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Abstract. We demonstrate the use of the process algebra PEPA for
realistic models of epidemiology. The results of stochastic simulation of
the model are shown, and ease of modelling is compared to that of Bio-
PEPA. PEPA is shown to be capable of capturing the complex disease
dynamics of the historic data for measles epidemics in the UK from
1944–1964, including persistent fluctuations due to seasonal effects.

1 Introduction

According to the World Health Organization [26], in 2002, about 19.1% of
worldwide deaths, and 52.7% of deaths in Africa were caused by infectious and
parasitic diseases. Understanding a given disease, to prevent, cure or reduce
its impact, is inherently a multidisciplinary endeavour, involving medicine, ge-
ography, sociology and biology, but also, through modelling, mathematics and
computer science. Most epidemiological modelling has been mathematical; for
example, using Ordinary Differential Equations (ODEs) [1]. Formal methods,
traditionally used for computer science, are beginning to be more widely used
to construct computational models of disease [3,17,18,7]. Process algebras are
designed to describe a system of interacting autonomous agents and allow study
of emerging collective dynamics (the epidemic). This is in contrast to the typical
mathematical biology approach which is forced to make assumptions about how
interaction leads to population-level effects. Using process algebra, those effects
are generated by the underlying semantics of interaction.

We present a novel case study in using PEPA (Performance Evaluation Pro-
cess Algebra) [14] for epidemiology. The discussion of general principles of mod-
elling disease spread is focussed through application to the specific example of
measles dynamics in England and Wales between 1944 and 1964. The emergent
behaviour of measles is complex, involving recurrent outbreaks in small popula-
tions and cyclic outbreaks in larger populations [4]. Adequate modelling requires
a number of features common to other diseases, including transmission, popu-
lation growth, seasonality and immigration. Moreover, a large data set is freely
available of the number of reported cases of measles in England and Wales over
more than 20 years. This allows the model to be validated.
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Our group has long experience of applying process algebra to epidemiology.
Initially WSCCS [24], a CCS inspired process algebra, was used by Norman and
Shankland [21] to model basic transmission mechanisms. Further work with Mc-
Caig incorporated the essential features of population growth [18] and showed
the advantages of the approach over traditional styles of epidemiological mod-
elling [17]. PEPA has also been used by our group [3]. Few other groups have
made extensive study of epidemiology using process algebra beyond simple ex-
amples. A notable exception is the study of contact network structure and avian
influenza by Ciocchetta and Hillston [7] using Bio-PEPA [6]. Their models are
on a closed population, and do not include seasonal behaviour.

This paper is organised as follows. A brief introduction to PEPA is given
in Section 2 and to measles at the start of Section 3. Modelling of measles
dynamics raises generic issues for modelling epidemiology: these are discussed in
the context of PEPA in Section 3. The complete model appears at the end of that
section. No new language features are introduced: our contribution is to test the
expressivity of PEPA for realistic models of epidemiology. Stochastic simulations
of the model are compared in Section 3.2 with data available on the University
of Cambridge website [25]. Since Bio-PEPA has features especially designed for
biology, Section 3.3 gives details of how to model measles dynamics in Bio-PEPA
and a comparison with PEPA. Conclusions are drawn in Section 4 regarding the
benefits and limitations of PEPA as a modelling tool for epidemiology.

2 PEPA

PEPA [14] has been used to study the performance of a wide variety of sys-
tems [15]. PEPA has a small set of combinators, allowing system descriptions to
be built up as the concurrent execution and interaction of simple sequential com-
ponents which undertake actions. We informally introduce the syntax required
for the model of Section 3 below. More detail can be found in [14].

Prefix: (α, r).P carries out action α at rate r, behaving subsequently as P .
In PEPA actions have a duration, or delay. Thus the expression (α, r).P denotes
a component which can undertake an α action, at rate r defining an exponential
distribution (where rate is 1/delay) to evolve into a component P .

Choice: P +Q represents a system which may behave either as P or as Q.

Constant: X
def
= E assigns the name X to the pattern of behaviour E.

Cooperation: P ��
L

Q denotes cooperation between P and Q over L. The
cooperation set L determines those activities on which the cooperands are forced
to synchronise. For action types not in L, the components proceed independently
and concurrently with their enabled activities. P ‖ Q abbreviates P ��

{} Q.

