
A Certified Constraint Solver
over Finite Domains

Matthieu Carlier1, Catherine Dubois1,2, and Arnaud Gotlieb3,4

1 ENSIIE, Évry, France
{carlier,dubois}@ensiie.fr

2 INRIA Paris Rocquencourt, Paris, France
3 Certus V&V Center, SIMULA RESEARCH LAB., Lysaker, Norway

arnaud@simula.no
4 INRIA Rennes Bretagne-Atlantique, Rennes, France

Abstract. Constraint programs such as those written in modern Con-
straint Programming languages and platforms aim at solving problems
coming from optimization, scheduling, planning, etc. Recently CP pro-
grams have been used in business-critical or safety-critical areas as well,
e.g., e-Commerce, air-traffic control applications, or software verification.
This implies a more skeptical regard on the implementation of constraint
solvers, especially when the result is that a constraint problem has no
solution, i.e., unsatisfiability. For example, in software model checking,
using an unsafe constraint solver may result in a dramatic wrong an-
swer saying that a safety property is satisfied while there exist counter-
examples. In this paper, we present a Coq formalisation of a constraint
filtering algorithm — AC3 and one of its variant AC2001 — and a simple
labeling procedure. The proof of their soundness and completeness has
been completed using Coq. As a result, a formally certified constraint
solver written in OCaml has been automatically extracted from the Coq
specification of the filtering and labeling algorithms. The solver, yet not
as efficient as specialized existing (unsafe) implementations, can be used
to formally certify that a constraint system is unsatisfiable.

1 Introduction

Context. Automated software verification relies on constraint resolution [23],
either to prove functional properties over programs or to generate automatically
test inputs [13]. For example, formal verification involves showing that a formula
embedding the negation of a property is unsatisfiable, i.e., the formula has no
model or solution. While most verification techniques are based on SAT and
SMT (Satisfiability Modulo Theory), tools built over Constraint Programming
over Finite Domains, noted CP(FD) [14], become more and more competitive
e.g., CPBPV [11], or OSMOSE [5,4]. In this context, finite domains mean finite
sets of labels or possible values associated to each variable of the program. Exist-
ing results show that CP(FD) is a complementary approach to SMT for certain
classes of verification problems [5,3].

D. Giannakopoulou and D. Méry (Eds.): FM 2012, LNCS 7436, pp. 116–131, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



A Certified Constraint Solver over Finite Domains 117

Problem. Effective constraint-based verification involves using efficient con-
straint solvers. However, efficiency comes at the price of complexity in the design
of these solvers. And even if developing CP(FD) solvers is the craft of a few great
specialists, it is nearly impossible to guarantee by manual effort that their results
are error-free. A constraint solver declaring a formula being unsatisfiable while
it is not the case, can entail dramatic consequences for a safety-critical software
system. Thus, an emerging trend in software verification is to equip code with
correctness proofs, called certificates [12], that can be checked by third-party cer-
tifiers [20,8,1,7]. As soon as these certificates involve finite domains constraint
systems, external constraint solvers are used without any guarantee on their
results.

Contribution. Following the research direction opened up by CompCert [17]
that offered us a formally certified compiler for a subset of C, the work pre-
sented in this paper is part of a bigger project aiming at building a certified
testing environment for functional programs based on finite domains constraint
solving. A significant first step has been reached by formally certifying the test
case generation method [9], provided that a correct constraint solver is available.
This paper specifically tackles this second step of the project by building a cer-
tified CP(FD) solver. We developed a sound and complete CP(FD) solver able
to provide correct answers, relying on the Coq interactive proof assistant. The
constraints are restricted to binary normalized constraints, i.e., distinct relations
over two variables [10], but are not necessarily represented as set of binary tu-
ples. The language of constraints is in fact a parameter of our formalisation. Our
certified CP(FD) solver implements a classical filtering algorithm, AC3 [19] and
one of its extension AC2001 [10], thus focuses on arc-consistency. By filtering
algorithm, we mean a fixpoint computation that applies domain filtering oper-
ators to the finite domains of variables. The Coq formalisation is around 8500
lines long. The main difficulties have been to discover or re-discover implicit
assumptions and classical knowledge about these algorithms.

Following the Coq proof extraction mechanism, the executable code of the
solver in OCaml has been automatically derived from its formal development,
and used to solve some constraint systems. The solver, yet not as efficient as
specialized existing but unsafe implementations, can be used to formally certify
that a constraint system is unsatisfiable or satisfiable. According to our knowl-
edge, this is the first time a constraint solver over finite domains is formally
certified. The Coq code and the OCaml extracted files are available on the web
at www.ensiie.fr/~dubois/CoqsolverFD .

