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Preface

FM 2012 was the 18th in a series of symposia organized by Formal Methods
Europe, an independent association whose aim is to stimulate the use of, and
research on, formal methods for software development. The symposia have been
notably successful in bringing together innovators and practitioners in precise
mathematical methods for software and systems development, industrial users,
as well as researchers. In August 2012, the Conservatoire National des Arts et
Métiers (Le Cnam Paris) hosted FM 2012 in Paris (France).

The special theme of FM 2012 was “Interdisciplinary Formal Methods,” with
the goal of highlighting the development and application of formal methods
in connection with a variety of disciplines including medicine, biology, human
cognitive modeling, human automation interactions, and aeronautics. We were
honored to have three invited speakers whose talks emphasized the special theme.

Martin Abadi, with his talk titled“Software Security – A Formal Perspective,”
discussed software security with an emphasis on low-level attacks and defenses
and on their formal aspects. Asaf Degani gave a talk titled “Formal Methods
in the Wild: Trains, Planes, and Automobiles.” Through this talk, Dr. Degani
drew upon his experience with aerospace and automotive applications to pro-
vide a perspective on how formal methods could improve the design of such
applications. Finally, Alan Wassyng, in his talk titled “Who Are We, and What
Are We Doing Here?,” stressed the importance of viewing formal methods from
a rigorous software engineering perspective, and discussed his experiences with
the certification of software-intensive systems. All three talks raised the aware-
ness of the community to the fact that formal methods live in the intersection
of disciplines; research in this domain must also consider how to increase the
industrial impact of formal methods.

FM 2012 welcomed submissions in the following areas, among others:
– Interdisciplinary formal methods: techniques, tools and experiences demon-

strating formal methods in interdisciplinary frameworks, such as formal meth-
ods related to maintenance, human automation interaction, human in the
loop, system engineering, medicine and biology

– Formal methods in practice: industrial applications of formal methods, ex-
perience with introducing formal methods in industry, tool usage reports,
experiments with challenge problems

– Tools for formal methods: advances in automated verification and model-
checking, integration of tools, environments for formal methods, experimen-
tal validation of tools

– Role of formal methods in software and systems engineering: development
processes with formal methods, usage guidelines for formal methods, method
integration

– Theoretical foundations: all aspects of theory related to specification, verifi-
cation, refinement, and static and dynamic analysis
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– Teaching formal methods: insight, evaluations and suggestions for courses
of action regarding the teaching of formal methods, including teaching ex-
periences, educational resources, the integration of formal methods into the
curriculum, the definition of a formal methods body of knowledge, etc

We solicited two types of contributions: research papers and tool demon-
stration papers. We received submissions from 39 countries around the world:
162 abstracts followed by 132 full submissions. The selection process was rig-
orous. Each paper received at least four reviews. We obtained external reviews
for papers that lacked expertise within the Program Committee. The Program
Committee, after long and very careful discussions of the submitted papers, de-
cided to accept only 28 full papers and seven tool papers, which corresponds to
an overall acceptance rate of approximately 26%. Some of the accepted papers
were additionally shepherded by expert members of the Program Committee to
ensure the quality of their final version. The accepted papers made a scientif-
ically strong and exciting program, which triggered interesting discussions and
exchange of ideas among the FM participants. The accepted papers cover several
aspects of formal methods, including verification, synthesis, runtime monitoring,
testing and controller synthesis, as well as novel applications of formal meth-
ods in interesting domains such as satellites, autonomous vehicles, and disease
dynamics.

We would like to thank all authors who submitted their work to FM 2012.
Without their excellent contributions we would not have managed to prepare a
strong program. We are grateful to the Program Committee members and exter-
nal reviewers for their high-quality reviews and dedication. Finally, we wish to
thank the Steering Committee members for their excellent support. The logistics
of our job as Program Chairs were facilitated by the EasyChair system.

June 2012 Dimitra Giannakopoulou
Dominique Méry
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Distribution of Modal Transition Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 403
German E. Sibay, Sebastián Uchitel, Victor Braberman, and
Jeff Kramer

Efficient Malware Detection Using Model-Checking . . . . . . . . . . . . . . . . . . . 418
Fu Song and Tayssir Touili

Formalization of Incremental Simplex Algorithm by Stepwise
Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434
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Software Security: A Formal Perspective

(Notes for a Talk)

Mart́ın Abadi1,2

1 Microsoft Research Silicon Valley
2 University of California, Santa Cruz

Abstract. Weaknesses in software security have been numerous, some-
times startling, and often serious. Many of them stem from apparently
small low-level errors (e.g., buffer overflows). Ideally, those errors should
be avoided by design, or at least fixed after the fact. In practice, on the
other hand, we may have to tolerate some vulnerabilities, with appropri-
ate models, architectures, and tools.

This short paper is intended to accompany a talk at the 18th Interna-
tional Symposium on Formal Methods (FM 2012). The talk will discuss
software security with an emphasis on low-level attacks and defenses and
on their formal aspects. It will focus on systematic mitigations (specif-
ically, techniques for layout randomization and control-flow integrity)
that aim to be effective in the presence of buggy software and powerful
attackers.

1 The Problem

Security depends not only on the properties of security models and designs but
also on implementation details. Flaws, at any level, can result in vulnerabilities
that attackers may be able to exploit. In the domain of software, those vulnera-
bilities often stem from small but catastrophic programming errors. For instance,
buffer overflows remain frequent, and they can have serious consequences. An
unchecked buffer overflow in a mundane parser can lead to the complete com-
promise of an operating system.

Although this short paper emphasizes low-level phenomena such as buffer
overflows, similar considerations often apply for higher-level software. Indeed,
attacks at all levels present common themes. For instance, attacks of various
sorts often exploit errors in parsing and in sanitizing inputs in order to inject
code into a target system.

Many errors may be fixed or avoided altogether by the use of suitable pro-
gramming methods and tools. In particular, strong type systems may prevent
the occurrence of many frequent flaws. The application of formal methods may
further provide evidence of finer properties of software systems, or may establish
essential properties of those system components that rely on low-level languages.
For example, in this spirit, recent work [20] combines type safety and verification
to obtain correctness guarantees for a research operating system.

However, to date, those methods and tools frequently fall short, in at least
two respects:

D. Giannakopoulou and D. Méry (Eds.): FM 2012, LNCS 7436, pp. 1–5, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



2 M. Abadi

– Much code is still written in C, C++, and other low-level languages, often for
performance or compatibility reasons. Full verification remains rare. Current
tools for static and dynamic code analysis for those languages are remarkably
effective, but still imperfect.

– Even code written in modern languages, and even verified code, should be
treated with a healthy degree of caution. While type-safe programming lan-
guages like Java may well improve security, their implementations may not
provide all the expected properties [1]. They have been the target of sig-
nificant, successful attacks. For example, in 2012, malicious software called
Flashback exploits a vulnerability in Java systems in order to install itself
on Mac computers.

Moreover, implementation details, right or wrong, ultimately should be under-
stood and judged in the context of security requirements. Programming methods
and tools typically do not address how those requirements should be formulated.
That is the role of security models (e.g., [12]). These models define precise secu-
rity goals, with abstract concepts (such as principal and object) and properties
(such as non-interference). Even though here we discuss them only briefly, these
models are arguably crucial to software security. With the guidance of models,
there is at least some hope that security measures are applied consistently and
pervasively—they often are not.

We may ask, then, what is our fall-back position? Articulating and developing
a tenable “Plan B” may be the best we can do, and quite useful.

2 Some Approaches

Despite their many flaws, software systems should guarantee at least some basic
security properties, at least most of the time. Ideally, these guarantees should
be obtained even in the absence of complete, precise security definitions and
requirements, and even if many aspects of the systems are designed without
security in mind. Although usually implicit, and perhaps still too optimistic,
this point of view has motivated much recent work on architectures and tools.

In particular, the development of robust architectures may help confine the
effects of dangerous errors. A system can sometimes be structured in such a way
that a local compromise in one component does not immediately endanger the
security of the entire system. This idea is not new. It appears, in particular, in
classic work on mandatory access control, which aims to guarantee security even
in the presence of Trojan horses [8].

Furthermore, the effects of flaws may be mitigated at run-time [6]. For in-
stance, with the use of stack canaries, attacks that rely on buffer overflows can
sometimes be detected and stopped before they take control of a target sys-
tem [4]. These mitigations are often imperfect, and seldom enforce well-defined
security properties. Nevertheless, these mitigations are based on useful insights
on the goals and mechanisms of attacks. Their deployment has led attackers to
shift their targets or to develop more elaborate techniques (e.g., [6,16,18]), in
particular techniques that rely somewhat less bluntly on code injection.
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Some advanced attacks include accessing data (e.g., communication buffers)
or running code (e.g., library functions) that are present in the target system at
predictable locations. One popular approach to thwarting such attacks consists in
randomizing the placement of that data and code in memory (e.g., [5,15]); other
types of randomization may also play a role (e.g., [7,14]). Recent research [3,9,17]
shows that—at least in theory and in simple settings—randomization can yield
precise guarantees comparable to those offered by the use of language-level ab-
stractions.

More broadly, many attacks include unexpected accesses to data and unex-
pected control transfers. Run-time techniques for enforcing policies on data ac-
cesses and on control transfers can thwart such attacks (e.g., [2,10,11,13,19,21]).
Recent research on these techniques has leveraged formal ideas and methods,
defining models of machines, programs, run-time guards, and their objectives
(which are typically safety properties), and then proving that those objectives
are met.

Suppose, for example, that a piece of trusted code contains the computed-
jump instruction jmp ecx, which transfers control to the address contained in
register ecx. Let us assume that a programming mistake allows an attacker to
corrupt or even to choose the contents of ecx. If the attacker knows the address
A of another piece of code, and arranges that this address be placed in ecx, then
it can cause that code to be executed. In the worst case, the code at address A
could then give complete control to the attacker.

Since the attack has several hypotheses and steps, several possible counter-
measures may be considered. These include:

1. We may identify and fix the mistake so that the attacker cannot tamper
with ecx.

2. We may make the value A unguessable, by randomizing the layout of code
in memory.

3. We may preface the instruction jmp ecx by a sequence of instructions that,
dynamically, will check that ecx contains one of a set of expected values
considered safe. (This set of expected values would be defined by a policy,
perhaps inferred from source code.)

The first strategy is principled, but it may not always seem viable. Although
the second and the third strategies also present non-trivial requirements, they
are realistic and attractive in many low-level systems. Each strategy leads to
different guarantees. For instance, with the third strategy, we obtain probabilistic
properties at best.

Many variants and combinations of protection techniques are under consider-
ation, often still with only preliminary analyses and prototype implementations.
Further research may address the traditional goals of these techniques (e.g.,
proving isolation properties) and more delicate aspects of the subject (e.g., per-
mitting controlled sharing). In this context, the application of formal ideas and
methods will not lead to absolute proofs of security, but it can nevertheless be
fruitful.
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Abstract. Why is it that carefully researched and well-formulated theo-
retical and methodological constructs don’t make their way into
industrial applications? This keynote speech takes a look at my personal
experiences in both the aviation and automotive fields to suggest what
can be done about it. I will first try to explain why engineers (and even
industry scientists) tend not to use the kind of methods and tools that
emerge from academic settings while working on actual products, and
then show some of the consequences of not using such methods. I will
end with a few vignettes from my own trials and tribulations in applying
formal methods in engineering design processes as well as some of the
future prospects, for both academia and industry, as human-automation
systems become more demanding and complex.
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Who Are We, and What Are We Doing Here?
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Abstract. Many Formal Methods researchers and practitioners seem to
treat Formal Methods more as a religion than as an approach to rigorous
software engineering. This fervour has a few side-effects: i) There have
been spectacular advances in a few areas in Formal Methods; ii) There
are a significant number of highly effective Formal Methods advocates
- and practitioners; iii) The Formal Methods community at large seems
to be condescendingly dismissive of any protestation of disbelief; and iv)
Different methods and approaches seem to be judged on a belief basis
rather than through evidence based analysis. The essential fact remains
though, that after decades of research, Formal Methods are not used
much in industrial software development. It is time that we, the Formal
Methods community, question the basis of our existence. I argue that
we exist to further the use of mathematics and rigorous analysis in the
development of software applications, in the same way that electrical en-
gineers, mechanical engineers, civil engineers, chemical engineers further
the safe and effective development of a multitude of devices, buildings,
manufacturing processes etc. This is clearly not a new thought. It does,
however, suggest that we need to examine the link between Formal Meth-
ods and Software Engineering more carefully than is currently the case. A
definition of engineering from the Academic Press Dictionary of Science
and Technology is “the application of scientific knowledge about matter
and energy for practical human uses such as construction, machinery,
products, or systems”. Engineers use science as the basis for their work.
This is not a one-way street. Feedback from engineering as to what are
the important scientific problems to be solved is an important driver in
scientific endeavours. Engineering work, in turn, forms a basis for the
work done by technicians in our everyday lives. Again, feedback is an es-
sential driver for the engineering community. In the modern digital world,
Software Engineers should assume the role of the engineer. If we are truly
serious about Software Engineering as an engineering profession, we need
to consider the roles of Computer Scientists and Software Developers in
this context. To be consistent with other domains, Software Engineers
should use scientific knowledge as the basis of their work. This knowl-
edge includes the growing domain of knowledge generated by Computer
Science, and in particular, the specialized forms of mathematics that are
applicable in the digital domain. In addition to Computer Scientists and
Software Engineers, we also have Software Developers the technicians of
our domain. This is a nice and neat correlation with other engineering
fields unfortunately it is not, at this time, an accurate description of the
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situation. In most countries, the difference between Computer Science
and Software Engineering is decidedly blurry. Even when the difference
should be obvious (for example, Canada insists that to call yourself an
“engineer” you must be recognized as such by a professional engineer-
ing accreditation body), it is commonplace to find Computer Scientists
playing the role of both engineer and technician. What does this mean
for Formal Methods? Are Formal Methods people Computer Scientists,
Software Engineers, Software Developers all of the above any of the
above? If you look back at what I said about our raison d’etre, and if
you agreed with what I said, perhaps you agreed too quickly!

Lately, my interests have been focused on the certification of soft-
ware intensive systems: methods for building software intensive systems
so that they can be certified; and methods for certifying such systems.
This has made me rethink why, in spite of some amazing advances, For-
mal Methods are not used more often in everyday practice. I strongly
believe that it is both possible and necessary to define engineering meth-
ods for the development of high integrity software applications, that
these engineering methods must be based on mathematics, science, and
well-founded heuristics, that “approved” methods should be significantly
more prescriptive/objective than current software development
techniques, and that these methods have to be supported by high quality
tool chains. I also believe that the development of these methods is the
task, primarily, of Software Engineers. What is the implication of this
for the Formal Methods community? I think the answer is simple but
not yet widely palatable. I think there is not enough focus on Software
Engineering as opposed to Computer Science. It seems to me that the
feedback from the engineering domain to the science domain is haphaz-
ard at best - non-existent a lot of the time! Over the past twenty years
we have seen papers on myths of Formal Methods, Challenges of For-
mal Methods, the Ten Commandments of Formal Methods, experience
of Formal Methods in industry, rethinking Formal Methods and the list
goes on. So, why another talk on what seems to be a talked-out subject?
Arrogance, of course! And, I hope, some new observations that may help
us define our future path. I did not come to these conclusions all on my
own. I have been extremely fortunate in my career, both in industry and
in academia, to work with incredibly smart and dedicated colleagues, and
I am indebted to them for teaching me so much about a very complex
subject.

From a Software Engineering perspective, there are a number of fun-
damental principles that need to guide our design of Formal Methods:
integration of the Formal Methods aspects with the rest of the software
development life cycle; integration of the life cycle phases; comprehen-
sive tool chains integrated into the methods; completeness criteria; abil-
ity to handle real-world aspects; scalability; the methods and tools must
be understandable and usable by average, educated, practitioners (tech-
nicians); prescriptive/objective guidance; experimental validation of re-
sulting methods and tools; and development with certification as a goal.
In this talk I will use a running example to illustrate and discuss these
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principles. I hope this talk will be viewed as an exhortation to great tech-
nical successes, and even greater success in producing powerful methods
and tools that software developers will want to use.

