
The Modal Transition System Control Problem�

Nicolás D’Ippolito1, Victor Braberman2,
Nir Piterman3, and Sebastián Uchitel1,2

1 Computing Department, Imperial College London, London, UK
2 Departamento de Computatión, FCEyN, Universidad de Buenos Aires, Argentina

3 Department of Computer Science, University of Leicester, Leicester, UK

Abstract. Controller synthesis is a well studied problem that attempts
to automatically generate an operational behaviour model of the system-
to-be such that when deployed in a given domain model that behaves
according to specified assumptions satisfies a given goal. A limitation
of known controller synthesis techniques is that they require complete
descriptions of the problem domain. This is limiting in the context of
modern incremental development processes when a fully described prob-
lem domain is unavailable, undesirable or uneconomical. In this paper we
study the controller synthesis problem when there is partial behaviour
information about the problem domain. More specifically, we define and
study the controller realisability problem for domains described as Modal
Transition Systems (MTS). An MTS is a partial behaviour model that
compactly represents a set of complete behaviour models in the form of
Labelled Transition Systems (LTS). Given an MTS we ask if all, none
or some of the LTS it describes admit an LTS controller that guaran-
tees a given property. We show a technique that solves effectively the
MTS realisability problem and is in the same complexity class as the
corresponding LTS problem.

1 Introduction

Michael Jackson’s Machine-World model [15] establishes a framework on which
to approach the challenges of requirements engineering. In this model, require-
ments R are prescriptive statements of the world expressed in terms of phe-
nomena on the interface between the machine we are to build and the world in
which the real problems to be solved live. Such problems are to be captured with
prescriptive statements expressed in terms of phenomena in the world (but not
necessarily part of the world-machine interface) called goals G and descriptive
statements of what we assume to be true in the world (domain model D).

Within this setting, a key task in requirements engineering is to understand
and document the goals and the characteristics of the domain in which these are
to be achieved, in order to formulate a set of requirements for the machine to
be built such that assuming that the domain description and goals are valid, the
requirements in such domain entail the goals, more formally R,D |= G.

� This work was partially supported by grants ERC PBM-FIMBSE, MEALS 295261,
CONICET PIP955, UBACYT X021, and PICT PAE 2272.

D. Giannakopoulou and D. Méry (Eds.): FM 2012, LNCS 7436, pp. 155–170, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

156 N. D’Ippolito et al.

Thus, a key problem of requirements engineering can be formulated as a syn-
thesis problem. Given a set of descriptive assumptions on the environment be-
haviour and a set of system goals, construct an operational model of the machine
such that when composed with the environment, the goals are achieved. Such
problem is known as the controller synthesis [24] problem and has been stud-
ied extensively resulting in techniques which have been used in various software
engineering domains.

Controller synthesis [24] is a well studied problem that attempts to auto-
matically generate an operational behaviour model of the system-to-be such
that when deployed in a given environment that behaves according to specified
assumptions satisfies a given goal. Controller synthesis techniques have been
used in several domains such as safe synthesis of web services composition [14]
or synthesis of adaptation strategies in self-adaptive systems [26].

In practice, requirements engineering is not a waterfall process. Engineers do
not build a complete description for G and D before they construct or synthesise
R. Typically D, G and R are elaborated incrementally. Furthermore, multiple
variations of partial models of D, G and R are explored to asses risk, cost and
feasibility [18]. In particular a key question that drives requirements engineering
forward and consequently drives elaboration of a partial description of D, G and
R is if it is feasible to extend them to D′, G′ and R′ such that R′, D′ |= G′.

In this context, existing controller synthesis techniques are not such a good
fit because they require complete domain descriptions. Typically, the domain is
described in a formal language with its semantics defined as some variation of
a two-valued state machine such as Labelled Transition Systems (LTS) [17] or
Kripke structures. Thus, the domain model is assumed to be complete up to some
level of abstraction (i.e, with respect to an alphabet of actions or propositions).

An appropriate formalism to support modelling when behaviour information is
lacking is one in which currently unknown aspects of behaviour can be explicitly
modelled [27]. A number of such formalisms exist such as Modal Transition
Systems (MTS) [19] and Disjunctive MTS [20]. Partial behaviour models can
distinguish between required, possible, and proscribed behaviour.

In this paper, we define controller synthesis in the context of partially specified
domain models. More specifically, we study the problem of checking the existence
of an LTS controller (i.e. controller realisability) capable of guaranteeing a given
goal when deployed in a completely defined LTS domain model that conforms
to the partially defined domain model given as an MTS.

The semantics of MTS is given in terms of a set of LTS implementations
in which each LTS provides the required behaviour described in the MTS and
does not provide any of the MTS proscribed behaviour. We define the MTS
control problem as follows: given an MTS we ask if all, none or some of the LTS
implementations it describes admit an LTS controller that guarantees a given
goal given as a Fluent Linear Temporal Logic [11] formula. The realisability
question we address in the context of MTS has a three valued answer.

From a model elaboration perspective, a none response indicates that there
is no hope of building a system that satisfies the goals independently of the

The Modal Transition System Control Problem 157

aspects of the domain that have been modelled as uncertain. This entails that
either goals must be weakened or stronger assumptions about the domain must
be made. An all response indicates that the partial domain knowledge modelled
is sufficient to guarantee that the goals can be achieved, consequently further
elaboration may not be necessary. Finally, a some response indicates that further
elaboration is required. Feedback as to why in some domains which conform to
the partial model the goal may not be realisable may be good indicators as to
in which direction should elaboration proceed. Note that the latter, feedback on
some realisability, is beyond the scope of this paper.

