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Abstract. This paper is an extended case study using a high-level ap-
proach to the verification of graph transformation algorithms: To repre-
sent sharing, graphs are considered as trees with additional pointers, and
algorithms manipulating them are essentially primitive recursive traver-
sals written in a monadic style. With this, we achieve almost trivial
termination arguments and can use inductive reasoning principles for
showing the correctness of the algorithms. We illustrate the approach
with the verification of a BDD package which is modular in that it can
be instantiated with different implementations of association tables for
node lookup. We have also implemented a garbage collector for freeing
association tables from unused entries. Even without low-level optimiza-
tions, the resulting implementation is reasonably efficient.

Keywords: Verification of imperative algorithms, Pointer algorithms,
Modular Program Development, Binary Decision Diagram.

1 Introduction

There is now a large range of verification tools for imperative and object-oriented
(OO) languages. Most of them have in common that they operate on source code
of a particular programming language like C or Java, annotated with pre- and
post-conditions and invariants. This combination of code and properties is then
fed to a verification condition generator which extracts proof obligations that
can be discharged by provers offering various degrees of automation (see below
for a more detailed discussion).

This approach has an undeniable success when it comes to showing that a
program is well-behaved (no null-pointer accesses, index ranges within bounds,
deadlock-freedom of concurrent programs etc.). Program verification and in par-
ticular static analysis often amounts to showing the absence of undesirable situ-
ations with the aid of a property language that is considerably more expressive
than a traditional type system, but nevertheless has a restricted set of syntactic
forms for program verification that cannot be user-extended unless the impera-
tive programming language is embedded into a general purpose proof-assistant.

These limitations turn out to be a hindrance when one has to build up a
larger “background theory” capable of expressing deeper semantic properties of
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the data structures manipulated by the program (such as the notions of inter-
pretation and validity of a formula used in this paper). Even worse, high-level
mathematical notions (such as “sets” and “trees”) are often not directly available
in the specification language. Even if they are, recovering an algebraic data type
from a pointer structure in the heap is not straightforward: one has to ensure,
for example, that a structure encoding a list is indeed an instance of a data type
and not cyclic.

In this paper, we explore the opposite direction: we start from high-level data
structures based on inductive data types, which allows for an easy definition
of algorithms with the aid of primitive recursion and for reasoning principles
based on structural induction and rewriting. References are added explicitly to
these data structures, which makes it possible to express sharing of subtrees
with a simple notion of reference equality as well as associating mutable con-
tent to nodes. The notion of state is manipulated with a state-exception monad
(see Section 2), thus allowing for a restricted form of object manipulation (in
particular object creation and modification).

We illustrate our approach with the development of a Binary Decision Di-
agram (BDD) package. After recalling the basic notions and the semantics of
BDDs in Section 3, we describe a first, non-optimized version of the essential
algorithms in Section 4 and the implementation of association tables in Sec-
tion 6. Section 5 introduces a garbage collector and memoization, which lead to
a substantial speed-up.

As formal framework, we use the Isabelle proof assistant [16] and its extension
Imperative HOL [8], together with its Isabelle-to-Scala code extractor. Our al-
gorithms are therefore executable in Scala and, as witnessed by the performance
evaluation of Section 7, within the realm of state-of-the-art BDD packages.

A further gain in efficiency might be achieved by mapping our still rather
coarse-grained memory model to a fine-grained memory model, which would al-
low us to introduce bit-level optimizations. Even though this is compatible with
our approach, we have refrained from it here because it would lead to a consid-
erable increase in complexity and is not central to the approach of this paper.
The formal development is available on the authors’ home pages1 and more de-
tailed discussions of some topics will appear in the first author’s forthcoming
PhD thesis [11].

Related Work – Program Verification: There are roughly two broad classes of
program verifiers - those aiming at a mostly automatic verification, as Spec# [2],
VCC [9], Frama-C2 or Why3 [4], or at mostly interactive proofs, such as the ones
based on Dynamic Logic like KeY[3], KIV3 or codings of programming languages
and their associated Hoare logics in proof assistants [10,19]. The borderline is
not clear-cut, since some of the “automatic” tools can also be interfaced with
interactive proof assistants such as Coq and Isabelle, as in [5].