Unlike some other stochastic process algebras, PEPA assumes bounded capacity:
a component cannot be made to perform an activity faster by cooperation, so
the rate of a shared activity is the minimum of the rates of the activity in the
cooperating components. In some cases, when an activity is known to be carried
out in cooperation with another component, a component may be passive with
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respect to that activity. This means that the rate of the activity is left unspecified
(denoted �) and is determined upon cooperation by the rate of the activity in
the other component. All passive actions must be synchronised.

3 Modelling Measles Dynamics in PEPA

Despite the worldwide efforts to vaccinate children against it, measles is still
the vaccine-preventable disease of childhood that causes the most deaths [9].
Without vaccination, measles infects 95-98% of children before they turn eigh-
teen [22], and an infectious person will infect 75%-90% of susceptible household
contacts. The incubation period lasts for six to nine days [4], then measles symp-
toms begin with increasing fever, cough, coryza and conjunctivitis [22]. This is
when the infectivity is highest. A rash then appears on the face and the neck,
and may spread to the rest of the body. Usually, the individual recovers after
six to seven days and then has lifelong immunity to the disease.

Measles has been extensively studied, giving an opportunity to show that for-
mal methods can perform as well as long-established techniques of mathematical
biology. A detailed set of data is freely available for measles in England andWales
between 1944 and 19641 giving an excellent opportunity to validate results from
modelling. Certain key features are required to model disease transmission in
general. We demonstrate that PEPA can be used to capture these, specifically
in relation to the benchmark disease measles, despite not being designed for
this purpose. Benkirane’s thesis [2] identified the following key characteristics of
measles epidemics:

Transmission of Disease. McCaig [19, page 137-138] showed in his work on
epidemiology and WSCCS that in process algebra all forms of transmission
can be reduced to either direct or indirect transmission. Direct transmis-
sion indicates that the disease is passed through host-to-host contact, as in
measles. Indirect transmission uses an intermediary (e.g. air, surface, or via a
vector). For human diseases it is common to assume the number of contacts
an individual makes is constant and independent of population size. In ODE
models this is known as frequency dependent transmission.

Births and Deaths. For anything other than a short timescale epidemic, the
population must have births and deaths, immigration and emigration. In
the case of measles, if these are not included the model shows a single initial
epidemic, after which the whole population becomes resistant to the disease
and there are no further outbreaks, in contradiction with observed behaviour.

Timed Events. Timed events are essential in many biological and epidemiolog-
ical systems, whether these are one-off events (e.g. control measures such as

1 In 1944, national notification of measles patients was made mandatory in England
and Wales [11]. This provides the number and location of measles cases, with a
reporting rate of over 50% [4]. Mass vaccination was introduced in 1968 [23], changing
the landscape of the disease entirely. We use an earlier cut-off for data, due to some
changes in administrative regions.
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vaccination), or recurring events (e.g. circadian clock and seasonality). Sea-
sonality is an essential feature of measles epidemics: disease dynamics are
strongly dependent on transmission rate, which is in turn influenced by the
aggregation of children at school [4]. In addition, immigration provides new
infectious individuals to a city where the disease had faded out, especially
in the case of small and isolated cities.

Structured Populations. The capacity to allocate the population to different
categories can be essential in describing certain diseases. The structuring
category can be diverse: age, social, hobbies, space, etc., depending on which
feature has an important influence on the behaviour of the disease. In the
case of measles dynamics, the spatial location of cities and their degree of
connection impacts the overall behaviour of the disease. Smaller cities usually
experience fade-outs of the disease, but still experience regular outbreaks,
often within weeks of those in neighbouring cities.

Benkirane shows it is possible to code all of these features using PEPA [2], but
due to limited space, only the first three will be illustrated here. The model
presented is a representation of the city of Leeds from 1944 to 1964. The city
initially has a population of 508, 010, ten of whom are assumed to be infec-
tious. The model is based on Bjørnstad et al. [4], apart from the immigration
mechanism and parameters, which are inspired by Finkenstädt et al. [12]. In the
following sections, modelling of the elements above will be discussed in turn.

