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Abstract. This work presents a novel approach for the verification of Behavioral
UML models, by means of software model checking.

We propose adopting software model checking techniques for verification of
UML models. We translate UML to verifiable C code which preserves the high
level structure of the models, and abstracts details that are not needed for verifi-
cation. We combine of static analysis and bounded model checking for verifying
LTL safety properties and absence of livelocks.

We implemented our approach on top of the bounded software model checker
CBMC. We compared it to an IBM research tool that verifies UML models via
a translation to IBM’s hardware model checker RuleBasePE. Our experiments
show that our approach is more scalable and more robust for finding long coun-
terexamples. We also demonstrate the usefulness of several optimizations that we
introduced into our tool.

1 Introduction

This work presents a novel approach for the verification of Behavioral UML models,
by means of software model checking.

The Unified Modeling Language (UML) [4] is a widely accepted modeling language
that is used to visualize, specify, and construct systems. It provides means to represent
a system as a collection of objects and to describe the system’s internal structure and
behavior. UML has been accepted as a standard object-oriented modeling language by
the Object Management Group (OMG) [12]. It is becoming the dominant modeling
language for embedded systems. As such, the correct behavior of systems represented
as UML models is crucial and verification techniques for such models are required.

Model checking [6] is a successful automated verification technique for checking
whether a given system satisfies a desired property. Model checking traverses all system
behaviors, and either confirms that the system is correct w.r.t. the checked property, or
provides a counterexample demonstrating an erroneous behavior.

Model checking tools expect the checked system to be presented in an appropriate
description language. Previous works on UML model checking translate UML models
to SMV [5,7] or VIS1 [25], both particularly suitable for hardware; to PROMELA (the
input language of SPIN) [17,16,20,10,1,14,11]), which is mainly suitable for commu-
nication protocols; or to IF3 [18], which is oriented to real-time systems.

1 These works were developed as part of the European research project OMEGA [19].
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We believe that behavioral UML models mostly resemble high-level software sys-
tems. We therefore choose to translate UML models to C and adopt software model
checking techniques for their verification. Our translation indeed preserves the high-
level structure of the UML system: event-driven objects communicate with each other
via an event queue. An execution consists of a sequence of Run To Completion (RTC)
steps. Each RTC step is initiated by the event queue by sending an event to its target
object, which in turn executes a maximal series of enabled transitions.

Model checking assumes a finite-state representation of the system in order to guar-
antee termination with a definite result. One approach for obtaining finiteness is to
bound the length of the traversed executions by an iteratively increased bound. This is
called Bounded Model Checking (BMC) [3]. BMC is highly scalable, and widely used,
and is particularly suitable for bug hunting. We find this approach most suitable for
UML models, which are inherently infinite due to the unbound size of the event queue2.

We emphasize that our goal is to translate the UML model into verifiable C code
that suits model checking, rather than produce executable code. Also, we only wish to
verify user-created artifacts. When translating to C, we therefore simplify implementa-
tion details that are irrelevant for verification. For instance, the event queue is described
at a high level of abstraction, and code is sometimes duplicated to avoid pointers and
simplify the verification. The resulting code is significantly easier for model checking
than automatically generated code produced by UML tools such as Rhapsody [23].

Recall that the verifiable C code will be checked by BMC with some bound k. We
choose k to count the number of RTC steps. This implies that along an execution of size
k only the first k events in the queue are consumed, even if more were produced. It is
therefore sufficient to hold an event queue of size k. We thus obtain a finite-state model
without losing any precision. Counterexamples are also returned as a sequence of RTC
steps, but zooming in to intermediate states is available upon request.

We verify two types of properties: LTL safety properties and livelocks. Safety prop-
erties require that the system never arrives at bad states, such as deadlock states, states
violating mutual exclusion, or states from which the execution can continue nondeter-
ministically. LTL safety properties can further require that no undesired finite execution
occurs. Checking (LTL) safety properties can be reduced to traversing the reachable
states of the system while searching for bad states. We apply Bounded reachability with
increasing bounds for finding bad states. Our method can also be extended to proving
the absence of bad states, using k-induction [26].

Another interesting type of properties is the absence of livelocks. Livelocks are a
generalization of deadlocks. While in deadlock states the full system cannot progress,
in livelock states part of the system is “stuck” forever while other parts continue to run.
Livelocks can be hazardous in safety critical systems and often indicate a faulty design.

Scalable bounded model checking tools mostly handle safety or linear-time prop-
erties. However, absence of livelocks is neither safety nor linear-time property and is
therefore not amenable to bounded model checking. We identify an important subclass
of livelocks, which we refer to as cycle-livelocks, and show that they can be found by
combining static analysis and bounded reachability.

2 Variables are treated as finite width bit vectors and therefore do not hurt the model finiteness.
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The property of deadlock has been the subject of many works. In the context of
UML, [15] presents model checking for deadlocks via process algebra. The SPIN model
checker itself supports checking for deadlocks. To the best of our knowledge, absence
of livelocks has never been verified in the context of behavioral UML models.