1 http://www.irit.fr/~Mathieu.Giorgino/Publications/GiSt2012BDD.html
2 http://frama-c.com/
3 http://www.informatik.uni-augsburg.de/lehrstuehle/swt/se/kiv/

http://frama-c.com/
http://www.informatik.uni-augsburg.de/lehrstuehle/swt/se/kiv/
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The work that comes closest to ours is the extension of Isabelle with OO
features [6]. It is at the same time more complete and considerably more com-
plex, since it has the ambition to simulate genuine OO capabilities such as late
binding, which requires, among others, the management of dynamic type tags of
objects. Our approach remains confined to what can be done within a conven-
tional polymorphic functional type system. Our aim is not to be able to verify
arbitrary programs in languages such as Java or Scala, but to export programs
written and verified in a functional style with stateful features to a language such
as Scala. We thus hope to reduce the proof burden, while still obtaining relatively
efficient target code in an idiomatic style (using subtyping and inheritance) and
compatible with a widely used language.

Related Work – Verification of BDDs: Binary Decision Diagrams (BDDs) [7]
are a compact format for representing Boolean formulas, making extensive use
of sharing of subtrees and thus achieving a canonical representation of formulas,
and a verified BDD package might become useful for the formal verification of
decision procedures

Even without such an application in mind, BDDs have become a favorite case
study for the verification of pointer programs. As mentioned above, all the ap-
proaches we are aware of use a low-level representation of BDDs as linked pointer
structures. The idea of representing the state space in monadic style is introduced
in [13], but ensuring the termination of the functions poses a problem because
termination and well-formedness of the state space are closely intertwined.

There is a previous verification [18] in the Isabelle proof assistant, starting
from an algorithm written in a C-like language. As in our case, it is possible to
take semantic properties of BDDs into account, but the proof of correctness has
a considerable complexity. By a tricky encoding, the PVS formalization in [21]
can avoid the use of the notion of “state” altogether, but the encoding creates
huge integers even for a small number of BDD nodes, so that the approach might
not scale to larger examples.

The most comprehensive verification [20] (apart from ours) describes a veri-
fication in the Coq proof assistant, including some optimizations and a garbage
collector. The state space is explicitly represented and manipulated by a func-
tional program, and also the OCaml code extracted from Coq is functional.
This seems to account for the lower performance (slower execution and faster
exhaustion of memory) as compared to genuine imperative code.

2 Memory and Object Models

We first present a shallow embedding of an OO management of references in
Isabelle. As a basis we use the Imperative HOL theory [8] belonging to the
Isabelle library. This theory provides imperative features to Isabelle/HOL by
defining a state-exception monad with syntax facilities like do-notation. We then
add object-oriented features that should eventually improve code generation
to Scala. In the following, we put the Isabelle keywords corresponding to the
discussed concepts in parentheses.
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Language. Imperative programs returning values of type ′a have type ′a Heap.
They can manipulate references of type ′b ref using the usual ML syntax to
allocate (ref a), read (!r) and write (r := a) references. On the logical level, the
term effect m h h ′ v states that if m terminates, it transforms the heap h (of
type heap) into h ′ and returns the value v.

To get closer to an OO development, a reference to a record should be seen
as a handle to an object, without giving the ability in the language to retrieve
the record itself. To do this, we define accessors (of type ′a � ′b where ′a and
′b are respectively the types of the record and the field) as a means to describe
an abstract attribute in an object. These allow us to introduce primitives lookup
(denoted r ·ac) and update (r ·ac .= v) to read and write fields of the record
referenced by r, which can be seen as attributes of an object. A ‘$‘ character will
start accessor names to avoid name clashes with other identifiers.

For example, with the definition of accessors $fst and $snd for the first and
second components of pairs, the definition m p ≡ do{ a ← p·$fst ; p·$snd .= a;
p·$fst } defines a monadic operation m replacing the second component of the
pair referenced by p by its first component and returns it.

