
Distribution of Modal Transition Systems

German E. Sibay1, Sebastián Uchitel1,2, Victor Braberman2, and Jeff Kramer1

1 Imperial College London, London, U.K.
2 Universidad de Buenos Aires, FCEyN, Buenos Aires, Argentina

Abstract. In order to capture all permissible implementations, partial
models of component based systems are given as at the system level.
However, iterative refinement by engineers is often more convenient at
the component level. In this paper, we address the problem of decom-
posing partial behaviour models from a single monolithic model to a
component-wise model. Specifically, given a Modal Transition System
(MTS) M and component interfaces (the set of actions each component
can control/monitor), can MTSs M1, . . . ,Mn matching the component
interfaces be produced such that independent refinement of each Mi will
lead to a component Labelled Transition Systems (LTS) Ii such that
composing the Iis result in a system LTS that is a refinement of M? We
show that a sound and complete distribution can be built when the MTS
to be distributed is deterministic, transition modalities are consistent and
the LTS determined by its possible transitions is distributable.

Keywords: Modal Transition Systems, Distribution.

1 Introduction

Partial behaviour models such as Modal Transition Systems (MTS) [LT88] ex-
tend classical behaviour models by introducing transitions of two types: required
or must transitions and possible or may transitions. Such extension supports in-
terpreting them as sets of classical behaviour models. Thus, a partial behaviour
model can be understood as describing the set of implementations which pro-
vide the behaviour described by the required transitions and in which any other
additional implementation behaviour is possible in the partial behaviour model.

Partial behaviour model refinement can be defined as an implementation sub-
set relation, thus naturally capturing the model elaboration process in which,
as more information becomes available (e.g. may transitions are removed, re-
quired transitions are added), the set of acceptable implementations is reduced.
Such notion is consistent with modern incremental development processes where
fully described problem and solution domains are unavailable, undesirable or
uneconomical.

The family of MTS formalisms has been shown to be useful as a model-
ing and analysis framework for component-based systems. Significant amount
of work has been devoted to develop theory and algorithmic support in the

D. Giannakopoulou and D. Méry (Eds.): FM 2012, LNCS 7436, pp. 403–417, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

404 G.E. Sibay et al.

context of MTS, MTS-variants, and software engineering applications. Develop-
ments include techniques for synthesising partial behaviour models from vari-
ous specification languages (e.g. [FBD+11, SUB08, KBEM09]), algorithms for
manipulating such partial behaviour models (e.g. [KBEM09, BKLS09b]), refine-
ment checks [BKLS09a], composition operators including parallel composition
and conjunction (e.g. [FBD+11]), model checking results(e.g. [GP11]), and tools
(e.g. [Sto05, DFFU07]).

Up to now, an area that had been neglected is that of model decomposition
or distribution. Distributed implementability and synthesis has been studied for
LTS [Mor98, CMT99, Ste06, HS05] for different equivalences notion like isomor-
phism, language equivalence and bisimulation. On the other hand, work on MTSs
has mostly assumed a monolithic system model which is iteratively refined until
an implementation in the form of a LTS is reached.

Problems related to MTS distribution were studied by some au-
thors [KBEM09, QG08, BKLS09b] and we compare their work to ours in Sec-
tion 4. However the general problem of how to move from an MTS that plays
the role of a monolithic partial behaviour model to component-wise partial be-
haviour model (set of MTSs) has not been studied. We study the distribution
problem abstractly from the specification languages used to describe the MTS to
be distributed. Those languages may allow description of behaviour that is not
distributable [UKM04] and a distribution is not trivial. Furthermore we study
the problem of finding all possible distributed implementations. Appropriate so-
lutions to this problem would enable engineers to move from iterative refinement
of a monolithic model to component-wise iterative refinement.

More specifically, we are interested in the following problem: given an MTS
M and component interfaces (the set of actions each component can control/
monitor), can MTSs M1, . . . ,Mn matching the component interfaces be pro-
duced such that independent refinement of each Mi will lead to a component
LTS Ii such that composing the Iis result in a system LTS that is a refinement
of M? We show that a sound and complete distribution can be built when the
MTS to be distributed is deterministic, transition modalities are consistent and
the LTS determined by its possible transitions is distributable.

We present various results that answer the above questions to some extent.
The main result of the paper is an algorithm that, under well-defined conditions,
produces component MTSs of a monolithic partial system behaviour model with-
out loss of information. That is, the independent refinement of the component
MTSs to LTSs and their parallel composition results in exactly the set of dis-
tributable implementations of the monolithic MTS.

2 Background

We start with the familiar concept of labelled transition systems (LTSs) which
are widely used for modelling and analysing the behaviour of concurrent and
distributed systems [MK99]. An LTS is a state transition system where transi-
tions are labelled with actions. The set of actions of an LTS is called its alphabet

Distribution of Modal Transition Systems 405

and constitutes the interactions that the modelled system can have with its
environment. An example LTS is shown in Figure 5(a).

Definition 1. (Labelled Transition System) Let States be a universal set of
states, and Act be the universal set of action labels. An LTS is a tuple I =
〈S, s0, Σ,Δ〉, where S ⊆ States is a finite set of states, Σ ⊆ Act is the set of
labels, Δ ⊆ (S ×Σ × S) is a transition relation, and s0 ∈ S is the initial state.