3.1 Presentation of the Model

Transmission of Disease. The classic mathematical model of disease trans-
mission is the SIR model, first described by Kermack and McKendrick [16] in
1927. SIR corresponds to Susceptible, Infectious and Recovered as follows:

Susceptibles represent the people that never had the disease, and may acquire
it after exposure to the infection.

Infectious are the people who carry the disease, and may pass it (directly or
indirectly) to susceptible individuals.

Recovered (or Removed) are immune to the disease. This might be because
they have been infectious and recovered from it, because they have been
vaccinated, or because they are naturally immune to the disease.

Additional classes may be necessary for particular diseases. For example, measles
requires an Exposed class:

Exposed are infected susceptibles who are not yet infectious, i.e. they are un-
dergoing an incubation period.

This general model of disease spread has been successfully applied to a wide
range of different diseases. It is straightforward to encode these behaviours as
separate process algebra agents: see the model of Figure 1, where the agents
S, E, I and R respectively represent the Susceptible, Exposed, Infectious and
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S
def
= (contact ,�).E

E
def
= (infected, ir).I

I
def
= (contact ,�).I + (recover , rr).R

R
def
= (contact ,�).R + (lose immunity , li).S

I ′ = (contact , cr).I ′ + (recover ,�).Rest ;
Rest = (infected ,�).I ′;

(S[990] ‖ I [10]) ��
{infected,contact,recover} (I

′[10] ‖ Rest [990])

Fig. 1. Simple direct transmission in PEPA

Recovered individuals. Activities occur at rates controlled by the exponential
variables ir (incubation), rr (recovery), li (loss of immunity), and cr (contact).
Exponential rates are highly suitable for the first three, since these take place at
a constant rate, and provide a reasonable approximation for contact behaviour.

The additional agents I ′ and Rest are required to implement direct trans-
mission2. With standard PEPA syntax it is possible to have all I agents com-
municate with all S agents, or none, but not a single I communicating with a
single S. One solution would be to introduce new operators capturing the de-
sired behaviour. Instead, we wish to operate within the constraints of standard
PEPA. To achieve direct transmission, it is necessary to have a main population
of S and I who do not communicate directly with each other (‖) but who can
communicate one-to-one with the “mirror group” of I ′ and Rest . The addition
of the mirror group splits the Infectious functionality between two agents. On
one hand, agent I, the infectious individual who can be passively contacted,
or recover. On the other hand, agent I ′, the infectious individual actively con-
tacting other individuals to pass on infection. This idea of where the driver of
functionality lies is reflected in the choice to make contact passive in I but not
in I’. To guarantee that the model remains consistent, the number of I and their
mirror I ′ must be equal at all times. The mirror Rest agents have been added so
that the mirror I ′ group can grow and shrink with the I population correctly.
Note that Rest does not have to model all the behaviour of agents S, E and
R: it only has to capture the movement from exposed to infectious. A more de-
tailed discussion of direct transmission and the mirror group may be found in
Benkirane’s thesis [2].

Births and Deaths. PEPA is limited when expressing births and deaths be-
cause agents cannot be created or deleted: a more inventive approach must be
adopted. Three different approaches to births and deaths are considered in Benki-
rane’s thesis [2]: only the one adopted for his measles model is described here.

2 Indirect transmission is straightforward. To agents S, E, I and R of Figure 1 add
agents for the environment and a suitable system equation describing interaction [3].
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A method to describe births and deaths arises naturally from the introduction
of a reserve pool of dormant agents, as shown in this simple example:

Active
def
= (death , death rate).Dormant

Dormant
def
= (birth , birth rate).Active

The pool corresponds to available agents, ready to be activated when needed.
Also, when an individual dies, it returns to the pool. The initial size of the
pool has to be chosen carefully: too many means longer processing times for the
model, too few and the pool might run out and the number of births will be
blocked as long as it is empty, leading to unexpected behaviour.

In the complete measles model of Figure 2 a similar Dormant population
is used, while the Active agents correspond to the S, Exp, Inf and R agents.
All agents S, Exp, Inf and R can give birth and die naturally. Newborns are
susceptible. This new behaviour is added to the mirror group via the DS agents.

