
Maximal and Compositional Pattern-Based

Loop Invariants

Virginia Aponte1, Pierre Courtieu1, Yannick Moy2, and Marc Sango2

1 CNAM, 292 rue Saint-Martin F-75141 Paris Cedex 03 - France
{maria-virginia.aponte garcia,pierre.courtieu}@cnam.fr

2 AdaCore, 46 rue d’Amsterdam, F-75009 Paris France
{moy,sango}@adacore.com

Abstract. We present a novel approach for the automatic generation
of inductive loop invariants over non nested loops manipulating arrays.
Unlike most existing approaches, it generates invariants containing dis-
junctions and quantifiers, which are rich enough for proving functional
properties over programs which manipulate arrays. Our approach does
not require the user to provide initial assertions or postconditions. It pro-
ceeds first, by translating body loops into an intermediate representation
of parallel assignments, and second, by recognizing through static analy-
sis code patterns that respect stability properties on accessed locations.
We associate with each pattern a formula that we prove to be a so-called
local invariant, and we give conditions for local invariants to compose
an inductive invariant of the complete loop. We also give conditions over
invariants to be locally maximal, and we show that some of our pattern
invariants are indeed maximal.

Keywords: Loop invariants, compositional reasoning, automatic invari-
ant generation.

1 Introduction

Thanks to the increased capabilities of automatic provers, deductive program
verification emerges as a realistic verification technique in industry, with com-
mercially supported toolsets [11,30], and new certification standards recognizing
its use [27]. In deductive program verification, users first annotate their programs
with logical specifications; then a tool generates Verification Conditions (VCs),
i.e. formulas encoding that the program respects its specifications; finally a tool
is called to automatically prove those VCs. The problem is that, in many cases,
in particular during development, not all VCs are proved automatically. Dealing
with those VCs is a non-trivial task. Three cases are possible: (1) the program
does not implement the specification; (2) the specification is not provable in-
ductively; (3) the automatic prover does not find the proof. The solution to (1)
is to correct the program or the specification. The solution to (3) is to use a
better automatic prover. The solution to (2) is certainly the most challenging
for the user. The problem occurs when, for a given loop, the user should supply

D. Giannakopoulou and D. Méry (Eds.): FM 2012, LNCS 7436, pp. 37–51, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

38 V. Aponte et al.

an inductive loop invariant: this invariant should hold when entering the loop;
it should be provable for the n+1th iteration by assuming only that it holds at
the nth iteration; it should be sufficient to prove subsequent properties of in-
terest after the loop. In practice, the user has to strengthen the loop invariant
with additional properties until it can be proved inductively. In general, this
requires understanding the details of the generation of VCs and the underlying
mathematical theory, which is not typical engineering knowledge.

Generation of loop invariants is a well researched area, for which there exists
a rich set of techniques and tools. Most of these techniques focus on the discov-
ery of predicates that express rich arithmetic properties with a simple Boolean
structure (typically, linear or non-linear constraints over program variables). In
our experience with supporting industrial users of the SPARK [2] technology,
these are seldom the problematic loop invariants. Indeed, users are well aware
of the arithmetic properties that should be maintained through loops, and thus
have no difficulty manually annotating loops with the desired arithmetic invari-
ants. Instead, users very often have difficulties annotating loops with invariants
stating additional properties, that that they do not recognize as required for
inductive reasoning. These properties typically have a complex Boolean struc-
ture, with disjunctions and quantifiers, for expressing both the effects of past
iterations and the locations not being modified by past iterations. In this paper,
we focus on the automatic generation of these richer loop invariants.1

We present a novel technique for generating rich inductive loop invariants,
possibly containing disjunctions and quantifiers (universal and existential) over
loops manipulating scalar and array variables. Our method is compositional,
which differentiates it from previous approaches working on entire loops: we
consider a loop as a composition of smaller pieces (called reduced loops), on
which we can reason separately to generate local invariants, which are then
aggregated to generate an invariant of the complete loop. The same technique
can be applied both to unannotated loops and to loops already annotated, in
which case it uses the existing loop invariant.

Local invariants are generated based on an extensible collection of patterns,
corresponding to simple but frequently used loops over scalar and array variables.
As our technique relies on pattern matching to infer invariants, the choice and
the variety of patterns is crucial. We have identified five categories of patterns,
for search, scalar update, scalar integration, array mapping and array exchange,
comprising a total of 16 patterns. For each pattern we define, we provide a local
invariant, and prove it to be local, and for some of them maximal. An invariant
is local when it refers only to variables modified locally in the reduced loop,
and when it can strengthen an inductive invariant over the complete loop. We
give conditions for invariants to be local. A local invariant is maximal when it
is at least as strong as any invariant on the reduced loop. To our knowledge,
this is the first work dealing with compositional reasoning on loop invariants,
defining modularity and maximality criteria. We also extend the notion of stable
variables introduced by Kovács and Voronkov[19].

1 For the sake of simplicity we omit array bound constraints in generated invariants.

Maximal and Compositional Pattern-Based Loop Invariants 39

Our technique, applied to a loop L that iterates over the loop index i, can be
summarized as follows:

1. We translate L into an intermediate language of parallel assignments, which
facilitates both defining patterns and reasoning on local invariants. The
translation consists in transforming a sequence of assignments guarded by
conditions (if-statements) into a set of parallel assignments of guarded values
(if-expressions). This can be done using techniques for efficient computing
of static single assignment variables as described in [7,26]. Due to lack of
space, details of the translation are omitted.