The technique we present yields an answer to the MTS control problem show-
ing that, despite dealing with a potentially infinite number of LTS, the MTS
control problem is actually in the same complexity class as the underlying LTS
synthesis problem. The results for MTS realisability can be used with controller
synthesis techniques that deal efficiently with restricted yet expressive goals such
as [1,22]. Note that our results are limited to deterministic domain models.

The rest of this paper is organised as follows. In Section 2 we introduce the
required concepts and notations. Then, in Section 3 we define the MTS control
problem and show how to solve it. We then optimise our algorithmic solution
to achieve optimal complexity bounds in Section 4. Finally, we discuss related
work in Section 5 and conclude in Section 6.

Due to lack of space all proofs are omitted and given in [7].

2 Preliminaries

2.1 Transition Systems

We fix notation for labelled transition systems (LTSs) [17], which are widely used
for modelling and analysing the behaviour of concurrent and distributed systems.
LTS is a state transition system where transitions are labelled with actions. The
set of actions of an LTS is called its communicating alphabet and constitutes
the interactions that the modelled system can have with its environment.

Definition 1. (Labelled Transition Systems [17]) Let States be the universal
set of states, Act be the universal set of action labels. A Labelled Transition
System (LTS) is a tuple E = (S,A,Δ, s0), where S ⊆ States is a finite set of
states, A ⊆ Act is a finite alphabet, Δ ⊆ (S × A × S) is a transition relation,
and s0∈S is the initial state.

If for some s′ ∈ S we have (s, �, s′) ∈ Δ we say that � is enabled from s.

Definition 2. (Parallel Composition) Let M = (SM , AM , ΔM , sM0) and N =
(SN , AN , ΔN , sN0) be LTSs. Parallel composition ‖ is a symmetric operator
(up to isomorphism) such that M‖N is the LTS P = (SM × SN , AM ∪ AN , Δ,
(sM0 , s

N
0)), where Δ is the smallest relation that satisfies the rules below, where

� ∈ AM ∪ AN :

(s,�,s′)∈ΔM

((s,t),�,(s′,t))∈Δ �∈AM\AN
(t,�,t′)∈ΔN

((s,t),�,(s,t′))∈Δ �∈AN\AM

(s,�,s′)∈ΔM , (t,�,t′)∈ΔN

((s,t),�,(s′,t′))∈Δ �∈AM∩AN

158 N. D’Ippolito et al.

Definition 3. (Traces) Consider an LTS L = (S,A,Δ, s0). A sequence π =
�0, �1, . . . is a trace in L if there exists a sequence s0, �0, s1, �1, . . ., where for
every i ≥ 0 we have (si, �i, si+1) ∈ Δ.

Modal Transition System (MTS) [19] are abstract notions of LTSs. They extend
LTSs by distinguishing between two sets of transitions. Intuitively an MTS de-
scribes a set of possible LTSs by describing an upper bound and a lower bound
on the set of transitions from every state. Thus, an MTS defines required tran-
sitions, which must exist, and possible transitions, which may exist. By elimina-
tion, other transitions cannot exist. Formally, we have the following.

Definition 4. (Modal Transition Systems [19]) A Modal Transition System
(MTS) is M = (S,A,Δr , Δp, s0), where S ⊆ States, A ⊆ Act, and s0 ∈ S
are as in LTSs and Δr ⊆ Δp ⊆ (S × A × S) are the required and possible
transition relations, respectively.

We denote by Δp(s) the set of possible actions enabled in s, namely Δp(s) =
{� | ∃s′ · (s, �, s′) ∈ Δp}. Similarly, Δr(s) denotes the set of required actions
enabled in s.

Definition 5. (Refinement) Let M = (S,A,Δr
M , Δ

p
M , s

M
0) and N = (T,A,Δr

N ,
Δp

N , s
N
0) be two MTSs. Relation H ⊆ S × T is a refinement between M and N

if the following holds for every � ∈ A and every (s, t) ∈ H.
– If (s, �, s′) ∈ Δr

M then there is t′ such that (t, �, t′) ∈ Δr
N and (s′, t′) ∈ H.

– If (t, �, t′) ∈ Δp
N then there is s′ such that (s, �, s′) ∈ Δp

M and (s′, t′) ∈ H.
We say that N refines M if there is a refinement relation H between M and N
such that (sM0 , s

N
0) ∈ H, denoted M � N .

Intuitively, N refines M if every required transition of M exists in N and every
possible transition in N is possible also in M . An LTS can be viewed as an
MTS where Δp = Δr. Thus, the definition generalises to when an LTS refines
an MTS. LTSs that refine an MTS M are complete descriptions of the system
behaviour and thus are called implementations of M .

Definition 6. (Implementation and Implementation Relation) An LTS N is an
implementation of an MTS M if and only if N is a refinement of M (M � N).
We shall refer to the refinement relation between an MTS and an LTS as an
implementation relation. We denote the set of implementations of M as I(M).

An implementation is deadlock free if all states have outgoing transitions. We
say that an MTS is deterministic if there is no state that has two outgoing
possible transitions on the same label, more formally, an LTS E is deterministic
if (s, �, s′)∈ΔE and (s, �, s′′)∈ΔE implies s′ = s′′. For a state s we denoteΔ(s) =
{� | ∃s′ · (s, �, s′) ∈ Δ}. We refer to the set of all deterministic implementations
of an MTS M as Idet[M].