Although not done for this reason here, the introduction of Dormant also
gives a way to regulate population size. If the birth and death rate are roughly
constant, the number of agents initially in Dormant can be chosen such that
Dormant + Active = K with K the carrying capacity of the population. This
way, the population can never increase past the carrying capacity, and the overall
number of births naturally decreases with the number dormant. Although in
general this solution is biologically unrealistic, it may be useful for cases where
the population does not fluctuate much. This is true for measles dynamics: the
disease is not usually deadly, and the number of immigrants over the period is
low compared to the total population. The number of Dormant here is selected
to ensure that as many births or immigrations as required can take place.

Timed Events. Infectious immigrants to the city can start a new outbreak, if
the timing is right3. Immigration is represented by a subgroup formed by a single
component type, Immigration. The action immigration fires every 1/imrate time
step and one agent in Dormant moves to the Inf state. This models the arrival
of one infectious immigrant in the city. Note the asymmetry between births
and immigration. Births are driven from the main group, while immigration is
driven from its own subgroup. In PEPA, given P = (α, r).Q the rate r follows the
cumulative distribution function of the exponential distribution Fα(t) = 1−e−rt.
That is, on average, α will be fired after 1/r time steps. The actual moment at
which the intervention takes place varies. This is very suitable for immigration:
the timing of immigration is not precise. It is not suitable for seasonality, where
more control over the timing of events is required.

Still considering P = (α, r).Q , an action firing at rate 1 has actually only a
38% probability of happening between 0.5 and 1.5 time steps. In order to reduce
this variability, one solution is to split the action into several steps. In other

3 Susceptible or recovered immigrants and emigrants do not influence the dynamics of
the disease and are not modelled here. Similarly, infectious or exposed emigrants do
not have any influence on the dynamics of the disease in the studied city, and their
number is sufficiently low to have a negligible impact on population size.
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words, an expression (α, r).Q is replaced by (α′, r×n).(α′, r×n).....(α′, r×n).Q
with n the number of steps, that we will denote (α′, r × n)n .Q for readability
purposes. The distribution of the resulting chain of actions can be calculated
using the following theorem [10]:

Theorem 1. If X1,X2,...Xn are independent following an exponential distribu-

tion Exp(α) then
n∑

i=1

Xi follows a Gamma distribution Gamma(n, 1/α)

As the rate of each of the activities is actually rn, the resulting probability
density function is:

fn,r(x) =
xn−1.e−rnx.(rn)n

(n− 1)!
(1)

The cumulative density function can be simplified, in the special case where
n ∈ N to the following expression:

Fn,r(x) =

∞∑

i=n

(rnx)i

i!
e−rnx (2)

This formula allows us to estimate the probability of an event happening between
time t = a and t = b (with b > a) as:

Fn,r(b)− Fn,r(a) =

∞∑

i=n

(rnb)i

i!
e−rnb −

∞∑

i=n

(rna)i

i!
e−rna (3)

Thus, the number of steps n can be chosen to provide the modeller with what
she deems an acceptable probability of an action occurring within the desired
time. We use this technique to model seasonality using the following agent:

Summer
def
= (go winter ,n/summer duration)n.Winter + (insummer , big).Summer

Winter
def
= (go summer ,n/winter duration)n.Summer + (inwinter , big).W inter

The season agent has two roles: performing the chain of actions leading to a
change in season (go winter and go summer), or broadcasting the current sea-
son (inwinter or insummer) to all agents for the whole season. The rate big is
introduced as a practical proxy for � in simulations.

Seasonality affects measles dynamics through a varying contact rate. The
average age of the infected individual according to data is low [20, Table II]:
the disease is very infectious, and getting infected grants lifelong immunity. The
average number of contacts a child makes change significantly depending on
season, as more contacts are made when children go to school (in winter). The
two seasons only affect Inf ′, the mirror component of Inf , which has been divided
into Inf ′s for the summer, and Inf ′w for the winter. The difference between the
two is contact rate (crs and crw). The model is composed of two seasons: a four
month summer, and an eight month winter.