Acknowledgements. The opinions expressed in this talk are mine, but I have
been incredibly fortunate to work with many extremely knowledgeable and ca-
pable software professionals over the past twenty years, both in academia and in
industry. There are too many to mention all of them, but I do need to acknowl-
edge my gratitude to: Mark Lawford, Tom Maibaum, Paul Joannou, and Dave
Parnas for the hours of discussion (not to mention arguments) and collaboration,
especially over the past ten years. Also, my colleagues Rick Hohendorf, Glenn
Archinoff, Dominic Chan, David Lau, Greg Moum, Mike Viola, Jeff McDougall,
David Tremaine, Peter Froebel and Alanna Wong, showed me how to approach
software engineering as a true engineering discipline. Thanks to all of you!
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Abstract. Abstraction is the key when learning behavioral models of
realistic systems. Hence, in most practical applications where automata
learning is used to construct models of software components, researchers
manually define abstractions which, depending on the history, map a
large set of concrete events to a small set of abstract events that can be
handled by automata learning tools. In this article, we show how such
abstractions can be constructed fully automatically for a restricted class
of extended finite state machines in which one can test for equality of
data parameters, but no operations on data are allowed. Our approach
uses counterexample-guided abstraction refinement: whenever the cur-
rent abstraction is too coarse and induces nondeterministic behavior,
the abstraction is refined automatically. Using Tomte, a prototype tool
implementing our algorithm, we have succeeded to learn – fully auto-
matically – models of several realistic software components, including
the biometric passport and the SIP protocol.

1 Introduction

The problem to build a state machine model of a system by providing inputs to it
and observing the resulting outputs, often referred to as black box system iden-
tification, is both fundamental and of clear practical interest. A major challenge
is to let computers perform this task in a rigorous manner for systems with large
numbers of states. Many techniques for constructing models from observation
of component behavior have been proposed, for instance in [3,20,10]. The most
efficient such techniques use the setup of active learning, where a model of a
system is learned by actively performing experiments on that system. LearnLib
[20,11,17], for instance, the winner of the 2010 Zulu competition on regular infer-
ence, is currently able to learn state machines with at most 10,000 states. During
the last few years important developments have taken place on the borderline

� Supported by STW project 11763 Integrating Testing And Learning of Interface
Automata (ITALIA) and EU FP7 grant no 214755 (QUASIMODO).

�� Supported by NWO/EW project 612.064.610 Abstraction Refinement for Timed
Systems (ARTS).
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of verification, model-based testing and automata learning, see e.g. [4,15,20].
There are many reasons to expect that by combining ideas from these three
areas it will become possible to learn models of realistic software components
with state-spaces that are many orders of magnitude larger than what tools can
currently handle. Tools that are able to infer state machine models automati-
cally by systematically “pushing buttons” and recording outputs have numerous
applications in different domains. For instance, they support understanding and
analyzing legacy software, regression testing of software components [13], proto-
col conformance testing based on reference implementations, reverse engineering
of proprietary/classified protocols, fuzz testing of protocol implementations [8],
and inference of botnet protocols [6].

Abstraction turns out to be the key for scaling existing automata learning
methods to realistic applications. Dawn Song et al [6], for instance, succeeded
to infer models of realistic botnet command and control protocols by placing an
emulator between botnet servers and the learning software, which concretizes
the alphabet symbols into valid network messages and sends them to botnet
servers. When responses are received, the emulator does the opposite — it ab-
stracts the reponse messages into the output alphabet and passes them on to
the learning software. The idea of an intermediate component that takes care of
abstraction is very natural and is used, implicitly or explicitly, in many case stud-
ies on automata learning. Aarts, Jonsson and Uijen [1] formalized the concept
of such an intermediate abstraction component. Inspired by ideas from predi-
cate abstraction [16], they defined the notion of a mapper A, which is placed
in between the teacher M and the learner, and transforms the interface of the
teacher by an abstraction that maps (in a history dependent manner) the large
set of actions of the teacher into a small set of abstract actions. By combining
the abstract machine H learned in this way with information about the mapper
A, they can effectively learn a (symbolically represented) state machine that is
equivalent to M. Aarts et al [1] demonstrated the feasibility of their approach
by learning models of (fragments of) realistic protocols such as SIP and TCP
[1], and of the new biometric passport [2]. The learned SIP model is an extended
finite state machine with 29 states, 3741 transitions, and 17 state variables with
various types (booleans, enumerated types, (long) integers, character strings,..).
This corresponds to a state machine with an astronomical number of states and
transitions, thus far fully out of reach of automata learning techniques.

In this article, we present an algorithm that is able to compute appropriate
abstractions for a restricted class of system models. We also report on a pro-
totype implementation of our algorithm named Tomte, after the creature that
shrank Nils Holgersson into a gnome and (after numerous adventures) changed
him back to his normal size again. Using Tomte, we have succeeded to learn
fully automatically models of several realistic software components, including
the biometric passport and the SIP protocol.

Nondeterminism arises naturally when we apply abstraction: it may occur
that the behavior of a teacher or system-under-test (SUT) is fully deterministic
but that due to the mapper (which, for instance, abstracts from the value of
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certain input parameters), the SUT appears to behave nondeterministically from
the perspective of the learner. We use LearnLib as our basic learning tool and
therefore the abstraction of the SUT may not exhibit any nondeterminism: if
it does then LearnLib crashes and we have to refine the abstraction. This is
exactly what has been done repeatedly during the manual construction of the
abstraction mappings in the case studies of [1]. We formalize this procedure and
describe the construction of the mapper in terms of a counterexample guided
abstraction refinement (CEGAR) procedure, similar to the approach developed
by Clarke et al [7] in the context of model checking. The idea to use CEGAR
for learning state machines has been explored recently by Howar at al [12], who
developed and implemented a CEGAR procedure for the special case in which
the abstraction is static and does not depend on the execution history. Our
approach is applicable to a much richer class of systems, which for instance
includes the SIP protocol and the various components of the Alternating Bit
Protocol.

Our algorithm applies to a class of extended finite state machines, which
we call scalarset Mealy machines, in which one can test for equality of data
parameters, but no operations on data are allowed. The notion of a scalarset
data type originates from model checking, where it has been used for symmetry
reduction [14]. Scalarsets also motivated the recent work of [5], which establishes
a canonical form for a variation of our scalarset automata. Currently, Tomte can
learn SUTs that may only remember the last and first occurrence of a parameter.
We expect that it will be relatively easy to dispose of this restriction. We also
expect that our CEGAR based approach can be further extended to systems that
may apply simple or known operations on data, using technology for automatic
detection of likely invariants, such as Daikon [9].

Even though the class of systems to which our approach currently
applies is limited, the fact that we are able to learn models of systems with
data fully automatically is a major step towards a practically useful technology
for automatic learning of models of software components. The Tomte tool
and all models that we used in our experiments are available via
www.italia.cs.ru.nl/tools. A full version of this article including proofs is
available via http://www.italia.cs.ru.nl/publications/

2 Mealy Machines

We will use Mealy machines to model SUTs. A (nondeterministic) Mealy ma-
chine (MM) is a tuple M = 〈I, O,Q, q0,→〉, where I, O, and Q are nonempty
sets of input symbols, output symbols, and states, respectively, q0 ∈ Q is the

initial state, and→⊆ Q×I×O×Q is the transition relation. We write q
i/o−−→ q′ if

(q, i, o, q′) ∈→, and q
i/o−−→ if there exists a q′ such that q

i/o−−→ q′. Mealy machines
are assumed to be input enabled : for each state q and input i, there exists an

output o such that q
i/o−−→. A Mealy machine is deterministic if for each state q

and input symbol i there is exactly one output symbol o and exactly one state q′

www.italia.cs.ru.nl/tools
http://www.italia.cs.ru.nl/publications/
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such that q
i/o−−→ q′. We say that a Mealy machine is finite if the set Q of states

and the set I of inputs are finite.
Intuitively, at any point in time, a Mealy machine is in some state q ∈ Q. It

is possible to give inputs to the machine by supplying an input symbol i ∈ I.

The machine then (nondeterministically) selects a transition q
i/o−−→ q′, produces

output symbol o, and transforms itself to the new state q′.

Example 1. Figure 1 depicts a Mealy machine M = 〈I, O,Q, q0,→〉 that we
will use as a running example in the article. M describes a simple login pro-
cedure in which a user may choose a login name and password once, and then
may use these values for subsequent logins. Let L = {INIT,OUT, IN} be the

Fig. 1. Mealy machine

set of location names used in the diagram. Then the set of states is given
by Q = L × N × N, the initial state is q0 = (INIT, 0, 0), the set of inputs
is I = {Register(i, p), Login(i, p), Logout | i, p ∈ N} and the set of outputs is
O = {OK,NOK}. In Section 4, we will formally define the symbolic representa-
tion used in Figure 1 and its translation to Mealy machines, but the reader will
have no difficulty to associate a transition relation→ to the diagram of Figure 1,
assuming that in a state (l, i, p), i records the value of variable ID, and p records
the value of variable PW.

The transition relation of a Mealy machine is extended to sequences by defining
u/s⇒ to be the least relation that satisfies, for q, q′, q′′ ∈ Q, u ∈ I∗, s ∈ O∗, i ∈ I,
and o ∈ O,

– q
ε/ε⇒ q, and

– if q
i/o→ q′ and q′

u/s⇒ q′′ then q
i u/o s⇒ q′′.

Here we use ε to denote the empty sequence. Observe that q
u/s⇒ q′ implies

|u| = |s|. A state q ∈ Q is called reachable if q0
u/s⇒ q, for some u and s.

An observation over input symbols I and output symbols O is a pair (u, s) ∈
I∗×O∗ such that sequences u and s have the same length. For q ∈ Q, we define
obsM(q), the set of observations ofM from state q, by

obsM(q) = {(u, s) ∈ I∗ ×O∗ | ∃q′ : q u/s⇒ q′}.
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We write obsM as a shorthand for obsM(q0). Note that, since Mealy machines are
input enabled, obsM(q) contains at least one pair (u, s), for each input sequence
u ∈ I∗. We call M behavior deterministic if obsM contains exactly one pair
(u, s), for each u ∈ I∗. It is easy to see that a deterministic Mealy machine is
also behavior deterministic.

Two states q, q′ ∈ Q are observation equivalent, denoted q ≈ q′, if obsM(q) =
obsM(q′). Two Mealy machinesM1 andM2 with the same sets of input symbols
I are observation equivalent, notation M1 ≈ M2, if obsM1 = obsM2 . We say
that M1 ≤M2 if obsM1 ⊆ obsM2 .

Lemma 1. If M1 ≤M2 and M2 is behavior deterministic then M1 ≈M2.

We say that a Mealy machine is finitary if it is observation equivalent to a finite
Mealy machine.

3 Inference and Abstraction of Mealy Machines

In this section, we present slight generalizations of the active learning framework
of Angluin [3] and of the theory of abstractions of Aarts, Jonsson and Uijen [1].

3.1 Inference of Mealy Machines

We assume there is a teacher, who knows a behavior deterministic Mealy machine
M = 〈I, O,Q, q0,→〉, and a learner, who initially has no knowledge about M,
except for its sets I and O of input and output symbols. The teacher maintains
the current state of M using a state variable of type Q, which at the beginning
is set to q0. The learner can ask three types of queries to the teacher:

– An output query i ∈ I.

Upon receiving output query i, the teacher picks a transition q
i/o→ q′, where

q is the current state, returns output o ∈ O as answer to the learner, and
updates its current state to q′.

– A reset query.
Upon receiving a reset query the teacher resets its current state to q0.

– An inclusion query H, where H is a Mealy machine.
Upon receiving inclusion query H, the teacher will answer yes if the hy-
pothesized Mealy machine H is correct, that is, M ≤ H, or else supply a
counterexample, which is an observation (u, s) ∈ obsM − obsH.

Note that inclusion queries are more general than the equivalence queries used
by Angluin [3]. However, ifM≤H andH is behavior deterministic thenM≈ H
by Lemma 1. Hence, for behavior deterministic Mealy machines, a hypothesis is
correct in our setting iff it is correct in the settings of Angluin. The reason for our
generalization will be discussed in Section 3.2. The typical behavior of a learner
is to start by asking sequences of output queries (alternated with resets) until
a “stable” hypothesis H can be built from the answers. After that an inclusion
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query is made to find out whether H is correct. If the answer is yes then the
learner has succeeded. Otherwise the returned counterexample is used to perform
subsequent output queries until converging to a new hypothesized automaton,
which is supplied in an inclusion query, etc.

For finitary, behavior deterministic Mealy machines, the above problem is
well understood. The L∗ algorithm, which has been adapted to Mealy machines
by Niese [18], generates finite, deterministic hypotheses H that are the mini-
mal Mealy machines that agree with a performed set of output queries. Since in
practice a SUT cannot answer equivalence or inclusion queries, LearnLib “ap-
proximates” such queries by generating a long test sequence that is computed
using standard methods such as random walk or the W-method. The algorithms
have been implemented in the LearnLib tool [19], developed at the Technical
University Dortmund.

3.2 Inference Using Abstraction

Existing implementations of inference algorithms only proved effective when ap-
plied to machines with small alphabets (sets of input and output symbols).
Practical systems, however, typically have large alphabets, e.g. inputs and out-
puts with data parameters of type integer or string. In order to infer large or
infinite-state MMs, we divide the concrete input domain into a small number of
abstract equivalence classes in a state-dependent manner. We place a mapper in
between the teacher and the learner, which translates the concrete symbols in I
and O to abstract symbols in X and Y , and vice versa. The task of the learner
is then reduced to infering a “small” MM with alphabet X and Y .

3.3 Mappers

The behavior of the intermediate component is fully determined by the notion of
a mapper. A mapper encompasses both concrete and abstract sets of input and
output symbols, a set of states and a transition function that tells us how the
occurrence of a concrete symbol affects the state, and an abstraction function
which, depending on the state, maps concrete to abstract symbols.

Definition 1 (Mapper). A mapper for a set of inputs I and a set of outputs
O is a tuple A = 〈I, O,R, r0, δ,X, Y, abstr〉, where

– I and O are disjoint sets of concrete input and output symbols,
– R is a set of mapper states,
– r0 ∈ R is an initial mapper state,
– δ : R× (I ∪O)→ R is a transition function; we write r

a→ r′ if δ(r, a) = r′,
– X and Y are finite sets of abstract input and output symbols, and
– abstr : R×(I∪O)→ (X∪Y ) is an abstraction function that preserves inputs

and outputs, that is, for all a ∈ I ∪O and r ∈ R, a ∈ I ⇔ abstr(r, a) ∈ X.

We say that mapper A is output-predicting if, for all o, o′ ∈ O, abstr(r, o) =
abstr(r, o′)⇒ o = o′, that is, abstr is injective on outputs for fixed r.
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Example 2. We define a mapper A = 〈I, O,R, r0, δ,X, Y, abstr〉 for the Mealy
machine M of Example 1. The sets I and O of the mapper are the same as
for M. The mapper records the login name and password selected by the user:
R = (N ∪ {⊥}) × (N ∪ {⊥}). Initially, no login name and password have been
selected: r0 = (⊥,⊥). The state of the mapper only changes when a Register
input occurs in the initial state:

δ((i, p), a) =

{
(i′, p′) if (i, p) = (⊥,⊥) ∧ a = Register(i′, p′)
(i, p) if (i, p) �= (⊥,⊥) ∨ a �∈ {Register(i′, p′) | i′, p′ ∈ N}.

The abstraction forgets the parameters of the input actions, and only records
whether a login is correct or wrong: X = {Register,CLogin,WLogin, Logout} and
Y = O. The abstraction function abstr is defined in the obvious way, the only
interesting case is the Login input:

abstr((i, p), Login(i′, p′)) =

{
CLogin if (i, p) = (i′, p′)
WLogin otherwise

Mapper A is output predicting since abstr acts as the identity function on
outputs.

