
Collaborative Verification and Testing
with Explicit Assumptions

Maria Christakis, Peter Müller, and Valentin Wüstholz

ETH Zurich, Switzerland
{maria.christakis,peter.mueller,valentin.wuestholz}@inf.ethz.ch

Abstract. Many mainstream static code checkers make a number of
compromises to improve automation, performance, and accuracy. These
compromises include not checking certain program properties as well as
making implicit, unsound assumptions. Consequently, the results of such
static checkers do not provide definite guarantees about program correct-
ness, which makes it unclear which properties remain to be tested. We
propose a technique for collaborative verification and testing that makes
compromises of static checkers explicit such that they can be compen-
sated for by complementary checkers or testing. Our experiments sug-
gest that our technique finds more errors and proves more properties than
static checking alone, testing alone, and combinations that do not explic-
itly document the compromises made by static checkers. Our technique
is also useful to obtain small test suites for partially-verified programs.

1 Introduction

Static program checkers are increasingly applied to detect defects in real-world
programs. There is a wide variety of such checkers, ranging from relatively simple
heuristic tools, over static program analyzers and software model checkers, to
verifiers based on automatic theorem proving.

Although effective in detecting software bugs, many practical static check-
ers make compromises in order to increase automation, improve performance,
and reduce both the number of false positives and the annotation overhead.
These compromises include not checking certain properties and making implicit,
unsound assumptions. For example, HAVOC [1] uses write effect specifications
without checking them, Spec# [3] ignores arithmetic overflow and does not con-
sider exceptional control flow, ESC/Java [16] unrolls loops a fixed number of
times, and the Code Contracts static checker, Clousot [13], assumes that the
arguments to a method call refer to disjoint memory regions, to name a few.

Due to these compromises, static checkers do not provide definite guaran-
tees about the correctness of a program—as soon as a static checker makes
a compromise, errors may be missed. This has three detrimental consequences:
(1) Static checkers that make such compromises cannot ensure the absence of er-
rors. (2) Even though one would expect static checking to reduce the test effort,
it is unclear how to test exactly those properties that have not been soundly
verified. In practice, programmers need to test their programs as if no static

D. Giannakopoulou and D. Méry (Eds.): FM 2012, LNCS 7436, pp. 132–146, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Collaborative Verification and Testing with Explicit Assumptions 133

checking had been applied, which is inefficient. (3) Static checkers cannot be
easily integrated to complement each other.

In this paper, we propose a technique that enables the combination of mul-
tiple, complementary static checkers and the reinforcement of static checking
by automated, specification-based test case generation to check the program
executions and properties that have not been soundly verified. Our technique
handles sequential programs, properties that can be expressed by contract lan-
guages [12,20], and the typical compromises made by abstract interpreters and
deductive verifiers. An extension to concurrent programs, more advanced proper-
ties (such as temporal properties), and the compromises made by model checkers
(such as bounding the number of heap objects) are future work.

Our work is closely related to conditional model checking [6], which is an
independently developed line of work. Both approaches make the results of static
checking precise by tracking which properties have been verified, and under which
assumptions. By documenting all compromises, a static checker becomes sound
relatively to its compromises. However, accidental unsoundness, for instance due
to bugs in the implementation of the checker, is neither handled nor prevented.
Moreover, both approaches promote the collaboration of complementary static
checkers and direct the static checking to the properties that have not been
soundly verified. A detailed comparison of the two approaches is provided in
Sect. 5. The three contributions made by our paper are:

1. It proposes a simple language extension for making many deliberate com-
promises of static checkers explicit and marking every program assertion as
either fully verified, partially verified (that is, verified under certain assump-
tions), or not verified. This information is expressed via two new constructs
whose semantics is defined in terms of assignments and assertions. They are,
thus, easy to support by a wide range of static checkers. All assumptions are
expressed at the program points where they are made. Therefore, modular
static checkers may encode their verification results locally in the checked
module (for instance, locally within a method). This is crucial to allow sub-
sequent checkers to also operate modularly. Moreover, local assumptions and
verification results are suitable to automatically generate unit tests for the
module. We demonstrate the effectiveness of our language extension in en-
coding typical compromises of mainstream static checkers.

2. It presents a technique to automatically generate unit tests from the results
of static checkers providing the user with a choice on how much effort to
devote to static checking and how much to testing. For example, a user
might run an automatic verifier without devoting any effort to making the
verification succeed (for instance, without providing auxiliary specifications,
such as loop invariants). The verifier may prove some properties correct, and
our technique enables the effective testing of all others. Alternatively, a user
might try to verify properties about critical components of a program and
leave any remaining properties (e.g., about library components) for testing.
Consequently, the degree of static checking is configurable and may range
from zero to complete.