2.2 Fluent Linear Temporal Logic

We describe properties using Fluent Linear Temporal Logic (FLTL) [11]. Lin-
ear temporal logics (LTL) [23] are widely used to describe behaviour require-
ments [11,21]. The motivation for choosing an LTL of fluents is that it provides

The Modal Transition System Control Problem 159

π, i |= Fl � π, i |= Fl

π, i |= ¬ϕ � ¬(π, i |= ϕ)

π, i |= ϕ ∨ ψ � (π, i |= ϕ) ∨ (π, i |= ψ)

π, i |= Xϕ � π, 1 |= ϕ

π, i |= ϕUψ � ∃j ≥ i · π, j |= ψ ∧ ∀ i ≤ k < j · π, k |= ϕ

Fig. 1. Semantics for the satisfaction operator

a uniform framework for specifying and model-checking state-based temporal
properties in event-based models [11]. An LTL formula checked against an LTS
model requires interpreting propositions as the occurrence of events in the LTS
model. Some properties can be rather cumbersome to express as sequences of
events, while describing them in terms of states is simpler. Fluents provide a
way of defining abstract states. FLTL is a linear-time temporal logic for reason-
ing about fluents. A fluent Fl is defined by a pair of sets and a Boolean value:
Fl = 〈IFl, TFl, InitFl〉, where IFl ⊆ Act is the set of initiating actions, TFl ⊆ Act
is the set of terminating actions and IFl ∩ TFl = ∅. A fluent may be initially
trueor falseas indicated by InitFl. Every action � ∈ Act induces a fluent, namely

�̇ = 〈�, Act \ {�}, false〉.
Let F be the set of all possible fluents over Act. An FLTL formula is de-

fined inductively using the standard Boolean connectives and temporal opera-
tors X (next), U (strong until) as follows: ϕ ::= Fl | ¬ϕ | ϕ ∨ ψ | Xϕ | ϕUψ,
where Fl ∈ F . As usual we introduce ∧,F (eventually), andG (always) as syn-
tactic sugar. Let Π be the set of infinite traces over Act. The trace π = �0, �1, . . .
satisfies a fluent Fl at position i, denoted π, i |= Fl, if and only if one of the
following conditions holds:
– InitFl ∧ (∀j ∈ N · 0 ≤ j ≤ i→ �j /∈ TFl)
– ∃j ∈ N · (j ≤ i ∧ �j ∈ IFl) ∧ (∀k ∈ N · j < k ≤ i → �k /∈ TFl)

In other words, a fluent holds at position i if and only if it holds initially or some
initiating action has occurred, but no terminating action has yet occurred. The
interval over which a fluent holds is closed on the left and open on the right,
since actions have an immediate effect on the value of fluents.

Given an infinite trace π, the satisfaction of a formula ϕ at position i, denoted
π, i |= ϕ, is defined as shown in Figure 1. We say that ϕ holds in π, denoted
π |= ϕ, if π, 0 |= ϕ.

A formula ϕ ∈ FLTL holds in an LTS E (denoted E |= ϕ) if it holds on every
infinite trace produced by E.

Consider P , shown in Figure 2.3, and the FLTL formula φ = ¬ ˙idleUCooking,
where Cooking = 〈{cook}, {doneCooking}, false〉, and the trace π = idle, cook,
doneCooking, moveToBelt, cook, doneCooking, . . . of the LTS shown in Fig-
ure 2.3. Since at position 1 ˙idle holds (i.e, π, 1 |= ˙idle) but Cooking does not
(i.e, π, 1 �|= Cooking) it follows that π, 0 �|= φ. On the other hand, at time 2 ˙idle
does not holds (i.e, π, 2 �|= ˙idle) but Cooking does hold (i.e, π, 2 |= Cooking),
hence, π, 2 |= φ. Note that φ holds in P , i.e, P |= φ.

In this paper we modify LTSs and MTSs by adding new actions and adding
states and transitions that use the new actions. It is convenient to change FLTL

160 N. D’Ippolito et al.

formulas to ignore these changes. Consider an FLTL formula ϕ and a set of
actions Γ such that for all fluents Fl = 〈IFl, TFl, InitFl〉 in ϕ we have Γ ∩ (IFl ∪
TFl) = ∅. We define the alphabetised next version of ϕ, denoted XΓ (ϕ), as follows.

– For a fluent Fl ∈ F we define XΓ (Fl) = Fl.
– For ϕ ∨ ψ we define XΓ (ϕ ∨ ψ) = XΓ (ϕ) ∨ XΓ (ψ).
– For ¬ϕ we define XΓ (¬ϕ) = ¬XΓ (ϕ).
– For ϕUψ we define XΓ (ϕUψ) = XΓ (ϕ)UXΓ (ψ).
– For Xϕ we define XΓ (Xϕ) = X((

∨
f∈Γ f)UXΓ (ϕ))

Thus, this transformation replaces every next operator occurring in the formula
by an until operator that skips uninteresting actions that are in Γ . The transfor-
mations in Section 3 force an action not in Γ to appear after every action from
Γ . Thus, the difference between U under even and odd number of negations is
not important. Given a trace π = �0, �1, . . ., we say that π′ = �′0, �

′
1, . . . is a

Γ -variant of π if there is an infinite sequence i0 < i1 < . . . such that �j = �ij for
every j. That is, π′ is obtained from π by adding a finite sequences of actions
from Γ between actions in π.

