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Abstract. We present the integration of the Kodkod high-level inter-
face to SAT-solvers into the kernel of ProB. As such, predicates from B,
Event-B, Z and TLA+ can be solved using a mixture of SAT-solving and
ProB’s own constraint-solving capabilities developed using constraint
logic programming: the first-order parts which can be dealt with by
Kodkod and the remaining parts solved by the existing ProB kernel.
We also present an empirical evaluation and analyze the respective mer-
its of SAT-solving and classical constraint solving. We also compare to
using SMT solvers via recently available translators for Event-B.
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1 Introduction and Motivation

TLA+ [10], B [1] and Z are all state-based formal methods rooted in predicate
logic, combined with arithmetic and set theory. The animator and model checker
ProB [12] can be applied to all of these formalisms and is being used by several
companies, mainly in the railway sector for safety critical control software [13,14].
At the heart of ProB is a kernel dealing with the basic data types of these
formalisms, i.e., integers, sets, relations, functions and sequences. An important
feature of ProB is its ability to solve constraints; indeed constraints can arise in
many situations when manipulating a formal specification: the tool needs to find
values of constants which satisfy the stipulated properties, the tool needs to find
acceptable initial values of a model, the tool has to determine whether an event
or operation can be applied (i.e., is there a solution for the parameters which
make the guard true) or whether a quantified expression is true or not. Other
tasks involve more explicit constraint solving, e.g., finding counterexamples to
invariant preservation or deadlock freedom proof obligations [7]. While ProB
is good at dealing with large data structures and also at solving certain kinds
of complicated constraints [7], it can fare badly on certain other constraints,
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in particular relating to relational composition and transitive closure. (We will
illustrate this later in the paper.)

Another state-based formalism is Alloy [8] with its associated tool which uses
the Kodkod [21] library to translate its relational logic predicates into proposi-
tional formulas which can be fed into SAT solvers. Alloy can deal very well with
complicated constraints, in particular those involving relational composition and
transitive closure. Compared to B, Z and TLA+, the Alloy language and the
Kodkod library only allow first-order predicates, e.g., they do not allow relations
over sets or sets of sets.

The goal of this work is to integrate Kodkod into ProB, providing an alter-
native way of solving B, Z and TLA+ constraints. Note that we made sure that
the animation and model checking engine as well as the user interface of ProB
are agnostic as to how the underlying constraints are solved. Based on this inte-
gration we also conduct a thorough empirical evaluation of the performance of
Kodkod compared to solving constraints with the existing constraint logic pro-
gramming approach of ProB. As we will see later in the paper, this empirical
evaluation provides some interesting insights. Our approach also ensures that the
whole of B is covered, by delegating the untranslatable higher-order predicates
to the existing ProB kernel.

2 B, Z, TLA+ and Kodkod in Comparison

ProB can support Z and TLA+ by translating those formalisms to B, because
these formalisms have a common mathematical foundation. In the case of TLA+

a readable B machine is actually generated, whereas a Z specification is trans-
lated to ProB’s internal representation because some Z constructs did not have
a direct counterpart in B’s syntax. In the next sections we refer only to B, but
because all three notations share the same representation in ProB, all presented
techniques can be applied likewise to the two other specification languages.

If we specify a problem in B, we basically have a number of variables, each
of a certain type and a predicate. The challenge for ProB is then to find values
for the variables that fulfil the predicate. For simplicity, we ignore B’s other
concepts like machines, refinement, etc.

Kodkod provides a similar view on a problem. We have to specify a number
of relations (these correspond to our variables in B) and a formula (which corre-
sponds to a predicate in B) and Kodkod tries to find solutions for the relations.

From this point of view, the main difference between B and Kodkod is the
type system: Instead of having some basic types and operations like power set
and Cartesian product to combine these, Kodkod has the concept of a universe
consisting of atoms. To use Kodkod, we must define a list of atoms and for each
relation we must specify a bound that determines a range of atoms that can be
in the relation.

The bound mechanism can also be used to assign an exact value to a relation.
This is later useful when we have already computed some values by ProB.
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3 Architecture

3.1 Overview

We use a small example to illustrate the basic mechanism how Kodkod and SAT
solving is integrated into ProB’s process to find a model for a problem. Details
about the individual components are presented below after this overview.