134 M. Christakis, P. Müller, and V. Wüstholz

3. It enables a tool chain that directs the static checking and test case gen-
eration to the partially-verified or unverified properties. This leads to more
targeted static checking and testing, in particular, smaller and more effective
test suites. We implemented our tool chain based on an adaptation of the
Dafny verifier [21] and the concolic testing tool Pex [24]. Our experiments
suggest that our technique finds more errors and proves more properties
than static checking alone, testing alone, and combined static checking and
testing without our technique.

Outline. Sect. 2 gives a guided tour to our approach through an example.
Sect. 3 explains how we encode the results and compromises of static checkers.
We demonstrate the application of our technique to some typical verification
scenarios in Sect. 4. We review related work in Sect. 5 and conclude in Sect. 6.

2 Guided Tour

This section gives a guided tour to collaborative verification and testing with
explicit assumptions. Through a running example, we discuss the motivation
behind the approach and the stages of the tool chain.

Running Example. Let us consider the C# program of Fig. 1 with .NET Code
Contracts [12]. Method foo takes two Cell objects with non-zero values. The
intention of the if statement is to guarantee that the two values have different
signs and therefore, ensure that their product is negative. However, this program
violates its postcondition in two cases: (1) The multiplications in the if and
return statements (lines 16 and 20, respectively) might overflow and produce a
positive result even if the integers have different signs. (2) In case parameters c
and d reference the same object, the assignment on line 16 changes the sign of
both c.value and d.value and the result is positive.

Checking this program with the Code Contracts static checker, Clousot, de-
tects none of the errors because it ignores arithmetic overflow and uses a heap
abstraction that assumes that method arguments are not aliased. A user who is
not familiar with the tool’s implicit assumptions does not know how to interpret
the absence of warnings. Given that errors might be missed, the code has to be
tested as if the checker had not run at all.

Running the Code Contracts testing tool, Pex, on method foo generates a
test case that reveals the aliasing error, but misses the overflow error. Since no
branch in the method’s control flow depends on whether the multiplications in
the if and return statements overflow, the tool does not generate a test case
that exhibits this behavior. So, similarly to the static checker, the absence of
errors provides no definite guarantee about program correctness.

Our technique enables collaborative verification and testing by making explicit
which properties have been verified, and under which assumptions. The tool
chain that we propose is presented in Fig. 2 and consists of two stages: static
verification and testing.

Collaborative Verification and Testing with Explicit Assumptions 135

1 public class Cell
2 {
3 public int value ;
4
5 public static int foo(Cell c, Cell d)
6 {
7 Contract . Requires (c != null && d != null);
8 Contract . Requires (c. value != 0 && d. value != 0);
9 Contract . Ensures (Contract .Result <int >() < 0); // verified under a_na , a_ui0 , a_ui1

10
11 // assumed c != d as a_na
12 if ((0 < c. value && 0 < d. value) || (c.value < 0 && d. value < 0))
13 {
14 // assumed new BigInteger (-1) * new BigInteger (c. value) ==
15 // new BigInteger (-1 * c. value) as a_ui0
16 c. value = (-1) * c. value;
17 }
18 // assumed new BigInteger (c. value) * new BigInteger (d. value) ==
19 // new BigInteger (c. value * d. value) as a_ui1
20 return c.value * d. value ;
21 }
22 }

Fig. 1. Example program that illustrates the motivation for our technique. The method
postcondition is violated if one of the multiplications overflows or if parameters c and
d reference the same object. The comments document the compromises made by a
checker that ignores arithmetic overflow and assumes that parameters are not aliased.

Automated Test Generation Tools

Runtime Check Instrumentation

Instrumented Executable

Stage 1

Stage 2

Verifier
Verifier

Static Checker Program

Fig. 2. The collaborative verification and testing tool chain. Tools are depicted by
boxes and programs with specifications by flowchart document symbols.

Stage 1: Collaborative Verification. The static checking (or verification)
stage allows the user to run an arbitrary number (possibly zero) of static check-
ers. Each checker reads the program, which contains the code, the specification,
and the results of prior static checking attempts. More precisely, each assertion
is marked to be either fully (that is, soundly) verified, partially verified under
certain explicit assumptions, or not verified (that is, not attempted or failed to
verify). A checker then attempts to prove the assertions that have not been fully

136 M. Christakis, P. Müller, and V. Wüstholz

verified by upstream tools. For this purpose, it may assume the properties that
have already been fully verified. For partially-verified assertions, it is sufficient
to show that the assumptions made by a prior checker hold or the assertions
hold regardless of the assumptions, which simplifies the verification task. For in-
stance, if the first checker verifies that all assertions hold assuming no arithmetic
overflow occurs, then it is sufficient for a second (possibly specialized) checker
to confirm this assumption. Each checker records its results in the program that
serves as input to the next downstream tool.

