
When Structural Refinement of Components
Keeps Temporal Properties over Reconfigurations

Julien Dormoy1, Olga Kouchnarenko1,3, and Arnaud Lanoix2

1 FEMTO-ST CNRS and University of Franche-Comté, Besançon, France
{Julien.Dormoy,Olga.Kouchnarenko}@univ-fcomte.fr
2 LINA CNRS and Nantes University, Nantes, France

arnaud.lanoix@univ-nantes.fr
3 INRIA/CASSIS France

Abstract. Dynamic reconfigurations increase the availability and the
reliability of component-based systems by allowing their architecture to
evolve at runtime. Recently, a linear temporal pattern logic, called FTPL,
has been defined to express desired—architectural, event and temporal—
properties over dynamic reconfigurations of component systems. This pa-
per is dedicated to the preservation of the FTPL properties when refining
components and introducing new reconfigurations. To this end, we use
architectural reconfiguration models giving the semantics of component-
based systems with reconfigurations, on which we define a new refine-
ment relation. This relation combines: (i) a structural refinement which
respects the component encapsulation within the architectures at two
levels of refinement, and (ii) a behavioural refinement which links dy-
namic reconfigurations of a refined component-based system with their
abstract counterparts that were possible before the refinement. The main
advantage of the new refinement is that this relation preserves the FTPL
properties. The main contributions are illustrated on the example of an
HTTP server architecture.

1 Introduction

The refinement-based design and development simplifies complex system speci-
fication and implementation [1,2]. For component-based systems, it is important
in practice to associate a design by refinement with a design by a composition of
their components [3,4]. Dynamic reconfiguration of software architectures is an
active research topic [5,6,7] motivated by practical distributed applications like,
e.g., those in Fractal [8] or OSGi1.

In this paper we propose a refinement of component-based systems with re-
configurations which preserves event and temporal properties. Our main goal is
to respect component encapsulation, i.e. the refinement of a component must
not cause any changes outside of this component. Moreover, we want the refine-
ment to respect the availability of reconfigurations from an abstract level to a
refined one: new reconfigurations handling new components introduced by the
1 http://www.osgi.org

D. Giannakopoulou and D. Méry (Eds.): FM 2012, LNCS 7436, pp. 171–186, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

172 J. Dormoy, O. Kouchnarenko, and A. Lanoix

refinement must not take control forever, and no new deadlock is allowed. The
present paper’s contributions as displayed in Fig. 1, are based on our previous
works [9,10,11] where the semantics of component-based architectures with dy-
namic reconfigurations has been given in terms of labelled transition systems
(1 in Fig. 1). The first contribution of this paper is a definition of a structural
refinement (2 in Fig. 1) which links two architectures at two development levels:
in a refined architecture every refined component must have the same interfaces
of the same types as before. This way other components do not see the difference
between the refined components and their abstract versions, and thus there is
no need to adapt them. The second contribution is the definition of a recon-
figuration refinement relation (3 in Fig. 1) linking dynamic reconfigurations of
a refined component-based system with their abstract counterparts that were
possible before the refinement.

FTPL
properties

Preservation

|=p

Verification

|=
Abstract reconfiguration model

c3c2
HttpServer

Request
Receiver

Request
Handler

Request
Dispatcher

Cache
Handler

File
Server1

File
Server2

c1c0

Structural refinement�
Reconfiguration
refinement�ρ 3

4

5

1

Refined reconfiguration model

r0 r1 r3 r4 r5

HttpServer

Request
Dispatcher

Cache
Handler

File
Server1

File
Server2

Request
Receiver

Logger

Request
Handler

RequestHandler

r2

2

Fig. 1. Verification and preservation through refinement

Moreover, we want
the refinement to
preserve temporal
properties. To express
temporal properties
over architectural
reconfigurations of
Fractal [8] component-
based systems, a
temporal pattern logic,
called FTPL, has
been defined [9] (4 in
Fig. 1). FTPL allows
expressing architec-

tural invariants, both event and temporal properties involving different kinds
of temporal patterns which have been shown useful in practice. The third
contribution of this paper consists in proving that the refinement relation—a
special kind of simulation—preserves (5 in Fig. 1) the FTPL properties: any
property verified at a given refinement level is ensured, “for free”, at the following
refinement levels, provided that the refinement relation holds.

The remainder of the paper is organised as follows. We briefly recall in Sect. 2
the architectural (re-)configuration model and the FTPL syntax and semantics.
We then define in Sect. 3 the structural refinement between two architectural
configurations, before integrating it into the reconfiguration model refinement.
Section 4 shows that the refinement relation preserves FTPL properties. Finally,
Section 5 concludes and gives some perspectives.

2 Architectural Reconfiguration Model

This section briefly recalls, because of a lack of room, the architectural reconfigu-
ration model formally given in [9,10], and the temporal pattern logic for dynamic
reconfigurations, called FTPL in [9].

Structural Refinement of Component-Based Systems 173

2.1 Component-Based Architectures

In general, the system configuration is the specific definition of
the elements that define or prescribe what a system is composed
of. The architectural elements we consider (components, interfaces
and parameters) are the core entities of a component-based system,

Components

Parameters

Required
Interfaces

Provided
Interfaces

PTypes ITypes Interfaces

mandatory

optional

stopped

started

Binding

Delegate

InterfaceType

Contingency

Requirer

Provider

SupplierParent
State

Definer

ParamType
Value

Fig. 2. Architectural elements and relations

and relations over them ex-
press various links between
these basic architectural el-
ements. In this section we
sum up formal definitions
given in [9,10]. To this end,
we consider a graph-based
representation in Fig. 2, in-
spired by the model for
Fractal in [6].