A mapper allows us to abstract a Mealy machine with concrete symbols in I
and O into a Mealy machine with abstract symbols in X and Y , and, conversely,
to concretize a Mealy machine with symbols in X and Y into a Mealy machine
with symbols in I and O. Basically, the abstraction of Mealy machine M via
mapperA is the Cartesian product of the underlying transition systems, in which
the abstraction function is used to convert concrete symbols into abstract ones.

Definition 2 (Abstraction). Let M = 〈I, O,Q, q0,→〉 be a Mealy machine
and let A = 〈I, O,R, r0, δ,X, Y, abstr〉 be a mapper. Then αA(M), the abstrac-
tion of M via A, is the Mealy machine 〈X,Y ∪ {⊥}, Q×R, (q0, r0),→′〉, where
→′ is given by the rules

q
i/o−−→ q′, r

i−→ r′ o→ r′′, abstr(r, i) = x, abstr(r′, o) = y

(q, r)
x/y−−→′ (q′, r′′)

� ∃i ∈ I : abstr (r, i) = x

(q, r)
x/⊥−−−→′ (q, r)

The second rule is required to ensure that αA(M) is input enabled. Given some
state of the mapper, it may occur that for some abstract input action x there
is no corresponding concrete input action i. In this case, an input x triggers a
special “undefined” output ⊥ and leads the state unchanged.

Example 3. Consider the abstraction of the Mealy machineM of Example 1 via
the mapper A of Example 2. States of the abstract Mealy machine αA(M) have
the form ((l, i, p), (i′, p′)) with l ∈ L and i, p, i′, p′ ∈ N. It is easy to see that,
for any reachable state, if l = INIT then (i, p) = (0, 0) ∧ (i′, p′) = (⊥,⊥) else
(i, p) = (i′, p′). In fact, αA(M) is observation equivalent to the deterministic
Mealy machine H of Figure 2. Hence αA(M) is behavior deterministic. Note
that, by the second rule in Definition 2, an abstract input CLogin in the initial
state triggers an output ⊥, since in this state there exists no concrete input
action that abstracts to CLogin.
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Fig. 2. Abstract Mealy machine for login procedure

We now define the concretization operator, which is the dual of the abstraction
operator. For a given mapper A, the corresponding concretization operator turns
any abstract MM with symbols in X and Y into a concrete MM with symbols in
I and O. The concretization of MM H via mapper A is the Cartesian product
of the underlying transition systems, in which the abstraction function is used
to convert abstract symbols into concrete ones.

Definition 3 (Concretization). Let H = 〈X,Y ∪ {⊥}, H, h0,→〉 be a Mealy
machine and let A = 〈I, O,R, r0, δ,X, Y, abstr〉 be a mapper for I and O. Then
γA(H), the concretization of H via A, is the Mealy machine 〈I, O ∪ {⊥}, R ×
H, (r0, h0),→′′〉, where →′′ is given by the rules

r
i−→ r′

o−→ r′′, abstr (r, i) = x, abstr (r′, o) = y, h
x/y−−→ h′

(r, h)
i/o−−→′′ (r′′, h′)

r
i−→ r′, abstr(r, i) = x, h

x/y−−→ h′, � ∃o ∈ O : abstr(r′, o) = y

(r, h)
i/⊥−−→′′ (r, h)

The second rule is required to ensure the concretization γA(H) is input enabled
and indeed a Mealy machine.

Example 4. If we take the abstract MM H for the login procedure displayed in
Figure 2 and apply the concretization induced by mapper A of Example 2, the
resulting Mealy machine γA(H) is observation equivalent to the concrete MM
M displayed in Figure 1. Note that the transitions with output ⊥ in H play no
role in γA(H) since there exists no concrete output that is abstracted to ⊥. Also
note that in this specific example the second rule of Definition 3 does not play
a role, since abstr acts as the identity function on outputs.

The next lemma is a direct consequence of the definitions.

Lemma 2. Suppose H is a deterministic Mealy machine and A is an output-
predicting mapper. Then γA(H) is deterministic.

The following key result estabishes the duality of the concretization and abstrac-
tion operators.

Theorem 1. Suppose αA(M) ≤ H. Then M≤ γA(H).
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3.4 The Behavior of the Mapper Module

We are now prepared to establish that, by using an intermediate mapper compo-
nent, a learner can indeed learn a correct model of the behavior of the teacher.
To begin with, we describe how a mapper A = 〈I, O,R, r0, δ,X, Y, abstr〉 fully
determines the behavior of the intermediate mapper component. The mapper
component for A maintains a state variable of type R, which initially is set to
r0. The behavior of the mapper component is defined as follows:

– Whenever the mapper is in a state r and receives an output query x ∈ X
from the learner, it nondeterministically picks a concrete input symbol i ∈ I
such that abstr(r, i) = x, forwards i as an output query to the teacher, and
jumps to state r′ = δ(r, i). If there exists no i such that abstr (r, i) = x then
the mapper returns output ⊥ to the learner.

– Whenever the mapper is in state r′ and receives a concrete answer o from
the teacher, it forwards the abstract version abstr(r′, o) to the learner and
jumps to state r′′ = δ(r′, o).

– Whenever the mapper receives a reset query from the learner, it changes its
current state to r0, and forwards a reset query to the teacher.

– Whenever the mapper receives an inclusion query H from the learner, it
answers yes if αA(M) ≤ H, or else answers no and supplies a counterexample
(u, s) ∈ obsαA(M) − obsH.

From the perspective of a learner, a teacher forM and a mapper component for
A together behave exactly like a teacher for αA(M). Hence, if αA(M) is fini-
tary and behavior deterministic, LearnLib may be used to infer a deterministic
Mealy machine H that is equivalent to αA(M). Our mapper uses randomization
to select concrete input symbols for the abstract input symbols contained in
LearnLib equivalence queries for H. More research will be required to find out
whether this provides a good approach for testing αA(M) ≤ H. Whenever H is
correct for αA(M), then it follows by Theorem 1 that γA(H) is correct for M.
In general, γA(H) will not be deterministic: it provides an over-approximation
of the behavior ofM. However, according to Lemma 2, if H is deterministic and
A is output-predicting, then γA(H) is also deterministic. Lemma 1 then implies
M≈ γA(H).

4 The World of Tomte

Our general approach for using abstraction in automata learning is phrased most
naturally at the semantic level. However, if we want to devise effective algorithms
and implement them, we must restrict attention to a class of automata and
mappers that can be finitely represented. In this section, we describe the class
of SUTs that our tool can learn, as well as the classes of mappers that it uses.

Below we define scalarset Mealy machines. The scalarset datatype was in-
troduced by Ip and Dill [14] as part of their work on symmetry reduction in
verification. Operations on scalarsets are restricted so that states are guaran-
teed to have the same future behaviors, up to permutation of the elements of
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the scalarsets. On scalarsets no operations are allowed except for constants, and
the only predicate symbol that may be used is equality.

We assume a universe V of variables. Each variable v ∈ V has a domain
type(v) ⊆ N ∪ {⊥}, where N is the set of natural numbers and ⊥ denotes the
undefined value. A valuation for a set V ⊆ V of variables is a function ξ that
maps each variable in V to an element of its domain. We write Val(V ) for the set
of all valuations for V . We also assume a finite set C of constants and a function
γ : C → N that assigns a value to each constant. If c ∈ C is a constant then
we define type(c) = {γ(c)}. A term over V is either a variable or a constant,
that is, an element of C ∪ V . We write T for the set of terms over V . If t is a
term over V and ξ is a valuation for V then we write �t�ξ for the value to which
t evaluates: if t ∈ V then �t� = ξ(t) and if t ∈ C then �t� = γ(t). A formula
ϕ over V is a Boolean combination of expressions of the form t = t′, where t
and t′ are terms over V . We write G for the set of all formulas over V . If ξ is a
valuation for V and ϕ is a formula over V , then we write ξ |= ϕ to denote that ξ
satisfies ϕ. We assume a set E of event primitives and for each event primitive
ε an arity arity(ε) ∈ N. An event term for ε ∈ E is an expression ε(t1, . . . , tn)
where t1, . . . , tn are terms and n = arity(ε). We write ET for the set of event
terms. An event signature Σ is a pair 〈TI , TO〉, where TI and TO are finite sets
of event terms such that TI ∩ TO = ∅ and each term in TI ∪ TO is of the form
ε(p1, . . . , pn) with p1, . . . , pn pairwise different variables with type(pi) ⊆ N, for
each i. We require that the event primitives as well as the variables of different
event terms in TI ∪ TO are distinct. We refer to the variables occurring in an
event signature as parameters.

Definition 4. A scalarset Mealy machine (SMM) is a tuple S = 〈Σ, V, L, l0, Γ 〉,
where

– Σ = 〈TI , TO〉 is an event signature,
– V ⊆ V is a finite set of state variables, with ⊥∈ type(v), for each v ∈ V ; we

require that variables from V do not occur as parameters in Σ,
– L is a finite set of locations,
– l0 ∈ L is the initial location,
– Γ ⊆ L× TI ×G × (V → T )× ET ×L is a finite set of transitions. For each

transition 〈l, εI(p1, . . . , pk), g, �, εO(u1, . . . , ul), l
′〉 ∈ Γ , we refer to l as the

source, g as the guard, � as the update, and l′ as the target. We require that
g is a formula over V ∪{p1, . . . , pk}, for each v, �(v) ∈ V ∪C ∪ {p1, . . . , pk}
and type(�(v)) ⊆ type(v), and there exists an event term εO(q1, . . . , ql) ∈ TO

such that, for each i, ui is a term over V with type(ui) ⊆ type(qi) ∪ {⊥},

We say S is deterministic if, for all distinct transitions τ1 = 〈l1, eI1, g1, �1, e01, l′1〉
and τ2 = 〈l2, eI2, g2, �2, e02, l′2〉 in Γ , l1 = l2 and eI1 = eI2 implies g1 ∧ g2 ≡ false.

To each SMM S we associate a Mealy machine �S� in the obvious way. The
states of �S� are pairs of a location l and a valuation ξ of the state variables.
A transition may fire if its guard, which may contain both state variables and
parameters of the input action, evaluates to true. Then a new valuation of the
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state variables is computed using the update part of the transition. This new
valuation also determines the values of the parameters of the output action.

Definition 5 (Semantics SMM). The semantics of an event term
ε(p1, . . . , pk) is the set �ε(p1, . . . , pk)� = {ε(d1, · · · , dk) | di ∈ type(pi), 1 ≤ i ≤
k}. The semantics of a set T of event terms is defined by pointwise extension:
�T � =

⋃
e∈T �e�.

Let S = 〈Σ, V, L, l0, Γ 〉 be a SMM with Σ = 〈TI , TO〉. The semantics of S,
denoted �S�, is the Mealy machine 〈I, O,Q, q0,→〉, where I = �TI�, O = �TO�,
Q = L×Val(V ), q0 = (l0, ξ0), with ξ0(v) =⊥, for v ∈ V , and →⊆ Q× I×O×Q
is given by the rule

〈l, εI(p1, . . . , pk), g, �, εO(u1, . . . , u�), l
′〉 ∈ Γ

∀i ≤ k, ι(pi) = di ξ ∪ ι |= g
ξ′ = (ξ ∪ γ ∪ ι) ◦ �
∀i ≤ �, �ui�ξ′ = d′i

(l, ξ)
εI(d1,...,dk)/εO(d′

1,...,d
′
�)−−−−−−−−−−−−−−−−→ (l′, ξ′)

Our tool can infer models of SUTs that can be defined using deterministic SMMs
that only record the first and the last occurrence of an input parameter.

Definition 6 (Restricted SMMs). Let S = 〈Σ, V, L, l0, Γ 〉 be a SMM. Vari-
able v records the last occurrence of input parameter p if for each transition
〈l, εI(p1, . . . , pk), g, �, e, l′〉 ∈ Γ , if p ∈ {p1, . . . , pk} then �(v) = p else �(v) = v.
Moreover, �(w) = v implies w = v. Variable v records the first occurrence
of input parameter p if for each transition 〈l, εI(p1, . . . , pk), g, �, e, l′〉 ∈ Γ , if
p ∈ {p1, . . . , pk} and g ⇒ v =⊥ holds then �(v) = p else �(v) = v. Moreover,
�(w) = v implies w = v. We say that S only records the first and last occurrence
of parameters if, whenever �(v) = p in some transition, v either records the first
or the last occurrence of p.

For each event signature, we introduce a family of symbolic abstractions, parame-
trized by what we call an abstraction table. For each parameter p, an abstraction
table contains a list of variables and constants. If v occurs in the list for p then,
intuitively, this means that for the future behavior of the SUT it may be relevant
whether p equals v or not.

Definition 7 (Abstraction Table). Let Σ = 〈TI , TO〉 be an event signature
and let P and U be the sets of parameters that occur in TI and TO, respectively.
For each p ∈ P , let vfp and vlp be fresh variables with type(vfp ) = type(vlp) =

type(p)∪{⊥}, and let V f = {vfp | p ∈ P} and V l = {vlp | p ∈ P}. An abstraction

table for Σ is a function F : P∪U → (V f∪V l∪C)∗, such that, for each p ∈ P∪U ,
all elements of sequence F (p) are distinct, and, for each p ∈ U , F (p) lists all the
elements of V f ∪ V l ∪ C.

Each abstraction table F induces a mapper. This mapper records, for each pa-
rameter p, the first and last value of this parameter in a run, using variables vfp
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and vlp, respectively. In order to compute the abstract value for a given concrete
value d for a parameter p, the mapper checks for the first variable or constant in
sequence F (p) with value d. If there is such a variable or constant, the mapper
returns the index in F (p), otherwise it returns ⊥.

Definition 8 (Mapper Induced by Abstraction Table). Let Σ = 〈TI , TO〉
be a signature and let F be an abstraction table for Σ. Let P be the set of
parameters in TI and let U be the set of parameters in TO. Let, for p ∈ P ∪
U , p′ be a fresh variable with type(p′) = {0, . . . , |F (p)| − 1} ∪ {⊥}. Let TX =
{ε(p′1, . . . , p′k) | ε(p1, . . . , pk) ∈ TI} and TY = {ε(p′1, . . . , p′l) | ε(p1, . . . , pl) ∈
TO}. Then the mapper AF

Σ = 〈I, O,R, r0, δ,X, Y, abstr〉 is defined as follows:

– I = �TI�, O = �TO�, X = �TX�, and Y = �TY �.
– R = Val(V f ∪ V l) and r0(v) =⊥, for all v ∈ V f ∪ V l.
– → and abstr are defined as follows, for all r ∈ R,

1. Let o = εO(d1, . . . , dk) and let εO(q1, . . . , qk) ∈ TO. Then r
o−→ r and

abstr(r, o) = εO(first(�F (q1)�r, d1), . . . ,first(�F (qk)�r, dk)), where for a
sequence of values σ and a value d, first(σ, d) equals ⊥ if d does not occur
in σ, and equals the smallest index m with σm = d otherwise, and for a
sequence of terms ρ = t1 · · · tn and valuation ξ, �ρ�ξ = �t1�ξ · · · �tn�ξ.

2. Let i = εI(d1, . . . , dk), εI(p1, . . . , pk) ∈ TI , r0 = r and, for 1 ≤ j ≤ k,

rj =

{
rj−1[dj/v

f
pj
][dj/v

l
pj
] if rj−1(v

f
pj
) =⊥

rj−1[dj/v
l
pj
] otherwise

(1)

Then r
i−→ rk and abstr(r, i) = εI(d

′
1, . . . , d

′
k), where, for 1 ≤ j ≤ k,

d′j = first(�F (pj)�rj−1, dj).

Strictly speaking, the mappers AF
Σ introduced above are not output-predicting:

in each state r of the mapper there are infinitely many concrete outputs that
are mapped to the abstract output ⊥. However, in SUTs whose behavior can
be described by scalarset Mealy machines, the only possible values for output
parameters are constants and values of previously received inputs. As a result,
the mapper will never send an abstract output with a parameter⊥ to the learner.
This in turn implies that in the deterministic hypothesis H generated by the
learner, ⊥ will not occur as an output parameter. (Hypotheses in LearnLib only
contain outputs actions that have been observed in some experiment.) Since AF

Σ

is output-predicting for all the other outputs, it follows by Lemma 2 that the
concretization γAF

Σ
(H) is deterministic.