Definition 2. (Bisimilarity) [Mil89] Let LTSs I and J such that αI = αJ . I
and J are bisimilar, written I ∼ J , if (I, J) is contained in some bisimilarity
relation B, for which the following holds for all � ∈ Act and for all (I ′, J ′) ∈ B:

1. ∀� · ∀I ′′ · (I ′ �−→ I ′′ =⇒ ∃J ′′ · J ′ �−→ J ′′ ∧ (I ′′, J ′′) ∈ B).

2. ∀� · ∀J ′′ · (J ′ �−→ J ′′ =⇒ ∃I ′′ · I ′ �−→ I ′′ ∧ (I ′′, J ′′) ∈ B).

Definition 3 (Modal Transition System). M = 〈S, s0, Σ,Δr, Δp〉 is an
MTS where Δr ⊆ Δp, 〈S, s0, Σ,Δr〉 is an LTS representing required behaviour
of the system and 〈S, s0, Σ,Δp〉 is an LTS representing possible (but not neces-
sarily required) behaviour.

Every LTS 〈S, s0, Σ,Δ〉 can be embedded into an MTS 〈S, s0, Σ,Δ,Δ〉. Hence
we sometimes refer to MTS with the same set of required and possible transitions
as LTS. We refer to transitions in Δp\Δr as maybe transitions, depict them with
a question mark following the label. An example MTS is shown in Figure 2(a).
We use αM = Σ to denote the communicating alphabet of an MTS M .

Given an MTS M = 〈S, s0, Σ,Δr, Δp〉 we say M becomes M ′ via a required

(possible) transition labelled by �, denoted M
�−→r M

′ (M
�−→p M ′), if M ′ =

〈S, s′, Σ,Δr, Δp〉 and (s0, �, s′) ∈ Δr ((s0, �, s′) ∈ Δp). If (s0, �, s′) is a maybe

transition, i.e. (s0, �, s′) ∈ Δp \Δr, we write M
�−→m M ′.

Let w = w1 . . . wk be a word over Σ. Then M
w−→p M ′ means that there exist

M0, . . . ,Mk such that M = M0, M
′ = Mk, and Mi

wi+1−→p Mi+1 for 0 ≤ i < k. We

write M
w−→p to mean ∃M ′ ·M w−→p M ′. The language of an MTS M is defined

as L(M) = {w ∈ αM | M w−→p}. Finally we call optimistic implementation of
M (M+) the LTS obtained by making all possible transitions of M required.

Definition 4 (Parallel Composition). Let M = 〈SM , s0M , Σ,Δr
M , Δp

M 〉 and
N = 〈SN , s0N , Σ,Δr

N , Δp
N 〉 be MTSs. Parallel composition (‖) is a symmetric

operator and M ||N is the MTS 〈SM × SN , (s0M , s0N), Σ,Δr, Δp〉 where Δr and
Δp are the smallest relations that satisfy the rules in Figure 1.

Parallel composition for MTSs with all transitions required (i.e. an LTS) is the
same that parallel composition for LTSs [Mil89].

Strong refinement, or simply refinement [LT88], of MTSs captures the notion
of elaboration of a partial description into a more comprehensive one, in which
some knowledge of the maybe behaviour has been gained. It can be seen as being
a “more defined than” relation between two partial models. An MTS N refines

406 G.E. Sibay et al.

M
�−→mM′, N

�−→mN′

M‖N �−→mM′‖N′
M

�−→mM′, N
�−→rN

′

M‖N �−→mM′‖N′
M

�−→rM
′, N

�−→rN
′

M‖N �−→rM′‖N′

M
�−→γM′, � /∈ αN, γ ∈{p,r}

M‖N �−→γM′‖N
� /∈ αM, N

�−→γN′, γ ∈{p,r}
M‖N �−→γM‖N′

Fig. 1. Rules for parallel composition

M if N preserves all of the required and all of the proscribed behaviours of M .
Alternatively, an MTS N refines M if N can simulate the required behaviour of
M , and M can simulate the possible behaviour of N .

Definition 5. (Refinement) Let MTSs N and M such that αM = αN = Σ. N
is a strong refinement of M , written M � N , if (M,N) is contained in some
strong refinement relation R, for which the following holds for all � ∈ Act and
for all (M ′, N ′) ∈ R:

1. ∀� ∈ Σ, ∀M ′′ · (M ′ �−→r M
′′ =⇒ ∃N ′′ ·N ′ �−→r N

′′ ∧ (M ′′, N ′′) ∈ R).

2. ∀� ∈ Σ, ∀N ′′ · (N ′ �−→p N ′′ =⇒ ∃M ′′ ·M ′ �−→p M ′′ ∧ (M ′′, N ′′) ∈ R).

Property 1. Refinement is a precongruence with regards to ‖ meaning that if
Mi � Ii for i ∈ [n] then ‖i∈[n]Mi � ‖i∈[n]Ii where [n] = {1, . . . , n}.

LTSs that refine an MTS M are complete descriptions of the system behaviour
up to the alphabet of M . We refer to them as the implementations of M .