We implemented our approach to verifying UML models with respect to LTL safety
properties and cycle-livelocks in a tool called soft-UMC (software-based UML Model
Checking). Our tool is built on top of the software model checker CBMC [8] which ap-
plies BMC to C programs and safety properties. We ran it on several UML examples and
interesting properties, and found erroneous behaviors and livelocks. For safety proper-
ties, we also compared soft-UMC with an IBM research tool that verifies UML models
via a translation to IBM’s hardware model checker RuleBasePE [24]. Our experiments
show that soft-UMC is more scalable and more robust for finding long counterexamples.
Our experimental results also demonstrate the usefulness of the optimizations applied
in the creation of the verifiable C code.

The rest of the paper is organized as follows. In Sec. 2 we present some background.
Our translation to verifiable C code is presented in Sec. 3, and our method for verifica-
tion of (LTL) safety properties and cycle-livelocks is presented in Sec 4. We show our
experimental results in Sec 5, and conclude in Sec. 6.

2 Preliminaries

2.1 Behavioral UML Models

We use a running example describing a flight ticket ordering system to explain UML.
The class diagram in Fig. 1(a)3 shows the classes DB and Agent and the connection
between them. The object diagram in Fig. 1(b) defines four objects, two of each class.
These diagrams also show the attributes (variables) of each class and their event recep-
tions. E.g., objects of class DB have two attributes (isMyF lt and space) and are able
to receive events of type evReqOwnership, evReqF lt, and evGrantOwnership.

UML objects process events. Event processing is defined by statecharts [13], which
extend conventional state machines with hierarchy, concurrency and communication.
The statecharts of DB and Agent classes are presented in Fig. 2.

Objects communicate by sending events (asynchronous messages). An event is a
pair (ev, trgt), where ev is the type of the sent event and trgt is the target object of
the event. Events are kept in an event queue (EQ), managed by an event queue manager
(EQ-mgr). When object A sends an event to object B, the event is inserted into the
EQ. The EQ-mgr executes a never-ending event-loop, taking an event from the EQ,
and dispatching it to the target object. If the target object cannot process the event,
the event is discarded. Otherwise, the event is consumed and the target object makes
a run-to-completion (RTC) step, where it processes the event, and continues execution
until it cannot continue anymore. Only when the target object finishes its RTC step, the
EQ-mgr dispatches the next event available in the EQ4.

3 We used Rhapsody [23] to generate the drawings in this paper, and will accordingly use some
of Rhapsody’s terms and conventions.

4 The order in which events are executed is under-specified in UML. We choose to follow the
Rhapsody semantics, and implement event processing as a FIFO.
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(b) object diagram

Fig. 1. Ticket Ordering System

Every object is associated with a single EQ.
In a multi-threaded model, there are several EQ-
mgrs, and objects from different threads can
communicate with each other. In this paper we
focus on the case of a single thread, and will
henceforth ignore the multi-threaded case.

Objects send events via the operationGEN().
For example, in the statechart of DB (Fig. 2(a)),
when db1 executes the operation itsA →
GEN(evF ltAprv()), an event of type evF ltAprv
is sent to the target object on the relevant link.
From the object diagram (Fig. 1(b)), we see that
the target object is a1.

Statecharts: The behavior of each object in the
system is described by the hierarchical state-
chart associated with the class of the object. Hi-
erarchical statecharts for classes DB and Agent
are given in Fig. 2. For simplicity, in the rest of
this section, notions related to statecharts and se-
mantics are first defined for non-hierarchical stat-
echarts. Needed definitions and notations are then extended for hierarchical statecharts
as well.

We first define the following notions: A guard is a boolean expression over a set of
attributes. The trivial guard is true. A trigger is the name of some event type. An action
is a possibly empty sequence of statements in some programming language. A statechart
of class Cls is a tuple sc = (Q, T, init), where Q is a finite set of states, init ∈ Q is
the initial state, and T is a finite set of transitions. For every t ∈ T , t = (q, b, e, a, q′)
where q ∈ Q is the source state, b is a guard, e is either a trigger or nil, a is an action,
and q′ ∈ Q is the destination state.

Transitions whose trigger is nil and whose guard is true are referred to as null-
transitions. In a graphical representation of a statechart, states are marked as squares.
Every transition t is marked with trig[grd]/act, representing the trigger, guard and
action of t. If trigger is nil, guard is true or action is empty then they are omitted from
the representation. The initial state is marked with a transition with no source (•→�).

We place a few restrictions on the statecharts language. We assume that every loop in
a statechart includes at least one transition with a trigger. We also place restrictions on
the action language and disallow dynamic allocation of objects and memory, dynamic
pointers, unbounded loops, and recursion. This defines a restricted case of behavioral
UML models, which is nevertheless relevant for embedded software. These restrictions
enable us to focus on software based verification for UML models, while avoiding or-
thogonal issues such as termination and pointer analysis.