The two theorems below solve (at least in theory) the problem of learning a
deterministic symbolic Mealy machine S that only records the first and last oc-
currence of parameters. By Theorems 2 and 3, we know thatM = αAFull(Σ)

Σ

(�S�)

is finitary and behavior deterministic. Thus we may apply the approach de-

scribed in Section 3.4 with mapper AFull(Σ)
Σ in combination with any tool that

is able to learn finite deterministic Mealy machines. The only problem is that
in practice the state-space of M is too large, and beyond what state-of-the-art
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learning tools can handle. The proofs of Theorems 2 and 3 exploit the symme-
try that is present in SMMs: using constant preserving automorphisms [14] we
exhibit a finite bisimulation quotient and behavior determinacy.

Theorem 2. Let S = 〈Σ, V, L, l0, Γ 〉 be a SMM that only records the first
and last occurrence of parameters. Let F be an abstraction table for Σ. Then
αAF

Σ
(�S�) is finitary.

Theorem 3. Let S = 〈Σ, V, L, l0, Γ 〉 be a deterministic SMM that only records
the first and last occurrence of parameters. Then αAFull(Σ)

Σ

(�S�) is behavior deter-

ministic.

Example 5. Consider our running example of a login procedure. The mapper
induced by the full abstraction table has 8 state variables, which record the first
and last values of 4 parameters. This means that for each parameter there are
9 abstract values. Hence, for each of the event primitives Login and Register,
we need 81 abstract input actions. Altogether we need 164 abstract inputs.
The performance of LearnLib degrades severely if the number of inputs exceeds
20, and learning models with 164 inputs typically is not possible. Example 2
presented an optimal abstraction with just 4 inputs. In the next section, we
present a CEGAR approach that allows us to infer an abstraction with 7 inputs.

5 Counterexample-Guided Abstraction Refinement

In order to avoid the practical problems that arise with the abstraction table
Full(Σ), we take an approach based on counterexample-guided abstraction. We
start with the simplest mapper, which is induced by the abstraction table F with
F (p) = ε, for all p ∈ P , and only refine the abstraction (i.e., add an element to
the table) when we have to. For any table F , αAF

Σ
(�S�) is finitary by Theorem 2.

If, moreover, αAF
Σ
(�S�) is behavior deterministic then LearnLib can find a correct

hypothesis and we are done. Otherwise, we refine the abstraction by adding an
entry to our table. Since there are only finitely many possible abstractions and
the abstraction that corresponds to the full table is behavior deterministic, by
Theorem 3, our CEGAR approach will always terminate.

During the construction of a hypothesis we will not observe nondeterministic
behavior, even when table F is not full: in Tomte the mapper always chooses
a fresh concrete value whenever it receives an abstract action with parameter
value ⊥, i.e. the mapper induced by F will behave exactly as the mapper induced
by Full(Σ), except that the set of abstract actions is smaller. In contrast, during
the testing phase Tomte selects random values from a small domain. In this way,
we ensure that the full concretization γA(H) is explored. If the teacher responds
with a counterexample (u, s), with u = i1, . . . , in and s = o1, . . . , on, we may
face a problem: the counterexample may be due to the fact that H is incorrect,
but it may also be due to the fact that αAF

Σ
(�S�) is not behavior-deterministic.

In order to figure out the nature of the counterexample, we first construct the
unique execution of AF

Σ with trace i1o1i2o2 · · · inon. Then we assign a color to
each occurrence of a parameter value in this execution:
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Definition 9. Let r
i−→ r′ be a transition of AF

Σ with i = εI(d1, . . . , dk) and
let εI(p1, . . . , pk) ∈ TI. Let abstr(r, i) = εI(d

′
1, . . . , d

′
k). Then we say that the

occurrence of value dj is green if d′j �=⊥. Occurrence of value dj is black if
d′j =⊥ and dj equals the value of some constant or occurs in the codomain of
state rj−1 (where rj−1 is defined as in equation (1) above). Occurrence of value
dj is red if it is neither green nor black.

Intuitively, an occurrence of a value of an input parameter p is green if it equals
a value of a previous parameter or constant that is listed in the abstraction
table, an occurrence is black if it equals a previous value that is not listed in
the abstraction table, and an occurrence is red if it is fresh. The mapper now
does a new experiment on the SUT in which all the black occurrences of input
parameters in the trace are converted into fresh “red” occurrences. If, after
abstraction, the trace of the original counterexample and the outcome of the
new experiment are the same, then hypothesis H is incorrect and we forward
the abstract counterexample to the learner. But if they are different then we may
conclude that αAF

Σ
(S) is not behavior-deterministic and the current abstraction

is too coarse. In this case, the original counterexample contains at least one black
occurrence, which determines a new entry that we need to add to the abstraction
table.

Algorithm 1. Abstraction refinement

Input: Counterexample c = i1 · · · in
Output: Pair (p, v) with v new entry for F (p) in abstraction table
1: while abstraction not found do
2: Pick a black value b from c
3: c′ := c, where b is set to a fresh value
4: if output from running c′ on SUT is different from output of c then
5: c′′ := c, where source(b) is set to a fresh value
6: if output from running c′′ on SUT is different from output of c then
7: return (param(b), variable(source(b)))
8: else c := c′′

9: end if
10: else c := c′

11: end if
12: end while

The procedure for finding this new abstraction is outlined in Algorithm 1.
Here, for an occurrence b, param(b) gives the corresponding formal parameter,
source(b) gives the previous occurrence b′ which, according to the execution of
AF

Σ , is the source of the value of b, and variable(b) gives the variable in which the
value of b is stored in the execution of AF

Σ . To keep the presentation simple, we
assume here that the set of constants is empty. If changing some black value b
into a fresh value changes the observable output of the SUT, and also a change of
source(b) into a fresh value leads to a change of the observable output, then this
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strongly suggests that it is relevant for the behavior of the SUT whether or not
b and source(b) are equal, and we obtain a new entry for the abstraction table. If
changing the value of either b or source(b) does not change the output, we obtain
a counterexample with fewer black values. If b is the only black value then, due
to the inherent symmetry of SMMs, changing b or source(b) to a fresh value in
both cases leads to a change of observable output. When the new abstraction
entry has been added to the abstraction table, the learner is restarted with the
new abstract alphabet.

6 Experiments

We illustrate the operation of Tomte by means of the Session Initiation Protocol
(SIP) as presented in [1]. Initially, no abstraction for the input is defined in the
learner, which means all parameter values are ⊥. As a result every parameter
in every input action is treated in the same way and the mapper selects a fresh
concrete value, e.g. the abstract input trace IINVITE (⊥, ⊥, ⊥), IACK (⊥, ⊥,
⊥), IPRACK (⊥, ⊥, ⊥), IPRACK (⊥, ⊥, ⊥) is translated to the concrete trace
IINVITE(1, 2, 3), IACK(4, 5, 6), IPRACK(7, 8, 9), IPRACK(10, 11, 12). In
the learning phase queries with distinct parameter values are sent to the SUT,
so that the learner constructs the abstract Mealy machine shown in Figure 3. In

Fig. 3. Hypothesis of SIP protocol

the testing phase parameter values may be duplicated, which may lead to non-
deterministic behavior. The test trace IINVITE, IACK, IPRACK, IPRACK in
Figure 4 leads to an 0200 output that is not foreseen by the hypothesis, which
produces an O481.

Rerunning the trace with distinct values as before leads to an O481 output.
Thus, to resolve this problem, we need to refine the input abstraction. Therefore,
we identify the green and black values in the trace and try to remove black
values. The algorithm first successfully removes black value 1 by replacing the
nine in the IPRACK input with a fresh value and observing the same output
as before. However, removing black value 2 changes the final outcome of the
trace to an O481 output. Also replacing the first 16 with a fresh value gives an
O481 output. As a result, we need to refine the input abstraction by adding an
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Fig. 4. Non-determinism in SIP protocol

Table 1. Learning statistics

System under test Constants/ Input Learning/ States Learning/
Parameters refine- Testing Testing

ments queries time

Alternating Bit Protocol Sender 2/2 1 193/4 7 0.6s/0.1s

Alternating Bit Protocol Receiver 2/2 2 145/3 4 0.4s/0.2s

Alternating Bit Protocol Channel 0/2 0 31/0 2 0.1s/0.0s

Biometric Passport [2] 3/1 3 2199/2607 5 3.9s/32.0s

Session Initiation Protocol [1] 0/3 2 1153/101 14 3.0s/0.9s

Login procedure (Example 1) 0/4 2 283/40 4 0.5s/0.7s

Farmer-Wolf-Goat-Cabbage 4/1 4 610/1279 9 1.7s/16.2s

Palindrome/Repdigit Checker 0/16 9 1941/126 1 2.4s/3.3s

equality check between the first parameter of the last IINVITE message and the
first parameter of an IPRACK message to every IPRACK input. Apart from
refining the input alphabet, every concrete output parameter value is abstracted
to either a constant or a previous occurrence of a parameter. The abstract value
is the index of the corresponding entry in the abstraction table. After every input
abstraction refinement, the learning process needs to be restarted. We proceed
until the learner finishes the inference process without getting interrupted by a
non-deterministic output.

Table 1 gives an overview of the systems we learned with the numbers of
constant and action parameters used in the models, the number of input refine-
ment steps, total numbers of learning and testing queries, number of states of the
learned abstract model, and the time needed for learning and testing (in seconds).
These numbers and times do not include the last equivalence query, in which no
counterexample has been found. In all our experiments, correctness of hypotheses
was tested using random walk testing. The outcomes depend on the return value
of function variable(b) in case b is the first occurrence of a parameter p: vfp or vlp.

Table 1 is based on the optimal choice, which equals vfp for SIP and the Login

Procedure, and vlp for all the other benchmarks. The Biometric Passport case
study [2] has also been learned fully automatically by [12]. All other benchmarks
require history dependent abstractions, and Tomte is the first tool that has been
able to learn these models fully automatically. We have checked that all models
inferred are observation equivalent to the corresponding SUT. For this purpose
we combined the learned model with the abstraction and used the CADP tool
set, http://www.inrialpes.fr/vasy/cadp/, for equivalence checking. Our tool
and all models can be found at http://www.italia.cs.ru.nl/tools.

http://www.inrialpes.fr/vasy/cadp/
http://www.italia.cs.ru.nl/tools
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Abstract. Trace slicing is a transformation technique that reduces the
size of execution traces for the purpose of program analysis and debug-
ging. Based on the appropriate use of antecedents, trace slicing tracks
back reverse dependences and causality along execution traces and then
cuts off irrelevant information that does not influence the data observed
from the trace. In this paper, we describe the first slicing tool for con-
ditional rewrite theories that can be used to drastically reduce complex,
textually-large system computations w.r.t. a user-defined slicing criterion
that selects those data that we want to track back from a given point.

1 Introduction

Software systems commonly generate large and complex execution traces, whose
analysis (or even simple inspection) is extremely time-consuming and, in some
cases, is not feasible to perform by hand. Trace slicing is a technique that sim-
plifies execution traces by focusing on selected execution aspects, which makes
it well suited to program analysis, debugging, and monitoring [6].

Rewriting Logic (RWL) is a very general logical and semantic framework
that is particularly suitable for formalizing highly concurrent, complex systems
(e.g., biological systems [5] and Web systems [1,4]). RWL is efficiently imple-
mented in the high-performance system Maude [7]. Rewriting logic-based tools,
like the Maude-NPA protocol analyzer, Maude LTLR model checker, and the
Java PathExplorer runtime verification tool (just to mention a few [11]), are used
in the analysis and verification of programs and protocols wherein the states are
represented as algebraic entities that use equational logic and the transitions
are represented using conditional rewrite rules. These transitions are performed
modulo conditional equational theories that may also contain algebraic axioms
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D. Giannakopoulou and D. Méry (Eds.): FM 2012, LNCS 7436, pp. 28–32, 2012.
� Springer-Verlag Berlin Heidelberg 2012



Julienne: A Trace Slicer for Conditional Rewrite Theories 29

such as commutativity and associativity. The execution traces produced by such
tools are usually very complex and are therefore not amenable to manual in-
spection. However, not all the information that is in the trace is needed for
analyzing a given piece of information in a given state of the trace. For instance,
consider the following rules 1 that define (a part of) the standard semantics
of a simple imperative language: 1) crl <while B do I, St> => <skip, St>

if <B, St> => false /\ isCommand(I), 2) rl <skip, St> => St, and 3) rl
<false, St> => false. Then, in the execution trace <while false do X :=

X + 1, {}> → <skip, {}> → {}, we can observe that the statement X := X

+ 1 is not relevant to compute the output {}. Therefore, the trace could be
simplified by replacing X := X + 1 with a special variable • and by enforcing
the compatibility condition isCommand(•). This condition guarantees the cor-
rectness of the simplified trace [3]. In other words, any concretization of the
simplified trace (which instantiates the variable • and meets the compatibil-
ity condition) is a valid trace that still generates the target data that we are
observing (in this case, the output {}).

The Julienne slicing tool is based on the conditional slicing technique
described in [3] that slices an input execution trace with regard to a set of tar-
get symbols (which occur in a selected state of the trace), by propagating them
backwards through the trace so that all pieces of information that are not an an-
tecedent of the target symbols are simply discarded. Unlike standard backward
tracing approaches, which are based on a costly, dynamic labeling procedure
[2,10], in [3], the relevant data are traced back by means of a less expensive,
incremental technique of matching refinement. Julienne generalizes and super-
sedes a previous unconditional slicer mentioned in [2]. The system copes with
the extremely rich variety of conditions that occur in Maude theories (i.e., equa-
tional conditions s = t, matching conditions p := t, and rewrite expressions
t ⇒ p) by taking into account the precise way in which Maude mechanizes the
conditional rewriting process so that all those rewrite steps are revisited back-
wards in an instrumented, fine-grained way. In order to formally guarantee the
strong correctness of the generated trace slice, the instantiated conditions of the
equations and rules are recursively processed, which may imply slicing a number
of (originally internal) execution traces, and a Boolean compatibility condition
is carried, which ensures the executability of the sliced rewrite steps.

2 The Slicing Tool Julienne

The slicing tool Julienne is written in Maude and consists of about 170 Maude
function definitions (approximately 1K lines of source code). It is a stand-alone
application (which can be invoked as a Full Maude trace slicing command or
used online through a Java Web service) that correctly handles general rewrite
theories that may contain (conditional) rules and equations, built-in operators,
and algebraic axioms. Julienne also comes with an intuitive Web user interface

1 We use Maude notation (c)rl to introduce (conditional) rewrite rules.
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Fig. 1. Julienne architecture

that is based on the AJAX technology, which allows the slicing engine to be used
through the WWW. It is publicly available at [9].

The architecture of Julienne, which is depicted in Figure 1, consists of three
system modules named IT-Builder, Slicer, and Pretty-Printer.

IT-Builder. The Instrumented Trace Builder module is a pre-processor that
provides an expanded instrumented version of the original trace in which all
reduction steps are explicitly represented, including equational simplification
steps and applications of the matching modulo algorithm. Showing all rewrites
is not only required to successfully apply our methodology, but it can also be
extremely useful for debugging purposes because it allows the user to inspect
the equational simplification subcomputations that occur in a given trace.

Slicer. This module implements the trace slicing method of [3] by using Maude
reflection and meta-level functionality. Specifically, it defines a new meta-level
command called back-sl (backward-slicing) that takes as input an instrumented
trace t→∗ s (given as a Maude term of sort Trace) and a slicing criterion that
represents the target symbols of the state s to be observed. It then delivers (i) a
trace slice in which the data that are not relevant w.r.t. the chosen criterion are
replaced by special •-variables and (ii) a compatibility condition that ensures
the correctness of the generated trace slice. This module is also endowed with a
simple pattern-matching filtering language that helps to select the target symbols
in s without the encumbrance of having to refer to them by their addressing
positions.