The intermediate versions of the program precisely track which properties
have been fully verified and which still need validation. This allows developers
to stop the static verification cycle at any time, which is important in practice,
where the effort that a developer can devote to static checking is limited. Any
remaining unverified or partially-verified assertions may then be covered by the
subsequent testing stage.

The comments in Fig. 1 illustrate the result of running the Code Contracts
static checker on the example. The checker makes implicit assumptions in three
places, for the non-aliasing of method arguments (line 11) and the unbounded
integer arithmetic (lines 14 and 18). Since some assumptions depend on the cur-
rent execution state, we document them at the place where they occur rather
than where they are used to prove an assertion. We give each assumption a
unique identifier (such as ana for the assumption on line 11), which is used
to document where this assumption is used. Running the checker verifies the
method postcondition under these three assumptions, which we reflect by mark-
ing the postcondition as partially verified under assumptions ana, aui0, and aui1
(line 9). We will show how to formally encode assumptions and verification re-
sults in Sect. 3.

Note that the Code Contracts static checker works modularly, that is, it checks
each method independently of its clients. Therefore, all assumptions are local to
the method being checked; for instance, method foo is analyzed independently
of any assumptions in its callers. Consequently, the method’s verification results
are suitable for subsequent modular checkers or unit test generation tools.

Since our example actually contains errors, any subsequent checker will nei-
ther be able to fully verify that the assumptions always hold nor that the post-
condition holds in case the assumptions do not. Nevertheless, the assumptions
document the precise result of the static checker, and we use this information to
generate targeted test cases in the subsequent testing stage.

Stage 2: Testing. We apply dynamic symbolic execution [18,23], also called
concolic testing [23], to automatically generate parameterized unit tests from
the program code, the specification, and the results of static checking.

Concolic testing collects constraints describing the test data that will cause the
program to take a particular branch in the execution or violate an assertion1.
1 An assertion is viewed as a conditional statement, where one branch throws an

exception. A test case generation tool aiming for branch coverage will therefore
attempt to generate test data that violates the assertion.

Collaborative Verification and Testing with Explicit Assumptions 137

To use this mechanism, we instrument the program with assertions for those
properties that have not been fully verified. That is, we assert all properties
that have not been verified at all, and for partially-verified properties, we assert
that the property holds in case the assumptions made by the static checker do
not hold. This way, the properties that remain to be checked as well as the
assumptions made by static checkers occur in the instrumented program, which
causes the symbolic execution to generate the constraints and test data that
exercise these properties.

In our example, the postcondition has been partially verified under three as-
sumptions. The instrumentation therefore introduces an assertion for the prop-
erty that all three assumptions hold or the original postcondition holds: ana ∧
aui0 ∧ aui1∨ c.value * d.value < 0. Here, we use the assumption identifiers
like boolean variables, which are assigned to when the assumption is made (see
Sect. 3 for details), and we substitute the call to Contract.Result by the ex-
pression that method foo returns.

Running Pex on the instrumented version of the partially-verified program
generates unit tests that reveal both errors, whereas without the instrumentation
Pex finds only the aliasing error. A failing unit test is now also generated for
the overflow error because the explicit assumptions on lines 14 and 18 of the
program create additional branches in the method’s control flow graph, thus
enriching the constraints that are collected and solved by the testing tool.

In case the code must be fully verified, an alternative second stage of the
tool chain could involve proving the remaining, precisely documented program
properties with an interactive theorem prover. The intention then is to prove
as many properties as possible automatically and to direct the manual effort
towards proving the remaining properties. Yet another alternative is to use the
explicit assumptions and partial verification results for targeted code reviews.

3 Verification Results with Explicit Assumptions

To make assumptions and (partially) verified properties explicit in the output of
static checkers, we extend the programming and specification language with two
new constructs: assumed statements and verified attributes for assertions. In
this section, we present these extensions and define their semantics in terms of
their weakest preconditions.

Extensions. An assumed statement of the form assumed P as a records that
a checker assumed property P at a given point in the code. P is a predicate
of the assertion language, and a is a unique assumption identifier, which can
be used in verified attributes to express that a property has been verified
using this assumption. assumed statements do not affect the semantics of the
program, but they are used to define the semantics of verified attributes, as
we discuss below. In particular, our assumed statements are different from the
classical assume statements, which express properties that any static checker or
testing tool may take for granted and need not check.

138 M. Christakis, P. Müller, and V. Wüstholz

In our example of Fig. 1, the assumptions on lines 11, 14, and 18 will be
formalized by adding assumed statements with the respective predicates. We also
allow programmers, in addition to static checkers, to add assumed statements in
their code, which is for instance useful when they want to verify the code only
for certain cases and leave the other cases for testing.