The Semantics of Behavioral UML Models: Let o be an object with statechart sc(o),
and attribute evaluation ν(o), where ν(o) is a function mapping all attributes of o to
a value in the relevant domain. We say that a transition t = (q, b, e, a, q′) in sc(o) is
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Fig. 2. Ticket Ordering System - Statecharts

enabled w.r.t. ν(o) and an event ev = (e′, o) if the following holds: b evaluates to
true under ν(o), and e is either nil or e = e′. Let (e, o) be an event that was taken
from the queue. Then q, the current state of sc(o), and ν(o) determine how this event
is processed. A transition t can be executed if its source is q and t is enabled w.r.t. ν(o)
and (e, o). If there exists one or more transitions that can be executed from q, then one
is executed non-deterministically. When transition t is executed from q, the action of t
is executed, and the statechart reaches state q′, which is the destination state of t.

Let (e, o) be an event dispatched to o, whose current state is q. An RTC step is a
sequence of enabled transitions starting from q. The first transition in the sequence can
be marked with a trigger or not5. The rest of the transitions are not marked with triggers.
An RTC step terminates at a state q′ that has no enabled outgoing transitions.

The following terminology will be needed later. Objects that can send some event
(ev, o) are called producers of (ev, o). In our example, the (only) producer of event
(evReqOwnership, db1) is db2. Objects that can modify some attribute x of object
o are called modifiers of (x, o). Let b be a guard in sc(o), where b includes attributes
{x1, ..., xm}. The set of modifiers of all attributes in b are called the modifiers of (b, o).

Hierarchical Statecharts: In hierarchical statecharts states can be either simple or
composite. A composite state consists of a set of states, called its substates. A simple
state has no substates. Every composite state includes an initial state. A composite state
can also be defined with history data6, marked by in the statechart. This represents
the most recent active substate of q.

Every hierarchical statechart includes a unique top state, which is not a substate of
any other state. Hierarchical statecharts are denoted by sc = (Q, T, top). A h-state
q̄ = (q1, ..., qn) of sc describes a full hierarchical path in sc, where q1 = top, qn is
a simple state and for every i > 0, qi is a substate of qi−1. The initial h-state of sc is
q̄ = (q1, ..., qn) s.t. for every composite state qi, qi+1 is the initial state of qi.

5 This point is under-specified in UML. We chose to follow the Rhapsody semantics.
6 In this work we only consider shallow history.
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We disallow transitions to cross hierarchy levels, i.e. for t = (q, b, e, a, q′), q and q′

are substates of the same state. Given ν(o) and (e, o), a transition t can execute from
h-state q̄ = (q1, ..., qn) of sc(o) if t is enabled w.r.t. ν(o) and (e, o) from qi, 1 ≤ i ≤ n,
and no t′ is enabled from any qj , i < j ≤ n. When t is executed, sc(o) reaches the
destination h-state q̄′ = (q′1, ..., q

′
m) for some m ≥ i s.t.: (1) ∀j.1 ≤ j < i, q′j = qj ,

(2) q′i is the destination state of t, and (3) ∀j.i < j ≤ m, q′j is defined according to the
history semantics of UML. From now on we consider only hierarchical statecharts.

2.2 LTL and Automata Based Model Checking

A Kripke structure is a tuple M = (S, I0, R), where S is a set of states, I0 ⊆ S is a set
of initial states, and R ⊆ S × S is a total transition relation. An execution of M is an
infinite set of states s0, s1, ... s.t. for every i ≥ 0, (si, si+1) ∈ R. .

The Linear-time Temporal Logic (LTL) [21] is suitable for expressing properties of
a system along an execution path. We assume the reader is familiar with LTL. In this
work we restrict ourselves to a fragment of LTL, in which only safety properties are
expressible. These are properties whose violation occurs along a finite execution. [27]
gives a syntactic characterization of safety properties.

A Kripke structure M satisfies an LTL formula ψ, denoted M |= ψ, if every ex-
ecution of M starting at an initial state satisfies ψ. A general method for on-the-fly
verification of LTL safety properties is based on a construction of a regular automaton
A¬ψ, which accepts exactly all the executions that violate ψ. Given M and ψ, we con-
struct M × A¬ψ to be the product of M and A¬ψ . A path in M × A¬ψ from an initial
state (s, q) to a state (s′, q′) where q′ is an accepting state in A¬ψ represents an execu-
tion of M , and a word accepted by A¬ψ . It therefore represents an execution showing
why M does not satisfy ψ. Such executions are called counterexamples for ψ.

2.3 Bounded Model Checking

Bounded Model Checking (BMC) [3] is an iterative process for checking models against
LTL formulas. The transition relations for a Kripke structureM and its specification are
jointly unwound for k steps and are represented by a boolean formula that is satisfiable
iff there exists an execution of M of length k that violates the specification. The for-
mula is then checked by a SAT solver. If the formula is satisfiable, a counterexample is
extracted from the output of the SAT procedure. Otherwise, k is increased.