Pretty-Printer. This module implements the command prettyPrint, which
provides a human-readable, nicely structured view of the generated trace slice
where the carried compatibility condition can be displayed or hidden, depending
on the interest of the user. Specifically, it delivers a pretty representation of
the trace as a term of sort String that is aimed to favor better inspection and
debugging activities within the Maude environment.

3 Experimental Evaluation and Conclusion

Julienne is the first slicing tool that can be used to analyze execution traces
of RWL-based programs and tools. Julienne greatly reduces the size of the ex-
ecution traces thus making their analysis feasible even in the case of complex,
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real-size problems. We have experimentally evaluated our tool in several case
studies that are available at the Julienne Web site [9] and within the distribu-
tion package, which also contains a user guide, the source files of the slicer, and
related literature.

We have tested Julienne on rather large execution traces, such as the coun-
terexample traces delivered by the Maude LTLR model-checker [8]. We have
used Julienne to slice execution traces of a real-size Webmail application in
order to isolate critical data such as the navigation of a malicious user and the
messages exchanged by a specific Web browser with the Webmail server. Typical
traces for this application consist of sequences of 100 -1000 states, each of which
contains more than 5K characters. In all the experiments, the trace slices that
we obtained show impressive reduction rates (up to ∼ 98%). Other benchmark
programs we have considered include the specification of a fault-tolerant com-
munication protocol, a banking system, and the automated verifier Web-TLR

developed on top of Maude’s model-checker itself. In most cases, the delivered
trace slices were cleansed enough to be easily inspected by hand. It is very im-
portant to note that the slicer does not remove any information that is relevant,
independently of the skills of the user.

With regard to the time required to perform the analyses, our implementation
is extremely time efficient; the elapsed times are small even for very complex
traces and scale linearly. For example, running the slicer for a 20Kb trace w.r.t.
a Maude specification with about 150 rules and equations –with AC rewrites–
took less than 1 second (480.000 rewrites per second on standard hardware,
2.26GHz Intel Core 2 Duo with 4Gb of RAM memory).
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Abstract. The tool Imitator implements the Inverse Method (IM ) for
Timed Automata (TAs). Given a TA A and a tuple π0 of reference val-
uations for timings, IM synthesizes a constraint around π0 where A be-
haves in the same discrete manner. This provides us with a quantitative
measure of robustness of the behavior of A around π0. The new version
Imitator 2.5 integrates the new features of stopwatches (in addition
to standard clocks) and updates (in addition to standard clock resets),
as well as powerful algorithmic improvements for state space reduction.
These new features make the tool well-suited to analyze the robustness
of solutions in several classes of preemptive scheduling problems.

Keywords: Real-Time Systems, Parametric Timed Automata,
Stopwatches.

1 Motivation

Imitator 2.5 (for Inverse Method for Inferring Time AbstracT behaviOR) is
a tool for parameter synthesis in the framework of real-time systems based on
the inverse method IM for Parametric Timed Automata (PTAs). Different from
CEGAR-based methods, this algorithm for parameter synthesis makes use of a
“good” parameter valuation π0 instead of a set of “bad” states [4]. Imitator
takes as input a network of PTAs with stopwatches and a reference valuation π0;
it synthesizes a constraint K on the parameters such that (1) π0 |= K and (2) for
all parameter valuation π satisfying K, the trace set (i.e., the discrete behavior)
of A under π is the same as for A under π0. This provides the system with a
criterion of robustness (see, e.g., [14]) around π0.

PTA

Reference
valuation π0

Imitator Constraint K

Fig. 1. Functional view of Imitator
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History and New Features. A basic implementation named Imitator has
first been proposed, under the form of a Python script calling HyTech [11].
The tool has then been entirely rewritten in Imitator II [3], under the form
of a standalone OCaml program. A number of case studies containing up to 60
timing parameters could be efficiently verified in the purely timed framework.

Since [3], we extended the input formalism to PTAs equipped with stop-
watches : clocks can now be stopped for some time while others keep growing.
Also, we added clock updates: clocks can now be set to arbitrary linear com-
binations of other clocks, parameters and discrete variables. These extensions,
together with powerful algorithmic improvements for state space reduction, allow
us to consider larger classes of case studies, such as scheduling problems.

2 Architecture and Features

The core of Imitator (available in [1] under the GNU GPL license) is written
in OCaml, and interacts with the Parma Polyhedra Library (PPL) [6]. Exact
arithmetics with unbounded precision is used. Imitator takes as input a net-
work of PTAs with stopwatches. The input syntax allows the use of clocks (or
stopwatches), rational-valued discrete variables, and parameters (i.e., unknown
constants) to be used altogether in linear terms, within guards, invariants and
updates. A constraint is output in text format; furthermore, the set of traces
computed by the analysis can be output under a graphical form (using Graphviz)
for case studies with reasonable size (up to a few thousands reachable states).

Imitator implements in particular the following algorithms:

Full reachability analysis. Given a PTA, it computes the reachability graph.
Inverse method. Given a PTA and a reference parameter valuation π0, it com-

putes a constraint K on the parameter guaranteeing the same time-abstract
behavior as under π0 (see Figure 1).

Imitator 2.5 makes use of several algorithmic optimizations. In particular, we
implemented a technique that merges any two states sharing the same discrete
part and such that the union of their constraint on the clocks and parameters
is convex [5]. This optimization preserves the correctness of all our algorithms;
better, the output constraint is then always weaker or equal, i.e., covers a set of
parameter valuations larger or equal. It behaves particularly well in the frame-
work of scheduling problems, where the state space is drastically reduced. Ac-
tually, most of the scheduling examples we consider run out of memory without
this merging technique.

3 Application to Robustness Analysis in Scheduling

Due to the aforementioned state space reduction and the use of stopwatches,
Imitator 2.5 becomes an interesting tool for synthesizing robust conditions for
scheduling problems. Let us illustrate this on a preemptive jobshop example
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given in [2]. The jobshop scheduling problem is a generic resource allocation
problem in which common resources (“machines”) are required at various time
points (and for given duration) by different tasks. For instance, one needs to use
a machine m1 for d1 time units, machine m2 for d2 time units, and so on. The
goal is to find a way (“schedule”) to allocate the resources such that all tasks ter-
minate as early as possible (“minimal makespan”). Let us consider the jobshop
problem {J1, J2} for 2 jobs and 3 machines with: J1 = (m1, d1), (m2, d2), (m3, d3)
and J2 = (m2, d

′
2) with d1 = 3, d2 = 2, d3 = 4, d′2 = 5. There are many possible

schedules. In [2], this problem is modeled as a product A of TAs with stop-
watches, each TA modeling a job. Each schedule corresponds to a branch in the
reachability tree of A. The makespan value corresponds to the duration of the
shortest branch, here 9.

Let us explain how to analyze the robustness of the valuation π0 : {d2 =
2, d′2 = 5} with respect to the makespan value 9. We first consider a parametric
version of A where d2 and d′2 become parameters. In the same spirit as in [9], we
add an observer O, which is a TA synchronized with A, that fires a transition
labeled DEADLINE as soon as a schedule spends more than 9 time units. We
then use Imitator (instead of a CEGAR-like method as in [9]) with A ‖ O
as a model input and π0 as a valuation input. This yields the constraint K:
7 > d′2 ∧ 3 > d2 ∧ d′2 + d2 ≥ 7. By the IM principle, the set of traces (i.e.,
discrete runs) of A ‖ O is always the same, for any point (d2, d

′
2) of K. Since the

makespan for π0 is 9, we know that some branches of the tree do not contain
any DEADLINE label. This holds for each point (d2, d

′
2) of K. The makespan

of the system is thus always at most 9 in K. (In particular, we can increase d2
from 2 to 3, or increase d′2 from 5 to 7 while keeping the makespan less than or
equal to 9.)

All case studies and experiments are described in a research report [15], and
available in [1].

4 Comparison with Related Work

The use of models such as PTAs and parametric Time Petri Nets (TPNs) for solv-
ing scheduling problems has received attention in the past few years. For exam-
ple, Roméo [13] performs model checking for parametric TPNs with stopwatches,
and synthesizes parameter valuations satisfying TCTL formulæ. An extension of
Uppaal allows parametric model checking [7], although the model itself remains
non-parametric. The approach most related to Imitator 2.5 is [9,12], where the
authors infer parametric constraints guaranteeing the feasibility of a schedule,
using PTAs with stopwatches. The main difference between [9,12] and Imitator

relies in our choice of the inverse method, rather than a CEGAR-based method.
First results obtained on the same case studies are incomparable (although sim-
ilar in form), which seems to indicate that the two methods are complementary.
The problem of finding the schedulability region was attacked in analytic terms
in [8]; the size of our examples is rather modest compared to those treated using
such analytic methods. However, in many schedulability problems, no analytic
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solution exists (see, e.g., [16]), and exhaustive simulation is exponential in the
number of jobs. In such cases, symbolic methods as ours and those of [9,12] are
useful to treat critical real-life examples of small size. We are thus involved in a
project [10] with an industrial partner with first interesting results.
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Abstract. We present a novel approach for the automatic generation
of inductive loop invariants over non nested loops manipulating arrays.
Unlike most existing approaches, it generates invariants containing dis-
junctions and quantifiers, which are rich enough for proving functional
properties over programs which manipulate arrays. Our approach does
not require the user to provide initial assertions or postconditions. It pro-
ceeds first, by translating body loops into an intermediate representation
of parallel assignments, and second, by recognizing through static analy-
sis code patterns that respect stability properties on accessed locations.
We associate with each pattern a formula that we prove to be a so-called
local invariant, and we give conditions for local invariants to compose
an inductive invariant of the complete loop. We also give conditions over
invariants to be locally maximal, and we show that some of our pattern
invariants are indeed maximal.

Keywords: Loop invariants, compositional reasoning, automatic invari-
ant generation.

1 Introduction

Thanks to the increased capabilities of automatic provers, deductive program
verification emerges as a realistic verification technique in industry, with com-
mercially supported toolsets [11,30], and new certification standards recognizing
its use [27]. In deductive program verification, users first annotate their programs
with logical specifications; then a tool generates Verification Conditions (VCs),
i.e. formulas encoding that the program respects its specifications; finally a tool
is called to automatically prove those VCs. The problem is that, in many cases,
in particular during development, not all VCs are proved automatically. Dealing
with those VCs is a non-trivial task. Three cases are possible: (1) the program
does not implement the specification; (2) the specification is not provable in-
ductively; (3) the automatic prover does not find the proof. The solution to (1)
is to correct the program or the specification. The solution to (3) is to use a
better automatic prover. The solution to (2) is certainly the most challenging
for the user. The problem occurs when, for a given loop, the user should supply
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an inductive loop invariant: this invariant should hold when entering the loop;
it should be provable for the n+1th iteration by assuming only that it holds at
the nth iteration; it should be sufficient to prove subsequent properties of in-
terest after the loop. In practice, the user has to strengthen the loop invariant
with additional properties until it can be proved inductively. In general, this
requires understanding the details of the generation of VCs and the underlying
mathematical theory, which is not typical engineering knowledge.

Generation of loop invariants is a well researched area, for which there exists
a rich set of techniques and tools. Most of these techniques focus on the discov-
ery of predicates that express rich arithmetic properties with a simple Boolean
structure (typically, linear or non-linear constraints over program variables). In
our experience with supporting industrial users of the SPARK [2] technology,
these are seldom the problematic loop invariants. Indeed, users are well aware
of the arithmetic properties that should be maintained through loops, and thus
have no difficulty manually annotating loops with the desired arithmetic invari-
ants. Instead, users very often have difficulties annotating loops with invariants
stating additional properties, that that they do not recognize as required for
inductive reasoning. These properties typically have a complex Boolean struc-
ture, with disjunctions and quantifiers, for expressing both the effects of past
iterations and the locations not being modified by past iterations. In this paper,
we focus on the automatic generation of these richer loop invariants.1

We present a novel technique for generating rich inductive loop invariants,
possibly containing disjunctions and quantifiers (universal and existential) over
loops manipulating scalar and array variables. Our method is compositional,
which differentiates it from previous approaches working on entire loops: we
consider a loop as a composition of smaller pieces (called reduced loops), on
which we can reason separately to generate local invariants, which are then
aggregated to generate an invariant of the complete loop. The same technique
can be applied both to unannotated loops and to loops already annotated, in
which case it uses the existing loop invariant.

Local invariants are generated based on an extensible collection of patterns,
corresponding to simple but frequently used loops over scalar and array variables.
As our technique relies on pattern matching to infer invariants, the choice and
the variety of patterns is crucial. We have identified five categories of patterns,
for search, scalar update, scalar integration, array mapping and array exchange,
comprising a total of 16 patterns. For each pattern we define, we provide a local
invariant, and prove it to be local, and for some of them maximal. An invariant
is local when it refers only to variables modified locally in the reduced loop,
and when it can strengthen an inductive invariant over the complete loop. We
give conditions for invariants to be local. A local invariant is maximal when it
is at least as strong as any invariant on the reduced loop. To our knowledge,
this is the first work dealing with compositional reasoning on loop invariants,
defining modularity and maximality criteria. We also extend the notion of stable
variables introduced by Kovács and Voronkov[19].

1 For the sake of simplicity we omit array bound constraints in generated invariants.
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Our technique, applied to a loop L that iterates over the loop index i, can be
summarized as follows:

1. We translate L into an intermediate language of parallel assignments, which
facilitates both defining patterns and reasoning on local invariants. The
translation consists in transforming a sequence of assignments guarded by
conditions (if-statements) into a set of parallel assignments of guarded values
(if-expressions). This can be done using techniques for efficient computing
of static single assignment variables as described in [7,26]. Due to lack of
space, details of the translation are omitted.

2. Using a simple syntactic static analysis, we detect stable [19] scalar and array
variables occurring in L. A scalar variable is stable if it is never modified.
An array variable is stable on the range a..b if the value of the array between
indexes a and b is not modified in the first i iterations (where a and b may
refer to the current value of i). We define a preexisting invariant over L,
denoted ℘L, to express these stability properties.

3. We match our patterns against the intermediate representation of L. We
require stability conditions on matched code, which are resolved based on ℘L.
For each match involving pattern Pk, we instantiate the corresponding local
invariant φk with variables and expressions occurring in L.

4. We combine all generated local invariants φ1 . . . φn with ℘L to obtain an
inductive invariant on the complete L given by ℘L ∧ φ1 ∧ . . . ∧ φn.

This article is organized as follows. In the rest of this section we survey related
work and introduce a running example. Section 2 presents the intermediate lan-
guage. In Section 3, we introduce reduced loops and local invariants. In Section 4,
we define loop patterns as particular instances of reduced loops restricted to
some stable expressions. We present four examples of concrete patterns and we
provide their corresponding local invariants. In Section 5, we present sufficient
criteria for a local invariant to be maximal, and we state maximality results on
two concrete pattern invariants. We finally conclude and discuss perspectives in
Section 6. Due to lack of space, proofs are omitted but are available in [1].

1.1 Related Work

Most existing techniques generate loop invariants in the form of conjunctions of
(in)equalities between polynomials in the program variables, whether by abstract
interpretation [6,24], predicate abstraction [12], Craig’s interpolation [22,23] or
algebraic techniques [5,28,18]. Various works have defined disjunctive abstract
domains on top of the base abstract domains [20,15,29].

A few works have targeted the generation of loop invariants with a richer
Boolean structure and quantifiers, based on techniques for quantifier-free invari-
ants. Halbwachs and Péron [14] describe an abstract domain to reason about
array contents over simple programs that they describe as “one-dimensional
arrays, traversed by simple for loops”. They are able to represent facts like
(∀i)(2 ≤ i ≤ n ⇒ A[i] ≥ A[i − 1], in which a point-wise relation is established
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between elements of array slices, where this relation is supported by a quantifier-
free base abstract domain. Gulwani et al. [13] describe a general lifting procedure
that creates a quantified disjunctive abstract domain from quantifier-free do-
mains. They are able to represent facts like (∀i)(0 ≤ i < n⇒ a[i] = 0), in which
the formula is universally quantified over an implication between quantifier-free
formulas of the base domains. McMillan [21] describes an instrumentation of
a resolution-based prover that generates quantified invariants describing facts
over simple loops manipulating arrays. Using a similar technique, Kovács and
Voronkov [19] generate invariants containing quantifier alternation. Our tech-
nique may find a weaker invariant than the previous approaches in some cases
(like insertion sort) and a stronger invariant in other cases. The main benefit of
our technique is its simplicity and its extensibility: once the loop is converted to
a special form of parallel assignment, the technique consists simply in pattern
matching on the loop statements, and patterns can be added easily to adapt the
technique to new code bases, much like in [8].