To explain the seasonality mechanism further, for example, once the season
changes from Summer to Winter, Winter cooperates with the agents in Inf ′s (of
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Figure 2) over the action inwinter, in order for them all to move to Inf ′w (also of
Figure 2). The rate at which the cooperation is performed has to be very large
compared to the other parameters of the model in order for the process to be
considered instantaneous. In this model, this rate is at least big/crs ≈ 1.66×108

times bigger than any other rate in the model. The number of infectious individu-
als is always under 1000, so the whole operation takes less than 1000/big ≈ 10−6

time step to be performed. Note that any immigrating individuals move to Inf ′s
initially, but if the season is winter they will move almost instantaneously to
Inf ′w . After the action go summer has been fired n times, the agent describing
the season moves from Winter to Summer, and the agents in Inf ′w are forced to
move to Inf ′s . The choice of the value of n depends on the precision required by
the modeller, as well as the processing time of the model.

Complete Model and Parameters. The measles model is presented in Fig-
ure 2, and the parameters used presented in Figure 3 (taken from the litera-
ture [4,12,25] except n, srs, srw) . In the final measles model of Figure 2 there
are agents for S, Exp, Inf, R and Dormant, as above. There is not a direct map-
ping between agents in the main group and and the mirror group (S ′, Inf ′s , Inf ′w
and DS ). In particular,DS only models movement of births andDS �= Dormant .
Other Dormant behaviour is captured in S′. The model obeys two invariants con-
cerning agent numbers: Inf = Inf ′s +Inf ′w , and S+Exp+R+Dormant+Immi =
S′ +DS.

Summer
def
= (go winter , srs)n.Winter + (insummer , big).Summer

Winter
def
= (go summer , srw)n.Summer + (inwinter , big).Winter

S
def
= (contact ,�).Exp + (birth, br).S + (die , dr).Dormant

Exp
def
= (contact ,�).Exp + (incubation , ir).Inf + (die , dr).Dormant + (birth, br).Exp

Inf
def
= (contact ,�).Inf + (recover , rr).R + (dieI , dr).Dormant + (birth, br).Inf

R
def
= (contact ,�).R + (birth, br).R + (die , dr).Dormant

Dormant
def
= (born , big).S + (immigration ,�).Immi

Immi
def
= (gotoInf , big).Inf

S ′ def
= (incubation ,�).Inf ′s + (birth,�).DS + (gotoInf ,�).Inf ′s

Inf ′s
def
= (contact , crs).Inf ′s + (recover ,�).S ′ + (inwinter ,�).Inf ′w + (dieI ,�).S ′

Inf ′w
def
= (contact , crw).Inf ′w + (recover ,�).S ′ + (insummer ,�).Inf ′s + (dieI ,�).S ′

DS
def
= (born ,�).S ′ + (timeout , 100.0).S ′

Immigration
def
= (immigration , imrate).Immigration

((S [508000] ‖ Inf [10] ‖ Dormant [100000] ��
{born,birth,incubation,recover,contact,dieI ,gotoInf}

S ′[608000] ‖ Inf ′w [10]) ��
{immigration} Immigration) ��

{insummer,inwinter}Winter

Fig. 2. PEPA measles model for Leeds

According to Bjørnstad et al. [4, p. 171], the critical community size, in order
for the virus not to go extinct, lies between 300, 000 and 500, 000 in England and
Wales. For this reason, the city of Leeds has been chosen to test this model: its
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Parameter Rate (per day) Description

popn 508010 Total population size [25]

big 999999999 The fast rate used for immigration and seasonality

ir 1/7.5 Incubation rate is 1/incubation period [4]

rr 1/6.5 Recovery rate is 1/infectious period [4]

crw 39.1/6.5 Winter contact rate [4]

crs 19.8/6.5 Summer contact rate [4]

br, dr 0.017/360 Birth rate and Death rate [4]

imrate 0.02 ∗ √popn/360 Immigration rate of infectious individuals [12]

n 96 Number of iterations of the change of season action

srw 1/(8× 30)× n Rate of one iteration of change season (winter)

srs 1/(4× 30)× n Rate of one iteration of change season (summer)

Fig. 3. The parameters used in the model in Figure 2

population in 1944 was about 508, 000 inhabitants. The model starts with 100%
susceptible individuals, and evolves naturally towards its steady state susceptible
proportion of between 3.5 and 9%. This number of susceptibles is consistent
with biological studies [4, p. 180]. The model displays transient behaviour while
establishing the susceptible population. This has been empirically determined to
correspond to the first thousand steps, and has been removed from the results
shown in Figure 4 as it does not relate to the observed behaviour of measles.

