4252 21.8928 0.4247
Computation speedup 1.0000 49.3880 1.0000 50.7524 1.0000 51.5448

(R,I) (0,1004004) (0,1004004) (0,1004004)
Iterations 5514 5514 6271 6271 7034 7034

3 Computation time (secs) 118.6613 2.3459 135.8946 2.6648 154.8432 2.9918
Total execution time (secs) 118.6613 2.3562 135.8946 2.6751 154.8432 3.0027

Comp. time/iteration (msecs) 21.5200 0.4254 21.6703 0.4249 22.0135 0.4253
Computation speedup 1.000 50.5827 1.0000 50.9970 1.0000 51.7567

584 Y. Cotronis et al.

4.3 CPU - GPU Scalability

The CPU and GPU versions were executed for a wider range of mesh sizes with√
N = {402, 1002, 2002, 3002, 4002}, for the 2nd problem and Re = 10.0. The

results are depicted on table 4.
The speed-up observed is further increased as

√
N obtains higher values. For

mesh size with
√
N = 4002, the speed-up exceeds ×110. The GTX-480 needs

just 31.16 seconds to execute 5406 iterations on that mesh which is near 150
milliseconds per iteration. This rate reaches to 2.8 Giga elements computed per
second. These numbers include the time required for checking of convergence
criterion.

The rate of computations of elements per second and the speed-up observed
for the GPU computation times can be summarized on figure 1.

The C2050, although targeted to HPC environments it lacks the high band-
width of the GTX480. Additionally, as the Tesla ECC protections was enabled,
the memory bandwidth was further stressed roughly by 20% [18]. Thus, the per-
formance results are lower on C2050 than on GTX-480, which does not feature
ECC memories. The CPU version achieves about 25 MegaElements/sec which
corresponds to 8× 8× 25 = 1600 MB/sec bandwidth. This straightforward CPU
implementation, features strided accesses (reading red or black elements) that
avoid vectorization and data are used inefficiently as only half of them read in a
cache line are actually used in computations.

Table 4. Various executions for the 2nd problem, (a) on CPU AMD Opteron 6180 SE,
(b) on GPU NVidia GTX480 (kernel #2) and (c) on GPU NVidia Tesla C2050 (kernel
#2), for mesh sizes with

√
N = {402, 1002, 2002, 3002, 4002} and Re=10.0

Mega Elements
Matrix Total (R,I) Model Execution Computation computed Computation√
N ×

√
N Iterations time time per second Speed-up

(a) 1.54 1.54 57.55 1.00
402 × 402 554 (161604,0) (b) 0.07 0.07 1329.55 23.10

(c) 0.14 0.12 721.78 12.54
(a) 28.19 28.19 49.10 1.00

1002 × 1002 1384 (1004004,0) (b) 0.60 0.59 2354.79 47.96
(c) 0.91 0.89 1555.39 31.68
(a) 256.50 256.50 42.17 1.00

2002 × 2002 2704 (4008004,0) (b) 4.10 4.06 2665.86 63.22
(c) 6.02 5.91 1831.57 43.44
(a) 1402.17 1402.17 26.03 1.00

3002 × 3002 4055 (9012004,0) (b) 13.35 13.27 2750.96 105.69
(c) 20.43 20.05 1820.49 84.55
(a) 3473.73 3473.73 24.90 1.00

4002 × 4002 5406 (16016004,0) (b) 31.30 31.16 2776.04 111.49
(c) 46.71 46.27 1869.18 75.07

Parallel SOR for Solving the CD Equation Using GPUs with CUDA 585

Fig. 1. Mega Elements computed per second on CPU & GPUs (left) and Computation
speed-up of GPUs over CPU (right) for different matrices

5 Remarks and Conclusions

GPU is a suitable platform for massive parallel computations like those provided
by the red/black ordering of iterative methods in solving systems of linear equa-
tions. In order to achieve memory coalescing, the locality of accesses must be
ensured. Thereafter, the high memory bandwidth of the GPU can be exploited
and attain high performance.

GPU recomputation can be beneficial in cases where memory accessing be-
comes a bottleneck. Instead of keeping the processing units idle, one strategy is
to recompute data in order to avoid multiple memory accesses. This is a tradeoff
and in many cases when a kernel is bandwidth limited, compute resources can
be traded for less demand in memory bandwidth. It is applicable when a few
operations at most are required for recomputation, so that computation does
not turn to a bottleneck. It can provide a performance speed-up and moreover,
it can release portions of device memory, allowing to solve larger problems.

Even in cases where recomputation is applied to the extreme, although per-
formance is worsened, there can be other benefits. Recomputation leaves more
available memory for other uses and thus a bigger problem is allowed to be solved.
The size of the problem that is to be solved can determine the appropriate kernel
to be used.

Acknowledgments. We would like to acknowledge the kind permission of the
Innovative Computing Laboratory at the University of Tennessee to use their
NVidia Tesla C2050 installation for the purpose of this work.

References

1. Adams, L.M., Leveque, R.J., Young, D.: Analysis of the SOR iteration for the
9-point Laplacian. SIAM J. Num. Anal. 9, 1156–1180 (1988)

2. Botta, E.F., Veldman, A.E.P.: On local relaxation methods and their application
to convection-diffusion equations. J. Comput. Phys. 48, 127–149 (1981)

3. Boukas, L.A., Missirlis, N.M.: The Parallel Local Modified SOR for Nonsymmetric
Linear Systems. Intern. J. Computer Math. 68, 153–174 (1998)

586 Y. Cotronis et al.

4. Ehrlich, L.W.: An Ad-Hoc SOR Method. J. Comput. Phys. 42, 31–45 (1981)
5. Ehrlich, L.W.: The Ad-Hoc SOR method: A local relaxation scheme, in elliptic

Problem Solvers II, pp. 257–269. Academic Press, New York (1984)
6. Ha, L., Króger, J., Joshi, S., Silva, C.T.: Multiscale Unbiased Diffeomorphic

Atlas Construction on Multi-GPUs. GPU Computing Gems. Emerald Edition,
pp. 771–791. Morgan Kaufmann (2011)

7. Hageman, L.A., Young, D.M.: Applied Iterative Methods. Academic Press, New
York (1981)

8. Kirk, D.B., Hwu, W.W.: Programming Massively Parallel Processors. Morgan
Kaufmann (2009)

9. Komatsu, K., Soga, T., Egawa, R., Takizawa, H., Kobayashi, H., Takahashi, S.,
Sasaki, D., Nakahashi, K.: Parallel Processing of the Building-Cube Method on
the GPU Platform. In: Computers & Fluids Special Issue “22nd International
Conference on Parallel Computational Fluid Dynamics”, vol. 45(1), pp. 122–128
(2011)

10. Konstantinidis, E., Cotronis, Y.: Accelerating the Red/Black SOR Method Us-
ing GPUs with CUDA. In: Wyrzykowski, R., Dongarra, J., Karczewski, K.,
Waśniewski, J. (eds.) PPAM 2011, Part I. LNCS, vol. 7203, pp. 589–598. Springer,
Heidelberg (2012)

11. Kuo,C.-C.J., Levy,B.C.,Musicus, B.R.:A local relaxationmethod for solving elliptic
PDE’s on mesh-connected arrays. SIAM J. Sci. Statist. Comput. 8, 530–573 (1987)

12. Nickolls, J., Buck, I., Garland, M., Skadron, K.: Scalable Parallel Programming
with CUDA. In: ACM SIGGRAPH 2008 Classes, vol. 16, pp. 1–14 (2008)

13. Ortega, J.M., Voight, R.G.: Solution of Partial Differential Equations on Vector
and Parallel Computers. SIAM, Philadelphia (1985)

14. Varga, R.S.: Matrix Iterative Analysis. Prentice-Hall, Englewood (1962)
15. Young, D.M.: Iterative Solution of Large Linear Systems. Academic Press, New

York (1971)
16. NVidia CUDA Reference Manual v. 4.0, NVidia (2011)
17. NVidia CUDA C Best Practices Guide Version 4.0, NVidia (2011)
18. Tuning CUDA Applications for Fermi, NVidia (2011)
19. Tesla C2050 And Tesla C2070 Computing Processor Board, NVidia (2011)
20. The OpenCL Specification, Khronos group (2009)

Topic 11: Multicore and Manycore Programming

Eduard Ayguade, Dionisios Pnevmatikatos, Rudolf Eigenmann,
Mikel Luján, and Sabri Pllana

Topic Committee

Modern multicore and manycore systems enjoy the benefits of technology scal-
ing and promise impressive performance. However, harvesting this potential is
not straightforward. While multicore and manycore processors alleviate several
problems that are related to single-core processors – known as memory-, power-,
or instruction-level parallelism-wall – they raise the issue of the programmability
and programming effort. This topic focuses on novel solutions for multicore and
manycore programmability and efficient programming in the context of general-
purpose systems.

The wall calls for new parallel programming methods and tools.
The quality of submissions was very high. Papers have been selected based

on the recommendations of four reviewers. The seven accepted papers address a
wide range of issues related to the multicore and manycore programming.

The paper “Efficient Support for In-Place Metadata in Transactional
Memory” by Ricardo J. Dias, João M. S. Lourenço, Tiago Vale addresses the
management of transactional memory metadata in Java virtual machines. The
proposed approach extends the DeuceSTM storing the metadata information
in-place achieving better scalability.

The paper “Folding of Tagged Single Assignment Values for Memory-Efficient
Parallelism” by Dragos Sbirlea, Kath Knobe, Vivek Sarkar discusses how using
concurrent collections the compiler can allow in place update optimization in a
dynamic single assignment programming abstraction.

The paper “High-Level Support for Pipeline Parallelism on Manycore Archi-
tectures” by Siegfried Benkner, Enes Bajrovic, Erich Marth, Martin Sandrieser,
Raymond Namyst, Samuel Thibault describes how a component based parallel
execution model can be used to efficiently exploit pipeline parallelism in het-
erogenous multicore architectures.

The paper “Node.Scala: Implicit Parallel Programming for High-Performance
Web Services” by Daniele Bonetta, Danilo Ansaloni, Achille Peternier, Cesare
Pautasso, Walter Binder presents a improved event-driven programming frame-
work in web services. This framework allows better scalability and thought put
in multicore machines.

The paper “Task-parallel Programming on NUMA Architectures” by Chris-
tian Terboven, Dirk Schmidl, Tim Cramer, Dieter an Mey evaluates two pro-
gramming strategies for OpenMP task-level parallelization on NUMA architec-
tures, and the related programming practices.

The paper “Speeding Up OpenMP Tasking” by Spiros N. Agathos, Nikolaos
D. Kallimanis, Vassilios V. Dimakopoulos describes and evaluates an OpenMP

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 587–588, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

588 E. Ayguade et al.

tasking implementation with optimized queues for fast synchronization and work
distribution.

The paper “An Efficient Unbounded Lock-Free Queue for Multi-Core Sys-
tems” by Marco Aldinucci, Marco Danelutto, Peter Kilpatrick, Massimiliano
Meneghin, Massimo Torquati addresses the problem of single-producer/single-
cinsumer proposing and evaluating two unbounded, wait-free queues.

We are grateful to all authors for submitting their high-quality papers to this
topic and to reviewers for their efforts to evaluate submitted papers. Further-
more, we would like to acknowledge the encouragement and support of conference
chairs Christos Kaklamanis, Theodore Papatheodorou, and Paul Spirakis.

Efficient Support for In-Place Metadata
in Transactional Memory�

Ricardo J. Dias, Tiago M. Vale, and João M. Lourenço

Departamento de Informática and CITI
Universidade Nova de Lisboa, Portugal

{ricardo.dias,t.vale}@campus.fct.unl.pt,
joao.lourenco@fct.unl.pt

Abstract. Implementations of Software Transactional Memory (STM)
algorithms associate metadata with the memory locations accessed dur-
ing a transaction’s lifetime. This metadata may be stored either in-place,
by wrapping every memory cell in a container that includes the memory
cell itself and the corresponding metadata; or out-place (also called ex-
ternal), by resorting to a mapping function that associates the memory
cell address with an external table entry containing the corresponding
metadata. The implementation techniques for these two approaches are
very different and each STM framework is usually biased towards one
of them, only allowing the efficient implementation of STM algorithms
following that approach, hence inhibiting the fair comparison with STM
algorithms falling into the other. In this paper we introduce a technique
to implement in-place metadata that does not wrap memory cells, thus
overcoming the bias by allowing STM algorithms to directly access the
transactional metadata. The proposed technique is available as an ex-
tension to the DeuceSTM framework, and enables the efficient imple-
mentation of a wide range of STM algorithms and their fair (unbiased)
comparison in a common STM infrastructure. We illustrate the benefits
of our approach by analyzing its impact in two popular TM algorithms
with two different transactional workloads, TL2 and multi-versioning,
with bias to out-place and in-place respectively.

1 Introduction

Software Transactional Memory (STM) algorithms differ in the used read strate-
gies (visible or invisible), update strategies (direct or deferred), conflict resolution
policies (contention management), progress guarantees (blocking or non-blocking),
consistency guarantees (opacity or snapshot isolation), and interaction with non-
transactional code (weak or strong isolation), among others. Some STM frame-
works (e.g., DSTM2 [7] and DeuceSTM [8]) aim at allowing the implementation
� This research was partially supported by the EU COST Action IC1001

(Euro-TM), the Portuguese national research projects RepComp (PTDC/EIA-
EIA/108963/2008), Synergy-VM (PTDC/EIA-EIA/113613/2009), and the research
grant SFRH/BD/41765/2007.

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 589–600, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

590 R.J. Dias, T.M. Vale, and J.M. Lourenço

and comparison of different STM algorithms using a unique transactional inter-
face, and are frequently used for experimenting with new algorithms.

STM algorithms manage information per transaction (frequently referred to
as a transaction descriptor), and per memory location (or object reference) ac-
cessed within that transaction. The transaction descriptor is typically stored in
a thread-local memory space and maintains the information required to validate
and commit the transaction. The per memory location information depends on
the nature of the STM algorithm, which we will henceforth refer to as metadata,
and may be composed by e.g. locks, timestamps or version lists. Metadata is
stored either “near” each memory location (in-place strategy), or in an exter-
nal mapping table that associates the metadata with the corresponding memory
location (out-place or external strategy).

STM libraries targeting imperative languages, such as C, frequently use an
out-place strategy, while those targeting object-oriented languages bias towards
the in-place strategy. The out-place strategy is implemented by using a table-like
data-structure that efficiently maps memory references to its metadata. Storing
the metadata in a pre-allocated table avoids the overhead of dynamic memory
allocation, but incurs in overhead for evaluating the location-metadata mapping
function and has limitations imposed by the size of the table. The in-place strat-
egy is usually implemented by using the decorator design pattern [6] that is used
to extend the functionality of an original class by wrapping it in a decorator class,
which also contains the required metadata. This technique allows the direct ac-
cess to the object metadata without significant overhead, but is very intrusive
to the application code, which must be rewritten to use the decorator classes.
This decorator pattern based technique also incurs in two other problems: some
additional overhead for non-transactional code, and multiple difficulties to cope
with primitive and array types. Riegel et al. [10] briefly describe the tradeoffs of
using in-place versus out-place strategies.

DeuceSTM is among the most efficient STM frameworks for the Java pro-
gramming language and provides a well defined interface that is used to imple-
ment several STM algorithms. On the application developer’s side, a memory
transaction is defined by adding the annotation @Atomic to a Java method, and
the framework automatically instruments the application’s bytecode by inject-
ing callbacks to the STM algorithm, intercepting the read and write memory
accesses. The injected callbacks provide the referenced memory address as ar-
gument, limiting the range of viable STM algorithms to be used by forcing an
out-place strategy.

This paper describes the adaptation and extension of DeuceSTM to support
the in-place metadata strategy without making use of the decorator pattern.
Our new approach complies to the following properties:

Efficiency. Our extension does not rely on an auxiliary mapping table, thus
providing fast direct access to the transactional metadata; transactional
code avoids the extra memory dereference imposed by the decorator pat-
tern; no performance overhead is introduced for non-transactional code, as
it is oblivious to the presence of metadata in objects; primitive types are

Efficient Support for In-Place Metadata in Transactional Memory 591

fully supported, even in transactional code; and we propose a solution for
supporting transactional N-dimensional arrays with a negligible overhead for
non-transactional code.

Flexibility. Our extension supports both the original out-place and the new in-
place strategies simultaneously, hence imposing no restrictions on the nature
of the algorithms and their implementations.

Transparency. Our extension automatically identifies, creates and initializes
all the necessary additional metadata fields in objects; non-transactional
code is oblivious to the presence of metadata in objects, hence no source
code changes are required, although it does some light transformation on the
non-transactional bytecode; the new transactional array types (that support
metadata for individual cells) are compatible with the standard arrays, hence
not requiring pre-/post-processing of the arrays when invoking standard or
third-party non-transactional libraries.

Compatibility. Our extension is fully backwards compatible and the already
existing implementations of STM algorithms are executed with no changes
and with null or negligible performance overhead.

In the remainder of this paper, we describe the DeuceSTM framework and the
usage of out-place strategy in §2. In §3 we describe the properties of in-place
strategy, and its implementation as an extension to DeuceSTM. We evaluate
our implementation with some benchmarks in §4, and discuss the related work
in §5. We finish with some concluding remarks in §6.

2 DeuceSTM and the Out-Place Strategy

Algorithms such as TL2 [4] or LSA [11] use an out-place strategy by resorting
to a very fast hashing function and storing a single lock in each table entry.
However, due to performance issues, the mapping table does not avoid hash
collisions and thus two memory locations may be mapped to the same table
entry, resulting in the false sharing of a lock for two different memory locations.

The out-place strategy fits well to algorithms whose metadata information
does not depend on the memory locations, such as locks and timestamps, but
is unfitting for algorithms that need to store location-dependent metadata in-
formation, e.g., multi-version based algorithms. The out-place implementations
for these algorithms require a mapping table with collision lists, which impose a
significant and unacceptable performance overhead.

DeuceSTM provides the STM algorithms with a unique identifier for an object
field, composed by a reference to the object and the field’s logical offset within
that object. This unique identifier can then be used by the STM algorithms as a
key to any map implementation that associate the object fields with the transac-
tional metadata. Likewise for array types, the unique identifier of an array’s cell
is composed by the array reference and the index of that cell. It is worthwhile to
mention that DeuceSTM relies heavily on bytecode instrumentation to provide
a transparent transactional interface to application developers, which are not

592 R.J. Dias, T.M. Vale, and J.M. Lourenço

aware of how the STM algorithms are implemented nor of the strategy being
used to store the transactional metadata.

DeuceSTM is an extensible STM framework that may be used to compare
different STM algorithm implementations. However, it is not fair to compare an
algorithm that fits very well to the out-place strategy with another algorithm
that does not. In the concrete case of DeuceSTM, the framework only supports
an out-place strategy, therefore being inappropriate for e.g. multi-version ori-
ented STM algorithms. We have extended DeuceSTM to, in addition to the
out-place strategy, also support an efficient in-place strategy, while keeping the
same transparent transactional interface to the applications.

3 Support for In-Place Strategy

The unique identifier of an object’s field is composed by the object reference and
the field’s logical offset. DeuceSTM computes that logical offset at compile time,
and for every field f in every class C an extra static field fo is added to that
class, whose value represents the logical offset of f in class C. No extra fields are
added for array cells, as the logical offset of each cell corresponds to its index.
When there is a read or write memory access (within a memory transaction)
to a field f of an object O, or to the array element A[i], the run-time passes
the pair (O, fo) or (A, i) respectively as the argument to the callback function.
The STM algorithm shall not differentiate between field and array accesses. In
DeuceSTM, if the algorithm needs to e.g. associate a lock with a field, it has to
store the lock in an external table indexed by the hash value of the pair (O, fo).

In our approach for extending DeuceSTM to support an in-place strategy,
we replace the previous pair of arguments to callback functions (O, fo) with
a new metadata object fm, whose class is specified by the STM algorithm’s
programmer. We guarantee that there is a unique metadata object fm for each
field f of each object O, and hence the use of fm to identify an object’s field is
equivalent to the pair (O, fo). The same applies to arrays where we ensure that
there is a unique metadata object am for each position of an array A.

3.1 Implementation

Although the implementation of the support for in-place metadata objects differs
considerably for class fields and array elements, a common interface is used
to interact with the STM algorithm implementation. This common interface is
supported by a well defined hierarchy of metadata classes, illustrated in Figure 1,
where the rounded rectangle classes are defined by the STM algorithm developer.

All metadata classes associated with class fields extend directly from the top
class TxField. For array elements, we created specialized metadata classes for
each primitive type in Java, the TxArr*Field classes, where * ranges over the
Java primitive types1. All the TxArr*Field classes extend from TxField, pro-
viding the STM algorithm with a simple and uniform interface for callback func-
tions, which shall be extended to include the support of new STM algorithms.
1 int, long, float, double, short, char, byte, boolean, and Object.

Efficient Support for In-Place Metadata in Transactional Memory 593

TxField

TxArrIntField TxArrObjectField...
...

User Defined
Class Fields

User Defined
Array Elem

User Defined
Array Elem

Fig. 1. Metadata classes hierarchy

The newly defined metadata classes need to be registered in our framework to
enable its use by the instrumentation process, using a Java annotation in the
class that implements the STM algorithm, as exemplified in Listing 1.1.

Listing 1.1. Declaration of the STM algorithm specific metadata

@InPlaceMetadata(
fieldObjectClass="TL2Field",
fieldIntClass="TL2Field",
...
arrayObjectClass="TL2ArrObjectField",
arrayIntClass="TL2ArrIntField",
...

)
final public class TL2Context implements ContextMetadata {

...
}

The STM algorithm must implement a well defined interface that includes a
callback function for the read and write operations on each Java type. These
functions always receive an instance of the super class TxField, but each one
knows precisely which metadata subclass was actually used to instantiate the
metadata object.

Lets now see where and how the metadata objects are stored, and how they
are used on invocation of the callback functions. We will explain separately the
management of metadata objects for class fields and for array elements.

Class Fields. During the execution of a transaction, there must be a metadata
object fm for each accessed field f of object O. A very efficient way to imple-
ment this metadata object fm is by making it accessible by a single dereference
operation from object O. Therefore, for each declared field in a class C, we add
an additional metadata field of the appropriate type. The general rule can be
described as: given a class C that has a set of declared fields {f1, . . . , fn}, we
add a metadata object field for each of the initial fields, such that the class ends

594 R.J. Dias, T.M. Vale, and J.M. Lourenço

with the set of fields {f1, . . . , fn, fm
1+n, . . . , fm

n+n} where the field fk is associated
with the metadata field fm

k+n for any k ≤ n. In Listings 1.2 and 1.3 we show a
concrete example of the transformation of a class with two fields.

Listing 1.2. The original class

class C {
int a;
Object b;

}
=⇒

Listing 1.3. The transformed class

class C {
int a;
Object b;
TxField a_metadata;
TxField b_metadata;

}

Each metadata field is instantiated at the constructor of the class where the
field is declared. This ensures that whenever a new instance of a class is created,
the corresponding metadata objects are also new and unique.

Opposed to the approach based in the decorator pattern, where primitive
types must be replaced with their object equivalents (e.g., an int field is re-
placed by an Integer object), our transformation approach keeps the primitive
type fields untouched, simplifying the interaction with non-transactional code,
limiting the code instrumentation and avoiding autoboxing and its overhead.

Array Elements. The structure of an array is very strict, with each array cell
containing a single value of a well defined type, and no other information can
be added to those elements. The common approach to overcome this limitation
is to change the array to an array of objects that wrap the original value and
the additional information. This transformation has strong implications in the
remaining of the application code, as code statements expecting the original
array type or array element will now have to be rewritten to receive the new
array type or wrapping class respectively. This problem is even more complex if
the arrays with wrapped elements were to be manipulated by non-instrumented
libraries, such as the JDK libraries.

The solution we propose is also based on changing the type of the array to
be manipulated by the instrumented application code, but strongly limiting the
implications for the remaining non-instrumented code. We keep all the values
in the original array, and have a sibling second array, only manipulated by the
instrumented code, that contains the additional information and references to
the original array. The type of the declaration of the base array is changed to the
type of the corresponding sibling array (TxArr*Field), as shown in Figure 2.
This Figure also illustrates the general structure of the sibling TxArr*Field

arrays (in this case, a TxArrIntField array). Each cell of the sibling array has
the metadata information required by the STM algorithm, its own position/index
in the array, and a reference to the original array where the data is stored (i.e.,
where the reads and updates take place). This scheme allows the sibling array to
keep a metadata object for each element of the original array, while maintaining
the original array always updated and compatible with non-transactional legacy
code.

Efficient Support for In-Place Metadata in Transactional Memory 595

class D {
int[] a; //base array

}

index=0
array
index=1
array
index=2
array

5

3

8

[0]

[2]

[1]

[0]

[1]

[2]

TxArrIntField[3] int[3]

=⇒
class D {

TxArrIntField[] a;
TxField a_metadata;

}

class TxArrIntField {
int[] array; //base array
int index;

}

Fig. 2. Memory structure of a TxArrIntField array

Non-transactional methods that have arrays as parameters are also instru-
mented to replace the array type by the corresponding sibling TxArr*Field.
The value of an array element is then obtained by dereferencing the pointer to
the original array kept in the sibling, as illustrated in Listings 1.4 and 1.5. When
passing an array as argument to an uninstrumented method (e.g., from the JDK
library), we can just pass the original array instance. Although the instrumen-
tation of non-transactional code adds a dereference operation when accessing
an array, we do avoid the autoboxing of primitive types that would impose an
increased overhead.

Listing 1.4. Access to an ar-
ray cell

void foo(int[] a) {
// ...
t = a[i];

}

=⇒

Listing 1.5. Access to an array cell from
the transformed array

void foo(TxArrIntField[] a) {
// ...
t = a[0].array[i];

}

Multi-dimensional arrays. The special case of multi-dimensional arrays is
tackled using the TxArrObjectField class, which has a different implementation
from the other specialized metadata array classes. This class has the additional
field nextDim, which may be null in the case of a uni-dimensional reference type
array, or may hold the reference of the next array dimension by pointing to
another array of type TxArr*Field. Once again, the original multi-dimensional
array is always up to date and can be safely used by non-transactional code.

Figure 3 depicts the memory structure of a bi-dimensional array of integers.
Each element of the first dimension of the sibling array has a reference to the
original integer matrix. The elements of the second dimension of the sibling array
have a reference to the second dimension of the matrix array.

596 R.J. Dias, T.M. Vale, and J.M. Lourenço

index=0
array

nextDim

[0]

index=1
array

nextDim

[1]

index=0
array
index=1
array
index=2
array

index=0
array
index=1
array
index=2
array

[0]

[2]

[1]

[0]

[2]

[1]

[0]

[1]
[0]

[1]

[2]

[0]

[1]

[2]

TxArrObjectField[2]

TxArrIntField[3]

TxArrIntField[3]

int[2][3]

int[3]

int[3]

Fig. 3. Memory structure of a multi-dimensional TxArrIntField array

4 Performance Evaluation

We evaluated our approach in two dimensions: the performance overhead re-
sulting from the introduction of metadata associated with object fields, and the
performance improvements achieved by implementing a multi-versioning STM
algorithm (JVSTM [3]) using our extension (with in-place metadata), when com-
pared to an equivalent implementation in the original DeuceSTM (with out-place
metadata). To measure the transactional throughput we used the vanilla micro-
benchmarks available in the DeuceSTM framework. No changes were necessary to
execute the benchmarks on our extension of DeuceSTM with in-place metadata,
as all the necessary bytecode transformations were performed automatically.

The benchmarks were executed in a computer with four AMD Opteron 6168
12-Core processors @ 1.9 GHz with 12x512 KB of L2 cache and 128 GB of RAM,
running Red Hat Enterprise Linux Server Release 6.2 with Linux 2.6.32 x86_64.

To evaluate the overhead of our extension, we compared the performance of
the TL2 algorithm as provided by the original DeuceSTM distribution, with an-
other implementation of TL2 using the new interface of our modified DeuceSTM.
The original DeuceSTM interface for callback functions provide a pair with the
object reference and the field logical offset. The new interface provides a refer-
ence to the field metadata (TxField) object. Despite using the in-place metadata
feature, the new implementation of TL2 resembles the original one as much as
possible and still uses an external table to map memory references to locks.
By comparing these two similar implementations, we can measure the overhead
introduced by the management of the metadata object fields and sibling arrays.

Figure 4 depicts the overhead of our extension with respect to the original
DeuceSTM for two data structures: a Red-Black Tree and a Skip List. The
former only uses metadata objects for class fields, while the latter also make
use of metadata arrays. We executed each data structure with two different
workloads: a read-only workload, and a read-write workload with an average of
10% of update operations. The overhead is in percentage and is relative to the
out-place implementation of TL2 in the original DeuceSTM.

Efficient Support for In-Place Metadata in Transactional Memory 597

 0

 5

 10

 15

 20

 25

 30

 35

1 2 4 8 16 24 32 40

O
ve

rh
ea

d
(%

)

Threads

IntSet RBTree, update=0%

 0

 5

 10

 15

 20

 25

 30

 35

1 2 4 8 16 24 32 40

O
ve

rh
ea

d
(%

)

Threads

IntSet SkipList, update=0%

 0

 5

 10

 15

 20

 25

 30

 35

1 2 4 8 16 24 32 40

O
ve

rh
ea

d
(%

)

Threads

IntSet RBTree, update=10%

 0

 5

 10

 15

 20

 25

 30

 35

1 2 4 8 16 24 32 40

O
ve

rh
ea

d
(%

)

Threads

IntSet SkipList, update=10%

Fig. 4. Overhead measure of the usage of metadata objects relative to out-place TL2

In the Red-Black tree benchmark, the use of metadata objects in class fields
in a read-only workload (top-left chart) has a negligible overhead. In a read-
write workload (bottom-left chart) there is an average overhead of 10% with
respect to the out-place version. This overhead results from the additional allo-
cations necessary to initialize metadata objects. For instance, when adding a new
node to the tree, we need to allocate additional metadata objects for the value,
color, left, right and parent fields. In the case of the Skip List benchmark, each
node contains an array of nodes. In the read-only workload (top-right chart),
there is an average overhead of 20% with respect to the out-place strategy that
uses the original arrays declared in the program. Although no new nodes are
allocated, there is a performance penalty to pay for the additional dereference
imposed by the support of in-place metadata for arrays. In the read-write work-
load (bottom-right chart), which allocates new nodes, we get a slightly higher
overhead averaging 25%.

From this analysis we conclude that our in-place strategy is a viable op-
tion for implementing algorithms biased to in-place transactional metadata. To
stress this fact, we implemented two versions of the JVSTM algorithm as pro-
posed in [3], one in the original DeuceSTM framework using the out-place strat-
egy (JVSTM-Out), and another in the extended DeuceSTM using the in-place
strategy (JVSTM-In). The JVSTM-Out implementation uses an open concur-
rent hash table to map each accessed memory location to its list of versions.
Hence, for each memory location accessed, we perform a search in the hash ta-
ble to find the respective version list. If none is found, a new one is created and
added to the hash map. The JVSTM-In implementation uses metadata objects

598 R.J. Dias, T.M. Vale, and J.M. Lourenço

 0

 5

 10

 15

 20

 25

 30

 35

1 2 4 8 16 24 32 40

S
pe

ed
up

 (
x

fa
st

er
)

Threads

IntSet RBTree, update=10%

JVSTM-In
JVSTM-NoGC

 0

 5

 10

 15

 20

 25

 30

 35

1 2 4 8 16 24 32 40

S
pe

ed
up

 (
x

fa
st

er
)

Threads

IntSet SkipList, update=10%

JVSTM-In
JVSTM-NoGC

Fig. 5. Speedup of JVSTM-In and JVSTM-NoGC relative to JVSTM-Out

containing the version lists, thus when there is an access to an object field or
an array element, a direct reference to its version list is obtained from the cor-
responding metadata field. JVSTM-In algorithm follows the specification in [3],
and although it exhibits a much better performance than the out-place version
(in average it is 5× faster), it has some scalability problems due to: i) the global
lock used in the commit phase, and ii) the garbage collection mechanism for
vboxes (used by JVSTM to wrap the object and its list of versions). Hence we
implemented an optimized variant of the JVSTM-In (JVSTM-NoGC), which re-
places the global lock in the commit phase with separate locks for each memory
locations in the transaction write-set, and which eliminates the vbox garbage
collection mechanism by imposing an upper bound on the size for the list of
versions for any memory location. In this new algorithm, transactions accessing
an old version that is not available anymore are aborted and restarted.

Figure 5 depicts the speedup results when comparing the JVSTM-In and
JVSTM-NoGC implementations with respect to the JVSTM-Out implementa-
tion. JVSTM-In is in average 5× faster than JVSTM-Out on both benchmarks.
JVSTM-NoGC is in average 33× faster in the Red-Black Tree, and 23× faster in
the Skip List. These results prove that our strategy to support in-place metadata
in DeuceSTM gave it leverage to implement algorithms that need direct access
to transactional metadata, thus enabling the fair comparison of a wide range of
STM algorithms, including those that could not be implemented efficiently in
the original DeuceSTM.

5 Related Work

Several STM algorithms were developed in the last few years, and comparing
their performance always requires a great implementation effort while using the
same transactional interface and programming language. Some STM frameworks
address this problem and provide a uniform transactional interface front-end and
a flexible run-time back-end, which is normally biased towards one of the in-place
or out-place strategies.

Efficient Support for In-Place Metadata in Transactional Memory 599

DSTM2 [7] is a flexible STM framework for the Java language which permits
the use of different synchronization techniques and recovery strategies as frame-
work plug-ins. DSTM2 creates transactional objects using the factory pattern,
and new factories can be implemented to test different properties of STM algo-
rithms. DSTM2 only allows to implement algorithms using the in-place strategy.

DeuceSTM [8], which is the base of our work, is one of the most efficient STM
frameworks available for the Java programming language. It provides a well
defined interface that allows to implement several STM algorithms, and relies in
Java bytecode instrumentation to intercept transaction limits and transactional
memory accesses and invoke developer-defined callback functions. DeuceSTM
has a strong bias towards the out-place approach.

STM algorithms such as TL2 [4], LSA [11] and SwissTM [5] are usually im-
plemented using an out-place strategy, thus viable for use in DeuceSTM. Others
such as JVSTM [3] and SMV [9] are better fit for the in-place strategy and
impracticable for DeuceSTM. Our extension of DeuceSTM overcomes this limi-
tation and allows the efficient implementation of algorithms using any of those
strategies, enabling their fair comparison.

Anjo et al. [2] developed a specialized transactional array targeting specifi-
cally the JVSTM framework, achieving considerable performance improvements
in read-dominant workloads that use arrays. Our approach when extending
DeuceSTM aimed at providing an efficient implementation for transactional ar-
rays that is backwards compatible, where no autoboxing is required and whose
values are kept in their original primitive format and are accessible to both
transactional and non-transactional code.

All the static optimizations proposed by Afek et al. [1] are orthogonal to our
work and can also be applied to algorithms using the new in-place strategy, thus
increasing the overall performance.

6 Concluding Remarks

To the best of our knowledge, the extension of DeuceSTM as described in this
paper creates the first Java STM framework providing a balanced support of both
in-place and out-place strategies. This is achieved by a transformation process
of the program bytecode that adds new metadata objects for each class field,
and that includes a customized solution for N-dimensional arrays that is fully
backwards compatible with primitive type arrays. The creation or structural
modification of arrays are not supported outside instrumented code, which is
oblivious to TxArr*Field and metadata.

In the current state of the proposed extension every field is subjected to this
transformation, hence there will be a considerable increase in the application’s
memory footprint. For example, for the Red-Black Tree benchmark with 50 000
elements in a read-only workload, the GNU time command reported 196 MB
of memory used when using the out-place version of the TL2 algorithm, and
248 MB when using the in-place version. This memory overhead can be mini-
mized by doing code analysis to discover the fields that are not accessed within

600 R.J. Dias, T.M. Vale, and J.M. Lourenço

transactions, and skipping the creation and initialization of the metadata asso-
ciated with those fields, which will never be needed.

We evaluated our system by measuring the overhead introduced by our new
in-place interface with respect to the TL2 algorithm implementation provided in
DeuceSTM distribution package as reference. Although we can observe a light
slowdown in our new implementation of arrays, we would like to reinforce that
our solution has no limitations whatsoever concerning the type of the array ele-
ments, the number of dimensions, fits equally algorithms biased towards in-place
or out-place strategies, and all bytecode transformations are done automatically
requiring no changes to the source code. We also evaluated the effectiveness of
the new in-place interface by comparing the performance of two multi-version
STM implementations: one using the newly proposed in-place strategy, and an-
other using an out-place strategy resorting to an external mapping table. The
version using the new in-place strategy was in average 5× faster than the one
using the out-place strategy. The optimized version of the JVSTM algorithm
using the in-place strategy was in average 33× faster than the out-place version.

References

1. Afek, Y., Korland, G., Zilberstein, A.: Lowering STM Overhead with Static Anal-
ysis. In: Cooper, K., Mellor-Crummey, J., Sarkar, V. (eds.) LCPC 2010. LNCS,
vol. 6548, pp. 31–45. Springer, Heidelberg (2011)

2. Anjo, I., Cachopo, J.: Lightweight Transactional Arrays for Read-Dominated Work-
loads. In: Xiang, Y., Cuzzocrea, A., Hobbs, M., Zhou, W. (eds.) ICA3PP 2011, Part
II. LNCS, vol. 7017, pp. 1–13. Springer, Heidelberg (2011)

3. Cachopo, J., Rito-Silva, A.: Versioned boxes as the basis for memory transactions.
Sci. Comput. Program. 63, 172–185 (2006)

4. Dice, D., Shalev, O., Shavit, N.N.: Transactional Locking II. In: Dolev, S. (ed.)
DISC 2006. LNCS, vol. 4167, pp. 194–208. Springer, Heidelberg (2006)

5. Dragojević, A., Guerraoui, R., Kapalka, M.: Stretching transactional memory. In:
Proc. Int. Conf. on Programming Language Design and Implementation, pp. 155–
165. ACM (2009)

6. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley Professional (1994)

7. Herlihy, M., Luchangco, V., Moir, M.: A flexible framework for implementing soft-
ware transactional memory. In: Proc. 21st Conference on Object-Oriented Pro-
gramming Systems, Languages, and Applications, pp. 253–262. ACM (2006)

8. Korland, G., Shavit, N., Felber, P.: Noninvasive concurrency with Java STM. In:
Proc. MultiProg 2010: Programmability Issues for Heterogeneous Multicores (2010)

9. Perelman, D., Byshevsky, A., Litmanovich, O., Keidar, I.: SMV: Selective Multi-
Versioning STM. In: Peleg, D. (ed.) DISC 2011. LNCS, vol. 6950, pp. 125–140.
Springer, Heidelberg (2011)

10. Riegel, T., Brum, D.B.D.: Making object-based STM practical in unmanaged en-
vironments. In: Proc. of the 3rd Workshop on Transactional Computing (2008)

11. Riegel, T., Felber, P., Fetzer, C.: A Lazy Snapshot Algorithm with Eager Vali-
dation. In: Dolev, S. (ed.) DISC 2006. LNCS, vol. 4167, pp. 284–298. Springer,
Heidelberg (2006)

Folding of Tagged Single Assignment Values
for Memory-Efficient Parallelism

Dragoş Sbîrlea1, Kathleen Knobe2, and Vivek Sarkar1

1 Department of Computer Science, Rice University
{dragos,vsarkar}@rice.edu

2 Intel Corporation
kath.knobe@intel.com

Abstract. The dynamic-single-assignment property for shared data
accesses can establish data race freedom and determinism in parallel
programs. However, memory management is a well known challenge in
making dynamic-single-assignment practical, especially when objects can
be accessed through tags that can be computed by any step.

In this paper, we propose a new memory management approach based
on user-specified folding functions that map logical dynamic-single -
assignment (DSA) tags into dynamic-multiple-assignment (DMA) tags.
We also compare folding with get-counts, an approach in which the user
specifies a reference count for each single-assignment value. The con-
text for our work is parallel programming models in which shared data
accesses are coordinated by put/get operations on tagged DSA data
structures. These models include dataflow programs with I-structures,
functional subsets of parallel programs based on tuple spaces (notably,
Linda), and programs written in the Concurrent Collections (CnC) co-
ordination language. Our conclusion, based on experimental evaluation
of five CnC programs, is that folding and get-counts can offer significant
memory efficiency improvements, and that folding can handle cases that
the get-counts cannot.

1 Introduction

The multicore revolution has increased the urgency for developing programming
models that deliver scalable parallelism with minimal effort by programmers.
The use of shared data structures by parallel tasks has proved to be a two-edged
sword in pursuing this goal. On the one hand, a shared address space can reduce
the semantic gap between a sequential program and its parallel version. On the
other, uncoordinated accesses to shared data structures are a notorious source
of bugs that arise from data races and other sources of nondeterminism leading
to the programmability wall.

One approach to addressing the drawbacks of shared data structures is to en-
force a dynamic-single-assignment property for shared data accesses, since it in
turn can establish data race freedom and determinism in parallel programs. Thus,
the context for our work is parallel programming models for multicore and many-
core processors in which all shared data accesses are performed through put/get

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 601–613, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

602 D. Sbîrlea, K. Knobe, and V. Sarkar

operations on dynamic-single-assignment data structures indexed using associa-
tive tags (keys). These models include dataflow programs with I-structures [1],
functional subsets of parallel programs based on tuple spaces (notably, Linda
[7]), and programs written in the Concurrent Collections (CnC) coordination
language [3].

However, past experiences with implementations of functional languages have
shown that memory management can be challenging with the dynamic-single-
assignment property. It becomes even more challenging when objects can be
accessed through user-computable tags, since standard reference-based garbage
collection cannot be applied in that case. In this paper, we propose a new mem-
ory management approach based on user-specified folding functions that map
logical dynamic-single-assignment (DSA) tags into dynamic-multiple-assignment
(DMA) tags. We also compare folding with get-counts, an approach in which the
user supplies a function that maps tags to integers indicating the number of gets
that will occur on the item Both approaches are fail-safe i.e., an exception is
thrown if the program performs accesses that are inconsistent with the folding
functions or get-counts.

There has been a lot of past work focused on converting a multiple-assignment
program to dynamic single assignment form so as to simplify program opti-
mization and transformation. An early paper [6] described several applications
of dynamic single assignment, such as conversion of a program to a set of re-
currence equations, scalar expansion, array expansion [5], program verification
and parallel program construction. In contrast, folding addresses the dual prob-
lem of converting a dynamic single assignment program to multiple-assignment
form with reduced memory requirements. Based on the well known challenges
in transforming static single assignment form to multiple assignment form [2], it
is natural to expect that translating out of dynamic single assignment form will
be a challenging problem too, especially when the original non-DSA program is
unavailable. To the best of our knowledge, this paper is the first to propose a
user-specified “folding” approach to address this problem.

In summary, this paper includes the following contributions:
– Basic folding (Section 2.1), a novel memory management technique for ac-

cesses to associative dynamic-single-assignment data structures (item collec-
tions). This technique relies on user-specified folding functions with fail-safe
checks for correctness at runtime.

– Update-in-place memory reuse (Section 2.2), an extension that allows the
user to specify GetForUpdate operations that allow an input item to be
rewritten as an output. This approach can be used both with folding func-
tions and get-counts, and includes fail-safe checks as well.

– Extended folding (Section 2.5), an extension to basic folding for items that
are written but never read.

– A design and implementation (Section 3) of the above folding and get-count
techniques for the CnC model.

– Empirical results (Section 4) that show that folding and get-counts can of-
fer significant improvements in memory efficiency over the baseline version
without these techniques.

Folding of Tagged Single Assignment Values for Memory-Efficient Parallelism 603

2 Folding of Dynamic Single Assignment Values

2.1 Basic Folding

The intuition behind folding is as follows: if we know that two values have non-
overlapping lifetimes, we can assign them to the same physical storage thereby
reducing the maximum memory requirement for the application. Following the
terminology used in the CnC model, we refer to the associative dynamic-single-
assignment (DSA) data structures assumed in this work as item collections, to
keys as tags, values as items, and computational tasks as steps. The two oper-
ations supported by item collections are put(tag, item) and get(tag). The DSA
property requires that dynamically at most one put() operation be performed
for a given tag. Further, each get() operation is assumed to be blocking i.e., it
only returns a value after a put() operation has been performed with that tag.

Definition 1 (Folding function). A folding function f transforms a logical
tag t1 to a physical tag, f(t1). Thus, the logical put(t1, i1) operation is trans-
formed into a physical put(t1, f(t1), i1) operation, where f(t1) is the physical
location used to store the item and the original tag t1 is stored as an auxil-
iary value. Likewise, the logical get(t1) operation is transformed into a physical
get(t1, f(t1)) operation.

Thus, the folding function maps DSA tags to dynamic multiple assignment
(DMA) tags which are associative indices into a physical store. When a new
item i2 is mapped to the same physical store location as a previous item i1 (be-
cause f(t1) = f(t2)), the space of i1 is freed. Example executions of a program
that computes the n-th Fibonacci element are in Figures 1 and 2 (without and
with folding, respectively). Item n can fold over item n−2. The folding function
used is: fold(n) = (n + 1)%2 + 1.

This use of a folding function is called basic folding. As discussed later in
Section 2.3, a runtime error may be thrown if the folding function is specified
incorrectly, but a get() operation will never return an incorrect logical value.

Fig. 1. Item collection content for a base-
line execution of Fibonacci

Fig. 2. Item collection content for a fold-
ing execution of Fibonacci

604 D. Sbîrlea, K. Knobe, and V. Sarkar

We now identify the conditions under which folding is legal. As an example,
consider the following sequence of logical get() and put() operations: “put(t1, i1);
get(t1); put(t2, i2); get(t1)”. In this case, it would be illegal to fold items i1 and
i2 on the same location because they have interfering live ranges [11]. To ensure
safety for folding two items, they must have disjoint lifetimes in any possible
schedule of the program.

Definition 2 (Item lifetime). The lifetime of an item in a program execution
is the interval between the execution point at which the item is produced by a
put() operation and the execution point of the last get() operation performed on
the item. If there are no get() operations, the lifetime begins and ends at the
put().

Definition 3 (Legal program). A legal program is one that always completes
execution with all get() operations having successfully completed, for all possible
schedules.

Definition 4 (Correct folding transformation). A folding transformation
for a legal program P specified by folding function f is correct if, for every input
I, an execution of P with input I and folding function f is also legal (no blocked
gets()) and results in the same result for each get() operation as the original
execution of program P without folding.

Theorem 1 (Folding correctness requirement). For a folding transforma-
tion of a legal program to be correct, the folding function must not fold together
any two items whose lifetimes may overlap. [Proof omitted due to space limita-
tions.]

2.2 Folding with Update-in-Place Memory Reuse

Basic folding ensures that memory can be reclaimed after the end of a compu-
tational step that performs the last logical get() operation on an item. However,
many steps have the following computational structure: “i1 = get(t1); allocate i2;
i2.set(G(i1)); put(t2, i2);”. With basic folding, both i1 and i2 will be assumed to
be simultaneously live and will contribute to the maximum memory requirement
for the program. However, if function G can be implemented as an update-in-
place function, then i1’s storage can be reused for i2 if get(t1) is the last get
operation performed with logical tag t1. To enable this optimization, we allow
the user to use a getForUpdate() operation instead of get(), as an indication
that this is the last get() operation for the given tag in any schedule, thereby
making it possible for item i1 to be updated in place to obtain item i2. Figure 3
is an example. As with the folding function, the correctness of a getForUpdate()
operation will also be checked at runtime so as to guarantee fail-safe behavior
(see Section 2.3).

Folding of Tagged Single Assignment Values for Memory-Efficient Parallelism 605

Tile myTile = Get(1);
Update(myTile);
Put(2, myTile);

Tile myTile = GetForUpdate(1);
Update(myTile);
Put(2, myTile);

Fig. 3. Left: With a get() call, the item memory is copied before being returned to the
step, which can modify it and put() it with some other tag. This leaves the old item
memory to be collected when an item folds over its entry in the store. Right: With
getForUpdate, the copy is not performed and no memory will need to be collected, as
it is reused by the new item.

2.3 Error Detection

The folding error detection mechanisms are based on the assumption that the
original program is legal (Definition 3) without the folding optimization. We
define any behavior of a legal program in the presence of folding that differs
from the behavior of a non-folded execution as an error.

For example, a get() that returns an incorrect value would constitute an error.
This could happen, if the content of the physical store location corresponding to
a particular tag is returned without checking that the logical tag of the item in
that location corresponds to the logical tag of the item we are trying to get. If
the item in the store does not have the same logical tag, we need to wait for it to
be produced. However, if the item was previously produced and some other item
was erroneously folded over it, we will never find the item. Without an error
checking mechanism, the program may finish with blocked steps instead of the
correct non-folded behavior.

To enable detection of such errors, we define a debug mode for folding, in
which a boolean flag is stored for each tag that is put() during execution. Using
this flag, we can differentiate between items that are not present in the physical
store because some other item was folded over them and items that have not
been produced as yet. A get() performed on previously overwritten items should
throw an exception reporting an incorrect folding function, but a get() should
block until the item is produced if that is not the case. In debug mode the system
also detects dynamic single assignment violations (on every put, if the boolean
flag for that logical tag was previously put(), we report an exception) with or
without the presence of folding.

606 D. Sbîrlea, K. Knobe, and V. Sarkar

2.4 Programmability Benefits of Folding

To illustrate the benefits of folding with error detection, consider a common
technique used by performance-oriented C programmers where storage is reused
instead of calling free() followed by malloc(). This approach can be especially
error-prone for parallel programs, because the overlap in lifetime between the
initial and subsequent values may be schedule-dependent. With folding, a similar
reuse of memory could be achieved in a fail-safe manner by folding the two logical
items and using the getForUpdate mechanism for memory reuse.

As a concrete example, consider the classic two-buffer approach used by it-
erative algorithms in which one buffer is used as an input and the other as the
output, and their roles are swapped in each sequential iteration. With our folding
approach, the programmer can think in terms of allocating a new DSA output
buffer in each iteration, and a folding function can effectively perform the swap.
This approach was used in our implementation of a Routing simulation appli-
cation (see Section 4) where the routing tables for one iteration are built using
the routing tables of the previous one, and a folding function was specified as
follows:

public final Object fold(point tag) {
int i, j, k; //i: node id, j: iteration id; k: repetition #
i = p.get(0); j = p.get(1); k = p.get(2);
return new point(i, j%2, k);

}

2.5 Extended Folding: Folding with Ordering

Items with empty lifetimes pose an interesting research challenge for folding.
Consider a program that expects to produce and consume items in order as
follows: “Step1: [put(t1, i1)] Step2:[get(t1);put(t2, i2)] Step3:[get(t2); put(t3, i3)]
Step4:[get(t3)] ”. In such a case, it might seem reasonable to fold t1, t2, and
t3 to the same physical location. However, if (say) get(t2) is not performed for
some reason, there is no way (if using blocking-get synchronization only) to
ensure that put(t2, i2) completes before put(t3, i3), thereby making the folding
incorrect (because get(t3) may never find t3 as it has been folded over).

This is an instance of the more general problem caused by optional get() calls
but in this particular case there is a way to solve the problem. We propose an
extension to folding that allows folding of items that may never be consumed.
Such items can appear when control dependent gets are used, for example with
short-circuit boolean operations such as “get(t1) && get(t2)”. We observe that
items that are never read have an empty lifetime and can be optimized away
from the physical store. However, this may not be known at the time of the put()
operation, but may be known when a subsequent put() is performed on the same
physical location.

We can express this by allowing the presence of an additional user function
that acts like a “compare age" operation. If an item that is being put maps to

Folding of Tagged Single Assignment Values for Memory-Efficient Parallelism 607

a physical location where another item resides and should be declared dead,
the function returns true (“newer"), and the new item is stored. Otherwise, if
the new item is known to never be read, it returns returns false (“older"), the
incoming item is not stored and the old item is retained.

To perform the age comparison, the function needs two parameters: the tag of
the item being put currently and the tag of the old item that exists in the location
in the physical store where the new item would be inserted. The programmer
has to identify if the tag of the current item in the item collection means that
all of the steps that could access the incoming item have executed and did not
access the incoming item. If this is the case, then the incoming item can safely be
discarded. The Rician Denoising benchmark (see Section 4) uses this extension.

3 Implementation

We have implemented folding as an extension to the Habanero Java CnC runtime
[3]. The Java key-value data structure used to implement item collections is now
indexed by DMA tags instead of DSA tags. When an item is put() with DSA
tag t1 its corresponding DMA location in the store is determined by identifying
pt1 = f(t1), where f is the folding function. Then, the physical store is accessed
to see if there is any entry at that physical location. If there is none, we create
it, and label it with the logical tag t1. If there is, we need to hold a lock on
the physical store location while the following operations are performed. First,
we update the logical tag of the physical store entry to the logical tag of the
item that has just been put. Then, we go through the list of steps waiting on
that particular physical store location and, for each step that is waiting for the
current item mark it as ready for execution. The marked marked continue their
execution by performing a get() that will succeed because the desired item is
already in the physical store.

When a get() on item with DSA tag t1 is performed, its DMA tag is de-
termined by identifying pt1 = f(t1). If the entry does not exist, it is created,
inserted in the physical store and the step is added to its list of waiting steps. If
the entry does not correspond to the logical tag of the item, it registers itself to
wait also. Compared to a non-folding execution, the only extras step needed for
insertion is the application of the folding function (which does not need synchro-
nization and has minimal overhead). The bigger overhead is in the put() , where
the list of waiting steps has to be checked linearly to unblock only the steps that
are waiting for the new item and this happens while holding the lock. We chose
to have the overhead in the put() and not get() as the get() is usually performed
multiple times on a single item and our approach leads to less contention.

Both the get-counts and folding policies only remove items from item collec-
tions, so that there is no object reference pointing to them; the Java garbage
collection subsequently reclaims the memory.

608 D. Sbîrlea, K. Knobe, and V. Sarkar

4 Results

The following results were obtained on a 16 core Xeon system with 16GB RAM,
running Habanero Java implementation of Concurrent Collections [3] on a 64 bit
Java 1.6, using 16 workers for the work-stealing CnC runtime and Java default
garbage collection mechanism. In this section we compare the performance and
memory footprint of the following CnC memory management policies:
1. Baseline: non-collecting CnC (items are never removed from item collections)

leading to memory leaks, but also no folding overhead.
2. Get-counts : memory management in which the user specifies a reference

count for selected items, the count is decremented on every get() operation
on a specified item, and the item is freed when the count becomes zero.

3. Folding: the folding runtime described in Section 3. We used the ordering
extension described in Section 2.5 as needed and the tables contain the “Or-
dered" specifier where this happened.

For each policy used, we obtained the following measurements:
1. Execution Time - We performed thirty repetitions of the program in the

same JVM instance, and reported the average, as advocated in [8].
2. Memory at end - the program footprint after the CnC graph finishes execu-

tion. With this metric, get-counts has an advantage because it removes items
immediately, where as folding waits for the birth of another item, so at the
end folding usually has more live items. In contrast, folding saves some work
by taking a lazy approach to freeing items.

3. Items at end - similar to the previous metric, but expressed in items.

We evaluated the impact of folding and get-counts on the following applications:
1. Microbenchmark showing the difference in scalability between get-counts and

folding with the number of reads per item.
2. N-body simulation for performance analysis.
3. Routing simulation as an application in which get-counts might lead to leaks

because items have a number of accesses unknown at creation time, but
folding works without needing the Ordered extension.

4. Rician denoising as example of an application in which folding with ordering
can safely be used, but get-counts leads to leaks because some items have
data-dependent accesses whose number is unknown.

5. Cholesky factorization as an example of memory reuse via the getForUpdate
optimization.

Microbenchmark: Scalability with read/write ratio This benchmark varies the
reads to write ratio to analyze the performance of the two collection mechanisms.
Because folding performs most of the synchronization on put() as opposed to get-
counts, which performs most of the synchronization on get(), we checked if the
best performing policy might be get-counts for low read/write ratio. However,
as shown in Figure 4, the folding version runs faster than both get-counts and
baseline CnC even for a ratio of 1. Some applications may have a read/write
ratio lower than one; performance for this case is analysed later using the Rician
Denoising application.

Folding of Tagged Single Assignment Values for Memory-Efficient Parallelism 609

Fig. 4. Performance with read/write ratio (16 core Xeon)

N-Body Simulation. We implemented the O(N2) algorithm for N-body simula-
tion with both get-counts and folding and the results are shown in Table 1. The
folding policy performs well because this benchmark has a small step granularity,
large number of items and thus more contention on the item collections. The fact
that folding has less synchronization of gets (in this application there are 10 gets
per item) leads to a consistent (1.3×) performance improvement compared to
get-counts. The get-counts footprint is smaller because folding can only reduce
the footprint to the maximum footprint of the program during its execution, and
in this case, that footprint is 20 items, which is also the maximum theoretical
footprint for get-counts.

Table 1. Experimental results for
NBody (5 bodies, 100000 timesteps)

CnC Time Memory at end
policy (s) (bytes) (items)
Baseline 16.9 277.0 MB 1,000,005
Get-Counts 18.1 3.6 KB 10
Folding 13.0 7.0 KB 20

Table 2. Experimental results for
Routing, with reliable links

CnC Time Memory at end
policy (s) (bytes) (items)

Baseline 21 61.0MB 102000
Get-Counts 25 10.7KB 1000

Folding 21 1.3MB 2000

Routing Simulation The routing simulation benchmark has unknown number of
gets on each item, making it a challenge for the get-counts approach. It simulates
the convergence of min-distance routing protocols such as IS-IS [10] and OPSF [9].
As links might go down, when a routing table is being built, we cannot know how
many gets will be performed on that node. In such cases, the get-count will never
reach zero and the item will become a memory leak. To see how the number of
leaked items varies with the chance of links failing we varied the chance of amessage
not getting through from 0 to 10%, as shown in Figure 5: at only 1% failure rate
half the items are leaked. Even in the absence of link failure, folding shows a 16%
performance improvement over get-counts (Table 2).

610 D. Sbîrlea, K. Knobe, and V. Sarkar

Fig. 5. Relation of link fail rate and memory leaks

Table 3. Performance comparison for Rician Denoising: image size 2560*1280, tile size
128*64. Shortcircuit reductions DISABLED (top) and ENABLED (bottom)

Shortcircuit CnC policy Time Memory at end
operators (s) (MB) (Items in each collection)

Im
ag

e

G
ra

di
en

t

Im
ag

e×
G

ra
di

en
t

Fa
ct

or

C
on

ve
rg

en
ce

St
at

us

Enabled
Baseline 6.5 2888 10800 10400 10400 10400 10400

Get-Counts 2.6 740 800 0 0 0 9897
Folding (Ordered) 2.6 800 1200 800 800 800 800

Disabled
Baseline 8.1 2888 108006 10400 10400 10400 10400

Get-Counts 3.7 720 800 0 0 0 0
Folding 3.5 830 1200 800 800 800 800

Rician Denoising Rician (Poisson) denoising is an image processing application.
Its global convergence check is a reduction on the convergence status of all
tiles and it is sped up using a short-circuit evaluation: if a single tile changes
significantly we do not need to wait for the convergence condition of all the other
tiles to be evaluated, we immediately know we will need an additional iteration
and can start spawning the corresponding steps.

The results (Table 3) show the performance of get-counts and folding: folding
offers the best performance. Furthermore, get-counts leads to leaks of items
from the ConvergenceStatus item collection in which the operands of the short-
circuit operators are stored (the cause of the leaks is the unknown number of
gets): 95% of items stored in that item collection are leaked, totaling 20MB.
However, without short-circuit operators, get-counts collects more items because
at the end of the program, all the items stored in the item collections that store
intermediate results (Gradient, ImageTimesGradient, etc) can be collected. This
does not affect the actual high water-mark of the program which is the same in
both folding and get-counts executions.

Folding of Tagged Single Assignment Values for Memory-Efficient Parallelism 611

Cholesky Factorization Cholesky factorization is a numerical application whose
input is a symmetrical positive-definite matrix and output a lower-triangular
matrix. One possible CnC implementation was previously described and bench-
marked in [4] and the results were encouraging.

Table 4 shows that the proposed update-in-place optimization, if applied on
either get-counts or folding, can lead to a large performance increase. Using get-
ForUpdate leads to a performance improvement between 10% and 20% for both
collecting policies. Baseline CnC cannot safely apply this optimization without
additional programmer input to ensure that whenever GetForUpdate is called,
the item accessed is indeed dead. To work around this, we manually added this
call only when such accesses are safe.

Table 4. Performance comparison for Cholesky factorization (125*125 tiles)

Input CnC Policy Without update-in-place With update-in-place
Size Time Item collection memory Time Item collection memory

(s) (MB at end) (items at end) (s) (MB at end) (items at end)

2000

Baseline 0.9 142.2 952 0.8 33.7 952
Get-Counts 0.9 33.7 272 0.8 33.7 272
Folding 0.9 33.7 272 0.7 33.7 272

4000

Baseline 7.3 1008.5 6512 5.6 133.2 6512
Get-Counts 6.2 133.2 1056 5.6 133.2 1056
Folding 6.2 133.2 1056 5.0 133.2 1056

6000

Baseline 26.6 2680.2 20776 19.5 298.4 20776
Get-Counts 22.3 298.4 2352 19.2 298.4 2352
Folding 21.6 298.4 2352 19.1 298.4 2352

Memory High-watermark comparison Table 5 shows the maximum number of
live items during the execution of the benchmarks. This metric shows, in the
schedules and with the parallelism actually used during execution, what is the
maximum number of items that were live - the memory “high-water mark" of
the program. To obtain these values we used atomic counters that tracked the
number of stored items. The results show that maximum live items number

Table 5. Maximum number of items live during execution

Benchmark Baseline Get-Counts Folding
Nbody 1,000,005 19 20
Routing 102000 1100 2000

RicianDenoising
Image 10800 800 800
Gradient 10400 27 800
Image × Gradient 10400 26 800
ConvergenceStatus 10400 9897 800

Cholesky (6000) 20776 2352 2352

612 D. Sbîrlea, K. Knobe, and V. Sarkar

is lower than the bound identified by folding. However, in the future, as the
number of processors grows, more tasks will run concurrently and the number
of live items will increase.

5 Conclusions and Future Work

In this paper, we introduced a new memory management approach based on user-
specified folding functions that map logical dynamic-single-assignment (DSA)
tags into dynamic-multiple-assignment (DMA) tags, while preserving semantic
guarantees of data race freedom and determinism. Our approach is applica-
ble to parallel programming models in which shared data accesses are coor-
dinated by put/get operations on tagged DSA data structures. These models
include dataflow programs with I-structures, functional subsets of parallel pro-
grams based on tuple spaces (notably, Linda), and programs written in the Intel
Concurrent Collections (CnC) coordination language. Our conclusion, based on
experimental evaluation of five CnC programs, is that folding can offer signif-
icant memory efficiency improvements, and that folding can handle cases that
get-counts (an alternative approach to user-specified memory management) can-
not. An interesting direction for future work is automatic generation of folding
functions. In many of the benchmarks that we studied, it is possible to use static
analysis of get and put function parameters to identify candidates for folding.

Acknowledgments. We are grateful to the Intel Concurrent Collection team,
in particular Frank Schlimbach, James Brodman and Ryan Newton (now at
Indiana University), for proposing the Get-Counts idea and for having stimu-
lating discussions. We thank Shams Imam for his debugging help and thorough
feedback and the reviewers for their helpful comments.

References

1. Arvind, Nikhil, R.S., Pingali, K.K.: I-structures: data structures for parallel com-
puting. ACM Trans. Program. Lang. Syst. 11 (October 1989)

2. Boissinot, B., Darte, A., Rastello, F., de Dinechin, B.D., Guillon, C.: Revisiting
out-of-ssa translation for correctness, code quality and efficiency. In: CGO 2009,
Washington, DC, USA, pp. 114–125 (2009)

3. Budimlic, Z., Burke, M., Cavè, V., Knobe, K., Lowney, G., Newton, R., Palsberg,
J., Peixotto, D., Sarkar, V., Schlimbach, F., Tasirlar, S.: Concurrent collections.
Scientific Programming (2010)

4. Chandramowlishwaran, A., Knobe, K., Vuduc, R.: Performance evaluation of con-
current collections on high-performance multicore systems. In: IPDPS (2010)

5. Feautrier, P.: Array expansion. In: Proceedings of the 2nd International Conference
on Supercomputing, ICS, pp. 429–441. ACM, New York (1988)

6. Feautrier, P.: Dataflow analysis of array and scalar references. International Journal
of Parallel Programming 20(1), 23–51 (1991)

7. Gelernter, D.: Generative communication in linda. ACM Trans. Program. Lang.
Syst. 7, 80–112 (1985)

Folding of Tagged Single Assignment Values for Memory-Efficient Parallelism 613

8. Georges, A., Buytaert, D., Eeckhout, L.: Statistically rigorous java performance
evaluation. In: Proceedings of the 22nd Annual ACM SIGPLAN Conference on
Object-oriented Programming Systems and Applications (2007)

9. Moy, J.: OSPF Version 2. RFC 2178, Obsoleted by RFC 2328 (July 1997)
10. Oran, D.: Osi is-is intra-domain routing protocol. RFC 1142 (February 1990)
11. Torczon, L., Cooper, K.: Engineering A Compiler, 2nd edn. Morgan Kaufmann

Publishers Inc., San Francisco (2011)

High-Level Support for Pipeline Parallelism

on Many-Core Architectures

Siegfried Benkner1, Enes Bajrovic1, Erich Marth1, Martin Sandrieser1,
Raymond Namyst2, and Samuel Thibault2

1 Research Group Scientific Computing, University of Vienna, Austria
2 University of Bordeaux, LaBRI-INRIA Bordeaux Sud-Ouest, Talence, France

Abstract. With the increasing architectural diversity of many-core ar-
chitectures the challenges of parallel programming and code portability
will sharply rise. The EU project PEPPHER addresses these issues with a
component-based approach to application development on top of a task-
parallel execution model. Central to this approach are multi-architectural
components which encapsulate different implementation variants of ap-
plication functionality tailored for different core types. An intelligent run-
time system selects and dynamically schedules component implementa-
tion variants for efficient parallel execution on heterogeneous many-core
architectures. On top of this model we have developed language, com-
piler and runtime support for a specific class of applications that can
be expressed using the pipeline pattern. We propose C/C++ language
annotations for specifying pipeline patterns and describe the associated
compilation and runtime infrastructure. Experimental results indicate
that with our high-level approach performance comparable to manual
parallelization can be achieved.

1 Introduction

With the shift towards heterogeneous many-core architectures combining differ-
ent types of execution units like conventional CPU cores, GPUs and other accel-
erators, the challenges of parallel programming will sharply rise. For an efficient
utilization of such architectures usually different programming models and APIs,
tailored for the different types of execution units, have to be combined within a
single parallel application. Available technologies like Intel TBB [1], CUDA [2],
Cell SDK [3], and OpenCL [4] are characterized by a low level of abstraction,
forcing programmers to take into account a myriad of architecture details, usu-
ally beyond the capabilities of average users. Several recent research projects
including ParLab [5], PetaBricks [6], Elastic Computing [7], ENCORE [8] and
others, are addressing these challenges by proposing higher-level programming
support for emerging many-core systems.

The European research project PEPPHER [9] targets programmability and
performance portability for single-node heterogeneous many-core architectures
by means of a component-based approach in combination with a task-parallel
execution model. In this paper we present our contributions towards high-level
support for pipelined applications within the PEPPHER framework. Section 2

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 614–625, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

High-Level Support for Pipeline Parallelism on Many-Core Architectures 615

outlines the PEPPHER approach and describes the proposed language features
for realizing pipelined C/C++ applications. Section 3 describes our source-to-
source transformation framework as well as the coordination and runtime sup-
port for pipelining. Experimental results for two real-world applications and a
comparison to TBB are presented in Section 4. The paper closes with a discussion
of related work and future directions.

2 High-Level Programming Support

Since there exists no parallel programming model that covers all types of par-
allel applications and architectures, we argue that a programming framework
for heterogeneous parallel architectures should support the use of different pro-
gramming models and APIs within an application.

2.1 The PEPPHER Component Model

Within the PEPPHER model performance-critical parts of an application are
realized by means of multi-architectural components that encapsulate, behind an
interface, different implementation variants of a function1 tailored for different
execution units of a heterogeneous many-core system.

Component implementation variants are usually written by expert program-
mers using different programming APIs (e.g., CUDA, OpenCL) or are taken
from optimized vendor-supplied libraries. Non-expert programmers may then
construct applications at a high level of abstraction by invoking component func-
tionality using conventional interfaces and source code annotations to delineate
asynchronous (or synchronous) component calls. With this approach, a sequen-
tial program spawns component calls, which are then scheduled for task-parallel
execution by the runtime system. A source-to-source compiler transforms an-
notated component calls such that they are registered with the runtime system
and generates corresponding glue-code.

The compiler and runtime system make use of rich component meta-data,
usually supplied by expert programmers via external XML descriptors. Besides
information about the data read and written by components, meta-data in-
cludes information about resource requirements, possible target platforms, and
performance relevant parameters [10]. The runtime system, built on top of the
StarPU [11] heterogeneous runtime system, relies on a representation of the pro-
gram as a directed acyclic graph (DAG) where nodes represent component calls
(tasks) and edges represent data dependences. The runtime system dynamically
schedules component calls to the available execution units of a heterogeneous
many-core architecture such that (1) independent component calls execute in
parallel on different execution units and (2) the “best” implementation variants
for a given architecture are selected based on historical performance information
captured in performance models.

1 These functions must be pure, i.e. they must not access global data, they must be
stateless, and they are to be executed non-preemptively.

616 S. Benkner et al.

2.2 Language Support for Expressing Pipeline Patterns

A pipeline consists of several inter-connected stages, where a stream of data
flowing through the pipeline is processed at every stage. Data entering a stage
via input port(s) is consumed, processed and emitted at the output port(s)
accordingly. Usually, stages are connected via buffer structures from which data
is fed into stages. While buffered pipelines require additional memory, they allow
to decouple stages and mitigate relative performance differences. In our approach
buffers between stages are generated automatically, but we provide language
features for the user to control certain aspects of buffering.

The pipeline pattern has the potential of exploiting two levels of parallelism:
inter-stage parallelism, if different stages execute on different cores, and, intra-
stage parallelism, if a stage is itself parallel and executes on, e.g., a GPU.

In our framework, pipelines may be constructed from while loops where the
loop body comprises two or more calls to multi-architectural components as
considered within the PEPPHER framework. The pipeline pragma indicates
that the subsequent while loop represents a pipeline. Each stage of the pipeline
corresponds to a single component call statement within the loop body.

1 #pragma pph pipeline
2 while(data.size != 0) {
3 func1(iFile ,data); // connect func1 to func2 via data
4 #pragma pph stage replicate(4) // replicate stage 4 times
5 func2(data ,cdata); // connect func2 to func3 via cdata
6 func3(cdata ,oFile);
7 }

Listing 1.1. Example of a pipeline directive

2.3 Stage Replication and Stage Merging

Provided application logic permits, stage replication aims to increase the poten-
tial parallelism of pipelined applications by creating multiple replicas of a stage
that may then be executed in parallel. Stages can be replicated using the stage
pragma with the replicate(N) clause, specifying that a stage should be repli-
cated N times (see Listing 1.1). As a consequence, multiple stage instances will
be generated by the compiler to enable processing of different data packets in
parallel, if enough execution units are available. While replication is a suitable
technique for increasing pipeline throughput by replicating stages with (relative)
high execution times, the programmer has to be aware that the order in which
data-packets are processed may change (unless priority ordering is used), result-
ing in unpredictable application behavior. Moreover, sizes of connected in- and
output buffers may have to be adapted as well. Also, stage replication might
result in a performance degradation if not enough execution units are available
to execute all stage replicas in parallel.

The stage pragma may also be used to merge multiple stages into a single
stage (see, e.g., Listing 1.4). This allows the programmer to manually increase
the granularity of stages, if the involved individual component calls do not ex-
hibit enough computational density to mandate processing within a separate

High-Level Support for Pipeline Parallelism on Many-Core Architectures 617

stage. Note that stages can only be merged if for all involved stages compatible
component implementation variants are available. The interface of the resulting
single stage is automatically generated by the compiler, describing all input and
output ports of the merged stage.

2.4 Buffer Management

With our framework buffers are automatically generated in between pipeline
stages. These buffers temporarily store data packets, generated by the source
stage(s), and consumed by the target stage(s). Depending on the type of appli-
cation, different order guarantees and sizes for buffers may be required. Therefore
we provide the buffer clause for specifying the order guarantee, including pri-
ority, random, and fifo, as well as the size of buffers (see Listing 1.2). Global
buffer settings may be specified by using the with buffer clause together with
the pipeline pragma. Local buffer settings for individual stages may be specified
with the buffer for port clause within the stage pragma. In Listing 1.2 the buffer
for port cdata in the second stage is changed to RANDOM and buffer size to 8,
while for all other buffers FIFO ordering is used.

1 #pragma pph pipeline with buffer(FIFO)
2 while(data.size != 0) {
3 func1(iFile ,data);
4 #pragma pph stage buffer for port(cdata ,RANDOM ,8)
5 func2(data ,cdata);
6 func3(cdata ,oFile);
7 }

Listing 1.2. Influencing Buffer Management

3 Implementation

We have developed a prototype source-to-source compiler that transforms C/C++
applications with the described annotations into C++ with calls to a pipeline co-
ordination layer that utilizes the StarPU [11] heterogeneous runtime system for
scheduling stages for parallel execution onto the execution units of a heteroge-
neous many-core system comprising CPUs as well as GPUs. The source-to-source
compiler has been implemented using the ROSE compiler infrastructure [12].

3.1 Source-to-Source Transformation

After the usual front-end processing phases an abstract syntax tree is constructed.
Pipeline constructs are then further processed to determine the structure of the
pipeline (stage interconnection) by analyzing the data types of objects passed be-
tween pipeline stages. For each stage interconnection (port) corresponding buffer
structures, as specified globally or locally, are generated.

The generated target code contains calls to the pipeline coordination layer
which comprises various classes for coordinating the execution of pipeline stages

618 S. Benkner et al.

read compress writeB B

...
while(block.last != 1) {
 read(ifile,block);
 compress(block);
 write(ofile,block);
}
...

#pragma pipeline buffer[FIFO,2*N]
while(block.last != 1) {
 read(ifile,block);
 #pragma stage replicate(N)
 compress(block);
 #pragma stage buffer_...
 write(ofile,block);
}

A
nn

ot
at

e

Analyze

...
1 pipe::BufferObject *blockBItem = bufferItemCreator(...);
2 pipe::Buffer *readOutBuf = pipe::createFIFOBuffer(blockBItem);
3 pipe::Stage *readStage = pipe::createStage(STAGE::SOURCE...);
4 pipe::Stage *compressStage = pipe::createStage(STAGE::INTER,…);
...
5 pipe::connectStage(read,0,compress,0,readOutBuf);
6 readStage->setInputBuffer(iFileIn,0);
7 compressStage->setReplication(N);
8 compressStage->setComputation(&compressComponent);
9 readStage->execute();
...

Transform

type: SINK
computation: write

preceding: compress

type: INTER
input: 1 (readOutBuf)

replication: N

type: SOURCE
computation: read

output: 1 (readOutBuf)

<< readOutBuf >>
order: FIFO (size=4)

type: block

<< writeInBuffer >>
order: PRIORITY (size = 4)

type: block

BB

<< auto >>
static buffer
type: FILE*

<< auto >>
static buffer
type: FILE*

(virtual) pop() : T*
(virtual) push(T * data) : void

Buffer

FIFOBuffer PriorityBuffer

- priorityTag : tag_id_t
- data : T*

BufferObject
*1

Map onto Coordination Layer

+ execute() : void
+ callback() : void

- replication : unsigned*
Stage

*1

Fig. 1. Overview of the transformation process

on top of the StarPU runtime system. The Stage class encapsulates information
on the stage functionality (component), directly connected buffers and stages for
each port, the number of instances of a stage to be processed in parallel (repli-
cation count), and the position of the stage within the pipeline (source, inter, or
sink). Each stage owns a local coordination mechanism, described later, which
slightly differs depending on the position of a stage. The abstract Buffer class
generalizes the buffer access interface and is used to derive concrete buffer imple-
mentations like FIFO buffers or priority buffers. Each buffer stores information
about connected stages, internal storage layout, and the type of data packets.

Figure 1 gives an overview for a three-stage data compression pipeline ex-
ample. First buffer objects are generated (line 1) for holding data packets and
meta-data such as priority tags, creation dates, and other information. Next, all
inter-stage buffers are generated to hold the previously generated buffer objects,
setting the default data type for each buffer, as shown in line 2. Class instances

High-Level Support for Pipeline Parallelism on Many-Core Architectures 619

for the read and compress stages are generated in line 3 and 4. The stages are
further configured by specifying connected buffers, replication counts, and the
stage computations, as shown in line 5 to 8. After all stages have been created
and configured, stages are posted for execution to the runtime, initiating the
actual execution of the pipeline, as shown in line 9.

3.2 Task-Based Heterogeneous Runtime

The StarPU runtime system [11] utilized in our framework is based on an ab-
straction of the underlying heterogeneous many-core architecture as a set of
workers, each representing either a general purpose computing core, or an ac-
celerator (e.g., a GPU). The runtime system is responsible for selecting suitable
component implementation variants for pipeline stages and for scheduling their
execution to workers in a performance- and resource-efficient way, according to a
specific scheduling policy. StarPU manages data transfers between workers, en-
sures memory coherency, and provides support for different scheduling strategies
which may be selected at runtime.

Besides the well-known EAGER scheduling policy, StarPU also features the
Heterogeneous Earliest Finish Time (HEFT) [13] policy. The HEFT policy con-
siders inter-component data dependencies, and schedules components to workers
taking into account the current system load, available component implementa-
tion variants, and historical execution profiles, with the goal of minimizing overall
execution time by favoring implementations variants with the lowest expected
execution time.

3.3 Coordination

The coordination layer controls the execution of a pipelined application by de-
ciding when to post stage component calls to the runtime system. We utilize
a local coordination strategy where each stage is at runtime controlled by a
corresponding stage object (an instance of the Stage class). The Stage class pro-
vides two methods for coordinating the execution of a pipelined application: the
method execute() for posting a stage for execution to the runtime system and
the method callback() for transferring control back to a stage object after its
associated component has finished execution on a worker. In the following we
outline a coordination scenario for the code shown in Figure 1.

First the runtime system is initialized and the required stage and buffer objects
are instantiated. Next, the execution of all stages is initiated by invoking the
execute() method on each stage object. This method posts a stage for execution
to the runtime system provided its input buffer(s) and free slots in its output
buffer are available. In our scenario, initially only the read stage is posted to the
runtime while execution of all other stages is postponed since no input data is yet
available. The runtime system then selects a suitable component implementation
variant for the read stage and schedules it for execution onto a worker. When
the read stage finishes execution on the selected worker, the runtime system
invokes its callback method. Within the callback, first all connected buffers of

620 S. Benkner et al.

the read stage are updated and then the execute() method of the connected
compress stage is called, which results in posting the compress stage to the
runtime system. Finally, if a new data packet to be processed and a free output
buffer slot are available, the read stage re-posts itself for execution to the runtime
system. The runtime can now schedule the second instance of the read stage and
the first instance of the compress stage for parallel execution on different workers.
With this scheme, stages coordinate themselves only in combination with their
immediate neighbors, but without a central coordinator.

4 Experimental Evaluation

An initial evaluation has been performed with two real world codes, a data com-
pression application and a face detection application. We compare our approach
to Threading Building Blocks (TBB) as well as to existing parallel implemen-
tations on two different architectures. Architecture A represents a homogeneous
system with two Intel Xeon X7560 (8 cores, 2.26 GHz) running RHEL 5. Archi-
tecture B is a heterogeneous system with two Intel Xeon X5550 (4 cores, 2.67
GHz), one Nvidia GeForce GTX 480 (480 Cores, 1.5GB, 1.40GHz), and one
Nvidia GeForce GTX 285 (240 Cores, 1GB, 1.48GHz), CUDA 4.0 and RHEL
5.6. The performance numbers shown are average execution times over ten runs.

4.1 BZIP2 Compression

BZIP2 is an open-source lossless data compression tool, based on the Burrows-
Wheeler-Transformation [14]. Compared to other compression techniques, BZIP2
is embarrassingly parallel, compressing data at the granularity of blocks with a
fixed size. Since there are currently no heterogeneous implementations available,
BZIP2 cannot utilize the GPUs of architecture B.

Listing 1.3 outlines the implementation using our language constructs. We
implement a three stage pipeline with FIFO and PRIORITY buffers and utilize
the replication feature for the middle stage.

1 unsigned int N = get_max_cpu_cores();
2 #pragma pph pipeline with buffer(FIFO ,N*2)
3 while(b->iSize == bs) {
4 readBlock(ifile ,b);
5 #pragma pph stage replicate(N)
6 compress (b);
7 #pragma pph stage buffer for port(b,PRIORITY)
8 writeCompressedBlock(ofile ,b);
9 }

Listing 1.3. BZIP2 Compression Pipeline

For comparison, we have implemented bzip2 using the pipeline pattern of
TBB to create a pipeline [15] with three stages (read, compress, write) using
the utility functions provided by the bzip2 library [16]. Since in TBB stages
cannot be replicated explicitly, we have set the number of alive objects to twice
the number of cores available. This allows TBB to schedule stages in parallel if

High-Level Support for Pipeline Parallelism on Many-Core Architectures 621

Table 1. bzip2 Performance Results (execution times in s)

Architecture A Architecture B

Cores 1 2 4 8 16 1 2 4 8

TBB 248.19 133.18 64.99 32.63 19.58 201.42 103.43 52.11 28.73
pbzip2 268.88 128.20 65.86 33.75 20.16 207.57 106.52 55.28 31.83
PEPPHER 288.04 143.42 76.27 37.46 19.99 208.88 107.17 61.24 44.71

possible. For correct compression in time, we have enabled order preservation.
Moreover, we measured an existing code from the pbzip2 project [17], which
represents a manually implemented pipeline with three stages (read, compress,
and write) and priority buffers.

Table 1 shows the measured (average) execution times (wall-clock times) for
the bzip2 benchmark for compressing a file with size of 1 GB. As can be seen,
our high-level approach delivers performance results which are very similar to
the other two approaches. However, the programming effort with our approach
as well as the total lines of code required is significantly reduced.

4.2 OpenCV Image Processing

The Open Source Computer Vision (OpenCV) library provides extensive support
for the implementation of real time computer vision applications [18]. Originally
developed for homogeneous architectures, current releases offer built-in support
for GPUs based on CUDA. Using OpenCV we have implemented a face detection
application in a pipelined manner, where for the detection stage two different
implementation variants, for CPUs and GPUs, are provided.

1 unsigned int N = get_max_execution_units();
2 #pragma pph pipeline with buffer(PRIORITY ,N*2)
3 while(inputstream >> file) {
4 readImage(file ,image);
5 #pragma pph stage replicate(N) {
6 resizeAndColorConvert(image);
7 detectFace(image ,outimage);
8 }
9 writeFaceDetectedImage(file ,outimage);

10 }

Listing 1.4. OpenCV Image Processing Pipeline

Listing 1.4 sketches our implementation as a three-stage pipeline with priority
buffers. The pipelines exits once 32 images have been processed. The middle
stage, which merges two component calls, is replicated according to the available
number of execution units within the system.

For comparison, a pipelined TBB version [15] has been implemented in a
similar way. Again, instead of stage replication, we have set the number of alive
data packets to twice the number of execution units, enabling TBB to schedule
stages in parallel.

622 S. Benkner et al.

Table 2. OpenCV Performance Results (execution times in secs)

Architecture A

Image Size VGA SVGA XGA QXGA

TBB (1 Core) 15.61 23.51 41.84 170.58
PEPPHER (1 Core) 12.40 17.85 30.72 140.86

TBB (16 Core) 1.26 1.92 3.39 13.60
PEPPHER (16 Cores) 1.16 1.72 2.91 12.33

Architecture B

TBB (1 Core) 12.75 20.07 35.15 145.68
PEPPHER (1 Core) 9.62 14.33 24.94 111.45
PEPPHER (1 Core + 1 GPU) 3.94 5.91 10.35 46.30
PEPPHER (1 Core + 2 GPUs) 2.95 2.72 6.53 30.81

TBB (8 Cores) 1.47 2.29 4.13 17.4
PEPPHER (8 Cores) 1.18 1.78 3.58 13.69
PEPPHER (7 Cores + 1 GPU) 1.13 1.63 2.91 11.89
PEPPHER (6 Cores + 2 GPUs) 0.94 1.40 2.44 10.71

Table 2 shows performance results for the face detection code in comparison
to the TBB version using different image resolutions including VGA(640x480),
SVGA(800x600), XGA(1024x768), and QXGA(2048x1536). As can be seen, on
architecture A our high-level approach outperforms the TBB version by about
20%. On architecture B, when using only the CPU cores, we get similar results.
As opposed to TBB, however, our approach can take advantage of the GPUs
by utilizing the GPU implementation variant for the (merged) middle pipeline
stage. Since for each GPU an additional CPU core is required, the number of us-
able general purpose cores is reduced accordingly. As can be seen, using one CPU
core and one GPU (GTX 480) the execution time is reduced by a factor of up to
3.14 compared to the TBB version using one CPU core. Using a second GPU re-
sults in only modest further performance improvements. Again the results show
that our high-level approach to pipelining has the potential to outperform TBB,
while significantly improving programmability. Moreover, based on our concept
of multi-architectural components together with a versatile heterogeneous run-
time system, we can take advantage of a heterogeneous CPU/GPU-based archi-
tecture without modifying the high-level application code.

5 Related Work

Over the last two decades design patterns as well as skeletons had a significant
impact on software development in general as well as on parallel and distributed
programming [19–22].

High-Level Support for Pipeline Parallelism on Many-Core Architectures 623

Intel Threading Building Blocks (TBB) provides direct support for pipeline
patterns. As opposed to our work, TBB targets only homogeneous architectures
and does not support stage implementation variants.

Thies at al. [23] propose StreamIt, a domain specific language (DSL) for de-
signing stream-based applications where in combination with the underlying
compiler pipeline specific optimizations [24] are applied. However, support for
heterogeneous architectures is not addressed in this work.

Schaefer at al. [25, 26], propose a language-based approach for engineering
parallel application using tunable patterns. Although different stage implemen-
tations are supported within the pipeline pattern, support for heterogeneous
architectures has not been addressed.

Suleman at al. [27], propose a feedback-directed approach with integrated sup-
port for tuning. In combination with online-monitoring, pipelined applications
are optimized on a coarse-grain level. Neither different stage implementation
variants, nor optimizations for heterogeneous architectures are supported.

There have been several proposals for extending C or Fortran in order to sup-
port programming of heterogeneous systems comprised of CPUs and GPUs in-
cluding OmpSS [28], PGI Accelerate [29], HMPP [30], and OpenACC[31]. These
approaches are based on directives for specifying regions of code in Fortran or
C programs that can be offloaded from a host CPU to an attached GPU by
the compiler. None of these approaches, however, supports pipelining or other
parallel patterns.

6 Conclusion and Future Work

We have presented high-level language annotations for C/C++ for developing
pipelined applications on heterogeneous many-core architectures without having
to deal with complex low-level architectural issues. We provided an overview
of the associated implementation framework which is currently being developed
within the European PEPPHER project. Our work relies on a component-based
approach where pipeline stages correspond to multi-architectural components
that encapsulate different implementation variants optimized by expert pro-
grammers for different execution units of a heterogeneous many-core system. A
source-to-source compiler translates pipelined applications to an object-oriented
coordination layer which is built on top of a heterogeneous task-based runtime
system. The task-based runtime system attempts to schedule the best compo-
nent implementation variants for parallel execution on the free execution units
of a many-core system such that overall performance is optimized.

Our approach enables to run the same high-level application code without
changes on homogeneous and heterogeneous multi-core architectures, delegat-
ing to the runtime system task scheduling and implementation variant selection.
Experimental results on two different architectures are encouraging and indi-
cate that a performance comparable to manual parallelization can be achieved,
despite the considerably higher level of abstraction provided by our language
features for the pipeline pattern.

624 S. Benkner et al.

For future work we plan to extend our framework with autotuning capabilities
to, for example, determine replication counts and buffer sizes for pipeline stages.
Furthermore, we plan to experiment with different runtime scheduling strategies
as supported by StarPU and to provide support for other parallel patterns.

Acknowledgment. This work was supported by the European Commission as
part of the FP7 Project PEPPHER under grant 248481.

References

1. Intel, Threading Building Blocks (2009), http://threadingbuildingblocks.org
2. Nvidia, C.: Compute Unified Device Architecture Programming Guide. NVIDIA,

Santa Clara (2007)
3. Kahle, J.A., Day, M.N., Hofstee, H.P., Johns, C.R., Maeurer, T.R., Shippy, D.J.:

Introduction to the Cell Multiprocessor. IBM Journal of Research and Develop-
ment 49(4-5), 589–604 (2005)

4. Munshi, A. (ed.): OpenCL 1.0 Specification. Khronos OpenCL Working Group
(2011)

5. Pan, H., Hindman, B., Asanović, K.: Composing Parallel Software Efficiently with
Lithe. In: Proceedings of the 2010 ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2010, pp. 376–387. ACM, New York
(2010)

6. Ansel, J., Chan, C.P., Wong, Y.L., Olszewski, M., Zhao, Q., Edelman, A., Ama-
rasinghe, S.P.: PetaBricks: A Language and Compiler for Algorithmic Choice. In:
Proceedings of the 2009 ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2009, pp. 38–49 (2009)

7. Wernsing, J.R., Stitt, G.: Elastic Computing: A Framework for Transparent,
Portable, and Adaptive Multi-core Heterogeneous Computing. In: Proceedings
of the ACM SIGPLAN/SIGBED 2010 Conference on Languages, Compilers, and
Tools for Embedded Systems (LCTES), pp. 115–124. ACM (2010)

8. Vandierendonck, H., Pratikakis, P., Nikolopoulos, D.S.: Parallel Programming of
General-Purpose Programs using Task-based Programming Models. In: Proceed-
ings of the 3rd USENIX Conference on Hot Topics in Parallelism, HotPar 2011,
Berkeley, CA, USA, p. 13 (2011)

9. Benkner, S., Pllana, S., Traff, J., Tsigas, P., Dolinsky, U., Augonnet, C., Bach-
mayer, B., Kessler, C., Moloney, D., Osipov, V.: PEPPHER: Efficient and Produc-
tive Usage of Hybrid Computing Systems. IEEE Micro 31(5), 28–41 (2011)

10. Sandrieser, M., Benkner, S., Pllana, S.: Using explicit platform descriptions to
support programming of heterogeneous many-core systems. Parallel Comput-
ing 38(12), 52–65 (2012),
http://www.sciencedirect.com/science/article/pii/S0167819111001396

11. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.-A.: StarPU: A Unified Plat-
form for Task Scheduling on Heterogeneous Multicore Architectures. Concurrency
and Computation: Practice and Experience (23), 187–198 (2011)

12. Quinlan, D.: ROSE: Compiler Support for Object-Oriented Frameworks. Parallel
Processing Letters 49 (2005)

13. Topcuoglu, H., Hariri, S., Wu, M.-Y.: Performance-Effective and Low-Complexity
Task Scheduling for Heterogeneous Computing. IEEE Transactions on Parallel and
Distributed Systems 13(3) (March 2002)

http://threadingbuildingblocks.org
http://www.sciencedirect.com/science/article/pii/S0167819111001396

High-Level Support for Pipeline Parallelism on Many-Core Architectures 625

14. Burrows, M.: A Block-Sorting Lossless Data Compression Algorithm. Research
Report 124, Digital Systems Research Center (1994)

15. Intel, Intel Threading Building Blocks - Pipeline Documentation,
http://threadingbuildingblocks.org/files/documentation/a00150.html

16. Seward, J.: BZIP2 Library Utility Function Documentation (September 2011),
http://bzip.org/1.0.5/bzip2-manual-1.0.5.html#util-fns

17. Gilchrist, J.: Parallel Data Compression with bzip2. In: Proceedings of the 16th
IASTED International Conference on Parallel and Distributed Computing and
Systems, vol. 16, pp. 559–564 (2004)

18. Gary, B.: Learning openCV: Computer Vision with the openCV Library. O’Reilly,
USA (2008)

19. Benoit, A., Robert, Y.: Mapping Pipeline Skeletons onto Heterogeneous Platforms.
In: Shi, Y., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2007, Part
I. LNCS, vol. 4487, pp. 591–598. Springer, Heidelberg (2007)

20. Cole, M.: Bringing Skeletons out of the Closet: A Pragmatic Manifesto for Skeletal
Parallel Programming. Parallel Computing (2004)

21. Mattson, T., Sanders, B., Massingill, B.: Patterns for Parallel Programming.
Addison-Wesley (2005)

22. Pop, A., Cohen, A.: A Stream-Computing Extension to OpenMP. In: Proceedings
of the 6th International Conference on High Performance and Embedded Archi-
tectures and Compilers. ACM (2011)

23. Thies, W., Karczmarek, M., Amarasinghe, S.: StreamIt: A Language for Streaming
Applications. In: Horspool, R.N. (ed.) CC 2002. LNCS, vol. 2304, pp. 179–196.
Springer, Heidelberg (2002)

24. Sermulins, J., Thies, W., Rabbah, R., Amarasinghe, S.: Cache Aware Optimization
of Stream Programs. ACM SIGPLAN Notices 40(7) (2005)

25. Schaefer, C., Pankratius, V., Tichy, W.: Engineering Parallel Applications with
Tunable Architectures. In: ICSE 2010: Proceedings of the 32nd ACM/IEEE Inter-
national Conference on Software Engineering, vol. 1 (May 2010)

26. Otto, F., Schaefer, C.A., Dempe, M., Tichy, W.F.: A Language-Based Tuning
Mechanism for Task and Pipeline Parallelism. In: D’Ambra, P., Guarracino, M.,
Talia, D. (eds.) Euro-Par 2010, Part II. LNCS, vol. 6272, pp. 328–340. Springer,
Heidelberg (2010)

27. Suleman, M., Qureshi, M., Khubaib, Patt, Y.: Feedback-Directed Pipeline Paral-
lelism. In: PACT 2010: Proceedings of the 19th International Conference on Parallel
Architectures and Compilation Techniques (2010)

28. Ayguade, E., Badia, R.M., Cabrera, D., Duran, A., Gonzalez, M., Igual, F.,
Jimenez, D., Labarta, J., Martorell, X., Mayo, R., Perez, J.M., Quintana-Ort́ı,
E.S.: A Proposal to Extend the OpenMP Tasking Model for Heterogeneous Ar-
chitectures. In: Müller, M.S., de Supinski, B.R., Chapman, B.M. (eds.) IWOMP
2009. LNCS, vol. 5568, pp. 154–167. Springer, Heidelberg (2009)

29. Wolfe, M.: Implementing the PGI Accelerator Model. In: GPGPU 2010: Proceed-
ings of the 3rd Workshop on General-Purpose Computation on Graphics Processing
Units. ACM (March 2010)

30. Bodin, F., Bihan, S.: Heterogeneous Multicore Parallel Programming for Graphics
Processing Units. Scientific Programming 17, 325–335 (2009)

31. OpenACC. Directives for Accelerators, http://www.openacc-standard.org/

http://threadingbuildingblocks.org/files/documentation/a00150.html
http://bzip.org/1.0.5/bzip2-manual-1.0.5.html#util-fns
http://www.openacc-standard.org/

Node.Scala: Implicit Parallel Programming

for High-Performance Web Services

Daniele Bonetta, Danilo Ansaloni, Achille Peternier,
Cesare Pautasso, and Walter Binder

University of Lugano (USI), Switzerland
Faculty of Informatics

{name.surname}@usi.ch

Abstract. Event-driven programming frameworks such as Node.JS
have recently emerged as a promising option for Web service devel-
opment. Such frameworks feature a simple programming model with
implicit parallelism and asynchronous I/O. The benefits of the event-
based programming model in terms of concurrency management need
to be balanced against its limitations in terms of scalability on multi-
core architectures and against the impossibility of sharing a common
memory space between multiple Node.JS processes. In this paper we
present Node.Scala, an event-based programming framework for the JVM
which overcomes the limitations of current event-driven frameworks.
Node.Scala introduces safe stateful programming for event-based ser-
vices. The programming model of Node.Scala allows threads to safely
share state in a standard event-based programming model. The runtime
system of Node.Scala automatically parallelizes and synchronizes state
access to guarantee correctness. Experiments show that services devel-
oped in Node.Scala yield linear scalability and high throughput when
deployed on multicore machines.

1 Introduction

Services published on the Web need to guarantee high throughput and accept-
able communication latency while facing very intense workloads. To handle high
peaks of concurrent client connections, several engineering and research efforts
have focused on Web server design [2]. Of the proposed solutions, event-driven
servers [3,12] have proven to be very scalable, as they are able to handle con-
current requests with a simple and efficient runtime architecture [9,7]. Servers of
this class are based on the ability offered by modern operating systems to com-
municate asynchronously (through mechanisms such as Linux’s epoll), and on
the possibility to treat such requests as streams of events. In event-driven servers
each I/O-based task is considered an event. Successive events are enqueued for
sequential processing (in an event queue), and processed in an infinite event-loop.
The event-loop allows the server to process concurrent connections nondetermin-
istically by automatically partitioning the time slots assigned to the processing
of each request, thus augmenting the number of concurrent requests handled by

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 626–637, 2012.
� Springer-Verlag Berlin Heidelberg 2012

Node.Scala: Implicit Parallel Programming 627

the server through time-sharing. In this way, request processing is overlapped
with I/O-bound operations, maximizing throughput and guaranteeing fairness
between clients. Thanks to the event-loop model, servers can process thousands
of concurrent requests using a very limited number of processes (usually, one
process per core on multicore machines).

The performance of event-driven architectures has promoted programming
models for Web service development that rely (explicitly or implicitly) on
event-loops. Examples of such programming models include libraries (e.g.,
Python Twisted [6] or Java NIO [1]), and language-level integrations such as
Node.JS [14]. Node.JS is a programming framework for the development of Web
services using the JavaScript language and Google’s V8 JavaScript Engine. In
Node.JS the event-loop is hidden behind a convenient programming abstrac-
tion, which allows the developer to treat event-driven programming as a set
of callback function invocations, taking advantage of the functional nature of
the JavaScript language. Since the event-loop is run by a single thread, while
all I/O-bound operations are carried out by the OS, the developer only writes
the sequential code to be executed for each event within each callback, without
worrying about concurrency issues.

Despite of the high performance of the V8 Engine, frameworks like Node.JS
still present some limitations preventing them from exploiting modern multicore
machines. For example, long running callbacks may block the entire service due
to the single-threaded, sequential event loop architecture. We have overcome
these limitations with the design of Node.Scala, a programming framework for
the development of scalable Web services which takes full advantage of modern
multicores. In more detail, our work makes the following contributions:

– We introduce Node.Scala, an event-loop-based framework targeting the Scala
language and the JVM. Node.Scala features automatic parallelization of
concurrent request processing, automatic synchronization of stateful request
processing, and allows the developer to use both blocking and non-blocking
programming styles. Node.Scala can be used to build HTTP-based services,
including RESTful Web services [4].

– We describe the design of the Node.Scala runtime, which features multiple
event-loops which have been safely parallelized.

– We illustrate the performance of Node.Scala with a set of benchmark results
obtained with both stateless and stateful Web services.

The rest of this paper is structured as follows. In Section 2 we further dis-
cuss the motivations underlying Node.Scala and provide background informa-
tion on event-loop frameworks. Section 3 presents the programming model of
Node.Scala. Section 4 presents the parallel runtime system of Node.Scala. Sec-
tion 5 presents an evaluation of the performance of Node.Scala-based Web ser-
vices. Section 6 discusses related work, while Section 7 concludes.

628 D. Bonetta et al.

2 Background and Motivation

Despite of being very scalable in terms of handling concurrent connections, event-
driven frameworks like Node.JS are limited by their runtime system at least in
two aspects, namely (1) the impossibility of sharing a common memory space
among processes, and (2) the difficulty of building high throughput services using
blocking method calls.

Concerning the first limitation, common event-based programming frame-
works are not designed to express thread-level parallelism, thus the only way
of exploiting multiple cores is by replicating the service process. This approach
forces the developer to adopt parallelization strategies based on master-worker
patterns (e.g., WebWorkers1), which however require a share-nothing architec-
ture to preserve the semantics of the event-loop. Whenever multiple processes
need to share state (e.g., to implement a stateful Web service), the data needs
to be stored into a database or in an external repository providing the necessary
concurrency control.

Concerning the second limitation, event-based programming requires the de-
veloper to deeply understand the event-loop runtime architecture and to write
services with non-blocking mechanisms so as to break down long-running oper-
ations into multiple processing steps. Unfortunately, such mechanisms usually
involve the adoption of programming techniques (e.g., nested callbacks, closures)
which increase the complexity of developing even simple services. Moreover, while
non-blocking techniques help increasing the throughput of a service, they also
increase the latency of the responses. As a consequence, services need to be
developed by carefully balancing blocking and non-blocking operations.

As an example, consider Fig. 1. The two code snippets in the figure correspond
to two different implementations of a simple Node.JS Web service for calculat-
ing the n-th Fibonacci sequence number. The code in Fig. 1 (a) implements the
Fibonacci function using the recursive algorithm by Leonardo da Pisa, while the
one in Fig. 1 (c) implements the same algorithm exploiting non-blocking pro-
gramming (using a hybrid synchronous/asynchronous algorithm). If a request is
issued for a Fibonacci number which is greater than a fixed threshold (over which
the standard recursive algorithm is known to block the event-loop for too long),
the result is calculated using the non-blocking algorithm (fiboA). Otherwise,
the blocking recursive algorithm (fiboS) is used. The non-blocking implementa-
tion does not use the stack for the entire recursion. Instead, it generates a series
of nested events (through the nextTick runtime function call), each one corre-
sponding to a single recursive function invocation. This fragments the execution
flow of each request, as control is returned to the event-loop which can accept
other incoming requests.

A comparison of the performance of the two services is given in Fig. 1 (b). For
each implementation, a mixed workload of “light” (20th Fibonacci number) and
“heavy” (35th Fibonacci number) requests is executed; the workload amounts to
100 requests per second. For the machine used in the experiment, the threshold

1 http://dev.w3.org/html5/workers/

http://dev.w3.org/html5/workers/

Node.Scala: Implicit Parallel Programming 629

1 function f ibo S (n) {
2 i f (n<2) return n
3 else return f ibo S (n−1) +f ibo S (n−2)
4 }

5 ht tp . c r e a t e S e r v e r (function (req , res){
6 var n = req . query
7 res . end (' r e s u l t : ' + f ibo S (n))
8 }) . l i s t e n (8080)

(a) Blocking Version

Heavy(%) Bk (msg/s) NBk (msg/s)

0.00 100.0 100.0
0.05 24.4 94.2
0.10 9.8 88.9
0.15 5.1 83.6

(b) Performance Comparison

1 function fiboA (n , done) {
2 i f (n<2) done (n)
3 else process . nextTick (function () {
4 fiboA (n−1 , function (num1) {
5 process . nextTick (function () {
6 i f (n>thres hold)
7 fiboA (n−2 , function (num2){
8 done (num1+num2)
9 })
10 else done (num1+f ibo S (n−2))
11 })})})
12 }

13 ht tp . c r e a t e S e r v e r (function (req , res){
14 var n = req . query
15 i f (n>thres hold)
16 fiboA (n , function (value) {
17 res . end (' r e s u l t : '+value) })
18 else res . end (' r e s u l t : '+ f ibo S (n))
19 }) . l i s t e n (8080)

(c) Non-blocking Version

Fig. 1. Blocking (Bk) vs. Non-blocking (NBk) Fibonacci Web Service in Node.JS

has been set to 30. Experiments have been performed with different percentages
of heavy requests (up to 15%). Results show a notable difference between the
two implementations. The blocking implementation achieves only low through-
put compared to the non-blocking one, even with a low percentage of “heavy”
requests. The reason is the sequential event-loop architecture: calling the fiboS
function with values higher than the threshold keeps the event-loop blocked, thus
preventing it from processing other clients’ requests. This aspect, coupled with
the impossibility of sharing a global memory space among different processes,
constitutes a significant limitation for the development of high-throughput Web
services using Node.JS.

3 The Programming Model of Node.Scala

The programming model of Node.Scala is similar to the one of Node.JS, as it
features an implicit parallel programming model based on asynchronous call-
back invocations for the Scala language. However, blocking methods can be in-
voked without blocking the service, and concurrent requests running on different
threads can safely share state. The goal is to let developers write services using
the same assumptions (single-process event-loop) made on the Node.JS platform,
while automatically and safely carrying out the parallelization to fully exploit
multicore machines. This has the effect of freeing the developer from dealing
with the issues identified in the previous section, while keeping all the benefits
of the asynchronous programming model with implicit parallelism, overlapping
I/O- and CPU-bound operations, and lock-free synchronization.

An example of a Node.Scala Web service (Fig. 2) similar to the one com-
puting the n-th Fibonacci sequence number (Section 2) makes use of the two
distinguishing features of Node.Scala, i.e., global stateful objects and blocking

630 D. Bonetta et al.

1 def f ibo S (n : I n t) : I n t = n match {
2 case 0 | 1 => n
3 case => f ibo S (n−1) + f ibo S (n−2)
4 }
5 val cache = new NsHashMap[Int , I n t] ()
6 val server = new NsHttpServer(8080)
7 server . s t a r t (connect ion => // 1 s t c a l l b a c k
8 {
9 val n = connect ion . req . query (”n”) . as Ins tanceOf [I n t]
10 i f (cache . co nta ins (n))
11 connect ion . res . end (” r e s u l t : ” + cache . get (n))
12 else
13 server . nextTick (=> // 2nd c a l l b a c k
14 {
15 val r e s u l t = f ibo S (n)
16 cache . put (n , r e s u l t)
17 connect ion . res . end (” r e s u l t : ” + r e s u l t)
18 })
19 })

Fig. 2. Simple Stateful Web Service in Node.Scala

synchronous calls. The stateful object (cache, of type NsHashMap) is used as a
cache to store the values of previously computed requests. To perform the com-
putation, a simple blocking function call (fiboS) is used. The algorithm used is
the Scala-equivalent version of the recursive implementation from Fig. 1 (a). The
service makes also use of two callback functions. As in Node.JS, the first callback
represents the main entry point for the service, that is, the callback function that
will be triggered for every new client’s connection. The callback is passed as an
argument to the start()method (implemented in the NsHttpServer class). The
second callback used in the example is the argument to the nextTick method,
which registers the callback to perform the actual calculation and to update the
cache.

Each callback is invoked by the Node.Scala runtime whenever the correspond-
ing data is available. For instance, as a consequence of a client connection, an
HTTP request, or a filesystem access, the runtime system emits an event, which
is put into the event-queue (i.e., into the list of all pending events to be pro-
cessed). The event will then be taken from the queue by one of the threads
running the event-loop, which will invoke the corresponding callback function
with the received data passed as an argument. In this way, when a new client
request is received, the runtime calls the first user-defined callback function pass-
ing the connection object as argument. The object (created by the runtime)
can be accessed by all other nested callbacks, and holds all the details of the in-
coming request (connection.req), as well as the runtime object for generating
the answer (connection.res).

The service is stateful because the first callback uses an object with global
scoping, cache, which is not local to a specific client request (to a specific
callback), but is global and thus shared among all parallel threads running the
event loop. Node.Scala enables services to safely share state through a specific
library of common Scala data structures, which are used by the runtime system
to automatically synchronize multiple concurrent callbacks accessing the same

Node.Scala: Implicit Parallel Programming 631

shared data structure. The details of the runtime mechanisms allowing such safe
implicit parallel processing are described in Section 4.

The second callback calls a synchronous method. In common event-
loop frameworks such a blocking call would result in a temporary interrup-
tion of the event-loop, as discussed in Section 2. The parallel runtime system
of Node.Scala overcomes this limitation using its architecture based on parallel
event-loops. Therefore, blocking synchronous calls do not have a negative impact
on Node.Scala service performance as they would have in traditional frameworks.
Consequently, programmers can focus on developing the service business logic
without having to employ complex non-blocking programming techniques to
achieve scalability.

4 System Architecture

In this section we describe the system architecture (Fig. 3), focusing on the con-
structs that allow Node.Scala to safely parallelize request processing. Node.Scala
uses a single JVM process with multiple threads to execute a Web service, grant-
ing shared memory access to the threads running the parallel event-loops. As
illustrated in Fig. 3 (b), the request processing pipeline consists of tree stages:
(1) handling, (2) processing, and (3) completion.

Request Handling. Incoming HTTP connections are handled by a dedicated
server thread, which pre-processes the request header and emits an event to the
parallel event-loop to notify a new request. All the operations performed by the
HTTP server thread are implemented using the Java New I/O (NIO) API for
asynchronous I/O data processing. Since each event-loop thread has a dedicated
event-queue, the HTTP server thread adopts the join-the-shortest-queue policy
to select which queue to fill.

Request Processing. Multiple event-loop threads concurrently process events
generated by incoming requests. In particular, each event-loop thread removes
an event from its local event queue, accesses the callback table associated with
that event type, and executes the registered callbacks. New events generated by
the execution of a callback are inserted into the local event queue of the process-
ing thread. This mechanism ensures that all the events generated by a specific
request are processed sequentially, according to the event-driven programming
model. The callback table is automatically updated each time the execution
flow encounters the declaration of a new callback function (see lines 7 and 13 in
Fig. 2).

Request Completion. Responses are buffered using the end method. Once
all events generated by a request are processed, the system replies to the client
using the HTTP server thread, which also performs some post-processing tasks
(e.g., generating the correct HTTP response headers and eventually closing the
socket connection).

632 D. Bonetta et al.

Multicore hardware
NUMA or SMP

Java NIO
Request handling

JVM Memory Space

Node.Scala
stateful

components
library

Node.Scala Application

Parallel
event loop

Node.Scala HTTP Server

(a) High-level Architecture

Handling

Pre-processing

Dispatching

Callback
execution

emit(event) emit(event)

HTTP Server Thread Event loop Th. #1

Parallel event loop

Event loop Th. #n

Event #001 Callback

Event #002 Callback

...

Callbacks
Table

1

2

3
Post-processing

Callback
execution

...

...

(b) The Parallel Event-loop

Fig. 3. Overview of Node.Scala

4.1 Thread Safety

Node.Scala Web services are automatically guaranteed to be thread safe. To
this end, the runtime distinguishes between three types of requests: stateful ex-
clusive, stateful non-exclusive, and stateless. This classification depends on the
type of accesses to global variables2. If the processing of a request can trigger
the execution of a callback that writes to at least one global variable, the re-
quest is considered stateful exclusive. Similarly, if the processing of a request
can result in at least one read access to a global variable, the request is con-
sidered stateful non-exclusive. All other requests are considered stateless. As a
consequence, a stateful exclusive request cannot be processed in parallel with
other stateful requests. Instead, multiple stateful non-exclusive requests can be
executed in parallel as long as no stateful exclusive requests are being processed.
Finally, stateless requests can be executed in parallel with any other stateless
and stateful request.

To perform this classification, Node.Scala intercepts class loading by means
of the java.lang.InstrumentAPI and performs load-time analysis of the byte-
codes of each callback. Each user-defined callback is parsed by Node.Scala
to track accesses to global variables. To speedup the analysis, methods of
classes from the Node.Scala library are marked with two custom annotations:
@exclusive and @nonexclusive.

Each time the analysis classifies a new callback as stateful exclusive or stateful
non-exclusive, its bytecode is manipulated to inject all read (i.e., ReadLock) and
write (i.e., WriteLock) locks necessary to ensure thread safety3. Lock acquisition
instructions are injected at the beginning of the body of a callback, while lock

2 Accesses to final values are not considered for the classification of requests.
3 The semantics of ReadLock and WriteLock are defined in the documentation of the
standard Java class library.

Node.Scala: Implicit Parallel Programming 633

release operations are injected at the end. Therefore, the entire body is guarded
by the necessary locks. This mechanism allows the event-loop thread to try to
acquire all necessary locks at once. In case of failure, the event-loop thread can
delay the execution of the callback and process events generated by different
requests without breaking the programming model. After a predefined number
of failed attempts, the event-loop thread blocks waiting for all the locks to avoid
starvation. To prevent deadlocks, we associate a unique ID to each lock and we
sort the order of the inserted lock acquisition and release instructions accordingly.

In the worst-case scenario (i.e., all callbacks always require the acquisition
of the same set of exclusive locks) only a single event-loop thread can execute
a single request at any given time. In this case, the performance of the service
is comparable to the one of single-process, event-based frameworks that make
use of sockets to communicate between different processes (e.g., Node.JS). In all
the other cases, Node.Scala can effectively and safely parallelize the execution
of callbacks, taking advantage of all available cores to increase throughput, as
illustrated in the following section.

5 Performance Evaluation

To assess the performance of the Node.Scala runtime, we have implemented a
Web service similar to the one presented in Fig. 2. Instead of the simple Fibonacci
function, we used the entire set of CPU-bound benchmarks of the SciMark 2.04

suite, a well-known collection of scientific computing workloads. The service has
been implemented using only blocking function calls, while both stateless and
stateful services performance have been evaluated.

The machine hosting the service is a Dell PowerEdge M915 with four AMD
Opteron 6282 SE 2.6 GHz CPUs and 128 GB RAM. Each CPU consists of 8
dual-thread modules, for a total of 32 modules and 64 hardware threads. Since
threads on the same module share access to some functional units (e.g., early
pipeline stages and the FPUs), the throughput of Node.Scala is expected to scale
linearly until 32 event-loop threads. The system runs Ubuntu GNU/Linux 11.10
64-bit, kernel 3.0.0-15, and Oracle’s JDK 1.7.0 2 Hotspot Server VM (64-bit).

The runtime performance of Node.Scala is measured using a separate machine,
connected with a dedicated gigabit network connection. We use httperf-0.9.05 to
generate high amounts of HTTP requests and compute statistics about through-
put and latency of responses. For each experiment, we report average values of
five tests with a minimum duration of one minute and a timeout of 5 seconds.
Requests not processed within the timeout are dropped by the client and not
considered for the computation of the throughput.

5.1 Stateless Services

To evaluate the performance of the Node.Scala runtime with stateless requests
(i.e., with callbacks neither modifying nor accessing any global state), we have

4 http://math.nist.gov/scimark2/
5 http://code.google.com/p/httperf/

http://math.nist.gov/scimark2/
http://code.google.com/p/httperf/

634 D. Bonetta et al.

1,000 2,000
0

1,000

2,000

T
h
ro

u
g
h
p
u
t
[m

sg
/
s]

1 event-loop thread

598

1,000 2,000

2 event-loop threads

1171

1,000 2,000

4 event-loop threads
2345

650

1,300

L
a
te
n
c
y
[m

s]

4,000 10,000 16,000
0

5,000

10,000

15,000

Request rate [msg/s]

T
h
ro

u
g
h
p
u
t
[m

sg
/
s]

8 event-loop threads

4627

4,000 10,000 16,000

Request rate [msg/s]

16 event-loop threads

8288

4,000 10,000 16,000

Request rate [msg/s]

32 event-loop threads

13649

0

500

1,000

1,500 L
a
te
n
c
y
[m

s]

Fig. 4. Stateless service: throughput () and latency () depending on the arrival
rate and the number of event loop threads. The dashed reference line () indicates
linear scalability.

disabled the caching mechanism in the evaluated service. Therefore, the service
is a pure-functional implementation of the SciMark benchmark suite.

Fig. 4 illustrates the variation of throughput and latency of responses depend-
ing on the request rate and on the number of event-loop threads. The experiment
with a single event-loop thread resembles the configuration of common single-
threaded event-driven frameworks for Web services, such as Node.JS. In this
case, the throughput matches the request rate until a value of 600 requests per
second. During this interval, the latency remains below 10ms. Afterwards, the
system saturates because the single event-loop thread cannot process more re-
quests per unit time. As a consequence, the throughput curve flattens and the
latency rapidly increases to more than one second.

Experiments with larger amounts of event-loop threads follow a similar be-
havior: the latency remains small as long as the system is not saturated, and it
rapidly increases afterwards. The peak throughput measured at the saturation
point scales almost linearly with the number of event-loop threads, up to a value of
13600 msg/s with 32 threads. This confirms the ability of Node.Scala to take ad-
vantage of all available CPU cores to improve the throughput of statelessWeb ser-
vices. Our experiments also confirm that the parallel runtime of Node.Scala allows
the developer to use blocking function calls without any performance degradation.

5.2 Stateful Services

To evaluate the performance of stateful services, we enabled the caching mecha-
nism of the Node.Scala service used for the evaluation, and we have tested it with

Node.Scala: Implicit Parallel Programming 635

10 30 50 70 90
0

2

4

6

Stateful exclusive requests [%]

T
h
ro

u
g
h
p
u
t
[1
0
3
m
sg

/
s] 32 event-loop threads

Fig. 5. Stateful services: throughput of SciMarkSf1 () and SciMarkSf2 () de-
pending on the percentage of stateful exclusive requests. The reference line () refers
to the throughput achievable using a single event loop thread.

two different workloads. The first one (called SciMarkSf1) makes an extensive
use of the caching mechanism, forcing the runtime to execute either exclusive or
non-exclusive callbacks. The second one, (called SciMarkSf2) uses the caching
mechanism only to store new data. Therefore, the second workload requires the
runtime to process both exclusive and stateless callbacks.