1.2 Running Example

We will use the program of Fig. 1 as a running example throughout the paper.
A simpler version of this program appears in previous works [3,19].

The program fills an array B with

b := 1; c := 1; erased := 0;
for i in 1..10 while A[ i ] �= 0 do

if A[ i ] < 0 then
B[b] := A[ i ] ; b := b+1;

else
C[c] := A[ i ] ; c := c+1;

end if
A[ i]:=erased;

end

Fig. 1. Array partitioning

the negative values of a source array
A, an array C with the positive val-
ues of A, and it erases the correspond-
ing elements from A. It stops at the
first null value found in A. As pointed
out in [19], there are many proper-
ties relating the values of A, B and
C before and after the loop, that one
may want to generate automatically
for this program. In this paper, we
show how the different steps of our
technique apply to this loop.

2 A Language of Parallel Assignments

In this section we introduce the intermediate language L and its formal seman-
tics. L is a refinement of the language introduced in [19] that allows us to group
all the assignements performed on the same location in a single syntactic unit.

Fig. 2.(a) presents the syntax of L. In this language, programs are restricted
to a single non nested for-like loop (possibly having an extra exit condition) over
scalar and one-dimensional array variables. Assignments in L are performed in
parallel. Note that location expressions (el ) can be either scalar variables or array
cells, and that all statements (sl) of a group (G) assign to the same variable:
either the group (only) contains guarded statements gk → x := ek assigning to
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L ::= loop i in α .. ω exit eb loop

do B end

B ::= skip | G(‖ G)∗ body

G ::= {sl (; sl )∗} group

sl ::= eb → el := ea assignment

el ::= x | A[ea] location expr

ea ∈ Aexp, eb ∈ Bexp

loop i in 1..10 exit A[ i ] = 0 do
{ A[ i ] < 0 → B[b] := A[ i ]}

‖ { A[ i ] < 0 → b := b+1 }
‖ { ¬(A[ i ] < 0) → C[c] := A[ i ]}
‖ { ¬(A[ i ] < 0) → c := c+1 }
‖ { true → A[ i ] := erased }
end

Fig. 2. (a) Formal syntax of loop programs (b) Running example translation (Fig. 1)

some scalar variable x; or it contains statements gp → A[ap] := ep assigning to
the possibly different cells A[a1], A[a2] . . . of some array variable A. A loop body
(B) is an unordered collection of groups for different variables.

Running example. [Step 1: Translation into the intermediate language] The
translation of the running example loop (Fig. 1) into L is given in Fig. 2.(b).

Expressions and Variables. n, k stand for (non negative) constants of the
language; lower case letters x, a are scalar variables; upper-case letters A, C
are array variables; v is any variable; ea is an arithmetic expression; ε, eb, g are
Boolean expressions; e is any expression. Subscripted variables x0 and A0 denote
respectively the initial value of variables x and A.

Informal Semantics. Groups are executed simultaneously: expressions and
guards are evaluated before assignments are executed. We assume groups and
bodies to be write-disjoint, and loops to be well-formed. A group G is write-
disjoint if all its assignments update the same variable, and if for any two different
guards g1, g2 in G, g1 ∧ g2 is unsatisfiable. A loop body B = G1 ‖ . . . ‖ Gn is
write-disjoint if all Gk update different variables and if they are all write-disjoint.
A loop L is well-formed if its body is write-disjoint. Thus, on each iteration,
at most one assignment is performed for each variable. Conditions on guarded
assignments are essentially the same as in the work of Kovacs and Voronkov [19],
with a slightly different formalism. For simplicity, we require here unsatisfiability
of g1 ∧ g2 for two guards within a group assigning to array A, even in the case
where the updated cells for those guards are actually different.

Loop Conventions. L denotes a loop, B a body, and i is always the loop
index. The loop index is not a variable, so it cannot be assigned. For simplicity,
we assume that i is increased (and not decreased) after each run through the
loop, from its initial value α to its final value ω. We use �(α,ω,ε){B} to abbreviate

loop i in α..ω exit ε do B end, and �(α,ω){B} when ε = false .
−→
G denotes a

body G1 ‖ . . . ‖ Gn (for some n), while
−→
G ‖ B, is the parallel composition

of groups G1, . . . Gn from G with all groups from B. {−−−−−−−−−→gk → lk := ek} denotes a
group made of the guarded assignments {g1 → l1 := e1; . . . ; gn → ln := en}.
G(B) denotes the set of groups occurring in B.



42 V. Aponte et al.

Loop Variables. V (L) is the set of variables occurring in L (note that i /∈
V (L)). Vw (L) is the set of variables assigned in L, referred to as local (to L).
Vnw (L) is the set of variables occuring in L but not assigned in L, referred to
as external (to L): Vnw (L) = V (L) − Vw (L). Given a set of variables V , the
initialisation predicate ιV is defined as ιV =

∧
v∈V v = v0 asserting that all

variables v ∈ V have as initial (abstract) value v0. Sets and formulas defined on
the loop L are similarly defined on the loop body B.

Quantifications, Substitutions and Fresh Variables. φ, ψ, ι and ℘ denote
formulas. The loop index i may occur in the formula φ or in the expression e, re-
spectively denoted φ(i) or e(i), but it can be omitted when not relevant. Except
for logical assertions (i.e. invariants, Hoare triples), formulas are implicitly uni-
versally quantified on the set of all their free variables, including i. To improve
readability, these quantifications are often kept implicit. We denote by ∃V.φ the
formula ∃v1 . . . vn.φ for all vi ∈ V , and by [V1 ← V2] the substitution of each
variable of the set V1 by the corresponding variable of the set V2. Given a set of
variables V , V ′ denotes the set containing a fresh variable v′ for each variable
v ∈ V . Given an expression e, we denote e

′V = e[V ← V ′] and φ
′V = φ[V ← V ′].

2.1 Strongest Postcondition Semantics

The predicate transformer sp introduced by Dijkstra [9,10] computes the
strongest postcondition holding after the execution of a given statement. We
shall use it to obtain the strongest postcondition holding after the execution of
an arbitrary iteration of the loop body, which will be useful when comparing loop
invariants according to maximality criteria (see Section 5). Thus, we express the
semantics of the intermediate language L through the formal definition of sp.
As our goal is the generation of loop invariants, and not the generation of loop
postconditions, we only need to describe sp for loop bodies, instead of giving
it for entire loops in L. Note that Definition 1 requires replacing a variable v
assigned in the loop body with a fresh logical variable v′, standing for the value
of v prior to the assignment.

Definition 1 (Predicate Transformer sp). Let φ be a formula,
−→
Gk a loop

body, and V = Vw(
−→
Gk). We define sp(

−→
Gk, φ) as:

sp(skip, φ) = φ sp(
−→
Gk, φ) = ∃V ′.

(
φ

′V ∧
∧
k

Psp(Gk, V )
)

Psp( {−−−−−−−−−→gk → x := ek}, V ) =
∧
k

(
g

′V
k ⇒ x = e

′V
k

)
∧

((∧
k

¬g′V
k

)
⇒ x = x′

)
Psp( {

−−−−−−−−−−−−→
gk → A[ak] := ek}, V ) =

∧
k

(
g

′V
k ⇒ A[a

′V
k ] = e

′V
k

)
∧∀j.

(∧
k

¬
(
g

′V
k ∧ j = a

′V
k

))
⇒ A[j] = A′[j].
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3 Reduced Loops and Local Invariants

Remember that we seek to infer local properties over code pieces occurring in
a loop L. In this section, we introduce reduced loops, which are loops built on
groups taken from a loop L, and local loop invariants, which are inductive prop-
erties holding locally on reduced loops. We state a compositionality result for
locally inferred invariants allowing us to compose them into an inductive invari-
ant that holds on the entire loop. Our notion of local invariant is generic: it is
not limited to the stability properties used by patterns in Section 4.

3.1 (Inductive) ιL-Loop Invariants

To define inductive loop invariants, we rely on the classical relation �par of satis-
faction under partial correctness for Hoare triples [17,25]. Invariants are defined
relative to a given initialisation predicate ιL providing initial values to loop vari-
ables. We define ιL = ιV , where V is the set of all variables occurring in L. An
ιL-loop invariant is an inductive loop invariant under ιL initial conditions. Also,
we say that ιL covers φ when V (φ) ⊆ V (ιL). In the following, we assume that the
initialisation predicate ιL covers all properties stated on L.

Definition 2 ((Inductive) ιL-Loop Invariant). Assume ιL covers a for-
mula φ. φ is an ιL-loop invariant on the loop L = �(α,ω,ε){B}, iff
(a) (i = α ∧ ιL)⇒ φ; and (b) �par {α ≤ i ≤ ω ∧ ¬ε ∧ φ} B; i := i+ 1 {φ}.

3.2 Local (Reduced) Loop Invariants

A reduced loop from a loop L = �(α,ω,ε){B}, is a loop with the same index range
as L but whose body Br is a collection of groups occuring within B (i.e. G(Br) ⊆
G(B)). These loops either take the form Lr = �(α,ω,ε){Br} or Lr = �(α,ω){Br}.
Remember that each group brings together all assignements of a unique variable.
Quite naturally, we seek inferring properties restricted to the locallymodified vari-
ables of reduced loops. Thus, we distinguish between variables updated within re-
duced loops, called local, and variables appearing without being assigned within
them, called external.

To deduce properties holding locally on Lr, we assume given an inductive
loop invariant ℘L holding on the entire loop, that states properties over vari-
ables external to Lr. Thus, we use a global pre-established property on external
variables in order to deduce local properties over local variables. The notion of
relative-inductive invariants, borrowed from [4], captures this style of reasoning:
φ is inductive relative to another formula ℘L, when the inductive step of the
proof of φ holds under the assumption of ℘L (see Example 1 below).

Definition 3 (Relative Inductive Invariant). Assume ιL covers a formula
φ. φ is ℘L-inductive on loop L, if
(1) (i = α ∧ ιL)⇒ φ; (2) sp(B,α ≤ i ≤ ω ∧ ¬ε ∧ ℘L(i) ∧ φ(i))⇒ φ(i + 1).
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a := 0; b := 0;
loop i in 1..10 do

b := a+1;
a :=i ;

end

init : ιL = (a = 0 ∧ b = 0)
previous: ℘L = (a = i− 1)
loop i in 1..10 do

{ true → a :=i }
‖ { true → b := a+1 }
end

Lr = loop i in 1..10 do
{ true → b := a+1 }

end

local : φr = (b = i− 1)

final global inv: ℘L ∧ φr

Fig. 3. (a) Loop L (b) Init, previous, translation (c) Reduced loop Lr, local prop

φ is a ℘L-local loop invariant on loop Lr, if φ only refers to variables locally
modified in Lr, and if φ holds inductively on Lr relatively to the property ℘L.

Definition 4 (℘L-Local Loop Invariant). φ is a ℘L-local loop invariant for
loop Lr if (a) V (φ) ⊆ Vw(Lr); and (b) φ is ℘L-inductive on Lr.

Example 1 (A ℘L-local loop invariant). Fig. 3.(a) shows a loop L, whose trans-
lation and initialisation ιL are given in 3.(b). The reduced loop Lr in 3.(c) is
built on the group that assigns to b. There are two variables in Lr: a is external,
while b is local to it. We take ℘L shown in 3.(b) as previously known property
(over variables external to Lr). Clearly, ℘L does not hold on the reduced loop
Lr, but is does hold as ιL-loop invariant on the entire loop L. The local property
φr(i) from 3.(c) does not hold (inductively) by itself on the reduced loop, yet
℘L∧φr(i) holds as inductive invariant of Lr. Therefore, φr(i) is ℘L-inductive on
Lr. Moreover, as φr(i) only contains variables local to Lr, it follows that φr(i) is
℘L-local on Lr. Finally, as ℘L holds inductively on the entire loop, according to
the Theorem 1 below, the composed invariant ℘L ∧ φr is indeed an ιL-invariant
on the whole loop L.

Informally, the Theorem 1 says that whenever a property ℘L, used to deduce
that a local property φ holds on a reduced loop, is itself an inductive invariant
on the entire loop, then ℘L ∧ φ is an inductive invariant of the entire loop.

Theorem 1 (Compositionality of ℘L-Local Invariants). Assume that loops

L = �(α,ω,ε){
−→
G ‖ B} and Lr = �(α,ω,ε){B} are well-formed. Assume that

(h1) φr is a ℘L-local loop invariant on Lr; (h2) ℘L is an ιL-invariant on L.
Then, ℘L ∧ φr is an ιL-invariant on L.

4 Stable Loop Patterns

In this section, we introduce the stability property for expressions, and we give
sufficient conditions for this property to hold. Stability over expressions gener-
alizes the notion of stablity on variables introduced in [19] (see 4.2). We define
℘L-stable loop patterns, as a particular instance of reduced loops restricted to
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stable expressions2. As examples, we present four concrete patterns and we pro-
vide their corresponding local invariants.

4.1 Stability on Variables and Expressions

Given an initialisation ιL , we define the initial value of an expression e(i),
denoted e0(i), as the result of replacing any occurrence of a variable x in e,
except i3, by its initial value x0 according to the initialisation ιL. Informally, an
expression e occurring in a loop L, is stable, if on any run through the loop, e is
equal to its initial value e0. Here, we are interested in being able to prove that
e = e0 under the assumption of a preexisting inductive loop invariant ℘L.

Definition 5 (Stable Expressions). An expression e(i) is said to be ℘L-stable
in loop L, denoted ℘L-s, if there exists an ιL-loop invariant ℘L on L such that:

℘L(i)⇒ (e(i) = e0(i)).

The rationale behind stability is that, given a preexisting inductive loop invariant
℘L, a ℘L-stable expression e can be replaced by its initial value e0 when reasoning
on the loop body using the predicate transformer sp.

4.2 Sufficient Conditions for Stability

In this section we generalize the notion of stability over variables introduced in
[19], in order to express the following properties:

1. a scalar variable x keeps its initial value x0 throughout the loop;
2. there exist a constant offset from i, denoted p(i), that corresponds to a valid

index for array A, such that every cell value in the array slice A[p(i) . . . n] is
equal to its initial value.

For array A and loop L, these properties are formally expressed by:

�x ≡ x = x0 Scalar stability

	A,p ≡ ∀j.(j ≥ p(i) ⇒ A[j] = A0[j]) Array p− stability

If �A,p holds, we say that A is p-stable. When p(i) = α this property is equiv-
alent to A = A0. To increase readability, the latter notation is preferred.

A sufficient condition for a variable to be stable is when this variable is not
updated at all in the loop. An array B in this case verifies the property �B,α.
Finding p-stability on some array A can be done by examining all updates to

cells A[pk(i)] and choosing p(i) as p(i) = max (
−−−→
pk(i)). Assume now that array

A is known to be p-stable, and that A[a] occurs in some expression e. If A[a]
corresponds to an access in the stable slice of A, then e is stable, which can be
verified by checking that a ≥ p is a loop invariant.

2 More precisely, to expressions whose location expressions defined over external vari-
ables are stable.

3 And except occurrences at array index positions.
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Running example. [Step 2: Extracting a preexisting global invariant] The vari-
able erased is never assigned in this loop, so it is stable. Array A is updated only
in cell A[i], entailing i-stability for A. Thus, we can extract the following induc-
tive invariant expressing stability properties for our loop: ℘L = �erased ∧�A,i.