We also note that in Isabelle/HOL, implication is written at object or meta
level as −→ or =⇒ but can be read indifferently as implication.

Objects and Classes as Types. Hierarchical definition of data (with sub-
typing) is provided by extensible records (record) as described in [15]. A record
runit is used as a top element of a record hierarchy, in the same way as Object
in Java or Any in Scala are the top classes of their class hierarchies. In contrast
to the implicit object sub-typing, record types are explicitly parameterized by
their extension types as for example ′a in ′a runit-scheme.

Methods and Classes as Modules. Locales (locale) [1] allows the creation
of a context parameterized by constants (fixes) and assumptions (assumes).
We use them to define functions in the context of a reference called this in the
same way as for OO languages. Then the functions defined in this locale and used
from the outside take an additional argument being a reference to the record.

locale object = fixes this :: ′a ref

They can also be used as an equivalent of interfaces or abstract classes. They can
be built upon each other with multiple inheritance (+) for which assumptions
(including types of constants) can be strengthened (for). Finally they can be
instantiated by several implementations.

In This Development. Objects and classes are used at two levels:

– for the state of the BDD factory containing the two True and False leaves
and the association tables for maximal sharing and memoization. This state
and its reference is unique in the context of the algorithms and provided by
the locale object as a this constant parameter.
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– for the nodes, each one containing a reference to a mutable extension of
itself. This extension is initially empty and called runit to be extended later
to refCount to store the reference counter for the garbage collection.

Figures 1a and 1b present the hierarchies of records and locales used in this de-
velopment. We also take advantage of locales to specify the logical functions used
only in proofs (locale bddstate) and the abstract methods (locales bddstate-mk
and bddstate-mk-gc).

runit (any)

refCount leaves

leaves-memo

bddstate-hash

(a) Data (records)

object
(this of type runit)

leaves
(this of type leaves)

bddstate
(logical trees and invar)

bddstate-mk
(abstract method mk)

bddstate-mk-gc
(abstract method gc)

bddstate-mk-memo
(this of type leaves-memo)

implementation
with bddstate-hash

(b) Methods/Logic (locales)

Fig. 1. Hierarchies of data and methods

3 Binary Decision Diagrams

3.1 Tree Structure and Interpretation

BDDs are used to represent and manipulate efficiently Boolean expressions. We
will use them as starting point of our algorithms, by defining a function con-
structing BDDs from their representation of type ( ′v , bool) expr in which ′v is
the type of variable names. The definition of expressions is rather standard:

datatype ( ′v , ′a) expr =
Var ′v | Const ′a | BExpr ( ′a ⇒ ′a ⇒ ′a) (( ′v , ′a) expr) (( ′v , ′a) expr)

and their interpretation is done by interp-expr taking as extra argument the
variable instantiations represented as a function from variables to values:
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fun interp-expr :: ( ′v , ′a) expr ⇒ ( ′v ⇒ ′a) ⇒ ′a where
interp-expr (Var v) vs = vs v
| interp-expr (Const a) vs = a
| interp-expr (BExpr bop e1 e2) vs = bop (interp-expr e1 vs) (interp-expr e2 vs)

We now define BDDs as binary trees where the two subtrees represent the BDDs
resulting from the instantiation of the root variable to False or True :

datatype ( ′a, ′b) tree = Leaf ′a | Node ′b (( ′a, ′b) tree) (( ′a, ′b) tree)
type-synonym ( ′a, ′b, ′c) rtree = ( ′a × ′c ref , ′b::linorder × ′c ref ) tree

( ′a, ′b, ′c) rtree is the type of referenced trees with leaf content of type ′a,
node content of type ′b and mutable extension of type ′c. These trees contain a
reference to this mutable extension that will be used as an identifier. Each node
contains a variable index whose type is equipped with a linear order (as indicated
by Isabelle’s sort annotation ::linorder) and each leaf contains a value of any type
instantiated later in the development (for interpretations) to Booleans.