Outline. The rest is organized as follows: Sec. 2 introduces the notations and the
definitions of the notions of consistency, solution, solving procedure used in our
formalisation. Sec. 3 presents the filtering algorithm AC3 and an implementation
of the local consistency property called REVISE. It also presents an optimized
version of the filtering algorithm called AC2001. Sec. 4 describes the formalisa-
tion of the search heuristics. Sec. 5 presents our first experimental results and
discusses related work. Finally, sec. 6 concludes the paper.

www.ensiie.fr/~dubois/CoqsolverFD


118 M. Carlier, C. Dubois, and A. Gotlieb

2 Formalisation of a Constraint Solving Problem

A Constraint Satisfaction Problem (csp for short) or network of constraints [19]
is a triple (X, D, C) where X is a set of ordered variables, C is a set of binary
normalized constraints over X and D is a partial function that associates a finite
domain D(x) to each variable x in X . In our setting, the values of a finite domain
belong to a set V equipped with a decidable equality. The set C is composed of
binary and normalized constraints, meaning respectively that constraints hold
over 2 variables, and that two distinct constraints cannot hold over exactly the
same variables. The function get vars retrieves the ordered pair of variables of
a constraint c. For example, get vars(c) returns (x1, x2) iff x1 is smaller than
x2, (x2, x1) otherwise. Note that this ordering is introduced for convenience, but
does not limit the generality of the purpose. We also suppose that each variable
of X appears at least once in a constraint of C. Restricting to binary normalized
constraints does not weaken the contribution as constraints over finite domains
with higher arity can always be rewritten into binary constraints [2], and it is
always possible to merge two constraints holding over the same two variables
into a single one. Omitting unary constraints is not a restriction either since
unary constraints are semantically equivalent to domain constraints, that are
captured by D in our formal settings

Fig.1 shows the Coq formalisation of constraint network where types of con-
straints, variables and values are made abstract. To define constraints, we only re-
quire the definition of 2 functions get vars and an interpretation function interp.
We expect the following meaning: if get vars(c) = (x, y), then interp c u v =
true iff c is satisfied by substituting x by u and y by v, noted c(u, v) or (consis-
tent value c x u y v ) in Coq code. In the following, Coq excerpts are not true
Coq code in the sense that mathematical notations are used when they ease the
reading, e.g. ∈ denotes list or set membership, whereas prefixe notation In is
kept for membership in domain tables. The formalisation of domains Doms is

Parameter constraint : Set.
Parameter interp : constraint → value → value → bool.
Parameter get vars : constraint → variable × variable.
Parameter get vars spec : ∀ c x1 x2, get vars c = (x1, x2 ) → x1 < x2.
Record network : Type := Make csp {
CVars : list variable ; Doms : mapdomain ; Csts : list constraint }.

Fig. 1. Coq formalisation of constraint network

captured by lists without replicates and saved in a table (of type mapdomain)
indexed by the variables1.

The Coq record network inv csp that captures well-formedness properties of
a constraint network csp, is given in Fig2. The first proj. Dwf specifies that

1 The Coq module Fmap is used to keep these tables, and the AVL implementation
from the Coq’s standard library is used in the extracted code.



A Certified Constraint Solver over Finite Domains 119

the network variables (and only those), have an associated domain in the table
embedded in csp. The second proj. Cwf1 specifies that the variables of a con-
straint are indeed variables of the network csp. The third proj. Cwf2 specifies
that each variable appears at least once in the network. Finally, norm specifies
that two constraints sharing the same variables must be identical.

Record network inv csp : Prop := Make csp inv {
Dwf : ∀ x, In x (Doms csp) ↔ In x (CVars csp) ;
Cwf1 : ∀ (c:constraint) (x1 x2 : variable),

c ∈ (Csts csp) → get vars c = (x1, x2 ) →
x1 ∈ (CVars csp) ∧ x2 ∈ (CVars csp) ;

Cwf2 : ∀ x, x ∈ (CVars csp) → ∃ c,
c ∈ (Csts csp) ∧ (fst (get vars c) = x ∨ snd (get vars c) = x);

Norm : ∀ c c’, c ∈ (Csts csp) → c’ ∈ (Csts csp) →
get vars c = get vars c’ → c = c’ }.

Fig. 2. Well-formedness properties of a constraint network in Coq

2.1 Assignment - Solution

Following the definitions given in [6], an assignment is a partial map of some vari-
ables of the constraint network to values2, a valid assignment is an assignment
of some variables to a value from their domain, a locally consistent assignment is
a valid assignment of some variables that satisfy the constraints that hold over
them (and only those), and finally a solution is a locally consistent assignment of
all the variables of the constraint network. We formalized these notions but do
not expose their Coq specification very close to the previous informal definitions.

An important lemma about solutions, named no sol given below, is involved
in the completeness proof of the CP(FD) solver. It establishes that as soon
as a domain in the constraint network csp becomes empty, then csp is shown
be unsatisfiable, i.e., it has no solution. The lemma states that, in this case,
any assignment defined over the set of variables of csp cannot be a solution. It
uses the find function defined on tables such that find x a returns the value
v associated to x in the instantiation a (encoded as Some v), fails otherwise
(None is returned).
Lemma no sol : ∀ csp,
(∃ v, find v (Doms csp) = Some []) → ∀ a , ¬ (solution a csp).

2.2 Arc-Consistency

The main idea of constraint filtering algorithms such as those used in CP(FD)
solvers is to repeatedly filter inconsistent values from the domains. Thus, they
reduce the search space while maintaining solutions. Several local consistency
properties have been proposed to characterize the pruned domains [14,6], but

2 Implemented in Coq by using the Fmap module, as variable-indexed table.



120 M. Carlier, C. Dubois, and A. Gotlieb

we focus here on the former and widely used arc-consistency property. Roughly
speaking, a binary constraint c(x, y) is arc-consistent w.r.t (X, D, C) iff for any
value u in the domain of x (i.e., u ∈ D(x)), there exists a value v in the domain of
y such as c(u, v) is consistent, and conversely for any value v ∈ D(y), there exists
a value u ∈ D(x) such as c(u, v) is consistent. A constraint network (X, D, C)
is arc-consistent iff any of its constraints c in C is arc-consistent. It is worth
noticing that a constraint network can be arc-consistent, while it has no solution
[6]. If a constraint network is arc-consistent and all of its domains are singletons,
then it has a single solution.