In order to record (partial) verification results, we use assertions of the form
assert V P , where P is a predicate of the assertion language and V is a set of
verified attributes. A verified attribute has the form {:verified A}, where
A is a set of assumption identifiers, each of which is declared in an assumed
statement.

When a static checker verifies an assertion, it adds a verified attribute to
the assertion that lists the assumptions used for its verification. Consequently,
an assertion is unverified if it has no verified attributes, that is, V is empty (no
static checker has verified the assertion). The assertion is fully verified if it has
at least one verified attribute that has an empty assumption set A (at least
one static checker has verified the assertion without making any assumptions).
Otherwise, the assertion is partially verified.

Note that it is up to each individual verifier to determine which assumptions
it used to verify an assertion. For instance, a verifier based on weakest precon-
ditions could collect all assumptions that are on any path from the start of a
method to the assertion; it could try to minimize the set of assumptions using
techniques such as slicing to determine which assumptions actually influence the
truth of the assertion. In our example, the assertion for the postcondition will
be decorated with the attribute {:verified {ana, aui0, aui1}} to indicate that
the static checker used all three assumptions to verify the postcondition.

Semantics. The goal of collaborative verification and testing is to let static
checkers and test case generation tools benefit from the (partial) verification
results of earlier static checking attempts. This is achieved by defining a seman-
tics for assertions that takes into account what has already been verified. For a
fully-verified assertion, a static checker or test case generation tool later in the
tool chain does not have to show anything. For partially-verified assertions, it is
sufficient if a later tool shows that the assertion holds in case the assumptions
made by earlier static checking attempts do not hold. We formalize this intuition
as a weakest-precondition semantics.

In the semantics, we introduce a boolean assumption variable for each assump-
tion identifier that occurs in an assumed statement; all assumption variables are
initialized to true. For modular static checking, which checks each method in-
dividually, assumption variables are local variables of the method that contains
the assumed statement. Assumptions of whole-program checking may be en-
coded via global variables. An assumed statement replaces the occurrence of an
assumption variable by the assumed property:

wp(assumed P as a, R) ≡ R[a := P]

Collaborative Verification and Testing with Explicit Assumptions 139

where R[a := P] denotes the substitution of a by P in R. This semantics en-
sures that an assumption is evaluated in the state in which it is made rather
than the state in which it is used. Since each assumption variable is initialized
to true, every occurrence of an assumption variable in a weakest-precondition
computation will eventually be substituted either by the assumed property or
by true in those execution paths that do not include an assumed statement for
that assumption variable.

We define the semantics of assertions as follows:

wp(assert V P, R) ≡
((∨

A∈V
CA(A)

)
∨ P

)
∧ (P ⇒ R)

where CA(A) denotes the conjunction of all assumptions in one verified at-
tribute (all assumptions of one static checker). That is, CA(A) ≡ ∧

a∈A var(a),
where var(a) is the assumption variable for the assumption identifier a.

The first conjunct in the weakest precondition expresses that in order to fully
verify the assertion, it is sufficient to show that all assumptions made by one
of the checkers actually hold or that the asserted property P holds anyway.
The disjunction weakens the assertions and therefore, lets tools benefit from the
partial results of prior static checks. Note that in the special case that one of the
verified attributes has an empty assumption set A, CA(A) is true, and the first
conjunct of the weakest precondition trivially holds (that is, the assertion has
been fully verified and nothing remains to be checked). Since the first conjunct of
the weakest precondition ensures that assertion P is verified, the second conjunct
requires only that postcondition R is verified under the assumption that P holds.

In our example, the weakest precondition of the partially-verified postcondi-
tion is ana ∧ aui0 ∧ aui1∨ c.value * d.value < 0. As we explained in Sect. 2,
we use this condition to instrument the program for the test case generation.

When multiple static checkers (partially) verify an assertion, we record each
of their results in a separate verified attribute. However, these attributes are
not a mere accumulation of the results of independent static checking attempts.
Due to the above semantics, the property to be verified typically becomes weaker
with each checking attempt. Therefore, many properties can eventually be fully
verified, without making any further assumptions. The remaining ones can be
tested or verified interactively.

4 Examples

For the evaluation of our tool chain and the underlying technique, we used the
Dafny language and verifier, and the testing tool Pex. Dafny is an imperative,
class-based programming language with built-in specification constructs to sup-
port sound static verification. For our purposes, we extended the Dafny language
with the assumed statements and verified attributes of Sect. 3, and changed
the Dafny verifier to simulate common compromises made by mainstream static
checkers. For the instrumentation phase of the architecture, we extended the

140 M. Christakis, P. Müller, and V. Wüstholz

existing Dafny-to-C# compiler to generate runtime checks, expressed as Code
Contracts, for program properties that have not been fully verified.