Definition 6. (Implementation) We say that an LTS I = 〈SI , i
0, Σ,ΔI〉 is

an implementation of an MTS M , written M � I, if M � MI with MI =
〈SI , i

0, Σ,ΔI , ΔI〉. We also define the set of implementations of M as I[M] =
{LTS I | M � I}.

An MTS can be thought of as a model that represents the set of LTSs that
implement it. The diversity of the set results from making different choices on
the maybe behaviour of the MTS. As expected, refinement preserves implemen-
tations: M � M ′ then I[M] ⊇ I[M ′].

Given a word w ∈ Σ∗ the projection of w onto Σi ⊆ Σ (w|Σi) is obtained by
removing from w the actions not in Σi.

Let A ⊆ Σ, M = 〈S, s0, Σ,Δp, Δr〉 and s ∈ S then the closure of the state s
over A is the set of states reachable from s using only transitions labelled by an
action in A. Formally:

CA(s) = {s′ | s w−→p s′ ∧ w ∈ A∗}

The projection of an MTS M over an alphabet Σ is an MTS M |Σ obtained
from M by replacing the labels in M that are not in Σ by the internal action
τ (written tau in the graphic representation of the MTS). Note that for any
alphabet Σ in this paper holds that τ /∈ Σ.

We now discuss distribution of LTS models. Distribution of an LTS is with
respect to a specification of component interfaces (the actions each component
controls and monitors). Such specification is given by an alphabet distribution.

Distribution of Modal Transition Systems 407

Given an alphabet Σ we say that Γ = 〈Σ1, . . . , Σn〉 is an alphabet distribution
over Σ iff Σ = ∪i∈[n]Σi were each Σi is the (non-empty) alphabet of the local
process i.

Definition 7 (Distributable LTS). Given I, an LTS over Σ, and Γ = 〈Σ1,
. . . ,Σn〉 an alphabet distribution of Σ, I is distributable if there exist component
LTSs I1, . . . , In with αIi = Σi such that ‖i∈[n]Ii ∼ I.

The distributed synthesis problem consists on deciding whether an LTS is dis-
tributable and, if so, build the distributed component LTSs. Unfortunately, it
is unknown if deciding whether an LTS is distributable is decidable in gen-
eral [CMT99]. However, it has been solved for weaker equivalence notions such
as isomorphism [Mor98, CMT99] and language equivalence [CMT99, Ste06], and
for restricted forms of LTS such as deterministic LTS [CMT99].

The following is a formal yet abstract distribution algorithm for determinstic
LTS defined in terms of the procedure in [CMT99, Ste06]. The procedure builds
the component Ii by projecting I over Σi and then determinising (using a subset
construction [HU79]) Ii.

Definition 8 (LTS distribution). Let I = 〈S, s0, Σ,Δ〉 be an LTS and Γ
an alphabet distribution then the distribution of I over Γ is DIST LT S

Γ [I] =
{I1, . . . , In} where ∀i ∈ [1, n] · Ii = 〈Si, s

0
i , Σi, Δi〉 and:

– Si ∈ 2S where Si is reachable from the initial state following Δi.
– s0i = CΣi

(s0).

– (s, t, q) ∈ Δi ↔ q =
⋃

k∈s

{k′′ ∈ CΣi
(k′) | k t−→p k′}.

When Γ is clear from the context we just write DIST LT S [I].

Theorem 1 (LTS Distribution Soundness and Completeness). [CMT99]
Let I be a deterministic LTS, Γ an alphabet distribution and DIST LT S

Γ [I] =
{I1, . . . , In} then I is distributable (and in fact ‖i∈[n]Ii ∼ I) iff L(I) = L(‖i∈[n]Ii).

3 MTS Distribution

A distribution of an MTS according to an alphabet distribution Γ is simply a
set of component MTSs {M1, . . . ,Mn} such that αMi = Σi. Of course, a first
basic requirement for a distribution of a system MTS into component MTSs
is soundness with respect to refinement: any implementation of the component
MTSs, when composed in parallel, yields an implementation of the system MTS
(i.e. if Mi � Ii for i ∈ [n] then M � ‖i∈[n]Ii).

A second desirable requirement is completeness, meaning no distributable
implementation is lost: a decomposition of M over Γ into a set of components
{M1, . . . ,Mn} such that every distributable implementation of M is captured by
the components. In other words, ∀I implementation of M that is distributable
over Γ there are Ii with i ∈ [n] such that Mi � Ii and ‖i∈[n]Ii ∼ I.

408 G.E. Sibay et al.

As discussed in the background section, multiple definitions of distribution
for LTS exist. We restrict to deterministic implementations but take the most
general distribution criteria, namely bisimilarity which under determinism is the
same as language equivalence. The restriction to deterministic implementations
is because as an LTS is also an MTS and MTS refinement applied to LTS is
bisimulation, solving sound distribution for non-deterministic MTS would solve
distribution for non-deterministic LTS considering bisimulation equivalence. The
latter is not known to be decidable [CMT99].

Definition 9 (Deterministic and Distributable Implementations). Let
M be an MTS and Γ a distribution. We define DDIΓ [M] = {I ∈ I[M] | I is
deterministic and distributable over Γ}.