Theorem 1. Given a trace π = �0, �1, . . . in E = (S,A,Δ, s0), an FLTL for-
mula ϕ and a set of actions Γ ∈ Act. If Γ ∩ A = ∅ then the following holds.
For every trace π′ that is a Γ -variant of π we have π |= ϕ iff π′ |= XΓ (ϕ).

We note that our results hold for properties that describe sets of traces that can
be modified easily to accept Γ -variants as above. We choose to focus on FLTL
as it makes all complexity results concrete and is a well accepted standard.

2.3 LTS Controller Synthesis

Given a domain model, which is a description of what is known about the world,
the problem of controller synthesis is to construct a machine / controller that will
interact with the world and ensure that certain goals are fulfilled. In our context,
the domain model is given as and LTS and the goal of the machine is defined
as an FLTL formula. The interface between the machine and the domain model
is given by partitioning the events that can occur to those that are controllable
by the machine and those that are uncontrollable by it. Then, the controller
restricts the occurrence of events it controls to ensure that its goals are fulfilled.

Definition 7. (LTS Control [8]) Given a domain model in the form of a deter-
ministic LTS E = (S, A, Δ, s0), a set of controllable actions Ac ⊆ A, and an
FLTL formula ϕ, a solution for the LTS control problem E = 〈E,ϕ,Ac〉 is an
LTS M = (SM , AM , ΔM , s0M) such that AM = A, from every state in SM all
actions in AM\Ac are enabled, E‖M is deadlock free, and every trace π in E‖M
is such that π |= ϕ.

That is, looking for a solution of an LTS control problem with domain model E,
is to verify the existence of an LTS M such that when composed in parallel with
E (i.e. E‖M), it does not block uncontrollable actions in E and every trace of
E‖M satisfies a given FLTL goal ϕ (i.e. E‖M |= ϕ).

The Modal Transition System Control Problem 161

We may refer to the solution of an LTS control problem as controller or LTS
controller. Whenever such a controller exists we say that the control problem is
realisable and unrealisable otherwise. In case that a domain model E is given
and Ac and ϕ are implicit we denote by E the control problem E = 〈E,ϕ,Ac〉.
Theorem 2. (LTS Control [24]) Given an LTS control problem E = 〈E,ϕ,Ac〉
it is decidable in 2EXPTIME whether E is realisable. The algorithm checking
realisability can also extract a controller M .

Note that determinism of the domain model is required. As LTS controllers
guarantee the satisfaction of their goals through parallel composition, having
nondeterministic domain models means that the controller would not be able to
know the exact state of the domain model. This leads to imperfect information, as
the controller would only be able to deduce which set of states the domain model
is in. Translation of the existing results on synthesis with imperfect information
to the context of nondeterministic LTSs is out of the scope of this paper.

For example, consider E, the simple domain model in Figure 2.3, where a
ceramics cooking process is described. The aim of the controller is to produce
cooked ceramics by taking raw pieces from the in-tray, placing them in the oven
and moving them once cooked to a conveyor belt. In addition, raw pieces have to
be cooked twice before being moved to the conveyor belt. A natural solution for
such a problem is to build a controller guaranteing that raw pieces are cooked
twice and moved to the conveyor belt infinitely often. The solution for this simple
example is shown in Figure 2.3. Note that the controller has the memory needed
to remember how many times a piece has been cooked.

1

2

3

idle

cook

moveToBelt

doneCooking

cook

(a) P .

1

2

3

4

cook cook

moveToBelt doneCooking

(b) CP

Fig. 2. Ceramic Cooking Example

3 MTS Control Problem

The problem of control synthesis for MTS is to check whether all, none or some
of the LTS implementations of a given MTS can be controlled by an LTS contro-
ller [9]. More specifically, given an MTS, an FLTL goal and a set of controllable
actions, the answer to the MTS control problem is all if all implementations of
the MTS can be controlled, none if no implementation can be controlled and
some otherwise. This is defined formally below.

Definition 8. (Semantics of MTS Control) Given a deterministic MTS E = (S,
A, Δr, Δp, s0), an FLTL formula ϕ and a set Ac ⊆ A of controllable actions,
to solve the MTS control problem E = 〈E,ϕ,Ac〉 is to answer:

162 N. D’Ippolito et al.

Fig. 3. Server Example.

– All, if for all LTS I∈Idet[E], the control problem 〈I, ϕ,Ac〉 is realisable,
– None, if for all LTS I∈Idet[E], the control problem 〈I, ϕ,Ac〉 is unrealisable,
– Some, otherwise.

Note that, as in the case of LTS control problem, we restrict attention to deter-
ministic domain models. This follows from the fact that our solution for MTS
realisability is by a reduction to LTS realisability.

Consider E, shown in Figure 3(a), that describes the interactions between
a server and clients. Note that although it is certain that client requests can
be responded by the server, definitions regarding when clients may ping the
server have not been made yet. Suppose that we want to build a controller
for this server such that the server guarantees that after receiving a request
it will eventually yield a response and if there are enough requests, responses
of both kinds will be issued. We formally describe this requirement as the

FLTL formula: ϕ =GF¬ResponseOwed∧ (GF ˙req ⇒ (GF ˙resp1∧GF ˙resp2)),
where ResponseOwed = 〈{req}, {resp1, resp2}, false〉. As expected, the server
can only control the response. Hence, we have the MTS control problem E =
〈E,ϕ, {resp1, resp2}〉. Consider the implementation I1, shown in Figure 3(b).
The uncontrollable self loop over ping in state 1 allows the environment to flood
the controller impeding it from eventually producing a response (i.e. no contro-
ller can avoid the trace req, ping, ping, . . .). The implementation I2, shown in
Figure 3(d), allows only a bounded number of pings after a request, hence, the
server cannot be flooded and a controller for the property exists . Since I1 and
I2 are implementations of E such that I2 can be controlled and I2 cannot, it
follows that the answer for the MTS control problem E is some.