2. Using a simple syntactic static analysis, we detect stable [19] scalar and array
variables occurring in L. A scalar variable is stable if it is never modified.
An array variable is stable on the range a..b if the value of the array between
indexes a and b is not modified in the first i iterations (where a and b may
refer to the current value of i). We define a preexisting invariant over L,
denoted ℘L, to express these stability properties.

3. We match our patterns against the intermediate representation of L. We
require stability conditions on matched code, which are resolved based on ℘L.
For each match involving pattern Pk, we instantiate the corresponding local
invariant φk with variables and expressions occurring in L.

4. We combine all generated local invariants φ1 . . . φn with ℘L to obtain an
inductive invariant on the complete L given by ℘L ∧ φ1 ∧ . . . ∧ φn.

This article is organized as follows. In the rest of this section we survey related
work and introduce a running example. Section 2 presents the intermediate lan-
guage. In Section 3, we introduce reduced loops and local invariants. In Section 4,
we define loop patterns as particular instances of reduced loops restricted to
some stable expressions. We present four examples of concrete patterns and we
provide their corresponding local invariants. In Section 5, we present sufficient
criteria for a local invariant to be maximal, and we state maximality results on
two concrete pattern invariants. We finally conclude and discuss perspectives in
Section 6. Due to lack of space, proofs are omitted but are available in [1].

1.1 Related Work

Most existing techniques generate loop invariants in the form of conjunctions of
(in)equalities between polynomials in the program variables, whether by abstract
interpretation [6,24], predicate abstraction [12], Craig’s interpolation [22,23] or
algebraic techniques [5,28,18]. Various works have defined disjunctive abstract
domains on top of the base abstract domains [20,15,29].

A few works have targeted the generation of loop invariants with a richer
Boolean structure and quantifiers, based on techniques for quantifier-free invari-
ants. Halbwachs and Péron [14] describe an abstract domain to reason about
array contents over simple programs that they describe as “one-dimensional
arrays, traversed by simple for loops”. They are able to represent facts like
(∀i)(2 ≤ i ≤ n ⇒ A[i] ≥ A[i − 1], in which a point-wise relation is established

40 V. Aponte et al.

between elements of array slices, where this relation is supported by a quantifier-
free base abstract domain. Gulwani et al. [13] describe a general lifting procedure
that creates a quantified disjunctive abstract domain from quantifier-free do-
mains. They are able to represent facts like (∀i)(0 ≤ i < n⇒ a[i] = 0), in which
the formula is universally quantified over an implication between quantifier-free
formulas of the base domains. McMillan [21] describes an instrumentation of
a resolution-based prover that generates quantified invariants describing facts
over simple loops manipulating arrays. Using a similar technique, Kovács and
Voronkov [19] generate invariants containing quantifier alternation. Our tech-
nique may find a weaker invariant than the previous approaches in some cases
(like insertion sort) and a stronger invariant in other cases. The main benefit of
our technique is its simplicity and its extensibility: once the loop is converted to
a special form of parallel assignment, the technique consists simply in pattern
matching on the loop statements, and patterns can be added easily to adapt the
technique to new code bases, much like in [8].

1.2 Running Example

We will use the program of Fig. 1 as a running example throughout the paper.
A simpler version of this program appears in previous works [3,19].

The program fills an array B with

b := 1; c := 1; erased := 0;
for i in 1..10 while A[i] �= 0 do

if A[i] < 0 then
B[b] := A[i] ; b := b+1;

else
C[c] := A[i] ; c := c+1;

end if
A[i]:=erased;

end

Fig. 1. Array partitioning

the negative values of a source array
A, an array C with the positive val-
ues of A, and it erases the correspond-
ing elements from A. It stops at the
first null value found in A. As pointed
out in [19], there are many proper-
ties relating the values of A, B and
C before and after the loop, that one
may want to generate automatically
for this program. In this paper, we
show how the different steps of our
technique apply to this loop.

2 A Language of Parallel Assignments

In this section we introduce the intermediate language L and its formal seman-
tics. L is a refinement of the language introduced in [19] that allows us to group
all the assignements performed on the same location in a single syntactic unit.

Fig. 2.(a) presents the syntax of L. In this language, programs are restricted
to a single non nested for-like loop (possibly having an extra exit condition) over
scalar and one-dimensional array variables. Assignments in L are performed in
parallel. Note that location expressions (el) can be either scalar variables or array
cells, and that all statements (sl) of a group (G) assign to the same variable:
either the group (only) contains guarded statements gk → x := ek assigning to

Maximal and Compositional Pattern-Based Loop Invariants 41

L ::= loop i in α .. ω exit eb loop

do B end

B ::= skip | G(‖ G)∗ body

G ::= {sl (; sl)∗} group

sl ::= eb → el := ea assignment

el ::= x | A[ea] location expr

ea ∈ Aexp, eb ∈ Bexp

loop i in 1..10 exit A[i] = 0 do
{ A[i] < 0 → B[b] := A[i]}

‖ { A[i] < 0 → b := b+1 }
‖ { ¬(A[i] < 0) → C[c] := A[i]}
‖ { ¬(A[i] < 0) → c := c+1 }
‖ { true → A[i] := erased }
end

Fig. 2. (a) Formal syntax of loop programs (b) Running example translation (Fig. 1)

some scalar variable x; or it contains statements gp → A[ap] := ep assigning to
the possibly different cells A[a1], A[a2] . . . of some array variable A. A loop body
(B) is an unordered collection of groups for different variables.

