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Abstract. Weaknesses in software security have been numerous, some-
times startling, and often serious. Many of them stem from apparently
small low-level errors (e.g., buffer overflows). Ideally, those errors should
be avoided by design, or at least fixed after the fact. In practice, on the
other hand, we may have to tolerate some vulnerabilities, with appropri-
ate models, architectures, and tools.

This short paper is intended to accompany a talk at the 18th Interna-
tional Symposium on Formal Methods (FM 2012). The talk will discuss
software security with an emphasis on low-level attacks and defenses and
on their formal aspects. It will focus on systematic mitigations (specif-
ically, techniques for layout randomization and control-flow integrity)
that aim to be effective in the presence of buggy software and powerful
attackers.

1 The Problem

Security depends not only on the properties of security models and designs but
also on implementation details. Flaws, at any level, can result in vulnerabilities
that attackers may be able to exploit. In the domain of software, those vulnera-
bilities often stem from small but catastrophic programming errors. For instance,
buffer overflows remain frequent, and they can have serious consequences. An
unchecked buffer overflow in a mundane parser can lead to the complete com-
promise of an operating system.

Although this short paper emphasizes low-level phenomena such as buffer
overflows, similar considerations often apply for higher-level software. Indeed,
attacks at all levels present common themes. For instance, attacks of various
sorts often exploit errors in parsing and in sanitizing inputs in order to inject
code into a target system.

Many errors may be fixed or avoided altogether by the use of suitable pro-
gramming methods and tools. In particular, strong type systems may prevent
the occurrence of many frequent flaws. The application of formal methods may
further provide evidence of finer properties of software systems, or may establish
essential properties of those system components that rely on low-level languages.
For example, in this spirit, recent work [20] combines type safety and verification
to obtain correctness guarantees for a research operating system.

However, to date, those methods and tools frequently fall short, in at least
two respects:

D. Giannakopoulou and D. Méry (Eds.): FM 2012, LNCS 7436, pp. 1–5, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



2 M. Abadi

– Much code is still written in C, C++, and other low-level languages, often for
performance or compatibility reasons. Full verification remains rare. Current
tools for static and dynamic code analysis for those languages are remarkably
effective, but still imperfect.

– Even code written in modern languages, and even verified code, should be
treated with a healthy degree of caution. While type-safe programming lan-
guages like Java may well improve security, their implementations may not
provide all the expected properties [1]. They have been the target of sig-
nificant, successful attacks. For example, in 2012, malicious software called
Flashback exploits a vulnerability in Java systems in order to install itself
on Mac computers.

Moreover, implementation details, right or wrong, ultimately should be under-
stood and judged in the context of security requirements. Programming methods
and tools typically do not address how those requirements should be formulated.
That is the role of security models (e.g., [12]). These models define precise secu-
rity goals, with abstract concepts (such as principal and object) and properties
(such as non-interference). Even though here we discuss them only briefly, these
models are arguably crucial to software security. With the guidance of models,
there is at least some hope that security measures are applied consistently and
pervasively—they often are not.

We may ask, then, what is our fall-back position? Articulating and developing
a tenable “Plan B” may be the best we can do, and quite useful.

2 Some Approaches

Despite their many flaws, software systems should guarantee at least some basic
security properties, at least most of the time. Ideally, these guarantees should
be obtained even in the absence of complete, precise security definitions and
requirements, and even if many aspects of the systems are designed without
security in mind. Although usually implicit, and perhaps still too optimistic,
this point of view has motivated much recent work on architectures and tools.

In particular, the development of robust architectures may help confine the
effects of dangerous errors. A system can sometimes be structured in such a way
that a local compromise in one component does not immediately endanger the
security of the entire system. This idea is not new. It appears, in particular, in
classic work on mandatory access control, which aims to guarantee security even
in the presence of Trojan horses [8].

Furthermore, the effects of flaws may be mitigated at run-time [6]. For in-
stance, with the use of stack canaries, attacks that rely on buffer overflows can
sometimes be detected and stopped before they take control of a target sys-
tem [4]. These mitigations are often imperfect, and seldom enforce well-defined
security properties. Nevertheless, these mitigations are based on useful insights
on the goals and mechanisms of attacks. Their deployment has led attackers to
shift their targets or to develop more elaborate techniques (e.g., [6,16,18]), in
particular techniques that rely somewhat less bluntly on code injection.
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Some advanced attacks include accessing data (e.g., communication buffers)
or running code (e.g., library functions) that are present in the target system at
predictable locations. One popular approach to thwarting such attacks consists in
randomizing the placement of that data and code in memory (e.g., [5,15]); other
types of randomization may also play a role (e.g., [7,14]). Recent research [3,9,17]
shows that—at least in theory and in simple settings—randomization can yield
precise guarantees comparable to those offered by the use of language-level ab-
stractions.

More broadly, many attacks include unexpected accesses to data and unex-
pected control transfers. Run-time techniques for enforcing policies on data ac-
cesses and on control transfers can thwart such attacks (e.g., [2,10,11,13,19,21]).
Recent research on these techniques has leveraged formal ideas and methods,
defining models of machines, programs, run-time guards, and their objectives
(which are typically safety properties), and then proving that those objectives
are met.

Suppose, for example, that a piece of trusted code contains the computed-
jump instruction jmp ecx, which transfers control to the address contained in
register ecx. Let us assume that a programming mistake allows an attacker to
corrupt or even to choose the contents of ecx. If the attacker knows the address
A of another piece of code, and arranges that this address be placed in ecx, then
it can cause that code to be executed. In the worst case, the code at address A
could then give complete control to the attacker.

Since the attack has several hypotheses and steps, several possible counter-
measures may be considered. These include:

1. We may identify and fix the mistake so that the attacker cannot tamper
with ecx.

2. We may make the value A unguessable, by randomizing the layout of code
in memory.

3. We may preface the instruction jmp ecx by a sequence of instructions that,
dynamically, will check that ecx contains one of a set of expected values
considered safe. (This set of expected values would be defined by a policy,
perhaps inferred from source code.)

The first strategy is principled, but it may not always seem viable. Although
the second and the third strategies also present non-trivial requirements, they
are realistic and attractive in many low-level systems. Each strategy leads to
different guarantees. For instance, with the third strategy, we obtain probabilistic
properties at best.

Many variants and combinations of protection techniques are under consider-
ation, often still with only preliminary analyses and prototype implementations.
Further research may address the traditional goals of these techniques (e.g.,
proving isolation properties) and more delicate aspects of the subject (e.g., per-
mitting controlled sharing). In this context, the application of formal ideas and
methods will not lead to absolute proofs of security, but it can nevertheless be
fruitful.
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