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Abstract. Coercion resistance and receipt freeness are critical proper-
ties for any voting system. However, many different definitions of these
properties have been proposed, some formal and some informal; and there
has been little attempt to tie these definitions together or identify rela-
tions between them.

We give here a general framework for specifying different coercion re-
sistance and receipt freeness properties using the process algebra CSP.
The framework is general enough to accommodate a wide range of defini-
tions, and strong enough to cover both randomization attacks and forced
abstention attacks. We provide models of some simple voting systems,
and show how the framework can be used to analyze these models un-
der different definitions of coercion resistance and receipt freeness. Our
formalisation highlights the variation between the definitions, and the
importance of understanding the relations between them.
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1 Introduction

Much work has been published over the last couple of decades concerning secure
voting protocols. Many proposals come with claims that they meet appropriate
security guarantees; but the properties in question are often poorly defined, and
for the most part any proofs offered have been informal at best.

More recently, there have been attempts to formalize some of the desirable
properties of voting systems [MN06, DKR09, DLL11]. These results have been
useful, because they have been able to give precise answers to previously vague
questions about the security of various systems. The approach has been to con-
struct a model, and to verify it against a formalization of the relevant property.

However, since the informal definitions vary considerably, these formal defini-
tions inevitably capture what is meant by some authors’ use of the terms, and
not others’; consequently, one can debate whether the formalisms really have
captured the ‘right’ understanding of the various properties.

Our approach here is a little different. We take two commonly discussed
properties—coercion resistance and receipt freeness—and construct a framework
that is rich enough to cope with a large variety of definitions. This has the advan-
tage of allowing us to formalize many definitions and analyze a voting system to
see which definitions it satisfies and which it does not. A simplified CSP model
of Prêt à Voter is then considered against a range of coercion resistance prop-
erties expressed in our framework. Two further examples of voting systems are
presented to highlight differences between definitions in the literature.
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1.1 Characterisations

Characterisations of coercion resistance and receipt freeness are plentiful in the
literature, but rarely do two definitions coincide. The following characterisa-
tions are examples from the literature. They are a mixture of coercion resistance
and receipt freeness definitions; once we have seen the flavour of some of these
definitions, then we will consider the differences. They apply to systems which
voters interact with in order to cast votes, and which potential coercers may also
observe and interact with.

Characterisation 1 (Okamoto [RF]). For any two candidates c and c′, a
voter can vote for c in a way that is consistent (from the coercer’s point of view)
with having voted for c′ [Oka97].

Characterisation 2 (Benaloh/Tuinstra [RF]). A voter should be unable to
prove that a vote was cast in a particular way [BT94].

Characterisation 3 (Delaune/Kremer/Ryan [CR]). Coercion resistance
holds if a coerced voter behaving as instructed is indistinguishable from one voting
a different way, to a coercer interacting with the voter [DKR09]. (A weaker
notion of receipt freeness is also provided.)

The issue here is what can qualify as instruction. The difference between coercion
resistance and receipt freeness is usually phrased in terms of the coercer’s ability
to interact with the voter during the voting process: coercion resistance includes
protection against a coercer who can interact in this way, whereas receipt freeness
does not. This is a slippery distinction, for two reasons. First, interacting with
the voter before the voting process, and interacting during the voting process,
are hard to distinguish cleanly. For instance, there is nothing in principle to stop
the coercer from interacting before voting takes place, and providing the voter
with a flowchart showing how the voter is to act in any given situation. Secondly,
it is not clear what constitutes interaction. If it is known to me that someone
is offering money for receipts that show a vote for a particular candidate, does
the fact that the knowledge has reached me (by whatever means) constitute
interaction with the coercer?

Since coercion resistance is generally considered to be a stronger property
than receipt freeness, the approach we will take in this paper is to see receipt
freeness properties as a subclass of coercion resistance properties. We will assume
that receipt freeness deals with a coercer who is concerned only with deducing
information about how someone voted from receipts and any public information,
but who does not give detailed instructions on how to cast the vote. Coercion
resistance, on the other hand, includes dealing with a coercer who gives details
not just on which candidate to vote for but also on how to cast the vote.

This understanding of receipt freeness has the advantage that it can be mod-
elled in the same way as coercion resistance. Receipt freeness, on this definition,
is equivalent to coercion resistance against a coercer who can specify which can-
didate the voter should choose, but cannot specify how the voter should make
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the choice. If the voting process is deterministic (as it is, for example, in Prêt
à Voter), then these two notions will coincide, but if it is non-deterministic (as,
for example, in ThreeBallot [Riv06]) then they might not.