The goal of both workloads is to assess the performance of the service in the
worse possible cases, i.e., when the service is intensively using a single common
shared object.

Fig. 5 reports the peak throughput of the two considered Web services, exe-
cuted with 32 event-loop threads, depending on the amount of stateful exclusive
requests. We do not report the values for corner cases, that is, 0% and 100%, be-
cause they are equivalent to the peak throughput presented in Fig. 4 for the cases
with 32, respectively 1, event-loop threads. As reference, we plot a line corre-
sponding to the performance with a single event-loop thread. When the number
of stateful exclusive requests is high, performance is comparable to those of tradi-
tional, single-threaded, event-driven programming frameworks. However, when
this number is smaller, Node.Scala can effectively take advantage of available
cores to achieve better throughput.

6 Related Work

Web server architectures can be roughly classified into three categories [12]:
thread-based, event-based, and hybrid [5,8]. The runtime of Node.Scala lies in
the latter category, as it uses both event-loops and threads. A similar approach
is represented by the SEDA architecture [16]. Both SEDA systems and the
Node.Scala runtime feature multiple event queues and multiple threads. How-
ever, Node.Scala features a programming framework built on top of its runtime
architecture which allows to develop stateful services, while SEDA’s focus is
only at the runtime level and does not handle state. There are several examples
of event-based Web servers [11], as well as thread-based servers [15]. A long-
running debate (e.g., [10,15]) comparing the merits of the two approaches has

636 D. Bonetta et al.

been summarized in [12]. In the same paper, an exhaustive evaluation shows
that event-based servers yield higher throughput (in the order of 18%) com-
pared to thread-based servers under certain circumstances. A previous attempt
to parallelize event-based services has been presented in [17]. The approach pro-
posed to manually annotate callbacks with color-based annotations, and then to
schedule callbacks for parallel execution according to their color. In Node.Scala
no manual intervention from the developer is needed to parallelize the service
since callbacks do not have to be annotated. Akka6 is a JVM framework for
developing scalable Web services using the Actor model. Like Node.Scala, Akka
supports HTTP and REST, as well as Java NIO. Differently, Node.Scala fea-
tures a library to share state among different client requests, while Akka relies
on Software Transactional Memory. Out of the realm of the JVM, event-based
programming is implemented in several frameworks and languages. For instance,
Ruby’s EventMachine7 allows services to be developed using the Reactor event-
loop pattern [13].

7 Conclusion

In this paper we presented Node.Scala, a programming framework and a run-
time system for the development of high-throughput Web services in Scala.
Node.Scala features an event-based programming model with implicit paral-
lelism and safe state management. Node.Scala developers have to deal neither
with abstractions such as parallel processes or threads, nor with synchronization
primitives such as locks and barriers. Instead, the developer can focus on the
service business logic, while the Node.Scala runtime takes care of the parallel pro-
cessing of concurrent requests. Services built with Node.Scala do not suffer from
limitations of single-threaded event-based frameworks like long-running blocking
methods and lack of support for shared memory. Thanks to the parallel event-
loop architecture of Node.Scala, services leverage current shared-memory multi-
core machines with both stateless (i.e., purely functional) services and stateful
ones. Stateless services exhibit controlled latency and linear scalability up to
saturation. In stateful scenarios the parallel runtime system allows Node.Scala
services to exploit a shared memory space and thus obtain better performance
compared to other single-process solutions.

Our ongoing research focuses on extending the Node.Scala library with addi-
tional objects from the Scala standard library. To this end, we are experimenting
with bytecode analysis techniques to automatically annotate Scala types with
the @exclusive/@nonexclusive annotations used by the Node.Scala runtime to
protect callback invocations. Finally, we are also consolidating the Node.Scala
approach by generalizing its runtime system in order to port the Node.Scala par-
allel event-loop system to other JVM-based functional programming languages
such as Groovy, Clojure, and Rhino JavaScript.

6 http://akka.io/
7 http://rubyeventmachine.com/

http://akka.io/
http://rubyeventmachine.com/

Node.Scala: Implicit Parallel Programming 637

Acknowledgment. This work is partially funded by the Swiss National Science
Foundation with the SOSOA project (SINERGIA grant nr. CRSI22 127386).

References

1. Bahi, J., Couturier, R., Laiymani, D., Mazouzi, K.: Java and Asynchronous Iter-
ative Applications: Large Scale Experiments. In: Proc. of the IEEE International
Parallel and Distributed Processing Symposium (IPDPS), pp. 1–7 (2007)

2. Cardellini, V., Casalicchio, E., Colajanni, M., Yu, P.S.: The State of the Art in
Locally Distributed Web-Server Systems. ACM Comput. Surv. 34, 263–311 (2002)

3. Dabek, F., Zeldovich, N., Kaashoek, F., Mazières, D., Morris, R.: Event-Driven
Programming for Robust Software. In: Proc. of the 10th ACM SIGOPS European
Workshop (EW), pp. 186–189 (2002)

4. Fielding, R.T.: Architectural Styles and the Design of Network-Based Software
Architectures. Ph.D. thesis, UCI, Irvine (2000)

5. Haller, P., Vetta, A.: Actors That Unify Threads and Events. In: Murphy, A.L.,
Ryan, M. (eds.) COORDINATION 2007. LNCS, vol. 4467, pp. 171–190. Springer,
Heidelberg (2007)

6. Kinder, K.: Event-Driven Programming with Twisted and Python. Linux J. (2005)
7. Li, P., Wohlstadter, E.: Object-Relational Event Middleware for Web Applications.

In: Proc. of the Conference of the Center for Advanced Studies on Collaborative
Research (CASCON), pp. 215–228 (2011)

8. Li, P., Zdancewic, S.: A Language-based Approach to Unifying Events and Threads.
CIS Department University of Pennsylvania (April 2006)

9. Li, Z., Levy, D., Chen, S., Zic, J.: Auto-Tune Design and Evaluation on Staged
Event-Driven Architecture. In: Proc. of the 1st Workshop on MOdel Driven De-
velopment for Middleware (MODDM), pp. 1–6 (2006)

10. Ousterhout, J.: Why Threads are a Bad Idea (for Most Purposes). In: USENIX
Winter Technical Conference (1996)

11. Pai, V.S., Druschel, P., Zwaenepoel, W.: Flash: an Efficient and Portable Web
Server. In: Proc. of the USENIX Annual Technical Conference (USENIX), p. 15
(1999)

12. Pariag, D., Brecht, T., Harji, A., Buhr, P., Shukla, A., Cheriton, D.R.: Comparing
the Performance of Web Server Architectures. In: Proc. of the 2nd ACM SIGOPS
European Conference on Computer Systems (EuroSys), pp. 231–243 (2007)

13. Schmidt, D.C., Rohnert, H., Stal, M., Schultz, D.: Pattern-Oriented Software Ar-
chitecture: Patterns for Concurrent and Networked Objects, 2nd edn. Wiley (2000)

14. Tilkov, S., Vinoski, S.: Node.js: Using JavaScript to Build High-Performance Net-
work Programs. IEEE Internet Computing 14(6), 80–83 (2010)

15. Von Behren, R., Condit, J., Brewer, E.: Why Events Are a Bad Idea (for High-
Concurrency Servers). In: Proc. of the 9th Conference on Hot Topics in Operating
Systems, vol. 9, p. 4 (2003)

16. Welsh, M., Culler, D., Brewer, E.: SEDA: an Architecture for Well-Conditioned,
Scalable Internet Services. In: Proc. of the ACM Symposium on Operating Systems
Principles (SOSP), pp. 230–243 (2001)

17. Zeldovich, N., Yip, E., Dabek, F., Morris, R.T., Mazires, D., Kaashoek, F.: Mul-
tiprocessor Support for Event-Driven Programs. In: Proc. of the USENIX Annual
Technical Conference (USENIX), pp. 239–252 (2003)

Task-Parallel Programming on NUMA Architectures�

Christian Terboven, Dirk Schmidl, Tim Cramer, and Dieter an Mey

JARA, RWTH Aachen University, Germany
Center for Computing and Communication

{terboven,schmidl,cramer,anmey}@rz.rwth-aachen.de

Abstract. The multicore era has led to a renaissance of shared memory paral-
lel programming models. Moreover, the introduction of task-level parallelization
raises the level of abstraction compared to thread-centric expression of paral-
lelism. However, tasks might exhibit poor performance on NUMA systems if
locality cannot be controlled and non-local data is accessed.

This work investigates various approaches to express task-parallelism using
the OpenMP tasking model, from a programmer’s point of view. We describe
and compare task creation strategies and devise methods to preserve locality on
NUMA architectures while optimizing the degree of parallelism. Our proposals
are evaluated on reasonably large NUMA systems with both important applica-
tion kernels as well as real-world simulation codes.

1 Introduction

Recent multi-core architectures and the availability of cost-efficient two- and quad-
socket compute nodes with large memory led to an increasing interest in shared memory
programming models, both in combination with MPI or as the sole source of
parallelism. The increasing number of cores imply a non-uniform memory access
(NUMA) to provide appropriate memory bandwidth, even on commodity x86 archi-
tectures. In a NUMA architecture, the memory is partitioned and the latency and band-
width of a memory access depend on the distance to the core from which the access oc-
curs. The thread-centric expression of parallelism, like worksharing in OpenMP, works
fine on such machines for well-structured code and evenly balanced algorithms. How-
ever, this has been found unsuitable to be applied to certain types of codes, such as
recursive algorithms, unbounded loops, or irregular problems in general. Task-level par-
allelism provides solutions for these applications and promises to provide a high level
abstraction for the programmer.

While threads can be bound to cores, or to a subset of the machine in general, re-
cent parallelization paradigms embracing tasks do not offer means to control by which
thread and on which core tasks are executed. Thus, they might exhibit poor perfor-
mance on NUMA systems if tasks are executed on a NUMA node that does not contain
the data being consumed during execution, and non-local data has to be accessed. As
OpenMP [11] has become the de-facto standard for shared memory parallelization in

� Parts of this work were funded by the German Federal Ministry of Research and Education
(BMBF) under Grant No. 01IH11006.

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 638–649, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Task-Parallel Programming on NUMA Architectures 639

HPC applications, we concentrate on the OpenMP tasking model in this work. By ob-
serving how current implementations work and execute tasks, we derive strategies for
task-parallel programming that take the data allocation on NUMA architectures into
account. We show that our patterns are successful for real-world applications by com-
paring task-parallel and thread-centric implementations on current NUMA systems.

This paper is structured as follows: Chap. 2 summarizes related work. Chap. 3 first
emphasizes our expectations on the tasking model compared to a thread-centric view of
parallelism and then explains the various patterns to express parallelism with tasks. In
Chap. 4 we discuss our observations on the behavior of task-parallel kernels on NUMA
architectures. In Chap. 5 we report our findings applying the presented patterns to real-
world applications. Chap. 6 contains our conclusions and advice to programmers.

2 Related Work

Tasking [2] has been introduced in OpenMP 3.0 to allow for the expression and ex-
ploitation of unstructured parallelism. In order to extend the OpenMP standard, a ref-
erence implementation has to be provided for every new feature, which in the case of
tasking was done at the Barcelona Supercomputing Center [15]. It was shown early
on that OpenMP tasking is able to deliver comparable performance to OpenMP work-
sharing implementations [3]. While we also compare task-parallel implementations to
worksharing, we additionally focus on the programmer’s view of how to express task-
parallelism especially on NUMA architectures. We introduce patterns for data setup/ini-
tialization as well as the actual computation and carry our findings from kernels to
real-world application codes.

Several articles deal with the efficient scheduling of OpenMP tasks on multi-core
multi-socket (NUMA) machines [10,4]. The main challenge is to reflect the system’s
memory hierarchy in the execution of the OpenMP tasks, while little or no knowledge is
present of how task are being executed inside the application. Furthermore, task-stealing
has to be applied in order to perform load balancing, which means the assignment of
tasks from an overutilized thread to an underutilized thread. However, if tasks are moved
to a different NUMA node, data of ’stolen’ tasks remain on the NUMA node of the
initialization, which then leads to remote memory accesses during task execution, as the
Linux operating system does not perform any auto-migration of memory pages. In our
work, we exploit knowledge of the implementation internals to present task generation
patterns that allow task scheduling while maintaining data locality.

3 Patterns for Task-Parallelism

Two performance-critical aspects of shared memory parallel programming are load bal-
ancing and data locality. While the execution of iterations in loop-level parallelization
can be controlled by schedule clauses and the threads in the team executing the work-
sharing construct can be bound to cores, the behavior of tasks is much less predeter-
mined by the OpenMP specification. It is specified that a task may be picked up by
any thread of the current team and that tied tasks may be suspended at so-called
task scheduling points, untied tasks at every point in time. These restrictions allow

640 C. Terboven et al.

0

50

100

150

200

0 5 10 15 20 25 30

%
 o

f a
ve

ra
ge

 w

or
k

pe
r t

hr
ea

d

Thread Numbers

dynamic static tasks single producer tasks parallel producer

Fig. 1. Distribution of loop iterations to threads with linearly increasing load

OpenMP implementors to schedule tasks in many different ways. For example, execut-
ing all tasks by the creating thread immediately after encountering the task construct
would fullfil the specification, but result in sequential execution. Pushing tasks to mul-
tiple task queues and applying work stealing approaches is a similarly valid way to han-
dle tasks. The user has no direct influence on the scheduling decisions of the OpenMP
runtime, but the scheduling has significant influence on the efficiency of a task-parallel
program.

In general, there are two different patterns of task creation:

– single-producer multiple-executors: This pattern is popular for that it often requires
little changes to code and data structures. The single construct ensures that a
code region is executed by one thread only and thus avoids data races. The thread
executing the single construct is responsible for creating all tasks of appropriate
task chunk size (tcs) and all data necessary for the computation inside the tasks
can be packed up at creation time using the firstprivate clause. The implicit
barrier at the end of the single construct waits for the termination of all tasks.

– parallel-producer multiple-executors: A parallel OpenMP for worksharing con-
struct loops over the outer iteration space with an increment specified as task chunk
size (tcs). In every iteration a task is spawned, performing the iteration over a range
of size tcs. Thus, all threads of the team executing the worksharing construct cre-
ate multiple tasks in parallel. The implicit barrier at the end of the for construct
waits for the termination of all tasks. This pattern can also be expressed without
any worksharing construct at all, as the content of a parallel region is executed by
all threads of the corresponding team and thus a task construct encountered by all
threads creates multiple tasks. Then the synchronization is performed at the end of
the parallel region, or by appropriate task synchronization contructs or an explicit
barrier.

Task-Parallel Programming on NUMA Architectures 641

Load Balancing. In order to investigate the load balancing capabilities of tasks, we
created a simple test program and used the Intel C/C++ Compiler version 12.1.2. In this
program, a loop over an array with 128,000 elements has been parallelized with a for
worksharing construct and also with two task-parallel approaches for a direct compar-
ison. In every iteration an array element is filled with a constant value. To investigate
the load balancing behavior, every array is an array itself, and the length of the inner
arrays is increasing linearly. In our experiments we record which thread performed the
work on the elements of the outer array, resulting in a mapping of work to threads. Fig. 1
shows the distribution of iterations for the parallelforworkshare variant with static
and dynamic loop schedules as well as for the task-parallel executions. All measure-
ments were carried out using 32 threads on the system described in Chap. 4, consisting
of four NUMA nodes with 32 physical cores in total. As expected, with a static
schedule the work is distributed unevenly over the threads, resulting in load imbalance.
The linearly increasing load per iteration is the ’worst case’ situation for this schedule.
It assigns 128,000 its

32 threads = 4000 iterations to every thread in which the first iterations are
computationally much less expensive than the last chunk of iterations. The dynamic
schedule distributes the load much better over all threads, which then execute between
87% and 120% of the average work. In the task-parallel single-producer version, the
first thread executes nearly no work, since it is responsible for creating all the tasks. But
the distribution of work to the other 31 threads is as good as in the dynamic schedule
variant. The parallel-producer scheme reaches a nearly even distribution of work over
all threads, close to the optimal load balancing.

Data Affinity. We also aim to understand the behavior of worksharing and task con-
structs with regard to data locality, taking the same array of arrays as described above
for our experiment setup. The data has been distributed among the NUMA nodes using
a chunk size of 4000 elements of the outer array, meaning the first 4000 elements (in-
cluding the inner arrays) reside on the NUMA node that thread 0 has been bound to. The
next chunk is on the NUMA node of thread 1, and so on. Again we recorded for every
thread the number of iterations it worked locally and remotely, the averages work (num-
ber of updates of an inner array element) are shown in Table 1. For the static sched-
ule only local accesses occur since the distribution of array elements among the threads
is exactly the same for both the initialization and the iteration phases. The dynamic
schedule and the task-parallel single-producer scheme, which both show good load bal-
ancing, lead to only about 3% of local accesses, because for both the distribution of
iterations or task, respectively, to threads is undeterministic and obviously is not the
same for the initialization and iteration phases. The parallel-producer scheme achieves
a local access rate of about 80%. Note that due to the uneven distribution of data over
NUMA nodes, ’perfect’ data locality would imply weak load balancing. The parallel-
producer pattern delivers the best compromise between load balancing and locality.

We also investigated how to employ tasks in the initialization of a sparse matrix
structure, as it appears for example in CG-type solvers, comparing to the common prac-
tice of initializing the data in a parallel loop over the matrix rows [14]. We compared
four different initialization strategies: using just one thread (serial), a static schedule
with a for workshare construct, the numactl tool to enforce a round robin page dis-
tribution over NUMA nodes when the actual initialization is performed by one thread

642 C. Terboven et al.

Table 1. Average percentage of local and remote data accesses

local iterations remote iterations
for worksharing with static schedule 100% 0%
for worksharing with dynamic schedule 3.06% 96.94%
tasks-parallel single-producer 3.10% 96,90%
tasks-parallel parallel-producer 79.51% 20.49%

only, and finally tasks to initialize the data row-wise. Again, for the tasking variants we
distinguish between the single- and the parallel-producer patterns. Fig. 2 shows that the
static schedule, the round robin and the parallel-producer strategies result in a reg-
ular page distribution while for a serial initialization the complete memory is located
on one NUMA node. However, the results also show that the single-producer pattern
leads to an irregular distribution of pages, in which most are allocated on the ’single’
node. This would lead to a serious performance degradation. The reason is that the ini-
tialization tasks are computationally very cheap and short-lived and the other threads
on NUMA node 0 - besides the one performing the task creation - execute tasks at a fast
enough pace. Task stealing does not occur in a noteworthy amount from other NUMA
nodes.

0%
25%
50%
75%

100%Node 3
Node 2
Node 1
Node 0

Fig. 2. Page distribution over the NUMA nodes after the matrix initialization

Multiple Levels of Parallelism. Composability of software components is not well-
supported in OpenMP, i.e. worksharing constructs may not be nested within the dy-
namic extend of one single parallel region. Tasks can be nested inside other tasks and a
worksharing construct as well, this particularly opens the opportunity for the parallel-
producer pattern. The nesting of parallel regions has been supported by OpenMP early
on, but only few application success stories have been reported [1]. Furthermore, nested
parallel regions introduce several problems in general and on NUMA architectures in
particular: (1) the thread teams for the inner parallel region are not guaranteed to be the
same for two consecutive calls [5], thus data affinity cannot be maintained; and (2) the
end of the inner parallel region always implies a barrier. These problems do not occur

Task-Parallel Programming on NUMA Architectures 643

with nested tasks, especially with the techniques to create tasks we discussed so far. In
Chap. 5 we show that for the FIRE code an implementation with nested tasks clearly
outperforms an implementation with nested parallel regions.

Summing Up. We have shown that both task-parallel implementations perform the
load balancing as well as OpenMP’s for workshare with the dynamic schedule, but
the parallel-producer pattern provides significantly better data locality. Tasks created in
a thread bound to a particular NUMA node are picked up for execution on the same
NUMA node, so that data locality is maintained if the same pattern is used during data
initialization and the actual computation. This observation complies with the sched-
ule strategies expressed in articles on OpenMP task implementations, as outlined in
Chap. 2. Furthermore, one can expect the parallel-producer pattern to scale better than
the single-producer in case of many small tasks, since the task creation occurs in parallel
instead of being serialized. This will be analyzed in Chap. 4.

4 Task Behavior on NUMA Architectures

In this chapter we examine the behavior of two kernels, which both employ tasks, on
a NUMA architecture. All measurements in this chapter have been performed on a
bullx s6010 compute node, equipped with four Intel Xeon X7550 processors running
at 2.0 GHz, offering 32 physical cores and 64 logical cores with hyper-threading, and
256 GB of main memory. The Intel Quickpath Interconnect (QPI) used to connect the
four sockets with each other and with I/O facilities creates a system topology with four
NUMA domains, with every NUMA node being separated from any other by just one
hop. The system is running Scientific Linux 6.1.

4.1 STREAM

The first set of experiments has been carried out with the STREAM [9] benchmark. We
picked this particular kernel to investigate effects of task-parallel implementations on
NUMA architectures for two reasons: (1) if the data initialization is not done in the right
way, the performance will be degraded significantly, as the computation performed in
the individual kernels is memory-bound; and (2) the naive worksharing implementation
delivers optimal performance if the same loop schedule is used during the data initial-
ization and the actual computation. For the sake of brevity we only discuss results from
the triad (daxpy) operation, since they are consistent with the other ones.

In Fig. 3 we compare the original parallel STREAM implementation referred to as
workshare: static-init for-loop to several task-parallel versions. The original parallel
version employs an OpenMP forworksharing construct with a static schedule both
during data initialization and the actual computation, meaning that for t threads the
arrays are divided into t parts of approximately equal size. Given four NUMA nodes
in the system and a scatter thread binding, meaning threads are spread as far apart as
possible, t

4 threads will be bound to each NUMA node. This results in an even data
distribution over all NUMA nodes in the system. And as the computation is performed
in the same manner, the number of remote accesses should be minimal. The arrays

644 C. Terboven et al.

Fig. 3. STREAM triad operation: worksharing vs. task-parallel variants

have a dimension of 256, 435, 456 double elements, which results in 1.96 GB of
memory consumption per array, or 5.87 GB of total kernel size in the triad operation.
Although the system offers 64 GB of memory per NUMA node, this kernel size is much
larger than the cumulated cache size and thus we achieve reliable measurements of the
memory bandwidth of the system. We implemented the following task-parallel variants,
in all three the task chunk size (tcs) refers to the number of iterations grouped together
in a single task:

– tasks: static-init single-producer: The data initialization is performed in the same
way as in the original parallel version. The generation of tasks is performed by one
thread only within a single construct (single-producer pattern).

– tasks: static-init parallel-producer: Again the data initialization is performed in
the same way as in the original parallel version, but now the creation of tasks is
performed in parallel (parallel-producer multiple-executors pattern).

– tasks: task-init parallel-producer: In this version both the data initialization and the
computation is performed task-parallel by applying the same pattern to both code
regions.

The results in Fig. 3 show that the worksharing version outperforms the best task-
parallel version by just 3 %. The two task-parallel variants employing the parallel-
producer pattern deliver approximately the same performance, as both distribute the
data in an optimal fashion over the NUMA nodes. The single-producer tasking version
clearly suffers from two effects: (1) the runtime cannot maintain data affinity, as all task
are created from a single NUMA node and the work-stealing will just pick arbitrary
tasks from the queue; and (2) the single thread responsible for creating the tasks cannot
completely keep the other threads executing the tasks busy. The parallel-producer pat-
tern has to be used in the data initialization and the computation so that the OpenMP
runtime is able to maintain data affinity. If only one thread creates all the tasks, the
runtime’s task-stealing mechanism cannot take the data distribution into account dur-
ing the ’stealing’ and thus the performance on NUMA systems obviously suffers. As
with the results discussed in the previous chapter, the task chunk size does not have a

Task-Parallel Programming on NUMA Architectures 645

significant influence on the performance as long as enough tasks are spawned to gen-
erate enough parallelism and as long as the work per task is computationally expensive
enough compared to the task creation and scheduling overhead.

4.2 Sparse-Matrix-Vector-Multiplication in a CG-Method

While STREAM served our purpose as a simple benchmark indicating fine differences
in the memory access pattern, the Sparse-Matrix-Vector-Multiplication (SMXV) in a
CG-Method [8] much more resembles a real-world compute kernel as part of many
PDE solvers. Depending on the problem the matrix for the system of linear equations
can be very irregular. In this case the sparse matrix vector product is a typical example of
the importance of adequate load balancing. Especially in cases where the optimal work
distribution cannot be calculated in advance, we expect task-parallel implementations to
help avoiding performance issues. On the one hand the programmer has to ensure that a
sufficient number of tasks is used to avoid load imbalance, on the other hand too many
tasks introduce additional overhead. In our CG implementation all vector operations
and the dot-product are parallelized with OpenMP for constructs. Only the SMXV is
parallelized with tasks. The work is distributed by chunks of rows and the chunk size is
the same for each task, calculated as

chunk size(tasks) =

{
�N/tasks�, if N%tasks = 0
�N/tasks�+ 1, otherwise

(1)

where N is the dimension of the square matrix and tasks the number of tasks. The
matrix used here represents a computational fluid dynamics problem (Fluorem/HV15R)
and is taken from the University of Florida Sparse Matrix Collection [6]. The dimension
is N = 2, 017, 169 and the number of nonzero values is nnz = 283, 073, 458, which
results in a memory footprint of approximately 3.2 GB. As shown in Fig. 4 the sparsity
pattern is slightly unbalanced regarding a static distribution.

Fig. 5 shows the SMXV performance when executing 1000 CG iterations. It com-
pares the effect of different initialization strategies for both tasking patterns introduced
in Chap. 3. The page distribution after the initialization of the sparse matrix correlates
with the performance results of this experiment (see Fig. 2). As shown in Fig. 5(a), we
reach a peak performance of 10 GFLOPS for the given workload. It also shows that
using a static schedule for the data initialization is much better than using serial or a
serial-producer task initialization. However, the performance for the static schedule
decreases for more than 256 tasks while the random initialization still works well for
8192 tasks, which translates to a chunk size of 247 rows. It is obvious that the num-
ber of tasks is very important to reach the best performance. If too few tasks are used
the load imbalance decreases the performance slightly. The overhead for the use of too
many tasks dominates the runtime if chunks consists of only a few rows. Fig. 5(b) shows
that for the parallel-producer pattern the peak performance reaches almost 13 GFLOPS.
The performance of the round-robin initialization (10 GFLOPS) is comparable to the
performance of the single-producer case, but the performance decline only occurs for

646 C. Terboven et al.

Fig. 4. Sparsity pattern of the matrix used in the CG-method

0
2
4
6
8
10
12
14

32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

44
52

42
88

10
48
57
6

20
17
16
9

G
FL

O
PS

Tasks

.

(a) Single-Producer Pattern

0
2
4
6
8
10
12
14

32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

44
52

42
88

10
48
57
6

20
17
16
9

G
FL

O
PS

Tasks

.

(b) Parallel-Producer Pattern

Fig. 5. Performance of the SMXV kernel within the CG-method

more than 100,000 tasks and is not that significant. This proves that the task creation
overhead in the OpenMP runtime is ’parallelized’ in the parallel-producer pattern. The
fact that results for the static schedule and the parallel-producer variants are better
shows that the programmer has a much better influence on data locality by using this
pattern.

5 Application Case Studies

In order to prove the applicability of the patterns and strategies we discussed so far,
we employed them to two real-world application codes. In this chapter we show that
our tasking implementation of TrajSearch reaches the same performane as the state of
the art worksharing implementation, and for the FIRE code it event outperforms the

Task-Parallel Programming on NUMA Architectures 647

corresponding worksharing variant. For all performance experiments in this chapter we
use a Bull BCS system consisting of four bullx s6010 system as described in Chap. 4.
The four systems are equipped with Bull’s proprietary BCS cards providing a cache-
coherent and high performant interconnect, creating a 128 core system with 16 NUMA
nodes.

5.1 Trajectory Search

TrajSearch is a code to investigate turbulences which occur during combustion. It is a
post-processing code for dissipation element analysis developed by Peters and Wang [12]
from the Institute for Combustion Technology1 at the RWTH Aachen University. It
decomposes a highly resolved 3D turbulent flow field obtained by Direct Numerical
Simulation (DNS) into non-arbitrary, space-filling and non-overlapping geometrical el-
ements called ’dissipation elements’. Starting from every grid point in the direction of
ascending and descending gradient of an underlaying diffusion controlled scalar field,
the local maximum and minimum point are found. A dissipation element is defined as
a volume from which all trajectories reach the same minimum and maximum point.

Every trajectory can be investigated independently from the others in parallel. A
version of this code was parallelized with traditional worksharing and a different version
has been parallelized with tasks. Fig. 6 (left) shows the performance results of tests done
with both versions on the NUMA system. Due to the long execution time, we restricted
our experiments to at least 16 threads. The static tests with the for worksharing
construct perform slightly worse than the dynamic workshare and the task-parallel
version. This is because the time for a single search for a trajectory is not constant, it
depends on the length of the trajectory which is unknown a priori. This leads to some
load imbalance and thus to a performance penalty when a static schedule is used.
The dynamic parallel for loop and the tasking versions perform better, since the
load is distributed among the threads more evenly. In conclusion it can be seen, that
the load balancing capabilities of tasks for this application are as good as when a for
worksharing loop with dynamic schedule is used.

5.2 FIRE

The Flexible Image Retrieval Engine (FIRE) [7] was developed at the Human Language
Technology and Pattern Recognition Group2 of RWTH Aachen University. The retrieval
engine takes a set of query images and for each query image it returns a number of sim-
ilar images from an image database. The similarity is derived from comparing various
image features. The existing parallelization of the FIRE code uses OpenMP [13] on two
nested levels. On the outer level all query images are processed in parallel and on the
inner level the comparison of one query image to the database images is also done in
parallel.

We re-implemented the parallelization using OpenMP tasks. For every query image
one task is created. Inside these tasks for every comparison of the query image to one

1 http://www.itv.rwth-aachen.de
2 http://www-i6.informatik.rwth-aachen.de

http://www.itv.rwth-aachen.de
http://www-i6.informatik.rwth-aachen.de

648 C. Terboven et al.

0
20
40
60
80
100
120
140

0

5

10

15

20

16 32 64 128

Sp
ee

du
p

Ru
nt

im
e

in
 h

ou
rs

Number of Threads
Tasks Dynamic Static
Task-Speedup Task-Dynamic Task-Static

0
20
40
60
80
100
120
140

0
50
100
150
200
250
300
350
400

1 2 4 8 16 32 64 128

Sp
ee

du
p

Ru
nt

im
e

in
 se

co
nd

s

Number of Threads
Nested Tasks
Nested-Speedup Task-Speedup

Fig. 6. Runtime and speedup of two application codes, TrajSearch (left) and FIRE (right). A
comparison of tasking versions with a parallel for loop using different schedules for TrajSearch
and with a version applying nested parallel regions for FIRE.

element of the database another task is created. Both parallel versions express the same
amount of parallelism. Our test dataset comparing both versions processes 18 query
images in a database consisting of 1000 images. The measured runtime and speedup on
the 16-socket machine are shown in Fig. 6 (right). For the nested parallel regions the
best combination of threads at the outer and inner regions has been used. E.g. the value
for 16 threads is the minimum runtime for 1:16, 2:8, 4:4, 8:2 and 16:1 threads used at
the outer:inner parallel regions.

Both versions of the code deliver nearly the same serial runtime, so the overhead
of the OpenMP constructs is in the same order of magnitude. With more threads the
tasking version outperforms the nested parallel region. For 128 threads the tasking ver-
sion reaches a nearly linear speedup of 127 on 128 threads, whereas the nested parallel
region only reaches a speedup of 85.

6 Conclusion

The introduction of task-level parallelism in OpenMP raised the level of abstraction
compared to thread-centric worksharing models, by delegating the responsibility of dis-
tributing the work among the threads to the runtime. On hierarchical NUMA architec-
tures, tasks exhibit poor performance if remote data is accessed frequently, that means
if the runtime cannot maintain data locality when selecting a thread to execute a given
task. As we have shown, if thread binding is used and the task-parallelism is expressed
using an appropriate pattern during both the data setup/initialization as well as during
the actual computation, modern OpenMP runtimes, like the one from Intel we used,
can maintain data affinity and thus achieve performance on par with state-of-the-art
worksharing implementations.

Furthermore, with the real-world application use cases we have shown that task-
ing implementations may outperform the comparable worksharing implementations.
This is particularly true for situations in which the load is not evenly balanced and a
dynamic scheduling scheme is employed, in which case tasks may offer an even finer

Task-Parallel Programming on NUMA Architectures 649

load balancing plus the ability to maintain data locality by applying the patterns pre-
sented above. This also extends to cases in which the worksharing approach is limited,
such as when OpenMP parallel regions have to be nested.

References

1. an Mey, D., Sarholz, S., Terboven, C.: Nested Parallelization with OpenMP. International
Journal of Parallel Programming 35, 459–476 (2007), 10.1007/s10766-007-0054-1

2. Ayguadé, E., Copty, N., Duran, A., Hoeflinger, J., Lin, Y., Massaioli, F., Teruel, X., Unnikr-
ishnan, P., Zhang, G.: The Design of OpenMP Tasks. IEEE Transactions on Parallel and
Distributed Systems 20(3), 404–418 (2009)

3. Ayguadé, E., Duran, A., Hoeflinger, J., Massaioli, F., Teruel, X.: An Experimental Evaluation
of the New OpenMP Tasking Model. In: Adve, V., Garzarán, M.J., Petersen, P. (eds.) LCPC
2007. LNCS, vol. 5234, pp. 63–77. Springer, Heidelberg (2008)

4. Broquedis, F., Furmento, N., Goglin, B., Wacrenier, P.-A., Namyst, R.: ForestGOMP: An
Efficient OpenMP Environment for NUMA Architectures. International Journal of Parallel
Programming 38, 418–439 (2010), doi:10.1007/s10766-010-0136-3

5. Terboven, C., an Mey, D., Schmidl, D., Jin, H., Wagner, M.: Data and Thread Affinity in
OpenMP Programs. In: Proceedings of the 2008 Workshop on Memory Access on Future
Processors: a Solved Problem?, MAW 2008, pp. 377–384. ACM (2008)

6. Davis, T.A.: University of Florida Sparse Matrix Collection. NA Digest 92 (1994)
7. Deselaers, T., Keysers, D., Ney, H.: Features for Image Retrieval - a quantitative comparison.

Information Retrieval 11(2), 77–107 (2008)
8. Hestenes, M.R., Stiefel, E.: Methods of Conjugate Gradients for Solving Linear Systems.

Journal of Research of the National Bureau of Standards 49(6), 409–436 (1952)
9. McCalpin, J.: STREAM: Sustainable Memory Bandwidth in High Performance Computers

10. Olivier, S.L., Porterfield, A.K., Wheeler, K.B., Prins, J.F.: Scheduling task parallelism on
multi-socket multicore systems. In: Proceedings of the 1st International Workshop on Run-
time and Operating Systems for Supercomputers, ROSS 2011, pp. 49–56. ACM, New York
(2011)

11. OpenMP ARB. OpenMP Application Program Interface, v. 3.1,
http://www.openmp.org

12. Peters, N., Wang, L.: Dissipation element analysis of scalar fields in turbulence. C. R.
Mechanique 334, 493–506 (2006)

13. Terboven, C., Deselaers, T., Bischof, C., Ney, H.: Shared-Memory Parallelization for
Content-based Image Retrieval. In: ECCV 2006 Workshop on Computation Intensive Meth-
ods for Computer Vision (CIMCV), Graz, Austria (May 2006)

14. Terboven, C., Spiegel, A., an Mey, D., Gross, S., Reichelt, V.: Parallelization of the C++
Navier-Stokes Solver DROPS with OpenMP. In: Joubert, G.R., Nagel, W.E., Peters, F.J.,
Plata, O.G., Tirado, P., Zapata, E.L. (eds.) PARCO. John von Neumann Institute for Com-
puting Series, vol. 33, pp. 431–438. Central Institute for Applied Mathematics, Jülich (2005)

15. Teruel, X., Martorell, X., Duran, A., Ferrer, R., Ayguadé, E.: Support for OpenMP tasks in
Nanos v4. In: Lyons, K.A., Couturier, C. (eds.) Proceedings of the 2007 Conference of the
Centre for Advanced Studies on Collaborative Research, pp. 256–259. IBM (October 2007)

http://www.openmp.org

Speeding Up OpenMP Tasking�

Spiros N. Agathos��, Nikolaos D. Kallimanis���, and Vassilios V. Dimakopoulos

Department of Computer Science, University of Ioannina
P.O. Box 1186, Ioannina, Greece, GR-45110

{sagathos,nkallima,dimako}@cs.uoi.gr

Abstract. In this work we present a highly efficient implementation of OpenMP
tasks. It is based on a runtime infrastructure architected for data locality, a cru-
cial prerequisite for exploiting the NUMA nature of modern multicore multipro-
cessors. In addition, we employ fast work-stealing structures, based on a novel,
efficient and fair blocking algorithm. Synthetic benchmarks show up to a 6-
fold increase in throughput (tasks completed per second), while for a task-based
OpenMP application suite we measured up to 87% reduction in execution times,
as compared to other OpenMP implementations.

1 Introduction

Parallel computing is quickly becoming synonymous with mainstream computing. Mul-
ticore processors have conquered not only the desktop but also the hand-held devices
market (e.g. smartphones) while many-core systems are well under way. Still, although
highly advanced and sophisticated hardware is at the disposal of everybody, program-
ming it efficiently is a prerequisite to achieving actual performance improvements.

OpenMP [13] is nowadays one of the most widely used paradigms for harnessing
multicore hardware. Its popularity stems from the fact that it is a directive-based system
which does not change the base language (C/C++/Fortran), making it quite accessible to
mainstream programmers. Its simple and intuitive structure facilitates incremental par-
allelization of sequential applications, while at the same time producing actual speedups
with relatively small effort.

The power and expressiveness of OpenMP has increased substantially with the recent
addition of tasking facilities. In particular V3.0 of the specifications include directives
that allow the creation of a task out of a given code block. Upon creation, tasks include
a snapshot of their data environment, since their execution may be deferred for a later
time or when task synchronization/scheduling directives are met. Tasking is already
supported by many commercial and non commercial compilers (e.g. [2,4,16]).

Most of these implementations rely on sophisticated runtime libraries that provide
each participating thread with private and/or shared queues to store tasks pending for

� This work has been supported in part by the General Secretariat for Research and Technol-
ogy and the European Commission (ERDF) through the Artemisia SMECY project (grant
100230).

�� S.N. Agathos is supported by the Greek State Scholarships Foundation (IKY).
��� N.D. Kallimanis is supported by the Empirikion Foundation.

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 650–661, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Speeding Up OpenMP Tasking 651

execution. Work-stealing [3] is usually employed for task scheduling, whereby idle
threads, with no local tasks to execute, try to “steal” tasks from other thread queues.
Work-stealing is a widely studied and deployed scheduling strategy, well known for its
load balancing capabilities. Efficient implementation of the work-stealing algorithm and
its related data structures is hence crucial for the performance of an OpenMP tasking
system. The associated overheads for enqueing, dequeuing and stealing tasks can easily
become performance bottlenecks limiting system’s scalability as the number of cores
keeps increasing.

In this work we present a high-performance tasking infrastructure built in the run-
time system of the OMPi OpenMP/C compiler [6]. Support for tasking was recently
added to OMPi [1], including an initial functional, albeit non-optimized, general task-
ing layer in its runtime library. Here we present a complete redesign of OMPi’s tasking
system, engineered to take advantage of modern multicore multiprocessors. The deep
cache hierarchies and private memory channels of recent multicore CPUs make such
systems behave with pronounced non-uniform memory access (NUMA) characteris-
tics. To exploit these architectures our runtime system is organized in such a way as to
maximize local operations and minimize remote accesses which may have detrimental
performance effects. This organization is coupled with a work-stealing system which
is based on an efficient blocking algorithm that emphasizes operation combining and
thread cooperation in order to reduce synchronization overheads.

We have tested our system exhaustively. Using a synthetic benchmark we reveal a
very significant— up to 6x—increase in attainable throughput (tasks completed per
second), as compared to other OpenMP compilers, thus enjoying scalability under high
task loads. At the same time applications from the BOTS tasking suite [8] experience
reduced execution times (up to 87%), again in comparison to the rest of the available
OpenMP systems.

The rest of the paper is organized as follows: in Section 2 we present OMPi and the
way it handles tasking. The organization of its optimized runtime system is presented
in detail. A key part, namely the work-stealing subsystem, is discussed separately in
Section 3. Section 4 is devoted to the experiments we performed in order to assess the
performance of our implementation and finally Section 5 concludes this work.

2 Tasking in the OMPi Compiler

OMPi [6] is an experimental, lightweight OpenMP V3.0 infrastructure for C. It consists
of a source-to-source compiler and a runtime library. The compiler takes as input C
code with OpenMP pragmas and outputs multithreaded C code augmented with calls to
its runtime library, ready to be compiled by any standard C compiler.

Upon encountering an OpenMPtask construct, the compiler uses outlining to move
the code residing within the task region to a new function. Because each task is a block
of code that may be executed asynchronously at a later time, its data environment must
be captured at the time of task creation. Thus the compiler inserts code which allocates
the required memory space, copies the relevant (firstprivate) variables and places a call
to the runtime system to create the task using the outlined function and the captured
data environment.

652 S.N. Agathos, N.D. Kallimanis, and V.V. Dimakopoulos

Fig. 1. Task queues organization. Each thread owns a circular queue (TASK QUEUE) where point-
ers to task descriptors (Td) are inserted. Each Td carries bookkeeping information, a special flag
(Exec) and a pointer to the task data.

If there exists an if clause whose condition evaluates to false or the runtime system
cannot (or selects not to) create the task, then the task must be executed immediately.
To optimize this case, the compiler produces a second copy of the task code (called
fast path), this time inlined. Local variables are declared to capture directly the data
environment and are used within the task code. In this manner, the task is executed with
almost no overheads. Depending on the runtime conditions, either the normal (outlined)
or the fast (inlined) path is executed.

2.1 Optimized Runtime

Our runtime organization is based on distributed task queues, one for each OpenMP
thread as shown in Fig. 1. These are circular queues (TASK QUEUEs) of fixed size which
is user-controlled as one of OMPi’s environment variables. When a thread meets a new
task region then it has the choice of executing it immediately or submitting it for de-
ferred execution. OMPi follows the second approach, that is our runtime uses a breadth-
first task creation policy, and the new task is stored in the thread’s local TASK QUEUE.
Whenever a thread is idle and decides to execute a task, then it dequeues a deferred task
from its TASK QUEUE. If a thread’s TASK QUEUE is empty then this thread becomes
a thief and traverses other threads queues in order to steal tasks. The manipulation
of a TASK QUEUE is a crucial synchronization point in OMPi, since multiple threads
may concurrently access it. OMPi utilizes a highly efficient work-stealing algorithm de-
scribed in the next section.

If a thread tries to store a new task in its queue and there is no space, the thread enters
throttling mode. In throttling mode newly created tasks are executed immediately and
hence the task creation policy changes to depth-first. In addition, as described above,
throttled threads utilize the fast execution path. While in throttling mode all descendant
tasks are executed immediately in the context of parent task, favoring data locality.
Notice that a suspended parent task never enters the TASK QUEUE hence it can never
be stolen by any other thread. This is to say that in OMPi all tasks are tied.

A thread’s entrance in throttling mode is one of the runtime objectives. However, a
thread operating in throttling mode does not produce deferred tasks, which results in a

Speeding Up OpenMP Tasking 653

Fig. 2. Pending, executing (stolen) and finished task. When a task is pending for execution then
corresponding entries in TASK QUEUE and PENDING QUEUE point to its Td. Upon dequeing,
only the link in TASK QUEUE is removed, freeing one slot. When the task is finished, the execut-
ing thread sets the Exec flag to announce that the descriptor can be recycled.

reduction of available parallelism. To strike a balance, before a throttled thread executes
a new task, it checks its TASK QUEUE free space. If the queue has become at least 30%
empty then throttling is disabled and task creation policy returns to breadth-first.

As shown in Fig. 1 each entry in the TASK QUEUE is a pointer to a task descriptor
(Td), which stores all the runtime information related to the task execution as well as
the task data environment. The descriptor is obtained out of the thread’s descriptor pool.
This pool contains an array of pre-allocated descriptors (in order to speed up the alloca-
tion process) and a dynamic overflow list for the case the array becomes empty. When-
ever a task finishes its execution, the corresponding Td is returned to a descriptor pool,
recycled for future reuse. A task created by a thread might be stolen and executed by
another thread in its team. When the task finishes and the descriptor must be recycled,
a decision has to be made as to which pool the descriptor should return to. If it enters
the pool of the thread that executed the task, severe memory consumption is possible in
cases where only few threads create a big number of tasks while the rest execute them.
On the other hand, this option is a local operation, enjoying lack of contention. Memory
consumption is reduced if the descriptor is put back to the task creator’s pool, and this
is what OMPi does. Notice though that synchronization needs arise since threads that
stole tasks from the same thread may try to store to its descriptor pool concurrently.

In order to avoid the aforementioned synchronization overheads, we have used a
garbage-collecting strategy, shown in Fig. 2. Each thread t maintains a private set of
pointers (PENDING QUEUE) to the task descriptors it has created and are either stored
for deferred execution or are currently executing. When a task is dequeued for execution
(e.g. because a thief stole it), the Td pointer is removed form TASK QUEUE but remains
intact in PENDING QUEUE. The descriptor contains a special flag (‘Exec’ in Fig. 1).
When the task completes its execution, the executing thread sets this flag to announce
that the descriptor can now be recycled. On specific occasions thread t traverses its
PENDING QUEUE to find Tds that represent executed tasks and returns them to its pool
for future use.

654 S.N. Agathos, N.D. Kallimanis, and V.V. Dimakopoulos

The PENDING QUEUE plays a central role in the implementation of the taskwait
and barrier constructs, too. Whenever a task meets a taskwait, it must wait un-
til the completion of all tasks it created (it is actually then that the task execution and
stealing mechanism is triggered). This completion condition is fulfilled simply when all
the descriptors in the thread’s PENDING QUEUE have been flagged as executed. Upon
meeting a barrier, a thread must wait until: (i) all its siblings reach the barrier and
(ii) all team-generated tasks are executed. For the first condition an atomic counter is
employed, getting increased by every thread reaching the barrier. For the second con-
dition each thread contiguously executes/steals pending tasks from all TASK QUEUE’s
within its team until all team PENDING QUEUEs become empty.

Our runtime design aims at using as little shared data as possible, so as to reduce
atomic operations and minimize thread synchronization. It is worth noting that in our
tasking system thread synchronization occurs only in two cases. The first is during the
unavoidable barrier construct and the second is during the work-stealing operations, as
described in the next section, for which a very fast algorithm is employed. All data
structures (e.g. Td’s in the descriptors pool) are cache line-size aligned so as to elim-
inate false sharing phenomena and avoid triggering coherency protocol actions, which
deteriorate the performance, especially in NUMA platforms.

While in OMPi each thread owns a public task queue where it stores newly created
tasks, other compilers use different organizations. In IBM XL compilers [16], a shared
task pool is associated with each parallel region where new tasks are put in the end of
the queue and threads pick up tasks from the front. In contrast, in OpenUH [4] each
OpenMP thread retains two task queues. The first queue is private and used for keeping
tied tasks, while the second is public and used to store newly created and untied tasks.
In Nanos [17], two types of queues are used. Here, a team of threads has a shared queue
for newly created and untied tasks. Furthermore, each thread owns a private local queue
used for tied tasks. A detailed comparison of many other queue organization alternatives
has been performed by Korch and Rauber [11].

3 A Fast Work-Stealing Algorithm

The work-stealing mechanism is a crucial component of an OpenMP runtime and should
thus be designed in a way to be efficient and scalable in cases of high contention.
A number of workstealing algorithms with various characteristics has been proposed,
such as Intel TBB’s AP/SP and Lazy Binary Spliting [14,15] which are targeting taks
generated by do-all loops. Cilk’s workstealing infrastructure [3] is another well-known
example; however Cilk’s runtime is not directly applicable to OpenMP since OpenMP
allows barriers among team threads. The initial implementation of OMPi tasks [1] uti-
lized a lock-free workstealing algorithm based on [5].

In many applications task creation is unbalanced and it is a very common phe-
nomenon few threads to produce many tasks and all other threads to consume them.
In such cases contention could be lowered if threads cooperated instead of competed
for obtaining the next tasks to execute. In our OpenMP tasking runtime each thread
maintains (owns) a TASK QUEUE, as explained above. A TASK QUEUE is a shared ob-
ject similar to the shared queue [12] supporting two operations: OwnerEnqueue and

Speeding Up OpenMP Tasking 655

Dequeue for inserting and removing tasks, correspondingly. OwnerEnqueue(q, t)
inserts a new task t in queue q in case there is enough free space and returns true;
otherwise, OwnerEnqueue fails and returns false. In contrast to Enqueue of a con-
ventional shared queue, OwnerEnqueue is executed only by the thread that owns q.
Dequeue is executed by any thread and removes the most early inserted task of q. Re-
cently, Fatourou and Kallimanis [10] presented CC-Synch, an object which is able to
implement (simulate) any shared object very efficiently. For example, to implement a
shared queue, it is enough to use one instance of CC-Synch and to supply the sequen-
tial code for the Enqueue and Dequeue operations. CC-Synch supports only one
operation called ApplyOp(sfunc, arg, th id); sfunc is the serial code of the operation,
arg is the argument of the operation and th id is the id of the thread that executes the
operation.

In [10], it is shown that CC-Synch significantly outperforms the state-of-the-art
synchronization techniques. This is a result of the efficient implementation of the com-
bining technique whereby, one thread (the combiner) holds a coarse lock, and addi-
tionally to the application of its own operation, serves the operations of all other active
threads. Whenever a thread executes an operation using a conventional synchronization
technique (such as spin-locks), it causes cache misses by fetching part of a shared ob-
ject’s state to the local processor cache in order to apply its operation. In the combining
technique, only the combiner fetches parts of object’s state and applies the operations of
all active threads. Therefore, a lot of cache misses are avoided and the communication
overheads among processors are much lower.

Using CC-Synch to implement an operation that is executed only by a single thread
in any point of time is rather expensive. Thus, in our work-stealing queue implementa-
tion, we designed OwnerEnqueue (which is is executed only by the owner of the
work-stealing queue) in a way that it does not make calls to ApplyOp. Thus, we
avoid making the expensive calls of CC-Synch, wherever possible. It is noticeable
that CC-Synch is better suited for cache-coherent NUMA machines, which constitute
the majority of modern multicore multiprocessors.

We now give more details for our work-stealing implementation. Our work-stealing
task queue (Fig. 3) consists of (i) a shared array of pointers to TASK structs, which is
called TASK QUEUE, (ii) a shared integer Top which points to the topmost element of
the queue, (iii) a shared integer Bottom which points to the bottommost element of the
queue, and (iv) an instance of CC-Synch. Since the OwnerEnqueue operation is
executed only by the owner of the queue, its design is simplified. Whenever a thread p
executes an OwnerEnqueue operation, it firstly executes a read on Bottom and after
that a read on Top. If there exists free space, p inserts the new task and increases Top
by one; otherwise, OwnerEnqueue returns false. Since p is the owner of the work-
stealing queue and OwnerEnqueue is executed only by the owner, p is the only thread
that modifies the shared variable Top. Therefore, no special care is needed while modi-
fying Top. Whenever p wants to execute a Dequeue operation, it first checks if at least
one element exists in the queue and in that case increases Bottom by one. Many threads
may access Bottom simultaneously, since any thread is able to execute Dequeue in
any TASK QUEUE. We implement Dequeue using an instance of the CC-Synch

656 S.N. Agathos, N.D. Kallimanis, and V.V. Dimakopoulos

typedef struct WSQueue {
int Bottom, Top;
TASK *QArray[m];
an instance of CC-Synch synchronization technique;

} WSQueue;

bool OwnerEnqueue(WSQueue *l, TASK *arg, int pid) {
int top = l->top, bottom = l->bottom;
int new_top = (top + 1) % TASKQUEUESIZE;

if (new_top == bottom) return false;
else {

l->QArray[top] = arg;
l->top = new_top;
return true;

}
}

TASK *Dequeue(WSQueue *l, int pid) { // Serial code for Dequeue, the concurrent
void *ret; // version is implemented using CC-Synch.

if (l->bottom == l->top) ret = NULL;
else {

ret = l->QArray[bottom]
l->bottom = (l->bottom + 1) % TASKQUEUESIZE;

}
return ret;

}

Fig. 3. Pseudocode for the work-stealing queue implementation

synchronization queue. Since CC-Synch is a synchronization technique that serves
operations with FIFO order, threads that execute Dequeue operations are also served
with a FIFO order. Thus, our implementation satisfies strong fairness properties.

4 Performance Evaluation

In this section we evaluate the efficiency of our OpenMP tasking implementation. A
synthetic producer/consumer benchmark was used to measure the task creation and the
task execution throughput. Furthermore, the Barcelona OpenMP Tasks suite (BOTS) [8]
was utilized in order to test our system in a broad range of task applications. All exper-
iments were run on a 16-core machine equipped with two 8-core AMD Opteron 6128
CPUs running at 2.0GHz and with a total of 16GB RAM. The system runs Debian
Squeeze based on Linux kernel 2.6.32.5. We compare the performance of our com-
piler with GNU GCC (version 4.4.5-8), Intel ICC (version 12.1.0) and Oracle SunStudio
SUNCC (version 12.2). For reference the initial unoptimized implementation of OMPi
in [1] is also included, labeled as ‘OLD’.

In [7], it is shown that choosing the appropriate limits to enable and disable task
cut-off is not an easy task. When dealing with task cut-off, it is required to have good
knowledge of application’s behavior for a specified input size, and of the runtime ’s
tasking implementation. We thus chose to deactivate all manual cut-off techniques in all
our benchmarks and let the OpenMP implementation operate under its default settings.
As far as OMPi and OLD compilers are concerned, we used the default values for the
size of TASK QUEUEs which is 24.

Speeding Up OpenMP Tasking 657

main() do_random_work()
{ {
#pragma omp parallel num_threads(nthr) volatile long i;

if(omp_get_thread_num() < nprod) {
for (int i=0;i<16E6/nprod);i++) for (i=0;i<RandomRange(0,maxload);i++)
#pragma omp task ;
do_random_work(); }

}
}

Fig. 4. Code for synthetic microbenchmark

(a) (b)

Fig. 5. Synthetic benchmark, maxload=128

We used GNU GCC with the “-O3” flag as a back-end compiler for OMPi. The cor-
responding flags for GCC, ICC and SUNCC were “-O3 -fopenmp”, “-fast -openmp” and
“-fast -xopenmp=parallel”. We experimented with a lot of other flag combinations for
all compilers but we didn’t notice significant performance differences. All experiments
were executed twelve times each, then the best and worst runs were discarded; from the
ten remaining executions average values were calculated and reported.

4.1 Synthetic Benchmark

In order to evaluate the performance of OMPi, a synthetic benchmark with a controllable
number of task producers and task consumers was used, as shown in Fig. 4. In this
benchmark, a parallel region is created and a specified number of threads (equal to
nthr) is created. Only nprod threads become producers and are allowed to create
tasks. The rest of threads simply reach the end of parallel region and become consumers
(executors) of the created tasks. Each run of the specified benchmark creates 16 ×
106 tasks, the creation of which is equally assigned to producer threads. Each task
consists of a dummy loop used to simulate workload that a task may have to execute
in a way similar to [12,9,10]. The number of iterations is a random number between 0
and maxload, a variable controlling the task granularity. Iterator variable i is annotated
as volatile in order to avoid compiler code elimination optimizations. This benchmark
aims to stress the runtime’s ability to create, steal and execute tasks.

We run several tests for different values of nthr, nprod and maxload. In Figs. 5–6
we present each implementation’s throughput, measured as the number of tasks com-
pleted per second. For Fig. 5(a) we employed one producer and nthr−1 consumers.

658 S.N. Agathos, N.D. Kallimanis, and V.V. Dimakopoulos

(a) (b)

Fig. 6. Synthetic benchmark, nthr=16

In this experiment maxload was chosen to be equal to 128, representing fine-grain
work. Some lock-free shared objects show unrealistic high performance when choosing
a maxload value equal to 0, thus it is a common benchmarking strategy [12,9,10] to
choose a small value for maxload, but not equal to 0. In this experiment, as more
threads try to steal from the task queue of the producer, task throughput decreases. This
is the result of extra synchronization overhead added, since more threads compete to get
shared access to the same TASK QUEUE. Due to the combining technique in our work-
stealing implementation, OMPi outperforms all other compilers even in cases with very
high contention and has the best scalability among them. Specifically, OMPi exhibits
up to 5 times higher task throughput (at 16 threads) compared to ICC which is ranked
as second best. The original OMPi implementation performs well only when 2 threads
are used but its throughput quickly decreases. In Fig. 5(b), we study the behavior for
different nthr values when nprod=nthr/2, while maxload is still equal to 128. The
results are similar, confirming OMPi’s superiority.

In Fig. 6(a), the performance results for different values of maxload and for a total
of 16 threads (one of which produces tasks) are displayed. In this benchmark, our run-
time exhibits higher throughput when compared to all other compilers for almost any
maxload value. For values of 8192 or less, the work that each task executes is quite
small and is overwhelmed by the contention that the work-stealing part induces. Since
OMPi exploits the combining technique in its work-stealing queue, the synchronization
overheads between threads are vastly minimized and the performance advances a lot.
We achieved a little more that 6 times better performance compared to ICC and even
better compared to GCC and SUNCC when application produces fine-grain tasks. When
the task’s granularity becomes coarser (maxload values greater than 8192), synchro-
nization overheads between threads are not a bottleneck anymore and all compilers
tend to exhibit similar behavior. Similar observations can be made with the results in
Fig. 6(b), where 8 out of the 16 threads produce tasks for different values of maxload.
For maxload values between 0 and 256 our new runtime achieves from 2.6 to 1.8 times
higher throughput than the second best (ICC).

Speeding Up OpenMP Tasking 659

4.2 Performance of the BOTS Application Suite

The Barcelona OpenMP Tasks Suite (BOTS) v.1.1.1 was used for evaluating our tasking
environment’s efficiency in a wide range of tasking scenarios. Due to space limitations
we present detailed results for the Fib, NQueens and Floorplan applications, while a
brief discussion is made for Alignment, FFT, Health, Sort, SparseLU and Strassen. In
order for every compiler to have full scheduling opportunities, we run both the tied
and the untied task versions of the applications (while OMPi always utilizes tied tasks).
We report the best execution times observed, although there were no significant perfor-
mance differences as noted also in [8].

The Fib application computes the nth Fibonacci number using a recursive paralel-
lization producing a very large number of fine-grain tasks. In Fig. 7, execution time
results for the the 40th Fibonacci number are shown. Since it was a very common phe-
nomenon for OMPi to outperform some compilers by a factor of ten or more, a logarith-
mic scale is used in y-axis. OMPi appears to be from 4 to 8 times faster than ICC and
20 to 80 times faster than the original (OLD) implementation. Since Fib exploits nested
task parallelization which creates a deep tree of small tasks, it is a common phenome-
non some threads to fill their queues. OMPi has a significant performance advantage by
leveraging the new work-stealing implementation and the fast execution path produced
by the compiler; task load is quickly balanced between threads, and the application
delves into throttling mode. Moreover, OMPi, along with ICC, scales up with the num-
ber of threads.

NQueens calculates all the solutions of the n-queens chessboard problem. It uses a
backtracking search algorithm with pruning that creates unbalanced tasks. Similarly to
Fib, Nqueens exploits nested task parallelization which creates a deep tree of tasks. In
the NQueens benchmark displayed in Fig. 8, for an input of 14 queens we get similar
results to Fib and OMPi gives the best times. OMPi is up to 2 times faster than OLD and
up to 3 times faster than ICC(not shown clearly in the logarithmic scale).

Floorplan calculates the optimal floor plan distribution of a number of cells. Tasks are
hierarchically generated for each branch of the solution space. This application induces
many data synchronizations and comes with a very irregular and aggressive pruning
mechanism, which results in a heavily unbalanced task tree. Fig. 9 displays results of
the application when the input.20 file is used; ICC is not included here because the
application could not compile properly with this compiler. OMPi achieves the fastest
times and our original implementation follows. Since Floorplan generates deep nested
tasks, OMPi performs well due to the the work-stealing implementation along with the
efficient fast path execution. SUNCC cannot exhibit speed-up, while GCC experiences
significant slow-down when more threads are used.

Results from the rest of BOTS applications are given in Table 1, for the case of
16 threads. In this table we included results from OMPi when using ICC as back-end
compiler, which in many situations produces faster code for the sequential part of the
application. In FFT, SparseLU, Strassen and Alignment applications OMPi with ICC as
backend proves to be faster, while performing second best only in two applications with
very small margins (3% in Sort and 0.2% in Health). ICC has the best behavior in Health
application, while our OLD system is the fastest as far as the Sort application is con-
cerned. Thus, OMPi proves to perform consistently well in many different application

660 S.N. Agathos, N.D. Kallimanis, and V.V. Dimakopoulos

Fig. 7. Fibonacci Fig. 8. Nqueens

Fig. 9. Floorplan

Table 1. Execution time (sec) of BOTS using 16
threads

Compiler FFT Health Sort SpLU Str. Align.

GCC 17.571 141.85 2.007 1.679 24.602 1.576
ICC 2.086 4.778 0.621 1.676 20.641 1.338
SUNCC 2.473 15.694 0.652 1.835 21.619 1.218
OLD 2.086 7.114 0.591 1.766 21.589 1.587
OMPi 1.918 5.327 0.610 1.668 22.368 1.604
OMPi ICC 1.889 4.787 0.621 1.667 20.524 0.957

scenarios, and especially when it uses an efficient back-end compiler, giving it a seri-
ous performance advantage. In general, ICC and SUNCC perform quite well with few
exceptions. The version of GCC we had available does not perform up to par.

5 Conclusion

We present a highly optimized implementation of OpenMP tasking in the context of the
OMPi compiler. The implementation is based on a carefully designed runtime system
that emphasizes locality and operation combining while minimizing remote accesses
which have detrimental performance effects in modern NUMA multicore multiproces-
sors. As a result, our system exhibits excellent scalability for high task loads and im-
pressive improvement in actual application execution times, where OMPi was shown to
offer competitive performance in comparison to other OpenMP implementations.

Currently we are working on analyzing the performance impact of the different por-
tions of our runtime system and optimizing OMPi even more for some corner cases. We
also work on supporting the recently released V3.1 of the OpenMP specifications [13]
which offer even more opportunities for fast execution through the new mergeable
and final clauses. Our preliminary experiences confirm the performance potential.

Speeding Up OpenMP Tasking 661

References

1. Agathos, S.N., Hadjidoukas, P.E., Dimakopoulos, V.V.: Design and Implementation of
OpenMP Tasks in the OMPi Compiler. In: Proc. PCI 2011, 15th Panhellenic Conference
on Informatics, pp. 265–269. IEEE, Kastoria (2011)

2. Ayguadé, E., Duran, A., Hoeflinger, J., Massaioli, F., Teruel, X.: An Experimental Evaluation
of the New OpenMP Tasking Model. In: Adve, V., Garzarán, M.J., Petersen, P. (eds.) LCPC
2007. LNCS, vol. 5234, pp. 63–77. Springer, Heidelberg (2008)

3. Blumofe, R.D., Joerg, C.F., Kuszmaul, B.C., Leiserson, C.E., Randall, K.H., Zhou, Y.: Cilk:
An Efficient Multithreaded Runtime System. J. Parallel Distrib. Comput. 37(1), 55–69 (1996)

4. Addison, C., LaGrone, J., Huang, L., Chapman, B.: OpenMP 3.0 tasking implementation in
OpenUH. In: Proc. Open64 Workshop in Conjunction with the Int’l Symposium on Code
Generation and Optimization, Seattle, USA (March 2009)

5. Chase, D., Lev, Y.: Dynamic circular work-stealing deque. In: Proc. SPAA 2005, 17th Annual
ACM Symposium on Parallelism in Algorithms and Architectures, pp. 21–28. ACM, Las
Vegas (2005)

6. Dimakopoulos, V.V., Leontiadis, E., Tzoumas, G.: A portable C compiler for OpenMP V.2.0.
In: Proc. EWOMP 2003, 5th European Workshop on OpenMP, Aachen, Germany, pp. 5–11
(September 2003)

7. Duran, A., Corbalán, J., Ayguadé, E.: Evaluation of OpenMP Task Scheduling Strategies.
In: Eigenmann, R., de Supinski, B.R. (eds.) IWOMP 2008. LNCS, vol. 5004, pp. 100–110.
Springer, Heidelberg (2008)

8. Duran, A., Teruel, X., Ferrer, R., Martorell, X., Ayguadé, E.: Barcelona OpenMP Tasks
Suite: A Set of Benchmarks Targeting the Exploitation of Task Parallelism in OpenMP. In:
Proc. ICPP 2009, 38th Int’l Conference on Parallel Processing, Vienna, Austria, pp. 124–131
(September 2009)

9. Fatourou, P., Kallimanis, N.D.: A highly-efficient wait-free universal construction. In: Proc.
SPAA 2011, Proceedings of the 23rd ACM Symposium on Parallelism in Algorithms and
Architectures, pp. 325–334. ACM, San Jose (2011)

10. Fatourou, P., Kallimanis, N.D.: Revisiting the combining synchronization technique. In:
Proc. PPoPP 2012, 17th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, pp. 257–266. ACM, New Orleans (2012)

11. Korch, M., Rauber, T.: A comparison of task pools for dynamic load balancing of irregular
algorithms: Research Articles. Concurr. Comput.: Pract. Exper. 16(1), 1–47 (2003)

12. Michael, M.M., Scott, M.L.: Simple, fast, and practical non-blocking and blocking concur-
rent queue algorithms. In: Proc. PODC 1996, 15th Annual ACM Symposium on Principles
of Distributed Computing, pp. 267–275. ACM, Philadelphia (1996)

13. OpenMP ARB: OpenMP Application Program Interface V3.1 (July 2011)
14. Reinders, J.: Intel threading building blocks, 1st edn. O’Reilly & Associates, Inc., Sebastopol

(2007)
15. Tzannes, A., Caragea, G.C., Barua, R., Vishkin, U.: Lazy binary-splitting: a run-time adap-

tive work-stealing scheduler. In: Proc. PPoPP 2010, 15th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, pp. 179–190. ACM, Bangalore (2010)

16. Teruel, X., Unnikrishnan, P., Martorell, X., Ayguade, E., Silvera, R., Zhang, G., Tiotto, E.:
OpenMP tasks in IBM XL compilers. In: Proc. CASCON 2008, 2008 Conference of the Cen-
ter for Advanced Studies on Collaborative Research, Ontario, Canada, pp. 207–221 (October
2008)

17. Teruel, X., Martorell, X., Duran, A., Ferrer, R., Ayguadé, E.: Support for OpenMP tasks in
Nanos v4. In: CASCON, pp. 256–259 (2007)

An Efficient Unbounded Lock-Free Queue

for Multi-core Systems

Marco Aldinucci1, Marco Danelutto2, Peter Kilpatrick3,
Massimiliano Meneghin4, and Massimo Torquati2

1 Computer Science Department, University of Torino, Italy
aldinuc@di.unito.it

2 Computer Science Department, University of Pisa, Italy
{marcod,torquati}@di.unipi.it

3 Computer Science Department, Queen’s University Belfast, UK
p.kilpatrick@qub.ac.uk

4 IBM Dublin Research Lab, Ireland
massimiliano meneghin@ie.ibm.com

Abstract. The use of efficient synchronization mechanisms is crucial for
implementing fine grained parallel programs onmodern shared cachemulti-
core architectures. In this paper we study this problem by considering
Single-Producer/Single-Consumer (SPSC) coordination using unbounded
queues. A novel unbounded SPSC algorithm capable of reducing the row
synchronization latency and speeding up Producer-Consumer coordina-
tion is presented. The algorithm has been extensively tested on a shared-
cache multi-core platform and a sketch proof of correctness is presented.
The queues proposed have been used as basic building blocks to imple-
ment the FastFlow parallel framework, which has been demonstrated to
offer very good performance for fine-grain parallel applications.

Keywords: Lock-free algorithms, wait-free algorithms, bounded and
unbounded SPSC queues, cache-coherent multi-cores.

1 Introduction

In modern shared cache multi-core architectures the efficiency of synchroniza-
tion mechanisms is the cornerstone of performance and speedup of fine-grained
parallel applications. For example, concurrent data structures in multi-threaded
applications require synchronization mechanisms which enforce the correctness
of concurrent updates. They typically involve various sources of overhead which
have an increasingly significant effect on performance with increasing parallelism
degree and decreasing synchronization granularity.

In this respect, mutual exclusion using lock/unlock, is widely considered exces-
sively demanding for high-frequency synchronisations [1]. Among other methods,
lock-free algorithms for concurrent data structures are the most frequently tar-
geted. These algorithms have been devised by way of a hardware-implemented
class of atomic operations — so-called CAS, because of its paradigmatic mem-
ber Compare-and-Swap — in order to avoid an explicit consensus that would

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 662–673, 2012.
� Springer-Verlag Berlin Heidelberg 2012

An Efficient Unbounded Lock-Free Queue for Multi-core Systems 663

increase the overhead for data accesses [2,3,4,5,6]. Unfortunately, CAS opera-
tions are not inexpensive since they might fail to swap operands when executed
and may be re-executed many times, thus introducing other sources of poten-
tial overhead, especially under high contention [1]. Furthermore, without explicit
consensus among parallel entities, the problem of correct memory management
arises for dynamic concurrent data structures because of the complexity in track-
ing which chunk of memory is really in use at a given time. In general, lock-free
dynamic concurrent data structures that use CAS operations should be sup-
ported by safe memory reclamation techniques in programming environments
without automatic garbage collection [7].

In this work we study the synchronization problem for the simplest concur-
rent data structure: the Single-Producer/Single-Consumer (SPSC) queue. SPSC
queues are widely used in many application scenarios: their efficiency can boost
performance in terms of both latency and scalability to a non-negligible degree.
In particular, SPSC-based synchronisations are used both in the implementation
of high-level and completely general models of computation based on streams
of tasks [8], and in a number of parallel frameworks as basic building blocks
[9,10,11].

SPSC queues can be classified in two main families: bounded and unbounded.
Bounded SPSC queues, typically implemented on top of a circular buffer, are
used to limit memory usage and avoid the overhead of dynamic memory alloca-
tion. Unbounded queues are mostly preferred to avoid deadlock issues without
introducing heavy communication protocols in the case of complex streaming
networks, i.e. graph with multiple nested cycles. Bounded SPSC queues have
been studied extensively since the emergence of the first wait-free algorithm pre-
sented by Lamport in the late 1970s [12]. More recently, some research work
[13,14] revisited the Lamport queue, introducing a number of cache optimiza-
tions. On the other hand, unbounded SPSC queues, which are not any less
relevant, have attracted less attention, resulting in quite a gap between the two
SPSC families.

With the aim of filling this gap, we introduce and analyze here a novel al-
gorithm for unbounded lock-free SPSC FIFO queues which minimizes the use
of dynamic memory allocation. Furthermore, we provide a new implementation
for the widely used dynamic list-based SPSC queue, along with proof sketches
of correctness for both algorithms. Their performance is evaluated on synthetic
benchmarks and on a simple yet relevant microkernel. The performance and the
benefits deriving from the use of our SPSC queue when programming complete
and complex application have already been assessed in [15,16].

The paper is organized as follows: Section. 2 provides the relevant background
and related work discussing the reference implementations of the SPSC queue
for shared-cache multi-cores. Section 3 introduces the list-based unbounded al-
gorithm (dSPSC), while in Sec. 4 a novel algorithm for the unbounded queue
(uSPSC) is presented, together with a proof sketch of its correctness. Perfor-
mance results are discussed in Sec. 5. Section 6 summarizes the contribution of
the work.

664 M. Aldinucci et al.

2 Producer-Consumer Coordination Using SPSC Queues:
Background and Related Work

Producer-Consumer coordination is typically implemented by means of a FIFO
queue, often realized with a circular buffer. Lamport proved that, under the
Sequential Consistency (SC) memory model [12], a SPSC buffer can be imple-
mented using only read and write operations [17]. Lamport’s circular buffer is
a wait-free algorithm, i.e. it is guaranteed to complete after a finite number of
steps, regardless of the timing behavior of other operations. Another important
class of algorithms are the lock-free algorithms, which enforce a weaker property
than wait-free: they guarantee that at any time at least one process will make
progress, although fairness cannot be assumed.

Lamport’s circular buffer algorithm is no longer correct if the SC requirement
is relaxed. This happens, for example, in all architectures where write-to-write
memory ordering (W →W using the notation of [18]) is relaxed, i.e. two distinct
writes at different memory locations may be executed out of program order (as
in the Weak Ordering memory model [18]). A few modifications to the basic
Lamport algorithm allow correct execution even under weakly ordered memory
consistency models; they have been presented first and proved formally correct
by Higham and Kavalsh [19]. The idea behind the Higham and Kavalsh queue
basically consists in tightly coupling control and data information into a single
buffer operation by extending the data domain with a new value called BOT-
TOM, which cannot be inserted into the queue. The BOTTOM value can be
used to denote an empty cell, and then used to check if the queue is empty or
full without directly comparing the indexes of the queue’s head and tail.

Ten years later Giacomoni et al. [13] followed a similar line by proposing
the same basic algorithm and studying its behavior in cache-coherent multi-
processor systems. As a matter of fact, Lamport’s queue results in heavy cache
invalidation/update traffic because both producer and consumer share both head
and tail indexes1. This can be avoided, as already noted in [19], by using a
BOTTOM value that makes it possible for the producer to write and read only
the tail and for the consumer to write and read only the head indexes. Since this
technique applies nicely to data pointers where NULL is the BOTTOM value,
Giacomoni et al. proved that on weakly ordered memory model, a Write Memory
Barrier (WMB) is actually required to enforce completion of the data write
by the producer before the data pointer is passed to the consumer2. Figure 1
presents an implementation of the SPSC algorithm proposed in [13] which may
be regarded as the reference algorithm for bounded SPSC queues.

Avoiding cache-line thrashing due to false-sharing is a critical aspect in shared-
cache multiprocessors and thus much research has been focused on trying to
minimize this effect. In [13] the authors present a cache slipping technique suit-
able for avoiding false sharing on true dependencies (i.e. pointers stored within

1 The producer updates the tail index, the consumer updates the head index, and
both the producer and the consumer read both head and tail indexes.

2 WMB is also referred to as store-fence.

An Efficient Unbounded Lock-Free Queue for Multi-core Systems 665

1 bool push(void� data) {
2 if (buf[pwrite]==NULL) {
3 WMB(); // write−memory−barrier
4 buf[pwrite] = data;
5 pwrite+=(pwrite+1>=size)?(1−size):1;
6 return true;
7 }
8 return false;
9 }

10 bool pop(void�� data) {
11 if (buf[pread]==NULL)
12 return false;
13 �data = buf[pread];
14 buf[pread]=NULL;
15 pread+=(pread+1>=size)?(1−size):1;
16 return true;
17 }

Fig. 1. SPSC circular buffer implementation as proposed in [13], where buf is an array
of size size initialized to NULL values

queue cells) and for enforcing partial filling of the queues in such a way that
producer and consumer operate on different cache lines.

A different approach for optimizing cache usage, named cache line protection,
has been proposed in MCRingBuffer [14]. The producer and consumer thread
update private copies of the head and tail indexes for several iterations before
updating a shared copy. Furthermore, MCRingBuffer performs batch update
of control variables, thus reducing the frequency of writing the shared control
variables to main memory. A variation of the MCRingBuffer approach is used
in the Liberty Queue [20]. The Liberty Queue shifts most of the overhead to the
consumer end of the queue. Such customization is useful in situations where the
producer is expected to be slower than the consumer.

Unbounded SPSC queues have not benefited from a similar optimization effort
and, to the best of our knowledge, have been approached only through the more
general and more demanding CAS-based Multiple-Producer/Multiple-Consumer
(MPMC) queues.

3 Basic Unbounded List-Based Wait-Free SPSC Queue

A way to design a SPSC queue is to use as a starting point the well-known two-
lock Multi-Producer/Multi-Consumer (MPMC) queue described by Michael and
Scott (MS) [6]. The MS queue is based on a dynamically linked list of Node(s)
data structure, using head and tail pointers which (both) initially point to a
dummy Node (i.e. containing NULL values). The Node structure contains the
actual user value and a next pointer. Concurrency between multiple producers
is managed by a lock for enqueue operations and symmetrically consumers use
a different lock for dequeue operations.

Inspired by the MS queue, we propose a new unbounded SPSC queue whose
algorithm is sketched in Fig. 2 (where lines �2.�� and �2.�� can be safely ignored
here at the moment as they introduce a further optimization that is described
later in this section)3. The push method allocates a new Node data structure,
fills it and then adjusts the tail pointer to point to the current Node. The pop

method gets the current head Node, places the data values into the application
buffer, adjusts the head pointer and, before exiting, deallocates the head Node.

3 We use the �M.n notation to reference line n from the pseudo-code in Fig. M.

666 M. Aldinucci et al.

1 struct Node {
2 void� data;
3 struct Node� next;
4 };
5 Node� head,� tail;
6 SPSC cache;

8 bool push(void� data) {
9 Node� n;

10 if (!cache.pop(&n))
11 n = (Node�)malloc(sizeof(Node));
12 n−>data = data; n−>next = NULL;
13 WMB(); // write−memory−barrier

14 tail−>next = n; tail = n;
15 return true;
16 }

18 bool pop(void�� data) {
19 if (!head−>next) return false;
20 Node� n = head;
21 �data = (head−>next)−>data;
22 head = head−>next;
23 if (!cache.push(n)) free(n);
24 return true;
25 }

Fig. 2. Unbounded list-based dSPSC queue implementation with Node(s) caching. The
list is initialized with a dummy Node.

In general, one of the main problems with the list-based implementation of
queues is the overhead associated with dynamic memory allocation/deallocation
of Node structures. To mitigate the overhead, it is common to use a data struc-
ture as cache, where elements are kept for future fast reuse, instead of being
deallocated [21].

For a more tailored optimization, the specific allocation pattern can be taken
into account: the producer only allocates while the consumer only frees nodes. To
take advantage of this pattern, we add a bounded wait-free SPSC queue imple-
menting a Node cache, which is used to sustain a “return” path from consumer
to producer of Node structures that can be reused.

The introduced optimization clearly moves allocation overhead outside the
critical path at the steady state. The resulting algorithm, called dSPSC, is shown
in Fig. 2; line �2.�� and line �2.�� introduce the proposed cache optimization.

Along with some standard definitions we now provide, for the presented
dSPSC, a sketch proof of FIFO queue correctness and the lock-freedom property.

Definition 1 (Correctness). Assuming that simple memory read and write
operations are atomic, a SPSC queue is defined as correct if it always exhibits
FIFO behavior for any interleaving of push and pop operations.

Note that the condition that simple memory reads and writes are atomic is
typically satisfied in any modern general-purpose processor for aligned memory
word loads and stores.

Theorem 1 (dSPSC). Under a weak consistency memory model, the dSPSC
queue defines a correct lock-free SPSC FIFO queue if a lock-free allocator is used.

Proof (Sketch). In a sequentially consistent model, correctness of the dSPSC
derives trivially from correctness of the two-lock MS queue (where the two locks
have been removed as there is no concurrency between producers or between
consumers) and of the bounded SPSC queue used for the Node cache [13].

Moving to a weak memory model, the bounded SPSC queue is still correct
([13]) while the memory barrier at line �2.�� guarantees correctness regarding

An Efficient Unbounded Lock-Free Queue for Multi-core Systems 667

the dynamic linked list management. Indeed, all changes to the structure of Node
n as well as to the memory pointed by data have to be committed to memory
before the node itself can be visible to the consumer (i.e. before the tail is set
to point at the new node). It is trivial to see that, similar to what happens with
the SPSC queue in [13], no other store fence is required inside the push and pop
methods under weakly ordered memory model.

Concerning the lock-free property, the strategy that is used by dSPSC for the
memory management is lock-free because the allocator is lock-free by hypothesis
and the SPSC used as a cache is lock-free by construction. As the rest of the
dSPSC algorithm does not present any statement where producer or consumer
can block, progress is guaranteed. ��

4 Fast Unbounded Lock-Free SPSC Queue

The SPSC algorithm [19,13], described in Sec. 2, is extremely fast (see Sec. 5)
but implements a bounded queue. The dSPSC algorithm, presented in Sec 3, is
lock-free and realizes an unbounded queue, but pays for the flexibility achieved
via a list-based implementation with decreased spatial locality in cache behav-
ior. However, the two approaches can be combined in a new lock-free algorithm
for the unbounded SPSC (called uSPSC) inheriting the best features of both.
The new algorithm is sketched in Fig. 3. The basic idea underpinning uSPSC is
the nesting of the two queues. A pool of SPSC bounded queues (called buffers
from now on) is linked together into a list as a dSPSC queue. The implemen-
tation of the pool of buffers aims to minimize the impact of dynamic memory
allocation/deallocation by using a fixed-size SPSC queue as a freelist as in the
list-based dSPSC queue.

The unbounded queue uses two pointers: buf w which points to the writer’s
buffer (i.e. the “tail” pointer), and buf r which points to the reader’s buffer (i.e.
the “head” pointer). Initially both buf w and buf r point to the same buffer.

The push method works as follows: the producer first checks whether the
current buffer is not full (line �3.�), and then pushes the data. If the current
buffer is full, it asks the pool for a new buffer (line �3.�), adjusts the buf w

pointer and pushes the data into the new buffer.
The pop method, called by the consumer, first checks whether the current

buffer is not empty and if so pops data from the queue. If the current buffer
is empty, there are two possibilities: a) there are no items to consume, i.e. the
unbounded queue is really empty; b) the current buffer is empty (i.e. the one
pointed by buf r), but there may be some items in the next buffer.

If the buffer is empty for the consumer, it switches to a new buffer releasing
the current one to be recycled by the buffer pool (lines �3.��–�3.��). From the
consumer viewpoint, the queue is really empty when the current buffer is empty
and both the read and write pointers (buf r and buf w, respectively) point to
the same buffer. If the read and writer queue pointers differ, the consumer has
to re-check the current queue emptiness because in the meantime (i.e. between
the execution of instructions �3.�� and �3.��) the producer could have written

668 M. Aldinucci et al.

1 int size = N; //SPSC size

3 bool push(void� data) {
4 if (buf w−>full())
5 buf w = pool.next w();
6 buf w−>push(data);
7 return true;
8 }

10 bool pop(void�� data) {
11 if (buf r−>empty()) {
12 if (buf r == buf w) return false;
13 if (buf r−>empty()) {
14 SPSC� tmp = pool.next r();
15 pool. release (buf r) ;
16 buf r = tmp;
17 }
18 }
19 return buf r−>pop(data);
20 }

22 struct Pool {
23 dSPSC inuse;
24 SPSC cache;

26 SPSC� next w() {
27 SPSC� buf;
28 if (!cache.pop(&buf))
29 buf = allocateSPSC(size);
30 inuse.push(buf);
31 return buf;
32 }
33 SPSC� next r() {
34 SPSC� buf;
35 return (inuse.pop(&buf)? buf : NULL);
36 }
37 void release(SPSC� buf) {
38 buf−>reset(); // reset pread and pwrite
39 if (!cache.push(buf)) deallocateSPSC(buf);
40 }
41 }

Fig. 3. Unbounded lock-free uSPSC queue implementation

some new elements into the current buffer before switching to a new one. This
is the most subtle condition whose occurrence must be proved to be impossible
since, if the consumer switches to the next buffer while the previous one is not
really empty, a data loss will occur. In the next section we prove that the if

condition at line �3.�� is sufficient to ensure correct execution.

Theorem 2 (uSPSC). The uSPSC unbound queue given in Fig. 3 is correct
(according to Def. 1) on architectures with Weak Ordering consistency model
(and therefore with any stricter ordering).

Proof (Sketch). The SPSC and the dSPSC queues used as building blocks have
been proven to be correct under Weak Ordering (WO) consistency and stricter
models (e.g. Total Store Ordering) in [19,13] and Theorem 1, respectively.

We distinguish four cases with respect to the values of buf r and buf w used
by producer and consumer (respectively): buf r and buf w are 1) equal or 2)
different throughout execution of a push/pop pair; 3) they are different and
become equal; or 4) they are equal and become different. In case 1) uSPSC is
correct because of the correctness of the underlying SPSC. In case 2) uSPSC is
correct because the producer and consumer work on different SPSC buffers and
correctness follows from the correctness of the underlying dSPSC. In case 3 the
consumer catches up with the producer: correctness follows because, when buf w

was assigned (line �3.�), that assignment will have been preceded by the issue of
a WMB within the dSPSC push that commits all values of the previous buffer
(allowing them all to be read by the consumer before it advances buf r).

Case 4 is more subtle: here the two buffers are equal and become different
when the producer observes that buf w is full and prompts a move to a new
write buffer. The concern is that, because of WO, in the case where the SPSC
buffer size = 1 the consumer may see the buffer as empty and release it before

An Efficient Unbounded Lock-Free Queue for Multi-core Systems 669

a write to it has been committed, thus causing data loss. We prove that this
cannot happen and the FIFO ordering is preserved.

Under WO model the consumer may be aware that the producer has changed
the write buffer only after a synchronization point that enforces program order
between two store operations has been traversed. In our algorithm the synchro-
nization point is the WMB. In fact, the new value of buf w (line �3.�) and the
value that is written to the buffer might appear in memory in any order or not
at all. Thus it might be thought possible that the reading buffer buf r could still
be perceived as empty while a new writing buffer has already been started (thus
buf r �= buf w); the condition at line �3.�� could therefore evaluate to true even
if the previous buffer is not actually empty. This condition could lead to data
loss because the consumer might overtake and abandon a buffer still holding a
valid value. In the uSPSC this subtle case can never arise however, because, in
order to change the write buffer, a push operation in the dSPSC queue is called
(�3.��) thus enforcing a WMB, which commits all previous writes to memory,
and so the if condition at line �3.�� is evaluated to true only if the consumer
buffer is really empty. FIFO ordering is trivially enforced by the FIFO ordering
of both nested queues dSPSC and SPSC queues. ��

It is worth noticing that, regardless of the implementation of the pool used in
the uSPSC queue, if size > 1 (line �3.�) the two conditions buf r incorrectly
perceived empty and buf r �= buf w, cannot hold together as at least two push
and one WMB must occur to make an empty queue become a full queue.

Corollary 1 (lock-free). The uSPSC queue is lock-free provided a lock-free
allocator is used.

Proof (Sketch). The SPSC queue, and the dSPSC queue coupled with a lock-free
allocator, are lock-free. Suppose we use a lock-free allocator in the allocateSPSC
and in deallocateSPSC. As the push and pop methods contain no cycle nor can
they block on any non lock-free function, progress is assured. ��

Enhancing the queues to wait-freedom property. It can be demonstrated
that the SPSC queue proposed in [13] as well as the dSPSC when a wait-free
allocator is used, are both wait-free. The uSPSC is wait-free if a wait-free dSPSC
queue is used and if a wait-free allocator is used in the pool: in fact both the
push and pop methods complete in a bounded number of steps.

5 Experiments

All experiments reported in this section have been conducted on an Intel work-
station with 4 eight-core double context Xeon E7-4820 @2.0GHz with 18MB
L3 shared cache, 256K L2, and 24 GBytes of main memory with Linux x86 64.
Some of the tests presented have been executed also on a different architecture
and results can be found in [22]. Similar results to those presented in this paper
have been obtained on the AMD Opteron platform.

670 M. Aldinucci et al.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

64 1024 8192

na
no

se
co

nd
s

buffer size

mapping 1
mapping 2
mapping 3

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

64 1024 8192

na
no

se
co

nd
s

buffer size

mapping 1
mapping 2
mapping 3

Fig. 4. Bounded SPSC (left) and unbounded dSPSC (right) average latency time in
nanoseconds varying the internal buffer size and cache size respectively

The first test is a two-stage pipeline in which the first stage (P) pushes 1M
tasks (a task is just a memory pointer) into a FIFO queue and the second stage
(C) pops tasks from the queue and checks for correct values. Neither additional
memory operations nor additional computation is executed. With this simple
test we are able to measure the raw performance of a single push/pop operation
by computing the average value of 100 runs, varying the buffer size for the
bounded SPSC queue and the cache size for the dSPSC queue. We tested three
distinct cases that differ in terms of the physical mapping of the two threads
corresponding to the two stages of the pipeline. The first and the second stage of
the pipeline are pinned: i) on the same physical core but on different HW contexts
(mapping1); on the same CPU but on different physical cores (mapping2); on
two cores of two distinct CPUs (mapping3).

Figure 4 reports the values obtained by running the first benchmark for the
SPSC queue and the dynamic list-based dSPSC queue, varying the buffer size
and the internal cache size, respectively. Fig. 5 (left) reports the values obtained
by running the same benchmark using the unbounded uSPSC queue.

The bounded SPSC queue is almost insensitive to buffer size in all cases. It
takes on average 8–12 ns corresponding to almost 16–24 cycles per push/pop
operation with standard deviation less than 1.5 ns when the producer and the
consumer are on the same CPU, and takes on average 16–36 ns if the producer
and the consumer are on separate CPUs. The dSPSC queue is instead quite sen-
sitive to the internal cache size on the tested architecture. The best values for the
dSPSC queue range from 14 to 36 ns with a standard deviation that ranges from
0.5 to 11 ns. Such values are obtained with sufficiently large cache size (8192
slots). As expected, the bigger the internal cache, the better the performance
obtained. As a reference, the MS queue implementation is one order of magni-
tude slower, going from 110–190 ns on sibling cores to 430–490 ns on non-sibling
cores. The uSPSC queue (Fig. 5 left) is more sensitive to the internal buffer
size in the case where the producer and the consumer are pinned to separate
CPUs and when the internal buffer is small. The values obtained for the uSPSC

An Efficient Unbounded Lock-Free Queue for Multi-core Systems 671

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

64 1024 8192

na
no

se
co

nd
s

buffer size

mapping 1
mapping 2
mapping 3

50K

100K

150K

200K

1 8 16 24 32 40 48 56 64

T
hr

ou
gh

pu
t (

m
sg

/s
)

n. threads

uSPSC
dSPSC

dSPSC no cache

Fig. 5. Unbounded uSPSC average latency time in nanoseconds (left) varying the
buffer size of the internal SPSC queues (pool cache size set to 32). Throughput in
msgs/s (right) running the ring microkernel when using the dSPSC queue without any
cache, the dSPSC with a cache size of 2048 and the uSPSC queue with an internal
buffer size of 2048 elements (pool cache size set to 32).

are very good if compared with those obtained for the dSPSC queue, and are
almost the same (or better) if compared with the bounded SPSC queue when
using sufficiently large buffer size. It takes on average 9.7–14 ns per push/pop
operation with standard deviation less than 1.5 ns when the internal buffer size
is greater than or equal to 1024. The dSPSC queue is slower than the uSPSC
version in all cases. If the producer and the consumer for the dSPSC queue are
not pinned on the same core the dSPSC queue is more than 10 times slower than
the uSPSC queue. Instead, when the producer and the consumer are pinned on
the same core the performance is much better for the dSPSC queue (although
always worse than the uSPSC one) because they work in lock step as they share
the same ALUs and so dynamic memory management is reduced.

It is worth noting that caching strategies for the dSPSC queue implementation
significantly improve performance but are not sufficient to obtain optimal figures
like those obtained in the uSPSC implementations.

To test scalability of the queues we used a simple synthetic microkernel. We
consider N threads linked into a ring using an unbounded queue (dSPSC and
uSPSC). The first thread emits a number of messages which flow around the
ring. The message is just a pointer obtained from dynamic allocation of a small
segment of memory. The other threads accept messages, perform basic integrity
verification, copy the input message into a new dynamically allocated buffer, free
the input message and pass the new pointer to the next thread. When all mes-
sages return to the first thread, the program terminates. Each thread is statically
pinned to a core whose id is the same as the thread id. For the architectures
considered, the core ids are linear so core 0 and 32 as well as core 0 and 1 are
on the same physical core and on the same CPU, respectively, whereas core
0 and 8 are on different CPUs. In Fig. 5 (right), we present the performance
in messages per second (msgs/s) obtained while varying the number of threads
of the ring. Three queue implementations were tested: the dSPSC queue without

672 M. Aldinucci et al.

using any internal cache (the basic algorithm); the dSPSC queue with a cache
size of 32K elements (i.e. with a SPSC queue of size 32K); and the uSPSC queue
using a 32K internal SPSC queue and a cache size of 32 elements.

The uSPSC queue implementation obtains the best performance reaching a
maximum throughput of ∼250K msgs/s, whereas the dSPSC reaches a maxi-
mum throughput of ∼128K msgs/s when using an internal cache of Node(s),
and ∼37K msgs/s when no cache is used. For this test, the MS queue implemen-
tations (not shown in the graph) obtain almost the same speedup as the dSPSC
queue without internal cache. The uSPSC queue scales almost linearly up to
32 cores, then the performance drops due to the fact that on core 0 we have 2
threads in separate contexts (the first and the last one of the ring) producing a
bottleneck. Adding more threads in the ring, the bottleneck is slowly absorbed
by the increasing throughput thus reaching an optimal final 32X improvement.

In this section we have shown only synthetic benchmarks in order to present
evidence of the distinctive performance of the uSPSC implementations. The
simple tests shown here prove the effectiveness of the uSPSC queue with respect
to the dSPSC implementation, and prove also how a fast implementation of a
cache of references inside the dSPSC queue leads to much higher throughput.
Since the uSPSC queue is used in the FastFlow framework, more performance
figures on real-world applications can be found in [15,16].

6 Conclusions

In this paper we studied several possible implementations of fast lock-free Single-
Producer/Single-Consumer (SPSC) queues for shared cache multi-core plat-
forms, starting from the well-known Lamport circular buffer algorithm. A new
implementation, called dSPSC, of the widely used dynamic list-based algorithm
has been proposed. Moreover, a novel unbounded lock-free SPSC queue algo-
rithm called uSPSC has been introduced together with a sketch proof of its
correctness and several performance assessments.

The uSPSC queue algorithm and implementation are able to minimize dy-
namic memory allocation/deallocation and increase cache locality thus obtain-
ing very good performance figures on modern shared cache multi-core platforms.
Our uSPSC implementation has been used as a foundation for a skeleton based
parallel programming framework (FastFlow [9]) that has been demonstrated to
be more efficient than other state-of-the-art programming environments, includ-
ing OpenMP and Cilk, on significant fine-grain parallel applications.

References

1. Orozco, D.A., Garcia, E., Khan, R., Livingston, K., Gao, G.R.: Toward high-
throughput algorithms on many-core architectures. TACO 8(4), 49 (2012)

2. Moir, M., Nussbaum, D., Shalev, O., Shavit, N.: Using elimination to implement
scalable and lock-free FIFO queues. In: Proc. of the 7th ACM Symposium on
Parallelism in Algorithms and Architectures, pp. 253–262 (2005)

An Efficient Unbounded Lock-Free Queue for Multi-core Systems 673

3. Ladan-Mozes, E., Shavit, N.: An optimistic approach to lock-free FIFO queues.
Distributed Computing 20(5), 323–341 (2008)

4. Prakash, S., Lee, Y.H., Johnson, T.: A nonblocking algorithm for shared queues
using compare-and-swap. IEEE Trans. Comput. 43(5), 548–559 (1994)

5. Tsigas, P., Zhang, Y.: A simple, fast and scalable non-blocking concurrent fifo queue
for shared memory multiprocessor systems. In: Proc. of the 13th ACM Symposium
on Parallel Algorithms and Architectures (SPAA), pp. 134–143 (2001)

6. Michael, M.M., Scott, M.L.: Nonblocking algorithms and preemption-safe locking
on multiprogrammed shared memory multiprocessors. Journal of Parallel and Dis-
tributed Computing 51(1), 1–26 (1998)

7. Michael, M.M.: Hazard pointers: Safe memory reclamation for lock-free objects.
IEEE Trans. Parallel Distrib. Syst. 15(6), 491–504 (2004)

8. Kahn, G.: The semantics of simple language for parallel programming. In: IFIP
Congress, pp. 471–475 (1974)

9. FastFlow framework: website (2009), http://mc-fastflow.sourceforge.net/
10. Thies, W., Karczmarek, M., Amarasinghe, S.: StreamIt: A Language for Streaming

Applications. In: Horspool, R.N. (ed.) CC 2002. LNCS, vol. 2304, pp. 179–196.
Springer, Heidelberg (2002)

11. Reinders, J.: Intel Threading Building Blocks: Outfitting C++ for Multi-core Pro-
cessor Parallelism. O’Reilly (2007)

12. Lamport, L.: How to make a multiprocessor computer that correctly executes mul-
tiprocess programs. IEEE Trans. Comput. 28(9), 690–691 (1979)

13. Giacomoni, J., Moseley, T., Vachharajani, M.: Fastforward for efficient pipeline
parallelism: a cache-optimized concurrent lock-free queue. In: Proc. of the 13th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP), pp. 43–52 (2008)

14. Lee, P.P.C., Bu, T., Chandranmenon, G.P.: A lock-free, cache-efficient multi-core
synchronization mechanism for line-rate network traffic monitoring. In: Proc. of
the 24th Intl. Parallel and Distributed Processing Symposium, IPDPS (2010)

15. Aldinucci, M., Ruggieri, S., Torquati, M.: Porting Decision Tree Algorithms to
Multicore Using FastFlow. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M.
(eds.) ECML PKDD 2010, Part I. LNCS, vol. 6321, pp. 7–23. Springer, Heidelberg
(2010)

16. Aldinucci, M., Danelutto, M., Meneghin, M., Kilpatrick, P., Torquati, M.: Efficient
streaming applications on multi-core with FastFlow: the biosequence alignment
test-bed. In: Parallel Computing: From Multicores and GPU’s to Petascale. Ad-
vances in Parallel Computing, vol. 19, pp. 273–280. IOS Press (2009)

17. Lamport, L.: Concurrent reading and writing. CACM 20(11), 806–811 (1977)
18. Adve, S.V., Gharachorloo, K.: Shared memory consistency models: A tutorial.

IEEE Computer 29, 66–76 (1995)
19. Higham, L., Kawash, J.: Critical sections and producer/consumer queues in weak

memory systems. In: Proc of the Intl. Symposium on Parallel Architectures, Algo-
rithms and Networks (ISPAN), pp. 56–63. IEEE (1997)

20. Jablin, T.B., Zhang, Y., Jablin, J.A., Huang, J., Kim, H., August, D.I.: Liberty
queues for epic architectures. In: Proc. of the 8th Workshop on Explicitly Parallel
Instruction Computer Architectures and Compiler Technology, EPIC (2010)

21. Hendler, D., Shavit, N.: Work dealing. In: Proc. of the 4th ACM Symposium on
Parallel Algorithms and Architectures (SPAA), pp. 164–172 (2002)

22. Torquati, M.: Single-producer/single-consumer queues on shared cache multi-core
systems. Technical Report TR-10-20, Computer Science Dept., University of Pisa,
Italy (2010), http://compass2.di.unipi.it/TR/Files/TR-10-20.pdf.gz

http://mc-fastflow.sourceforge.net/
http://compass2.di.unipi.it/TR/Files/TR-10-20.pdf.gz

Topic 12: Theory and Algorithms

for Parallel Computation

Geppino Pucci, Christos Zaroliagis,
Kieran T. Herley, and Henning Meyerhenke

Topic Committee

Parallelism permeates all levels of current computing systems, from single CPU
machines, to large server farms, to geographically dispersed “volunteers” who col-
laborate over the Internet. The effective use of parallelism depends crucially on
the availability of faithful, yet tractable, models of computation for algorithm de-
sign and analysis, and on efficient strategies for solving key computational prob-
lems on prominent classes of computing platforms. No less important are good
models of the way the different components/subsystems of a platform are inter-
connected. With the development of new genres of computing platforms, such
as multicore parallel machines, desktop grids, clouds, and hybrid GPU/CPU-
based systems, new models and paradigms are needed that will allow parallel
programming to advance into mainstream computing. Topic 12 focuses on con-
tributions providing new results on foundational issues regarding parallelism in
computing, and/or proposing improved approaches to the solution of specific
algorithmic problems.

This year, papers submitted to Topic 12 covered a considerable amount of
subjects indicated in the call for papers, among the others, communication com-
plexity issues on various computational models, parallel algorithms and data
structures for combinatorial optimization problems, and finally parallelization
of loop and finite automata computations. Submissions indicated a significant
interest of the parallel computing community towards developing new sound and
solid methods for parallel problem solving as well as towards investigating the
limitations of parallelism.

Among all submissions, two high-quality papers were selected for presentation
at the conference. The first paper, A Lower Bound Technique for Communication
on BSP with Application to the FFT, by Gianfranco Bilardi, Michele Scquizzato,
and Francesco Silvestri, focuses on the Bulk Synchronous Parallel (BSP) model
of computation and provides a general technique to derive lower bounds on the
communication complexity (i.e., the sum of the degrees of all supersteps) of al-
gorithms implementing DAG computations, based on the switching capabilities
of the underlying DAG topology. The authors show the worth of their approach
by providing a novel tight lower bound for the important case of the FFT DAG.
The second paper, A fast parallel algorithm for minimum-cost small integral
flows, by Andrzej Lingas and Mia Persson, presents an interesting reduction of
the problem of computing the minimum-cost integral flow problem on a capac-
itated, weighted directed network to the problem of performing multiple tests
of simple multi-variable polynomials over a finite field of characteristic two for

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 674–675, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Topic 12: Theory and Algorithms for Parallel Computation 675

non-identity with zero. The proposed reduction is extremely efficient when the
value of the maximum flow is small, and indeed yields an RNC 2 algorithm for
(sub-)logarithmic values of the flow.

A Lower Bound Technique for Communication

on BSP with Application to the FFT�

Gianfranco Bilardi, Michele Scquizzato, and Francesco Silvestri

Department of Information Engineering, University of Padova, Italy
{bilardi,scquizza,silvest1}@dei.unipd.it

Abstract. Communication complexity is defined, within the Bulk Syn-
chronous Parallel (BSP) model of computation, as the sum of the degrees
of all the supersteps. A lower bound to the communication complexity is
derived for a given class of DAG computations in terms of the switching
potential of a DAG, that is, the number of permutations that the DAG
can realize when viewed as a switching network. The proposed technique
yields a novel and tight lower bound for the FFT graph.

1 Introduction

A substantial fraction of the time and energy cost of a parallel algorithm is due
to the exchange of information between processing and storage elements. As in
all endeavors where performance is pursued, it is important to be able to evaluate
the distance from optimality of a proposed solution.

In this paper, we consider the Bulk Synchronous Parallel (BSP) model of
computation [23]. We develop a lower bound technique for a metric, called com-
munication complexity, which captures a relevant component of the cost of BSP
computations. This technique applies to a class of computations that can be
modeled in terms of a Directed Acyclic Graph (DAG), whose vertices represent
operations (of both input/output and processing type) and whose arcs represent
data dependencies. The same DAG computation can be performed in many dif-
ferent ways, depending on the superstep and the processing element chosen for
the execution of an operation and the way (routing path and schedule of the
message along such a path) in which a value is routed from the processor that
computes it to a processor that utilizes it. Our proposed technique further as-
sumes that each operation is executed only once, but the case where repetitions
are allowed is also of interest.

The complexity of communication of DAGs on various models of computation
has received considerable attention. Lower bounds are often established through
adaptations of the techniques of Hong and Kung [13] for hierarchical memory,
or by critical path arguments, such as those in [1]. For applications of these
and other techniques see [18,2,12,9,5,14,3] as well as [19] and references therein.

� This work was supported, in part, by MIUR-PRIN Project AlgoDEEP, by PAT-
INFN Project AuroraScience, by the University of Padova Projects STPD08JA32
and CPDA099949, and by the IBM Visiting Scientist Program.

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 676–687, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Lower Bound Technique for Communication on BSP with Application 677

The resulting bounds are often tight, but not in all cases. A notable example
is the computation of an n-input FFT DAG on a BSP with p processors: when
inputs are initially evenly distributed among the processors, an adaptation of

the dominator set technique of [13] yields a lower bound of1 Ω
(

n logn
p log(n logn/p)

)
to the communication complexity, which does not match the best known upper
bounds when p = ω (n/ logn). As this example indicates, communication lower
bounds deserve further exploration.

The main contribution of this paper is the switching potential technique, to
obtain communication lower bounds for DAG computations in the BSP model.
The communication complexity of a BSP computation is defined as the sum of
the degrees of all its supersteps. The proposed technique applies to DAGs with
n input nodes where all nodes, except for inputs and outputs, have out-degree
equal to the in-degree. Such a graph can be viewed as a switching network [19],
whose switching potential γ(n) is defined as the number of different permutations
that it can realize. We show that, for executions of a DAG without recomputation
of its nodes, the BSP communication complexity satisfies a suitable lower bound
expressed in terms of the switching potential. As a corollary of this general result,
we obtain a tight bound for the communication complexity of the FFT on the

BSP. The bound has the form Ω
(

n logn
p log(n/p)

)
and matches an upper bound of [23]

for any p = O (n).2 A similar bound was derived earlier in [12], for the special
class of algorithms performing exclusively supersteps of degree Θ (n/p).

Our FFT lower bound has the same form as the lower bound derived for
the communication complexity of the FFT in the LPRAM model, by Aggarwal,
Chandra, and Snir [1]. In addition to being developed for a different model, the
argument of [1] follows a different route: the lower bound is first established for
sorting, then claimed (by analogy) for permutation networks, and finally adapted
to the FFT network, by exploiting the property that, as shown in [24], the
cascade of three FFT networks has the topology of a full permutation network.
Finally, we observe that while when recomputation is not allowed our FFT lower
bound improves on the dominator-set result mentioned above, the latter remains
of interest when recomputation is allowed.

In addition to the well known general motivations for lower bound techniques,
we stress that striving for tight bounds for the whole range of model’s param-
eters has special interest in the study of so-called oblivious algorithms, whose
specification does not refer to such parameters, but are designed with the goal
of achieving (near) optimality for all values of the parameters. Notable exam-
ples are cache-oblivious algorithms [11], multicore-oblivious algorithms [10] and,
closer to the scenario of this paper, network-oblivious algorithms [8,7], where
algorithms are designed and analyzed on a BSP-like model. In fact, many BSP
algorithms are only defined or analyzed for a number of processors p that is
sufficiently small with respect to the input size n. For the analysis of the FFT

1 We denote by log n the logarithm in base two, and by lnn the natural logarithm.
2 When p = Ω (n) a suitable adaptation of our argument gives an Ω (log n) bound,
which is also tight.

678 G. Bilardi, M. Scquizzato, and F. Silvestri

DAG, it is often assumed p2 ≤ n, where the complexity is Θ (n/p). Our results
allow for the removal of such restrictions.

The rest of the paper is organized as follows. Section 2 introduces the concept
of switching DAG and its switching potential. Then, it formulates the envelope
game, a convenient framework for studying the communication occurring when
evaluating a DAG. Section 3 briefly reviews the BSP model and develops a re-
lationship between the switching potential of a DAG and its communication
complexity on BSP, in the form of a mathematical program. The latter is an-
alyzed in Section 4 and the results are applied to the FFT DAG. Finally, in
Section 5 we draw some conclusions and discuss future work.

2 The Switching Potential of Computation DAGs

A computation DAG G = (V,E) is a directed acyclic graph where nodes repre-
sent operations and arcs represent data dependencies. More specifically, an arc
(u, v) ∈ E indicates that the value produced by the operation associated with
u is one of the operands of the operation associated with v, and we say that u
is a predecessor of v and v a successor of u. The number of predecessors of a
node v is called its in-degree and denoted δin(v), while the number of its suc-
cessors is called its out-degree and denoted δout(v). A node v is called an input
if δin(v) = 0 and an output if δout(v) = 0. We denote by Vin and Vout the set
of input and output nodes, respectively. The remaining nodes are said to be
internal and their set is denoted by Vint.

For many models of computation, the execution of an algorithm on a par-
ticular input can be naturally described by a computation DAG. Of particular
interest is the case when this DAG is the same for all inputs of the same size n,
and can then be denoted as G(n). In fact, a number of graph-theoretic properties
of G(n) can be related to processing, storage, and communication requirements
of the underlying algorithm, as well as to its amount of parallelism. In this con-
text, we introduce one such property, the switching potential, defined for a class
of relevant computation DAGs.

Definition 1. A switching DAG G = (V,E) is a computation DAG where for
any internal node v ∈ Vint we have δout(v) = δin(v). We refer to n = |Vin| as to
the input size of G and introduce the switching size of G defined as

N =
∑

v∈Vin

δout(v) =
∑

v∈Vout

δin(v),

where the equality between the two summations is easily established.

It is not difficult to see that if, for any internal node of G, a one-to-one relation
R is established between the incoming arcs and the outgoing arcs, then a set R
of N arc-disjoint paths naturally arises, where paths are formed by the arcs that
belong to the same equivalence class of R∗, the transitive closure of R. Let us
now number the arcs incident upon input nodes from 1 to N (in some arbitrarily

A Lower Bound Technique for Communication on BSP with Application 679

chosen order) and do the same for the arcs incident upon the output nodes. Then,
to the above set R there corresponds a permutation ρ = (ρ(1), ρ(2), . . . , ρ(N))
of (1, 2, . . . , N), where ρ(j) is the (number of the) last arc of the (unique) path
in R whose first arc is numbered j. In terms of these concepts, we now introduce
a key property of switching DAGs.

Definition 2. Given a switching DAG G = (V,E), consider the set Γ of all
permutations corresponding to one or more sets of N arc-disjoint paths. The
switching potential of G is defined as the number γ = |Γ | of such permutations.

Intuitively, if the internal nodes are viewed as switches, then items initially
positioned on the input nodes can travel without conflicts on arc-disjoint paths
and reach the output nodes. Indeed, in the special case where δout(v) = 1 for
all input nodes and δin(v) = 1 for all output nodes, one has N = n = |Vin| =
|Vout| and the switching DAG can be viewed as a switching network in the
traditional sense. Furthermore, if γ = n! (all permutations can be realized), then
the switching network is said to be a permutation (or, rearrangeable) network.

Next, we define the envelope game, to be played on a switching DAG G, based
on a given one-to-one relation R between the incoming arcs and the outgoing
arcs of each internal node. The game is subject to the following rules.

1. A set of N distinguishable envelopes is given, with exactly δout(v) envelopes
placed on each input node v.

2. The set of envelopes remains invariant during the game and at any stage
each envelope is at exactly one node of G.

3. One elementary move consists in moving one envelope along an arc, that is,
from one node u to one node v, such that (u, v) ∈ E.

4. No envelope can be moved from a node v before all δin(v) envelopes that
must be placed on v have actually been placed.

5. The game is completed when all envelopes have reached an output node.

Speaking rather informally, it is easy to see that from the orchestration of the
envelope game on a given model of computation one can immediately derive a
schedule without recomputation for evaluating a DAG G, on the same model,
and viceversa. We just need to imagine that each envelope carries a (rewritable)
card where, when a node ofG is computed, its result is written on the card of each
envelope currently at that node. It is also intuitive that, if nodes u and v of arc
(u, v) are processed at different sites, then moving the envelope from u to v will
result in some communication. It ought to be observed that given two arcs (u, v)
and (u,w) with the same origin, if both v and w are processed at sites different
from that of u, then two envelope moves will contribute to communication. This
may result in an overcounting, in the case when v and w are processed at the same
site, as just one of the two envelopes would be sufficient here, since they carry
the same information. However, this overcounting is bounded from above by the
maximum out-degree of any node,Δ = maxv∈V δout(v), which is a small constant
for many interesting DAGs. The reverse process, of obtaining an execution of
the envelope game from an evaluation of the DAG, is also straightforward, with
an increase in communication upper bounded by Δ.

680 G. Bilardi, M. Scquizzato, and F. Silvestri

While the preceding considerations can be made precise only after having
specified a model of computation, they do convey a useful intuition, which will
be made rigorous for BSP in the next section, but could prove valuable on other
models as well.

In the next section, we show that executing a switching DAG on BSP requires
an amount of communication bounded from below by a certain function of its
switching potential. This result is of interest, since several relevant computation
DAGs are switching DAGs. Examples include the DAGs of networks of switches,
of networks of comparators (e.g., for sorting or merging), the DAGs modeling
computations of bounded-degree networks (as defined, e.g., in [17]), the DAGs
of several stencil computations, and others.

3 Switching Potential and Communication on BSP

The Bulk Synchronous Parallel (BSP) model was introduced by Valiant [23] as a
“bridging model” for general-purpose parallel computing, providing an abstrac-
tion of both parallel hardware and software. It has been widely studied (see,
e.g., [20] and references therein) together with a number of variants (such as
D-BSP [22,6], BSP* [4], E-BSP [15], and BSPRAM [21]).

The architectural component of the model consists of p processing elements
P1, P2, . . . , Pp, each equipped with unbounded local memory, interconnected by
a communication medium. The execution of a BSP algorithm consists of a se-
quence of phases, called supersteps : in one superstep, each processor can perform
operations on data residing in its local memory, send messages and, at the end,
execute a global synchronization instruction. A message sent during a superstep
becomes visible to the receiver only at the beginning of the next superstep. The
running time of the i-th superstep is expressed in terms of two parameters g and

 as Ti = wi + hig +
, where wi is the maximum number of local operations
performed by any processor and hi is the maximum number of messages sent or
received by any processor (i.e., the i-th superstep performs an hi-relation). Intu-
itively, 1/g can be interpreted as the available bandwidth per processor, while

as an upper bound on the time required for global barrier synchronization. The
running time TA of a BSP algorithm A is the sum of the times of its supersteps
and can be expressed as WA +HAg + SA
, where SA is the number of super-
steps, WA =

∑SA
i=1 wi is the local computation complexity and HA =

∑SA
i=1 hi is

the communication complexity. In this paper, we study the latter metric, which
often represents the dominant component.

We focus on algorithms whose execution can be described by a computation
DAG G(n) solely determined by the input size n. The lower bounds are derived
under the assumption that G(n) is a switching DAG and that each node of the
DAG (operation) is executed only once (no recomputation). In particular, we
analyze the envelope game on G. In any given execution of such a game, a given
node of G is assigned to a unique BSP processor. If (u, v) ∈ E is an arc with u
assigned to processor P and v assigned to processor P ′ �= P , then the envelope
must be routed from P to P ′, possibly through intermediate processors. A key

A Lower Bound Technique for Communication on BSP with Application 681

observation is that a BSP execution of the envelope game corresponding to a
given relation R on arcs (intuitively, a setting of the switches) can be adapted to
any other relation R′ without changing the number of superstep of the sources
and destinations sent at each superstep. Simply, the messages will carry different
envelopes. We now introduce the critical quantity that we analyze.

Definition 3. Consider the execution of a switching DAG G(n) on the BSP.
The distribution potential at superstep j, denoted ηj(n, p), is defined as the
number of different distributions of the N envelopes across the p processors that
result at the end of the j-th superstep, when relation R is varied in all possible
ways. (The order of the envelopes within a processor is irrelevant.)

Intuitively, two tradeoffs are captured by the lower bound argument developed
below. First, the communication complexity h of a given superstep is bounded
from below in terms of the growth of the distribution potential in that superstep.
Second, the distribution potential after the last superstep is bounded from below
by the switching potential of the DAG.

At the beginning of the computation (after the 0-th superstep), η0(n, p) = 1,
since the only achievable distribution of envelopes among processors is the one
corresponding to the input distribution protocol. Denote by U the maximum
number of envelopes held by any processor at the end of the algorithm. If the
algorithm completes in K supersteps, then ηK(n, p) ≥ γ(n)/(U !)N/U , where
(U !)N/U is a corrective term due to the definition of ηK(n, p). Let oi ≤ U be the
number of envelopes stored at the end of the algorithm in the i-th processor; then,
there are at most Πp

i=1(oi!) ≤ (U !)N/U envelope permutations differing only on
the output values held by the same processor which yield the same distribution
of the envelopes among processors. We denote the number of envelopes held by
the i-th processor after the j-th superstep by ti,j , for each i ∈ [p] and j ∈ [K],
where [x] denotes the set {1, 2, . . . , x}. Clearly, by the rules of the envelope game,
we have

∑p
i=1 ti,j = N and ti,j ≥ 0. (The latter equation would not necessarily

hold if the envelope game were extended in order to allow for recomputation.)
Now consider a processor i ∈ [p] and a superstep j ∈ [K]. The ti,j envelopes

held by processor i after the j-th superstep are of two kinds: the si,j envelopes
that will be sent by i to some other processors during the subsequent superstep,
and the other ri,j = ti,j− si,j remaining envelopes. (The quantities ti,j , si,j , and
ri,j are all functions of n and p, although this dependence is not made explicit
in the notation, for better readability. For the same reason, when clarity is not
compromised, we will write ηj in place of ηj(n, p).) Thus, there are

(
ti,j
si,j

)
choices

of the set of envelopes to send and (given a fixed schedule of the algorithm, i.e.,
a fixed pattern of communication) these envelopes can be sent in at most si,j !
different ways to the other processors. Hence, at each superstep j each processor
i has at most (

ti,j
si,j

)
si,j ! =

(
ri,j + si,j

si,j

)
si,j ! =

(si,j + ri,j)!

ri,j !

communications choices. Then, ηj/ηj−1 ≤ Πp
i=1(si,j + ri,j)!/ri,j !.