Our small problem is taken from the “dragon book” [2] and formalised in B.
The aim is to find loops in a control flow graph of a program (see Figure 1).

bentry

b1

b2

b3

b4

b5

b6

bexit

Fig. 1. Control flow
graph of a program

We model the basic blocks as an enumerated set
Blocks with the elements b1, b2, b3, b4, b5, b6, bentry,
bexit. The successor relation is represented by a vari-
able succs , the set of the nodes that constitute the
loop by L and the entry point of the loop by lentry.
The problem is described by the B predicate:

succs = {bentry �→ b1, b1 �→ b2, b2 �→ b3, b3 �→ b3,
b3 �→ b4, b4 �→ b2, b4 �→ b5,
b5 �→ b6, b6 �→ b6, b6 �→ bexit}

∧ lentry ∈ L
∧ succs−1[L \ {lentry}] ⊆ L
∧ ∀l.(l ∈ L ⇒ lentry ∈ (L� succs� L)+[{l}])

In total, there are seven different solutions to this
problem, for instance L = {b2, b3, b4} with lentry = b2.

After parsing and type checking the predicate, we
start a static analysis (the box “Analysis” in Fig. 2)
to determine the integer intervals of all integer expres-
sions. In our simple case, the analysis is not necessary.
In Section 3.4 we describe how this analysis works and
under which circumstances it is needed.

In the next phase, we try to translate the formula from B to Kodkod (“Trans-
lation” in Fig. 2). First we have a look at the used variables and their types:
succs is of type P(Blocks × Blocks), L of type P(Blocks) and lentry of type
Blocks . Blocks is here the only basic type that is used. Thus we have to reserve
8 atoms in the Kodkod universe to represent this type; each atom in the universe
corresponds directly to a block bi. The variables can be represented by binary
(succs) and unary (L and lentry) relations, where we have to keep in mind that
the relation for lentry must contain exactly one element. The B predicate can
be completely translated to a Kodkod problem. In Section 3.2 we will describe
the translation in more detail. It can be useful to keep a part of the formula
untranslated: since the part succs = {. . .} is very easy to compute by ProB, we
leave it untranslated. The translated formula has the form:

one lentry &&

lentry in L &&
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Fig. 2. Overview of the architecture

((L-lentry) . ~succs) in L &&

all l: one Blocks | (l in L =>

lentry in (l.^(((L->Blocks)&succs)&(Blocks->L))))

The translated description of the formula is then stored and a mapping be-
tween ProB’s internal representation and Kodkod’s representation of values is
constructed (“Mapping” in Fig. 2). The message “new problem with following
properties. . . ” is sent to the Java process.

The Kodkod problem gets a unique identifier and the translated part of the
B predicate is replaced by a reference to the problem, i.e., succs = {. . .} ∧
kodkod(ID), and then given to the B interpreter of ProB.

When the ProB interpreter starts to evaluate the predicate, it prioritises
which parts should be computed first. It chooses succs = {. . .} because it can
be computed deterministically by ProB’s core and finds a value for succs . Then
a message “We have these values for succs , try to find values for the other
variables” is sent to the Java process.

The Java process has now a complete description of the problem. It con-
sists of the universe (with 8 atoms) and relations for the variables and the type
Blocks itself. The bounds define the value of succs and Blocks and ensure that
all relations contain only atoms that match their corresponding types. This in-
formation is then given together with the formula to the solver of the Kodkod
library (“Kodkod” in Fig. 2) that translates the problem into a SAT problem
and passes this to the SAT solver.

The SAT solver finds solutions that are transformed by Kodkod to instances of
the relations that fulfil the given formula The values of the previously unknown
relations that represent L and lentry are sent back in an answer to the ProB
process. The answer is then mapped to ProB’s internal representation of values.
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The B interpreter can now continue with the found values. Now all predicates
have been evaluated and the solutions can be presented to the user.

3.2 Translation

Representing Values. It turns out that the available data types in Kodkod
are the main limitation when trying to translate a problem described in B. Let’s
first have a look at the available data types in B and how they can be translated
to Kodkod. We have the basic data types:

Enumerated Sets. Enumerated sets can directly be translated to Kodkod. For
each element of the set, we add an atom to the universe and create a unary
relation that contains exactly that atom. The relation is needed in case the
element is referred to in an expression. We create another unary relation for
the whole set that contains exactly all atoms of the enumerated set.