In our model, a configuration c is a tuple 〈Elem, Rel〉 where Elem is a set
of architectural elements, and Rel ⊆ Elem × Elem is a relation over architec-
tural elements. The architectural elements of Elem are the core entities of a
component-based system:

– Components is a non-empty set of the core entities, i.e. components;
– RequiredInterfaces and ProvidedInterfaces are defined to be subsets of

Interfaces;
– Parameters is a set of component parameters;
– IT ypes is the set of the types associated with interfaces;
– PType is a set of data types associated with parameters. Each data type is

a set of data values. For the sake of readability, we identify data type names
with the corresponding data domains.

The architectural relation Rel then expresses various links between the previ-
ously mentioned architectural elements.

– InterfaceType is a total function that associates a type with each interface;
– Supplier is a total function to determine the component of a provided or of

a required interface; Provider is a total surjective function which gives the
component having at least a provided interface of interest, whereas Requirer
is only a total function;

– Contingency is a total function which indicates for each required interface
whether it is mandatory or optional;

– Definer is a total function which gives the component of a considered pa-
rameter;

– Parent is a relation linking sub-components to the corresponding com-
posite component. Composite components have no parameter, and a sub-
component must not be a composite including its parent component;

– Binding is a partial function to connect a provided interface with a required
one: a provided interface can be linked to only one required interface, whereas

174 J. Dormoy, O. Kouchnarenko, and A. Lanoix

a required interface can be the target of one or more provided interfaces.
Moreover, two linked interfaces do not belong to the same component, but
their corresponding components are sub-components of the same composite
component. The considered interfaces must have the same interface type.
Also, they have not been involved in a delegation yet;

– Delegate describes delegation links. It is a partial bijection which associates
a provided (resp. required) interface of a sub-component with a provided
(resp. required) interface of its parent. Both interfaces must have the same
type, and they have not been involved in a binding yet;

– State is a total function which associates a value from {started, stopped}
with each instantiated component: a component can be started only if all
its mandatory required interfaces are bound or delegated;

– Last, V alue is a total function which gives the current value of a considered
parameter.

Example 1. To illustrate our model, let us consider an example of an HTTP
server from [12,6]. The architecture of this server is depicted in Fig. 3. The Re-
questReceiver component reads HTTP requests from the network and transmits
them to the RequestHandler component. In order to keep the response time as
short as possible, RequestHandler can either use a cache (with the component
CacheHandler) or directly transmit the request to the RequestDispatcher com-
ponent. The number of requests (load) and the percentage of similar requests
(deviation) are two parameters defined for the RequestHandler component:

1. The CacheHandler component is used only if the number of similar HTTP
requests is high.

2. The memorySize for the CacheHandler component must depend on the over-
all load of the server.

3. The validityDuration of data in the cache must also depend on the overall
load of the server.

4. The number of used file servers (like the FileServer1 and FileServer2 compo-
nents) used by RequestDispatcher depends on the overall load of the server.

HttpServer

httpRequest

RequestHandler
(deviation, load)

handler getDispatcher

getCacheRequestReceiver

request getHandler

RequestDispatcher

dispatcher getServer

CacheHandler
(validityDuration,

memorySize)

cache

FileServer2

server2

FileServer1

server1

Fig. 3. HTTP Server architecture

We now introduce a set CP of configuration propositions which are constraints
on the architectural elements and the relations between them. These constraints

Structural Refinement of Component-Based Systems 175

are specified using first order (FO) logic formulas over constants {�, ⊥}, variables
in V to reason on elements of Elem, functions and relations from Rel, predicates
SP = {∈,=, . . .}, connectors ∧, ∨, ¬, ⇒, and quantifiers ∃, ∀ [13]. Then the
interpretation of functions, relations, and predicates over Elem is done according
to basic definitions in [13] and the model definition in [9].

The configuration properties are expressed at different specification levels. At
the component model level, the constraints are common to all the component ar-
chitectures. Furthermore, some constraints must be expressed to restrict a family
of component architectures (a profile level), or to restrict a specific component
architecture (an application level).

Example 2. Let CacheConnected be a configuration property defined by

∃ cache, getCache ∈ Interfaces.

�
�Provider(cache) = CacheHandler

∧ Requirer(getCache) = RequestHandler
∧ Binding(cache) = getCache

�
�

This property expresses that the CacheHandler component is connected to the
RequestHandler component through their respective interfaces.

2.2 Reconfigurations: From a Component Architecture to Another

To make the component-based architecture evolve dynamically, we introduce
reconfigurations which are combinations of primitive operations such as instan-
tiation/destruction of components; addition/removal of components; binding/
unbinding of component interfaces; starting/stopping components; setting pa-
rameter values of components. The normal running of different components also
changes the architecture by modifying parameter values or stopping components.
Let Rrun = R ∪ {run} be a set of evolution operations, where R is a finite set
of reconfiguration operations, and run is an action to represent running opera-
tions. Given a component architecture and Rrun, the possible evolutions of the
component architecture are defined as a transition system over Rrun.

Definition 1. The operational semantics of component systems with reconfigu-
rations is defined by the labelled transition system S = 〈C, C0, Rrun , →, l〉 where
C = {c, c1, c2, . . .} is a set of configurations, C0 ∈ C is a set of initial configu-
rations, Rrun is a finite set of evolution operations, → ⊆ C × Rrun × C is the
reconfiguration relation2, and l : C → CP is a total function to label each c ∈ C
with the largest conjunction of cp ∈ CP evaluated to true on c.