Running example. [Step 1: Translation into the intermediate language] The
translation of the running example loop (Fig. 1) into L is given in Fig. 2.(b).

Expressions and Variables. n, k stand for (non negative) constants of the
language; lower case letters x, a are scalar variables; upper-case letters A, C
are array variables; v is any variable; ea is an arithmetic expression; ε, eb, g are
Boolean expressions; e is any expression. Subscripted variables x0 and A0 denote
respectively the initial value of variables x and A.

Informal Semantics. Groups are executed simultaneously: expressions and
guards are evaluated before assignments are executed. We assume groups and
bodies to be write-disjoint, and loops to be well-formed. A group G is write-
disjoint if all its assignments update the same variable, and if for any two different
guards g1, g2 in G, g1 ∧ g2 is unsatisfiable. A loop body B = G1 ‖ . . . ‖ Gn is
write-disjoint if all Gk update different variables and if they are all write-disjoint.
A loop L is well-formed if its body is write-disjoint. Thus, on each iteration,
at most one assignment is performed for each variable. Conditions on guarded
assignments are essentially the same as in the work of Kovacs and Voronkov [19],
with a slightly different formalism. For simplicity, we require here unsatisfiability
of g1 ∧ g2 for two guards within a group assigning to array A, even in the case
where the updated cells for those guards are actually different.

Loop Conventions. L denotes a loop, B a body, and i is always the loop
index. The loop index is not a variable, so it cannot be assigned. For simplicity,
we assume that i is increased (and not decreased) after each run through the
loop, from its initial value α to its final value ω. We use �(α,ω,ε){B} to abbreviate

loop i in α..ω exit ε do B end, and �(α,ω){B} when ε = false .
−→
G denotes a

body G1 ‖ . . . ‖ Gn (for some n), while
−→
G ‖ B, is the parallel composition

of groups G1, . . . Gn from G with all groups from B. {−−−−−−−−−→gk → lk := ek} denotes a
group made of the guarded assignments {g1 → l1 := e1; . . . ; gn → ln := en}.
G(B) denotes the set of groups occurring in B.

42 V. Aponte et al.

Loop Variables. V (L) is the set of variables occurring in L (note that i /∈
V (L)). Vw (L) is the set of variables assigned in L, referred to as local (to L).
Vnw (L) is the set of variables occuring in L but not assigned in L, referred to
as external (to L): Vnw (L) = V (L) − Vw (L). Given a set of variables V , the
initialisation predicate ιV is defined as ιV =

∧
v∈V v = v0 asserting that all

variables v ∈ V have as initial (abstract) value v0. Sets and formulas defined on
the loop L are similarly defined on the loop body B.

Quantifications, Substitutions and Fresh Variables. φ, ψ, ι and ℘ denote
formulas. The loop index i may occur in the formula φ or in the expression e, re-
spectively denoted φ(i) or e(i), but it can be omitted when not relevant. Except
for logical assertions (i.e. invariants, Hoare triples), formulas are implicitly uni-
versally quantified on the set of all their free variables, including i. To improve
readability, these quantifications are often kept implicit. We denote by ∃V.φ the
formula ∃v1 . . . vn.φ for all vi ∈ V , and by [V1 ← V2] the substitution of each
variable of the set V1 by the corresponding variable of the set V2. Given a set of
variables V , V ′ denotes the set containing a fresh variable v′ for each variable
v ∈ V . Given an expression e, we denote e

′V = e[V ← V ′] and φ
′V = φ[V ← V ′].

2.1 Strongest Postcondition Semantics

The predicate transformer sp introduced by Dijkstra [9,10] computes the
strongest postcondition holding after the execution of a given statement. We
shall use it to obtain the strongest postcondition holding after the execution of
an arbitrary iteration of the loop body, which will be useful when comparing loop
invariants according to maximality criteria (see Section 5). Thus, we express the
semantics of the intermediate language L through the formal definition of sp.
As our goal is the generation of loop invariants, and not the generation of loop
postconditions, we only need to describe sp for loop bodies, instead of giving
it for entire loops in L. Note that Definition 1 requires replacing a variable v
assigned in the loop body with a fresh logical variable v′, standing for the value
of v prior to the assignment.

Definition 1 (Predicate Transformer sp). Let φ be a formula,
−→
Gk a loop

body, and V = Vw(
−→
Gk). We define sp(

−→
Gk, φ) as:

sp(skip, φ) = φ sp(
−→
Gk, φ) = ∃V ′.

(
φ

′V ∧
∧

k

Psp(Gk, V)
)

Psp({−−−−−−−−−→gk → x := ek}, V) =
∧

k

(
g

′V
k ⇒ x = e

′V
k

) ∧
((∧

k

¬g′V
k

)

⇒ x = x′
)

Psp({−−−−−−−−−−−−→gk → A[ak] := ek}, V) =
∧

k

(
g

′V
k ⇒ A[a

′V
k] = e

′V
k

)

∧∀j.
(∧

k

¬(g′V
k ∧ j = a

′V
k

)
)

⇒ A[j] = A′[j].