682 G. Bilardi, M. Scquizzato, and F. Silvestri

Assembling the above observations, we conclude that the communication com-
plexity H of any algorithm for G is no smaller than the value an optimal solution
to the following mathematical program.

H ≥ min

K∑
j=1

max
i

si,j

s.t.

K∏
j=1

p∏
i=1

(si,j + ri,j)!

ri,j !
≥ γ(n)/(U !)N/U

p∑
i=1

(si,j + ri,j) = N ∀j ∈ [K]

ri,j , si,j ≥ 0 ∀i ∈ [p], ∀j ∈ [K].

4 Solving the Mathematical Program

We relax the above system by observing that, for each j ∈ [K],

p∏
i=1

(si,j + ri,j)!

ri,j !
≤

p∏
i=1

(si,j + ri,j)
si,j .

The relaxation will enable us to exploit the following lemma.

Lemma 1. Let q and N be two positive integer values. Then, an optimal solution
of the following mathematical program

max

q∏
i=1

(ai + bi)
ai

s.t.

q∑
i=1

(ai + bi) = N

ai, bi ≥ 0 ∀i ∈ [q]

must satisfy biA = ai (N −A) for each i ∈ [q], where A =
∑q

i=1 ai.

Proof. When A = 0 or there is just one ai �= 0 the lemma is straightforward. It
is also easy to see that, in an optimal solution, bi = 0 whenever ai = 0. Hence,
in the following we assume that ai �= 0 for each i ∈ [q].

Let A > 0. We first study the case q = 2, and then use this as a building-block
for determining the solution to the general case. Consider an optimal solution
(a1, b1, a2, b2), and suppose a1 and a2 are given. Consider the first derivative in
b1 of the objective function. The constraint of the system imposes

b1 + b2 = N − (a1 + a2) = N −A, (1)

A Lower Bound Technique for Communication on BSP with Application 683

hence we have

d

db1
(a1 + b1)

a1(a2 + b2)
a2 =

d

db1
(a1 + b1)

a1(N − a1 − b1)
a2

= a1(a1 + b1)
a1−1(N − a1 − b1)

a2 − (a1 + b1)
a1a2(N − a1 − b1)

a2−1.

Since a1, a2 > 0, we have that the derivative is non-negative when a1(N − a1 −
b1) ≥ a2(b1 + a1), that is, using Equation 1,

b1 ≤
a1(N − a1 − a2)

a1 + a2
= a1

(
N −A

A

)
.

Since the above derivative is first non-negative and then non-positive, the point
b1 where the value of the derivative is zero is unique, and thus must satisfy

b1 = a1

(
N −A

A

)
and b2 = a2

(
N −A

A

)
.

We now turn our attention to the situation when q is arbitrary. Let (a, b) be an
optimal solution, with a = a1, a2, . . . , aq and b = b1, b2, . . . , bq, and a is given.
We claim that bi = ai

(
N−A
A

)
for each i ∈ [q]. In fact, suppose this is not true.

Then, there must exist an optimal solution (a, b̄) �= (a, b) and a pair of indices
h, k such that b̄h/ah �= b̄k/ak. We can prove this by contradiction. In fact, if
b̄h/ah = b̄k/ak for each h ∈ [q], we have the following system of equations with
q variables b̄1, b̄2, . . . , b̄q and q constraints:⎧⎨⎩

b̄h
ah

=
b̄h+1

ah+1
∀h ∈ [q − 1]∑q

j=1(b̄j + aj) = N.

To derive its unique solution, we can rewrite the last constraint as
∑q

j=1(b̄j/aj+

1)aj = N. By the first q−1 constraints we have b̄h/ah = b̄k/ak for each h, k ∈ [q],
and thus

q∑
j=1

(
b̄h
ah

+ 1

)
aj = N ∀h ∈ [q],

that is (
b̄h
ah

+ 1

)
A = N ∀h ∈ [q],

which implies

b̄h = ah

(
N −A

A

)
= bh ∀h ∈ [q],

a contradiction. Therefore, we have shown that there exists a pair (b̄h, b̄k) such
that b̄h/ah �= b̄k/ak. However, as seen for the case q = 2, we can always find
a pair (b̃h, b̃k) such that (b̃h + ah)

ah(b̃k + ak)
ak > (b̄h + ah)

ah(b̄k + ak)
ak , thus

contradicting the optimality of (b̄, v) and (u, v). This pair is

b̃h = ah

(
b̄h + b̄k
ah + ak

)
and b̃k = ak

(
b̄k + b̄h
ak + ah

)
,

684 G. Bilardi, M. Scquizzato, and F. Silvestri

which is the solution of the system⎧⎨⎩ b̃h
ah

=
b̃k
ak

b̃h + b̃k = b̄h + b̄k.

It remains to check that the mathematical program is not unbounded. Observe
that the objective function is real-valued and continuous on a domain which is
non-empty, closed, and bounded. By the classical Weierstrass theorem, such a
function admits a maximum, and this must be achieved at (a, b). ��

We are now ready to prove the main result of the paper; we will establish the
desired lower bound for the FFT graph as a corollary. The lower bound in the
theorem exhibits a tradeoff between the communication and the maximum num-
ber U of envelopes held by a processor at the end of the algorithm: indeed, as
U increases the number of envelope permutations differing only on the output
values stored in the same processor increases as well, and thus the required
communication complexity may decrease.

Theorem 1. Let x� be the value of an optimal solution of the mathematical
program of the previous section. Then,

x� ≥ ln(γ(n)/(U !)N/U)

p ln(eN/p)
.

Proof. We consider only supersteps where at least one message is sent over the
network. (Supersteps without communication do not increase the number of
envelope distributions.) We use the following notation: sj = maxi si,j and Sj =∑p

i=1 si,j . By setting ai = si,j , bi = ri,j , and q = p in Lemma 1, we have that,
for a given superstep j,

p∏
i=1

(si,j + ri,j)
si,j ≤

p∏
i=1

(
si,j + si,j

(
N − Sj

Sj

))si,j

=

p∏
i=1

s
si,j
i,j

(
N

Sj

)si,j

=

(
N

Sj

)Sj p∏
i=1

s
si,j
i,j .

We partition the values of the index j into three sets K1, K2, and K3 as follows:
j ∈ K1 iff sj > N/p, j ∈ K2 iff N/(ep) < sj ≤ N/p, j ∈ K3 iff sj ≤ N/(ep),
where e is the base of the natural logarithm. For simplicity, we assume p ≤ N/e.
If j ∈ K1, we have (

N

Sj

)Sj p∏
i=1

s
si,j
i,j ≤ eN/esNj ,

because function (N/x)x is increasing in x until x < N/e and x = N/e is the
maximum of the function. The constraints on the problem implies

∑p
i=1 si,j ≤ N ,

A Lower Bound Technique for Communication on BSP with Application 685

and then
∏p

i=1 s
si,j
i,j is maximized when N/sj values si,j are set to sj and the

remaining ones to zero. On the other hand, when j ∈ K2, we have(
N

Sj

)Sj p∏
i=1

s
si,j
i,j ≤

(
N

Sj

)Sj

s
psj
j ≤ eN/es

psj
j ,

since, si,j ≤ sj . Finally, when j ∈ K3 we have(
N

Sj

)Sj p∏
i=1

s
si,j
i,j ≤

(
N

Sj

)Sj

s
psj
j ≤

(
N

psj

)psj

s
psj
j =

(
N

p

)psj

,

since the function (N/x)x is increasing in x until x < N/e and the maximum
value is (N/(psj))

psj when Sj ≤ psj ≤ N/e.
Therefore, the first constraint of the minimization problem that we are study-

ing can be relaxed as follows:∏
j∈K1

eN/esNj
∏
j∈K2

eN/es
psj
j

∏
j∈K3

(
N

p

)psj

≥ γ(n)

(U !)N/U
.

By taking the natural logarithm of both sides we have∑
j∈K1

(
N

e
+N ln sj

)
+
∑
j∈K2

(
N

e
+ psj ln sj

)
+
∑
j∈K3

psj ln(N/p) ≥ ln

(
γ(n)

(U !)N/U

)
.

Since sj > N/(ep) if j ∈ K1 ∪K2, we get∑
j∈K1

N ln(esj) +
∑
j∈K2

psj ln(esj) +
∑
j∈K3

psj ln(N/p) ≥ ln

(
γ(n)

(U !)N/U

)
.

Let K̂i =
∑

j∈Ki
sj . By the concavity of ln(esj) and the convexity of sj ln(esj),

we have that the first two summations are maximized when sj = N/p for each

j ∈ K1 ∪K2, |K1| = K̂1/(N/p) and |K2| = K̂2/(N/p). Then we get

pK̂1 ln(eN/p) + pK̂2 ln(eN/p) + pK̂3 ln(N/p) ≥ ln

(
γ(n)

(U !)N/U

)
,

which yields the sought lower bound to the minimum solution of the problem:

min
K∑
j=1

sj ≥ K̂1 + K̂2 + K̂3 ≥
ln(γ(n)/(U !)N/U)

p ln(eN/p)
.

��
Corollary 1. Let A be any algorithm computing an n-input FFT DAG on a
BSP with p processors, and let U be the maximum number of envelopes held by
any processor at the end of the algorithm. If U ≤ N/2 = n and recomputation is
not allowed, then the communication complexity of the algorithm is

HA(n, p) = Ω

(
n logn

p log(n/p)

)
.

686 G. Bilardi, M. Scquizzato, and F. Silvestri

Proof (Sketch). The FFT DAG has n(logn + 1) nodes and can produce at the
output nodes γ(n) = 2n(logn+1) distinct permutations of the N = 2n envelopes.
Hence, by Theorem 1, we get HA(n, p) ≥ (n/p) log(2n/U2)/ log(n/p). Since an
FFT DAG can perform any cyclic shift of a vector, an Ω (U) lower bound follows
by an argument based on the information flow of cyclic shifts [19, Lemma 10.5.2].
Therefore, we have

HA(n, p) = Ω

(
n log(2n/U2)

p log(n/p)
+ U

)
.

We have that U ≥ 2n/p. In this range, the above bound is minimized by setting
U = 2n/p, yielding the stated bound. ��

Several similar results can be obtained, for example for the Beneš permutation
network, and for the bitonic and the AKS sorting networks.

5 Conclusions

In this paper, we have studied some aspects of the communication complexity
of parallel algorithms. We have developed a new technique for deriving lower
bounds on communication complexity for computations that can be represented
by a certain kind of DAGs. We have demonstrated the power of this technique on
the FFT DAG for which, assuming non-recomputation, the derived lower bound
is tight for any possible values of parameters n and p, thus improving previous
work.

It is natural to wonder whether our main lower bound holds (asymptotically)
when recomputation of intermediate values is allowed. (Re-execution of opera-
tions is known, for instance, to enhance some simulations among networks [16].)
While it is not difficult to see that our lower bound holds when each node of the
DAG can be recomputed O (1) times, in the general case (an adaptation of) our
technique yields, for the FFT DAG, the same bound as that of the dominator-set
result mentioned in the introduction. We feel that settling this question might
shed new light on the role of recomputation in I/O- and communication-efficient
computing, which is not yet fully understood.

Acknowledgments. The authors would like to thank Andrea Pietracaprina
and Geppino Pucci for insightful discussions.

References

1. Aggarwal, A., Chandra, A.K., Snir, M.: Communication complexity of PRAMs.
Theor. Comp. Sci. 71, 3–28 (1990)

2. Aggarwal, A., Vitter, J.S.: The input/output complexity of sorting and related
problems. Comm. ACM 31(9), 1116–1127 (1988)

A Lower Bound Technique for Communication on BSP with Application 687

3. Ballard, G., Demmel, J., Holtz, O., Schwartz, O.: Graph expansion and commu-
nication costs of fast matrix multiplication. In: Proc. 23rd SPAA, pp. 1–12. ACM
(2011)

4. Bäumker, A., Dittrich, W., Meyer auf der Heide, F.: Truly efficient parallel algo-
rithms: 1-optimal multisearch for an extension of the BSP model. Theor. Comp.
Sci. 203(2), 175–203 (1998)

5. Bilardi, G., Pietracaprina, A., D’Alberto, P.: On the Space and Access Complex-
ity of Computation DAGs. In: Brandes, U., Wagner, D. (eds.) WG 2000. LNCS,
vol. 1928, pp. 47–58. Springer, Heidelberg (2000)

6. Bilardi, G., Pietracaprina, A., Pucci, G.: Decomposable BSP: A bandwidth-latency
model for parallel and hierarchical computation. In: Handbook of Parallel Com-
puting: Models, Algorithms and Applications, pp. 277–315. CRC Press (2007)

7. Bilardi, G., Pietracaprina, A., Pucci, G., Scquizzato, M., Silvestri, F.: Network-
oblivious algorithms (to be submitted, 2012)

8. Bilardi, G., Pietracaprina, A., Pucci, G., Silvestri, F.: Network-oblivious algo-
rithms. In: Proc. 21st IPDPS, pp. 1–10. IEEE (2007)

9. Bilardi, G., Preparata, F.: Processor-time tradeoffs under bounded-speed message
propagation: Part II, lower bounds. Theor. Comp. Syst. 32(5), 531–559 (1999)

10. Chowdhury, R.A., Silvestri, F., Blakeley, B., Ramachandran, V.: Oblivious algo-
rithms for multicores and network of processor. In: Proc. 24th IPDPS, pp. 1–12.
IEEE (2010)

11. Frigo, M., Leiserson, C.E., Prokop, H., Ramachandran, S.: Cache-oblivious algo-
rithms. ACM Trans. Algorithms 8(1), 4:1–4:22 (2012)

12. Goodrich, M.T.: Communication-efficient parallel sorting. SIAM J. Comput-
ing 29(2), 416–432 (1999)

13. Hong, J.W., Kung, H.T.: I/O complexity: The red-blue pebble game. In: Proc.
13th STOC, pp. 326–333. ACM (1981)

14. Irony, D., Toledo, S., Tiskin, A.: Communication lower bounds for distributed-
memory matrix multiplication. J. Par. & Distr. Comp. 64(9), 1017–1026 (2004)

15. Juurlink, B.H.H., Wijshoff, H.A.G.: A quantitative comparison of parallel compu-
tation models. ACM Trans. Comput. Syst. 16(3), 271–318 (1998)

16. Koch, R.R., Leighton, F.T., Maggs, B.M., Rao, S.B., Rosenberg, A.L., Schwabe,
E.J.: Work-preserving emulations of fixed-connection networks. J. ACM 44(1),
104–147 (1997)

17. Leighton, F.T.: Introduction to Parallel Algorithms and Architectures: Arrays,
Trees, Hypercubes. Morgan Kaufmann Publishers (1992)

18. Papadimitriou, C.H., Ullman, J.D.: A communication-time tradeoff. SIAM J. Com-
puting 16(4), 639–646 (1987)

19. Savage, J.E.: Models of Computation: Exploring the Power of Computing. Addison-
Wesley (1998)

20. Tiskin, A.: BSP (bulk synchronous parallelism). In: Encyclopedia of Parallel Com-
puting, pp. 192–199. Springer (2011)

21. Tiskin, A.: The bulk-synchronous parallel random access machine. Theor. Comp.
Sci. 196(1-2), 109–130 (1998)

22. de la Torre, P., Kruskal, C.P.: Submachine Locality in the Bulk Synchronous Set-
ting. In: Fraigniaud, P., Mignotte, A., Robert, Y., Bougé, L. (eds.) Euro-Par 1996.
LNCS, vol. 1124, pp. 352–358. Springer, Heidelberg (1996)

23. Valiant, L.G.: A bridging model for parallel computation. Comm. ACM 33(8),
103–111 (1990)

24. Wu, C.L., Feng, T.Y.: The universality of the shuffle-exchange network. Trans.
Computers 30, 324–332 (1981)

A Fast Parallel Algorithm

for Minimum-Cost Small Integral Flows

Andrzej Lingas1 and Mia Persson2

1 Department of Computer Science, Lund University, 22100 Lund, Sweden
Andrzej.Lingas@cs.lth.se

2 Department of Computer Science, Malmö University, 205 06 Malmö, Sweden
mia.persson@mah.se

Abstract. We present a new approach to the minimum-cost integral
flow problem for small values of the flow. It reduces the problem to the
tests of simple multi-variable polynomials over a finite field of characteris-
tic two for non-identity with zero. In effect, we show that a minimum-cost
flow of value k in a network with n vertices, a sink and a source, integral
edge capacities and positive integral edge costs polynomially bounded
in n can be found by a randomized PRAM, with errors of exponentially
small probability in n, running in O(k log(kn)+log2(kn)) time and using
2k(kn)O(1) processors. Thus, in particular, for the minimum-cost flow of
value O(log n), we obtain an RNC2 algorithm.

1 Introduction

The maximum network flow problem is a well known fundamental problem in
algorithms and optimization with plenty of important applications [1, 7, 8, 16].
It is known to be P -complete even in its integral version provided that the edge
capacities are exponentially large in the size of the network [13]. The minimum-
cost flow problem is a well known important generalization of the maximum flow
problem [1, 8, 10, 16]. The objective is to compute a maximum flow of minimum
cost in a directed graph where each edge is assigned a cost. For a flow f in a
directed graph (V,E), the cost of f is simply

∑
e∈E f(e)cost(e).

The prospects for designing a fast and processor efficient parallel algorithm,
in particular an NC algorithm [19], for maximum integral flow or minimum-cost
integral flow are small. The fastest known parallel implementations of general
maximum flow and/or minimum-cost flow algorithms achieve solely a moderate
speed up and still run in Ω(nα) time, where α is a positive constant, see [2, 12].

The situation changes when the edge capacities or the supply of flow as well
as edge costs are substantially bounded. For example, if the edge capacities
and edge costs are bounded by a polynomials in n, both problems admit RNC
algorithms. Then, the maximum integer flow problem admits even an RNC2

algorithm [17, 18, 20] while the minimum-cost integer flow problem admits an
RNC3 algorithm [18]. At the heart of the aforementioned RNC solutions is
the randomized method of detecting a perfect matching by randomly testing
Edmonds’ multi-variable polynomials for non-identity with zero [6, 14, 17, 20].

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 688–699, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Fast Parallel Algorithm for Minimum-Cost Small Integral Flows 689

When the flow supply is relatively small, e.g., logarithmic in the size of the
network or a poly-logarithmic one, then just an NC implementation of the basic
phase in the standard Ford-Fulkerson method [1, 7–9, 16] yields an NC algorithm
(NC3 when the supply is logarithmic) for maximum integer flow that can be
extended to an NC algorithm for minimum-cost integer flow (when edge costs
are polynomially bounded). The number of processors used corresponds to that
required by a shortest path computation.

In this paper, we present a new approach to the minimum-cost integral flow
problem for a small value k of the flow. We directly associate a simple polynomial
over a finite field with the corresponding problem of the existence of k mutually
vertex disjoint paths of bounded total length, connecting two sets of k terminals
in a directed graph. By using the idea of monomial cancellation, the latter prob-
lem reduces to testing the polynomial over a finite field of characteristic two for
non-identity with zero. We combine the DeMillo-Lipton-Schwartz-Zippel lemma
[5, 21] on probabilistic verification of polynomial identities with parallel dynamic
programming to perform the test efficiently in parallel. Additionally, we use the
isolation lemma to construct the minimum-cost flow [17, 20].

In effect, we infer that a minimum-cost flow of value k in a network with n
vertices, a sink and a source, integral edge capacities and positive integral edge
costs polynomially bounded in n can be found by a randomized PRAM, with
errors of exponentially small probability in n, running in O(k log(kn)+log2(kn))
time and using 2k(kn)O(1) processors. Thus, in particular, for the minimum-cost
flow of value O(log n), we obtain an RNC2 algorithm.

Related Work. For the RNC algorithms for the related problem of minimum-
cost perfect matching see [14, 17, 20]. For the comparison of time and substantial
processor complexities of prior RNC algorithms for the minimum-cost flow see
page 7 in [18]. The fastest of the reported algorithms is not an RNC2 one even
when the flow supply and thus the edge capacities are logarithmic in the size of
the network. The idea of associating a polynomial over a finite field to the sought
structure has been already used by Edmonds to detect matching [6] and then
in several papers presenting RNC algorithms for perfect matching construction
[14, 17, 20]. It appears in several recent papers that also exploit the idea of
monomial cancellation [3, 4, 15, 22].

Organization. In the next section, we comment briefly on the basic notation
and the model of parallel computation used in the paper. In Section 3, we derive
our fast randomized parallel method for detecting the existence of k mutually
vertex disjoint paths of bounded total length connecting two sets of k terminals
in a directed graph. In Section 4, we generalize the method to include edge
costs which enables us to replace the total length bound with the total cost one.
In section 5, we show a straightforward reduction of the minimum-cost integer
flow problem parametrized by the flow value to the corresponding disjoint paths
problem which enables us to derive our main result on detecting minimum-cost
small flows in parallel.

690 A. Lingas and M. Persson

2 Terminology

For a natural number n, we let [n] denote the set of natural numbers in the
interval [1, n]. The cardinality of a set A will be denoted by |A|.

We assume the standard definitions of flow and flow value in a network (di-
rected graph) with integral edge capacities, a distinguished source vertex s and
a distinguished sink vertex t (e.g., see [7]) .

For the definitions of parallel random access machines (PRAM), the classes
NC and RNC and the corresponding notions of NC and RNC algorithms, the
reader is referred to [19].

The characteristic of a ring or a field is the minimum number of 1 in a sum
that yields 0. A finite field with q elements is often denoted by Fq.

3 Connecting Vertex-Disjoint Paths

It is well known that the maximum integral network flow problem with bounded
edge capacities corresponds to a disjoint path problem (cf. [7]). In Section 5, we
provide an efficient parallel reduction of the minimum-cost integral flow problem
parametrized by the flow value to a parametrized disjoint path problem. This
section is devoted to a derivation of a fast randomized parallel method for the
decision version of the parametrized path problem.

Let L = (V,E) be a network in a form of a directed graph with n vertices,
among them a distinguished set X = {x1, ..., xk} of k source vertices and a
disjoint distinguished set Y = {y1, ..., yk} of k sink vertices.

A walk in L is a sequence of vertices v1, v2, ..., vl of L such that for j =
1, ..., l−1, (vj , vj+1) ∈ E, v1 is in X, v2, ..., vl−1 are in V \(X∪Y), vl is in Y. The
length of the walk is l−1. In other words, a walk is just a (not necessarily simple)
path starting from a vertex in X , having intermediate vertices in V \ (X ∪ Y),
and ending at a vertex in Y.

A proper set S of walks in L is a set W of k walks of total length ≤ k(n− 1),
each with a distinct start vertex in X and a distinct end vertex in Y.

A signature of S is the pair (i, j) that is smallest in lexicographic order such
that the two walks that start at xi and xj respectively intersect.

Note that walks in S are pairwise vertex disjoint iff the signature of S is not
defined.

We define the transformation φ on S as follows. If S has the signature (i, j)
then φ switches the suffix of the walk starting at xi with that of the walk starting
at xj at the first intersection vertex of these two walks. See Fig. 1. Otherwise,
if the signature of S is not defined then φ is an identity on S.

Observe that if the signature of S is defined then φ(S) has the same signature
as S and φ(S) �= S. The first observation is immediate. To show the second one
it is sufficient to note that φ(S) = S holds iff φ transforms the two walks which
yield the signature of S onto themselves. The latter is however impossible since
they have different start vertices and different end vertices. Note also that the
walks in φ(S) have the same total length as those in S.

A Fast Parallel Algorithm for Minimum-Cost Small Integral Flows 691

2

x

x

1

3 x3

2
x

x4

x2

x yy
1

y
2

y

y
4

y
3

y
4

X Y X Y

x4

(b)(a)

1 1

3

y

Fig. 1. An example of a proper set S of walks and the companion proper set φ(S) of
walks

It follows that φ is an involution on sets of proper walks of total length l, i.e.,
φ(φ(S)) = S holds for any proper set S of walks of total length l.

For the network L and l ∈ [k(n− 1)], let FL,l be the family of all proper sets
of k walks of total length l in L. Assign a distinct variable xe to each edge e in L.
For a walk W ∈ FL,l, let MW be the monomial, where xe has multiplicity equal
to the number of occurrences of e in W. Next, let QL,l denote the polynomial∑

S∈FL,l

∏
W∈S MW .

Lemma 1. For the network L and l ∈ [k(n − 1)], there is a proper set of k
mutually vertex-disjoint walks of total length l in L iff QL,l is not identical to
zero over a field of characteristic two.

Proof. FL,l can be partitioned into the family F 1
L,l of sets S of walks such that

φ(S) = S and the family F 2
L,l of sets S of walks such that φ(S) �= S. The

polynomial
∑

S∈F 2
L,l

∏
W∈S MW is identical to zero over a field of characteristic

two since for each S ∈ F 2
L the monomials

∏
W∈S MW and

∏
W∈φ(S) MW contain

equal multiplicities of the same variables and φ(φ(S)) = S so S and φ(S) can be
paired. On the other hand, since each set S of walks in F 1

L,l consist of mutually
vertex-disjoint walks, the monomials in the polynomial

∑
S∈F 1

L,l

∏
W∈S MW are

in one-to one correspondence with S and therefore are unique.
��

To warm up, we prove the following lemma on sequential evaluation of QL.

Lemma 2. QL,l can be evaluated for a given assignment of values over a field
F2O(log n) of characteristic two in O(k2n3 + 2kk3n2) time.

692 A. Lingas and M. Persson

Proof. For B ⊂ Y, l ∈ [(n − 1)|B|], we consider the family Wl(B) of all sets S
consisting of |B| walks connecting |B| distinct sources in {x1, ..., x|B|} with the
|B| distinct sinks in B so that the total length of the walks is exactly l. Next, we
define the polynomial Ql(B) as

∑
S∈Wl(B)

∏
W∈S MW . Note that QL,l = Ql(Y).

On the other hand, for l ∈ [k(n− 1)], x ∈ X and z ∈ V \X, we consider the
set Wl(x, z) of walks of length l in L that start at x and end at z. Let Ql(x, z)
be the polynomial

∑
W∈Wl(x,z)

MW .
We have the following recurrence for a nonempty subset B of Y and l ∈

[|B|(n− 1)] :

Ql(B) =
∑
y∈B

∑
q∈[|B|(n−1)−|B|+1]

Ql−q(B \ {y})Qq(x|B|, y).

Next, we have also the following recurrence for x ∈ X, z ∈ V \ X, and q ∈
[k(n− 1)] :

Qq(x, z) =
∑

u∈V \(X∪Y)&(u,z)∈E

Qq−1(x, u)x(u,z).

We have also Q1(x, z) = x(x,z) if (x, z) ∈ E, and otherwise Q1(x, z) = 0. Conse-
quently, we can evaluate all the polynomials Qq(x, z) by the second recurrence
in O(k2n3) time.

Now, by using the first recurrence and setting Ql(∅) to 1 in the field, we can
evaluate all the polynomials Ql(B) in the increasing order of the cardinalities of
B in O(2kk3n2) time.

��

We can partially parallelize the sequential evaluation of QL,l in order to obtain
the following lemma.

Lemma 3. QL,l can be evaluated for a given assignment of values over a field
F2O(log n) of characteristic two in O(k logn + log2 n) time by a CREW PRAM
using O(kn4 + 2kk3n2) processors.

Proof. We generalize the definition of the set Wq(x, z) and the corresponding
polynomial Qq(x, z) to include arbitrary start vertex x ∈ V \ Y , requiring z ∈
V \ X as previously. Then, we can evaluate Qq(x, z) =

∑
W∈Wl(x,z)

MW for

x ∈ V \ Y and z ∈ V \X, for q ∈ [k(n− 1)] by the following standard doubling
recurrence for q ≥ 2 :

Qq(x, z) =
∑

y∈V \(X∪Y)

Q�q/2�(x, y)Q�q/2�(y, z)

At the bottom of the recursion, we have Q1(x, z) = x(x,z) if (x, z) ∈ E, otherwise
Q1(x, z) = 0. It follows that allQq(x, z) for x ∈ V \Y , z ∈ V \X, and q ∈ [k(n−1)]
can be evaluated in a bottom-up manner in O(log2 n) time by a CREW PRAM
using O(kn4) processors.

A Fast Parallel Algorithm for Minimum-Cost Small Integral Flows 693

Recall the first recurrence from the proof of Lemma 2. When the polynomials
Qq(xi, yj) for xi ∈ X and yi ∈ Y are evaluated, we can evaluate in turn the
polynomials Ql(B), where B ⊂ Y, l ∈ [|B|(n − 1)] in k phases in the increasing
order of the cardinalities of B by this recurrence. It can be done in O(k(log k +
logn)) = O(k logn) time by a CREW PRAM using 2kk3n2 processors.

ByQL,l = Ql(Y), k ≤ n, we conclude thatQL,l can be evaluated in O(k logn+
log2 n) time by a CREW PRAM using O(kn4 + 2kk3n2) processors.

��

The following lemma on polynomial identities verification has been shown inde-
pendently by DeMillo and Lipton, Schwartz, and Zippel.

Lemma 4. [5, 21] Let Q(x1, x2, ..., xm) be a nonzero polynomial of degree d over
a field of size r. Then, for f1, f2, ...,fm chosen independently and uniformly at
random from the field, the probability that Q(f1, f2, ..., fm) is not equal to zero
is at least 1− d

r .

Note that the polynomial QL,l is of degree l not larger than k(n− 1) ≤ n2. We
can use Lemma 4 with a field F2c log n of characteristic two to obtain a randomized
test of the polynomial QL,l for not being identical to zero with one side errors.
For sufficiently large constant c, the one side errors are of probability not larger
than a constant smaller than 1. By performing O(n) such independent tests, the
probability of one side errors can be decreased to exponentially small in n one.

By Lemma 3, the series of the tests can be performed in O(k logn + log2 n)
time by a PRAM using O(kn4 + 2kk3n3) processors. By Lemma 1, these tests
verify if there is a proper set of mutually vertex-disjoint walks of total length l
in the network L. The latter in turn is equivalent to the existence of k mutually
vertex-disjoint paths of total length l connecting X with Y in L by the definition
of a proper set of walks in L. Hence, observing that each walk can be trivially
pruned to a simple directed path with the same endpoints, we obtain our main
result.

Theorem 1. The problem of whether or not there is a set of k mutually vertex-
disjoint simple directed paths of total length l connecting X with Y in the network
L can be decided by a randomized CREW PRAM, with one-sided errors of ex-
ponentially small probability in n, running in O(k logn+ log2 n) time and using
O(kn4 + 2kk3n3) processors.

4 Vertex-Disjoint Connecting Paths of Bounded Cost

In this section, we shall consider a more general situation where there are a
positive integer C and a cost function c assigning to each of the m edges e in
the network L a cost c(e) ∈ [C]. The cost of a walk or a path is simply the sum
of the costs of the edges forming it (the cost of an edge is counted the number
of times it appears on the walk or path). We would like to detect a proper set
of k walks in L that achieves the minimum cost.

694 A. Lingas and M. Persson

For this reason, we consider the following generalization of the polynomial
QL,l. For U ∈ [mC], let HL,U be the set of all proper sets of walks in the edge-
costed network L that have total cost equal to U. Next, for a walkW in L, as pre-
viously, let MW be the monomial which is the product of xe over the occurrences
of edges e on W. The polynomial CQL,U is defined by

∑
S∈HL,U

∏
W∈S MW .

By using the proof method of Lemma 1, we obtain the following counterpart
of this lemma for CQL,U .

Lemma 5. For the edge-costed network L, there is a proper set of k mutually
vertex-disjoint walks of total cost U in L iff CQL,U is not identical to zero over
a field of characteristic two.

Next, we obtain the following counterpart of Lemma 3 for CQL,U .

Lemma 6. CQL,U can be evaluated for a given assignment f of values over a
field F2O(log n) of characteristic two in O(k log(Cn)+log2(Cn)) time by a PRAM
using O(kC4n8 + 2kk3C2n4) processors.

Proof. The proof reduces to that of Lemma 3. We replace each directed edge e
of cost c(e) ∈ [C] in the network L by a directed path of length c(e) introducing
c(1) − 1 additional vertices. With each edge on such a path, we associate a
variable. We assign f(xe) to the variable associated with the first edge on the
path replacing e, and just 1 of the field to the variables associated with the
remaining edges on the path.

The resulting network L′ is of size O(Cn2). Let HL′,U be the family of all
proper sets of k walks of total cost U in the network L′. We can evaluate the
polynomial QL′,U =

∑
S∈HL′,U

∏
W∈S MW in parallel analogously as QL,l in the

proof of Lemma 3. It remains to observe that the value of CQL.U under the
assignment f is equal to that of QL′,U under the aforementioned assignment.

��

Now, we are ready to derive our main result in this section.

Theorem 2. The minimum cost of a set of k mutually vertex-disjoint simple
directed paths connecting X with Y in the network L with edge costs in [C] can
be computed by a randomized CREW PRAM, with errors of exponentially small
probability in n, running in O(k log(Cn)+log2(Cn)) time and using O(kC5n10+
2kk3C3n7) processors.

Proof. The minimum cost of the sought set of vertex-disjoint paths is in [Cn2].
Hence, by Lemma 5, it is sufficient to test the polynomials CQL,U for non-
identity with zero for all U ∈ [Cn2] in parallel. By applying Lemmata 4 and
6 in a manner analogous to the proof of Theorem 1, we conclude that it can
be done by a randomized CREW PRAM, with one-sided errors of exponen-
tially small in n probability, running in O(k log(Cn)+ log2(Cn)) time and using
O(Cn2 × (kC4n8 + 2kk3C2n5)) processors. ��

A Fast Parallel Algorithm for Minimum-Cost Small Integral Flows 695

5 Finding Vertex-Disjoint Connecting Paths

A straightforward approach of extending our randomized parallel method for
deciding if there is a proper set of k mutually vertex-disjoint walks (of a given
total cost) between two sets of vertices of cardinality k to include the finding
variant could be roughly as follows. In parallel, for each k-tuple of respective
neighbors of the k start vertices in X, replace the set of start vertices by the
k-tuple and apply our method recursively to the resulting network. If the test is
positive, the first edges on the walks are known, and we can iterate the method.
The problem with this approach is that its recursive depth is proportional to the
maximum length of a walk in the resulting set of mutually vertex-disjoint walks
between X and Y.

Also, it is not clear how one could implement a straightforward divide-and-
conquer approach of guessing intermediate vertices in order to find a set of k
mutually-vertex disjoint walks of a given cost efficiently in parallel.

We need more advanced methods to obtain a very fast parallelization of the
finding variant. We shall modify the edge cost in the network L in order to use
the so called isolation lemma in a manner analogous to the RNC method of
finding a perfect matching given in [20].

Lemma 7. (The isolation lemma [20]). Let F be a family of subsets of a set
with q elements and let r be a non-negative integer. Suppose that each element s
of the set is independently assigned a weight w(s) uniformly at random from [r],
and the weight of a subset S in F is defined as w(S) =

∑
x∈S w(x). Then, the

probability that there is a unique set in F of minimum weight is at least 1− q
r .

Corollary 1. For each of the m edges e in the network L, modify its cost c(e) to
c′(e) = c(e)rm+w(e), where the weight w(e) is drawn uniformly at random from
[r]. Then, the probability that there is a unique minimum-cost set of mutually
vertex-disjoint paths connecting X with Y in the edge weighted network L is at
least 1− m

r .

Proof. To use the isolation lemma, let the underlying set to consist of all edges in
the network L. Next, note that a set of mutually vertex-disjoint paths connecting
X with Y achieving a minimum cost consists of simple paths and thus it can
be identified with the set of edges on the paths. Let P be the family of all sets
of mutually vertex-disjoint simple paths connecting X with Y in the network
L. By the setting of new costs c′(e), solely those sets in P that achieved the
minimum cost, say D, under the original costs c(e) can achieve a minimum cost
under the new costs c′(e). So, we can set F to the aforementioned sub-family
of P , and define the weight of a set of k paths in F as the sum of the weights
w(e) of the edges e on the paths in this set in order to use the isolation lemma.
By the isolation lemma, there is a unique set S in F that achieves the minimum
weight w(S) with the probability at least 1− m

r . The corollary follows since each
set S in F has the cost c′(S) equal to D + w(S). ��

Throughout the rest of this section, we shall assume that each of the m edges e
in the network L is assigned the cost c′(e) as in Corollary 1 and that r ∈ [nO(1)].

696 A. Lingas and M. Persson

Suppose that we know the minimum cost of a set of k mutually vertex-disjoint
paths connecting X with Y in the network L with the edge costs indicated, and
such a minimum-cost set is unique. Then, it is sufficient to show that we can test
quickly in parallel if the network L with an arbitrary edge removed still contains
a set of k mutually vertex-disjoint paths connecting X with Y that achieves the
minimum cost. By performing the test for each edge of L in parallel, we can
determine the set of edges forming the unique minimum-cost set of k mutually
vertex-disjoint paths connecting X with Y .

To carry out these tests, we need to generalize the polynomial CQL,U to a
polynomial CPL,e,U , where e is an edge in L and U is a cost constraint from
[mr(mC + 1)] = [CnO(1)]. Let HL,e,U be the family of all proper sets of k walks
in the network L with the edge e removed that have total cost equal to U. (In
the total cost of a set of walks, we count the cost of an edge the number of times
equal to the sum of the multiplicities of the edge in the walks.)

As in the definition of QL,l assign a distinct variable xe to each edge e in L,
and for a walk W ∈ HL,e,W , let MW be the monomial, where xe has multiplicity
equal to the number of occurrences of e in W. The polynomial CPL,e,U is defined
by
∑

S∈HL,e,W

∏
W∈S MW .

By using the proof method of Lemma 1, we obtain the following counterpart
of this lemma for CPL.e,U .

Lemma 8. For the edge-costed network L with m edges, edge e, and U ∈
[CnO(1)], there is a proper set of k mutually vertex-disjoint walks of total cost
U in the network L with the edge e removed iff CPL.e,U is not identical to zero
over a field of characteristic two.

Next, we obtain the counterpart of Lemma 3 for CPL,e,U following the proof of
Lemma 6.

Lemma 9. CPL,e,U can be evaluated for a given assignment of values over a
field F2O(log n) of characteristic two in O(k log(Cn)+log2(Cn)) time by a PRAM
using 2k(kCn)O(1) processors.

Now, we are ready to derive our main result in this section.

Theorem 3. There is a randomized PRAM returning almost certainly (i.e.,
with probability at least 1− 1

nα , where α ≥ 1) a minimum-cost set of k mutually
vertex-disjoint paths connecting X with Y in the network L with the original
edge costs in [C] (iff such a set exists) in O(k log(Cn) + log2(Cn)) time using
2k(kCn)O(1) processors.

Proof. We set r to, say, n2m, and specify the new edge costs c′(e) in the network
L drawing the weights w(e) uniformly at random from [r] as in Corollary 1. Next,
for each U ∈ [mr(mC+1)] = [CnO(1)], we proceed in parallel as follows. For each
edge e of the network L, we test the polynomial CPL,e,U for the non-identity
with zero by using Lemma 4 and Lemma 9 (we can perform a linear in n number
of such tests in parallel in order to decrease the probability of the one-sided error
to an exponentially small one). Next, we verify if the edges that passed the test

A Fast Parallel Algorithm for Minimum-Cost Small Integral Flows 697

positively yield a set of k mutually vertex-disjoint paths connecting X with Y .
For example, it can be done by checking for each endpoint of the edges outside
X ∪ Y if it is shared by exactly two of the edges, and then computing and
examining the transitive closure of the graph induced by the edges (see [19]). If
so, we save the resulting set of paths of total (new) cost U. By Corollary 1, there
is a U ∈ [CnO(1)] for which the above procedure will find such a set of paths
that achieves the minimum (original) cost with probability at least 1− 1

n . ��

6 Minimum-Cost Logarithmic Integral Flow is in RNC2

The following lemma is a straightforward generalization of a folklore reduction
of maximum integral flow to a corresponding disjoint connecting path problem
(for instance cf. [7]) to include minimum-cost integral flow. We shall call a flow
proper, if it ships each flow unit along a simple path from the source to the sink.

Lemma 10. The problem of whether or not there is a proper integral flow of
value k and cost D from a distinguished source vertex s to a distinguished sink
vertex t in a directed network with n vertices. integral edge capacities and edge
costs in [C] can be (many-one) reduced to that of whether or not there is set of k
mutually vertex-disjoint simple directed paths of total cost D∗, where �D∗

kn � = D,
connecting two distinguished sets of k vertices in a directed network on O(kn2)
vertices in O(log k + logn) time by a CREW PRAM using O(kn2 + k2n) pro-
cessors.

Proof. Let K = (V,E) be the directed network with integral edge capacities,
edges costs in [C] and the distinguished source vertex s and sink vertex t. Since
we are interested in a flow of value k, we can assume w.l.o.g that all edge capac-
ities do not exceed k.

We form a directed network K∗ on the basis of the network K as follows.
Let v ∈ V. Next, let Ein(v) be the set of edges in K incoming into v, and

let Eout(v) be the set of edges in K leaving v. For each e ∈ Ein(v) and i ∈
[capacity(e)], we create the vertex vin(e, i). Analogously, for each e′ ∈ Eout(v)
and i′ ∈ [capacity(e′)], we create the vertex vout(e

′, i′). Furthermore, we direct
an edge from each vertex vin(e, i) to each vertex vout(e

′, i′). To each such an
edge, we assign the cost 1. Also, for each edge e = (v, w) of K, we direct an edge
from vout(e, i) to win(e, i) for i ∈ [capacity(e)]. To each such an edge, we assign
the cost c(e)kn. See Fig. 2. Let X ′ be the set of vertices of the form sout(...),
and let Y ′ denote the set of vertices of the form tin(...). Create an additional
set X of k vertices and from each vertex in X direct an edge to each vertex in
X ′. Symmetrically, create another additional set Y of k vertices and from each
vertex in Y ′ direct an edge to each vertex in Y.

It is easy to observe that there is a proper integral flow of value k and cost
D from s to t in the network K iff there is a set of k mutually vertex-disjoint
simple paths of total cost D∗ connecting X with Y in the network K∗, such that
�D∗
kn � = D.

698 A. Lingas and M. Persson

1

(a) (b)

1

2

3

Fig. 2. An example of a vertex of the network K and the corresponding part of the
network K∗

Now it is sufficient to note that the construction of K∗, X and Y on the basis
of K easily implemented by a CREW PRAM in O(log k + logn)-time using
O(kn2 + k2n) processors, where n is the number of vertices in K. ��

By combining Theorem 1 with Lemma 10, we obtain our first main result.

Theorem 4. The minimum cost of a flow of value k in a network with n ver-
tices, a sink and a source, integral edge capacities and positive integral edge
costs in [C] can be found by a randomized PRAM, with errors of exponentially
small probability in n, running in O(k log(Ckn) + log2(Ckn) time and using
O(k11C5n20 + 2kk10C3n14) processors.

By combining in turn Theorem 3 with the finding variant of Lemma 10 using
exactly the same reduction, we obtain our second main result.

Theorem 5. There is a randomized PRAM algorithm returning almost cer-
tainly a minimum-cost flow of value k (iff a flow of value k exists) in a network
with n vertices, a sink and a source, integral edge capacities and edge costs in
[nO(1)], in O(k log(kn) + log2(kn)) time using 2k(kn)O(1) processors.

Corollary 2. The problem of finding a minimum-cost flow of value O(log n)
in a network with n vertices, a sink and a source, and integral edge capacities
bounded polynomially in n admits an RNC2 algorithm.

7 Final Remarks

We have resented a new approach to the minimum-cost integral flow problem.
In particular, it yields an RNC2 algorithm when the flow supply is (at most)
logarithmic in the size of the network.

All our results can be extended to to include undirected networks by a straight-
forward reduction.

A Fast Parallel Algorithm for Minimum-Cost Small Integral Flows 699

References

1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and
Applications. Prentice-Hall, Inc. (1993)

2. Anderson, R.J., Setubal, J.C.: On the Parallel Implementation of Goldberg’s Max-
imum Flow Algorithm. In: Proc. Annual ACM Symposium on Parallel Algorithms
and Architectures (SPAA), pp. 168–177 (1992)

3. Björklund, A.: Determinant sums for undirected Hamiltonicity. In: Proc. 51th
IEEE Symposium on Foundations of Computer Science (FOCS), pp. 173–182
(2010)

4. Björklund, A., Husfeldt, T., Taslaman, N.: Shortest Cycle Through Specified Ele-
ments. In: Proc. Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
(2012)

5. DeMillo, R.A., Lipton, R.J.: A probabilistic remark on algebraic program testing.
Information Processing Letters 7, 193–195 (1978)

6. Edmonds, J.: Systems of distinct representatives and linear algebra. J. Res. Nat.
Bur. Standards Sect. 71B(4), 241–245 (1967)

7. Even, S.: Graph Algorithms. Computer Science Press Inc. (1979)
8. Edmonds, J., Karp, R.M.: Theoretical improvements in algorithmic efficiency for

network flow problems. Journal of the ACM 19(2), 248–264 (1972)
9. Ford Jr., L.R., Fulkerson, D.R.: Maximal flow through a network. Can. J. Math. 8,

399–404
10. Fulkerson, D.R.: An out-of-Kilter method for minimal cost flow problems. SIAM

J. Appl. Math. 9, 18–27
11. Galil, Z., Pan, V.: Improved processor bounds for algebraic and combinatorial

problems in RNC. In: Proc. 26th IEEE Symposium on Foundations of Computer
Science (FOCS), pp. 490–495 (1985)

12. Goldberg, A.: Parallel Algorithms for Network Flow Problems. In: Reif, J.H. (ed.)
Synthesis of Parallel Algorithms. Morgan-Kauffman (1993)

13. Goldschlager, L.M., Shaw, R.A., Staples, J.: The Maximum Flow Problem is Log
Space Complete for P. Theoretical Computer Science 21(1), 105–111 (1982)

14. Karp, R., Upfal, E., Wigderson, A.: Constructing a perfect matching is in random
NC. Combinatorica 6(1), 35–48 (1986)

15. Koutis, I.: Faster Algebraic Algorithms for Path and Packing Problems. In: Aceto,
L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz,
I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 575–586. Springer, Heidelberg
(2008)

16. Lawler, E.L.: Combinatorial optimization: Networks and matroids. Holt, Rinehart
and Winston, New York

17. Mulmuley, K., Vazirani, U.V., Vazirani, V.V.: Matching is as Easy as Matrix In-
version. Combinatorica 7(1), 105–113 (1987)

18. Orlin, J.B., Stein, C.: Parallel Algorithms for the Assignment and Minimum-Cost
Flow Problems. Operations Research Letters 14, 181–186 (1993)

19. Reif, J.H.: Synthesis of Parallel Algorithms. Morgan-Kauffman (1993)
20. Vazirani, V.V.: Parallel Graph Matching. In: Reif, J.H. (ed.) Synthesis of Parallel

Algorithms. Morgan-Kauffman (1993)
21. Schwartz, J.T.: Fast probabilistic algorithms for verification of polynomial identi-

ties. Journal of the ACM 27(4), 701–717 (1980)
22. Williams, R.: Finding paths of length k in O∗(2k). Information Processing Let-

ters 109, 301–338 (2009)

Topic 13: High Performance Network

and Communication

Chris Develder, Emmanouel Varvarigos,
Admela Jukan, and Dimitra Simeonidou

Topic Committee

This topic on High-Performance Network and Communication is devoted to com-
munication issues in scalable compute and storage systems, such as parallel com-
puters, networks of workstations, and clusters. All aspects of communication in
modern systems were solicited, including advances in the design, implementa-
tion, and evaluation of interconnection networks, network interfaces, system and
storage area networks, on-chip interconnects, communication protocols, rout-
ing and communication algorithms, and communication aspects of parallel and
distributed algorithms.

This year we selected 4 papers and one of the papers was selected for the best
paper session. The authors of the paper entitled “Topology Configuration in
Hybrid EPS/OCS Interconnects” consider a hybrid interconnection network for
future high performance computing (HPC) and data center systems, combining
Electronic Packet Switching (EPS) and Optical Circuit Switching (OCS). They
present heuristic algorithms to map the tasks of parallel HPC applications onto
physical processors to allow efficient communication over the hybrid EPS/OPS
network. The article entitled “Towards an Efficient Fat-tree like Topology” pro-
poses extensions of the fat-tree topology and analyzes the way the routing al-
gorithm affects the complexity of the switch. The authors not only look into
the impact of topology and routing on performance (i.e., throughput, latency
etc.), but also their influence on switch cost (e.g., in terms of number of switch-
ing elements required). In “An adaptive, scalable, and portable technique for
speeding up MPI-based applications”, the authors present a portable optimiza-
tion of MPI called PRAcTICaL-MPI (Portable Adaptive Compression Library
- MPI). PRAcTICaL-MPI enhances the performance and scalability of MPI ap-
plications by applying run-time lossless compression, in a transparent way for
applications, to reduce the data volume exchanged among processes, selecting
the most appropriate compression algorithm at run-time. Finally, the authors of
the paper “Cost-effective Contention Avoidance in a CMP with Shared Memory
Controllers” study, for large chip multiprocessors (CMP), the cause and effect of
network congestion due to traffic local to the applications, and traffic caused by
memory access. They present a mechanism to reduce head-of-line blocking in the
switches, hence efficiently reducing network congestion, increasing network per-
formance, and evening out performance differences between CMP applications.

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, p. 700, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 701–715, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Topology Configuration
in Hybrid EPS/OCS Interconnects

Konstantinos Christodoulopoulos1, Marco Ruffini1, Donal O’Mahony1,
and Kostas Katrinis2

1 School of Computer Science and Statistics, Trinity College Dublin, Ireland
2 IBM Research, Ireland
christok@tcd.ie

Abstract. We consider a hybrid Electronic Packet Switched (EPS) and Optical
Circuit Switched (OCS) interconnection network (IN) for future HPC and DC
systems. Given the point-to-point communication graph of an application, we
present a heuristic algorithm that partitions logical parallel tasks to compute re-
sources and configures the (re-configurable) optical part of the hybrid IN to ef-
ficiently serve point-to-point communication. We measure the performance of a
hybrid IN employing the proposed algorithm using real workloads, as well as
extrapolated traffic, and compare it against application mapping on convention-
al fixed, electronic-only INs based on toroidal topologies.

Keywords: Reconfigurable interconnection networks, optical circuit switching,
communication graph, application mapping, partitioning, topology configuration.

1 Introduction

High Performance Computing (HPC) systems and datacenters (DCs) are being built
with ever-increasing numbers of processors. Currently systems with tens of thousands
of servers have already been reported to be in operation, while their scale is expected
to grow to the order of millions of cores towards Exascale [1]. To obtain high system
efficiency, computation and communication performance need to be balanced. Given
the aggressive increase in compute density – thanks to the increasing number of
cores/node and the growing deployment of accelerators – it is of paramount impor-
tance to avoid having the interconnection network (IN) become a bottleneck [1-2];
instead, IN technologies and system software need to grow in hand with the evolution
in compute density to enable next generation HPC and DC systems.

Flagship supercomputers typically employ regular topologies of electronic switch-
es, such as hypercubes and toroidal structures. For instance, the Cray XT5 [3] utilizes
a 3D torus topology, while the K supercomputer [4] employs a 6D torus (although not
all dimensions are complete). Such low-degree regular topologies are adopted due to
their inherent ability to scale linearly with the number of compute nodes. Still, these
sparse topologies tend –for specific applications– to aggravate the mapping of appli-
cation communication to the underlying IN [5-10]. At the far end, many HPC clusters
and DCs adopt indirect routing IN, such as fat-trees [11] that provide for

702 K. Christodoulopoulos, M. Ruffini, and D. O’Mahony

Fig. 1. Topology-aware mapping on fixed electronic-only IN (left) and topology configuration
in reconfigurable OCS IN (right)

full-bisection bandwidth and thus simplify the mapping of applications. Though, this
comes at a cost that scales super-linearly with the size and thus raises scalability con-
cerns when considered at extreme scale, especially if the investment is not justified
due to poor utilization [12]. Oversubscription [13] is often proposed as a means of
controlling the capital and power-consumption cost. Still, the inflexibility of placing
network capacity once and for all at design time remains, similar to the case of low-
degree regular topologies.

To close the gap between constant-degree, fixed INs and costly, full-bisection INs,
past work [14-17] has proposed building low-degree, reconfigurable INs that allow
for on-demand bandwidth allocation wherever is needed. Maintaining a low-degree
IN reduces its contribution to the capital cost of the system, while these designs have
been shown to fit well the communication patterns exhibited by specific classes of
HPC applications [14] and DC workloads [16-18]. The proposed reconfigurable IN
architecture constitutes hybrids of two switching technologies, namely using both
electronic packet-switches (EPS part) and optical circuit-switches (OCS part). The
OCS part, typically implemented with commodity MEMS-based switches, handles
high-rate, long-lived point-to-point flows, whereby the EPS part serves low-rate sig-
naling, short-lived flows and collectives (many-to-many communication).

In this paper, we focus on traditional HPC applications that exhibit static point-to-
point logical communication graphs. We call static an application that follows specific
communication patterns so that its logical communication graph at intermediate phases
and the aggregated graph at the end of its execution have well defined and consistent
structures irrespective of the input. This definition is very close to the definition given in
[14], where a static application is considered to have known communication pattern at
compilation time. It must be noted here that logical point-to-point communication
graphs are influenced only by application-level communication, i.e. point-to-point
communication between logical entities, and thus do not depend on machine or IN cha-
racteristics. Work on identifying and classifying the point-to-point communication
graphs of static HPC applications include [18] and [19]. Finally, stream computing ap-
plications [15] can be also included in this category of static applications.

Given the IN of an HPC system, mapping the tasks of a parallel application onto
physical processors to allow efficient communication becomes critical to performance.
This problem is usually referred to as topology-aware mapping and has been shown to

 Topology Configuration in Hybrid EPS/OCS Interconnects 703

be NP-hard [5]. The most efficient known approach [6] is to adapt the application
source code to optimize task-to-task communication against a specific IN topology.
Albeit efficient, this approach is cumbersome, while also being application- and system-
specific, thus precluding re-use across machines or applications. More practical alterna-
tives [7-10] do not require any changes to application code and thus trade-off efficiency
for being application-agnostic. In particular, specialized system software takes as input
the logical point-to-point communication graph of a static application and performs
task-to-processor assignment taking into account the IN topology.

Among the various advantages [14-17] brought by reconfigurable INs, the ability
to look at task partitioning/mapping from a different angle remains unexplored: in-
stead of performing a sophisticated task-to-processor assignment on a fixed topology
as in [5-10], the logical tasks can be partitioned and the topology of the (reconfigura-
ble) IN that interconnects them can be configured for optimized communication and
thus improved application performance. This comprises the topic of this paper. Fig. 1
contrasts these two different approaches.

Our methods apply and improve use cases that are relevant in mapping of static ap-
plications on fixed INs [5-10]. The logical point-to-point communication graph of a
static application is identified at compilation time and/or the application is executed
once to profile and capture its communication graph. Using this input, an optimized
OCS topology configuration is computed and used to speedup subsequent executions of
the application. We assume that the OCS network is configured once, that is, it is
configured at the outset of application execution and remains the same throughout its
execution. Although the reconfigurable network could dynamically adapt its topology to
support more efficiently the different application phases, we will not consider such cas-
es here. References [16-17] examine the dynamic reconfiguration of the OCS network
to follow the traffic variations of DC applications, considering only single-hop trans-
missions and mostly single-layer optical networks, features that we plan to extend in our
future work. Note that dynamic reconfiguration can be viewed as a sequence of well
defined static instances, whereby each one can be solved by the method proposed here.

For the purpose of evaluation, we profile several static HPC application kernels run
on an HPC cluster using IPM [20] and derive their logical point-to-point communica-
tion graphs. Using hop-bytes1 [8-10] as the performance metric and for various
architectural choices of the hybrid target EPS/OCS IN, the level at which optical in-
terconnection occurs and the number of optical ports available, we evaluate the per-
formance of the proposed joint partitioning and topology-configuration heuristic and
compare it against application mapping on conventional fixed, electronic-only INs
that are based on toroidal topologies. We also develop simple models for estimating
the capital cost of the hybrid EPS/OCS vs. a torus-like electronic-only IN.

2 System Model

We consider a generic multi-rack system architecture in which processing elements
are multi-core processor chips. A given number of chips is mounted to a (compute)

1 The hop-bytes metric is defined as the weighted sum of traversed hops. Weights correspond

to message sizes.

704 K. Christodoulopoulos, M. Ruffini, and D. O’Mahony

node. In turn, a number of nodes comprises a mid-plane, and a set of mid-planes is
installed in a rack.

We assume an interconnection network (IN) adhering to a hybrid architecture
comprising both an Electronic Packet Switched (EPS) and an Optical Circuit Switch-
ed (OCS) network [14]. The OCS network is typically implemented with one or more
Micro Electro-Mechanical Systems (MEMS) optical switches (crossbar). MEMS are
layer-0 switches that establish an end-to-end optical connection by reflecting a light
beam from an input to an output port. The signal is switched transparently without
performing any processing on switched data. MEMS-based switches exhibit circuit
setup times that are typically in the order of tens of milliseconds and thus would result
in prohibitively high per-packet switching overhead, should they be operated as pack-
et switches. Therefore, it makes sense to use MEMS as switching elements of high-
rate, long-lived, point-to-point flows. Flows at core- or chip-level do not currently
have such characteristics. Moreover, since MEMS-switches support solely point-to-
point communication, creating a chip-level network would require a high-degree OCS
topology, which is prohibitive in terms of scalability. Therefore, all-optical switching
is applied to aggregated traffic at a higher interconnect level that we hereafter refer to
as the optical aggregation level. Given current cores/node figures and typical
byte/flops ratios, setting the optical aggregation at mid-plane or rack level maximizes
the utilization of optical circuits and reduces the frequency of reconfiguration of
OCS-switches (due to aggregation). Still, as compute density packed into a single
node keeps increasing, so will do the number of compute tasks and bandwidth per
node [1], justifying the placement of optical aggregation at the node level. To allow
our work to capture this trend and thus be future-proof, we apply an abstraction to the
assumed system model to enable us to carry parametric studies.

Specifically, we logically cluster processing elements (cores) together to form
groups that we refer to as logical clusters (LCs). The processing elements comprising
an LC are interconnected via an electronic packet switched (EPS) network (to be re-
ferred to as the first-level of EPS network or EPS-edge) that serves both intra-LC
communication, as well as aggregating LC traffic destined to distant LCs. At the opti-
cal aggregation level, M EPS (bidirectional) ports are connected to the second-level of
the EPS network (EPS-core) and also K (bidirectional) ports are connected to the OCS
network. At the optical aggregation level the traffic towards distant LCs can be served
by two parallel networks: either the EPS-core or the OCS network. The OCS network
handles persistent point-to-point, high-rate inter-LC flows, while the EPS-core net-
work handles lower bandwidth and collective communications, as well as bursty
flows. INs with two levels of hierarchy are also found in fixed topology EPS systems
[10], and in the hybrid EPS/OCS IN [14-17]. While the above abstraction enables us
to evaluate our approach against various choices of placing the optical aggregation
level, it still allows a straightforward mapping of our approach to real systems. To
showcase this, we assume an HPC cluster with both levels of the EPS network being
implemented using Ethernet. The optical aggregation point is then either a multi-port
Ethernet NIC (node-level optical aggregation) or an Ethernet top-of-rack switch (rack
or mid-plane level optical aggregation), whereby optical transceivers are used to carry
packets to/from the OCS network. The transmit (resp. receive) side of each transceiv-
er is connected to an input (resp. output) port of the MEMS-switch.

 Topology Configuration in Hybrid EPS/OCS Interconnects 705

Let T denote the number of processing elements that are grouped together to form a
logical cluster (LC) and N denote the number of LCs of the system. In the hybrid
EPS/OCS network model we adopt, each LC is connected to K parallel OCS planes at
the optical aggregation level [14]. Fig. 2 depicts the architectural diagram of the sys-
tem model we adopt in this paper. Since, each parallel OCS plane is implemented
with an NxN crossbar switch, K NxN crossbar switches are required in total. A large
MEMS crossbar switch can be configured to create smaller NxN crossbar switches,
and so the total number of switches required can be less than K. Currently 320x320
MEMS crossbar switches are available by a number of vendors, while there are proto-
types with 1000 in/out ports. Note that our goal is to create a hybrid EPS/OCS net-
work with K << N to keep the cost as low as possible and aim at massive scale out.

} }

Fig. 2. Reference hybrid EPS/OCS IN consisting of N logical clusters (LCs). At the optical
aggregation level, M and K bidirectional EPS ports are connected to the EPS-core and the OCS
network, respectively. At each of the K EPS ports accessing the OCS network, the transmit (T)
side of the transceiver is connected to an IN (input) port and the receive (R) side to an OUT
(output) port of the OCS switch.

In this paper we will focus mainly on the OCS part of the hybrid IN. The method that
we propose in the next section takes as input the logical point-to-point communication
graph of parallel application tasks, given e.g. in the form of a traffic matrix, and a spe-
cific OCS architecture as defined by the related K and T parameters. We assume that the
rest of the traffic that is not point-to-point (e.g. collectives) is routed over the EPS-core
part of the hybrid IN. The goal of the proposed method is to serve the point-to-point
transmissions in an efficient way. To do so, we partition the tasks to form logical clus-
ters (LCs) and also derive the configuration of the OCS network to optimize the com-
munication between LCs. The partitioning process divides the communication into in-
ter- and intra-LCs communication, similar to the hierarchical mapping problem ex-
amined in [10]. Intra-LC communication that is served by the first-level, EPS-edge is
considered to be cheap and is neglected, while inter-LC communication, which is routed
over the OCS network, is the traffic that is optimized by our topology-configuration

706 K. Christodoulopoulos, M. Ruffini, and D. O’Mahony

algorithms. In the remainder of this paper we will call this problem the Partitioning and
Topology-Configuration with Bounded Connectivity (PTCBC) problem.

Given the adopted OCS IN with K parallel OCS planes, an application that after
the grouping to LCs has an inter-LC communication graph with directed connectivity
degree less than K, can be served over the OCS network with direct point-to-point
connections. Otherwise, we resort to multi-hop transmissions. Multi-hop refers to
OCS-based communication that involves electronic processing of packets at the EPS-
edge, beyond the source/destination LCs, at intermediate LC hops. Multi-hop increas-
es the effective bandwidth between LCs at the expense of increased latency as well as
increased congestion and average network load.

3 Partitioning and Topology Configuration with Bounded
Connectivity

In this section we formulate the Partitioning and Topology-configuration with
Bounded Connectivity (PTCBC) problem and provide for an efficient heuristic algo-
rithm to solve it.

We start with a parallel application that utilizes Z (MPI) tasks. A typical allocation
would consist of assigning each task to a processing element corresponding to a pro-
cessor core, although other assignments at the thread or chip level are also applicable.
We are also given the logical point-to-point communication graph of the application
(MPI task level communication) in the form of a traffic matrix Λ of size ZxZ. Element
Λnm (1 ≤ n,m ≤ Z) corresponds to the point-to-point communication volume (in bytes)
exchanged throughout the entire application execution between task n and m; thus Λ
has a zero diagonal. The remaining transmissions that are not point-to-point (e.g. col-
lectives) are routed over the EPS-core part of the hybrid IN and are not considered
here. Tasks are first partitioned into logical clusters (LCs, see Section 2 for the defini-
tion of LCs). In particular, we assume that T tasks are grouped together to form the
LC (one of the LCs may contain less than T elements, if Z mod T > 0). Let N stand for
the number of LCs formed after clustering the Z tasks; then N = /Z T .

By partitioning into logical clusters (LCs) we transform Λ into a new traffic matrix
λ of size NxN, with each element λij (1 ≤ i,j ≤ N) corresponding to the point-to-point
communication volume (in bytes) between LCi and LCj (i.e. λ corresponds to the in-
ter-LC communication graph). Note that unlike Λ being part of the problem input, the
traffic matrix λ is conditioned on the clustering method employed and as such is an
intermediate output.

Inter-LC traffic, as described by traffic matrix λ, is served by the reconfigurable
OCS interconnection network (IN). The LCs are mapped to the physical compute
resources to form compute aggregations (racks, mid-planes or nodes), by putting tasks
that belong to the same LC together in the same compute aggregation without consi-
dering the position of the aggregation in the IN topology, since the OCS IN will be
configured around these aggregations. As outlined in Section 2, the OCS network we
consider consists of K parallel OCS planes. There are two different versions of the
problem: one that assumes unidirectional and one that assumes bidirectional connec-
tions over the OCS network. This is related to the type/configuration of aggregation
switches, the related transceivers used at the optical aggregation level and their

 Topology Configuration in Hybrid EPS/OCS Interconnects 707

connection to the MEMS switch(es). Given that the unidirectional case is more gener-
ic and that Ethernet commodity switches can support this operating mode, we will
focus on unidirectional connections, although our algorithms can be applied with
minor changes to bidirectional connections. Note that if traffic matrix λ includes both
directions of communication for an LC pair, the solution will include connections for
both directions, although they may utilize different paths.

We start with a fully connected graph G=(V,E), with V being the set of vertices
that correspond to the logical clusters (LCs) and E the set of candidate links that con-
nect every pair in V. The links included in E are not actually functioning but are the
candidate links that can be established in the OCS network. In this context, we will
say that we establish an optical link (i,j) when we configure the OCS network to es-
tablish a circuit connection between LCi and LCj. Since we are considering directed
connections, the order of i and j is important. The number of links that can be estab-
lished is constrained by the number K of parallel OCS planes. We let L ⊆ E be the set
of links that are chosen to be established and G’=(V,L) the related graph, with con-
nectivity degree less or equal to K. G’ is the graph of the constructed OCS network.

The Partitioning and Topology-Configuration with Bounded Connectivity
(PTCBC) problem is defined as follows. We are given the traffic matrix Λ, the desired
number T of tasks per LC and the number K of parallel OCS planes, and we seek to
identify a “good” partitioning of tasks to LCs (i.e. find the λ matrix), and a “good”
configuration of the OCS network that interconnects the LCs (i.e. identify the set L of
optical links to be established). The goodness of a joint partitioning/topology-
configuration solution is measured against its ability to minimize a communication
objective, namely average hop-bytes. The average hop-bytes metric is defined as the
sum of path lengths (measured in hop-count) taken by the messages, weighted by the
respective message size [8-10]. The purpose of the average hop-bytes metric is to
capture approximately the average load on the network. In early works in the fields of
graph embedding and VLSI design, emphasis was placed on the maximum dilation
metric, which is the longest path (resp. the longest wire in a circuit). Ref. [8-10] argue
that reducing the longest path (maximum dilation) is not as critical as reducing the
average hops across all message sizes, as captured by the hop-bytes metric. Our algo-
rithmic formulations are general and can be used to optimize other performance me-
tric, such as the maximum dilation or link congestion, but the hop-bytes was chosen
as the most appropriate metric for our comparisons.

If the optical aggregation level is placed directly at the processing elements, then
partitioning to logical clusters becomes obsolete. This is a special case of the PTCBC
problem with T=1 and thus λ=Λ. In this case, the problem is reduced to the topology-
configuration problem with bounded connectivity degree, which we proved to be NP-
hard by a reduction to the circular arrangement problem [21] (the proof is omitted due
to space limitations). This case covers also the version of the problem where we are
given directly the traffic matrix λ capturing the traffic that will be routed over the
OCS network. Since the general problem described above with T≥1 includes as a
special case an NP-hard problem, the general problem is also NP-hard. The optimal
solution of PTCBC is bound to give at least as good performance results as the appli-
cation mapping on hierarchical electronic-only fixed INs [10], as long as the connec-
tivity degree of the hybrid network is not less than that of the fixed IN. For example,
assuming that the optimal architecture to serve the traffic is a 3D torus, the optimal

708 K. Christodoulopoulos, M. Ruffini, and D. O’Mahony

PTCBC solution would be to configure the OCS network to form a 3D torus and ob-
tain exactly the same performance as the fixed IN, assuming K≥6 (directed) planes.

3.1 Heuristic Algorithm

The PTCBC problem is computationally difficult, thus, in what follows we present a
heuristic algorithm to solve it. We decompose the problem by first solving the parti-
tioning problem (P) and then the topology-configuration with bounded connectivity
degree (TCBC) problem. The proposed heuristic involves 3 phases that are described
in the following paragraphs.

Partitioning into Logical Clusters
In the first phase we use spectral clustering to partition the traffic matrix Λ of size
ZxZ and form logical clusters (LCs) of size T each. We obtain thus a new traffic ma-
trix λ of size NxN that captures inter-LC traffic in bytes. We use the 2-way spectral
clustering algorithm and apply it recursively [22] until we obtain partitions of the
target cardinality (T).

Demand Ordering and Simulated Annealing
The sequential algorithm to be described next, establishes optical links based on the
demands of traffic matrix λ, by serving the demands one-by-one in some particular or-
der. The number of optical links emanating/terminated at an optical aggregation point is
constrained due to bounded connectivity. Due to this constraint, not all demands in λ
can be served by a single optical circuit and some have to be served by multi-hop
transmissions. Demands that are served earlier have higher probability of finding free
resources to establish an optical link, as opposed to demands that are served later. Thus,
different orderings result in different topology-configuration solutions with different
costs (hop-bytes). In this work, we employ the Highest Demand First (HDF) ordering
policy: we order the demands based on communication volume, and serve the demand
with the highest communication volume (in bytes) first. According to this policy, heavy
demands that have high communication sizes are served first. Since the performance
metric of interest is hop-bytes, serving the demands with the highest volume by single-
hop transmissions is a rational way to minimize the specific metric.

A number of other policies can be easily defined, based on other parameters of the
traffic matrix λ, e.g. based on the total load from a source to all destinations, the con-
nectivity bound, etc. However, since the performance depends on many parameters, it
is quite difficult to come up with a very good ordering policy. Thus, to find good
orderings, we use the Simulated Annealing (SA) meta-heuristic. Specifically, we start
with an HDF ordering and calculate its cost by sequentially serving the demands,
using the heuristic algorithm described in the following paragraph (the cost function
is the “fitness function” in the SA terminology). For a particular ordering ((s1,d1), …,
(sk,dk)) of the demands, we define its neighbor as the ordering where (si,di) is inter-
changed with (sj,dj) for some i and j. Note that k ≤N.(N-1), depending on the number
of non-zero point-to-point flows. To generate a random neighbor, we choose the
pivots i and j with uniform probability among the demands. We use this neighbor
generation procedure and the sequential demand heuristic as the fitness function in a
typical SA iteration process.

 Topology Configuration in Hybrid EPS/OCS Interconnects 709

Sequential Demand Serving Heuristic Algorithm
The algorithm described here serves sequentially the traffic between the LCs de-
scribed in λ, by configuring the OCS network to establish optical links to connect
two LCs. To keep track of the configuration of the OCS network we use two integer
vectors to hold the number of outgoing and incoming connections that are established
for each LC. In particular, we denote by O= [Oi]=(O1, O2,,…, ON), the vector of size N
(N is the number of LCs) where each element Oi corresponds to the number of estab-
lished outgoing optical connections from LCi. Similarly, we denote by I= [Ii]=(I1,
I2,,…, IN) the vector that keeps track of the incoming connections. We also keep a set
L of established optical links in the form of (i,j) LC pairs.

The demands are served sequentially in the order specified in the previous phase.
For a demand, e.g. (s,d), we establish an optical link between s and d as long as the
maximum connectivity degree bound is not exceeded. In particular, we check if s has
free outgoing ports (Os≤K) and also if d has free incoming ports (Id≤K). If both con-
straints are satisfied, we establish a direct optical connection between s and d by
cross-connecting the respective optical switch ports. Subsequently, we increase the Os

and Id elements, update the set L of established links by appending (s,d) to it and con-
tinue with serving the next demand. If the connectivity constraint for s and/or d is not
met, we move to the next demand. Once we have finished with all demands, the links
to be established are given by the set L. We use the graph formed by LCs as vertices
and L as edges as input to Johnson’s algorithm and compute the all-pairs shortest
paths. The set of computed shortest paths is used to calculate the average hop-bytes of
the solution. To improve performance, we additionally use Simulated Annealing
(SA): the sequential heuristic of this phase is run multiple times for different order-
ings. For each ordering, a new set of established optical links and thus set of (shortest)
paths is found, yielding a new average hop-bytes value. We keep the solution that
produces the lowest hop-bytes value. By controlling the number of SA iterations, we
trade-off optimality for computation time.

The heuristic algorithm presented above is of polynomial complexity. The spectral
heuristic used in the first phase is generally considered efficient for solving partition-
ing problems. The second phase involves the ordering of N2

 elements, while the third
phase involves the execution of Johnson’s algorithm that takes O(|V|2log|V|

+|V||L|)=(N2logN +N2K) time, which is faster than Floyd-Warshall's algorithm for
sparse networks as the one considered here (K<<N). Last, if SA is used, the number of
iterations drives the times that the third phase is executed.

4 Performance Results

We performed experiments to estimate the performance of the proposed PTCBC algo-
rithm in a hybrid EPS/OCS IN. We considered a number of design choices of the
hybrid IN, in particular different levels of optical aggregation and various numbers of
optical planes. We also compare the results obtained in the hybrid IN to a torus-like
electronic-only IN.

To estimate the performance of the hybrid IN, we implemented the heuristic algo-
rithm that solves the PTCBC problem. To obtain comparison results for the electron-
ic-only IN we used a hierarchical mapping heuristic algorithm that takes as input the

710 K. Christodoulopoulos, M. Ruffini, and D. O’Mahony

logical communication graph of an application, partitions the logical entities into
logical clusters (LCs) and then assigns the LCs to compute resources of a fixed IN
topology to minimize the hop-bytes. The heuristic used follows the approach in [10].
It first performs a partitioning using spectral clustering, and then it assigns the created
LCs to compute resources. It starts with an initial assignment and improves over that
using the SA pivoting process.

To evaluate the efficacy of our approach with pragmatic traffic input, we captured the
logical communication graphs of two kernels of representative HPC applications. In
particular, we installed SuperLU and FFTW applications on a cluster located at IBM
Dublin. SuperLU performs LU factorization of a sparse matrix and FFTW performs
forward and inverse Fast Fourier transformations. We used the IPM monitoring tool [20]
to capture the MPI point-to-point traffic that is generated by these applications. The ap-
plications were run on 240 up to 1920 ranks. Fig. 3 presents the point-to-point communi-
cation graphs obtained after a single run of each of the tested applications on 480 ranks.
Various executions were performed to verify that the communication graphs of these
applications exhibit similar patterns irrespective of the input and thus these applications
fall within the static category, as described in Section 1. The captured logical communi-
cation graphs were used as input for evaluation of our approach, as well as for perform-
ing hierarchical mapping on the electronic-only IN. Given the lack of a widely-accepted
method to scale these graphs, we extrapolated to higher scales by producing synthetic
traffic matrices that are isomorphic to the captured ones, and to generate traffic for large
problem executions that we were not able to perform on our cluster.

We assumed that the hierarchy of the system consists of 12 cores per node and 40
nodes per rack (total of 480 cores per rack), driven by the specifications of the IBM
cluster. We report results for the case where the OCS network is either connected
directly to compute nodes (where T=12) or to rack switches (where T=480), and for
K=4,6 and 8 parallel OCS planes. For comparison purposes we also estimated the
performance of electronic-only 2D-, 3D, and 4D-torus INs, (thus having the same
connectivity degrees as the corresponding OCS networks). For both hybrid and elec-
tronic-only INs we used 100 SA iterations.

Fig. 3. Logical communication graphs of SuperLU and FFTW kernels on 480 mpi-ranks

(a)

 Topology Configuration in Hybrid EPS/OCS Interconnects 711

Tables 1 and 2 report results for SuperLU, assuming that the OCS network is con-
nected directly to compute nodes; also, that a torus EPS network is connected directly
to compute nodes. More specifically, Table 1 reports the results using the communi-
cation graphs that were captured by executing SuperLU to factorize the webbase-1M
matrix taken from [23], on 240, 480, 960, 1920 MPI-ranks (N=20,40,80 and 160).
Note that we used Mbytes to measure the volume of data and thus the values reported
in the tables are measured in hop-Mbytes. From Table 1 we can observe that the hybr-
id IN exhibits lower hop-Mbytes than the electronic-only IN. Even a hybrid IN with
K=4 parallel optical planes has lower hop-Mbytes for almost all problem instances
examined than a 4D electronic-only IN, which has double connectivity degree. Note
that the improvement that we obtain when using the hybrid IN does not come from
the highest capacity supported by the OCS network. The hop-bytes metric used here
does not consider the capacity of the underlying networks. Instead, the improvement
comes from the configurability of the OCS part of the hybrid IN that was exploited to
serve efficiently the communication graph of the application. This confirms our ex-
pectation that performing static configuration improves communication performance.

Table 2 reports results obtained when using our custom built traffic generator. In
particular, we generated traffic matrices to emulate the execution of SuperLU on
N=20, 40, 80, 160 and 320 nodes. Fig. 4 presents the relative hop-bytes improvement
brought by our approach applied in a hybrid IN over a 3D-torus electronic-only IN.
Captured traffic (indicated by webbase matrix used as input) and synthetically gener-
ated traffic results are depicted in Fig. 4. By comparing results up to 160 nodes we
observe that the improvement we got using the synthetically generated traffic is in-
line with the one obtained with real input. As expected, the improvement is higher as
we increase the number of parallel OCS planes. A 3D torus network cannot be fully
constructed on a low number of nodes (up to a few tens of nodes, e.g. 40), so the im-
provement obtained by the hybrid IN as opposed to the 3D torus networks for prob-
lems of that size is partially explained by the 3D torus deficiency. For K=6 (equal
connectivity degree to the 3D torus), we observe that the improvement is approx-
imately 24% when executing SuperLU on 80 nodes, and increases to 30% and 38%
for 160 and 320 nodes, respectively.

Table 1. Performance for communication
graphs captured by running SuperLU using
the “webbase-1M” matrix as input

Table 2. Performance results for synthetically
generated communication graphs for the
SuperLU application

 Hybrid IN hop-Mbytes Electronic-only IN hop-Mbytes

Input K=4 K=6 K=8 2D 3D 4D
webbase-1M
(N=20 nodes) 5235 4046 3730 6973 5604 5604

webbase-1M
(N=40 nodes) 12703 9944 8683 13537 13272 12724

webbase-1M
(N=80 nodes) 16164 12622 11136 23514 16784 16481

webbase-1M
(N=160 nodes) 37868 27381 23861 60685 41362 36965

 Hybrid IN hop-Mbytes Electronic-only IN hop-Mbytes

Size K=4 K=6 K=8 2D 3D 4D
N=20 nodes
(1/2 rack) 5221 4170 3869 7178 5594 5594

N=40 nodes
(1 rack)

12915 10436 9172 14620 13438 13438

N=80 nodes
(2 racks) 32289 26006 23400 62141 33142 33142

N=160 nodes
(4 racks)

85586 64414 56549 148767 89936 77521

N=320 nodes
(8 racks) 284455 172890 146990 392423 274562 178720

712 K. Christodoulopoulos, M. Ruffini, and D. O’Mahony

Fig. 5 presents the improvement over a 3D electronic-only IN topology for the case
where the OCS network is connected to Top of Rack switches (ToR). Note that in this
set of experiments we neglected the performance of the network that interconnects
nodes within a rack, and we only consider inter-LC (or in this particular case inter-
rack) traffic. We report results using synthetically generated traffic to emulate the
execution of SuperLU from 8 up to 128 racks. Note that for small scale problem in-
stances, the 3D torus cannot be created and the comparison results are thus unfair.
However, for larger scale-out instances, the comparison indicates that the hybrid IN
performs up to 35% better than the electronic-only IN.

Fig. 4. Hop-bytes improvement of the hybrid
IN over the 3D torus electronic-only IN (node-
level aggregation)

Fig. 5. Hop-bytes improvement of the hybrid
IN over the 3D torus electronic-only IN
(rack-level aggregation)

Similar improvement was observed for FFTW (not reported here due to space

limitations).

Capital Cost Comparison
In addition to performance evaluation, we also created simple models to estimate the
cost of the hybrid IN and compare it to alternative electronic-only solutions. We let
COCS be the cost of an OCS port, and CEPS and CTR be the cost of the EPS port and the
EPS plug-in transceiver, respectively. Assuming that optical aggregation is performed
at the rack level, the cost of the electronic edge (Top-of-rack switch), the electronic
part of the core network and the optical part of the hybrid IN is
CH=N.K.(COCS+CEPS+CTR)+M.(CEPS+CTR) +N.R.(CEPS+CTR), where N is the number of
racks, K is the number of parallel OCS planes, M is the number of EPS ports of the
second level, and R is the number of electronic ports of edge that are connected to the
compute nodes (assuming R compute nodes per rack). The cost of the electronic-only
IN where the racks are connected in an X-D torus topology and the compute nodes are
directly connected to the top-of-rack switches is CE=N.2.X .(CEPS+CTR)
+N.R.(CEPS+CTR), where X is equal to 2, 3, or 4 for a 2-, 3-, or 4-D torus topology,
respectively.

0

10

20

30

40

50

20 nodes
(1/2 rack)

40 nodes
(1 rack)

80 nodes
(2 racks)

160 nodes
(4 racks)

320 nodes
(8 racks)

Im
pr

ov
e

m
e

nt
 p

e
rc

e
nt

ag
e

 (%
)

Problem size

OCS K=4
OCS K=6
OCS K=8
OCS K=4 (webbase)
OCS K=6 (webbase)
OCS K=8 (webbase)

0

10

20

30

40

50

8 racks 16 racks 32 racks 64 racks 128 racks

Im
p

ro
ve

m
e

n
t

p
e

rc
e

n
ta

ge
 (%

)

Problem size

OCS K=4

OCS K=6

OCS K=8

 Topology Configuration in Hybrid EPS/OCS Interconnects 713

Due to extreme price volatility in an evolving technology domain, any specific
price trend assumption would be speculative and may not survive over time. Instead,
we conducted a cost comparison that is parametric to ROCS. We define ROCS as the
relative cost of an OCS port over the cost of an EPS port plus the cost of an electro-
optical transceiver, i.e. ROCS=COCS /(CEPS+ CTR). In this comparison we assume R=40
compute nodes per rack and M=1 port for the second level of the EPS network in the
hybrid IN system.

Fig. 6. Ratio of the cost of the hybrid IN over the cost of the electronic-only network that inter-
connects the racks in a 3D torus topology

We found ROCS to be currently in the [0.5-0.6] interval, given the cost of an OCS
port COCS to be around $500 [16-17] and 40Gbps EPS technology. The price of OCS
switches will tend to fall rapidly, as high as 80% [24], as vendors pursue widely de-
ploying OCS in DC, indicating ROCS reduction to around 0.15 (without considering in
this calculation the reduction in the cost of the electronics). A benefit brought by the
proposed hybrid IN that is not factored in the cost model is that it is future-proof,
since the OCS network is agnostic to protocols, modulation formats and data rates.
Thus, to increase the capacity of the hybrid IN system we only need to upgrade
the electronic-edge that accesses the OCS network. This also indicates that the cost of
the OCS port and that of the hybrid network will almost certainly not increase, while
the cost of the electronic-only IN might increase rapidly, especially if we move to a
newer technology with higher bandwidth (e.g. 100Gbps). Lastly, note that the optical
technology, due to its transparent nature, consumes much less energy compared to
active electronic switching, a cost-saving factor not captured in this model.

5 Conclusions

We presented a method to partition the logical tasks and identify the topology confi-
guration of the (reconfigurable part) of a hybrid EPS/OCS interconnection network
(IN) to efficiently serve the point-to-point traffic produced by a parallel application
with known logical communication graph. The method presented is general and can
be used in many different settings, irrespective of the level at which the optical net-
work is deployed and the number of parallel optical planes. We used the proposed
algorithm to estimate the performance of the target hybrid IN and compare it against

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

0.1 0.3 0.5 0.7 1

To
ra

l c
os

t r
at

io
 (

O
CS

 o
ve

r
el

ec
tr

on
ic

-o
nl

y)

ROCS (relative cost of OCS over EPS port and tranceiver)

OCS K=4

OCS K=6

OCS K=8

714 K. Christodoulopoulos, M. Ruffini, and D. O’Mahony

application mapping on conventional fixed, electronic-only INs that are based on
toroidal topologies. Our results indicated that the hybrid IN can exhibit better average
hop-bytes performance than electronic-only INs based on toroidal topologies with
higher connectivity degrees. Subject to the relative costs of the electronic and optical
ports, these performance improvements can come at a slightly higher but comparable
cost, while the data rate agnostic and transparent nature of optical technology ensures
better upgradability and lower power consumption for the hybrid IN.

Acknowledgements. This work has been partially supported by Industrial Develop-
ment Agency (IDA) Ireland and the Irish Research Council for Science, Engineering
and Technology (IRCSET).

References

1. Geist, A.: Paving the roadmap to exascale. SciDAC Review, Special Issue on Information
Technology in the Next Decade 16, 52–59 (2010)

2. Brightwell, R., et al.: Challenges for High-Performance Networking for Exascale Compu-
ting. In: ILCCN 2010 (2010) (invited paper)

3. Cray Inc. Cray XT Specifications (2009),
http://www.cray.com/Products/XT/Specifications.aspx

4. Ajima, Y., Sumimoto, S., Shimizu, T.: Tofu: A 6d mesh/torus interconnect for exascale
computers. Computer 42, 36–40 (2009)

5. Bokhari, S.H.: On the Mapping Problem. IEEE Trans. Computers 30(3), 207–214 (1981)
6. Fitch, B.G., Rayshubskiy, A., Eleftheriou, M., Ward, T., Giampapa, M., Pitman, M.C.:

Blue matter: Approaching the limits of concurrency for classical molecular dynamics. In:
Supercomputing (2006)

7. Bhanot, G., Gara, A., Heidelberger, P., Lawless, E., Sexton, J.C., Walkup, R.: Optimizing
task layout on the Blue Gene/L supercomputer. IBM Journal of Research and Develop-
ment (2005)

8. Bhatele, A., Gupta, G.R., Kale, L.V., Chung, I.-H.: Automated Mapping of Regular Com-
munication Graphs on Mesh Interconnects. Computer Science Research and Tech Reports
(2010)

9. Bhatele, A., Kale, L.V.: Heuristic-Based Techniques for Mapping Irregular Communica-
tion Graphs to Mesh Topologies. In: HPLC 2011 (2011)

10. Chung, I.-H., Lee, C.-R., Zhou, J., Chung, Y.C.: Hierarchical Mapping for HPC Applica-
tions. In: International Parallel & Distributed Processing Workchop, IPDPSW (2011)

11. Al-Fares, M., Loukissas, A., Vahdat, A.: A Scalable, Commodity Data Center Network
Architecture. In: SIGCOMM (2008)

12. Benson, T., Akella, A., Maltz, D.A.: Network traffic characteristics of data centers in the
wild. In: Conference on Internet measurement (IMC), pp. 267–280 (2010)

13. Greenberg, A., et al.: VL2: A Scalable and Flexible Data Center Network. In: SIGCOMM
2009 (2009)

14. Barker, K.J., et al.: On the Feasibility of Optical Circuit Switching for High Performance
Computing Systems. In: Supercomputing (2005)

15. Schares, L., et al.: A Reconfigurable Interconnect Fabric with Optical Circuit Switch and
Software Optimizer for Stream Computing Systems. In: Optical Fiber Communications,
OFC (2009)

 Topology Configuration in Hybrid EPS/OCS Interconnects 715

16. Farrington, N., et al.: Helios: a hybrid electrical/optical switch architecture for modular da-
ta centers. In: SIGCOMM 2010 (2010)

17. Wang, G., et al.: c-Through: Part-time Optics in Data Centers. In: SIGCOMM 2010 (2010)
18. Asanovic, K., et al.: The Landscape of Parallel Computing Research: A View from Berkeley.

Technical report, Berkeley (2006)
19. Kamil, S., Oliker, L., Pinar, A., Shalf, J.: Communication Requirements and Interconnect

Optimization for High-End Scientific Applications. Transactions on Parallel and Distri-
buted Systems (2009)

20. Integrated Performance Monitoring (IPM), http://ipm-hpc.sourceforge.net/
21. Liberatore, V.: Circular Arrangements. In: Widmayer, P., Triguero, F., Morales, R., Hen-

nessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, p. 1054.
Springer, Heidelberg (2002)

22. Shi, J., Malik, J.: Normalized Cuts and Image Segmentation. IEEE Trans. on Pattern Anal-
ysis and Machine Intelligence 22(8) (2000)

23. http://www.cise.ufl.edu/research/sparse/matrices/
24. http://www.lightreading.com/document.asp?doc_id=213809&f_src

=lightreading_gnesws

Towards an Efficient Fat–Tree like Topology

D. Bermúdez Garzón1, C. Gómez2, M.E. Gómez1, P. López1, and J. Duato1,∗

1 DISCA Department, Universitat Politècnica de Valencia,
Camino de Vera, 14, 46071–Valencia, Spain

dieberg1@posgrado.upv.es
2 Dept. of Computing Systems, University of Castilla-La Mancha, Spain

Abstract. Topology and routing algorithm are two key design parameters for
interconnection networks. They highly define the performance achieved by the
network, but also its complexity and cost. Many of the commodity interconnects
for clusters are based on the fat–tree topology, which allows both a rich intercon-
nection among the nodes of the network and the use of adaptive routing. In this
paper, we analyze how the routing algorithm affects the complexity of the switch,
and considering this, we also propose and analyze some extensions of the fat–tree
topology to take advantage of the available hardware resources. We analyze not
only the impact on performance of these extensions but also their influence over
switch complexity, analyzing its cost.

Keywords: Regular indirect topologies, fat–trees, adaptive and deterministic
routing.

1 Introduction

Cluster machines have become very popular to build high performance computers and
data centers in the last years due to their excellent cost–performance ratio. These mach-
ines use commodity computers linked by a high–performance interconnection network,
which plays a critical role to achieve a high performance. Two of the main design is-
sues of interconnection networks are topology and routing [1]. In deterministic routing
schemes, packets traverse a fixed, predetermined path between their source and their
destination, while in adaptive routing schemes, packets may use one of the available
different alternative paths from their source to their destination. An adaptive routing
algorithm is composed of the routing and selection functions [2]. For each packet, the
routing function supplies the set of available routing options, while the selection fu-
nction [3] selects one of them. This selection function usually takes into account the
status of the network. Adaptive routing usually helps in balancing network traffic, thus
allowing the network to obtain a higher throughput. However, with adaptive routing,
in–order packet delivery can not be ensured, which is mandatory for some applications.
This is the case, for example, for certain cache coherence protocols, some communica-
tion libraries and network technologies. On the other hand, deterministic routing algo-
rithms usually do a very poor job balancing traffic among the network links, due to the
∗ This work was supported by the Spanish MICINN, Consolider Programme and Plan E funds,

as well as European Commission FEDER funds, under Grants CSD2006-00046 and TIN2009-
14475-C04.

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 716–728, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Towards an Efficient Fat–Tree like Topology 717

lack of path diversity, but they are easier to be implemented. Moreover, deterministic
routing guarantees in–order packet delivery by design.

Concerning topology, cluster–based machines usually choose either regular direct
networks (tori and meshes) or, more frequently, multistage indirect networks (MINs). In
particular, fat–trees [4] have raised in popularity in the past few years, since most of the
commonly–used interconnect technologies provide support for this topology. Moreover,
some of the most powerful machines ever built implement a fat–tree topology, such
as, the CM-5, the Cray BlackWidow machine, or the recent number 1 machine in the
Top500 list, Tianhe-1A [5].

Routing and topology, besides impacting network performance, also highly define
the hardware cost and complexity of the interconnection network. In this paper, we
analyze several proposals of topologies and routing algorithms analyzing not only their
performance but also estimating the resources needed to implement them, with the aim
of taking the highest advantage of the available hardware resources.

2 Motivation

Interconnection networks are often designed only for performance. However, the incre-
ase in complexity of interconnection network negatively affects its cost and power con-
sumption. A balanced design should consider both performance and complexity, trying
to obtain a good tradeoff between them.

In this paper, we focus on routing in the fat–tree topology and how the routing al-
gorithm can be used to simplify the switch complexity and even modify the topology.
Routing in fat–trees has two different subpaths (an upwards subpath and a downwards
one). In the commonly–used routing algorithm [6], the upwards path is fully adaptive
and the downwards one is deterministic. The unique downwards subpath is determined
by the path selected in the upwards one. So, in fat–trees, unlike other topologies, the de-
cisions made in the upwards subpath can be critical, having a strong impact on network
performance. In [7], the DESTRO mechanism was proposed to effectively select the
upwards path for each packet in a fat–tree, in order to highly reduce the Head–of–Line
(HoL) blocking effect [8] and in this way improving performance. This mechanism can
be implemented in a very simple way, as only a component of the destination identifier
is used for routing, both in the up and down subpaths. In [9], the RUFT topology was
proposed which is a simplification of the fat–tree topology taking advantage of the nice
properties of DESTRO. RUFT allows to reduce the hardware resources to the half while
providing similar performance.

Besides obtaining different levels of performance, fat-trees (with adaptive routing),
DESTRO and RUFT require switches with different complexity. Therefore, a fair com-
parison among them should consider both performance and complexity issues. On the
other hand, as the RUFT topology use simpler switches than fat–trees, some extensions
with a complexity level similar to the fat–tree can be devised. We propose two exten-
sions. The first one (RUFT-PL) substitutes each original link by two physical parallel
links, allowing the use of some adaptivity in the network and at the expense of incre-
asing switch complexity. The second one (RUFT-DB) substitutes each original link by
another one with double width, therefore duplicating link bandwidth. The new proposed

718 D. Bermúdez Garzón et al.

extensions of the RUFT topology are able to increase the throughput of the intercon-
nection network by 2.5x compared to the fat–tree while having a similar or even lower
cost.

The rest of the paper is organized as follows. Section 3 revisits the fat–tree topo-
logy and presents the notation and assumptions used in the following sections. It also
describes the adaptive routing algorithm commonly–used in fat–trees and DESTRO
analyzing the switch requirements. Section 4 presents RUFT analyzing also its switch
requirements. Section 5 presents the RUFT topology extensions proposed in this paper.
Section 6 provides several evaluation results for different configurations of topology
and routing algorithm. Finally, some conclusions are drawn.

3 Fat–Tree Topology

The fat-tree topology is based on a complete tree that gets thicker near the root. The
arity of the switches increases as we go nearer to the root, which makes the physi-
cal implementation unfeasible. For this reason, some alternative implementations have
been proposed in order to use switches with fixed arity. In particular, the k–ary n–tree
[6] is a parametric family of regular multistage topologies. The number of stages is n
and k is the arity or the number of links of a switch that connects to the previous or to the
next stage (i.e., the switch degree is 2k). A k–ary n–tree is able to connect N = kn pro-
cessing nodes using nkn−1 switches. Each processing node is represented as a n–tuple
{0, 1, ..., k− 1}n, and each switch is defined as a pair 〈s, o〉, where s is the stage where
the switch is located at, s∈ {0..n−1}, and o is a (n−1)-tuple {0, 1, ..., k−1}n−1 which
identifies the switch inside the stage. Two switches 〈s, on−2, ..., o1, o0〉 and 〈s′, o′n−2,
... , o′1, o

′
0〉 are connected by an edge if s′ = s + 1 and oi = o′i for all i �= s. On the

other hand, there is an edge between the switch 〈0, on−2, ..., o1, o0〉 and the processing
node pn−1, ..., p1, p0 if oi = pi+1 for all i ∈ {n− 2, ..., 1, 0}. This edge is labeled with
p0. In what follows, we will assume that descending links are labeled from 0 to k − 1,
and ascending links from k to 2k − 1.

3.1 Adaptive Routing in Fat–Trees

In k–ary n–trees, minimal routing from a source to a destination can be accomplished
by sending packets upwards to one of the nearest common ancestors of the source and
destination nodes and then, from there, downwards to destination. When crossing stages
in the upwards direction several paths are possible, thus providing adaptive routing. In
fact, each switch can select any of its k up output ports. Once a nearest common ancestor
has been reached, the packet is turned around and sent downwards to its destination as
just a single path is available. The stage up to which the packet must be forwarded
is obtained by comparing the source and destination components beginning from the
most significant one. The first pair of components that differs indicates the last stage
to forward up the packet. Once in that stage, the descending path is deterministic. At
each stage, the descending link to choose is indicated by the component corresponding
to that stage in the destination n–tuple. In the example, from stage i, the packet must be
forwarded through the p′i link; from stage i− 1 through link p′i−1, and so on.

Towards an Efficient Fat–Tree like Topology 719

0

1

3

2

4

5

7

6

(a) Requested ports in the upwards di-
rection by port 0.

0

1

3

2

4

5

7

6

(b) Requested ports in the downwards
direction by port 4.

Fig. 1. Ports that can be requested in a 4–ary n–tree using adaptive routing

Switch complexity of fat–trees can be easily computed considering that each swi-
tch has k bidirectional input and output ports, leading to 2k × 2k = 4k2 switching
elements. However, this rationale does not account for the actual requirements of swi-
tching activity of the routing algorithm. As can be observed, in the upwards subpath, at
each switch, the k input ports can forward packets through either any of the up k output
ports, if the packet continues in its upwards subpath, or any of its down output ports if
the packet starts its downwards subpath. On the other hand, in the downwards subpath,
there are k input ports that can only request k down output ports, since once a packet
has started its downwards subpath, the packet must continue going downwards. Figures
1a and 1b show the output ports that can be requested in the upwards and downwards
directions, respectively, in the switches of a 4–ay n–tree.

A common way of implementing switches is by using as many multiplexers as the
number of required output ports. Each multiplexer has a number of inputs equal to the
number of input ports that can request the corresponding output port. In the switch we
are considering, ports in the upwards direction require k multiplexers with k inputs each
one or a k × k = k2 complexity. On the other hand, ports in the downwards direction
require k multiplexers with 2k inputs each one or a k × 2k = 2k2 complexity. Total
switch complexity can be easily obtained as the sum of the upwards and downwards
directions complexities, leading to a the switch complexity of 3k2 switching elements.

3.2 DESTRO Routing in Fat–Trees

Contrary to the previously presented routing algorithm, DESTRO [7] is deterministic,
that is, in both subpaths there is only one path for each source–destination pair. We se-
lected this algorithm due to its good results and also because it is able to highly reduce
the switch complexity. The high performance is due to the appropriate selection of pa-
cket upwards subpaths which distribute destinations in a very effective way to highly
reduce the HoL blocking effect. The packet downwards subpaths are determined by the
upwards subpath followed by the packet and with DESTRO the interferences among
different destinations in the packet downwards subpaths are completely eliminated. All
the packets destined to a particular node are kept inside the same sub-tree (See Figure
2a), and have a unique and exclusive down path. This is performed by using the desti-
nation identifier to select one of the multiple available upwards subpaths. In DESTRO,
the output port for routing a packet in a particular switch is given both by the destina-
tion identifier and the stage where the switch is located. In particular, it considers the
component of the packet destination corresponding to that stage (i.e., a switch located at

720 D. Bermúdez Garzón et al.

3

5

6

7

5

2

3

0

1

2

4

1,5,7

0,4,6

1,3,7

0,2,4

6

7

0

1

4 0

4

1

5

2

6

3

7

0

2

1

3

4

6

5

7

0 0 1

0 0 0

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

3,5,7

2,4,6

0,2,6

1,3,5

Link 3

Link 2

<1 , 0 0>

<1 , 0 1>

<1 , 1 0>

<1 , 1 1>

<0 , 0 0>

<0 , 0 1>

<0 , 1 0>

<0 , 1 1>

<2 , 0 0>

<2 , 0 1>

<2 , 1 0>

<2 , 1 1>

Switch Id.

(a) Deterministic routing.

0 0 1

0 0 0

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0

1

2

3

4

5

6

7

0,2,4,6

1,5

0

1

2

4

0,2,4,6

1,3,5,7

0,4

7
1,3,5,7

0,4

2,6

1,5

3,7

3,7

2,6

0

4

2

1

6

5

30,2,4,6

1,3,5,7

0,2,4,6

1,3,5,7

(b) A RUFT derived from the 2–ary 3–
tree using DESTRO.

Fig. 2. Deterministic routing in a 2–ary 3–tree

stage s considers the sth component of the destination identifier, that is ps). Therefore,
at the switch 〈s, on−2, ..., o1, o0〉, the selected output port for a packet with destination
pn−1, ..., p1, p0 will be k + ps.

Figure 2a shows the destination node distribution in the ascending and descending
links of a 2–ary 3–tree using DESTRO. In the first stage, the least significant compo-
nent of the packet destination identifier (the least significant bit in this example) is used
to select the ascending output port. At the second stage, the destinations of all packets
that reach a given switch have the same least significant component. Hence, the com-
ponent to consider in the selection of the up output port in this stage is the next one
in the destination address. For instance switch 4 is only reached by packets destined to
nodes 0, 2, 4 and 6. These nodes have the same least significant component, which is
0. Of them, only packets destined to nodes 4 (〈100〉) and 6 (〈110〉) must be forwarded
upwards. Packets destined to node 4 will select the first up link, and packets destined
to node 6 the another one. Following this mechanism in all the upwards stages, finally,
packets destined to a particular destination reach the same switch at the last stage and
have a unique down subpath. Figure 2a highlights all the paths to node 7 and how all of
them share the same downwards subpath.

By using DESTRO, the switch complexity can be highly reduced. The upwards sw-
itch activity is the same as in the fat-tree with adaptive routing. That is, each input port
in the upwards subpath can request either any of the up output port, or any of the down
output ports. However, in the down subpath, each link, input port and output port is
used exclusively by packets sent to a unique destination. As a consequence, a given
input port will always request the same output port, since all the packets that arrive to a
particular input port, in their downwards subpath, are destined to the same node and are
always forwarded to the same output port. This allows a noticeable reduction in switch
complexity. Using multiplexers to implement switches, ports in the upwards direction
require k multiplexers, each with k inputs, or a k× k = k2 complexity, and ports in the
downwards direction require k multiplexers with k+1 inputs (the k upwards ports plus
the unique downwards one) or k× (k+1) = k2 + k switching elements. Therefore the
required switch complexity required by DESTRO is 2k2 + k.

Towards an Efficient Fat–Tree like Topology 721

4 RUFT

The RUFT topology [9] is a simplification of the fat–tree topology obtained by taking
advantage of the nice properties of DESTRO. In particular, since there is no switching
activity in the downwards subpath, the switches are simplified by making them unidi-
rectional. Therefore, the whole downwards subpath is transformed in links that connect
the last stage to the different processing nodes; (see Figure 2b). Notice also that, as the
topology is unidirectional, there is not chance to start the downwards subpath before
reaching the last stage and, therefore, the paths are longer since all the packets must
reach the last stage, contrary to the fat–tree topology where depending on the source–
destination pair, different number of stages must be traversed.

Using RUFT, the switch complexity corresponds to the switch complexity of a unidi-
rectional switch of k input ports and k output ports, where any of the k input ports can
request any of the k output ports, so the switch complexity is k2. As it can be seen, the
switch complexity has been reduced more than twice when comparing it with DESTRO
and three times when comparing with the fat-tree with adaptive routing.

5 Extensions of the RUFT Topology

In this section, taking into account the difference in switch complexity among RUFT,
DESTRO, and fat-trees, we propose two different enhancements of the RUFT topology
that, by using more complex switches, improve its performance. The idea is to obtain
a new topology with a switch complexity similar to DESTRO and fat-trees, which will
allow us to perform a fair comparison among all the feasible choices.

Both of them, as RUFT, are unidirectional MINs. Therefore, all packets will traverse
the same number of hops (the number of network stages) regardless of their source–
destination pair. The first proposal (which will be referred to as RUFT-Parallel Links or
RUFT-PL) uses switches with a number of ports equal to the number of ports of the fat–
tree switches. As fat-tree ports are bidirectional, RUFT-PL have twice number of ports
than RUFT. Therefore, each pair of switches are connected by two parallel links. On the
other hand, the number of network links is also equal to the number of network links of
the fat–tree topology. The second proposal (which will be referred to as RUFT-Double
Bandwidth or RUFT-DB) uses switches with the same number of ports as the RUFT
topology, but these ports and their associated links have double width (thus double link
bandwidth) than the ones of RUFT and fat–tree topologies. The idea is to make the
network bandwidth equal to the one of the fat–tree, while maintaining the number of
ports equal to the one of the RUFT switches.

5.1 RUFT with Parallel Links

RUFT-PL uses the same number of switches as the fat–tree topology, as the RUFT topo-
logy does, but they have the same number of ports as the fat–tree switches. Our proposal
pursues to implement the RUFT topology but without reducing the switch complexity.
As fat–tree switches have bidirectional ports, RUFT-PL switches can double the num-
ber of ports of RUFT switches, leading to a complexity of 2k× 2k switching elements.

722 D. Bermúdez Garzón et al.

We propose to use the available k additional ports to have two parallel links connecting
each pair of switches of the original RUFT topology. These two parallel links provides
additional routing flexibility that can be exploited in different ways.

A first approach is to distribute different destinations among them and, in this way,
the remaining HoL blocking that still appears in the upwards subpaths of the RUFT
topology is reduced even more. To do so, we propose that, at a given switch, the pair of
output channels (i.e. output ports) to be used will be given by the destination component
corresponding to the stage of the switch (as RUFT and DESTRO do) but the parallel
channel of the port that will be finally used will be given by the least significant bit
of the next destination component. Notice that we use the next destination component
because it will be used in the next stage to select the output port (the pair of output ports
in RUFT-PL). Therefore, packets that will take different output ports in the next switch
will be forwarded through different channels, thus reducing interferences among them.

Formally, at switch 〈s, on−2, ..., o1, o0〉, the selected pair of output ports for a packet
with destination node pn−1, ..., p1, p0 will be k + ps, as in RUFT, and from this output
port, the parallel channel to be used will be given by ps+1 mod 2 to select the least
significant bit of the next destination node component. Figure 3 shows how the destina-
tion nodes are distributed among the output links of switches in RUFT–PL, for k = 2
and n = 3. Notice that the least significant bit of the next destination node component
is used to decide the parallel link to be used by a given destination at a particular set of
output ports. As can be seen, thanks to classifying destination nodes in this way, each
input port of a given switch only requests a particular set of output ports. This is bet-
ter shown in Figure 4a, where the output ports requested by the two parallel channels
of input port 0 are shown. Figure 3 suggests that the last stage is not required since
packets with different destinations already arrive through different channels. However,
this is only true for k = 2, if k > 2 is used, the last stage is required. In Figure 4b
another example for k = 4 is shown. In this case, a given input port only requests the
two channels of two different output ports.

In RUFT-PL, each input port can only request the k output channels associated to
k/2 output ports, whose implementation require k multiplexers with 2k inputs, which
leads to a complexity of k × 2k = 2k2, which is even smaller than the one required
by DESTRO. We will refer to this way of using parallel links as RUFT–PL–C, given
that packets are classified in different channels of the parallel link according to its de-
stination. The way RUFT–PL–C selects parallel output channels may not be the best
option under some non-uniform traffic patterns. For these traffic patterns, in most of the
switches only one of the two parallel channels will be actually used. For this reason,
we have also evaluated another version of RUFT–PL that selects the link of the paral-
lel channel following other criteria, without classifying packets. We will refer to this
approach as RUFT–PL–NC. One possible criterion can be selecting the channel with
more free buffer. The key point of RUFT–PL–NC is that it can always use both parallel
channels per port regardless what kind of traffic is used. However, in this case, the sw-
itch complexity is increased since each input channel can ask for any of the up output
ports, so the switch complexity is 2k × 2k = 4k2 switching elements, which is higher
than the complexity of the fat–tree switch with adaptive routing. Table 1 summarizes
the switch complexities of the different proposals.

Towards an Efficient Fat–Tree like Topology 723

0 0 1

0 0 0

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0

1

2

3

4

5

6

7

0

1

2

4

7

0

4

2

1

6

5

3

4

6

0,4

2,6

1,5
3,7

0,4
2,6

1,5

3,7

0,4

2,6
1,5

3,7

0,4

2,6
1,5

3,7

0
4
2

6

2

0

7

35

1

6
2
4

0

Fig. 3. A 2-ary 3-tree RUFT–PL

Table 1. Switch complexity com-
parison

Routing Switch complexity
Adaptive 3k2

DESTRO 2k2 + k
RUFT k2

RUFT DB 2k2

RUFT PL C 2k2

RUFT PL NC 4k2

5.2 RUFT with Double Bandwidth

RUFT–DB is a slight modification made on the RUFT topology, where we keep the
same number of ports per switch, but doubles the bandwidth of all links connecting the
switches by making them wider. On the other hand, the size of the buffers of the input
and output are also doubled. The idea is to have the same bandwidth as the one of the
fat–tree topology and also the same buffer resources. That is, RUFT–DB is a RUFT
topology where buffers and link bandwidth are doubled. Regarding switch complexity,
the number of required switching elements are the same as in RUFT, but as each one has
twice the width of RUFT, the required switch complexity measured in RUFT switching
elements is 2k2.

6 Evaluation

6.1 Simulation Environment

In order to compare the performance of the different topologies and routing algorithms
analyzed in this paper, we have developed an event-driven simulator. The simulator
models a virtual cut-through network composed by a set of switches. Each switch has a
routing control unit that applies the routing algorithm and configures its internal cros-
sbar. Links allow pipelined transmission and are characterized by the delay required by
a flit to reach the edge of the link (fly time) and the interval among consecutive flit tran-
smissions (link delay). Routing, crossbar, fly and link delays has been assumed equal to
one clock cycle. In the case of RUFT, RUFT-DB and RUFT–PL, an increased fly time
has been considered in the long links that connect the last stage to the processing nodes.
This time is modelled as the product of one fly time by the number of network stages.
Three packet sizes have been considered (8B, 64B and 4KB). Several synthetic traffic
were considered: uniform, bit-reversal and hotspot with a traffic concentration of 5%
and 15%.

6.2 Performance Results

In Figure 5a we compare the different analyzed configurations with uniform traffic and
64B packets in 2–ary 4–tree topologies. As can be seen, fat-tree with adaptive routing

724 D. Bermúdez Garzón et al.

(referred to as FTA), DESTRO and RUFT obtain similar throughputs, being DESTRO
the best of them and RUFT the worst one since its switches have half the number of
ports than the fat–trees switches (FTA and DESTRO). It also has half number of links
(unidirectional links are used) than FTA and DESTRO. On the other hand, concerning
the three RUFT extensions proposed in this paper, both RUFT–PL configurations and
RUFT–DB are able to double the throughput obtained by the first three configurations.
In particular, RUFT–PL–NC is the one that achieves the highest throughput, whereas
the other two configurations obtain similar throughputs, having RUFT–DB a lower ne-
twork latency except near the saturation point. The effect of a greater link bandwidth of
RUFT–DB compensates the partial adaptivity provided by RUFT–PL. Only at very high
loads, the additional routing freedom is worth. Concerning the two versions of RUFT–
PL, classifying packets between the two parallel links does not seem a good idea. The
explanation is that although by classifying packets HoL effect is further reduced, it is
also true that the number of routing options is limited to only one versus two in the
non-classify option. Indeed, traffic in RUFT is already classified by design, and the ad-
ditional distribution offered by splitting destinations among the two links of the parallel
channel does not compensate the reduction in routing flexibility, as only one of the pa-
rallel links can be used for a given destination. Finally, notice though, that the RUFT
extensions require more complex switches than RUFT. An additional comment can be
stated regarding the fact that configurations that allow multiple paths among source–
destination pairs (i.e., those ones that provide adaptive routing), which include not only
FTA but also RUFT-PL-NC, may introduce out-of-order delivery of packets.

Influence of Network Size. In this section, we analyze the influence of network size
on the performance of the different analyzed configurations. Uniform traffic and 64B
packets were considered. Figures 5a to 5e show results for k–ary n–trees with different
number of stages and arities, increasing accordingly the network size. As expected, as
the number of stages increases, the latency of the different configurations also increa-
ses, since more stages must the crossed by packets. Indeed, the performance is slightly
worse for the configurations with higher arity (k=4) because larger switches mix more
destinations in each link, thus contributing to increase the HoL blocking effect. An-
yway, the relative behavior of the different analyzed configurations remain the same.
Notice that RUFT–PL–C gets slightly worse as the number of stages increases. Again,
the less flexibility for routing is amplified by the fact of traversing more stages (i.e.,
more routings are performed to reach a given destination). The configuration that ach-
ieves the highest throughput is RUFT–PL–NC, and RUFT–DB is the one that obtains
the lowest latency before saturation due to the fact that data is transmited twice faster
through links and switches.

Impact of Packet Size. In this section, we analyze how the behavior of the different
analyzed configurations are affected by the packet size. We have tested several network
sizes with different packet sizes, figure 6a and 6b shows the results for a 2–ary 6–tree
with a packet size of 8 bytes and 4 Kbytes. As expected, latency increases with the
packet size and so does network throughput as the contribution of the transmission
time of packets is by far more important than the one that depends on the number
of hops. The relative positions of the different configurations are the same regardless

Towards an Efficient Fat–Tree like Topology 725

(a) Requested ports in a switch, k = 2. (b) Requested ports in a switch, k = 4.

Fig. 4. Output ports that can be requested by an input port in RUFT switches

 100

 200

 300

 400

 500

 600

 700

 0.2 0.4 0.6 0.8 1 1.2 1.4

A
ve

ra
ge

 M
es

sa
ge

 L
at

en
cy

 (
cy

cl
es

)

Traffic (flits/cycle/switch)

FTA
DESTRO

RUFT
RUFT-DB

RUFT-PL-C
RUFT-PL-NC

(a) 2–ary 4–tree.

 100

 200

 300

 400

 500

 600

 700

 0.2 0.4 0.6 0.8 1 1.2 1.4

A
ve

ra
ge

 M
es

sa
ge

 L
at

en
cy

 (
cy

cl
es

)

Traffic (flits/cycle/switch)

FTA
DESTRO

RUFT
RUFT-DB

RUFT-PL-C
RUFT-PL-NC

(b) 2–ary 5–tree.

 100

 200

 300

 400

 500

 600

 700

 0.2 0.4 0.6 0.8 1 1.2 1.4

A
ve

ra
ge

 M
es

sa
ge

 L
at

en
cy

 (
cy

cl
es

)

Traffic (flits/cycle/switch)

FTA
DESTRO

RUFT
RUFT-DB

RUFT-PL-C
RUFT-PL-NC

(c) 2–ary 6–tree.

 100

 200

 300

 400

 500

 600

 0.2 0.4 0.6 0.8 1 1.2 1.4

A
ve

ra
ge

 M
es

sa
ge

 L
at

en
cy

 (
cy

cl
es

)

Traffic (flits/cycle/switch)

FTA
DESTRO

RUFT
RUFT-DB

RUFT-PL-C
RUFT-PL-NC

(d) 4–ary 3–tree.

 100

 200

 300

 400

 500

 600

 0.2 0.4 0.6 0.8 1 1.2 1.4

A
ve

ra
ge

 M
es

sa
ge

 L
at

en
cy

 (
cy

cl
es

)

Traffic (flits/cycle/switch)

FTA
DESTRO

RUFT
RUFT-DB

RUFT-PL-C
RUFT-PL-NC

(e) 4–ary 4–tree.

Fig. 5. Network latency versus throughput for different network sizes with uniform traffic and a
packet size of 64B

of the packet size, with some advantage of RUFT–DB with large packets, taking full
advantage of the increased link bandwidth. Anyway, the best configuration is always
RUFT–PL–NC.

Effect of Traffic Pattern. Figure 7 shows the results for 2–ary 5–tree topologies with
a packet size of 64 bytes with other traffic patterns. For the bit–reversal traffic pattern,
RUFT and RUFT–PL–C obtains the worst results. In this case, the paths provided by
RUFT collide among different source–destination pairs and the additional channels that
the PL extension supplies are useless in most cases as packets are always sent to the
same node and the channel of the parallel link are selected according to the destination
node. FTA is able to improve performance thanks to the use of alternative paths. The
additional routing flexibility of RUFT–PL–NC also helps in improving network throu-
ghput. Finally, once more, the doubled channel bandwidth allows RUFT-DB to double
the network throughput reached by RUFT.

726 D. Bermúdez Garzón et al.

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 M
es

sa
ge

 L
at

en
cy

 (
cy

cl
es

)

Traffic (flits/cycle/switch)

FTA
DESTRO

RUFT
RUFT-DB

RUFT-PL-C
RUFT-PL-NC

(a) 2–ary 6–tree, Packet Size 8B.

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 0.2 0.4 0.6 0.8 1 1.2 1.4

A
ve

ra
ge

 M
es

sa
ge

 L
at

en
cy

 (
cy

cl
es

)

Traffic (flits/cycle/switch)

FTA
DESTRO

RUFT
RUFT-DB

RUFT-PL-C
RUFT-PL-NC

(b) 2–ary 6–tree, Packet Size 4KB.