BMC is widely used for finding bugs in large systems, including software systems
([8,2,9]). BMC for software is performed by unwinding the loops in the program for
k times, and verifying the required property. The property is often described by an
assertion added to the program text. The model checker then searches for a program
execution that violates the assertion. Our method for verifying UML models relies on
invoking a software BMC tool. We require that the tool supports assumptions on the
program, given as assume(b) commands, where b is some boolean condition. Having
assume(b) at location � of the program means that only executions π that satisfy b
when passing at � are considered. If b is violated then π is ignored.
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2.4 Notations and Abbreviations

Throughout the rest of the paper we will use the following notations and abbreviations.
A model includes N objects M = {o1, ..., oN}. Every object oi is associated with a
statechart sc(oi) = (Qi, Ti, topi). For ti = (q, b, e, a, q′) a transition in Ti: grd(ti) = b,
ev(ti) = e and act(ti) = a. Given a state q ∈ Qi:

– trn(q) ⊆ Ti is the set of transitions whose source is q.
– evnts(q) =

⋃
t∈trn(q){(ev(t), i)} \ {(nil, i)} is the set of triggers on trn(q).

– grds(q) =
⋃
t∈trn(q){(grd(t), i)} is the set of guards on trn(q).

– prod(q) ⊆ {1, ..., n} denotes indexes of producers of all events in evnts(q). For
example, if evnts(q′) = {(ev, j)}, and the producers of (ev, oj) are {oi1 , ..., oik},
then prod(q′) = {i1, ..., ik}.

– modif(q) ⊆ {1, ..., n} denotes indexes of modifiers of all guards in grds(q).

These abbreviations are generalized to denote the transitions, events, guards, producers,
and modifiers of an h-state and of a subset of states.

3 Translation to Verifiable Bounded C

1: method RunRTCStepi(ev)
2: while (j < maxRTClen) do
3: if (!enabled(currSt, νi, ev)) return
4: choose T ransition t
5: assume(t ∈ trn(currSt))
6: assume(val(t, currSt, νi, ev))
7: execute act(t)
8: ev := nil
9: incr j

Fig. 3. RunRTCStepi method of oi

We translate behavioral UML models to
C. Our goal is to create code that is
most suitable for verification, rather then
an efficient implementation of the sys-
tem. Moreover, we verify our code using
a BMC verifier, therefore our code de-
scribes a bounded run of the model. In or-
der to create code suitable for verification
we avoid as much as possible the use of
pointers or of methods called with differ-
ent parameters. This results in code which
is longer in lines-of-code. However, the
model created by the verification tool is
smaller, and the model checker can then perform optimizations more efficiently.

The atomic unit in our translation is a single RTC step, rather than a single transition.
Every object is translated into a method, representing the behavior of its associated
statechart. When an event ev is dispatched to object oi, the method associated with oi
executes a single RTC step of oi.

Fig. 3 presentsRunRTCStepi, the pseudo-code for a single RTC step of oi. currSt
is the current h-state of oi in sc(oi). enabled(currSt, νi, ev) is true iff there exists an
enabled transition t ∈ trn(currSt) w.r.t. νi and event ev. The method terminates when
there are no enabled transitions to execute. The while loop iterates up tomaxRTClen
iterations. maxRTClen represents the maximum number of transitions of any RTC
step of oi. If this value cannot be extracted by static analysis, then the condition is
replaced by true, and the length of the RTC step is bounded by the BMC bound, k.



284 O. Grumberg, Y. Meller, and K. Yorav

val(t, currSt, νi, ev) is true iff t can be executed from currStw.r.t. νi and event ev.
Lines 4-6 amount to a non-deterministic choice of a transition t, which can be executed
from currSt. When choosing a transition (line 4), no constraints are assumed on it. Line
5 restricts the program executions to those where t is a transition from currSt. Line 6
restricts the remaining program executions to those where t can execute. In line 7 the
action of the transition is executed. Executing the action updates the currSt according
to the destination state of t. Note line 8, where we set the event to nil. This is done
since the event is consumed once, and only in the first transition of the RTC step. The
rest of the transitions of the RTC step can be executed only if their trigger is nil.

The EQ is represented as a bounded array. The main method of the program executes
the never-ending loop of taking an event from the EQ, and dispatching it to the relevant
target object. Fig. 4 presents the pseudo-code for the main method. In line 3 an event
ev whose target is oi is taken from the EQ. In line 4 an RTC step of oi is initiated.

1: method main
2: while (true) do
3: (ev, oi) := popEv()
4: RunRTCStepi(ev)

Fig. 4. main method

When applying BMC on the main method in Fig. 4,
the while loop is unrolled k times, which means that
the model is verified for k RTC steps. Generally, plac-
ing a bound on the EQ can make the model inaccurate
due to overflows. However, k is the exact bound for a
k-bounded verification over k RTC steps, since only the
first k events that are sent will be dispatched during k
RTC steps.