Deferred Sets. Deferred Sets in B can have any number of elements that are
not further specified. For animation, ProB chooses a fixed finite cardinality
for the set, either by an analysis of the axioms or by using user preferences.
Then we can treat deferred sets just like a special case of enumerated sets.

Booleans. The set of Booleans is a special case of an enumerated set with two
elements TRUE and FALSE.

Integer. Integers in B represent mathematical numbers, they can be arbitrary
large. It is possible to represent integer values in Kodkod, but the support
is very limited and special care has to been taken. We describe the handling
of integers in Section 3.3 in detail.

Thus, we can map a B variable of a basic data type to a Kodkod relation. Since
Kodkod treats every relation as a set, we must ensure explicitly that the relations
for such variables contain exactly one element.

Example. Let’s assume that we use two types in our specification, an enumer-
ated set E = {a, b, c} and BOOL. Treating the Booleans as enumerated set
BOOL = {TRUE,FALSE}, we have the following universe with five atoms:

E BOOL

B value a b c TRUE FALSE
atom 0 1 2 3 4

We can now represent a variable of type E by a unary relation r1 whose elements
are bounded to be a subset of the atoms 0 .. 2. We also have to add the Kodkod
formula one r1.

In B, two or more basic types can be combined with the Cartesian product.
Variables of such a type can be represented by a relation.

Example. If we have a variable of type (E × E) × BOOL, we can represent
it by a ternary relation r2 whose elements are bound to subsets of the atoms
0 .. 2 × 0 .. 2 × 3 .. 4. Like in the example above, we have to add the condition
one r2.
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We can construct the power set P(α) for any type α in B. A variable of type
P(α) can be mapped to a Kodkod relation if α is itself not a set. A relation for
P(α) is defined exactly as a relation for α but without the additional restriction
that it must contain exactly one element.

Finally, let’s have a look at what we cannot translate. All “higher-order” data-
types, i.e. sets of sets are not translatable. E.g a function f ∈ A �→ P(B) cannot
be handled.

It turned out that unary and binary relations are handled very well. With
relations of a higher arity we encounter the problem that many operators in
Kodkod are restricted to binary relations. Thus it is not as easy to translate
many properties using these data types.

Translating Predicates and Expressions. One of the central tasks in com-
bining ProB and Kodkod is the translation of the B predicate that specifies
the problem to a Kodkod formula. Many of B’s most common operators can be
directly translated to Kodkod, especially when basic set theory and relational
algebra is used. It is not strictly necessary to cover all operators that B provides,
because we always have the possibility to fall back to ProB’s own constraint
solving technique. Of course, we strive to cover as many operators as possible.

Operators on Predicates. The basic operators that act on predicates like con-
junction, disjunction, etc. have a direct counterpart in Kodkod. This includes
also universal and existential quantification.

Arithmetic Operators. Addition, subtraction and multiplication of integers can
also directly be translated, whereas division is not supported by Kodkod. Other
supported integer expressions are constant numbers and the cardinality of a
set. If we want a variable to represent an integer, we have to convert explic-
itly between a relation that describes the value and an integer expression (see
Section 3.3).

Relational Operators. Many operators that act on sets and relations can be
translated easily to Kodkod.

Figure 3a shows a list of operators that have a direct counterpart in Kodkod.
With T (A) we denote the translated version of the expression A. Please note
that the expressions A ∈ B and A ⊆ B are translated to the same expression
in Kodkod. This is due to the fact that single values are just a special case in
Kodkod where a set contains just one element. The same effect can be found at
the Cartesian product (A×B) and a pair (A �→ B) and at the relational image
(A[B]) and the function application (A(B)).

Other operators need a little bit more work. They can be expressed by com-
bining other operators. Figure 3b shows a selection of such operators. In the
table, we use an operator A(E) to denote the arity of the relation that repre-
sents the expression E. Again we can see that different operators in B (e.g. dom
and prj1) lead to the same result.
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B Kodkod

A ∈ B T (A) in T (B)
A ⊆ B T (A) in T (B)
A×B T (A) -> T (B)
A �→ B T (A) -> T (B)
A ∩B T (A) & T (B)
A ∪B T (A) + T (B)
A \B T (A) - T (B)
A[B] T (B).T (A)
A(B) T (B).T (A)
A�−B T (A)++T (B)
A−1 ~T (A)
A+ ^T (A)