4.3 ℘L-Loop Patterns

Given a preexisting inductive loop invariant ℘L, we define loop patterns relative
to ℘L, or ℘L-loop patterns, as triples Pn = (Ln, Cn, φn), where: Ln is a loop
scheme given by a valid loop construction in our intermediate language L; Cn

is a list of constraints requiring the ℘L-s property on generic sub-expressions
e1, e2 . . . of Ln; φn is an invariant scheme referring only to variables local to Ln.

Fig. 4 presents examples of three concrete loop patterns. For each of them,
the corresponding loop scheme is given in the upper-left entry, the constraints in
the upper-right entry, and the invariant scheme in the bottom entry. To identify
the pattern Pn within the source loop L, Ln must match actual constructions
occurring in L, and the pattern constraints must be satisfied. In that case, we
generate the corresponding local invariant by instantiating φn with matched
constructions from L.

Theorem 2 establishes that each invariant scheme φn from Fig. 4 is indeed a
℘L-local invariant on its corresponding loop scheme Ln. By the compositional
result of Theorem 1, each generated local invariant can be composed with the
preexisting ιL-invariant to obtain a richer ιL-invariant holding on the entire loop.

1. Search Pattern

L1 = �(α,ω,ε){skip} ε is ℘L-s.

φ1(i) = ∀j.α ≤ j < i ⇒ ¬ε0(j)

2. Single Map Pattern

L2 = �(α,ω){B2} e(i) is ℘L-s.

B2 = true → A[i] := e(i)

φ2(i, A) =
∀j.(α ≤ j < i ⇒ A[j] = e0(j))

∧ ∀j.j ≥ i ⇒ A[j] = A0[j]

3. Filter Pattern

L3 = �(α,ω){B3}
B3 = {g(i) → A[v] := e(i)}

‖ {g(i) → v := v + 1}
g, e are ℘L-s.

φ3(i, v, A) = ∀j.(α ≤ j < i ∧ g0(j) ⇒ ∃k.(v0 ≤ k < v ∧ A[k] = e0(j)))

∧ ∀k1, k2.v0 ≤ k1 ≤ k2 < v ⇒ ∃j1, j2.
(
α ≤ j1 ≤ j2 < i ∧ A[k1] = e0(j1)
∧g0(j1) ∧ g0(j2) ∧ A[k2] = e0(j2)

)

∧ ∀j.(j ≥ v ⇒ A[j] = A0[j])

Fig. 4. Three ℘L-Loop Patterns

Theorem 2 (Search, Map and Filter Invariant Schemes are ℘L-local).
For n ∈ [1, 2, 3] assume that Pn = (Ln, Cn, φn) corresponds to the patterns given
in Fig. 4. Assume having three pairs (ιLn , ℘Ln) satifying each the constraints Cn

for pattern Pn. Then, each φn is a ℘Ln-local loop invariant on the loop Ln.
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Running example. [Step 3: Discovering patterns, generating local properties]
We take ℘L ≡ �erased ∧ �A,i (see Step 2) as preexisting inductive invariant.
By pattern-matching, we can recognize three patterns in L: the Search pattern
on line 1; the Single Map pattern on line 6; the Filter pattern, once on lines
2-3, and once again on lines 4-5. We must check that all pattern constraints are
respected. First note that ℘L entails i-stability for A, and therefore the location
expression A[i] (occurring in both instances of the Filter pattern) is ℘L-s, as well
as expressions A[i] = 0 in the Search pattern, and A[i] < 0 in the Filter pattern.
Finally, ℘L entails stability of erased in the Map pattern. We instantiate the
corresponding invariant schemes and obtain the local invariants shown below.
Note that φ3(i, b, B) and φ3(i, c, C) correspond to different instances of the Filter
pattern. We unfold only one of them here:

φ1(i) = ∀j.α ≤ j < i ⇒ ¬(A0[i] = 0)

φ2(i, A) = ∀j.(α ≤ j < i ⇒ A[j] = erased0) ∧ ∀j.(j ≥ i) ⇒ A[j] = A0[j]

φ3(i, c, C) = . . .

φ3(i, b, B) = ∀j.(α ≤ j < i ∧A0[j] < 0 ⇒ ∃k.(b0 ≤ k < b ∧B[k] = A0[j]))

∧ ∀k1, k2.b0 ≤ k1 ≤ k2 < b ⇒ ∃j1, j2.

⎛
⎝ α ≤ j1 ≤ j2 ≤ i

∧ A0[j2] < 0 ∧ B[k1] = A0[j1]
∧ A0[j2] < 0 ∧ B[k2] = A0[j2]

⎞
⎠

∧ ∀j.(j ≥ b ⇒ B[j] = B0[j])

Example 2 (A disjunctive/existential pattern example). Fig. 5 provides an exam-
ple of pattern whose invariant contains disjunctions and existential quantifiers.
This pattern typically corresponds to the inner loop in a sorting algorithm. The
local invariant obtained for the loop from Fig. 5.(b) is:

((m = m0) ∧ ∀j.(α ≤ j < i⇒ ¬(A0[j] < A0[m0])))

∨ (∃j.(α ≤ j < i ∧m = j) ∧ ∀k.(α ≤ k < i⇒ ¬(A0[k] < A0[m]))

Min Index Pattern

L4 = �(α,ω){B4} e(i) is ℘L-s.

B4 = {e(i) < e(a) → a := i}
φ4(i, a) = ((a = a0) ∧ ∀j.(α ≤ j < i ⇒ ¬(e0(j) < e0(a0))))

∨ (∃j.(α ≤ j < i ∧ a = j ∧ ∀k.(α ≤ k < i ⇒ ¬(e0(k) < e0(a))))

for i in 1..n do
if A[ i ] <A[m]
thenm := i ;

end if
end

Fig. 5. (a) A pattern with existentials and disjunctions (b) A loop instance

Running example. [Step 4: Aggregating local invariants] We know that the pre-
existing invariant ℘L holds as ιL-invariant on L. By Theorem 2, φ1 is ℘L-local
on L1 = �(α,ω,ε){skip}, and φ2 and φ3 are ℘L-local on loops Lk = �(α,ω){Bk}
respectively for k = 1, 2. It is easy to obtain from these results, that φ2 and φ3

are ℘L-local on loops Lk = �(α,ω,ε) {Bk}. Therefore, according to Theorem 1,
we can compose all these invariants to obtain the following richer ιL-invariant
holding on L: ℘L ∧ φ1(i) ∧ φ2(i, A) ∧ φ3(i, b, B) ∧ φ3(i, c, C).
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5 Maximal Loop Invariants

In this section, we present maximality criteria on loop invariants, whether induc-
tive or not. A loop invariant is maximal when it is stronger than any invariant
holding on that loop. For consistency, we compare loop invariants only if they
are covered by the same initialisation predicate. We adapt this notion to re-
duced loops by defining local invariant maximality. These notions are rather
generic and apply to any loop language equipped with a strongest postcondition
semantics.

Definition 6 (Maximal ιL-Loop Invariant). φ is a maximal ιL-loop invari-
ant of loop L if (1) φ is an ιL-loop invariant for L, and (2) for any other ιL-loop
invariant ψ of L, φ⇒ ψ is an ιL-loop invariant of L.

Theorem 3 (Loop Invariant Maximality). Let L = �(α,ω,ε){B} and assume
that φ is some formula covered by ιL. φ is a maximal ιL-invariant of L if

(a) i = α ∧ ιL ⇔ i = α ∧ φ(i)

(b) sp(B,α ≤ i ≤ ω ∧ ¬ε(i) ∧ φ(i))⇔ α ≤ i ≤ ω ∧ φ(i + 1)

As seen in Section 3, a local invariant φr refers only to variables locally modified
in the reduced loop Lr. Nevertheless, external variables may occur in Lr, for
which we are unable to locally infer properties. To ensure consistency when
comparing local invariants, we reason on the maximality of φr, strenghtened by
a formula � stating that all variables external to Lr remain constant through
the execution of the reduced loop.

Definition 7 (Local Invariant Maximality). Let L = �(α,ω,ε){
−→
G ‖ B} be a

well-formed loop, and Lr = �(α,ω,ε){B}. Let ιr be an initialisation restricted to
variables occurring in Lr, and � a formula asserting constant values x = x0,
A = A0 for all variables x,A external to Lr. We say that φr is locally maximal
on Lr when � ∧ φr is a maximal ιr-loop invariant of Lr.

In [1] we provide proofs for the Theorem 4 below. We show that the local loop
invariants schemes φ1(i) for the Search Pattern, and φ2(i) for the Single Map
Pattern, as stated in Fig. 4, are indeed locally maximal on their corresponding
reduced loop. Notice that φ3(i) for the Filter Pattern is not maximal as stated
in Fig. 4. For example, it would be possible to state a stronger invariant for this
pattern by recursively defining a logic function for counting the number of array
elements satisfying the guard g0 up to the ith element, and using this function
in the loop invariant to give the current value of the variable v.

Theorem 4 (Search and Single Map Invariants Local Maximality). Let
φ1, L1, φ2, L2 as given in Fig. 4. φ1 is locally maximal on the loop L1, and φ2

is locally maximal on the loop L2.
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6 Conclusion and Further Work

We present a novel and compositional approach to generate loop invariants.
Our approach complements previous approaches: instead of generating relatively
weak invariants on any kind of loop, we focus on generating strong or even
maximal invariants on particular loop patterns, in a modular way.

The central idea in our approach is to separately generate local loop invariants
on reduced versions of the entire loop. This is supported by the introduction of a
preexisting loop invariant, which states external properties (i.e. properties which
do not necessarily hold locally) on the complete loop. This preexisting invariant
is then strengthened by the local loop invariants. Since there is no constraint
on the way the external invariant is found, our approach fits in smoothly with
other automated invariant generation mechanisms.

We propose a specialized version of reduced loops, for which the external in-
variant is a stability property of some locally accessed variables. We give loop
pattern schemes and syntactic criteria to generate invariants for any loop con-
taining these patterns. Independently, we present conditions on arbitrary loop
invariants to be maximal, and state results of local maximality for some of our
loop patterns. When not maximal, our inferred invariants are essentially as ex-
pressive as those generated by previous approaches, but have the advantage of
being pre-proven, and thus are well adapted to integration on full automatic
invariant generation of industrial oriented frameworks.

Our method applies to programs in an intermediate language of guarded and
parallel assignments, to which source programs should first be translated. We
have designed such a translation from a subset of the SPARK language, based on
an enriched version of static single assignment form [26]. The idea is to transform
a sequence of assignments to variables guarded by conditions (if-statements) into
a set of parallel assignments to SSA variables [7], where the value assigned has
guard information (if-expressions). In the case of array variables, array index
expressions that are literals or constant offsets from the loop index are treated
specially, in order to generate array index expressions that can be matched to
the patterns we define. This translation is exponential in the number of source
code statements in the worst-case, but this does not occur on hand-written code.

We expect to implement the translation and the pattern-based loop invari-
ant generation in the next generation of SPARK tools [16,30]. We believe that
combining this technique with other ones (and with itself) will be very efficient.

Going further we could develop a broader repository of pattern-driven invari-
ants, to address the more frequent and known loop patterns. As proof of patterns
(correctness and optionally maximality) are tedious and error-prone, we plan to
mechanize them in a proof assistant and design a repository of formally proven
patterns. In particular, as the present technology seems perfectly applicable to
non terminating loops, we plan to define new patterns for while loops.

The current approach does not handle nested loops, and the patterns we
define do not apply to loops with a complex accumulation property, where the
effect of the ith iteration depends in a complex way on the cumulative effect
of previous iterations. So it does not apply for example to insertion sort, which
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can be treated by other approaches [14,13] based on complex abstract domains
in abstract interpretation. We are interested in pursuing the approach to treat
these more complex examples.
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Abstract. Increasing demands on safety and energy efficiency will re-
quire higher levels of automation in transportation systems. This in-
volves dealing with safety-critical distributed coordination. In this paper
we demonstrate how a Satisfiability Modulo Theories (SMT) solver can
be used to prove correctness of a vehicular coordination problem. We
formalise a recent distributed coordination protocol and validate our ap-
proach using an intersection collision avoidance (ICA) case study. The
system model captures continuous time and space, and an unbounded
number of vehicles and messages. The safety of the case study is auto-
matically verified using the Z3 theorem prover.

1 Introduction

As the number of cars in the world crosses the 1 billion mark and the future travel
needs of the world population keep increasing, we are paying an increasingly
heavy price. Every year nearly 1.2 million people get killed in traffic [25], and as
many die from urban pollution. Moreover, transportation stands for 23% of the
total emissions of carbon dioxide in the European Union [11].

Better software allows us to make cars smarter, safer, and more efficient,
thereby ameliorating some of the adverse effects of car-based transport. Modern
cars are equipped with a wide range of sensors and driver assistance systems
and there are already a number of self-driving cars that are being tested by
the major automotive companies as well as Google. The fact that the state of
Nevada passed legislation allowing driver-less vehicles to operate on public roads
can be seen as a sign of the momentum in the industry at the moment. Previously
unsolved problems such as accurate positioning and reliable object detection now
have credible solutions. The next big challenge is to enable efficient coordination
among smart vehicles to further increase the safety and efficiency of the traffic.

Collisions in intersections constitute 45% of all traffic personal car injury
accidents [27], so there is a clear need for collision avoidance systems. Having a
centralised authority for each intersection that directs the traffic can be a good
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alternative to having traffic lights. However, the large majority intersections do
not even have traffic lights today. It would not be cost effective to put a central
manager to all these unmanaged crossings, a fully distributed solution will be
needed. On the other hand, distributed coordination is a non-trivial problem. A
dynamic environment where cars move at high speed and where communication
is unreliable and subject to interference creates many challenges. Yet any solution
to such a distributed coordination problem must be able to guarantee safety.

In this paper we propose to utilise the strengths of automated reasoning tools
to tackle the problem of safe distributed coordination. We show how a coordi-
nation problem can be formalised in a constraint specification language called
SMT-lib [3] and verified with the Z3 theorem prover [9]. The novelty of our
approach lies in employing a fully automated theorem prover to a distributed
coordination problem involving explicit message passing, continuous time and
space as well as an unbounded number of cars. Our focus is not on new verifica-
tion methods for hybrid systems, but rather on the application of formal methods
to a coordination approach and how to verify safety of a collaborative vehicular
application. Our longer term objective is to incorporate the basic building blocks
introduced in this paper in a general tool for modelling and verifying vehicular
applications. To evaluate the feasibility of our approach we model an intersection
collision avoidance scenario, which is an instance of a distributed coordination
problem. In summary, there are three main contributions of this paper.

– A formalisation of a distributed coordination protocol.
– A constraint-based modelling approach for collaborative vehicular applica-

tions.
– A simple but realistic case study demonstrating the usefulness of our ap-

proach.

The rest of this paper is organised as follows. Section 2 provides a formal de-
scription of the coordination problem and the CwoRIS protocol. The intersection
collision avoidance case study is presented in Section 3 followed by Section 4,
outlining the verification and proof strategies. Section 5 contains related work
and finally, Section 6 concludes the paper.

2 Distributed Coordination as Constraint Verification

We now proceed to formalise the distributed coordination problem. We begin
by giving an overview of our approach, then go on to describe how we model
the communication channel before describing our formalisation of the CwoRIS
coordination protocol.

2.1 Overview

Consider the problem of designing a software subsystem for a car (we use the
more general notion of entity, or sometimes vehicle) that can affect the steering
and speed of the entity and that takes its decision based on communication with
surrounding vehicles. Examples of such systems are collaborative adaptive cruise
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Fig. 1. System Model Overview

control, advanced collision avoidance
systems, and lane merging applica-
tions. Our aim is to prove such a sys-
tem safe by proving that a specific
entity A will not collide with another
object.

Figure 1 shows an overview of how
our system model is constructed. It is
composed of a “core” automaton and
a set of time-dependent constraints.
With core automaton, we refer to the state transitions involving variables spe-
cific to entity A. We now proceed to provide a more formal description of the
system model and how we represent it as a SMT problem. We model the system
as a tuple M as described below.