A naive approach to the MTS control problem may require to evaluate an in-
finite number of LTS control problems. Naturally, such approach is not possible,
hence, it is mandatory to find alternative ways to handle MTS control problems.

The Modal Transition System Control Problem 163

We reduce the MTS control problem to two LTS control problems. The first
LTS control problem encodes the problem of whether there is a controller for each
implementation described by the MTS. It does so by modelling an environment
that can pick the “hardest” implementation to control. In fact, in the LTS control
problem, the environment will pick at each point the subset of possible transitions
of the MTS that are available. If there is a controller for this environment, there
is a controller for all implementations.

The second LTS control problem encodes the problem of whether there is
no controller for every implementation of the MTS. Similarly, this is done by
modelling an LTS control problem in which the controller can pick the “easiest”
implementation to control (in fact, it is now the controller that picks the subset
of possible transitions of the MTS that are available at each point). If there is no
controller in this setting, then for every implementation there is no controller.

The two LTS problems are defined in terms of the same LTS. The only differ-
ence is who controls the selection of the subset of possible actions, i.e. implemen-
tation choice. We now define the LTS EI in which additional transition labels are
added to model explicitly when either the controller or the environment choose
which subset of possible transitions of the MTS are available.

Definition 9. Given an MTS E = (S,A,Δr, Δp, s0). We define EI = (SEI ,
AEI , ΔEI , s0) as follows:

– SEI = S ∪ {(s, i) | s ∈ S and i ⊆ A and Δr(s) ⊆ i}
– AEI = A ∪ A, where A = {�i | i ⊆ A}
– ΔEI =

{(s, �i, (s, i)) | s ∈ S and i ⊆ Δp(s) and Δr(s) ⊆ i} ∪
{((s, i), �, s′) | (s, �, s′) ∈ Δp and � ∈ i}

0

1

2

3

4

c1

u1

c2?

u2?

(a) E

0

(0, {c1, u1})

(0, {c1, u1, c2})

(0, {c1, u1, u2})

(0, {c1, u1, c2, u2})

1

2

3

4

{c1, u1}

{c1, u1, c2}

{c1, u1, u2}

{c1, u1, c2, u2}

c1

u1

c1

u1

c2

c1

u1

u2
c1

u1
c2

u2

(b) EI

Fig. 4.

States in EI are of two kinds. Those that are of the form s with s ∈ S encode
states in which a choice of which subset of possible transitions are implemented

164 N. D’Ippolito et al.

has to be made. Choosing a subset i ⊆ A, leads to a state (s, i). States of latter
form (s, i) have outgoing transitions labelled with actions in i. A transition from
(s, i) on an action � ∈ i leads to the same state s′ in EI as taking � from s in
E. For example, the model in Figure 3 is obtained by applying Definition 9 to
model in Figure 3.

The LTS EI provides the basis for tractably answering the MTS control ques-
tion. The following algorithm shows how to compute the solution for the MTS
control problem.

Algorithm 1. (MTS Control) Given an MTS control problem E = 〈E,ϕ,Ac〉.
If EI is the LTS model obtained by applying Definition 9 to E, then the answer
for E is computed as follows.
– All, if there exists a solution for EI

A = 〈EI ,XA(ϕ), Ac〉
– None, if there is no solution for EI

N = 〈EI ,XA(ϕ), Ac ∪ A〉
– Some, otherwise.

Algorithm 1 shows how to compute the answer for a given MTS control problem.
Consider the case in which the answer for the MTS control problem is all.

As stated by Algorithm 1, the answer to E is all, if there is solution to the LTS
control problem EI

A. Intuitively, if we give control over the new actions �i to the
environment, it can choose the hardest implementation to control. Thus, this
solves the question of whether all implementations are controllable.

Lemma 1 proves that the case all in Algorithm 1 is sound and complete.

Lemma 1. (All) Given an MTS control problem E = 〈E,ϕ,Ac〉 where E =
(S,A, Δr, Δp, s0E). If EI is the LTS obtained by applying Definition 9 to E,
then the following holds. The answer for E is all iff the LTS control problem
EI
A = 〈EI ,XA(ϕ), Ac〉 is realisable.

Consider the case in which the answer for the MTS control problem is none.
The answer to E is none, if there is no solution to the LTS control problem EI

N .
Intuitively, if we give control over the new actions �i to the controller, it can
choose the easiest implementation to control. Thus, this solves the question of
whether no implementation is controllable.

Lemma 2 proves that the case none in Algorithm 1 is sound and complete.

Lemma 2. (None) Given an MTS control problem E = 〈E,ϕ,Ac〉 where E =
(S,A,Δr, Δp, s0). If E

I is the LTS obtained by applying Definition 9 to E, then
the following holds.

The LTS control problem EI
N = 〈EI ,XA(ϕ), Ac∪A〉 is realisable iff there exists

I ∈ Idet[E] such that the LTS control problem I = 〈I, ϕ,Ac〉 is realisable.