In this section, we demonstrate how common compromises may be encoded
with our language extensions and subsequently tested. We apply our technique
to three verification scenarios and show that it finds more errors than the archi-
tecture’s constituent tools alone and achieves small, targeted test suites.

4.1 Encoding of Common Compromises

To simulate common compromises, we implemented three variants of the Dafny
verifier: (1) ignoring arithmetic overflow, like e.g. Spec#, (2) unrolling loops a
fixed number of times, like e.g. ESC/Java, and (3) using write effect specifications
without checking them, like e.g. HAVOC.

Unbounded Integers. A common compromise of static checkers is to ignore
overflow in bounded integer arithmetic, as in the case of ESC/Java and Spec#.
To model this behavior in Dafny, which uses unbounded integers, we adapted
the verifier to add explicit assumptions about unbounded integer arithmetic and
modified the compiler to use bounded (32-bit) integers.

We use BigInteger to express that a static checker that ignores arithmetic
overflow considers bounded integer expressions in the code to be equivalent to
their mathematical counterparts. For instance, the assumption that the expres-
sion c.value * d.value from Fig. 1 does not lead to an overflow is expressed
as:

assumed new BigInteger(c. value) * new BigInteger(d. value) ==
new BigInteger(c. value * d.value) as aui1 ;

Loop Unrolling. To avoid the annotation overhead of loop invariants, some
static checkers unroll loops a fixed number of times. For instance, ESC/Java
unrolls loops 1.5 times by default: first, the condition of the loop is evaluated
and in case it holds, the loop body is checked once; then, the loop condition is
evaluated again after assuming its negation. As a result, the code following the
loop is checked under the assumption that the loop iterates at most once.

This compromise cannot be modeled using explicit assumptions alone. For this
reason, we implemented a variant of the Dafny verifier that transforms loops as
shown in Fig. 3. After unrolling the loop once, an explicit assumption is added
which states that the loop condition does not hold. Assertions following the
assumed statement are verified under this assumption. Note that the loop is still
part of the transformed program so that the original semantics is preserved for
downstream static checkers, which might not make the same compromise, and
testing tools.

Write Effects. Another compromise made by static tools, such as HAVOC and
ESC/Java, involves assuming write effect specifications without checking them.
We encode this compromise by simply leaving all the required checks unverified,
that is, by not marking them with a verified attribute.

Collaborative Verification and Testing with Explicit Assumptions 141

Original loop.
while (C) {

B
}

Transformed loop.
if (C) {

B
}
assumed ¬C as a;
while (C) {

B
}

Fig. 3. Loop transformation and explicit assumption about loop unrolling. The loop is
unrolled 1.5 times.

4.2 Improved Defect Detection

Having shown how assumed statements may be used to encode common compro-
mises of static checkers, we will now discuss two scenarios in which Pex exploits
explicit assumptions made by upstream static checkers to find more errors than
any of these tools alone.

Scenario 1: Overflow Errors. The method of Fig. 4 computes the sum of
squares

∑to
i=from i2, where from and to are input parameters. When we run the

version of the Dafny verifier that ignores arithmetic overflow on this method,
no verification errors are reported and the invariant is partially verified un-
der explicit assumptions about unbounded integer arithmetic. For instance, an
assumed statement with predicate

new BigInteger(i) + new BigInteger(1) == new BigInteger(i + 1)

is added before line 10. Running Pex on the original method, where the invariant
has been translated into two Code Contracts assertions (one before the loop and
one at the end of the loop body), generates five failing unit tests in all of which
the invariant is violated before the loop due to an overflow. However, when we
run Pex on the partially-verified program produced by the verifier, an additional
failing unit test is generated revealing a new error: the invariant is not preserved
by the loop due to an overflow in the loop body.

In analyzing these results, we notice that without the explicit assumptions Pex
is not able to craft appropriate input values for the method parameters such that

0 static method SumOfSquares(from: int , to: int) returns (r: int)
1 requires from ≤ to;
2 {
3 r := from * from ;
4 var i := from + 1;
5 while (i ≤ to)
6 invariant from * from ≤ r;
7 decreases to - i;
8 {
9 r := r + i * i;

10 i := i + 1;
11 }
12 }

Fig. 4. Method that computes the sum of squares
∑to

i=from i2. The loop invariant is
violated in case an integer overflow occurs before the loop or in the loop body.

142 M. Christakis, P. Müller, and V. Wüstholz

the invariant preservation error also be revealed. This is because after a bounded
number of loop iterations the constraints imposed by the invariant become too
complex for the underlying constraint solver to solve under certain time limits,
if at all. However, the explicit assumptions added by the verifier create new
branches in the method’s control flow graph which Pex tries to explore. It is
these branches that enrich the tool’s path constraints and guide it in picking
input values that reveal the remaining error.