Maximal and Compositional Pattern-Based Loop Invariants 43

3 Reduced Loops and Local Invariants

Remember that we seek to infer local properties over code pieces occurring in
a loop L. In this section, we introduce reduced loops, which are loops built on
groups taken from a loop L, and local loop invariants, which are inductive prop-
erties holding locally on reduced loops. We state a compositionality result for
locally inferred invariants allowing us to compose them into an inductive invari-
ant that holds on the entire loop. Our notion of local invariant is generic: it is
not limited to the stability properties used by patterns in Section 4.

3.1 (Inductive) ιL-Loop Invariants

To define inductive loop invariants, we rely on the classical relation �par of satis-
faction under partial correctness for Hoare triples [17,25]. Invariants are defined
relative to a given initialisation predicate ιL providing initial values to loop vari-
ables. We define ιL = ιV , where V is the set of all variables occurring in L. An
ιL-loop invariant is an inductive loop invariant under ιL initial conditions. Also,
we say that ιL covers φ when V (φ) ⊆ V (ιL). In the following, we assume that the
initialisation predicate ιL covers all properties stated on L.

Definition 2 ((Inductive) ιL-Loop Invariant). Assume ιL covers a for-
mula φ. φ is an ιL-loop invariant on the loop L = �(α,ω,ε){B}, iff
(a) (i = α ∧ ιL)⇒ φ; and (b) �par {α ≤ i ≤ ω ∧ ¬ε ∧ φ} B; i := i+ 1 {φ}.

3.2 Local (Reduced) Loop Invariants

A reduced loop from a loop L = �(α,ω,ε){B}, is a loop with the same index range
as L but whose body Br is a collection of groups occuring within B (i.e. G(Br) ⊆
G(B)). These loops either take the form Lr = �(α,ω,ε){Br} or Lr = �(α,ω){Br}.
Remember that each group brings together all assignements of a unique variable.
Quite naturally, we seek inferring properties restricted to the locallymodified vari-
ables of reduced loops. Thus, we distinguish between variables updated within re-
duced loops, called local, and variables appearing without being assigned within
them, called external.

To deduce properties holding locally on Lr, we assume given an inductive
loop invariant ℘L holding on the entire loop, that states properties over vari-
ables external to Lr. Thus, we use a global pre-established property on external
variables in order to deduce local properties over local variables. The notion of
relative-inductive invariants, borrowed from [4], captures this style of reasoning:
φ is inductive relative to another formula ℘L, when the inductive step of the
proof of φ holds under the assumption of ℘L (see Example 1 below).

Definition 3 (Relative Inductive Invariant). Assume ιL covers a formula
φ. φ is ℘L-inductive on loop L, if
(1) (i = α ∧ ιL)⇒ φ; (2) sp(B,α ≤ i ≤ ω ∧ ¬ε ∧ ℘L(i) ∧ φ(i))⇒ φ(i + 1).

44 V. Aponte et al.

a := 0; b := 0;
loop i in 1..10 do

b := a+1;
a :=i ;

end

init : ιL = (a = 0 ∧ b = 0)
previous: ℘L = (a = i− 1)
loop i in 1..10 do

{ true → a :=i }
‖ { true → b := a+1 }
end

Lr = loop i in 1..10 do
{ true → b := a+1 }

end

local : φr = (b = i− 1)

final global inv: ℘L ∧ φr

Fig. 3. (a) Loop L (b) Init, previous, translation (c) Reduced loop Lr, local prop

φ is a ℘L-local loop invariant on loop Lr, if φ only refers to variables locally
modified in Lr, and if φ holds inductively on Lr relatively to the property ℘L.

Definition 4 (℘L-Local Loop Invariant). φ is a ℘L-local loop invariant for
loop Lr if (a) V (φ) ⊆ Vw(Lr); and (b) φ is ℘L-inductive on Lr.

Example 1 (A ℘L-local loop invariant). Fig. 3.(a) shows a loop L, whose trans-
lation and initialisation ιL are given in 3.(b). The reduced loop Lr in 3.(c) is
built on the group that assigns to b. There are two variables in Lr: a is external,
while b is local to it. We take ℘L shown in 3.(b) as previously known property
(over variables external to Lr). Clearly, ℘L does not hold on the reduced loop
Lr, but is does hold as ιL-loop invariant on the entire loop L. The local property
φr(i) from 3.(c) does not hold (inductively) by itself on the reduced loop, yet
℘L∧φr(i) holds as inductive invariant of Lr. Therefore, φr(i) is ℘L-inductive on
Lr. Moreover, as φr(i) only contains variables local to Lr, it follows that φr(i) is
℘L-local on Lr. Finally, as ℘L holds inductively on the entire loop, according to
the Theorem 1 below, the composed invariant ℘L ∧ φr is indeed an ιL-invariant
on the whole loop L.

Informally, the Theorem 1 says that whenever a property ℘L, used to deduce
that a local property φ holds on a reduced loop, is itself an inductive invariant
on the entire loop, then ℘L ∧ φ is an inductive invariant of the entire loop.

Theorem 1 (Compositionality of ℘L-Local Invariants). Assume that loops

L = �(α,ω,ε){−→G ‖ B} and Lr = �(α,ω,ε){B} are well-formed. Assume that
(h1) φr is a ℘L-local loop invariant on Lr; (h2) ℘L is an ιL-invariant on L.
Then, ℘L ∧ φr is an ιL-invariant on L.