In the original presentation of arc-consistency, a constraint network is repre-
sented with an undirected graph where nodes are associated to the variables, and
edges are used to capture the constraints [19]. An edge between node x and node
y exists iff there is a constraint c containing variables x and y (c(x, y)) in the
constraint network. However, by considering that constraints are undirected rela-
tions, this representation is implicitly ambiguous as it does not distinguish con-
straint c(x, y) from c(y, x). In our Coq formalisation, we tackled this problem by
considering an order over the variables, and specified arc-consistency by distin-
guishing two arcs, denoted (x, c, y) and (y, c, x). Reconsidering the definition of
arc-consistency given above, we say that (x, c, y) is arc-consistent if for each value
v of the domain of x, there exists a value t in the domain of y, such that c is satisfied.
The value t is usually called the support of v for c. Note that nothing is required
regarding to the values from the domain of y. Our Coq formalisation is given in
Fig.3, where d is the table of domains and compat var const is the predicate that
associates a constraint and its variables.

Definition arc consistent x y c d :=
compat var const x y c →
∀ dx dy, find x d = Some dx → find y d = Some dy →
∀ v, v ∈ dx → ∃ t, t ∈ dy ∧ consistent value c x v y t.

Fig. 3. Our Coq formalisation of arc-consistency

3 Formalisation and Verification of a Filtering Algorithm

In a CP(FD) solver, local consistency property, such as arc-consistency, is re-
peatedly applied over each constraint in a fixpoint computation algorithm, i.e., a
filtering algorithm. Several distinct filtering algorithms exist, but the most well-
known is AC3 [19,6]. At the heart of AC3 is a function that prunes the domain
of a variable according to a constraint, commonly named REVISE.

Unlike existing pseudo-code presentations of AC3, we introduce in this section
a Coq functional programming code of both algorithms REVISE and AC3.

3.1 Formalisation and Verification of Algo. REVISE

In our Coq formalisation shown in Fig.4, the function revise takes as argu-
ments c, x, y, dx and dy where x and y are the variables of constraint c, with



A Certified Constraint Solver over Finite Domains 121

resp. domain dx and dy. Function revise returns a new domain d′ for x and a
boolean bool rev. If dx has been revised, i.e., dx has been pruned to d′ where d′ is
strictly included in dx, then bool rev is true. Otherwise, bool rev is false. A lot of

Fixpoint revise c x y dx dy {struct dx} :=
match dx with

nil ⇒ (false, dx)
| v ::r ⇒ let (b, d) := revise c x y r dy in

if List.existsb (fun t ⇒ consistent value c x v y t) dy
then (b, v ::d)
else (true, d)

end.

Fig. 4. Coq formalisation of Algo REVISE (function revise)

theorems about revise are required in the following, but we present only a se-
lection of them in Fig.5. Many of these properties are demonstrated with the
help of a functional induction on revise which is a tailored induction schema
that follows carefully the different paths of the function. Part a. contains theo-
rems showing the conformity of the functional text with respect to the informal
specification. Part b. presents 2 theorems: the first one establishes that once a
domain dx has been revised to d′, then its associated arc (x, c, y) is arc-consistent
with d′. And the second one: when dx is not revised, it means that arc (x, c, y)
was already locally consistent. Part c. contains a formal explanation of puzzling
elements of AC3, it is concerned with the relationship between arc (x, c, y) and
(y, c, x) w.r.t. arc-consistency. Roughly speaking, it means the modification of
the domain of x does not affect the arc-consistency of y. Finally, theorems in
part d. state that revise preserves the solutions of a csp, and, equally important,
does not add extra solutions.

3.2 Formalisation of Algorithm AC3

The main idea behind AC3 consists to revise the domains of all the variables
in order to make all arcs arc-consistent. When this is done for arc (x, c, y), we
remove only values from the domain of x. Hence, other arcs whose target is also
x may not be consistent anymore, and they have to be revisited. AC3 maintains
a queue containing all the arcs to be visited or revisited. When the queue is
empty, AC3 has reached a fixpoint which is a state on which no more pruning
is possible. During this fixpoint computation, if a domain becomes empty, then
the constraint system is shown to be unsatisfiable.

The corresponding AC3 function shown in Fig.6 takes as arguments the set of
constraints of the network and a pair, composed of an initial map of variables to
domains and a queue, containing arcs to be made arc-consistent. It results either
in the pruned domains (of type option mapdomain), or None if the network has
no solution or if the network is not well-formed. To add arcs in the queue, we
use the function ⊕ that appends two lists without repetition.



122 M. Carlier, C. Dubois, and A. Gotlieb

a. Conformity of revise

Lemma revise true sublist : ∀ c x y dx dy newdx,
compat var const x y c →
revise c x y dx dy = (true, newdx ) →

newdx ⊂ dx.