Another verification oriented optimization we introduce is in the implementation of
the environment. The array is initialized with k environment events, but with head =
tail = 1. When a system event evS is sent, the tail is incremented non-deterministically,
after which evS is added to the EQ, overriding the environment event there. This models
inserting to the EQ a non-deterministic number of environment events that arrive prior
to the addition of evS to the EQ.

C code can be automatically generated by UML tools such as Rhapsody, but this code
would not be suitable for verification. Automatically generated code includes generic
code, and means for communicating with different libraries and with the operating sys-
tem. We, on the other hand, are interested in verifying only the user-created behavior
of the system, and therefore we can abstract the event queue and the operating system.
We exploit features of the model-checker, such as the assume construct, to make the
verification more efficient. Assuming a static model allows us to implement links by
direct calls rather than using pointers.

4 Model Verification

We now describe our method for verification of a given behavioral UML model. The
model includes N objects M = {o1, ..., oN}. Verification is done using assertions on
the code describing the model. We support verification in a granularity of transition level
or RTC level. First, we define the notion of configuration (CONF) of a UML model.

Definition 1. A configuration (CONF) of M is C = (q, ν, EQ), where:

– q = (q̄1, ..., q̄N ) is a system state where q̄i is a h-state of sc(oi).
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– ν = (ν(o1), ..., ν(oN )) is an evaluation vector; ν(oi) is attribute evaluation of oi.
– EQ = ((e1, i1), ..., (em, im)) is an event queue with m elements, where (evj , ij)

represents event evj whose target is oij . (e1, i1) is the top, denoted top(EQ).

A behavioral UML model M can be viewed as a Kripke structure M = (S, I0, R),
where S is the set of all possible CONFs in M. R can be defined either at the RTC
level (denotedRRTC ) or at the transition level (denotedRt). (C,C′) ∈ RRTC iff C′ is
reachable from C in a single RTC step. (C,C′) ∈ Rt iff C′ is reachable from C in an
execution of a single transition. Executions are defined at RTC or transition level.

Definition 2. πr = C0, C1, ... is an execution at the RTC level (RTC-execution) iff for
every n > 0, (Cn−1, Cn) ∈ RRTC .

Definition 3. πt = C0, C1, ... is an execution at the transition level (t-execution) iff for
every n > 0, (Cn−1, Cn) ∈ Rt, and πt represents an execution of RTC steps. That is, for
every i ≥ 0, there exist j ≤ i and m ≥ i s.t. Cj , ..., Cm represents a single RTC step.

For the rest of the paper, when an execution is either a t-execution or an RTC-
execution, we refer to it as an execution. In the following we first present how model
checking of an LTL safety property over a given behavioral UML model is done. We
then continue to present our algorithm for verifying cycle-livelocks.

4.1 Verifying LTL Safety Properties

We now show how to verify safety LTL properties over behavioral UML models using
an automata based approach. We assume the atomic propositions of the property are
predicates over the CONFs of the model. We extend the C program created from M
with a method representing the automaton A¬ψ. The method runs in lock step with the
system, and identifies property violations.

A safety property can be verified either at the RTC level or at the transition level,
by placing the call to the automaton method either at the end of each RTC step (within
the methodmain) or at the end of each transition (within the methodRunRTCStepi).
The choice of the level for verification depends on the property to be verified. For ex-
ample, in our running example we might want to guarantee that, at the end of RTC steps
isMyF lt cannot be true for both db1 and db2 at the same time. This property must not
necessarily hold during an RTC step. We would therefore verify AG7(db1.isMyF lt =
0 ∨ db2.isMyF lt = 0) at the RTC level. If we want to check for dead states (unreach-
able states) we need to work at the transition level in order to recognize as reachable
also those states that are passed through during the RTC step.

Note that our method for BMC can be extended to proof by k-induction [26] in
a straightforward manner. The base case is a BMC of k steps, which is done in the
way we described above. The step is a BMC run of k + 1 steps with the initial state
completely non-deterministic, looking for a run in which a property violation occurs at
the k + 1 step after k steps with no violation. In the initial state of the step case we
assume there may already be any number of events in the queue, of any type. We can

7 G is the temporal operator with the meaning of “globally”.
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still bound the event queue to k + 1 entries because no more than k + 1 events will be
dispatched in k + 1 steps, making it sound to ignore the content of the queue beyond
k + 1 entries.

4.2 Verify Cycle-Livelocks

A Livelock describes the case where part of the system cannot progress, even though the
other parts of the system do. In this section we focus on finding livelocks in behavioral
UML models. As mentioned before, absence of livelocks in neither safety nor LTL
property and therefore cannot be handled by scalable bounded model checking tools.
For that reason, we identify a subclass of livelocks, and present a method for finding
such livelocks within our framework. This is done by a reduction to a safety property,
which requires a preceding syntactic analysis of the UML model.

We first define the notion of a livelock CONF in behavioral UML models.