4 Stable Loop Patterns

In this section, we introduce the stability property for expressions, and we give
sufficient conditions for this property to hold. Stability over expressions gener-
alizes the notion of stablity on variables introduced in [19] (see 4.2). We define
℘L-stable loop patterns, as a particular instance of reduced loops restricted to

Maximal and Compositional Pattern-Based Loop Invariants 45

stable expressions2. As examples, we present four concrete patterns and we pro-
vide their corresponding local invariants.

4.1 Stability on Variables and Expressions

Given an initialisation ιL , we define the initial value of an expression e(i),
denoted e0(i), as the result of replacing any occurrence of a variable x in e,
except i3, by its initial value x0 according to the initialisation ιL. Informally, an
expression e occurring in a loop L, is stable, if on any run through the loop, e is
equal to its initial value e0. Here, we are interested in being able to prove that
e = e0 under the assumption of a preexisting inductive loop invariant ℘L.

Definition 5 (Stable Expressions). An expression e(i) is said to be ℘L-stable
in loop L, denoted ℘L-s, if there exists an ιL-loop invariant ℘L on L such that:

℘L(i)⇒ (e(i) = e0(i)).

The rationale behind stability is that, given a preexisting inductive loop invariant
℘L, a ℘L-stable expression e can be replaced by its initial value e0 when reasoning
on the loop body using the predicate transformer sp.

4.2 Sufficient Conditions for Stability

In this section we generalize the notion of stability over variables introduced in
[19], in order to express the following properties:

1. a scalar variable x keeps its initial value x0 throughout the loop;
2. there exist a constant offset from i, denoted p(i), that corresponds to a valid

index for array A, such that every cell value in the array slice A[p(i) . . . n] is
equal to its initial value.

For array A and loop L, these properties are formally expressed by:

�x ≡ x = x0 Scalar stability

�A,p ≡ ∀j.(j ≥ p(i) ⇒ A[j] = A0[j]) Array p− stability

If
A,p holds, we say that A is p-stable. When p(i) = α this property is equiv-
alent to A = A0. To increase readability, the latter notation is preferred.

A sufficient condition for a variable to be stable is when this variable is not
updated at all in the loop. An array B in this case verifies the property
B,α.
Finding p-stability on some array A can be done by examining all updates to

cells A[pk(i)] and choosing p(i) as p(i) = max (
−−−→
pk(i)). Assume now that array

A is known to be p-stable, and that A[a] occurs in some expression e. If A[a]
corresponds to an access in the stable slice of A, then e is stable, which can be
verified by checking that a ≥ p is a loop invariant.

2 More precisely, to expressions whose location expressions defined over external vari-
ables are stable.

3 And except occurrences at array index positions.

46 V. Aponte et al.

Running example. [Step 2: Extracting a preexisting global invariant] The vari-
able erased is never assigned in this loop, so it is stable. Array A is updated only
in cell A[i], entailing i-stability for A. Thus, we can extract the following induc-
tive invariant expressing stability properties for our loop: ℘L = �erased ∧
A,i.

4.3 ℘L-Loop Patterns

Given a preexisting inductive loop invariant ℘L, we define loop patterns relative
to ℘L, or ℘L-loop patterns, as triples Pn = (Ln, Cn, φn), where: Ln is a loop
scheme given by a valid loop construction in our intermediate language L; Cn

is a list of constraints requiring the ℘L-s property on generic sub-expressions
e1, e2 . . . of Ln; φn is an invariant scheme referring only to variables local to Ln.

Fig. 4 presents examples of three concrete loop patterns. For each of them,
the corresponding loop scheme is given in the upper-left entry, the constraints in
the upper-right entry, and the invariant scheme in the bottom entry. To identify
the pattern Pn within the source loop L, Ln must match actual constructions
occurring in L, and the pattern constraints must be satisfied. In that case, we
generate the corresponding local invariant by instantiating φn with matched
constructions from L.

Theorem 2 establishes that each invariant scheme φn from Fig. 4 is indeed a
℘L-local invariant on its corresponding loop scheme Ln. By the compositional
result of Theorem 1, each generated local invariant can be composed with the
preexisting ιL-invariant to obtain a richer ιL-invariant holding on the entire loop.

1. Search Pattern

L1 = �(α,ω,ε){skip} ε is ℘L-s.

φ1(i) = ∀j.α ≤ j < i ⇒ ¬ε0(j)

2. Single Map Pattern

L2 = �(α,ω){B2} e(i) is ℘L-s.

B2 = true → A[i] := e(i)

φ2(i, A) =
∀j.(α ≤ j < i ⇒ A[j] = e0(j))

∧ ∀j.j ≥ i ⇒ A[j] = A0[j]

3. Filter Pattern

L3 = �(α,ω){B3}
B3 = {g(i) → A[v] := e(i)}

‖ {g(i) → v := v + 1}
g, e are ℘L-s.

φ3(i, v, A) = ∀j.(α ≤ j < i ∧ g0(j) ⇒ ∃k.(v0 ≤ k < v ∧ A[k] = e0(j)))

∧ ∀k1, k2.v0 ≤ k1 ≤ k2 < v ⇒ ∃j1, j2.
(
α ≤ j1 ≤ j2 < i ∧ A[k1] = e0(j1)
∧g0(j1) ∧ g0(j2) ∧ A[k2] = e0(j2)

)

∧ ∀j.(j ≥ v ⇒ A[j] = A0[j])

Fig. 4. Three ℘L-Loop Patterns

Theorem 2 (Search, Map and Filter Invariant Schemes are ℘L-local).
For n ∈ [1, 2, 3] assume that Pn = (Ln, Cn, φn) corresponds to the patterns given
in Fig. 4. Assume having three pairs (ιLn , ℘Ln) satifying each the constraints Cn

for pattern Pn. Then, each φn is a ℘Ln-local loop invariant on the loop Ln.