Let us note c
ope→ c′ when a target configuration c′ = 〈Elem′, Rel′〉 is reached

from a configuration c = 〈Elem, Rel〉 by an evolution operation ope ∈ Rrun.
Given the model S = 〈C, C0, Rrun , →, l〉, an evolution path (or a path for
short) σ of S is a (possibly infinite) sequence of configurations c0, c1, c2, . . . such
that ∀i ≥ 0.(∃ opei ∈ Rrun.(ci

opei→ ci+1 ∈→)). We write σ(i) to denote the
i-th configuration of a path σ. The notation σi denotes the suffix path σ(i),

2 Actually, → is a reconfiguration function because of the architectural model.

176 J. Dormoy, O. Kouchnarenko, and A. Lanoix

σ(i + 1), . . ., and σj
i denotes the segment path σ(i), σ(i + 1), σ(i + 2), ..., σ(j −

1), σ(j). The segment path is infinite in length when the last state of the segment
is repeated infinitely. Let Σ denotes the set of paths, and Σf (⊆ Σ) the set of
finite paths.

Example 3. For the HTTP server, the reconfiguration operations are: Add-
CacheHandler and RemoveCacheHandler which are respectively used to add and
remove the CacheHandler component; AddFileServer and removeFileServer which
are respectively used to add and remove the FileServer2 component; Memory-
SizeUp and MemorySizeDown which are respectively used to increase and to
decrease the MemorySize value; DurationValidityUp and DurationValidityDown to
respectively increase and decrease the ValidityDuration value. A possible evolu-
tion path of the HTTP server architecture is given in Fig. 4.

c0 c1run c′1Remove
CacheHandler

c2
Add

CacheHandler

c3
Memory
SizeUp

c′3run
c4

Add
FileServer

c5
Duration
ValidityUp

HttpServer

Request
Receiver

Request
Handler

Request
Dispatcher

File
Server1

HttpServer

Request
Receiver

Request
Handler

Request
Dispatcher

Cache
Handler

File
Server1

File
Server2HttpServer

Request
Receiver

Request
Handler

Request
Dispatcher

Cache
Handler

File
Server1

Fig. 4. Part of an evolution path of the HTTP server architecture

2.3 FTPL: A Temporal Logic for Dynamic Reconfigurations

<temp>::= after <event> <temp>
| before <event> <trace>
| <trace> until <event>

<trace> ::= always cp
| eventually cp
| <trace> ∧ <trace>
| <trace> ∨ <trace>

<event>::= ope normal
| ope exceptional
| ope terminates

Fig. 5. FTPL syntax

Let us first give the FTPL syntax in Fig. 5.
Basically, constraints on the architectural
elements and the relations between them
are specified as configuration propositions in
Sect. 2.1. In addition, the language contains
events from reconfiguration operations, trace
properties and, finally, temporal properties.
Let PropFTPL denote the set of FTPL for-
mulae.

Let cp ∈ CP be a configuration property, and c a configuration. We say that
c satisfies cp, written c |= cp, when l(c) ⇒ cp. We also say that cp is valid
on c. Otherwise, we write c �|= cp when c does not satisfy cp. For example, for
the CacheConnected configuration property from Example 2 and the path from
Fig. 4, we have c2 |= CacheConnected whereas c1 �|= CacheConnected.

Definition 2 (FTPL semantics). Let σ ∈ Σ. The FTPL semantics Σ ×
PropFTPL → B is defined by induction on the form of the formulae as follows:

Structural Refinement of Component-Based Systems 177

For the events:
σ(i) |= ope normal if i > 0 ∧ σ(i − 1) �= σ(i) ∧ σ(i − 1)

ope→ σ(i) ∈→
σ(i) |= ope exceptional if i > 0 ∧ σ(i − 1) = σ(i) ∧ σ(i − 1)

ope→ σ(i) ∈→
σ(i) |= ope terminates if σ(i) |= ope normal ∨ σ(i) |= ope exceptional

For the trace properties:
σ |= always cp if ∀i.(i � 0 ⇒ σ(i) |= cp)
σ |= eventually cp if ∃i.(i � 0 ∧ σ(i) |= cp)
σ |= trace1 ∧ trace2 if σ |= trace1 ∧ σ |= trace2
σ |= trace1 ∨ trace2 if σ |= trace1 ∨ σ |= trace2

For the temporal properties:
σ |= after event temp if ∀i.(i � 0 ∧ σ(i) |= event ⇒ σi |= temp)

σ |= before event trace if ∀i.(i > 0 ∧ σ(i) |= event ⇒ σi−1
0 |= trace)

σ |= trace until event if ∃i.(i > 0 ∧ σ(i) |= event ∧ σi−1
0 |= trace)

An architectural reconfiguration model S = 〈C, C0, Rrun , →, l〉 satisfies a prop-
erty φ ∈ PropFTPL, denoted S |= φ, if ∀σ.(σ ∈ Σ(S) ∧ σ(0) ∈ C0 ⇒ σ |= φ).

Example 4. The FTPL framework allows handling architectural invariants
from [12,6]. The following property expresses an architectural constraint saying
that at least there is always one file server component connected to Request-
Dispatcher.

always

�
∃getServer ∈ Interfaces.

�
Requirer(getServer) = RequestDispatcher
∧∃i ∈ Interfaces.(Binding(i) = getServer)

��

Example 5. The following temporal property specifies that after calling up the
AddCacheHandler reconfiguration operation, the CacheHandler component is
always connected to RequestHandler. In other words, the CacheConnected
configuration property from Example 2 holds on all the path after calling up
AddCacheHandler:

after AddCacheHandler normal always CacheConnected

3 Refinement of Architectural Reconfiguration Models

This section defines a new notion of a structural configuration refinement be-
tween two architectural configurations, and then gives the reconfiguration model
refinement as defined in the style of Milner-Park’s simulation.