Because receipt freeness properties are, on this understanding, a subclass of
coercion resistance properties, we will focus on the larger problem of coercion
resistance. Receipt freeness is discussed in more detail in an expanded and more
technical version of this paper [HS12].

2 Modelling Voting Systems in CSP

CSP (Communicating Sequential Processes) provides a language for describing
concurrent systems, and a theory for reasoning about them, in terms of events
that they can perform. Events can be atomic, e.g., start , or they can be struc-
tured with several fields, e.g., vote.i .p.v . The language of processes includes:

– a → P , which can perform a and then behave as P ;
– c?v → P(v) which inputs value v over channel c and then behaves as P(v);
– c!v → P which outputs v on channel c;
– P \ A which hides the set of events in A, which are performed internally;
– Stop is the process that does nothing.
– Chaos(H ) is the process that can nondeterministically perform or refuse to

perform any event from H at any time.
– P � Q makes an internal (nondeterministic) choice between P and Q ;
– P � Q offers an external choice between P and Q ;
– P ‖ Q runs P and Q in parallel, synchronising on their common events.

The last three operators also have indexed forms. The language also includes
recursive definitions N = P .

The theory provides a hierarchy of semantic models, including the Stable Fail-
ures model, which models a process as the set of traces (sequences of events) and
subsequent sets of events that can be refused and the Failures/Divergences model
which also includes information about divergent (infinite internal) behaviour. A
process P is refined by another process Q , written P �F Q (or Q �F P), and
P �FD Q for the respective models, if all observations of Q in that model are
also observations of P . See [Ros98, Sch99] for further details.

Throughout this section, we shall assume that voting systems are modelled
as follows. The system as a whole is modelled by a CSP process SYSTEM ; this
will be responsible for receiving votes, publishing receipts, tallying, publishing
audit data, and whatever else the system in question may need to do.

Voters will interact with the system by being placed in parallel with it. We
will model voter behaviour by a process VOTER(i , c), which represents the most
general behaviour of a voter with ID i who chooses to vote for candidate c.

Preferential voting systems allow voters to rank the candidates, rather than
asking them to choose one candidate. The framework presented here is expressive
enough to allow for this: c would be the vote in whatever form it might take,
rather than necessarily being a specific candidate, and each possible ranking
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would effectively be treated as a separate ‘candidate’. However, for clarity of
exposition, we will continue to talk in terms of votes for particular candidates.

We will consider coercion resistance and receipt freeness from the perspective
of an arbitrarily chosen voter, to whom we will give the name of Zara and the
ID of 0. Thus, roughly speaking, we will want to know whether a coercer can
distinguish SYSTEM ‖ VOTER(0, c) from SYSTEM ‖ VOTER(0, c′). In the
first case, the target voter casts a vote for c; in the second case, for c′.

However, we start by observing that no voting system can be coercion resistant
from voter 0’s perspective if every other voter is under the complete control of
the coercer. The coercer will know what the tally should be without voter 0’s
vote, and so he will be able to establish how voter 0 voted by seeing how the tally
has changed. We will need to assume that there is at least one other voter who
lies outside the control of the coercer. Since we will need to reason about this
voter, we will identify him by the name of Juan and the ID of 1. This approach
is also taken in the formalisations given in [DKR09].

The idea will be that Juan will cover Zara’s tracks. Consider the case where
the coercer instructs Zara to vote for Alice. Coercion resistance will mean that
the coercer is unable to distinguish between Zara’s compliance by voting for
Alice and Juan’s voting for Bob, and Zara’s disobedience by voting for Bob and
Juan’s voting for Alice. The underlying assumption is that there is at least one
voter (whom we will call Juan) who, as far as the coercer is concerned, might or
might not vote for Alice, but who in fact does so. As long as at least one voter
casts a vote for Alice but is not known by the coercer to have done so, then
Zara’s non-compliance will be masked. The precise masking behaviour will vary
according to the voting system and the model of coercion resistance.

We are now ready to state the formal definition. We start with some assump-
tions on the model of the system and the model of a general voter. We denote the
set of all candidates by CANDIDATES . This set includes the special value abs;
a voter who ‘chooses’ the candidate abs chooses to abstain from voting.