Fig. 6. Network latency versus throughput for two network sizes and different packet sizes with
uniform traffic

 100

 200

 300

 400

 500

 600

 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

A
ve

ra
ge

 M
es

sa
ge

 L
at

en
cy

 (
cy

cl
es

)

Traffic (flits/cycle/switch)

FTA
DESTRO

RUFT
RUFT-DB

RUFT-PL-C
RUFT-PL-NC

(a) Bit-Reversal.

 500

 1000

 1500

 2000

 2500

 0.2 0.4 0.6 0.8 1 1.2

A
ve

ra
ge

 M
es

sa
ge

 L
at

en
cy

 (
cy

cl
es

)

Traffic (flits/cycle/switch)

FTA
DESTRO

RUFT
RUFT-DB

RUFT-PL-C
RUFT-PL-NC

(b) HotSpot 5%.

 1000

 2000

 3000

 4000

 5000

 0.2 0.4 0.6 0.8 1 1.2

A
ve

ra
ge

 M
es

sa
ge

 L
at

en
cy

 (
cy

cl
es

)

Traffic (flits/cycle/switch)

FTA
DESTRO

RUFT
RUFT-DB

RUFT-PL-C
RUFT-PL-NC

(c) HotSpot 15%.

Fig. 7. Network latency versus throughput with different traffic patterns in 2–ary 5–tree networks
and a packet size of 64B

When considering hotspot traffic (see Figures 7b and 7c), we can observe that the
higher the severity of the hot-spot, the lower the achieved network throughput. Notice
the unusual shape of the plots. Once the paths that reach the hot-spot are saturated,
only traffic destined to other nodes move through the network, until the network is
completely saturated. The final saturation point reached is the same obtained for the
uniform traffic pattern (see Figure 5b). The results also confirm RUFT–PL–NC and
RUFT–DB as the best routing algorithms.

Effect of Routing and Fly Times. In this section we analyze how the obtained conclu-
sions may change if the path setup time was higher than we considered. Path setup time
is given by the sum of routing, switch and fly times. We have analyzed the impact of a
higher routing time, which should impact all configurations and fly time, which should
especially impact the long RUFT links of the last stage.

Figure 8a shows the results of a increased routing time in a 2-ary 5-tree with uni-
form traffic. As it can be seen, the higher average distance of fat-trees leads to a higher
latency values of FTA and DESTRO. Moreover, the throughput of all the configurati-
ons is strongly reduced, as packets spend most of its time at the routing control units.
Figure 8b shows the effect of a high fly time. As expected, all the RUFT configurations
are strongly penalized, increasing their average latency. On the other hand, RUFT–DB
becomes the best configuration for the full range of traffic. When traversing a link takes
a long time, transmiting more information per time unit allows amortizing this time.

Towards an Efficient Fat–Tree like Topology 727

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0.1 0.2 0.3 0.4 0.5 0.6

A
ve

ra
ge

 M
es

sa
ge

 L
at

en
cy

 (
cy

cl
es

)

Traffic (flits/cycle/switch)

FTA
DESTRO

RUFT
RUFT-DB

RUFT-PL-C
RUFT-PL-NC

(a) Routing 50 cycles, Fly 1 cycle.

 500

 600

 700

 800

 900

 1000

 1100

 1200

 0.2 0.4 0.6 0.8 1 1.2

A
ve

ra
ge

 M
es

sa
ge

 L
at

en
cy

 (
cy

cl
es

)

Traffic (flits/cycle/switch)

FTA
DESTRO

RUFT
RUFT-DB

RUFT-PL-C
RUFT-PL-NC

(b) Routing 1 cycle, Fly 50 cycles.

Fig. 8. Network latency versus throughput with uniform traffic in 2–ary 5–tree networks and a
packet size of 64B

Performance/Cost Evaluation. This section analyzes and compares the hardware cost
of each configuration evaluated in the paper. In particular, we consider for each confi-
guration, the number of links, the number of switches and the number of switching ele-
ments required. In particular, the number of switching elements is the most appropriate
measure to compare the different configurations since it considers both, the number of
switches and its degree. Moreover, we define two different figures of merit that take
into account both, performance and cost of a given configuration. The first one is the
throughput per switching element. The higher the value of this parameter, the better
performance/cost ratio has the configuration. To account for the latency, we also obtain
the product of the latency by the number of switching elements. Although this value
could be obtained for every value of traffic analyzed, for the sake of shortness, only
results for very low load traffic are shown. In this case, the higher the value, the worse
the configuration.

A subset of the results are shown in Table 2. As it can be seen, the cheapest topology
is RUFT, as it has the lowest number of links and switching elements. RUFT uses half
the number of links and switching elements of the RUFT–PL–C configurations and even
less compared to the others. Nevertheless, RUFT does not reach the best throughput.
RUFT–PL–NC is able to double the throughput obtained by FTA, DESTRO and RUFT,
and outperforms the other two RUFT extensions proposed in this paper by 6%. If we
consider both performance and cost, as shown by the defined figures of merit, results
confirm that the best configurations are RUFT–PL–NC and RUFT–DB, in this order,

Table 2. Performance-Cost on different network sizes with several algorithms and uniform traffic

Topology Links Switching Throughput Throughput/ Low Load Base Lat./
Elements Switch Element Latency Switch Element

2–
ar

y
5–

tr
ee

FTA 320 960 0,6401 0,000667 94,4 90643
DESTRO 320 800 0,6746 0,000843 95,4 76313
RUFT 192 320 0,6103 0,001907 91,7 29349
RUFT-DB 384 640 1,3611 0,002127 52,9 33835
RUFT-PL-C 384 640 1,2892 0,002014 90,0 57623
RUFT-PL-NC 384 1280 1,4107 0,001102 89,0 113950

4–
ar

y
4–

tr
ee

FTA 2048 12288 0,5076 0,000041 90,6 1113818
DESTRO 2048 9216 0,5250 0,000057 92,3 850411
RUFT 1280 4096 0,4712 0,000115 87,2 357389
RUFT-DB 2560 8192 1,0618 0,000130 48,6 398076
RUFT-PL-C 2560 8192 1,0033 0,000122 85,2 697777
RUFT-PL-NC 2560 16384 1,1993 0,000073 84,0 1376813

728 D. Bermúdez Garzón et al.

closely followed by RUFT. RUFT-PL-NC and RUFT-DB are able to increase by 3x the
performance obtained by FTA, and by nearly 2.5x the DESTRO one. On the other hand,
when the latency is considered, the one that obtains the lowest performance–cost is by
far RUFT–DB, due to the fact that packet are sent faster.

7 Conclusions

In this paper, we analyze and compare several topologies and routing algorithms for fat-
tree-related (fat-tree and RUFT) topologies. As RUFT topology requires less network
resources than fat-trees, in order to perform a more fair comparison, we propose some
extensions to the RUFT topology that tries to match the resources committed in the
fat-tree. The final goal is to obtain a good tradeoff between performance and required
resources. In particular, RUFT–DB uses links that are twice as wide as RUFT ones, th-
erefore increasing network bandwidth, also doubling the required number of switching
elements. The RUFT–PL–C and RUFT-PL–NC proposals also enhances the network by
aggregating two links connecting switches, therefore increasing routing flexibility but
at the cost of a higher number of switching elements. RUFT–PL–C tries to reduce the
number of resources needed by restricting routing, statically classifying destinations
among the aggregated links, also reducing the HoL blocking effect.

We evaluated all the proposals for different network sizes and network loads, obtai-
ning that the RUFT–PL–NC approach, which adds routing flexibility to RUFT, is the
one that obtains the best network throughput while the RUFT–DB one, which adds ch-
annel bandwidth helps in reducing packet latency. Most important, when we combine
cost (measured in number of network resources) and performance, results show that
RUFT–DB, RUFT–PL-NC and RUFT are very cost–efective configurations, obtaining
the best throughput per switching element values. When latency–number of switching
elements is consider, RUFT–DB is by far the best option due to its increased channel
bandwidth.

References

1. Dally, W., Towles, B.: Principles and Practices of Interconnection Networks. Morgan
Kaufmann (2003)

2. Duato, J., Yalamanchili, S., Ni, L.: Interconnection Networks. An Engineering Aproach. Mor-
gan Kaufmann (2004)

3. Gilabert, F., Gómez, M.E., López, P., Duato, J.: On the influence of the selection function on
the performance of fat-trees, pp. 864–873 (2006)

4. Leiserson, C.E.: Fat-trees: Universal networks for hardware-efficient supercomputing. In:
ICPP, pp. 393–402 (1985)

5. Tianhe-1a, http://www.nscc-tj.gov.cn/en/
6. Petrini, F., Vanneschi, M.: k–ary n–trees: High performance networks for massively parallel

architecture. IEEE Micro 15 (1995)
7. Gómez, C., Gilabert, F., Gómez, M.E., López, P., Duato, J.: Deterministic versus adaptive

routing in fat-trees. In: 21th Int. Parallel and Distributed Processing Symposium (April 2007)
8. Nachiondo, T., Flich, J., Duato, J.: Buffer management strategies to reduce hol blocking. IEEE

Trans. Parallel Distrib. Syst. 21(6), 739–753 (2010)
9. Gómez, C., Gilabert, F., Gómez, M.E., López, P., Duato, J.: Ruft: Simplifying the fat-tree

topology (December 2008)

http://www.nscc-tj.gov.cn/en/

An Adaptive, Scalable, and Portable Technique

for Speeding Up MPI-Based Applications

Rosa Filgueira1, Malcolm Atkinson1, Alberto Nuñez2, and Javier Fernández3

1 University of Edinburgh, School of Informatics, Edinburgh EH8 9AB, U.K.
{rosa.filgueira,mpa}@ed.ac.uk

2 University Complutense de Madrid, Dept. Sistemas Informáticos y Computación,
28040 Madrid, Spain

alberto.nunez@pd.ucm.es
3 University Carlos III de Madrid, Dept. Arquitectura de Computadores,

30 28911 Leganés, Spain
jfernand@arcos.inf.uc3m.es

Abstract. This paper presents a portable optimization for MPI com-
munications, called PRAcTICaL-MPI (Portable Adaptive Compression
Library- MPI). PRAcTICaL-MPI reduces the data volume exchanged
among processes by using lossless compression and offers two main ad-
vantages. Firstly, it is independent of the MPI implementation and the
application used. Secondly, it allows for turning the compression on and
off and selecting the most appropriate compression algorithm at run-
time, depending on the characteristics of each message and on network
performance.

We have validated PRAcTICaL-MPI in different MPI implementa-
tions and HPC clusters. The evaluation shows that compressing MPI
messages with the best algorithm and only when it is worthwhile, we
obtain a great reduction in the overall execution time for many of the
scenarios considered.

Keywords: MPI Library, Parallel techniques, High-Performance Com-
puting, Compression algorithms, Adaptive systems, Portable optimiza-
tions.

1 Introduction

Parallel computation on cluster architectures has become the most common so-
lution for developing High-Performance Computing applications. The Message
Passing Interface (MPI) standard [1] is one of the most commonly used com-
munication middleware frameworks on clusters.Several implementations of MPI
are available, like MPICH [2], XT-MPI, OPENMPI [3], and LAM [4].

The current trend in High-Performance Computing is to use multicore clusters
in order to increase computation capability, thus allowing an increase in the num-
ber of processes per application. Despite the fact that networks used in multicore
clusters are fast and have low latency, the number of transferred messages may
cause a bottleneck in the communication system, as communication-intensive,

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 729–740, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

730 R. Filgueira et al.

parallel MPI applications spend a significant amount of their total execution
time exchanging messages between processes. This problem may lead to poor
performance and scalability in many cases.

In this paper, we present a portable optimization of MPI called PRAcTICaL-
MPI (Portable Adaptive Compression Library-MPI), which is fully transparent
both to applications and MPI implementations. The main goal of PRAcTICaL-
MPI is to enhance the performance and scalability of MPI-based applications
and to reduce the volume of communications by applying run-time lossless
compression in a transparent way for applications and MPI implementations.
PRAcTICaL-MPI is capable of using the following compression algorithms: RLE
[5], Huffman [6], Rice [7], FPC [8], and LZO [9]. Furthermore, the technique
presented applies the Run-time Adaptive Strategy (RAS) developed in [10] to
select the most appropriate compression algorithm to be used dynamically for
each message exchange, and the size threshold form which a benefit is achieved
by using data compression.

We have implemented PRAcTICaL-MPI by using the standard MPI profiling
interface (PMPI) with the lowest possible overhead. The major contributions of
PRAcTICaL-MPI can be summarised by looking the following properties:

– Transparency: PRAcTICaL-MPI uses the standard MPI profiling interface
(PMPI), allowing transparent data compression for different applications
and MPI implementations.

– Portability: PRAcTICal-MPI can be run by any MPI implementation that
supports PMP, and is hence fully portable.

– Scalability: Since PRAcTICaL-MPI applies run-time compression to reduce
the volume of messages transferred, the execution time of the application
is reduced, thus enhancing the performance and scalability of MPI-based
applications.

The remainder of this paper is structured as follows: Section 2 discusses re-
lated work. Section 3 summarises our Run-time-Adaptive Strategy. Section 4
introduces the PRAcTICaL-MPI architecture in detail. Section 5 presents an
extensive evaluation of PRAcTICaL-MPI I in several scenarios. Finally, Section
6 presents conclusions and a discussion of potential future work.

2 Related Work

Two main background techniques and existing contributions are reviewed in this
section: The standard MPI profiling interface, and the most popular works to
extend MPI with compression capabilities.

2.1 PMPI: Standard MPI Profiling Interface

The MPI Forum defined [1] the MPI profiling interface (PMPI) as a mechanism
for application developers to obtain high-level performance information about
the behavior of both the application algorithm and the parallel system. Note
that PMPI is part of the MPI standard specification.

PRAcTICaL-MPI: Portable Adaptive Compression Library-MPI 731

The main concern of PMPI [11] is to provide a mechanism by which the devel-
opers of profiling (and other) tools can collect performance information they re-
quire without access to the underlying implementation. The mechanism is based
on each MPI-routine having a corresponding PMPI-routine with identical syntax
and functionality, so that it can be used to intercept all MPI calls and change
their functionality. Therefore, tools can create wrappers for any MPI routine
and then insert them “between” the MPI library and the application. This is a
powerful feature that is exploited in many applications and tools, such as the
performance visualization tool Jumpshot [12]. Note that one of the major fea-
tures of PMPI is that it allows selective replacement of MPI routines at link
time without the need to re-compile or re-link the MPI implementation.

2.2 Adding Compression to MPI

The use of compression within MPI is not new, although it has been only used
in specific ways for very few special cases. Major examples of such approaches
include cMPI, PACX-MPI, COMPASSION, MiMPI, CoMPI, Adaptive-CoMPI.

PACX-MPI (PArallel Computer eXtension to MPI) [13,14] is an on-going
project of the HLRS, Stuttgart. It enables an MPI application to run on a
meta-computer consisting of several, possibly heterogeneous machines, each of
which may itself be massively parallel. Compression is used for TCP message
exchange among different systems in order to increase bandwidth, but a fixed
compression algorithm is used and compression is not used for messages within
single sub-system. cMPI [15,16] has similar goals o those of PACX-MPI, namely
to enhance the performance of inter-cluster communication with a software-based
data compression layer. Compression is added to all communication, so it does
not offer any flexibility as to how to configure when and how to use compression.

COMPASSION [17] is a parallel I/O run-time system which includes chunking
and compression for irregular applications. The LZO algorithm is used for fast
compression and decompression, but again it is only used for the I/O part of
irregular application.

MiMPI [18] is a prototype of a multithread implementation of MPI with
thread-safe semantics that adds run-time compression of messages sent among
nodes. Although the compression algorithm can be changed (providing more
flexibility), the use of compression is global for all processes pertaining to an
MPI application.

CoMPI [19] was the first work in which a compression library was fully in-
tegrated into MPICH. CoMPI is based on run-time compression of the MPI
messages exchanged among applications. The user can choose the compression
algorithm from a pool of algorithms, and all the communications will be com-
pressed with the same algorithm. The problem with this approach is that the user
can not always select the most suitable compression algorithm, and compression
is always turned on by default.

Adaptive-CoMPI [10] allows for turning the compression on and off. It also se-
lects the most appropriate compression algorithm at run-time. Although

732 R. Filgueira et al.

Adaptive-CoMPI is independent of the application, it is dependent to the MPI
implementation.

3 The Run-time-Adaptive Strategy

For the Adaptive-CoMPI technique [10] we developed two strategies, the Run
Time Strategy (RAS) and the Guided Strategy (GS), to decide whether to apply
compression or not on a message-by-message basis, as well as to decide which
compression algorithm should be applied. The GS strategy makes these decisions
by analysing the structure of the messages off-line. Once this selection process
has been completed, the decisions are applied to the next executions of the same
application with the same input parameters. In contrast to this, the RAS strat-
egy makes these decisions at run-time, while the application is being executed.
Because the GS strategy is not completely independent of the application, the
RAS strategy has been chosen to be implemented in PRAcTICaL-MPI. With
this in mind, we describe the main features of the RAS strategy in more detail.

As we explained RAS decides at run-time per message whether to compress a
message before sending it or not, and which compression algorithm to apply. To
make these two decisions, there are some cases in which RAS has to estimate the
speedup, we will describe which ones these are late. To calculate this speedup,
some network and compression information is needed. In order to provide RAS
with this information, we have developed two modules:

– The Network Behavior module estimates the latency and bandwidth in order
to predict the time needed to send a message, generating a network-behavior
heuristics file for each installation.

– The Compression Behavior module selects the best compression algorithm
depending on the message datatype and its redundancy level. Also, this
model estimates the time needed to compress and decompress a message with
different compression algorithms. Furthermore, it generates a compression-
behavior heuristics file for each installation. This file is used to decide which
algorithm to choose in order to compress a message depending on the mes-
sage features.

These two modules have to be generated once per cluster, in order to obtain
the heuristics files. Furthermore, the Network Behavior model also needs to be
updated when there is a change in the network topology, to capture the new
situation.

RAS uses length and datatype of the message, and the location of the pro-
cesses to decide whether to compress or not and which compression algorithm
to apply. RAS deactivates the compression when the processes involved in the
communication are located in the same node. In other cases, when the pro-
cesses are located in different nodes, RAS distinguishes between four kinds of
datatype: Integer, floating-point, double precision floating-point, and “others”
datatypes. The strategy analyses the four kinds of datatype separately and makes
different decisions for each datatype. To choose the most appropriate algorithm

PRAcTICaL-MPI: Portable Adaptive Compression Library-MPI 733

for each datatype, RAS consults the compression-behavior heuristics taking the
message features into account. Moreover, it builds a compression window for
each datatype, with two adaptive thresholds that state from which minimum
size to which maximum size a benefit can be achieved by compressing the data
as shown in figure 1. Thus, RAS only estimates the speedup to send a mes-
sage compressed when the size of the message is between both thresholds. To
calculate the speedup, the information provided by the network-behavior and
compression-behavior heuristics are used.

Length_

no_compression

Length_

yes_compression

Size of message

0 4096 8192

Sent

Uncompressed

Sent

Compressed

Fig. 1. Window compression

4 PRAcTICaL-MPI

The PRAcTICaL-MPI technique, is an optimization of MPI communications
that exploits the MPI profiling interface (PMPI) to apply run-time lossless com-
pression (and decompression), thus reducing the volume of communications. As
Figure 2 shows, PMPI intercepts the MPI calls and wraps the PRAcTICaL-
MPI technique around the actual MPI library invocation. PRAcTICaL-MPI is
portable in the sense that it can be used with any MPI implementation, not just
a with a specific MPI implementation. Besides, PRAcTICaL-MPI is transpar-
ent both to applications and MPI implementations, because it can be applied
without changing their source code in any way.

We have built a library called Practical, where the most common rou-
tines of point-to-point and collective communications are wrapped inside
a PRAcTICaL-MPI layer : MPI Send, MPI Isend, MPI Bcast, MPI Recv,
MPI Irecv, MPI Wait, MPI Waitall, MPI Scatter, MPI Gather. If we want to
apply PRAcTICaL-MPI to another MPI communication, we only have to add a
new wrapper to the respective routine in Practical library. The only requirement
that PRAcTICaL-MPI makes is that the user needs to relink their applications
with the Practical library to include our adaptive compression functionality.

Different compression algorithms are used depending on the specific character-
istics of each communication. All compression algorithms have been included in a
single library called Compression-Library. To include more compression

734 R. Filgueira et al.

User Application

MPI_X

PMPI_X

PMPI_Y

PMPI_Z

Practical
Library

MPI_X {

}

Call MPI_X

Call MPI_Y

Call MPI_Z

Call PMPI_X

MPI_Y {

}
Call PMPI_Y

MPI Interface

PRAcTICaL-MPI

PRAcTICaL-MPI

MPI_Y

MPI_Z

Fig. 2. PRAcTICaL-MPI architecture

algorithms, we only have to replace this library with a new version. Therefore,
PRAcTICaL-MPI can be easily updated to include new compression algorithms.
Currently, the compression library includes: RLE,Huffman,Rice8, Rice16, Rice32,
rice8s, rice16s, rice32s, LZ, LZ77, LZ f LZ77 Fast, Shannon-Fano, LZO, and FPC.

Compress

Type

Message'

Decompress

Compression
Behavior
Heuristcs

Network
Behavior
Heuristcs

Compression
Library

Check
Header

Add
Header

Add
Header

RAS

Compress

Message

PRAcTICaL-MPI

Yes No

Sender Receiver

Message'

Synchron.
Yes

Complete

Message' Message'

No

Check
Header

Decompress

Retrieve
Request

Store
Request

Yes No

Message'

Fig. 3. PRAcTICaL-MPI schema

Figure 3 shows the internal workings of PRAcTICaL-MPI in more detail.
The first step of the process is to identify which kind of operation has to be
performed by the process that executes the MPI routine. If the process has to
send data to other process, it is classified as a “sender”. Otherwise, it is classified
as a “receiver”. For example, all the processes that execute a MPI Send routine
have to send data, so all these processes are classified as “senders”. In the case
of the MPI Bcast routine, only the root process has to send data, and the others
have to receive data. Therefore, only the root process is classified as “sender”,

PRAcTICaL-MPI: Portable Adaptive Compression Library-MPI 735

and the rest of processes as “receivers”. The reason for this classification is that
PRAcTICaL-MPI takes different actions in each case. In the case of the “sender”
type, PRAcTICaL-MPI tries to compress the message with the best algorithm
possible. In the case of a “receive” operation, PRAcTICaL-MPI decompresses
the message in case it was sent compressed.

More specifically, the actions performed by PRAcTICaL-MPI can be de-
scribed as follows:

– Send Actions: Firstly, PRAcTICaL-MPI applies the RAS strategy to select
the appropriate compression algorithm for the message depending on the lo-
cation of the node and its datatype. Note that if the two processes involved
in the communication are located in the same node, the message is sent with-
out compression. Secondly, RAS compares the size of the messagewith the two
adaptive thresholds corresponding to the datatype of the message. As a result
of this operation, the decision to compress themessage or not is taken. Thirdly,
in case RAS decides to compres the data, the data is compressed and also the
size of the compressed message is checked. If the size of the compressed data is
larger than the original data, the originalmessage is sent without compression.
Otherwise, it is sent compressed. Finally, the method adds a header to themes-
sage in order to notify the receiver whether themessage has to be decompressed
and which decompression algorithm has to be used after receiving it.

– Receive Actions: The decompression operation is performed in two different
places depending onwhethermessage passing is synchronous or asynchronous.
For asynchronous communication, such as MPI Irecv, the decompression is
performed only after message transfer is complete. Therefore, for the asyn-
chronous receive routines, PRAcTICaL-MPI only stores the request pointer
of the operation in a global table. Once reception has been completed, proba-
bly during the execution of MPI Wait or MPI Waitall, the request pointer is
retrieved from the global table, and after this the decompression is performed.
On the other hand, for synchronous communication, message decompression
is performed when the receiver has received the complete message. To decom-
press a message, PRAcTICaL-MPI checks the header of the message in order
to know whether the message has to be decompressed and which algorithm
has to be employed. Finally, it applies the decompression algorithm indicated
by the sender.

The ways in which the PRAcTICaL-MPI technique is applied depend on the
characteristics of each routine. For example, in case of MPI Send, first
PRAcTICaL-MPI is applied to compress the data, and PMPI Send is called
after that. On the other hand, for MPI Recv, the data is received with the
PMPI Recv routine first, and PRAcTICaL-MPI is applied to decompress the
data after that.

5 Evaluation

We evaluate our approach using the BIPS3D application with different input
meshes representingdifferent semiconductor devices.We compare the performance

736 R. Filgueira et al.

of PRAcTICaL-MPI with the MPICH2.3 and XT-MPI distributions. The ex-
periments were conducted using two different High-Performance Clusters called
HECToR and EDDIE. We start with an overview of the BIPS3D application in
section 5.1. Section 5.2 describes the HPC clusters used in our evaluation. The
evaluation results themselves are presented in section 5.3.

5.1 The BIPS3D Application

BIPS3D is a 3-dimensional simulator of BJT and HBT bipolar devices described
in [20]. The goal of the 3D simulation is to relate electrical characteristics of
the device to its physical and geometrical parameters. The basic equations to be
solved are Poisson equations and models describing electron and hole continuity
in a stationary state.

Finite element methods are applied in order to discretize the Poisson equation,
hole and electron continuity equations by using tetrahedral elements. The result
is an unstructured mesh. In this work, we have used three different meshes, as
described later.

Using the METIS library [21], the meshes are divided into sub-domains, in
such a manner that one sub-domain corresponds to one process. The next step
is decoupling the Poisson equation from the hole and electron continuity equa-
tions. They are linearized using the Newton method. Then we construct the part
corresponding to the associated linear system for each sub-domain in a parallel
manner. Each system is solved using domain decomposition methods. Finally,
the results are written to a file.

For our evaluation BIPS3D has been executed using three different meshes:
mesh1 (47200 nodes), mesh2 (732563 nodes) and mesh3 (289648 nodes). BIPS3D
associates a data structure with each node of a mesh. The contents of these
data structures constitute the data written to disk during the I/O phase. The
number of elements that this structure has for each mesh entry is given by the
load parameter. This means that, given a mesh and a load, the amount of data
written to file is calculated as the product of the number of mesh elements and
the load. In this work, we have evaluated our method using two different loads,
100 and 500.

5.2 HPC Clusters and MPI Implementations

We have performed our experiments on two different High-Performance Clus-
ters in order to demonstrate how PRAcTICal-MPI adapts adapts itself to each
architecture. In each cluster, a different MPI implementation is used. The main
features of the clusters and MPI implementations used for our evaluation are:

1. HECToR is a Cray XT6 machine with contains 1856 nodes. Each node con-
sists of two 12 core 2.1 GHz AMD opteron processors with 32 Gbytes of
memory. The network used is Gemini interconnection. The MPI implemen-
tation used to perform our evaluation in this architecture is XT MPI 3.0.

PRAcTICaL-MPI: Portable Adaptive Compression Library-MPI 737

2. EDDIE consists of 130 IBM dx360M2 iDataPlex servers with two Intel West-
mere E5620 quad core processors and 24 GB of RAM, all connected through
Gigabit ethernet. MPICH2.3 is the MPI implementation used for our exper-
iments on EDDIE. We chose this implementation as it is one of the most
popular MPI implementations.

5.3 Evaluation Results

We studied the performance of PRAcTICaL-MPI technique using the BIPS3D
application and two different clusters, HECToR and EDDIE. Figures 4 and 5
show the overall speedup achieved using PRAcTICaL-MPI for mesh1, mesh2,
mesh3 with two loads 100 and 500, and with 8, 16, 32, 64 and 128 processes,
respectively.

Each speedup shown in these diagrams is calculated by comparing the orig-
inal MPI implementation (MPICH2.3 in Figure 4 and XT MPI 3.0 in Figure
5) with the same MPI implementation wrapped with PRAcTICaL-MPI. Then,
equation 1 is applied to these values. Values greater than one imply a reduction
of the overall execution time using PRAcTICaL-MPI.

Speedup =
Execution time MPI Implementation

Execution time MPI Implementation with PRAcTICaL
(1)

In general, the speedups achieved in 90% of the scenarios showed in Figures 4
and 5 are greater than or equal to one. These results are due to PRAcTICaL-
MPI applying run-time compression to reduce the volume of the messages with
the best algorithm per message, thus reducing execution time. Moreover, it de-
activates the compression when it is not worth while applying any compression.
The original MPI distribution performs better only in 10% of all cases, but even
in those cases, the loss is nearly one in all of them.

The difference between the speedups achieved in the two scenarios is due to
the cluster architecture, i.e. network speed and number of cores per node. On
one hand, the EDDIE cluster (Figure 4) uses a Gigabit ethernet. This network
is slower than the Gemini network, used in HECToR (Figure 5). Due to the fact
that the network in HECToR is very fast, the compression is deactivated more
often, because is less worthwhile sending the message compressed and decom-
pressing it later than sending the message without compression. This behavior
can be observed in Figure 5(a) for a load of 500 and 8, 16, and 32 processes. In
these cases, the speedup is nearly one, because the compression is deactivated.
On the other hand, the cluster architecture affects also the results, too. EDDIE
has 8 cores per node, and HECToR has 12 cores per node. When the 12-core
architecture is used, the number of processes in the same node increases, and
therefore the number of communications between different nodes is lower than in
the 8-core architecture. This means that in HECToR, compression is deactivated
more times than in EDDIE. Therefore, we can observe how PRAcTICaL-MPI
is able to adapt to different architectures at run-time.

738 R. Filgueira et al.

0.9

1

1.1

1.2

1.3

1.4

1.5

8 16 32 64 128

Sp
ee

du
p

Processes Load 100

Load 500

MESH1

(a)

0.8
0.9

1
1.1
1.2
1.3
1.4
1.5

8 16 32 64 128

Sp
ee

du
p

Processes Load 100

Load 500

MESH2

(b)

0.9
1

1.1
1.2
1.3
1.4
1.5
1.6
1.7

8 16 32 64 128

Sp
ee

du
p

Processes Load 100

Load 500

MESH3

(c)

Fig. 4. Execution time improvement of BIPS3D on the EDDIE cluster: (a) Mesh1 (b)
Mesh2 (c) Mesh3

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

8 16 32 64 128

Sp
ee

du
p

Processes Load 100

Load 500

MESH1

(a)

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

8 16 32 64 128

Sp
ee

du
p

Processes Load 100

Load 500

MESH2

(b)

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

8 16 32 64 128

Sp
ee

du
p

Processes Load 100

Load 500

MESH3

(c)

Fig. 5. Execution time improvement of BIPS3D in HECToR cluster: (a) Mesh1 (b)
Mesh2 (c) Mesh3

PRAcTICaL-MPI: Portable Adaptive Compression Library-MPI 739

Finally, we can notice that, the greater the number of processes, the bigger
the application speedup achieved by PRAcTICAL-MPI. This behavior is due
to the increasing number of communications. Therefore, the improvement of
the communication performance has a bigger impact on the overall application
performance. Thus, we can conclude that overal scalability is enhanced with
PRAcTICAL-MPI.

6 Conclusions and Future Work

In this paper we have presented a portable optimization of MPI communications,
called PRAcTICAL-MPI. The main goal of PRAcTICaL-MPI is to enhance the
performance and scalability of MPI-based applications reducing the volume of
communications by applying adaptive run-time lossless compression. Further-
more, PRAcTICaL-MPI is fully portable and transparent for both applications
and MPI Implementations.

The evaluation results show that PRAcTICAL-MPI improves the speedup of
BIPS3D for most of the scenarios considered, because the volume of communi-
cations is reduced by using the best compression algorithm per message. It also
demonstrates that, even when compression is deactivated, application perfor-
mance speedup is close to one. Furthermore, the run-time performance gain is
bigger in most of the cases when more processes are employed, which increases
scalability, and illustrates that our method will be most useful when utilised for
massively parallel systems.

In future work, we want to evaluate the performance of PRAcTICAL-MPI
technique with new compression algorithms like Snappy or PFOR. Furthermore,
we want to apply PRAcTICAL-MPI to more MPI routines, such as collective
IO, non-contiguous communications.

Acknowledgments. This work has been performed by using the facilities of
HECToR, the UKs national high performance computing service, which is pro-
vided by UoE HPCx Ltd at the University of Edinburgh, Cray Inc and NAG
Ltd, and funded by the Office of Science and Technology through EPSRCs High
End Computing Programme.

References

1. Message Passing Interface Forum, MPI: A message-passing interface standard. In-
ternational Journal of Supercomputer Applications 8, 165–414 (1994)

2. Gropp, W., Lusk, E., Doss, N., Skjellum, A.: A high-performance, portable im-
plementation of the MPI message passing interface standard. Parallel Comput-
ing 22(6), 789–828 (1996)

3. Gabriel, E., Fagg, G.E., Bosilca, G., Angskun, T., Dongarra, J.J., Squyres, J.M.,
Sahay, V., Kambadur, P., Barrett, B., Lumsdaine, A., Castain, R.H., Daniel, D.J.,
Graham, R.L., Woodall, T.S.: Open MPI: Goals, Concept, and Design of a Next
Generation MPI Implementation. In: Kranzlmüller, D., Kacsuk, P., Dongarra, J.
(eds.) EuroPVM/MPI 2004. LNCS, vol. 3241, pp. 97–104. Springer, Heidelberg
(2004)

740 R. Filgueira et al.

4. Burns, G., Daoud, R., Vaigl, J.: LAM: An open cluster environment for MPI. In:
Proceedings of Supercomputing Symposium 1994 (1994)

5. Zigon, R.: Run length encoding. Dr. Dobb’s Journal of Software Tools 14(2) (Febru-
ary 1989)

6. Knuth, D.E.: Dynamic huffman coding. J. Algorithms 6(2), 163–180 (1985)
7. Salvatore Coco, D.G., D’Arrigo, V.: A Rice-based Lossless Data Compression Sys-

tem For Space. In: Proceedings of the 2000 IEEE Nordic Signal Processing Sym-
posium, pp. 133–142 (2000)

8. Burtscher, M., Ratanaworabhan, P.: FPC: A High-Speed Compressor for Double-
Precision Floating-Point Data. IEEE Transactions on Computers 58(1), 18–31
(2009)

9. Oberhumer, M.F.X.J.: Lzo real-time data compression library (2005)
10. Filgueira, R., Carretero, J., Singh, D.E., Calderon, A., Garcia, F.: Adpative-compi:

Enhancing mpi based applications performance and scalability by using adaptive
compression. International Journal of High Performance Computing and Applica-
tions (April 2010)

11. Schulz, M., de Supinski, B.R.: A flexible and dynamic infrastructure for mpi tool
interoperability. In: Proceedings of the 2006 International Conference on Parallel
Processing, ICPP 2006, pp. 193–202. IEEE Computer Society, Washington, DC
(2006), http://dx.doi.org/10.1109/ICPP.2006.6

12. Zaki, O., Lusk, E., Swider, D.: Toward scalable performance visualization with
Jumpshot. High Performance Computing Applications 13, 277–288 (1999)

13. Balkanski, D., Trams, M., Rehm, W.: Heterogeneous Computing With
MPICH/Madeleine and PACX MPI: A Critical Comparison (2003)

14. Keller, M.L.R.: Using PACX-MPI in metacomputing applications. In: 18th Sym-
posium Simulationstechnique, Erlangen, September 12-15 (2005)

15. Ratanaworabhan, P., Ke, J., Burtscher, M.: Fast Lossless Compression of Scien-
tific Floating-Point Data. In: DCC 2006: Proceedings of the Data Compression
Conference, pp. 133–142. IEEE Computer Society, Washington, DC (2006)

16. Ke, J., Burtscher, M., Speight, E.: Runtime Compression of MPI Messages to
Improve the Performance and Scalability of Parallel Applications. In: SC 2004:
Proceedings of the 2004 ACM/IEEE Conference on Supercomputing, p. 59. IEEE
Computer Society, Washington, DC (2004)

17. Carretero, J., No, J., Park, S.-S., Choudhary, A., Chen, P.: COMPASSION: a
Parallel I/O Runtime System Including Chunking and Compression for Irregular
Applications. In: Sloot, P., Bubak, M., Hertzberger, B. (eds.) HPCN-Europe 1998.
LNCS, vol. 1401, pp. 668–677. Springer, Heidelberg (1998)

18. Gaŕıca, F., Galderón, A., Carretero, J.: MiMPI: A Multithread-Safe Implemen-
tation of MPI. In: Margalef, T., Dongarra, J., Luque, E. (eds.) PVM/MPI 1999.
LNCS, vol. 1697, pp. 207–214. Springer, Heidelberg (1999)

19. Filgueira, R., Singh, D.E., Calderón, A., Carretero, J.: CoMPI: Enhancing MPI
Based Applications Performance and Scalability Using Run-Time Compression.
In: Ropo, M., Westerholm, J., Dongarra, J. (eds.) PVM/MPI. LNCS, vol. 5759,
pp. 207–218. Springer, Heidelberg (2009)

20. Loureiro, A., González, J., Pena, T.F.: A parallel 3D semiconductor device sim-
ulator for gradual heterojunction bipolar transistors. Int. Journal of Numerical
Modelling: Electronic Networks, Devices and Fields 16, 53–66 (2003)

21. Karypis, G., Kumar, V.: Metis a software package for partitioning unstruc-
tured graphs, partitioning meshes, and computing fill-reducing orderings of sparse
matrices. Tech. Rep. (1998)

http://dx.doi.org/10.1109/ICPP.2006.6

Cost-Effective Contention Avoidance

in a CMP with Shared Memory Controllers�

Samuel Rodrigo1, Frank Olaf Sem-Jacobsen1, Hervé Tatenguem3,
Tor Skeie1,2, and Davide Bertozzi3

1 Simula Research Laboratory, Norway
srodrigo@simula.no

2 Dept. of Informatics, University of Oslo
tskeie@simula.no

3 Dept. Engineering, University of Ferrara
ttnhrv@unife.it

Abstract. Efficient CMP utilisation requires virtualisation. This forces
multiple applications to contend for the same network resources and
memory bandwidth. In this paper we study the cause and effect of net-
work congestion with respect to traffic local to the applications, and
traffic caused by memory access. This reveals that applications close to
the memory controller suffer because of congestion caused by memory
controller traffic from other applications. We present a simple mechanism
to reduce head-of-line blocking in the switches, which efficiently reduces
network congestion, increases network performance, and evens out the
performance differences between the CMP applications.

1 Introduction

The access to the off-chip memory in large chip multiprocessors (CMPs) based on
a switched interconnect (NoC) consumes a significant portion of the bandwidth
in the on-chip network. Furthermore, this traffic is targeted towards specific ar-
eas of the chip where the memory controllers are connected. Previous studies [1]
show that the placement of these memory controller connections have a signifi-
cant impact on the network load, but the authors do not study how this impacts
the performance of the applications themselves and the complex interaction be-
tween the local traffic (caused by cache coherency protocols) and the memory
controller traffic. The initial intuitive understanding of the effect of memory
controller access point placement on application performance is that the appli-
cations located closest to the memory controller access points will experience
better performance compared to applications allocated further away [4]. How-
ever, we show that applications that reside close to the memory controller might
be more severely affected by the interplay between local traffic and memory
controller traffic.

� This work has been supported by the project NaNoC (grant agreement no. 248972)
which is funded by the European Commission within the Research Programme FP7.

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 741–752, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

742 S. Rodrigo et al.

(a) CMP tile-based design with dynamic
application domains

(b) Basic switch architecture

Fig. 1. CMP, core, and switch layout

To ease development, the tiles in a CMP are usually homogeneous, with a
structure as displayed in Figure 1a. Every tile has a private level I and (usually)
a shared level II cache, together with the processing core and a switch to access
the on chip network. Off-chip memory (DRAM) is accessed through one or more
memory controllers connected to the on-chip network, usually at the edge of the
chip, through one or more ports. The network on chip carries cache coherency
traffic between the level I and level II caches, and memory access traffic to and
from the memory controller. The two traffic types may or may not be divided
into two virtual networks (using virtual channels). The interaction between these
two traffic types is the core of the issue we study in this paper. Local traffic
from one application (cache coherency traffic) should not interfere with the local
traffic from other applications, as application isolation is a core concept of CMP
virtualisation [20]. Most applications will, however, be affected by the memory
controller traffic from other applications.

In this paper we study how and to what extent the local and memory con-
troller traffic contribute to network congestion and how this affects application
performance. Based on this study we present a mechanism to reduce head-of-line
blocking, and thus network congestion, both with and without virtual channels.

The structure of this paper is as follows: Section 2 presents the NoC back-
ground and the related work. In Section 3 we describe the congestion problem in
on-chip networks and the causes behind it, and we present our congestion control
solution in Section 4. Next, in Section 5, we detail the evaluation scenario and
the results obtained, and finally in Section 6, we present some conclusions and
future work.

Cost-Effective Contention Avoidance in a CMP 743

2 NoC Background and Related Work

There is significant ongoing research to study how application mapping and
basic properties of virtualisation is related to network performance. In [20], the
importance of traffic isolation and contiguous application mapping is presented
to demonstrate the foundations of virtualisation. Das et al. [4] study application
mapping mechanisms, and show that memory intensive applications should be
located close to the memory controller, but the authors do not study the impact
of application traffic and memory controller traffic on the mapping. To simplify
such mapping problems, Abts et al. [1] study alternative memory controller
placements by moving the memory controller access points towards the centre of
the chip. This breaks the regularity of the chip, both in design and routing, so
further study is required before these strategies may realistically be employed.
Finally, Sánchez et al. [18] describe how different NoC topologies can impact
application performance, but do not consider the location of the application
relative to other applications and the memory controllers in the CMP.

There are some solutions in [5, 9, 10] that attempt to reduce the negative effect
of shared resources through quality of service (QoS) based on priority schemes.
Although all these solutions can alleviate network congestion by prioritising
different traffic types, their objective is to differentiate the traffic and they do
not focus on the congestion problem itself. As a consequence, there may be
congestion within each traffic class for unpredictable traffic patterns.

A number of solutions for CMP NoCs are presented in [8, 11, 12, 22]. The
authors describe mechanisms that collect congestion information from the neigh-
bouring nodes through the routing process and buffer ingress/egress monitoring.
The idea is to offer an alternative path to route around a congested area of the
chip. However, this assumption will impact negatively creating more congested
resources, as it is impossible to avoid the congested region if all the congested
traffic has the same target (the memory controller). Van den Brand et al. [2] and
Thottethodi et al. [19] rely on a central controller to gather congestion informa-
tion from the network. Whereas the former uses a guaranteed service traffic class
to propagate congestion notifications to the sources, the latter uses a separate
control network for this purpose. Neither solution offers great scalability because
of the centralisation.

There is still an ongoing field of research on many aspects related to conges-
tion management in NoCs for CMPs, but we have found that the basic con-
gestion problem in a virtualised CMP is not well understood. Therefore, our
objective with this paper is to present a study on how congestion problems arise
in the event of many concurrent applications with shared resources (memory
controllers). This work serves as a motivation and guide in the search for cost-
effective resource management solutions, and we present a solution to deal with
the congestion problems in these scenarios.

744 S. Rodrigo et al.

3 NoC Congestion

In this section we describe the concept of network on chip contention and how
this leads to network congestion. Furthermore, we examine the relationship be-
tween the local traffic and memory controller traffic in order to determine how
this will affect application performance based on its location on the chip relative
to the memory controller access points.

3.1 NoC Contention

Whenever a NoC packet enters a switch, it is buffered, and the header informa-
tion is read to determine the output port for the packet from the switch (see
Figure 1b). The packet must then wait until it reaches the head of the queue and
the appropriate output port is available (i.e. not receiving a packet from another
port in the switch and not blocked by flow control). NoCs employ flow control to
ensure that packets are never dropped by guaranteeing that there is buffer space
available in the next hop switch before forwarding the packet across the link [6].
Since multiple packets in different input ports in the switch may have the same
output port, a given packet might have to wait for several scheduling rounds
(output port contention) before it is allowed access to the switch crossbar and
can continue. During this time there may be other packets in the same buffer
with different output ports that are available. However, these packets cannot
proceed because they are blocked by the first packet in the queue. This is known
as head-of-line blocking.

Together with head-of-line blocking, the flow control mechanism causes con-
gestion trees to build up in the network. Whenever a packet is blocked, it will
block packets upstream, gradually expanding the congestion tree branches from
the tree root through this back-pressure mechanism. The root is the switch with-
out enough capacity to forward all incoming packets (the place where the packets
are first blocked). For the memory controller traffic, congestion tree roots will
typically be the cores that are the memory controller access points. Output port
contention and head-of-line blocking combined with the back-pressure caused by
the flow control mechanism leads to network congestion at high network load,
which has a significant impact on the performance of the NoC.

3.2 Application Performance Relative to Memory Controller
Location

When using virtualisation to support multiple concurrent applications on a CMP,
the two traffic types (local traffic and memory controller traffic) may or may
not be separated into two different virtual networks using virtual channels. If
all the traffic runs on the same virtual channel (i.e. one virtual channel) it is
obvious that applications that suffer congested transit memory controller traffic
will experience congestion in the local traffic as well. However, using two virtual
networks allows a separation of the traffic which reduces the interaction between
the two traffic types.

Cost-Effective Contention Avoidance in a CMP 745

With two virtual channels, each channel is typically guaranteed 50% of the
physical channel bandwidth. Consequently, as long as neither of the two traffic
types have a demand greater than 50% of the channel bandwidth, there is no sig-
nificant interaction between the traffic. However, most applications have a larger
amount of local traffic than memory controller traffic. Thus, the applications that
are located far away from the memory controller and have little transit memory
controller traffic, the application is free to use more than 50% of the bandwidth
for local traffic. For the applications located closer to the memory controller the
amount of transit memory controller traffic increases drastically, which reduces
the effective local traffic down to max 50% and may introduce congestion prob-
lems for the local application traffic. Consequently, applications located closer to
the memory controller will exhibit worse performance. This contradicts previous
studies which concluded that applications close to the memory controller had
better performance [3, 4], and we clearly see this effect in the evaluation section.

This discussion has shown that even though a large degree of traffic isolation
can be achieved using virtual channels, there is still interaction which can ad-
versely affect application performance as we will see in the evaluation section
(Section 5). We will also see that not separating the traffic has even more adverse
effects on application performance. Efficient resource management in terms of
congestion control is therefore required, both to increase overall efficiency of the
chip and fairness between the running applications.

4 NoC Congestion Control

For congestion management, we propose HACS (Head-of-line Avoidance Con-
gestion Skip-ahead), a head-of-line blocking observation mechanism that allows
buffered packets to bypass the packet that is at the head of the queue. The
core mechanism is presented in Figure 2. Note that this mechanism is supported
under virtual cut-through packet switching. Whenever a packet is stalled for a
given time period at the head of a buffer, HACS will search further back in
the queue for the first packet that is routed to a free output port, because of a
different destination, and let this skip to the head of the queue. This effectively
reduces head-of-line blocking with the result of reduced congestion.

We now discuss the implementation of HACS in xpipesLite [6]. All packets are
assumed to be 4 flits long by padding shorter ones and by splitting longer mes-
sages into multiple packets. The network guarantees in-order delivery of packets
headed to the same destination. An arbiter is instantiated for each output port
to perform round robin arbitration among all inputs with valid asserted and
presenting a head flit. The switch implements the LBDR mechanism [17].

Assume two packets “A” and “B” are stored in an input buffer (see Figure
2), and let the arbiter of the output port requested by “A” be stalled (blocked),
thus preventing packet forwarding. In the HACS switch, a timer is activated
upon snooping such a stall condition. If the stall signal changes during the count-
down, the timer will be reset till the generation of the next stall. If the stall is
still high at the time-out, the control logic shifts the read pointer to the head

746 S. Rodrigo et al.

Fig. 2. Switch architecture

flit of the second packet. Before computing the destination of “B”, the LBDR
routing logic saves the destination of “A” in backup registers (Lbdr-out-A in
the figure) for further comparison with the target output of packet “B”. A XOR
comparator compares the two target ports required by “A” and “B”. If they are
different and the port requested by “B” is available, the stall goes down and
“B” is forwarded. If not, the read pointer shifts once again to packet “A” till the
stall is deasserted. If the stall signal is removed while performing the target port
comparison, the valid signal is driven low to avoid sampling “B” before “A”,
thus preserving the order on each output port. In this unfortunate and very
unlikely case, the switch experiments one (1) cycle overhead before being able to
forward “A”. HACS can also be applied to each virtual layer of a network with
virtual channel support. As previously illustrated, 2 VCs may be considered for
memory controller traffic separation. In practical terms, we followed the strategy
proposed in [7]. Essentially, the HACS switch is replicated twice, while placing a
demux in front of each input port and a mux with associated arbiter after each
output port. The link is enhanced with a virtual channel identifier and with a
flow control signal for each virtual channel. This is done to exploit logic synthesis
optimisations for the sake of area efficiency.

5 Evaluation

In this section we first describe the simulation environment we used for the
evaluations, followed by a discussion of the results obtained, including the results
obtained with HACS and its implementation costs after synthesis.

5.1 System Configuration

Our simulation framework is a combination of tools chosen to simulate a CMP
system as closely as possible. Multi2sim [21] is a simulation framework for

Cost-Effective Contention Avoidance in a CMP 747

heterogeneous computing that allows one or more applications to run on top
of it in CMP-like scenarios. It is able to model a complete memory hierarchy
system integrated into the CMP and its connection to the respective processor
cores. We combined Multi2sim with a cycle-accurate flit-level network-on-chip
simulator called gNoCsim (developed by Universidad Politécnica de Valencia,
and being used in the NaNoC project [15] by different partners). gNoCsim is
able to simulate the network between all the resources in the chip; caches, mem-
ory controllers, and processor cores.

For the evaluation process, we modelled a CMP that resembles current chip
configurations like in Figure 1a. This configuration implements a tile-based sys-
tem, and each tile is composed of a processor core, a private L1 cache, a bank
of a L2 shared cache, a memory directory bank to be used with the directory-
based MOESI cache coherency protocol, and different configurations of memory
controllers. Each memory controller is connected to the main memory with 2
channels (each memory controller has two access points). A detailed overview of
the chip configuration is shown in Table 1.

Table 1. CMP configuration

Parameter Configuration Parameter Configuration

Core x86 Topology 10× 10 2-D mesh

L1 cache 16 KBytes Instructions Routing mechanism LBDR + SR
16 KBytes Data
Total 32 KBytes per core
2 cycles latency
2-way associativity
64 bytes block size

L2 cache 256 Kbytes per core Packet switching Virtual cut-through
20 cycles latency (VCTlite) [16]
4-way associativity
64 bytes block size

Main memory 1 Gbyte total Buffer queue size 12 flits
200 cycles latency

Coherence protocol MOESI CMP, directory-based Flit-size 8 bytes

A 10 × 10 2-D regular mesh topology was used for the CMP system. The
LBDR [17] mechanism was used for the routing purposes allowing for routing-
contained application domains in combination with the Segment-Based Routing
algorithm (SR) [13]. Virtual networks are used for different levels of traffic of the
memory hierarchy system, implemented as multiple virtual channels (a total of
two virtual channels are used) except for Figure 4b were no virtual channels are
used.

For the evaluations we used a collection of applications from the SPLASH-
2 benchmark with the default parameters defined in [14]. The applications are
statically mapped to the chip when the experiment is set up. Applications are
mapped to completely fill the chip, giving a fair share of cores to each application.
Every batch consists of a single application type from the benchmark suite rather

748 S. Rodrigo et al.

than being composed of a collection of mixed applications. This regularity makes
it significantly easier to generate relevant statistics and spot trends in the results,
such as to get averaged results for the execution time comparison. Running a
mix of applications will introduce spikes in the communication, but this will
be evened out by the number of applications over time, so the conclusions will
still be the same. See Figure 3 for an example of the mapping of 32 concurrent
applications with 4 memory controllers.

Fig. 3. 32 concurrent applications mapped on the system

5.2 Results

We have evaluated several combinations of number of concurrent applications
and memory controllers for a 10× 10 mesh. Specifically, we have evaluated 6, 8,
and 12 applications with one memory controller, 12 and 16 applications with two
memory controllers, and 32 applications with four memory controllers. Due to
space constraints we report the results for 12 applications with one memory con-
troller and 32 applications with four memory controllers. The general trend from
the results is that network performance decreases and unfairness (the difference
in runtime based on application location, with two virtual channels) increases as
the number of concurrent applications increases for a given number of memory
controllers.

We have plotted the execution time distribution for 12 applications (ocean
workload) with a single memory controller both with (Figure 4a) and without
(Figure 4b) virtual channels. The memory controller is located in the uppermost
corner. The figure with virtual channels clearly shows how the threads that are
located closer to the memory controller have a longer execution time (as much as
7.5% longer than when running alone) than the thread is located farther away.
The picture is more chaotic without the use of virtual channels. There is no clear
unfairness, however, the overall increase in execution time (8.1%) is larger than
with virtual channels.

Cost-Effective Contention Avoidance in a CMP 749

(a) With virtual channels (b) No virtual channels

Fig. 4. Execution time distribution, 1 memory controller, ocean workload

In Figure 5a we display the mean squared error between injected and accepted
traffic for different applications in the scenario with 32 concurrent applications
with 4 memory controllers, with and without HACS implemented. In the fig-
ure, HACS2 is allowed to skip ahead the second packet, while HACS3 may skip
ahead the second or third packet. The figure shows the impact of performance
degradation due to congestion for the different applications. HACS2 and HACS3
are able to reduce the penalty to only 2.5% in average. Note that there is neg-
ligible difference between HACS2 and HACS3. The performance degradation is
significantly worse with fewer memory controllers.

Figure 5b shows network throughput as a function of time for the ocean work-
load. The uppermost plot is the injected traffic, and the bottom plot is the ac-
cepted traffic without congestion control, a clear case of a congested network.
HACS2 and HACS3 solutions almost remove all the congestion, handling almost
all the injected traffic. The second to bottom line is HACS without virtual chan-
nels. This still increases averaged network throughput by around 40%, although
the result is poorer than with virtual channels. The designer has to assess the
trade-off between performance and implementation costs.

Summarising, the objective of these evaluation cases was to reproduce sce-
narios that try to reflect current chip configurations, and realistically illustrate
the effect of multiple simultaneous applications. The cost/performance trade-off
depends on how much resources are available (in our case, the amount of mem-
ory controllers) and there is a need for congestion management strategies that
can alleviate the problem with minimal impact on the design of the chip. In the
next section we evaluate the cost of the congestion control mechanism we have
developed.

5.3 Hardware Breakdown

This subsection characterises area and critical path delay overhead of the HACS
switch compared to a baseline one taken from the xpipesLite NoC library [6].
The reference switch implements input buffering, stall/go flow control and virtual
cut-through switching.

750 S. Rodrigo et al.

(a) MSE between injected and accepted
traffic

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 50 100 150 200 250 300

av
er

ag
e

ne
tw

or
k

th
ro

ug
hp

ut
 (f

lit
s/

cy
cl

e/
ni

c)

time (cyclesx1000)

Injected
Accepted

HACS2
HACS2noVC

HACS3

(b) Averaged network throughput, ocean
workload

Fig. 5. Results for 32 concurrent applications with 4 memory controllers

���

�

���

�
�
�
�
�
�
�
	
�

�
�
�

�

����������	�

����������	�

�����������������

��	�������

������������������

��	��

�������� ������������� ����������

�

���

�

�
�
�
�
�
�
�
�
�
�

���

��������

���������

 �������!!��

Fig. 6. Switch area at 500 MHz

Baseline and HACS switches were synthesised for a target speed of 500 MHz in
a 65nm industrial technology library. Normalised post-synthesis area results are
illustrated in Figure 6. The area of the HACS switch without virtual channels
is about 5.34% larger compared to the baseline switch. The implementation
with virtual channels results in 2.09x the area of the virtual channel-less switch.
Observe in the figure that the baseline input buffer features approximately the
same area of the input buffer with the new logic to shift the read and write
pointers, thus denoting the marginal impact on control logic. On the other hand,
most of the area overhead is due to the timer inserted in the switch and is about
4.09%. This could be improved in future solutions by using buffer thresholds
instead of a timer.

After synthesis, the critical path of the new switch without VCs was proved to
be degraded by less than 1% with respect to the baseline one. The virtual chan-
nel implementation contributes an additional 3% of critical path degradation,
associated with the arbiters in the switch output ports selecting which virtual
channel to move forward.

Cost-Effective Contention Avoidance in a CMP 751

6 Conclusion

We have studied the effects of shared memory access in a CMP with multiple
concurrent applications. It is often assumed that network congestion is not an
issue for CMP systems because of the abundant bandwidth in the network on
chip. Our evaluations show that network congestion may indeed be a problem
when multiple applications access shared memory through the memory con-
trollers available on a typical CMP, and we developed a simple solution, HACS,
to remove this congestion.

We have observed some effects from our experimental results. First, the
hotspots formed by the memory controller traffic lead to network congestion,
which can degrade the performance of applications by 15% in average in our
scenarios. Second, if there is a high degree of local traffic (which is often the
case), the applications allocated close to the memory controller will have less
bandwidth for local traffic than applications located further away. The applica-
tions closest to the memory controllers are therefore penalised and have longer
execution times compared to the others. Further work includes evaluating a wide
variety of network controller configurations and workloads.

References

1. Abts, D., Enright Jerger, N.D., Kim, J., Gibson, D., Lipasti, M.H.: Achieving
predictable performance through better memory controller placement in many-
core CMPs. ACM SIGARCH Computer Architecture News 37(3), 451 (2009),
http://portal.acm.org/citation.cfm?doid=1555815.1555810

2. van den Brand, J., Ciordas, C., Goossens, K., Basten, T.: Congestion-Controlled
Best-Effort Communication for Networks-on-Chip. In: 2007 Design, Automation
& Test in Europe Conference & Exhibition, pp. 1–6 (April 2007),
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4211925

3. Chen, G., Li, F., Son, S.W., Kandemir, M.: Application mapping for chip multi-
processors. In: Proceedings of the 45th Annual Conference on Design Automation
- DAC 2008, p. 620 (2008),
http://portal.acm.org/citation.cfm?doid=1391469.1391628

4. Das, R., Mutlu, O., Kumar, A., Azimi, M.: Application-to-core mapping policies to
reduce interference in on-chip networks. Tech. rep., SAFARI Technical Report No.
2011 (2011), http://www.ece.cmu.edu/ omutlu/pub/interference-aware-noc-

mapping-TR-SAFARI-2011-001.pdf
5. Das, R., Mutlu, O., Moscibroda, T., Das, C.R.: Application-aware prioritiza-

tion mechanisms for on-chip networks. In: Proceedings of the 42nd Annual
IEEE/ACM International Symposium on Microarchitecture - Micro-42, p. 280
(2009), http://portal.acm.org/citation.cfm?doid=1669112.1669150

6. Flich, J., Bertozzi, D.: Designing Network On-Chip Architectures in the Nanoscale
Era. Chapman & Hall/CRC (2010)

7. Gilabert, F., Gómez, M.E., Medardoni, S., Bertozzi, D.: Improved utilization of noc
channel bandwidth by switch replication for cost-effective multi-processor systems-
on-chip. In: Proceedings of the 2010 Fourth ACM/IEEE International Sympo-
sium on Networks-on-Chip, NOCS 2010, pp. 165–172. IEEE Computer Society,
Washington, DC (2010), http://dx.doi.org/10.1109/NOCS.2010.25

8. Gratz, P., Grot, B., Keckler, S.W.: Regional congestion awareness for load balance
in networks-on-chip. In: HPCA, pp. 203–214. IEEE Computer Society (2008)

http://portal.acm.org/citation.cfm?doid=1555815.1555810
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4211925
http://portal.acm.org/citation.cfm?doid=1391469.1391628
http://www.ece.cmu.edu/~omutlu/pub/interference-aware-noc-mapping-TR-SAFARI-2011-001.pdf
http://www.ece.cmu.edu/~omutlu/pub/interference-aware-noc-mapping-TR-SAFARI-2011-001.pdf
http://portal.acm.org/citation.cfm?doid=1669112.1669150
http://dx.doi.org/10.1109/NOCS.2010.25

752 S. Rodrigo et al.

9. Grot, B., Keckler, S.W., Mutlu, O.: Preemptive virtual clock: a flexible, efficient,
and cost-effective QOS scheme for networks-on-chip. In: Proceedings of the 42nd
Annual IEEE/ACM International Symposium on Microarchitecture, pp. 268–279.
ACM (2009), http://portal.acm.org/citation.cfm?id=1669149

10. Iyer, R., Zhao, L., Guo, F., Illikkal, R., Makineni, S., Newell, D., Solihin, Y.,
Hsu, L., Reinhardt, S.: QoS policies and architecture for cache/memory in CMP
platforms. ACM SIGMETRICS Performance Evaluation Review 35(1), 25 (2007),
http://portal.acm.org/citation.cfm?doid=1269899.1254886

11. Li, M., Zeng, Q.-A., Jone, W.-B.: DyXY: a proximity congestion-aware deadlock-
free dynamic routing method for network on chip. In: Proceedings of the 43rd
Annual Design Automation Conference, DAC 2006, pp. 849–852. ACM, New York
(2006), http://doi.acm.org/10.1145/1146909.1147125

12. Marescaux, T., Rangevall, A., Nollet, V., Bartic, A., Corporaal, H.: Distributed
congestion control for packet switched networks on chip. In: Proceedings of
the International Conference of Parallel Computing: Current Future Issues of
High-End Computing, vol. 33, pp. 761–768. Citeseer (2005),
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.89.1586

&rep=rep1&type=pdf

13. Mej́ıa, A., Flich, J., Duato, J., Reinemo, S.A., Skeie, T.: Segment-based routing:
An efficient fault-tolerant routing algorithm for meshes and tori. In: International
Parallel and Distributed Processing Symposium, p. 84 (2006)

14. Multi2sim Wiki: SPLASH–2 execution commands.,
http://www.multi2sim.org/wiki/index.php5/SPLASH2_Execution_Commands

15. NaNoC: NaNoC design platform, http://www.nanoc-project.eu
16. Roca, S., Flich, J., Silla, F., Duato, J.: VCTlite: Towards an efficient implementa-

tion of virtual cut-through switching in on-chip networks. In: International Con-
ference on High Performance Computing (HiPC), pp. 1–12 (2010)

17. Rodrigo, S., Flich, J., Roca, A., Medardoni, S., Bertozzi, D., Camacho, J., Silla,
F., Duato, J.: Addressing manufacturing challenges with cost-efficient fault tol-
erant routing. In: NOCS 2010: Proceedings of the 4th ACM/IEEE International
Symposium on Networks-on-Chip, pp. 25–32 (2010)

18. Sanchez, D., Michelogiannakis, G., Kozyrakis, C.: An analysis of on-chip inter-
connection networks for large-scale chip multiprocessors. ACM Transactions on
Architecture and Code Optimization (TACO) 7(1), 4 (2010),
http://portal.acm.org/citation.cfm?id=1736069

19. Thottethodi, M., Lebeck, A., Mukherjee, S.: Self-tuned congestion control for
multiprocessor networks. In: The Seventh International Symposium on High-
Performance Computer Architecture, HPCA, pp. 107–118. IEEE (2001),
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=903256

20. Triviño, F., Sánchez, J.L., Alfaro, F.J., Flich, J.: Virtualizing network-on-chip re-
sources in chip-multiprocessors. Microprocessors and Microsystems 35(2), 230–245
(2011), http://linkinghub.elsevier.com/retrieve/pii/S0141933110000712

21. Ubal, R., Sahuquillo, J., Petit, S., López, P.: Multi2Sim: A Simulation Frame-
work to Evaluate Multicore-Multithreaded Processors. In: Proc. of the 19th Int’l
Symposium on Computer Architecture and High Performance Computing (2007)

22. Wu, D., Al-Hashimi, B.M., Schmitz, M.T.: Improving routing efficiency for
network-on-chip through contention-aware input selection. In: Proceedings of the
2006 Asia and South Pacific Design Automation Conference, ASP-DAC 2006,
pp. 36–41. IEEE Press, Piscataway (2006),
http://dx.doi.org/10.1145/1118299.1118310

http://portal.acm.org/citation.cfm?id=1669149
http://portal.acm.org/citation.cfm?doid=1269899.1254886
http://doi.acm.org/10.1145/1146909.1147125
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.89.1586&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.89.1586&rep=rep1&type=pdf
http://www.multi2sim.org/wiki/index.php5/SPLASH2_Execution_Commands
http://www.nanoc-project.eu
http://portal.acm.org/citation.cfm?id=1736069
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=903256
http://linkinghub.elsevier.com/retrieve/pii/S0141933110000712
http://dx.doi.org/10.1145/1118299.1118310

Topic 14: Mobile and Ubiquitous Computing

Paolo Santi, Sotiris Nikoletseas, Cecilia Mascolo, and Thiemo Voigt

Topic Committee

The tremendous advances in wireless networks, mobile computing, and sensor
networks, along with the rapid growth of small, portable and powerful comput-
ing devices, offers more and more opportunities for pervasive computing and
communications. This topic deals with cutting-edge research in various aspects
related to the theory and practice of mobile computing or wireless and mobile
networking. These aspects include architectures, algorithms, networks, protocols,
modeling and performance issues, data management, and novel applications and
services. The aim of this topic is to bring together computer scientists and en-
gineers from both academia and industry working in this exciting and emerging
area of pervasive computing and communications, to share their ideas and results
with their peers.

After careful selection, two papers have been selected for this topic. The first
paper falls within the emerging area of wireless sensor networks, and proposes
a new clustering algorithm for improving energy efficiency when gathering data
from the sensor network by means of a mobile collector. The main idea of the
clustering algorithm is borrowed from the image processing field, and is based
on the notion of watershed transformation which is used to select clusterheads
within the network. After clusterhead selection, a mobile sink node periodically
visits the clusterhead nodes to collect data. The proposed clustering method is
shown by means of simulations to significantly outperform existing approaches
in terms of extended network lifetime. The second paper lies within the realm
of mobile network modeling, which is also perceived as a very important topic
within the mobile computing and networking community. In particular, the au-
thors of the paper analyze for the first time a property of a mobile network called
“liveness”, which can be informally defined as absence/presence of relatively long
disconnection periods during the network lifetime. To analyze “liveness”, the
authors perform several simulations using different mobility models, including
both synthetic models and GPS traces collected from real-world experiments.
The analysis discloses interesting insights that might turn useful for the design
of mobile networking protocols, such as that the “liveness” property of a network
does not depend on the speed of nodes, but on other parameters such as node
density.

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, p. 753, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 754–766, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Watershed-Based Clustering
for Energy Efficient Data Gathering

in Wireless Sensor Networks with Mobile Collector*

Charalampos Konstantopoulos1, Basilis Mamalis2,
Grammati Pantziou2, and Vasileios Thanasias2

1 Department of Informatics, University of Piraeus, Greece
2 Department of Informatics, Technological Educational Institute of Athens, Greece
konstant@unipi.gr, {vmamalis,pantziou,cs061110}@teiath.gr

Abstract. This paper presents a clustering protocol combined with a mobile
sink (MS) solution for efficient data gathering in wireless sensor networks
(WSNs). The main insight for the cluster creation method is drawn from image
processing field and namely from the watershed transformation which is widely
used for image segmentation. The proposed algorithm creates multi-hop
clusters whose clusterheads (CHs) as well as all cluster members near the CHs
have high energy reserves. As these are exactly the nodes most burdened with
relaying of data from other cluster members, the higher levels of available
energy at these nodes prolong the network lifetime eventually. After cluster
creation, a MS periodically visits each CH and collects the data from cluster
members already gathered at the CH. Simulation results show the higher
performance of the proposed scheme in comparison to other competent
approaches from the literature.

Keywords: mobile sink, wireless sensor networks, watershed transformation,
node clustering, data gathering.

1 Introduction

The interest in the use of WSNs has grown enormously during the last decade,
pointing out the crucial need for efficient and reliable routing and data gathering
protocols in corresponding application environments. Energy efficiency is one of the
main design goals in a WSN, towards the above direction. Moreover, the appropriate
minimization of nodes energy consumption as well as the uniform energy depletion of
all nodes, are critical parameters in order to increase the time the network is fully
operational. In typical WSNs a main reason of energy depletion concerns the need for
transmitting the sensed data from the sensor nodes (SNs) to remote sinks. These data

* This research has been co-financed by the European Union (European Social Fund – ESF) and

Greek national funds through the Operational Program "Education and Lifelong Learning" of
the National Strategic Reference Framework (NSRF) – Research Funding Program:
Archimedes III. Investing in knowledge society through the European Social Fund.

 Watershed-Based Clustering for Energy Efficient Data Gathering in WSNs 755

are typically relayed using ad hoc multi-hop routes in the WSN. A side-effect of this
approach is that the SNs located closer to the sink are heavily used to relay data from
all network nodes; hence, their energy is consumed faster, leading to a non-uniform
depletion of energy in the WSN [6]. This results in network disconnections and
limited network lifetime.

Several protocols have been proposed so far for efficient data gathering in WSNs
taking also into account the above problem in order to increase the lifetime of the WSN.
The most promising of them involve the mobility of the sink, based on the key idea of
changing progressively the neighbors of the sink so that the energy consumption for data
relaying is balanced throughout the network [6]. The MS may visit each SN and gather
its data [8] (single-hop communication) or may visit only some locations and the SNs
send their data to the MS through multi-hop communication [2][3][9-11]. The delay in
data gathering is minimized appropriately in the latter case, however special attention has
to be given in the increased energy consumption due to the multi-hop communication.

A solution in between is to have the SNs send first their data to a certain number of
intermediate nodes (building direct or indirect hierarchical clustering structures)
which buffer the received data and send them to the MS when it comes within their
transmission range or when they receive a query from the MS asking for the buffered
data [4][5][12-16]. Most of these approaches naturally strike the balance between the
data gathering delay and the energy consumption overhead, whereas also, they are
usually highly effective in applications where there are restrictions (e.g. isolated urban
areas or building blocks) with regard to the sites that can be visited by the MS.
However, all previous works have not faced yet effectively the problem of the energy-
holes caused around the intermediate data-relaying nodes, especially near the sinks.

The protocols proposed so far for sink mobility can also be distinguished according
to the nature of the mobility itself; namely, to ‘controlled’ and ‘uncontrolled’ sink
mobility protocols. In uncontrolled sink mobility protocols the sink is sent to gather
data through the network at moments and along routes (e.g. random or explicitly
fixed) that are out of the control of the network [3][4][13][15-16]. On the other hand,
several protocols adopt controlled sink mobility [2][5][9-12][14]. These protocols
determine the movement of the sink by taking into account some crucial parameters
(e.g. the residual energy), either statically or dynamically, and they have led to
remarkable improvements, especially in network lifetime.

In this paper (as opposed to our previous work of [4]) we focus on application
environments where all the sites within the sensor-covered area are accessible by the
MS without any topological restrictions. Specifically, we propose a hybrid approach
that combines distributed node clustering and controlled sink mobility. Our approach
first involves the building of a suitable number of energy-rich multi-hop clusters and
then the MS is programmed to visit the elected CHs and gather the sensed data. In this
way, we achieve a satisfactory balance between the data gathering delay and the
energy consumption caused by the multi-hop communication. However, clustering
introduces an additional problem, which relates with the faster depletion of CHs
neighborhoods, since they tend to deplete their energy faster due to their data relay
overhead. To overcome the above problem and achieve as more uniform nodes energy
depletion as possible, we introduce a novel energy efficient clustering algorithm,
whose basic idea comes from the watershed transform used for image segmentation
[18]. The main goal of our scheme is to form suitable clusters with not only

756 C. Konstantopoulos et al.

high-energy CHs, but also having energy-rich neighborhoods. Specifically, the cluster
formation is made in such a way that the energy increases progressively as getting
closer to the CH, thus resulting to suitable, smoothly grown, energy-rich hills around
the CHs. Furthermore, we have performed a number of simulated experiments, which
show the high performance of our data gathering scheme, with regard to both energy
consumption (and the desired uniform energy depletion of all nodes) and the network
lifetime. Moreover, our protocol is shown to have considerably better behavior,
according to both the above measures, when compared to the corresponding schemes
of [2] and [3], which are relevant and competent works in the literature.

The rest of the paper is organized as follows. In section 2, the detailed description
of our watershed-based node-clustering algorithm is given. In section 3, the proposed
data gathering protocol is presented. Section 4 outlines the experimental results,
whereas section 5 concludes the paper.

2 The Node Clustering Scheme

Our approach borrows some ideas from the watershed transform [18], which is a well
known method of mathematical morphology for image segmentation. The watershed
transform is usually applied to a gradient image, i.e. the original image after applying
edge detection operators. The gradient image is considered as a topographic relief and
watershed segmentation amounts to extracting significant catchment basins in this relief.
Each catchment basin is associated with a local lowest point (the bottom of the basin) and
it is essentially the set of all points at which when a drop of water starts flowing will end
up at the lowest point of the basin. Watersheds are the limits of adjacent catchment
basins. Several implementations of the watershed algorithm can be found in the literature
[18]. A significant part of them is based on topological distance, like the ‘hill climbing’
algorithm [1]. Moreover, since it is a computationally intensive task, several parallel and
distributed solutions have also been proposed in the literature [1][19].

In our work, we follow the basic guidelines of the related algorithm given in [1] by
making the necessary modifications. Specifically, we consider the SNs as ‘pixels’,
and the residual energy of each node as the ‘gray-level’ of the corresponding pixel.
We also regard as ‘neighbors’ of each SN, the nodes within its transmission range.
Moreover, by substituting each min operator with the max one in the watershed
transformation, we follow a complementary approach and determine the mountains of
the topological relief instead of the catchment basins (Fig. 1). The mountain peaks
clearly correspond to energy-rich regions of the network and thus each of these
mountains defines a cluster in the network.

Naturally, our clustering algorithm leads to a partition of the WSN into multi-hop
clusters where the elected CHs (local maxima) are the SNs with the higher residual
energy. In determining the clusters, the distance between each pair of nodes is also
considered in order to avoid long-distance and hence costly communication between
cluster members. Importantly also, the residual energy of SNs is progressively
increasing as we are getting closer to the CH and this effectively deals with the
increased energy consumption observed around CHs due to many-to-one
communication pattern taking place inside each cluster. The detailed presentation of
our clustering algorithm directly follows.

 Watershed-Based Clustering for Energy Efficient Data Gathering in WSNs 757

Fig. 1. Mountains and local maxima with the ‘hill climbing’ algorithm

Algorithm CH_ELECTION

Initialization Phase

1. each node v
2. broadcasts a message Evaluate_Msg(v.Node_ID,v.Eresidual) at a fixed power level
3. starts a “Wait Timer” T1
4. while T1 has not expired
5. each time v receives an Evaluate_Msg(u.Node_ID,u.Eresidual) from a node u
6. if v.Eresidual > u.Eresidual
7. u is added to LE_N(v)
8. else
9. if v.Eresidual < u.Eresidual
10. u is added to GE_N(v)
11. else
12. u is added to EQ_N(v)

CH Election Phase I
13. for each node v
14. if GE_N(v) is non empty
15. v is attached to the node u ∈ GE_N(v) that maximizes
 (u.Eresidual - v.Eresidual)/dist(u,v)
16. v starts a “Wait Timer” T2
17. v waits for a CH_Announce_Msg from u (flooding neighbor)
 until T2 expires
18. else
19. if EQ_N(v) is non empty
20. v is attached to the node u ∈ EQ_N(v) that minimizes dist(u,v)
21. v starts a “Wait Timer” T2
22. v waits for a CH_Announce_Msg from u (flooding neighbor)
 until T2 expires
23. else

758 C. Konstantopoulos et al.

24. v broadcasts a CH_Announce_Msg(v.Node_ID,
 v.Location) to its attached nodes
25. each node v that receives a CH_Announce_Msg from the
 node u it is attached to
26. sets u as v’s parent node
27. forwards the message to each node attached to v

CH Election Phase II
28. for each node v that has not received a CH_Announce_Msg from the
 node u it is attached to
29. if u ∉EQ_N(v) and there is no u∈ EQ_N(v) attached to v
30. v starts a “Wait Timer” T3
31. v waits for a CH_Announce_Msg from u (flooding neighbor)

until T3 expires
32. else
33. v sets v.#attached equal to the number of the nodes attached to v
34. v sets v.new_Node_ID equal to the concatenation of
 the numbers v.#attached and v.Node_ID
35. v participates to a leader election algorithm to elect as a leader the
 node u with the maximum new_Node_ID
36. each elected leader w
37. broadcasts a CH_Announce_Msg(w.Node_ID, w.Location) to its attached
 nodes and to the node it is attached to
38. each node v that receives a CH_Announce_Msg from a node u
39. sets u as v’s parent node
40. forwards the message to each node attached to v and
 to the node that v is attached to

During an initialization phase, each node v broadcasts at a fixed power level an
evaluate message announcing its residual energy (Evaluate_Msg(v.Node_ID,
v.Eresidual)). Each node v waits until it receives all the messages sent by its neighboring
nodes and builds the sets LE_N(v), GE_N(v) and EQ_N(v) of neighbors that have
less, more and equal residual energy to v, respectively (lines 1-12). Next, in the
beginning of the CH election phase I, each node v is attached to an appropriate
neighbor u, called flooding neighbor, as follows:

• Each node v with nonempty GE_N(v) is attached to the neighbour u ∈ GE_N(v)
that maximizes the ratio (u.Eresidual - v.Eresidual)/dist(u,v). In the sequel, v sets a timer
and waits for a CH_Announce_Msg(w. Node_ID,w.Location) from u (flooding
neighbor) which announces the ID and the location (coordinates) of the CH w it
will be associated with (lines 14-17).

 Watershed-Based Clustering for Energy Efficient Data Gathering in WSNs 759

• If the set GE_N(v) of v is empty and EQ_N(v) is non-empty then v is attached to
the node u in EQ_N(v) that minimizes dist(u,v). Then v waits for a CH_ Announce
_Msg(w.Node_ID,w.Location) from u (flooding neighbor) which announces the ID
and the location of the CH w it will be associated with (lines 18-22).

In the case that both sets GE_N(v) and EQ_N(v) are empty, v has the largest residual
energy from all its neighbors and becomes a CH. Therefore, it broadcasts a
CH_Announce_Msg to its attached nodes announcing its decision to become a CH
and its location (lines 23-24). When a node v receives a CH_Announce_Msg
(w.Node_ID, w.Location) from the node u it is attached to, it sets u as its parent node
in the path towards its CH w, it stores the ID and the location of its CH w and
forwards the message to each node attached to v (lines 25-27). Note that so far (CH
Election Phase I) a node becomes a CH if it has the highest residual energy in its
neighborhood (a local energy-maximum, resulting to empty GE_N and EQ_N sets).
The CH announcing messages travel along decreasing energy paths and the nodes of
each path are associated with the CH in the head of the path. Therefore, the CH has
more residual energy than any other node in its cluster.

The rest of the algorithm (CH Election Phase II) addresses the case of neighboring
nodes with equal residual energy which are attached one to each other i.e., none of
them is attached to a higher energy node (flooding neighbor) and therefore, they have
not received a CH_Announce_Msg and have not been associated with a CH. As a
consequence, any lower residual energy node that is attached to the above equal
energy nodes has also not received a CH_Announce_Msg. If a node v has not
received a CH_Announce_Msg from the node u it is attached to, we first consider the
case that u ∉EQ_N(v) and there is no u∈ EQ_N(v) attached to v. In this case v starts a
timer T3 and waits for a CH_Announce_Msg from u (flooding neighbor). Otherwise,
v participates in a leader election algorithm that runs among all neighboring nodes
that have the same residual energy with v (lines 28-35).

Each node v that participates in the leader election algorithm sets v.#attached equal
to the number of the nodes attached to v and v.new_Node_ID equal to the
concatenation of the numbers v.#attached and v.Node_ID. The elected leader is
finally the node with the maximum new_Node_ID, i.e. one of the nodes with the
largest number of attached nodes to it among the equal energy nodes that participate
in the leader election process. Thus, the traffic load in the neighborhood of the CH is
shared among as many SNs as possible. Then, each elected leader w broadcasts a
CH_Announce_Msg to its attached nodes and to the node it is attached to announcing
its election as a CH and its location. When a node v receives the first
CH_Announce_Msg (w.Node_ID, w.Location) from a node u, it sets u as its parent in
the path towards its CH w, it stores the ID and the location of w and forwards the
received message to each node attached to v and to the node v is attached to (lines 36-
40). Any other CH_Announce_Msg that may be received by a node v after the first
CH_Announce_Msg is ignored.

A detailed example of the execution of the algorithm is given in Fig. 2. Note that
CHs 9 and 15 were formed during the execution of the CH election phase I while CH
39 was formed during the execution of the CH election phase II. In this phase, nodes
34, 35, 39 and 40 were all candidates CHs and node 39 was the winning node since it
has more attached nodes to it.

760 C. Konstantopoulos et al.

21
5 20

7

11
3

12
4

10
6

8

30
5

26
3

32
4

33
4

34
5 35

5

41
4

40
5

38
4 39

5

 6
4

37
3

31
3

15
9 14

6

24
7

 3
8

 4
5

 2
5

 1
4

22
4

27
5 29

4

17
4

36
3

 7
4

 5
5

16
7

 8
6

28
3

13
5

23
3

25
5

18
3

19
5

50
5

43
4

42
3

 9

energy

transmission
range

ID

Fig. 2. A detailed execution example of the cluster formation algorithm

3 The Data Gathering Protocol

As also discussed in the previous sections, the use of a MS offers a provably efficient
and reliable solution with regard to the sink-neighborhood problem. Additionally by
the use of node clustering, we can achieve a quite satisfactory balance between the
data gathering delay and the energy consumption overhead and also guarantee
efficient aggregation procedures. Following these directions in our work, and using
the watershed-based clustering scheme described in section 2, we can develop a quite
simple data gathering protocol that guarantees both uniform energy depletion of all
the SNs and increased network lifetime. Once the clustering hierarchy has been
established, the MS has only to compute an optimal route for visiting the elected CHs,
and then it can efficiently proceed to periodic data gathering through simple data
packet protocols.

Furthermore, the main goal of our combined approach is to always keep the SNs
organized in appropriate energy-rich clusters, where both the CHs and their neighbors
can effectively afford the extra data relaying overhead caused by the multi-hop
communication pattern, and thus avoid the non-uniform faster energy depletion of
some nodes (energy holes). The exact time of the need for re-clustering can easily be
determined by having the MS gathering information concerning the average residual
energy of the visited clusters. After reclustering, the MS has to be informed (through
the old CHs) with respect to the new CHs locations and then compute the new
corresponding optimal route. The proposed protocol consists of two basic phases: the
setup phase and the data gathering phase. Their description directly follows:

 Watershed-Based Clustering for Energy Efficient Data Gathering in WSNs 761

A. Setup Phase

1. Initial clustering is performed through the watershed-based clustering routine
presented in the previous section.

2. The MS makes an initial walk across the network following a predefined route that
covers the whole sensors area, and gathers the initial CHs locations.

3. Based on the known CHs locations, an optimal route is then computed by the MS,
through one of the known TSP solutions in the literature [17].

Alternatively, based also in the assumption that all the SNs initially have the same
energy, we could predefine the initial role of each SN (CH or cluster member), and
embed/program the information in each SN before its deployment, building a suitable
initial static/offline clustering hierarchy.

B. Data Gathering Phase

The MS periodically visits the elected CHs following the optimal route previously
computed. Specifically, during each round, the MS acts as follows:

1. The MS moves to the next CH location according to its scheduled path.

2. When reaching a CH, the MS gathers the buffered data from that CH.

3. The CH may also send to the MS a ‘below_ threshold’ message, if the decrease of
the average residual energy of its cluster compared to the average residual energy
of that cluster at the time of last reclustering, is higher than a threshold. Each CH
can easily keep track of the average residual energy of its cluster by periodically
collecting the necessary information from all its members.

4. After visiting all CHs, the MS returns to the central base station, where it delivers
the gathered data.

5. Before the next round, if the MS realizes that it has received a ‘below_threshold’
message from at least one CH, reclustering is decided. In that case, the following
actions should also be taken by the MS:

─ It first notifies all the SNs that they have to perform reclustering, by
broadcasting a message, either directly at the desired (high) power level or by
flooding.

─ It then waits at the central base station until the end of reclustering (i.e. for a
predefined estimated time).

─ Immediately after, it performs the next data gathering round, following the old
route (thus visiting again the old CHs locations).

762 C. Konstantopoulos et al.

─ When reaching each old CH, it gathers (along with the buffered sensed data) the
information that this CH has collected with regard to the locations of the new
CHs, as it was sent from its cluster members that have been elected as CHs in
the new clustering structure (if any).

─ When it returns to the central base station, it computes the new optimal path
based on the new CHs locations.

When reclustering has to be performed, the following steps should be taken:

1. The watershed-based clustering routine is executed, with the additional
requirement that each sensor should also keep (not overwrite) during that
execution, the necessary information with regard to the previous clustering
structure (its previous flooding neighbour and its previous CH id).

2. At the end of the clustering formation, each elected CH transmits its location
(including its ID and its coordinates) to its previous CH (through the multi-hop
routing path of the previous clustering structure). Thus, at the end of the
reclustering procedure, the old CHs will keep the locations of the new CHs.

4 Simulation Results

The clustering-based data gathering protocol proposed in the previous section, has
been further evaluated through a sufficient number of simulated experiments, and
according to a number of suitable realistic parameters, in order that a reliable
comparison with other approaches in the literature is feasible. All the experiments
have been performed using the Castalia simulator, which is based on the OMNeT++
platform and has been developed especially to simulate realistic wireless node
behaviour and wireless channel and radio models [7]. Specifically, in our simulation
tests, we compare our protocol with the distributed protocols proposed in [2] and [3],
which also consider the residual energy as the basic criterion for determining the
routing paths from sensors to the MS. We have run experiments for varying number
of nodes (600 to 1600 nodes), which are deployed uniformly at random, within a
square area of side L = 1000m. The maximum transmission range R of the sensors
nodes is equal to 45m and their initial energy is set to 500 Joules. The power
consumption for each transmission depends on the target distance and varies form
29.04mW to 57.42mW (4.3m-45m). The power consumption for reception and sleep
mode is 62mW and 0.016 mW, respectively.

The results are summarized in figures 3, 4, and 5. As a general notice, our data
gathering protocol is shown to behave considerably better in terms of all the referred
performance metrics. Less average energy consumption is achieved in total, whereas
also the energy depletion of all nodes is sufficiently uniform; as opposed to the other
two protocols. This naturally results in significant increase of the network lifetime in
all testing cases. In [2] and [3] the routing trees have to be re-built every time the MS
moves to another site, and they normally extent to the whole network area, thus

 Watershed-Based Clustering for Energy Efficient Data Gathering in WSNs 763

leading to quite long routing paths. As an additional result, the nodes that are close to
the MS have to relay quite larger amounts of data and their energy depletion can not
be controlled and balanced in such a satisfactory way as in our protocol. On the other
hand, in our protocol each SN always sends its sensed data only to its CH through a
relatively short multi-hop path. So, the energy of the nodes that are close to the CHs
deplete in much more controlled and balanced way, thus eventually leading to an
almost uniform total energy depletion scheme.

More concretely, as shown in Fig. 3, the network lifetime achieved by our protocol
is higher for all the numbers of sensor within the terrain. The corresponding
differences are over 5% in almost all the experiments (from 5% to 20%,
approximately), except the case of very small number of SNs (600) where the other
two protocols behave almost equivalently well, due to the fact that the routing trees
that have to be built are quite small and the total communication overhead is
appropriately restricted. Moreover, in our protocol the network lifetime remains
almost the same as the number of sensors increase. This happens due to the stable
behavior of our clustering structure, which keeps both the average energy
consumption almost constant, as well as the variance of the residual energy very low
and almost constant too.

In Fig. 4 the average residual energy is shown for all the three protocols (for 1400
SNs, where the other two protocols present their most stable behavior), as it decreases
with the time. Staring at Fig. 4, it can be easily observed that the decrease of the
average residual energy is almost linear for all the three protocols, as it was naturally
expected due to their structural properties. Also, in our protocol the average residual
energy decreases with slower rate, which means that the average energy consumption
is lower than in the other two protocols. Furthermore, in Fig. 5 the variance of the
residual energy is presented, again for 1400 nodes. As it can be seen, the variance for
our protocol is very low, almost constant during the whole network lifetime, and
much lower than in the other two protocols. Specifically, the variance for our protocol
ranges from 0.5 to 1.5 during the whole network lifetime, whereas for the other two
protocols raises up to 12.5 at the end of the network lifetime. The latter means that in
our protocol the energy of all nodes depletes in a much more uniform way than in the
other two protocols. This also explains the fact that the differences in the network
lifetime of the three protocols (Fig. 3) are quite high, and even more significant than
the differences in the average energy consumption (Fig. 4).

It must also be noted that our clustering scheme, due to its multi-hop structure,
strikes the balance between the number of clusters formed (i.e. the number of
locations periodically visited by the MS) and the average number of member-nodes
and communication hops within each cluster. As a consequence, the total data
gathering delay is appropriately kept in quite low levels, acceptable in most of the
known WSNs applications.

764 C. Konstantopoulos et al.

50
60
70
80
90

600 800 1000 1200 1400 1600

of Sensors

Ti
m

e
(s

ec
)(x

10
^3

)
[2]

[3]

Ours

Fig. 3. Network lifetime for varying # of SNs

0
100
200
300
400
500

10 20 30 40 50 60 70

Time (sec)(x10^3)

En
er

gy
 (j

ou
le

s)

[2]

[3]

Ours

Fig. 4. Average residual energy for 1400 nodes

0
5

10
15
20

10 20 30 40 50 60 70

Time (sec)(x10^3)

V
ar

ia
nc

e [2]

[3]

Ours

Fig. 5. Variance of the residual energy for 1400 nodes

5 Conclusion

A highly efficient data gathering protocol for WSNs that combines controlled sink
mobility with a novel clustering scheme is presented throughout the paper. The
proposed clustering scheme forms multi-hop clusters with not only high-energy CHs
but with energy-rich CH neighborhoods too, and thus, it finally achieves uniform
energy depletion of all SNs. As a consequence, the energy sink-hole problem is
effectively handled and this, in turn, leads to highly improved network lifetime. In a
number of simulation tests, our protocol is shown to have considerably better

 Watershed-Based Clustering for Energy Efficient Data Gathering in WSNs 765

behavior (in terms of network lifetime and nodes residual energy) than the protocols
of [2] and [3]. In a future work, we plan to generalize our approach by using more
than one sinks (multiple mobile sinks [20-21]).

References

1. Galilée, B., Mamalet, F., Renaudin, M., Coulon, P.: Parallel Asynchronous Watershed
Algorithm. IEEE Transactions on Parallel and Distributed Systems 18(1), 44–56 (2007)

2. Basagni, S., Carosi, A., Melachrinoudis, E., Petrioli, C., Wang, Z.M.: Controlled sink
mobility for prolonging WSNs lifetime. Wireless Networks 14(6), 831–858 (2008)

3. Ammari, H., Das, S.: Promoting Heterogeneity, Mobility, and Energy-Aware Voronoi
Diagram in Wireless Sensor Networks. IEEE Transactions on Parallel and Distributed
Systems 19(7), 995–1008 (2008)

4. Konstantopoulos, C., Pantziou, G., Gavalas, D., Mpitziopoulos, A., Mamalis, B.: A
Rendezvous-Based Approach for Energy-Efficient Sensory Data Collection from Mobile
Sinks. IEEE Transactions on Parallel and Distributed Systems 23(5), 809–817 (2012)

5. Tirta, Y., Li, Z., Lu, Y.H., Bagchi, S.: Efficient Collection of Sensor Data in Remote
Fields Using Mobile Collectors. In: Proc. IEEE ICCCN Conference, pp. 515–520 (2004)

6. Li, X., Nayak, A., Stojmenovic, I.: Sink Mobility in Wireless Sensor Networks. In:
Wireless Sensor and Actuator Networks, ch. 6, pp. 153–184. Wiley (2010)

7. Castalia: WSNs simulator, http://castalia.npc.nicta.com.au/
8. Sugihara, R., Gupta, R.: Optimal Speed Control of Mobile Node for Data Collection in

Sensor Networks. IEEE Transactions on Mobile Computing 9(1), 127–139 (2010)
9. Luo, J., Hubaux, J.P.: Joint Mobility and Routing for Lifetime Elongation in Wireless

Sensor Networks. In: Proc. IEEE INFOCOM 2005, pp. 1735–1746 (2005)
10. Demirbas, M., Soysal, O., Tosun, A.Ş.: Data Salmon: A Greedy Mobile Basestation

Protocol for Efficient Data Collection in Wireless Sensor Networks. In: Aspnes, J.,
Scheideler, C., Arora, A., Madden, S. (eds.) DCOSS 2007. LNCS, vol. 4549, pp. 267–280.
Springer, Heidelberg (2007)

11. Vincze, Z., Vass, D., Vida, R., Vidacs, A., Telcs, A.: Adaptive Sink Mobility in Event-
driven Densely Deployed Wireless Sensor Networks. Ad Hoc & Sensor Wireless
Networks 3(2-3), 255–284 (2007)

12. Ma, M., Yang, Y.: SenCar: An Energy-Efficient Data Gathering Mechanism for Large-
Scale Multihop Sensor Networks. IEEE Transactions on Parallel and Distributed
Systems 18(10), 1476–1488 (2007)

13. Xing, G., Wang, T., Jia, W., Li, M.: Rendezvous Design Algorithms for Wireless Sensor
Networks with a Mobile Base Station. In: Proc. ACM MobiHoc, pp. 231–239 (2008)

14. Rao, J., Biswas, S.: Network-assisted Sink Navigation for Distributed Data Gathering:
Stability and Delay-energy Trade-offs. Computer Communications 33, 160–175 (2010)

15. Hamida, E., Chelius, G.: Strategies for Data Dissemination to Mobile Sinks in Wireless
Sensor Networks. Wireless Communications 15(6), 31–37 (2008)

16. Chatzigiannakis, I., Kinalis, A., Nikoletseas, S.: Efficient Data Propagation Strategies in
Wireless Sensor Networks using a Single Mobile Sink. Computer Communications 31,
896–914 (2008)

17. Helsgaun, K.: An Effective Implementation of the Lin-Kernighan Traveling Salesman
Heuristic. European Journal of Operational Research 126(1), 106–130 (2000)

766 C. Konstantopoulos et al.

18. Soille, P.: Morphological Image Analysis, Principles and Applications. Springer (2004)
19. Moga, A., Cramariuc, B., Gabbouj, M.: Parallel watershed transformation algorithms for

image segmentation. Parallel Computing 24, 1981–2001 (1998)
20. Chatzigiannakis, I., Kinalis, A., Nikoletseas, S., Rolim, J.: Fast and energy efficient sensor

data collection by multiple mobile sinks. In: Proc. of MOBIWAC Conf., pp. 25–32 (2007)
21. Basagni, S., Carosi, A., Petrioli, C., Phillips, C.: Coordinated and controlled mobility of

multiple sinks for maximizing the lifetime of Wireless Sensor Networks. Wireless
Networks 17(3), 759–778 (2011)

Distribution of Liveness Property Connectivity

Interval in Selected Mobility Models
of Wireless Ad Hoc Networks

Jerzy Brzeziński, Micha�l Kalewski, Marcin Kosiba, and Marek Libuda

Institute of Computing Science
Poznań University of Technology

Piotrowo 2, 60–965 Poznań, Poland
Michal.Kalewski@cs.put.poznan.pl

Abstract. The ad hoc network liveness property disallows permanent
partitioning to occur by requiring (informally) that from each time mo-
ment reliable direct connectivity must emerge between some nodes from
every (non-empty) subset of hosts and its complementary set within some
finite, but unknown, connectivity time interval I . An analysis of the con-
nectivity interval is important because its finite values legitimise the
liveness property assumption. Moreover, since the connectivity interval
demonstrates a crucial factor of message dissemination time in ad hoc
networks, its distribution significantly affects the efficiency of all proto-
cols based on the liveness property. Therefore, in this paper, we present
the distribution of the connectivity interval determined experimentally
by simulation of several entity and group mobility models and real-life
GPS traces of mobile nodes. We also conduct a statistical analysis of
received results and show how the connectivity interval correlates with
other network parameters.

1 Introduction

Mobile ad hoc networks (MANETs) [1,2] are composed of autonomous and mo-
bile hosts (or communication devices) which communicate through wireless links.
The distance from a transmitting device at which the radio signal strength re-
mains above the minimal usable level is called the transmission (or wireless)
range of that host. Therefore, each pair of such devices, whose distance is less
than their transmission range, can communicate directly with each other—a mes-
sage sent by any host may be received by all hosts in its vicinity. Hosts can come
and go or appear in new places. As such, the resulting network topology may
change all the time and can get partitioned and reconnected in a highly unpre-
dictable manner.

The highly dynamic network topologies with partitioning and limited re-
sources are the reasons why heuristic group communication and broadcast proto-
cols with only probabilistic guarantees have been mainly proposed for the use in
ad hoc networks (e.g. [4]). On the other hand, if it can be assumed that a group of
collaborating nodes in an ad hoc network can be partitioned and that partitions

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 767–778, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

768 J. Brzeziński et al.

heal eventually, it is possible to develop deterministic dissemination protocols
used subsequently to develop more complex distributed algorithms like consensus
or coherency protocols. The liveness property disallows permanent partitioning
to occur by requiring (informally) that from each time moment reliable direct
connectivity must emerge between some nodes from every (non-empty) subset of
hosts and its complementary set within some finite, but unknown, connectivity
time interval I.

In this context, an analysis of the connectivity interval is important because
its finite values legitimise the liveness property assumption. Moreover, since the
connectivity interval demonstrates a crucial factor of message dissemination time
in ad hoc networks, its distribution significantly affects the efficiency of all pro-
tocols based on the liveness property. Therefore, in this paper, we present the
distribution of the connectivity interval determined experimentally by simulation
of several entity (Random Walk, Random Waypoint, Random Direction, Chiang
Model, Haas Model, Gauss-Markov Model) and group (Exponential Correlated
RandomMobility, Column Model, Nomadic Community Model) mobility models
and real-life GPS traces of mobile nodes. We also conduct a statistical analysis
of received results and show how the connectivity interval correlates with other
network parameters like partition sizes or the average number of neighbouring
nodes.

The paper has the following structure. First, following [10,11], the formal
model of ad hoc systems with the liveness property is described in Section 2.
A short review of mobility models used in our study is presented in Section 3.
Section 4 describes simulation environment that has been used to perform all of
our test. In Section 5, we make a statistical analysis of received results, and the
paper is, finally, shortly concluded in Section 6.

2 Ad Hoc Network Liveness Property

In this paper, the topology of the distributed ad hoc system is modelled by
an undirected connectivity graph G = (V , E), where V is a set of all nodes,
p1, p2, . . . , pn, and E ⊆ V×V is a set of links (pi, pj) between neighbouring nodes
pi, pj , i.e. nodes that are within transmission range of each other. (Note that
(pi, pj) and (pj , pi) denote the same link, since links are always bidirectional.)
The set E changes with time, and thus the graph G can get disconnected and
reconnected. Disconnection fragments the graph into isolated sub-graphs called
components (or partitions of the network), such that there is a path in E for any
two nodes in the same component, but there is no path in E for any two nodes
in different components.

It is presumed that the system is composed of N = |V| uniquely identified
nodes and each node is aware of the number of all nodes in the V set (that is of
N). The nodes communicate with each other only by sending messages (message
passing). Any node, at any time can initiate the dissemination of message m,
and all nodes that are neighbours of the sender, at least for the duration of
a message transmission, can receive the message. More formally, the links can be

Distribution of Liveness Property Connectivity Interval 769

described using the concept of a dynamic set function [9]. Let E ′ be a product
set of V : E ′ = V × V , and Γ (E ′) be the set of all subsets (power set) of E ′:
Γ (E ′) = {A | A ⊆ E ′}. Then, the dynamic set Ei of node pi is defined as follows:

Definition 1. The dynamic set Ei of node pi in some time interval T = [t1, t2]
is a function:

Ei : T → Γ (E ′)

such that ∀t ∈ T : Ei(t) is a set of all links of pi at time t.

Let δ be the maximum message transmission time between neighbouring nodes.
Then, we define direct connectivity as follows ([11,10]):

Definition 2. Let T = [t, t + B], where B � δ is an application-specified pa-
rameter. Then, two operative nodes pi and pj are said to be directly connected
at t iff:

∀τ ∈ T ((pi, pj) ∈ Ei(τ)).
It is assumed that channels between directly connected hosts are reliable channels
which do not alter and lose, duplicate or create messages.

2.1 Network Liveness Property

Let P be a non-empty subset of V at some time t, and P be its complementary
set in V (P contains all nodes that are not in P). Then, the network liveness
property is specified as follows ([11,10]):

Definition 3. A distributed ad hoc system that was initiated at t0 satisfies the
network liveness property, iff:

∀t � t0 ∀P ∃I � B (I �=∞ ∧ ∃{pi, pj} (pi ∈ P ∧ pj ∈ P ∧
(∃{t1, t2} ((t � t1 < t2 � t+ I) ∧ (t2 − t1 � B) ∧

(∀tc ∈ [t1, t2] ((pi, pj) ∈ Ei(tc))))))).
Informally, the network liveness requirement disallows permanent partitioning to
occur by requiring that reliable direct connectivity must emerge between some
nodes of every P and P within some finite, but unknown, connectivity time
interval I.

3 Mobility Models

To facilitate research on the performance of numerous already existing and newly
proposed protocols in the field of ad hoc networking, many synthetic mobility
models (in two-dimensional space) have been proposed [3,8]. The literature cat-
egorises them as being either entity or group models.

Entity models are used as a tool to model the behaviour of individual mobile
nodes, treated as autonomous, independent entities. On the other hand, the key
assumption behind the group models is that individual nodes influence each
other’s movement to some degree. Therefore, group models have become helpful
in simulating the motion patterns of a group as a whole.

770 J. Brzeziński et al.

3.1 Entity Mobility Models

Random Walk. In the Random Walk model, a mobile node randomly chooses
its velocity, that is its speed and direction, from the predefined interval of
[vmin, vmax] and [0, 2Π], respectively. The new values of these two parameters
are calculated each time the node moves by some constant distance d or after
some constant time interval &t. Upon reaching the area boundary, the node
“bounces” off it at an angle equal to the hitting angle, and moves along until
the next calculation occurs. The probabilistic variant of the model known as the
Chiang Model [5] makes the node’s trajectory more linear and deterministic.

Random Waypoint. In this model, at each step a node first stops for some
constant pause time. Then, the node randomly picks a point within the simula-
tion area and starts moving toward it with a constant, but randomly selected
speed that is uniformly distributed between [vmin, vmax].

Random Direction. The Random Direction model is a modification of the
RandomWaypoint model. The only difference is that, instead of choosing a point,
the node chooses direction (angle) from the [0, 2π] range and travels along this
direction until it reaches the area boundary.

The main drawback of the above models is that they generate unpredictable
motion patterns. In particular, they allow some unrealistic movements, such as
sharp turns or sudden stops, to occur. In order to eliminate these undesirable
effects, other entity models allow to limit the level of randomness by making
new steps more or less dependent on the previous ones.

Haas Model. The model Haas Model assumes that the movement of each node
is characterised by the vector of speed and direction v = (v, θ), and that the
node’s position is updated each &t time interval, according to the formulas:

v(t+&t) = min [max [v(t) +&v, 0], vmax]

θ(t+&t) = θ(t) +&θ,

where vmax is a simulation constant that denotes the maximum speed, &v is
within [−Amax∗&t, Amax∗&t], Amax is constant maximum node’s acceleration,
&θ is taken from the range [−ω ∗ &t, ω ∗ &t], and ω represents the maximum
angular acceleration. Parameters &v and &θ are uniformly distributed. This
movement pattern defines a Markov stochastic process, since the new position
and speed at time t+&t depend only on their previous values at time t.

Gauss-Markov Model. In the Gauss-Markov Model, motion of a single mobile
node is modelled in the form of a Gauss-Markov stochastic process, and formally
is defined by the following equations:

v(t+&t) = αv(t) + (1− α)v̄ +
√
1− α2V

θ(t+&t) = αθ(t) + (1− α)θ̄ +
√
1− α2D,

where v and θ represent the node speed and direction at timeslot t, v̄ and θ̄ are
constants for asymptotic speed and direction mean as t → ∞, whereas random

Distribution of Liveness Property Connectivity Interval 771

variables V and D are speed and direction random variables with a Gaussian
distribution. The level of randomness is controlled by the normalised α parameter
representing the preset memory level. At one extreme, if α is equal to 0, the model
reduces to the Random Walk model, because the velocity in a current timeslot
does not depend on its previous value at all. On the other hand, if α is 1, the
random factor disappears and the velocity becomes effectively constant. For any
other value of α the model has some degree of memory, which makes the node’s
trajectory more or less linear.

3.2 Group Mobility Models

Exponential Correlated Random Mobility. In the Exponential Correlated
RandomMobility model, a new position (of a group or a single node) Pos(t+&t)
is updated after each timestep &t, and is given by the formula:

Pos(t+&t) = Pos(t)e−
1
τ + (σ

√
1− (e−

1
τ)2)r,

where τ parameter (τ > 0) controls how much two consecutive positions differ
(the smaller τ the greater change), and r is a Gaussian random variable with
variance σ. The model has not become popular because modelling any realistic
motion pattern with its use is difficult.

Column Model. The Column Model is meant to describe a group of nodes
that form a line heading in a given direction like a column. Individual nodes
are allowed to deviate slightly from their reference positions (determined by the
column structure) according to some entity model. The Column Model is well
suited for searching and scanning applications (for instance, in a rescue team).

Nomadic Community. Sometimes, the group nodes are focused around some
reference point (e.g. the leader node) and collectively travel from one location
to another. In such settings, the Nomadic Community model is useful. In this
model, the group (treated as an entity) moves randomly, because the reference
point is the source of randomness. Within a group, individual nodes are free to
diverge from the reference point up to some predefined maximum distance.

4 Simulator

Most available simulators provide few implementations of mobility models and
usually have poor support for the creation of complex mobility models [6]. Be-
cause of that, we have decided to create a mobility model centered simulator
which would facilitate fast and effortless mobility model implementations and
simulations. Our simulator named MANETSim [6] was implemented in Haskell—
a purely functional programming language. By using specific features of the lan-
guage, we were able to create a Domain Specific Language (DSL) to describe
mobility models. It enables the creation of expressive implementations which
closely resemble pseudocode while retaining a high level of functionality. In or-
der to use MANETSim as a part of another simulation environment, we have

772 J. Brzeziński et al.

developed a communications protocol and an interoperability module for the
OMNeT++1 network simulation framework. We used MANETSim to analyse
the liveness property in the context of different mobility models.

4.1 Measured Metrics

In order to precisely describe the measured metrics, we first introduce a definition
of a partitions set :

Definition 4. The partitions set Q at time t in the network is composed of
all sets Q ⊆ V such that:

Q �= ∅ ∧ ∀pi ∈ Q ∃pj (pj ∈ Ei(t)) ∧
�Q′ ⊂ V (Q′ �= ∅ ∧ Q ∩Q′ �= ∅ ∧ ∀pk ∈ Q′ ∃pl (pl ∈ Ek(t))) .

We also denote Ts to be the length of a simulation step, and Posn−1(pi) to be the
position vector of node pi ∈ V in the n− 1-st time step. Thus, the momentary
speed of node pi is be expressed as:

Vn(pi) =
|Posn(pi)− Posn−1(pi)|

Ts
.

Based on the above specification, the metrics, which are measured by MANET-
Sim, are as follows:

– number of links (neighbours) of each pi ∈ V : 1
2 |Ei(tn)| (since links are always

bidirectional);
– momentary speed of each pi ∈ V : Vn(pi);
– size of each partition Q ∈ Q: |Q|;
– value of the liveness property connectivity interval I, as defined in

Section 2.1.

4.2 Simulation Parameters

The parameters and its values which were used in our simulation study are as
follows:

– number of repetitions of each test: 10 ;
– simulation duration: 6000 s ;
– simulation transient period duration (measurements taken during this

period are ignored): 1000 s ;
– simulated area size: 1000m×1000m;
– number of nodes: 50 ;
– wireless range of each host: [30m, 50m, 80m, 100m, 150m, 200m,

250m, 300m] ;
– frequency of node position updates: 4Hz ;

1 http://www.omnetpp.org/

Distribution of Liveness Property Connectivity Interval 773

Fig. 1. The Γ node speed distribution. The X axis represents speed in m/s whereas
the Y axis represents probability.

– average node speed: [1m/s, 5m/s, 10m/s, 15m/s, Γ]
– node pause time: [none, Γ] ;
– B parameter (for how long do two nodes have to be in a wireless range

for them to be considered connected, as specified in Section 2): [0.5 s, 1.0 s,
2.0 s, 5.0 s, 10.0 s] ;

– node interrupt condition (when will a node change direction, speed
etc.): [collision, 30m distance, 100m distance, 30 s time, 100 s time] ;

– Hass Model: (model specific parameters) Amax=0.9m/s2, ω=10 deg/s;
– Gauss-Markov Model: (model specific parameter) α =[0.1, 0.3, 0.5,

0.7, 0.9].

As a speed distribution we have also used Γ distribution, which was found by
analysing GPS traces available freely on the Internet2 [6]. The Γ distribution is
shown in Figure 1, and Γ pause distribution is a uniform distribution over the
range of [10 s, 180 s].

Most of above values were based on or follow suggestions present in the ar-
ticles describing the mobility model and the liveness property. A more detailed
explanation of the chosen values can be found in [6].

5 Simulation Analysis

To determine the distribution of the connectivity interval I, we have performed
simulation tests with the use of the MANETSim simulator and all the unity and
group mobility models mentioned in Section 3, along with each combination of
the common and model specific parameters described in Section 4.2. Based on
the information from the simulator, we were able to calculate values of the con-
nectivity time I, and assess how they correlate with other network parameters.

2 http://www.openstreetmap.org/ and http://www.gpsies.com

774 J. Brzeziński et al.

Table 1. Percentage of simulation tests for which the value of the connectivity time
interval was finite within simulation time

Mobility Model Tests with Finite Value of I

Random Walk 98.69%
Chiang Model 99.90%
Random Waypoint 100.00%
Random Direction 97.49%
Haas Model 99.50%
Gauss-Markov Model 91.57%
Exponential Correlated Mobility 99.49%
Column Model 99.69%
Nomadic Community 100.00%

Table 1 shows the percentage of simulation tests, for which the value of the
connectivity time interval was finite within simulation time, for all considered
mobility models. As it can be seen, all these results are above 91% and in case
of two models (Random Waypoint and Nomadic Community) all the simulation
had finite values of this parameter.

We begin our study with analysing the distribution of the connectivity interval
I parameter among mobility models. Even though the values of I varies between
different mobility models, the shape of the distribution is similar amongst them.
This is illustrated by Figure 2, where similarities between the distribution for the
Random Direction mobility model can be seen (Figures 2(a), 2(b)) and Chiang
Model (Figures 2(c), 2(d)). The same similarity can be observed between all of
the analysed mobility models [6]. But despite this, the distributions differ in a
statistically significant way—Wilcoxon test at α = 0.05. The distribution of I is
almost exponential (as can be seen on the logarithmic plots: 2(d), 2(b)), which
means that the smallest values of I are the most probable ones. That in turn
means, that most of the partitions in the network exist only for a (relatively)
short time (under 5 minutes in our simulations).

The value of I is not independent of other network parameters such as average
node speed or the number of links. To illustrate those dependencies, we use
the scatter plot depicted in Figure 3, where the following values are shown:
coverage—percent of the area covered by a node’s wireless range; I-upper—
value which is greater than 90% of the observed I values; neighbours—average
number of nodes to which a node has connectivity; I-average—average value of
the observed I values; partitions size—average size of a partition and speed—
average speed of nodes.

It can be seen on the basis of Figure 3 that an increase in value of partition
size, neighbours number and coverage is connected with a decrease of the I-upper
and I-average values. This tendency is not symmetrical as there are observations
where small partition sizes with both small and large values of I-upper. Speed
has a minimal impact on both values of I-average and I-upper, which means that
while analysing protocols based on the liveness property it does not suffice to vary

Distribution of Liveness Property Connectivity Interval 775

0 1000 2000 3000 4000 5000 6000
0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

P
ro

b
a
b
il
it

y
 o

f
v
a
lu

e
 o

c
c
u
rr

in
g
 [

1
]

(a) Random Direction, linear scale.

0 1000 2000 3000 4000 5000 6000
10

-6

10
-5

10
-4

10
-3

10
-2

P
ro

b
a
b
il
it

y
 o

f
v
a
lu

e
 o

c
c
u
rr

in
g
 [

1
]

(b) Random Direction, logarithmic scale.

0 1000 2000 3000 4000 5000
0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

0.0045

P
ro

b
a
b
il
it

y
 o

f
v
a
lu

e
 o

c
c
u
rr

in
g
 [

1
]

(c) Chiang Model, linear scale.

0 1000 2000 3000 4000 5000
10

-6

10
-5

10
-4

10
-3

10
-2

P
ro

b
a
b
il
it

y
 o

f
v
a
lu

e
 o

c
c
u
rr

in
g
 [

1
]

(d) Chiang Model, logarithmic scale.

Fig. 2. Distributions of the liveness property connectivity interval I

node speed. This is contrary to common practice in MANET studies where the
node speed is usually the only variable parameter of the mobility model [7]. It is
worth noting that observations which do not exhibit finite values of connectivity
interval I also have low coverage and a small number of neighbours.

Statistical parameters of the analysed mobility models are presented in Ta-
ble 2. The results have been categorised according to the mobility model and
speed distribution used: average value (denoted as single) and Γ distribution. To
compare Γ distribution and average values results, we have used the Wilcoxon
sign test. For all mobility models, the difference was found to have been sta-
tistically significant at α = 0.05. The difference between those two types of
distributions is not clear because, while most entity models with the Γ distri-
bution had higher values of I, there were also less observations without a finite
value of the connectivity interval among that group.

Finally, Table 3 depicts the percentage of observations for which I values
were greater than those in the Icutoff column—this can also be viewed as an
approximation of the probability that a network would have not the connectivity
interval for the given value of Icutoff .

776 J. Brzeziński et al.

C
o
v
e
ra

g
e

[%
 o

f
a
re

a
]

�
��

0
1

0
2

0
3

0
4

0
5

0
6

0

���

0

10

20

30

40

50

60

�
�05

1
0

1
5

2
0

2
5

3
0

3
5

��

0

5

10

15

20

25

30

35

���

0

10

20

30

40

50

60

70

02468
1

0
1

2
1

4
1

6

0

2

4

6

8

10

12

14

16 �
��

01
0

2
0

3
0

4
0

5
0

6
0

7
0

I
u
p
p
e
r

[m
in

]

N
e
ig

h
b
o
rs

[n
o
d
e
s
]

��

0

5

10

15

20

�
�

051
0

1
5

2
0

I
a
v
e
ra

g
e

[m
in

]

P
a
rt

it
io

n
 s

iz
e

[n
o
d
e
s
]

���

0

10

20

30

40

50

60

�
��

01
0

2
0

3
0

4
0

5
0

6
0

S
p
e
e
d

[m
/s

]

Fig. 3. Scatter plot for the Random Direction mobility model. Green triangles mark
measurements with a finite value of the connectivity interval, red dots mark measure-
ments without a finite value of the connectivity interval.

Distribution of Liveness Property Connectivity Interval 777

Table 2. Statistical parameters of I for all simulation experiments

Mobility Model
Speed
Dist.

I

E(I) σI I9 min(I) max(I) kurtosis skew

Random Walk single 258.74 488.07 711.00 0.25 5993.25 14.77 3.54
Random Walk Γ 348.94 628.07 1038.75 0.25 5920.75 11.21 3.11
Chiang Model single 205.25 388.87 519.75 0.25 5727.75 16.84 3.77
Chiang Model Γ 120.63 214.81 217.25 0.25 5456.50 23.88 4.43
Random Waypoint single 170.51 275.28 452.00 0.25 5903.00 17.94 3.56
Random Waypoint Γ 188.25 357.55 362.50 0.25 4478.00 26.18 4.70
Random Direction single 216.99 392.36 571.25 0.25 5903.75 14.98 3.53
Random Direction Γ 384.47 571.04 959.00 0.25 5858.25 11.62 3.07
Haas Model single 103.89 172.20 191.25 0.25 5959.50 24.41 4.45
Haas Model Γ 91.95 191.63 153.00 0.25 5959.50 25.73 4.83
Gauss-Markov single 235.35 371.13 687.75 0.25 5773.75 8.44 2.65
Gauss-Markov Γ 385.00 474.05 1026.00 0.25 5309.00 3.29 1.72
Exponential Corre-
lated

single 338.52 495.75 864.25 0.25 5860.50 10.17 2.95

Column Model single 189.97 379.32 379.25 0.25 5699.50 28.50 4.88
Nomadic Commu-
nity

single 197.06 311.80 507.75 0.25 5978.25 12.71 3.21

Table 3. Percentage of observations for which I values were greater than those in the
Icutoff column

Mobility
Models

Value of Icutoff [s]

5 10 20 50 100 200 400

All 98.0% 97.0% 96.0% 87.0% 74.0% 56.0% 38.0%
Entity 97.0% 96.0% 94.0% 83.0% 70.0% 54.0% 38.0%
Group 99.0% 99.0% 99.0% 96.0% 83.0% 61.0% 37.0%

700 1000 2000 3000 4000 5000 6000

All 26.0% 19.0% 9.0% 5.0% 3.0% 2.0% 2.0%
Entity 27.0% 21.0% 10.0% 6.0% 4.0% 3.0% 3.0%
Group 22.0% 15.0% 7.0% 3.0% 1.0% 0.4% 0.2%

6 Conclusions

In this paper, we have presented a theoretical model of ad hoc networks with the
liveness property, defined with the concept of dynamic sets, and several entity
and group mobility models. We used these concepts to determine the distribution
of the liveness property connectivity interval by simulation tests which build on
our implementation of a mobility model centered simulator. The obtained results
have shown that for all considered mobility models the probability that a network
will have a finite value of the connectivity interval is very high, and that there is

778 J. Brzeziński et al.

a strong correlation between the average number of neighbours and the value of
I parameter. Other correlations were also considered, and we have observed that
generally, an increase in values of partition size and coverage also is connected
with a decrease of I value, while the speed of nodes have a minimal impact on the
value. The distribution of I in our results is almost exponential, which indicates
that the smallest values of the parameter are most probable. Consequently, it
should be expected that most of the partitions in a network will exist for only
a relatively short time.