Finkenstädt et al [12, p. 755] give immigration of infectious individuals as:

average number of imports per year = 0.02
√
population size

In the case of our model, it results in 0.02
√
508000= 14.25 infectious imports per

year. This results in a total of 285 immigrants across the twenty-one years stud-
ied, who increase the overall population by 0.056%. The birth and death rates
are assumed to be constant by taking average figures for the period. While this
was not the case in reality (the maximum number of births recorded was 10821
in 1947, and the minimum was 7584 in 1954), the difference can be considered
negligible for the scope of this analysis.

The contact rate has been chosen based on the value of R0 given in the
paper by Bjørnstad et al. [4, p. 180]. R0 is the number of successful contacts an
infectious individual would make in an entirely susceptible population. According
to that paper, its maximum value is 39.1 in December, and its minimum value
is 19.8 in August. In the absence of an average value over the course of a season,
or a monthly value, these values are used for the winter and summer season
respectively. The daily number of contacts are derived in a standard way from
R0 by dividing it by the infectious period.

Finally, the parameters related to the seasons are srw, srs and n. Seasonality
has been simplified by assuming that a month lasts 30 days, and a year 360 days.
Winter has been assumed to last eight months. The choice of the value of n lies
in the hands of the modeller: it must be chosen in order to give an acceptable
variability in the season length, while not increasing the length of the simulations
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too much. With n = 96, and using equation (3), the probability that the winter
lasts between 7 and 9 months, and that the summer lasts between 3.5 and 4.5
months, is 78%, which is deemed sufficient for the scope of this study.

3.2 Results

Analysis of the model is performed through a series of single stochastic simula-
tions. Due to variability in the timing of season change, stochastic simulations
cannot be meaningfully averaged. Moreover, the analysis will only be performed
on semi-quantitative factors, such as the length of the cycle between two con-
secutive outbreaks and the average size of the peak of each epidemic. Although
Benkirane developed a tool to derive ODEs from PEPA models [2], this cannot
be used here as the hypothesis behind the derivation, that the number of agents
is large, is not met by the subgroups for seasonality and immigration (one in-
stance each). Their effect of the main group would not be correctly captured
in the derived ODEs. A benefit of process algebra (not explored here) is that
additional analyses are possible via the PEPA plugin [13].

(a) Measles Data (b) PEPA: 1 simulation

(c) Bio-PEPA: 1 simulation (d) Bio-PEPA: 100 simulation average

Fig. 4. Graphical results for Measles epidemics in Leeds between 1944 and 1964. The
horizontal axis is year, and the vertical axis is number of infectious individuals.

Comparing the model with measured data is not straightforward: this is one of
the problems of carrying out a realistic case study. The data to which the model
is compared (city of Leeds only) is available from University of Cambridge [25].
The data must be normalised to match the format of the simulated data. The
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simulated data reports number of infected individuals every day, while the field
data is reported every 14 days. Each data point in the original data has been
divided by 14 (to get the number of reported infectious individuals per day) and
multiplied by 6.5 (to reflect the average infectious period of 6.5 days). Bjørnstad
et al. [4, p. 172] mention a reporting rate across England and Wales of just
over 50%. We assume every individual is infected at some point in her life,
therefore, the number of births should correspond to the number of cases. For
Leeds between 1944 and 1964 (inclusive), 181, 539 births were recorded, while
109, 730 cases of measles were reported. Assuming the birth rate was constant
(as above) gives an average reporting rate of 60.4%. A constant reporting rate
will be assumed. The number of infectious individuals at each data point are
corrected by multiplying the reported number of cases by (number of births /
reported cases). Figure 4(a) shows the corrected data.