Assumption 4 (System Model). The system is modelled by a pro-
cess SYSTEM , and the most general behaviour of a voter with ID i who chooses
to vote for candidate c is modelled by VOTER(i , c). Voter behaviour is also
defined for a set of candidates: the most general behaviour of a voter who
chooses non-deterministically from the set CANDS �= ∅ of candidates is

VOTER(i ,CANDS ) =�
c∈CANDS

VOTER(i , c)

These processes must meet the following conditions:

SYSTEM \ (Σ \{open,close}) =FD open → close → Stop

VOTER(i ,CANDIDATES ) \ (Σ \ {open,close}) =FD open → close → Stop

SYSTEM ‖ ( ‖
i∈IDS

VOTER(i ,CANDIDATES )) \ (Σ \ {open,close})
=FD open → close → Stop
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One consequence of these assumptions is that voter behaviour and overall system
behaviour are both finitary. This rules out, for instance, unbounded auditing of
ballot papers in a system like Prêt à Voter [CRS05], or unbounded re-voting in
a system like Helios [Adi08]. This is not unreasonable, since in practice polling
closes at a fixed time, meaning that systems and voters must eventually termi-
nate their interaction.

What is more important from a technical point of view is that it eliminates the
possibility of divergence in any of the processes involved in the model. When we
consider the coercer’s view of the system, we will abstract away all of the events
that the coercer cannot see; if unbounded sequences of such events were allowed,
then the abstraction would introduce divergence. By ensuring that every process
is divergence free, we will be able to analyze the model in stable failures without
concerning ourselves with divergence. Hence for the remainder of this paper we
will use the stable failures semantic model.

Definition 5 (Coercer’s control). We use ‘H ’ for the set of events invisible
to the coercer. The only restriction is that {open, close}∩H = ∅; in other words,
the coercer must be able to see the opening and closing of the election.

Definition 6 (Candidates and abstentions). The set of all candidates under
consideration is denoted by ‘C ’. This will denote all the candidates for whom
Zara may wish to vote, and all of the candidates for whom the coercer may wish
her to vote. Typically we will have either C = CANDIDATES \ {abs}, if we do
not want to consider abstentions, or C = CANDIDATES if we do.

We now define the set of all instructions the coercer might give Zara. Instruc-
tions will come in the form of a process whose behaviour Zara must mimic; for
compliance to be possible, the process must be a refinement of VOTER(0,C ),
Zara’s most general behaviour.

Definition 7. We use ‘I ’ to denote the set of instructions that the coercer might
give Zara. It must be a subset of the set of all possible instructions that the coercer
could give Zara, with the set C of candidates under consideration:

I ⊆ {P | P �F VOTER(0,C )}
Definition 8 (Coercion resistance [CR]). Suppose that we are given some
system model SYSTEM (with associated voter model VOTER(i , c)).

We say that SYSTEM meets CR(I ,C ,H ,mask), with

I ⊆ {P | P �F VOTER(0,C )}
C ⊆ CANDIDATES

H ⊆ Σ \ {open, close}
mask ⊆ (H ×H ) ∪ (H̄ × H̄ )

if, for all c ∈ C and Zx ∈ I , there exist some Zc �F VOTER(0, c) and Jx �F

VOTER(1,C ) such that

LH (mask(SYSTEM ‖ Zx ‖ VOTER(1,C )))

�F LH (mask(SYSTEM ‖ Zc ‖ Jx )) (1)
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In this definition, J is a shorthand for VOTER(1,C ), Juan’s most general be-
haviour. The set I represents the set of processes that the coercer is able to
choose from when giving instructions to Zara; we must have I ⊆ {P | P �F

VOTER(0,C )} if Zara is to be able to comply. The second parameter, C , de-
termines the set of candidates under consideration; in particular, the flavour
of coercion resistance will change if this contains the special abs candidate. If
abs ∈ C , then Zara must be able to abstain if she so wishes, and the coercer
may try to force her to abstain.

The coercer’s view is controlled by the third parameter, H . The LH function
is lazy abstraction, and is defined in [Ros98]; it provides a mechanism for masking
all of the events (in traces and in refusals) from the hidden set H . It is defined
as LH (P) = (P ‖ Chaos(H )) \ H . Essentially, by applying lazy abstraction over
the set H , we ensure that events from the set H are invisible, so that the coercer
can neither see such events nor see the refusal to engage in such events. This is a
stronger form of abstraction than simply hiding events, for which hidden events
cannot be refused.