Definition 4. Given a CONF C = (q, ν, EQ), where q = (q̄1, ..., q̄N ). We say that oi
is disabled under C if no transition t ∈ trn(q̄i) is enabled.

Definition 5. Given a CONF C, object oi is stuck at C if for every RTC-execution
π = C0, C1, ... s.t. C0 = C the following holds: for every Cj = (q, ν, EQ) s.t. j ≥ 0,
if top(EQ) = (ev, i) then oi is disabled under Cj .

Thus, an object oi is stuck if whenever the event at the top of the queue is targeted at oi,
meaning it is oi’s turn to execute, oi is disabled and cannot make any progress.

Definition 6. A CONF C is a livelock CONF if at least one object is stuck at C.

Following, we present a characterization for a subclass of livelock CONFs, which we
call cycle-livelocks. Intuitively, a CONF C is a cycle-livelock if there is a subset of
objects that are stuck at C, and for every object o in the subset all of the producers of
events that o is stuck on, and all of the modifiers of the guards that o is stuck on, are in
the subset as well.

Definition 7. Let C = (q, ν, EQ) where q = (q̄1, ..., q̄N ). A q′ = (q̄′1, ..., q̄′N ) is a
partial state of C if for every 1 ≤ i ≤ N , q̄′i = nil or q̄′i = q̄i.

Definition 8. Let C be a livelock CONF, and let q′ = (q̄′1, ..., q̄
′
N ) be partial state of C.

q′ is a livelock state of C if ∀i.1 ≤ i ≤ N , if q̄′i 	= nil then oi is stuck at C.

Definition 9. CONF C is a cycle-livelock if there exists a livelock state of C, q′ =
(q̄′1, ..., q̄′N ) s.t. for all j ∈ prod(q′) ∪modif(q′), q′j 	= nil.

Intuitively, the partial state describes a set of objects that are stuck and will stay stuck
forever. This is because all objects that may “release” a stuck object by producing an
event or changing a guard are in the same set. That is, they are stuck as well.

Our goal is to find reachable cycle-livelock CONFs. To achieve scalability, we use
SAT-based BMC and only find livelock CONFs that are reachable within k RTC steps.
Our method for finding reachable cycle-livelocks consists of two stages. We first iden-
tify system states that are cycle-states. This is a syntactic identification and can thus
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be checked independently of a CONF. This stage is performed during the analysis of
the UML model. We then search for a reachable cycle-livelock CONF. This is done by
adding an assertion describing the fact that the current CONF is a cycle-livelock. We
then apply BMC to search for a violation of the assertion. Next we define the syntactic
notion of cycle-state.

Finding Cycle-States: An object oi cannot be stuck at C = (q, ν, EQ) if q̄i ∈ q has a
null-transition, or if qi has a transition that can be enabled by an environment event.

Definition 10. An h-state q̄ is potentially stuck if for every t ∈ trn(q̄), t is not a null-
transition, and if ev(t) is an environment event, then grd(t) 	= true.

Intuitively, a cycle-state represents a subset of objects that are all potentially stuck and
dependant on each other, i.e. all the necessary producers are inside this subset.

Definition 11. A cycle-state is a vector q = (q̄1, ..., q̄N ) s.t. ∀1 ≤ i ≤ N , q̄i = nil or q̄i
is a h-state of sc(oi), and the following holds for every q̄i 	= nil: (1) q̄i is a potentially
stuck h-state, and (2) There is no j ∈ prod(q̄i) ∪ modif(q̄i) s.t. q̄j = nil, and (3) q
is minimal. That is, let q′ = (q̄′1, ..., q̄

′
N ) be a system state vector where ∀1 ≤ i ≤ N ,

q̄′i 	= nil ⇒ q̄′i = q̄i. If q′ 	= q then req. 2 does not hold for q′.

The requirement of minimality (requirement (3)) is introduced for the sake of efficiency.
It reduces the number of states to be considered and also simplifies the encoding in
BMC. Further, it reduces the number of similar counterexamples returned to the user.

Note that this definition is syntactic. That is, it depends only on the system state
vector. It does not depend on the evaluation vector or the event queue, which can be
determined along an execution. As a result, the set of all cycle-states can be identified
independently of any configuration. We generate this set from the syntactic structure of
the model, as part of the analysis of the UML model.

Lemma 1. The set of cycle-states is complete. Meaning for every cycle-livelock con-
figuration C there exists a partial state of C, q, that is a cycle-state.

The set of CONFs is infinite, because the size of the EQ is not limited, and the domain
of the evaluation vector can be infinite. However, the set of cycle-states is finite.

Bounded Search for Cycle-Livelocks: We observe that if a given CONF includes
a cycle-state s.t. for every transition in the cycle-state either the guard is false or the
trigger is a system event which is not in the EQ, then this CONF is a cycle-livelock.