3.1 Structural Configuration Refinement

In this section we introduce a structural refinement of a component-based ar-
chitecture. This refinement aims to respect component encapsulation, i.e. the
refinement of a component does not cause any changes outside of this compo-
nent. In fact, the refined component must have the same interfaces of the same
types as before. This way other components do not see the difference between
the component and its refined version, and thus there is no need to adapt them.

Example 6. Let us illustrate our goal on the example of the HTTP server. We
consider the configuration cA given Fig. 6, and we refine the RequestHandler
by two new components: RequestAnalyzer and Logger, to obtain a new refined
configuration cR. RequestAnalyzer handles requests to determine the values of

178 J. Dormoy, O. Kouchnarenko, and A. Lanoix

cA

RequestHandler

cR

HttpServer

httpRequest

RequestReceiver

request getHandler
handler

Logger
log

RequestAnalyzer
(deviation, load)

Rhandler RgetDispatcher

RgetCache

getLog

getDispatcher

getCache

RequestDispatcher

dispatcher getServer

CacheHandler
(validityDuration,

memorySize)

cache

FileServer2

server2

FileServer1

server1

HttpServer

httpRequest

RequestHandler
(deviation, load)

handler getDispatcher

getCacheRequestReceiver

request getHandler

RequestDispatcher

dispatcher getServer

CacheHandler
(validityDuration,

memorySize)

cache

FileServer2

server2

FileServer1

server1

Fig. 6. A refinement of the HttpServer component

the deviation and load parameters. Logger allows RequestAnalyzer to memorise
requests to choose either RequestDispatcher or CacheHandler, if it is available,
to answer requests. The “old” RequestHandler component becomes a composite
component which encapsulates the new components. Its interfaces remain the
same as the interfaces of the old component.

Let cA = 〈ElemA, RelA〉 and cR = 〈ElemR, RelR〉 be two architectural configu-
rations at two—an abstract and a refined—levels of refinement. To distinguish
architectural elements at the abstract level and at the refined level, the elements
are renamed to have ElemA ∩ ElemR = ∅. To define the structural refinement,
we have to link together an abstract and a refined configuration, i.e. express
how all the architectural elements and relations are associated with their refined
versions: a gluing predicate gp : ElemA → ElemR must be defined as a mapping
to link the abstract and the refined elements which respects the Elem signature.

In addition to this gluing predicate gp, component-based structural con-
straints are necessary to ensure that the proposed refinement respects the
component semantics, i.e. which changes are allowed or prescribed during the
refinement process. These architectural constraints, named AC, are defined as
the conjunction of the propositions given in Table 1, with the following meanings:

– In the system parts not concerned by the refinement, all the core entities
and all the relations between them remain unchanged through refinement
(constraints (G), (H), (I) and (J));

– The new elements introduced during the refinement process must satisfy the
following constraints:

• In the refined architecture the new components must be subcomponents
of components existing before refinement (constraint (K));

• The new interfaces are associated with the new components (con-
straint (C));

Structural Refinement of Component-Based Systems 179

Table 1. Structural refinement constraints AC

∀iA ∈ InterfacesA,
∃iR ∈ InterfacesR

.

�
� (gp(iA) = iR ∧ ContingencyA(iA) = ContingencyR(iR)) ∧

∀tA ∈ ITypesA.(InterfaceTypeA(iA) = tA ⇒
∃tR ∈ ITypesR.(InterfaceTypeR(iR) = tR ∧ gp(tA) = tR))

�
� (A)

∀iA ∈ InterfacesA,
∀cA ∈ ComponentsA

.

�
� SupplierA(iA) = cA ⇒

∃iR ∈ InterfaceR, ∃cR ∈ ComponentsR.
(SupplierR(iR) = cR ∧ gp(iA) = iR ∧ gp(cA) = cR))

�
� (B)

∀iR ∈ InterfaceR,
∀iA ∈ InterfaceA

.

�
� gp(iA) �= iR ⇒

∃cR ∈ ComponentsR.(SupplierR(iR) = cR∧
∀cA ∈ ComponentsA. gp(cA �= cR))

�
� (C)

∀pA ∈ ParametersA,
∀tA ∈ PTypesA

.

�
����

ParameterTypeA(pA) = tA ⇒
∃pR ∈ ParametersR, ∃tR ∈ PTypesR.�
� ParameterTypeR(pR) = tR

∧ V alueA(pA) = V alueR(pR)
∧ gp(pA) = pR ∧ gp(tA) = tR)

�
�

�
���� (D)

∀pR ∈ ParametersR,
∀pA ∈ ParametersA

.

�
� gp(pA) �= pR ⇒

∃cR ∈ ComponentsR. ∀cA ∈ ComponentsA.
(DefinerR(pR) = cR ∧ gp(cA) �= cR)

�
� (E)

∀pA ∈ ParametersA,
∀cA ∈ ComponentsA

.

�
���

DefinerA(pA) = cA ⇒
∃pR ∈ ParametersR, ∃cR ∈ ComponentsR.�

gp(pA) = pR ∧ gp(cA) = cR ∧
(Definer(pR) = cR ∨ ((DefinerR(pR), cR) ∈ Parent+R)

�
�
��� (F)

∀riA ∈ IRequiredA,
∀piA ∈ IProvidedA

.

�
� BindingA(riA) = piA ⇒

∃riR ∈ IRequiredR , ∃piR ∈ IProvidedR.
(BindingR(riR) = piR ∧ gp(riA) = riR ∧ gp(piA) = piR)

�
�(G)

∀iA, i′
A ∈ InterfaceA.