Definition 10 (Complete and Sound MTS Distributions). Given an
MTS M and an alphabet distribution Γ , a complete and sound distribution of
M over Γ are component MTSs M1, . . . ,Mn such that αMi = Σi and:

1. (soundness) for any set of LTSs {I1, . . . , In}, if Mi � Ii then M � ‖i∈[n]Ii.

2. (completeness) for every I ∈ DDIΓ [M] there are Ii with i ∈ [n] where
Mi � Ii and ‖i∈[n]Ii ∼ I.

A general result for distribution of MTS is not possible. There are MTS for
which all their distributable implementations cannot be captured by a set of
component MTSs.

Property 2. In general, a complete and sound distribution does not always exist.

Proof. Let’s consider the MTS M in Figure 2(a) and the distribution Γ = 〈Σ1 =
{a, w, y}, Σ2 = {b, w, y}〉. The MTSs in Figures 2(b) and 2(c) refine M . Let J
and K be the optimistic implementations of the MTSs in Figures 2(b) and 2(c)
respectively. As the MTSs in the aforementioned figures refine M , its implemen-
tations are also implementations of M . It is easy to see that J and K are both
distributable over Γ . Then, a compact complete distribution of M should cap-
ture J and K. We shall show that in order to capture J and K the distribution
cannot be sound.

Let M1,M2 be a complete distribution of M over Γ with αMi = Σi. As it is
complete and J is distributable, there must be implementations of M1 and M2

that composed are bisimilar to J . Analogously, there must be implementations
of M1 and M2 that composed are bisimilar to K. Let us consider a characteristic
that an implementation J1 of M1 must have in order to yield J when composed
with an implementation J2 of M2. As J

a−→, a ∈ αM1 and a /∈ αM2, it must be
the case that J1

a−→.
The same reasoning can be applied to an implementationK2 ofM2: In order to

yield K when composed with an implementation K1 of M1, as K
b−→, b ∈ αM2

and b /∈ αM1, it must be the case thatK2
b−→. Hence, we have an implementation

J1 of M1 such that J1
a−→ and an implementation K2 of M2 such that K2

b−→.

This entails that J1 ‖ K2
ab−→. As M

ab

�−→ then J1 ‖ K2 is not a refinement of M .

Distribution of Modal Transition Systems 409

1 2

3

4

5

6

7

b?

w

a

y

a?
w

b y

(a) M

1 2 3

4

a?

w

b
y

(b)

1 2 3

4

b?

w

a
y

(c)

Fig. 2. MTSs used for proof of Property 2

Having assumed that M1 and M2 where a complete distribution of M over Γ
we have concluded that it is not a sound distribution of M over Γ . ��

This above property is reasonable: not all distributable implementations of an
MTS can be achieved by refining independently partial specifications of compo-
nents. Some decisions (or lack of them) regarding system behaviour captured in
the system MTS may require coordinated refinement of component MTSs. In
the counter-example described above, the system MTS states that either a or b
will occur initially but not both. The decision on which will be provided in the
final implementation requires coordinated refinement of the component models:
Either J provides a and K does not provide b or the other way round.

3.1 Distribution of a Deterministic MTS

Despite negative result in Property 2 there is a relevant class of MTSs for which
a sound and complete distribution is guaranteed to exist and for which an al-
gorithm that produces such distribution can be formulated. The class is that
of deterministic MTSs which assign modalities consistently and their optimistic
implementation (M+) is a distributable LTS.

We first give an overview of the distribution algorithm for MTS, then prove
soundness of the distributions produced by the algorithm, then define modal
consistency of transitions and prove the distributions produced by the algorithm
are also complete under modal consistency.

The distribution algorithm requires a deterministic MTS M for which its op-
timistic implementation M+ is a distributable LTS. The algorithm builds on the
LTS distribution algorithm for deterministic LTS under bisimulation equivalence
(see Background). The main difference is that it associates modalities to tran-
sitions of component models it produces based on the modalities of the system
MTS.

As a running example consider the MTS N in Figure 3 with alphabet Σ =
{a, b, c, d} and the alphabet distribution Γ = 〈Σ1 = {a, b}, Σ2 = {b, c, d}〉.
Conceptually, the algorithm projects N+ onto the component alphabets and
determinises each projection. The modality of a component MTS transition is set
to required if and only if at least one of its corresponding transitions in the system
MTS is required. The projections of N+ on Σ1 and Σ2 are depicted in Figure 4,
the deterministic versions of these projections are depicted in Figure 5, and the

410 G.E. Sibay et al.

1

2

3

4 5

6

7

8

9

10

11

12
a?

c?

c?

a?

b

d

a

c?

a

a

c?

d b

b?

Fig. 3. Running example: N

1

2

3

4 5

6

7

8

9

10

11

12
a

tau

tau

a

b

tau

a

tau

a

a

tau

tau b

b

(a) Projected onto Σ1.

1

2

3

4 5

6

7

8

9

10

11

12
tau

c

c

tau

b

d

tau

c

tau

tau

c

d b

b

(b) Projected onto Σ2.