Lemma revise false eq : ∀ c x y dx dy newdx,
revise c x y dx dy = (false, newdx ) → newdx = dx.

b. revise and arc-consistency

Lemma revise arc consistent : ∀ csp c x y ,
c ∈ (Csts csp) → compat var const x y c →
∀ dx dy dx’ b,

find x (Doms csp) = Some dx → find y (Doms csp) = Some dy →
revise c x y dx dy = (b, dx’) →

arc consistent x y c (add x dx’ (Doms csp)).

Lemma revise false consistent : ∀ csp c x y dx dy,
c ∈ (Csts csp) → compat var const x y c →
find x (Doms csp) = Some dx → find y (Doms csp) = Some dy →
∀ newdx, revise c x y dx dy = (false, newdx ) →

arc consistent x y c (Doms csp).

c. Relations on arcs (x, y, c) and (z, x, c) w.r.t. arc-consistency

Lemma revise x y consistent y x : ∀ csp c x y dx dy ,
c ∈ (Csts csp) → compat var const x y c →
find x (Doms csp) = Some dx → find y (Doms csp) = Some dy →

∀ newdx, revise c x y dx dy = (true, newdx ) →
arc consistent y x c (Doms csp) →

arc consistent y x c (add x newdx (Doms csp)).

Lemma revise x y consistent x z : ∀ d x y dx dy c newdx,
compat var const x y c →
find x d = Some dx → find y d = Some dy →
revise c x y dx dy = (true, newdx ) →
∀ z c0, compat var const x z c0 →

arc consistent x z c0 d →
arc consistent x z c0 (add x newdx d).

d. Completeness of revise

Theorem revise complete : ∀ csp c x y dx dy (a : assign) ,
network inv csp →
c ∈ (Csts csp) → compat var const x y c →
find x (Doms csp) = Some dx → find y (Doms csp) = Some dy →
solution a csp →

∀ newdx, revise c x y dx dy = (true, newdx ) →
solution a (set domain x newdx csp).

Theorem revise strict solution : ∀ csp c x y dx dy ,
network inv csp →
c ∈ (Csts csp) → compat var const x y c →
find x (Doms csp) = Some dx → find y (Doms csp) = Some dy →

∀ a newdx, solution a (set domain x newdx csp) →
revise c x y dx dy = (true, newdx ) →

solution a csp.

Fig. 5. Properties of revise



A Certified Constraint Solver over Finite Domains 123

Function AC3 (csts : list constraint)
(d q : mapdomain × list arc) {wf AC3 wf d q} : option mapdomain :=

let (doms, qu) := d q in
match qu with
| nil ⇒ Some (doms)
| (x, c, y)::r ⇒
match find x doms, find y doms with
| Some dx, Some dy ⇒
let (bool red, newdx) := revise c x y dx dy in
if bool red then
if is empty newdx
then None
else AC3 csts (add x newdx doms, r ⊕ (to be revised x y csts))

else AC3 csts (doms, r)
| , ⇒ None

end end.

Definition measure map (d : mapdomain) :=
fold (fun x ⇒ fun l ⇒ fun sum ⇒ (length l) + sum) d 0.

Fig. 6. Formalisation of AC3

In this function, to be revised x y c computes the set of arcs (z, c′, x) where
z �= y, that is the arcs that may have become inconsistent. Arc (y, c, x) and
arcs having x as a source are discarded because the domain of x after revision
is necessarily included in the previous domain of x, and arc-consistency asks for
a support for y for each value of the domain of x. In our settings, we proved
the above assertions (as captured by theorems revise x y consistent y x and
revise x y consistent x z ) which are required to establish soundness of AC3.

AC3 is defined as a general recursive function with the Coq construction
Function which allows us to write the function as in any functional programming
language. The overhead includes the definition of a well-founded order and the
proof of decrease in the arguments in the recursive calls. For that, a lexicographic
ordering, AC3 wf, defined on pairs (d, q) was built from two measures. The
measure of a queue was introduced as its number of elements. For maps, the
measure measure map was introduced as the sum of the lengths of the domains,
as shown in Fig.6.3 The proof of the decrease of the arguments required, in
the case of the first recursive call, tedious manipulations of maps and lists and
application of the lemma revise true sublist (see Fig.5, part a).

3.3 Correction of AC3

Soundness. The main soundness theorem, AC3 sound, shown in Fig.7 states
that AC3 reduces the domains in order to achieve arc-consistency for each con-
straint at the end of the computation. In our formalisation, complete graph com-
putes the graph associated with the constraints, as a list of arcs. Soundness is
3 Implemented with the map iterator fold defined in the module Fmap.



124 M. Carlier, C. Dubois, and A. Gotlieb

proved using a functional induction on AC3 and the invariant PNC (for Poten-
tially Non arc-Consistent), given in Fig.7. If l is a list of arcs from the constraint
network csp, PNC csp d l holds iff each arc (x, c, y) not arc consistent w.r.t.
the table of domains d are in l. The main idea is to verify that at each step of
the computation all the arcs that may be non arc-consistent are in the queue.
The corresponding lemmas are given in Fig.7. Difficulties in these proofs have
been to discover the invariant and the properties on which correctness relies. As
often when formalizing existing algorithms, implicit hypotheses are to be made
explicit and it can be hard work.

a. Soundness theorem
Theorem AC3 sound : ∀ csp d’,

network inv csp →
AC3 (Csts csp) (Doms csp, complete graph (Csts csp)) = Some d’ →
∀ x y c, (x, c, y) ∈ (complete graph (Csts csp)) →

arc consistent x y c d’.
b. Invariant
Definition PNC csts (d : mapdomain) (l : list arc): Prop := ∀ x y c,

(x, c, y) ∈ (complete graph csts) → ¬(arc consistent x y c d) →
(x, c, y) ∈ l.