Maximal and Compositional Pattern-Based Loop Invariants 47

Running example. [Step 3: Discovering patterns, generating local properties]
We take ℘L ≡ �erased ∧
A,i (see Step 2) as preexisting inductive invariant.
By pattern-matching, we can recognize three patterns in L: the Search pattern
on line 1; the Single Map pattern on line 6; the Filter pattern, once on lines
2-3, and once again on lines 4-5. We must check that all pattern constraints are
respected. First note that ℘L entails i-stability for A, and therefore the location
expression A[i] (occurring in both instances of the Filter pattern) is ℘L-s, as well
as expressions A[i] = 0 in the Search pattern, and A[i] < 0 in the Filter pattern.
Finally, ℘L entails stability of erased in the Map pattern. We instantiate the
corresponding invariant schemes and obtain the local invariants shown below.
Note that φ3(i, b, B) and φ3(i, c, C) correspond to different instances of the Filter
pattern. We unfold only one of them here:

φ1(i) = ∀j.α ≤ j < i ⇒ ¬(A0[i] = 0)

φ2(i, A) = ∀j.(α ≤ j < i ⇒ A[j] = erased0) ∧ ∀j.(j ≥ i) ⇒ A[j] = A0[j]

φ3(i, c, C) = . . .

φ3(i, b, B) = ∀j.(α ≤ j < i ∧A0[j] < 0 ⇒ ∃k.(b0 ≤ k < b ∧B[k] = A0[j]))

∧ ∀k1, k2.b0 ≤ k1 ≤ k2 < b ⇒ ∃j1, j2.
⎛
⎝ α ≤ j1 ≤ j2 ≤ i

∧ A0[j2] < 0 ∧ B[k1] = A0[j1]
∧ A0[j2] < 0 ∧ B[k2] = A0[j2]

⎞
⎠

∧ ∀j.(j ≥ b ⇒ B[j] = B0[j])

Example 2 (A disjunctive/existential pattern example). Fig. 5 provides an exam-
ple of pattern whose invariant contains disjunctions and existential quantifiers.
This pattern typically corresponds to the inner loop in a sorting algorithm. The
local invariant obtained for the loop from Fig. 5.(b) is:

((m = m0) ∧ ∀j.(α ≤ j < i⇒ ¬(A0[j] < A0[m0])))

∨ (∃j.(α ≤ j < i ∧m = j) ∧ ∀k.(α ≤ k < i⇒ ¬(A0[k] < A0[m]))

Min Index Pattern

L4 = �(α,ω){B4} e(i) is ℘L-s.

B4 = {e(i) < e(a) → a := i}
φ4(i, a) = ((a = a0) ∧ ∀j.(α ≤ j < i ⇒ ¬(e0(j) < e0(a0))))

∨ (∃j.(α ≤ j < i ∧ a = j ∧ ∀k.(α ≤ k < i ⇒ ¬(e0(k) < e0(a))))

for i in 1..n do
if A[i] <A[m]
thenm := i ;

end if
end

Fig. 5. (a) A pattern with existentials and disjunctions (b) A loop instance

Running example. [Step 4: Aggregating local invariants] We know that the pre-
existing invariant ℘L holds as ιL-invariant on L. By Theorem 2, φ1 is ℘L-local
on L1 = �(α,ω,ε){skip}, and φ2 and φ3 are ℘L-local on loops Lk = �(α,ω){Bk}
respectively for k = 1, 2. It is easy to obtain from these results, that φ2 and φ3
are ℘L-local on loops Lk = �(α,ω,ε) {Bk}. Therefore, according to Theorem 1,
we can compose all these invariants to obtain the following richer ιL-invariant
holding on L: ℘L ∧ φ1(i) ∧ φ2(i, A) ∧ φ3(i, b, B) ∧ φ3(i, c, C).

48 V. Aponte et al.

5 Maximal Loop Invariants

In this section, we present maximality criteria on loop invariants, whether induc-
tive or not. A loop invariant is maximal when it is stronger than any invariant
holding on that loop. For consistency, we compare loop invariants only if they
are covered by the same initialisation predicate. We adapt this notion to re-
duced loops by defining local invariant maximality. These notions are rather
generic and apply to any loop language equipped with a strongest postcondition
semantics.

Definition 6 (Maximal ιL-Loop Invariant). φ is a maximal ιL-loop invari-
ant of loop L if (1) φ is an ιL-loop invariant for L, and (2) for any other ιL-loop
invariant ψ of L, φ⇒ ψ is an ιL-loop invariant of L.

Theorem 3 (Loop Invariant Maximality). Let L = �(α,ω,ε){B} and assume
that φ is some formula covered by ιL. φ is a maximal ιL-invariant of L if

(a) i = α ∧ ιL ⇔ i = α ∧ φ(i)
(b) sp(B,α ≤ i ≤ ω ∧ ¬ε(i) ∧ φ(i))⇔ α ≤ i ≤ ω ∧ φ(i + 1)

As seen in Section 3, a local invariant φr refers only to variables locally modified
in the reduced loop Lr. Nevertheless, external variables may occur in Lr, for
which we are unable to locally infer properties. To ensure consistency when
comparing local invariants, we reason on the maximality of φr, strenghtened by
a formula � stating that all variables external to Lr remain constant through
the execution of the reduced loop.