BDDs can be interpreted (i. e. evaluated) by giving values to variables which is
what the interp function does (l and h abbreviate low and high):

fun interp :: ( ′a, ′v , ′r) rtree ⇒ ( ′v ⇒ bool) ⇒ ′a where
interp (Leaf (b,r)) vs = b
|interp (Node (v ,r) l h) vs = (if vs v then interp h vs else interp l vs)

3.2 Sharing

We first illustrate the concept of subtree-sharing by an example. A non-shared
BDD (thus, in fact, just a decision tree) representing the formula (x ∧ y) ∨ z is
given by the tree on the left of Figure 2.

There is a common subtree (shaded) which we would like to share. We there-
fore adorn the tree nodes with references, using the same reference for struc-
turally equal trees. The result of sharing is illustrated on the right of Figure 2.

4, x

2, z

0, false 1, true

3, y

2, z

0, false 1, true 1, true

4, x

3, y

2, z

0, false 1, true

sharing

Fig. 2. Sharing nodes in a tree

In this way, as long as subtrees having identic references are the same, we can
represent sharing. To ensure this property giving meaning to references, we use
the predicate ref-unique ts :
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definition ref-unique :: ( ′a, ′v , ′r) rtree set ⇒ bool where ref-unique ts ≡
∀ t1 t2. t1 ∈ ts −→ t2 ∈ ts −→ (ref-equal t1 t2 ←→ struct-equal t1 t2)

in which ref-equal means that two trees have the same reference attribute, and
struct-equal is structural equality neglecting references, thus corresponding to
the typical notion of equality of data in functional languages.

While the left-to-right implication of this equivalence is the required property
(two nodes having the same reference are the same), the other implication ensures
maximal sharing (same subtrees are shared, i. e. have the same reference).

3.3 Ordering and Reducedness

With this definition, and without any other property, BDDs would be rather
hard to manipulate. For one, same variable indices could appear several times
on paths from root to leaves. Also, variables would not be in the same order,
making comparison of BDDs harder. Moreover, a lot of space would be wasted.
To circumvent this problem, one often imposes a strict order on variables, the
resulting BDDs being called ordered (OBDDs). We define this property using
the tree-vars constant to collect all variables of a tree:

fun ordered :: ( ′a, ′v ::linorder , ′r) rtree ⇒ bool where
ordered (Leaf b) = True
| ordered (Node (i , r) l h) =

((∀ j ∈ (tree-vars l ∪ tree-vars h). i < j ) ∧ ordered l ∧ ordered h)

An additional important property is to avoid redundant tests, which occur when
the two children of a node have the same interpretation. All the nodes satisfying
this property can be removed. In this case, the OBDD is said to be reduced
(ROBDD).

fun reduced :: ( ′a, ′v , ′r) rtree ⇒ bool where
reduced (Node vr l h) = ((interp l 
= interp h) ∧ reduced l ∧ reduced h)
| reduced (Leaf b) = True

This property uses a high-level definition (interp), but it can be deduced
(cf. Lemma 1) from the three low-level properties ref-unique, ordered (already
seen) and non-redundant :

fun non-redundant :: ( ′a, ′v , ′r) rtree ⇒ bool where
non-redundant(Node vr l h)=((¬ref-equal l h) ∧ non-redundant l ∧ non-redundant h)
|non-redundant(Leaf b) = True

We then merge these properties into two definitions robdd (high-level) and
robdd-refs (low-level):

definition robdd t ≡ (ordered t ∧ reduced t)
definition robdd-refs t ≡ (ordered t ∧ non-redundant t ∧ ref-unique (treeset t))

From these definitions, we finally show that ROBDDs are a canonical represen-
tation of Boolean expressions, i. e. that two equivalent ROBDDs are structurally
equal at high (robdd) and low (same with robdd-refs) level:
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Theorem 1 (canonic robdd)

robdd t1 ∧ robdd t2 ∧ interp t1 = interp t2 =⇒ struct-equal t1 t2

Proof. By induction on the pair of trees: the leaves case is trivial, heterogeneous
cases (leaf and node or nodes of different levels) lead to contradictions, and the
remaining case (two nodes of same level) is proved by applying the induction
hypothesis on subtrees.