�
� DelegateA(iA) = i′

A ⇒
∃iR, i′

R ∈ InterfaceR.
(DelegateR(iR) = i′

R ∧ gp(iA) = iR ∧ gp(i′
A) = i′

R)

�
� (H)

∀cA, c′
A ∈ ComponentsA,

∃cR, c′
R ∈ ComponentsR

.

�
(gp(cA) = cR ∧ gp(c′

A) = c′
R ∧ (c′

A, cA) ∈ ParentA)
⇒ (c′

R, cR) ∈ ParentR

�
(I)

∀cA ∈ ComponentsA.

� ∃cR ∈ ComponentsR.
(gp(cA) = cR ∧ StateA(pA) = StateR(pR))

�
(J)

∀cA, c′
A ∈ ComponentsA,

∀cR ∈ ComponentsR
.

�
� (cA, c′

A) �∈ ParentA ∧ (gp(c′
A) �= cR) ⇒

∃c′
R ∈ ComponentsR.

(gp(c′
A) = c′

R ∧ (cR, c′
R) ∈ ParentR)

�
� (K)

∀cA, c′
A ∈ ComponentsA,

∀i′
A ∈ InterfaceA

∀c′
R ∈ ComponentsR

.

�
���

(cA, c′
A) �∈ ParentA ∧ gp(c′

A) = c′
R ∧ SupplierA(i′

A) = c′
A ⇒

∃cR ∈ ComponentsR.((cR, c′
R) ∈ ParentR) ∧

∃iR, i′
R ∈ InterfaceR.	

gp(i′
A) = iR ∧ SupplierR(i′

R) = c′
R ∧ i′

R = Delegate(iR)

�
��� (L)

180 J. Dormoy, O. Kouchnarenko, and A. Lanoix

• The new parameters are associated with the new components (con-
straint (E));

– Finally, for the architectural elements existing before and impacted by the
refinement, the constraints are as follows:

• All the interfaces of the components existing before and detailed during
the refinement must be delegated interfaces, these components being
composites after refinement (constraints (A), (B) and (L));

• All the parameters of the components existing before and detailed during
the refinement must be associated with the new subcomponents (con-
straints (D) and (F)).

Definition 3 (Structural Configuration Refinement). Let cA =
〈ElemA, RelA〉 and cR = 〈ElemR, RelR〉 be two configurations, and AC the
architectural constraints. The configuration cR refines cA wrt. AC, written
cR � cA, if lR(cR) ∧ AC ⇒ lA(cA).

3.2 Reconfiguration Models Refinement

As an architecture may dynamically evolve through reconfigurations, it con-
cerns refined architectures, where new non primitive reconfigurations may be
introduced to handle the new components. For example, in the refined system
presented Fig. 6, a possible new reconfiguration RemoveLogger consists in re-
moving the Logger component which does not exist at the abstract level.

We consider the new reconfigurations introduced during the refinement pro-
cess as being non observable: they are called τ -reconfiguration. In addition,
we define a one-to-one function fc to link the refined reconfiguration actions
with the abstract ones as follows: fc : RrunR \ {τ} → RrunA such that
∀rR.(rR ∈ RrunR \ {τ} ⇒ ∃rA.(rA ∈ RrunA ∧ fc(rR) = rA).

Following [14], the refinement relation ρ is defined in the style of Milner-
Park [15] as a τ -simulation having the following properties3:

1. The new reconfiguration actions renamed by τ should not take control for-
ever: the τ - livelocks are forbidden.

2. Moreover, the new reconfiguration actions should not introduce deadlocks.

Definition 4 (Refinement relation). Let SA = 〈CA, C0
A, RrunA , →A, lA〉 and

SR = 〈CR, C0
R, RrunR , →R, lR〉 be two reconfiguration models, r ∈ RrunR and

σR a path of SR. We define the relation ρ ⊆ CR × CA as the greatest binary
relation satisfying the following conditions: structural refinement (cR � cA),
strict transition refinement (4.1), stuttering transition refinement (4.2), non τ-
divergence (4.3), non introduction of deadlocks (4.4).

3 These features are common to other formalisms, like action systems refinement [16]
or LTL refinement [1].

Structural Refinement of Component-Based Systems 181

∀cA ∈ CA, ∀cR, c
′
R ∈ CR.(cR ρ cA ∧ cR

r→ c
′
R ⇒ ∃c

′
A.(cA

fc(r)→ c
′
A ∧ c

′
R ρ c

′
A)) (4.1)

∀cA ∈ CA, ∀cR, c′
R ∈ CR.(cR ρ cA ∧ cR

τ→ c′
R ⇒ c′

R ρ cA) (4.2)

∀k.(k ≥ 0 ⇒ ∃k′.(k′ > k ∧ σR(k′ − 1)
r→ σR(k′) ∈ →R)) (4.3)

∀cA ∈ CA, ∀cR ∈ CR.(cR ρ cA ∧ cR �→ ⇒ cA �→) (4.4)

We say that SR refines SA, written SR �ρ SA, if ∀cR.(cR ∈ C0
R ⇒ ∃cA.(cA ∈

C0
A ∧ cR ρ cA)).
As a consequence of Definition 4, we give an important property of this relation

allowing to ensure the existence of an abstract path for any refined path.

Proposition 1. Let SA and SR be two reconfiguration models such that SR �ρ

SA. Then, ∀cR.(cR ∈ CR ⇒ ∃cA.(cA ∈ CA ∧ cR ρ cA)).