(a) direct translation

B Kodkod

dom(A) prj[1:A(α)](T (A))
with A being of type P(α× β)

ran(A) prj[A(α)+1:A(A)](T (A))
with A being of type P(α× β)

prj1(A) T (dom(A))
prj2(A) T (ran(A))
A�B (T (A) -> T (β)) & T (B)

with B being of type P(α× β)
A�−B ((univ-T (A))->T (α)) & T (B)

with B being of type P(α× β)
bool(P ) if T (P ) then T (TRUE) else T (FALSE)
f ∈ A �→B pfunc(T (f), T (A),T (B))
f ∈ A→B func(T (f), T (A),T (B))
f ∈ A�B func(T (f), T (A),T (B)) &&

(T (f).~T (f)) in iden

(b) more complex rules

Fig. 3. Examples for translation rules

3.3 Integer Handling in Kodkod

Kodkod provides only a very limited support for integers. The reason for this is
twofold. Since SAT solvers are used as the underlying technology, integers are
encoded by binary numbers. Operations like addition then have to be encoded
as boolean formulas. This makes the use of integers ineffective and cumbersome.
Another reason is that the designers of Alloy – where Kodkod has its origin
– argue [8] that integers are often not very useful and an indication of lack of
abstraction when modeling systems.

Our intention is to make our tool applicable to as many specifications as
possible, and many of the B specifications we tried contained some integer
expressions. Indeed, integers are used to model sequences in B or multi-sets
in Z.

When using Kodkod with integers, we have to specify the number of bits used
in integer expressions. Integer overflows are silently ignored, e.g. the sum of two
large naturals can be negative when the maximum integer size is exceeded. Thus
we need to ensure that we use only integers in the specified range to prevent
faulty results.

Kodkod distinguishes between relational and integer expressions. An integer
expression is for example a constant integer or the sum of two integer expressions.
Comparison of integer expressions like “less than” is also supported. In case we
want a relation (i.e. a variable) that represents an integer, we must first assign
values to some atoms. Figure 4 shows an example with a universe consisting of
9 atoms i0, . . . , i8 that represent integers.
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binary numbers

for integer sets

atom . . . i0 i1 i2 i3 i4 i5 i6 i7 i8 . . .

associated integer value . . . −1 0 3 5 1 2 4 8 −16 . . .

Fig. 4. Mapping atoms to integer values

We have basically two options when we want represent integers by a relation:

– We can represent sets of integers in the interval a .. b by having an atom for
each number in a .. b. Then the relation simply represents the integers of its
atoms.

E.g. with the universe in Figure 4, we can represent arbitrary subsets of
−1 .. 5 by using a relation that is bounded to the atoms i0, . . . , i4.

The downside of this approach is that the number of atoms can become
easily very large.

– Single integers can be represented more compactly by using a binary number.
E.g. with the universe in Figure 4, we can represent a number of the interval
−16 .. 15 by using a relation that is bounded to the atoms i4 .. i8. A relation
that consists of the atoms i4, i6, i8 would represent the sum 1+4+ (−16) =
−9. Kodkod provides an operator to summarise the atoms of a relation,
yielding an integer expression.

With this approach large numbers can be handled easily. The downside is
that we cannot represent sets of numbers.

The atoms in the universe seen in Figure 4 are ordered in a way that we can use
both approaches to represent integers in the same specification.

It can be seen that we need an exact knowledge of the possible size of integer
expressions in the specification. To get the required information, a static analysis
is applied to the specification before the translation. See below in Section 3.4 for
details of the analysis.

Another problem that arises from having two kinds of integer representations,
is that we have to ensure the consistency of formulas that use integer expressions.
We briefly describe the problem in Section 3.5.

3.4 Predicate Analysis

In case that integers are used in the model, we need to know how large they
can get in order to translate the expressions. To get this information we apply
a static analysis on the given problem.

The first step of the analysis is that we create a graph that describes a con-
straint problem. For each expression in the abstract syntax tree, we create some
of nodes depending on the expression’s type that contain relevant information
associated to the syntax node. E.g. this might be the possible interval for inte-
gers, the interval of the cardinality for sets or the interval in which all elements
of a set lie.
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By applying pattern matching on the syntax tree, we add rules that describe
the flow of information in the graph. E.g. if we have a predicate A ⊂ B, we can
propagate all information about elements of B to nodes that contain informa-
tion about A. We evaluate all rules until a fixpoint or a maximum number of
evaluation steps is reached.