Lemma PNC invariant to be revised : ∀ csp c x y dx dy r newdx,
network inv csp → (x, c, y) ∈ (complete graph (Csts csp)) →
find x (Doms csp) = Some dx → find y (Doms csp) = Some dy →
revise c x y dx dy = (true, newdx) →
PNC (Csts csp) (Doms csp) ((x, c, y)::r) →

PNC (Csts (set domain x newdx csp)) (add x newdx (Doms csp))
r ⊕ (to be revised x y (Csts csp))).

Lemma PNC invariant tail : ∀ csp d x y c r,
(x, c, y) ∈ (complete graph (Csts csp)) → arc consistent x y c d →
PNC (Csts csp) d ((x, c, y)::r) →

PNC (Csts csp) d r.
c. Completeness
Theorem AC3 complete : ∀ csp (a : assign) d’,

network inv csp → solution a csp →
AC3 (Csts csp) (Doms csp, (complete graph (Csts csp))) = Some (d’ ) →

solution a (set domains d’ csp).

Fig. 7. Correction of AC3

Completeness. Completeness means that AC3 preserves the set of solutions.
If a is a solution of a constraint network, then filtering with AC3 will preserve it.
In the formal settings of Fig.7 part c, the constraint networks before and after
filtering only differ by their map of domains. In addition, a more general theorem
where an arbitrary queue q is introduced under the hypothesis that it is included
in (complete graph (Csts csp)), has been proved by functional induction on AC3,



A Certified Constraint Solver over Finite Domains 125

relying mainly on revise completeness. We have also proved that AC3 does not
add any supplementary solution. The statement and proof of this theorem relies
on the analogous property for revise. Those theorems are not given here to save
space in the paper, but they are all available on our webpage.

3.4 An Optimization: AC2001

AC2001 is an improvement of AC3 published in [10] which achieves optimal time
complexity of arc-consistency. When a support has to be found for a value, AC3
starts to search in the entire domain for the support, without remembering what
happened in a previous step of filtering. AC2001 improves searching of a support
by maintaining a structure named last which records, for each arc (x, c, y) and
value v ∈ D(x), the smallest value t ∈ D(y) such that c(v, t) holds. So AC2001
requires a set of ordered values, while it is not the case for AC3. Hence, each
time an arc is enforced to arc-consistency, the algorithm checks for each value
v in D(x) whether the value t recorded in last still belongs to D(y). When
it is not the case, AC2001 looks for a new value by enumerating all values in
D(y) greater than t. AC2001 shares all the AC3 formalisation items, but the
revise function. Let us call this function revise2001 for AC2001. It takes an
extra argument, the last structure which we call a memory (of type memory)
in our formalisation. The function returns also the new memory state, since it
is modified when a revision takes place. A memory m is represented by a table
from variable ∗ variable to list (value ∗ value): if the variables of the constraint
c are x and y (in this order), then for (v, t) ∈ m(x, y), t is the smallest support
found for v. It means that c is satisfied for these values (c(v, t)) and that c is not
satisfied when assigning v to x and a value w < t to y. Furthermore, for efficiency
reasons, we require the list m(x, y) to be ordered (on the first components of the
pairs). All these properties are recorded in an invariant we call memory inv. The
core of revise2001 is the function formalized in Fig. 8 which acts directly on the
list last defined as m(x, y). Cases (1) and (2) are very similar but differ wrt
the existence or not of a support for the value vx in last. The former happens
when it is the first time the revision is done (revise exists c x y vx dy tries to
find a support for vx in the entire domain dy), the latter is the nominal case
(revise2001 a value c x y vx vy dy tries to find a support for vx in dy, starting
from the old recorded support vy). Initial memory is the memory where each
pair of variables is assigned the empty list. The final function revise2001 is just a
wrapping embedding a memory m. All theorems that we proved for revise can be
established for revise2001, in particular soundness and completeness. Of course,
they are modified w.r.t. the input and output memories. We also demonstrated
that revise2001 preserves the memory invariant.

The Coq model corresponding to Sec. 2 and Sec. 3 contains ≈ 6000 lines of
code. A functor has been implemented in order to factorize the formalisation of
AC3 and AC2001 allowing us to share around 1500 lines.



126 M. Carlier, C. Dubois, and A. Gotlieb

Fixpoint revise2001 aux (c : constraint) (x y : variable) dx dy
(last elem : list (value × value)) {struct dx}
: (bool × (list value × list (value × value))) :=

match dx with
nil ⇒ (false, (dx, nil))

| vx ::dx ⇒ let (o vy, last elem) := last elem get vx last elem in
let (bool red, (dx, last)) := revise2001 aux c x y dx dy last elem in
match o vy with

(1) | None ⇒ match revise exists c x y vx dy with
| None ⇒ (true, (dx, last))
| Some vy ⇒ (bool red, (vx ::dx, (vx, vy)::last))
end

(2) | Some vy ⇒ match revise2001 a value c x y vx vy dy with
| None ⇒ (true, dx last)
| Some vy ⇒ (bool red, (vx ::dx, (vx, vy) :: last))
end

end end.