Acknowledgment. The research presented in this paper has been partially
supported by the European Union within the European Regional Development
Fund program no. POIG.01.03.01–00–008/08.

References

1. Aggelou, G.: Mobile Ad Hoc Networks: From Wireless LANs to 4G Networks, 1st
edn. McGraw-Hill (November 2004)

2. Brzeziński, J., Kalewski, M., Libuda, M.: A short survey of basic algorithmic prob-
lems in distributed ad hoc systems. Pro Dialog (Polish Information Processing
Society Journal) 21, 29–46 (2006)

3. Camp, T., Boleng, J., Davies, V.: A survey of mobility models for ad hoc network
research. Wireless Communications and Mobile Computing 2(5), 483–502 (2002)

4. Chandra, R., Ramasubramanian, V., Birman, K.P.: Anonymous gossip: Improving
multicast reliability in mobile ad-hoc networks. In: Proceedings of the 21st Interna-
tional Conference on Distributed Computing Systems (ICDCS 2001), pp. 275–283.
IEEE Computer Society (April 2001)

5. Chiang, C.-C.: Wireless network multicasting. PhD thesis, University of California,
Los Angeles, CA, Chair-Gerla, Mario (1998)

6. Kosiba, M.: The liveness property of wireless ad hoc networks and its analysis
based on selected mobility models (in Polish). Master’s thesis, Poznań University
of Technology (August 2009)

7. Kurkowski, S., Camp, T., Colagrosso, M.: Manet simulation studies: The incredi-
bles. SIGMOBILE Mob. Comput. Commun. Rev. 9(4), 50–61 (2005)

8. Lin, G., Noubir, G., Rajaraman, R.: Mobility models for ad hoc network simulation.
In: IEEE INFOCOM 2004, Conference of the IEEE Communications Society, Hong
Kong (March 2004)

9. Liu, S., McDermid, J.A.: Dynamic sets and their application in VDM. In: Proceed-
ings of the 1993 ACM/SIGAPP Symposium on Applied Computing (SAC 1993),
pp. 187–192. ACM Press (February 1993)

10. Vollset, E.W.: Design and Evaluation of Crash Tolerant Protocols for Mobile Ad-
hoc Networks. PhD thesis, University of Newcastle Upon Tyne (September 2005)

11. Vollset, E.W., Ezhilchelvan, P.D.: Design and performance-study of crash-tolerant
protocols for broadcasting and supporting consensus in MANETs. In: Proceed-
ings of the 24th IEEE Symposium on Reliable Distributed Systems (SRDS 2005),
pp. 166–178. IEEE Computer Society (October 2005)

Topic 15: High Performance

and Scientific Applications

Thomas Ludwig, Costas Bekas, Alice Koniges, and Kengo Nakajima

Topic Committee

Many fields of science and engineering are characterized by an increasing demand
for computational resources. Coupled with important algorithmic advances, high
performance computing allows for the gain of new results and insights by uti-
lizing powerful computers and big storage systems. Workflows in science and
engineering produce huge amounts of data through numerical simulations and
derive new knowledge by a subsequent analysis of this data. Progress in these
fields depends on the availability of HPC environments, from medium sized ter-
aflops systems up to leading petaflops systems.

The High Performance and Scientific Applications Topic highlights recent
progress in the use of high performance parallel computing and puts an emphasis
on success stories, advances of the state-of-the-art and lessons learned in the
development and deployment of novel scientific and engineering applications.

Today’s complex research issues have to be mapped onto complex compute
and storage environments: We find powerful computers being composed of hun-
dreds and thousands of nodes which themselves are shared memory parallel
computers with many processor cores and sometimes additional accelerator hard-
ware. Storage hardware consists at least of high volume disk systems but could
also comprise tape libraries. With the advent of the Exascale era a way to in-
creased resource usage might enforce hardware-software co-design.

The papers accepted for this workshop characterize typical steps on the way to
exploit maximum system performance. Four papers focus on an optimal adap-
tation of the software system onto the available hardware system. They deal
with the layout of data structures in memory and the mapping of software com-
ponents onto hardware in multi-core environments. One contribution analyses
how data volumes could be reduced when a certain loss of quality is acceptable.
Finally, we include an interesting report on how quality of data can be assessed
and how it influences subsequent post-processing. We invite you to read this
collection of papers and get inspired by the results of our colleagues.

Kunaseth et al. present in “Memory-Access Optimization of Parallel Molecu-
lar Dynamics Simulation via Dynamic Data Reordering”, a novel data-reordering
scheme aimed to optimize runtime memory access in the context of large scale
molecular dynamics simulations.

Reiter et al. present in “On Analyzing Quality of Data Influences on Perfor-
mance of Finite Elements driven Computational Simulations” a thorough analy-
sis of mechanisms with which data quality can dramatically influence the results
as well as the performance of scientific simulations.

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 779–780, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

780 T. Ludwig et al.

Malakar et al. demonstrate in “Performance Evaluation and Optimization of
Nested High Resolution Weather Simulations” a significant reduction in run time
of complex climate simulations by exploiting a careful combination of compiler
optimizations coupled with overlapping computation and communication.

Fietz et al. present in “Optimized Hybrid Parallel Lattice Boltzmann Fluid
Flow Simulations on Complex Geometries” an optimized hybrid parallelization
strategy, that is capable of solving large-scale fluid flow problems on complex
computational domains.

Aktulga et al. quantitatively show in “Topology-aware Mappings for Large-
Scale Eigenvalue Problems” that topology-aware mapping of processes to physi-
cal processors can have a significant impact on the efficiency of high-performance
computing applications, with a particular view to modern large-scale multi-core
architectures.

Finally, Iverson et al. developed in “Fast and Effective Lossy Compression
Algorithms for Scientific Datasets” effective and efficient algorithms for com-
pressing scientific simulation data computed on structured and unstructured
grids.

Memory-Access Optimization

of Parallel Molecular Dynamics Simulation
via Dynamic Data Reordering

Manaschai Kunaseth, Ken-ichi Nomura, Hikmet Dursun, Rajiv K. Kalia,
Aiichiro Nakano, and Priya Vashishta

University of Southern California, Los Angeles, CA 90089, USA
{kunaseth,knomura,hdursun,rkalia,anakano,priyav}@usc.edu

Abstract. Dynamic irregular applications such as molecular dynam-
ics (MD) simulation often suffer considerable performance deterioration
during execution. To address this problem, an optimal data-reordering
schedule has been developed for runtime memory-access optimization of
MD simulations on parallel computers. Analysis of the memory-access
penalty during MD simulations shows that the performance improve-
ment from computation and data reordering degrades gradually as data
translation lookaside buffer misses increase. We have also found correla-
tions between the performance degradation with physical properties such
as the simulated temperature, as well as with computational parameters
such as the spatial-decomposition granularity. Based on a performance
model and pre-profiling of data fragmentation behaviors, we have de-
veloped an optimal runtime data-reordering schedule, thereby archiving
speedup of 1.35, 1.36 and 1.28, respectively, for MD simulations of silica
at temperatures 300 K, 3,000 K and 6,000 K.

Keywords: Data reordering, memory-access optimization, data frag-
mentation, performance degradation, molecular dynamics.

1 Introduction

Molecular dynamics (MD) simulation is widely used to study material properties
at the atomistic level [2,7,9,10]. One of the major problems on improving perfor-
mance of MD simulations is to maintain data locality. Since the memory-access
pattern in MD simulation is highly non-uniform and unpredictable, the locality
optimization problem is challenging.

To address the locality issue, a commonly used method is data reordering,
which organizes data of irregular memory-access patterns in memory accord-
ing to a certain locality metric [3,4,11,13]. However, a further challenge arises
from the dynamic, irregular nature of MD computations. Mellor-Crummey et
al. showed that data reordering and computation restructuring enhance data
locality, resulting in the reduction of cache and TLB misses and accordingly
considerable performance improvement of MD simulations [6]. The study also
suggested the necessity of repeated runtime reorderings, for which the remaining

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 781–792, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

782 M. Kunaseth et al.

problem is how often the reordering should be performed in order to achieve the
optimal overall performance. In addition, as the data reordering and computa-
tion restructuring incur computational overhead, such reordering cost should be
considered to find the optimal reordering frequency.

Runtime data behaviors of MD simulations are closely related to both physical
properties of the system being simulated (e.g. temperature, diffusion rate, and
atomic configuration) and computational parameters (e.g. spatial decomposition
granularity in parallel MD). Therefore, understanding how these quantities af-
fect the deterioration of data locality is a prerequisite for designing the optimal
runtime data-reordering schedule.

To address these challenges, we first introduce a data fragmentation ratio
metric that quantifies the locality of atom data arrays during MD simulation.
Then, we perform an analysis on how MD simulations with different physi-
cal/computational characteristics (e.g. temperature, diffusion rate, and granu-
larity) impact the data fragmentation ratio and performance deterioration of the
system. Based on the data fragmentation analysis, we finally design and eval-
uate an memory optimization scheme that features an optimal runtime data-
reordering schedule during MD simulation.

2 Parallel Molecular Dynamics

Molecular dynamics simulation follows the phase-space trajectories of anN -atom
system, where force fields describing the atomic force laws between atoms are
spatial derivatives of a potential energy function E(rN)(rN = {r1, r2, ..., rN} is
the positions of all atoms). Positions and velocities of all atoms are updated at
each MD step by numerically integrating coupled ordinary differential equations.
The dominant computation of MD simulation is the evaluation of E(rN), which,
in the program considered in this paper, consists of two-body E2(ri, rj) and
three-body E3(ri, rj , rk) terms [7].

Figure 1(a) shows a schematic of the computational kernel of MD, which
employs a linked-list cell method to compute interatomic interactions in O(N)
time. Periodic boundary condition is applied to the system in three Cartesian
dimensions. Here, a simulation domain is divided into small cubical cells, and
the linked-list data structure is used to organize atomic data (e.g. coordinates,
velocities and atom type) in each cell. Traversing through the linked list, one
retrieves the information of all atoms belonging to a cell, and thereby computes
interatomic interactions. Thus, the dimensions of the cells are usually determined
by the cutoff radius rc of the interatomic interaction.

The MD program considered in this paper employs spatial decomposition at
an outermost level of hierarchical parallelization [8]. Here, the physical system is
partitioned into subsystems, and atoms residing in different subsystems are as-
signed to different compute nodes. When the atomic coordinates are updated ac-
cording to the time-integration algorithm, some resident atoms may have moved
out of the subsystem boundary, and such atoms are migrated to proper nodes.

Memory-Access Optimization of Parallel Molecular Dynamics Simulation 783

MD is an archetype of irregular memory-access pattern applications, and
this paper addresses two distinct sources of irregularity: (1) physically induced
disorder such as atom diffusion or flow; and (2) algorithmically induced disorder
such as atom migration between spatial decomposition domains in parallel MD.

3 Data Fragmentation in Parallel Molecular Dynamics

High memory-access penalty is a major obstacle of irregular memory accessing
applications, which needs to be mitigated. Our MD application performs data
and computation orderings by organizing atom data contiguously in memory
in the same order as the linked lists of the cells access them. The reordering
algorithm performed in O(N) is shown in Fig. 1(b). Though the spatial locality
after data reordering is retained for a while, data get disordered as simula-
tion progresses due to atom movement among cells. How the benefit from data
reordering deteriorates as simulation evolves at runtime essentially affects the
performance of MD simulations. To quantify the level of fragmentation, we first
define a fragmentation measurement ratio metric.

Let C(i, j, k) be a linked-list cell with cell indices i, j, and k in the x, y, and
z directions, respectively. Each linked-list cell contains indices of atoms whose
coordinates are within their cell dimensions. Before data reordering, atom data
are likely scattered in memory as illustrated in Fig. 1(c), and data reordering
improves the data locality as shown in Fig. 1(d), where the atom data of the same
physical cell volume reside continuously. Fragmentation in the atom data array
could occur as follows. Suppose that the a-th atom in linked-list cell C moves
to another cell C ′. Consequently, the memory block of C′ becomes partially
fragmented because the a-th atom is not contiguous in memory space with other
atoms in C′ such that their distances in the memory space exceed the page
size. Therefore, any atom moving out of its original linked-list cell introduces
fragmentation in memory, which likely causes data translation lookaside buffer
(DTLB) misses. To quantify the degree of fragmentation, we thus define a data
fragmentation ratio as f = Nfragment/N , where Nfragment is the number of
atoms whose positions have moved out of the originally ordered cells and N is
the total number of atoms. The data fragmentation ratio is between 0 (i.e., all
atoms in all cells reside continuously in memory—fully ordered state, see Fig.
1(d)) and 1 (i.e., no atom resides in the original cell—fully disordered state, see
Fig. 1(c)). The data fragmentation ratio will be used to quantify fragmentation
extensively throughout this paper. Note that the page size used in all experiments
is 4 KB.

Data fragmentation in memory is dictated by the dynamics of atoms, and
thus understanding the factors that control the atom dynamics would provide
an insight on how to prevent the fragmentation. One of the physical factors that
are directly related to the dynamics is the temperature, since high temperature
drives atoms to move faster and more freely. Among the computational factors,
migration of atom data from one node to another across a subsystem boundary in
parallel MD also causes fragmentation. The granularity of spatial decomposition

784 M. Kunaseth et al.

Fig. 1. (a) 2D schematic of the linked-list cell method. The center cell C(0, 0) is sur-
rounded by eight neighbor cells. The cell dimensions are often chosen to be the cutoff
radius (represented by the two-heads arrow) of interatomic interaction. Only force ex-
erted from atoms within the cutoff radius are computed. (b) Pseudocode of the data
reordering algorithm. (c) Schematic of memory layout for atom data in a disordered
state and (d) a fully ordered state, where C(i, j, k) is the linked list for the cell with
indices i, j, and k in the x, y, and z directions, respectively, r[a] is the data associated
with the a-th atom.

(i.e. the number of atoms per compute node) is related to the subsystem surface-
to-volume ratio, and hence is likely to control the degree of fragmentation via
the amount of atom migrations. In the following subsections, we measure and
analyze the effects of temperature and granularity on the data fragmentation.

3.1 Temperature Induced Fragmentation

In this subsection, we study the effect of temperature on the data fragmentation
during MD simulations on two systems: Silica material [1] and combustion of
aluminum nanoparticles [12]. The silica simulations involving 98,304 atoms and
8,000 linked-list cells (20 × 20 × 20 in x, y, and z directions, respectively) are
performed for 3,000 MD time steps using a time discretization unit of 2 fem-
toseconds. The simulations are performed on a dual quadcore Intel Xeon E5410
2.33 GHz (Harpertown) at the High Performance Computing and Communica-
tion (USC-HPCC) facility of the University of Southern California. Temperature
is a major physical factor that enhances the diffusion of atoms and hence the
disordering of data arrays. To examine the effect of atomic diffusions on the
data fragmentation ratio, we thus perform a set of simulations with three dif-
ferent initial temperatures, 300, 3,000, and 6,000 Kelvin (K), starting from the
same initial atomic configuration—an amorphous structure with a uniform den-
sity across the system. Each dataset represents a distinct phase of silica—solid

Memory-Access Optimization of Parallel Molecular Dynamics Simulation 785

(300 K), highly viscous liquid (3,000 K) [5], and low-viscosity liquid (6,000 K)
(note that the melting temperature of silica is 1,800 K). Here, data ordering is
performed only once at the beginning of the simulation, so that the atom data
are fully ordered (Fig. 1(d)) initially, and subsequently we measure the data
fragmentation ratio as a function of MD steps without further data reordering.

In order to study the influence of temperature on data fragmentation, Fig.
2(a) plots the data fragmentation ratio as a function of MD steps. Simulations at
higher temperatures exhibit larger fragmentation ratios. The fragmentation of
300 K dataset fluctuates in the first 500 steps, then rises to 0.15 after 1,000 steps,
and remains nearly constant throughout the simulation thereafter. At 3,000 K,
the fragmentation ratio quickly increases to 0.24 in the first 200 steps, and then
increases linearly with time (0.033 per 1,000 steps), reaching 0.36 after 3,000
MD steps. In contrast, the fragmentation ratio at 6,000 K rapidly rises to 0.73
in the first 500 steps, then continues to increase with a slightly slower rate until
the data gets almost fully disordered at 0.93 after 3,000 MD steps.

In order to understand the physical origin of the correlation between the
fragmentation ratio and temperature in Fig. 2(a), we measure the mean squared
displacement (MSD) of atoms in each dataset as a function of time. MSD is
used to identify the phase (e.g. solid vs. liquid) of the material and to calculate
the diffusion rate of atoms in the system, which may be used to quantify the
dynamics of atoms during the simulation. Figure 2(b) shows the MSD of 300 K,
3,000 K, and 6,000 K datasets over 6 picoseconds (3,000 MD steps). The result
shows that at 300 K, silica remains in solid phase (MSD remains constant). In
contrast, 3,000 K silica is melted and becomes a highly viscous liquid with a small
diffusion coefficient of 2.31×10−5 cm2/s (the diffusion coefficient is obtained from
the linear slope of the MSD curve). Similarly, MSD of 6,000 K dataset shows
that the system is completely melted with a much larger diffusion coefficient of
4.17×10−4 cm2/s. Because atoms are not diffusing in 300 K dataset, 83% of the
atoms (f = 0.17) remain in the same linked-list cell throughout the simulation.

Only atoms close to the cell boundaries move back and forth between the
original and the neighbor cells due to thermal vibration. However, atoms in
3,000 K dataset are melted, and their slow diffusion from their original cells
causes the gradually increasing fragmentation ratio. For 6,000 K system, atoms
diffuse approximately 18 times faster than 3,000 K system, resulting in the rapid
rise of fragmentation ratio. Only 3.2% of the atoms remain in the same cell after
3,000 steps. These results clearly show that diffusion is a major physical factor
that contributes to data fragmentation in MD simulations.

Although the silica experiment shows that the temperature significantly af-
fects data fragmentation, we also found that its effect on the fragmentation
ratio is sensitive to the material and phenomenon being simulated. To demon-
strate this point, the second experiment simulates flash heating of an aluminum
nanoparticle surrounded by oxygen environment using a reactive interatomic
potential [12], which involves 15,101,533 atoms on 1,024 processors of dual core
AMD Opteron 270 2.0 GHz (Italy) at the USC-HPCC facility. Similar to the
first simulation, the atom data arrays are ordered only once at the beginning

786 M. Kunaseth et al.

Fig. 2. (a) Time variation of data fragmentation ratio over 3,000 MD steps. Three
datasets of different initial temperatures (300 K, 3,000 K, and 6,000 K) are plotted.
(b) Mean squared displacement (MSD) of 300 K, 3,000 K, and 6,000 K datasets. The

MSD of 300 K dataset remains constant at 0.23 Å
−2

(too small to be seen in the
figure). The inset shows the diffusion coefficients at the three temperatures. (c) Data
fragmentation ratio during aluminum combustion simulation over 2,000 MD steps. The
dataset involves 15 million atoms on 1,024 processors.

of the simulation. Then, the fragmentation ratio of 3,000 K, 6,000 K and 9,000
K datasets are measured at each step. Figure 2(c) shows the data fragmenta-
tion ratio as a function of MD steps. We see that the fragmentation ratios of
all datasets rapidly rise to above 90% after 1,000 MD steps, and continue to
increase to over 98% after 2,000 MD steps. Since the aluminum nanoparticles
are at considerably high temperatures (far above the melting temperature of
aluminum ∼ 930 K) and are surrounded by oxygen atoms in the gas phase, the
atoms are highly reactive and move very rapidly. This accelerates the fragmenta-
tion to proceed very quickly regardless of the temperature. In such applications,
data reordering is indispensable and is required to be performed more often in
order to maintain good spatial locality. These results indicate that fragmenta-
tion is highly system dependent, so that data reordering needs to be performed
dynamically at runtime, adapting to the systems behaviors.

3.2 Granularity Induced Fragmentation

Parallel MD using spatial decomposition introduces computational artifacts such
as spatial subsystem (or domain) boundaries, which also contribute to the frag-
mentation of atom data arrays. In this subsection, we study the influence of
granularity (i.e. the number of atoms per compute node) on data fragmenta-
tion. Atoms near a domain-boundary surface tend to migrate among domains
regardless of physical simulation conditions. This inter-domain atomic migration
triggers rearrangements of data arrays, including the deletion of the migrated
atom data from the original array, compression of data array after the removal of
the migrated atoms, and their appending to the array in the destination domain.
These newly migrated atoms in the destination domain cause data fragmenta-
tion, since they do not reside continuously in memory.

Memory-Access Optimization of Parallel Molecular Dynamics Simulation 787

Fig. 3. (a) Time variation of the data fragmentation ratio of 12,288-atom silica at
3,000 K over 3,000 MD steps, for surface cells, core cells, and both combined. (b) Time
variation of the data fragmentation ratio of 3,000 K silica varying granularities over
3,000 MD steps. Inset table shows computational parameters of silica datasets.

To confirm the expected high fragmentation ratio at the domain boundaries as
explained above, the data fragmentation ratios of the surface cells (i.e. the outer-
most layer cells that share at least one facets with the inter-domain surfaces)
and core cells (i.e. non-surface cells deep inside each domain) are measured
separately. Here, we consider a 12,288-atom silica dataset initially at 3,000 K
temperature similar to the dataset used in the first experiment of section 3.1
but with a reduced domain size (their dimensions are reduced by half in all
three directions, so that the domain volume is one-eighth of that in section 3.1).
This dataset consists of 1,000 cells in total (10 × 10 × 10), of which 488 cells
(48.8%) are surface cells. Figure 3(a) clearly shows that the data fragmentation
ratio of the surface cells is larger than that of the core cells. In the first 100 MD
steps, the fragmentation ratios of the two groups are almost identical. Then, the
fragmentation ratio of the surface cells begins to increase at higher rate reaching
0.53 after 3,000 MD steps, whereas the fragmentation ratio of the core cells is
only 0.39. Thus, the atom data of the surface cells is 14% more fragmented
that that in the core cells, yielding a total fragmentation ratio of 0.42 for the
entire system. This result confirms that computational artifacts such as domain
boundary indeed induce additional fragmentation.

The domain-boundary induced fragmentation also implies that systems with
smaller granularities will have more fragmentation due to their larger surface-to-
volume ratios (i.e., larger portions of linked-list cells are domain-boundary cells).
To test this hypothesis, we perform MD simulations for 3,000 K silica system
with three different granularities—98,304, 12,288, and 1,536 atoms, over 3,000
MD steps. Figure 3(b) shows that datasets with smaller granularities indeed
have larger fragmentation ratios. After 3,000 MD steps, the data array of the
smallest granularity (1,536 atoms) dataset is 9.7% more fragmented than that in
the largest granularity (98,304 atoms) dataset. Also, the 12,288 atoms dataset
is 5.2% more fragmented compare to the largest dataset. The figure also shows
large fluctuation for the fragmentation ratio for N = 1, 536 dataset, due to less
statistics inherent for the small system size.

788 M. Kunaseth et al.

4 Performance Measurements

In this section, we first establish a correlation between the data fragmentation
ratio and the performance of the program. In a fragmented dataset, atom data
are likely to reside in different memory pages, which causes a large number of
DTLB misses, when they are fetched. The reordering algorithm explained in
section 3 clusters atom data that need to be fetched and computed in relatively
proximate times (e.g. atoms in the same cells) in the same page, thereby reducing
DTLB misses tremendously. However, as the simulation progresses, atoms that
are once ordered possibly move out of their original cells. It is thus expected that
the increase of DTLB misses caused by data fragmentation is a major source of
performance degradation in MD.

To confirm the correlation between the number of DTLB misses and the data
fragmentation ratio, we perform a test using the same datasets from the first
experiment of section 3.1. In addition to the fragmentation ratio measured in
section 3.1, we here measure the DTLB miss rate as a function of MD steps. We
use the Intel VTune Performance Analyzer to monitor DTLB miss events during
MD simulation on Intel Core i7 920 2.67 GHz (Nehalem) processor. We measure
the number of DTLB misses after data ordering is performed, then normalize
it by the original number of DTLB misses without data ordering. We find that
the initial DTLB miss rates at all temperatures are approximately 0.07 ($ 1)
right after the reordering is performed (namely, the reordering reduces DTLB
misses by 93%). The great improvement highlights a significant role of data
reordering in reducing DTLB misses for irregular memory-access applications.
We also monitor the number of DTLB misses as a function of MD time steps
and observe distinct profiles at different temperatures (Fig. 4(a)). The DTLB
misses ratio at 300 K and 3,000 K saturates at 0.08 and 0.13, respectively. In
contrast, the 6,000 K simulation exhibits a continuous increase of the number
of DTLB misses. The DTLB miss rate reaches 0.62 at 3,000 MD steps after the
initial data reordering.

Figure 4(b) shows the relation between the data fragmentation ratio and the
DTLB misses rate at the three temperatures. The DTLB misses rate remains
relatively small when the fragmentation ratio is small, while it rapidly increases
when the fragmentation ratio increases above 0.8. This result clearly demon-
strates a strong correlation between the DTLB miss rate and the data fragmen-
tation ration. Namely, in MD simulations where atoms are moving extensively,
the DTLB miss rate increases rapidly as its fragmentation ratio does.

To show that DTLB misses are the source of performance deterioration during
simulation, we measure the running time of the same datasets as in the DTLB
miss measurement. Figure 4(c) shows the running time of each MD step for
3,000 MD steps after ordering data at the first step. At 6,000 K, the running
time gradually increases over time, and after 3,000 MD steps, the average running
time per step increases by 8%. To study howmuch more performance degradation
occurs after the initial data ordering, we extend the execution of 6,000 K dataset
to 20,000 MD steps. The result shows an increase of the running time per step
by 21%. This result indicates that without data reordering, the performance

Memory-Access Optimization of Parallel Molecular Dynamics Simulation 789

Fig. 4. (a) Time variation of the DTLB miss rate in 300, 3,000 and 6,000 K dataset over
3,000 MD steps. (b) Relation between the DTLB miss rate and the data fragmentation
ratio in 300, 3,000 and 6,000 K datasets. (c) Running time per MD step as a function
of MD steps at temperatures 300, 3,000, and 6,000 K for 98,304 silica atoms.

continues to degrade, and the running time per step continues to increase. On
the other hand, the running time rapidly increases at the first 100 MD steps
but then remains almost constant at 300 K and 3,000 K. These performance
behaviors are akin to the fragmentation ratio and DTLB misses profiles in Figs.
2(a) and 4(a), respectively. These results thus confirm that data fragmentation
in memory is indeed the source of performance deterioration during runtime
through the increase of DTLB misses.

In Fig. 4(c), we also observe that 6,000 K simulation initially executes fastest
compare to the other simulations (3.1% faster than 300 K and 2.5% faster than
3,000 K), which cannot be explained by the difference in the DTLB miss rate.
One possible reason for this discrepancy is that higher temperature systems have
sparser atomic distributions (i.e. lower atomic number densities), such that there
are less number of atom interactions within the interaction range rc, and hence
less number of floating-point operations. To test this hypothesis, we measure the
atom-distance distribution for all datasets. The results show that the number of
atom pairs within distance rc of 6,000 K system is approximately 3.0% and 1.4%
less than those of 300 K and 3,000 K systems, respectively. As a result, 6,000
K simulation has the least computational load resulting in the fastest running
time at the beginning of the simulation, which however is rapidly offset by the
increase in DTLB misses.

In addition to the atom ordering discussed above, the cell ordering in the
memory space also affects the locality. To address this issue, we measure the
performance of three different cell ordering methods: 1) sequential ordering; 2)
Hilbert-curve ordering; and 3) Morton-curve ordering [6]. The performance mea-
surements are performed with 300 K temperature silica systems with grain size
ranging from 12,288 - 331,776 atoms with reordering period of 20 MD steps on
Intel Core i7 920 2.67 GHz (Nehalem) processor. The performance comparisons
of all ordering methods are shown in Table 1. The results do not exhibit signifi-
cant improvement due to different ordering methods. For example, the running
time of Hilbert curve ordering is at most 1.76% less than that of the sequential
ordering at largest granularity (331,776 atoms), while the running time of Mor-
ton curve ordering is less than 1% different for all granularities. One possible

790 M. Kunaseth et al.

Table 1. Runtime result with different ordering methods for silica systems at temper-
ature 300 K. Reordering costs shown are obtained from sequential ordering.

reason of the insensitivity of the performance on the cell-ordering method is the
small number of references across intra-node cell boundaries. For simplicity, we
employ the sequential ordering in the following.

5 Reordering Frequency Optimization

To minimize the performance degradation due to data fragmentation, we propose
to repeat data reordering periodically during MD simulation. Specifically, we
reorder atom arrays after every Nrp MD steps (i.e., the reordering period Nrp is
the number of MD steps between successive reordering operations). Though such
data reordering is beneficial and often improves overall application performance,
ordering arrays itself introduces an additional computational cost. Therefore, we
here develop a dynamic data-reordering schedule based on a performance model
and the runtime measurement in section 4. To do so, we first introduce a model
that accounts for the reordering overhead. Let tcost be the data reordering cost
(i.e. the time to reorder arrays), Ntotal is the total simulation steps, and t(n)
is the running time at step n after ordering. The total running time, τ , as a
function of reordering period, Nrp, is then written as

τ(Nrp) =

⌊
Ntotal
Nrp

⌋⎛⎝Nrp∑
n=1

t(n) + tcost

⎞⎠+

mod(Ntotal,Nrp)∑
n=1

t(n) (1)

The optimal reordering period is then determined as the one that minimizes the
total running time N∗

rp = argmin(τ(Nrp)). To find the ordering cost parameters
in Eq. (1), we measure the reordering cost with different grain sizes. The results
are summarized in Table 1.

Figure 5(a) shows the total running times for 3,000 MD steps as a function
of the reordering period estimated from Eq. (1) with the measured reordering
costs in Table 1. We obtain the optimal reordering period (which minimizes
the total running time) as 69, 5, and 3 steps for 300 K, 3,000 K and 6,000 K
datasets, respectively (see the arrows in Fig. 5(a)). With the optimally scheduled
reordering thus determined, the overall performance is estimated to be improved
by a factor of 1.35, 1.36 and 1.28 at 300 K, 3,000 K and 6,000 K, respectively.

Memory-Access Optimization of Parallel Molecular Dynamics Simulation 791

Fig. 5. (a) Total run time after 3,000 MD steps as a function of reordering period.
The optimal period at 300 K, 3,000 K and 6,000 K are 69, 5 and 3 steps, respectively.
(b) Comparison of total run time of silica MD over 3,000 steps achieved by model
prediction and actual measurement of periodic reordering compared with that of the
original code without ordering. (c) Total run time over 1,000 steps of parallel runs.

To verify this model prediction, we measure the running time of MD simu-
lations that implement data reordering with the optimal reordering schedule.
Here, MD simulations of silica containing 98,304 atoms at temperatures 300 K,
3,000 K, and 6,000 K are executed using periodic reordering at every 69, 5, and
3 steps, respectively. The results show that the measured speedups in actual
executions are 1.27, 1.25, and 1.17, respectively, with 6.4%, 7.6%, and 10.0%
error from the estimated values. The running time of the system without order-
ing, the optimized running time estimated from the model, and the measured
running time with optimally scheduled reordering are compared in Fig. 5(b). To
confirm that this performance benefit carries over to parallel runs, we performed
a performance benchmark of silica MD with the same initial temperatures. The
benchmark is executed on 192 cores of dual hexcore Intel Xeon X5650 2.66 GHz
(Westmere) using 192,000 atoms per core (36 million atoms total). Figure 5(c)
shows that speedups of 1.12, 1.11, and 1.12 are obtained from 300 K, 3,000 K,
and 6,000 K runs, respectively. These figures shows a substantial effect of run-
time data reordering on the performance of MD simulations. It should be noted
that the state-of-the-art MD simulations are run up to 1012 time steps [2], for
which the 103-step pre-profiling run for constructing the performance model, Eq.
(1), can be amortized by updating the model every 106 steps.

6 Conclusions

We have developed an optimal data-reordering schedule for molecular dy-
namics simulations on parallel computers. Our analysis has identified physi-
cal/computational conditions such as a high temperature and a small granu-
larity, which considerably accelerate data fragmentation in the memory space,
thereby causing continuous performance degradation throughout the simulations

792 M. Kunaseth et al.

at runtime. Our profiling results have revealed that the degree of data frag-
mentation correlates with the number of DTLB misses and have identified the
former as a major cause of performance decrease. Based on the data fragmen-
tation analysis and a simple performance model, we have developed an optimal
data-reordering schedule, thereby archiving a speedup of 1.36 for 3,000 K sil-
ica simulation. This paper has thus proposed a practical solution to a dynamic
data-fragmentation problem that plagues many scientific and engineering ap-
plications. Future research could be focused on other physical properties such
as pressure, local density, and non-uniform mechanical loadings (such as shear
deformation). Also, performance degradation in the light of other performance
metrics such as cache misses could be explored. This work was partially sup-
ported by DOE-BES/SciDAC and NSF-CDI/PetaApps.

References

1. Chen, Y.C., Nomura, K., Kalia, R.K., Nakano, A., Vashishta, P.: Void deformation
and breakup in shearing silica glass. Phys. Rev. Lett. 103(3) (2009)

2. Dror, R.O., Jensen, M., Borhani, D.W., Shaw, D.E.: Molecular dynamics and com-
putational methods exploring atomic resolution physiology on a femtosecond to
millisecond timescale using molecular dynamics simulations. J. Gen. Physiol. 135,
555–562 (2010)

3. Han, H., Tseng, C.W.: Exploiting locality for irregular scientific codes. IEEE Trans.
Par. Dist. Sys. 17(7), 606–618 (2006)

4. Hu, Y.C., Cox, A., Zwaenepoel, W.: Improving fine-grained irregular shared-
memory benchmarks by data reordering. In: Supercomputing (2000)

5. Kushima, A., Lin, X., Li, J., Eapen, J., Mauro, J.C., Qian, X.F., Diep, P., Yip, S.:
Computing the viscosity of supercooled liquids. J. Chem. Phys. 130(22), 224504
(2009)

6. Mellor-Crummey, J., Whalley, D., Kennedy, K.: Improving memory hierarchy per-
formance for irregular applications using data and computation reorderings. Int’l
J. Par. Prog. 29(3), 217–247 (2001)

7. Nomura, K., Dursun, H., Seymour, R., Wang, W., Kalia, R.K., Nakano, A.,
Vashishta, P., Shimojo, F., Yang, L.H.: A metascalable computing framework for
large spatiotemporal-scale atomistic simulations. In: IPDPS (2009)

8. Peng, L., Kunaseth, M., Dursun, H., Nomura, K., Wang, W., Kalia, R.K., Nakano,
A., Vashishta, P.: A scalable hierarchical parallelization framework for molecular
dynamics simulation on multicore clusters. In: PDPTA (2009)

9. Phillips, J.C., Zheng, G., Kumar, S., Kale’, L.V.: NAMD: Biomolecular simulations
on thousands of processors. In: Supercomputing (2002)

10. Shaw, D.E.: A fast, scalable method for the parallel evaluation of distance-limited
pairwise particle interactions. J. Comp. Chem. 26(13), 1318–1328 (2005)

11. Singh, J.P., Hennessy, J.L., Gupta, A.: Implications of hierarchical N-body methods
for multiprocessor architectures. ACM Trans. Comput. Sys. 13(2), 141–202 (1995)

12. Wang, W.Q., Clark, R., Nakano, A., Kalia, R.K., Vashishta, P.: Fast reaction mech-
anism of a core-shell nanoparticle in oxygen. Appl. Phys. Lett. 95(26) (2009)

13. Yao, Z.H., Wang, H.S., Liu, G.R., Cheng, M.: Improved neighbor list algorithm in
molecular simulations using cell decomposition and data sorting method. Comput.
Phys. Commun. 161(1-2), 27–35 (2004)

On Analyzing Quality of Data Influences

on Performance of Finite Elements Driven
Computational Simulations

Michael Reiter1, Hong-Linh Truong2, Schahram Dustdar2,
Dimka Karastoyanova1, Robert Krause3, Frank Leymann1, and Dieter Pahr4

1 Institute of Architecture of Application Systems, Universität Stuttgart
{reiter,karastoyanova,leymann}@iaas.uni-stuttgart.de

2 Distributed Systems Group, Vienna University of Technology
{truong,dustdar}@infosys.tuwien.ac

3 Institute of Applied Mechanics (CE), Universität Stuttgart
krause@mechbau.uni-stuttgart.de

4 Institute of Lightweight Design and Structural Biomechanics
Vienna University of Technology

pahr@ilsb.tuwien.ac.at

Abstract. For multi-scale simulations, the quality of the input data
as well as the quality of algorithms and computing environments will
strongly impact the intermediate results, the final outcome, and the per-
formance of the simulation. To date, little attention has been paid on
understanding the impact of quality of data (QoD) on such multi-scale
simulations. In this paper, we present a critical analysis of how QoD in-
fluences the results and performance of basic simulation building blocks
for multi-scale simulations. We analyze the impact of QoD for Finite
Element Method (FEM) based simulation building blocks, and study
the dependencies between the QoD of input data and results as well
as the performance of the simulation. We devise and implement novel
QoD metrics for data intensive, FEM-based simulations and show exper-
iments with real-world applications by demonstrating how QoD metrics
can be efficiently used to control and tune the execution of FEM-based
simulation at runtime.

1 Introduction

For complex multi-scale simulations, e.g. to investigate structural changes within
a human bone after a fracture of the arm, a common approach to perform sci-
entific simulations is to transform the partial differential equations (PDEs) by
means of the FEM to a system of linear or nonlinear matrix equations that
must be solved. In such multi-scale simulations, FEM algorithms can be used at
different scales, such as the skeleton, the bone structure and the bone cell sim-
ulations. Therefore, FEM algorithms play an important role in computational
science. Because of their importance, understanding quality of these algorithms
have attracted several research projects. However, most of them focus on subar-
eas, for instance, optimizing matrix solver [1] or other performance aspects [2].

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 793–804, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

794 M. Reiter et al.

FEM algorithms, in general, consume or produce input data (e.g. to describe the
simulation object), intermediate results (e.g. results for intermediate time steps),
the final result, other output data (e.g. status data), and internal used data (e.g.
FEM grid or matrix). These types of data have large volume and some of them
have complex data structures.

We argue that the quality of the input data, together with, the quality of
algorithms and computing environments will strongly impact the intermediate
results, the final simulation output, as well as the performance and storage provi-
sioning of the simulation. This is particular applicable to multi-scale simulations
in which the output data in one scale will be used as input data on the other
scale. Not to mention that even in a single scale simulation, there are various
steps, in which different types of data are processed and produced. Quality of
data (QoD) can strongly affect the selection and operation of algorithms as well
as computing and storage resources in these steps and in the data exchange
among these steps and among scale-specific simulations. While several research
papers have discussed possible computing environments and algorithms in detail
for FEM, little attention has been paid on understanding the impact of QoD on
the performance and resource/storage provisioning in phases of FEM-based sim-
ulations. Because FEM-based simulations in computational science are typical
long running and produce large amount of data, and are expensive in terms of
time and money [3,4]. Detecting poor data quality and able to understanding
the impact of QoD in FEM-based simulations could potentially save time and
money. In particular, being able to understand QoD influences on performance
and resource provisioning for FEM-based simulations can also help to develop
better strategies for pay-per-use resources in cloud computing environments.

In this paper, we focus on understanding major QoD metrics for FEM-based
simulations and on analyzing the dependencies among QoDmetrics to the quality
of according intermediate results, performance, storage needs, and the QoD of
the simulation as a whole. Fundamentally, we focus our work on general FEM-
based simulation steps that can be considered as a basic building block for multi-
scale simulations. We have developed several QoD metrics and analyzed trade
offs between different QoD findings and simulation execution time. We present
our experiments with a real world simulation. To the best of our knowledge, this
is the first attempt to analyze the impact of FEM QoD metrics on simulations.

The rest of this paper is organized as follows: Section 2 discuss the background
of our work. Section 3 presents and defines QoD metrics. Section 4 presents our
prototype and experiments. Section 5 presents related work, followed by the
conclusions and future work follows in Section 6.

2 Quality of Data Implications in FEM Based Simulations

2.1 Identifying Important Types of Data in FEM-Based Simulations

Different tools and frameworks exist to execute FEM based simulations. Some of
them, e.g. Ansys1, use pre-implemented functions and have a strong FEM focus

1 http://www.ansys.com/

On Analyzing Quality of Data Influences 795

Time Loop (8) for i = 1 to n

Create FEM
Parameters (3)

geometry
data

FEM impl. +
FEM grid type

boundary
condition

solver type +
error tolerance

Adjust Boundary
Conditions (4)

Ad

Visualization
(9)

Chose Matrix
Solver (6)

Define Geometry
Data (1)

D

Preprocessing Phase

Solving Phase

Postprocessing Phase

Define Material
Parameter (2)

D

material
parameters

initial
condition

Adjust Initial
Conditions (5)

Solve Matrix
Equation (7)

matrix
equation

(intermediate)
results

FEM
grid

initial
FEM grid

Legend:

Control flow

Data dependencies

postprocessing
output

Fig. 1. Steps in a basic FEM-based simulation building block and important types of
data and important data dependencies

while others could be part of a global technical computing environment, such
as MatLab2. Physics specific FEM frameworks, like PANDAS3, permit to create
simulations in a very flexible way.

A FEM-based multi-scale simulation can have millions of basic simulation
building blocks, e.g. a human skeleton has approximately 206 bones, each bone
has thousands to millions of cells, where each cell can be simulated by a FEM-
based simulation building block. Nevertheless a FEM-based simulation building
block has a common procedure that can be divided into three phases: (i) pre-
processing, (ii) solving, and (iii) postprocessing. The three phases can be divided
again into different steps. Figure 1 illustrates the main steps for transient prob-
lems, in which the preprocessing phase includes steps 1 to 6, steps 7 and 8
belongs to the solving phase, and step 9 is in the postprocessing phase. In the
preprocessing phase all relevant input data are collected, based on that an ini-
tial FEM grid and matrix equation can be generated. Matrix equations will be
adapted and solved in the solving phase. The results are processed (e.g. visual-
ized) in the postprocessing phase. In this paper, we focus on QoD metrics for
the FEM-based simulation building block, in particular for the preprocessing
and the solving phases.

From our study, we determine five relevant classes of data in the preprocessing
and solving phases: (i) PDE driven input data (input data), (ii) FEM driven

2 http://www.mathworks.com/products/matlab/
3 http://www.mechbau.uni-stuttgart.de/pandas/index.php

796 M. Reiter et al.

input data (input data), (iii) internal/temporary FEM data (output/input data),
(iv) intermediate results (output data), and (v) final result (output data). PDE
and FEM driven input data are generated during the preprocessing phase. Most
of the internal and temporary FEM data as well as intermediate and final results
are computed at the solving phase. Generally, the QoD in these classes is critical
for the quality of the simulation result, the performance, and the amount of data.
Several types of data that can influence the QoD of FEM based simulations,
such as the geometry, material parameter, FEM interpolation, FEM grid type,
boundary condition, initial condition, matrix solver type, matrix error tolerance,
matrix equation, FEM grid, and time step4.

2.2 Defining and Evaluating Quality of Data Metrics

In general, there can be several QoD metrics. However, [6] pointed out that the
term QoD is used in different domains with several meanings and must be re-
garded specific to the application domain. QoD can be measured with the aid
of metrics [6]. A metric must be provided by one or more well defined measure-
ment method. Furthermore, several meta information are necessary: (i) where
the measurement is taken, (ii) what data are included, (iii) the measurement
device, and (iv) the scale on which results are reported. To evaluate QoD, we
distinguish between QoD verification and validation with respect to the FEM
phases. Related to the IEEE-STD-610 definition of validation and verification in
software products [7] QoD verification and validation is defined as follow:

Definition 1 (Quality Of Data Verification). The process of evaluating
quality of data during or at the end of the preprocessing phase to determine
whether it satisfies specified quality of data demands.

Definition 2 (Quality Of Data Validation). The process of evaluating qual-
ity of data during or at the end of the solving phase to determine whether it
satisfies specified quality of data demands.

The QoD Verification definitions means that verification makes sure that the
simulation (i) fulfills the specification of the simulation object, (ii) is derived
from the specification of the simulation object that the simulation fulfills the
specification of the PDE, and (iii) is derived from the specification of the PDE
that the simulation fulfills the specification of the FEM; or for short: computes
the problem right. The QoD Validation definitions means that validation make
sure that the simulation actually fulfills the simulation intention; or for short:
computes the right problem.

2.3 Identifying Factors Influencing Quality of Data

Each step has different influences to simulation characteristics like QoD, data
quantity, or performance. In Figure 1, in step 1, the dimension (e.g. 3 D) or

4 Due to the lack of space, we provide a supplement report to document important
types of data and their possible influences as well as possible FEM-based specific
QoD metrics in [5].

On Analyzing Quality of Data Influences 797

complexity (e.g. smoothness) of the simulation object – described by geometry
data – has strong influences to the size of the result data and to the performance.
The material parameters in step 2 approximate the material behavior within
the PDE based on a given physics. Changes to material parameter influences
the behavior of the PDE. In step 3, data that describe the FEM grid type, the
FEM implementation, and an initial FEM grid are involved. Hence, interpolation
functions (e.g. power series) affect the performance and the result quality. The
size, complexity, and type of the FEM grid strongly influence the performance,
the data quantity, and the QoD. Boundary condition and initial condition in step
4 and 5 could be defined with several accuracies and numerical characteristics
which affect the QoD and the performance. A matrix solver type and, in some
cases, an error tolerance must be chosen in step 6. Each solver has different
characteristics in relation to error behavior, QoD, and performance.

Based on a FEM grid a matrix equation (step 7) could be solved with different
precisions which influence the performance and the result quality. Additional
internal or temporary data, such as the Jacobian determinant, influence the
quality of the (intermediate) result. In step 8 the increment of time step δti
influences the accuracy, the performance, and the data quantity.

Furthermore, there are relevant constrains between the steps regarding to
QoD. Figure 1 depict essential data dependencies that need to be observed.
Considering the important role of quality of data, we present novel QoD metrics
for FEM based simulations and discuss the influences.

3 QoD Metrics for FEM-Based Simulations

QoD metrics are determined based on our evaluation important types of data
that influence FEM based simulations detailed in [5]. We distinguish between
basic and constrained input data as characteristics of types of data. As shown in
Figure 1, basic input data have no strong dependencies to other input data and
are typically data to describe the PDE. Constrained input data are essentially
dependent on basic input data and can have relations to other constrained input
(or combined output/input) data.

We consider QoD as a tuple of characteristics and goodness [8]. A characteris-
tics of data will be analyzed without any simulation context, while the goodness
of the characteristics of data will be evaluated with respect to the specific sim-
ulation context. To simplify the wording, we use the term QoD metric result in
the following as a synonym for the goodness value of the QoD tuple. Regarding
to [6], a QoD metric result will have a value calculated by a well-defined quality
objective. In this paper, we use for the quality objective an interval from 0 to 1.
Hence, we defined the QoD metric result for FEM-based simulations as follows:

Definition 3 (Quality of Data / Goodness). The Quality of Simulation
Data / Goodness (or QoD metric result) is an objective represented by a value
Q ∈ [0, 1] that determines the quality of input and output data of a FEM based
simulation with both limits 0 = bad and 1 = good. Q ∈ (0, 1) determines a quality
between bad and good.

798 M. Reiter et al.

Table 1. Selected Quality of Data metrics for FEM-based simulations

QoD Metrics Description

Geometry Accuracy Metric related to Figure 1 step 1 to verify geometry data of
the PDE

Material Parameter Ac-
curacy

Metric related to Figure 1 step 2 to verify material parame-
ters of the PDE

Interpolation Accuracy Metric related to Figure 1 step 3 to verify interpolation func-
tions of FEM implementation data

FEM Grid Type Ade-
quacy

Metric related to Figure 1 step 3 to verify the FEM grid type

FEM Grid Accuracy Metric related to Figure 1 step 3 to verify the fineness of the
(initial) FEM grid

Boundary Condition
Accuracy

Metric related to Figure 1 step 4 to verify the accuracy of
the boundary condition of the PDE

Initial Condition Accu-
racy

Metric related to Figure 1 step 5 to verify the accuracy of
the initial condition of the PDE

Matrix Solver Accuracy Metric related to Figure 1 step 6 to verify the accurate selec-
tion of a matrix solver type for the FEM

Matrix Solver Error Metric related to Figure 1 step 6 to verify the maximal error
tolerance for a matrix solver type for the FEM

FEM Element Condi-
tion

Metric related to Figure 1 step 7 to validate the condition of
an element within a FEM grid

Matrix Equation Con-
dition

Metric related to Figure 1 step 7 to validate the numerical
condition of a matrix within a matrix equation

Vector Condition Metric related to Figure 1 step 7 to validate the numerical
condition of a vector within a matrix equation

Time Discretization
Accuracy

Metric related to Figure 1 step 8 to validate the accuracy of
a time step

Based on this definition a value QQoDmetric determines the QoD metric result
with respect to the specific QoDmetric. Corresponding to the influencing factors,
Table 1 presents a list of QoD metrics we have developed and their associated
data as well as data types described in Section 2 (see our supplement report [5]
for detailed explanation).

We introduce in detail three implementations of QoD metrics: Material Param-
eter Accuracy (QMPA), Matrix Solver Accuracy (QMSA), and Vector Condition
(QV C). QMPA (Figure 1 step 2) and QMSA (step 6) verify the quality in the
preprocessing phase. QMPA is based on the quality of PDE driven basic input
data and will be used if the implemented parameter approximates a known pa-
rameter. QMSA is premised on the quality of FEM driven constrained input data
and makes a statement about the expected accuracy of the numerical solution
before the solving phase starts. With this knowledge a time and money con-
suming simulation can be adopted or aborted if a poor QoD is expected. QV C

(step 7) of both vectors b and x concerns the solving phase and determines the
quality of constrained internal/temporary FEM data within a matrix equation
Ax = b. In contrast to QMSA, QV C validates and makes a statement about the

On Analyzing Quality of Data Influences 799

real condition of the numerical solution at the solving phase. Nevertheless, even
as the solving phase a simulation can be adopted or aborted to save time and
money.

3.1 Material Parameter Accuracy

Most simulations run with estimated material parameters or average values. The
QoD metric QMPA helps to verify implications of inaccurate material parame-
ters. The correctness of the material parameter to describe the phenomenological
behavior of the material based on a given physics depends on the accurate de-
scription of all relevant parameter. We define the error rate of all implemented
material parameter: Given a region bm that describes the model of the simu-
lation object and an interval [t0, tn] that describes the simulation time period.
Given a function rMP (x, t) that describe the phenomenological behavior of the
real material and a function mMP (x, t) that describe the phenomenological be-
havior of the material in the implemented FEM model. The characteristic of
material parameter accuracy QMPA without respect to the specific simulation

context is defined by min(
∣∣∣mMP (x,t)
rMP (x,t)

∣∣∣ , ∣∣∣ rMP (x,t)
mMP (x,t)

∣∣∣) for all x ∈ bm and t ∈ [t0, tn].

Based on this definition the error rate of a specific material parameter j can be
defined in the same manner.

3.2 Matrix Solver Accuracy

A matrix solver implements numerical methods to solve matrix equations and
approximates (in most cases) the exact solution of the matrix equation. QMSA

helps to verify implications of numerical problems. xe is the exact solution of a
test matrix equation Ax = b and xm is the numerical solution by using matrix
solver m. We define the characteristics of the matrix solver accuracy QMSA by
‖xe − xm‖ with ‖‖ is a appropriate norm. If it is not possible to determine the
exact solution xe objectively a domain expert can determine the characteristics
of QMSA subjectively.

3.3 Vector Condition

To solve a matrix equation Ax = b with numerical methods, the condition of
the vector b (and of A) influences the solving performance and the quality of
the solution x. QV C helps to validate implications of numerical problems. If the
difference regarding the least absolute value and the maximum absolute value of
b is ”too big” numerical errors can be estimated. bl is the least absolute value
with bl �= 0 and bm the maximum absolute value of b. The characteristics of the
vector condition without respect to the specific simulation context is defined by
QV C = bl

bm
. We define the vector condition for the vector x in the same way. For

this, we replace vector b and the values bl and bm by vector x and the values xl

and xm.

800 M. Reiter et al.

4 Evaluating the Influence of Quality of Data Metrics

4.1 QoD Evaluation Framework

In order to measure, monitor, and evaluate QoD metrics for FEM-based sim-
ulations, we utilize our extensible QoD Evaluation Framework for workflows
developed in [8]. Generally, with this framework, we can determine QoD in a
very flexible way: (i) platform and language independent metrics and interpreta-
tions can be invoked, (ii) separate metrics as well as metrics that are included
in comprehensive algorithms (e.g. a solver that include algorithms to determine
the Jacobian determinant) can be used, and (iii) objective (automatically deter-
mined by a computer) and subjective (manual determined by a human) QoD
determination is supported. During runtime, relevant data is needed for the de-
termination of QoD is passed to the QoD Evaluation Framework by values or
by references. This approach enables us to shift data to QoD metrics and in-
terpretations or shift QoD metrics and interpretations to data to improve the
performance.

Conceptually, Figure 2 describes how we utilize the QoD Evaluation Frame-
work for understanding the dependencies among QoD for inputs, intermediate re-
sults, and final outcomes, as well as the influences of QoD on the performance
and resource provisioning of the simulation. All necessary information about avail-
able QoD metrics and interpretations are stored into Metric Definition. Imple-
mentations of QoD metrics and interpretations can be found in Software-based

Evaluator for automatic QoD determination and in Human-based Evaluator for
manual QoD determination. Both kinds of evaluators and the data provisioning
are managed by Manager. Furthermore, the Manager has all meta information
described in Section 2.2. For QoD determination the Manager searches Metric
Definition for an appropriatedQoDmetric and a correspondingQoD Evaluator

and passes information about data (in XML messages) to the Evaluator. The
Evaluatoranalyzes the specified data about their characteristics and returnsXML-
based Metric Result – including values of QoD metrics – to the Manager. The
metric results will be analyzed and displayed together with, e.g., performance, fail-
ures, or storage informations.

4.2 Experiments

To analyze the influence of QoD metrics and goodness we used simulations de-
veloped atop the PANDAS framework. PANDAS was designed for simulations
of multiphasic materials [9]. We used it for two reasons: It represents a typical
FEM based simulation framework that can be used within a workflow environ-
ment (e.g. to perform multi scale simulations) and FEM-based basic simulation
building blocks can be structured into the steps shown in Figure 1 [10].

We implement two simple but well proved simulations [11] simulating the same
problem but having fundamental different characteristics in terms of the elastic-
ity of the boundary: “fluid-saturated elastic column in an impermeable rigid tub”
(EC) and “rigid slab on a fluid-saturated elastic half space” (RS). Furthermore,
two solvers (GMRES and BiCG) with different numerical behaviors are utilized.

On Analyzing Quality of Data Influences 801

QoD Evaluation
Manager

Software based
Evaluator

Human based
Evaluator

QoD Postprocessing
e.g. Visualisation

Metric
Definition

intermediate Result
(time ti)

geometry data

material parameter

...

...

Metric
Result

Fig. 2. Components and steps in evaluating QoD using the QoD Evaluation framework

To analyze the impact of QoD the presented QoD metrics Material Parame-
ter Accuracy (QMPA), Matrix Solver Accuracy (QMSA), and Vector Condition
(QV C) as well as performance measurement metrics (time in hour) are used. The
goodness of QoD metrics with respect to the simulation context is defined based
on domain expert’s knowledge (due to the lack of space, the exact setting of the
experiments can be found in [5]). We execute the experiments on a four CPU
machine because it is sufficient to calculate our QoD metrics for FEM-based ba-
sic simulation building blocks, in particular for the preprocessing and the solving
phase shown in Figure 1, of multi-scale simulations. Furthermore, it clarifies the
analysis of the influence of QoD metrics and performance. Nevertheless, in prac-
tice we could use our approach to control multi-scale simulations with the aid of
QoD findings within a multiple of computational resources when a large of basic
simulation building blocks are employed.

To demonstrate the applicability and strength of our novel approach we have
performed different correlations. We present three examples in detail: (i) the
correlation between the goodness of QMPA and QV C , (ii) the correlation be-
tween the goodness of QMPA and the fault behavior, and (iii) the correlation
between the goodness of QMSA and the performance. Several other correlations
can be implemented. Examples are the correlation between the goodness of a
QoD metric and storage provisioning or the correlation between the goodness of
QoD metrics determined in different scales with a multi-scale simulation. Due
the lack of space we present only selected findings in the following.

QoD-QoD Correlation: The QoD-QoD correlation (Figure 3 left) describes the
relation between the goodness of QMPA (material parameter accuracy) and QV C

(vector condition). Although the EC and the RS simulations are similar only with
the exception of the flexibility of the boundary, the results of the QV C differ
considerably. The RS simulation is less sensitive to material parameter changes
than the EC simulation. As shown in Figure 1 the QV C of matrix data outputted
in step 7 (vector x) depends on QMPA in step 2. In the RS simulation a poor
QoD within material parameter data do not influence the limited or good QoD
of the vector condition. In contrast, at the EC simulation the QV C is overall poor
and tends to have critical values when QMPA ≤ 0.7. Based on this QoD-QoD
correlation findings we concluded that: (i) the RS simulation has an uncritical
numerical behavior at the vector x with respect to a not well accurate material
parameters, (ii) the EC simulation has overall a poorer numerical behavior in

802 M. Reiter et al.

0

0,2

0,4

0,6

0,8

1

0,5 0,6 0,7 0,8 0,9 1

MPA – VC x Correlation

Material Parameter Accuracy (MPA)

good

go
od

Ve
ct

or
 C

on
di

tio
n

(V
C)

 o
f x

ba
d poor

M
at

rix
 S

ol
ve

r A
cc

ur
ac

y
(M

SA
)

Performance (time in hours)

MSA – Performance Correlation

RS

EC

ba
d

go
od

0

0,2

0,4

0,6

0,8

1

0 5 10 15

BiCG

GMRES

Fig. 3. Results of EC and RS simulations relating to parameter accuracy (MPA) and
vector condition (VC) (left) and results of EC simulations relating to matrix solver
accuracy (MSA) and performance (right)

solving the vector x, (iii) the EC simulation shows an critical numerical behavior
at the vector x with respect to a not well accurate material parameters. As a
consequence of the findings, our tool indicates that EC simulation should use
correct material parameters as well as suitable matrix solvers that can handle a
poor vector condition.

QoD-Fault Correlation: The QoD-Fault correlation describes the relation be-
tween the goodness of QMPA and the fault behavior (termination of the sim-
ulation framework) by executing the EC simulation. When QMPA ≤ 0.3 the
simulation framework PANDAS frequently terminates the calculation during the
solving phase with error messages (no convergence). Overall we observed that in
one of five simulations PANDAS terminated at the initial time step δt0, in three
of five simulations PANDAS terminated before the time step δt5000, and in one
of five simulations ended without error. Based on this knowledge a simulation
should be adapted at the preprocessing phase with material parameters that
have a sufficient QoD value in order to avoid simulation failures.

QoD-Performance Correlation: The QoD-Performance correlation describes
the relation between QMSA and runtime of the EC simulation in hours. Figure
3 (right) shows that the used solvers have a different behavior: for 5000 time
steps, the BiCG matrix solver took a half of the execution time (7 hours and 10
minutes) that the GMRES solver (14 hours and 21 minutes) required. However,
for longer running simulations the GMRES solver provides results with a good
QoD (0.95) but the BiCG solver calculates results that differs slightly from a
proven result and the achieved QoD is limited to 0.8. Hence, our QoD framework
indicates that (i) the GMRES solver provides reliable results, (ii) for simulations
that run with a relative small number of time steps, the BiCG solver produces
good quality of results in a fast way. By using our framework, scientists can find
out the maximum number of time steps on which the QMSA is useful for their
specific simulations.

On Analyzing Quality of Data Influences 803

5 Related Work

This section presents related work in the fields of QoD influences for compu-
tational simulations. Batini et al. present general concepts, methodologies, and
techniques as well as a process to determine QoD [6]. We adopt it for the field of
FEM based computational simulations. Hey et al. pointed out the principle need
to observe QoD in scientific applications [3]. Heber and Gray concertize this need
for FEM driven computational simulations [4] and have implemented a runtime
environment for FEM based simulation [4,12]. But those implementations do not
support any QoD evaluation.

The principles of the FEM are characterized by [13]. Those principles includes
simulation dependent QoD aspects, e.g., basic approaches for error minimizing
in the overall FEM and for several FEM steps. But the authors do not focus on
simulation independent QoD metrics. Several approaches were already created
for error minimizing in FEM. Lots of papers discuss special aspects in one step in
detail. An example is description of the implementation of the concept of geomet-
ric multigrid algorithms and hierarchical local grid refinement [1]. Those kinds of
paper depict in each case not the whole simulation (preprocessing, solving, and
postprocessing phase). Nevertheless, we can use those approaches within specific
QoD metrics.

Beyond that, performance analysis of FEM based simulation is well studied
as well as optimization, e.g., in [2,14]. Our work is different as we focus primly
on understanding QoD and only effected by this on research questions like per-
formance or data quantity. In existing FEM tools or frameworks, such as Ansys,
MatLab, or PANDAS QoD checking has not been provided. To our best knowl-
edge, there is no work to define QoD metrics for FEM driven computational
simulations in general and to study how QoD metrics impact on simulations.

6 Conclusions and Future Work

This paper analyzes common steps in FEM based computational simulations and
proposes novel QoD metrics for the evaluation of the QoD and performance of
FEM-based simulations. We have investigated how such metrics could provide
benefit for understanding the inter-dependencies among QoD of inputs, interme-
diate data, and outputs as well as the performance needs of entire simulations.
By monitoring and analyzing QoD influences with two real world simulation ex-
amples, we have shows that different types of QoD analyses could be very useful
for understanding and steering FEM-based simulations.

We concentrate on basic simulation building blocks that can be used for
general FEM-based multi-scale simulations. Therefore, new metrics and anal-
ysis methods must be investigated for data exchanged among different building
blocks within and across specific simulation scales as well as for specific FEM
approaches. In our future work, we focus on steering multi scale simulations and
adapting resource provisioning based on QoD influences.

804 M. Reiter et al.

Acknowledgments. The work presented in this paper has partly
been funded by the DFG Cluster of Excellence Simulation Technology
(http://www.simtech.uni-stuttgart.de) (EXC310).

References

1. Bastian, P., Blatt, M., Dedner, A., Engwer, C., Kloefkorn, R., Ohlberger, M.,
Sander, O.: A generic grid interface for parallel and adaptive scientific comput-
ing. part i: abstract framework. Computing (2) (2008)

2. Chen, P., Zheng, D., Sun, S., Yuan, M.: High performance sparse static solver in
finite element analyses with loop-unrolling. Adv. Eng. Softw. (4) (2003)

3. Hey, A., Tansley, S., Tolle, K.M.: The fourth paradigm: data-intensive scientific
discovery. Redmond, Wash.: Microsoft Research (2009)

4. Heber, G., Gray, J.: Supporting finite element analysis with a relational database
backend, part i: There is life beyond files. CoRR (2007)

5. Reiter, M., Truong, H.L.: Supplement report for quality of data implications. Tech-
nical report (2012), http://www.iaas.uni-stuttgart.de/institut/
mitarbeiter/reiter/Report/FemQoD.pdf

6. Batini, C., Scannapieco, M.: Data Quality: Concepts, Methodologies and Tech-
niques. Data-Centric Systems and Applications. Springer (2006)

7. IEEE: IEEE standard computer dictionary: A compilation of IEEE standard com-
puter glossaries, IEEE std 610-1990 (1990)

8. Reiter, M., Breitenbuecher, U., Dustdar, S., Karastoyanova, D., Leymann, F.,
Truong, H.L.: A novel framework for monitoring and analyzing quality of data
in simulation workflows. In: 7th IEEE e-Science International Conference (2011)

9. Ehlers, W.: Foundation of multiphasic and porous material. In: Ehlers, W., Bluhm,
J. (eds.) Foundation of Multiphasic and Porous Material. Springer (2002)

10. Reimann, P., Reiter, M., Schwarz, H., Karastoyanova, D., Leymann, F.: Simpl
– a framework for accessing external data in simulation workflows. In: 14. GI-
Fachtagung Datenbanksysteme für Business, Technologie und Web (2011)

11. Ehlers, W., Eipper, G.: Finite elastic deformations in liquid-saturated and empty
porous solids. Transport in Porous Media (1999)

12. Heber, G., Gray, J.: Supporting finite element analysis with a relational database
backend, part ii: Database design and access. CoRR (2007)

13. Zienkiewicz, O., Taylor, R., Zhu, J.: The Finite Element Method - Its Basis &
Fundamentals, 6th edn. Elsevier Ltd., Butterworth-Heinemann (2005)

14. Shadid, J., Hutchinson, S., Hennigan, G., Moffat, H., Devine, K., Salinger, A.G.:
Efficient parallel computation of unstructured finite element reacting flow solu-
tions. Parallel Computing (9) (1997), Parallel computing methods in applied fluid
mechanics

http://www.iaas.uni-stuttgart.de/institut/mitarbeiter/reiter/Report/FemQoD.pdf
http://www.iaas.uni-stuttgart.de/institut/mitarbeiter/reiter/Report/FemQoD.pdf

Performance Evaluation and Optimization
of Nested High Resolution Weather Simulations

Preeti Malakar1, Vaibhav Saxena2, Thomas George2, Rashmi Mittal2,
Sameer Kumar3, Abdul Ghani Naim4, and Saiful Azmi bin Hj Husain4

1 Indian Institute of Science
preeti@csa.iisc.ernet.in

2 IBM Research - India
{vaibhavsaxena,thomasgeorge,rasmitta}@in.ibm.com

3 IBM T.J. Watson Research Center
sameerk@us.ibm.com

4 Universiti Brunei Darussalam, Brunei
{ghani.naim,saiful.husain}@ubd.edu.bn

Abstract. Weather models with high spatial and temporal resolutions
are required for accurate prediction of meso-micro scale weather phenom-
ena. Using these models for operational purposes requires forecasts with
sufficient lead time, which in turn calls for large computational power.
There exists a lot of prior studies on the performance of weather models
on single domain simulations with a uniform horizontal resolution. How-
ever, there has not been much work on high resolution nested domains
that are essential for high-fidelity weather forecasts.

In this paper, we focus on improving and analyzing the performance
of nested domain simulations using WRF on IBM Blue Gene/P. We
demonstrate a significant reduction (up to 29%) in runtime via a com-
bination of compiler optimizations, mapping of process topology to the
physical torus topology, overlapping communication with computation,
and parallel communications along torus dimensions. We also conduct a
detailed performance evaluation using four nested domain configurations
to assess the benefits of the different optimizations as well as the scalabil-
ity of different WRF operations. Our analysis indicates that the choice
of nesting configuration is critical for good performance. To aid WRF
practitioners in making this choice, we describe a performance model-
ing approach that can predict the total simulation time in terms of the
domain and processor configurations with a very high accuracy (< 8%)
using a regression-based model learned from empirical timing data.

1 Introduction

Operational weather forecasting is critical for planning operations in weather sen-
sitive sectors such as energy, transportation, urban planning, and public safety.
Such weather forecasting is performed using fine resolution regional and global
atmospheric models that discretize the nonlinear partial differential equations
representing evolution of atmospheric flows in time, which entails a huge compu-
tational effort. It is also imperative that the forecasts are provided with sufficient
lead time (24-48 hrs) in order to allow actions that mitigate the socio-economic

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 805–817, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

806 P. Malakar et al.

impact. Hence, it is critical to have a highly efficient and scalable execution of
the weather models on a high-performance computing platform.

Weather and Research Forecasting model (WRF) is a state-of-the-art regional
to global-scale numerical weather prediction model that is used by weather agen-
cies all over the world.WRF has been designed to performwell onmassively paral-
lel computers. It can be built in serial, parallel (MPI) and mixed-mode (OpenMP
and MPI) forms and is available on various HPC machines. Motivated by earlier
WRF performance studies on the IBM Blue Gene series [1,8], we explore optimiz-
ing WRF on the Blue Gene/P machine. Past studies on WRF are mainly focused
on simple single domain benchmarks. These are not representative of real world
short-term high-fidelity weather simulations1,2 that often require nested domain
configurations with one or more small high resolution domains (nests) embedded
into a coarse resolution parent domain such as those in Figure 1. Fine resolution
runs can effectively model weather at meso-micro scale because of higher granu-
larity, but also require a proportionally smaller time step for numerical stability
resulting in a quadratic increase in the net computational effort. Domain nesting
is essential to achieve good prediction accuracy over small regions of interest (child
domains) while avoiding expensive computation across the whole parent domain.

Nested domain simulations differ from single domain simulations in one key
aspect. Modeling (i.e., the solve operation) needs to be performed at multiple
(parent and child) spatial resolutions and the results need to be communicated
and aligned at the points of overlap. The data for the finer resolution child
domains are interpolated from the coarser domain by a process called forcing in
WRF. In a two-way nest integration, the finer grid solution also overwrites the
coarser grid solution for the coarse grid points that lie inside the finer grid by a
process called feedback [11].

There are three key challenges faced by WRF users while performing nested
domain simulations. First, nesting entails significant communication between the
parent and child domains in the form of forcing and feedback operations, which
results in an increased run time and poor scalability that in turn affect the fore-
cast lead time. Second, there does not exist much work on scalability analysis of
nested domain simulations that can provide guidance to WRF users on the po-
tential benefits and trade-offs associated with extra computing resources. Lastly,
there is risk of over-decomposition on a small-sized domain when the number of
processors is large. Therefore, it is critical to choose the nesting configuration
to ensure that the nest domain sizes are appropriate for the available proces-
sor configuration. Due to the relative opaqueness of the WRF code, most users
typically employ a tedious and time-consuming trial and error approach that
involves running the code multiple times in order to make this decision.
We make the following contributions:

(a) We significantly reduce the runtime of WRF nested domain simulations
(up to 29%) via compiler optimizations on the IBM Blue Gene/P machine, ef-
ficient mapping of 2D process topology of WRF on to the 3D torus topology
of BG/P to reduce the communication time in WRF and optimization of some

1 http://www.emc.ncep.noaa.gov/mmb/mmbpll/nestpage/overlay hiresw4km.jpg
2 http://www.metoffice.gov.uk/research/modelling-systems/unified-model/

weather-forecasting

Performance Evaluation and Optimization of Nested High Resolution 807

critical portions of WRF source code. Unrolling the Z dimension loops and par-
allelizing the X and Y dimension communications leads to further optimization.

(b) We conduct a detailed performance evaluation of the original as well as
the optimized WRF code by performing simulations with varying number of
processors over four nested domain configurations with 2-level nesting and vary-
ing sibling domains at the innermost level. Our results indicate that forcing and
feedback operations do not scale well. Further, performance comparison of sim-
ilar nesting configurations indicates that optimal nesting choice varies with the
number of processors.

(c) We propose a performance modeling approach for estimating the total in-
tegration time for any multi-level nested domainWRF simulation, which is based
on learning regression models for each of the key WRF operations (solve, forcing,
feedback) using empirical timing data. Practitioners can use such a model to de-
termine the best (lowest runtime) nesting configuration among multiple choices
for a given number of processors.

2 Related Work

WRF has been extensively studied in the HPC community since weather mod-
eling is a key HPC application. Most of this work can be broadly grouped into
three categories: (a) optimization for specific HPC architectures, (b) performance
analysis, and (c) performance modeling.

Architecture-Specific Optimization. In the past, WRF code has been op-
timized for a number of HPC architectures such as BG/L [8], Cray XT4 [9].
For the BG/P architecture, Bhatele et al.[1], present a framework for automatic
mapping of WRF onto the BG/P torus topology using the WRF communication
graph. On a single domain configuration, they demonstrate that their mapping
reduces the average number of hops per process by up to 60%, but increases
the total communication time by 40% in certain cases. This approach is yet to
be validated on nested domain configurations. Currently, the only existing work
that deals with optimization for nested domain configurations is that of Porter
et al. [9]. They studied compiler optimizations for improving WRF performance
using the PathScale and PGI compilers on Cray XT4/5, which do not apply to
BG/P. They also report improvement in WRF performance upon changing the
default X-Y processor decomposition, which does not hold true in case of BG/P.

Performance Analysis.Wright et al. [12] examine the scalability of WRF (ver-
sion 2.1.2) across different architectures using IPM to analyze the performance.
They show that for most of the architectures, WRF exhibits a sublinear speedup
of both computation and communication times with increasing number of cores
and also identify bottlenecks such as MPI Wait. There exists a number of other
performance and profiling studies [10] focusing on other aspects of WRF. How-
ever, these studies only focus on a single domain configuration and do not consider
forcing/feedback operations that are prominent in nested configurations.

Performance Modeling. Given the criticality of lead time, there is a strong in-
terest in predicting the execution time of WRF runs. Kerbyson et al. [3] describe

808 P. Malakar et al.

an analytical performance model with parameters such as the grid size and pro-
cessor configuration. This model was developed via a careful manual inspection
of the dynamic execution behaviour of the WRF application and was subse-
quently validated using performance measurements on real systems. Unlike [3],
our model makes use of regression analysis to directly learn the coefficients of
potential influencing factors using empirical timing data. Delgado et al. [2] also
describe a regression-based approach for modeling WRF performance on sys-
tems with < 256 processors, but their primary focus is on capturing the system
related factors such as clock speed, network bandwidth, which they do via a mul-
tiplicative effects model. Our modeling focuses on the interaction of domain and
processor configurations assuming fixed architecture and simulation parameters
allowing us to obtain much better accuracy even up to 1024 processors. Further,
[2] and [3] only focus on single domain configurations whereas we learn separate
models for solve/forcing/feedback operations, which can be used for predicting
performance for even multi-level nested configurations.

3 Experimental Setup

Blue Gene/P Overview. The IBM Blue Gene/P (BG/P) is the second gen-
eration in the line of Blue Gene machines after Blue Gene/L. Each BG/P node
has four 850 MHz embedded PowerPC 450 cores on a single ASIC and can
achieve a peak floating point throughput of 13.6 GF/node. The software stack
supports three modes: symmetric multi-processing mode (or SMP mode) with
one process and up to four threads, dual mode with two processes, each with up
to two threads and quad mode (also known as virtual node mode, or VN mode)
with four processes. Systems software provides optimized MPI libraries [4] and
an OpenMP runtime via the IBM XL compiler to take advantage of the 4-way
SMP node. MPI point-to-point messages are sent on the 3D torus network, while
global collective communication operations such as barrier, broadcast and allre-
duce on MPI COMM WORLD are executed on the collective network [5].

Nested Domain Configurations. For our experiments, we simulated a heavy
rainfall event that occurred on 20 January 2009, between 00z to 04z UTC in the
Borneo island. In order to capture this event, we started a 48-hour forecast run
from 19 Jan 00z UTC to 21 Jan 2009 00z UTC and generated a restart file at
20 Jan 00z UTC. This choice of restart file at the end of a 24-hour simulation,
ensured that the model is well spun off. Figure 1 shows the nested domain config-
urations used for our study. Figure 1(a) shows the 3-domain nested configuration
with the innermost nest focused on the country of Brunei. Figure 1(b) shows the
case which has 4 sibling nests of same size at the innermost level. The innermost
nests were chosen such that some of the highly populated regions in the Borneo
island are well represented. In order to study the effects of over-decomposition
of innermost nests, we also created two sibling domain configurations that are
formed by merging a subset of the domains in 1(b). More specifically, Figure 1(c)
has 50% more grid points after combining, whereas, Figure 1(d) has 10% more
grid points. The same spatial resolution is used for all sibling domains.

Performance Evaluation and Optimization of Nested High Resolution 809

(a) 3-domain (b) 6-domain

(c) 4-domain (d) 5-domain

Fig. 1. Nested domain configurations used for the experiments

WRF Runtime Setup. WRF-ARW version 3.2.1, compiled in hybrid mode
(dm+sm), was used for all the experiments. In all the simulations, Kain-Fritsch
convection parameterization, Thompson microphysics scheme, RRTM long wave
radiation, Yonsei University (YSU) boundary layer scheme, and Noah land sur-
face model were used. File I/O was restricted to just the beginning and end of
the run, however, for high resolution operational simulations that require fore-
cast output very frequently, it is possible that I/O could become a bottleneck
for scaling to large number of processors. This is especially true in production
runs that typically involve two or more levels of nesting and a forecast output
every ten minutes. We also explored the use of I/O quilting feature in WRF,
however, we excluded quilting from the current study since parallel I/O gave
the best performance. For this study we primarily use the total integration time
since the I/O time is still a small fraction of the total simulation time when
parallel I/O is used with moderate number of processors (up to 1024).

810 P. Malakar et al.

4 Optimizations

We explored several optimizations for the WRF application on BG/P that in-
clude compiler options, code modifications and tuning the MPI libraries.

4.1 Compiler Options

We modified the default WRF configure from UCAR to include parallel NetCDF
for parallel I/O on BG/P. This serves as the base WRF configure to make base
WRF run for our experiments. We enhanced the base WRF configure with a
few new options. As the WRF moisture physics routines have several calls to
exponents, square-root, trigonometric functions and divisions, we enabled the
mathematical acceleration libraries mass and the vector variant library massv.
We also modified WRF source to call the massv library for the vspow call. In
addition, we also used the -qhot=vector compiler option that converts loops with
exponents, square-root, division and trigonometric functions to massv library
calls. The mass and massv library calls are optimized via SIMD instructions
that have higher throughput. Most of WRF is compiled with the -O2 option,
with select performance-critical routines compiled with -O3. To further optimize
compiler performance, we added the -qmaxmem=128000 to enable the compiler
to aggressively optimize WRF source. We also enabled OpenMP via the IBM
XL compiler option -qsmp=omp. The WRF source can tile the X or the Y loops
to enable the tile computation to be executed on different threads.

4.2 Communication Libraries

Communication overhead is a significant fraction of the WRF timestep. We ex-
plored mapfiles to efficiently map the 2D decomposition on to the 3D torus. Our
mapfiles map the processors to diagonals on the 3D torus planes when the 3D
torus dimensions cannot be folded to the WRF 2D stencil communication dimen-
sions. In addition, we explored increasing the MPI eager limit and enabling the
FIFO mode RZVANY in the DCMF library [4] that drives MPI communication
on BG/P. This mode improves performance of messages to diagonal neighbor-
ing nodes by allocating more network resources to those messages. In addition,
to minimize synchronization between nodes, we explored the Async Rectangle
Broadcast that implements broadcast without forcing synchronization between
the nodes. By default, the collective network is used that forces all nodes to
synchronize before the broadcast data is transmitted on the network. We also
replaced a call to MPI Allgather in the forcing and feedback computation with
an MPI Alltoall call as MPI Alltoall is efficient on BG/P.

4.3 Source Code Optimizations

Loop Unrolling. The XL compiler on BG/P typically only unrolls the inner-
most loops. WRF is a strong scaling application where the application domain
is decomposed along the X and Y dimensions to MPI ranks. By default, the
WRF compute loops execute in an XZY order that results in short X loops on

Performance Evaluation and Optimization of Nested High Resolution 811

Fig. 2. Halo regions in X-
Y dimensions

Table 1. Steps in WRF halo exchange

Pack data into buffer to send to the Y-neighbours.

Receive message from and send message to the Y-neighbours.

Wait for completion of communication with the Y-neighbours.

Unpack data received from Y-neighbours.

Pack data into buffer to send to the X-neighbours.

Receive message from and send message to the X-neighbours.

Wait for completion of communication with the X-neighbours.

Unpack data received from X-neighbours.

a large number of nodes. Hence, we explored unrolling the Z dimension loops in
the pack unpack functions that serialize application buffers into MPI messages
functions and WRF dynamics computation.

Parallel X and Y communication. The WRF solver sweeps over a 2D-XY-
spatial grid performing nearest neighbour computations called stencils[7]. Due
to the overlapping spatial decomposition, each process Pi,j communicates its
boundary regions, called halo regions, with its two X-neighbours Pi−1,j and
Pi+1,j and two Y-neighbours Pi,j−1 and Pi,j+1 as shown in Figure 2. Each in-
tegration time-step in WRF involves a large number of halo exchanges, which
are fairly expensive and comprise of the steps shown in Table 1. Using IBM’s
HPCT profiling tools, we found that the packing/unpacking of the halo regions
is a computation-intensive step. Further, most of the time is spent in MPI Wait
since every process waits for the completion of the communications without doing
any computation. To improve the performance, we modified the halo exchange
sequence of steps, specifically delaying the MPI Wait calls and performing the X
and Y communications in parallel, which is favoured by the BG/P torus topol-
ogy. In the new sequence, the Y-communications are overlapped with the packing
of data for the X-neighbours and the X-communications are overlapped with the
unpacking of data from the Y-neighbours. This affects only the corners of the
halo regions (e.g. regions A,B,C,D in Figure 2) and does not make a substantial
difference since these only comprise a tiny part of the subdomain. Note paral-
lelizing X and Y communication does not affect bitwise reproducability in the
application as we still maintain a deterministic order.

5 Performance Analysis

In this section, we present the results of our performance evaluation on mul-
tiple nested domain configurations. Specifically, we discuss the various BG/P
execution modes, the benefits of various WRF optimizations, the scalability of
the original and optimized WRF code, and also the importance of choosing a
nesting configuration to match the processor configuration. We used 128 to 1024
BG/P nodes for performance evaluation to keep the simulation runtimes to rea-
sonable limits as well as to prevent over-decomposition of the domains beyond
1024 nodes.

812 P. Malakar et al.

(a) Performance variation with different
optimizations on 1 rack

128 256 512 1024
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Processors

base

Solve
Force
Feed
I/O

128 256 512 1024
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Processors

optimized

Solve
Force
Feed
I/O

(b) Variation of fractional times of solve,
forcing, feedback, and I/O operations vs.
number of processors

0 200 400 600 800 1000 1200
0

500

1000

1500

2000

2500

3000

3500

Number of nodes

T
im

e
 (

se
co

n
d
s)

3−domain

Total Time−Base
Total Time−Opt
Solve Time−Base
Solve Time−Opt
Force Time−Base
Force Time−Opt
Feed Time−Base
Feed Time−Opt

(c) Computation time of WRF operations

0 200 400 600 800 1000 1200
1

1.5

2

2.5

3

3.5

4

4.5

Number of nodes

S
p
e
e
d
u
p

3−domain

Total Time−Base
Total Time−Opt
Solve Time−Base
Solve Time−Opt
Force Time−Base
Force Time−Opt
Feed Time−Base
Feed Time−Opt

(d) Speedup of WRF operations

Fig. 3. WRF performance on nested domain configurations

BG/P Execution Modes. We compared the base WRF performance with
different BG/P execution modes (SMP, DUAL and VN). The performance was
best with SMP mode with 4 OpenMP threads compared to other modes. On 1024
nodes (1 rack) of BG/P, integration time for DUAL and VN modes increased
by 4% and 48% over SMP mode respectively. The total simulation runtime with
DUAL and VN modes increased by 12% and 65% over SMP mode respectively.
The increase in total runtime was partly due to higher I/O overheads in DUAL
and VN modes because of the increase in the number of MPI ranks. The I/O
times increased 1.5x and 2.8x in DUAL and VN modes respectively.

WRF Optimizations. Figure 3(a) shows the incremental performance benefits
of the various optimizations described in Section 4 on a single rack of BG/P. Each
column bar in the figure also incorporates the optimizations indicated by the pre-
vious column bars. The performance of the base WRF configuration is presented
in column bar base. The opt conf column bar indicates the performance after

Performance Evaluation and Optimization of Nested High Resolution 813

incorporating compiler options mentioned in Section 4.1, that results in a 21%
improvement over the base configuration. The column bar opt env shows the
benefit of environment variables (Section 4.2) that enable an optimized proces-
sor mapping, set the eager to rendezvous cutoff and the DCMF FIFO mode. We
see a total improvement of 3% over opt conf (23.7% over base). Loop unrolling
of the pack and unpack routines (opt pack) described in Section 4.3 results in an
improvement of 3.6% over opt env (26.5% over base). Replacing MPI Allgather
with MPI Alltoall (opt ag) provided 2.7% further improvement over opt pack
(28.4% over base). Finally, optimization for the parallel X and Y halo commu-
nication (opt xycomm) results in a performance improvement of 5% over opt ag.
This corresponds to an overall improvement of 32% to the integration time and
an improvement of 28.9% in the total simulation runtime over the base run.

WRF Scaling. Figure 3(b) shows the variation in fractional time for solve,
forcing and feedback operations across number of processors for base and opti-
mized codes. Observe the I/O and forcing components increase with the number
of nodes suggesting that they are performance bottlenecks. Figures 3(c) and 3(d)
show the scaling of solve, forcing and feedback operations in terms of actual tim-
ings and speedup respectively. The total time is the sum of the timings for these
3 operations. Though sub-linear, the observed speedups of solve operation in
both the original and optimized WRF code (3.5x - 5x going from 128 to 1024
processors) exhibit the same general behavior as the theoretical model presented
by Kerbyson et al. [3]. Relative to solve, the forcing and feedback operations ex-
hibit much poorer scaling, attaining speedups of 2x - 2.7x for the same increase
in the number of processors. From these figures, we also observe that with our
optimizations, the solve time improves and the forcing and feedback components
have lower overheads and better scaling.

Influence of Nesting Configuration. We also compare the performance of
the three nested domain configurations in Figures 1(b), 1(c), and 1(d), which are
equivalent in terms of practical utility and differ only in the sibling domains at
the innermost level. Figure 4(a) shows the speedup (relative to 128 processors)
as the number of processors increase. We observe that increasing the number of
domains results in poorer scalability. One reason for this behavior is that more
domains entail additional sequential forcing and feedback operations, which do
not scale well. In addition, the innermost nests with small domain sizes get
over-decomposed for higher number of processors resulting in lower computa-
tion to communication cost ratio. The superior scalability of the 4-domain and
5-domain cases suggest that as we increase the number of processors, the gap
in the total integration time due to the additional number of innermost grid
points in comparison to that of the 6-domain case should progressively decrease.
Figure 4(b) shows the total integration time for the three nested domain config-
urations with varying number of processors. Even though the 6-domain case has
the least number of grid points, for 128 processors, the 5-domain case provides
the best performance (8984s in comparison to 10701s and 9108s for 4-domain and
6-domain cases). As the number of processors increases to 1024, the 4-domain
configuration exhibits superior scaling and gives the best performance (2411s in
comparison to 2459s and 2794s for 5-domain and 6-domain cases). Therefore,

814 P. Malakar et al.

it is sometimes beneficial to consider a smaller number of consolidated domains
instead of a large number of small focused domains.

0 200 400 600 800 1000 1200
1

1.5

2

2.5

3

3.5

4

4.5

Number of nodes

S
pe

ed
up

4−domain: 490133 pts
5−domain: 362553 pts
6−domain: 327184 pts

(a)

0 200 400 600 800 1000 1200
2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

Number of nodes

T
ot

al
 in

te
gr

at
io

n
tim

e

4−domain: 490133 pts
5−domain: 362553 pts
6−domain: 327184 pts

(b)

Fig. 4. Performance over the three sibling configurations across varying number of
processors

6 Empirical Modeling of Computation Time

Observations from Section 5 highlight the importance of carefully choosing the
nesting configuration that can extract the best performance for a given processor
configuration. To aid in this effort, we use the empirical timing data from our
evaluation to learn a statistical model of the computation time for the three
key operations in WRF (solve, forcing and feedback). We then describe how
these individual models can be combined to estimate the total modeling time
for complex nesting scenarios that involve multiple levels of nesting.

Regression Model. For each operation and domain/processor configuration,
the runtime for each iteration is computed as the maximum time across the
different nodes since they are operating in parallel. Since the different iterations
are executed sequentially and the number of iterations vary due to nesting or
simulation configuration, the mean runtime across the different iterations is a
good target. We choose the median value across the different iterations as the
target variable to be modeled instead of the mean to disregard outlier cases, but
the results are comparable in either case. Each domain/processor configuration
is represented as a vector of features (column headings in Table 2) based on
sizes of the domain(s) involved and the processor grid. Let the domain grid size
be denoted by nx × ny and processor grid be denoted by px × py. In case of
forcing and feedback, we also consider the parent grid size denoted by np

x × np
y.

Using the median iteration time as the target response and the feature vector
as independent variables, we learn a least squares linear regression model [6].
Table 2 shows the model coefficients. For instance, the computation time for
solve operation is given by Tsolve =7.69e-4

nxny

pxpy
+3.37e-3nx

px
+2.35e-3

ny

py
+4.047e-

2. A similar model was computed for the optimized WRF code as well and for
each operation, the coefficients of all the features were found to be positive, but
lower than that of the base WRF timing model. Note that the model coefficients

Performance Evaluation and Optimization of Nested High Resolution 815

Table 2. Coefficients of the model for base WRF version

Op
nxny
pxpy

n
p
xn

p
y

pxpy

nx
px

ny
py

constant

Solve 7.693e-4 NA 3.3676e-3 2.3472e-3 4.04716e-2
Forcing 6.2493e-5 2.0758e-4 2.78171e-3 1.7226e-3 1.4445e-1
Feedback 9.8716e-5 5.2550e-5 2.4233e-3 1.2726e-3 8.5323e-2

Table 3. Actual (s), predicted (s) and relative error (%) of integration time for the
base WRF model

Processors 128 256 512 1024
Domain Act Pred Err(%) Act Pred Err(%) Act Pred Err(%) Act Pred Err(%)
3-domain 2976 2877 3.3 1809 1753 3.1 1200 1143 4.7 867 815 5.9
6-domain 9109 9064 0.5 5508 5524 0.29 3745 3603 3.8 2794 2574 7.9
4-domain 10701 10225 4.5 6011 5909 1.7 3632 3455 4.9 2412 2276 5.6
5-domain 8984 8989 0.06 5374 5266 2.01 3553 3367 5.2 2460 2283 7.2

are specific to choice of BG/P and the other fixed parameters of the simulation
(e.g., mp physics = 8), but the methodology can be adapted as needed.

Computation Time for Multilevel Nested Domains. LetD = {D0, · · · , Dn}
be a set of nested domains with D0 being the root domain and the domain hi-
erarchy specified by the p(·) function. Let Tsolve(D) denote the computation
time for a solve iteration on domain D and Tforce(D,Dp) and Tfeedback(D,Dp)
denote the computation time for forcing and feedback operations between do-
main D and its parent domain Dp. Let T

SH
solve(D) denote the solve time for the

entire sub-hierarchy under the domain D. Given the constraints of the current
WRF code, the forcing, feedback, and solve operations associated with the child
domains have to be done sequentially. For two-way nesting, one can obtain the
following recursive equation,

T SH
solve(D) = Tsolve(D)+

∑
Dc|p(Dc)=D

(Tforce(Dc, D)+rTsolve(Dc)+Tfeedback(Dc, D))

where r is the parent-child time-step ratio (=3). The total integration time is
then given by T SH

solve(D0) multiplied by the number of timesteps.
Using the above recursion and the prediction models for Tsolve(·), Tforce(·, ·)

and Tfeedback(·, ·), one can obtain a reasonable estimate of the computation time
for a specified nested domain configuration and processor configuration without
having to actually run the code. Table 3 shows the actual integration timings as
well as the timings predicted by the model and the absolute relative error for
different domain and feasible processor configurations for the base WRF code.
We observe that the prediction error is fairly low (0.06 − 7.9%). Note that the
5-domain case is in fact a new configuration which was not used for training the
statistical model, but the predicted timings are still fairly accurate. This timing
prediction model can be very useful for practitioners since they can choose the
domains and nesting configurations based on the estimated run times. We plan
to do a more exhaustive evaluation over multiple nested domain cases in future.

816 P. Malakar et al.

7 Conclusions and Future Work

We performed a detailed study of nested domain weather simulations that are
critical for operational weather forecasting. We described several optimizations
to the base WRF code that reduces the total runtime by 29%. We also conducted
a performance evaluation using four test configurations and demonstrated that
high resolution nested weather simulation presents a number of challenging op-
portunities in terms of scaling to large number of processors especially in the
case of multiple small-sized sibling domains. This is partly due to the design of
the WRF code wherein, multiple nests at the same level are handled by all the
processors in a sequential manner resulting in over-decomposition. The current
design of the WRF code makes it both critical and challenging for practition-
ers to choose a good nesting configuration. Accounting for the constraints of
the current WRF code, we also presented a regression-based model for predict-
ing integration time for multi-level nested weather simulations that can be used
by WRF users to determine the domain configurations best suited for a given
processor grid. Future directions include improving the performance model by in-
corporating additional features based on the network topology, modifying WRF
code to allow subsets of processors working in parallel over sibling domains and
designing algorithms that can effectively balance the load under such circum-
stances. We also plan to explore MPI non contiguous datatypes to optimize the
pack/unpack operations in WRF. In addition, weak scaling studies could poten-
tially assist in further understanding of the effects of the proposed optimizations.
Optimizing file I/O performance in WRF is another potential future work.

Acknowledgements. We would like to thank Yogish Sabharwal, Bob Walkup,
Dong Chen, Sathish S. Vadhiyar, Vijay Natarajan and Lloyd A. Treinish for
their help, technical support and valuable suggestions. The work presented in
this paper was funded in part by the US Government contract No. B554331.

References

1. Bhatele, A., Gupta, G.R., Kale, L.V., Chung, I.H.: Automated Mapping of Regular
Communication Graphs on Mesh Interconnects. In: HiPC (2010)

2. Delgado, J., et al.: Performance Prediction of Weather Forecasting Software on
Multicore Systems. In: IPDPS, Workshops and PhD Forum (2010)

3. Kerbyson, D.J., Barker, K.J., Davis, K.: Analysis of the Weather Research and
Forecasting (WRF) Model on Large-Scale Systems. In: PARCO, pp. 89–98 (2007)

4. Kumar, S., et al.: The Deep Computing Messaging Framework: Generalized Scal-
able Message passing on the Blue Gene/P Supercomputer. In: ICS 2008 (2008)

5. Kumar, S., et al.: Architecture of the Component Collective Messaging Interface.
IJHPCA 24(1), 16–33 (2010)

6. Kutner, M.H., Nachtsheim, C.J., Neter, J.: Applied Linear Regression Models,
Fourth International edn. McGraw-Hill (September 2004)

7. Michalakes, J.: RSL: A Parallel Runtime System Library For Regional Atmospheric
Models With Nesting. Tech. Rep. ANL/MCS-TM-197, Mathematics and Computer
Science Division, Argonne National Laboratory, Argonne (1997)

8. Michalakes, J., et al.: WRF Nature Run. In: SC, p. 59 (2007)

Performance Evaluation and Optimization of Nested High Resolution 817

9. Porter, A.R., et al.: WRF code Optimisation for Mesoscale Process Studies
(WOMPS) dCSE Project Report (June 2010)

10. Shainer, G., et al.: Weather Research and Forecast (WRF) Model Performance and
Profiling Analysis on Advanced Multi-core HPC Clusters. In: 10th LCI ICHPCC
(2009)

11. Skamarock, W.C., et al.: A Description of the Advanced Research WRF version 3.
NCAR Technical Note TN-475 (2008)

12. Wright, N.J., Pfeiffer, W., Snavely, A.: Characterizing Parallel Scaling of Sci-
entific Applications using IPM. In: 10th LCI International Conference on High-
Performance Clustered Computing (2009)

Optimized Hybrid Parallel Lattice Boltzmann

Fluid Flow Simulations on Complex Geometries

Jonas Fietz2, Mathias J. Krause2, Christian Schulz1,
Peter Sanders1, and Vincent Heuveline2

1 Karlsruhe Institute of Technology (KIT),
Institute for Theoretical Informatics, Algorithmics II

2 Karlsruhe Institute of Technology (KIT),
Engineering Mathematics and Computing Lab (EMCL)

Abstract. Computational fluid dynamics (CFD) have become more and
more important in the last decades, accelerating research in many dif-
ferent areas for a variety of applications. In this paper, we present an
optimized hybrid parallelization strategy capable of solving large-scale
fluid flow problems on complex computational domains. The approach
relies on the combination of lattice Boltzmann methods (LBM) for the
fluid flow simulation, octree data structures for a sparse block-wise rep-
resentation and decomposition of the geometry as well as graph parti-
tioning methods optimizing load balance and communication costs. The
approach is realized in the framework of the open source library OpenLB
and evaluated for the simulation of respiration in a subpart of a human
lung. The efficiency gains are discussed by comparing the results of the
full optimized approach with those of more simpler ones realized prior.

Keywords: Computational Fluid Dynamics, Numerical Simulation, Lat-
tice Boltzmann Method, Parallelization, Graph Partitioning, High Per-
formance Computing, Human Lungs, Domain Decomposition.

1 Introduction

The importance of computational fluid dynamics (CFD) for medical applications
have risen tremendously in the past few years. For example, the function of the
human respiratory system has not yet been fully understood, and its complete
description can be considered byzantine. Due to highly intricate multi-physics
phenomena involving multi-scale features and ramified, complex geometries, it is
considered one of the Grand Challenges in scientific computing today. One day,
numerical simulation of fluid flows is hoped to enable surgeons to analyze possible
implications prior to or even during surgery. Widely automated preprocessing
as well as efficient numerical methods are both necessary conditions for enabling
real-time simulations.

In the last decades, lattice Boltzmann methods (LBM) have evolved into a
mature tool in CFD and related topics in the landscape of both commercial and
academic software. The simplicity of the core algorithms as well as the local-
ity properties resulting from the underlying kinetic approach lead to methods

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 818–829, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Optimized Hybrid Parallel Lattice Boltzmann Fluid Flow Simulations 819

which are very attractive in the context of parallel computing and high per-
formance computing [7,8,13]. In this context, it is of great importance to take
advantage of nowadays available hardware architectures like Graphic Process-
ing Units (GPUs), multi-core processors and especially hybrid high performance
technologies that blur the line of separation between architectures with shared
and distributed memory. A concept to use LBM dedicated for hybrid platforms
has been described before in [3]. It relies on spatial domain decomposition where
each domain represents a basic block entity which is solved on a symmetric
multi-processing (SMP) system. The regularity of the data structure of each
block allows a highly optimized implementation dedicated to the particular SMP
hardware. Load balancing is achieved by assigning the same number of equally-
sized blocks to each of the available SMP nodes. This concept has been extended
and applied for fluid flows simulation on complex geometries [5].

The goal of this work is to optimize the hybrid parallelization approach for
LBM simulations on complex geometries. The basic idea is to drop the equally-
sized block constraint thereby enabling a sparse representation of the compu-
tational domain. Therefore, two domain decomposition strategies are proposed
as well as the application of graph based load balancing techniques to the load
distribution problem for LBM. The first domain decomposition strategy is a
heuristic, which we further improve by a shrinking step. The second strategy
is a geometry aware decomposition using octrees. This results in a sparse do-
main decomposition with larger computational domains. Both of these strategies
require sophisticated load balancing. We propose a graph partitioning based ap-
proach optimizing the load and minimizing communication costs. While graph
based load balancing has been done before by [1], we propose to apply this not
on a fluid cell level but at block level. Finally, we evaluate the presented mea-
sures on a subset of the human lung, showing performance improvements for all
of them.

2 Lattice Boltzmann Fluid Flow Simulations

The here considered subclass of lattice Boltzmann methods (LBM) enable to
simulate the dynamics of incompressible Newtonian fluids which is usually de-
scribed macroscopically by an initial value problem governed by a Navier-Stokes
equation. Instead of directly computing the quantities of interests, which are the
fluid velocity u = u(t, r) and fluid pressure p = p(t, r) where r ∈ Ω ⊆ Rd and
t ∈ I = [t0, t1) ⊆ R≥0, a lattice Boltzmann (LB) numerical model simulates the
dynamics of particle distribution functions f = f(t, r,v) in a phase space Ω×Rd

with position r ∈ Ω and particle velocity v ∈ Rd. The continuous transient phase
space is replaced by a discrete space with a spacing of δr = h for the positions,
a set of q ∈ N vectors vi ∈ O(h−1) for the velocities and a spacing of δt = h2

for time. The resulting discrete phase space is called the lattice and is labeled
with the term DdQq. To reflect the discretization of the velocity space, the con-
tinuous distribution function f is replaced by a set of q distribution functions
fi (q = 0, 1, ..., q − 1), representing an average value of f in the vicinity of the

820 J. Fietz et al.

velocity vi. Detailed derivations of various LBM can be found in the literature,
e.g. in [11].The iterative process in an LB algorithm can be written in two steps
as follows, the collision step (1) and the streaming step (2):

f̃i(t, r) = fi(t, r)−
1

3ν + 1/2

(
fi(t, r)−M eq

fi
(t, r)

)
, (1)

fi(t+ h2, r + h2vi) = f̃i(t, r) (2)

for i = 0, .., q−1.M eq
fi
(t, r) := wi

w ρfi

(
1 + 3h2 vi · ufi − 3

2h
2u2

fi
+ 9

2h
4 (vi · ufi)

2
)

is a discretized Maxwell distribution with moments ρ and u which are given ac-
cording to ρ :=

∑q−1
i=0 fi and ρu :=

∑q−1
i=0 vifi. The variable u is the discrete

fluid velocity and ρ the discrete mass density. The kinematic fluid viscosity is ν
which is assumed to be given, and the terms wi/w, vih (i = 0, 1, ..., q − 1) are
model dependent constants. The discrete fluid velocity u and the discrete mass
density ρ can be related to the solution of a macroscopic initial value problem
governed by an incompressible Navier-Stokes equation as shown by Junk and
Klar [4].

3 Domain Decomposition for Hybrid Parallelization

Fig. 1. Data structures used in OpenLB:
BlockLattices consist of Cells and
make up a SuperLattice enabling higher
level software constructs

The most time demanding steps in LB
simulations are usually the collision (1)
and the streaming (2) operations. Since
the collision step is purely local and the
streaming step only requires data of the
neighboring nodes, parallelization has
mostly been done by domain partition-
ing [7,8,13]. To take advantage of hybrid
architectures, a multi-block approach is
used [3]: the computational domain is
partitioned into sub-grids with possibly
different levels of resolution, and the in-
terface between those sub-grids is han-
dled appropriately. This leads to imple-
mentations that are both elegant and efficient since the execution on a set of
regular blocks is much faster compared to an unstructured grid representation
of the whole geometry. For complex domains a multi-block approach also yields
sparse memory consumption. Furthermore, it encourages a particularly efficient
form of data parallelism, in which an array is cut into regular pieces. This is a
good mapping to hybrid architectures.

In OpenLB, the basic data-structure is a BlockLattice representing a reg-
ular array of Cells. In each Cell, the q variables for the storage of the dis-
crete velocity distribution functions fi, (i = 0, 1, ..., q − 1) are contiguous in
memory. Required memory is allocated only once since no temporary memory
is needed in the applied algorithm. This data structure is encapsulated by a

Optimized Hybrid Parallel Lattice Boltzmann Fluid Flow Simulations 821

higher level, object-oriented layer. The purpose of this layer is to handle groups
of BlockLattices, and to build higher level software constructs in a relatively
transparent way. Those constructs are called SuperLattices and include multi-
block, grid refined lattices as well as parallel lattices.

3.1 Heuristic Domain Decomposition with Shrinking Step

In this section, we describe our heuristic domain partitioning strategy. We further
improve this by shrinking each of the partitions, so that it achieves a closer fit
to the underlying geometry.

The hybrid parallelization strategy proposes to partition the data of a con-
sidered discrete position space Ωh, which is a uniform mesh with spacing h > 0,
according to their geometrical origin into n ∈ N disjoint, preferably cube-shaped
sub-lattices Ωk

h (k = 0, 1, ..., n − 1) of almost similar sizes. This becomes fea-

sible by extending Ωh to a cuboid-shaped lattice Ω̃h through the introduction
of ghost cells. Then, Ω̃h is split into m ∈ N disjoint, cuboid-shaped extended
sub-lattices Ω̃l

h (l = 0, 1, ...,m − 1) of approximately similar size and as cube-

shaped as possible. Afterwards, all extended sub-lattices Ω̃l
h which consist solely

of ghost cells are neglected. The number of the remaining extended sub-lattices
Ω̃l

h (l0, l1, ..., ln−1) defines n. Finally, for each k ∈ {0, 1, . . . , n− 1} one gets the

Ωk
h as a subspace of Ω̃lk

h by neglecting the existing ghost cells.
For the number p ∈ N of available processing units (PUs) of a considered

hybrid high performance computer, an even load balance will be assured for
complex geometries in particular if the domain Ωh is partitioned into a suffi-
ciently large number n ∈ N of sub-lattices. Then, several of the sub-lattices Ωk

h

(k = 0, 1, ..., n− 1) can be assigned to each of the available PUs. To find a good
value for n, we introduce a factor k for the amount of sub-lattices with the rela-
tion n = p× k. This factor can be adjusted for a specific problem by evaluating
run-times for a few hundred time steps to achieve better performance.

After removing all empty cuboids, we then optimize the fit of the cuboids
to the underlying geometry. To find out if a cuboid can be shrunk, we start
running through each layer in all 6 directions beginning at the respective faces
of the cube. For each layer, we check if it is completely empty and stopping the
iteration in this direction when a full cell is found. In the next step, all empty
layers are removed. This shrinking is executed for all cuboids. Note that the
same shrinking step can also be applied to the above mentioned octree domain
decomposition and works in exactly the same way. An example decomposition
can be seen in Fig. 2a.

3.2 Sparse Octree Domain Decomposition with Shrinking

A key part of load balancing is the decomposition of the complete domain in sub-
domains. Here, one has to optimize for multiple, sometimes opposing properties
of the sub-domains. As more cuboids mean more communication, cuboids should
be as large as possible. The surface of each cuboid should be minimal, as this

822 J. Fietz et al.

(a) Heuristic Decompo-
sition without additional
steps

(b) Octree Decomposition
with additional shrinking
step

(c) Stream lines and a cut
plane of velocity distribu-
tion.

determines the amount of communication for this cuboid. This usually implies a
shape as close to a ball as possible. As ball-shaped objects are not space filling,
and due to the current implementation in our library supporting only rectangular
shapes, the optimal shape is a cube.

The streaming step is executed without respect for the underlying geometry
information. Therefore, even non-fluid cells use some processing power. Because
of this, a tight fit of the domain decomposition with respect to the specific
geometry is desirable. This is where octrees come into play to adjust the size of
cubes depending on the geometry.

The general concept starts with embedding the problem domain in a cube. As
we want the boundaries to be exactly on the boundaries between the different
cells, we use a size of 2l × δr for some l ∈ N as the side length of that cube.
As described above, domain decomposition should always result in cuboids that
are neither too small nor too large. E.g. using the surrounding cube by itself
would not be very useful for load balancing, while using single cells would create
a massive overhead. So the implementation allows for limiting the smallest and
the biggest cube sizes.

Having defined the root cube now, one recursively divides the cube into smaller
cubes as long as the geometry in this part is interesting. In our case this means
that it contains empty cells at the same time as boundary or fluid cells. If this
is not the case, for example if we are completely on the inside or outside of the
geometry, we keep the cube at this size as long as it is smaller or equal to the
maximum size. Additionally, we limit the size to the low end, not splitting further
when the cubes would become smaller than the minimum size. This minimum
size can be defined as the side length of the minimum cube, a number c. The
shrinking procedure can be applied to the octree domain decomposition as well
(combination is abbreviated as ODS). An example decomposition can be seen
in Fig. 2b.

4 Load Balancing

As we explained in the introduction of Section 3, the most commonly used ap-
proach to load balancing LBM is based on an even decomposition of the computa-
tional domain. This section describes our alternative approach using techniques
from graph partitioning.

Optimized Hybrid Parallel Lattice Boltzmann Fluid Flow Simulations 823

4.1 Graph Partitioning Using KaFFPa

Our parallelization strategy employs the graph partitioning framework KaFFPa
[9]. We shortly describe the graph partitioning problem. and introduce notations
used. Consider an undirected graph G = (V,E, c, ω) with edge weights ω : E →
R>0, node weights c : V → R≥0, n = |V |, and m = |E|. Given a number k ∈ N
(in our case the number of processors) the graph partitioning problem demands
to partition V into blocks of nodes V1,. . . ,Vk such that V1 ∪ · · · ∪ Vk = V and
Vi ∩ Vj = ∅ for i �= j. A balancing constraint demands that all blocks have
roughly equal size, i.e. the maximum load of a processing element is bounded.
The objective is to minimize the total cut, i.e. the sum of the weight of the edges
that run between blocks. We have tested and shown that the edge cut models the
communication very well, because the edge weights correlate linearly with the
amount of communication between two cuboids [2]. For more details on graph
partitioning with KaFFPa we refer the reader to [9].

4.2 Graph-Based Parallelization Strategy for LBM

As described in the prior sections, the LBM algorithm is divided into two parts.
The first part is the local collision and streaming for each cuboid. Afterwards,
the information is exchanged between different cuboids, i.e. transmitting the
information of the border cells for neighboring cuboids assigned to different
processors. Logically, the perfect load balancer would always achieve minimal
communication while achieving perfect load balancing, i.e. each processor would
need exactly the same time for the compute step of all its cuboids combined.
It is obvious that this can only be the case for the most trivial situations and
geometries, because as soon as there are empty cells, computing times will differ.

To map this problem to graph partitioning, we associate the work amount or
needed CPU time for each cuboid with the weight of a node for this cuboid, and
associate the needed communication between two cuboids with the edge weight
of the edge between their respective nodes in the graph. Applying the graph
partitioner to this graph will yield subsets of nodes, such that the subsets have
approximately the same sum of node weights and therefore computing time.
The edge-cut – the inter-processor communication – will be minimized. As the
problem of graph partitioning is NP-complete, this will not necessarily be the
minimal communication for this specific problem and domain decomposition,
but it will be good enough in general.

4.3 Determining Node and Edge Weights

The mapping of the problem to the graph has become clear now. But one still
needs to find the exact numbers for the amount of work to be done for each
cuboid and the amount of communication between two cuboids.

We begin with the latter. The edge weight is either the byte count or the
number of cells to be communicated. This information is often already present,
as every implementation of LBM has to find the border cells that need to be

824 J. Fietz et al.

communicated, anyway. The case is not as simple for non-symmetrical communi-
cation between different cuboids. One can either choose the maximum or the sum
of both parts as the edge weight. Since the data transfer between two cuboids is
serial in our implementation – i.e. we first transfer in one direction, then in the
opposite – we pick the sum.

Calculating the work to be done for each cuboid is not as easy, as the amount
of work for empty cells, boundary cells and normal fluid cells differs. As the
number of boundary cells is usually quite small, and as they are treated as an
extra step, this special case is ignored; they are assumed to be normal fluid cells.
Empty cell in our case are either cells in a solid area or that this cell is outside of
the fluid filled body being simulated. While the collision step is not executed for
the empty cells, the streaming still is. As it is very possible for a cuboid to consist
largely of empty cells, it is important to know how much processing time the
empty cells use when compared to the normal fluid cells. For this we introduce
a factor χ. We measured χ for several different architectures. Unfortunately, it
is not a specific constant valid even for the limited types we tested. Instead,
it varies from 1.8 to 4.5 [2] for the differing machines used in our preliminary
work. These dispartities are most likely due to the different memory and cache
hierarchies and resulting diverse memory access speeds, as the streaming part of
the LB algorithm is memory bound. To calculate the work to be done for each
cuboid, using the symbols for the work ω, for the number of fluid cells nf , and
for the number of empty, non-fluid cells ne, we get the formula ω = nf + χne.

In the end, the graph load balancer is now able to balance the work load to a
set number of processing nodes or cores and to find a solution for a certain load
imbalance with accordingly small communication overhead.

5 Experiments

The aim of this section is to illustrate the effectiveness of the presented options
considering a practical problem with an underlying complex geometry, namely
the expiration in a human lung. The geometry we use is a subset of the bronchi
of the lungs, with bifurcation of the bronchi to the third level (see Fig. 2a).
The air for the simulation is assumed to be at normal conditions (1013hPa,
20◦C), i.e. ρ = 1.225kg/m3 and its kinematic viscosity is ν = 1.4 × 10−5m2/s.
The outflow region is set at the trachea with a pressure boundary condition
with constant pressure of 1013hPa. The inflow regions are the bronchioles.
There, a velocity boundary condition is set as a Poiseuille distribution with
a maximum speed of 1m/s. The characteristical length is set to 2cm, which
is the diameter of the trachea. With a characteristical speed of 1m/s, we get
a Reynolds number of around 1400. To solve the problems numerically, we
use a D3Q19 LB model with the pressure and velocity boundary conditions
as proposed by Skordos [10]. No-slip conditions for the walls are realized as
a bounce-back boundary. For the LB simulation, we set the Mach number to
0.05 and δr to 3.91 × 10−4. We obtain the dimensions of 402 × 54 × 343 cells,
with about 1.06 million filled cells, i.e. a fill grade of approximately 14.5%.

Optimized Hybrid Parallel Lattice Boltzmann Fluid Flow Simulations 825

Table 1. Comparison of bal-
ancers with 512 processors.
The best value of k is empha-
sized.

k DBLB GBLB
1 0.117 0.067
2 0.223 0.044
4 0.198 0.303
8 0.226 0.297
16 0.199 0.260
32 0.134 0.137
64 0.022 0.068

All benchmarks were run on a cluster at the Karl-
sruhe Institute of Technology. It consists of 200
Intel Xeon X5355 nodes. Each of these nodes con-
tains two quad-core Intel Xeon processors with a
clock speed of 2.667 GHz and 2x4 MB of level-
2 cache each with 16 GB of RAM.The nodes are
connected to each other via an Infiniband 4X DDR
interconnect. The Infiniband interconnect has a
latency from node to node below 2 microseconds
and a point to point bandwidth of 1300 MB/s.
Programs on the IC1 were compiled with the GCC
4.5.3 with an optimization level of O3 and using
the MPI library OpenMPI 1.5.4.

To compare the performance of LB, in most
cases one uses the measurement unit of million fluid-lattice-site updates per sec-
ond MLUP/s, e.g. [12]. This idea can be extended to the unit MLUP/ps for
million fluid-lattice-site updates per process and second [6]. The latter unit is
used in all examples. One calculates the amount of fluid cells Nc for each of the
examples. With the run-time tp for p processor cores, the number i of iterations,
the result is given as PLB := 10−6 iNc

tpp

5.1 Decomposition vs. Graph Based Load Balancing

The first comparison is between theDecomposition Based Load Balancer (DBLB)
and the new Graph Based Load Balancer (GBLB). Small values of k are not very
efficient, because they allow some processors to run empty. Therefore, only higher
values of k are shown in Fig. 2.

This benchmark shows a steep initial decline of computation speed when
scaling from one to eight computing cores. This is due to the memory bound
characteristic of the LBM algorithm and the limited amount of faster caches on
the target architecture and its shared memory buses.

While one can see that the results are not that far apart, starting in the
range of approximately 128 processors the GBLB becomes more efficient by a
margin. To show how much more efficient the load balancer performs for higher
numbers of CPUs, see Tab. 1. For 512 cores, the GBLB solution only takes about
two-thirds of the execution time of the DBLB one.

5.2 Effects of Using the Shrinking Step

The shrinking step as a step to optimize the size of the cuboids showed itself
to be the most effective strategy of all, despite its seemingly simple nature.
Performance for the test benchmark increased by over 100% in certain cases
(see Tab. 2). All test cases with shrinking were run with the graph based load

826 J. Fietz et al.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 2 4 8 16 32 64 128 256 512

M
L
U
P
/
p
s

cores

Graph Based Load Balancer, k=4
Graph Based Load Balancer, k=16
Graph Based Load Balancer, k=64
Heuristic Decomp. & DBLB, k=4

Heuristic Decomp. & DBLB, k=16
Heuristic Decomp. & DBLB, k=64

Fig. 2. Comparison of the DBLB and the GBLB for certain k. For larger numbers
of cores, one can see the performance improvement of using the GBLB without any
change to the decomposition algorithm.