The purpose of the fourth parameter, mask , is to allow us to model semantic
security of an encryption function. There will be times when we want to say that
encryptions are essentially opaque to an observer: he cannot learn anything from
seeing an encryption, including determining whether two encryptions represent
the same value. The mask function is applied to events, and then lifted to whole
processes; usually it will involve mapping all encryptions to a single value. The
conditions on it state that it should act reasonably with respect to the events
that are being entirely abstracted away: it will not move a whole event from
hidden (in H ) to visible (in Σ \ H ) or from visible to hidden. For most of the
models in this paper, we will use the identity function id as the mask, because
there is no encryption to deal with; but for the Prêt à Voter model in Section 4,
we will need to mask encryptions from the observer’s view.

What Definition 8 states, then, is that whatever candidate c Zara wishes to
vote for, and whatever instructions Zx the coercer might give her from the set I ,
there is some possible behaviour Zc of hers that casts a vote for c, and some
possible behaviour Jx of Juan, such that, when we abstract away the set of all
hidden events H , any behaviour of the system when Zara acts as Zc and Juan
acts as Jx is also a possible behaviour of the system when Zara acts as instructed
by the coercer.

An alternative definition replaces the refinement relation with equality:

Definition 9 (Coercion resistance [CR∗]). The coercion resistance property
CR∗(I ,C ,H ,mask) has the same definition as CR of Definition 8 except that it
uses equality instead of refinement, replacing Line (1) with the following:

∃ Jc �F VOTER(1, c) . LH (mask(SYSTEM ‖ Zx ‖ Jc))

=F LH (mask(SYSTEM ‖ Zc ‖ Jx ))

In Definition 8, the question is whether some strategy of Zara’s is sufficient to
allow her to vote according to her own wishes whilst claiming plausibly to have
obeyed the coercer; in Definition 9, the question is whether every observation
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that the coercer might make of a compliant voter is also possible for a voter
voting for c. Definition 9 is stronger than Definition 8 since equality implies
refinement. For most voting systems there will be no difference; but we will see
in Section 4.1 that this is not always the case. Hence we illustrate the difference
between approaches based on CR and those based on CR∗.

The line we will adopt here is to use Definition 8 for the bulk of our work, to
illustrate how the definition can be applied. Similar results hold for Definition 9.

3 Definitions of Coercion Resistance

In this section, we will give formal definitions within our framework of several
different informal definitions of coercion resistance and receipt freeness, including
some of those found in Section 1.1. In each case, we will give the definition of the
set I of instructions that the coercer can give. This set will be defined in terms
of C , the set of candidates under consideration. We will then give a useful result
that allows us to compare definitions; this will enable us to set up a hierarchy
of definitions of coercion resistance and receipt freeness.

Since the definitions are in terms of the set I of instructions, they can apply
equally to CR and to CR∗.

3.1 Formal Definitions

For convenience, we will attach a superscript of ‘abs’ when the definition in-
cludes the special abstention candidate. The definitions below are given in their
undecorated form; but later we will use the decorated forms of some of these
definitions when we want to consider abstentions.

One notion of coercion resistance that is not given a formal definition below
is that of resistance to randomization attacks, in which the coercer attempts
to force Zara to vote randomly. This type of attack can occur in a system like
Prêt à Voter, where the coercer can insist that Zara bring back a receipt with
a cross in the top box, without the coercer knowing which candidate the top
box will represent. The formal definition of such attacks varies according to the
system in question, so we cannot give a general definition, but we will discuss
randomization attacks further in Section 4.

We start with the definition of a general kind of receipt freeness property, in
the context of a voter who wishes to deceive the coercer where possible.

Definition 10 (Receipt Absence). Our informal definition of receipt absence
allows the coercer to specify the content of the vote, but not how to cast the vote.
In its most general form, the coercer may specify any non-empty subset X of
candidates, and require the voter to cast the vote for a candidate from X . The
set of instructions that the coercer may give, then, is

IRFGEN = {VOTER(0,X ) | X ⊆ C ∧ X �= ∅}
We shall shortly give some results that enable us to say when one definition is
stronger than another.
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Definition 11 (Okamoto). Characterisation 1 is encapsulated formally by us-
ing the following set within the definition of CR or CR∗:

IOK = {VOTER(0, c) | c ∈ C}
The coercer may specify a candidate to vote for, but may not specify how the
voter is to cast it. This turns out to be equivalent to IRFGEN .