Scenario 2: Aliasing Errors. In this scenario, we consider an object hier-
archy in which class Student and interface ITeacher both inherit from inter-
face IAcademicPerson, and class TeachingAssistant inherits both from class
Student and interface ITeacher. Interface IAcademicPerson declares a method
Evaluate for giving an evaluation grade to an academic person, and a method
Evaluations for getting all the evaluation grades given to an academic person.
Method EvaluateTeacher of Fig. 5 takes a student and a rating for the teacher
that is associated with the student, and ensures that evaluating the teacher does
not affect the student’s evaluation grades. The postcondition may be violated
when a teaching assistant that is their own teacher is passed to the method.
Clousot misses this error because of its heap abstraction, which assumes that
certain forms of aliasing do not occur. Pex is also unable to generate a failing
unit test because no constraint forces it to generate an object structure that
would reveal the error. However, with the explicit assumption shown on line 7
of Fig. 5, Pex does produce a unit test revealing this error.

1 public static void EvaluateTeacher(Student s, char rating)
2 {
3 Contract . Requires (s != null && s. Teacher() != null && " ABCDF". Contains(rating));
4 Contract . Ensures (s. Evaluations() == // verified under a_nse
5 Contract .OldValue <string >(s. Evaluations()));
6
7 // assumed s. Teacher () != s as a_nse
8 s. Teacher(). Evaluate(rating);
9 }

Fig. 5. Method for the evaluation of a student’s teacher. The postcondition may be
violated when a teaching assistant that is their own teacher is passed to the method.

4.3 Small Test Suites

In addition to finding more errors, our technique is also useful in obtaining
small, targeted test suites for partially-verified programs as methods that are
fully verified need not be tested. To illustrate this, we developed a List class
with a number of common list operations: the constructor of the list and meth-
ods Length, Equals, ContainsElement, Head, Tail, LastElement, Prepend,
Append, Concatenate, Clone, and ReverseInPlace2. This implementation is
written in Dafny, consists of about 270 lines of code, and may be found at the
URL http://www.pm.inf.ethz.ch/publications/FM12/List.dfy.
2 ReverseInPlace is the only method that is implemented iteratively.

http://www.pm.inf.ethz.ch/publications/FM12/List.dfy

Collaborative Verification and Testing with Explicit Assumptions 143

In order to simulate a realistic usage scenario of our tool chain, we decided
to spend no more than two hours on attempting to soundly verify the code.
By the end of that time frame, we had not managed to complete the proof of
the ReverseInPlace method and were obliged to add assumed statements in
methods Equals and ContainsElement.

To evaluate the effectiveness of our technique in achieving small test suites,
we compared the size of the suite that was generated by running Pex alone on
the list implementation to the number of unit tests that were produced with
collaborative verification and testing. For the verification stage of the tool chain,
we employed the following four variants of the Dafny verifier: sound verification
(S), verification with unbounded integer arithmetic (UIA), verification with loop
unrolling (LU), and verification with unbounded integer arithmetic and loop
unrolling (UIA & LU). Table 1 shows the percentage by which the size of the
test suite was reduced using our technique, and the methods that were still tested
(that is, had not been fully verified) in each of the aforementioned verification
attempts.

Table 1. Effectiveness of our technique in achieving small test suites

Verification Test Reduction Tested Methods
S 66% Equals, ContainsElement, ReverseInPlace
UIA 58% Length, Equals, ContainsElement, ReverseInPlace
LU 65% Equals, ContainsElement, ReverseInPlace
UIA & LU 58% Length, Equals, ContainsElement, ReverseInPlace

5 Related Work

Many automatic static checkers that target mainstream programming languages
make compromises to improve performance and reduce the number of false pos-
itives and the annotation overhead. We already mentioned some of the com-
promises made by HAVOC, Spec#, ESC/Java, and the Code Contracts static
checker. In addition to those, KeY [4] does not soundly support multi-object
invariants, Krakatoa [14] does not handle class invariants and class initialization
soundly, and Frama-C [7] uses plug-ins for various analyses with possibly con-
flicting assumptions. Our technique would allow these tools to collaborate and
be effectively complemented by automatic test case generation.