The answer to E is some whenever there exists an implementation of E that can
be controlled and an implementation of E that cannot be controlled.

Lemma 3. (Some) Given an MTS control problem E = 〈E,ϕ,Ac〉. The answer
for E is some iff EI

A is unrealisable and EI
N is realisable.

The Modal Transition System Control Problem 165

4 Linear Reduction into LTS Control Problems

Algorithm 1 shows that the MTS control problem can be reduced to two LTS
control problems. Hence, our solution to the MTS control problem is, in general,
doubly exponential in the size of EI (cf. [24,8]). Unfortunately, the state space
of EI is exponential in the branching degree of E, which in turn is bounded
by the size of the alphabet of the MTS. More precisely, for a state s ∈ EI the
number of successors of s is bounded by the number of possible combinations of
labels of maybe transitions from s in E. In this section we show that to compute
the answer for EI

Aand EI
N it is enough to consider only a small part of the states

of EI . Effectively, it is enough to consider at most linearly (in the number of
outgoing transitions) many successors for every state. This leads to the MTS
control problem being 2EXPTIME-complete.1

First, we analyse EI in the context of EI
A. We define a fragment EI+

A of EI
A.

Let EI+

= (SEI , AEI , Δ+, s0
EI

), where only the following transitions from ΔEI

are included in Δ+.

1. Consider a state s ∈ E that has at least one required uncontrollable succes-
sor. In Δ+ we add to s only the transition (s, �i, (s, i)), where i = Δr

E(s) ∪
(Δp

E(s)∩Aμ). That is, in addition to required transitions from s we include
all uncontrollable possible successors of s.

2. Consider a state s ∈ E that has no required uncontrollable successors but
has a required controllable successor. In Δ+ we add to s only the transitions
(s, �i, (s, i)), where i is either Δ

r
E(s) or i is Δ

r
E(s)∪(Δp

E(s)∩Aμ). That is, we
include a transition to all required transitions from s as well as augmenting
all required transitions by all uncontrollable possible transitions.

3. Consider a state s ∈ E that has no required successors. In Δ+ we add to
s a transition to (s, �i, (s, i)), where i = Δp

E(s) ∩ Aμ, and for every � ∈
Δp

E(s) ∩ Ac we add to s the transition (s, �{�}, (s, {�})). That is, we include
a transition to all possible uncontrollable transitions from s and for every
possible controllable transition a separate transition.

4. For a state (s, i) we add to Δ+ all the transitions in ΔEI .

Lemma 4. The problem EI
Ais realisable iff EI+

A = 〈EI+

,XA(ϕ), Ac〉 is realisable.
We now analyse EI in the context of the EI

N . We define a fragment EI−
N of EI

N .

Let EI−
= (SEI , AEI , Δ−, s0,EI), where only the following transitions from ΔEI

are included in Δ−.

1. Consider a state s ∈ E that has at least one required uncontrollable succes-
sor. In Δ− we add to s only the transition (s, �i, (s, i)), where i = Δr

E(s).
That is, include only the required transitions from s.

2. Consider a state s ∈ E that has no required uncontrollable successors. In
Δ− we add to s a transition to (s, �i, (s, i)), where i = Δr

E(s)∪ (Δp
E(s)∩Ac),

1 We can avoid adding states altogether by having a per state definition of what are
controllable and uncontrollable actions. For simplicity of presentation we choose to
add states. The modification is not complicated. In an enumerative implementation
of game analysis this would be our suggested treatment.

166 N. D’Ippolito et al.

and for every � ∈ Δp
E(s) ∩ Aμ we add to s the transition to (s, �Δr

E(s)∪{�},
(s,Δr

E(s) ∪ {�})). That is, we include a transition to all controllable tran-
sitions from s and for every possible uncontrollable transition a separate
transition.

3. For a state (s, i) we add to Δ− all the transitions in ΔEI .

Lemma 5. The problem EI
N is realisable iff EI−

N = 〈EI−
,XA(ϕ), Ac∪A〉 is realis-

able.

Using EI+

A and EI−
N can establish the complexity of the MTS control problem.

Theorem 3. (MTS Control Complexity) Given an MTS control problem E =
〈E,ϕ,Ac〉 it is 2EXPTIME-complete to decide whether the answer to E is all,
none, or some.

5 Discussion and Related Work

Automated construction of event-based operational models of intended system
behaviour has been extensively studied in the software engineering community.

Synthesis from scenario-based specifications (e.g. [27,6]) allows integrating a
fragmented, example-based specification into a model which can be analysed
via model checking, simulation, animation and inspection, the latter aided by
automated slicing and abstraction techniques. Synthesis from formal declarative
specification (e.g. temporal logics) has also been studied with the aim of provid-
ing an operational model on which to further support requirements elicitation
and analysis [16]. The work presented herein shares the view that model elabora-
tion can be supported through synthesis and analysis. Furthermore, analysis of
a partial domain model for realisability of system goals by means of a controller
allows prompting further elaboration of both domain model and goals.

Synthesis is also used to automatically construct plans that are then straight-
forwardly enacted by some software component. For instance, synthesis of glue
code and component adaptors has been studied in order to achieve safe compo-
sition at the architecture level [14], and in particular in service oriented archi-
tectures [2]. Such approaches cannot be applied when a fully specified domain
model is not available, hence their application is limited in earlier phases of
development. Our approach allows the construction of glue code and adaptors
earlier without necessarily requiring the effort of developing a full domain model.