Fig. 4. N+ projected onto the local alphabets

component MTS resulting from adding modalities to transitions is depicted in
Figure 6. Note that the numbers in states of the deterministic MTS in Figures 5
and 6 correspond to the states of N as a result of determinisation.

We now present a formal yet abstract distribution algorithm defined in terms
of the subset construction for determinising LTS models [HU79] and the LTS
distribution algorithm in [Ste06].

Definition 11 (MTS distribution). Let M = 〈S, s0, Σ,Δp, Δr〉 be an MTS
and Γ a distribution then the distribution of M over Γ is DIST MT S

Γ [M] =
{M1, . . . ,Mn} where ∀i ∈ [1, n]Mi = 〈Si, s

0
i , Σi, Δ

p
i , Δ

r
i 〉 and:

– Si ∈ 2S where Si is reachable from the initial state following Δp
i .

– s0i = CΣi
(s0).

– (s, t, q) ∈ Δp
i ↔ q =

⋃

k∈s

{k′′ ∈ CΣi
(k′) | k t−→p k′}.

– (s, t, q) ∈ Δr
i ↔ (s, t, q) ∈ Δp

i ∧ ∃k ∈ s · k t−→r.

When Γ is clear from the context we just write DIST MT S [M].

{1,3} {2,4} {5,6,7}

{8,9,10}{11,12}

a
b

a

b

(a) Projected onto Σ1

{1,2} {3,4} {5,8}

{6,9}

{7,10}

{11}

{12}

c b

d

c

b

b

(b) Projected onto Σ2

Fig. 5. N+ projected onto the local alphabets and determinised

Distribution of Modal Transition Systems 411

{1,3} {2, 4} {5,6,7}

{8, 9,10}{11,12}

a?

b

a

b

(a) Component N1.

{1,2} {3,4} {5,8}

{6,9}

{7,10}

{11}

{12}

c? b

d

c?

b

b?

(b) Component N2

Fig. 6. Distribution of MTS in Figure 3

Note that in component N1 of Figure 6 the required b transition from state
{8, 9, 10} to {11, 12} is a consequence of the required b transition from 9 to 11
and the maybe b transition from 10 to 12 in N . Had the transition from {8, 9, 10}
to {11, 12} in N1 been a maybe rather than required then the distribution would
not be sound. Let N ′

1 be such component. N ′
1 allows an implementation as in

Figure 5(a) but without the last b transition from {8, 9, 10} to {11, 12}. We refer

to this implementation as I1: I1
aba−→p

b

�−→. Let I2 be the LTS in Figure 5(b). I2

is actually an implementation of N2. But I
1 ‖ I2 is not an implementation of N

as I1 ‖ I2
acbad−→ p

b

�−→ and N
acbad−→ p

b−→r. Hence the need to make the b transition
{8, 9, 10} to {11, 12} required in order to ensure soundness.

We now discuss soundness of MTS distributions as constructed in Defini-
tion 11. First, note that Definition 11 when applied to LTS is equivalent to
Definition 8, that is the distribution constructed when the MTS is a determin-
istic LTS is, in effect, a distribution of the LTS. What follows is a sketch of the
more general soundness proof.

Theorem 2 (Soundness). Let M be a deterministic MTS and Γ a distribu-
tion such that M+ is a distributable LTS over Γ , then the MTS distribution
(Definition 11) is sound (as defined in Definition 10).

Proof. We need to prove that for any I1, . . . , In such that Mi � Ii then M �
‖i∈[n]I. As refinement is a precongruence with regards to ‖ meaning that if
Mi � Ii for i ∈ [n] then ‖i∈[n]Mi � ‖i∈[n]Ii we just need to prove M � ‖i∈[n]Mi.
Thus M � ‖i∈[n]Ii.

We now prove M � ‖i∈[n]Mi. M
+ is distributable and the component MTSs

produced by DIST MT S [M] are isomorphic, without considering the transitions’
modality, to the component LTSs produced by DIST LT S [M+]. So the parallel
composition of the component MTSs is isomorphic, again without considering
the transitions’ modality, to the parallel composition of the component LTSs.
When the component MTSs are created if, after the closure, there is a required
transition then the component will have a required transition and so the compo-
sition may have a required transition where the monolithic MTS had a maybe
transition. But any possible behaviour in the composed MTS is also possible

412 G.E. Sibay et al.

in the monolithic MTS. Therefore the composed MTS is a refinement of the
monolithic MTS. ��

We now define modal consistency of transitions, which is one of the conditions
for Definition 11 to produce complete distributions.

We say that the modalities of an MTS M are inconsistent with respect to an
alphabet distribution Γ when there is an action � such that there are two traces
w and y leading to two transitions with different modalities on � (i.e. a required
and a maybe �-transition) and that for each component alphabet Σi ∈ Γ where
� ∈ Σi, the projection of w and y on Σi are the same.

The intuition is that if M is going to be distributed to deterministic partial
component models, then some component contributing to the ocurrence of the
� after w and y must have reached both points through different paths (i.e.
w|Σi �= y|Σi). If this is not the case, then the distribution will have to make �
after w and y always maybe or always required.