Also high- and low-level properties are related in Theorem 2 as a consequence
of Lemma 1:

Lemma 1 (non redundant imp reduced)

ordered t ∧ non-redundant t ∧ ref-unique (treeset t) =⇒ reduced t

Proof. By induction on t : the leaf case is trivial and the node case is proved by
applying the induction hypothesis on the subtrees and proving that trees with
different references are structurally different (from definitions of non-redundant
and ref-unique) and then have different interpretations (with contrapositive of
Theorem 1).

Theorem 2 (robdd refs robdd)

ref-unique (treeset t) =⇒ robdd-refs t = robdd t

4 Constructing BDDs

The simplest BDDs are the leaves corresponding to the True and False values.
These ones have to be unique in order to permit sharing of nodes. We put them
in the BDD factory whose data is this record:

record ( ′v , ′c) leaves = runit +
leafTrue :: (bool , ′v , ′c) rtree
leafFalse :: (bool , ′v , ′c) rtree

We define the context of this state by constraining the type of the referenced
record this. This context together with the leaves record would be equivalent to
a class definition class Leaves extends Object in Java where type of this is
constrained from Object to Leaves.

locale leaves = object this for this :: ( ′v , ′c, ′a) leaves-scheme ref

Then we extend it to add logical abstractions trees and invar that will be instan-
tiated during the implementation to provide the correctness arguments we will
rely on in the proofs. The trees parameter abstracts the set of trees already con-
structed in the state. The invar parameter is the invariant of the data-structures
that will be added to the heap by the implementation and that will have to be
preserved by BDD operations.
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locale bddstate = leaves +
fixes trees :: heap ⇒ (bool , ′v , ′c) rtree set
fixes invar :: heap ⇒ bool

To be well-formed (wf-heap), the heap needs to follow the abstract implementa-
tion invariant invar and its trees need to contain the leaves and to be maximally
shared and closed for the subtree relation.

definition wf-heap :: heap ⇒ bool where
wf-heap s ≡ (invar s ∧ ref-unique (trees s) ∧ subtree-closed (trees s) ∧ leaves-in s)

Finally we add an abstract function mk and its specification (mk-spec) especially
ensuring that mk i l h constructs a ROBDD whose interpretation is correct under
the precondition that the heap is well-formed, level i is consistent with levels of
l and h and trees in the heap are already ROBDDs. It uses the function levelOf
returning the level of a BDD.

locale bddstate-mk = bddstate +
fixes mk :: ′v ⇒ (bool , ′v , ′r) rtree ⇒ (bool , ′v , ′r) rtree ⇒ (bool , ′v , ′r) rtree Heap
assumes mk-spec: effect (mk i l h) s s ′ t ∧ wf-heap s ∧ {l ,h} ⊆ trees s =⇒ (
(LevNode i < Min (levelOf ‘ {l ,h}) ∧ (∀ t ′ ∈ trees s. robdd-refs t ′) −→ robdd-refs t)
∧ (∀ vs. interp t vs = (if vs i then interp h vs else interp l vs))
∧ (wf-heap s ′) ∧ (trees s ′ = insert t (trees s)))

In this context we define the app function which applies a binary Boolean opera-
tor to two BDDs. If these BDDs are both leaves, it returns a leaf corresponding to
the application of the binary Boolean operator to their contents. Else it returns
a new BDD constructed with mk from its recursive calls to the left and right
subtrees of BDDs with the same level. For this purpose it uses the select function
which returns two pairs of BDDs corresponding to the subtrees (split-lh) of the
BDD(s) with the smallest level and the duplication (dup) of the other (if any).
It also uses the function varOfLev retrieving the variable corresponding to the
level of a node.