Definition 12 (Benaloh/Tuinstra). We here give the formal definition of
coercion resistance for Characterisation 2. This holds when a voter aiming to
deceive the coercer can avoid leaking information about how the vote was cast.
The Benaloh/Tuinstra definition is encapsulated by using the following set within
the definition of CR or CR∗:

IBT = {P | P � VOTER(0, c) ∧ c ∈ C}
This is stronger than the Okamoto definition. Here, the coercer can require spe-
cific evidence that Zara has complied with specific instructions not just on voting
for c but on voting for c in a particular way.

Definition 13 (Delaune/Kremer/Ryan). Characterisation 3 says that a
system is coercion resistant if the coercer cannot tell whether a coerced voter
has behaved as instructed or voted differently. This leaves open the question of
what possible instructions the coercer may give, but it appears that in their model
a coercer’s instructions must always be instructions to vote for a particular can-
didate, possibly in a specific way. The formal definition of the set I within our
framework is then the same as that for the Benaloh/Tuinstra definition: the co-
ercer can choose any candidate, then specify any refinement of the process that
always casts a vote for that candidate. Note that Delaune, Kremer and Ryan
use observational equivalence, so CR∗ will always be the appropriate definition
corresponding to theirs.

Definition 14 (Forced abstention attacks). A forced abstention attack is an
attack in which the coercer attempts to force Zara to abstain. Since it makes sense
only when abstentions are under consideration, we give the formal definition in
its decorated form: I abs = {VOTER(0, abs)}.
Definition 15 (Maximum strength). Our framework finds its strongest
possible notion of coercion resistance in the set of all refinements of Zara’s
most general behaviour, VOTER(0,C ). This includes everything covered by Be-
naloh/Tuinstra, but it also includes randomization attacks, and any other sort of
instruction that Zara is able to follow: for instance, an instruction to use the last
digit of the ballot serial number to determine which candidate to vote for. When
abs ∈ C, it also includes instructions to abstain, or instructions to participate.

IMAX = {P | P �F VOTER(0,C )} where abs �∈ C

I absMAX = {P | P �F VOTER(0,C )} where abs ∈ C
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The possibility of randomisation attacks is dependent on the particular system
under consideration, and there is not a generic characterisation. We see an ex-
ample of a randomisation set IRND in the next section, under Proposition 20.

3.2 Relationships between Definitions

Some of the associated CR and CR∗ definitions are stronger than others. We now
state some results that allow us to formalize relations between notions of coercion
resistance. Proofs of the results given in this paper can be found in [HS12].

Definition 16 (Dominance). Suppose that I1 and I2 are sets of processes. We
say that I1 dominates I2 if ∀P2 ∈ I2. ∃P1 ∈ I1.P2 �F P1.

Theorem 17 (CR and dominance). Suppose that I1 dominates I2, and
SYSTEM meets CR(I1,C ,H ,mask). Then it also meets CR(I2,C ,H ,mask).

Corollary 18 (CR and subset). Suppose that I2 ⊆ I1, and SYSTEM meets
CR(I1,C ,H ,mask). Then it also meets CR(I2,C ,H ,mask).

These results allow us to give a hierarchy of definitions, whose relationships are
shown in Figure 1.

I abs
MAX

I abs
BT

I abs
OK

IMAX

IBT

IOK

I abs
RND

IRND

I abs

I abs
RFGEN IRFGEN

Receipt freeness specifications below
Non-receipt freeness specifications above

Fig. 1. Hierarchy of definitions of coercion resistance

4 Example: Simplified Prêt à Voter

Figure 2 shows the CSP for a simplified model of Prêt à Voter running a ref-
erendum. Voters receive a value b ∈ {0, 1} on channel ballot , which indicates
the ordering of the boxes on the ballot form: 0 or 1 means that the top box
represents ‘yes’ or ‘no’ respectively. They also receive a pair of encryptions, the
first (second) of which will decrypt to the value represented by the top (bottom)
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BOOTH = open → WAITING(∅, ∅)
WAITING(VTD,BOX ) = arrive?id : IDS \ VTD → VOTING(VTD,BOX , id)

� close → mix .1!BOX → Stop

VOTING(VTD,BOX , id) = newBallot → genBallot?b?encs → ballot.id!b!encs

→ �
v∈{0,1}

(vote.id.v .encs[v ] → write!encs[v ] →
WAITING(VTD ∪ {id},BOX ∪ {encs[v ]}))