Definition 7 (Local Invariant Maximality). Let L = �(α,ω,ε){−→G ‖ B} be a
well-formed loop, and Lr = �(α,ω,ε){B}. Let ιr be an initialisation restricted to
variables occurring in Lr, and � a formula asserting constant values x = x0,
A = A0 for all variables x,A external to Lr. We say that φr is locally maximal
on Lr when � ∧ φr is a maximal ιr-loop invariant of Lr.

In [1] we provide proofs for the Theorem 4 below. We show that the local loop
invariants schemes φ1(i) for the Search Pattern, and φ2(i) for the Single Map
Pattern, as stated in Fig. 4, are indeed locally maximal on their corresponding
reduced loop. Notice that φ3(i) for the Filter Pattern is not maximal as stated
in Fig. 4. For example, it would be possible to state a stronger invariant for this
pattern by recursively defining a logic function for counting the number of array
elements satisfying the guard g0 up to the ith element, and using this function
in the loop invariant to give the current value of the variable v.

Theorem 4 (Search and Single Map Invariants Local Maximality). Let
φ1, L1, φ2, L2 as given in Fig. 4. φ1 is locally maximal on the loop L1, and φ2
is locally maximal on the loop L2.

Maximal and Compositional Pattern-Based Loop Invariants 49

6 Conclusion and Further Work

We present a novel and compositional approach to generate loop invariants.
Our approach complements previous approaches: instead of generating relatively
weak invariants on any kind of loop, we focus on generating strong or even
maximal invariants on particular loop patterns, in a modular way.

The central idea in our approach is to separately generate local loop invariants
on reduced versions of the entire loop. This is supported by the introduction of a
preexisting loop invariant, which states external properties (i.e. properties which
do not necessarily hold locally) on the complete loop. This preexisting invariant
is then strengthened by the local loop invariants. Since there is no constraint
on the way the external invariant is found, our approach fits in smoothly with
other automated invariant generation mechanisms.

We propose a specialized version of reduced loops, for which the external in-
variant is a stability property of some locally accessed variables. We give loop
pattern schemes and syntactic criteria to generate invariants for any loop con-
taining these patterns. Independently, we present conditions on arbitrary loop
invariants to be maximal, and state results of local maximality for some of our
loop patterns. When not maximal, our inferred invariants are essentially as ex-
pressive as those generated by previous approaches, but have the advantage of
being pre-proven, and thus are well adapted to integration on full automatic
invariant generation of industrial oriented frameworks.

Our method applies to programs in an intermediate language of guarded and
parallel assignments, to which source programs should first be translated. We
have designed such a translation from a subset of the SPARK language, based on
an enriched version of static single assignment form [26]. The idea is to transform
a sequence of assignments to variables guarded by conditions (if-statements) into
a set of parallel assignments to SSA variables [7], where the value assigned has
guard information (if-expressions). In the case of array variables, array index
expressions that are literals or constant offsets from the loop index are treated
specially, in order to generate array index expressions that can be matched to
the patterns we define. This translation is exponential in the number of source
code statements in the worst-case, but this does not occur on hand-written code.

We expect to implement the translation and the pattern-based loop invari-
ant generation in the next generation of SPARK tools [16,30]. We believe that
combining this technique with other ones (and with itself) will be very efficient.

Going further we could develop a broader repository of pattern-driven invari-
ants, to address the more frequent and known loop patterns. As proof of patterns
(correctness and optionally maximality) are tedious and error-prone, we plan to
mechanize them in a proof assistant and design a repository of formally proven
patterns. In particular, as the present technology seems perfectly applicable to
non terminating loops, we plan to define new patterns for while loops.

The current approach does not handle nested loops, and the patterns we
define do not apply to loops with a complex accumulation property, where the
effect of the ith iteration depends in a complex way on the cumulative effect
of previous iterations. So it does not apply for example to insertion sort, which

50 V. Aponte et al.

can be treated by other approaches [14,13] based on complex abstract domains
in abstract interpretation. We are interested in pursuing the approach to treat
these more complex examples.

Acknowledgements. We would like to thank Laura Kovács for her feedback
on an early version of this work, Benjamin Brosgol for his careful review of the
manuscript and anonymous referees for their valuable comments.

References

1. Aponte, V., Courtieu, P., Moy, Y., Sango, M.: Maximal and Compositional Pattern-
Based Loop Invariants - Definitions and Proofs. Technical Report CEDRIC-12-
2555, CEDRIC laboratory, CNAM-Paris, France (2011),
http://cedric.cnam.fr/fichiers/art_2555.pdf

2. Barnes, J.: High Integrity Software: The SPARK Approach to Safety and Security.
Addison-Wesley Longman Publishing Co., Inc., Boston (2003)

3. Beyer, D., Henzinger, T.A., Majumdar, R., Rybalchenko, A.: Path invariants. In:
Proceedings of the 2007 ACM SIGPLAN Conference on Programming language
Design and Implementation, PLDI 2007, pp. 300–309. ACM, New York (2007)

4. Bradley, A., Manna, Z.: Property-directed incremental invariant generation. Formal
Aspects of Computing 20, 379–405 (2008), doi:10.1007/s00165-008-0080-9