Integration of Checkers. The work most closely related to ours is conditional
model checking (CMC) [6], which combines complementary model checkers to im-
prove performance and state-space coverage. A conditional model checker takes
as input the program and specification to be verified as well as a condition that
describes the states that have already been checked, and it produces another such
condition to encode the results of the verification. The focus of CMC is on encoding

144 M. Christakis, P. Müller, and V. Wüstholz

the typical limitations of model checkers, such as space-out and time-out, but it
can also encode compromises such as assuming that no arithmetic overflow occurs.
Beyer et al. performed a detailed experimental evaluation that demonstrates the
benefits of making assumptions and partial verification results explicit, which is
in line with our findings. Despite these similarities, there are significant technical
differences between CMC and our approach. First, as is common in model check-
ing, CMC is presented as a whole-program analysis, and the resulting condition
may contain assumptions about the whole program. For instance, the verification
of a method may depend on assumptions made in its callers. By contrast, we have
demonstrated how to integrate modular static analyzers, such as Clousot, and de-
ductive verifiers, such as Dafny and Spec#. Second, although Beyer et al. mention
test case generation as a possible application of CMC, they do not explain how to
generate test cases from the conditions. Since these conditions may include non-
local assumptions, they might be used to generate system tests, whereas the gener-
ation of unit tests seems challenging. However, test case generation tools based on
constraint solving (such as symbolic execution and concolic testing) do not scale
well to the large execution paths that occur in system tests. By contrast, we have
demonstrated how to use concolic testing to generate unit tests from our local as-
sumptions and verification results.

A common form of tool integration is to support static checkers with in-
ference tools, such as Houdini [15] for ESC/Java or Daikon [11] for the Java
PathFinder [19] tool. Such combinations either assume that the inference is
sound and thus, do not handle the compromises addressed in our work, or they
verify every property that has been inferred, which is overly conservative and
increases the verification effort. Our technique enables a more effective tool in-
tegration by making all design compromises explicit.

Integration of Verification and Testing. Various approaches combine ver-
ification and testing mainly to determine whether a static verification error is
spurious. Check ’n’ Crash [9] is an automated defect detection tool that inte-
grates the ESC/Java static checker with the JCrasher [8] testing tool in order to
decide whether errors emitted by the static checker truly exist. Check ’n’ Crash
was later integrated with Daikon in the DSD-Crasher tool [10]. DyTa [17] in-
tegrates the Code Contracts static checker with Pex to reduce the number of
spurious errors compared to static verification alone and perform more efficiently
compared to dynamic test generation alone. Confirming whether a failing ver-
ification attempt refers to a real error is also possible in our technique: The
instrumentation phase of the architecture introduces assertions for each prop-
erty that has not been statically verified (which includes the case of a failing
verification attempt). The testing phase then uses these assertions to direct test
case generation towards the unproved properties. Eventually, the testing tools
might generate either a series of successful test cases that will boost the user’s
confidence about the correctness of their programs or concrete counterexamples
that reproduce an error.

A perhaps more precise approach towards the same direction as the aforemen-
tioned tools is counterexample-guided abstraction refinement (CEGAR) [2,5].

Collaborative Verification and Testing with Explicit Assumptions 145

CEGAR exploits the abstract counterexample trace of a failing proof attempt
to suggest a concrete trace that might reveal a real error. If, however, the ab-
stract trace refers to a spurious error, the abstraction is refined in such a way that
subsequent verification attempts will not reproduce the infeasible abstract trace.
More recently, YOGI [22], a tool for checking properties of C programs, was de-
veloped to refine CEGAR with concolic execution. Such techniques, if regarded
as tool chains, address the issue of program correctness from the opposite direc-
tion than we do: they use concrete traces to refine static over-approximations,
whereas, in our work, combinations of potential under-approximations made by
different static checkers are checked by the testing tools. If, on the other hand,
these techniques are regarded as single tools, they could also be integrated in
our architecture.

6 Conclusion

We have presented a technique for collaborative verification and testing that
makes compromises of static checkers explicit with a simple language extension.
In our approach, the verification results give definite answers about program cor-
rectness allowing for the integration of multiple, complementary static checkers
and the generation of more effective unit test suites. Our experiments suggest
that our technique finds more errors and proves more properties than verification
alone, testing alone, and combined verification and testing without the explicit
assumptions. As future work, we plan to implement our technique for Spec#
and the Code Contracts static checker and to use them for experiments on large
code bases. We expect such experiments to shed light on the impact of some
design compromises and suggest guidelines for the effective use of static checkers
in industrial projects.

Acknowledgments. We would like to thank Alexander Summers and the
anonymous reviewers for their helpful comments.