Fig. 8. Coq definition of AC2001

4 Labeling Search

Labeling implements a systematic search based on backtracking interleaved with
local-consistency domain filtering. Backtracking incrementally attempts to ex-
tend an assignment toward a complete solution, by repeatedly choosing a value
for an uninstantiated variable. Thus, the algorithm chooses a not yet assigned
variable x and a value v in its domain following a given search heuristics, en-
forces the unary constraint x = v (by assigning the domain to this unique value),
re-establishes local consistency by applying the filtering algorithm (e.g., AC3)
on each constraint. At this stage if filtering fails, it means there is no solution
with v as a value for the variable x, then backtrack to another value for x or
another variable, if possible. If filtering succeeds then go on with another vari-
able if any. The labeling search procedure is complete if it can explore the overall
search space. In our Coq formalisation, we implemented a complete search pro-
cedure with a simple heuristics, taking the first non assigned variable, with the
first value met in the domain. Furthermore the labeling search procedure is in-
dependant from the filtering algorithm (e.g., AC3 or AC2001). In our settings,
labeling is formalized in a module parameterized by the filtering algorithm and
its required properties. Thus proofs about labeling are done only once, whatever
be the filtering algorithm. Quantitatively, it means 1800 shared Coq lines vs
30 lines per instance. We adopted a style mixing computation and proof with
the help of dependent types and the Program Definition construct, that eases
a lot that style. The labeling function takes a well-formed constraint network
and returns the first found solution if any, None otherwise. It uses an auxiliary
function that takes as argument a list of constraints csts, a list of variables to
be assigned vars, the map d of non empty domains for those variables satisfying
arc-consistency. The type of the result is written as follows: {ret : option domain



A Certified Constraint Solver over Finite Domains 127

| result ok ret csts vars d}. The result is either None or Some d’ and it must
verify the expected soundness property, that is: if None, the csp (vars, d, csts)
has no solution, if Some d’, then d’ can be turned in a solution of (vars, d,
csts): d′ assigns a unique value to the variables of vars, and all the constraints
are arc-consistent w.r.t. d’. Program Definition generates 28 proof obligations,
e.g., each recursive call requires to receive arguments verifying the embedded
pre-conditions. In particular, the proof relies on properties about AC3 such as
its soundness, and the fact that it reduces the domains. Some of these proof
obligations concern the termination of the function, it relies again on a mea-
sure on maps of domains. We do not expose the code of the labeling function,
as it just follows the informal description given above and encodes chronological
backtracking in a recursive functional manner. All can be found on the webpage.

5 Evaluation

5.1 Extracting the Certified CP(FD) Solver

The extraction mechanism of Coq allows one to transform Coq proofs and func-
tions into functional programs, erasing logical contents from them. Currently,
we extract executable OCaml code only from Coq functions, as our proofs have
no computational content. In a function defined with Function, such as AC3, or
with Program Definition, such as labeling, proofs attached to proof obligations
are just erased. So we can extract an operational certified CP(FD) solver for
any language of binary constraints and arbitrary values. By certified, we mean
a CP(FD) solver that returns provably-correct results in both cases, satisfiable
and unsatisfiable formulas.

However the user still has to provide the constraint language, including (i) the
OCaml type for the variables and the associated equality and ordering, (ii) the
OCaml type for the variables and also the associated equality and ordering
if AC2001 is used, and (iii) the OCaml type of constraints with the OCaml
implementation of the get vars and interp functions. It is worth noticing that
the user still has to ensure the conformity of the interp function with the expected
behaviour of the constraints. For our experiments, we introduce a language of
binary constraints including operators <, =, >, the �= (e.g. x > z), conjunctions
(x > y∧x mod y = 0) and disjunctions (e.g., x mod y = 0∨x mod y = 2) and the
add/mult/sub/mod operators over 2 variables and a constant (e.g, x = y+3). We
also implemented in OCaml a function translating addition constraints between 3
variables into binary constraints. Again the correctness of this preprocessing step,
or more ambitious decomposition approaches, is not ensured by our formalisation
and could be an extension. However, it seems that constraint decomposition
requires source-to-source semantics preserving proofs which are less challenging
than proving the correctness of filtering algorithms.

5.2 Experimental Results

The goal of our experiment was to evaluate the capabilities of the automat-
ically extracted CP(FD) solver to solve classical benchmark programs of the