5. Colón, M.A., Sankaranarayanan, S., Sipma, H.B.: Linear Invariant Generation Us-
ing Non-linear Constraint Solving. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV
2003. LNCS, vol. 2725, pp. 420–432. Springer, Heidelberg (2003)

6. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: Proceedings of the 5th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages, POPL 1978, pp. 84–96. ACM, New York
(1978)

7. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Efficiently
computing static single assignment form and the control dependence graph. ACM
Trans. Program. Lang. Syst. 13(4), 451–490 (1991)

8. Denney, E., Fischer, B.: A generic annotation inference algorithm for the safety cer-
tification of automatically generated code. In: Proceedings of the 5th International
Conference on Generative Programming and Component Engineering, GPCE 2006,
pp. 121–130. ACM, New York (2006)

9. Dijkstra, E.W.: Guarded commands, non-determinacy and formal derivation of
programs. Comm. ACM 18(8), 453–457 (1975)

10. Dijkstra, E.W., Scholten, C.S.: Predicate calculus and program semantics. Springer
(1990)

11. Verifier, E.C.: http://www.eschertech.com/products/ecv.php (2012)
12. Graf, S., Säıdi, H.: Construction of Abstract State Graphs with PVS. In: Grumberg,

O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)
13. Gulwani, S., McCloskey, B., Tiwari, A.: Lifting abstract interpreters to quantified

logical domains. In: Proceedings of the 35th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2008, pp. 235–246.
ACM, New York (2008)

14. Halbwachs, N., Péron, M.: Discovering properties about arrays in simple programs.
In: Proceedings of the 2008 ACM SIGPLANConference on Programming Language
Design and Implementation, PLDI 2008, pp. 339–348. ACM, New York (2008)

http://cedric.cnam.fr/fichiers/art_2555.pdf
http://www.eschertech.com/products/ecv.php

Maximal and Compositional Pattern-Based Loop Invariants 51

15. Harris, W.R., Sankaranarayanan, S., Ivančić, F., Gupta, A.: Program analysis via
satisfiability modulo path programs. In: Proceedings of the 37th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2010, pp. 71–82. ACM, New York (2010)

16. Hi-Lite: Simplifying the use of formal methods,
http://www.open-do.org/projects/hi-lite/

17. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM 12,
576–580 (1969)

18. Kovács, L.: Invariant Generation for P-Solvable Loops with Assignments. In:
Hirsch, E.A., Razborov, A.A., Semenov, A., Slissenko, A. (eds.) CSR 2008. LNCS,
vol. 5010, pp. 349–359. Springer, Heidelberg (2008)

19. Kovács, L., Voronkov, A.: Finding loop invariants for programs over arrays using
a theorem prover. In: Proceedings of the 2009 11th International Symposium on
Symbolic and Numeric Algorithms for Scientific Computing. SYNASC 2009, IEEE
Computer Society, Washington, DC (2009)

20. Mauborgne, L., Rival, X.: Trace Partitioning in Abstract Interpretation Based
Static Analyzers. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 5–20.
Springer, Heidelberg (2005)

21. McMillan, K.L.: Quantified Invariant Generation Using an Interpolating Saturation
Prover. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963,
pp. 413–427. Springer, Heidelberg (2008)

22. McMillan, K.L.: Interpolation and SAT-based model checking. In: Hunt Jr., W.A.,
Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg
(2003)

23. McMillan, K.L.: Lazy Abstraction with Interpolants. In: Ball, T., Jones, R.B. (eds.)
CAV 2006. LNCS, vol. 4144, pp. 123–136. Springer, Heidelberg (2006)

24. Miné, A.: The octagon abstract domain. Higher Order Symbol. Comput. 19, 31–100
(2006)

25. Nielson, H.R., Nielson, F.: Semantics with Applications: a formal introduction.
John Wiley & Sons, Inc., New York (1992)

26. Ottenstein, K.J., Ballance, R.A., MacCabe, A.B.: The program dependence web:
a representation supporting control-, data-, and demand-driven interpretation of
imperative languages. In: Proceedings of the ACM SIGPLAN 1990 Conference
on Programming Language Design and Implementation, PLDI 1990, pp. 257–271.
ACM, New York (1990)

27. RTCA. Formal methods supplement to DO-178C and DO-278A. Document RTCA
DO-333, RTCA (December 2011)

28. Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Non-linear loop invariant gener-
ation using Gröbner bases. In: Proceedings of the 31st ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2004, pp. 318–329.
ACM, New York (2004)

29. Sharma, R., Dillig, I., Dillig, T., Aiken, A.: Simplifying Loop Invariant Generation
Using Splitter Predicates. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011.
LNCS, vol. 6806, pp. 703–719. ACM, New York (2011)

30. SPARK Pro (2012), http://www.adacore.com/home/products/sparkpro/

http://www.open-do.org/projects/hi-lite/
http://www.adacore.com/home/products/sparkpro/

	Maximal and Compositional Pattern-Based Loop Invariants

	Introduction
	Related Work
	Running Example

	A Language of Parallel Assignments
	Strongest Postcondition Semantics

	Reduced Loops and Local Invariants
	(Inductive) L-Loop Invariants
	Local (Reduced) Loop Invariants

	Stable Loop Patterns
	Stability on Variables and Expressions
	Sufficient Conditions for Stability
	L-Loop Patterns

	Maximal Loop Invariants
	Conclusion and Further Work
	References