Definition 12 (Alphabet Distribution Modal Consistency). Let Γ be an
alphabet distribution and M = 〈S, s0, Σ,Δr, Δp〉 an MTS then M is modal

consistent with respect to Γ iff ∀w, y ∈ Σ∗, � ∈ Σ ·M w−→p
�−→r ∧ M

y−→p
�−→m

implies ∃i ∈ [n] · � ∈ Σi ∧ w|Σi �= y|Σi .

Consider model N from Figure 3. This MTS is modal consistent for Γ = 〈Σ1 =

{a, b}, Σ2 = {b, c, d}〉 as the only w, y and � such that N
w−→p

�−→m and

N
y−→p

�−→m are � = b, and w and y sequences leading to states 9 and 10
(for instance w = cabda and y = acbac). However, all sequences leading to 9
when projected onto Σ2 yield cbd while those leading to 10 yield cbc. Hence,
consistency is satisfied.

Now consider model P in Figure 7 (a modified version of N but with the

following modalities changed: 5
a−→m 8 and 6

a−→m 9). P is not modal consistent
with respect to Γ = 〈Σ1 = {a, b}, Σ2 = {b, c, d}〉: Now there are w = acb and

y = acbc such that P
w−→p

a−→m and P
y−→p

a−→m yet the only Σi that includes
a is Σ1 and w|Σ1 = y|Σ1 = ab.

A sound and complete distribution of P would require a deterministic compo-
nent MTS for Σ1 = {a, b} that would either require a after ab or have a maybe a
after ab. The former would disallow the implementation I1 of Figure 8(b) which
in turn would make impossible having a component implementation I2 such that
I1 ‖ I2 yields I of Figure 8(a) which is a deterministic distributable implementa-
tion of P . Hence requiring a after ab would lead to an incomplete distribution.
Choosing the latter would allow implementation I1 which would make the dis-
tribution unsound: In order to have implementations that when composed yield
P+, an implementation with alphabet Σ2 = {b, c, d} bisimilar to Figure 8(c)
is needed. However, such an implementation, when composed with I1 is not a
refinement of P .

Theorem 3 (Completeness). Let M be a deterministic MTS and Γ a distri-
bution such that M+ is a distributable LTS over Γ , and M is modal consistent

Distribution of Modal Transition Systems 413

1

2

3

4 5

6

7

8

9

10

11

12
a?

c?

c?

a?

b

d

a?

c?

a?

a

c?

d b

b?

Fig. 7. P : Modal Inconsistent MTS

a

c

c

a

b

d

(a) Implementation of Figure 7

a b

(b) Component P+
1

c b
c

d

b

b

(c) Component P+
2

Fig. 8.

then the MTS distribution (Definition 11) is complete (as defined in Defini-
tion 10).

The proof of this theorem uses the following lemmas:

Lemma 1. Let M,N be deterministic MTSs with αN = αM if ∀w ∈ Σ∗, t ∈ Σ

– N
w−→p =⇒ M

w−→p.

– N
w−→p ∧ M

w−→p M ′ t−→r =⇒ N ′ t−→r.

Then M � N .

Lemma 2. Let M be an MTS and I ∈ DDI [M]. For every Σi ∈ Γ let Mi and
Ii be the components corresponding to Σi in DIST MT S [M] and DIST LT S [I]

respectively then ∀w ∈ Σi · Ii w−→p =⇒ Mi
w−→p.

Proof (Theorem 3). Let DIST MT S
Γ [M] = {M1, . . . ,Mn}. We need to prove that

for every I ∈ DDIΓ [M] there are Ii with i ∈ [n] where Mi � Ii and ‖i∈[n]Ii ∼ I.

As I is distributable over Γ then DIST LT S
Γ [I] = {Q1 . . .Qn} and ‖i∈[n]Qi ∼ I.

Recall that the distribution algorithms produce deterministic components.
Therefore we can use Lemma 1 to show that each MTS component is refined

414 G.E. Sibay et al.

by its corresponding LTS component. Let Mi and Qi be the MTS and LTS
components for Σi ∈ Γ . Every possible trace in Qi is possible in Mi (Lemma 2).
Then the only way Qi is not a refinement of Mi is because there is some required
behaviour in Mi that is not present in Qi. So lets suppose Mi �� Qi, then

∃z ∈ Σ∗
i , t ∈ Σi such that Mi

z−→p T
t−→r ∧ Qi

z−→p Q
t

�−→.
We now present an algorithm that creates, for every i ∈ [n], a new component

Ii from Qi by adding the missing required transitions from Mi in order to get
Mi � Ii. The algorithm iteratively takes a pair (Mi, I

j
i), where Iji is the com-

ponent Ii constructed up to iteration j, such that Mi �� Iji and adds a required
transition for a pair mirroring Mi structure. The structure of Mi has to be kept
in the resulting Ii in order to avoid trying to add infinite required transitions
due to a loop of required transitions in Mi. If the added transitions are part,
and complete, a loop in Mi then that same loop will be created in Ii when the
algorithm adds the required transitions. Furthermore, the added transitions do
not modify the composition (Lemma 3).