128 M. Carlier, C. Dubois, and A. Gotlieb

Constraints community. Of course, we did not expect our solver to compete
with optimized (but unsafe) existing CP(FD) solvers, but we wanted to check
whether our approach was feasible or not. We selected five well-known prob-
lems that may have interesting unsatisfiable instances, as we believe that a
certified CP(FD) solver is much more interesting in this case. We selected a
small puzzle (sport) (find a place to go to do sport with friends), the generic
SEND+MORE=MONEY (smm) puzzle problem, the SUDOKU (sudoku) prob-
lem, the pigeon-hole problem (pigeon) and the Golomb rulers (golomb) prob-
lem. All problems but sport rely on a symbolic language of constraints whereas
sport is defined via relations and tuples. Unlike the first four, the last one is
a constraint optimization problem. Certifying unsatisfiability in this case is in-
teresting for demonstrating that a given value for a cost objective function is
actually a minimum value, i.e., any smaller value leads to the unsatisfiability of
the problem. The Golomb rulers problem has various applications in fields such
as Radio communications or X-Ray crystallography. A Golomb ruler is a set
x1, .., xm of m ordered marks such as all the distances {xj − xi| 1 ≤ i < j ≤ m}
between two marks are distinct. The goal of Golomb rulers problem is to find
a ruler of order m with minimal length (minimize xm). For example, [0, 2, 5, 6]
is an optimal Golomb ruler with 4 marks. All our experiments4 have been per-
formed on a standard 3.06Ghz clocked Intel Core 2 Duo with 4Gb 1067 MHz
DDR3 SDRAM and are reported in Tab.1. The results show that extracting a
reasonably-efficient certified CP(FD) solver is feasible. The solver is powerful
enough to handle some classical problems of the CP Community, and useful to
certify unsatisfiability. For instance, certifying that there is no Golomb ruler with
6 marks of length less than 17 takes about 23 sec (i.e., the Golomb ruler found
by our solver is [0, 2, 7, 13, 16, 17]).

Table 1. CPU Time required with our certified AC3-based CP(FD) solver

Examples sport smm sudoku p(6) p(7) p(8) p(9) p(10) g(4) g(5) g(6)
in ms 0,02 117 253 6 17 158 1611 17541 7 350 23646

5.3 Related Work and Discussion

A first concretization of automated certifying processes lates back to the middle
of the nineties with the work of Necula on proof-carrying code [21]. The idea was
to join correctness proof evidence to mobile code in order to offer the receiver
some guarantee over the code. Since then, several large initiatives have been
undertaken to build certifying compilers [22] or certified compilers [17] But,
it is only recently that the needs for certifying/certified constraint solvers, i.e.
SMT solvers, emerged from formal verification [12,20]. For certifying a SMT
solver, one can think of two distinct approaches. A first approach is to make the
4 We have no specialized implementation for the global constraint ALLDIFF. It is

translated into a list of binary difference constraints.



A Certified Constraint Solver over Finite Domains 129

constraint solver produce an external trace of its computations in addition of its
sat/unsat result. This external trace, sometimes called a certificate [12], can then
be formally verified by a proof checker. Examples of such an approach include
HOL Light used to certify results of the CVC Lite solver [20], or Isabelle/HOL
to certify results of Harvey [12] and Z3 [8]. More recently, proof witnesses based
on Type Theory in the proof assistant Coq have also been used to certify the
results of decision procedures in SMT solvers [1,7]. A second approach, which is
the one we picked up in our work even if it is considered harder than the first
one, is 1) to develop the solver within the proof assistant, 2) to formally prove its
correctness and 3) to extract automatically its code. For SAT/SMT solver, [18]
is the only work we are aware of following this research direction. In this work,
a Coq formalisation of an algorithm deciding the satisfiability of SAT formulas
is proposed, and a fully reflexive tactic is automatically extracted to solve these
formulas. According to our knowledge, the approach reported in this paper is the
first attempt to certify a CP(FD) constraint solver. CP(FD) solving is currently
outside the scope of arithmetic decision procedures, and SMT solvers rely on
the BitVectors Theory to handle finitely-encoded integers [5]. We selected the
second approach discussed above, to build our certified CP(FD) solver, because
unsatisfiability in these solvers is not reported with certificates or proof trees.
It means that using an external certified checker is not possible in that case. As
a drawback, our approach cannot currently be used to certify directly the most
advanced CP(FD) solvers such as Gecode or Zinc5 that are used in industrial
applications of CP. But, although our certified CP(FD) is not competitive with
these hand-crafted solvers, it could be integrated as a back-end to certify a
posteriori the unsatisfiable constraint systems detected by these solvers.

6 Conclusion

This paper describes a formally certified constraint solver over finite domains,
i.e. CP(FD) with Coq6. Our formal model contains around 8500 lines (≈ 110 def-
initions and 200 lemmas). The OCaml code of the solver has been automatically
extracted. The solver implements either AC3 or AC2001 as a filtering algorithm,
and can be used with any constraint language, provided that a constraint inter-
pretation is given. According to our knowledge, this is the first time a CP(FD)
solver can be used to formally certify the absence of solution, or guarantee that an
assignment is actually a solution. Our main short-term future work involves the
application of this certified solver to software verification. For that, we envision
to integrate the solver within FocalTest our formally certified test case generator
[9]. We will also parametrize the solver with another local consistency property,
called bound-consistency [14], mainly used because it handles efficiently large
sized finite domains. Other longer-term perspectives include the usage of our
certified solver for solving constraint systems extracted from business or critical
constraint models, e.g., in e-Commerce [15] or Air-Traffic Control.
5 http://www.gecode.org/ and http://g12.research.nicta.com.au/
6 Available at http://www.ensiie.fr/~dubois/CoqsolverFD

http://www.ensiie.fr/~dubois/CoqsolverFD


130 M. Carlier, C. Dubois, and A. Gotlieb

Thanks. We are very grateful to Benoit Robillard who helped us proving for-
mally the termination of the AC3 function. We also thank the anonymous ref-
erees.