Example. Let’s take the predicate A ⊆ 3 .. 6 ∧ card(A) > 1. For each integer
node (1, 3, 6, card(A)) we create a node containing the integer range. For each
of the sets A and 3 .. 6 we create two nodes: One contains the range of the set’s
cardinality, the other describes the integer range of the set’s elements. Figure 5
shows the resulting graph. In the upper part of each node the expression is
shown, in the lower part the kind of information that is stored in the node. The
edges without any labels denote rules that pass information just from one node
to another. Those which are labeled with ≤, ≥, <, > express a relation between
integer ranges of the source and target node. There is a special rule marked
i → c (“interval to cardinality”) which deduces a maximum cardinality from the
allowed integers in a set. E.g. if all elements of a set I are in the range x .. y, we
know that card(I) ≤ y−x+1. The graph in Figure 5 shows the information we
have about each node after the analysis. In particular, we know the bounds of
all integer expressions.

3 .. 6

each element ∈ 3 .. 6

3

∈ 3 .. 3

6

∈ 6 .. 6

3 .. 6

cardinality 0 .. 4

A

each element ∈ 3 .. 6

A

cardinality 2 .. 4

card(A)

∈ 2 .. 4

1

∈ 1 .. 1

><

i → c

i → c

≥
≤ ≤

≥

Fig. 5. Constraint system for A ⊆ 3 .. 6 ∧ card(A) > 1

Currently the analysis is limited to integer intervals and cardinality, because
this was the concrete use case given by our translation to Kodkod. We plan to
re-use the analysis for other aspects of ProB. E.g. if we can deduce the interval
of a quantified integer variable, ProB can limit the enumeration of values to
that range if it must test a predicate for all possible values of that variable.

Other types of information nodes are also of interest. For instance, we could
infer the information if an expression is a function or sequence to assist ProB
when evaluating predicates.
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3.5 Integer Representations

We have seen above in Section 3.3 that we have two distinct forms of representing
integers. Additionally we have Kodkod’s integer expressions when we want to
compare, add, subtract or multiply them. During the translation process we must
ensure that the correct representation is chosen for each expression and that the
representations are consistently used. If the take a simple equality A = B with
A, B being integers as an example, we must ensure that both sides use the same
representation.

Internally, the result of the translation is an abstract syntax tree that describes
the formula. Some expressions in this syntax tree have annotations about the
needed integer representation. E.g., if the original expression in B is a set of
integers, it has the annotation that the integer set representation and not the
the binary number representation must be used. We now impose a kind of type
checking on this syntax tree to infer if conversions between different integer
representations have to be inserted in the formula.

3.6 Extent of the Translation: Partitioning

Theoretically we can take any translatable sub-predicate of a specification and
replace it with a call to Kodkod. But usually, the overhead due to the communi-
cation between the processes can easily get so large that incorporating Kodkod
has no advantage over using ProB alone.

A more sensible approach for a specification that is a conjunction of predicates
P1∧. . .∧Pn is to apply the translation to every Pi. All translatable predicates are
then replaced by one single call to Kodkod. But even here we made the experience
that the communication overhead can become large if not all predicates are
translated.

Our current approach is to create a partition of the predicates P1, . . . , Pn.
Two predicates are then in the same set of the partition if they both use the
same variable. We translate only complete partitions to keep the communication
overhead small. There is one exception: We do not translate simple equations
where one side is a variable and the other side an easy to compute constant.
Such deterministic equations are computed first by the constraint solver, so the
value for such a variable will be computed before the call to Kodkod is made.
This keeps the translated formula small even for a large amount of data.

4 Experiments

We have chosen a number of problems to compare the performance of ProB’s
constraint solving technique and Kodkod’s SAT solving approach. We have only
used problems that can be completely translated. Completely translated models
are still fully integrated into ProB, the results are converted to ProB’s internal
format and can be used for further animation and model checking. The results
can be seen in Table 1.1 All experiments were conducted on a dual-core Intel i7

1 The source code of the examples are available in the technical report at:
http://www.stups.uni-duesseldorf.de/w/Special:Publication/

PlaggeLeuschel Kodkod2012 .

http://www.stups.uni-duesseldorf.de/w/Special:Publication/PlaggeLeuschel_Kodkod2012
http://www.stups.uni-duesseldorf.de/w/Special:Publication/PlaggeLeuschel_Kodkod2012
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2.8 GHz processor running under Linux. MiniSat was used as a SAT solver.
The measured times do not contain time for starting up ProB and for loading,
parsing and type-checking the model. We measured the time to compute all
solutions to each problem. For Kodkod, we measured two different times: The
“total time” includes the translation of the problem, the communication between
the two processes and the time needed by the solver to produce solutions. The
“solver time” is the time that the Kodkod solver itself needs to find solutions,
without the overhead of translation and communication between the processes.