MIX (n) = close → mix .n?BOX → REMIX (n,BOX , ∅)
REMIX (n, ∅,NEW ) = mix .(n + 1)!NEW → Stop

REMIX (n,OLD,NEW ) = �
v∈OLD

reenc.n!v → genReenc.n?v ′ →
REMIX (n,OLD \ {v},NEW ∪ {v ′})

DEC = mix .(K + 1)?BOX → announce!cnt(BOX , 0).cnt(BOX , 1) → Stop

SYSTEM = (BOOTH ‖

⎛
⎜⎝ ‖

1�i�K

MIX (i)

⎞
⎟⎠ ‖ ENCSVR(RAND) ‖ DEC )

\ {|newBallot, genBallot, reenc, genReenc|}

ENCSVR(R) = newBallot → �
b∈{0,1}

genBallot!b!〈Enc.b.R[0],Enc.(1 − b).R[1]〉 → ENCSVR(R[2..])

� reenc?n?Enc.b.r → genReenc!n!Enc.b.R[0] → ENCSVR(R[1..])

VOTER(i, c) = open → if (c �= abs) then

arrive!i → ballot.i?b?xs → vote.i.c ⊕ b.xs[c ⊕ b] → close → Stop

else close → Stop

cnt(BOX , b) = #{r | Enc.b.r ∈ BOX}

Fig. 2. A simplified model of Prêt à Voter: defining the system and voter behaviour

box. They then submit an ID from the finite set IDS of all voter IDs, and the
encryption associated with the box they want to choose; the system returns this
encryption to them, and then stores the encrypted value.

When voting closes, the set of votes is passed through each of the K mix
servers in turn, which each re-encrypt them all. The votes are then decrypted
and the totals announced.

Here and throughout, ‘v̄ ’ represents 1 ⊕ v , where ‘⊕’ is bitwise exclusive-or.
(The special candidate abs is treated as invariant under this operation.) The bal-
lots and re-encryptions are produced by ENCSVR, which models the assumption
that no two encryptions ever have the same randomness. It is initialized with
an infinite sequence RANDS of distinct random numbers, and it uses these to
generate new ballots and re-encryptions of existing ballots.

The voter process is finitary (Assumption 4) because it is non-recursive. The
system is finite because on each step the number of people who have voted
strictly increases, and cannot exceed #IDS .
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Our Prêt à Voter model is rich enough to allow for analysis under various
definitions of coercion resistance. We consider several here. Initially, we will not
take abstentions into account.

For what follows, we define the function mask to model the semantic security
of the encryption: it abstracts the system so that all encryptions appear as the
value ‘⊥’. This prevents agents from ‘reading’ inside the encryptions:

mask(ballot .i .b.E ) = ballot .i .b.〈⊥ | e ∈ E 〉 mask(mix .n.B) = mix .n.{⊥ | b ∈ B}
mask(vote.i .p.v) = vote.i .p.⊥ mask(write.v) = write.⊥

Proposition 19 (Okamoto and PaV, no abs).
The set of candidates under consideration, when abstentions are not taken

into account, is C2 = {0, 1}.
The Okamoto definition in this setting is encapsulated by IOK =

{VOTER(0, c) | c ∈ C2}.
Suppose that we set HPUB = {|ballot |}. In other words, the coercer cannot see

the ordering of the names on the ballot paper (the ballot channel), but can see
who arrives to vote (the arrive channel) and who ticks which box (the masked
vote channel). We use the name ‘HPUB ’ because this models a scenario in which
it is made public which voter is associated with each encrypted receipt.

The simplified Prêt à Voter model meets CR(IOK ,C2,HPUB ,mask).

Proposition 20 (Randomization attacks and PaV, no abs). To mount
a randomization attack, the coercer specifies a particular box to be ticked (for
instance, the top box). The coercer cannot know whether this box represents a
‘yes’ or a ‘no’ vote. Such an attack is represented in our model by setting

IRND = {open → arrive!0 → ballot .0?b?xs →
vote.i .xs [v ] → close → Stop | v ∈ {0, 1}}

We consider candidates in C2 = {0, 1}, and HPUB = {|ballot |}. The coercer can
see which box Zara ticks, but not which candidate it represents.