Table 2. Speeds in MLUP/ps for the
best variant for each processor with
DBLB compared to the shrinking step
and GBLB.

Cores DBLB Shrinking Speed-up
1 1.023 1.562 52.7%
2 0.895 1.466 63.8%
4 0.696 1.247 79.2%
8 0.385 0.786 104.2%

16 0.349 0.708 102.9%
32 0.322 0.659 104,7%
64 0.326 0.569 74.5%

128 0.303 0.587 93.7%
256 0.247 0.473 91.5%

balancer. These tests included core counts
between 1 and 256 and the factor k ∈{
20, . . . , 26

}
. An excerpt of the perfor-

mance for the best decomposition based
load balancer and the best graph based
load balancer test runs with an addi-
tional shrinking step are shown in Fig. 3.
One can see that the solution with the
shrinking step and the GBLB outperforms
the DBLB for all values of k, respec-
tively. This speed-up can be attributed
to multiple effects. Because empty cells
are excluded from the streaming step, less
streaming is required. One can get an im-
pression of the possible reduction in the
amount of empty cells from Tab. 3. As one
can deduce from these numbers, the speed-up can not solely be explained by the
smaller amount of empty cells. The graph load balancer certainly has its part
as was shown in the prior tests. But most likely several secondary effects are
at work as well. The ratio of memory accesses to CPU work shifts towards
the calculation side, as empty cells are removed, because the empty cells require
no computation and are mainly memory intensive. Hence, the memory hierarchy

Optimized Hybrid Parallel Lattice Boltzmann Fluid Flow Simulations 827

Table 3. Comparison of amount of cells that are computed before and after executing
the shrinking step on a heuristically decompositioned geometry

Cuboids Before
Remove

Cuboids
Cells Before
Shrinking

Cells After
Shrinking

64 33 3 776 144 1 628 975
128 58 3 303 225 1 577 444
512 185 2 659 763 1 410 635

is put under less strain, so the caches work more effectively. Another effect is
that the communication between cuboids assigned to different nodes is reduced
as when the cuboids are shrunk, their surface area shrinks, too. Therefore, the
amount of communication needed for these cuboid is reduced as well.

5.3 Octree Domain Decomposition

Table 4. Comparing DBLB to GBLB with
heuristic decomposition (HD) and to GBLB
with octree decomposition and shrinking
step (ODS) for a randomly chosen exam-
ple subset. Performance varies depending
on the number of cuboids, but GBLB so-
lutions always achieve a speed-up.

Cores k
HD &
DBLB

HD&
GBLB

c
GBLB
& ODS

32 4 0.322 0.310 16 0.243
32 8 0.299 0.319 32 0.421
32 16 0.312 0.307 64 0.357

256 4 0.226 0.267 8 0.147
256 8 0.247 0.261 16 0.319
256 16 0.230 0.241 32 0.152

512 4 0.198 0.303 8 0.058
512 8 0.226 0.297 16 0.264
512 16 0.199 0.260 32 0.077

For smaller number of cores the oc-
tree decomposition combined with the
graph based load balancer turns out
not to improve performance signif-
icantly over the original approach.
This is due to the amount of cuboids
generated by this approach which cre-
ates inefficiencies for small numbers
of cores and small minimum cuboids.
It is only when combined with the
shrinking step that performance im-
proves significantly, although not all
across the board. This is because the
sizing of the minimum cuboid is too
coarse, as it is restricted to powers
of two. In certain cases, this might
lead to too many or to not enough
cuboids for efficient load balancing,
exactly the situation where the fac-
tor k for the heuristic decomposition
shows its strengths. Another detrimental effect can also be due to the specific
structure of the tested geometry. Because the diameter of the bronchi is small,
the middle coordinates have to align perfectly to get bigger cuboids with the
octree decomposition. Yet in certain situations, the GBLB & ODS is the fastest
solution (see Tab. 4).

828 J. Fietz et al.

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1 2 4 8 16 32 64 128 256

M
L
U
P
/
p
s

cores

Shrink, Heuristic Dec. & GBLB, k=2
Shrink, Heuristic Dec. & GBLB, k=4
Shrink, Heuristic Dec. & GBLB, k=8

Shrink, Heuristic Dec. & GBLB, k=16
Heuristic Dec. & DBLB, k=2
Heuristic Dec. & DBLB, k=8

Heuristic Dec. & DBLB, k=16

Fig. 3. Comparing the DBLB to the heuristic domain decomposition with the addi-
tional shrinking step and GBLB. One can see that performance approximately doubles
with the new shrinking and GBLB solution.

6 Conclusions

We have given a successful example for a general technique that will become more
and more important in the simulation of unstructured systems: Use partitioning
of weighted graphs to do high level load balancing of computational grids where
each node represents a regular grid that can be handled efficiently by modern
hardware.

Specifically, we examined potential optimizations for Lattice BoltzmannMeth-
ods on the example of the OpenLB implementation. We identified two areas with
potential for major improvement. First, the current load balancer, and second
the simple heuristic sparse domain decomposition. The decomposition based
load balancer only equalizes the computational complexity and limits potential
optimizations for sparse domain decomposition. Therefore, we designed and im-
plemented two alternatives which additionally allow us to improve the sparse
domain decomposition.

Of the multitude of different improvement strategies, we propose and evaluate
these: shrinking of cuboids and Octree Domain Decomposition. The graph load
balancer performs at least as well as the original load balancer for nearly all
cases, while outperforming it on most non-trivial geometries. The decomposition
based load balancer (DBLB) does not achieve the efficiency of the graph based
load balancer, but still permits to utilize some of the gains due to the domain
decomposition improvements. As for the domain decomposition strategies, the
octree allows scaling of the cuboids to the complexity of the geometry at each
point. Octree decomposition creates better fitting domain decompositions, but

Optimized Hybrid Parallel Lattice Boltzmann Fluid Flow Simulations 829

measurements show that it sometimes results in higher overhead. Nevertheless,
the results hint at a better performance with more processors. The shrinking
strategy improves performance for the real world example from 75% up to 105%.
Further improvements are expected to be made by combining other measures and
fine-tuning settings. The achieved speed-up translates directly into time, money
and energy savings for research and industrial applications. It moves boundaries
for the problem size and geometry size even further, providing opportunities for
ever more complex simulations.

References

1. Bisson, M., Bernaschi, M., Melchionna, S., Succi, S., Kaxiras, E.: Multiscale hemo-
dynamics using GPU clusters. Communications in Computational Physics (2011)

2. Fietz, J.: Performance Optimization of Parallel Lattice Boltzmann Fluid Flow Sim-
ulations on Complex Geometries. Diplomarbeit, Karlsruhe Institute of Technology
(KIT), Department of Mathematics (December 2011)

3. Heuveline, V., Krause, M.J., Latt, J.: Towards a Hybrid Parallelization of Lattice
Boltzmann Methods. Computers & Mathematics with Applications 58, 1071–1080
(2009)

4. Junk, M., Klar, A.: Discretizations for the Incompressible Navier-Stokes Equations
Based on the Lattice Boltzmann Method. SIAM J. Sci. Comput. 22(1), 1–19 (2000)

5. Krause, M.J., Gengenbach, T., Heuveline, V.: Hybrid Parallel Simulations of Fluid
Flows in Complex Geometries: Application to the Human Lungs. In: Guarra-
cino, M.R., Vivien, F., Träff, J.L., Cannatoro, M., Danelutto, M., Hast, A., Perla,
F., Knüpfer, A., Di Martino, B., Alexander, M. (eds.) Euro-Par-Workshop 2010.
LNCS, vol. 6586, pp. 209–216. Springer, Heidelberg (2011)

6. Krause, M.J.: Fluid Flow Simulation and Optimisation with Lattice Boltzmann
Methods on High Performance Computers: Application to the Human Respiratory
System. Karlsruhe Institute of Technology, KIT (2010)

7. Massaioli, F., Amati, G.: Achieving high performance in a LBM code using
OpenMP. Unknown

8. Pohl, T., Deserno, F., Thurey, N., Rude, U., Lammers, P., Wellein, G., Zeiser, T.:
Performance Evaluation of Parallel Large-Scale Lattice Boltzmann Applications on
Three Supercomputing Architectures. In: Proceedings of the ACM/IEEE SC 2004
Conference Supercomputing 2004, p. 21 (2004)

9. Sanders, P., Schulz, C.: Engineering Multilevel Graph Partitioning Algorithms. In:
19th European Symposium on Algorithms (2011)

10. Skordos, P.: Initial and boundary conditions for the Lattice Boltzmann Method.
Phys. Rev. E 48(6), 4823–4842 (1993)

11. Sukop, M.C., Thorne, D.T.: Lattice Boltzmann modeling. Springer (2006)
12. Wellein, G., Zeiser, T., Hager, G., Donath, S.: On the single processor performance

of simple lattice Boltzmann kernels. Comput. Fluids 35(8-9), 910–919 (2006)
13. Zeiser, T., Götz, J., Stürmer, M.: On performance and accuracy of lattice Boltz-

mann approaches for single phase flow in porous media: A toy became an ac-
cepted tool - how to maintain its features despite more and mor complex (physi-
cal) models and changing trends in high performance computing!?. In: Shokina, N.,
Resch, M., Shokin, Y. (eds.) Proceedings of 3rd Russian-GermanWorkshop on High
Performance Computing, Novosibirsk. Springer (July 2007)

Topology-Aware Mappings

for Large-Scale Eigenvalue Problems

Hasan Metin Aktulga1, Chao Yang1, Esmond G. Ng1,
Pieter Maris2, and James P. Vary2

1 Lawrence Berkeley National Laboratory, Berkeley CA 94720, USA
2 Iowa State University, Ames IA 50011, USA

Abstract. Obtaining highly accurate predictions for properties of light
atomic nuclei using the Configuration Interaction (CI) approach requires
computing the lowest eigenvalues and associated eigenvectors of a large
many-body nuclear Hamiltonian matrix, Ĥ. Since Ĥ is a large sparse
matrix, a parallel iterative eigensolver designed for multi-core clusters
is used. Due to the extremely large size of Ĥ , thousands of compute
nodes are required. Communication overhead may hinder the scalability
of the eigensolver at such scales. In this paper, we discuss how to reduce
such overhead. In particular, we quantitatively show that topology-aware
mapping of computational tasks to physical processors on large-scale
multi-core clusters may have a significant impact on efficiency. For typ-
ical large-scale eigenvalue calculations, we obtain up to a factor of 2.5
improvement in overall performance by using a topology-aware mapping.

1 Introduction

High fidelity scientific simulations are nowadays carried out on multi-core ma-
chines that consist of thousands or tens of thousands of nodes. Hopper, a Cray
XE6 machine at the National Energy Research Scientific Center (NERSC), has
6,384 nodes and 24 cores per node. Kraken, a Cray XT5 platform at the National
Institute for Computational Sciences (NICS), has 9,408 nodes and 12 cores per
node. These nodes and cores are connected by a sophisticated communication
network that has a limited bandwidth. The bandwidth per flop ratio (BPF) of
these machines has exhibited a declining trend. For the successive Cray models
XT4, XT5 and XE6, the BPF ratios are 1.36, 0.23 and 0.10 bytes per flop, re-
spectively [2,3]. On exascale platforms, the BPF ratio is anticipated to be much
lower. This trend puts enormous pressure on scientific software developers to
devise new algorithms and implementations that have minimal communication
overhead. One way to achieve this goal is to develop algorithms that have a
lower communication volume and fewer number of messages. Another strategy,
which we will focus on in this paper, is to change the way processes are mapped
to physical processors so that the load on the interconnection network, which is
characterized by a number of metrics such as the average link dilation, traffic
and congestion, can be reduced. With this strategy, it is possible to reduce the
communication overhead in large-scale parallel computations [1].

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 830–842, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Topology-Aware Mappings for Large-Scale Eigenvalue Problems 831

0 2 4 6 8 10 12 14
N

max

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

M
-s

ch
em

e
ba

si
s

sp
ac

e
di

m
en

si
on

4He
6Li
8Be
10B
12C
16O
19F
23Na
27Al

0 2 4 6 8 10
N

max

10
0

10
3

10
6

10
9

10
12

10
15

nu
m

be
r o

f n
on

ze
ro

 m
at

rix
 e

le
m

en
ts

16O, dimension
2-body interactions
3-body interactions
4-body interactions
A-body interactions

Fig. 1. The dimension and the number of non-zero matrix elements of the nuclear
Hamiltonian with respect to Nmax and the number of particles A

In this paper, we show that changes in task-to-processor mapping can have
a drastic effect on the performance of large sparse eigenvalue calculations for
predicting nuclear structures. We explain the observed effects quantitatively by
reporting various load metrics associated with different mappings. Our results
confirm the need to seek a topology-aware mapping to reduce communication
overhead for large-scale parallel computations.

2 Eigensolver for the CI Approach

The key problem to be solved in nuclear structure calculations is the nuclear
many-body Schrödinger’s equation Hψ = Eψ, where ψ is a many-body wave-
function and H is a nuclear many-body Hamiltonian. One way to solve the
problem is to expand ψ in terms of Slater determinants of single-particle basis
functions that satisfy a number of contraints. A particular choice of single-
particle basis suitable for nuclear structure calculation is the harmonic oscillator
basis. The representation ofH under this basis expansion, which is often referred
to as the configuration interaction (CI) approach, is a sparse symmetric matrix
Ĥ . The dimension of Ĥ , which we denote by n, is defined by the number of
Slater determinants used in the expansion, which is in turn determined by the
number of nucleons A and a constraint on the harmonic oscillator quanta, which
is often denoted by Nmax. Higher Nmax values yield more accurate results for
the same nucleus, but at the expense of an exponential growth in problem size,
see Fig. 1.

Due to the large dimension and the sparsity of Ĥ, an iterative algorithm such
as the Lanczos algorithm is preferred to solve the eigenvalue problem described
above. The basic steps of the Lanczos algorithm are outlined in Alg. 1. The
computational cost of the algorithm is generally dominated by the first two
steps within the while loop: (i) multiplication of the sparse matrix Ĥ with the
most recent Lanczos vector v, (ii) orthogonalization of the new vector w with
respect to previous Lanczos vectors stored in V (a renormalization step may also
be desirable). In this section, we discuss how these two tasks are decomposed
into subtasks and how the subtasks are mapped to processing units for achieving
a load balanced parallel implementation of Alg. 1.

832 H.M. Aktulga et al.

Algorithm 1. The basic steps of the Lanczos Algorithm

Input: Ĥ, v0;
Output: ψ and E such that ‖Ĥψ − ψE‖F is small.
v ← v0/‖v0‖;
V ← (v);
while not converged do

w ← Ĥv;
w ← w − V V Tw;
v ← w/‖w‖;
V ← (V, v);
T ← V T ĤV ;
Diagonalize T to obtain (U,E);
Check convergence;

end while
ψ = V U ;

2.1 Sparse Matrix Vector Multiplication (SpMV)

On a distributed memory machine, the SpMV multiplication w ← Ĥv can be
carried out in parallel by partitioning the rows and columns of Ĥ and distributing
the nonzero elements of Ĥ among different processing units. This is the strategy
taken by the state-of-the-art nuclear CI calculation software package MFDn
(Many-body Fermion Dynamics for nuclear physics) [6,7]. An even distribution
of non-zero matrix elements over all processors is crucial for optimizing the use
of available memory and achieving good load-balance. This is accomplished in
MFDn by an appropriate matrix reordering through row/column permutation.

Since Ĥ is symmetric, we store only its lower triangular part to reduce memory
usage. Consequently, it is natural to organize processing units into an nd × nd

triangular grid over the Ĥ matrix, as shown in Fig. 2. Each processing unit,
which stores the (i, j)th portion of the sparse matrix Ĥ , can be labeled by its
row and column positions on the grid. The total number of processing units np

in this triangular grid is nd(nd+1)/2, where nd is also the number of processing
units along the diagonal.

A simple way to perform the SpMVmultiplication in parallel is to partition the
vector v by rows into {vi}, where i = 1, 2, ..., nd. in a way that is conformal with
the column partitioning of Ĥ as shown in Fig. 2. Row and column communication
groups, labeled by the communicator Crow and Ccol respectively, are set up to
allow vi to be broadcast among processing units that lie on the ith row or column
of the triangular grid. If we denote the submatrix of Ĥ assigned to the (i, j)th
processing unit by Ĥi,j , each processing unit performs two SpMVs of the form

wi = Ĥi,jvj and wj = ĤT
i,jvi. Two reductions are required (one along the

row communication groups and one along the column communication groups)
to merge local products wi and wj to form the global result vector w.

Topology-Aware Mappings for Large-Scale Eigenvalue Problems 833

lower triangle

�
�
�
�
�

�
�
�

�
��

BCast(x)

�
�
�
�
�

�
�
�
�

�
�
�

�
��

y ← Ax

�
�
�
�
�

�
�

�

Reduce(y)

upper triangle

�
�
�
�
�

���
��

�

BCast(xT)

�
�
�
�
�

�
�
�
�

�
�
�

�
��

yT ← ATxT

�
�
�
�
�

�
�

�

Reduce(yT)

Fig. 2. A visual illustration of the communication pattern for the distributed SpMV
procedure, as implemented in MFDn

If n is the dimension of Ĥ, the length of each distributed Lanczos vector is
roughly n/nd. The communication volume associated with the broadcast and
reduction operations required for SpMV multiplication is O(nnd) along the Ccol

and Crow groups. The dependence of the communication volume on the number
of diagonal processors nd suggests that a multi-threaded (hybrid MPI/OpenMP
parallel) implementation running on the same number of cores as a pure MPI
implementation would have less communication overhead. To be precise, a multi-
threaded implementation with t threads would generate

√
t times less com-

munication volume compared to the pure MPI version. Because in the hybrid
MPI/OpenMP implementation with t-way thread parallelism, nd decreases by a
factor of

√
t, while n does not change.

2.2 Basis Orthogonalization

In MFDn, the orthogonalization of a new basis vector w against a previously
constructed orthonormal basis contained in the matrix V is parallelized on a
nd×(nd+1)/2 2D grid reconfigured from the nd×nd triangular grid as shown in
Fig. 3. To maximize the amount of parallelism while minimizing communication
volume, we distribute V by using a hierarchical 1D distribution scheme. A basis
vector v is first divided into nd subvectors vj , j = 1, 2, ..., nd, each associated with
the jth row group of the 2D grid. Each subvector vj is then further partitioned
into (nd + 1)/2 parts and distributed among the processing units in the same
row group of the 2D grid.

After the SpMV multiplication w = Ĥv is completed, a scattering operation
is required to distribute wj conforming to the distribution of the vj subvectors
among the jth row group of the 2D grid for j = 1, 2, ...nd. Once w has been
distributed among all processing units, an all-reduce operation is required to
complete the orthogonalization w − V V Tw. Communication volume associated
with this all-reduce operation is typically small, when V does not contain too

834 H.M. Aktulga et al.

Fig. 3. Reconfiguring a nd×nd lower triangular processing grid (left) into a nd× (nd+
1)/2 rectangular grid (right) for basis orthogonalization

many basis vectors. Finally, since the next SpMV in our iterative eigensolver
requires the new basis vector vi to be available on all processing units within the
same column (or row) communication group, a gathering operation is required.
The scattering and gathering operations involve a communication volume of
O(n) only. Therefore, when the basis vectors are partitioned hierarchically in
1D, the total communication volume of the basis orthogonalization part is O(n),
which is considerably smaller than that of the SpMV part.

3 Estimating the Communication Overhead

While the communication volume often provides a good estimate of the efficiency
of a parallel program, the actual performance of the program will depend on
other factors. The mapping between computational tasks and physical processing
units has a strong influence, too. Therefore we need additional metrics that can
capture the effect of process topology on the actual performance of the parallel
program.

3.1 Network Load Model

We use a simplified version of the framework suggested by Hoefler and Snir [1].
A communication graph G = (VG , EG) is a directed graph, where VG is the set
of processes and an edge e = {u, v} ∈ EG denotes a message sent from process
u ∈ VG to v ∈ VG . We define two communication graphs, Gcol and Grow, which
are associated with the column and row communication groups of the triangular
grid, respectively.

Similarly, the physical interconnection network is represented as a directed,
weighted graph H = (VH, EH, cH), where VH is the set of compute nodes, EH is
the set of links between these nodes, and cH(e) corresponds to the bandwidth
of a link e = {u, v}. We assume that messages are routed between nodes using
the shortest path. We denote such a path by p(u, v), the set of links connecting
nodes u and v. Since there is usually more than one such shortest path, P(u, v)
is used to refer to the set of all shortest paths between u and v. We assume
that each path in P(u, v) is used with equal probability for sending a message.

Topology-Aware Mappings for Large-Scale Eigenvalue Problems 835

We also assume static routing, i.e., messages are not redirected when congestion
is detected on certain parts of the network.

Under the model described above, we define Γ : VG → VH as a function that
maps the vertices of a communication graph to the physical nodes in the network
graph. Three quality measures can be defined for a mapping Γ : (average) dilation
D(Γ), (average) traffic T (Γ) and (maximum) congestion X (Γ). These definitions
are similar to those given by Hoefler and Snir [1], but slightly simpler due to the
assumptions stated above. D(Γ) is the average number of links traveled by a
message:

D(Γ) =

∑
{u,v}∈EG |p(Γ (u), Γ (v))|

|EG |
(1)

Dilation is a measure of the total communication work that needs to be per-
formed by the interconnection network. As dilation increases, the load on the
interconnection network also increases.

We define traffic on a link TΓ (e) as the number of messages that passes through
the link e. Network traffic is the average traffic over all the links in an intercon-
nect:

TΓ (e) =
∑

{u,v}∈EG

|S = {p : p ∈ P(Γ (u), Γ (v)) ∧ e ∈ P}|
|P(Γ (u), Γ (v))| (2)

T (Γ) =

∑
e∈EH TΓ (e)
|EH|

(3)

Finally, congestion on a link is defined as X (e) = TΓ (e)/cH(e) and network con-
gestion is defined in terms of the maximum congestion on any of the network
links, X (Γ) = maxe∈EH X (e). Since a communication graph G does not contain
any time related information, X (Γ) may not be a good approximation to the
actual network congestion, in general. However, both Gcol and Grow capture the
communication happening in a small time window which begins and ends with
a single collective call. Therefore, X (Γ) is a good approximation to the net-
work congestions during the column and row communications of the eigensolver
described in Sect. 2.

3.2 Practical Considerations

The performance results presented in Sect. 5 were obtained using the Hopper
super-computer, which is a Cray XE6 machine at NERSC. Each compute node
on Hopper contains 2 twelve-core AMD “MagnyCours” processors (24 cores per
node) with 32GBs of memory. Hopper uses the Cray “Gemini” interconnect for
internode communication. The interconnection network has a 3D torus topology
with dimensions 17×8×24. Two nodes share a single Gemini Network Interface
Card (NIC), which has a total of 10 network connections, two each in +x, -x, +z,
-z, and one +y and one -y links [3]. Consequently, the capacity of a link (cH) in
+y or -y direction is half the capacity of a link in other directions.

In order to compute the distance between two processing units, the physical
coordinates of these units must be known. This machine-specific information can

836 H.M. Aktulga et al.

be obtained through xtprocadmin and xtdb2proc utilities available in the Cray
Linux Environment (CLE). Since Hopper’s network has a 3D torus topology,
there is a physical link between a node and its 6 neighbors located at +x, -x,
+y, -y, +z and -z directions. So the number of links that a message needs to
hop through is simply the Manhattan distance 1 (in 3D) between the physical
coordinates of its start and destination nodes. On Hopper, a message is routed
from the start node to the destination node through the unique shortest path
using the links in the x dimension first, then the links in the y dimension, and
finally those in the z dimension.

In Cray’s MPICH2-based MPI library on Hopper, the collective operations of
MPI_Bcast and MPI_Reduce are implemented using a binomial tree algorithm [5].
EGcol

and EGrow are constructed by identifying the the binomial trees associated
with the column and row communication groups of the triangular grid.

On Hopper, multiple processes would be mapped to the same physical node.
As a result, Γ is a many-to-one function in this case. We assume that the intra-
node communication bandwidth is infinite. Therefore, we do not include edges
that correspond to intra-node communications in our model.

4 Heuristic for Task-to-Processor Mapping

Given a communication graph G and a physical interconnection network H,
the problem of finding a mapping Γ : VG → VH that minimizes the effective
load on the network measured in terms of D(Γ), T (Γ) and X (Γ) is an NP-
hard problem [1]. If we label the vertices in VG by 1, 2,..., np, constructing Γ
is equivalent to assigning these numbers to processors placed on a triangular
grid. For example, we may assign 1, 2, ..., nd to the diagonal processors first,
and continue the assignment for each of the subdiagonals until all processors on
the grid are labeled. This gives what we call the diagonal-major (DM) ordering
of the processors. Alternatively, we may go through the triangular processor
grid column by column. This gives the column-major (CM) ordering. Row and
column groups are created by grouping the numbered processing units based on
their column and row positions. A clear drawback of this type grouping scheme
is that the number of processing units in each row/column communication group
is different, and the difference can be quite large. For example, while the largest
Ccol group contains nd processing units, the smallest Ccol group contains a single
processing unit. As a result, there is a significant amount of imbalance in terms
of communication volume among different communication groups.

To create a better mapping and grouping strategy, we extend the triangular
grid to a square grid (note that Ĥ is symmetric), but require each processing
unit to take either the (i, j)th grid point or the (j, i)th grid point, but not both.
We modify the DM and CM orderings by limiting the number of processing
units in each row or column of the grid to (nd+1)/2. If assigning a task number
to the (i, j)th grid point violates this rule, we map the task to the (j, i)th grid
point in the modified DM scheme which we refer to as balanced diagonal major

1 See http://en.wikipedia.org/wiki/Manhattan_distance for a definition.

http://en.wikipedia.org/wiki/Manhattan_distance

Topology-Aware Mappings for Large-Scale Eigenvalue Problems 837

Fig. 4. Process orderings from left to right: DM, CM, BDM and BCM. Tasks mapped
to the same column (row) of the grid belong to the same column (row) communication
groups. Tasks with the same fill patterns belong to the same groups created for basis
orthogonalization

(BDM) ordering. In the modified CM scheme, which we refer to as balanced
column major (BCM) ordering, we start from the diagonal grid point in each
column and assign a task to (i− nd, j)th grid point when i > nd. Figure 4 gives
a schematic illustration of how DM, CM, BDM and BCM look for a 5× 5 grid.

5 Performance Evaluation

In this section, we compare the mapping schemes described above on a few
nuclear CI test problems involving 10B. Different combinations of truncation
(Nmax) and total magnetic angular momentum (Mj) parameters are used. Ta-
ble 1 gives the size and sparsity characteristics for these problems and the num-
ber of cores used to solve these problems. The size of the problem (indicated by
nnz(Ĥ)) increases roughly by a factor of 4 each time we change the (Nmax,Mj)
parameters. Since we are mainly interested in the weak scaling of MFDn, we
increase the number of cores used by approximately a factor of 4, too.

Table 1. Matrix dimensions n and number of non-zero matrix elements nnz of the
Hamiltonian Ĥ associated with nuclear structure calculations of 10B using different
parameter pairs (Nmax,Mj)

Test Name (Nmax, Mj) n(Ĥ) nnz(Ĥ) np n(Ĥ)/nd nnz(Ĥ)/np

test276 (7,0) 4.66× 107 2.81× 1010 276 2.0× 106 1.1× 108

test1128 (8,1) 1.60× 108 1.24× 1011 1128 3.4× 106 1.1× 108

test4560 (9,2) 4.82× 108 4.62× 1011 4560 5.1× 106 1.0× 108

test18336 (10,3) 1.30× 109 1.51× 1012 18336 6.8× 106 0.9× 108

5.1 Performance Results with Pure MPI Implementation

Our experiments were performed on Hopper. Figure 5 shows the observed com-
munication overhead associated with DM, CM, BDM and BCM ordering schemes
for all four test problems. In each case, the wallclock time spent for communi-
cation in DM (tDM) is taken as the baseline (shown at 100%), and those asso-
ciated with other ordering schemes are shown as percentages of tDM . Each bar

838 H.M. Aktulga et al.

in Fig. 5 shows three values: tcol, trow, torth. They correspond to the wallclock
times elapsed during communications within the column and row groups of the
SpMV part and communication done for basis orthogonalization, respectively.
We observe that the communication overhead of BDM is surprisingly higher than
that associated with DM. We dropped the BDM scheme from larger test cases
(test4560 and test18336.) Both CM and BCM produce significant reductions in
communication time compared to DM. The reduction ranges from about a factor
of 2 for the smallest test-case to a factor of 5 for larger ones. Although keeping
the same number of processing units in each communication group seems to be
desirable, the improvement of BCM over CM is small in larger test cases.

trow torth tcol

test276 test1128 test4560 test18336

Fig. 5. Communication overhead associated with DM, CM, BDM and BCM ordering
schemes with the pure MPI implementation

As discussed in Sect. 2, communication volume required in basis orthogonal-
izaton is relatively small compared to that required in SpMV. Therefore it is
not surprising to see that tcol and trow dominate the communication overhead
in Fig. 5. In the largest test case involving 18,336 cores, running 99 Lanczos it-
erations takes 1,260 seconds when the DM ordering is used. On average 80% (or
1,010 seconds) of the total runtime is spent in communication. As can be seen,
in the DM column of test18336 in Fig. 5, column group communications during
SpMV is responsible for about 50% of the total communication time, and row
group communications of SpMV is responsible for about 40%. The communi-
cation required in orthogonalization accounts for only 10%. Mapping tasks to
processors according to the BCM ordering reduces the communication overhead
by a factor of 5. While the overhead in all communication groups decreases
sharply, the largest gain is seen in the column group, in which communication
time drops from roughly 500 seconds for DM to only 50 seconds in BCM.

Since communication takes a significant portion of the total running time,
the reductions in communication overhead achieved by BCM ordering translate
to considerable speed-ups as summarized in Tab. 2. The last row in this table
shows that the overall impact is as high as a factor of 2.57 speed-up in the total
running time.

Topology-Aware Mappings for Large-Scale Eigenvalue Problems 839

Table 2. Single-threaded performance improvement using different orderings

Ordering Stats test276 test1128 test4560 test18336

DM
ttotal (sec) 211 410 567 1260

tcomm/ttotal 24% 47% 56% 80%

BDM
speed-up 0.93 0.95 – –

tcomm/ttotal 30% 50% – –

CM
speed-up 1.12 1.41 1.57 2.52

tcomm/ttotal 16% 26% 31% 50%

BCM
speed-up 1.18 1.50 1.59 2.57

tcomm/ttotal 12% 21% 30% 49%

Table 3. Communication analysis for test276 and test1128

test276 test1128

Ordering Stats Ccol Crow Ccol Crow

DM
tcomm (sec) 19 21 89 78

{D, T ,X} {0.9, 20, 56} {0.8, 21, 62} {5.5, 24, 148} {5.6, 26, 136}

BDM
tcomm (sec) 26 31 90 97

{D, T ,X} {1.1, 34, 86} {1.1, 34, 86} {7.5, 49, 163} {7.4, 48, 167}

CM
tcomm (sec) 8.5 15 22 39

{D, T ,X} {0.1, 3, 8} {0.7, 20, 56} {0.3, 5, 20} {5.5, 23, 167}

BCM
tcomm (sec) 5.5 10.5 18 32

{D, T ,X} {0.0, 0, 0} {0.8, 14, 44} {0.0, 0, 0} {5.2, 20, 122}

Table 4. Communication analysis for test4560 and test18336

test4560 test18336

Ordering Stats Ccol Crow Ccol Crow

DM
tcomm (sec) 145 125 500 400

{D, T ,X} {2.1, 97, 538} {2.1, 98, 538} {3.7, 121, 1489} {3.6, 120, 1557}

CM
tcomm (sec) 20 75 55 155

{D, T ,X} {0.1, 11, 25} {2.1, 88, 290} {0.1, 15, 48} {3.6, 120, 632}

BCM
tcomm (sec) 15 75 50 150

{D, T ,X} {0.0, 4, 5} {2.4, 81, 330} {0.0, 6, 20} {3.6, 111, 626}

Tables 3 and 4 summarize the wallclock time used for communication within
column and row groups for four different orderings schemes and two test prob-
lems each. All timing figures are accompanied by a triplet of numbers {D, T ,X}
that correspond to the dilation, average traffic and congestion metrics defined
in Sect. 3.1. Note that message sizes vary significantly between test cases (see
Tab. 1). Therefore we take the message size in test276 as our base unit and scale
all metrics reported accordingly by dividing this message size to ensure a fair
comparison across all test cases. A lower {D, T ,X} value indicates lower load on

840 H.M. Aktulga et al.

the network, hence lower communication overhead. For CM and BCM orderings,
the network load due to communication within column groups is considerably
less than that of row groups. This observation explains the lower communica-
tion overhead seen in column groups. In fact, this also indicates that our simple
heuristic of mapping the processes in the same column communication group
into “nearby” nodes actually works well.

In Fig. 5, it is not intuitive at first to see that BDM performs worse than
DM. Even though the BDM ordering balances communication volume over all
groups, Table 3 shows that the dilation associated with BDM is higher than that
of the DM. Consequently, the increased network load in BDM leads to a poor
overall performance. This observation suggests that topology-awareness is more
important than simply keeping communication volume balanced among different
groups when we construct a task-to-processor map.

As discussed above, computational load per processor is roughly the same
across all test cases. However, as seen in Tab. 3 and 4, communication overhead
increases sharply as the test problem becomes larger. This sharp increase is par-
tially caused by a fast increase in communication volume (which is of magnitude
O(nnd)) which exceeds the linear increase in the network bandwidth with re-
spect to np. However, network dilation and, perhaps more importantly, network
congestion increases are also important factors to consider.

We can gauge the severity of the network congestion in the row communication
group by comparing the {D, T ,X} triplets associated with the DM ordering with
that associated with the BCM orderings in test18336. Even though dilation and
average traffic seems to be roughly the same for both orderings, tcomm of DM
ordering is significantly higher than that of BCM (400 vs. 150 seconds). So is its
network congestion (1557 vs. 626).

5.2 Performance Results with the MPI/OpenMP Implementation

Table 5 compares the communication overhead of the pure MPI and hybrid
MPI/OpenMP implementations of the Lanczos algorithm for the large test cases.
Both implementations use the BCM ordering. Despite the reduction in communi-
cation volume, the communication time used in the column groups is much higher
in the multi-threaded implementation for the test4560 problem. This is due to
the increased dilation between communicating pairs in the column groups of the
multi-threaded implementation. However, this difference is likely to vanish with

Table 5. Comparison of the pure MPI and hybrid MPI/OpenMP implementations for
large testcases using approximately the same number of cores

test4560 test18336

Threading Stats Ccol Crow Ccol Crow

single
tcomm (sec) 15 75 50 150

{D, T ,X} {0.0, 4, 5} {2.4, 81, 330} {0.0, 6, 20} {3.6, 111, 626}

multi
tcomm (sec) 40 60 58 110

{D, T ,X} {0.3, 24, 37} {3.4, 44, 159} {0.4, 29, 100} {4.3, 89, 365}

Topology-Aware Mappings for Large-Scale Eigenvalue Problems 841

increasing problem sizes, as indicated by the test18336 results. Multi-threaded
implementation performs clearly better along the unoptimized Crow communi-
cator, where the reduced number of messages and communication volume results
in less traffic and congestion on the network.

6 Conclusions and Future Work

We developed topology-aware task-to-processor mappings to reduce the commu-
nication overhead in a parallel implementation of the Lanczos algorithm used
to solve the nuclear many-body Schrödinger’s equation. The effectiveness of a
mapping can be assessed by examining the average network dilation (D), aver-
age traffic (T) and the maximum network congestion (X) associated with the
mapping. Each mapping corresponds to a particular ordering of the distributed
tasks. We compared several mapping strategies and showed that the balanced
column major (BCM) ordering of tasks gives the best performance through a
number of computational experiments. This observation is consistent with our
network load model which is defined in terms (D, T ,X). However, even in the
case of BCM ordering, our optimization of the task-to-processor mapping is not
performed globally among all processors. Therefore, we believe further improve-
ment to the BCM ordering scheme is possible by applying topology mapping
techniques described in [1,2] to all three communication groups created in our
implementation of the Lanczos algorithm. We will focus on this approach in the
future. Another factor that may affect the choice of an optimal mapping is the
combination of thread-level parallelism with message passing based parallelism.
This is an important issue for multi-core/many-core platforms.

Acknowledgments. This work was supported in part through the Scientific
Discovery through Advanced Computing (SciDAC) program funded by the U.S.
DOE Office of Advanced Scientific Computing Research and Office of Nuclear
Physics, by U.S. DOE Grants DE-FC02-09ER41582 (SciDAC/UNEDF) and DE-
FG02-87ER40371, and by the US NSF grant 0904782. Computational resources
were provided by NERSC, which is supported by the U.S. DOE Office of Science.

References

1. Hoefler, T., Snir, M.: Generic Topology Mapping Strategies for Large-scale Par-
allel Architectures. In: Proceedings of the 2011 ACM International Conference on
Supercomputing (ICS), Tucson, AZ (June 2011)

2. Bhatele, A., Gupta, G., Kale, L.V., Chung, I.-H.: Automated Mapping of Regular
Communication Graphs on Mesh Interconnects. In: Proceedings of International
Conference on High Performance Computing, HiPC (2010)

3. NERSC, Hopper, NERSC’s Cray XE6 System (January 2012), Web. (February 15,
2012), http://www.nersc.gov/users/computational-systems/hopper/.

4. Demmel, J.: Applied Numerical Linear Algebra, 1st edn. SIAM (1997)

http://www.nersc.gov/users/computational-systems/hopper/

842 H.M. Aktulga et al.

5. MPICH2, MPICH2: High-performance and Widely Portable MPI,
http://www.mcs.anl.gov/research/projects/mpich2

6. Sternberg, P., Ng, E.G., Yang, C., Maris, P., Vary, J.P., Sosonkina, M., Le, H.V.: Ac-
celerating Configuration Interaction Calculations for Nuclear Structure. In: The Pro-
ceedings of the 2008 ACM/IEEE Conference on Supercomputing (SC 2008) (2008)

7. Maris, P., Sosonkina, M., Vary, J.P., Ng, E.G., Yang, C.: Scaling of ab-initio nuclear
physics calculations on multicore computer architectures. Procedia CS 1, 97–106
(2010)

http://www.mcs.anl.gov/research/projects/mpich2

Fast and Effective Lossy Compression

Algorithms for Scientific Datasets

Jeremy Iverson1, Chandrika Kamath2, and George Karypis1

1 University of Minnesota, Minneapolis MN 55455, USA
2 Lawrence Livermore National Laboratory, Livermore CA 94550, USA

Abstract. This paper focuses on developing effective and efficient algo-
rithms for compressing scientific simulation data computed on structured
and unstructured grids. A paradigm for lossy compression of this data is
proposed in which the data computed on the grid is modeled as a graph,
which gets decomposed into sets of vertices which satisfy a user defined
error constraint ε. Each set of vertices is replaced by a constant value
with reconstruction error bounded by ε. A comprehensive set of exper-
iments is conducted by comparing these algorithms and other state-of-
the-art scientific data compression methods. Over our benchmark suite,
our methods obtained compression of 1% of the original size with aver-
age PSNR of 43.00 and 3% of the original size with average PSNR of
63.30. In addition, our schemes outperform other state-of-the-art lossy
compression approaches and require on the average 25% of the space
required by them for similar or better PSNR levels.

1 Introduction

The process of scientific discovery often requires scientists to run simulations,
analyze the output, draw conclusions, then re-run the simulations to confirm
or expand hypothesis. One of the most significant bottlenecks for current and
future extreme-scale systems is I/O. In order to facilitate the scientific process
described above, it is necessary for scientists to have efficient means to output
and store data for offline analysis. To facilitate this, data compression is turned
to, to create reduced representations of the resulting data for output, in such a
way that the original result data can be reconstructed off-line for further analysis.

Straightforward approaches for scientific data compression exist in lossless
techniques designed specifically for floating-point data. However, due to the high
variability of the representation of floating-point numbers at the hardware level,
the compression factors realized by these schemes are often very modest [4,10].
Since most post-run analysis is robust in the presence of some degree of error, it
is possible to employ lossy compression techniques rather than lossless, which are
capable of achieving much higher compression rates at the cost of a small amount
of reconstruction error. As a result, a number of approaches have been investi-
gated for lossy compression of scientific simulation datasets including classical [7]
and diffusion wavelets [3], spectral methods [5], and methods based on the tech-
niques used for transmission of HDTV signals [2]. However, these approaches

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 843–856, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

844 J. Iverson, C. Kamath, and G. Karypis

are either applicable only to simulations performed on structured grids or have
high computational requirements for in situ data compression applications.

In this paper we investigate the effectiveness of a class of lossy compression
approaches that replace the actual values associated with sets of grid-nodes with
a constant value whose difference from the actual value is bounded by a user-
supplied error tolerance parameter. We develop approaches for obtaining these
sets by considering only the nodes and their values and approaches that con-
strain these sets to connected subgraphs in order to further reduce the amount
of information that needs to be stored. To ensure that these methods are ap-
plicable for in situ compression applications, our work focuses on methods that
have near-linear complexity and are equally applicable to structured and un-
structured grids. We experimentally evaluate the performance of our approaches
and compare it against that of other state-of-the-art data compression meth-
ods for scientific simulation datasets. Over our benchmark suite, our methods
obtained compression of 1% of the original size with average PSNR of 43.00
and 3% of the original size with average PSNR of 63.30. Our experiments show
that our methods achieve compressed representations, which on average, require
50%–75% less space than competing schemes at similar or lower reconstruction
errors.

2 Definitions and Notations

The methods developed in this paper are designed for scientific simulations in
which the underlying physical domain is modeled by a grid. Here we assume that
the grid topology is fixed and thus can be compressed and stored separately from
the data which is computed on it. Each node of a grid has one or more values
associated with it that correspond to the quantities being computed in the course
of the simulation. The grid can be either structured or unstructured. A structured
grid is a collection of elements which have an implicit geometric structure. That
structure is a basic rectangular matrix structure, such that in IR3, the nodes can
be indexed by a triplet (x, y, z). Thus, the grid topology can be described simply
by the number of nodes in each of the three dimensions. An unstructured grid
has no implicit structure. Since there is no implicit structure, the topology is
described by identifying the elements which each node belongs to. In this work,
we model these grids via a graph G = (V,E, L). The set of vertices V , models
the nodes of the grid for which values are computed. The set of edges E, models
the connectivity of adjacent nodes. Two nodes are adjacent if they belong to the
same element in the grid. The set of vertex-labels L, models the values computed
at each node of the grid such that li stores the value computed for node vi. In
this work we assume there is only one value being computed for each node of
the grid.

An ε-bounded set-based decomposition ofG is a partitioning of its set of vertices
into non-overlapping sets {V1, . . . , Vk} such that for each Vi, ∀vq, vr ∈ Vi, |lq −
lr| ≤ ε (i.e., each set contains vertices whose values differ at most by ε). When the
induced subgraph Ri = (Vi, Ei) of G is connected, the set Vi will also be referred

Fast and Effective Lossy Compression Algorithms for Scientific Datasets 845

to as a region of G. When all sets in an ε-bounded set-based decomposition form
regions, then the decomposition will be referred to as an ε-bounded region-based
decomposition of G. Given a set of vertices Vi, the average value of its vertices
will be referred to as its mean value and will be denoted by μ(Vi). Given a region
Vi, its boundary vertices are its subset of vertices Bi ⊆ Vi that are adjacent to
at least one other vertex not in Vi, and its interior vertices are the subset of
vertices Ii ⊆ Vi that are adjacent only to vertices in Vi. Note that Ii ∪Bi = Vi.

3 Related Work

Most of the work on lossy compression of scientific datasets has focused on
compressing the simulation output for visualization purposes. The most pop-
ular techniques in this area are based on wavelet theory [7] that produces a
compression-friendly sparse representation of the original data. To further spar-
sify this representation, coefficients with small magnitude are dropped with little
impact on the reconstruction error [8,9]. Due to the nature of the wavelet trans-
form, classical wavelet methods apply only to structured grids. An alternative
to wavelet compression is Adaptive Coarsening (AC) [11]. AC is an extension
of the adaptive sub-sampling technique first introduced for transmitting HDTV
signals [2], which is based on down-sampling a mesh in areas which can be re-
constructed within some error tolerance and storing at full resolution the others.
In [12], the authors use AC to compress data on structured grids and compare
the results to wavelet methods. Even though AC can potentially be extended for
unstructured grids [11], current implementations are limited to structured grids.

Another approach is spectral compression that extends the discrete cosine
transform used in JPEG, from 2D regular grids to the space of any dimensional
unstructured grids [5]. This method uses the Laplacian matrix of the grid to
compute topology aware basis functions. The basis functions serve the same
purpose as those in the wavelet methods and define a space where the data can
be projected to, in order to obtain a sparse representation. Since the Laplacian
matrix can be defined for the nodes of any grid, this method is not limited
to structured grids. However, deriving the basis functions from the Laplacian
matrix of large graphs is computationally prohibitive. For this reason, practical
approaches first use a graph partitioning algorithm to decompose the underlying
graph into small parts, and each partition is then compressed independently
using spectral compression [5]. Finally, another approach, introduced in [3], is
diffusion wavelets. The motivation for diffusion wavelets is the same as that
of spectral compression, and is used to generate basis functions for a graph.
However, instead of using the eigenvectors of the Laplacian matrix to derive
these basis functions, diffusion wavelets generate them by taking powers of a
diffusion operator. The advantage of diffusion wavelet is that its basis functions
capture characteristics of the graph at multiple resolutions, while spectral basis
functions only capture global characteristics.

846 J. Iverson, C. Kamath, and G. Karypis

4 Methods

In this work we investigated the effectiveness of a lossy compression paradigm for
grid-based scientific simulation datasets that replaces the values associated with
a set of nodes with a constant value whose difference from the actual values is
bounded. Specifically, given a graph G = (V,E, L) modeling the underling grid,
this paradigm computes an ε-bounded set-based decomposition {V1, . . . , Vk} ofG
and replaces the values associated with all the nodes of each set Vi, with its mean
value μ(Vi). This paradigm bounds the point-wise error to be no more than ε,
whose actual value is explicitly controlled by the users based on their subsequent
analysis requirements. Since the values associated with the nodes tend to exhibit
local smoothness [1], these value substitutions increase the degree of redundancy,
which can potentially lead to better compression.

Following this paradigm, we developed two classes of approaches for obtaining
the ε-bounded set-based decomposition of G. The first class focuses entirely on
the vertices of the grid and their values, where the second class also takes into
account the connectivity of these vertices in the graph. In addition, we developed
different approaches for encoding the information that needs to be stored on the
disk in order to maximize the overall compression. The description of these
algorithms is provided in the subsequent sections.

In developing these approaches, our research focused on algorithms whose un-
derlying computational complexity is low because we are interested in being able
to perform the compression in-situ with the execution of the scientific simulation
on future exascale-class parallel systems. As a result of this design choice, the
algorithms that we present tend to find sub-optimal solutions but do so in time
that in most cases is bounded by O(|V | log |V |+ |E|).

4.1 Set-Based Decomposition

This class of methods derives the ε-bounded set-based decomposition {V1, . . . , Vk}
of the vertices by focusing entirely on their values. Towards this end, we devel-
oped two different approaches. The first is designed to find the decomposition
that has the smallest cardinality (i.e., minimize k), whereas the second is de-
signed to find a decomposition that contains large-size sets.

The first approach, referred to as SBD1, operates as follows. The vertices of
G are sorted in non-decreasing order based on their values. Let 〈vi1 , . . . , vin〉 be
the sequence of the vertices according to this ordering, where n is the number of
vertices in G. The vertices are then scanned sequentially from vi1 up to vertex
vij such that lij − li1 ≤ ε and lij+1 − li1 > ε. The vertices in the set {vi1 , . . . , vij}
satisfy the constraint of an ε-bounded set and are used to form a set of the set-
based decomposition. These vertices are then removed from the sorted sequence
and the above procedure is repeated on the remaining part of the sequence until
it becomes empty. It can be easily shown that the above greedy algorithm will
produce a set-based decomposition that has the smallest number of sets for a
given ε.

Fast and Effective Lossy Compression Algorithms for Scientific Datasets 847

The second approach, referred to as SBD2, utilizes the same sorted sequence
of vertices 〈vi1 , . . . , vin〉 but it uses a different greedy strategy for constructing
the ε-bounded sets. Specifically, it identifies the pair of vertices viq and vir such
that lir − liq ≤ ε and r − q is maximized. The vertices in the set {viq , . . . , vir}
satisfy the constraint of an ε-bounded set and are used to form a set of the set-
based decomposition. The original sequence is then partitioned into two parts:
〈vi1 , . . . viq−1 〉 and 〈vir+1 , . . . , vin〉, and the above procedure is repeated recur-
sively on each of these subsequences. Note that the greedy decision in this ap-
proach is that of finding a set that has the most vertices (by maximizing r− q).
It can be shown that SDB2 will lead to a decomposition whose maximum cardi-
nality set will be at least as large as the maximum cardinality set of SBD1 and
that the cardinality of the decomposition can be greater than that of SDB1’s
decomposition.

Decomposition Encoding. We developed two approaches for encoding the
vertex values derived from the ε-bounded set-based decomposition. In both of
these approaches, the encoded information is then further compressed using
standard lossless compression methods such as GZIP, BZIP2, and LZMA.

The first approach uses scalar quantization and utilizes a pair of arrays Q and
M . Array Q is of size k (the cardinality of the decomposition) and Q[i] stores the
mean value μ(Vi) of Vi. Array M is of size n (the number of vertices) and M [j]
stores the number of the set that vertex vj belongs to. During reconstruction,
the value of vj is given by Q[M [j]]. Since for reasonable values of ε, k $ n,
the number of distinct values in M will be small, leading to a high degree of
redundancy that can be exploited by the subsequent lossless compression step.
We will refer to this approach as scalar quantization encoding and denote it by
SQE.

The second approach encodes the information by sequentially storing the ver-
tices that belong to each set of the decomposition. Specifically, it uses three
arrays Q, S, and P , of sizes k, k, and n, respectively. Array Q is identical to
the Q array of SQE and array S stores the number of vertices in each set (i.e.,
S[i] = |Vi|). Array P is used to store the vertices of each set in consecutive
positions, starting with those of set V1, followed by V2, and so on. The vertices
of each set are stored by first sorting them in increasing order based on their
number and then representing them using a differential encoding scheme. The
smallest numbered vertex of each set is stored as is and the number of each
successive vertex is stored as the difference from the preceding vertex number.
Since each vertex-set will likely have a large number of vertices, the differential
encoding of the sorted vertex lists will tend to consist of many small values, and
thus increase the amount of redundancy that can be exploited by the subsequent
lossless compression step. We will refer to this approach as differential encoding
and denote it by DE.

Vertex Ordering. To achieve good compression using the above encoding
schemes, vertices which are close in the vertex ordering should have similar
values. Towards this end, we investigate three vertex orderings which are as

848 J. Iverson, C. Kamath, and G. Karypis

follows. The first is the original ordering of the nodes, that is often derived by
the grid generator and tends to have a spatial coherence. The second ordering
is a breadth first traversal of the graph starting from a randomly selected ver-
tex. The third ordering is a priority first traversal, in which priority is given to
those vertices which are adjacent to the most vertices which have been previ-
ously visited. Arranging the vertices according to their visit order is intended to
put together in the ordering vertices that are close in the graph topology. Due
to the local smoothness of values, vertices that appear close in the ordering will
share similar values.

4.2 Region-Based Decomposition

This class of methods derives an ε-bounded set-based decomposition {V1, . . . , Vk}
by requiring that each set Vi also forms a region (i.e., its induced subgraph of
G is connected). The motivation behind this region-based decomposition is to
reduce the amount of data that needs to be stored by only writing information
about Vi’s boundary vertices and a select few of its interior vertices. During
reconstruction, by taking advantage of Vi’s connectivity, its non-saved interior
vertices can be identified by a depth- or breadth-first traversal of G starting at
the saved interior vertices and terminating at its boundary vertices. The set of
vertices visited in the course of this traversal will be exactly those in Vi. From this
discussion, we see that the amount of compression that can be achieved by this
class of methods is directly impacted by the number of boundary vertices that
must be stored. Thus, the region identification approaches must try to reduce
the number of boundary vertices. Towards this end, we developed three different
heuristic approaches whose description follows.

The first approach, referred to as RBD1 , is designed to compute a decomposi-
tion that minimizes the number of regions. The motivation behind this approach
is that by increasing the average size of each region (due to a reduction in the de-
composition’s cardinality), the number of interior vertices will also increase. RBD1
initially sorts the vertices in away identical to SBD1, leading to the sorted sequence
s = 〈vi1 , . . . , vin〉. Then, it selects the first vertex in the sequence (vi1), assigns it
to the first region V1, and removes it from s. It then proceeds to select from s a
vertex vij that is adjacent to at least one vertex in V1 and lvij − lv1 ≤ ε, inserts it

into V1, and removes it from s. This step is repeated until no such vertex can be
selected or s becomes empty. The above algorithm ensures that V1 is an ε-bounded
set and that the subgraph of G induced by V1 is connected. Thus, V1 is a region
and is included in the region-based decomposition. The above procedure is then
repeated on the vertices remaining in s, each time identifying an additional region
that is included in the decomposition. Note that unlike the algorithm for SBD1,
the above algorithm does not guarantee that it will identify the ε-bounded region-
based decomposition that has the minimum number of regions.

The second approach, referred to as RBD2 , is designed to compute a decom-
position that contains large regions, as the regions that contain a large number
of vertices will also tend to contain many interior vertices. One way of develop-
ing such an algorithm is to use the greedy approach similar to that employed

Fast and Effective Lossy Compression Algorithms for Scientific Datasets 849

by SBD2 to repeatedly find the largest region from the unassigned vertices and
include it in the decomposition. However, due to the region’s connectivity re-
quirement, this is computationally prohibitive. For this reason, we developed an
algorithm that consists of two steps. The first step is to obtain an ε-bounded set-
based decomposition {V1, . . . , Vk} using SBD1. The second step is to compute
an ε-bounded region-based decomposition of each set Vi. The union of these re-
gions over V1, . . . , Vk is then used as the region-based decomposition computed
by RBD2. This two-step approach is motivated by the following observation.
One of the reasons that prevents RBD1 from identifying large regions is that it
starts growing each successive region from the lowest-valued unassigned vertex
and does not stop until all of the unassigned vertices adjacent to that region
have values that will violate the ε bound. This will tend to fragment subse-
quent regions as the are constrained by the initial vertices that have low values.
RBD2, by forcing RBD1’s region identification algorithm to stay within each set
Vi, prevents this from happening and as our experiments will later show, lead
to a decomposition that has smaller number of boundary vertices and better
compression.

Finally, the third approach, referred to as RBD3 , is designed to directly
compute a decomposition whose regions have a large number of interior vertices.
It consists of three distinct phases. The first phase identifies a set of core regions
that contain at least one interior vertex, the second phase expands these regions
by including additional vertices to them, and the third phase creates non-core
regions. Let V ′ be the subset of vertices of V such that ∀v ∈ V ′, v ∪ adj(v) is an
ε-bounded set, where adj(v) is the set of vertices adjacent to v. A core region,
Vi, is created as follows. An unassigned vertex v ∈ V ′ whose adjacent vertices
are also unassigned is randomly selected and v ∪ adj(v) is inserted into Vi. Then
the algorithm proceeds to identify an unassigned vertex u ∈ V ′ such that: (i) it
is connected to at least one vertex in Vi, (ii) all the vertices in adj(u) \ Vi are
also unassigned, and (iii) Vi∪{u}∪adj(u) is an ε-bounded set. If such a vertex u
exists, then u and adj(u) \ Vi are inserted into Vi. If no such vertex exists, then
Vi’s expansion stops. The above procedure is repeated until no more core regions
can be created. Note that by including u and its adj(u) \ Vi vertices into Vi, we
ensure that u becomes an interior vertex of Vi. During the second phase of the
algorithm, the vertices that have not been assigned to any region are considered.
If a vertex v can be included to an existing region while the resulting region
remains an ε-bounded set, then it is assigned to that. Finally, the third phase is
used to create additional regions containing the remaining unassigned vertices
(if they exist), which is done using RBD1.

Decomposition Encoding. As discussed earlier, the region-based decomposi-
tion allows us to reduce the storage requirements by storing only the boundary
vertices along with the interior vertices that are used as the seeds of the (depth-
or breadth-first) traversals. For each region Vi, the set of seed-vertices Isi is de-
termined as follows. An interior vertex is randomly selected, added to Isi , and
a traversal from that vertex is performed terminating at Vi’s boundary vertices.
If any of Vi’s interior vertices has not been visited, then the above procedure is

850 J. Iverson, C. Kamath, and G. Karypis

repeated on the unvisited vertices, each time adding an additional source ver-
tex into Isi . In most cases, one seed vertex will be sufficient to traverse all the
interior vertices, but when regions are contained within other regions, multiple
seed vertices may be required. Also, in the cases in which Vi consists of only
boundary vertices, Isi will be empty.

An additional storage optimization is possible, as there is no need to store
the boundary vertices for all the regions. In particular, consider a region Vi and
let {Vi1 , . . . , Vim} be the set of its adjacent regions in the graph. We can then
identify Vi by performing a traversal from the vertices in Isi that terminates at
the boundary vertices of Vi’s adjacent regions. All the vertices visited during
that traversal (excluding the boundary vertices) along with Isi will be exactly
the vertices of Vi. Thus, we can choose not to store Vi’s boundary vertices as
long as we store the boundary vertices for all of its adjacent regions. In our al-
gorithm, we choose the regions whose boundary information will not be stored
in a greedy fashion based on the size of their boundaries. Specifically, we con-
struct the region-to-region adjacency graph (i.e., two regions are connected if
they contain vertices that are adjacent to each other), assign a weight to the
vertex corresponding to Vi that is equal to |Bi| (i.e., the size of its boundary),
and then identify the regions whose boundary information will not be stored
by finding a maximal weight independent set of vertices in this graph using a
greedy algorithm.

Given the above, we can now precisely describe how the region-based decom-
position is stored. Let {V1, . . . , Vk} be the ε-bounded region-based decomposi-
tion, B1, . . . , Bk be the sets of boundary vertices that need to be stored (if no
boundary information is stored for a region due to the earlier optimization, then
the corresponding boundary set is empty), and Is1 , . . . , I

s
k be the sets of internal

seed-vertices that have been identified. Our method stores five arrays,Q,NI ,NB,
II , and IB . The first three arrays are of length k, II is of length equal to the total
number of seed vertices (

∑
i |Isi |), and IB is of length equal to the total number

of boundary vertices (
∑

i |Bi|). Array Q stores the mean values of each region,
whereas arrays NI and NB store the number of seed and boundary vertices of
each region, respectively. Array II stores the indices of the regions in consecutive
order starting from Is1 , whereas array IB is used to store the boundary vertices
of each region in consecutive positions starting from B1. These indices are stored
using the same differential encoding approach described in Sect. 4.1 and like that
approach, the results of this encoding are further compressed using a standard
lossless compression method.

5 Experimental Design and Results

Datasets. We evaluated our algorithms using seven real world datasets obtained
from researchers at UMN and our colleagues at NASA and LLNL. These datasets
correspond to fluid turbulence and combustion simulations and contain both
structured and unstructured grids. Their characteristics are shown in Table 1.

Fast and Effective Lossy Compression Algorithms for Scientific Datasets 851

Table 1. Information about the various datasets

Dataset |V | |E| μ(V) Grid Type Dataset |V | |E| μ(V) Grid Type

d1 486051 4335611 0.9958 unstruct. d5 31590144 94562224 0.0176 unstruct.

d2 589824 1744896 0.5430 struct. d6 41472000 123926400 0.2107 struct.

d3 1936470 15399496 0.9874 unstruct. d7 100663296 300744704 4.5644 struct.

d4 16777216 50102272 163.70 struct.

Evaluation Methodology and Metrics. We measured the performance of
the various approaches along two dimensions. The first is the error introduced
by the lossy compression and the second is the degree of compression that was
achieved. The error was measured using three different metrics: (i) the root mean
squared error (RMSE), (ii) the maximum point-wise error (MPE), and (iii) the
peak signal-to-noise ratio (PSNR). The RMSE is defined as

RMSE =

√√√√ 1

|V |

|V |∑
i=1

|lj − l̂j |2, (1)

where lj is the original value of vertex vj and l̂j, is its reconstructed value. The
MPE is defined as

MPE = max(|l1 − l̂1|, ..., |ln − l̂n|), (2)

which is the
∞-norm of the point-wise error vector. The MPE measure is pre-
sented in tandem with RMSE to identify those algorithms which achieve low
RMSE, but sustain high point-wise errors. Finally, the PSNR is defined as

PSNR = 20 · log10
(
max(x1, ..., xn)

RMSE

)
, (3)

which is a normalized error measure; thus, facilitating comparisons of error be-
tween datasets with values that differ greatly in magnitude. The compression
effectiveness was measured by computing the compression ratio (CR) of each
method, which is defined as follows:

CR =
compressed size

uncompressed size
. (4)

The wavelet and spectral methods were implemented in Matlab R©. The spectral
method uses METIS [6] as a pre-processing step to partition the graph before
compressing. The adaptive coarsening implementation was acquired from the
authors of [12] and modified to provide the statistics necessary for these experi-
ments. All algorithms described in Sect. 4 were implemented in C++. Finally, for
the lossless compression of the decomposition encodings, we used LZMA com-
pression (7-zip’s implementation) as it resulted in better compression than either
GZIP or BZIP2. In addition, the same LZMA-based compression was applied to
the output of the spectral and wavelet-based compressions. Note that AC does
not need that because it achieves its compression by coarsening the graph and
reducing the data output.

852 J. Iverson, C. Kamath, and G. Karypis

6 Results

Our experimental evaluation is done in two parts. First, we select a fixed set of
values for RMSE and compare the various algorithmic choices for the set- and
region-based decomposition approaches in terms of their compression ability.
Second, we compare the compression performance of the best combinations of
these schemes against that achieved by other approaches for two different levels
of lossy compression errors.

6.1 Set-Based Decomposition

Figure 1 shows the compression performance achieved by SBD1 and SBD2 for the
different datasets across the different decomposition encoding schemes described
in Section 4.1. These results show that SBD1 tends to perform better than
SBD2 and on average, it requires 5% less storage for each specific combination
of decomposition encoding and vertex ordering scheme. This can be attributed
to the fact that the cardinality of its decomposition is often considerably lower
than SBD2’s, which tends to outweigh the benefits achieved by the few larger
sets identified by SBD2.

Comparing the performance of the decomposition encoding schemes (SQE and
DE), we see that SQE performs considerably better across both decomposition
methods and ordering schemes. On the average, SQE requires only 75% of the
storage of DE. These results suggest that when compared to scalar quantiza-
tion, the differential encoding of the vertices in each set is not as effective in
introducing redundancy in the encoding, which in turn reduces the compression
that can be obtained by the lossless LZMA compression. Finally, comparing the
performance of the three vertex ordering schemes, we found that the original
ordering leads to greater compression than either of the breadth first traversal
or the priority first traversal. As discussed in Section 4.1, this ordering utilizes

Fig. 1. Statistics for set-based decomposition

Fast and Effective Lossy Compression Algorithms for Scientific Datasets 853

information from the underlying grid geometry, and as such it has a higher de-
gree of regularity, leading to better compression. With respect to the other two
methods, we found that the priority first traversal tends to perform better than
breadth first.

6.2 Region-Based Decomposition

Figure 2 shows various statistics of the decompositions computed by RBD1,
RBD2, and RBD3 for the different datasets and their compression performance
for the three vertex ordering schemes. In terms of the number of regions into
which G is decomposed, we see that RBD1 results in the least number of re-
gions, whereas RBD3 identifies a considerably greater number of regions (often
2–7 times more regions than RBD1). We also see that RBD2 only identifies
slightly more regions than RBD1 (about 18% more on average). In terms of the
number of boundary vertices that need to be stored by each decomposition, we
see an inversion of the previous results. RBD2 and RBD3 produce the smallest
boundary sets, typically being within about 5% of each other, whereas RBD1
produces boundary sets which are considerably larger, in some cases, more than
twice the size of those required by RBD2 and RBD3. These results suggest that
the region identification heuristics employed by RBD2 and RBD3 are quite ef-
fective in minimizing the total number of boundary vertices, even though they
find more regions.

Fig. 2. Statistics for region-based decomposition, |R| refers to number of regions identi-
fied, and NB refers to number of boundary vertices after storage optimization described
in Sect. 4.1.

In terms of compression performance, we see that across all datasets RBD2
results in the lowest compression ratio. On the average, RBD2 requires only 70%
of the storage of RBD1 and 56% of RBD3. Contrasting this with the number
of boundary vertices identified by each approach, we see that there is a direct
correlation, based on the size of the boundary vertex set, between RBD1 and
RBD2 in terms of which approach results in lower compression ratio and by how
much. RBD3 does not share in this correlation, due to its significantly higher
number of regions.

854 J. Iverson, C. Kamath, and G. Karypis

Table 2. Comparison of scientific data compression algorithms for two different rmse

info high error tolerance low error tolerance

Dataset Algorithm RMSE PSNR MPE CR RMSE PSNR MPE CR

d1

SBD1 6.30E-03 4.64E+01 1.89E-02 2.39E-02 6.66E-04 6.60E+01 1.86E-03 ��������

RBD2 6.28E-03 4.65E+01 1.89E-02 �������� 6.38E-04 6.63E+01 2.12E-03 1.28E-01

Spctrl 6.37E-03 4.63E+01 1.11E-01 4.00E-02 3.90E-03 5.06E+01 7.14E-02 1.05E-01

d2

SBD1 2.92E-02 3.60E+01 7.33E-02 ���	���
 2.50E-03 5.74E+01 7.71E-03 	�������

RBD2 2.88E-02 3.61E+01 8.02E-02 5.02E-03 1.91E-03 5.97E+01 7.71E-03 6.57E-02

Wvlt 3.10E-02 3.55E+01 2.34E-01 2.00E-02 2.59E-03 5.70E+01 2.38E-02 1.15E-01

Spctrl 3.17E-02 3.53E+01 7.34E-01 4.50E-02 7.04E-03 4.84E+01 3.56E-01 1.30E-01

AC 3.31E-02 3.49E+01 1.50E-01 1.86E-02 6.80E-03 4.87E+01 7.19E-01 5.17E-02

d3

SBD1 5.22E-03 4.88E+01 1.91E-02 	������� 4.79E-04 6.96E+01 2.05E-03
�������

RBD2 5.18E-03 4.89E+01 1.93E-02 1.33E-02 4.54E-04 7.00E+01 2.07E-03 4.33E-02

Spctrl 5.27E-03 4.87E+01 2.14E-01 4.50E-02 3.31E-03 5.28E+01 1.35E-01 1.00E-01

d4

SBD1 2.36E+01 4.70E+01 1.63E+02 ���
���
 2.43E+00 6.68E+01 1.34E+01 	�������

RBD2 2.05E+01 4.83E+01 1.65E+02 6.30E-03 2.00E+00 6.85E+01 1.36E+01 3.51E-02

Wvlt 2.47E+01 4.66E+01 6.86E+02 7.50E-03 2.64E+00 6.61E+01 4.87E+01 2.50E-02

Spctrl 2.57E+01 4.63E+01 1.78E+03 3.50E-02 3.92E+00 6.26E+01 3.59E+02 1.95E-01

AC 2.30E+01 4.73E+01 3.01E+03 2.15E-02 - - - -

d5

SBD1 4.97E-04 4.59E+01 1.78E-03
������
 5.43E-05 6.51E+01 1.28E-04 	�������

RBD2 4.88E-04 4.61E+01 1.76E-03 4.47E-03 5.32E-05 6.53E+01 1.69E-04 4.96E-02

Spctrl 5.84E-04 4.45E+01 4.56E-02 5.00E-03 5.87E-05 6.45E+01 8.74E-03 6.50E-02

d6

SBD1 1.21E-02 3.82E+01 5.70E-02 9.30E-03 1.05E-03 5.94E+01 4.87E-03 �������

RBD2 1.20E-02 3.82E+01 5.71E-02 1.28E-02 8.75E-04 6.10E+01 4.87E-03 1.74E-01

Wvlt 9.48E-03 4.03E+01 1.56E-01 �������
 1.05E-03 5.94E+01 1.17E-02 5.50E-02

Spctrl 1.60E-02 3.57E+01 6.37E-01 �������
 1.05E-03 5.94E+01 4.32E-02 6.50E-02

AC 1.82E-02 3.46E+01 1.50E-01 1.11E-02 - - - -

d7

SBD1 2.72E-01 4.27E+01 5.50E-01 2.82E-02 2.74E-02 6.26E+01 6.37E-02 ��������

RBD2 2.70E-01 4.28E+01 7.41E-01 3.43E-02 2.17E-02 6.47E+01 7.99E-02 5.16E-01

Wvlt 2.76E-01 4.26E+01 2.75E+00 	������� 3.05E-02 6.17E+01 2.00E-01 1.60E-01

AC 2.76E-01 4.26E+01 1.00E+00 1.82E-02 - - - -

���� indicates the lowest CR for a given dataset and error tolerance

6.3 Comparison with Other Methods

In our last set of experiments, we compare the performance of the best-performing
combinations of the set- and region-based decomposition approaches (SBD1 with
SQE encoding and original vertex ordering, and RBD2 with original vertex or-
dering) against wavelet compression (Wvlt), spectral compression (Spctrl), and
adaptive coarsening (AC). Among these techniques, the wavelet compression and
adaptive coarsening can only be applied to structured grids and are only pre-
sented for the d2, d4, d6, and d7 datasets. Also, due to its high computational
requirements, we were not able to obtain results for the spectral compression for
the largest problem (d7). In addition to these schemes, we also experimented with
diffusion wavelets [3]. However, we obtained poor compression and we omitted
those results.

Table 2 shows the results of these experiments for two different compression
levels, labeled “high error tolerance” and “low error tolerance”. These compres-
sion levels result in RMSEs and MPEs that differ by approximately an order
of magnitude, and were obtained by experimenting with the parameters of the
various schemes so that to match their RMSEs for each of the datasets. How-
ever, for AC we were unable to achieve the desired RMSEs at all error tolerance
levels. In the case that we could not achieve a desired RMSE, the results were
omitted.

Fast and Effective Lossy Compression Algorithms for Scientific Datasets 855

The results show that on average, our algorithms compress the simulation
datasets to 2–5% of their original size. Compared with just lossless compression
only, which results in storage costs of 40–80% of the original size, this is a big
improvement. The results also show that for all but two experiments, SBD1
performs the best and that on average it required only 36% of the storage of the
next best algorithm. For unstructured grids it requires on average 25% of the
storage of Spctrl whereas for structured grids it requires on average 48% and
38% of the space of Wvlt and AC, respectively. Moreover, we see that as the
amount of allowable error is lowered, the performance gap between SBD1 and
the other methods grows. In addition, for unstructured grids, RBD2 performs
the second best overall and requiring 61% of the space required by the Spctrl
on average. We also see that due to the ε constraint placed on the our methods,
they consistently result in MPE values which are much lower than those of
the competing algorithms. These results suggest that in the context of grid-
based simulation, SBD1 and RBD2 are consistently good choices for compression,
providing low point-wise and global reconstruction error, high compression ratio,
and low computational complexity.

7 Conclusion

In this paper, we introduced a paradigm for lossy compression of grid-based
simulation data that achieves compression by modeling the grid data via a graph
and identifying vertex-sets which can be approximated by a constant value within
a user provided error constraint. Our comprehensive set of experiments showed
that for structured and unstructured grids, these algorithms achieve compression
which results in storage requirements that on average, are up to 75% lower than
that other methods. Moreover, the near linear complexity of these algorithms
makes them ideally suited for performing in situ compression in future exascale-
class parallel systems.

References

1. Baldwin, C., Abdulla, G., Critchlow, T.: Multi-resolution Modeling of Large Scale
Scientific Simulation Data. In: Proceedings of the Twelfth International Conference
on Information and Knowledge Management - CIKM 2003, p. 40 (2003)

2. Belfor, R.A.F., Hesp, M.P.A., Lagendijk, R.L., Biemond, J.: Spatially Adaptive
Subsampling of Image Sequences. IEEE Transactions on Image Processing 3(5),
492–500 (1994)

3. Coifman, R., Maggioni, M.: Diffusion wavelets. Applied and Computational Har-
monic Analysis 21(1), 53–94 (2006)

4. Engelson, V., Fritzson, D., Fritzson, P.: Lossless Compression of High-volume Nu-
merical Data from Simulations. In: Data Compression Conference, pp. 574–586
(2000)

5. Karni, Z., Gotsman, C.: Spectral Compression of Mesh Geometry. In: Proceedings
of the 27th Annual Conference on Computer Graphics and Interactive Techniques
- SIGGRAPH 2000, pp. 279–286 (2000)

856 J. Iverson, C. Kamath, and G. Karypis

6. Karypis, G.: METIS˜5.0: Unstructured graph partitioning and sparse matrix order-
ing system. Tech. rep., Department of Computer Science, University of Minnesota
(2011)

7. Mallat, S.: A Theory for Multiresolution Signal Decomposition: The Wavelet
Representation. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 11(7), 674–693 (1989)

8. Muraki, S.: Approximation and Rendering of Volume Data Using Wavelet Trans-
forms. In: Proceedings Visualization 1992, pp. 21–28 (1992)

9. Muraki, S.: Volume Data and Wavelet Transforms. IEEE Computer Graphics and
Applications 13(4), 50–56 (1993)

10. Ratanaworabhan, P., Ke, J., Burtscher, M.: Fast Lossless Compression of Scientific
Floating-Point Data. In: Data Compression Conference (DCC 2006), pp. 133–142
(2006)

11. Shafaat, T.M., Baden, S.B.: A Method of Adaptive Coarsening for Compressing
Scientific Datasets. In: K̊agström, B., Elmroth, E., Dongarra, J., Waśniewski, J.
(eds.) PARA 2006. LNCS, vol. 4699, pp. 774–780. Springer, Heidelberg (2007)

12. Unat, D., Hromadka III, T., Baden, S.B.: An Adaptive Sub-sampling Method for
In-memory Compression of Scientific Data. In: 2009 Data Compression Conference,
pp. 262–271 (March 2009)

Topic 16: GPU and Accelerators Computing

Alex Ramirez, Dimitrios S. Nikolopoulos, David Kaeli, and Satoshi Matsuoka

Topic Committee

Accelerator-based computing systems invest significant fractions of hardware
real estate to execute critical computation with vastly higher efficiency than
general-purpose CPUs. Amdahl’s Law of the Multi-core Era suggests that such
an heterogeneous approach to parallel computing is bound to deliver better scal-
ability and power-efficiency than homogeneous system scaling. While General
Purpose Graphics Processing Units (GPGPUs) have catalyzed research in this
area, new ideas emerge to help us model, deconstruct and analyze the perfor-
mance of accelerators, develop new standards for programming accelerators at a
high level of abstraction, and port end-to-end applications on accelerator-based
systems. Topic 16 provides a forum to discuss advances in all aspects of GPU-
and accelerator-based computing.

This year, eight papers have been accepted for publication in the GPU and
accelerator computing track. Besides the important theme of scalable paralleliza-
tion of applications on accelerator-based systems, the papers in the track explore
emerging themes, including new standards for programming accelerator-based
systems, new paradigms for scheduling and synchronization on accelerators, per-
formance models, and novel uses of accelerators in scientific applications.

Two papers in the track “OpenACC - First Experiences with Real-World Ap-
plications”, by Wienke, Springer, Terboven and an Mey, and “accull: An Ope-
nACC Implementation with CUDA and OpenCL Support” by Reyes, Rodŕıguez,
Furnero and de Sande explore early commercial and academic implementations
of the new OpenACC standard for parallel programming on systems with ac-
celerators. “Understanding the Performance of Concurrent Data Structures on
Graphics Processors” by Cederman, Chatterjee and Tsigas investigates the im-
plementation of concurrent data structures on GPUs. Toss and Gautier introduce
a new execution paradigm for GPUs, using lazy parallelization and work steal-
ing, in “A New Programming Paradigm for GPGPU”. Anzt, Luszczek, Dongarra,
and Heuveline propose a new application of accelerators for scientific comput-
ing in “GPU-Accelerated Asynchronous Error Correction for Mixed Precision
Iterative Refinement”. Jia, Zhang, Guoping, Xu, Yan and Li present an adap-
tation of the Roofline model for GPUs in “GPURoofline: A Model for Guiding
Performance Optimizations on GPUs”. Finally, “Building a Collision for 75-
Round Reduced SHA-1 Using GPU Clusters” by Adinetz and Grechnikov and
“GPU-vote: A Framework for Accelerating Voting Algorithms on GPU” by van
den Braak, Nugteren, Mesman and Corporaal present methods for the efficient
parallelization of applications on GPUs.

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 857–858, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

858 A. Ramirez et al.

We wish to thank all authors who submitted a paper to this topic, all external
reviews for delivering quality reviews on time and the Euro-Par Organizing Com-
mittee for their constructive comments during the entire reviewing and paper
selection process.

OpenACC — First Experiences
with Real-World Applications

Sandra Wienke, Paul Springer, Christian Terboven, and Dieter an Mey

JARA, RWTH Aachen University, Germany
Center for Computing and Communication

{wienke,springer,terboven,anmey}@rz.rwth-aachen.de

Abstract. Today’s trend to use accelerators like GPGPUs in heterogeneous com-
puter systems has entailed several low-level APIs for accelerator programming.
However, programming these APIs is often tedious and therefore unproductive.
To tackle this problem, recent approaches employ directive-based high-level pro-
gramming for accelerators. In this work, we present our first experiences with
OpenACC, an API consisting of compiler directives to offload loops and re-
gions of C/C++ and Fortran code to accelerators. We compare the performance
of OpenACC to PGI Accelerator and OpenCL for two real-world applications
and evaluate programmability and productivity. We find that OpenACC offers a
promising ratio of development effort to performance and that a directive-based
approach to program accelerators is more efficient than low-level APIs, even if
suboptimal performance is achieved.

1 Introduction

Due to a promising performance per watt ratio and an attractive price, HPC architec-
tures prevailingly tend towards heterogeneous computer systems comprising general-
purpose cores with attached accelerator devices. However, programming accelerators
such as general-purpose graphic processing units (GPGPUs) with low-level APIs is dif-
ficult, may complicate the software design and usually couples the code to a device
of a particular vendor. This leads to an unproductive development process with error-
prone programming tasks and highly hardware-specific implementations, which is not
acceptable for large development projects with a long projected code lifetime.

Recent approaches promise to make the compiler responsible for many of the low-
level programming tasks by offering a directive-based high-level API. As finding parts
of an algorithm that can efficiently be executed on an accelerator device is still up to
the programmer, these approaches do not simplify programming accelerators in gen-
eral. However, they improve the development productivity and simplify code mainte-
nance. Unifying the syntax of various directive-based approaches for accelerators with
the intention to make it available across multiple vendors, a group of members of the
OpenMP Language Committee published OpenACC in November 2011. OpenACC en-
ables the offloading of loops and regions of C/C++ and Fortran code to accelerators and
is initiated by the companies CAPS, CRAY, NVIDIA and PGI. In this work, we present
our first experiences with OpenACC applied to two real-world simulation codes from
the fields of engineering and medicine that can both benefit from GPU acceleration.

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 859–870, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

860 S. Wienke et al.

Our work comprehends a performance analysis of these codes, as well as an evaluation
of programmability and productivity.

The paper is structured as follows: Section 2 covers related work and Sect. 3 gives
an overview of OpenACC. In Sect. 4, the two real-world applications and the under-
taking for their porting to OpenACC are explained. The measured performance values
with OpenACC are evaluated in Sect. 5 and compared to the ones gained with OpenCL
and PGI Accelerator. In Sect. 6, we discuss programmability and productivity aspects.
Finally, we assess OpenACC’s effort-performance ratio regarding our real-world appli-
cations in Sect. 7.

2 Related Work

The desire for general-purpose computations on GPUs caused the advance of new pro-
gramming paradigms. Nowadays, the dominant GPU programming models are CUDA
[13] and OpenCL [10]. Both empower the programmer to exploit performance from
the accelerator by porting code to GPU kernel functions at a low level. CUDA is cou-
pled to NVIDIA GPUs, while OpenCL as a standard is portable across vendors and
targets different hardware architectures. As using low-level APIs often results in an
unproductive development process due to repeatedly written code portions and error-
prone programming [15], several directive-based approaches for accelerator computing
have been proposed in which compilers undertake the implementation guided by hints
from the user. OpenACC [7] is an industry standard for this directive-based accelerator
programming that may contribute to the specification of OpenMP for accelerators [2].

The Portland Group provides the PGI Accelerator programming model [14] for
C and Fortran which enables compiler-aided and directive-based work offloading to
NVIDIA GPUs and specifies a broad range of features. It served as the foundation for
the OpenACC specification. Furthermore, CAPS has previously established its hybrid
multicore parallel programming (HMPP) environment [6] providing directives to de-
clare codelets, which are functions suitable for hardware acceleration, and targeting a
variety of accelerators. Intel also relies on directives to offload code to its Many In-
tegrated Core (MIC) accelerator [11]. hiCUDA [9] defines a high-level abstraction of
CUDA with kernel directives, data transfer clauses and function calls. While support-
ing CUDA-specific concepts, hiCUDA leaves more responsibilities to the programmer
than OpenACC. OpenMPC [12] approaches the generation of CUDA code by translat-
ing OpenMP regions. Additional directives control CUDA-related parameters and the
compiler may find an appropriate tuning configuration for the program. It is also re-
stricted to NVIDIA GPUs due to the CUDA affiliation. The Barcelona Supercomputing
Center has developed the StarSs programming model [1] which provides extensions to
the OpenMP language to exploit several architectures, for instance GPUs. It focuses on
OpenMP tasks and their distribution to different targets during runtime by forcing the
programmer to specify all data input and output dependencies of a task.

Since the productive development is one main issue of directive-based models, we
examine the programmability and productivity with OpenACC. Only few studies con-
sider productivity aspects. While [3] provides a general overview of coding effort, [8]
looks mainly at the effort from a computing center’s point of view. In our previous work

OpenACC — First Experiences with Real-World Applications 861

[15], we concluded that the PGI Accelerator model has a good effort-performance ratio
and [2] also approaches productivity with respect to a ratio estimation of performance
to time effort. In this work, we do not only elaborate on productivity in general, but also
specify the number of modified code lines as an indication of the development effort.

3 OpenACC Overview

The directive-based OpenACC API for C/C++ and Fortran delegates the responsibil-
ity for low-level GPU programming tasks to the compiler, while providing portability
across operating systems, host CPUs and accelerator devices. Concerning accelerator
types, up to now, the existing OpenACC implementations only support NVIDIA GPUs.
In this section, we provide a brief overview of OpenACC, point out the most important
use cases with respect to GPUs and map the terminology to the OpenCL nomenclature.

The OpenACC API assumes a host-directed execution model in which the main pro-
gram runs on the host and compute-intensive regions are offloaded to an attached accel-
erator. The memory model is based on separate host and device memories which do not
synchronize automatically. GPU devices implement a weak memory model that pre-
vents coherence between operations on different compute units and enables coherence
within the same compute unit only by using explicit synchronization.

The execution and data management is guided by the programmer using OpenACC
directives. Some basic constructs are illustrated in Listing 1.1.

Listing 1.1. Brief use case of basic OpenACC constructs

/ / I n i t i a l i z a t i o n : | x [i] | < 1 , i = 0 , . . . , s i z e −1
#pragma acc d a t a copy (x [0 : s i z e]) / / Data movement t o / f rom d e v i c e
{ whi l e (e r r o r > eps) {

e r r o r = 0 . 0 ;
#pragma acc p a r a l l e l p r e s e n t (x [0 : s i z e]) / / Kerne l e x e c u t i o n
#pragma acc loop gang v e c t o r r e d u c t i o n (+ : error) / / Loop s c h e d u l e

f o r (i n t i =0 ; i<s i z e ; ++ i) {
x [i] ∗= x [i] ;
e r r o r += f a b s (x [i]) ;

} } }

The most important directives are parallel and kernels which describe regions
of code to be accelerated asynchronously or synchronously. Here, we focus on the
parallel directive due to some restrictions on the kernels construct in the recent
implementation. A parallel region maps to an OpenCL kernel function which can
be enqueued for execution on the device in an n-dimensional range of work-items. To
improve the performance, it is possible to specify the so-called number of gangs, the
number of workers or the vector length. The terms gang and vector corre-
spond to work-groups and work-items (usually) within a work-group, respectively, in
OpenCL. A worker defines a certain union of work-items, i.e. a warp on CUDA archi-
tectures. Within parallel regions, a loop directive instructs the worksharing of a

862 S. Wienke et al.

loop among the accelerator’s workers. The programmer can insert additional clauses in
parallel, kernels or loop directives to optimize or correct the implicit data man-
agement chosen by the compiler. Furthermore, the data movement can be decoupled
from these compute regions by using an enclosing explicit data region. Correspond-
ing data clauses can specify the kind and direction of data movement, e.g. copyin
or copyout. It is also possible to create arrays only on the device, define device
private data, tell the compiler that data is already present on the device or spec-
ify different kinds of reductions. Since the user has to manually manage the data
coherence between host and device, the executive update directive can be applied to
synchronize the separate memories of host and device. The GPU’s memory hierarchy
also often supports a low-latency local memory for which the compiler may optimize
the program. To guide the compiler, the developer can apply the cache directive which
specifies (sub-)arrays to be stored in this fast memory.

Besides directives, the OpenACC API provides runtime library calls and environ-
ments variables too. For instance, library calls can gather information about the device,
initialize it or allocate data on the device.

4 Applications

For our investigations on performance, productivity and programmability of OpenACC,
we chose two real-world applications from the fields of engineering and medicine. In the
following, we point out their contributions to their domains, describe implementation
relevant features and explain how we carried out implementations with OpenACC.

4.1 Simulation of Bevel Gear Cutting

The engineering application KegelSpan [4] written in Fortran and developed by the
Laboratory for Machine Tools and Production Engineering (WZL) at RWTH Aachen
University is a 3D simulation software of the bevel gear cutting process and a leading-
edge application in the automotive industry. It aims at minimizing the number of tool
changes in the production process of bevel gears and contributing to a cost-efficient
manufacturing by enabling a detailed tool load and wear analysis. The module under
investigation computes the intersection of tool and gear. It contains one loop nest where
outer and inner loop each iterates tens of thousands times (small dataset). The inner loop
of the nest contains dependencies due to a minimum computation which is needed for
the key value of chip thickness. The intersection module has to be executed repeatedly
to optimize the manufacturing parameters.

We approached the basic implementation of the intersection module with OpenACC
analogously to the one with PGI Accelerator in our previous work [15]: We distributed
the work of the outer loop amongst all work-items and executed the inner loop serially.
For that, we mainly applied a parallel region with numerous data clauses and a
loop directive with gang vector schedule. Using the vector length attribute,
we optimized the number of work-items within a work-group. A second variant (re-
struct) comprises a restructured data format for an optimized, coalesced data access and
serves for comparing performances rather than development efforts of the different pro-
gramming models. In comparison to the basic version, just the adaption of OpenACC

OpenACC — First Experiences with Real-World Applications 863

data clauses was necessary. Furthermore, we examined a more complex type of par-
allelism by distributing the outer loop to the work-groups and the inner loop to the
work-items within a work-group. This approach required the addition of a minimum
reduction, denoted by reduction(min:varlist), to the inner loop due to the
chip thickness computation. However, the position of the minimum, i.e. the array in-
dex, is needed as well. Since manual extraction of this index was tedious and delivered
low performance, we omitted a detailed analysis. In OpenCL, we further leveraged the
work-group’s local memory (locMem) by storing intermediate data and input data that
is needed multiple times in the fast software cache of the GPU (compare [15]). A sim-
ilar approach was possible neither with PGI Accelerator nor with OpenACC, but the
results gained with OpenCL show the potential of the caching technique in Sect. 5.1.

4.2 Neuromagnetic Inverse Problem

The second application comes from the field of medicine or more precisely magne-
toencephalography (MEG). In MEG, the magnetic field induced by the current density
inside the human brain is measured outside the head. To reconstruct the focal activity in
the brain, the neuromagnetic inverse problem can be solved by means of a minimum p-
norm solution. Since this unconstrained nonlinear optimization problem is challenging
in terms of computational efficiency and accuracy effecting the convergence behavior
[5], first- and second-order derivatives are computed by automatic differentiation (AD)
in the software package of Bücker, Beucker and Rupp [5]. The software package is im-
plemented primarily in MATLAB. To enable AD combined with parallel computing,
the objective function of the optimization problem, as well as its first- and second-
order derivatives are written in C. For our investigations, we concentrate on these three
kernels which include the computations of matrix-vector products using a matrix of di-
mensions 128 × 512000. Additionally, the matrix can be divided into a big dense and
a small sparse part. Each kernel contains a single loop or loop nest with summation
reductions.

The MATLAB program calls the kernels about thousand times during the optimiza-
tion process (simple configuration). For simplification, we established a C framework
that mimics the original call hierarchy: Implemented with an explicit data region,
the matrix is copied to the accelerator once per optimization run and then each kernel
is called thousand times. The operands needed for the computations are copied into
or updated on the device and the results are transferred to the host in between and
at the end of the explicit data region. Porting the three kernels with OpenACC to the
GPU, we first implemented a basic approach again. That means that only the outer
loops run in parallel and the inner loops are executed serially. Each kernel consists of
two or more parallel regions to distinguish at least between matrix-vector multi-
plications, vector-vector operations and summation reductions. Additionally, the im-
plementations of first- and second-order-derivative evaluations require resolving race
conditions. Therefore, intermediate values are stored in auxiliary arrays and the ac-
cess to these arrays is globally synchronized by creating an additional parallel re-
gion. A loop interchange is applied as well. The corresponding basic PGI Accelerator
implementation looks similarly. In a second variant (l2par), we added a level of par-
allelism to the OpenACC kernels which distributes the outer loops to the gangs and

864 S. Wienke et al.

runs the inner loops in vector mode. This approach needed the usage of reduction
clauses on outer and inner loops. A similar approach was not possible with PGI Accel-
erator due to a limitation in its implementation. The third approach aims at leveraging
the cache of the GPU and improving the data access pattern by chunking the matrix-
vector multiplications into blocks of size vector length. Each block is mapped to
a work-group, whereas the work-items within a work-group execute the multiplications
row-wise. With PGI Accelerator, the blocked version was implemented analogously ex-
cept that only one level of parallelism could be applied to the loop nests that do not
access the matrix. The OpenCL version also employs a blocked matrix-vector multi-
plication. Furthermore, it is highly optimized with respect to the usage of device local
memory and host pinned memory, asynchronous data transfer and kernel execution,
the specification of constant values as preprocessed macros or loop unrolling. Loop
unrolling is also applied to all PGI and OpenACC versions. The OpenACC compiler
automatically unrolls loops within accelerated code regions or can be guided by the
#pragma unroll(size). Although the PGI Accelerator API includes an unroll
clause, here, it is ignored by the compiler. Therefore, we had to unroll most of the loops
manually up to a level of 32 to achieve comparable performance. cache and async
optimizations could not yet successfully applied with both directive-based models.

5 Performance Evaluation

In this section, we present performance results of the OpenACC implementations of
both applications and compare them to implementations made with OpenCL1 and PGI
Accelerator. Since tool support across all three programming models is limited, our
evaluation also contains assumptions of result explanations. This analysis is based on
NVIDIA’s Visual Profiler. All reported runtimes include the accelerator’s setup time,
data transfers between host and device, kernel execution times and the overhead intro-
duced by the need of manual management (OpenCL) or adapting the data structure.
Each runtime is the minimum value of five program runs.

For all measurements, we used an NVIDIA Tesla C2050 GPU with ECC enabled
and CUDA toolkit 4.0. The host system2 on which the OpenACC results were gath-
ered consists of one AMD Magny-Cours 12-core processor and runs SUSE Enterprise
Server 11. There, we use the Cray 8.1.0 compiler3 with the optimization flag -O3. For
the results gained with OpenCL and PGI Accelerator, we worked on an Intel Westmere
4-core host processor and Scientific Linux 6.1. The OpenCL and PGI Accelerator im-
plementations are compiled with the Intel 12.1.2 compiler and the PGI 12.3 compiler
(-ta=nvidia,4.0,cc20,fastmath(,nofma)), respectively.

1 OpenCL and CUDA performance results are comparable in almost all our application versions.
2 Since this machine is an experimental system from Cray, performance should be better on the

Cray XK6 product.
3 At time of developing, Cray provided the first OpenACC release. The used Cray compiler com-

prises an early implementation of OpenACC which does not contain all features of OpenACC
yet. Furthermore, the performance is likely to increase with future releases. First partly imple-
mentations by PGI and CAPS were released in March and May 2012, respectively, and will be
subject to further investigations.

OpenACC — First Experiences with Real-World Applications 865

0

5

10

15

20

25

30

single precision double precision

ru
nt

im
e [

s]

Fig. 1. Runtimes of OpenCL, PGI Accelerator and
OpenACC (engineering application)

0%

20%

40%

60%

80%

100%

120%

basic restruct

PGIAcc
OpenACC

Fig. 2. Percentages of OpenCL perfor-
mance in double precision

5.1 Simulation of Bevel Gear Cutting

The results for the engineering application can be found in Fig. 1. Each color represents
one programming model, whereas the patterns correspond to different versions as men-
tioned in Sect. 4. For single and double precision, the absolute difference between PGI
Accelerator and OpenACC runtimes of the basic and the restructured version remain
approximately the same. A significant fraction of this difference is introduced by a great
amount of L2 read misses in the OpenACC programs which extends the one of PGI Ac-
celerator by a factor of 1.5. These L2 read misses must be resolved by long-latency
global memory accesses that hurt the performance. The PGI compiler feedback shows
that constant memory is used, whereas the OpenACC compiler does not elaborate on
this. We assume that the constant cache is ignored by the current OpenACC compiler
which would lead to the high number of L2 read misses. Additionally, the best-effort
PGI Accelerator versions using double precision omit the generation of FMA/MAD in-
structions. However, neither the OpenCL nor the OpenACC compiler provide an easy
way to disable FMA operations without losing other optimizations to verify this result.
Figure 2 illustrates the double precision results in percentages. Here, the runtime of the
best-effort OpenCL implementation serves as reference. With the restruct version, PGI
Accelerator outperforms OpenCL, and OpenACC achieves a considerable fraction of
approximately 80 % of OpenCL.

Furthermore, the OpenCL bars in Fig. 1 show that the usage of local memory was
beneficial for this application. The PGI Accelerator API provides a cache clause for the
loop schedule, but the compiler takes it as a hint instead of a rule. In this case, the com-
piler apparently cannot apply the hint successfully. In OpenACC, the cache directive is
not yet fully implemented in the Cray compiler. Given Cray’s ongoing implementation
work, we hope to examine OpenACC’s cache capabilities in the near future.

5.2 Neuromagnetic Inverse Problem

For the neuromagnetic inverse problem, we measured the runtime of the objective
function evaluation, the first- and second-order-derivative computations and the whole
program. The latter contains an equal number of calls to the three functional units as

866 S. Wienke et al.

0

50

100

150

200

OpenCL PGIAcc OpenACC

(a
ve

ra
ge

) r
un

tim
e [

m
s]

(a) Objective function

0

50

100

150

200

OpenCL PGIAcc OpenACC

(a
ve

ra
ge

) r
un

tim
e [

m
s]

(b) 1st-order derivative

0

50

100

150

200

OpenCL PGIAcc OpenACC

(a
ve

ra
ge

) r
un

tim
e [

m
s]

(c) 2nd-order derivative

0

100

200

300

400

500

OpenCL PGIAcc OpenACC

(a
ve

ra
ge

) r
un

tim
e [

m
s]

(d) Overall runtimes

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

basic blocked l2par

PGIAcc
OpenACC

(e) Percentages of OpenCL performance

Fig. 3. Comparison of OpenCL, PGI Accelerator and OpenACC in double precision (medical
application)

approximation of the actual optimization process. All runtimes represent an average
over 1000 iterations including data transfers. Computations are done in double precision
only due to the high impact of numerical inaccuracy.

Figure 3 illustrates the results of the various implemented versions as described in
Sect. 4. The colors refer to the programming model and the bar pattern to the imple-
mentation variants. In all cases, the basic versions have the longest runtimes and are
outperformed by the corresponding blocked versions. Although the blocking algorithm
in OpenCL, PGI Accelerator and OpenACC is almost the same, the OpenCL versions
contain much less read requests to the L2 cache and the device global memory. This
is mainly due to the coalesced prefetching of matrix and vectors to the on-chip local
memory and the consequent, cache-optimized computations that we implemented with
OpenCL. Contrary, both directive-based models lack either of an implementation or a
successful recognition of the caching clause. The runtime difference is intensified by
an additional global synchronization in the directive-based models. With OpenACC, a
performance improvement is surprisingly gained by using the algorithmic-simpler ver-
sion l2par with two levels of parallelism. For the objective function evaluation (see
Fig. 3(a)), the OpenACC performance even catches up with the OpenCL performance,

OpenACC — First Experiences with Real-World Applications 867

Table 1. Number of modified source code lines in host/kernel code with respect to the serial
versions of the engineering application (∼ 150 kernel code lines) and medical application (∼ 100
kernel code lines)

engineering medical
basic restruct locMem basic blocked l2par

OpenCL 106/35 183/39 183/58 - 330/300 -
PGI Acc 0/3 84/14 - 9/121 12/109 -
OpenACC 0/3 84/14 - 9/31 12/85 9/37

both containing an equal number of global memory accesses. In contrast, the runtimes
of evaluating first- and second-order derivatives (Figs. 3(b) and 3(c)) are about 2.5 times
higher than the ones from OpenCL. Here, OpenACC’s number of global memory reads
and writes exceeds the ones of OpenCL, possibly due to less local-memory usage. In
general, the OpenCL implementations may also perform better due to asynchronous
data transfer and kernel execution, extensive loop unrolling, usage of pinned memory or
specification of constant values as preprocessed macros. Figure 3(e) presents the over-
all performance in percentages of the OpenCL version. The best-effort PGI Accelerator
and OpenACC versions achieve about 20 % and 40 %, respectively.

Comparing OpenACC to PGI Accelerator, in most cases, the OpenACC versions run
faster. We can see by profiling that OpenACC calls CUDA’s internal 32-bit alignment
routine. An optimal alignment may be the main reason for less memory accesses and
the better performance. Furthermore, loop unrolling was essential for improving per-
formance. While the OpenACC compiler automatically adapts the unroll level nicely
with #pragma unroll(size), the PGI compiler ignores any unroll clause so
that a manual and assumingly suboptimal loop unrolling must be applied. PGI’s only
performance gain (see Fig. 3(b)) results from a better cache access pattern evoked by
the reuse of the pow function.

6 Programmability and Productivity

Good programmability is the foundation of a productive development process. In this
section, we examine OpenACC’s ease-of-use in comparison with PGI’s Accelerator
model and OpenCL. We discuss OpenACC’s capabilities, restrictions and our sugges-
tions for improvement to decrease development effort.

Both applications show that the current OpenACC implementation allows successful
porting to GPUs in a productive way. Table 1 lists the number of modified source code
lines for each kernel and programming model. These values indicate how much time
a programmer spent to port the application to GPUs and how maintainable the ported
code is for further development.

The main features of OpenACC like data movement and loop acceleration can intu-
itively be applied, just as with PGI Accelerator. An inexperienced user can rely on an
automatic loop scheduling, whereas more experienced users can tune it by using differ-
ent levels of parallelism or by specifying the sizes of parallel chunks. Here, OpenACC

868 S. Wienke et al.

is even capable of explicitly managing warps, while OpenCL and PGI Accelerator do
not provide this degree of freedom. On the other hand, OpenACC is restricted to a
single gang or vector dimension, whereas OpenCL and PGI Accelerator offer multiple
dimensions to intuitively map e.g. a matrix to a two dimensional working space.

Synchronization. We find the automatic synchronization between work-items at any
level of parallelism that is entirely within a work-group convenient. However, to syn-
chronize between loops that are located within the same parallel region and whose work
is distributed with different schedules, the user has to manually synchronize the data by
splitting the parallel region. An additional executable directive that acts like a global
barrier might be useful to circumvent manual splitting of parallel regions. An use-case
of this directive would be the synchronization of GPU-local data after its initialization.
[9] provides the singular directive for the purpose of compact initialization.

Reduction. In OpenCL, a manual implementation of the reduction operation often
leads to poor performance. In contrast, the PGI compiler automatically recognizes a re-
duction (sometimes adding auxiliary variables is needed) and it creates well-optimized
machine code for it. In OpenACC, the user has to specify the reduction, but the
freedom to choose any typical kind of reduction (e.g. min reduction) and any scalar
variable to reduce without adding intermediate variables. Here, the addition of user-
defined reductions to the OpenACC standard would further improve the development.
In our case study, the collection of the minimum along with its (array) index would be
an appropriate application.

Function Calls. A major restriction of both directive-based models is that non-inlined
function calls in accelerated code are not supported at the moment. Function calls in
our investigated applications could be resolved by explicitly inling them. However, this
is not bearable for bigger software packages. PGI Accelerator also does not support this
feature currently, but in general, it seems possible to integrate it in high-level APIs [9].

Atomics and Critical Region. OpenMP-like atomics and critical regions for OpenACC
would help to avoid race conditions. For instance, detecting a critical region, the com-
piler could undertake the needed addition of an auxiliary array, the split of parallel
regions and the interchange of loops. The compiler could apply the most efficient
implementation and prevent programming errors.

Asynchronous Data Transfers. Asynchronous data copies would be beneficial for
OpenACC, not only regarding update directives, but also explicit data regions.

Multiple GPUs. To use multiple GPGPUs on a single host, the programmer must ex-
plicitly specify the particular device for work-offloading and manually manage data
synchronization between the devices and the host using a low-level API. This distribu-
tion of workload and data could also be left to the compiler and runtime in future.

OpenACC — First Experiences with Real-World Applications 869

At the time of writing, several features of OpenACC were not yet fully implemented in
the Cray compiler, but look promising. The kernels construct (combined with guided
loop execution) will hopefully improve the productivity of accelerating code regions
containing multiple loops. Aiming at increasing performance, the async clause of
parallel, kernels and update constructs will be applied to the investigated
medical application. Employing multiple command queues, it will enable the start of
separate parallel regions simultaneously to independently compute matrix-vector mul-
tiplications and vector-vector operations and the overlap of kernel execution and data
movement. In OpenCL, the usage of the GPU’s software cache improved the perfor-
mance of both software packages. The application of OpenACC’s cache clause may
also lead to further acceleration in the future. Moreover, we will examine the combina-
tion of OpenACC and MATLAB. With OpenCL, the communication to MATLAB was
employed by exchanging the OpenCL context. However, at the moment, it is unclear
whether a realization with OpenACC is possible.

7 Conclusion

In the context of two real-world applications, we examined the performance, program-
mability and productivity of OpenACC in comparison to OpenCL and PGI Accelerator.

With OpenACC, we find that the performance of the moderately complex kernel of
the simulation software for bevel gear cutting is about 80 % of the best-effort OpenCL
performance regarding double precision computations, although the implementation of
OpenACC that we used is still incomplete. This result matches the expectations of the
performance of a directive-based programming model. In contrast, the OpenACC per-
formance of the more complex medical program is only approximately 40 % of the
best-effort OpenCL implementation. Although this value is rather distressing at first
sight, we still believe that OpenACC is a promising approach: We assume that the loss
of performance is mainly due to the current lack of the ability to leverage the local
memory of the GPU intensified by our manually implemented global synchronization
to prevent race conditions. These trade-offs may be eliminated by the ongoing imple-
mentation work on OpenACC or by introducing additional directives. Moreover, it must
be taken into account that the highly optimized OpenCL code is quite verbose, hard to
read and requires 630 modified code lines, whereas the best OpenACC version only
needed 46 modified lines of code. Basing on these numbers, the OpenACC’s ratio of
development effort to performance is encouraging.

Thus, in terms of programmability and productivity, the OpenACC API is generally
convincing. It can be intuitively applied if the programmer has certain knowledge of
the accelerator’s hardware architecture. If adopting features like device function calls,
user-defined reductions or critical regions, the programming efficiency may be further
improved while simultaneously reducing sources of errors.

In our view, the move to directive-based accelerator programming is essential for
the further growth and acceptance of accelerator devices. To this end, OpenACC is an
important step as it standardizes a directive-based API for accelerators for the first time.
It is intended to integrate the feedback and the lessons learned from OpenACC into the
OpenMP specification. The inclusion of corresponding functionality into the OpenMP

870 S. Wienke et al.

standard will be technically demanding though and may slow down further development
of the standard. However, from the user’s point of view, OpenMP for accelerators is
certainly promising.

References

1. Ayguadé, E., Badia, R., Bellens, P., Cabrera, D., Duran, A., Ferrer, R., Gonzàlez, M., Igual,
F., Jiménez-González, D., Labarta, J., Martinell, L., Martorell, X., Mayo, R., Pérez, J., Planas,
J., Quintana-Ortı́, E.: Extending OpenMP to Survive the Heterogeneous Multi-Core Era.
International Journal of Parallel Programming 38, 440–459 (2010), doi:10.1007/s10766-010-
0135-4

2. Beyer, J.C., Stotzer, E.J., Hart, A., de Supinski, B.R.: OpenMP for Accelerators. In: Chap-
man, B.M., Gropp, W.D., Kumaran, K., Müller, M.S. (eds.) IWOMP 2011. LNCS, vol. 6665,
pp. 108–121. Springer, Heidelberg (2011)

3. Bordawekar, R., Bondhugula, U., Rao, R.: Can CPUs Match GPUs on Performance with Pro-
ductivity?: Experiences with Optimizing a FLOP-intensive Application on CPUs and GPU.
Technical report, IBM Res. Division (2010)

4. Brecher, C., Gorgels, C., Hardjosuwito, A.: Simulation based Tool Wear Analysis in Bevel
Gear Cutting. In: International Conference on Gears, Düsseldorf. VDI-Berichte, vol. 2108.2,
pp. 1381–1384. VDI Verlag (2010)

5. Bücker, M., Beucker, R., Rupp, A.: Parallel Minimum p-Norm Solution of the Neuromag-
netic Inverse Problem for Realistic Signals Using Exact Hessian-Vector Products. SIAM
Journal on Scientific Computing 30(6), 2905–2921 (2008)

6. Dolbeau, R., Bihan, S., Bodin, F.: HMPP: A Hybrid Multi-core Parallel Programming Evi-
ronment. In: First Workshop on General Purpose Processing on Graphics Processing Units
(2007)

7. CAPS Enterprise, Cray Inc., NVIDIA, and the Portland Group. The OpenACC Application
Programming Interface, v1.0 (November 2011)

8. Hacker, H., Trinitis, C., Weidendorfer, J., Brehm, M.: Considering GPGPU for HPC Centers:
Is It Worth the Effort? In: Keller, R., Kramer, D., Weiss, J.-P. (eds.) Facing the Multicore-
Challenge. LNCS, vol. 6310, pp. 118–130. Springer, Heidelberg (2010)

9. Han, T.D., Abdelrahman, T.S.: hiCUDA: High-Level GPGPU Programming. IEEE Transac-
tions on Parallel and Distributed Systems 22(1), 78–90 (2011)

10. Khronos OpenCL Working Group. The OpenCL Specification, v1.1.44 (2011)
11. Koesterke, L., Boisseau, J., Cazes, J., Milfeld, K., Stanzione, D.: Early Experiences with

the Intel Many Integrated Cores Accelerated Computing Technology. In: Proceedings of the
2011 TeraGrid Conference: Extreme Digital Discovery, TG 2011, pp. 21:1–21:8. ACM, New
York (2011)

12. Lee, S., Eigenmann, R.: OpenMPC: Extended OpenMP Programming and Tuning for GPUs.
In: 2010 International Conference for High Performance Computing, Networking, Storage
and Analysis (SC), pp. 1–11 (November 2010)

13. NVIDIA. CUDA C Programming Guide, v4.0 (2011)
14. The Portland Group. PGI Accelerator Programming Model for Fortran & C, v1.3 (2010)
15. Wienke, S., Plotnikov, D., an Mey, D., Bischof, C., Hardjosuwito, A., Gorgels, C., Brecher,

C.: Simulation of bevel gear cutting with GPGPUs-performance and productivity. Computer
Science - Research and Development 26, 165–174 (2011), doi:10.1007/s00450-011-0158-0

accULL: An OpenACC Implementation

with CUDA and OpenCL Support�

Ruymán Reyes, Iván López-Rodŕıguez,
Juan J. Fumero, and Francisco de Sande

Dept. de E.I.O. y Computación
Universidad de La Laguna, 38271–La Laguna, Spain

{rreyes,ilopezro,jfumeroa,fsande}@ull.es

Abstract. The irruption in the HPC scene of hardware accelerators,
like GPUs, has made available unprecedented performance to develop-
ers. However, even expert developers may not be ready to exploit the new
complex processor hierarchies. We need to find a way to leverage the pro-
gramming effort in these devices at programming language level, other-
wise, developers will spend most of their time focusing on device-specific
code instead of implementing algorithmic enhancements. The recent ad-
vent of the OpenACC standard for heterogeneous computing represents
an effort in this direction. This initiative, combined with future releases
of the OpenMP standard, will converge into a fully heterogeneous frame-
work that will cope the programming requirements of future computer
architectures. In this work we present accULL, a novel implementation of
the OpenACC standard, based on the combination of a source to source
compiler and a runtime library. To our knowledge, our approach is the
first providing support for both OpenCL and CUDA platforms under
this new standard.

1 Introduction

The widespread use of graphics accelerators for general purpose computing has
leveraged the entry cost of high performance computer systems. A modest com-
modity computer in combination with a graphic card constitutes a powerful tool
which empowers users to solve problems with a significant size so far unavailable
without the aid of large scale computers.

Despite the improvements achieved in the hardware field, there is still a lack of
parallel problem solving environments that can help scientists to use easily and
efficiently these hybrid architectures. From our point of view, at this moment,
efforts have to be directed towards the development of high level abstractions of
these heterogeneous environments. This will allow more users to take advantage
of these architectures without the need of detailed hardware knowledge.

� This work has been partially supported by the EU (FEDER), the Spanish MEC
(Plan Nacional de I+D+I, contracts TIN2008-06570-C04-03 and TIN2011-24598),
HPC-EUROPA2 (project number 228398) and the Canary Islands Government,
ACIISI (contract PI2008/285).

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 871–882, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

872 R. Reyes et al.

CUDA is the most mature and extended approach to GPU programming, al-
though currently only supports Nvidia devices. Despite of being partially simple
to build a code using this tool, achieving good performance rate usually requires
a noticeable coding and optimisation effort.

The OpenCL standard represents an effort to create a common program-
ming interface for heterogeneous devices, which many manufacturers have joined.
However, its programming model is not simple.

The presentation during Seattle SC2011 of the new OpenACC standard for
heterogeneous computing [4] clearly represents a major effort in the aforemen-
tioned direction of leveraging the development effort. Following the OpenMP
approach, in the OpenACC API, the programmer annotates its sequential code
with compiler directives, indicating those regions of code susceptible to be exe-
cuted in the the GPU. The simplicity of the model, its ease of adoption by non
expert users and the support received from the leading companies in this field
make us believe that it is a long-term standard.

Prior to OpenACC, the PGI Accelerator model [6] proposed a high-level pro-
gramming model for accelerators, such as GPUs, similar in design and scope to
the widely-used OpenMP directive approach. Also, the CAPS HMPP [1] toolkit
is a set is a set of compiler directives, tools and software runtime that supports
parallel programming in C and Fortran. Both PGI and CAPS are founders of
the OpenACC standard, and have recently announced versions of their tools
compliant to the standard.

As a continuation of our recent years work [5], here we present a first re-
lease of our implementation of the OpenACC standard. We offer support for
the most common used constructs, and we are able to run in both CUDA and
OpenCL platforms. To the best of our knowledge, ours is the first open-available
implementation of the standard that supports OpenCL. In addition, we present
results using both CPU and GPU OpenCL platforms. User can select the de-
sired platform using the appropriate environment variable, conforming to the
standard.

The contributions of this work are manifold: (a) It represents one of the first
non-commercial implementation of the OpenACC standard. (b) This is the first
implementation, as far as we know, with support for both OpenCL and CUDA
platforms. (c) We present a runtime suitable to be decoupled from our compiler
and used together with a different compiler infrastructure. (d) We validate our
approach using codes from widely available benchmarks and using both GPU
and CPU devices.

The rest of the paper is organized as follows. Section 2 discusses the implemen-
tation of our compilation framework. In Section 3 we expose the key ideas behind
our approach. We guide our explanations through the use of a code example.
Also in Section 3 we present computational results for the guiding example and
three additional well-known algorithms. Finally, Section 4 includes the conclu-
sions we have been able to achieve so far and ideas about future work regarding
this framework.

accULL: An OpenACC Implementation with CUDA and OpenCL Support 873

2 The Implementation

Our approach is a two-layer based implementation composed by a source to
source compiler and a runtime library, in a similar fashion to other compiler
infrastructures. However, instead of generating a final binary file, the result of
our compilation stage is a a project tree hierarchy with compilation instructions,
suitable to be modified by advanced end-users. Default compilation instructions
enable average users to generate an executable without additional effort. The
aim of this approach is to maintain a low development effort in the programmer
side, while keeping the opportunity window for further optimizations performed
by high-skilled developers.

The compiler is based on our YaCF research compiler framework, while the
runtime (Frangollo) has been designed from scratch. We have named accULL to
the combination of our compiler driver and the runtime.

YaCF translates the annotated C+OpenACC source code into a C code with
calls to the Frangollo API. The YaCF compiler framework [5] has been designed
to create source to source translations. It is intended to be a fast-prototyping tool
which allows compiler developers to write portable source to source transforma-
tions in just a a few lines of Python code. The framework is available as an open
source tool 1. On top of the YaCF infrastructure, we have built a set of Python
modules, capable of extracting the kernel code from the annotated source and
replace it with the appropriate runtime calls. Both OpenCL and CUDA kernels
are generated from the extracted block statements

User annotations are validated against data dependency analysis. A warn-
ing is emitted if variables are missing. Also, we can check whether a variable is
read-only or not, to allocate the appropriate type of memory. Source to source
translation injects a set of Frangollo calls within the serial code. Whenever these
calls are issued, control is deferred to Frangollo runtime, who will execute the
code of the proper API call or whatever other code it might require (for ex-
ample, to handle previous asynchronous operations). Frangollo deals with two
major issues of any OpenACC implementation: memory management and kernel
execution.

It is important to take into account that nowadays compute accelerator de-
vices do not share the host processor address space. Therefore, it is critical to
transparently handle the existence of several instances of an user variable on
different devices. To address this situation, our runtime uses a base pointer ad-
dress detection mechanism to match each host variable to its device counterpart.
Using this mechanism, we are able to track accesses to variables across interpro-
cedural calls. The only exception to this behaviour is the implementation of the
acc host construct, which, by specification definition, requires a device specific
pointer, and the deviceptr clauses, which are not currently implemented.

Memory transfers are handled on demand by Frangollo. No assumption can
be done with respect to the time ordering of these transfers, apart from their
completion before kernel execution. It is possible to use Frangollo without our

1 http://code.google.com/p/yacf/

874 R. Reyes et al.

Table 1. Compliance with the OpenACC 1.0 standard (constructs)

Construct Status Description
kernels Implemented Kernels for OpenCL and CUDA are gen-

erated for each loop inside the scope
loop Implemented Indicates a potential accelerator kernel.

Some restrictions apply (e.g., no external
definitions)

kernels loop Implemented A kernel will be extracted. Dependency
analysis is used to check and allocate RO
variables if possible.

parallel Not implemented -
update Implemented Mixing host and device clauses in the

same construct does not work, they must
be separated

copy, copyin,
copyout, . . .

Implemented Runtime dynamically handles memory
transfers

pcopy, pcopyin,
pcopyout ,. . .

Implemented Runtime dynamically handles memory
transfers when required

async Not implemented -
deviceptr clause Not implemented -
host Partially implemented Our framework generates the right code,

but we still have to solve portability is-
sues between OpenCL and CUDA

name Not in standard Optional clause to name a particular acc
region or loop and refer it from an exter-
nal optimization file at compile time.

compiler framework, and the software architecture based on components and
interfaces would facilitate porting the runtime to other kind of devices or creating
new bindings for different languages.

Frangollo is divided into separate pluggable components. A common compo-
nent serves as an abstract interface to all kind of components. Generic operations
over devices, like memory transfers or kernel execution, are mapped on top of an
abstract interface. Operations at this level refer to three main objects: Context,
Devices and Variables. Components instantiate the basic operations to perform
the actual work. Interfaces access the abstract layer without requiring to know
which component is enabled or not. Frangollo’s API provide high level entry
points to the runtime, independent from the destination platform. The com-
piler can emit these generic runtime calls, like registerVar, createContext or
launchKernel, and Frangollo can handle the rest of the work, i.e, choosing the
appropriate platform, load the kernel file, estimate the best grid configuration,
copyin/out the result and even perform reductions over the selected variables.