Table 1. Comparing ProB and Kodkod (in milliseconds)

ProB Kodkod

Model total solver

Who Killed Agatha? 177 123 12
Crew Allocation timeout∗ 297 112
20–Queens 110 8223 8076
Graph Colouring (integer sets) 50 2323 1859
Graph Colouring (enumerated sets) 50 1037 818
Graph Isomorphism 13 553 379
Loop detection in control flow 23037 117 12
SAT instance 11830 4143 588
Send More Money 7 1773 1578
Eratosthenes’ sieve (1 step) 7 5833 5712
Union of two sets (2000 elements) 33 4880 4659
Requirements WRSPM model timeout∗ 333 89
BPEL deadlock check 20 337 68

∗: interrupted after 60 seconds

4.1 Analysis

Relational Operators. Let’s have a look at those problems where Kodkod is much
faster than ProB. These are “crew allocation”, “loop detection” and “WR-
SPM”. In all these problems we search for instances for sets or relations and the
problem is described by relational operators and universal quantification. In this
scenario, ProB sometimes starts to enumerate possible instances for the sets or
relations which leads to a dramatic decrease of performance.

Arithmetic and Large Relations. The arithmetic problems (“Send More Money”,
“Eratosthenes’ Sieve”) are solved by ProB much faster than by Kodkod. The first
two problems deal with arithmetic. ProB uses internally a very efficient finite
domain solver (CLP/FD) to tackle such problems. On the other side, arithmetic
is one of the weaknesses of Kodkod, as we already pointed out.

Kodkod does not seem to scale well when encountering large relations (e.g.
“union of two sets”). This has only been relevant for certain applications of
ProB, such as the property verification on real data [13].

The graph colouring, graph isomorphism and 20-Queens problems are clearly
faster solved by ProB. The structure of the problem is somehow fixed (by having
e.g. total functions) and constraint propagation is very effective.
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Room for Optimization. It can be seen that the graph colouring problem needs
less than half the time when it is encoded with enumerated sets instead of inte-
gers. This indicates that the translation is not yet as effective as it should be. For
the “SAT” problem, the translation and communication takes six time as long
as the computation of the problem itself. This shows that we should investigate
if we can optimize the communication.

4.2 SMT and other Tools

Very recently, an Event-B to SMT-Lib converter has become available for the
Rodin platform [4]. This makes it possible to use SMT solvers (such as veriT,
CVC and Z3 [3]; we used version 3.2 of the latter within the Rodin SMT Solvers
Plug-in 0.8.0r14169 in our experiments below) on Event-B proof obligations.
We have experimented with the translator on the examples from Table 1.2 This
is done by adding a theorem 1=2 to the model: this generates an unprovable
proof obligation which in turn produces a satisfiable SMT formula encoding the
problem. For “Send More Money” from Table 1 Z3 initially reported “unknown”.
After rewriting the model (making the inequalities explicit), Z3 was able to
determine the solution after about 0.250 seconds. It is thus faster than Kodkod,
but still slower than ProB. Surprisingly, Z3 was unable to solve the SMT-Lib
translations for most of the other examples, such as the “Who killed Agatha”
example, the “Set Union” example or the “Graph Colouring” example. Similarly,
for the “Crew Allocation” example, Z3 was unable to find a solution already for
three flights.3 Furthermore, for the constraint solving tasks related to deadlock
checking, Z3 was not able to solve the translations of the simpler examples from
[7]. It is too early for a conclusive result, but it seems that more work needs to
be put into the B to SMT-Lib translator for this approach to be useful for model
finding, animation or constraint-based checking.

Other tools for B are AnimB [17], Brama and BZTT [11]. They all have much
weaker constraint-solving capabilities (see [13,14]) and are unable to solve most
of the problems in Table 1. Another tool is TLC [24] for TLA+. It is very good
at model checking, but constraints are solved by pure enumeration. As such,
TLC is unable to solve, e.g., a 20 variable SAT problem, the NQueens problem
for N>9 and takes more than 2 hours for a variation of the graph isomorphism
problem from Table 1.