Our simplified model of Prêt à Voter does not meet
CR(IRND ,C2,HPUB ,mask).

Corollary 21 (IMAX and PaV, no abs). It is an immediate corollary of
Proposition 20 and Corollary 18 that our simplified Prêt à Voter does not meet
CR(IMAX ,C2,HPUB ,mask).

Any set of coercer instructions must be a subset of IMAX , so Corol-
lary 18 tells us that if Prêt à Voter met CR(IMAX ,C2,HPUB ,mask) then
it would meet CR(I ,C2,HPUB ,mask) for any I . But Proposition 20 shows
that it does not meet CR(IRND ,C2,HPUB ,mask); therefore, it cannot meet
CR(IMAX ,C2,HPUB ,mask).

We now return to the question of abstentions. In what follows, we will use
C abs

2 = C2 ∪ {abs}, and establish what effect this has on coercion resistance. In-
cluding abs has two consequences. First, Zara may now want to abstain; coercion
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resistance will imply that she is able to abstain if she wishes, without the coercer
knowing that she has not complied. If the coercer can force Zara not to abstain,
then we have a forced participation attack. Secondly, the coercer may insist on
Zara’s abstention; coercion resistance will imply that she is able to vote if she
wants to, without the coercer knowing that she has not abstained. If the coercer
can force Zara to abstain, then we have a forced abstention attack. The model
is rich enough to handle these cases independently. However, they are naturally
treated together, and we will treat them together here.

Proposition 22 (Okamoto and PaV, C abs
2 ).

The Okamoto definition, with abs included, is modelled by

I absOK = {VOTER(0, c) | c ∈ C abs
2 }

By including abs in the set of candidates, we also allow for the possibility that
Zara wishes to abstain. We continue to set HPUB = {|ballot |}, so that the coercer
can see all voter actions but cannot see the candidate ordering on the ballot paper.

Our simplified Prêt à Voter model does not meet CR(I absOK ,C abs
2 ,HPUB ,mask).

If the coercer can see anything that includes the voter’s ID, then there is no hope
of resistance to forced abstention attacks.

Corollary 23 (I absMAX and PaV, C abs
2 ). The strongest definition, with abs in-

cluded, is modelled by I absMAX = {P | P �FD VOTER(0, c) | c ∈ C abs
2 }

Our model does not meet CR(I absMAX ,C abs
2 ,HPUB ,mask).

Finally we ask what happens if we change the level of abstraction, so that the
coercer can see fewer events. We will allow the coercer to see votes being posted
up (on the write channel), but not arrivals or vote casting. We will set HSEC =
{|arrive, ballot , vote|}.
Proposition 24 (IMAX and PaV, C abs

2 , HSEC ). Our simplified Prêt à Voter
model meets CR(IMAX ,C abs

2 ,HSEC ,mask). In other words, when all events con-
taining voter IDs are abstracted away, our model satisfies the strongest possible
definition of coercion resistance in our framework.

It is evident from this one example that the framework we have constructed is
able to handle a wide variety of notions of coercion resistance, by varying the
values of I , C and H . A summary of results is shown in Table 1.

Table 1. Summary of results for simplified Prêt à Voter model

Definition Abs? Invisible Formalism Met by PaV?
Okamoto No {|ballot|} CR(IOK ,C2,HPUB ,mask) Yes
Randomization No {|ballot|} CR(IRND ,C2,HPUB ,mask) No
Strongest No {|ballot|} CR(IMAX ,C2,HPUB ,mask) No

Okamoto / forced abs Yes {|ballot|} CR(I abs
OK ,C abs

2 ,HPUB ,mask) No

Strongest Yes {|ballot|} CR(I abs
MAX ,C abs

2 ,HPUB ,mask) No

Strongest Yes {|arrive, ballot, vote|} CR(I abs
MAX ,C abs

2 ,HSEC ,mask) Yes
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4.1 Further Examples

Two further toy examples illustrate the differences between types of coercion
resistance. ‘Two-receipt’ shows the difference between the definitions of Okamoto
(where it holds) and Benaloh/Tuinstra (where it does not hold). ‘Opt-receipt’
shows the difference between the two characterisations of coercion resistance,
CR and CR∗. In each case, we give here the informal definitions and state the
properties the systems meet; the CSP models can be found in [HS12].

Two-Receipt. This system gives voters a receipt containing two names (in
arbitrary order): the name of the candidate who received the vote, and one
other candidate of the voter’s choice. The intention is that the inclusion of an
alternative name on the receipt allows the voter to mask who received her vote.