function app :: (bool ⇒ bool ⇒ bool)
⇒ ((bool , ′v , ′r) rtree ∗ (bool , ′v , ′r) rtree) ⇒ (bool , ′v , ′r) rtree Heap where
app bop (n1, n2) = do {
if tpair is-leaf (n1, n2) then (constLeaf (bop (leaf-contents n1) (leaf-contents n2)))
else (do {

let ((l1, h1), (l2, h2)) = select split-lh dup (n1, n2);
l ← app bop (l1, l2); h ← app bop (h1, h2);
mk (varOfLev (min-level (n1, n2))) l h })}

This is the only function whose termination proof is not automatic, but still
very simple: it suffices to show that select split-lh dup decreases the sum of
the sizes of the trees in the pair. Indeed by representing BDDs as an inductive
structure instead of pointers in the heap, the termination condition does not
appear anymore in the implicit nested recursion on the heap like in [13] and we
do not need to add a phantom parameter as a bound like in [20].
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Finally, we define the build function which is a simple traversal recursively
constructing BDDs for sub-expressions and then joining them with app.

primrec build :: ( ′v , bool) expr ⇒ (bool , ′v , ′r) rtree Heap where
build (Var i) = (do{ cf ← constLeaf False; ct ← constLeaf True; mk i cf ct})
| build (Const b) = (constLeaf b)
| build (BExpr bop e1 e2) = (do{ n1 ← build e1; n2 ← build e2; app bop (n1, n2)})

The verification of these functions involves the preservation of the well-formedness
of the heap (Theorems 3 and 4) – implying that the returned BDD (as well as
the others in the heap) is a ROBDD and that it is interpreted like the expression
– and the construction of canonical BDDs (Theorem 5) – implying for example
that a tautology constructs Leaf True.

Theorem 3 (wf heap app)

wf-heap s ∧ {t1, t2} ⊆ trees s ∧ effect (app f (t1, t2)) s s ′ t =⇒
interp t vs = f (interp t1 vs) (interp t2 vs) ∧ insert t (trees s) ⊆ trees s ′ ∧ wf-heap s ′

Proof. We use the induction schema generated from the termination proof of
app working on a pair of trees – following the order relation infered from select
split-lh dup. If both trees are leaves, the BDD is a leaf already in the unchanged
state. Else the induction hypotheses hold for the subtrees provided by select.
The specification of mk and the transitivity of ⊆ finish the proof.

Theorem 4 (wf heap build)

effect (build e) s s ′ t ∧ wf-heap s =⇒
interp t = interp-expr e ∧ insert t (trees s) ⊆ trees s ′ ∧ wf-heap s ′

Proof. By induction on the expression: In the cases of Const or Var, the result
is immediate from the specification of mk and the definition of constLeaf. In the
case of BExpr, the induction hypotheses hold for the sub-expressions and the
result is obtained from Theorem 3.

Theorem 5 (build correct)

(∀ t∈trees s1. robdd-refs t) ∧ wf-heap s1 =⇒
(∀ t∈trees s2. robdd-refs t) ∧ wf-heap s2 =⇒
effect (build e1) s1 s1

′ t1 ∧ effect (build e2) s2 s2
′ t2 =⇒

struct-equal t1 t2 = (interp-expr e1 = interp-expr e2)

Proof. In the same way as for Theorem 4, by proving a similar property for app.

5 Optimizations: Memoization and Garbage Collection

The app and build functions have been presented in their simplest form and
without optimizations. We present in this section the two optimizations we have
made to them.
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Memoization During the BDD construction, several identical computations can
appear. This happens mostly within the recursive calls of the app function during
which the binary operation stays the same and identical pairs of BDDs can arise
by simplifications and sharing. In order to avoid these redundant computations,
the immediate solution is to use a memoization table – recording the arguments
and the result for each of its calls and returning directly the result in case the
arguments already have an entry in the table. This optimization is essential as
it cuts down the complexity of the construction of highly shared BDD.

We add this memoization table to the state by extending the record containing
the leaves. Then the only changes to the app function are the memoization table
lookup before the eventual calculation and the table update after.