In the domain of self-adaptive systems there has also been an increasing in-
terest in synthesis as such systems must be capable of designing at run-time
adaptation strategies. Hence, they rely heavily on automated synthesis of be-
haviour models that will guarantee the satisfaction of requirements under the
constraints enforced by the environment and the capabilities offered by the self-
adaptive system [26,5]. We speculate that controller synthesis techniques that
support partial domain knowledge, such as the one presented here, may allow
deploying self-adaptive systems that work in environments for which there is
more uncertainty.

The Modal Transition System Control Problem 167

Partial behaviour models have been extensively studied. A number of such
modelling formalisms exist, e.g., Modal Transition Systems (MTSs) [19] and
variants such as Disjunctive MTS [20]. The results presented in this work would
have to be revisited in the context of other partial behaviour formalisms. How-
ever, since many complexity results for MTS hold for extensions such as DMTS,
we believe that our results could also extend naturally to these extensions.

The formal treatment of MTSs started with model checking, which received
a lot of attention (cf. [3,4,12]). Initially, a version of three-valued model check-
ing was defined [3] and shown to have the same complexity as that of model
checking. Generalised model checking [4] improves the accuracy of model check-
ing of partial specifications. Indeed, three-valued model checking may yield that
the answer is unknown even when no implementations of an MTS satisfy the
formula. However, complexity of generalised model checking is much higher [12].

In order to reason about generalised model checking one has to go from the
model of transition systems (for 3-valued model checking) to that of a game. Our
definition of MTS control is more similar to generalised model checking than to
3-valued model checking. We find it interesting that both MTS and LTS control
problems are solved in the same model (that of a game) and that MTS control
does not require a more general model.

Another related subject is abstraction of games. For example, in [13] abstrac-
tion refinement is generalised to the context of control in order to reason about
larger games. Their main interest is in applying abstraction on existing games.
Thus, they are able to make assumptions about which states are reasoned about
together. We, on the other hand, are interested in the case that an MTS is used
as an abstract model. In this case, the abstract MTS is given and we would like
to reason about it.

Of the huge body of work on controller synthesis and realizability of temporal
logic we highlight two topics. First, we heavily rely on LTS control. For example,
we use the 2EXPTIME-completeness of LTL controller synthesis [24]. Second,
we would like to mention explorations of restricted subsets of LTL in the context
of synthesis (cf. [1,22]). These results show that in some cases synthesis can be
applied in practice. Similar restrictions, if applied to MTS control combined with
our reductions, would produce the same reduction in complexity.

Our previous work on usage of controller synthesis in the context of LTSs has
been incorporated in the MTSA toolset [10]. We have implemented a solver to
GR(1) [22] formulas in the context of the LTS control problem [8].

More specifically, from a descriptive specification of the domain model in the
form of an LTS and a set of controllable actions, the solver constructs an LTS
controller that when composed with the domain model satisfies a given FLTL [11]

formula of the form GI ∧ (
∧n

i=1
GFAi → ∧m

j=1
GFGj) where GI is a safety

system goal, GFAi represents a liveness assumption on the behaviour of the

environment, GFGj models a liveness goal for the system and Ai and Gj are
non-temporal fluent expressions, while I is a system safety goal expressed as
a Fluent Linear Temporal Logic formula. We have implemented the reductions
proposed in this paper and extended MTSA to support MTS control. The tool

168 N. D’Ippolito et al.

implements the conversion of the MTS E to the LTSs EI+

and EI−
(cf. Section 4)

and calls our implementation for the LTS control solution on both problems.
The structure of specification does not change when introducing the additional
actions. Thus, starting from GR(1) formulas, we can call our GR(1) LTS solver.

6 Conclusions and Future Work

We present a technique that solves the MTS control problem showing that,
despite dealing with a potentially infinite number of LTS implementations, the
MTS problem is actually in the same complexity class that the underlying LTS
synthesis problem.

Specifically, we have defined the MTS control problem that answers if all,
none or some implementations of a given MTS, modelling a partially defined
domain model, admit an LTS controller that guarantees a given goal. Although
an MTS has a potentially infinite number of implementations, we provide an
effective algorithm to compute the answer for the MTS control problem without
requiring going through all the implementations described by the MTS.

The algorithm reduces the MTS control problem to two LTS control problems
in which the controller or the environment get to choose which implementation
described by the MTS must be LTS controlled. In principle, both LTS control
problems are exponentially larger than the original MTS model. Nevertheless,
we show that the number of states of each LTS problem that must be considered
is in fact linear in the alphabet of the input MTS. Hence, the MTS control
problem remains in the same complexity as the LTS control problems. In fact,
as mentioned before we have implemented a solver for GR(1) [22] style formulas
applied to LTS control [8]. Hence, our tool checks realisability of an expressive
class of MTS control problems in polynomial time.

As mentioned in previous sections, having nondeterminism in the domain
model leads to synthesis with imperfect information. Such a setting is much
more computationally complex than synthesis with full information. Only in
recent years a few approaches towards imperfect information have started to
emerge [25]. However, most of them are far from actual applications. In a setting
of a nondeterministic domain model but giving the controller full information of
actions and states, our technique works with no changes. Similarly, our technique
can handle the setting of nondeterministic MTSs and considering only determin-
istic implementations. Solving the synthesis problem for nondeterministic MTS,
which corresponds to imperfect information games, is not straightforward. Nev-
ertheless, we believe that it would reduce to synthesis for nondeterministic LTS
in much the same way as with the deterministic variant.