Algorithm 1. Extension to each Qi to get a refinement of Mi

Input: {(M1, Q1), . . . , (Mn, Qn)}
Output: {I1, . . . , In}

I1 = Q1; . . . ; In = Qn;
while ∃i ∈ [n] ·Mi �� Ii do

take (Mi, Ii) ·Mi �� Ii;

take z ∈ Σ∗
i ·Mi

z−→p P
t−→r P

′ ∧ Ii
z−→ Q

t

�−→;
if ∃u ∈ Σ∗

i ·Mi
u−→p P ′ ∧ Ii

u−→ Q′ then

Q
t−→ Q′;

else
Add a new state Q′ to Ii and then the transition Q

t−→ Q′;
end if

end while

As an example of how the algorithm works consider the MTS E in Figure 9(a),
that is like N from Figure 3 only that the d transitions are maybe in E instead of
required, and Γ = 〈Σ1 = {a, b}, Σ2 = {b, c, d}〉. Let DIST MT S [E] = {E1, E2}.
E1 is the same as component N1 in Figure 6(a). E2 is like component N2 in
Figure 6(b) only that the d transition from {5, 8} to {6, 9} is a maybe d transition.
IE in Figure 9(b) is an implementation of E and DIST LT S [IE] = {Q1, Q2}
(Figure 10(a) and 10(b)). The algorithm takes {(E1, Q1), (E2, Q2)} and returns
components I1 (I1 is the same as the LTS in Figure 5(a)) and I2 (I2 is in fact
Q2). As E2 � Q2 then the algorithm will not change Q2 so I2 = Q2. E1 �� Q1

because E1
aba−→p

b−→r and Q1
aba−→p

b

�−→. The algorithm then adds the missing
transition to Q1 and the result is I1 (I1 is the same as the LTS in Figure 5(a)).
Now E1 � I1 and the algorithm finishes. See how I1 ‖ I2 ∼ Q1 ‖ Q2 as the
added b transition to Q1 in I1 does not appear in the composition because Q2

does not provide the needed synchronisation.

Distribution of Modal Transition Systems 415

1

2

3

4 5

6

7

8

9

10

11

12
a?

c?

c?

a?

b

d?

a

c?

a

a

c?

d? b

b?

(a) E

1

2

3

4 5 6

a

c

c

a

b

a

(b) IE.

Fig. 9.

{1,3} {2,4} {5} {6}
a

b
a

(a) Q1

{1,2} {3,4} {5,6}
c

b

(b) Q2.

Fig. 10.

Finally we prove that the algorithm finishes. As there are finite components
it is sufficient to show that Mi � Imi with m finite where Iji is Ii after doing j
additions of required transitions to Ii.

Each iteration adds a missing required t transition to a Iji that is present inMi.
If the required transition in Mi goes to P ′ and there is a u ∈ Σ∗

i from Mi to P ′

such that u is possible in Iji leading to Q′ then the new transition goes to Q′. Q′

is already present in Ij−1
i and the algorithm never modifies possible transitions

so any possible behaviour in Ij−1
i is possible in Mi and the same stands for Iji .

On the other hand, if P ′ is not reachable by a word that is possible in Iji then the
added required transition goes to a new state. This procedure modifies Ii until
all reachable required transitions in Mi not present in Ii are added. As loops of
required transitions in Mi that have to be added to Ii are added preserving the
loop structure then the iterations for component Mi can not be more than the
amount of required transitions present in Mi. And this is done for every pair of
components but as they are n the algorithm finishes. ��
The following lemma is used in the proof of Theorem 3. For all i ∈ [n] Ii refines
Mi and the added transitions do not modify the composition. Formally:

Lemma 3. Let M be a deterministic MTS such that M+ is distributable over
Γ and modal consistent. Let I ∈ DDI [M], DIST LT S [I] = {Q1, . . . , Qn},
DIST MT S [Mi] = {M1, . . . ,Mn} and {I1, . . . , In} the output of Algorithm 1
for {(M1, Q1), . . . , (Mn, Qn)}then:
– ∀i ∈ [n] Mi � Ii.
– ‖i∈[n]Ii ∼ ‖i∈[n]Qi (and therefore ‖i∈[n]Ii ∼ I).

4 Related Work

Distributed implementability and synthesis has been studied for LTS for different
equivalences notion like isomorphism, language equivalence and

416 G.E. Sibay et al.

bisimulation [Mor98, CMT99, Ste06, HS05]. The general distributed implementabil-
ity problem has not been studied for MTS.

A component view of the system has been taken in the context of studies
on parallel composition of MTS [BKLS09b], however such view is bottom-up:
Given partial behaviour models of components, what is the (partial) behaviour
of the system resulting of their parallel composition. The only notable example
that takes a top-down approach is [KBEM09] A synthesis procedure is proposed
that given system level OCL properties and UML scenarios, component partial
behaviour models are automatically constructed such that their composition
requires the behaviour required by system level properties and scenarios, and
proscribes the behaviour not permitted by the same properties and scenarios.