5 More Related Work, Discussion and Conclusion

5.1 Alternative Approaches

Before starting our translation to Kodkod, we had experimented with several
other alternate approaches to solve constraints in ProB. [22] offers the user a

2 Apart from “loop” which cannot be easily translated to Event-B due to the use of
transitive closure.

3 ProB solves this version in 0.06 seconds; Table 1 contains the problem for 20 flights.
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Datalog-like language that aims to support program analysis. It uses BDDs to
represent relations and compute queries on these relations. In particular, one
has to represent a state of the model as a bit-vector and events have to be
implemented as relations between two of those bit-vectors. These relations have
to be constructed by creating BDDs directly with the underlying BDD library
(JavaBDD) and storing them into a file. Soon after starting experimenting with
bddbddb it became apparent that due to the lack of more abstract data types
than bit vectors, the complexity of a direct translation from B to bddbddb was
too high, even for small models, and this avenue was abandoned.

SAL [20] is a model-checking framework combining a range of tools for rea-
soning about systems. The SAL tool suite includes a state of the art symbolic
(BDD-based) and bounded (SAT-based) model checkers. Some first results were
encouraging for a small subset of the Event-B language, but the gap between
B and SAL turned out to be too big in general and no realistic way was found
to handle important B operators.4 More details about these experiments can be
found in [19]. For Z, there is an ongoing attempt to use SAL for model checking
Z specifications [5,6]. The examples presented in [5,6] are still relatively simple
and pose no serious challenge in constraint solving. As the system is not publicly
available, it is unclear how it will scale to more complicated specifications and
constraints.

5.2 More Related Work

The first hand-translation of B to Alloy was undertaken in [18]. The pa-
per [16] contains first experiments in translating Event-B to Alloy; but the
work was also not pursued. Later, [15] presented a prototype Z to Al-
loy converter. The current status of this system is available at the website
http://homepages.ecs.vuw.ac.nz/~petra/zoy/; the applicability seems limited by
the lack of type inference and limited support for schemas. In contrast to these
works, we translate directly to Kodkod and have a fully developed system, cov-
ering large subsets of B, Event-B, Z and TLA+ and delegating the rest to the
ProB kernel.

A related system that translates a high-level logic language based on inductive
definitions to SAT is IDP [23]. Another recent addition is Formula fromMicrosoft
[9], which translates to the SMT solver Z3 [3].

5.3 Future Work

Currently our translation is only applicable for finding constraints satisfying
the axioms as well as for constraint based deadlock checking. We are, however,
working to also make it available for computing enabled events as well as for
more general constraint-based testing and invariant checking.

Another avenue is to enlarge the area of applicability to some recurrent pat-
terns of higher-order predicates. For example, many B specifications use total

4 Private communication from Alexei Iliasov and Ilya Lopatkin, March 6th, 2012.

http://homepages.ecs.vuw.ac.nz/~petra/zoy/
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functions of the type f : DOM --> POW(RAN)which cannot be translated as such
to Kodkod. However, such functions can often be translated to relations of the
form fr : DOM <-> RAN by adapting the predicates accordingly (e.g., translat-
ing f(x) to fr[{x}]). More work is also needed on deciding automatically when
to attempt the Kodkod translation and when predicates should be better left to
the existing ProB kernel. Finally, inspired by the experiments, we also plan to
improve the ProB kernel for better solving constraints over relational operators
such as composition and closure.

5.4 Conclusion

After about three years of work and several attempts our translation to Kod-
kod is now mature enough to be put into practice and has been integrated into
the latest version of the ProB toolset. The development required a consider-
able number of subsidiary techniques to be implemented. As our experiments
have shown that the translation can be highly beneficial for certain kinds of
constraints, and as such opens up new ways to analyze and validate formal spec-
ifications in B, Z and TLA+. However, the experiments have also shown that
the constraint logic programming approach of ProB can be superior in a con-
siderable number of scenarios; the translation to Kodkod and down to SAT is
not (yet) the panacea. The same can be said of the existing translations from
B to SMT. As such, we believe that much more research is required to reap the
best of both worlds (SAT/SMT and constraint programming). An interesting
side-effect of our work is that the ProB toolset now provides a double-chain
(relying on technology developed independently and using different program-
ming languages and paradigms) of validation for first-order predicates, which
should prove relevant in high safety integrity level contexts.
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