We adapt the translation of UML models to C (Sec. 3) to allow checking whether
a cycle-livelock CONF is reachable by adding assertions at the RTC level. When the
model checker finds an execution violating the assertion, the last CONF in the execution
is a cycle-livelock CONF. Fig. 5 presents the pseudo-code of the modified method. Line
5 and 6 show the added code.
currC = (q, ν, EQ) represents the current CONF of the system. At every iteration

of the while loop currC changes (due to the RTC step). The method partSt(q, C)
receives a cycle-state q and a CONF C, and returns true iff q is a partial state of
C. The method grdFalse(grd, ν) returns true iff grd is false w.r.t. νi. The method
notInQ(ev, EQ) returns true iff ev is a system event which is not in the EQ. The
assertion is violated on C if C is a cycle-livelock.
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1: method FindCycleLivelock()
2: while (true) do
3: (ev, i) := popEv()
4: RunRTCStepi(ev)
5: for each cycle-state q′ do
6: assert(!(partSt(q′, currC)∧

for all t ∈ trn(q′) :
notInQ(ev(t), EQ)∨
grdFalse(grd(t), ν)))

Fig. 5. FindCycleLivelock method

There is one subtle point that still needs
to be solved: We need a finite representa-
tion of the queue. Recall that for verifying
safety properties, for k-bounded executions
we bound the queue to k. However, when
searching for cycle-livelocks this is incorrect
because a configuration is a cycle-livelock if
there are no future executions that can re-
lease the stuck states. Thus, we must keep
track of all events inserted into the queue
(within k RTC steps). However, only the first
k events are dispatched, and therefore their
relative order is important. For the rest of the events, we only need to know whether
they were sent or not. indicating whether or not an instance of that event exists in the
“actual” queue. The method notInQ(ev, EQ) returns true iff the flag of event ev is
false, indicating that no such event is in the “actual” queue.

We exemplify our method on our running example. The events evV acationStart
and evV acationEnd, which are consumed by class Agent, are both environment
events. Note that none of the h-states associated with the statechart of Agent are
potentially stuck h-states. Thus, a1 and a2 can never be stuck. The system state
vector (Wait4RemDB, Wait4RemDB, nil, nil) is a cycle-state because the pro-
ducer of state Wait4RemDB of db1 is db2, and vice-versa. Note that for find-
ing prod(Wait4RemDB), we include the producers of both Wait4RemDB and
dbMain, since Wait4RemDB is a substate of dbMain. For this cycle-state, we add
the following assertion:

assert(!(!InEQ(evGrantOwnership, 1)∧!InEQ(evGrantOwnership, 2)∧
!InEQ(evReqOwnership, 1)∧!InEQ(evReqOwnership, 2)∧
partSt((Wait4RemDB,Wait4RemDB, nil, nil), currC)))

Note that it is possible to skip the first stage of our algorithm, that finds the set of cycle-
states, and incorporate it within the second stage. However, this would be inefficient due
to the number of checks that would need to be done during the model checking stage.
Further, since the first stage is applied to the UML model, it is quite “light weight”.
Model checking, on the other hand, is applied to a low-level description and is a heavy
task. Thus, the first stage is essential for the scalability of our method.

5 Experimental Results

We have implemented the algorithm described above in a tool called Soft-UMC
(software-based UML Model Checking). The implementation reads a UML (version
2.0) model, and translates it to verifiable C code. Static analysis is applied at this stage,
according to the type of property to be checked: (LTL) safety or livelock. We then apply
CBMC[8] (version 4.1) as our C verifier.

First, we compared our implementation to one translating the model to the input
language of RuleBasePE[24], IBM’s hardware model checker (we call this solution
HWMC). HWMC represents the EQ as a bounded FIFO, where the size of the FIFO
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is relative to the maximum number of events generated in a single RTC step. It also
preserves the hierarchical structure of the model.

prop. time #RTCs time # trans
RC1 155 10 44 34
RC2 198 11 145 39
RC3 868 17 2315 57
TO1 17 6 14 8
TO2 23 7 14 13
TO3 51 10 28 31
TO4 514 22 1425 67
DW1 263 12 58 37
DW2 304 18 40 95
DW3 986 30 1345 155
LM1 18 7 12 19
LM3 101 16 79 86
LM2 158 14 1320 37
LM4 555 34 645 176

Soft-UMC HWMC

Fig. 6. Soft-UMC vs.
HWMC. time in secs.
�RTC and �trans is number
of RTC steps and transi-
tions in counterexamples.

To compare the performance of Soft-UMC and HWMC
we used the following four examples. (1) A variant of the
railroad crossing system from [22], including a gate object
and three track objects that communicate with the gate, (2)
The ticket ordering model (Figs. 1,2), (3) A dishwasher ma-
chine (inspired by the example provided with Rhapsody), (4)
A locking model, including a manager and three lock clients.
We have checked several safety properties on the models. In
Fig. 6 we present a comparison of the runtime for finding
a counterexample in Soft-UMC and HWMC. It can be seen
that HWMC is better on short counterexamples. However,
on long ones Soft-UMC achieves results in shorter times.
This can be explained by the initialization time of CBMC
which is significant for short counterexamples but becomes
negligible on long ones.