The semantics of MTS is given in terms of a set of LTS implementations. In
the context of controller synthesis an MTS is interpreted as the characterisation
of a set of possible problem domain models. Hence, the MTS control problem
could be used as a mechanism to explicitly identify which are the behaviour
assumptions in problem domain that guarantee realisability of a certain goal:
We are interested in studying the problem of characterising the set of realisable
implementations whenever the answer for a given MTS control problem is some.

The Modal Transition System Control Problem 169

Having solved the realisability of the MTS control problem, the next logical
step is to an algorithm that will produce controllers if the MTS control problem
is realisable. We expect that synthesising controllers for the two LTS control
problems derived from the MTS control problem should serve as templates to
construct controllers for specific LTSs that are implementations of the MTS.

References

1. Asarin, E., Maler, O., Pnueli, A., Sifakis, J.: Controller synthesis for timed au-
tomata. In: SSC (1998)

2. Bertolino, A., Inverardi, P., Pelliccione, P., Tivoli, M.: Automatic synthesis of be-
havior protocols for composable web-services. In: FSE. ACM (2009)

3. Bruns, G., Godefroid, P.: Model Checking Partial State Spaces with 3-Valued Tem-
poral Logics. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633,
pp. 274–287. Springer, Heidelberg (1999)

4. Bruns, G., Godefroid, P.: Generalized Model Checking: Reasoning about Partial
State Spaces. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 168–
182. Springer, Heidelberg (2000)

5. Dalpiaz, F., Giorgini, P., Mylopoulos, J.: An Architecture for Requirements-Driven
Self-reconfiguration. In: van Eck, P., Gordijn, J., Wieringa, R. (eds.) CAiSE 2009.
LNCS, vol. 5565, pp. 246–260. Springer, Heidelberg (2009)

6. Damas, C., Lambeau, B., van Lamsweerde, A.: Scenarios, goals, and state ma-
chines: a win-win partnership for model synthesis. In: FSE. ACM (2006)

7. D’Ippolito, N.: Technical Report, http://www.doc.ic.ac.uk/~srdipi/techfm2012
8. D’Ippolito, N., Braberman, V., Piterman, N., Uchitel, S.: Synthesising non-

anomalous event-based controllers for liveness goals. ACM TOSEM 22(1) (to ap-
pear, 2013)

9. D’Ippolito, N., Braberman, V.A., Piterman, N., Uchitel, S.: Synthesis of live be-
haviour models for fallible domains. In: ICSE. ACM (2011)

10. D’Ippolito, N., Fischbein, D., Chechik, M., Uchitel, S.: Mtsa: The modal transition
system analyser. In: ASE. IEEE (2008)

11. Giannakopoulou, D., Magee, J.: Fluent model checking for event-based systems.
In: FSE. ACM (2003)

12. Godefroid, P., Piterman, N.: LTL Generalized Model Checking Revisited. In: Jones,
N.D., Müller-Olm, M. (eds.) VMCAI 2009. LNCS, vol. 5403, pp. 89–104. Springer,
Heidelberg (2009)

13. Henzinger, T.A., Jhala, R., Majumdar, R.: Counterexample-Guided Control. In:
Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J., et al. (eds.) ICALP
2003. LNCS, vol. 2719, pp. 886–902. Springer, Heidelberg (2003)

14. Inverardi, P., Tivoli, M.: A reuse-based approach to the correct and automatic
composition of web-services. In: ESSPE. ACM (2007)

15. Jackson, M.: The world and the machine. In: ICSE. ACM (1995)
16. Kazhamiakin, R., Pistore, M., Roveri, M.: Formal verification of requirements using

spin: A case study on web services. In: SEFM. IEEE (2004)
17. Keller, R.M.: Formal verification of parallel programs. CACM 19 (1976)
18. van Lamsweerde, A.: Requirements Engineering - From System Goals to UML

Models to Software Specifications. Wiley (2009)
19. Larsen, K., Thomsen, B.: A Modal Process Logic. In: LICS. IEEE (1988)
20. Larsen, K.G., Xinxin, L.: Equation solving using modal transition systems. In:

LICS. IEEE (1990)

http://www.doc.ic.ac.uk/~srdipi/techfm2012

170 N. D’Ippolito et al.

21. Letier, E., van Lamsweerde, A.: Agent-based tactics for goal-oriented requirements
elaboration. In: ICSE. ACM (2002)

22. Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of Reactive(1) Designs. In: Emerson,
E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 364–380. Springer,
Heidelberg (2005)

23. Pnueli, A.: The temporal logic of programs. In: FOCS. IEEE (1977)
24. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: POPL. ACM

(1989)
25. Raskin, J.F., Chatterjee, K., Doyen, L., Henzinger, T.A.: Algorithms for omega-

regular games with imperfect information. LMCS 3(3) (2007)
26. Sykes, D., Heaven, W., Magee, J., Kramer, J.: Plan-directed architectural change

for autonomous systems. In: SAVCBS (2007)
27. Uchitel, S., Brunet, G., Chechik, M.: Synthesis of partial behavior models from

properties and scenarios. TOSEM 35 (2009)

	The Modal Transition System Control Problem
	Introduction
	Preliminaries
	Transition Systems
	Fluent Linear Temporal Logic
	LTS Controller Synthesis

	MTS Control Problem
	Linear Reduction into LTS Control Problems
	Discussion and Related Work
	Conclusions and Future Work
	References