Proof (Sketch). Suppose that cR can be reached by a path σR such that σR(0) ∈
C0

R and σR(i) = cR. By Clause (4.3) of Def. 4 σR contains a finite number of τ -
reconfiguration actions, and σR is of the form σR(0)

τ→ . . .
τ→ σR(n1)

r1→ σR(n1+
1) τ→ . . .

rn→ σR(i − nm) τ→ . . . σR(i). Moreover, there is a configuration cA ∈ C0
A

such that σR(0) ρ cA. We can then build a path from cA = σA(0) such that
the configurations of σA are linked by transitions labelled by reconfigurations
fc(r1) . . . fc(rn) : σA = c0

A

fc(r1)→ c1
A

fc(r2)→ . . .
fc(rn)→ cn

A(= σA(j)). This way the
configuration σA(j) is reached, and by Clauses (4.1) and (4.2) of Def. 4 we have
σR(i) ρ σA(j). ��
Example 7. The reconfiguration path of the HTTP server from Fig. 4 can be
refined as depicted in Fig. 7, where the abstract configuration c4 is refined by
the configurations r5 and r6: the new reconfigurations renamed by τ concern the
new component Logger introduced during the refinement: it is possible to add
or to remove the Logger component.

4 Preservation of FTPL Properties through Refinement

In many formalisms supporting a design by refinement, systems properties are
preserved from abstract models to their refined models [17,1,18]. In this section
we show that FTPL properties are also preserved through our architectural
reconfiguration models refinement. This idea is depicted by Fig. 1.

Let SA and SR be two reconfiguration models such that SR refines SA. These
systems being defined over different sets of architectural elements and recon-
figurations, we have to give a new validity definition to be able to deal with
an abstract system at a refined level. Actually, we make use of the fc function
to link reconfiguration actions, and of the ρ refinement relation to define the
validity of a FTPL property by preservation, as follows.

182 J. Dormoy, O. Kouchnarenko, and A. Lanoix

HttpServer

Request
Receiver

Request
Handler

Request
Dispatcher

Cache
Handler

File
Server1

File
Server2

HttpServer

Request
Dispatcher

Cache
Handler

File
Server1

File
Server2

Request
Receiver

Logger

Request
Handler

RequestHandler

HttpServer

Request
Dispatcher

Cache
Handler

File
Server1

File
Server2

Request
Receiver Request

Handler

RequestHandler

HttpServer

Request
Receiver

Request
Handler

Request
Dispatcher

Cache
Handler

File
Server1

HttpServer

Request
Dispatcher

Cache
Handler

File
Server1

Request
Receiver

Logger

Request
Handler

RequestHandler

c0 c1
run c′1

Remove
CacheHandler c2

Add
CacheHandler c3

Memory
SizeUp

c′3
run c4

Add
FileServer c5

Duration
ValidityUp

r0 r1runR
r′1Remove

CacheHandlerR

r2τ
r3

Add
CacheHandlerR

r4
Memory
SizeUpR

r′4runR
r5

Add
FileServerR

r6τ
r7

Duration
ValidityUpR

ρ

ρ
ρ ρ ρ ρ ρ ρ

ρ ρ

/ RemoveLoggerR/ AddLoggerR

Fig. 7. A refinement of a reconfiguration path of the HTTP server

Definition 5 (FTPL semantics by preservation). Let SR =
〈CR, C0

R, RrunR , →R, lR〉 and SA = 〈CA, C0
A, RrunA , →A, lA〉 be two recon-

figuration models such that SR �ρ SA. Let σR be a path of SR, φA a FTPL
property over SA. We define the validity of φA on σR by preservation, written
σR |=p φA, by induction on the form of φA:

σR(i) |=p cpA if σA(j) |= cpA ∧ σR(i) ρ σA(j)

σR(i) |=p opeA normal if i > 0 ∧ σR(i − 1) �= σR(i) ∧ σR(i − 1)
fc−1(opeA)−−−−−−−−−→R σR(i)

σR(i) |=p opeA exceptional if i > 0 ∧ σR(i − 1) = σR(i) ∧ σR(i − 1)
fc−1(opeA)−−−−−−−−−→R σR(i)

σR |=p always cpA if ∀i.(i ≥ 0 ⇒ σR(i) |=p cpA)
σR |=p eventually cpA if ∃i.(i ≥ 0 ∧ σR(i) |=p cpA)
σR |=p after eA tppA if ∀i.(i ≥ 0 ∧ σR(i) |=p eA ⇒ σiR |=p tppA)

σR |=p before eA trpA if ∀i.(i > 0 ∧ σR(i) |=p eA ⇒ σi−1
0 R

|=p trpA)

σR |=p trpA until eA if ∃i.(i > 0 ∧ σR(i) |=p eA ∧ σi−1
0 R

|=p trpA)

We note SR |=p φA when ∀σR.(σR ∈ Σ(SR) ∧ σR(0) ∈ C0 ⇒ σR(0) |=p φA).
Now, we prove that FTPL properties are preserved by the reconfiguration

refinement defined in Sect. 3.

Theorem 1 (Preservation of a FTPL property on a path). Let SA and
SR be two reconfiguration models such that SR �ρ SA. Let φ be a FTPL property.
Let σA ∈ Σ(SA) and σR ∈ Σ(SR) be two paths. Then we have ∀i, j.(0 ≤ i ≤
j ∧ (σR(j) ρ σA(i)) ∧ σA |= φ ⇒ σR |=p φ).

Proof (Part of Theorem 1). Let σR ∈ Σ(SR) be a path refining a path
σA ∈ Σ(SA) (the proof of Proposition 1 ensures that this path exists). Besides,
opeR, ope′

R, . . . ∈ RrunR label the transitions of SR, and τ labels each transition
introduced during refinement. The proof is done by structural induction on the
form of φ; only two cases are given here because of lack of room4.