By adding an invariant on all the trees in the memoization table ensuring the
properties desired for the resulting tree (mostly the conclusion of Theorem 3), the
changes in the proof follow the changes of the function. With a case distinction
on the result of the table lookup for the arguments, if there is an entry for them,
the result follows the invariant, else the original proof remains and the result
following the invariant is stored in the table.

Garbage Collection. Using an association table avoids duplication of nodes and
allows us to share them. However, recording all created nodes since the start of
the algorithm can lead to a very huge memory usage. Indeed keeping a reference
to a node in an association table prevents the JVM garbage collector to collect
nodes that could have been discarded during BDD simplifications.

We chose to remove these unused nodes from the association table by a ref-
erence counting variant. The principle of reference counting is simply to store
for each node the number of references to it. Instead of counting references for
all nodes, we only count them for the BDD roots. This allows us to keep the
mk function independent of the reference count. Then, we parametrized the de-
velopment with a garbage collection function gc whose specification ensures the
preservation of used nodes (i. e. nodes reachable from a node with a non-null
reference count). We call it in the build function when the association table
becomes too large.

For this improvement, the proof additions were substantial. Indeed, several
mutations to the reference counters appear in the functions, causing inner mod-
ifications in proofs. Moreover the invariant insert t (trees s) ⊆ trees s ′ for build
had to be weakened to insert t (reachable s) ⊆ reachable s ′ . These difficulties
attributable to mutability highlight the simplifications provided by the encoding
of BDDs as inductive datatypes instead of nodes and pointers.

6 Implementation of Abstract Functions

It is now time to implement the abstract function mk as well as the logical
functions invar and trees. We wrote two implementations and present the most
efficient one using a hash-map provided by the Collection Framework [14].

Following its specification, mk needs to ensure the maximal sharing of nodes.
To do this, we add in the state a table associating the components of a node (its
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children and variable name) to itself. Then by looking in this table, we know
whether a BDD that could be returned has already been created.

record ( ′v , ′c) bddstate-hash =
( ′v ,( ′c ref × ′c ref , (bool , ′v , ′c) rtree) hashmap, ′c) leaves-memo +
hash :: ( ′v × ′c ref × ′c ref , (bool , ′v , ′c) rtree) hashmap

We also define two auxiliary monadic functions add and lookup adding and
looking for nodes of the table in the state. For example, the lookup function is:

definition lookup where
lookup i l h = do{ hm ← this·$hash; return (ahm-lookup (i , ref-of l , ref-of h) hm) }

They are used in the definition of mk :

definition mk where
mk i l h = (if ref-equal l h then return l else
do{ to ← lookup i l h; (case to of None ⇒ add i l h | Some t ⇒ return t) })

The garbage collector gc is then also implemented using two auxiliary monadic
functions referencedSet – computing the set of nodes reachable from a node with
a non-null reference count – and hash-restrict – restricting the domain of the
hash table to the set given as argument:

definition gc :: unit Heap where gc = do { hs ← referencedSet ; hash-restrict hs }
To avoid too frequent calls to the garbage collector, it is triggered only when the
table size exceeds 10000 which is an acceptable condition for preliminary tests
but that could be improved by adding a counter in the state.

We finally use these functions satisfying the specifications of the locales to
obtain instantiated app and build functions for which we can generate code.

7 Performance Evaluation

Finally we evaluate the performance of our BDD construction development.
As a comparison point we developed a BDD package directly in Scala whose

code would be naively expected from the code generation from the Isabelle the-
ories. This allows us to evaluate the efficiency of the default code generation
of Isabelle into Scala wrt our encoding of objects. We also compare these two
implementations with a third one being a highly optimized BDD library called
JavaBDD4 providing a Java interface to several BDD libraries written in C or
Java. The results are given in Figure 3.