To check the scalability of our tool compared to HMWC,
we considered three parameterized examples: The ticket or-
dering model, and variations of the dishwasher machine and
the locking model. E.g., for the ticket ordering model, the
attribute account of Agent is used as the parameter, and
the checked property is non-determinism. For increasing initial values of account, the
counterexample leading to a non-deterministic state is of increasing length. This allows
us to experiment on the same model with different lengths of counterexamples. In all
examples, a counterexample for a model with parameter i is of length ∼ 2∗iRTC steps.
Each RTC step is composed of 3-5 transitions. We used a timeout of 1 hour. Results are
presented in Fig 7. From the comparison it is clear that HWMC is better for shallow
examples, however our tool is more scalable.

param

Soft-UMC 

TO

HWMC 

TO

Soft-UMC 

DW

HWMC 

DW

Soft-UMC 

LM

HWMC 

LM

5 49 21 82 23 34 30

8 113 92 242 34 101 71

11 202 380 475 66 192 180

14 364 1830 825 254 328 187

17 693 3470 1326 810 555 613

20 1740 T.O 1964 T.O 766 789

23 T.O T.O 2900 T.O 1153 889

26 T.O T.O T.O T.O 1657 1876

29 T.O T.O T.O T.O 1859 2142

32 T.O T.O T.O T.O 3049 T.O

Fig. 7. Compare scalability. time in secs.

We also evaluated the performance
impact of two of our optimizations,
the EQ (Sec. 3) and the hierarchical
model. We compared a naive imple-
mentation of the EQ against our op-
timized implementation. To analyze
the impact of maintaining the hier-
archy of the model we created a flat
model of the ticket ordering model.
The flat model has 24 states and 54
transitions, whereas the hierarchical
model has 26 states and 36 transi-
tions. The flat model is missing the
hierarchical states. However, it has an additional attribute for maintaining the history.
Fig 8 shows the results of the comparison. We compared the runtime of 4 different
implementations: Hierarchical model with optimized EQ (H-OP-EQ), flat model with
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optimized EQ (F-OP-EQ), hierarchical model with naive EQ (H-NV-EQ) and flat model
with naive EQ (F-NV-EQ).

#RTC H-OP-EQ F-OP-EQ H-NV-EQ F-NV-EQ

#1 6 21 31 369 396

10 63 94 3362 T.O

18 224 420 T.O T.O

26 524 1235 T.O T.O

#2 10 88 133 T.O T.O

20 818 3157 T.O T.O

#3 6 21 32 371 420

10 72 103 T.O T.O

14 275 550 T.O T.O

Fig. 8. Optimizations on ticket order-
ing. Bound in RTC steps; time in secs.

We verified three different properties, and mod-
ified the model s.t. counterexample is reached at
different bounds. 1,3 are safety properties. 2 is
a livelock check, checked on a slightly modified
model: the guard of transition from Processing

to F lightApproved of DB (Fig. 2(a)) is modified
to [isMyF lt && (space > 1)]. This introduces a
reachable livelock state, when db1 and db2 are in
state Processing, space = 1 and isMyF lt = true

for both objects. Each row in Fig 8 represents a
different setting defined by the property and the
initial values of the attributes, which determine the
length of the counterexample (in RTC steps). Time limit is set to 1 hour. It is clear that
the optimized implementation of the EQ scales much better w.r.t. the naive EQ imple-
mentation. This is because the naive implementation includes a loop representing the
addition of a non-deterministic number of environment events to the EQ. In the opti-
mized implementation this amounts to a non-deterministic increment of the tail. The
comparison also shows that the hierarchical implementation scales better than the flat
one. Our conjecture is that flattening increases the number of transitions in the model,
and therefore increases the search space. [11] presents similar results when comparing
verification of hierarchical UML models to flat models. The above shows the signif-
icance of optimizations. We expect to be able to further improve performance of our
solution with other optimizations.

6 Conclusions

This work is a first step in exploiting software model checking techniques for the verifi-
cation of behavioral UML models. By translating UML models to C we could preserve
the high-level structure of the model. We intend to further exploit this structure in tech-
niques such as abstraction and modularity in order to enhance UML verification.

Our translation to verifiable C code rather than executable one significantly eased the
workload of the model checker. This is demonstrated, for instance, by the comparison of
our optimized representation of the event queue with a naive one. In our translation we
also took advantage of the fact that bounded model checking is applied, and obtained
a finite representation in spite of the unbounded size of the queue. Nevertheless, our
method can be extended to unbounded model checking by means of k-induction.

The comparison with IBM’s hardware oriented tool for UML verification demon-
strates that our approach is superior for long counterexamples.

Our approach to finding cycle-livelocks in UML models is novel. Static analysis
identifies syntactically potential cycle-livelock states. A suitable finite representation of
the event queue then enables to apply BMC for finding reachable such states. We expect
similar approaches to be useful for proving additional non-safety properties.
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