4 The whole proof can be found in [19].

Structural Refinement of Component-Based Systems 183

1. Let us prove that opeA normal is preserved by refinement. By hypothe-
sis, σA(i) |= opeA normal, and so, by Def. 2 we have (i). As by hypoth-
esis σR(j) ρ σA(i), by construction there is a path σA such that σR(0)
refines σA(0) and where opeA = fc(opeR). Consequently, by Proposition 1
we have (ii). Moreover, it implies that there are two configurations σR(j)
and σR(l) such that σR(l) ρ σA(i − 1) and σR(j) ρ σA(i). There are two
cases:
(a) If σR(l)

opeR→ R σR(j) then l = j −1, and immediately we can deduce (iii).
Then by Def. 5, σR |=p opeA normal, and we are done.

(b) If σR(l)
τ→R σR(l + 1), then by Clause (4.2) of Def. 4 we have σR(l +

1) ρ σA(i − 1), and we can continue with the following configuration of
σR. According to Clauses (4.3) and (4.4) of Def. 4, the reconfigurations
labelled by τ cannot take control forever, and the refinement does not
introduce deadlocks. So, there is a configuration σ(l+n) such that σR(l+
n) ρ σA(i − 1) and σR(l + n) opeR→ σR(j). We set l + n = j − 1 and
consequently we have (iii). Then, by Def. 5, σR |=p opeA normal.

i > 0 ∧ σA(i − 1) �= σA(i) ∧ (σA(i − 1)
fc(opeR)→ A σA(i)) ∈ →A (i)

∀j.(j ≥ 0 ⇒ ∃k.(k ≥ 0 ∧ σR(j) ρ σA(k))) (ii)

j > 0 ∧ σR(j − 1) �= σR(j) ∧ (σR(j − 1)
opeR→ R σR(j)) ∈ →R (iii)

2. Let us prove that trpA until eA is preserved by refinement, with the re-
currence hypotheses that trpA and eA are preserved by refinement. By hy-
pothesis, we have σA |= trpA until eA. So, by Def. 2 we have (iv). As by
hypothesis σR(j) ρ σA(i), by construction there is a path σA such that σR(0)
refines σA(0) and where opeA = fc(opeR). Consequently, by Proposition 1
we have (v). Moreover, by construction, there is a finite part σj−1

0 R of σR

whose configurations refine the configurations of a corresponding finite part
σi−1

0 A of σA, ensuring (vi). By recurrence hypotheses, trp and e are preserved
by refinement. So, we have (vii). Then, by Def. 5, σR |=p trpA until eA.

∃i.(i > 0 ∧ σA(i) |= eA ⇒ σ
i−1
0 A |= trpA) (iv)

∀j.(j ≥ 0 ⇒ ∃k.(k ≥ 0 ∧ σR(j) ρ σA(k))) (v)

∀k.(0 ≤ k < j ⇒ ∃k
′
.(0 ≤ k

′
< i ∧ σ

j−1
0 R

(k) ρ σ
i−1
0 A(k

′
))) (vi)

∃j.(j > 0 ∧ σR(j) |=p eA ⇒ σj−1
0 R

|=p trpA) (vii)

��
We are ready to generalise Theorem 1 from paths to reconfiguration models.

Theorem 2 (Preservation of a FTPL property by refinement). Let
SA = 〈CA, C0

A, RrunA , →A, lA〉 and SR = 〈CR, C0
R, RrunR , →R, lR〉 be two recon-

figuration models such that SR �ρ SA. Let φ be a FTPL property. If SA |= φ
then SR |=p φ.

184 J. Dormoy, O. Kouchnarenko, and A. Lanoix

Proof. Immediate. If SR �ρ SA then ∀σR.(σR ∈ Σ(SR) ∧ σR(0) ∈ C0
R ⇒

∃σA.(σA ∈ Σ(SA)∧ σA(0) ∈ C0
A ∧ σR(0) ρ σA(0))). Moreover, if SA |= φ then by

definition ∀σA.(σA ∈ Σ(SA) ⇒ σA |= φ). The reconfiguration relations of both
SR and SA being functional, there is no abstract path different from σA which
could be refined by σR. We then can apply Theorem 1. ��
Example 8. For our running example of the HTTP server, let us consider again
the path refinement in Fig. 7. In this refinement, the RequestHandler component
is refined as depicted in Fig. 6. Let us consider again the temporal property from
Example 5:

σ |= after AddCacheHandler normal always CacheConnected

It is easy to see that this property is valid on the abstract path depicted in
Fig. 7. Moreover, as presented in this figure, the ρ refinement relation holds
between the configurations of the illustrated part of the refined path and the
corresponding part of the abstract path. Consequently, this property is also
valid by preservation on the refined path depicted in Fig. 7.

5 Conclusion

In this paper, we have enriched a theoretical framework for dynamic reconfigu-
rations of component architectures with a new notion of a structural refinement
of architectures, which respects the component encapsulation. Then we have
integrated this structural refinement into a behavioural refinement relation for
dynamic reconfigurations defined in the style of Milner-Park’s simulation [15] be-
tween reconfiguration models. Afterwards, we have shown that this refinement
relation preserves the FTPL properties—architectural invariants, event proper-
ties and temporal properties involving different kinds of temporal patterns shown
useful in practice. The preservation means that any FTPL property expressed
and established for an abstract system is also established for the refined coun-
terparts, provided that the refinement relation holds. This way we ensure the
system’s consistency at different refinement levels, and we free the specifier from
expressing and verifying properties at these levels with new details, components,
reconfigurations.

To check the structural refinement, we plan to pursue further and to extend
our previous work on the verification of the architectural consistency through
reconfigurations [10]. The structural refinement constraints in Table 1 could
be formalised and validated in a similar manner. Another solution would be
to exploit the architectural description language (ADL) describing component
architectures in XML. It becomes possible then to use XML tools for checking
the structural refinement between two component architectures.