References

1. Armand, M., Faure, G., Grégoire, B., Keller, C., Théry, L., Werner, B.: A modular
integration of sat/smt solvers to coq through proof witnesses. In: Jouannaud, Shao
(eds.) [16], pp. 135–150.

2. Bacchus, F., Chen, X., Beek, P., Walsh, T.: Binary vs. non-binary constraints.
Artificial Intelligence 140(1-2), 1–37 (2002)

3. Bardin, S., Gotlieb, A.: fdcc: A Combined Approach for Solving Constraints over
Finite Domains and Arrays. In: Beldiceanu, N., Jussien, N., Pinson, É. (eds.)
CPAIOR 2012. LNCS, vol. 7298, pp. 17–33. Springer, Heidelberg (2012)

4. Bardin, S., Herrmann, P.: Osmose: Automatic structural testing of executables.
Software Testing, Verification and Reliability (STVR) 21(1), 29–54 (2011)

5. Bardin, S., Herrmann, P., Perroud, F.: An Alternative to SAT-Based Approaches
for Bit-Vectors. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS,
vol. 6015, pp. 84–98. Springer, Heidelberg (2010)

6. Bessiere, C.: Constraint propagation. In: Handbook of Constraint Programming,
ch. 3. Elsevier (2006)

7. Besson, F., Cornilleau, P.-E., Pichardie, D.: Modular smt proofs for fast reflexive
checking inside coq. In: Jouannaud, Shao (eds.) [16]

8. Böhme, S., Fox, A., Sewell, T., Weber, T.: Reconstruction of z3’s bit-vector proofs
in hol4 and isabelle/hol. In: Shao, Jouannaud (eds.) [16]

9. Carlier, M., Dubois, C., Gotlieb, A.: A First Step in the Design of a Formally
Verified Constraint-Based Testing Tool: FocalTest. In: Brucker, A.D., Julliand, J.
(eds.) TAP 2012. LNCS, vol. 7305, pp. 35–50. Springer, Heidelberg (2012)

10. Bessiere, R.Y.C., Régin, J.-C., Zhang, Y.: An optimal coarse-grained arc consis-
tency algorithm. Artificial Intelligence, pp. 165–185 (2005)

11. Collavizza, H., Rueher, M., Van Hentenryck, P.: Cpbpv: A constraint-programming
framework for bounded program verification. Constraints Journal 15(2), 238–264
(2010)

12. Fontaine, P., Marion, J.-Y., Merz, S., Nieto, L.P., Tiu, A.F.: Expressiveness +
Automation + Soundness: Towards Combining SMT Solvers and Interactive Proof
Assistants. In: Hermanns, H. (ed.) TACAS 2006. LNCS, vol. 3920, pp. 167–181.
Springer, Heidelberg (2006)

13. Godefroid, P., Klarlund, N.: Software Model Checking: Searching for Computations
in the Abstract or the Concrete. In: Romijn, J.M.T., Smith, G.P., van de Pol, J.
(eds.) IFM 2005. LNCS, vol. 3771, pp. 20–32. Springer, Heidelberg (2005)

14. Van Hentenryck, P., Saraswat, V., Deville, Y.: Design, implementation, and eval-
uation of the constraint language cc(fd). JLP 37, 139–164 (1998)

15. Holland, A., O’Sullivan, B.: Robust solutions for combinatorial auctions. In: Riedl,
J., Kearns, M.J., Reiter, M.K. (eds.) ACM Conf. on Electronic Commerce (EC
2005), Vancouver, BC, Canada, pp. 183–192 (2005)

16. Jouannaud, J.-P., Shao, Z. (eds.): CPP 2011. LNCS, vol. 7086. Springer, Heidelberg
(2011)

17. Leroy, X.: Formal verification of a realistic compiler. Communications of the
ACM 52(7), 107–115 (2009)



A Certified Constraint Solver over Finite Domains 131

18. Lescuyer, S., Conchon, S.: A Reflexive Formalization of a SAT Solver in Coq. In:
Emerging Trends of the 21st Int. Conf. on Theorem Proving in Higher Order Logics,
TPHOLs (2008)

19. Mackworth, A.: Consistency in networks of relations. Art. Intel. 8(1), 99–118 (1977)
20. McLaughlin, S., Barrett, C., Ge, Y.: Cooperating theorem provers: A case study

combining hol-light and cvc lite. ENTCS, vol. 144(2) (January 2006)
21. Necula, G.C.: Proof-carrying code. In: POPL 1997, pp. 106–119 (1997)
22. Necula, G.C., Lee, P.: The design and implementation of a certifying compiler. In:

PLDI 1998, pp. 333–344 (1998)
23. Rushby, J.: Verified software: Theories, tools, experiments. In: Automated Test

Generation and Verified Software, pp. 161–172. Springer (2008)


	A Certified Constraint Solver over Finite Domains

	Introduction
	Formalisation of a Constraint Solving Problem
	Assignment - Solution
	Arc-Consistency

	Formalisation and Verification of a Filtering Algorithm
	Formalisation and Verification of Algo. REVISE
	Formalisation of Algorithm AC3
	Correction of AC3
	An Optimization: AC2001

	Labeling Search
	Evaluation
	Extracting the Certified CP(FD) Solver
	Experimental Results
	Related Work and Discussion

	Conclusion
	References