In [QG08], MTS distribution is studied as a instance of more general contract-
based formalism. The notion that corresponds to our definition of complete and
sound MTS Distribution (see Definition 10) is called decomposability, Definition
3.8 [QG08]. Decomposability is a strictly stronger notion which requires all im-
plementations of M to be captured by some distribution ‖i∈[n]Mi. Our definition
only requires distributable implementations of M to be refinements of ‖i∈[n]Mi.
In particular Figure 3, with transition from 6 to 9 changed to being only possi-
ble, is not distributable according to [QG08] but is according to our definition.
Moreover, the distribution algorithm of [QG08] cannot handle examples such
as Figure 3.3 in [Ste06] which can be handled by standard LTS distribution
algorithms (and ours) by determinising projections.

5 Conclusions

In this paper we provide results that support moving from iterative refinement of
a monolithic system models to component-wise iterative refinement. We present
a distribution algorithm for partial behaviour system models specified as MTS
to component-wise partial behaviour models given as sets of MTSs. We precisely
characterise when the decomposition provided is sound and complete, we also
discuss why the restrictions to the distribution problem (namely determinism,
modal consistency and distributability of M+) are reasonable, are unlikely to be
avoidable for any sound and complete distribution method, and can be seen as
a natural extension of the limitations of existing LTS distribution results.

Future work will involve experimenting with case studies to assess the practi-
cal limitations imposed by the restrictions introduced to enforce completeness of
distributions. We expect insights gained to allow for definition of more generally
applicable sound but not complete distribution algorithms and elaboration tech-
niques to support refinement of system models into models for which distribution
algorithms exist.

References

[BKLS09a] Beneš, N., Křet́ınský, J., Larsen, K.G., Srba, J.: Checking Thorough
Refinement on Modal Transition Systems Is EXPTIME-Complete. In:
Leucker, M., Morgan, C. (eds.) ICTAC 2009. LNCS, vol. 5684, pp. 112–126.
Springer, Heidelberg (2009)

Distribution of Modal Transition Systems 417

[BKLS09b] Beneš, N., Ket́ınský, J., Larsen, K.G., Srba, J.: On determinism in modal
transition systems. Theor. Comput. Sci. 410(41), 4026–4043 (2009)

[CMT99] Castellani, I., Mukund, M., Thiagarajan, P.S.: Synthesizing Distributed
Transition Systems from Global Specifications. In: Pandu Rangan, C., Ra-
man, V., Sarukkai, S. (eds.) FST TCS 1999. LNCS, vol. 1738, pp. 219–231.
Springer, Heidelberg (1999)

[DFFU07] D’Ippolito, N., Fishbein, D., Foster, H., Uchitel, S.: MTSA: Eclipse sup-
port for modal transition systems construction, analysis and elaboration.
In: Eclipse 2007: Proceedings of the 2007 OOPSLA Workshop on Eclipse
Technology Exchange, pp. 6–10. ACM (2007)

[FBD+11] Fischbein, D., Brunet, G., D’Ippolito, N., Chechik, M., Uchitel, S.: Weak
alphabet merging of partial behaviour models. In: TOSEM, pp. 1–49 (2011)

[GP11] Godefroid, P., Piterman, N.: Ltl generalized model checking revisited.
STTT 13(6), 571–584 (2011)

[HS05] Heljanko, K., Stefanescu, A.: Complexity results for checking distributed
implementability. In: Proc. of the Fifth Int. Conf. on Application of Con-
currency to System Design, pp. 78–87. IEEE Computer Society Press
(2005)

[HU79] Hopcroft, J.E., Ullman, J.D.: In: Introduction to automata theory, lan-
guages, and computation. Addison-Wesley (1979)

[KBEM09] Krka, I., Brun, Y., Edwards, G., Medvidovic, N.: Synthesizing par-
tial component-level behavior models from system specifications. In:
ESEC/FSE 2009, pp. 305–314. ACM (2009)

[LT88] Larsen, K.G., Thomsen, B.: A modal process logic. In: LICS 1988, pp.
203–210. IEEE Computer Society (1988)

[Mil89] Milner, R.: Communication and Concurrency. Prentice-Hall, New York
(1989)

[MK99] Magee, J., Kramer, J.: Concurrency - State Models and Java Programs.
John Wiley (1999)

[Mor98] Morin, R.: Decompositions of Asynchronous Systems. In: Sangiorgi, D., de
Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 549–564. Springer,
Heidelberg (1998)

[QG08] Quinton, S., Graf, S.: Contract-based verification of hierarchical systems
of components. In: SEFM 2008, pp. 377–381 (2008)

[Ste06] Stefanescu, A.: Automatic Synthesis of Distributed Systems. PhD thesis
(2006)

[Sto05] Stoll, M.: MoTraS: A Tool for Modal Transition Systems. Master’s thesis,
Technische Universitat Munchen, Fakultat fur Informatik (August 2005)

[SUB08] Sibay, G., Uchitel, S., Braberman, V.: Existential live sequence charts re-
visited. In: ICSE 2008, pp. 41–50 (2008)

[UKM04] Uchitel, S., Kramer, J., Magee, J.: Incremental elaboration of scenario-
based specifications and behaviour models using implied scenarios. ACM
TOSEM 13(1) (2004)

	Distribution of Modal Transition Systems
	Introduction
	Background
	MTS Distribution
	Distribution of a Deterministic MTS

	Related Work
	Conclusions
	References