A sample simulation of the model of Figure 2 is shown in Figure 4(b). It
corresponds to 8560 days of simulations, where the first 1000 days have been
removed, as described previously. The two graphs exhibit comparable behaviour.
In both cases, measles outbreaks occur on a regular cycle. The length of the cycle
varies between the collected data and the stochastic simulation. In the case of the
data, the cycle lasts exactly two years, with very little variation over the length
of the studied period, apart from a single one year cycle between the 1963 and
the 1964 epidemics. The simulation on the other hand, has biennial cycles most
of the time, but sometimes exhibits 2.5 year cycles. Across the studied period,
the collected data experiences 11 outbreaks, for 9 in the simulation. As detailed
by Bjørnstad et al. [4], the cycles are a consequence of the addition of seasonality
to the model. The presence of a summer season where the contact rate is lower
allows more time for the pool of susceptibles to increase in size, until the contact
rate increases again in the winter. The number of infectious individuals at the
peak of infection in both cases can vary a lot, between 260 and 920 in the case
of the collected data, and 260 and 710 in the simulation. The average of the
number of individuals at the peak of each outbreak confirms this difference: 479
infecteds in the case of the collected data, for 424 in the case of the simulations.

3.3 Comparison with Bio-PEPA

It can be seen from the discussion above that some epidemiological features,
while they can be modelled in PEPA, are not naturally expressed. For example,
neither direct transmission, nor births and deaths, are very elegantly expressed
in PEPA. An obvious question arises: are these features better modelled in Bio-
PEPA, which was designed for biological systems? Brief details of repeating the
modelling exercise with Bio-PEPA are given here. The model was based on a
combination of standard mathematical biology techniques [1,11] and the model
of Figure 2. The Bio-PEPA model is shown in Figure 5. The syntax used here
is the syntax of the Bio-PEPA tool [8]. Parameter values are as in Figure 3.

Transmission of Disease. Control is given to the modeller via the kinetic
laws: any rate expressed via arithmetic and trigonometric functions can be
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endWinter
def
= 4; startWinter

def
= 9;month

def
= floor(time/30);

season time
def
= H(((month − 12 ∗ floor(month/12)) − endWinter)

∗(startWinter − (month − 12 ∗ floor(month/12))));

kineticLawOf birth : br ∗ (S + Exp + Inf +R);

kineticLawOf dieS : dr ∗ S;

kineticLawOf dieExp : dr ∗ Exp;

kineticLawOf dieInf : dr ∗ Inf ;

kineticLawOf dieR : dr ∗R;

kineticLawOf contact : ((crw ∗ S ∗ Inf )/(S + Exp + Inf + R)) ∗ (1− season time)+

((crs ∗ S ∗ Inf )/(S + Exp + Inf + R)) ∗ (season time);

kineticLawOf incubation : ir ∗ Exp;

kineticLawOf recover : rr ∗ Inf ;

kineticLawOf immigration : imrate;

S = (contact , 1) � +(birth, 1) � +(dieS , 1) �;
Exp = (contact , 1) � +(incubation, 1) � +(dieExp, 1) � +(birth, 1)(.);
Inf = (contact , 1)(.) + (incubation , 1) � +(dieInf , 1) � +(birth, 1)(.)

+(recover , 1) � +immigration �;
R = (recover , 1) � +(birth, 1)(.) + (dieR, 1) �;

Inf [10] < ∗ > S[508000] < ∗ > Exp[0] < ∗ > R[0]

Fig. 5. Bio-PEPA measles model for Leeds

given. This is rather similar to the way in which mathematical biologists
choose terms in their ODE models: the link with interacting processes is de-
creased. Thus incorporating direct transmission is no longer about designing
the right sort of interaction, it is simply a matter of writing the commonly
used term for frequency-dependent direct transmission in the kinetic law for
contact.

Births and Deaths. In Bio-PEPA the style is to describe change to species
numbers, where species are similar to agents in PEPA. In Figure 5 the species
are S, Exp, Inf and R. For example, increasing population through birth
is described by the event (birth, 1) � and decreasing population through
death by the event (dieS, 1) 	 (increase or decrease being indicated by
the direction of the arrows). The 1 in these events describes the change to
the number of susceptibles, but not the rate. The rate is described by the
appropriate kinetic laws for birth and death.

