
Julienne: A Trace Slicer for Conditional

Rewrite Theories�

Maŕıa Alpuente1, Demis Ballis2, Francisco Frechina1, and Daniel Romero1

1 DSIC-ELP, Universitat Politècnica de València,
Camino de Vera s/n, Apdo 22012, 46071 Valencia, Spain

{alpuente,ffrechina,dromero}@dsic.upv.es
2 DIMI, Università degli Studi di Udine,
Via delle Scienze 206, 33100 Udine, Italy

demis.ballis@uniud.it

Abstract. Trace slicing is a transformation technique that reduces the
size of execution traces for the purpose of program analysis and debug-
ging. Based on the appropriate use of antecedents, trace slicing tracks
back reverse dependences and causality along execution traces and then
cuts off irrelevant information that does not influence the data observed
from the trace. In this paper, we describe the first slicing tool for con-
ditional rewrite theories that can be used to drastically reduce complex,
textually-large system computations w.r.t. a user-defined slicing criterion
that selects those data that we want to track back from a given point.

1 Introduction

Software systems commonly generate large and complex execution traces, whose
analysis (or even simple inspection) is extremely time-consuming and, in some
cases, is not feasible to perform by hand. Trace slicing is a technique that sim-
plifies execution traces by focusing on selected execution aspects, which makes
it well suited to program analysis, debugging, and monitoring [6].

Rewriting Logic (RWL) is a very general logical and semantic framework
that is particularly suitable for formalizing highly concurrent, complex systems
(e.g., biological systems [5] and Web systems [1,4]). RWL is efficiently imple-
mented in the high-performance system Maude [7]. Rewriting logic-based tools,
like the Maude-NPA protocol analyzer, Maude LTLR model checker, and the
Java PathExplorer runtime verification tool (just to mention a few [11]), are used
in the analysis and verification of programs and protocols wherein the states are
represented as algebraic entities that use equational logic and the transitions
are represented using conditional rewrite rules. These transitions are performed
modulo conditional equational theories that may also contain algebraic axioms

� This work has been partially supported by the EU (FEDER) and the Span-
ish MEC TIN2010-21062-C02-02 project, by Generalitat Valenciana, ref. PROME-
TEO2011/052. Also, D. Romero is supported by FPI-MEC grant BES-2008-004860
and F. Frechina is supported by FPU-ME grant AP2010-5681.

D. Giannakopoulou and D. Méry (Eds.): FM 2012, LNCS 7436, pp. 28–32, 2012.
� Springer-Verlag Berlin Heidelberg 2012



Julienne: A Trace Slicer for Conditional Rewrite Theories 29

such as commutativity and associativity. The execution traces produced by such
tools are usually very complex and are therefore not amenable to manual in-
spection. However, not all the information that is in the trace is needed for
analyzing a given piece of information in a given state of the trace. For instance,
consider the following rules 1 that define (a part of) the standard semantics
of a simple imperative language: 1) crl <while B do I, St> => <skip, St>

if <B, St> => false /\ isCommand(I), 2) rl <skip, St> => St, and 3) rl
<false, St> => false. Then, in the execution trace <while false do X :=

X + 1, {}> → <skip, {}> → {}, we can observe that the statement X := X

+ 1 is not relevant to compute the output {}. Therefore, the trace could be
simplified by replacing X := X + 1 with a special variable • and by enforcing
the compatibility condition isCommand(•). This condition guarantees the cor-
rectness of the simplified trace [3]. In other words, any concretization of the
simplified trace (which instantiates the variable • and meets the compatibil-
ity condition) is a valid trace that still generates the target data that we are
observing (in this case, the output {}).

The Julienne slicing tool is based on the conditional slicing technique
described in [3] that slices an input execution trace with regard to a set of tar-
get symbols (which occur in a selected state of the trace), by propagating them
backwards through the trace so that all pieces of information that are not an an-
tecedent of the target symbols are simply discarded. Unlike standard backward
tracing approaches, which are based on a costly, dynamic labeling procedure
[2,10], in [3], the relevant data are traced back by means of a less expensive,
incremental technique of matching refinement. Julienne generalizes and super-
sedes a previous unconditional slicer mentioned in [2]. The system copes with
the extremely rich variety of conditions that occur in Maude theories (i.e., equa-
tional conditions s = t, matching conditions p := t, and rewrite expressions
t ⇒ p) by taking into account the precise way in which Maude mechanizes the
conditional rewriting process so that all those rewrite steps are revisited back-
wards in an instrumented, fine-grained way. In order to formally guarantee the
strong correctness of the generated trace slice, the instantiated conditions of the
equations and rules are recursively processed, which may imply slicing a number
of (originally internal) execution traces, and a Boolean compatibility condition
is carried, which ensures the executability of the sliced rewrite steps.

2 The Slicing Tool Julienne

The slicing tool Julienne is written in Maude and consists of about 170 Maude
function definitions (approximately 1K lines of source code). It is a stand-alone
application (which can be invoked as a Full Maude trace slicing command or
used online through a Java Web service) that correctly handles general rewrite
theories that may contain (conditional) rules and equations, built-in operators,
and algebraic axioms. Julienne also comes with an intuitive Web user interface

1 We use Maude notation (c)rl to introduce (conditional) rewrite rules.



30 M. Alpuente et al.

Fig. 1. Julienne architecture

that is based on the AJAX technology, which allows the slicing engine to be used
through the WWW. It is publicly available at [9].

The architecture of Julienne, which is depicted in Figure 1, consists of three
system modules named IT-Builder, Slicer, and Pretty-Printer.