For this evaluation we construct BDDs for two kinds of valid formulas both
of which are standard benchmarks. The first one is the Urquhart’s formulae Un

defined by x1 ⇔ (x2 ⇔ . . . (xn ⇔ (x1 ⇔ . . . (xn−1 ⇔ xn)))). The second one
is a formulae Pn stating the pigeonhole principle for n + 1 pigeons in n holes
i. e. given that n+1 pigeons are in n holes, at least one hole contains two pigeons.

4 http://javabdd.sourceforge.net/

http://javabdd.sourceforge.net/
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Fig. 3. Evaluation of the generated code efficiency by comparison with a direct imple-
mentation and the JavaBDD library

In the Scala version, we use the standard hash map of the Scala library
(scala.collection.mutable.HashMap)which has an adaptable size. Its garbage
collection is triggered when the table size exceeds a threshold value initially set
to 1000 and increased by one half when unavoidable.

On the other side, JavaBDD lets the user choose the right table size which
is increased, if necessary, after garbage collections by an initially fixed value. In
the benchmarks, we set it to 106 and 5 × 106. We can see that increasing the
initial table size for the JavaBDD version leads to better performances for large
expressions but then more space is needed even for smaller ones.

As it can be seen on the pigeonhole benchmark, the memory consumption is
still a limiting factor of the Scala versions compared to the JavaBDD one which
manages to construct the BDD for 13 pigeon-holes. Also while the generated
code is 100 times slower than the JavaBDD one (using low-level optimizations),
it is only 10 times slower than the hand-written code that was the lower bound
for its efficiency – the algorithms being identical. We suspect several causes of
inefficiency and space usage introduced by the code extraction:

– Monad operations are converted into method calls. The presence of monadic
operators at each line could explain some performance penalties.

– A “Ref” class is introduced to allow reference manipulations in Scala. This
is unnecessary for objects as long as we don’t use references on primitive
types and referenced values are accessed only through accessors.

– Record extensions are translated to class encapsulations leading to waste of
space and several indirections at the time of attribute accesses.

Improving on these points is current work and we think that these optimizations
in the code generation could improve the general performances, to the point that
the generated code would be comparable to the hand-written code. However, the
confidence in the code generator is an essential component of the whole process
that makes it hard to modify. More details on possible solutions will be discussed
in [11].
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8 Conclusions

This paper has presented a verified development of a BDD package in the Is-
abelle proof assistant, with fully operational code generated for the programming
language Scala. It represents BDDs by trees containing references allowing for
easy definitions and proofs – done by natural induction schemas and rewriting.
The development time for the formalization itself (around 6 person months) is
difficult to estimate exactly, because it went hand in hand with the development
of the methodology. In the light of the performance of the code obtained, the
result is encouraging, and we expect to explore the approach further for the
development of verified decision procedures.

As mentioned in the outset, bit-level optimizations could be introduced, at
the price of adding one or several refinement layers, with corresponding simu-
lation proofs. Even though feasible, this is not our current focus, since we aim
at a method for producing reasonably efficient verified code with a very mod-
erate effort. Indeed this development stretches over about 7500 lines – 5000
before optimizations – among them about 1500 are generic and concern object
management. This compares very favorably with the verification in Coq of the
same algorithm including optimizations [20] (about 15000 lines), and with the
verification of normalization of BDDs in Isabelle/HOL [18] (about 10000 lines).

Consequently, our method is not a panacea. As far as the class and object
model is concerned: The type system has intentionally been kept simple in the
sense that classes are essentially based on record structures and inductive data
types as found in ML-style polymorphism. Such a choice is incompatible with
some OO features such as late method binding, which appears to be acceptable
in the context of high-integrity software. As mentioned in Section 7, we are
aware of some inefficiencies that arise during code extraction to Scala, and which
have as deeper cause a mismatch between pointer-manipulating languages (as
incorporated in the Imperative HOL framework) and “all is object” languages,
such as Java and Scala. We will address this issue in our future work.

Finally, even though the representation “trees with sharing” appears to be a
severe limitation at first glance, its combination with cute functional data struc-
tures [17] allows to represent quite general pointer meshes (see for example the
verification of the Schorr-Waite algorithm [12] using a “zipper” data structure).
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