Timed Events. Time can be used explicitly in the model through the variable
time, and thus can influence variables and hence kinetic laws. In Figure 5
the variable season time switches between 0 and 1 (with the use of the built-
in Heaviside function H) to indicate winter or summer respectively. This is
then used in the kinetic law for contact.

Bio-PEPA, like PEPA, gives access to a range of analysis techniques through a
tool: the Bio-PEPA plugin [8], which offers, for example, stochastic simulations,
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interpretation as ODEs, translation to SBML, invariant inference and model-
checking. The result of a single simulation of the Bio-PEPA model is given in
Figure 4(c): the pattern of outbreaks is similar to the collected data of 1944–1964,
although the peaks are significantly higher. In Bio-PEPA the switch between
seasons happens on the same day every year, in every simulation. For interest,
Figure 4(d) shows the average of one hundred simulations for both the seasonally
switching contact rate (lighter line) and a fixed (crw) contact rate (heavier line).
For the former, the average tends to peak lower, and annually: the period between
epidemics varies from one to three years. For the latter, the long-term pattern
shows a more steady rate of infection of around 150 individuals. Both of these
simulations are shown starting after 1720 steps: the Bio-PEPA simulation takes
slightly longer to stabilise than the PEPA simulations.

Bio-PEPA overcomes some of the feature-capturing problems of PEPA. Ar-
guably the model of Figure 5 is simpler and more elegant: the species are no
longer confused with modelling artefacts to handle one-to-one communication.
Bio-PEPA also has limitations. The formulation of kinetic laws means rates no
longer depend on interaction and semantics: they come from implicit assump-
tions the modeller has made about population-level dynamics. This is therefore
rather similar to the standard mathematical biology approach.

4 Conclusions

PEPA and Bio-PEPAmodels have been constructed to reflect cyclic epidemics of
measles, and their output compared to collected data. While PEPA is not ideally
suited to capturing all features of disease progression, suitable approximations
can be made. An important feature is that the population dynamics emerge
from the specified individual behaviour. In contrast, the Bio-PEPA model may
be simpler, but required high-level assumptions to be made about population dy-
namics. In both cases, existing well-developed tools [13,8] were used for analysis.
The results are promising: the simulated results for both PEPA and Bio-PEPA
are comparable to the collected data and would allow meaningful exploration of
patterns of epidemics under different parameter regimes. The PEPA results are
closer to the collected results than the Bio-PEPA results, which demonstrate too
much regularity. Differences between our results and the data may be associated
with the granularity of modelling. For example, birth and death rates have the
same value throughout the simulation. Seasonality has been approximated by
splitting the year into two seasons each with a single contact rate which does
not change throughout the season. The value used by Bjørnstad et al. [4, Fig. 7,
p. 178] varies noticeably within each season. The models presented here could
be altered to reflect these changes, with varying degrees of difficulty.

One of the difficulties encountered in this study, and encountered in any re-
alistic modelling exercise, is the problem of parameter values. For example, the
main source for this model was Bjørnstad et al. [4] who give incubation rate and
infectious period as 7.5 and 6.5 days respectively. As shown in Section 3.2 this
gives a good match to the measured data. Our models have also been tested
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with data from Bolker et al. [5] who propose an incubation period of ten days,
and infectious period of 3.7 days. This gives fewer disease outbreaks than shown
by the data (3-4 years between outbreaks, with peaks between 600-1500 cases).
The beauty of modelling is that the parameter choices can be easily explored.
A further difficulty of dealing with collected data for measles is estimating the
reporting rate. The approximation used might impact the number of infectious
individuals at a given time, but would not influence cycle duration.

Due to lack of space, the influence of the nearby cities have been completely
ignored in this study. Benkirane [2] has developed a novel extension to PEPA
to allow structured populations to be easily expressed, and demonstrates its
use through a more complex model of measles in the linked cities of Cardiff,
Newport, Bristol and Bath. Similarly, Bio-PEPA has compartments which allow
spatial elements of epidemiology to be modelled.

Process algebra has been shown here to be useful in modelling quite complex
infectious disease systems. Determining which approach is suitable for a given
problem depends on which questions we wish to answer about that problem; that
is, the sort of analysis we wish to carry out. An advantage of process algebra over
traditional mathematical biology is the range of automated analyses available.
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