YaCF supports most of the syntactic constructs in the OpenACC 1.0 spec-
ification, but some of them are silently ignored. In addition, although some
operations inside Frangollo runtime are handled asynchronously, support for the
async OpenACC clause has not been implemented yet. Table 1 describes some
of the constructs implemented in accULL.

Being an initial release, our approach allows translating to CUDA/OpenCL a
comprehensive set of codes properly annotated, as we show in Section 3. Never-
theless, at this point, we do not aim to create a full commercial implementation
of the standard, but a research tool to demonstrate its potential.

accULL: An OpenACC Implementation with CUDA and OpenCL Support 875

3 Evaluation

To evaluate our accULL OpenACC implementation, we have used codes from
different benchmarks and tested them on the next four different platforms:

– M1: Desktop computer with an Intel(R) Core(TM) i7 930 processor (2.80
GHz), with 1MB of L2 cache, 8MB of L3 cache, shared by the four cores.
The machine has 4 GB RAM and two GPU devices are attached:
• M1a: Tesla C1060 with 240 multiprocessors, 3 GB memory

∗ Bandwidth from host to device: 2.40 GB/s
∗ Bandwidth from device to host: 2.29 GB/s

• M1b: Tesla C2050 with 448 multiprocessors, 4 GB memory
∗ Bandwidth from host to device: 2.35 GB/s
∗ Bandwidth from device to host: 2.20 GB/s

– M2: One cluster node consisting on two quad core Intel Xeon E5410 (2.25GHz)
processors, 24 GB memory and an attached Fermi C2050 card with 448 mul-
tiprocessors and 4 GB memory.

– M3: Laptop computer with one Intel(R) Core(TM) i3 CPU M 350, using Hy-
perthreading to enable four virtual processors, 3GB RAM, and an integrated
Nvidia OPTIMUS graphic card.

– M4: A second cluster node. M4 is a shared memory system, with 4 Intel(R)
Xeon(R) E7 4850 CPU, with 2.50MB L2 cache and 24MB L3 cache (for all
its 10 cores). 6GB of memory are available per core.

With platforms M1a / M1b we mimic the usual scenario of an OpenACC de-
veloper: A slightly experienced user interested in improving the performance a
scientific code can purchase a new GPU card and plug in it into her desktop
computer. It is a relatively cheap platform as opposed to a multinode cluster
and could achieve a combined peak theoretical performance 478.36 GFLOPs in
double performance (77.76 GFLOPs from Tesla C1060 + 345.6 GFLOPs from
Tesla C2060 + 55 GFLOPs from main processor). This kind of user might have
some insight in programming and even in GPU computing, but she is not an
expert. Starting with his own serial code and using an OpenACC compliant
compiler, this user will take advantage of the GPUs without investing excessive
time in low level programming.

M2 is a node of a common multinode cluster. Nowadays clusters are composed
by multicore processors and GPU devices, thus it is possible to take advantage
of OpenACC in these platforms. Moreover, our implementation integrates seam-
lessly with MPI programs, and can be used to take advantage of the attached
GPU devices without additional effort.

M3 represents a usual nowadays medium-end laptop computer. It uses reduced
versions of desktop GPUs that support GPGPU computing. Laptop computers
are not relevant in terms of HPC, however, accULL is suitable for other environ-
ments wherever GPU computing could be beneficial.

M4 is a shared memory system that showcases an alternative case use of
OpenCL. Nowadays shared memory machines feature several CPUs with sev-
eral cores on each. These cores also contain vector processing units that require

876 R. Reyes et al.

particular compiler support (or a deep understanding of these technologies) to
unleash their potential. There are implementations of OpenCL, like the Intel
OpenCL SDK or the AMD APP SDK, targeting these shared memory ma-
chines. Writing algorithms in OpenCL is not an effortless task, but it allows
a better mapping of hardware resources and improve thread scheduling. Using
CPU-targeted OpenCL platforms along with OpenACC represents an interesting
alternative to traditional OpenMP programming that we will explore in different
examples. Our runtime detects whether the platform is a GPU or a CPU and
uses the appropriate variable register and copy method, without requiring to
know this parameter at compile time.

3.1 Molecular Dynamic simulation

Given positions, masses and velocities of np particles, the pseudo code shown
in Listing 1.1 computes the energy of the system and the forces on each par-
ticle. The code is a C implementation of a simple Molecular Dynamics (MD)
simulation. It employs an iterative numerical procedure to obtain an approxi-
mate solution whose accuracy is determined by the time step of the simulation.
Particles are represented by three three-dimensional double precision matrices:
Position, Velocity and Force (parameters). Rows of each matrix represent a par-
ticle, whereas columns represent a dimension. For example, the coordinate {3, 1}
contains the parameter value for the particle number three in dimension one.

1 int main (. . .) {
2 . . .
3 // I n i t i a l energy ca l cu la t ion
4 compute (position , velocity , mass , force , &potential , &kinetic) ;
5 . . .
6 // (S) Simulation
7 for (i = 0; i < NSTEPS ; i++) {
8 compute (position , velocity , mass , force , &potential , &kinetic)

;
9 printf (. . . , potential , kinetic) ;

10 update (position , velocity , mass , force , &potential , &kinetic)
;

11 }
12 . . .
13 }
14 void compute (. . .) {
15 // (C) Compute forc e s
16 for (. . .) {
17 }
18 }
19 void update (. . .) {
20 // (U) Update v e l o c i t y / pos i t ion
21 for (. . .)
22 for (. . .) {
23 . . .
24 }
25 }

Listing 1.1. Sketch of MD simulation in OpenACC

accULL: An OpenACC Implementation with CUDA and OpenCL Support 877

Table 2. Time per phase and speedup for each incremental optimization over the naive
implementation, as measured in M3 using the Intel OpenCL SDK over the CPU. In this
situation, using the data clause does not represent and important performance benefit,
due to the fact that (1) Frangollo OpenCL implementation uses the native pointer
whenever possible and (2) Intel OpenCL features lower initialization time than GPU
approaches.

Version Time transfer in Time transfer out Kernel Time Total time % Speedup
Naive Approach < 0.02s 0.0127834s 5.69122s 5.791388s -
Using a data clause < 0.02s 0.0121639s 5.63023s 5.729317s 1%
Splitting C loops < 0.02s 0.0120155s 3.87633s 4.046456 30.1%

After an initial forces computation, on each simulation step, the algorithm per-
forms two basic operations: compute (C) and update (U). C operation consists of
several nested loops computing the forces for each position. An external loop it-
erates over all particles computing its forces in the current simulation step. This
requires computing the distance among all other particles, hence accessing the
positionmatrix, and computes the total potential and kinetic energy of the sys-
tem, which requires access to the velocity matrix. In terms of the data access
pattern, the code is highly un-coalesced, requiring several non-contiguous loads
to compute each particle. In addition, it features several costly double precision
operations (sqrt, sin and cos) which traditionally perform badly on GPU devices.
The U operation is simply a for loop that runs over the particles, updating their
positions, velocities and accelerations. C is more compute–intensive than U.

A naive porting of this code using OpenACC directives would consist into
adding the kernels loop construct to the top of the outermost loops in both
routines (before C and U in Listing 1.1), and writing the appropriate copy
clauses to indicate variable directionality related to the loop.

In this case, our compiler would extract the kernel from the loops and inject
the appropriate runtime calls. Each time these functions are executed, memory
transfers between host and GPU will take place. Transfer time between host
and GPU could represent a significant percentage of the total time. Developers
should take into account that the outstanding performance achieved by acceler-
ator devices can be easily hidden by an excessive memory transfer time. Usage
of profiling tools is highly recommended to detect bottlenecks.

OpenACC features a data directive that enables to create a data region where
the information of the indicated variables is transferred into the GPU, and back
to the host at the end of the data region. accULL creates a context at this point,
and the directionality information provided through the copy clauses is used to
register the variables in the runtime. In this case, we precede the S loop with the
aforementioned data construct, indicating that the parameters Force, Position,
Velocity and Acceleration can be transferred into the device at this point. From
now on, all references inside a kernel to these variables will not require a memory
transfer from the host, as they are all already stored on the device. When entering
kernels inside C and U functions, the runtime will not create a new context, but
it creates a new scope level within the existent context. With this method, we

878 R. Reyes et al.

(a) MD in M3 (b) MD in M4

Fig. 1. (a) Performance comparison of the (best) OpenACC implementation vs.
OpenMP in M3. OpenCL uses Intel OpenCL SDK over the CPU. CUDA version uses
the CUDA 4.0 driver using the laptop’s GPU. The largest problem size could not be
executed in GPU due to the lack of graphics memory. It is worth to note the flexibil-
ity of the runtime, and how it is able to match OpenMP performance despite of the
runtime overhead. (b) Performance comparison of the (best) OpenACC implementa-
tion with OpenMP in M4. OpenCL uses Intel OpenCL SDK over the CPU. OpenMP
implementation was provided by GCC version 4.4.5.

ensure that variables are registered once and directionality from higher scopes
is preserved. However, new variables might be added to these nested constructs.
Existence and directionality of these variables inside the device is restricted to
the scope of the current scope. In the MD code example, we require the variables
pot and kin to be transferred in/out between iterations in order to show the
appropriate information to the user. However, as both pot and kin are registered
within an inner scope, whenever these inner scopes are exhausted, variables are
transferred back from the device to the host.

accULL enables users to perform incremental parallelization over GPU devices
with minor effort. Traditional GPU performance tools can be used with the
resulting codes. For example, in the MD code, the Nvidia profiler shows that
more than 80% of the time is devoted to the C kernel. As stated before, this
kernel is highly compute-intensive, as it features un-coalesced memory accesses
and costly/non parallel floating point operations. One possible solution is to
split this kernel into several smaller ones, to increase coalescence. This could be
considered counterintuitive in traditional CPU programming, where processor
features large caches, but in GPUs it is a good idea. In order to rewrite this
kernel into smaller ones, a CUDA developer would require a considerable effort,
as she would be forced to write additional kernel calls, memory transfers, etc.. In
OpenACC, the programmer only needs to split the sequential code and put the
appropriate directives on the new loops. The compiler will extract the required
kernels.

accULL: An OpenACC Implementation with CUDA and OpenCL Support 879

Table 3. Time per phase and speedup for each incremental optimization over the
naive implementation, as measured in M2 using the Nvidia CUDA platform over the
GPU. The cost of the CUDA calls, context initialization and memory transfers were
noticeable in this case, thus using the data clause improved performance.

Version Time transfer in Time transfer out Kernel time Total time % Speedup
Naive Approach 0.02524s 0.016229s 1.03017s 3.747910s -
Using a data clause 0.01133s 0.016193s 1.02849s 1.433504s 61%
Splitting C loops > 0.01s 0.016176s 0.23832s 0.434439s 88.4%

accULL provide the means to execute our codes on several platforms, not only
restricted to GPU devices, with a single source code. Performance figures for
the low-end system M3 are shown in Figure 1a. On the other hand, Figure 1b
showcases the benefit of using an OpenCL implementation using an high-end
shared memory multiprocessor (M4).

Tables 2 and 3 show detailed timing information for transfers, kernel and total
time obtained using Frangollo’s internal tracing module. In both Tables, the
problem size was 4096 particles and 20 iteration steps were performed. Results
were validated against the sequential implementation.

Users can turn this tracing feature when building the runtime and produce these
statistics through an internal Frangollo call. In addition to this simple profilermod-
ule, we have experimental support for the Extrae tracing library, that enables us
to perform detailed performance analysis with the Paraver [3] tool.

3.2 Mandelbrot Computation Set

Listing 1.2 shows an implementation using a Monte-Carlo method to compute
the area of the Mandelbrot set using OpenACC.

When creating the parameters for the kernel launch, YaCF indicates to the
runtime that the numoutside parameter requires a reduction operation and ex-
pands the scalar variable to a vector. This vector stores a private copy of the
variable in each thread. Later, both CUDA and OpenCL components of the
runtime, using a separated and optimized kernel, perform the reduction oper-
ation. The reduction operation is not performed during kernel execution, but
later on when the variable is transferred back to the device, or if the variable
were required by another kernel.

1 #pragma acc k e r n e l s loop reduct ion (+: numoutside) p r i va t e (i , j)
copyin (npoints , c [npo ints]) copy (numoutside)

2 for (i = 0; i < npoints ; i++) {
3 z . creal = c [i] . creal ; z . cimag = c [i] . cimag ;
4 for (j = 0; j < MAXITER ; j++) {
5
6 i f (z is outside set) {
7 numoutside++;
8 break ;
9 }

10 } /∗ for j ∗/
11 } /∗ for i ∗/

Listing 1.2. The Mandelbrot set computation in OpenACC

880 R. Reyes et al.

Fig. 2. Execution time of the implementation greatly varies in terms of the number of
threads, using N = 32768 points. Besides, the optimal number of threads varies from
Tesla C1060 to Tesla C2050.

Another issue that has a large impact on the performance of the CUDA code
is the number of threads per block, particularly in the presence of irregular
computations. Figure 2 shows the variability of the execution time while changing
the number of threads. This variability reflects the significance of a proper launch
grid configuration. Our compiler extracts compute intensity information from
the kernel (i.e, relation between floating point operations and memory accesses)
and passes the information to the runtime through the launchkernel API call,
together with additional information about the loop, like boundaries, number
of iterations, etc. This information is used to guess a first estimation to the
number of threads per block. In case the user wants to influence this choice,
an environment variable which varies the relation between floating point and
memory operations is available.

For the CUDA component, a second estimator, which attempts to maximize
the occupancy rate of the multiprocessors, is used. Information extracted from
the PTX feeds this estimator. Using this two-tier system, we can guess a suitable
number of threads for the target platform without user intervention. Current
implementation features an environment variable which enables user to force a
particular threads per block number and disables the thread estimation.

3.3 Rodinia Benchmarks

In order to complete our computational experience, in this Section we present
performance comparisons for two benchmarks taken from the Rodinia suite [2].
Rodinia comprise compute-heavy applications meant to be run in the massively
parallel environment of a GPU, and cover a wide range of applications. From
this suite we have selected SRAD and NW for our experiments, and we present
results for M1 and M4 platforms in Figures 3 and 4.

accULL: An OpenACC Implementation with CUDA and OpenCL Support 881

(a) SRAD (b) NW

Fig. 3. Performance comparison of accULL using M1b versus native implementation,
showing the speedup against OpenMP. Although native implementation clearly out-
performs both OpenMP and accULL implementations, the coding effort of OpenACC
is lower than the required to write both CUDA and OpenCL implementations.

(a) SRAD (b) NW

Fig. 4. Performance comparison using M4 of accULL versus native implementation,
showing the speedup against OpenMP gcc implementation. It seems that using Intel
OpenCL we are capable of extracting more performance from the shared memory
machine. Native implementations of OpenCL also outperforms OpenMP.

4 Conclusions and Future Work

As we demonstrate in Section 3, the current status of the accULL implementation
meets the requirements of a non-expert developer, and will improve the time to
solution by decreasing the overall development effort. There are several imple-
mentations of the OpenACC standard. However, they are commercial solutions
and, to our knowledge, do not currently feature support for OpenCL platforms.
At the time of writing we could not access a commercial OpenACC implemen-
tation to compare the results of our CUDA support. We have made our best
effort to compare our codes with a native CUDA or OpenCL implementation
whenever possible.

882 R. Reyes et al.

Our compiler implementation of the OpenACC standard can be used as a
fast-prototyping tool to explore optimizations and alternative runtime environ-
ments. Our runtime library can be fully detached from the compiler environment
and used together with a commercial or production-ready compiler, like LLVM
or Open64, to implement the OpenACC standard in a short time. Memory allo-
cation, kernel scheduling, data splitting, overlapping of computation and com-
munications or parallel reduction implementation are some of the issues that can
be tackled within Frangollo independently from the compiler.

We believe that accULL is a good choice for non-expert users to exploit GPUs
in HPC. The results we have shown in this work represent a clear improvement
in the way of increase programmability of heterogeneous architectures. These
preliminary results make us believe that our approach is worth to be explored
more deeply.

Work in progress within the framework of the accULL project includes inte-
gration with a commercial compiler, taking advantage of pre-existing autovec-
torization support, and improvement of the support for memory allocation. We
have work in progress to implement two dimensional arrays as cudaMatrix or
OCLImages to improve non-contiguous memory access. Also we are exploring
several possibilities of integration with MPI. The OpenCL component is capable
of sharing pointers with MPI buffers, and we would like to use the new features
the latest CUDA release, like GPU Direct, in the same direction. We believe that
there are still plenty of opportunities to improve performance from this point, as
this work settles the foundations of a dynamic and detachable compiler+runtime
infrastructure.

References

1. Bihan, F.B.S.: Heterogeneous multicore parallel programming for graphics process-
ing units. Sci. Program. 17, 325–336 (2009)

2. Che, S., Sheaffer, J.W., Boyer, M., Szafaryn, L.G., Wang, L., Skadron, K.: A char-
acterization of the rodinia benchmark suite with comparison to contemporary cmp
workloads. In: Proceedings of the IEEE International Symposium on Workload
Characterization, IISWC 2010, pp. 1–11. IEEE Computer Society, Washington, DC
(2010)

3. Giménez, J., Labarta, J., Pegenaute, F.X., Wen, H.-F., Klepacki, D., Chung, I.-
H., Cong, G., Voigtländer, F., Mohr, B.: Guided Performance Analysis Combining
Profile and Trace Tools. In: Guarracino, M.R., Vivien, F., Träff, J.L., Cannatoro,
M., Danelutto, M., Hast, A., Perla, F., Knüpfer, A., Di Martino, B., Alexander, M.
(eds.) Euro-Par-Workshop 2010. LNCS, vol. 6586, pp. 513–521. Springer, Heidelberg
(2011)

4. OpenACC directives for accelerators (2011), http://www.openacc-standard.org
5. Reyes, R., de Sande, F.: Optimization strategies in different CUDA architectures us-

ing. Microprocessors and Microsystems - Embedded Hardware Design 36(2), 78–87
(2012)

6. Wolfe, M.: Implementing the PGI accelerator model. In: Proceedings of the 3rd
Workshop on General-Purpose Computation on Graphics Processing Units, GPGPU
2010, pp. 43–50. ACM, New York (2010)

http://www.openacc-standard.org

Understanding the Performance of Concurrent

Data Structures on Graphics Processors

Daniel Cederman, Bapi Chatterjee, and Philippas Tsigas�

Chalmers University of Technology, Sweden
{cederman,bapic,tsigas}@chalmers.se

Abstract. In this paper we revisit the design of concurrent data struc-
tures – specifically queues – and examine their performance portability
with regard to the move from conventional CPUs to graphics proces-
sors. We have looked at both lock-based and lock-free algorithms and
have, for comparison, implemented and optimized the same algorithms
on both graphics processors and multi-core CPUs. Particular interest
has been paid to study the difference between the old Tesla and the new
Fermi and Kepler architectures in this context. We provide a compre-
hensive evaluation and analysis of our implementations on all examined
platforms. Our results indicate that the queues are in general perfor-
mance portable, but that platform specific optimizations are possible
to increase performance. The Fermi and Kepler GPUs, with optimized
atomic operations, are observed to provide excellent scalability for both
lock-based and lock-free queues.

1 Introduction

While multi-core CPUs have been available for years, the use of GPUs as efficient
programmable processing units is more recent. The advent of CUDA [1] and
OpenCL [2] made general purpose programming on graphics processors more
accessible to the non-graphics programmers. But still the problem of efficient
algorithmic design and implementation of generic concurrent data structures for
GPUs remains as challenging as ever.

Much research has been done in the area of concurrent data structures. There
are efficient concurrent implementations of a variety of common data structures,
such as stacks [3], queues [4–9] and skip-lists [10]. For a good overview of several
concurrent data structures we refer to the chapter by Cederman et al. [11].

But while the aforementioned algorithms have all been implemented and eval-
uated on many different multi-core architectures, very little work has been done
to evaluate them on graphics processors. Data structures targeting graphics ap-
plications have been implemented on GPUs, such as the kd-tree [12] and oc-
tree [13]. A C++ and Cg based template library [14] has been provided for random

� This work was partially supported by the EU as part of FP7 Project PEPPHER
(www.peppher.eu) under grant 248481 and the Swedish Foundation for Strategic Re-
search as part of the project RIT-10-0033 “Software Abstractions for Heterogeneous
Multi-core Computer”.

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 883–894, 2012.
� Springer-Verlag Berlin Heidelberg 2012

884 D. Cederman, B. Chatterjee, and P. Tsigas

access data structures for GPUs. Load balancing schemes on GPUs [15] using
different data structures have been designed. A set of blocking synchronization
primitives for GPUs [16] has been presented that could aid in the development
or porting of data structures.

With the introduction of atomic primitives on graphics processors, we hypoth-
esize that many of the existing concurrent data structures for multi-core CPUs
could be transferred to graphics processors, perhaps without much change in
the design. To evaluate how performance portable the designs of already exist-
ing common data structure algorithms are, we have, for this paper, implemented
a set of concurrent FIFO queues with different synchronization mechanisms on
both graphics processors and on multi-core CPUs. We have performed exper-
iments comparing and analyzing the performance and cache behavior of the
algorithms. We have specifically looked at how the performance changes by the
move from NVIDIA’s Tesla architecture to the newer Fermi [17] and Kepler
(GK104) [18] architectures.

The paper is organized as follows. In section 2, we introduce the concurrent
data structures and describe the distinguishing features of the algorithms con-
sidered. Section 3 presents a brief description of the CUDA programming model
and different GPU architectures. In section 4, we present the experimental setup.
A detailed performance analysis is presented in section 5. Section 6 concludes
the paper.

2 Concurrent Data Structures

Depending on the synchronization mechanism, we broadly classify concurrent
data structures into two categories, namely blocking and non-blocking. In block-
ing synchronization, no progress guarantees are made. For non-blocking synchro-
nization, there are a number of different types of progress guarantees that can be
assured. The two most important ones are known as wait-free and lock-free. Wait-
free synchronization ensures that all the non-faulty processes eventually succeed
in finite number of processing steps. Lock-free synchronization guarantees that
at least one of the non-faulty processes out of the contending set will succeed in
a finite number of processing steps. In practice, wait-free synchronization is usu-
ally more expensive and is mostly used in real-time settings with high demands
on predictability, while lock-free synchronization targets high-performance com-
puting.

Lock-free algorithms for multiple threads require the use of atomic primitives,
such as Compare-And-Swap (CAS). CAS can conditionally set the value of a
memory word, in one atomic step, if at the time, it holds a value specified as
a parameter to the operation. It is a powerful synchronization primitive, but is
unfortunately also expensive compared to normal read and write operations.

In this paper we have looked at different types of queues to evaluate their per-
formance portability when moved from the CPU domain to the GPU domain.
The queue data structures that we have chosen to implement are representa-
tive of several different design choices, such as being array-based or linked-list-
based, cache-aware or not, lock-free or blocking. We have divided them up into

Understanding the Performance of Concurrent Data Structures 885

two main categories, Single-Producer Single-Consumer (SPSC) and Multiple-
Producer Multiple-Consumer (MPMC).

2.1 SPSC Queues

In ’83, Lamport presented a lock-free array-based concurrent queue for the
SPSC case [19]. For this case, synchronization can be achieved using only atomic
read and write operations on shared head and tail pointers. No CAS operations
are necessary. Having shared pointers cause a lot of cache thrashing however,
as both the producer and consumer need to access the same variables in every
operation.

The FastForward algorithm lowered the amount of cache thrashing by keep-
ing the head and tail variables private to the consumer and producer, respec-
tively [4]. The synchronization was instead performed using a special empty
element that was inserted into the queue when an element was dequeued. The
producer would then only insert elements when the next slot in the array con-
tained such an element. Cache thrashing does however still occur when the pro-
ducer catches up with the consumer. To lower this problem it was suggested
to use a small delay to keep the threads apart. The settings used for the delay
function are however so application dependant that we decided not to use it in
our experiments.

The BatchQueue algorithm divides the array into two batches [5]. When the
producer is writing to one batch, the consumer can read from the other. This
removes much of the cache thrashing and also lowers the frequency at which
the producer and consumer need to synchronize. The major disadvantage of this
design is that a batch must be full before it can be read, leading to large latencies
if elements are not enqueued fast enough. A suggested solution to this problem
was to at regular intervals insert null elements into the queue. We deemed this as
a poor solution and it is not used in the experiments. To take better advantage of
the graphics hardware, we have also implemented a version of the BatchQueue
where we copy the entire batch to the local shared memory, before reading
individual elements from it. We call this version Buffered BatchQueue.

The MCRingBuffer algorithm is similar to the BatchQueue, but instead of
having just two batches, it can handle an arbitrary number of batches. This can
be used to find a balance between the latency caused by waiting for the other
threads and the latency caused by synchronization. As for the BatchQueue we
provide a version that copies the batches to the local shared memory. We call
this version Buffered MCRingBuffer.

2.2 MPMC Queues

For the MPMC case we used the lock-free queue by Michael and Scott, henceforth
called the MS-Queue [7]. It is based on a linked-list and adds items to the queue
by using CAS to swap in a pointer at the tail node. The tail pointer is then moved
to point to the new element, with the use of a CAS operation. This second step
can be performed by the thread invoking the operation, or by another thread that

886 D. Cederman, B. Chatterjee, and P. Tsigas

needs to help the original thread to finish before it can continue. This helping
behavior is an important part of what makes the queue lock-free, as a thread
never has to wait for another thread to finish.

We also used the lock-free queue by Tsigas and Zhang, henceforth called the
TZ-Queue, which is an array-based queue [8]. Elements are here inserted into
the array using CAS. The head and tail pointers are also moved using CAS, but
it is done lazily, after every x:th element instead of after every element. In the
experiments we got the best performance doing it every second operation.

To compare lock-free synchronization with blocking, we used the lock-based
queue by Michael and Scott, which stores elements in a linked-list [7]. We used
both the standard version, with separate locks for the enqueue and dequeue
operation, and a simpler version with a common lock for both operations. For
locks we used a basic spinlock, which spins on a variable protecting a critical
section, until it can acquire it using CAS. As CAS operations are expensive, we
also implemented a lock that does not use CAS, the bakery-lock by Lamport
[20].

3 GPU Architectures

Graphics processors are massively parallel shared memory architectures excel-
lently suitable for data parallel programs. A GPU has a number of stream multi-
processors (SMs), each having many cores. The SMs have registers and a local
fast shared memory available for access to threads and thread blocks (group of
threads) respectively, executing on them. The global memory, the main graph-
ics memory, is shared by all the thread blocks and the access is relatively slow
compared to that of the local shared memory.

In this work we have used CUDA for all GPU implementations. CUDA is a
mature programming environment for programming on GPUs. In CUDA threads
are grouped into blocks where all threads in a specific block execute on the
same SM. Threads in a block are in turn grouped into so called warps of 32
consecutive threads. These warps are then scheduled by the hardware scheduler.
Exactly how the scheduler schedules warps is unspecified. This is problematic
when using locks, as there is a potential for deadlocks if the scheduler is unfair.
For lock-free algorithms this is not an issue, as they are guaranteed to make
progress regardless of the scheduler.

The different generations of CUDA programmable GPUs are categorized in
compute capabilities (CC) and are identified more popularly by their archi-
tecture’s codename. CC 1.x are Tesla, 2.x are Fermi and 3.x are Kepler. The
architectural features depend on the compute capability of the GPU. In par-
ticular the availability of atomic functions has been varying with the compute
capabilities. In CC 1.0 there were no atomic operations available, from CC 1.1
onwards there are atomic operations available on the global memory and from
CC 1.2 also for the shared memory. An important addition to the GPUs in the
Fermi and Kepler architectures is the availability of a unified L2 cache and a
configurable L1 cache. The performance of the atomic operations significantly

Understanding the Performance of Concurrent Data Structures 887

increased in Fermi, with the atomic unit working on the L2 cache, instead of on
the global memory [16]. The bandwidth of L2 cache increased in Kepler so that
it is now 73% faster than that in Fermi [18]. The speed of atomic operations has
also been significantly increased in Kepler as compared to Fermi.

4 Experimental Setup

The experiments were performed on four different types of graphics processors,
with different memory clock rates, multiprocessor counts and compute capabil-
ities. To explore the difference in performance between CPUs and GPUs, the
same experiments were also performed on a conventional multi-core system, a
12-core Intel system (24 cores with HyperThreading). See Table 1 for an overview
of the platforms used.

Table 1. Platforms used in experiments. Counting multiprocessors as cores in GPU.

Name Clock speed Memory clock rate Cores Cache Architecture(CC)

GeForce 8800 GT 1.6GHz 1.0GHz 14 0 1.1 (Tesla)
GeForce GTX 280 1.3GHz 1.1GHz 30 0 1.3 (Tesla)
Tesla C2050 1.2GHz 1.5GHz 14 786 kB 2.0 (Fermi)
GeForce GTX 680 1.1GHz 3.0GHz 8 512 kB 3.0 (Kepler)

Intel E5645 (2x) 2.4GHz 0.7GHz 24 12MB

In the experiments we only consider communication between thread blocks,
not between individual threads in a thread block.

For the SPSC experiments, a thread from one thread block was assigned the
role of the producer and another thread from a second block the role of the
consumer. The performance was measured by counting the number of successful
enqueue/dequeue operations per ms that could be achieved when communicat-
ing a set of integers from the producer to the consumer. Enqueue operations on
full queues or dequeue operations on empty queues were not counted. Local vari-
ables, variables that are only accessed by either the consumer or the producer,
are placed in the shared memory to remove unnecessary communication with the
global memory. For buffered queues, 32 threads were used for memory transfer
between global and shared memory to take advantage of the hardware’s coalesc-
ing of memory accesses. All array-based queues had a maximum length of 4096
elements. The MCRingBuffer used a batch size of 128 whereas the BatchQueue
by design has batches of size as of half the queue size, in this case 2048. For
the CPU experiments care was taken to place the consumer and producer on
different sockets, to emphasize the penalty taken by using an inefficient memory
access strategy.

For the MPMC experiments a varying number of thread blocks were used,
from 2 up to 60. Each thread block performed 25% enqueue operations and
75% dequeue operations randomly, using a uniform distribution. Two scenarios
were used, one with high contention, where operations were performed one after

888 D. Cederman, B. Chatterjee, and P. Tsigas

another, and one with low contention, in which a small amount of work was per-
formed between the operations. The performance was measured in the number
of successful operations per ms in total.

5 Performance Analysis

5.1 SPSC Queues

Figure 1(a) depicts the result from the experiments on the CPU system. It is
clear from the figure that even the small difference in access pattern between the
Lamport and the FastForward algorithms has a significant impact on the perfor-
mance. The number of operations per ms differ by a factor of four between the
two algorithms. The cache access profile in Figure 1(b) shows that the number
of cache misses goes down dramatically when the head and tail variables are no
longer shared between processes. It goes down even further when the producer
and the consumer are forced to work on different memory locations. The figure
also shows that the number of stalled cycles per instructions matches the cache
misses relatively well. The reason for the performance difference between the
BatchQueue and the MCRingBuffer, which both have a similar number of cache
misses, lies in the difference between the size of the batches. This causes more fre-
quent reads and writes of shared variables compared to the BatchQueue. It was
observed that increasing the batch size lowers the synchronization overhead and
the number of stalled cycles and improves the performance of the MCRingBuffer
and brings it close to that of the BatchQueue.

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

Intel 24-core

O
pe

ra
tio

ns
 p

er
 m

s

Lamport

FastForward

MCRingBuffer

BatchQueue

(a) Comparison of SPSC queues.

0

10

20

30

40

50

60

70

80

90

Intel 24-core

Ra
tio

 o
f L

LC
 m

is
se

s r
el

at
iv

e
Ba

tc
hQ

ue
ue

0

0.5

1

1.5

2

2.5

Intel 24-core

St
al

le
d

cy
cl

es
 p

er
 in

st
ru

ct
io

n

(b) Cache profile.

Fig. 1. Comparison of SPSC queues on the CPU based system

Figure 2 shows the results for the same experiment performed on the graphics
processors. On the Tesla processors there are no cache memories available, which
removes the problem of cache thrashing and causes the Lamport and FastFor-
ward algorithms to give similar results. In contrast to the CPU implementations,
here the MCRingBuffer is actually faster than the BatchQueue. This is due to
the fact that the BatchQueue enqueuer is faster than the dequeuer and has to

Understanding the Performance of Concurrent Data Structures 889

0

500

1000

1500

2000

2500

3000

3500

GeForce 8800 GT GeForce GTX 280 Tesla C2050 GeForce GTX 680

O
pe

ra
tio

ns
 p

er
 m

s Lamport

FastForward

MCRingBuffer

BatchQueue

Buffered MCRingBuffer

Buffered BatchQueue

Fig. 2. Comparison of SPSC queues on four different GPUs

wait for a longer time for the larger batches to be processed. The smaller batch
size in MCRingBuffer thus has an advantage here. The two buffered versions
lower the overhead, as for most operations the data will be available locally
from the shared memory. It is only at the end of a batch that the shared vari-
ables and the elements stored in the queue need to be accessed. This access is
done using coalesced reads and writes, which speeds up the operation. When the
queues are buffered, the BatchQueue becomes faster than the MCRingBuffer.
Thus the overhead of the more frequent batch copies became more dominant.
The performance on the Fermi and Kepler graphics processor is significantly bet-
ter compared to the other processors, benefiting from the faster memory clock
rate and the cache memory. The speed of the L2 cache is however not enough
to make the unbuffered queues comparable with the buffered ones on the Fermi
processor. On the Kepler processor, on the other hand, with its faster cache and
higher memory clock rate, the unbuffered MCRingbuffer performs similarly to
the buffered queues. The SPSC queues that we have examined thus need to be
rewritten to achieve maximum performance on most GPUs. This might however
change with the proliferation of the Kepler architecture.

5.2 MPMC Queues

All MPMC queue algorithms, except the ones that used the bakery-lock, make
use of the CAS primitive. To visualize the behavior of the CAS primitive we
measured the number of CAS operations that could be performed per thread
block per ms for a varying number of thread blocks. The result is available in
Figure 3. We see in Figure 3(a) that when the contention increases for the Tesla
processors the number of CAS operations per ms drops quickly. However, it is
observed that the CAS operations scale well on the Fermi, for up to 40 thread
blocks, at high speed. The increased performance of the atomic primitives was
one of the major improvements done when creating the Fermi architecture. The
atomic operations are now handled at the L2 cache level and no longer need
to access the global memory [16]. The Kepler processor has twice the memory
clock rate of the Fermi processor and we can see that the CAS operations scales

890 D. Cederman, B. Chatterjee, and P. Tsigas

0

1000

2000

3000

4000

5000

6000

0 10 20 30 40 50 60

CA
S

op
er

at
io

ns
 p

er
 m

s
pe

r t
hr

ea
d

bl
oc

k

Thread blocks

GeForce 8800 GT GeForce GTX 280 Tesla C2050 GeForce GTX 680

(a) CAS behavior on the GPUs.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 5 10 15 20 25

CA
S

op
er

at
io

ns
 p

er
 m

s
pe

r t
hr

ea
d

Threads

(b) CAS behavior on the CPU.

Fig. 3. Visualization of the CAS behavior on the GPUs and the CPU

perfect despite increased contention. Figure 3(b) shows that on the conventional
system the performance is quite high when few threads perform CAS operations,
but the performance drops rapidly as the contention increases.

Figure 4 shows the performance of the MPMC queues on the CPU-based
system. Looking first at the topmost graphs, which shows the result using just
lock-based queues, we see that for a low number of threads the dual spinlock
based queue clearly outperforms the bakery lock based queues. The bakery lock
does not use any expensive CAS operation, but the overhead of the algorithm is
still too high, until the number of threads goes above the number of cores and
starts to use hyperthreading. The difference between dual and single spinlock
is insignificant, however between the dual and the single bakery lock there is a
noticeable difference.

The lower two graphs show the comparison results for the two lock-free queues
together with the best lock-based one, the dual spinlock queue. The lock-free
queues clearly outperform the lock-based one for all number of threads and for
both contention levels. The array-based TZ-queue exhibits better results for the
lower range of threads, but it is quickly overtaken by the linked-list based MS-
queue. When hyperthreading kicks in, the performance does not drop any more
for any of the queues.

The measurements taken for the lock-based queues on the Fermi and one of
the Tesla graphics processors are shown in Figure 5. Just as in the CPU ex-
periments the dual spinlock queue excels among the lock-based queues. There is
however a much clearer performance difference between the dual and single spin-
lock queues in all graphs, although not for the low contention cases when using
few thread blocks. The peak in the result in Figure 5(a) is due to the overhead
of the benchmark and the non-atomic parts of the queue. When contention is
lowered, as in Figure 5(b), the peak moves to the right. After the peak the cost
of the atomic operations become dominant, and the performance drops. For the
Fermi-processor, in Figure 5(c), the performance for the spinlock based queues
is significantly higher, while at the same time scaling much better. As we could
see in Figure 3(a), this is due to the much improved atomic operations of the
Fermi-architecture.

Understanding the Performance of Concurrent Data Structures 891

0

500

1000

1500

2000

2500

3000

3500

0 5 10 15 20 25

O
pe

ra
tio

ns
 p

er
 m

s

Threads

BakeryLock Dual BakeryLock SpinLock Dual SpinLock

(a) Lock-based queues (High contention).

0

500

1000

1500

2000

2500

3000

3500

0 5 10 15 20 25

O
pe

ra
tio

ns
 p

er
 m

s

Threads

BakeryLock Dual BakeryLock SpinLock Dual SpinLock

(b) Lock-based queues (Low contention).

0
500

1000
1500
2000
2500
3000
3500
4000
4500

0 5 10 15 20 25

O
pe

ra
tio

ns
 p

er
 m

s

Threads

Dual SpinLock MS-Queue TZ-Queue

(c) Best lock-based and lock-free queues
(High contention).

0
500

1000
1500
2000
2500
3000
3500
4000
4500

0 5 10 15 20 25

O
pe

ra
tio

ns
 p

er
 m

s

Threads

Dual SpinLock MS-Queue TZ-Queue

(d) Best lock-based and lock-free queues
(Low contention).

Fig. 4. Comparison of MPMC queues on the Intel 24-core system under high and low
contention scenarios

0

50

100

150

200

250

300

350

0 10 20 30 40 50 60

O
pe

ra
tio

ns
 p

er
 m

s

Thread blocks

BakeryLock Dual BakeryLock SpinLock Dual SpinLock

(a) GeForce GTX 280 (High Contention)

0

50

100

150

200

250

300

350

0 10 20 30 40 50 60

O
pe

ra
tio

ns
 p

er
 m

s

Thread blocks

BakeryLock Dual BakeryLock SpinLock Dual SpinLock

(b) GeForce GTX 280 (Low Contention)

0

100

200

300

400

500

600

700

0 10 20 30 40 50 60

O
pe

ra
tio

ns
 p

er
 m

s

Thread blocks

BakeryLock Dual BakeryLock SpinLock Dual SpinLock

(c) Tesla C2050 (High Contention)

0

100

200

300

400

500

600

700

0 10 20 30 40 50 60

O
pe

ra
tio

ns
 p

er
 m

s

Thread blocks

BakeryLock Dual BakeryLock SpinLock Dual SpinLock

(d) Tesla C2050 (Low Contention)

Fig. 5. Comparison of lock-based MPMC queues on two GPUs under high and low
contention scenarios

892 D. Cederman, B. Chatterjee, and P. Tsigas

0
50

100
150
200
250
300
350
400
450

0 10 20 30 40 50 60

O
pe

ra
tio

ns
 p

er
 m

s

Thread blocks

Dual SpinLock MS-Queue TZ-Queue

(a) GeForce 8800 GT (High Contention)

0
50

100
150
200
250
300
350
400
450

0 10 20 30 40 50 60

O
pe

ra
tio

ns
 p

er
 m

s

Thread blocks

Dual SpinLock MS-Queue TZ-Queue

(b) GeForce 8800 GT (Low Contention)

0

50

100

150

200

250

300

350

400

0 10 20 30 40 50 60

O
pe

ra
tio

ns
 p

er
 m

s

Thread blocks

Dual SpinLock MS-Queue TZ-Queue

(c) GeForce GTX 280 (High Contention)

0

50

100

150

200

250

300

350

400

0 10 20 30 40 50 60

O
pe

ra
tio

ns
 p

er
 m

s

Thread blocks

Dual SpinLock MS-Queue TZ-Queue

(d) GeForce GTX 280 (Low Contention)

0

100

200

300

400

500

600

700

0 10 20 30 40 50 60

O
pe

ra
tio

ns
 p

er
 m

s

Thread blocks

Dual SpinLock MS-Queue TZ-Queue

(e) Tesla C2050 (High Contention)

0

100

200

300

400

500

600

700

0 10 20 30 40 50 60

O
pe

ra
tio

ns
 p

er
 m

s

Thread blocks

Dual SpinLock MS-Queue TZ-Queue

(f) Tesla C2050 (Low Contention)

0

200

400

600

800

1000

1200

0 10 20 30 40 50 60

O
pe

ra
tio

ns
 p

er
 m

s

Thread blocks

Dual SpinLock MS-Queue TZ-Queue

(g) GeForce GTX 680 (High Contention)

0

200

400

600

800

1000

1200

0 10 20 30 40 50 60

O
pe

ra
tio

ns
 p

er
 m

s

Thread blocks

Dual SpinLock MS-Queue TZ-Queue

(h) GeForce GTX 680 (Low Contention)

Fig. 6. Comparison of the best lock-based and lock-free MPMC queues on four GPUs
under high and low contention scenarios

Understanding the Performance of Concurrent Data Structures 893

Comparing the dual spinlock queue with the lock-free queues, in Figure 6
we see that the lock-free queues scale much better than the lock-based one and
provides the best performance when the thread block count is high. The spinlock
queue does however achieve a better result on all graphics processors for a low
number of thread blocks. As the contention is lowered, it remains useful for a
higher number of threads. The array-based TZ-queue outperforms the linked-
list based MS-queue on both the Tesla processors, but falls short on the Fermi
and Kepler processors, Figure 6(e). When contention is lowered on the Fermi-
processor, Figure 6(f), there is no longer any difference between the lock-based
and the lock-free queues.

6 Conclusion and Future Work

In this paper we have examined the performance portability of common SPSC
and MPMC queues. From our experiments on the SPSC queues we found that
the best performing queues on the CPU were also the ones that performed well
on the GPUs. It was however clear that the cache on the Fermi-architecture was
not enough to remove the benefit of redesigning the algorithms to take advantage
of the local shared memory. For the MPMC queue experiments we saw similar
results in scalability for the GPU-versions on the Tesla processors as we did for
the CPU-version. On the Fermi processor the result was surprising however. The
scalability was close to perfect and for low contention there was no difference
between the lock-based and the lock-free queues. The Fermi architecture has
significantly improved the performance of atomic operations and this is an indi-
cation that new algorithmic designs should be considered to more properly take
advantage of this new behavior. The Kepler architecture has continued in this
direction and now provides atomic operations with performance competitive to
that of conventional CPUs.

We will continue this work by studying the behavior of other concurrent data
structures with higher potential to scale than queues, such as dictionaries and
trees. Most queue data structures suffer from the fact that only two operations
can succeed concurrently in the best case, whereas for a dictionary there are no
such limitations.

References

1. NVIDIA: NVIDIA CUDA C Programming Guide. 4.0 edn. (2011)

2. The Khronos Group Inc.: OpenCl Reference Pages. 1.2 edn. (2011)

3. Treiber, R.: System programming: Coping with parallelism. Technical Report
RJ5118, IBM Almaden Research Center (1986)

4. Giacomoni, J., Moseley, T., Vachharajani, M.: FastForward for efficient pipeline
parallelism: a cache-optimized concurrent lock-free queue. In: Proceedings of the
13th ACM SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming, pp. 43–52. ACM (2008)

894 D. Cederman, B. Chatterjee, and P. Tsigas

5. Preud’homme, T., Sopena, J., Thomas, G., Folliot, B.: BatchQueue: Fast and
Memory-Thrifty Core to Core Communication. In: 22nd International Sympo-
sium on Computer Architecture and High Performance Computing (SBAC-PAD),
pp. 215–222 (2010)

6. Lee, P.P.C., Bu, T., Chandranmenon, G.: A lock-free, cache-efficient shared ring
buffer for multi-core architectures. In: Proceedings of the 5th ACM/IEEE Sympo-
sium on Architectures for Networking and Communications Systems, ANCS 2009,
pp. 78–79. ACM, New York (2009)

7. Michael, M., Scott, M.: Simple, fast, and practical non-blocking and blocking con-
current queue algorithms. In: Proceedings of the 15th Annual ACM Symposium
on Principles of Distributed Computing, pp. 267–275. ACM (1996)

8. Tsigas, P., Zhang, Y.: A simple, fast and scalable non-blocking concurrent fifo
queue for shared memory multiprocessor systems. In: Proceedings of the 13th An-
nual ACM Symposium on Parallel Algorithms and Architectures, pp. 134–143.
ACM (2001)

9. Gidenstam, A., Sundell, H., Tsigas, P.: Cache-Aware Lock-Free Queues for Multiple
Producers/Consumers and Weak Memory Consistency. In: Proceedings of the 14th
International Conference on Principles of Distributed Systems, pp. 302–317 (2010)

10. Sundell, H., Tsigas, P.: Fast and Lock-Free Concurrent Priority Queues for Multi-
Thread Systems. In: Proceedings of the 17th IEEE/ACM International Parallel
and Distributed Processing Symposium (IPDPS), pp. 84–94. IEEE Press (2003)

11. Cederman, D., Gidenstam, A., Ha, P., Sundell, H., Papatriantafilou, M., Tsigas,
P.: Lock-free Concurrent Data Structures. In: Pllana, S., et al. (eds.) Programming
Multi-core and Many-core Computing Systems. John Wiley & Sons (2012)

12. Zhou, K., Hou, Q., Wang, R., Guo, B.: Real-time kd-tree construction on graphics
hardware. ACM Transactions on Graphics 27(5), 1–11 (2008)

13. Zhou, K., Gong, M., Huang, X., Guo, B.: Data-Parallel Octrees for Surface Re-
construction. IEEE Transactions on Visualization and Computer Graphics 17(5),
669–681 (2011)

14. Lefohn, A.E., Sengupta, S., Kniss, J., Strzodka, R., Owens, J.D.: Glift: Generic, ef-
ficient, random-access GPU data structures. ACM Transactions on Graphics 25(1),
60–99 (2006)

15. Cederman, D., Tsigas, P.: On dynamic load balancing on graphics processors. In:
Proceedings of the 23rd Symposium on Graphics Hardware, GH 2008, pp. 57–64.
Eurographics Association (2008)

16. Stuart, J., Owens, J.: Efficient synchronization primitives for gpus. Arxiv preprint
arXiv:1110.4623 (2011)

17. NVIDIA: Whitepaper NVIDIA Next Generation CUDATM Compute Architec-
ture: FermiTM. 1.1 edn. (2009)

18. NVIDIA: Whitepaper NVIDIA GeForce GTX 680. 1.0 edn. (2012)
19. Lamport, L.: Specifying concurrent program modules. ACM Transactions on Pro-

gramming Languages and Systems 5, 190–222 (1983)
20. Lamport, L.: A new solution of Dijkstra’s concurrent programming problem.

Communications of the ACM 17, 453–455 (1974)

A New Programming Paradigm for GPGPU

Julio Toss1,� and Thierry Gautier2

1 Institute of Informatics, UFRGS, Porto Alegre - RS, Brasil
jtoss@inf.ufrgs.br

2 INRIA, MOAIS, LIG, Grenoble, France
thierry.gautier@inrialpes.fr

Abstract. Graphics Processing units (GPU) have become a valuable
support for High Performance Computing (HPC) applications. However,
despite the many improvements of General Purpose GPUs, the current
programming paradigms available, such as NVIDIA’s CUDA, are still
low-level and require strong programming effort, especially for irregular
applications where dynamic load balancing is a key point to reach high
performances.

This paper introduces a new hybrid programming scheme for general
purpose graphics processors using two levels of parallelism. In the upper
level, a program creates, in a lazy fashion, tasks to be scheduled on the
different Streaming Multiprocessors (MP), as defined in the NVIDIA’s
architecture. We have embedded inside GPU a well-known work stealing
algorithm to dynamically balance the workload. At lower level, tasks ex-
ploit each Streaming Processor (SP) following a data-parallel approach.
Preliminary comparisons on data-parallel iteration over vectors show
that this approach is competitive on regular workload over the standard
CUDA library Thrust, based on a static scheduling. Nevertheless, our
approach outperforms Thrust-based scheduling on irregular workloads.

Keywords: Work Stealing, GPU, Task Parallelism.

1 Introduction

Nowadays, Graphical Processing Units have acquired great importance on the
scenario of the High Performance Computing (HPC). Several HPC applications
use this kind of hardware support to achieve better performances on parallel
algorithms. The hardware is widely available and continues to evolve very fast,
adding new capabilities and increasing its programmability. Programming mod-
els like OpenCL and Nvidia’s CUDA allow developers to program and exploit
parallelism on GPUs at the expense of a strong programming effort. Neverthe-
less, due to their important performances, GPUs have motivated the industry
and the scientific community to port increasingly more applications to the GPU
platform. At the same time, the generalization of the hardware reveals new chal-
lenges to be solved. Classical problems from the multicore-CPU architectures like

� Partially supported by FAPERGS and CNPq grants, through the project “Green-
Grid”.

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 895–907, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

896 J. Toss and T. Gautier

load balancing, synchronization and the need of abstract programming models,
are now also present on GPUs.

Despite the enhancement of the programming capability provided by existing
GPU programming solutions, for instance CUDA, the programming model they
propose can only be directly exploited by sufficiently regular applications. Typ-
ically for those working over vectors or matrices. Nevertheless, there are several
other kinds of applications where the parallelism is expressed recursively by cre-
ating tasks. For such applications it is necessary to provide a suitable runtime
system to exploit the different cores present inside the GPUs.

The contribution of this paper is to propose and validate by experimentation
a new paradigm for GPU programming based on data parallel tasks and work
stealing. We show how task parallelism can be supported on graphics processors
and how to deal with problems like load balancing and synchronization. Our
preliminary results show that our approach is highly competitive with state of
the art programming software for either data parallel programming or for pure
task parallel programming.

The outline of this paper is the following: in Section 2 we briefly discuss the
related works about work stealing algorithms and scheduling on GPUs. Section 3
presents the design and implementation of our approach to support work stealing
with CUDA on GPUs. Then, on Section 4, we evaluate our model with several
load balance patterns analyzing performance and overheads. On Section 5 we
conclude and point future directions to improve the model.

2 Related Works

Task parallel applications are well suited to deal with irregular parallel algo-
rithms. Scheduling of tasks among the computing resources must be effective to
balance the workload. If scheduling is not performed well some processing units
may be overloaded with work while others stay idle. Additionally, the scheduler
implementation must be efficient to minimize overheads that come from the lock
contention to access the work queue and to avoid stopping the computation for
workload re-balancing.

2.1 Work Stealing

A well-known scheduling technique with several implementations on multi-core
processors is work stealing. Here, each processing unit has its own queue of tasks
to process. Whenever one gets idle it will, itself, look for tasks from other queues
to steal. This technique is particularly interesting for applications that create
tasks at execution time in an unpredictable way. Work stealing is, therefore,
known as a dynamic load balancing method.

Blumofe et al. [4] give the first provably efficient work stealing scheduler. It
proves that a parallel execution, on uniform P processors machine, using their
work-stealing scheduler, has an expected run time of T1

P +O(T∞), where T1 is the
serial execution time of the multi-threaded computation and T∞ is the minimum
execution time with an infinite number of processors.

A New Programming Paradigm for GPGPU 897

A work-stealing algorithm relies on a work queue data structure owned by
each thread of the system. Threads can call three functions: Pop, Push and
Steal on a work queue. Push and Pop functions are called only by the owner
thread of a work queue to enqueue / dequeue tasks. Steal function is called
by an idle thread on a victim work queue to get tasks to execute. The Cilk-5
runtime system [9] implements a lock-based work-stealing scheduler. It employs
the Dijkstra’s THE protocol for mutual exclusion [8] which greatly reduces the
lock overhead [9] by only using systematic locks on steal operations to serialize
thieves on the same victim. Arora et al. [2] present a completely lock-free work-
stealing algorithm which uses array-based dequeues and minimizes the need of
costly Compare-And-Swap (CAS) operations. Hendler et al. [11] overcame the
potential overflow problem on ABP’s algorithm [2] with a dynamic memory
work-stealing algorithm. Chase and Lev [6] came with a simpler solution to this
same problem by implementing unbounded dequeues as dynamic-cyclic-arrays.
Hendler and Shavit [12] generalize the ABP algorithm to allow the processing
units to steal, instead of one, up to half of the items in a given queue at a time.
Their algorithm provides better load balancing than ABP while preserving the
lock-free and CAS minimization properties.

2.2 Scheduling on GPUs

Recently, with the advent of the use of graphical processors for general purpose
computing, those classical CPU load balancing methods started to be studied on
GPUs. Chen et al. [7] use molecular dynamics simulation to evaluate a centralized
method of dynamic load balancing on single and multi-GPUs systems. Their
results showed that, for unbalanced workloads, task-based models can utilize
the GPU hardware more efficiently than the standard CUDA scheduler.

Cederman and Tsigas [5] use the task of creating an octree partitioning to com-
pare four different methods for dynamic load balancing. A centralized blocking
task queue; a centralized non-blocking task queue; a static list and a distributed
task queue using the ABP [2] work stealing protocol. Their results clearly show
that centralized blocking methods are not suitable for GPUs as they perform
poorly and cannot scale with the increase of processing units. The non-blocking
task queue do perform better but, as a centralized approach, scales very poorly.
The best performances and scalability were achieved with the work stealing
method with distributed work queues.

In Angel et al. [1] the shortest-path problem is used as an irregular applica-
tion to evaluate a framework for dynamic work scheduling based on Blumofe
and Leiserson’s work stealing algorithm[4]. They exploit the performance and
synchronization characteristics of the GPU memory hierarchy by using a combi-
nation of shared and global memory queues. The overhead found was by a factor
of 3 for queues on shared memory and 15 for queues on global memory.

In [16], Tzeng et al. propose a dynamic load balancing method based on
task-donation, which shows similar performances to previous work-stealing ap-
proaches but uses less memory.

898 J. Toss and T. Gautier

Fig. 1. Scheme of the work stealing scheduler on the GPU: one work queue on global
memory for each Tread Block running on the Multiprocessors

Previous work shows that scheduling inside GPUs is necessary to improve per-
formance in task-parallel applications. On the CPUs, several parallel program-
ming tools like CILK+ (Frigo et al. [9]), Intel TBB (Pheatt [13]), KAAPI (Gau-
tier et al. [10]), use work stealing as standard scheduling technique in parallel
for loops. Additionally, recent architectures like the Intel Many Integrated Core
(Intel MIC) use CILK+ as standard programming model reinforcing the trend of
work stealing schedulers on massively parallel architectures. On the other hand,
GPU programming tools like the Thrust Template library for CUDA (Bell [3]),
provides generic templates (e.g. array Transform) to enhance programmer’s
productivity. However, CUDA does not have a dynamic scheduler, and for some
types of workloads it cannot extract the best performance of the GPU. In this
context, our model extends the use of work stealing in GPUs to a broader range
of parallel applications. We implemented an hybrid programming model combin-
ing tasks and data parallelism. Our benchmarks showed comparable performance
to State of Art on typical task-parallel problems (Octree Partitioning, Sec. 4.5)
and we outperform Thrust on the array transform problem (Sec. 4.4).

3 Mixing Task Parallelism and Data Parallelism on
CUDA

As showed before, parallel tasks with work stealing is being used on multi-core
architectures and on GPU as standard paradigm for irregular divide and conquer
parallel applications, which are the target applications for work stealing.

Here we present an unified programming paradigm for general parallel applica-
tions on GPU. This paradigm deals well with irregular and regular workloads on
data parallel application as well as task parallel application. The paper focuses
on scheduling data parallel GPU application using a novel approach.

CUDA is limited by the absence of a runtime scheduler to support dynamic
load balancing. We show next how we can implement an efficient and generic sup-
port to load balancing with CUDA based on work stealing. Section 3.3 presents

A New Programming Paradigm for GPGPU 899

how to do an efficient scheduling of data parallel application. Section 4 provides
experimental evaluation with different types of workloads.

3.1 Design of Our Approach

The abstraction provided by the CUDA model allows us to exploit two levels of
parallelism. At first level, a program can be divided in coarse sub-problems that
can be solved independently in parallel (Thread Blocks in CUDA), and then into
finer threads that cooperate for the same task.

Independent Thread Blocks (TB) are mapped to multiprocessors1 on the
GPU. In practice, CUDA kernels use much more thread blocks than the number
of multiprocessors available. The CUDA runtime has a very basic scheduler that
assigns thread blocks to MPs. In our approach (Fig. 1), we consider a fixed
number of thread blocks, which is independent from the size of the input data.
Each thread block stays persistently on a multiprocessor and manages a task
queue on the GPU global memory using the work stealing algorithm. When a
TB does not have any more tasks to execute, it steals some from another’s queue.

3.2 Work Queue Implementation

The work queue implemented consists of a work queue data structure named
workqueue t. This structure consists of two integers, beg to the beginning and
end to the end of the interval [beg,end). Additionally, each work queue is
associated to a mutex variable used to control its access in conflicting cases.

Each Thread Block owns a work queue. This structure is accessed by the
following three functions.

Push : int push(workqueue_t* kwq, int* beg)

The push function is called by the thread to add a new task to its own work
queue. The value beg must be less than kwq->beg. This operation is always
non-blocking and extends the work queue.

Pop : int pop(workqueue_t* kwq, int* i, int* j, int size)

The pop function is called by the thread to pop range [*i, *j) from its own
work queue. The size of the returned range is at most size. The function
returns a non zero value in case of success, i.e. iff the returned range is non
empty. The pop increments the field beg of the work queue.

Steal : int steal(workqueue_t* kwq, int* i, int* j, int size)

The steal function is called by the thread to steal range [*i, *j) from
another work queue than its own. It decrements the field end of the work
queue. The size of the returned range is at most size. The function returns
a non zero value in case of success, i.e. iff the returned range is non empty.

The work queue implementation relies on a Dijkstra’s protocol and is similar
to the T.H.E protocol as described in Frigo et al. [9]. The main difference is

1 CUDA definition.

900 J. Toss and T. Gautier

1 int ∗my wq = workqueue getown (b lockIdx) ;
2 while (1) {
3 i f (IamTheMasterThread (threadIdx)) {
4 i f (! workqueue pop (my wq , locbeg , locend , popSize)) {
5 workqueue t ∗vict im wq = workqueue getrandom () ;
6 int s t e a l S i z e = workqueue s i z e (vict im wq) / 2 ;
7 i f (s t e a l S i z e >= popSize) {
8 workqueue lock (vict ime wq . mutex) ;
9 i f (workqueue stea l (victim wq , stea lBeg , stealEnd , s t e a l S i z e))

10 workqueue push (my wq , stea lBeg , stealEnd) ;
11 workqueue unlock (vict im wq . mutex) ;
12 continue ;
13 }
14 }
15 }
16 sync th r e ad s () ;
17 TASKCall(locbeg , locend) ;
18 sync th r e ad s () ;
19 i f (te rminate) break ;
20 }

Fig. 2. Cuda kernel of the work stealing scheduler loop

that pop or steal functions increment or decrement beg and end not only by 1
but by size. Steal function calls are serialized on the mutex lock: the runtime
guarantees that the concurrency on a work queue structure is at most 2.

Our work queue data structure allows to steal range of indexes. For task
parallelism, the runtime stores tasks into an array container: a task is identified
by its index and the work queue can trivially be used to implement work stealing
scheduler.

3.3 Data Parallel Application Scheduling

Moreover, our work queue can also be used to lazily create task. Let us consider
the foreach parallel algorithm where the same functor is applied on each en-
tries of an array. In that case, a task is then only identified by the sub range
where it acts on. Stealing a task is equivalent to steal a sub range of the initial
interval given by the initial foreach call. Our work queue implementation lets,
at runtime, the scheduler to steal tasks by simply calling the steal function. To
apply our method on more complex problems, one should define a linearization
of the computations in an interval homomorphic to [0, N), which is the case for
almost all STL’s algorithms on random access iterators Traore et al. [14].

To mix both task and data parallelisms our runtime implements the concept
of the malleable task Turek et al. [15]. In our implementation, a malleable task
exports a function that is called to extract work on work stealing scheduler deci-
sion. Data parallel task, such as the foreach, is a malleable task that represents
its work using our work queue. The exported function calls the Split operation on
the work queue. Therefore, after a successful steal operation, an idle TB receives
a sub range of the initial range to perform.

A New Programming Paradigm for GPGPU 901

3.4 CUDA Work Stealing Algorithm

In work stealing, each multiprocessor has its own work queue structure in global
memory. Multiprocessors pop from their own queues, if there are no more tasks
they randomly choose another work queue to steal from. Our work stealing sched-
uler is embedded within a CUDA kernel. The main scheduler loop is sketched in
Fig. 2. The loop is executed by all TB on the GPU. While the work queue of a TB
has enough local work (line 4), the master thread of the block pops a sub range and
all threads ,synchronized at line 16, perform the data parallel task (at line 17). If
there is no local work, the master thread selects at random a victim work queue
(line 5), tries to steal half of its contents (line 9) and, if the steal successes, popu-
lates its own work queue with the theft range [stealBeg, stealEnd) (line 10).

4 Evaluation

The experiments were realized on a NVIDIA GTX 280 GPU running at 1.3 GHz
with 1GB of global memory. This model of GPU contains 30 Multiprocessors
(MP), each one with eight scalar processors (SP) giving a total of 240 cores. All
the applications were tested using version 4.0 of the CUDA driver and runtime .
Additionally, some experiments were also tested on a Tesla C2050 GPU (Fermi
architecture) running at 1.15 GHz with 3GB of global memory.

Every measure presented in the following benchmarks is an average of 10
executions of the kernel. This number showed to be sufficient to get reliable
results, with negligible standard deviation (which were omitted on our plots).
The time is measured using GPU timers without counting overheads of the kernel
launch nor PCI data transfers between host (CPU) and device (GPU).

4.1 Elementary Overhead

Work stealing adds an intrinsic overhead to the program due to the pop operation
that is always done before starting the actual computation of the task (line 6 of

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 500 1000 1500 2000 2500

to
ta

l n
um

be
r

of
 c

yc
le

s
(x

 1
03)

Number of Pops

GTX280
Fermi

Fig. 3. Pop cost estimation on a GTX280 and
a C2050(Fermi) GPU

Fig. 2). This benchmark used a
kernel configuration of 1 block
of 512 threads and varied the
pop size from 29 to 220. Fig-
ure 3 reports the total execu-
tion time with several numbers of
pop operations. Please note that
the pop operation handles only
work queue indexes, therefore the
cost of a pop is independent of
its size. By fitting the obtained
curves to an affine function, the
pop overhead found was 5186.72
cycles (3.52 μs) on the GTX280
and 2187.32 cycles (1.92 μs) on
the Fermi GPU.

902 J. Toss and T. Gautier

4.2 Benchmark Application

Our target application consists in a simple transformation over an array of
Floats. The program applies a function x −→ f(x) to each element i of the
input array and stores the result in the output array. In this benchmark we
consider a task an instance of the transform function on a range of the initial
interval.

The reference parallel implementation was taken from NVIDIA’s Thrust li-
brary (Bell [3]). Next sections report experiments with regular then irregular
workloads.

4.3 Load Balancing on Regular Workloads

This section compares three load balancing methods when used to manage reg-
ular workloads. Our benchmark transform application generates a regular work-
load when it applies a constant function to every position of the input array.

Load balancing is about managing tasks on processors. More precisely, in the
experiments presented here, the data parallel task updates at most 512
positions of the array. This task size was chosen in conjunction with the block
size, which also contains 512 threads. This way each task, except for a few ones
at the end of the sub-ranges, is fully parallel and makes all the threads of the
block to work. This number of threads per block showed the best performance
for a transform on a sufficiently large array. Additionally, the same block size
of 512 threads and 60 thread blocks is used by the static transform kernel in
Thrust library, whose strategy is to optimize occupancy.

Our work stealing method is compared to two classical scheduling method:

– The Static Scheduling is the default load balancing method that CUDA uses
when it schedules blocks on multiprocessors. Blocks are evenly distributed
among the multiprocessor of the device until they reach the limit of active
blocks. When an active block completes its job, the next blocks are scheduled.

– The List Scheduling uses a centralized work queue that every processing
unit have to access to get new tasks to process. Tasks are assigned in a
FIFO manner where idle processors get the task at the beginning of the list.
Note that there is a lock on the work queue that serializes every access to it.

Single Task Pop. Figure 4a presents the total execution time of Transform
on an array of 5120000 elements (i.e. 10000 tasks of 512 array positions). Each
curve represents one different load balancing method. In this experiment LS and
WS always pop one task (or 512 array elements) at a time which totals 10000
pops operations over the whole execution (one pop by task). WS steal operation
steals half of the victim interval.

This graph makes evident the drawback of centralized load balancing methods.
Even with very regular workload, the List Scheduling method quickly reaches a
limit where it stops scaling. Actually, with more than 10 MPs the performance
always gets worse. We attribute this behavior to a lock contention problem. As

A New Programming Paradigm for GPGPU 903

 1

 2

 4

 8

 16

 32

 64

 128

 256

 0 10 20 30 40 50 60

T
im

e
(m

s)

Blocks

Static
LS

WS
Thrust

(a) Pop size of a single task

 1

 2

 4

 8

 16

 32

 64

 128

 256

 0 10 20 30 40 50 60

T
im

e
(m

s)

Blocks

Static
LS

WS
Thrust

(b) Best pop size for each method

Fig. 4. Comparison of the Static, the List Scheduling (LS) and the Work Stealing (WS)
methods

the time of execution of a single task is very short, blocks are often trying to
acquire the lock which increases lock contention.

The static method shows the best absolute performance at 60 blocks, the
maximum number of blocks that the GPU scheduler runs concurrently on the
hardware (tests with more blocks didn’t enhance the execution time). However,
note that the static method does not scale in a regular way as does work stealing.
This can be seen on the performance drop at 31 blocks. This drop is due to the
fact that with 31 blocks, one multiprocessor has two active blocks and twice
more tasks which causes the load imbalance. The work stealing (WS) does not
suffer of this problem because an idle TB on a multiprocessor can steal task from
overloaded multiprocessors.

The overhead of accessing the work queue can be reduced by popping more
tasks at a time. Figure 4b shows the best performances found for each method
when tuning the number of tasks retrieved by pop (the Pop Size). For work
stealing, the optimal pop has a size of 3 tasks (i.e 1536 elements of the array) and
the best time, 6.90ms, is achieved with 60 blocks of 512 threads. List scheduling
achieves 6.92ms of peak performance when the pop size is equal to 7 tasks (i.e
7168 array elements) with 30 blocks of 512 threads. The best static time is
6.49ms at 60 block of 512 threads.

Pop Size Variation. Figure 5 shows howWS and LS behave with the variation
of two parameters: pop size and number of blocks. The y axis represents the size
of each pop in number of array elements (number of tasks x 512). The values
plotted correspond to the difference of execution time between LS (List Schedul-
ing) and WS (Work Stealing). Lighter tonalities means smaller differences.

We can identify two regions A and B. In region A, LS performs better than
WS but the biggest difference is only 5.63 ms (37,75% speedup over WS). In
region B, WS outperforms LS achieving a gain of 98.53 ms (93,03% of speedup
over LS). Therefore, even if LS is simpler to design than WS, it suffers from its

904 J. Toss and T. Gautier

Time Diference (LS - WS)

 0 10 20 30 40 50 60

Blocks

 512

 1024

 2048

 4096

 8192

 16384

 32768

 65536

 131072

P
op

 S
iz

e
(#

ar
ra

y
po

si
tio

ns
)

-100

-50

 0

 50

 100

A: LS < WS

B: WS < LS

Fig. 5. Time difference between LS and WS

grain size selection where small value may degrade strongly the performance due
to contention and where big values limit the parallelism (with LS, once popped
a sub-range cannot be stolen anymore).

4.4 Load Balancing on Irregular Workloads

This section evaluates the load balancing methods with two different patterns
of workloads. Like on Chen et al. [7], patterns of irregularity were created by
nullifying the work of some tasks of the input array. These patterns are:

1. Pattern 1 = 0 1 0 1 0 1 0 1 : one task each other is nullified (50% of workload
reduction).

2. Pattern 2 = 0 0 0 1 0 0 0 1 : one on each three task is nullified (75% of
workload reduction).

Figure 6 shows the best results of each method of load balancing for the two
patterns of irregularity. These tests represent the best configuration of pop size
found for each method. LS uses a pop size of 10240 (20 tasks) with pattern
1 and 25600 (50 tasks) for pattern 2. WS uses pop sizes of 4096 (8 tasks) for
both patterns. These results clearly show the instability of the static method for
irregular workloads and how good dynamic scheduling approaches deal with it.

4.5 Octree Partitioning

The transform benchmark shows how to use our work stealing model to schedule
array-based applications. However, this same model can be used for classical
task-based problems. For instance, the octree partitioning problem create tasks
to recursively separate particles in a 3D space into octants. We used the octree
implementation provided by Cederman and Tsigas [5] and adapted it to use our
scheduler. We then compared their load balancing method to ours.

A New Programming Paradigm for GPGPU 905

 1

 2

 4

 8

 16

 32

 64

 128

 256

 0 10 20 30 40 50 60

T
im

e
(m

s)

Blocks

Static
LS

WS
Thrust

(a) Pattern 1

 1

 2

 4

 8

 16

 32

 64

 128

 256

 0 10 20 30 40 50 60

T
im

e
(m

s)

Blocks

Static
LS

WS
Thrust

(b) Pattern 2

Fig. 6. Transform problem on irregular workloads

 32

 64

 128

 256

 512

 1024

 0 10 20 30 40 50 60

T
im

e
(m

s)

Blocks

WS
ABP

(a) Cube Distribution

 32

 64

 128

 256

 512

 1024

 0 10 20 30 40 50 60

T
im

e
(m

s)

Blocks

WS
ABP

(b) Sphere Distribution

Fig. 7. Load Balancing methods on Octree partitioning problem

The following benchmarks consists in creating an octree partitioning of a
3D space containing 500000 particles. The algorithm recursively subdivides the
space until the threshold of 20 particles per subspace is reached. Every time a
sub-space needs to be split, a new task is created.

Figure 7 shows a comparison between our algorithm (labeled WS) and Ce-
derman et Tsigas (labeled ABP) with two different particles distribution. One
where the particles are all randomly picked from a cubic space and other where
they are randomly picked from the surface of a sphere. As shown in Fig. 7, WS
and ABP presented similar performance. The best times found were 63.26ms
with 31 blocks for WS and 62.94 ms for ABP with 35 blocks.

4.6 Discussion

The static scheduling showed to perform quite well for the regular array trans-
form. This is mainly due to the cyclic algorithm used to assign array elements
(tasks) to threads. The cyclic distribution makes a good division of the work

906 J. Toss and T. Gautier

because it gives to all the blocks the same amount of tasks and at the same time
it spreads contiguous parts of the array that may contain more expensive tasks.
However, this model is vulnerable to specific workload models (see section 4.4).
Additionally, it should be noted that multiprocessors on a single GPU execute at
same clock. On a multi-GPU system for example, the speed of multiprocessors
may variate creating another source of load imbalance difficult to handle with
static scheduling.

List scheduling can achieve good performances, even with irregular work loads.
However we found that it is very dependent on the computation time spent
between pop operations. Thus an accurate tuning of pop size is mandatory to
get good performance.

Work stealing was the method that showed the best adaptability over all of
the presented benchmarks. Even if it didn’t have the best absolute performance,
the difference from the other methods was very small. This method is also less
sensible to lock contention than List Scheduling in which pop size has to be
carefully tuned to overcome contention.

5 Conclusion and Future Work

In this work we considered a new programming model for general purpose GPUs
based on work stealing. This model allows the programmer to express the paral-
lelism of a GPGPU application in a hybrid manner taking benefit, at the same
time, from an efficient task scheduling algorithm and from the highly SIMD
computation power of graphics processors.

We presented empirical results that attest the effectiveness of our model and, to
the extent of our knowledge this is the first work to evaluate a regular problemwith
dynamic loadbalancing onGPU.Our results confirmthatwork stealing is a generic
scheduling method and performs well in both regular and irregular problems. We
compared our scheduler on regular array transformmicro-benchmarkwith respect
to the static implementation of the Thrust well-known GPU library and found
little degradationwith uniform load, and better performances on unbalanced load.

Ongoing work is to explore in more details how this model behaves on the new
Fermi GPU architecture and what optimizations can take favor of it. Preliminary
tests (section 3), suggest that new hardware capabilities notably, the presence
of a full cache memory hierarchy, could be better exploited by our work queue
implementation. At long-term, we envision the integration of this model in the
KAAPI library (Gautier et al. [10]) which lacks the ability of scheduling inside
GPUs.

References

[1] Angel, M., Michael, M.M., Bivens, J.A.: Dynamic Work Scheduling for GPU Sys-
tems. Memory, 57–64 (2010)

[2] Arora, N.S., Blumofe, R.D., Plaxton, C.G.: Thread Scheduling for Multipro-
grammed Multiprocessors. Theory of Computing Systems 34(2), 115–144 (2001),
http://www.springerlink.com/openurl.asp?genre=rticle

&id=doi:10.1007/s002240011004

http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.1007/s002240011004
http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.1007/s002240011004

A New Programming Paradigm for GPGPU 907

[3] Bell, N.: Thrust: A Productivity-Oriented Library for CUDA. sbel.wisc.edu.
359–373 (2012),
http://sbel.wisc.edu/Courses/ME964/Literature/thrustGPUgems2011.pdf

[4] Blumofe, D.R., Leiserson, E.C.: Scheduling multithreaded computations by work
stealing. Journal of the ACM 46(5), 720–748 (1999),
http://portal.acm.org/citation.cfm?doid=324133.324234

[5] Cederman, D., Tsigas, P.: On dynamic load balancing on graphics processors.
In: Proceedings of the 23rd ACM SIGGRAPH/EUROGRAPHICS Symposium on
Graphics Hardware, pp. 57–64. Eurographics Association (2008)

[6] Chase, D., Lev, Y.: Dynamic circular work-stealing deque. In: Proceedings of the
17th Annual ACM Symposium on Parallelism in Algorithms and Architectures -
SPAA 2005 (c), vol. 21 (2005),
http://portal.acm.org/citation.cfm?doid=1073970.1073974

[7] Chen, L., Villa, O., Krishnamoorthy, S., Gao, G.R.: Dynamic load balancing on
single- and multi-GPU systems. In: 2010 IEEE International Symposium on Par-
allel & Distributed Processing (IPDPS), pp. 1–12 (2010),
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5470413

[8] Dijkstra, E.W.: Solution of a problem in concurrent programming control. Com-
mun. ACM 8, 569 (1965), http://doi.acm.org/10.1145/365559.365617

[9] Frigo, M., Leiserson, C.E., Randall, K.H.: The implementation of the Cilk-5 mul-
tithreaded language. In: Proceedings of the ACM SIGPLAN 1998 Conference on
Programming Language Design and Implementation - PLDI 1998, pp. 212–223
(1998), http://portal.acm.org/citation.cfm?doid=277650.277725

[10] Gautier, T., Besseron, X., Pigeon, L.: Kaapi: A thread scheduling runtime system
for data flow computations on cluster of multi-processors. In: Proceedings of the
2007 International Workshop on Parallel Symbolic Computation, pp. 15–23. ACM
(2007), http://portal.acm.org/citation.cfm?id=1278182

[11] Hendler, D., Lev, Y., Moir, M., Shavit, N.: A dynamic-sized nonblocking work
stealing deque. Distributed Computing 18(3), 189–207 (2005),
http://www.springerlink.com/index/10.1007/s00446-005-0144-5

[12] Hendler, D., Shavit, N.: Non-blocking steal-half work queues. In: Proceedings of
the Twenty-First Annual Symposium on Principles of Distributed Computing -
PODC 2002, p. 280 (2002),
http://portal.acm.org/citation.cfm?doid=571825.571876

[13] Pheatt, C.: Intel threading building blocks. J. Comput. Sci. Coll. 23, 298–298
(2008),
http://portal.acm.org/citation.cfm?id=1352079.1352134

[14] Traoré, D., Roch, J.-L., Maillard, N., Gautier, T., Bernard, J.: Deque-Free Work-
Optimal Parallel STL Algorithms. In: Luque, E., Margalef, T., Beńıtez, D. (eds.)
Euro-Par 2008. LNCS, vol. 5168, pp. 887–897. Springer, Heidelberg (2008)

[15] Turek, J., Wolf, J.L., Yu, P.S.: Approximate algorithms scheduling parallelizable
tasks. In: Proceedings of the Fourth Annual ACM Symposium on Parallel Algo-
rithms and Architectures, SPAA 1992, pp. 323–332. ACM, New York (1992)

[16] Tzeng, S., Patney, A., Owens, J.D.: Task management for irregular-parallel work-
loads on the GPU. In: Proceedings of the Conference on High Performance Graph-
ics, pp. 29–37. Eurographics Association (2010),
http://portal.acm.org/citation.cfm?id=1921485

http://sbel.wisc.edu/Courses/ME964/Literature/thrustGPUgems2011.pdf
http://portal.acm.org/citation.cfm?doid=324133.324234
http://portal.acm.org/citation.cfm?doid=1073970.1073974
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5470413
http://doi.acm.org/10.1145/365559.365617
http://portal.acm.org/citation.cfm?doid=277650.277725
http://portal.acm.org/citation.cfm?id=1278182
http://www.springerlink.com/index/10.1007/s00446-005-0144-5
http://portal.acm.org/citation.cfm?doid=571825.571876
http://portal.acm.org/citation.cfm?id=1352079.1352134
http://portal.acm.org/citation.cfm?id=1921485

GPU-Accelerated Asynchronous Error

Correction for Mixed Precision Iterative
Refinement

Hartwig Anzt1, Piotr Luszczek2, Jack Dongarra2,3,4, and Vincent Heuveline1

1 Karlsruhe Institute of Technology, Karlsruhe, Germany
2 University of Tennessee, Knoxville, USA

3 Oak Ridge National Laboratory, Oak Ridge, USA
4 University of Manchester, Manchester, UK

{hartwig.anzt,vincent.heuveline}@kit.edu,
{luszczek,dongarra}@eecs.utk.edu

Abstract. In hardware-aware high performance computing, block-
asynchronous iteration and mixed precision iterative refinement are two
techniques that may be used to leverage the computing power of SIMD
accelerators like GPUs in the iterative solution of linear equation sys-
tems. Although they use a very different approach for this purpose, they
share the basic idea of compensating the convergence properties of an
inferior numerical algorithm by a more efficient usage of the provided
computing power. In this paper, we analyze the potential of combining
both techniques. Therefore, we derive a mixed precision iterative refine-
ment algorithm using a block-asynchronous iteration as an error correc-
tion solver, and compare its performance with a pure implementation of
a block-asynchronous iteration and an iterative refinement method us-
ing double precision for the error correction solver. For matrices from
the University of Florida Matrix collection, we report the convergence
behaviour and provide the total solver runtime using different GPU ar-
chitectures.

Keywords: mixed precision iterative refinement, block-asynchronous
iteration, GPU, linear system, relaxation.

1 Introduction

Classical relaxation methods such as Gauss-Seidel and Jacobi usually require
data transfer between each iteration which constitutes a synchronization point.
This implies a severe restriction for parallel implementations. Block-asynchronous
iteration removes this synchronization barrier, updating components using the
latest available values. It allows a large freedom in the update order and the
number of updates per component, while every component update uses the lat-
est available values for the other components. In the end, the obtained algorithm
is neither deterministic nor does it imply convergence for all systems that can
be solved by the classical Jacobi approach, in fact it requires the linear equation

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 908–919, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

MPIR-Block-Asynchronous Iteration 909

system to fulfill additional conditions. While, due to the poor convergence rate,
they may seem to be very unattractive from the mathematical point of view,
the block-asynchronous iteration is, in contrast to most other iterative meth-
ods, usually able to exploit the high computational power of modern hardware
platforms that are often accelerated by GPUs.

Another well-known technique that may be used to leverage the potential
of accelerators is mixed precision iterative refinement. The basic idea is to use
a lower precision format for the error correction solver inside an iterative re-
finement method at full precision. Without impacting the accuracy of the final
solution approximation, the acceleration of the solving process is possible since
the computations in the less complex floating point format can be conducted
faster on the respective device. While the time for computations in the usually
implemented single and double precision formats differs by a factor of two for
most devices, additional acceleration may be possible since using single precision
reduces the pressure on the memory bandwidth, that is often crucial in scientific
computing on hybrid hardware.

An open question is how a combination of these two techniques impacts the
convergence and properties and the performance. On the one hand the methods
are similar: they both compensate their low complexity by leveraging the high
computational power of GPUs. But on the other hand, they are contradictory
since the iterative refinement artificially introduces synchronization points that
we try to avoid in asynchronous iteration methods. For the latter ones, the most
suitable applications are linear systems with condition numbers which require
high iteration counts of the error correction solver. The mixed precision approach
may suffer from these, since the error correction is impacted by them.

The paper is organized as follows. First, we provide some mathematical back-
ground by outlining the algorithms for iterative refinement and the mixed preci-
sion variant, and block-asynchronous iteration. We then introduce the hardware
platforms used for the experiments and give details about the linear equation
systems we target. Additionally, we outline the GPU implementation we use
for the tests. In the numerical experiment section, we compare the convergence
behaviour of iterative refinement using a double-precision and a single-precision
error correction solver. We report the total solver runtimes and compare it with
a plain implementation of the block-asynchronous iteration for various GPUs.
In the last section we conclude and provide ideas for further optimization.

2 Mathematical Background

Block-Asynchronous Iteration. A possible motivation for asynchronous it-
eration is modern hardware, which provides a large number of cores that achieve
excellent performance when running in parallel, but suffer when synchronizing
or exchanging data. Therefore, algorithms that lack any synchronization would
achieve outstanding performance on these devices, while most of the numerical
algorithms are poorly parallel and require regular data exchange. For computing
the next iteration in relaxation methods, one usually requires the latest val-
ues of all components. For some algorithms, e.g., Gauss-Seidel [16], even the

910 H. Anzt et al.

already computed values of the current iteration step are used. This requires a
strict order of the component updates, limiting the parallelization potential to a
stage, where a component cannot be updated several times before all the other
components are updated.

If this order is not adhered to, i.e., the individual components are updated
independently and without consideration of the current state of the other com-
ponents, the resulting algorithm is called a chaotic or asynchronous iteration
method. In the past, the convergence behaviour and performance of these meth-
ods were analyzed in several papers [13,12,4,10]. Due to the superior convergence
properties of synchronized iteration methods, they came out of the main focus
of high performance computing, while research was put on investigating the con-
vergence properties [20,5]. Today, due to the complexity of heterogeneous hard-
ware platforms and the large number of computing units in parallel devices like
GPUs, these schemes may become interesting again for applications like multi-
grid methods, where highly parallel smoothers are required on the distinct grid
levels [9]. While traditional relaxation methods like the sequential Gauss-Seidel
obtain their efficiency from their fast convergence, an asynchronous iteration
scheme may compensate for its inferior convergence behavior by superior scal-
ability [3]. We proposed [2] a block-asynchronous iteration, that, in addition to
the global iterations, iterates on the subdomains determined by the iteration
components that are handled by the same stream in the GPU implementation.
The motivation for this is due to the design of graphics processing units and the
CUDA programming language. As the subdomains are relatively small and the
data needed largely fits into the multiprocessor’s cache, these additional itera-
tions on the subdomains come for almost free. During these local iterations, the
iteration values used from outside the block are kept constant, equal to their
values at the beginning of the global iteration. After the local iterations, the
updated values are communicated. This approach is inspired by the well known
hybrid relaxation schemes [9,8]. The obtained algorithm, visualized in Figure 1,
can be written as a component-wise update of the solution approximation to

form x
(m+1)
k :

x
(m)
k +

bk
akk

−
TS∑
j=1

akjx
(m−ν(m+1,j))
j

akk︸ ︷︷ ︸
global part

−
TE∑

j=TS+1

akjx
(m)
j

akk︸ ︷︷ ︸
local part

−
n∑

j=TE+1

akjx
(m−ν(m+1,j))
j

akk︸ ︷︷ ︸
global part

,

(1)

where TS and TE denote the starting and the ending indexes of the matrix/vector
part in the thread block. Furthermore, for the local components, the antecedent
values are always used, while for the global part, the values from the beginning
of the iteration are used. The shift function ν(m+1, j) denotes the iteration shift
for the component j – this can be positive or negative, depending on whether
the respective other thread block has already conducted more or less iterations.
Note that this gives a block Gauss-Seidel flavor to the updates. It should also
be mentioned that the shift function may not be the same in different thread

MPIR-Block-Asynchronous Iteration 911

Fig. 1. Visualizing the asynchronous iteration in block description used for the GPU
implementation. Akk denotes the k-th diagonal block, AΓk and AkΓ the block left,
respectively right, of Akk. Consistent notation is used for the block decomposition of
the vectors.

blocks. While the GPU hardware encourages this approach, the idea is similar
to a two-staged asynchronous iteration [7].

Mixed Precision Iterative Refinement.
Although iterative refinement methods have been known for long time, they

have enjoyed a revival with the rise of computer systems in the middle of the
last century. The core idea is to use the residual of a computed solution as
the right-hand side to solve a correction equation. The algorithm then updates
the solution approximation in every iteration by adding an error correction term
computed by an error correction solver. Note that this error correction solver
can be chosen independent: direct solvers as well as another iterative method
are possible options. This implies the possibility of cascading iterative refinement
methods. Denoting the solution update with c(i) := A−1r(i), the algorithm reads:

1: initial guess as starting vector: x(0)

2: compute initial residual: r(0) = b− Ax(0)

3: while (‖ Ax(i) − b ‖2> ε ‖ r(0) ‖2) do
4: r(i) = b− Ax(i)

5: solve: Ac(i) = r(i)

6: update solution: x(i+1) = x(i) + c(i)

7: end while

Algorithm 1. Error Correction Method

The underlying idea of mixed precision error correction methods is to use
different precision formats within the algorithm of the error correction method,
updating the solution approximation in high precision, but computing the error
correction term in lower precision which has been suggested before [15,14,6,11].

Hence, one regards the inner correction solver as a black box, computing a
solution update in lower precision. The term high precision refers to the precision

912 H. Anzt et al.

Fig. 2. Visualizing the mixed precision approach to an iterative refinement method

format that is necessary to display the accuracy of the final solution, and we can
obtain the following algorithm where xhigh denotes the high precision value and
xlow denotes the value in low precision for the variable x. The conversion between
the formats will be left abstract throughout this paper. Because the conversion
of the matrix A is especially expensive, it should be stored in both precision
formats, high and low precision. This leads to the drawback of a higher memory
need.

Using the displayed algorithm (Figure 2), we obtain a mixed precision solver.
If the final accuracy does not exceed the smallest number εlow that can be repre-
sented in the lower precision, it may generate the same approximation quality as
if the solver was performed in the high precision format. It should be mentioned,
that the solution update of the error correction solver is usually not optimal for
the outer system, since the representation of the problem in the lower precision
format contains rounding errors, and it therefore solves a perturbed problem.
When comparing the algorithm of an error correction solver to a plain solver,
it is obvious, that the error correction method has more computations to exe-
cute. Each outer loop consists of the computation of the residual error term, a
typecast, a vector update, the scaling process, the inner solver for the correction
term, the reconversion of the data and the solution update. The computation of
the residual error itself consists of a matrix-vector multiplication, a vector addi-
tion and a scalar product. The mixed precision refinement approach to a certain
solver is superior to the plain solver in high precision, if the additional computa-
tions and typecasts are overcompensated by the cheaper inner correction solver
using a lower precision format [1,11].

3 Experiment Setup

Linear Equation Systems. In our experiments, we search for the approx-
imate solutions of linear systems of equations, where the respective ma-
trices are taken from the University of Florida Matrix Collection (UFMC;
see http://www.cise.ufl.edu/research/sparse/matrices/).

http://www.cise.ufl.edu/research/sparse/matrices/

MPIR-Block-Asynchronous Iteration 913

Table 1. Dimension and characteristics of the SPD test matrices and the corresponding
iteration matrices where #n denotes the dimension and #nnz the number of nonzeros,
respectively

Matrix name #n #nnz cond(A) cond(D−1A) ρ(M)

Chem97ZtZ 2,541 7,361 1.3e+03 7.2e+03 0.7889

fv1 9,604 85,264 9.3e+04 12.76 0.8541

fv3 9,801 87,025 3.6e+07 4.4e+03 0.9993

Trefethen 2000 2,000 41,906 5.1e+04 6.1579 0.8601

Due to the convergence properties of the iterative methods we analyze, the
experiment matrices have to be chosen properly, fulfilling the necessary and
sufficient convergence condition [12].

The matrix properties and sparsity plots are in Table 1. and Figure 3.
The first matrix, Chem97ZtZ, comes from statistics1. Matrices fv1 and

fv3 are finite element discretizations of the Laplace equation on a 2D mesh.
Therefore, they share a common sparsity structure, but differ in dimension
and condition number. The matrix Trefethen 2000 [21] is a 2000 × 2000
matrix where all entries are zero except for the ones at the positions (i, j)
where |i − j| = 2, 4, 8, 16 Furthermore, the main diagonal is filled with the
primes 2, 3, 5, 7, 11 . . .17389. Hence, this matrix has many off-diagonal entries
distributed over the diagonals that are by a power of 2 distant to the main
diagonal.

Implementation Issues.The GPU implementations of the block-asynchronous
iteration is based on CUDA [19], while the respective libraries used are from
CUDA 2.3 for the C1060 and the GTX280, and CUDA 4.0.17 [18] for the C2070
and GTX580 implementation. The kernels updating the respective components,
launched through different streams, use thread blocks of size 512. The thread
block size, the number of streams, along with other parameters, were determined
through empirically based tuning. For the iterative refinement implementation

(a) Chem97ZtZ (b) fv1, fv3 (c) Trefethen 2000

Fig. 3. Sparsity plots of test matrices

1 For more details see
http://www.cise.ufl.edu/research/sparse/mat/Bates/README.txt

http://www.cise.ufl.edu/research/sparse/mat/Bates/README.txt

914 H. Anzt et al.

Table 2. Key system characteristics of the four GPUs used. Computation rate and
memory bandwidth are theoretical peak values [17].

Name GTX280a GTX580 Tesla C1060 Tesla C2070

Chip GT200 GF110 T10 T20

Transistors 1.4 · 109 3 · 109 1.4 · 109 3 · 109
Core frequency 1.3 GHz 1.5 GHz 1.15 GHz 1.3 GHz

Thread Processors 240 512 240 448

GFLOPS (single) 933 1580 933 1030

GFLOPS (double) 78 790 78 515

Shared Memory/L1 16 KB 64 KB 16 KB 64 KB

L2 Cache - 768 KB - 768 KB

Memory 1 GB GDDR3 1.5 GB GDDR5 4 GB GDDR3 6 GB GDDR5

Memory Frequency 1.1GHz 2.0 GHz 0.8 GHz 1.5 GHz

Memory Bandwidth 141.0 GB/s 192.4 GB/s 102.0 GB/s 144.0 GB/s

ECC Memory no yes no yes

Power Consumption 236 W 244 W 200 W 190

IEEE double/single yes/partial yes/yes yes/partial yes/yes

we use a first outer iteration to analyze the residual improvement and then
adapt the number of inner iterations such that the residual improvement equals
the accuracy of floating point precision in every outer update. Hence, while the
first error correction loop may provide different improvement for the distinct
test cases, the further loops all decrease the residual by 6 to 8 digits.

In case of the mixed precision implementations, the error correction solver is
implemented using single precision. Hence, due to the low precision representa-
tion of the linear equation system, additional rounding errors may be expected,
slowing down the convergence of the iterative refinement. To analyze this issue,
we compare in a first experiment the convergence behaviour of the iterative re-
finement method using a double- and a single- precision error correction solver,
respectively. Using different precision formats, the vectors and the linear system
have to be converted from double to single precision. This typecast, handled by
the GPU, triggers some overhead and may be crucial for problems where only
very few iterations of the error correction solver are executed.

To analyze the impact of the overhead of iterative refinement and the use of
different precision formats we provide the solver runtimes for the different linear
equation systems for the plain block-asynchronous iteration in double precision,
the iterative refinement in double precision and the mixed precision iterative
refinement, whereas the latter ones use the block-asynchronous iteration as an
error correction solver.

Hardware Platforms. We target four GPU architectures located at the Engi-
neering Mathematics and Computing Lab (EMCL)2 at the Karlsruhe Institute
of Technology, Germany, to analyze the potential of mixed precision block-
asynchronous iteration. They are taken from the Fermi and the Tesla line of

2 Supported by NVIDIA as Cuda Research Center.

MPIR-Block-Asynchronous Iteration 915

1e-15

1e-10

1e-05

1

0 1 2 3 4 5

re
si

du
al

global iters

Chem
fv1
fv3

Trefethen

Fig. 4. Iterative refinement convergence, solid lines are double-precision error correc-
tion, dashed lines are single-precision error correction

Nvidia. The C2070 and the C1060 are the server versions of the line, the GTX580
and the GTX280 are the consumer version, respectively. While the chip and on-
board memory specifications are given in table 2, the host system may have
minor influence on the performance, since all computations are exclusively han-
dled by the graphics. Note that the price for the larger (ECC protected) memory
in the server versions is a lower memory bandwidth.

4 Numerical Experiments

In the first experiment, we analyze how using lower precision for the block-
asynchronous iteration error correction solver impacts the iterative refinement
convergence rate. Therefore, we report the relative residual depending on the
iteration number for the different linear equation systems introduced in Section 3.
Note that due to the implementation, the first outer loop is used to determine the
residual improvement, while the further iterations improve the approximation
iterate by 6 to 8 digits, depending on the rounding error.

The results reported in Figure 4 show that for the test matrices Chem97ZtZ,
fv1, and Trefethen 2000, using single precision for the error correction solver
has a nearly negligible impact on the convergence of the iterative refinement.
Only for the fv3 test case, does the convergence rate suffer. This was expected
since the high condition number triggers representation errors in the low preci-
sion format that make the approximation updates less beneficial.

But while the convergence behaviour is interesting from the theoretical point
of view, the next experiment is dedicated to analyzing how handling the error
correction equation in single precision impacts the performance. The motivation
is that using single instead of double as working precision, triggers at least a

916 H. Anzt et al.

1e-15

1e-10

1e-05

1

0 0.1 0.2 0.3 0.4 0.5
time [s]

async-(5)
double precision iterative refinement
mixed precision iterative refinement

re
si

du
al

(a) Chem97ZtZ

1e-15

1e-10

1e-05

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
time [s]

async-(5)
double precision iterative refinement
mixed precision iterative refinement

(b) fv1

1e-15

1e-10

1e-05

1

0 50 100 150 200
time [s]

async-(5)
double precision iterative refinement
mixed precision iterative refinement

re
si

du
al

(c) fv3

1e-15

1e-10

1e-05

1

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
time [s]

async-(5)
double precision iterative refinement
mixed precision iterative refinement

(d) Trefethen 2000

Fig. 5. Iterative refinement performance, time-dependent relative residual

speedup of two, and may potentially overcompensate for the overhead associated
with the typecast between the formats.

While the convergence, with respect to iteration number, is independent of
the hardware used, the performance depends on the architecture. We use the
C2070 for this experiment, as this ’Fermi’ generation is the state of the art from
in scientific computing the Nvidia GPU manufacturer. In addition to the conver-
gence performance of the iterative refinement, using a double or single precision
error correction solver, we report the results for the plain block-asynchronous
iteration in double precision. We observe in Figure 5, that for all test cases, the
overhead is negligible when embedding the block-asynchronous iteration in dou-
ble precision into the iterative refinement framework. For the small test cases
Chem97ZtZ and Trefethen 2000, switching to the mixed precision iterative
refinement approach gives no improvement. For the larger matrices e.g. fv1, the
improvement by using low precision for the error correction solver is relevant.
The mixed precision implementation converges almost twice as fast. Even for
the test case fv3, where we observed a slower convergence rate for the mixed
precision approach in Figure 4, we benefit in terms of performance.

MPIR-Block-Asynchronous Iteration 917

0

0.2

0.4

0.6

0.8

1

GTX280

GTX580

C1060

C2070

tim
e

to
co

nv
er

ge
nc

e
[s

ec
]

platform

async-(5)
double precision iterative refinement
mixed precision iterative refinement

(a) Chem97ZtZ

0

0.5

1

1.5

2

GTX580

C1060

C2070

platform

async-(5)
double precision iterative refinement
mixed precision iterative refinement

(b) fv1

0

50

100

150

200

250

300

350

400

GTX580

C1060

C2070

tim
e

to
co

nv
er

ge
nc

e
[s

ec
]

platform

async-(5)
double precision iterative refinement
mixed precision iterative refinement

(c) fv3

0

0.05

0.1

0.15

0.2

0.25

GTX280

GTX580

C1060

C2070

platform

async-(5)
double precision iterative refinement
mixed precision iterative refinement

(d) Trefethen 2000

Fig. 6. Total solver runtime

Targeting different hardware architectures, we report in Figure 6 the respec-
tive time-to solution. For the test cases fv1 and fv3, despite the performance
difference between single and double precision of around 10 on the Tesla line,
the mixed precision iterative refinement performs inferior to the plain double
implementation of async-(5). The reason is, that for these systems, the memory
bandwidth is the limiting factor and the overhead, due to the iterative refinement
framework, can not be compensated for by the single precision performance.
For the small matrices, things are different. Since the size of Chem97ZtZ and
Trefethen 2000 allows for the caching of the iteration vector as well as the
right-hand side, the C1060 and the GTX280 are able to leverage the single pre-
cision performance more efficiently. Still, the bandwidth remains the limiting
factor, since the complete matrix cannot be loaded into cache, and the higher
memory bandwidth of the consumer version explains the better performance for
the mixed precision approach. Using double precision, the server version is supe-
rior, probably due to the more sophisticated memory structure. Unfortunately,
the very limited main memory on the GTX280 does not allow for the handling
of the large systems.

918 H. Anzt et al.

Note that the total solver runtime for Trefethen 2000 is on the GTX280
even smaller than on the server version of the Fermi line. An explanation may
be that the overall runtime also includes the initialization process, which has to
be taken into account for this system, and is longer for systems using CUDA in
version 4.0 and equipped with more memory.

Targeting the Fermi generation, we observe that, especially for the large sys-
tems, we benefit from the mixed precision framework. Although we may only
expect a factor of two concerning the floating point performance, the sophisti-
cated memory hierarchy enables even higher speedups.

This speedup stems from the fact that, not only are we able to keep the
iteration vector and the right-hand side local due to the larger L1 cache, but also
because the L2 cache allows for the efficient data access of the iteration matrix.
Note that for the test case fv3, the iterative refinement in double precision fulfills
the critical stopping criterion after 4 iterations, while we could observe in Figure
4 that it is already very close after 3 iterations. Hence, the double precision
iterative refinement runtime would benefit from choosing a smaller number of
inner iterations for the last global iteration.

5 Conclusions

We were able to show that embedding block-asynchronous iteration into a mixed
precision iterative refinement method not only retains its convergence properties,
but may even be beneficial with respect to the runtime performance. Depending
on the GPU architecture, we were able to achieve a performance increase of up to
a factor of two for linear equation systems taken from the University of Florida
Matrix Collection. The trade-off between the synchronization points introduced
by iterative refinement and the desired asynchronism is not necessarily crucial,
and for problems fulfilling the constraints, given by an upper and lower bound
for the condition number of the linear system, the performance increase may be
considerable. Concerning the hardware, the potential lies within systems that
have large differences in the double–single precision performance, and a sophis-
ticated memory hierarchy enabling them to transfer this performance factor to
speedups of the asynchronous iteration solver.

While our analysis focused on the typically used single- and double preci-
sion formats, especially when targeting artificially created extended formats, the
mixed precision iterative refinement approach is inevitable.

Aside from this, further research should focus on determining a priori, whether
embedding the block-asynchronous iteration into the mixed precision iterative
refinement framework is beneficial for a given problem. This may depend not only
on the problem characteristics, i.e. the condition number, but also on the hard-
ware platform used, potentially accelerated by multiple, even different GPUs.

MPIR-Block-Asynchronous Iteration 919

References

1. Anzt, H., Heuveline, V., Rocker, B.: An Error Correction Solver for Linear Sys-
tems: Evaluation of Mixed Precision Implementations. In: Palma, J.M.L.M., Daydé,
M., Marques, O., Lopes, J.C. (eds.) VECPAR 2010. LNCS, vol. 6449, pp. 58–70.
Springer, Heidelberg (2011)

2. Anzt, H., Tomov, S., Dongarra, J., Heuveline, V.: A Block-Asynchronous Relax-
ation Method for Graphics Processing Units. Technical report, Innovative Com-
puting Laboratory, University of Tennessee, UT-CS-11-687 (2011)

3. Anzt, H., Tomov, S., Gates, M., Dongarra, J., Heuveline, V.: Block-asynchronous
Multigrid Smoothers for GPU-accelerated Systems. Technical report, Innovative
Computing Laboratory, University of Tennessee, UT-CS-11-689 (2011)

4. Aydin, U., Dubois, M.: Generalized asynchronous iterations, pp. 272–278 (1986)
5. Aydin, U., Dubois, M.: Sufficient conditions for the convergence of asynchronous

iterations. Parallel Computing 10(1), 83–92 (1989)
6. Baboulin, M., Buttari, A., Dongarra, J.J., Langou, J., Langou, J., Luszczek, P.,

Kurzak, J., Tomov, S.: Accelerating scientific computations with mixed precision
algorithms. Computer Physics Communications 180(12), 2526–2533 (2009)

7. Bai, Z.-Z., Migallón, V., Penadés, J., Szyld, D.B.: Block and asynchronous two-
stage methods for mildly nonlinear systems. Num. Math. 82, 1–20 (1999)

8. Baker, A.H., Falgout, R.D., Gamblin, T., Kolev, T.V., Martin, S., Meier Yang,
U.: Scaling algebraic multigrid solvers: On the road to exascale. In: Proceedings of
Competence in High Performance Computing CiHPC (2010)

9. Baker, A.H., Falgout, R.D., Kolev, T.V., Meier Yang, U.: Multigrid smoothers for
ultra-parallel computing, LLNL-JRNL-435315 (2011)

10. Bertsekas, D.P., Eckstein, J.: Distributed asynchronous relaxation methods for
linear network flow problems. In: Proceedings of IFAC 1987 (1986)

11. Buttari, A., Dongarra, J.J., Langou, J., Langou, J., Luszczek, P., Kurzak, J.: Mixed
precision iterative refinement techniques for the solution of dense linear systems.
Int. J. of High Perf. Comp. & Appl. 21(4), 457–486 (2007)

12. Chazan, D., Miranker, W.: Chaotic Relaxation. Linear Algebra and Its Applica-
tions 2(7), 199–222 (1969)

13. Frommer, A., Szyld, D.B.: On asynchronous iterations. Journal of Computational
and Applied Mathematics 123, 201–216 (2000)

14. Göddeke, D., Strzodka, R.: Performance and accuracy of hardware–oriented native–
, emulated– and mixed–precision solvers in FEM simulations (part 2: Double pre-
cision GPUs). Technical report, TU Dortmund (July 2008)

15. Göddeke, D., Strzodka, R., Turek, S.: Performance and accuracy of hardware–
oriented native–, emulated– and mixed–precision solvers in FEM simulations. Int.
J. of Parallel, Emergent and Distributed Systems 22(4), 221–256 (2007)

16. Kelley, C.T.: Iterative Methods for Linear and Nonlinear Equations. SIAM (1995)
17. NVIDIA Corporation. Whitepaper: NVIDIA’s Next Generation CUDA Compute

Architecture: Fermi
18. NVIDIA Corporation. CUDA Toolkit 4.0 Readiness For CUDA Applications, 4.0

edition (March 2011)
19. NVIDIA Corporation. NVIDIA CUDA Compute Unified Device Architecture C

Programming Guide, 4.2 edition (April 2012)
20. Szyld, D.B.: The mystery of asynchronous iterations convergence when the spec-

tral radius is one. Technical Report 98-102, Department of Mathematics, Temple
University, Philadelphia, Pa. (October 1998)

21. Trefethen, N.: Hundred-dollar, hundred-digit challenge problems. SIAMNews 35(1)
(January 2, 2002), Problem no. 7.

GPURoofline: A Model for Guiding

Performance Optimizations on GPUs

Haipeng Jia1,2, Yunquan Zhang1,3, Guoping Long1, Jianliang Xu2,
Shengen Yan1,3,4, and Yan Li1,3,4

1 Lab. of Parallel Software and Computational Science,Institute of Software,
Chinese Academy of Sciences

2 College of Information Science and Engineering, The Ocean University of China
3 State Key Laboratory of Computing Science, The Chinese Academy of Sciences

4 Graduate University of Chinese Academy of Sciences
jiahaipeng95@gmail.com, zyq@mail.rdcps.ac.cn, guoping@iscas.ac.cn

Abstract. Performance optimization on GPUs requires deep techni-
cal knowledge of the underlying hardware. Modern GPU architectures
are becoming more and more diversified, which further exacerbates the
already difficult problem. This paper presents GPURoofline, an em-
pirical model for guiding optimizations on GPUs. The goal is to help
non-expert programmers with limited knowledge of GPU architectures
implement high performance GPU kernels. The model addresses this
problem by exploring potential performance bottlenecks and evaluating
whether specific optimization techniques bring any performance improve-
ment. To demonstrate the usage of the model, we optimize four rep-
resentative kernels with different computation densities, namely matrix
transpose, Laplace transform, integral and face-dection, on both NVIDIA
and AMD GPUs. Experimental results show that under the guidance
of GPURoofline, performance of those kernels achieves 3.74∼14.8 times
speedup compared to their näıve implementations on both NVIDIA and
AMD GPU platforms.

Keywords: GPURoofline, Threshold Carving, Tradeoff Carving,
Little’s Law.

1 Introduction

More and more application developers have been adopting GPUs as standard
computing accelerators because of their increasing computing power and pro-
grammability. However, we won’t get the required performance without care-
ful optimizations because the performance problem has shifted from hardware
designers to compiler writers and application developers. Unfortunately, perfor-
mance optimizations of GPU programs are difficult, because this process requires
deep technical knowledge of the underlying hardware architecture. Modern GPU
architectures are becoming more and more diversified, which further exacerbates
the already difficult problem of performance optimization. For programmers, it

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 920–932, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

GPURoofline: A Model for Guiding Performance Optimizations on GPUs 921

will be helpful to have a structured and insightful model that guides perfor-
mance optimizations on GPUs. To make the model even more useful, it needs
to be understandable by most programmers.

Our research addresses this problem by proposing GPURoofline, a model
guiding performance optimizations on GPUs. The goal of the model is to fa-
cilitate the best match between algorithmic features and underlying hardware
characteristics. On both NVIDIA and AMD GPUs, the model can help iden-
tify performance bottlenecks, and evaluate whether a particular optimization
technique can achieve performance improvements. Instead of trying to predict
performance, we choose a simpler approach called “bound and bottleneck anal-
ysis”. The approach provides valuable insights into primary factors affecting the
performance. In particular, critical performance bottlenecks are highlighted and
quantified [12]. The proposed model provides three functionalities. Firstly it pro-
vides valuable insights on primary factors that affect the performance. Secondly
it identifies performance bottlenecks and allows programmers and architectures
to predict the benefits of potential optimizations and architecture improvements.
Thirdly it can be incorporated into a tool to provide performance information
to an auto-tuning compiler by narrowing the search space.

We also demonstrate the usage of our model through optimizing four repre-
sentative programs with different compute intensity: Matrix Transpose, Laplace
Transform, Integral and FaceDection. All evaluations are performed on both
NVIDIA and AMD GPUs. Experimental results demonstrate that under the
guidance of GPURoofline, performance of those kernels achieves 3.74∼14.8 times
speedup compared to their näıve implementations on both platforms.

In summary, we make the following contributions in this paper. Firstly, We
build the first Roofline model for GPU, called GPURoofline, to guild GPU pro-
gram optimization. Secondly, We demonstrate how the model can help program-
mers doGPUperformance optimizations. Thirdly,to the best of our knowledge,this
is the first performancemodel that takes globalmemory channel conflicts and load
balancing into consideration.

The rest of the paper is organized as follows. We begin by discussing related
works in section 2. Section 3 presents how to build our GPU model. Section 4
discusses experiment results and analysis. Section 5 concludes this paper.

2 Related Work

Enormous works have been invested on building GPU performance analysis and
prediction models. Architecture-aware performance analysis methods were pro-
posed in[3][7]. Ryoo et al. [5]used Pareto-optimal curves to narraw the optimiza-
tion space of GPU programs and introduce efficiency and utilization as single
number metrics. N. K. Govindaraju[10]presented a memory model to analyze
and improve the performance of nested loops on GPUs. S. Hong[6]presents a
simple performance analytical model to capture a rough estimate of the cost of
memory operations by considering the number of running threads and memory
bandwidth. Baghsorkhi[2]introduced an abstract interpretation of a GPU kernel

922 H. Jia et al.

to identify performance bottlenecks and used work flow graph to predict exe-
cution time. Kothapalli[4]presented a performance prediction model to analyze
pseudo code for a GPU kernel to obtain a performance estimate. However, be-
cause of the complexity of the underlying hardware architecture, it is difficult to
predict performance accurately.

Certainly, these performance models are powerful tools for optimizing. How-
ever, for a given kernel, they do not provide any insight into how to identify per-
formance bottleneck and evaluate the benefits of potential optimization methods.
Compared to them, our work can guide programmers to write high performance
program directly, rather than write a näıve version first and then tune it again
and again. There are also similar works to us: Yao Zhang[1]provided a quantita-
tive way to analyzes GPU program performance, however, they didn’t provide
an easy-to-understand model; Samuel Williams[11]provided an insightful visual
performance model, however, their works only for multi-core CPUs.

3 GPURoofline

Using bound and bottleneck analysis [8], the attainable performance on a given
GPU architecture is restricted by two factors: peak performance and peak band-
width. Performance depends on how well kernel features map to architectural
characteristics. There is a single variable, Compute Intensity, which is defined
as operations per byte of off-chip memory traffic. So the proposed GPURoofline
model should integrate these three factors together. In this paper, although our
work focuses on the NVIDIA Tesla C2050 and AMD Radeon HD5850 GPU, we
believe our performance modeling methodology is also applicable to any other
GPU architectures.

For simplicity, in this paper, we use peak performance refers to the peak
performance of single-precision floating-point, peak bandwidth refers to the peak
bandwidth of off-chip memory, NVIDIA GPU refers to the NVIDIA Tesla C2050
GPU and AMD GPU refers to the AMD Radeon HD5850 GPU.

3.1 Näıve GPURoofline

Fig.1a outlines a näıve GpuRoofline model for AMDGPU with peak performance
of 2.09TFlopps/sec and peak bandwidth of 128GB/sec. Fig.1b outlines a näıve
GpuRoofline model for NVIDIA GPUwith peak performance of 1.03TFlopps/sec
and peak bandwidth 144GB/sec. The graph is log-log scale and sets an upper
bound on the performance of GPU kernels. The max attainable performance
equals to min {peak performance, peak bandwidth * Compute Intensity}.

As shown in Fig.1, the vertical purple dashed line represents the Compute In-
tensity of hardware, calculated by peak performance dividing peak bandwidth.
Two vertical red dashed lines represent two kernels with different Compute In-
tensity: the left one which Compute Intensity smaller than hardware Compute
Intensity called memory-bound kernel; and the right one which Compute Inten-
sity larger than hardware Compute Intensity called instruction-bound kernel.
As will be explained later, the hardware Compute Intensity suggests the level of
difficulty to achieve peak performance.

GPURoofline: A Model for Guiding Performance Optimizations on GPUs 923

Pea
k B
and
wid
th

Peak Performance

Compute Intensity(Flops/Byte)

A
tta
in
ta
bl
eP
er
fo
rm
an
ce
(G
Fl
op
/S
ec
)

1/8 1/4 1/2 1 322 4 168

K
er
ne
l1

M
em
or
y-
bo
un
d

K
er
ne
l2

In
st
ru
ct
io
n-
bo
un
d

C
om
pu
te
In
te
ns
ity
of
H
ar
dw
ar
e

4

1024

8

16

32

64

128

256

512

2048

64

(a) AMD HD5850 GPU

Pea
k B
and
wid
th

Peak Performance

Compute Intensity(Flops/Byte)

A
tta
in
ta
bl
eP
er
fo
rm
an
ce
(G
Fl
op
/S
ec
)

1/8 1/4 1/2 1 322 4 168

K
er
ne
l1

M
em
or
y-
bo
un
d

K
er
ne
l2

In
st
ru
ct
io
n-
bo
un
d

C
om
pu
te
In
te
ns
ity
of
H
ar
dw
ar
e

4

1024

8

16

32

64

128

256

512

64

(b) NVIDIA C2050 GPU

Fig. 1. Näıve GPURoofline for GPUs

As we see, we must build a unique GPURoofline for each of the different
GPU architecture. Fortunately, given a GPURoofline, we can use it repeatedly
on different kernels.

3.2 Threshold Optimizations

We introduce Little’s Law to guide our designs on communication. We also
define the three components included in Little’s Law: memory access latency,
concurrency and the utilization of the peak bandwidth. The utilization of the
peak bandwidth will drop if Little’s is not satisfied.

Optimization Space. According to Little’s Law, we defined optimization spaces
as follows:

Eliminating Channel Conflict (ECC), just as local memory, global memory is
divided into 8 partitions of 256-byte width on both AMD and NVIDIA GPU.
Channel conflict occurs when concurrent global memory access requests queue up
at some partitions while other partitions go unused. Rearrange data structure
to ensure adjacent work-items access adjacent memory address is a common
optimization technique.

Reducing Memory Transactions (RMT), coalescing global memory access re-
quests into as few memory transactions as possible. Alignment, vector and coa-
lesced access are the main methods to achieve this.

Using Software Prefetching (USP), the highest performance usually requires
keeping many memory operations in flight, which is easier to do via prefetching
than by waiting until the data is actually requested by the program.

Using FastPath (UFP), this is for AMD GPU specially. Examine the code
to ensure you are using FastPath not CompletePath, can improve performance
significantly.

Threshold Carving. In this section, we will perform a sensitivity analysis
to examine the impact of optimization methods on performance .We design a
highly optimized implementation of copy micro-benchmark which the utilization

924 H. Jia et al.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

HighlyOptimized ChannelConflic CompletePath Non-Aligned Non-Vector Prefetching

(a) AMD HD5850 GPU

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

HighlyOptimized ChannelConflict Non-Coalsced Non-Aligned Prefetching

(b) NVIDIA C2050 GPU

Fig. 2. Performance changes along with the optimizations removed one by one

Peak Memory Bandwidth

Peak Performance

Compute Intensity(Flops/Byte)

A
tta

in
ta

bl
e

Pe
rf

or
m

an
ce

(G
Fl

op
/S

ec
)

1/8 1/4 1/2 1 322 4 168

K
er

ne
l 1

M
em

or
y-

bo
un

d

K
er

ne
l 2

In
st

ru
ct

io
n-

bo
un

d

C
om

pu
te

 In
te

ns
ity

 o
f H

ar
dw

ar
e

4

1024

8

16

32

64

128

256

512

2048

64

ECC
UFP

RMTUSP

(a) AMD HD5850 GPU

Peak Memory Bandwidth

Peak Performance

Compute Intensity(Flops/Byte)

A
tta

in
ta

bl
e

Pe
rf

or
m

an
ce

(G
Fl

op
/S

ec
)

1/8 1/4 1/2 1 322 4 168

K
er

ne
l 1

M
em

or
y-

bo
un

d

K
er

ne
l 2

In
st

ru
ct

io
n-

bo
un

d

C
om

pu
te

 In
te

ns
ity

 o
f H

ar
dw

ar
e

4

1024

8

16

32

64

128

256

512

64

ECC
Coalesced

RMT

USP

(b) NVIDIA C2050 GPU

Fig. 3. GPURoofline model with threshold carvings

of peak bandwidth can achieve 90% on both NVIDIA and AMD GPU. And then
remove those optimization methods one by one in a particular order, Fig.2 shows
performance changes.

From Fig. 2, we can see that for both NVIDIA and AMD GPU, the most im-
portant optimization method is eliminating channel conflict which was ignored
in previous work. However, the second important optimization method is dif-
ferent: using FastPath for AMD GPU and coalesced access for NVIDIA GPU,
respectively. Changing access patterns to allow data alignment is also important
for both NVIDIA and AMD GPU. We add those optimization methods to our
GPURoofline model:

As shown in Fig. 3, similar to performance changes, as we remove these
optimization methods, new bandwidth curves will be formed below the peak
bandwidth curve. We call these interior GPURoofline-like structures Memory
Carvings. These Carvings not only provide some reasonable bounds on perfor-
mance but also provide some suggestions for the optimizations. You cannot break
through a ceiling without performing the associated optimization method first,
so these memory carvings are called threshold carvings. We rank the Carvings
from bottom to top as the order we remove the optimization methods.