References

1. Ball, T., Hackett, B., Lahiri, S.K., Qadeer, S., Vanegue, J.: Towards Scalable Modu-
lar Checking of User-Defined Properties. In: Leavens, G.T., O’Hearn, P., Rajamani,
S.K. (eds.) VSTTE 2010. LNCS, vol. 6217, pp. 1–24. Springer, Heidelberg (2010)

2. Ball, T., Rajamani, S.K.: The SLAM project: Debugging system software via static
analysis. In: POPL, pp. 1–3. ACM (2002)

3. Barnett, M., Fähndrich, M., Leino, K.R.M., Müller, P., Schulte, W., Venter, H.:
Specification and verification: The Spec# experience. CACM 54, 81–91 (2011)

4. Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Soft-
ware. The KeY Approach. LNCS (LNAI), vol. 4334. Springer, Heidelberg (2007)

5. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: The software model checker
BLAST: Applications to software engineering. STTT 9, 505–525 (2007)

6. Beyer, D., Henzinger, T.A., Keremoglu, M.E., Wendler, P.: Conditional model
checking. CoRR, abs/1109.6926 (2011)

146 M. Christakis, P. Müller, and V. Wüstholz

7. Correnson, L., Cuoq, P., Kirchner, F., Prevosto, V., Puccetti, A., Signoles, J.,
Yakobowski, B.: Frama-C User Manual (2011),
http://frama-c.com//support.html

8. Csallner, C., Smaragdakis, Y.: JCrasher: An automatic robustness tester for Java.
SPE 34, 1025–1050 (2004)

9. Csallner, C., Smaragdakis, Y.: Check ’n’ Crash: Combining static checking and
testing. In: ICSE, pp. 422–431. ACM (2005)

10. Csallner, C., Smaragdakis, Y., Xie, T.: DSD-Crasher: A hybrid analysis tool for
bug finding. TOSEM 17, 1–37 (2008)

11. Ernst, M.D., Perkins, J.H., Guo, P.J., McCamant, S., Pacheco, C., Tschantz, M.S.,
Xiao, C.: The Daikon system for dynamic detection of likely invariants. Sci. Com-
put. Program. 69, 35–45 (2007)

12. Fähndrich, M., Barnett, M., Logozzo, F.: Embedded contract languages. In: SAC,
pp. 2103–2110. ACM (2010)

13. Fähndrich, M., Logozzo, F.: Static Contract Checking with Abstract Interpreta-
tion. In: Beckert, B., Marché, C. (eds.) FoVeOOS 2010. LNCS, vol. 6528, pp. 10–30.
Springer, Heidelberg (2011)

14. Filliâtre, J.-C., Marché, C.: The Why/Krakatoa/Caduceus Platform for Deduc-
tive Program Verification. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS,
vol. 4590, pp. 173–177. Springer, Heidelberg (2007)

15. Flanagan, C., Leino, K.R.M.: Houdini, an Annotation Assistant for ESC/Java. In:
Oliveira, J.N., Zave, P. (eds.) FME 2001. LNCS, vol. 2021, pp. 500–517. Springer,
Heidelberg (2001)

16. Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B., Stata, R.:
Extended static checking for Java. In: PLDI, pp. 234–245. ACM (2002)

17. Ge, X., Taneja, K., Xie, T., Tillmann, N.: DyTa: Dynamic symbolic execution
guided with static verification results. In: ICSE, pp. 992–994. ACM (2011)

18. Godefroid, P., Klarlund, N., Sen, K.: DART: Directed automated random testing.
In: PLDI, pp. 213–223. ACM (2005)

19. Havelund, K., Pressburger, T.: Model checking JAVA programs using JAVA
PathFinder. STTT 2, 366–381 (2000)

20. Leavens, G.T., Poll, E., Clifton, C., Cheon, Y., Ruby, C., Cok, D., Müller, P.,
Kiniry, J., Chalin, P., Zimmerman, D.M., Dietl, W.: JML Reference Manual (2011),
http://www.jmlspecs.org/

21. Leino, K.R.M.: Dafny: An Automatic Program Verifier for Functional Correctness.
In: Clarke, E.M., Voronkov, A. (eds.) LPAR-16 2010. LNCS, vol. 6355, pp. 348–370.
Springer, Heidelberg (2010)

22. Nori, A.V., Rajamani, S.K., Tetali, S., Thakur, A.V.: The Yogi Project: Software
Property Checking via Static Analysis and Testing. In: Kowalewski, S., Philippou,
A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 178–181. Springer, Heidelberg (2009)

23. Sen, K., Marinov, D., Agha, G.: CUTE: A concolic unit testing engine for C. In:
ESEC, pp. 263–272. ACM (2005)

24. Tillmann, N., de Halleux, J.: Pex–White Box Test Generation for .NET. In: Beck-
ert, B., Hähnle, R. (eds.) TAP 2008. LNCS, vol. 4966, pp. 134–153. Springer,
Heidelberg (2008)

http://frama-c.com//support.html
http://www.jmlspecs.org/

	Collaborative Verification and Testing with Explicit Assumptions
	Introduction
	Guided Tour
	Verification Results with Explicit Assumptions
	Examples
	Encoding of Common Compromises
	Improved Defect Detection
	Small Test Suites

	Related Work
	Conclusion
	References