To conclude, this work on property preservation is used as a hypothesis for our
running work on the runtime FTPL verification [11]. We have reviewed FTPL
from a runtime point of view [11] by introducing a new four-valued logic, called
RV-FTPL, characterising the “potential” (un)satisfiability of the architectural
and temporal constraints: potential true and potential false values are chosen

Structural Refinement of Component-Based Systems 185

whenever an observed behaviour has not yet lead to a violation or satisfiability
of the property under consideration. We intend to accompany this work with a
runtime checking of a “potential” reconfiguration model refinement.

References

1. Kesten, Y., Manna, Z., Pnueli, A.: Temporal Verification of Simulation and Re-
finement. In: de Bakker, J.W., de Roever, W.-P., Rozenberg, G. (eds.) REX 1993.
LNCS, vol. 803, pp. 273–346. Springer, Heidelberg (1994)

2. Abrial, J.R., Butler, M.J., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.:
Rodin: an open toolset for modelling and reasoning in Event-B. STTT 12(6), 447–
466 (2010)

3. de Alfaro, L., Henzinger, T.: Interface-based design. In: Broy, M., et al (eds.):
Engineering Theories of Software-intensive Systems. NATO Science Series: Mathe-
matics, Physics, and Chemistry, vol. 195, pp. 83–104. Springer, Netherlands (2005)

4. Mikhajlov, L., Sekerinski, E., Laibinis, L.: Developing Components in the Presence
of Re-entrance. In: Wing, J.M., Woodcock, J., Davies, J. (eds.) FM 1999. LNCS,
vol. 1709, pp. 1301–1320. Springer, Heidelberg (1999)

5. Allen, R.B., Douence, R., Garlan, D.: Specifying and Analyzing Dynamic Soft-
ware Architectures. In: Astesiano, E. (ed.) ETAPS 1998 and FASE 1998. LNCS,
vol. 1382, pp. 21–37. Springer, Heidelberg (1998)

6. Léger, M., Ledoux, T., Coupaye, T.: Reliable Dynamic Reconfigurations in a Re-
flective Component Model. In: Grunske, L., Reussner, R., Plasil, F. (eds.) CBSE
2010. LNCS, vol. 6092, pp. 74–92. Springer, Heidelberg (2010)

7. Bozga, M., Jaber, M., Maris, N., Sifakis, J.: Modeling Dynamic Architectures Using
Dy-BIP. In: Gschwind, T., De Paoli, F., Gruhn, V., Book, M. (eds.) SC 2012. LNCS,
vol. 7306, pp. 1–16. Springer, Heidelberg (2012)

8. Bruneton, E., Coupaye, T., Leclercq, M., Quéma, V., Stefani, J.B.: The Fractal
component model and its support in java. Softw., Pract. Exper. 36(11-12), 1257–
1284 (2006)

9. Dormoy, J., Kouchnarenko, O., Lanoix, A.: Using Temporal Logic for Dynamic Re-
configurations of Components. In: Barbosa, L.S. (ed.) FACS 2010. LNCS, vol. 6921,
pp. 200–217. Springer, Heidelberg (2010)

10. Lanoix, A., Dormoy, J., Kouchnarenko, O.: Combining proof and model-checking
to validate reconfigurable architectures. In: FESCA 2011. ENTCS (2011)

11. Dormoy, J., Kouchnarenko, O., Lanoix, A.: Runtime Verification of Temporal Pat-
terns for Dynamic Reconfigurations of Components. In: Arbab, F. (ed.) FACS 2011.
LNCS, vol. 7253, pp. 115–132. Springer, Heidelberg (2012)

12. David, P.C., Ledoux, T., Léger, M., Coupaye, T.: FPath and FScript: Language
support for navigation and reliable reconfiguration of Fractal architectures. Annales
des Télécommunications 64(1-2), 45–63 (2009)

13. Hamilton, A.G.: Logic for mathematicians. Cambridge University Press, Cam-
bridge (1978)

14. Bellegarde, F., Julliand, J., Kouchnarenko, O.: Ready-Simulation Is Not Ready to
Express a Modular Refinement Relation. In: Maibaum, T. (ed.) FASE 2000. LNCS,
vol. 1783, pp. 266–283. Springer, Heidelberg (2000)

15. Milner, R.: Communication and Concurrency. Prentice-Hall, Inc. (1989)

186 J. Dormoy, O. Kouchnarenko, and A. Lanoix

16. Butler, M.J.: Stepwise refinement of communicating systems. Sci. Comput. Pro-
gram. 27(2), 139–173 (1996)

17. Pnueli, A.: System specification and refinement in temporal logic. In: Proceedings
of the 12th Conference on Foundations of Software Technology and Theoretical
Computer Science, pp. 1–38. Springer, London (1992)

18. Lamport, L.: The temporal logic of actions. ACM Trans. Program. Lang.
Syst. 16(3), 872–923 (1994)

19. Dormoy, J.: Contributions à la spécification et à la vérification des reconfigurations
dynamiques dans les systémes à composants. PhD thesis, Université de Franche-
Comté, France (December 2011)

	When Structural Refinement of Components Keeps Temporal Properties over Reconfigurations

	Introduction
	Architectural Reconfiguration Model
	Component-Based Architectures
	Reconfigurations: From a Component Architecture to Another
	FTPL: A Temporal Logic for Dynamic Reconfigurations

	Refinement of Architectural Reconfiguration Models
	Structural Configuration Refinement
	Reconfiguration Models Refinement

	Preservation of FTPL Properties through Refinement
	Conclusion
	References