Two-receipt meets the property CR(IOK , {c1, c2, c3}, {|vote, dummy|}, id). A
voter instructed to vote for c′ can vote for c in a way consistent with a vote for
c′. Conversely, Two-receipt does not meet the Benaloh and Tuinstra character-
isation as captured by the property CR(IBT , {c1, c2, c3}, {|vote, dummy|}, id).
This is consistent with our expectations. A voter is able to vote for her preferred
candidate c in a way consistent with a vote for c′, as required by Okamoto’s
definition. On the other hand, if the coercer can require a vote to be cast in a
particular way, then the voter might not be able to vote in her preferred way
consistent with this. Our formal characterisation captures this distinction.

Opt-Receipt. The following example is attributed to Ron Rivest. On accepting
a vote, the system chooses whether or not to offer a receipt. If offered, the voter
chooses whether or not to accept the receipt. Hence the voter might obtain a
receipt of exactly how they voted. However, they can also vote for their pre-
ferred candidate consistently with any instructions a coercer might give them,
by declining any receipt, and claiming that the system did not offer one.

The voter has a strategy for voting without production of a re-
ceipt, and so Opt-receipt meets CR(IMAX ,C ,HOPT , id), where HOPT =
{|vote, noreceipt , offerreceipt , accept , reject |}. However, it does not meet
CR∗(IMAX ,C ,HOPT , id). This example thus highlights the difference between
CR, which requires the existence of a coercion resistance strategy for a voter, and
CR∗, which requires that information about the vote should not leak whatever
the voter does.

5 Discussion

As commented in Section 1, there are a variety of definitions in the literature to
receipt-freeness and coercion-resistance, and a range of approaches to analysing
proposed voting protocols and systems. They all hinge on the required inability
of a coercer to tell whether the coerced voter has followed instructions or not.

The game-based approach typically applied to cryptographic schemes has been
applied with respect to coercion-resistance in [JCJ05, GGR09, KTV10]. In this
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approach, coercion-resistance is captured in terms of a game with a specific goal,
e.g. [GGR09] considers Indistinguishability of Encoded Votes. The nature of the
goal and the coercer’s possible instructions characterises whether abstention and
randomisation attacks are included, and so the hierarchy of Figure 1 also applies
to the range of possibilities expressible using the game-based approach.

Coercion resistance has also been characterised in the Universal Composabil-
ity (UC) framework, for example in [MN06], [UMQ10], [dMPQ07]. This approach
uses an idealised system in which voters choose whether or not to obey the co-
ercer, and then defines a coercion-resistant system to be one in which an adver-
sary cannot enable a distinguisher to tell the difference between the real system
and the idealised system. Though in a different setting, this gives the same sense
of coercion-resistance as Definition 3. The hierarchy of definitions of Figure 1
for the UC setting corresponds to what the coercer can require of the voter in
the idealised system. Abstention attacks fall naturally within this setting, but
randomisation attacks will perhaps be more difficult to characterise.

Others take a more symbolic approach. Okamoto’s original formulation
[Oka97] was epistemic. More recently the epistemic approach of [KT09] requires
that for any instructions provided by the coercer, there is a counter-strategy for
the voter to achieve their own goal, where the coercer cannot tell whether or
not his instructions were followed. The hierarchy of definitions arises naturally
with this approach, as the possible instructions and observations of the coercer
vary. A quantitative approach based on knowledge reasoning is given in [JMP09],
which gives a measure of voter privacy.

The process algebraic approaches of [DKR09, BHM08] and this paper are
also symbolic. In these approaches an observational equivalence is used for in-
distinguishability, and coercion-resistance is captured as the equivalence of two
processes, one where the voter complies and one where he does not. The mod-
els in [DKR09] provide a general framework to include the weaker properties of
receipt-freeness and privacy, but unlike our approach they do not handle absten-
tion or randomisation attacks since they are characterised in terms of a coercer
selecting a particular candidate. The extended framework of [BHM08] does ex-
plicitly handle forced abstention attacks, but not randomisation attacks.

Our approach is most closely related to the epistemic characterisation in
[KT09], but ours is cast in a process algebraic setting. This allows a higher
level description of a voting system design in CSP. Further, our emphasis is on
the hierarchy of definitions rather than the proposal of any specific one.
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