IT-Builder. The Instrumented Trace Builder module is a pre-processor that
provides an expanded instrumented version of the original trace in which all
reduction steps are explicitly represented, including equational simplification
steps and applications of the matching modulo algorithm. Showing all rewrites
is not only required to successfully apply our methodology, but it can also be
extremely useful for debugging purposes because it allows the user to inspect
the equational simplification subcomputations that occur in a given trace.

Slicer. This module implements the trace slicing method of [3] by using Maude
reflection and meta-level functionality. Specifically, it defines a new meta-level
command called back-sl (backward-slicing) that takes as input an instrumented
trace t →∗ s (given as a Maude term of sort Trace) and a slicing criterion that
represents the target symbols of the state s to be observed. It then delivers (i) a
trace slice in which the data that are not relevant w.r.t. the chosen criterion are
replaced by special •-variables and (ii) a compatibility condition that ensures
the correctness of the generated trace slice. This module is also endowed with a
simple pattern-matching filtering language that helps to select the target symbols
in s without the encumbrance of having to refer to them by their addressing
positions.

Pretty-Printer. This module implements the command prettyPrint, which
provides a human-readable, nicely structured view of the generated trace slice
where the carried compatibility condition can be displayed or hidden, depending
on the interest of the user. Specifically, it delivers a pretty representation of
the trace as a term of sort String that is aimed to favor better inspection and
debugging activities within the Maude environment.

3 Experimental Evaluation and Conclusion

Julienne is the first slicing tool that can be used to analyze execution traces
of RWL-based programs and tools. Julienne greatly reduces the size of the ex-
ecution traces thus making their analysis feasible even in the case of complex,



Julienne: A Trace Slicer for Conditional Rewrite Theories 31

real-size problems. We have experimentally evaluated our tool in several case
studies that are available at the Julienne Web site [9] and within the distribu-
tion package, which also contains a user guide, the source files of the slicer, and
related literature.

We have tested Julienne on rather large execution traces, such as the coun-
terexample traces delivered by the Maude LTLR model-checker [8]. We have
used Julienne to slice execution traces of a real-size Webmail application in
order to isolate critical data such as the navigation of a malicious user and the
messages exchanged by a specific Web browser with the Webmail server. Typical
traces for this application consist of sequences of 100 -1000 states, each of which
contains more than 5K characters. In all the experiments, the trace slices that
we obtained show impressive reduction rates (up to ∼ 98%). Other benchmark
programs we have considered include the specification of a fault-tolerant com-
munication protocol, a banking system, and the automated verifier Web-TLR
developed on top of Maude’s model-checker itself. In most cases, the delivered
trace slices were cleansed enough to be easily inspected by hand. It is very im-
portant to note that the slicer does not remove any information that is relevant,
independently of the skills of the user.

With regard to the time required to perform the analyses, our implementation
is extremely time efficient; the elapsed times are small even for very complex
traces and scale linearly. For example, running the slicer for a 20Kb trace w.r.t.
a Maude specification with about 150 rules and equations –with AC rewrites–
took less than 1 second (480.000 rewrites per second on standard hardware,
2.26GHz Intel Core 2 Duo with 4Gb of RAM memory).

References

1. Alpuente, M., Ballis, D., Espert, J., Romero, D.: Model-Checking Web Applica-
tions with Web-TLR. In: Bouajjani, A., Chin, W.-N. (eds.) ATVA 2010. LNCS,
vol. 6252, pp. 341–346. Springer, Heidelberg (2010)

2. Alpuente, M., Ballis, D., Espert, J., Romero, D.: Backward Trace Slicing for Rewrit-
ing Logic Theories. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011.
LNCS, vol. 6803, pp. 34–48. Springer, Heidelberg (2011)

3. Alpuente, M., Ballis, D., Frechina, F., Romero, D.: Backward Trace Slicing for
Conditional Rewrite Theories. In: Bjørner, N., Voronkov, A. (eds.) LPAR-18 2012.
LNCS, vol. 7180, pp. 62–76. Springer, Heidelberg (2012)

4. Alpuente, M., Ballis, D., Romero, D.: Specification and Verification of Web Appli-
cations in Rewriting Logic. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS,
vol. 5850, pp. 790–805. Springer, Heidelberg (2009)

5. Baggi, M., Ballis, D., Falaschi, M.: Quantitative Pathway Logic for Computational
Biology. In: Degano, P., Gorrieri, R. (eds.) CMSB 2009. LNCS, vol. 5688, pp. 68–82.
Springer, Heidelberg (2009)

6. Chen, F., Roşu, G.: Parametric Trace Slicing and Monitoring. In: Kowalewski,
S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 246–261. Springer,
Heidelberg (2009)

7. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: Maude Manual (Version 2.6): Tech. rep., SRI,
http://maude.cs.uiuc.edu/maude2-manual/

http://maude.cs.uiuc.edu/maude2-manual/


32 M. Alpuente et al.

8. Clavel, M., Durán, F., Hendrix, J., Lucas, S., Meseguer, J., Ölveczky, P.C.: The
Maude Formal Tool Environment. In: Mossakowski, T., Montanari, U., Haveraaen,
M. (eds.) CALCO 2007. LNCS, vol. 4624, pp. 173–178. Springer, Heidelberg (2007)

9. The JULIENNE Web site (2012),
http://users.dsic.upv.es/grupos/elp/soft.html

10. TeReSe (ed.): Term Rewriting Systems. Cambridge University Press, Cambridge,
UK (2003)

11. Mart́ı-Oliet, N., Palomino, M., Verdejo, A.: Rewriting logic bibliography by topic:
1990-2011. Journal of Logic and Algebraic Programming (to appear, 2012)

http://users.dsic.upv.es/grupos/elp/soft.html

	Julienne: A Trace Slicer for ConditionalRewrite Theories
	Introduction
	The Slicing Tool Julienne 
	Experimental Evaluation and Conclusion
	References