GPURoofline: A Model for Guiding Performance Optimizations on GPUs 925

3.3 Tradeoff Optimizations

We also introduce Little’s Law to guide our designs on computation and de-
fine the three components included in Little’s Law: concurrency, latency and
throughput of effective instruction. Performance will drop if Little’s is not sat-
isfied.

Optimization Space. According to Little’s Law, we defined optimization spaces
as follows:

Reducing Dynamic Instructions (RDIS), increase the efficiency of instruction
stream. There are four methods for this: minimizing divergent threads within a
warp or a wavefront; eliminating common subexpression; loop-invariant code mo-
tion and loop unrolling. However, these optimizations must be balanced against
the increased usage of hardware resources.

Instruction Selection Optimizations (INS), throughputs of GPU instructions
are very different. Selecting instructions with lower latency as much as possible
is a very desirable method for instruction-bound kernels.

Increasing Thread-level Parallelism (TLP), GPUs hide latency based on a
large number of threads. Exploiting TLB, providing enough threads for each
compute unit is a basic optimize method for GPUs.

Increasing Instruction-level Parallelism (ILP), ensure the availability of inde-
pendent instructions within a thread. This is usually achieved by loop unrolling,
reordering the code and using vector instructions.

Work-redistribution (WRD), redistribute workloads across threads when there
are workload imbalance. We can achieve it through four techniques: persistent
thread, global queue, local queue and task stealing.

Tradeoff Carving. Using a similar analysis discussed in section3.2, we ob-
tain some new GpuRoofline-like Carvings below GpuRoofline called Compute
Carving. However, because of the discontinuous of optimization spaces, it is not
clear that one should maximize or minimize an optimization method. So the
Compute Carving is called tradeoff carving which just provides the insights into
the performance improvement but not accurately, this is very different from the
Memory Carving. The desired of accurate Compute Carving is the future work.

As shown in Fig. 4, when the Compute Intensity of a kernel greater than 0.81 for
AMD GPU or 1.8 for NVIDIA GPU(calculated by hardware Compute Intensity
divides process elements per stream core, then divides instruction cycles) we
should consider the optimization of computation. We can also conclude from Fig
4 that, computation optimization for AMD GPU is more difficult than NVIDIA
GPU, That is because AMD GPU is vector architecture and we cannot translate
all the scalar instructions into vector instructions with appropriate length.

As Show in Fig.4, for both NVIDIA and AMD GPU, the most effective method
is to exploiting TLP to hide latency. Exploiting ILP is the most obvious difference
in the process of optimizing which is more effective for AMD GPU than NVIDIA
GPU, because of AMD GPU’s vector architecture. Additionally, RDIC is also an

926 H. Jia et al.

Pea
k M
emo
ry B
and
wid
th

Peak Performance

Compute Intensity(Flops/Byte)

A
tt
ai
nt
ab
le
Pe
rf
or
m
an
ce
(G
Fl
op
/S
ec
)

1/8 1/4 1/2 1 322 4 168
K
er
ne
l1

M
em
or
y-
bo
un
d

K
er
ne
l2

In
st
ru
ct
io
n-
bo
un
d

C
om
pu
te
In
te
ns
ity
of

H
ar
dw
ar
e

4

1024

8

16

32

64

128

256

512

2048

64

ECC
UFP

RMTUSP
RDIS

TLP

ILP

INS

WRD

(a) AMD HD5850 GPU

Pea
k M
emo
ry B
and
wid
th

Peak Performance

Compute Intensity(Flops/Byte)

A
tt
ai
nt
ab
le
Pe
rf
or
m
an
ce
(G
Fl
op
/S
ec
)

1/8 1/4 1/2 1 322 4 168

K
er
ne
l1

M
em
or
y-
bo
un
d

K
er
ne
l2

In
st
ru
ct
io
n-
bo
un
d

C
om
pu
te
In
te
ns
ity

of
H
ar
dw
ar
e

4

1024

8

16

32

64

128

256

512

64

ECC
Coa
lesc
edRMT

USP

RDIS
TLP

ILP

INS

WRD

(b) NVIDIA C2050 GPU

Fig. 4. GPURoofline model with tradeoff carvings

important optimization method. However, we must balance against the increased
usage of hardware resources. Using Work-redistribution to enable load balance
among threads can improve performance significantly on both NVIDA and AMD
GPU for the irregular-parallel algorithm.

3.4 Data Locality

The main purpose of data locality is to increase kernel Compute Intensity. By
increasing data reuse and decreasing the traffic of off-chip memory, this approach
can improve performance significantly, especially for memory-bound kernel. Like
memory access and computation constrained performance through performance
carving, Compute Intensity also constrain performance like a wall, is called Com-
pute Intensity Wall. We cannot achieve higher performance without improving
kernel Compute Intensity especially for memory-bound kernels. So when you
use GPURoofline model to guide your optimization and the performance is not
achieve your expectation, the first optimization method you should think is in-
creasing kernel Compute Intensity through data locality.

3.5 Interaction with Program Optimization

According to the GpuRoofline model, we can optimize kernels easily according
to four rules:

Firstly, the Compute Intensity of a kernel determines the optimization region,
and thus which optimization method to try. As shown in Fig.4, if the kernel
dashed line falls into the green area, programmers should work only on the
memory optimizations. If the dashed line falls into the blue area, programmers
should work only on the computation optimizations. If the dashed line falls into
the brown area, programmers should try both types of optimizations.

Secondly, optimization carvings suggest the corresponding methods that pro-
grammer should perform. And the gap between them represents the potential
(Memory Carving) or relative potential (Computation Carving) benefits of re-
lated optimization method.

Thirdly, the order of the optimization carving suggests the optimization order.

GPURoofline: A Model for Guiding Performance Optimizations on GPUs 927

Finally, the ridge point marks the minimum Compute Intensity required to
achieve peak performance.

4 Evaluation

In this section we demonstrate the usage of GPURoofline model through four
kernels with different Compute Intensity. Table 1 shows the configuration of
GPUs in our experiments in detail. Fig.5 shows optimization regions of these
four kernels in GpuRoofline model. Note that, when calculating kernel Compute
Intensity, we consider all the calculations, including address calculations.

Table 1. Configuration of the GPUs in our experiments

GPU Clock Rate PE CU Peak performance Memory Peak BW Regisgers/CU LDS/CU
AMD HD5850 0.725GHZ 288 18 2090GFlops 1.0GB 128GB/s 16K 32K
NVIDIA C2050 1.15GHZ 448 14 1030GFlops 3.0GB 144GB/s 16K 48K

Pea
k M
emo
ry B
and
wid
th

Peak Performance

Compute Intensity(Flops/Byte)

A
tta
in
ta
bl
eP
er
fo
rm
an
ce
(G
Fl
op
/S
ec
)

1/8 1/4 1/2 1 322 4 168

T
ra
ns
po
se

C
om
pu
te
In
te
ns
ity
of

H
ar
dw
ar
e

4

1024

8

16

32

64

128

256

512

2048

64

ECC
UFP

RMTUSP
RDIS

TLP

ILP

INS

L
ap
la
ce
w
ith
lo
ca
lit
y

Fa
ce
D
ec
tio
n

sc
an

L
ap
la
ce

Sc
an

WRD

(a) AMD HD5850 GPU

T
ra
ns
po
se

L
ap
la
ce
w
ith
lo
ca
lit
y

sc
an

L
ap
la
ce

Sc
an

Pea
k M
emo
ry B
and
wid
th

Peak Performance

Compute Intensity(Flops/Byte)

A
tta
in
ta
bl
eP
er
fo
rm
an
ce
(G
Fl
op
/S
ec
)

1/8 1/4 1/2 1 322 4 168

C
om
pu
te
In
te
ns
ity

of
H
ar
dw
ar
e

4

1024

8

16

32

64

128

256

512

64

ECC
Coa
lesc
edRMT

USP

RDIS
TLP

ILP

INS

WRD

Fa
ce
D
ec
tio
n

(b) NVIDIA C2050 GPU

Fig. 5. Optimization regions of these four kernels in GpuRoofline model

4.1 Matrix Transpose

In this section, we optimize matrix transpose under the guidance of GpuRoofline
model. The transpose operation of each element performs two address calcula-
tions, and each address calculation performs 2 floating-point operations, so the
compute intensity of matrix transpose is 2*2/8=0.5. According to optimization
chain, our optimization work should only focus on the off-chip memory band-
width optimizations.

As our GPURoofline model suggests, for both NVIDIA and AMD GPU, the
first method to consider is eliminating channel conflict, and we achieve it by
using a technique called Diagonal Block Reordering method. We also use vector
memory access pattern to exploit ILP and data alignment to reduce memory
transactions. In addition, we use local memory to make its global memory access
pattern coalesced. Fig.6 shows the performance results when satisfies desired
optimization methods one by one. The performance of this kernel is on a 2560 *
2560 matrix of float and uses memory bandwidth as the performance metric.

928 H. Jia et al.

3.1866

20.9344

55.3105

62.4002

74.7522

83.7245

0

10

20

30

40

50

60

70

80

90

Naïve ECC FastPath Alignment Vectorize Coalesced

M
em

or
y

Ba
nd

w
id

th

Optimize Methods

(a) AMD HD5850 GPU

2.216

16.369

71.857
77.817

93.324

0

10

20

30

40

50

60

70

80

90

100

Naïve ECC Coalesced Vectorize Alignment

M
em

or
y

Ba
nd

w
id

th

Optimize Methods

(b) NVIDIA C2050 GPU

Fig. 6. Performance changes when satisfies optimization methods one by one

As shown in Fig. 6, eliminating channel conflict and using FastPath are the
first two optimization methods for AMD GPU. However, for NVIDIA GPU, the
first two optimize methods are eliminating channel conflict and coalesced mem-
ory access pattern. We can also see that, optimization on NVIDIA GPU is a little
easier than AMD GPU. Using GPURoofline, the utilization of peak bandwidth
achieves 65.4% and 64.8% on AMD GPU and NVIDIA GPU respectively.

4.2 Laplace Transform

According to Laplace Transform algorithm, the transform of each element needs
to perform 9 add and multiply operations. In addition, it requires 9 iterations and
10 address calculations. Each calculation contains two floating-point operations.
So the Compute Intensity is 47/36=1.3. However, with this Compute Intensity,
we can’t obtain a satisfied performance. So we consider to use data locality. If the
work-group size is 16*16, calculating these 256 elements need to transfer17*17
= 289 elements from off-chip memory to local memory. Furthermore, we put the
Laplacian matrix into the constant memory, further reduces the dependence of
the off-chip memory bandwidth. After data locality, the compute intensity of
this kernel reaches to 3.2. Just as shown in Fig 5.

According to GPURoofline model, optimization works should focus on both
memory and computation optimization. Fig.7 shows performance results when
satisfies desired optimization methods one by one. The performance of this kernel
is on a 1024 * 1024 matrix of float and uses execution time as the performance
metric.

As shown in Fig. 7, data locality is a common optimization method for
memory-bound kernels. Using vector instruction to exploit ILP can improve
performance significantly for both NVIDIA and AMD GPU, however, when the
vector length exceed a value, 8 for AMD GPU and 4 for NVIDIA GPU re-
spectively, the performance decreases. This is because vector instructions need
more register files, limits the number of threads that can be executed simultane-
ously. We can also see that, exploiting ILP is more efficient for AMD GPU than
NVIDIA GPU. Reduce dynamic instructions through eliminating divergent and

GPURoofline: A Model for Guiding Performance Optimizations on GPUs 929

31.25805
30.17836

23.27605

7.86626

3.72524 3.55939 4.05269
2.56236 2.11236

0

5

10

15

20

25

30

35

Ex
ec

ut
io

n
Ti

m
e

Optimize Methods

(a) AMD HD5850 GPU

15.2075
14.26536

7.38626

5.86295

3.388828
2.5951

3.91296
4.62605

1.93163

0

2

4

6

8

10

12

14

16

Ex
ec

ut
io

n
Ti

m
e

Optimize Methods

(b) NVIDIA C2050 GPU

Fig. 7. Performance changes when satisfies optimization methods one by one

loop unrolling, are also efficient methods. Using GpuRoofline, the performance
improved by 14.1 and 7.8 times on AMD GPU and NVIDIA GPU respectively.

4.3 Integral

According to our implementation of integral algorithm, the Compute Intensity of
this kernel is 4.2 after using locality as we have to execute so many memory ad-
dress calculation and iterations.According to GPURoofline model, optimization
works should focus on both memory and computation optimization.

In order to improve the efficiency of instructions, we use a more work-efficient
parallel scan algorithm that performs O(n) operations instead of a näıve version
that performs O(nlog2n) operations. We also optimize this kernel a step further
under the guidance of GPURoofline. Fig.8 shows the performance results when
satisfies desired optimization methods one by one. The performance of this kernel
is on a 1024 * 1024 matrix of float and uses execution time as performance metric.

As shown in Fig.8, data locality optimization is the most important for
memory-bound kernels. Work-effective scan algorithm can improve performance
by improving the utilization of thread. As we discussed previously, because of
AMD GPU’s vector architecture, exploiting ILP can improve performance more

35.3685

12.2749

7.8246
6.1926 5.3968 4.8763 4.2858

0

5

10

15

20

25

30

35

40

Naïve Locality Work-effective Float2 Float4 Unloop INS

Ex
ec

ut
io

n
Ti

m
e

Optimize Methods

(a) AMD HD5850 GPU

28.5968

11.5892

6.9037
5.2873 4.6302

4.0369

0

5

10

15

20

25

30

35

Naïve Locality Work-effective Float2 Unloop INS

Ex
ec

ut
e

Ti
m

e

Optimize Method

(b) NVIDIA C2050 GPU

Fig. 8. Performance changes when satisfies optimization methods one by one

930 H. Jia et al.

than NVIDIA GPU. Using GpuRoofline, the performance improved by 14.8 and
8.1 times on AMD GPU and NVIDIA GPU respectively.

4.4 FaceDetection

In this section, we optimize Viola-jones based face detection algorithm on GPUs
according to GPURoofline. In this paper, our face detection kernel is the kernel
that using cascade classifier to detect face. As shown in Fig.5, face detection
kernel has high Compute Intensity, to 14.2 according to our implementation.
According to GPURoofline, optimization work should focus on improving com-
putation performance.

Different from algorithms discussed above, the face detection kernel is an
irregular-parallel algorithm. There are serious load imbalance among threads.
So we should use work-redistribution to address this problem. We use speedup
to the näıve implementation as performance metric. Fig.9 shows the performance
results when satisfies desired optimization methods one by one.

1.00

1.35
1.54

2.90

3.48 3.52
3.74

0

0.5

1

1.5

2

2.5

3

3.5

4

Naïve Locality ILP Global_queue Local_queue Unloop INS

Sp
ee

du
p

Optimize methods

(a) AMD HD5850 GPU

1.00
1.21

1.31

2.86

3.60

3.87

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Naïve Locality RDIS Global_queue Local_queue INS

Sp
ee

du
p

Optimize Methods

(b) NVIDIA C2050 GPU

Fig. 9. Performance changes when satisfies optimization methods one by one

As shown in Fig.9, Work-redistribution is the most effective optimize method
for this kernel. In additional, using data locality to increase Compute Intensity
and selecting instructions with higher throughput such as mad24 can also im-
prove performance. Because face detection kernel is hard to vectorize, increasing
ILP, mainly through reordering the code, there is no effect for NVIDIA GPU, al-
though there is little effect for AMD GPU.Using GpuRoofline, the performance
improved by 3.74 and 3.87 times on AMD GPU and NVIDIA GPU respectively.

5 Conclusion

We have presented GPURoofline, an empirical model for guiding performance
optimizations on both NVIDIA and AMD GPU platforms. The goal is to help
non-expert programmers with limited knowledge of GPU architectures imple-
ment high performance GPU kernels. Programmers can identify performance

GPURoofline: A Model for Guiding Performance Optimizations on GPUs 931

bottleneck and select appropriate optimization methods. Furthermore, we have
observed that for best performance, optimization strategies are closely related to
hardware architectures. Although the model is not designed to achieve perfect
accuracy, it captures primary performance characteristics of GPUs.

We also demonstrated the usage of the model through four kernels with dif-
ferent compute densities. Experimental results show that under the guidance of
the GPURoofline, performance of those kernels achieves 3.74∼14.8 times speedup
compared to their näıve implementations on both NVIDIA and AMD GPU plat-
forms.

Acknowledgements. We would like to thank reviewers for their helpful com-
ments to our work. This work is supported by the National High-tech R&D Pro-
gram of China (No. 2012AA 010902, No. 2012AA010903), the National Natural
Science Foundation of China (No. 61133005, No.61100066) and ISCAS-AMD
Fusion Software Center. Dr. Guoping Long is supported by National Natural
Science Foundation of China (Grant No. 61100072).

References

1. Zhang, Y., Owens, J.D.: A quantitative performance analysis model for GPU archi-
tectures. In:HighPerformance Computer Architecture, pp. 382–393 (February 2011)

2. Baghsorkhi, S., Delahaye, M., Patel, S.J., Gropp, W.D., Hwu, W.-M.W.: An Adap-
tive Performance Modeling Tool for GPU Architectures. In: Principles and Practice
of Parallel Programming, pp. 105–114 (January 2010)

3. Daga, M., Scogland, T.R.W., Feng, W-C.: Architecture-Aware Optimization on
a 1600-core Graphics Processor. Technical Report TR-11-08, Computer Science,
Virginia Tech.

4. Kothapalli, K., Mukherjee, R., Rehman, M.S., Patidar, S., Narayanan, P.J., Sri-
nathan, K.: A performance prediction model for the CUDA GPGPU platform. In:
International Conference on High Performance Computing, pp. 463–472 (2009)

5. Ryoo, S., Rodrigues, C.I., Stone, S.S., Baghsorkhi, S.S., Ueng, S., Stratton, J.A.:
Program Optimization Space Pruning for a Multithreaded GPU. In: International
Symposium on Code Generation and Optimization, pp. 195–204 (April 2008)

6. Hong, S., Kim, H.: An analytical model for a gpu architecture with memory-level
and thread-level parallelism awareness. In: International Conference on Computer
Architecture, pp. 152–163 (2009)

7. Jang, B., Do, S., Pien, H.: Architecture-Aware Optimization Targeting Multi-
threaded Stream Computing. In: Second Workshop on General-Purpose on Graph-
ics Processing Units (2009)

8. Meng, J., Morozov, V.A., Kumaran, K., Vishwanath, V., Uram, T.D.: GROPHECY:
GPU Performance Projection from CPU Code Skeletons. In: Conference on High
Performance Computing (2011)

9. Bauer, M., Cook, H., Khailany, B.: CudaDMA: optimizing GPU memory band-
width via warp specialization. In: Conference on High Performance Comput-
ing(Supercomputing) (2011)

10. Govindaraju, N.K., Larsen, S., Gray, J., Manocha, D.: A Memory Model for Sci-
entific Algorithms on Graphics Processors. In: ACM/IEEE Conference on Super-
computing (November 2006)

932 H. Jia et al.

11. Williams, S., Waterman, A., Patterson, D.: Roofline: An Insightful Visual Perfor-
mance Model for Multicore Architectures. Communications of the ACM, 65–76
(2009)

12. Lazowska, E.D., Zahorjan, J., Scott Graham, G., Sevcik, K.C.: Quantitative Sys-
tem Performance: Computer System Analysis using Queueing Network Models.
Prentice-Hall. Inc., Upper Saddle River (1984)

13. Fatahalian, K., Sugerman, J., Hanrahan, P.: Understanding the Efficiency of GPU
Algorithms for Matrix-matrix Multiplication. In: Conference on Graphics Hard-
ware, pp. 133–137 (August 2004)

14. Taylor, R., Li, X.: A Micro-benchmark Suite for AMD GPUs. In: International
Conference on Parallel Processing Workshops, pp. 387–396 (2010)

15. Liu, W., Muller-Wittig, W., Schmidt, B.: Performance Predictions for General-
Purpose Computation on GPUs. In: International Conference on Parallel Process-
ing, pp. 50–57 (September 2007)

16. Viola, P., Jones, M.: Robust Real-time object Detection. In: Second International
Workshop on Statistical and Computation, pp (July 2011)

Building a Collision for 75-Round Reduced
SHA-1 Using GPU Clusters

Andrew V. Adinetz1,2 and Evgeny A. Grechnikov3

1 Lomonosov Moscow State University, Research Computing Center
adinetz@gmail.com

2 Joint Institute for Nuclear Research
3 Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

grechnik@mccme.ru

Abstract. SHA-1 is one of the most widely used cryptographic hash
functions. An important property of all cryptographic hash functions is
collision resistance, that is, infeasibility of finding two different input
messages such that they have the same hash values. Our work improves
on differential attacks on SHA-1 and its reduced variants. In this work we
describe porting collision search using method of characteristics to a GPU
cluster. Method of characteristics employs backtracking search, which
leads to low GPU performance due to branch divergence if implemented
naively. Using a number of optimizations, we reduce branch divergence
and achieve GPU usage efficiency of 50%, which gives 39× acceleration
over a single CPU core. With the help of our application running on a
512-GPU cluster, we were able to find a collision for a version of SHA-1
reduced to 75 rounds, which is currently (February 2012) the world’s
best result in terms of number of rounds for SHA-1.

1 Introduction

A cryptographic hash function is a function which maps messages (bit-strings of
arbitrary length) into hash values, or hashes (bit strings of fixed length). Such
functions are widely used in modern cryptography and information security. A
hash serves as a fingerprint for a message. An important property for practi-
cal applications of cryptographic hash functions is computational infeasibility of
finding a message with a given hash value. A collision is a pair of different mes-
sages which give the same hash value. Due to limited size of hash value, collisions
exist for any hash function; however, they are hard to find. If a collision has been
built, then the cryptographic hash function is considered to be compromised, and
is no longer suitable for practical applications. Collision search is therefore an
important part of cryptoanalysis of hash functions.

Hash function called SHA-1 (Secure Hash Algorithm 1) maps messages of
any length (maximum of 264 − 1 specified by the standard) into 160-bit hashes.
It was published by NIST (National Institute of Standards and Technology)
in 1995 and is now widely used in different government and industrial security
standards, such as electronic digital signature, user authentication, key exchange

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 933–944, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

934 A.V. Adinetz and E.A. Grechnikov

and generation of pseudo-random sequences. SHA-1 is available in almost all
commercial security systems.

Attempts to compromise SHA-1 have been performed for a number of years.
They advanced far enough, though as of February 2012, no full SHA-1 collision
has been built. Currently, NIST is holding the competition for a new crypto-
graphic hash function to replace SHA-1. The new function is expected to be
announced in 2012.

As a rule, cryptoanalytic problems are easily parallelized and scale well to
any available computational resources. It seems therefore logical to solve them
using GPUs. And though GPUs are quite widely used to solve problems such as
password cracking [1], so far we haven’t found any working application of GPUs
to collision search.

The contribution of this paper can be summarized as follows:

– We have ported collision search using method of characteristics for SHA-1
to GPUs, and after performing optimizations we proposed, obtained 39×
acceleration compared to a single CPU core

– With our application running on a GPU cluster, we have found a collision for
reduced 75-round SHA-1, which is, as of February 2012, world’s best result
in terms of number of rounds for SHA-1.

This paper is organized as follows. We describe SHA-1 hash function and differ-
ential attacks in section 2. Section 3 describes the characteristic search algorithm.
GPU implementation of message search are described in section 4. We describe
computational experiments in section 5 and conclude in section 6.

2 SHA-1 and Differential Attacks

Notational conventions used in this paper are presented in Table 1. SHA-1
hash function [2] works as follows. First, the message is padded with bits,
including message length, and split into 512-bit message blocks M1, . . . , Mk.
The compression function g(M, H) is then applied sequentially to compute
Hi = Hi−1 + g(Mi, Hi−1). H0 is the initial value provided by the standard,

Table 1. Notational Conventions Used in This Paper

Notation Description
X 32-bit unsigned integer related to 1st message
X∗ 32-unsigned integer related to 2nd message
X2 a pair of 32-bit unsigned integers (X, X∗)

X ⊕ Y exclusive OR (XOR)
X + Y 232 wrap-around addition
[X]i i-th bit of X (i = 0 — least significant bit)

X ≪ i left rotation by i bits
X ≫ i right rotation by i bits

Building a Collision for 75-Round Reduced SHA-1 Using GPU Clusters 935

and Hk is the hash value of the message. For building a collision, it is sufficient
to provide two messages (M1, . . . , Mk) and (M∗

1 , . . . , M∗
k) of equal length so that

Hk = H∗
k .

The compression function consists of 80 rounds and maps a 160-bit input vec-
tor H and 512-bit message block M into the new 160-bit value. Input vectors con-
sist of 5 32-bit unsigned integers H = (A0, B0, C0, D0, E0), M = (M0, . . . , M15),
g(M, H) = (A80, B80, C80, D80, E80). Computing the compression function con-
sists of the message expansion and the state update transformation. 16-uint mes-
sagge Mi is expanded to 80 variables Wi as described by (1)

Wi = Mi 0 � i < 16
Wi = (Wi−3 ⊕Wi−8 ⊕Wi−14 ⊕Wi−16) ≪ 1 i � 16 (1)

Ai Bi Ci Di Ei

� � ≪ 5
�

�

�

�

�

�
�
�
��

�

� �

≫ 2
�

�

�

�

�
�
�
��

� �

�
�
�
��

��

�
�
�
��

�
+

�

�

�

�

�
+

�

�

�

�

�Ki

�
+

�

�

�

�
fi

�

�

�

�

�

�
+

�

�

�

�

�Wi
����������������	

Ai+1 Bi+1 Ci+1 Di+1 Ei+1

Fig. 1. One Round of SHA-1’s Compression Function

One round of the state update transformation is described in Fig. 1. Constants
Ki and functions fi are defined by (2)

Ki = 0x5A827999, fi(b, c, d) = (b ∧ c) ∨ (b ∧ d), 0 < i ≤ 20
Ki = 0x6ED9EBA1, fi(b, c, d) = b⊕ c⊕ d, 20 < i ≤ 40
Ki = 0x8F1BBCDC, fi(b, c, d) = (b ∧ c) ∨ (b ∧ d) ∨ (c ∧ d), 40 < i ≤ 60
Ki = 0xCA62C1D6, fi(b, c, d) = b⊕ c⊕ d, 60 < i ≤ 80

(2)

It’s obvious that Bi = Ai−1, Ci = Ai−2 ≫ 2, Di = Ai−3 ≫ 2, Ei = Ai−4 ≫
2, so having only Ai is enough. This is the notation used for the rest of the
paper. A−4, . . . , A0 give initial values while A76, . . . , A80 can be used to compute
the hash value. As building a collision for full 80 rounds requires very large
computational resources which are not currently available, in our case we reduce
the compression function to 75 rounds.

936 A.V. Adinetz and E.A. Grechnikov

Differential attacks have been developed for some time. The main stages of
their development (including attacks on other hash functions) are described in [4]
(MD4), [7] (35-step SHA-0), [8] (full SHA-0), [5] (MD5), [6] (58-step SHA-1), [9]
(64-step SHA-1), [10] (70-step SHA-1). We improve on the method described in
works on 64 and 70-step SHA-1.

The key idea of differential attacks is to restrict the search to message pairs
with a fixed difference modulo 2 δMi = Mi⊕M∗

i , hence the name. It turns out to
be convenient to fix some bits also in Mi, Ai, and δAi. Precisely, a characteristic
is a set of (80 + 85) · 32 elementary conditions on bit pairs ([Wi]j , [W ∗

i]j) and
([Ai]j , [A∗

i]j), each allowing only certain combinations of bit pair values. There
are 222

= 16 possible bit-pair conditions, the six actually used for collision search
are described in Table 2.

Table 2. Bit Conditions Used in Characteristics

∇i (0, 0) (1, 0) (0, 1) (1, 1)

- � − − �
x − � � −
0 � − − −
u − � − −
n − − � −
1 − − − �

Let ∇X be the set of pairs (X, X∗) satisfying all 32 bit-pair conditions for a
variable. We want to perform exhaustive search over a given characteristic to find
a collision. For each i, we search through values of M2

i allowed by chararacteristic,
compute A2

i+1 and check it against characteristic for state. If a suitable value
is found, the search proceeds to round i + 1; if not, it backtracks to i − 1.
After finding M2

16, the message is fully defined and further steps perform only
checking. If the input freedom for states A2

i+1 is less than for messages M2
i , we

search through the values of state instead, as there is one-to-one correspondence
between message and state once values for previous rounds A2

i are fixed. The
search continues either until a collision is found, or the search space is exhausted.

We will now estimate complexity of the search, assuming that it is successful.
A set (W 2

0 , . . . , W 2
i) is consistent if it can be extended to a full set of expanded

messages satisfying the characteristic. Input freedom for the message F̃W (i) at
step i is the number of consistent sets (W0, . . . , Wi) which extend the consistent
set (W0, . . . , Wi−1). It is obvious that F̃W (i) = 1 when i � 16. When conditions
for W16, . . . , W79 are trivial, for i < 16 we have F̃W (i) = |∇Wi|. In general case,
conditions for W16, . . . , W79 impose linear equations on bits of [Mi]j . When there
are m independent equations, F̃W (i) = |∇Wi|

2m . Input freedom for the state is
F̃A(i) = |∇A2

i+1|. When F̃A(i) � F̃W (i), we search through M2
i and compute

A2
i+1. Otherwise, we search through A2

i+1 and compute M2
i . In the first case we

assume FW (i) = F̃W (i), and in the second FW (i) = F̃A(i)
2m . Thus defined, FW (i)

Building a Collision for 75-Round Reduced SHA-1 Using GPU Clusters 937

is the number of children nodes of the search tree at step i when implicit linear
equations are taken into account.

For SHA-1, Ai+1 is computed at each step based on Ai−j , 0 � j � 4, and
Wi. For our estimation, we assume that Ai−j , 0 � j � 4, and Wi are simply
independent random variables (irrespective to hash function) which satisfy the
characteristic.

The uncontrolled probability Pu(i) at step i is the probability that the result
of step i satisfies the characteristic if all state and extended message values
at previous steps satisfy the characteristic. That is, for F̃A(i) � F̃W (i) and
F̃A(i) < F̃W (i) by it is defined by (3) and (4), respectively.

Pu(i) := Pr(A2
i+1 ∈ ∇Ai+1|A2

i−j ∈ ∇Ai−j , 0 � j � 4, W 2
i ∈ ∇Wi) (3)

Pu(i) := Pr(W 2
i ∈ ∇Wi|A2

i−j ∈ ∇Ai−j , 0 � j � 4, A2
i+1 ∈ ∇Ai+1) (4)

The controlled probability Pc(i) at step i is the probability that at least one pair
W 2

i satisfying the characteristic exists, such that the result of step i satisfies the
characteristic on the condition that state values at all previous steps satisfy the
characteristic. Formally (independent of whether A or W is enumerated) it is
defiend by (5)

Pc(i) := Pr(∃W 2
i ∈ ∇Wi : A2

i+1 ∈ ∇Ai+1|A2
i−j ∈ ∇Ai−j , 0 � j � 4). (5)

We now estimate the complexity of a successful search. At step i the number of
nodes NS(i) that must be traversed is, on average:

– NS(80) = 1 (we need just a single collision),
– NS(i) = max

{
NS(i+1)

FW (i)Pu(i) ,
1

Pc(i)

}
(on the one hand, a search tree node has

on average FW (i) children, among which the fraction of Pu(i) give the next
level node; on the other hand, with probability Pc(i) the node won’t give
any next level nodes).

We call the value defined by (6)

80∑
i=0

NS(i), (6)

which depends on the characteristic only, the work factor of the characteristic.
The less the work factor is, the better the characteristic is.

3 Finding a Characteristic

Finding a characteristic consists of three stages. At the first stage, a linear char-
acteristic is searched for, which consists only of -x conditions; it fixes differences,
but not bits. To do that, we construct a linearization of the hash functions by

938 A.V. Adinetz and E.A. Grechnikov

replacing non-linear operations with their linear “approximations”. The goal of
this stage is to minimize the number of x in the characteristic, which lead to
differences between the function and linearization. A search for a linear charac-
teristic with small x conditions is expressed as searching for small-weight vector
in some linear code, which is a known problem from the coding theory.

We construct a 2-block collision. The characteristic for each block is different,
but is constructed based on the same linear characteristic. Resulting hash is
given by H2 = H1 + g(M2, H1) = H0 + g(M1, H0) + g(M2, H1), H∗

2 = H0 +
g(M∗

1 , H0) + g(M∗
2 , H∗

1). Linear characteristic gives g(M1, H0)⊕ g(M∗
1 , H0) and

g(M2, H1)⊕g(M∗
2 , H∗

1); as it is the same for both blocks, we can make differences
of first and second block values differ only in sign by fixing the bits that differ.
This leads to H2 = H∗

2 , that is, a collision.
The second stage begins with discarding conditions for Ai at first 12 steps and

replacing them with conditions for A2
−4, . . . , A

2
0. The initial condition is H0 for

the 1st block, and the result of the first block for the 2nd block. Therefore, we can
construct 2nd block characteristic only after finding the 1st block of the collision.
We also replace xx condition pairs for successive bits with -x, if the difference
can be satisfied due to the carry. This is not always true because rotations are
involved. At the second stage we need to find some “path” (a consistent set of
conditions) from initial conditions to the linear characteristic. To do this, we
choose random positions in A2

i which have no conditions, add - condition and
find which additional conditions are satisfied based on ones already enforced.
Also, when x-type conditons appear in A2

i it is useful to fix values of differing
bits. If we find a contradiction, we backtrack to the last fixing x and choose an
alternative fixing. The second stage finishes when all conditions have the form
-xun01.

The third stage iteratively improves the work factor of the characteristic. To
do this, we search through possible tightenings of conditions, propagate the new
conditions, i.e. look at the additional conditions which follow from the new set
of conditions, and compute the work factor for the new characteristic. At the
end of the search the characteristic with the smallest work factor is chosen.

We’ll note several important aspects of characteristic search here:

– FW , Pu, and Pc are computed sequentially, from least to most significant
bits by searching through elementary conditions and possible carries.

– The propagation of conditions is calculated in two passes. First, possible
carries are evaluated from least to most significant bits, and then new con-
ditions are evaluated taking carries into account. This is fast, but sometimes
doesn’t find all possible conditions (due to an interference between consecu-
tive steps). To propagate further, we loop through bit positions, fix possible
bit values and check if the fast procedure finds any contradictions. In the
second stage we check only those bits who are close to some bit that was
changed. In the third stage we check all bits.

– Coherency, i.e. similarity of control flow and memory accesses in neighbour-
ing threads, in important for efficient GPU execution. Coherency can be
improved by concentrating strong conditions in the middle of the initial

Building a Collision for 75-Round Reduced SHA-1 Using GPU Clusters 939

rounds of the characteristic. This is achieved by choosing these positions
for - conditions with less probability at the second stage. This is the first
GPU-related optimization, and it improves GPU search efficiency by 80%.

4 Message Search Implementation on GPU

Searching for a message which satisfies the characteristic is the most computa-
tionally intensive part of collision search. There is a number of points which do
not depend on hardware:

– Characteristics always consist of conditions of type -xun01. Therefore, con-
dition set for each 32-bit variable can be expressed as a pair of equations
X ⊕X ′ = a, X ∧ b = c, where a, b, c are 32-bit values which depend only on
characteristic.

– The following procedure is an efficient way to enumerate the set {X : X∧b =
c}. The first element is X := c, every next element is given by the equation
X := (((X ∨b)+1)∧b)+c, the enumeration is over when this equation gives
X = c due to overflow.

– As Ai at two last steps are not used in computing fi, it is sufficient to
check on those steps that X −X ′ = a. Moreover, for the 1st collision block
conditions at two last steps can simply be ignored, as any difference due to
them could be compensated by the 2nd block without increasing the number
of conditions.

– Linear equations on Mi, appearing due to conditions on Wk for k ≥ 16,
can either express a bit [Mi]j through bits of previous message words, or
give an equation involving values of 2 or more bits of Mi. In the first case,
a, b, and c depend also on previous messages, and must be recomputed for
each round. In the second case, these equations can be removed by adding
some artificial conditions (e.g. imposing an additional restriction [Mi]j = 0),
without significantly changing the work factor.

The search is naturally divided into generation phase, which searches through
message pairs, and check phase, which checks the rest of the characteristic for
the pair of messages. Generation phase is a back-tracking search, and check is
simply a function which is called at the last round of generation. Generation
can in turn be divided into host part and device or GPU part. On the host, the
search tree is expanded to a certain host depth to generate enough search stacks
to make use of GPU parallelism. Host depth is specified individually based on
the characteristic and available computational resources. Too little depth leads
to insufficient parallelism, while with too large depth, search stacks won’t fit into
GPU memory. To utilize a single GPU efficiently, about 105 search stacks are
needed.

During GPU part, the search is performed in parallel on a large number of
GPUs. Stacks for which the search is finished are removed, and no new stacks are
generated. The main GPU kernel implements back-tracking search and message
check. In this kernel, each GPU thread processes only a single search stack for

940 A.V. Adinetz and E.A. Grechnikov

a fixed number of search iterations. The main kernel also collects statistics on
the number of traversed nodes, check rounds and maximum depth reached by
the search. Between kernel calls, the depth is checked and the defunct stacks are
removed from the array of search stacks.

The computation is distributed among cluster nodes using MPI. Each MPI
process uses only a single GPU. Search stacks are distributed between nodes
in block-cyclic way. During host part, each MPI process generates all search
stacks and discards those belonging to other processes. There is a global barrier
at the end of host part, but after that, all MPI processes run independently
and asynchronously. This means that if search is finished on some stacks and
some processes will have less search stacks than the others, there will be no load
imbalance; just some of the stacks will be searched through quicker. The only
communication involved is sending statistics to statistics collection thread of
master process. The master process also spawns one more thread, which prints
out aggregated statistics at fixed time intervals.

The application is implemented using Nemerle, an extensible .NET language,
and NUDA (Nemerle Unified Device Architecture), a system of Nemerle exten-
sions [11] for programming GPUs. NUDA was chosen due to its free availability
and support for high-level GPU programming, including automatic host-GPU
data synchronization and generation of kernels. Internally, OpenCL is used to
interact with GPUs and as a target for GPU code generation. mono is used to
run .NET applications on Linux, and MPI .NET provides .NET bindings for
MPI.

We first implemented GPU back-tracking search as a single loop, with branches
inside the body handling specific conditions. There were 2 such conditions: round
switch and message check. A round switch can arise when a successful message
word is found, when all words are exhausted or when the kernel starts. In any
case, large number of additional precomputing is required. Message check was
implemented as a separate function, with loop on rounds fully unrolled using
inline annotation available in NUDA.

The performane of our initial implementation, however, was unsatisfactory.
While the application scaled well due to little communication, computational effi-
ciency was only 15% on some characteristics. We define computational efficiency
as the ratio of really executed integer operations to peak GPU performance in
terms of integer operations. Low efficiency was due to low coherency between
threads in a single warp, so we concentrated on improving coherency. The first
optimization, described in section 3, was modifying search algorithm, which gave
1.8× improvement of efficiency.

The second optimization was sorting search stacks after each GPU pass. We
quickly found out that stable sort was better than unstable (quicksort) in main-
taining coherency. We also tried different keys, including round number, search
value, round change direction (delta), number of search steps to nearest round
change (njd) and their combinations. Additionally, we modified the search loop
to allow exiting the kernel only on round change; we call this snapping. Results
of our experiments for characteristic for 2nd block for 72-round collision (72-2)

Building a Collision for 75-Round Reduced SHA-1 Using GPU Clusters 941

are presented in Fig. 2. We have finally chosen stable sort by search value and
snapping, which gave 1.87× efficiency improvement. This was implemented us-
ing GPU radix sorting [12], and experiments have shown that sorting takes less
than 1% of total computing time.

no sorting
no sorting, snap
stable, njd, snap

quick, round
quick, round + delta

stable, round
quick, round, snap

quick, round + njd, snap
quick, round + value, snap

stable, round + njd
stable, round, snap

stable, round + delta, snap
stable, round + njd, snap

stable, round + delta + njd, snap
stable, round + value, snap

stable, value, snap
0 0,50 1,00 1,50 2,00

Improvement to baseline, times x

So
rti

ng
 a

lg
or

ith
m

 a
nd

 c
rit

er
ia

Fig. 2. Comparison of different sorting and snapping approaches

The third optimization was replacing one-loop implementation of backtracking
search with a nest of 3 loops. Innermost loop iterates over search values of
a single round until either all are exhausted, or a successful message word is
found. The second loop works only for 16th round, and iterates over messages
that must be checked. Our experiments have shown that more than 75% is
spent is message check for some characteristics, so doing that in a separate loop
improves performance. The outermost loop switches between rounds, and also
checks thread termination condition. As search can be exited from outermost
loop only, this ensures automatic snapping. On 75-1 characteristic, triple loop
gave 1.25× improvement compared to stable sort and snapping only. Together,
triple loop and stable sort give more than 2-fold performance improvement.

Other optimizations included using constant and shared on-chip GPU mem-
ory. Quite unexpectedly, using on-chip shared memory gave only 2.5% perfor-
mance improvement (1.025×). This indicates that previous optimizations did a
good job of improving memory access coherency, so that most memory accesses
hit the GPU cache available on Fermi GPUs. Using constant memory gave ad-
ditional improvement of about 9%. Effects of individual optimizations and all
of them combined are presented in Table 3. The final version uses all of the
optimizations described above, and has efficiency of 63% on 75-1 in the short
run. For the long run, efficiency is lower, but still remains above 50%, which we
consider sufficient for our purposes.

942 A.V. Adinetz and E.A. Grechnikov

Table 3. Effects of Different Optimizations on Performance of GPU Backtracking
Search

Optimization Effects
Characteristic search modification 1.8×
Stable sort by value + snap 1.87×
Triple loop 1.25×
Other 1.12×
Total 4.2×

We expected our application to run for a long time, so checkpoints were used.
And as the number of available GPUs was expected to fluctuate significantly,
our checkpointing scheme makes it possible to resume from a checkpoint with
number of processes different from what was used to save it. As processes are
independent, each process just writes its search stacks to a file independently at
fixed time intervals, every hour by default. Cooperation is only needed to resume
from a checkpoint.

5 Results

Final computation of 1st and 2nd collision blocks were performed at GPU par-
tition of “Lomonosov” supercomputer installed in Research Computing Center,
Moscow State University (RCC MSU). Each GPU node has 2 NVidia Fermi
X2070 GPUs with 6 GB RAM, of which only 5.25 GB is available because of
ECC. As the GPU partition was still in beta stage, not all GPU nodes were
available, and the number of available nodes fluctuated. Characteristics used to
search for messages are presented in [3].

The search factor for the 1st block was 258. 264 GPUs were used, and the
computation took 11000 seconds. 254.06 nodes were actually traversed. Here,
“node” is either a search step or message check round; the latter requires 2.5×
more computations than the former. About 40% of nodes were check rounds.

The search factor for the 2nd block was 263.01 nodes. The computation started
with 320 GPUs and finished with 512 GPUs, with 455 GPUs being used on av-
erage. It took 1904252 seconds, or 22 days and 45 minutes. 261.92 nodes were
actually traversed, about 58.8% of them were check rounds. We achieved 52%
efficiency (of GPU peak performance). The resources required were really enor-
mous: were all 1554 GPUs available, the computation would still take about a
week.

The actual number of nodes traversed were smaller than estimates. It was 16
times smaller for the 1st block and 2 times smaller for the 2nd block. Were it
not the case, the entire collision search would have taken 1.5 month.

We also compared the GPU code with our previous CPU implementation [13].
A single Intel Nehalem CPU core traverses about 227.85 search nodes per second.
A single check round requires 2.5× more operations than a search node; that
is, our 22-day run is equivalent to 262.83 search nodes, or 233.14 search nodes

Building a Collision for 75-Round Reduced SHA-1 Using GPU Clusters 943

traversed per second per GPU. Based on those numbers, a single GPU is 39×
faster than a single CPU core, or 9.75× faster than a 4-core CPU, i.e. a single
CPU socket. The number varies slightly from one characteristic to the other,
but the order remains the same. This means that our computation would have
taken the same time if done on 17745 CPU cores, which is not much larger than
the number of cores used for the previous computation. Obtaining this many
“Lomonosov” ’s cores for 3 weeks would be problematic. The GPU partition,
however, wasn’t oversubscribed, so we could easily use all the GPUs available.

The 75-round reduced SHA-1 collision we built is presented in Table 4.

Table 4. 75-Round Reduced SHA-1 Collision

i Message 1, Block 1 Message 1, Block 2
1–4 F01EE8EE BDDFF313 B2F59EE4 BB37F2BB F072633F 0D32226A DFF74459 98507743
5–8 2F472A36 1C052F6A 96403EF0 F144298B EEFE63DD FE10D5C5 AFE33902 EF74984E
9–12 DAF5519C 7A90DD71 2BF3718E A7E3DE6D 350272F7 DB382ABC 155B0414 B800179D
13–16 EFFA975E 9B00AA95 6056E3EE 2BA4483A 18ECD4BC 15497213 1505284C 60C4F869

i Message 2, Block 1 Message 2, Block 2
1–4 001EE884 3DDFF353 22F59E94 0B37F2E8 00726355 8D32222A 4FF74429 28507710
5–8 1F472A3E 1C052F29 46403E82 4144299B DEFE63D5 FE10D586 7FE33970 5F74985E
9–12 2AF551FE BA90DD33 2BF371BE 47E3DE2F C5027295 1B382AFE 155B0424 580017DF
13–16 CFFA973E 7B00AAD4 4056E3BE EBA4487B 38ECD4DC F5497252 3505281C A0C4F828

i Colliding Hash Values
1–5 3DF7F21E 130079F3 C2E6EFFF FD9C4141 9AA8723A

6 Conclusion

We have proposed a GPU implementation of SHA-1 collision search using the
method of characteristics. Based on our previous work and with GPU optimiza-
tions proposed, we were able to achieve 50% computational efficiency and 39×
acceleration compared to a single CPU core. Using our implementation on a
cluster of GPUs, we have found a collision for 75-round reduced SHA-1, which is
world’s best result in terms of number of rounds for SHA-1 as of February 2012.

However, as search complexity increases 8×with each additional round, search-
ing for collisions with larger number of rounds would require modifications to
the method of characteristics. While we are working in this direction, it is too
early to talk about results.

Acknowledgements. We are thankful to Research Computing Center of
Lomonosov Moscow State University for providing us with access to “Lomonosov”
supercomputer. We are also thankful to “Lomonosov” support team and person-
ally Anton Korzh for promptly resolving issues which appeared our using of the
cluster. This work was supported by T-Platforms, Russian Fund for Basic Re-
search (RFBR) grant 11-07-93960-SAR-a and CUDA Center of Excellence at
Moscow State University.

944 A.V. Adinetz and E.A. Grechnikov

References

1. Teat, C., Peltsverger, S.: The security of cryptographic hashes. In: Proceedings of
the 49th Annual Southeast Regional Conference, pp. 103–108. ACM (2011)

2. National Institute of Standards and Technology (NIST). FIPS-180-2: Secure Hash
Standard (August 2002), http://www.itl.nist.gov/fipspubs/

3. Grechnikov, E.A., Adinetz, A.V.: Collision for 75-step SHA-1: Intensive Paralleliza-
tion with GPU // Cryptology ePrint Archive: Report 2011/641,
http://eprint.iacr.org/2011/641

4. Dobbertin, H.: Cryptanalysis of MD4. In: Gollmann, D. (ed.) FSE 1996. LNCS,
vol. 1039, pp. 53–69. Springer, Heidelberg (1996)

5. Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer, R.
(ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005)

6. Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)

7. Chabaud, F., Joux, A.: Differential Collisions in SHA-0. In: Krawczyk, H. (ed.)
CRYPTO 1998. LNCS, vol. 1462, pp. 56–71. Springer, Heidelberg (1998)

8. Biham, E., Chen, R., Joux, A., Carribault, P., Lemuet, C., Jalby, W.: Collisions
of SHA-0 and Reduced SHA-1. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 36–57. Springer, Heidelberg (2005)

9. De Cannière, C., Rechberger, C.: Finding SHA-1 Characteristics: General Results
and Applications. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 1–20. Springer, Heidelberg (2006)

10. De Cannière, C., Mendel, F., Rechberger, C.: Collisions for 70-Step SHA-1: On the
Full Cost of Collision Search. In: Adams, C., Miri, A., Wiener, M. (eds.) SAC 2007.
LNCS, vol. 4876, pp. 56–73. Springer, Heidelberg (2007)

11. Adinetz, A.V.: NUDA Programmer’s Guide, http://nuda.sf.net
12. Satish, N., Kim, C., Chhugani, J., Nguyen, A.D., Lee, V.W., Kim, D., Dubey, P.:

Fast sort on CPUs and GPUs: a case for bandwidth oblivious SIMD sort. In: Pro-
ceedings of the 2010 International Conference on Management of Data (SIGMOD
2010), pp. 351–362. ACM, New York (2010)

13. Grechnikov, E.A.: Collisions for 72-step and 73-step SHA-1: Improvements in the
Method of Characteristics. Cryptology ePrint Archive: Report 2010/413,
http://eprint.iacr.org/2010/413

http://www.itl.nist.gov/fipspubs/
http://eprint.iacr.org/2011/641
http://nuda.sf.net
http://eprint.iacr.org/2010/413

GPU-Vote: A Framework

for Accelerating Voting Algorithms on GPU

Gert-Jan van den Braak, Cedric Nugteren, Bart Mesman, and Henk Corporaal

Eindhoven University of Technology, The Netherlands
{g.j.w.v.d.braak,c.nugteren,b.mesman,h.corporaal}@tue.nl

Abstract. Voting algorithms, such as histogram and Hough transforms,
are frequently used algorithms in various domains, such as statistics and
image processing. Algorithms in these domains may be accelerated using
GPUs. Implementing voting algorithms efficiently on a GPU however is
far from trivial due to irregularities and unpredictable memory accesses.
Existing GPU implementations therefore target only specific voting al-
gorithms while we propose in this work a methodology which targets
voting algorithms in general.

This methodology is used in gpu-vote, a framework to accelerate
current and future voting algorithms on a GPU without significant pro-
gramming effort. We classify voting algorithms into four categories. We
describe a transformation to merge categories which enables gpu-vote to
have a single implementation for all voting algorithms. Despite the gen-
erality of gpu-vote, being able to handle various voting algorithms, its
performance is not compromised. Compared to recently published GPU
implementations of the Hough transform and the histogram algorithms,
gpu-vote yields a 11% and 38% lower execution time respectively. Addi-
tionally, we give an accurate and intuitive performance prediction model
for the generalized GPU voting algorithm. Our model can predict the
execution time of gpu-vote within an average absolute error of 5%.

1 Introduction

Accelerating applications with GPUs (Graphical Processing Units) has become
increasingly popular from 2006 on, when GPUs became programmable with
the introduction of “CUDA” by NVIDIA and “Close to Metal” by AMD. Just
on NVIDIA’s website over 1000 applications are listed which use a GPU for
acceleration. These applications originate from various domains, such as image
and signal processing, finance, statistics and electronic design automation.

GPUs are used in consumer desktop computers and notebooks as well as in em-
bedded systems and industrial machines such as professional printers. Together
with the (power) efficiency and the off-the-shelf availability, GPUs are interest-
ing for large companies as well as for small and medium-sized enterprises. This
motivates programmers to spend time and effort on making libraries, tools and
generic (skeleton) implementations.

A number of algorithms in the image processing domain, such as color space
conversion and low-level (pixel) filtering operations, are fairly straight forward

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 945–956, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

946 G.J. van den Braak et al.

to implement on a GPU due to their inherent parallelism. Voting algorithms on
the other hand are far from trivial to implement efficiently on a GPU due to
irregularities and unpredictable memory accesses.

Existing GPU implementations only target a single specific voting algorithm,
such as histogram [1,2,3] and 2-D Hough transform [4,5,6,7]. In this work we
propose a generic methodology which targets voting algorithms in general. We
also introduce a framework called gpu-vote which can be used to accelerate a
large range of voting algorithms. With this framework the time consuming and
cumbersome implementation and optimization of voting algorithms is a thing
of the past. Measurements show that gpu-vote is not just more generic than
previous dedicated implementations, but also gives a performance improvement.
To predict the execution time of gpu-vote, we also give a model based on the
parameters of the voting algorithm, such as input size and number of bins.

This paper is organized as follows. First related work and background infor-
mation about the GPU architecture is presented in Section 2. In Section 3, voting
algorithms are categorized, the generic methodology for voting algorithms and
the implementation in gpu-vote is discussed. Section 4 evaluates the proposed
methodology and describes performance results. A model to predict execution
time is given in Section 5. Finally, conclusions and future work are presented in
Section 6.

2 Background and Related Work

In this section histogram and Hough transform, two common voting algorithms,
are described in more detail. Also related work on GPU implementations of these
algorithms is discussed in Section 2.3, as well as details on the NVIDIA GPU
architecture in Section 2.4.

2.1 Histogram

In the histogram algorithm a set of bins is filled according to the frequency of
occurrence in the input data. For example, a 1-D histogram of an 8-bit gray-scale
image usually has 256 bins (due to the 256 possible shades of gray in the image).

A histogram can be used to enhance the contrast of an image by applying
histogram equalization. In [8] a 2-D 30×30 histogram of normalized red and
green is used for locating a road in an image. In [9] larger 2D-histograms of
256×256 bins are used for image registration purposes. Histogram is also an
important statistical tool for displaying and summarizing data [10].

2.2 Hough Transform

The Hough transform is a popular technique to locate shapes in images, such as
lines and circles, but also other arbitrary shapes. It is used in many computer
vision and image processing applications, such as robot navigation [11], industrial
inspection and object recognition [12].

GPU-Vote: A Framework for Accelerating Voting Algorithms on GPU 947

The Hough transform for lines [13] is a 2-D voting algorithm for which each
feature (edge) point in an image votes for all possible lines passing through that
point. All votes are stored in the so called Hough space, which size is determined
by the input image and the accuracy for the parameterization of the lines.

The Cartesian coordinate system is not well suited for the Hough transform,
therefore a polar representation of a line Eq. 1 is used in which a line is param-
eterized with ρ and θ [14]. Parameter θ represents the angle of a line normal to
the line in the image and parameter ρ represents the shortest distance between
the origin and the line in the image. The angle θ ranges from 0◦ to 180◦ and the
radius ρ ranges from −W to

√
W 2 +H2, where W and H are the width and

height of the image respectively.

ρ = x cos(θ) + y sin(θ) (1)

By selecting a step size for the angle parameter θ, the number of sets of output
bins (or independent vote spaces) is chosen; by selecting a value for N in Eq. 2,
the number of bins in each independent vote space is set. With an input image
size of 1920× 1080 pixels, and a resolution for ρ and θ of one pixel and one degree,
the total vote space consists of (

√
19202 + 10802 + 1920)× 180 = 742,140 bins.

ρ′ =
x cos(θ) + y sin(θ) +W√

W 2 +H2 +W
N (2)

2.3 Related Work

Two implementations for histogramming are described by Podlozhnyuk in [1],
one for 64-bin histograms and one for 256-bin histograms. Shams and Kennedy
present two other histogramming methods in [2], which support a range of bin
sizes. Nugteren et al. introduce two new histogramming implementations in [3]
which are faster than the work of Podlozhnyuk and Shams and Kennedy. Their
fastest implementation has a fixed processing time for a given input size.

The 2-D Hough transform has been implemented on a GPU in OpenGL and
in CUDA. Two OpenGL implementations can be found in [4] and [5]. With the
availability of CUDA nowadays, using OpenGL to program GPUs for general
purpose computations is deprecated. A CUDA implementation of the Hough
transform can be found in CuviLib [6], a proprietary computer vision library.
Van den Braak et al. [7] introduced two new CUDA implementations of the
Hough transform, one which focuses on minimizing processing time, while the
other has an input data independent processing time.

2.4 GPU Architecture

In NVIDIA’s latest GPU architecture named Fermi [15], 32 CUDA cores are
grouped into a processing cluster called a Streaming Multiprocessor (SM). Each
SM has an on-chip memory of 48 kB. The GPU used for timing measurements
in this paper is an NVIDIA GTX 470 which has 14 SMs and is connected to
1280 MB of off-chip memory.

948 G.J. van den Braak et al.

The code executed on a GPU is called a kernel. Kernels run on the GPU as
thousands or even millions of threads. Each thread executes the same kernel, but
not necessarily the same instruction at the same time. Threads are organized into
thread blocks. All threads in a thread block are executed on the same processing
cluster (SM) and can communicate via its shared memory. Threads within a
thread block are arranged in warps of (at most) 32 threads, with each thread in
a warp executing the same instruction at the same clock cycle [16].

3 GPU Voting Methodology

To enable a generic methodology for voting algorithms on GPU, we classify vot-
ing algorithms. Two properties are distinguished which leads to a classification
of four categories:

– The first property characterizes if either the element value or the location
in the input data is used to determine in which bin the vote will be placed.

– The second property describes if a voting algorithm increases a bin in the
vote space by one (unity vote) or by a calculated number (number vote).

An algorithm which uses the input element location can be converted to an
algorithm which uses the input element value by applying a transformation on
the input data. By building an array of input element locations that are used by
the voting algorithm (e.g. less than 10% in the Hough transform [7]), a location
based voting algorithm can be transformed into a value based voting algorithm.

An overview of this two stage generic GPU voting methodology can be found
in Fig. 1. First the building of the array of input element locations is described in
Section 3.1, and in Section 3.2 the final stage where votes are placed in the vote
space is described. Improvements to this final stage are described in Section 3.3.

Value based
voting

Location based
voting

Build array of input

element locations

Voting in
vote space

Fig. 1. Overview of the two stage generic GPU voting methodology

3.1 Building an Array of Locations

Building the arrays of input element locations and values is done similarly to [7],
which is in turn inspired by the work in [3]. To build these arrays in a parallel way
on the GPU, small arrays are created at warp-level granularity. The technique
to make an array per warp is summarized in pseudo-code in Lst. 1. Note that
all threads in a warp execute the same instruction at the same time in parallel,
but some threads may be disabled due to branching conditions. More detailed
information on the creation of the array can be found in [7].

GPU-Vote: A Framework for Accelerating Voting Algorithms on GPU 949

1 input_value = input[x,y]
2 if(element_test(x,y,input_value)) {
3 do {
4 index++
5 SMEM_index = index
6 SMEM_array_L[index] = (x,y)
7 } while(SMEM_array_L[index] != (x,y))
8 SMEM_array_V[index] = input_value
9 }

10 index = SMEM_index

Listing 1. Building an array of input element locations (SMEM array L) and an array
with the corresponding values (SMEM array V) in shared (on-chip) memory (SMEM).

3.2 Voting in Vote Space

After the arrays of element location and element value have been constructed
for the location based voting algorithms, the votes can be placed in the vote
space1. The voting process is executed on the on-chip memory of an SM using
atomic memory operations. In case the vote space can be divided in independent
vote spaces (e.g. Hough transform), each independent vote space is calculated
by a thread block on an SM. The number of bins in a vote space is limited by
the amount of on-chip memory in an SM. For the Fermi GPU architecture, the
amount of on-chip memory per SM is 48 kB, resulting in maximum 12,288 32-bit
bins (Nmax). In case more than Nmax bins are required, this second stage of the
voting process is executed multiple times in order to calculate all bins.

When the number of independent vote spaces is less than the number of SMs
on the GPU (e.g. histogram algorithm, one independent vote space), the input
data is split such that each SM will process an equal part. In a final step, the
results of all parts are added together to make the final vote space.

3.3 Bin Stretching

As described in Section 2.2, the Hough transform can be implemented with a
parameterizable number of bins per independent vote space. The effect of vary-
ing this number on the execution time of the Hough transform implementation
from [7] is shown in Fig. 2(a) with blue squares. The graph shows that the Hough
transform can be calculated faster when more bins are used, which leads to the
unintuitive conclusion that more accurate results can be calculated quicker than
less precise results.

This effect is caused by contention in the on-chip memory of the GPU. Ac-
cording to Eq. 2, pixels that are close together in the input image, will also
end-up in bins close together in the vote space. If a small number of bins is used,
more votes are placed in the same bin (through atomic memory operations),
causing contention in the memory.

1 For value based voting algorithms, the input itself is directly used as location and
value array. Only when not all elements in the input are used in the voting process,
an array can be build first, indicated by the dashed arrow in Fig. 1.

950 G.J. van den Braak et al.

32 64 128 256 512 1k 2k 4k 8k
0

2
4

6
8

10
12
14

No bin−stretching
With bin−stretching

Number of bins / angle

E
x
e
c
.
ti
m

e
(m

s
)

Hough transform (64 angles)

(a)

0 32 64 96 128 160 192 224 256 288 320 352 384
0

0.2

0.4

0.6

0.8

1

1.2

1.4

128 threads
256 threads
512 threads
1024 threads
1024 threads (S’)

Stretching factor

E
x
e
c
.
ti
m

e
(m

s
)

Histogram (32 bins)

(b)

Fig. 2. a: Execution time measurements of the Hough transform algorithm with 64 an-
gles for θ. Blue squares: no bin stretching, red circles with bin stretching. b: Execution
time measurements of a 32-bin histogram for four different numbers of GPU threads
per thread block. The last line shows the results of the updated stretching factor S′.

To solve this memory contention, and thus to improve performance, we intro-
duce a technique called bin stretching. We explain the bin stretching technique
and show the results based on two examples.

Bin Stretching Technique. To reduce the memory contention, the number
of bins (N in Eq. 2) can be increased to the maximum number of bins allowed
by the hardware (Nmax). Since the maximum number of bins and the number
of bins in a voting algorithm are both known, a stretching factor (S) can be
calculated as shown in Eq. 3. To make sure that consecutive threads use as
many different memory locations as possible, the new bin-index is calculated as
shown in Eq. 4. After all votes are placed in the S × N bins, the results need
to be compacted back into the desired N bins by summing each group of S
consecutive bins together.

S = max

(⌊
Nmax

N

⌋
, 1

)
(3)

bin′ = bin · S + (thread-id mod S) (4)

The Effect of Bin Stretching by Two Examples. Applying the bin stretch-
ing method on the Hough transform example from Fig. 2(a), the performance
improvement between the original approach (blue squares) and the bin stretch-
ing approach (red circles) is clear. With bin stretching applied, the maximum
amount of on-chip memory is used in the voting process for any number of bins
per angle, which reduces memory contention to a minimum.

The effect of bin stretching on a 32-bin histogram algorithm is shown in
Fig. 2(b). When using 1024 threads (which results in the overall lowest execution
time compared to smaller numbers of threads per thread block), a stretching
factor of 383 results in a speed-up of over 20× compared to an implementation
without bin stretching.

In Fig. 2(b) the input is split into a number of parts to fill up all SMs as much
as possible, as explained in Section 3.2. Each SM can process a few parts at once,

GPU-Vote: A Framework for Accelerating Voting Algorithms on GPU 951

given enough resources. The resource limitation can be either the number of resi-
dent threads per SM (maximum of 1536), or the number of resident thread blocks
per SM (maximum of 8) or the on-chip shared memory per SM (48 kB) [16].
For example, when 128 threads are used (top blue line in Fig. 2(b)), and the
stretching factor is 192, two parts can be processed by two thread blocks on one
SM. But when the stretching factor is increased to 193, there is only enough on-
chip memory for one part per SM, resulting in a significantly increased execution
time.

One thing to notice in Fig. 2(b) are the peaks in execution time for certain
stretching factors. These peaks occur at stretching factors which are a multiple
of 32. This is due to the number of banks in the on-chip memory of an SM, which
is also 32 [16]. Careful inspection of Fig. 2(b) shows that odd stretching factors
give a lower execution time compared to an even stretching factor one value
larger. But for stretching factors smaller than 64, the improvement in execution
time due to the reduction in memory conflicts (caused by the stretching) is larger
than the decline in execution time due to the even stretching factor.

Taking this into account, the optimal stretching factor is calculated with Eq. 5,
and the corresponding bin-index with Eq. 6. This is in accordance with [16],
where an odd step size is suggested for strided on-chip memory accesses.

S′ =

{
S if S < 64
S − (1− S mod 2) if S ≥ 64

(5)

bin′′ = bin · S′ + (thread-id mod S mod S′) (6)

The effects of this updated stretching factor on the execution time is shown in
the last (purple) line in Fig. 2(b). By using only odd stretching factors with S′,
the peaks in execution time as shown before are removed.

1 #include "gpu_vote.h"
2 class Histogram : public CVoteFunction<uchar, uint> {
3 public:
4 __device__ uint vote_index(uint index, uchar value, uint nbins) {
5 return value * (nbins / 256.0f);
6 }
7 };

Listing 2. Implementation of a histogram algorithm using GPU-vote.

3.4 Implementation with GPU-Vote

The generic GPU voting methodology is implemented in a framework named
gpu-vote. To support a large range of voting algorithms, the variable types
for the input and output and four functions have to be defined for each voting
algorithm. One function is required for the first stage in the methodology (array
building), the other three are used in the second stage (voting in the vote space).

952 G.J. van den Braak et al.

One example implementation of a gray-scale histogram algorithm is shown in
Lst. 2 On line 1 the gpu-vote framework is loaded. The variable types of the
input and output (uchar and uint) are specified on line 2. Only the standard vote
index function, which determines in which location a vote is placed, is overloaded
on lines 4-6. The other functions’ default implementation is sufficient.

4 Evaluation

To evaluate the proposed methodology, the execution time of gpu-vote is com-
pared with state of the art implementations. In Fig. 3 the performance of various
approaches to implement the 2-D Hough transform on a GPU is shown. The
performance of [3] is indicated with blue circles. This approach is optimized for
histogramming and can only handle up to 512 bins. The voting method from [7]
focuses on the Hough transform and is indicated with green squares. The best
performance for this algorithm is achieved with a large number of bins.

32 64 128 256 512 1k 2k 4k 8k 16k 32k 64k 128k 256k
0
2
4
6
8

10
12
14
16
18
20

Voting method from [3]
Voting method from [7]
GPU−vote
Atomic op. on global mem.

Number of bins / angle

E
x
e
c
.
ti
m

e
(m

s
)

Hough transform (64 angles)

Fig. 3. Execution time of four different voting methods for a range of number of bins

The proposed generic voting methodology is shown as red triangles in Fig. 3.
It outperforms the previous two methods and supports a range of number of
bins with equal performance. Only in case the required number of bins is larger
than the maximum number of bins the implementation can support (Nmax),
the execution time increases. This increase is caused by the second stage of the
voting methodology being executed multiple times (see also Section 3.2). To
prevent the necessity of executing the second stage multiple times the on-chip
memory size of the GPU has to be increased for future hardware, or taking a
hierarchical approach for the voting algorithm could be investigated.

For comparison, a GPU voting method where all votes are placed directly in
off-chip memory is also included in Fig. 3 (cyan stars). Although this method has
a large performance penalty for a number of bins less than 8k, its execution time
gets closer to the proposed generic voting methodology when the number of bins
increases. For number of bins larger than 128k this approach even outperforms
the proposed generic voting methodology.

The performance of the proposed generic voting algorithm is evaluated by
implementing four algorithms with gpu-vote on an NVIDIA GTX 470. The
input for all algorithms in this section are 1920 by 1080 pixels gray scale images.

GPU-Vote: A Framework for Accelerating Voting Algorithms on GPU 953

For histogram and Hough transform, the results of gpu-vote are compared
with the best known GPU implementation from [3] and [7] respectively. Cal-
culating a 256-bin histogram with gpu-vote is 38% faster on average for 110
randomly selected test images compared to the the implementation in [3]. Cal-
culating a 2-D Hough transform with a total of 64 angles and 4200 bins per
angle takes 11% less time on average for the same 110 images compared to
the implementation in [7]. The main improvement of gpu-vote over [7] is the
bin-stretching technique introduced in Section 3.3.

Other algorithms, which may not be identified as voting algorithms directly,
also fit our proposed framework. We show performance results to indicate the
wide applicability of gpu-vote. For example, calculating the sum of all elements
in a matrix can be seen as a voting algorithm with only a single bin. Compared to
the heavily optimized implementation in the reduction example in the NVIDIA
CUDA software development kit, the results of gpu-vote are 12% and 14%
slower when summing 8-bit integer inputs and 32-bit float inputs respectively.

In image sub-sampling, the location of the input pixel determines in which bin
the pixel value has to be added, which makes it a location-based number-voting
algorithm. gpu-vote has a 2.6× higher execution time compared to a manual
optimized GPU implementation. Since the structure of this algorithm is very
regular, using a generalized voting method is clearly not the best approach in
terms of execution time for implementing this algorithm. However the manual
optimized implementation requires detailed knowledge about the GPU architec-
ture. Using gpu-vote does not require this knowledge, and the implementation
consist of only four lines of straight forward C-code, in contrast to the 20 lines of
highly optimized CUDA kernel code for the manual optimized implementation.

5 Performance Prediction

To predict the performance of a voting algorithm, we introduce a model which
is based on properties of the image (e.g. size), the voting algorithm (e.g. number
of bins) and GPU parameters (e.g number of SMs). The prediction can be used
to select a suitable GPU or to choose algorithm parameters for example. Both
stages of the generalized GPU voting algorithm are modeled separately. We first
explain how these models are derived. Following, we evaluate the quality of the
performance prediction.

5.1 Prediction Model

The first stage of the algorithm builds an array of input element locations. A part
of the input elements (which pass the element test) are stored into two arrays,
one of element locations and one of element values. The execution time of this
stage of the algorithm is a combination of the total number of input elements
which need to be evaluated (E) and the relative number of elements which have
to be put in an array (ηE) as shown in Eq. 7.

T1 = a× E + b× ηE + c (7)

954 G.J. van den Braak et al.

0 2000 4000 6000 8000 10000
0.8

0.9

1

1.1

1.2

1.3

1.4

Measured
Predicted

Bins per independent vote space

E
x
e
c
.
ti
m

e
(m

s
)

Hough Transform

(a)

40 60 80 100 120
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

Measured
Predicted

Independent vote spaces

E
x
e
c
.
ti
m

e
(m

s
)

Hough Transform

(b)

Fig. 4. Hough transform execution times for a: a range of bins per angle (N in Eq. 2
and Eq. 3) and b: a range of number of angles (G)

The second stage of the algorithm places votes in the vote space. The execution
time of this stage of the algorithm depends on the relative number of elements
used in this second stage (ηE) and the number of votes that need to be placed
in the vote space (G× ηE), where G is the number of independent vote spaces.
Since every independent vote space is calculated by one thread block, which is
mapped to a single SM, G has to be rounded up to the nearest multiple of the
available number of SMs (SM). In case the number of bins (N) in an independent
vote space is larger than the maximum the hardware can supply (Nmax), this
second stage is executed multiple times and the product G × �N/Nmax� has to
be rounded up to the nearest multiple of SM .

When the product of the number of independent vote spaces and �N/Nmax�
is less than the number of SMs, the input is split in parts (P in Eq. 8) to reduce
the execution time of this second stage. The impact of G, N , Nmax and SM on
the execution time can be taken into account with the factor F in Eq. 9.

P = max

(⌊
SM

G× �N/Nmax�

⌋
, 1

)
(8)

F =

⌈
G× �N/Nmax�

SM

⌉
1

P
(9)

The execution time of the second stage also depends on the number of bins (N)
through the stretching factor (S′), as explained in Section 3.3. The following
equation can be composed to estimate the execution time of the second stage:

T2 = d× ηE

S′ × F + e × ηE × F + f (10)

The parameters a− f in the model are estimated by performing experiments in
which training images and algorithm parameters in Eq. 7 and Eq. 10 are varied
and a least-squares minimization on the predicted execution time is applied.

5.2 Evaluation of the Prediction

The model of the prediction of the execution time is evaluated with two experi-
ments. In each experiment the Hough transform is calculated on a 1920 × 1080

GPU-Vote: A Framework for Accelerating Voting Algorithms on GPU 955

1 2 3 4 5 6 7 8 9 10
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Input size (megapixel)

E
x
e
c
.
ti
m

e
(m

s
)

64-bin histogram

1 2 3 4 5 6 7 8 9 10
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Input size (megapixel)

E
x
e
c
.
ti
m

e
(m

s
)

256-bin histogram

Fig. 5. Measured and predicted execution times for the 64-bin and 256-bin histogram
algorithm executed on 1295 images

input image (distinct from the training images), on which first edge-detection
and thresholding are applied as described in [7]. Two aspects of the Hough trans-
form are varied: the number of bins (N) and the number of independent vote
spaces (G). As shown in Fig. 4, the model clearly follows the steps in execution
time caused by the bin stretching factor S (Fig. 4(a)) and the steps caused by
the rounding of G× �N/Nmax� up to the nearest multiple of SM (Fig. 4(b)).

The model is also evaluated on two other experiments, a 64-bin and a 256-bin
histogram on 1295 gray scale images, varying in size from 1 to 10 megapixel.
The average absolute error of the predicted execution time compared to the real
execution time is 5%. For 95% of the images the execution time is predicted
within an error range of -10% to 10%, as shown with the gray marked area in
Fig. 5. For the 256-bin histogram, the execution time for some images is under-
estimated significantly. These images contain large surfaces with a single color,
causing memory collisions. These can be resolved by applying bin-stretching in
the 64-bin histogram, but not in the 256-bin histogram, since the stretching
factor is limited by the available on-chip memory and the number of bins used.

6 Conclusions

In this work we have introduced a generic methodology for implementing voting
algorithms on a GPU. A classification of voting algorithms is presented, which
arranges voting algorithms into four groups. We also gave a transformation on
the input data of a voting algorithm to be able to merge categories. This enables
the development of a methodology to solve voting problems in all categories with
a single unified solution. The proposed bin stretching technique forms the base
of the performance improvements of the generic methodology.

The generic methodology is implemented in gpu-vote, a framework which
can be used to accelerate a range of voting algorithms on a GPU. With gpu-
vote two examples, histogram and Hough transform have been implemented on
a GPU. As shown in the evaluation section, gpu-vote is not just generic but
even yields a lower execution time compared to previously published GPU im-
plementations which targeted only a single voting algorithm. The performance
of histogram and Hough transform is improved by 38% and 11% respectively.

956 G.J. van den Braak et al.

To show the wide range of applicability, algorithms such as sum reduction and
image sub-sampling have been implemented with gpu-vote. Although the per-
formance of these implementations cannot match the reference implementations,
the programming effort to implement such algorithms is reduced significantly.

To estimate the execution time of a voting algorithm a model is is given based
on parameters of the input, voting algorithm and GPU used. Results show that
in 95% of the cases the model predicts the execution time within a 10% range.

As part of future work the proposed methodology can be implemented in
OpenCL to enable its use on other architectures, such as AMD GPUs and multi-
core CPUs, making the methodology even more useful. We also plan to to im-
prove performance by making gpu-vote multi-GPU enabled and to develop a
hierarchical approach for voting algorithms to support a larger number of bins.

References

1. Podlozhnyuk, V.: Histogram Calculation in CUDA (2007)
2. Shams, R., Kennedy, R.A.: Efficient Histogram Algorithms for NVIDIA CUDA

Compatible Devices. In: International Conference on Signal Processing and Com-
munications Systems (2007)

3. Nugteren, C., Van den Braak, G.J., Corporaal, H., Mesman, B.: High Performance
Predictable Histogramming on GPUs: Exploring and Evaluating Algorithm Trade-
offs. GPGPU 4 (2011)

4. Fung, J., Mann, S.: OpenVIDIA: Parallel GPU Computer Vision. In: 13th ACM
International Conference on Multimedia (2005)

5. Ujaldón, M., Ruiz, A., Guil, N.: On the computation of the Circle Hough Transform
by a GPU rasterizer. Pattern Recognition Letters (2008)

6. TunaCode (Ltd): CUDA Vision and Imaging Library, http://www.cuvilib.com/
7. Van den Braak, G.J., Nugteren, C., Mesman, B., Corporaal, H.: Fast Hough Trans-

form on GPUs: Exploration of Algorithm Trade-Offs. In: Blanc-Talon, J., Kleihorst,
R., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2011. LNCS, vol. 6915,
pp. 611–622. Springer, Heidelberg (2011)

8. Tan, C., Hong, T., Chang, T., Shneier, M.: Color Model-Based Real-Time Learning
for Road Following. In: Intelligent Transportation Systems Conference (2006)

9. Maes, F., Collignon, A., Vandermeulen, D., Marchal, G., Suetens, P.: Multimodal-
ity Image Registration by Maximization of Mutual Information. IEEE Transactions
on Medical Imaging (1997)

10. Scott, D.W.: On Optimal and Data-Based Histograms. Biometrika (1979)
11. Forsberg, J., Larsson, U., Wernersson, A.: Mobile Robot Navigation using the

Range-Weighted Hough Transform. IEEE Robotics Automation Magazine (1995)
12. Wang, Y., Shi, M., Wu, T.: A Method of Fast and Robust for Traffic Sign Recog-

nition. In: Fifth International Conference on Image and Graphics (2009)
13. Hough, P.: Method and Means for Recognising Complex Patterns. US Patent No.

3,069,654 (1962)
14. Duda, R.O., Hart, P.E.: Use of the Hough Transformation to Detect Lines and

Curves in Pictures. Commun. ACM 15 (1972)
15. NVIDIA Corporation: NVIDIA’s Next Generation CUDA Compute Architecture:

Fermi (2009)
16. NVIDIA Corporation: NVIDIA CUDA C Programming Guide - Version 4.0 (2011)

http://www.cuvilib.com/

Author Index

Abbasi, Hasan 77
Acacio, Manuel E. 206
Adinetz, Andrew V. 933
Agathos, Spiros N. 650
Aguilera, Alvaro 65
Ahmad, Bilal 364
Aktulga, Hasan Metin 830
Aldinucci, Marco 662
Andrzejak, Artur 311
Angel, Eric 128
an Mey, Dieter 638, 859
Ansaloni, Danilo 626
Anta, Antonio Fernández 451
Antoniu, Gabriel 526
Anzt, Hartwig 908
Atkinson, Malcolm 729
Atlidakis, Vaggelis 377
Ayguade, Eduard 514, 587

Badia, Rosa M. 16, 514
Baeza-Yates, Ricardo 272
Bajrovic, Enes 614
Bampis, Evripidis 128
Barton, Kit 219
Bautista Gomez, Leonardo 313
Bekas, Costas 779
Benkner, Siegfried 614
Bermúdez Garzón, D. 716
Bertozzi, Davide 741
Beyler, Jean Christophe 89
Bilardi, Gianfranco 676
Binder, Walter 626
Bland, Wesley 477
Bonetta, Daniele 626
Bosilca, George 246, 477
Bougé, Luc 526
Bouteiller, Aurelien 246, 477
Brandic, Ivona 311
Brzeziński, Jerzy 767
Busa-Fekete, Róbert 389
Busch, Costas 403

Calotoiu, Alexandru 28
Cappello, Franck 313
Castro, Márcio 465

Cederman, Daniel 883
Chatterjee, Bapi 883
Chatterjee, Sanjay 219
Chretien, Stephane 116
Christodoulopoulos, Konstantinos 701
Christoforou, Evgenia 451
Clarke, David 489
Corbalan, Julita 191
Corporaal, Henk 945
Cotronis, Yiannis 575
Cramer, Tim 638

Danalis, Anthony 246
Danelutto, Marco 464, 662
Datta, Anwitaman 363
De, Pradipta 325
Delis, Alex 258, 377
de Oliveira Castro, Pablo 89
De Rose, César 179
de Sande, Francisco 871
Develder, Chris 700
Dias, Ricardo J. 589
Dikaiakos, Marios 3
Dimakopoulos, Vassilios V. 650
di Serafino, Daniela 550
Djemame, Karim 311
Donfack, Simplice 551
Dongarra, Jack 246, 477, 908
Du, Peng 477
Du, Zhihui 115
Duan, Rubing 4
Duato, J. 716
Dubrownik, Tomasz 4
Duff, Iain 550
Dursun, Hikmet 781
Dustdar, Schahram 793
Dutta, Haimonti 258

Eigenmann, Rudolf 587
Elmroth, Erik 311
Esteves, Sérgio 285

Fan, Dongrui 102
Fang, Zhen 232
Fernandes, Luiz Gustavo 465

958 Author Index

Fernández, Javier 729
Ferreto, Tiago 179
Feuerstein, Esteban 272
Fietz, Jonas 818
Filgueira, Rosa 729
Flich, Jose 206
Fölling, Alexander 337
Fragopoulou, Paraskevi 311
Fumero, Juan J. 871

Gallopoulos, Efstratios 550
Gautier, Thierry 895
Gayatri, Rahulkumar 514
George, Thomas 805
Georgiou, Chryssis 451
Gil-Costa, Veronica 272
Góes, Lúıs Fabŕıcio Wanderley 465
Goh, Rick Siow Mong 4
Gómez, C. 716
Gómez, M.E. 716
Gómez-Pantoja, Carlos 298
Gonzalez-Escribano, Arturo 502
Gorlatch, Sergei 464
Goscinski, Andrzej 401
Govindarajan, R. 415
Graham, Richard 538
Grechnikov, Evgeny A. 933
Grigori, Laura 551
Guerrieri, Alessio 260
Gupta, Manish 325

Haber, Tom 439
Hammond, Kevin 155
Haridi, Seif 364
Hegedűs, István 389
Herault, Thomas 246, 477
Herdrich, Andrew 232
Herley, Kieran T. 674
Heuveline, Vincent 818, 908
Hofmann, Matthias 337
Hulette, Geoffrey C. 40
Husain, Saiful Azmi bin Hj 805

Ienne, Paolo 102
Ilic, Aleksandar 489
Iverson, Jeremy 843
Iyer, Ravishankar 232

Jain, Ramnik 141
Jalby, William 89

Janjic, Vladimir 155
Jelasity, Márk 389
Jia, Haipeng 920
Jiang, Xiaowei 232
Jiao, Shuai 102
Jukan, Admela 700

Kacem, Fadi 128
Kaeli, David 857
Kalewski, Micha�l 767
Kalia, Rajiv K. 781
Kallimanis, Nikolaos D. 650
Kamath, Chandrika 843
Karastoyanova, Dimka 793
Karatza, Helen 52
Karypis, George 843
Katrinis, Kostas 701
Katz, Daniel S. 3
Kégl, Balázs 389
Khabou, Amal 551
Kielmann, Thilo 464
Kilpatrick, Peter 662
Klasky, Scott 77
Kluge, Michael 65
Knobe, Kathleen 601
Knottenbelt, William 52
Koniges, Alice 779
Konstantinidis, Elias 575
Konstantopoulos, Charalampos 754
Korch, Matthias 563
Kosiba, Marcin 767
Koziris, Nectarios 204
Krause, Mathias J. 818
Krause, Robert 793
Kumar, Sameer 805
Kunaseth, Manaschai 781
Kuo, Shyh-hao 4

Labarta, Jesús 191
Ladd, Joshua S. 538
Lastovetsky, Alexey 489
Lemeire, Jan 439
Letsios, Dimitrios 128
Leymann, Frank 793
Lezzi, Daniele 16
Li, Bin 232
Li, Lin 232
Li, Yan 920
Libuda, Marek 767
Lingas, Andrzej 688

Author Index 959

Liu, Qing 77
Llanos, Diego 502
Lodde, Mario 206
Logan, Jeremy 77
Long, Guoping 920
López, P. 716
López-Rodŕıguez, Iván 871
Lordan, Francesc 16
Louka, Maria A. 575
Lourenço, João M. 589
Ludwig, Thomas 779
Luján, Mikel 514, 587
Luque, Emilio 298
Luszczek, Piotr 908

Makineni, Srihari 232
Malakar, Preeti 805
Malony, Allen D. 40, 52
Mamalis, Basilis 754
Marendić, Petar 439
Marin, Mauricio 272, 298
Maris, Pieter 830
Marowka, Ami 54
Marozzo, Fabrizio 16
Marth, Erich 614
Maruyama, Naoya 313
Mascolo, Cecilia 753
Matsuoka, Satoshi 313, 857
Mavronicolas, Marios 401
McKee, Sally 52
Méhaut, Jean-François 465
Mendelson, Avi 204
Meneghin, Massimiliano 662
Mesman, Bart 945
Meyerhenke, Henning 674
Milis, Ioannis 115
Missirlis, Nikolaos M. 575
Mittal, Rashmi 805
Moise, Diana 526
Monien, Burkhard 1
Montresor, Alberto 260, 363
Morin, Christine 3
Mosteiro, Miguel A. 451

Nagel, Wolfgang E. 65
Naim, Abdul Ghani 805
Nakajima, Kengo 779
Nakano, Aiichiro 781
Namyst, Raymond 614
Narang, Ankur 141

Neves, Marcelo Veiga 179
Ng, Esmond G. 830
Nicod, Jean-Marc 116
Nicolae, Bogdan 313
Nikoletseas, Sotiris 753
Nikolopoulos, Dimitrios S. 857
Nomura, Ken-ichi 781
Nugteren, Cedric 945
Nuñez, Alberto 729

O’Mahony, Donal 701
Ormándi, Róbert 389
Ostermann, Simon 350
Ostrouchov, George 77

Pahr, Dieter 793
Pantziou, Grammati 754
Parashar, Manish 77
Pautasso, Cesare 626
Persson, Mia 688
Peternier, Achille 626
Petit, Eric 89
Philippe, Laurent 116
Pitoura, Evaggelia 363
Pllana, Sabri 587
Pnevmatikatos, Dionisios 587
Podhorszki, Norbert 77
Prabhakar, Raghu 415
Prodan, Radu 350
Pucci, Geppino 674

Rafanell, Roger 16
Ramirez, Alex 857
Rana, Omer 3
Raynal, Michel 427
Rehn-Sonigo, Veronika 116
Reiter, Michael 793
Rexachs, Dolores 298
Reyes, Ruymán 871
Rodrigo, Samuel 741
Romano, Paolo 311
Roussopoulos, Mema 377
Ruffini, Marco 701

Sakellariou, Rizos 464
Sánchez, Angel (Anxo) 451
Sanders, Peter 167, 818
Sandrieser, Martin 614
Santi, Paolo 753
Sarkar, Vivek 219, 601

960 Author Index

Sato, Toshinori 204
Saxena, Vaibhav 805
Sb̂ırlea, Dragoş 601
Scheideler, Christian 1
Schelkens, Peter 439
Schmidl, Dirk 638
Schulz, Christian 818
Schwiegelshohn, Uwe 115
Scquizzato, Michele 676
Sem-Jacobsen, Frank Olaf 741
Shafaat, Tallat M. 364
Shamis, Pavel 538
Sharma, Gokarna 403
Shi, Weisong 401
Shirako, Jun 219
Shyamasundar, R.K. 141
Siebert, Christian 28
Silva, João 285
Silvera, Raul 219
Silvestri, Francesco 676
Simeonidou, Dimitra 700
Skeie, Tor 741
Soni, Manoj 325
Sottile, Matthew J. 40
Sousa, Leonel 489
Speck, Jochen 167
Springer, Paul 859
Srivastava, Abhinav 141
Stainer, Julien 427
Sun, Ninghui 102

Tabik, Siham 191
Talia, Domenico 16, 258
Tan, Wen Jun 4
Tang, Wai Teng 4
Tatenguem, Hervé 741
Teo, Yong Meng 401
Terboven, Christian 638, 859
Thanasias, Vasileios 754
Thatte, Aditya 325
Thazhuthaveetil, Matthew J. 415
Thibault, Samuel 614
Tian, Yuan 77
Toch, Lamiel 116

Tolosa, Gabriel 272
Torquati, Massimo 662
Torres, Yuri 502
Toss, Julio 895
Truong, Hong-Linh 793
Trystram, Denis 115
Tsigas, Philippas 883
Turner, Stephen John 4

Ucar, Bora 550
Unnikrishnan, Priya 219
Utrera, Gladys 191

Vale, Tiago M. 589
van den Braak, Gert-Jan 945
Varvarigos, Emmanouel 700
Vary, James P. 830
Vashishta, Priya 781
Veidenbaum, Alex 204
Veiga, Lúıs 285
Venkata, Manjunath Gorentla 538
Voigt, Thiemo 753
Voulgaris, Spyros 363
Vučinić, Dean 439

Wang, Da 102
Watson, Ian 514
Wienke, Sandra 859
William, Thomas 65
Wolf, Felix 28
Wolf, Matthew 77
Wong, Weng-Fai 4
Wong, Yi Wen 4

Xu, Jianliang 920

Yan, Shengen 920
Yang, Chao 830
Ye, Xiaochun 102

Zaroliagis, Christos 674
Zaslavsky, Arkady 258
Zhang, Yunquan 920
Zhao, Li 232

	Title
	Preface
	Organization
	Table of Contents
	Invited Talk
	Selfish Distributed Optimization

	Topic 1: Support Tools and Environments
	Topic 1: Support Tools and Environments
	Tulipse: A Visualization Framework for User-Guided Parallelization
	Introduction
	Overview of Tulipse
	Loop-Procedure View
	Three-Dimensional Data Dependency View

	Examples
	Anisotropic Diffusion
	Speech Recognition System (482.sphinx3)

	Related Work
	Conclusions and Future Work
	References

	Enabling Cloud Interoperability with COMPSs
	Introduction
	The COMPSs Framework
	The Azure JavaGAT Adaptor
	Data Mining on COMPSs: A Classifier-Based Workflow
	The Application Workflow
	The Application Implementation
	Parallelization with COMPSs: The Interface

	Performance Evaluation
	Related Work
	Conclusions and Future Work
	References

	Pattern-Independent Detection of Manual Collectives in MPI Programs
	Introduction
	Semantics of Collective Operations
	Analysis Workflow and Trace Generation
	Search for Manual Collectives
	Evaluation
	Microbenchmarks
	High-Performance Linpack

	Related Work
	Conclusion and Outlook
	References

	A Type-Based Approach to Separating Protocol from Application Logic
	Introduction
	Related Work
	Method Overview
	Code Generation
	Block Composition
	Identity Blocks

	Twig's Semantics
	Values
	Rules
	Formal Semantics
	Reductions

	Implementation
	Example
	Future Work
	Conclusion
	References

	Topic 2: Performance Prediction and Evaluation
	Topic 2: Performance Prediction and Evaluation
	Energy Consumption Modeling for Hybrid Computing
	Introduction
	Symmetric Processors
	Symmetric Speedup
	Symmetric Performance per Watt
	Symmetric Performance Per Joule

	Asymmetric CPU-GPU Processors
	Asymmetric Speedup
	Asymmetric Performance per Watt
	Asymmetric Performance per Joule

	CPU-GPU Simultaneous Processing
	Simultaneous Asymmetric Speedup
	Simultaneous Asymmetric Perf/W
	Simultaneous Asymmetric Perf/J

	Synthesis
	Related Work
	Conclusions
	References

	HPC File Systems in Wide Area Networks: Understanding the Performance of Lustre over WAN
	Introduction
	[100]GbE Testbed between Dresden and Freiberg
	Related Work
	Lustre's Networking Layer
	The LNET Protocol
	Model Constraints
	Proposed Model
	Measurement and Comparison with the Model

	Single Client Performance Observations
	Setup and Measurements
	Observations and Findings

	Performance Observations for Multiple Clients
	Setup and Measurements
	Observations and Findings

	Conclusion
	References

	Understanding I/O Performance Using I/O Skeletal Applications
	Introduction
	The Skel System
	Background
	I/O Methods

	Validation of Skel
	Test Platforms
	CHIMERA
	GTS

	Using Skel to Study I/O Performance
	CHIMERA
	GTS

	Related Work
	Conclusion and Future Work
	References

	ASK: Adaptive Sampling Kit for Performance Characterization
	Introduction
	Related Works
	Hierarchical Variance Sampling
	ASK Architecture
	Experimental Study
	Stride Memory Effects
	Stencil Characterization

	Conclusion
	References

	CRAW/P: A Workload Partition Method for the Efficient Parallel Simulation of Manycores
	Introduction
	Observation
	CRAW/P
	Results
	Experimental Setup
	Simulation Performance

	Related Work
	Conclusion and Future Work
	References

	Topic 3: Scheduling and Load Balancing
	Topic 3: Scheduling and Load Balancing
	Job Scheduling Using Successive Linear Programming Approximations of a Sparse Model
	Introduction
	Framework
	Sparsity Promoting Penalization with Successive Linearizations
	Sparsity Promoting Penalization
	Linear and Conic Approximation

	Applying the Method on the Job Scheduling Problem
	Formulation as an Integer Linear Program
	Relaxation via Sparsity Promoting Penalization
	Successive LP Approximation Scheme
	Improving the Algorithm Efficiency

	Simulation and Results
	Experimental Settings
	Assessing Performance of Algorithm 1
	Performance of the Improved Algorithm

	Conclusion and Future Work
	References

	Speed Scaling on Parallel Processors with Migration
	Introduction
	Preliminaries
	Convex Programming Formulation
	Structure of the Optimal Schedule
	An Optimal Combinatorial Algorithm
	Properties of the Work Assignment Problem
	The BAL Algorithm

	Maximum Lateness with a Budget of Energy
	References

	Dynamic Distributed Scheduling Algorithm for State Space Search
	Introduction
	System and Computation Model
	LDSS: Scheduling Algorithm
	Distributed Data Structures
	Algorithm Design

	Results and Analysis
	Related Work
	Conclusions and Future Work
	References

	Using Load Information in Work-Stealing on Distributed Systems with Non-uniform Communication Latencies
	Introduction
	Work-Stealing on Systems with Non-uniform Latencies
	Irregular Divide-and-Conquer Applications
	Using Load Information
	Experiments
	Performance of the Basic Algorithms
	Performance of the Perfect Algorithms
	How Accurate Does Load Information Need to Be?

	Conclusions and Future Work
	References

	Energy Efficient Frequency Scaling and Scheduling for Malleable Tasks
	Introduction
	Model
	Common Speedup Functions

	The Optimal Solution for the Single-Job Case
	Energy Function for Non-integer Processor Numbers
	The Optimal Solution for the Multi-job Case
	The Enhanced Model
	Conclusion
	References

	Scheduling MapReduce Jobs in HPC Clusters
	Introduction
	HPC Clusters and MapReduce
	MapReduce Job Adaptor
	Evaluation
	Conclusion and Future Work
	References

	A Job Scheduling Approach for Multi-core Clusters Based on Virtual Malleability
	Introduction
	Related Work
	The FCFS-Malleable Job Scheduling Strategy
	FCFS-Malleable Algorithm
	Runtime System Implementation

	Simulator
	Validation of the Simulator

	Results and Analysis
	Experimental Results

	Conclusions and Future Work
	References

	Topic 4: High-Performance Architecture and Compilers
	Topic 4: High-Performance Architecture and Compilers
	Dynamic Last-Level Cache Allocation to Reduce Area and Power Overhead in Directory Coherence Protocols
	Introduction
	Dynamic L2 Cache Line Allocation
	Replacement Policy
	Dynamic Power Techniques

	Performance Evaluation
	Benefits When Using MOESI Protocol

	Related Work
	Conclusions
	References

	A Practical Approach to DOACROSS Parallelization
	Introduction
	Previous Work
	DOACROSS Parallelization Algorithm
	Dependence Folding
	Runtime Implementation

	Profitability Analysis and Grain Size Selection
	Experimental Results
	POISSON
	LU
	SOR and Jacobi

	Conclusions and Future Work
	References

	Exploiting Semantics of Virtual Memory to Improve the Efficiency of the On-Chip Memory System
	Introduction
	Background: Physical Page Allocation, TLB and Superpaging
	Background: The Last-Level Cache and the Interconnect
	Overview of Innovations

	Anticipatory Superpaging
	Motivation
	The Proposed Mechanism

	Stack-Aware Cache Placement
	Motivation
	Stack Reference Identification at the LLC
	LLC Slice Selection
	Design of the Cache Tags
	Avoiding Cache Coherency Overhead

	Evaluation of the Proposed Mechanisms
	Experiment Methodology
	Evaluation of Anticipatory Superpaging
	Evaluation of Stack-Aware Cache Placement

	Related Work
	Work Related to Anticipatory Superpaging
	Work Related to Stack-Aware Cache Placement

	Conclusions
	References

	From Serial Loops to Parallel Execution on Distributed Systems
	Introduction and Motivation
	Related Work
	Compiler and Run-Time Synergy
	Input and Output Formats
	Input Format: Annotated Sequential Code
	Compiler Output: Job Data Flow

	Extracting Symbolic Data Flow and Data Exchange
	Omega Relations
	Interprocess Data Exchange
	Anti-dependence Edges

	Performance
	Conclusion
	References

	Topic 5: Parallel and Distributed Data Management
	Topic 5: Parallel and Distributed Data Management
	DS-Means: Distributed Data Stream Clustering
	Introduction
	Problem Statement
	Background
	K-Means
	X-Means
	Distributed K-Means

	The Algorithm
	Dividing Data into Chunks
	Distributed K-Means
	X-Means
	Pairwise Averaging
	Local K-Means

	Evaluation
	Experimental Framework
	Experimental Results

	Conclusion
	References

	3D Inverted Index with Cache Sharing for Web Search Engines
	Introduction
	3D Index
	Cost Estimation Methodology
	Experimental Setting
	Evaluation of the 3D Index
	Scalability of the 3D Index

	Pipelined Caching
	Results

	Related Work
	Conclusions
	References

	Quality-of-Service for Consistency of Data Geo-replication in Cloud Computing
	Introduction
	Geo-distributed Cloud Scenario and Architecture
	Consistency Model
	Implementation Details
	Evaluation
	Related Work
	Conclusion
	References

	A Fault-Tolerant Cache Service for Web Search Engines: RADIC Evaluation
	Introduction
	System Architecture
	Caching Service
	Evaluation through Simulation
	Analysis

	RADIC Implementation
	RADIC Overheads

	Conclusions
	References

	Topic 6: Grid, Cluster and Cloud Computing
	Topic 6: Grid, Cluster and Cloud Computing
	Scalable Reed-Solomon-Based Reliable Local Storage for HPC Applications on IaaS Clouds
	Introduction
	Related Work
	Our Approach: A RS-Encoding Algorithm Proposal
	Low-Communication RS Encoding Algorithm
	Integration in Practice

	Reliability, Storage and Network Bandwidth Study
	Experimental Evaluation
	Experimental Setup
	Synthetic Benchmarks
	Real-Life Application: CM1

	Conclusions
	References

	Caching VM Instances for Fast VM Provisioning: A Comparative Evaluation
	Introduction
	Related Work
	System Model and Assumptions
	Simulation Model

	Pre-provisioning Techniques
	Analytical Model for Pre-provisioning
	Techniques for Pre-provisioning

	Experimental Evaluation
	Simulation Parameters
	RC2 Trace Summary
	Simulation Results: Using RC2 Trace Data
	Reasons for Cache Misses
	Gains Demystified

	Conclusion
	References

	Improving Scheduling Performance Using a Q-Learning-Based Leasing Policy for Clouds
	Introduction
	System Model
	Local Scheduling System
	Workload Traces
	Extending the Resource Space
	Performance Objective Metric

	Performance Reference Evaluation
	Reinforcement Learning
	Adaptive Cloud Leasing Policy
	Policy Evaluation
	Related Work
	Conclusion
	References

	Impact of Variable Priced Cloud Resources on Scientific Workflow Scheduling
	Introduction
	Model
	Resource Model
	Application Model
	Dynamic Critical Path Algorithm

	Related Work
	Spot Price Analysis
	Dynamic Critical Path for Clouds
	DCP-C Algorithm
	Rescheduling
	Cloud Choice
	Prescheduling

	Evaluation
	Wien2k
	Invmod

	Conclusion
	References

	Topic 7: Peer to Peer Computing
	Topic 7: Peer to Peer Computing
	ID-Replication for Structured Peer-to-Peer Systems
	Introduction
	Preliminaries
	Problems with Existing Schemes

	ID-Replication
	Overview
	Algorithm
	Discussion

	Evaluation
	Replication Groups Restructured
	Nodes Involved in Updates
	Keys Reshuffled
	Overhead of Maintaining Groups
	Evolution of Groups

	Related Work
	Conclusion
	References

	Changing the Unchoking Policy for an Enhanced Bittorrent
	Introduction
	Enhanced BitTorrent
	Enhanced BitTorrent Messages
	Peer Unchoking - Ratio of Interest
	Algorithms
	Overview of Enhanced BitTorrent

	Evaluation
	Related Work
	Conclusion
	References

	Peer-to-Peer Multi-class Boosting
	Introduction
	System Model and Data Distribution
	Background and Related Work
	Multi-class Online FilterBoost
	Multi-class Online Base Learning
	GoLF Boosting
	Experimental Results
	Conclusions
	References

	Topic 8: Distributed Systems and Algorithms
	Topic 8: Distributed Systems and Algorithms
	Towards Load Balanced Distributed Transactional Memory
	Introduction
	Network Model and Preliminaries
	Hierarchical Directory for the 2-Dimensional Mesh
	The MultiBend Algorithm
	Performance
	Extension to the d-Dimensional Mesh
	References

	CUDA-For-Clusters: A System for Efficient Execution of CUDA Kernels on Multi-core Clusters
	Introduction
	Background
	CUDA Programming Model
	Compiler Transformations

	CUDA for Clusters (CFC)
	Work Distribution
	CFC-SDSM
	Lazy Update

	Performance Evaluation
	Experimental Setup
	Results

	Related Work
	Conclusions and Future Work
	References

	From a Store-Collect Object and Ω to Efficient Asynchronous Consensus
	Introduction
	On the Implementation of Consensus Objects
	Content of the Paper

	Computation Model
	Crash-Prone Asynchronous Processes
	Cooperation Model
	The Failure Detector

	The Store-Collect-Based Consensus Algorithm
	Description of the Algorithm
	Discussion
	Proof of the Algorithm

	Conclusion
	References

	An Investigation into the Performance of Reduction Algorithms under Load Imbalance
	Introduction
	Performance Cost Model

	Reduction
	Related Work
	Load Imbalances

	Static Load Balancing under Perfect Knowledge
	Dynamic Load Balancing
	Experimental Results
	Completion Time
	Benchmark Parameters
	Performance of Default Implementation
	Impact of Data Size
	Impact of Reduction Operator's Complexity
	Impact of Load Imbalances

	Conclusions
	References

	Achieving Reliability in Master-Worker Computing via Evolutionary Dynamics
	Introduction
	Model and Definitions
	Algorithmic Mechanism
	Analysis
	The Mechanism as a Markov Chain
	[C]Conditions for Eventual Correctness
	Convergence Time

	Simulations
	Conclusions
	References

	Topic 9: Parallel and Distributed Programming
	Topic 9: Parallel and Distributed Programming
	Dynamic Thread Mapping Based on Machine Learning for Transactional Memory Applications
	Introduction
	Background
	Software Transactional Memory
	Static Thread Mapping Based on Machine Learning

	Dynamic Thread Mapping for Transactional Memory
	Proposed Approach
	Implementation

	Experimental Evaluation
	Experimental Setup
	Dynamic Thread Mapping vs. Static Thread Mapping
	Varying Concurrency
	Dynamic Thread Mapping in Action

	Related Work
	Conclusion
	References

	A Checkpoint-on-Failure Protocol for Algorithm-Based Recovery in Standard MPI
	Introduction
	Background and Related Work
	Enabling Algorithm-Based Fault Tolerance in MPI
	The Checkpoint-on-Failure Protocol
	MPI Requirements for Checkpoint-on-Failure
	OpenMPI Implementation

	Example: The QR Factorization
	ABFT QR Factorization
	Checkpoint-on-Failure QR

	Performance Discussion
	MPI Library Overhead
	Failure Detection
	Checkpoint-on-Failure QR Performance

	Concluding Remarks
	References

	Hierarchical Partitioning Algorithm for Scientific Computing on Highly Heterogeneous CPU + GPU Clusters
	Introduction
	Related Work
	Hierarchical Matrix Partitioning Algorithm
	Experimental Results
	Conclusions
	References

	Encapsulated Synchronization and Load-Balance in Heterogeneous Programming
	Introduction
	Related Work
	Conceptual Approach
	Design and Implementation
	Case Study
	Experimental Work
	Conclusion
	References

	Transactional Access to Shared Memory in StarSs, a Task Based Programming Model
	Introduction
	SMPSs
	SMPSs Syntax
	The Reduction Clause

	Software Transactional Memory
	TinySTM

	Integrating TinySTM in SMPSs
	Results
	Performance Evaluation
	Performance Characterization

	Conclusion
	Future Work
	References

	On-the-Fly Task Execution for Speeding Up Pipelined MapReduce
	Introduction
	Pipeline MapReduce Applications: Overview and Related Work
	Introducing Dynamic Scheduling of Map Tasks in Hadoop
	Motivation
	Executing Pipeline MapReduce Applications with Hadoop
	Our Approach

	Evaluation
	Environmental Setup
	Results

	Conclusions
	References

	Assessing the Performance and Scalability of a Novel Multilevel K-Nomial Allgather on CORE-Direct Systems
	Introduction
	Background
	Algorithm Design
	Reindexed Recursive K-ing (RRK)
	Small Message Algorithms
	Large Message Algorithms

	Results
	System Configuration
	Single Level Performance
	Single Level Non Power-of-2 Performance
	Overlap Performance of CORE-Direct Implementations
	Hierarchical Performance versus Fragment Size
	Zero Copy Performance

	Conclusion
	References

	Topic 10: Parallel Numerical Algorithms
	Topic 10: Parallel Numerical Algorithms
	Avoiding Communication through a Multilevel LU Factorization
	Introduction
	CALU for Multiple Levels of Parallelism
	Performance Model
	Implementation on a Cluster of Multicore Processors

	Experimental Results
	Stability
	Performance of 2-Level CALU

	Conclusion
	References

	Locality Improvement of Data-Parallel Adams–Bashforth Methods through Block-Based Pipelining of Time Steps
	Introduction
	Parallel Implementation of General AB Solvers
	Possible Loop Structures
	Parallelization

	Reducing Parallel Overhead through Specialization
	Pipelining of Time Steps
	Storage and Working Spaces
	Experimental Results and Discussion
	Experimental Setup
	Choosing Blocksize and Pipeline Length
	Influence of the Working Spaces on Sequential Performance
	Parallel Performance on Different Architectures

	Conclusions
	References

	Parallel SOR for Solving the Convection Diffusion Equation Using GPUs with CUDA
	Introduction
	The Local Modified SOR Method
	Parallel Implementation
	Performance Results
	Three Kernel Comparison
	CPU - GPU Comparison
	CPU - GPU Scalability

	Remarks and Conclusions
	References

	Topic 11: Multicore and Manycore Programming
	Topic 11: Multicore and Manycore Programming
	Efficient Support for In-Place Metadata in Transactional Memory
	Introduction
	DeuceSTM and the Out-Place Strategy
	Support for In-Place Strategy
	Implementation

	Performance Evaluation
	Related Work
	Concluding Remarks
	References

	Folding of Tagged Single Assignment Values for Memory-Efficient Parallelism
	Introduction
	Folding of Dynamic Single Assignment Values
	Basic Folding
	Folding with Update-in-Place Memory Reuse
	Error Detection
	Programmability Benefits of Folding
	Extended Folding: Folding with Ordering

	Implementation
	Results
	Conclusions and Future Work
	References

	High-Level Support for Pipeline Parallelism on Many-Core Architectures
	Introduction
	High-Level Programming Support
	The PEPPHER Component Model
	Language Support for Expressing Pipeline Patterns
	Stage Replication and Stage Merging
	Buffer Management

	Implementation
	Source-to-Source Transformation
	Task-Based Heterogeneous Runtime
	Coordination

	Experimental Evaluation
	BZIP2 Compression
	OpenCV Image Processing

	Related Work
	Conclusion and Future Work
	References

	Node.Scala: Implicit Parallel Programming �for High-Performance Web Services
	Introduction
	Background and Motivation
	The Programming Model of Node.Scala
	System Architecture
	Thread Safety

	Performance Evaluation
	Stateless Services
	Stateful Services

	Related Work
	Conclusion
	References

	Task-Parallel Programming on NUMA Architectures
	Introduction
	Related Work
	Patterns for Task-Parallelism
	Task Behavior on NUMA Architectures
	STREAM
	Sparse-Matrix-Vector-Multiplication in a CG-Method

	Application Case Studies
	Trajectory Search
	FIRE

	Conclusion
	References

	Speeding Up OpenMP Tasking
	Introduction
	Tasking in the OMPi Compiler
	Optimized Runtime

	A Fast Work-Stealing Algorithm
	Performance Evaluation
	Synthetic Benchmark
	Performance of the BOTS Application Suite

	Conclusion
	References

	An Efficient Unbounded Lock-Free Queue for Multi-core Systems
	Introduction
	Producer-Consumer Coordination Using SPSC Queues: Background and Related Work
	Basic Unbounded List-Based Wait-Free SPSC Queue
	Fast Unbounded Lock-Free SPSC Queue
	Experiments
	Conclusions
	References

	Topic 12: Theory and Algorithms for Parallel Computation
	Topic 12: Theory and Algorithms for Parallel Computation
	A Lower Bound Technique for Communication on BSP with Application to the FFT
	Introduction
	The Switching Potential of Computation DAGs
	Switching Potential and Communication on BSP
	Solving the Mathematical Program
	Conclusions
	References

	A Fast Parallel Algorithm for Minimum-Cost Small Integral Flows
	Introduction
	Terminology
	Connecting Vertex-Disjoint Paths
	Vertex-Disjoint Connecting Paths of Bounded Cost
	Finding Vertex-Disjoint Connecting Paths
	Minimum-Cost Logarithmic Integral Flow is in RNC2
	Final Remarks
	References

	Topic 13: High Performance Network and Communication
	Topic 13: High Performance Network and Communication
	Topology Configuration in Hybrid EPS/OCS Interconnects
	Introduction
	System Model
	Partitioning and Topology Configuration with Bounded Connectivity
	Heuristic Algorithm

	Performance Results
	Conclusions
	References

	Towards an Efficient Fat–Tree like Topology
	Introduction
	Motivation
	Fat–Tree Topology
	Adaptive Routing in Fat–Trees
	DESTRO Routing in Fat–Trees

	RUFT
	Extensions of the RUFT Topology
	RUFT with Parallel Links
	RUFT with Double Bandwidth

	Evaluation
	Simulation Environment
	Performance Results

	Conclusions
	References

	An Adaptive, Scalable, and Portable Technique for Speeding Up MPI-Based Applications
	Introduction
	Related Work
	 PMPI: Standard MPI Profiling Interface
	 Adding Compression to MPI

	The Run-time-Adaptive Strategy
	 PRAcTICaL-MPI
	Evaluation
	The BIPS3D Application
	HPC Clusters and MPI Implementations
	Evaluation Results

	Conclusions and Future Work
	References

	Cost-Effective Contention Avoidance in a CMP with Shared Memory Controllers
	Introduction
	NoC Background and Related Work
	NoC Congestion
	NoC Contention
	Application Performance Relative to Memory Controller Location

	NoC Congestion Control
	Evaluation
	System Configuration
	Results
	Hardware Breakdown

	Conclusion
	References

	Topic 14: Mobile and Ubiquitous Computing
	Topic 14: Mobile and Ubiquitous Computing
	Watershed-Based Clustering for Energy Efficient Data Gathering in Wireless Sensor Networks with Mobile Collector
	Introduction
	The Node Clustering Scheme
	The Data Gathering Protocol
	Simulation Results
	Conclusion
	References

	Distribution of Liveness Property Connectivity Interval in Selected Mobility Models of Wireless Ad Hoc Networks
	Introduction
	Ad Hoc Network Liveness Property
	Network Liveness Property

	Mobility Models
	Entity Mobility Models
	Group Mobility Models

	Simulator
	Measured Metrics
	Simulation Parameters

	Simulation Analysis
	Conclusions
	References

	Topic 15: High Performance and Scientific Applications
	Topic 15: High Performance and Scientific Applications
	Memory-Access Optimization of Parallel Molecular Dynamics Simulation via Dynamic Data Reordering
	Introduction
	Parallel Molecular Dynamics
	Data Fragmentation in Parallel Molecular Dynamics
	Temperature Induced Fragmentation
	Granularity Induced Fragmentation

	Performance Measurements
	Reordering Frequency Optimization
	Conclusions
	References

	On Analyzing Quality of Data Influences on Performance of Finite Elements Driven Computational Simulations
	Introduction
	Quality of Data Implications in FEM Based Simulations
	Identifying Important Types of Data in FEM-Based Simulations
	Defining and Evaluating Quality of Data Metrics
	Identifying Factors Influencing Quality of Data

	QoD Metrics for FEM-Based Simulations
	Material Parameter Accuracy
	Matrix Solver Accuracy
	Vector Condition

	Evaluating the Influence of Quality of Data Metrics
	QoD Evaluation Framework
	Experiments

	Related Work
	Conclusions and Future Work
	References

	Performance Evaluation and Optimization of Nested High Resolution Weather Simulations
	Introduction
	Related Work
	Experimental Setup
	Optimizations
	Compiler Options
	Communication Libraries
	Source Code Optimizations

	Performance Analysis
	Empirical Modeling of Computation Time
	Conclusions and Future Work
	References

	Optimized Hybrid Parallel Lattice Boltzmann Fluid Flow Simulations on Complex Geometries
	Introduction
	Lattice Boltzmann Fluid Flow Simulations
	Domain Decomposition for Hybrid Parallelization
	Heuristic Domain Decomposition with Shrinking Step
	Sparse Octree Domain Decomposition with Shrinking

	Load Balancing
	Graph Partitioning Using KaFFPa
	Graph-Based Parallelization Strategy for LBM
	Determining Node and Edge Weights

	Experiments
	Decomposition vs. Graph Based Load Balancing
	Effects of Using the Shrinking Step
	Octree Domain Decomposition

	Conclusions
	References

	Topology-Aware Mappings for Large-Scale Eigenvalue Problems
	Introduction
	Eigensolver for the CI Approach
	Sparse Matrix Vector Multiplication (SpMV)
	Basis Orthogonalization

	Estimating the Communication Overhead
	Network Load Model
	Practical Considerations

	Heuristic for Task-to-Processor Mapping
	Performance Evaluation
	Performance Results with Pure MPI Implementation
	Performance Results with the MPI/OpenMP Implementation

	Conclusions and Future Work
	References

	Fast and Effective Lossy Compression Algorithms for Scientific Datasets
	Introduction
	Definitions and Notations
	Related Work
	Methods
	Set-Based Decomposition
	Region-Based Decomposition

	Experimental Design and Results
	Results
	Set-Based Decomposition
	Region-Based Decomposition
	Comparison with Other Methods

	Conclusion
	References

	Topic 16: GPU and Accelerators Computing
	Topic 16: GPU and Accelerators Computing
	OpenACC — First Experiences with Real-World Applications
	Introduction
	Related Work
	OpenACC Overview
	Applications
	Simulation of Bevel Gear Cutting
	Neuromagnetic Inverse Problem

	Performance Evaluation
	Simulation of Bevel Gear Cutting
	Neuromagnetic Inverse Problem

	Programmability and Productivity
	Conclusion
	References

	accULL: An OpenACC Implementation with CUDA and OpenCL Support
	Introduction
	The Implementation
	Evaluation
	Molecular Dynamic simulation
	Mandelbrot Computation Set
	Rodinia Benchmarks

	Conclusions and Future Work
	References

	Understanding the Performance of Concurrent Data Structures on Graphics Processors
	Introduction
	Concurrent Data Structures
	SPSC Queues
	MPMC Queues

	GPU Architectures
	Experimental Setup
	Performance Analysis
	SPSC Queues
	MPMC Queues

	Conclusion and Future Work
	References

	A New Programming Paradigm for GPGPU
	Introduction
	Related Works
	Work Stealing
	Scheduling on GPUs

	Mixing Task Parallelism and Data Parallelism on CUDA
	Design of Our Approach
	Work Queue Implementation
	Data Parallel Application Scheduling
	CUDA Work Stealing Algorithm

	Evaluation
	Elementary Overhead
	Benchmark Application
	Load Balancing on Regular Workloads
	Load Balancing on Irregular Workloads
	Octree Partitioning
	Discussion

	Conclusion and Future Work
	References

	GPU-Accelerated Asynchronous Error Correction for Mixed Precision Iterative Refinement
	Introduction
	Mathematical Background
	Experiment Setup
	Numerical Experiments
	Conclusions
	References

	GPURoofline: A Model for Guiding Performance Optimizations on GPUs
	Introduction
	Related Work
	GPURoofline
	 Naïve GPURoofline
	Threshold Optimizations
	Tradeoff Optimizations
	Data Locality
	Interaction with Program Optimization

	Evaluation
	Matrix Transpose
	Laplace Transform
	Integral
	FaceDetection

	Conclusion
	References

	Building a Collision for 75-Round Reduced SHA-1 Using GPU Clusters
	Introduction
	SHA-1 and Differential Attacks
	Finding a Characteristic
	Message Search Implementation on GPU
	Results
	Conclusion
	References

	GPU-Vote: A Framework for Accelerating Voting Algorithms on GPU
	Introduction
	Background and Related Work
	Histogram
	Hough Transform
	Related Work
	GPU Architecture

	GPU Voting Methodology
	Building an Array of Locations
	Voting in Vote Space
	Bin Stretching
	Implementation with GPU-Vote

	Evaluation
	Performance Prediction
	Prediction Model
	Evaluation of the Prediction

	Conclusions
	References

	Author Index