M = (E,M,S, I, T,F , C)

E - a set of entities (i.e., the vehicles in the system)
M - a set of messages
S - a set of states
I ⊂ S - set of initial states
T : S × S → Bool - A transition function
F - a finite set of uninterpreted functions
C - a finite set of constraints

Note that the sets E,M,S, I can all be infinite, thereby allowing us to model an
unbounded number of cars and messages. The set of uninterpreted functions (or
predicates), F , provides the semantics for the states. The allowed domains and
ranges of the functions are real numbers (time), integers, and any of the sets in
our model. An example of an uninterpreted function that we use in our model
is x : E× R → R which denotes the x position of an entity at some given time
point.

The constraints in C provide us with a way to describe the properties of
the environment and other assumptions that we need to make. The constraints
apply over the same domains as the uninterpreted functions, F , and may also
contain quantifiers. An example of a constraint (which we do not use) could be
∀e ∈ E, t ∈ R : x(e, t) ≤ 3.0, which would require the x position of all entities to
be less than 3.0 at all times.

We let the states in S and the transition function T denote the state and
behaviour of the specific entity A. The behaviour of other entities in the system
is modelled using constraints in C. This allows us to provide a more detailed
internal model of a single entity, and model other entities using assumptions on
their observable behaviour (including communication).

Finally, consider the transition function T (i, j), where i and j are states,
which is used to characterise the behaviour of entity A. We encode the hybrid
automaton of A as a transition function that alternates between timed and non-
timed transitions. Let δ : S → Bool (we write δi) be an uninterpreted function,
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Table 1. Communication Predicates

Predicate Type Description

sent(m) Bool message m was sent
received(m, e) Bool m was received by entity e at some point in time
source(m) E the sender of m
sendtime(m) R the send time of m
receivetime(m,e) R when m was received by entity e (if m is never received by

e, this can have any value)
isAck(m) Bool True if message is an acknowledgement
getReq(m) M if m is an acknowledgement message, this denotes the

message that m acknowledges

denoting whether the next transition should be a timed transition or not. Then
we can define T as:

T (i, j) ≡ (TD(i, j) ∧ ¬δi ∧ δj) ∨ (TC(i, j) ∧ δi ∧ ¬δj)

Where TD is the transition function for non-timed (discrete) transitions and TC

for timed transitions (continuous).

2.2 Communication

We now proceed to introduce a subset of F relating to message passing. These
are the basic concepts that we use to formally reason about communication in the
system. Table 1 lists the predicates, the resulting type and a description of each.
It might be worth pointing out a couple of things. First, the sent and received
predicates do not have a time parameter. Thus, the semantics is that if a message
m is sent at any time, then sent(m) is true. To check whether a message had been
sent at some given time t, this can be expressed as: sent(m)∧(t ≥ sendtime(m)).
Finally, messages can be either request messages or acknowledgements to re-
quests. Thus the last two predicates are used to determine the message type and
to identify the request associated with a given acknowledgement message.

We now describe the constraints relating to the basic communication prop-
erties. There are three constraints that have to be satisfied. First, any message
that has been received by some entity must have been sent.

∀m ∈M, e ∈ E : received(m, e)⇒ sent(m)

Second, the reception time of a message m at entity e must be strictly greater
than the send time of the message.

∀m ∈M, e ∈ E : receivetime(m, e) > sendtime(m)

Finally, we need some consistency checks for when an acknowledgement can be
sent. The following constraints states that for all acknowledgement that have
been sent three conditions must be met, (1) it must correspond to a received
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message, (2), the received message cannot be an acknowledgement, and (3) the
acknowledgement must have been sent after receiving the request.

∀m ∈M :(sent(m) ∧ isAck(m))⇒
(received(getReq(m), source(m))

∧ ¬isAck(getReq(m))

∧ receivetime(getReq(m), source(m)) ≤ sendtime(m))

The above set of predicates and constraints provides some very basic elements of
communication, which can easily be provided by any communication interface in
a real application. However, in order to solve the coordination problem, we need
to make an additional assumption on membership information. For this purpose
we assume the existence of an active area in which entity A operates and that all
entities within the active area are known to each other (i.e., essentially a perfect
membership protocol). The membership information allows an entity to decide
whether a message it has sent has reached all other entities in the area. While
solving the membership problem using purely communication is recognised as a
difficult problem [6], it can be solved in the vehicular domain with the aid of
ranging sensors as shown by Slot and Cahill [23].

2.3 Distributed Coordination

We base our formalisation of distributed coordination on previous work by
Bourouche [5] and Sin et al. [22]. The basic idea behind this model is that
vehicles do not need to fully agree on a shared state in order to achieve safe co-
ordination. Instead, the basic concept is that of responsibility. Each entity have
a responsibility to ensure that certain safety criteria are met. If an entity is not
able to ensure that its planned actions are compatible with those of other entities
in the environment, it must adapt its behaviour accordingly (e.g. by stopping).
The key aspect of this approach is that an entity does not need to agree on the
behaviour of other entities in the system. While this might sound trivial, it is
actually a step away from approaches where first all entities reach a distributed
agreement on the course of actions to take, allowing greater flexibility.

In the CwoRIS protocol by Sin et al. [22], the responsibility requirement is
implemented with the means of resources. A resource corresponds to a physical
area of the road. An entity should not enter a resource without having made sure
that it has exclusive access to the resource. While space does not allow a full
description and explanation of the rationale of the CwoRIS protocol, we provide a
brief intuition of how it works. Note that for the purpose of this formalisation we
have made some simplifying assumptions compared to the original protocol. We
allow only a single resource, requests are not allowed to be updated, and a sent
request is assumed to be immediately received by the sender of the message, and
no new entities enter the active area during the negotiation. These simplifications
do not have a big impact on the core logic of the protocol, and we expect that
removing these restrictions from the formalisation is a straightforward process.
Table 2 describes the predicates that we use in the coordination mechanism.
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Table 2. CwoRIS predicates

Predicate Type Description

hasRequest(e, t) Bool Entity e has an active request at time t
c(e, t) M Current request of entity e at time t
start(m) R Resource request start time
end(m) R Resource request end time
prio(e) Z Priority of an entity
valid(m) Bool Message m is a valid request
vtime(m) R Time when m was validated
conflict(m,m′) Bool Requests m and m′ are in conflict
accepted (m,e) Bool Message m is accepted by entity e
hasResource(e, t) Bool Entity e has the resource at time t

In essence the CwoRIS protocol works by entities sending out requests to
access a shared resource, after which hasRequest becomes true for the sender
entity, and the current request is referred to as c(e, t). Each request has a start
and end time and each entity has a unique priority1. If an entity has received
an acknowledgement from all other entities in the area and not received any
conflicting request from an entity with a higher priority, the request is considered
to be valid. A conflict is said to occur between two requests if their request times
overlap.

When sending out a new request, a node must make sure that the request it
sends does not conflict with any previously received request that it has accepted.
A message m is accepted by entity e if it is received by e, and one of three
conditions hold

– e does not have a request when receiving m
– m does not conflict with the current request of e
– e has a strictly lower priority than the sender of m

Thus a message from a lower priority entity can be ignored by an entity with a
higher priority. Note that two entities cannot ignore each others requests since
both cannot have a higher priority than the other. Finally, node hasResource at
time t if and only if it has a valid request for that resource and the time interval
of the request covers t. We state this last constraint formally as it is the main
interface to the other components in the system.

hasResource(e, t) ≡ hasRequest(e, t)∧ valid(c(e, t)) ∧ vtime(c(e, t)) < t

∧ start(c(e, t)) ≤ t ≤ end(c(e, t))

This concludes our description of the coordination protocol. Naturally, most of
the above description is rather textual rather than formal. We refer to the full
model2 for the exact constraints.
1 Uniqueness can be achieved through e.g. globally unique IPv6 addresses that are
part of the future communication standard for vehicular applications, and should
also take into account relative proximity to the intersection.

2 Available at http://code.google.com/p/smtica/

http://code.google.com/p/smtica/
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3 Case Study

To demonstrate the applicability of our approach we have chosen a basic inter-
section scenario to model and validate. We first outline the general scenario and
our assumptions, and then describe how the states and transition functions for
the vehicle automaton are defined.

3.1 Scenario

Fig. 2. Intersection Scenario

We consider a four way intersection as
depicted in Figure 2. The intersection
is not equipped with a central traf-
fic control mechanism such as a traf-
fic light, so vehicles need to coordi-
nate their actions to avoid collisions.
The figure shows entity A approach-
ing the intersection. For simplicity we
have aligned the roads with the x and
y axes respectively, and assumed that
entity A will not turn. Thus, it will
only need to travel in the x direction
to cross the intersection. To tackle a wider range of road geometries one needs to
transform coordinate system of the vehicle along the road (i.e., using longitudinal
and lateral directions). Allowing the vehicle to turn can be easily incorporated
in the model. There are four conceptual regions for this entity in relation to the
intersection, “far away” when the x position is less than some specified value a,
“close” when a ≤ x ≤ b, “in intersection”, when b ≤ x ≤ c, and passed when
x ≥ c.

In our model, we have chosen to put as few restrictions on the allowed be-
haviour of the system as possible. However, some restrictions are necessary to
prove the desired safety properties. Since the actual behaviour of a car is more
restricted than our model of it, by proving that the wider envelope is safe, it
follows that a restricted subset of the behaviour will also be safe.

We further assume that all entities use the CwoRIS resource reservation pro-
tocol to negotiate access to the intersection, and that if another entity is in the
intersection then it must be in the active area given by the membership proto-
col. Apart from the assumption that entities keep in lane, the positions x(e, t) of
entities e other than entity A, are only restricted in the sense that if entity e is
in the intersection, it must have the resource. For entity A this is not assumed,
but proven to hold as explained in Section 4.2.

3.2 Core Automaton

We now proceed to describe the core automaton (the states S, the initial states
I, and the transition function T ) that encodes the behaviour of entity A. The
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Table 3. State variables

Continuous state variables Discrete state variables
Predicate Type Description Predicate Type Description

ti R time at state i li L location
xi R x position in state i vit R intended target speed
yi R y position in state i P i Bool will pass
vi R speed in state i

logic of the vehicle is quite straightforward and roughly based on the intersection
collision avoidance application described by Sin et al. [22].

Table 3 contains the continuous and discrete variables (that actually encode
the discrete states), and Figure 3 shows a graphical representation of the dis-
crete state transitions. The continuous state variables are time, x and y posi-
tion and speed. The discrete variables are as follows. The location l ∈ L =
{farAway, close, inInter, passed} denotes the logical location of the vehicles in
relation to the intersection. The intended target speed vt denotes the reference
value to which the vehicle tries to adapts its speed. The Boolean variable P de-
notes an internal decision corresponding to whether the vehicle intends to pass
the intersection in the near future.

Now consider Figure 3 which shows the discrete states and transitions of the
core automaton (where all states have implicit self-loops). Initially, the vehicle
is considered to be far away from the intersection, but when the x position of
the vehicle passed the proximity point a, its state will change. There are two
possibilities, either the entity has acquired the resource and will have it for a
sufficiently long time to pass the intersection (we denote this willHaveResource),
in which case it will set P (will pass) to true and prepare to cross the intersection.
Otherwise, the vehicle must break (set target speed vt = 0), and wait until a
resource is acquired.

Once the entity has secured the resource it will need to maintain a minimum
speed (vmin) while close to or in the intersection. When the entity passes x = b,
it is considered to be in the intersection, until it passes point x = c, after which
it sets its location to “passed”.

start

l = farAway
vt = ∗
P = ∗

l = close
vt = 0

P = False

l = close
vt ≥ vmin

P = True

l = inInter
vt ≥ vmin

P = True

l = passed
vt = ∗
P = ∗(x = a) ∧

willHaveResource

(x = a) ∧
¬willHaveResource

willHaveResource

x = b x = c

Fig. 3. Automaton for the behaviour of vehicle A
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Having covered the logical control of the vehicle, we now turn to a simple
model of its physical characteristics. This is defined by the continuous transition
function TC(i, j) (where i and j are states), which is a conjunction of criteria on
the allowed evolution (or flow) of the continuous variables.

TC(i, j) ≡ move(i, j) ∧ speed(i, j) ∧ duration(i, j)∧
(ti < tj) ∧ consts(i, j) ∧ inv(i, j)

The allowed movement (move(i, j)) of the vehicle is defined below. This move-
ment formula assumes that the average speed during the duration of the con-
tinuous transition is equal to the mean of the start and end speeds (vi and vj).
This is true if for example the acceleration is constant during that time.

move(i, j) ≡
(
xj = xi +

vi + vj

2
(tj − ti)

)

Fig. 4. Speed

The speed change during a continuous
transition is controlled by the mini-
mum absolute acceleration parameter
a. In line with letting the behaviour
of the car to be unrestricted unless re-
quired to prove the safety of the sys-
tem we do not limit the maximum
acceleration. Note that this does not
mean that we assume vehicles to have
unbounded acceleration, but rather
that as long as the speed change is
within the envelope we are able to prove system safety. Formally, the allowed
speed change is expressed as follows.

speed(i, j) ≡
(
(vit = vi) ∧ (vj = vi)

)
∨(

(vit < vi) ∧ (vit ≤ vj ≤ vi − a(tj − ti))
)
∨(

(vit > vi) ∧ (vi + a(tj − ti) ≤ vj ≤ vit)
)

If the duration of the continuous transition is long enough, the above formula
will cause the resulting speed to pass the intended target speed. Therefore, we
add a restriction on the duration of a continuous transition when there is a speed
change:

duration(i, j) ≡ (vit = vi) ∨
(
tj ≤ ti +

|vit − vi|
a

)
The easiest way to understand the above formulae is through figure 4. It shows
the case where the target speed is higher than the increased speed. The grey
area shows the admissible values for tj and vj .

The fourth criterion (ti < tj) in TC states that a timed transition must incre-
ment the clock, since otherwise it would be possible to have an infinite amount
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of transitions without any time passing. The const(i, j) criterion simply requires
all discrete variables to stay constant during the timed transition. Finally, with
the invariant criterion inv , we introduce a restriction which is merely for sake
of the reducing the search space. There is no algorithm for solving general non-
linear arithmetic constraints, and with the model description so far Z3 returns
unknown when asked for satisfiability. We were thus forced to restrict the search
space by requiring that the speed variable v to be a multiple of 0.5m/s. Each
speed step can be seen as modelling a 0.5m/s wide range of the actual vehicle
speed3. Note that this must be done with some care. Specifically, one must make
sure that it does not lead to dead ends in the automaton from which there are
no outgoing transitions, as we show in the next section.

4 Verification

Having described our model we now outline our efforts to verify safety properties
of our model. Let R ⊂ S be the set of states that are reachable from I with
a finite sequence of transitions. Our objective is to show that all states in R
fulfil some safety property safe i. This predicate should exclude the possibility
of vehicle A colliding with any other entity within the area, so we let safe i ≡
safeDist i, where:

safeDist i ≡ ∀e ∈ E :(e = A) ∨ ¬inArea(e)
∨
(
|x(A, ti)− x(e, ti)| > Xmin

)
∨
(
|y(A, ti)− y(e, ti)| > Ymin

) (1)

Note that we specify the minimum allowed distance individually for the x and
y dimensions simply because the constraint solver we used could not cope with
a proper euclidean distance constraint. We leave it to future work to find a way
around this limitation. Moreover, we only include the vehicles in the active area
to reduce the verification complexity. Having defined the safety predicate we now
want to prove that all reachable states are safe: M |= ∀i ∈ R : safei

Unfortunately, this formulation is not very suitable for automatic verification;
we first have to transform the problem into a more tractable one. To do this we
employ as basic variant of k-induction and manual invariant strengthening.

4.1 Safety by Induction

Proving safety using induction and a SAT solver was introduced by Sheeran et
al. [21] and is naturally extended to SMT solvers. The basic idea is to prove
safety of the system by induction, using paths of length K as the base case.
By testing increasingly larger values for K, this method will eventually provide
an answer for finite system representations. In the case of our model we use

3 This can be seen as a discretisation of the speed variable, but does not restrict the
possible values for the other continuous variables.
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K = 2. Using only the first state as the base case is not enough since both a
continuous and a discrete transition is needed to ensure that the next state is
one that could reasonably occur for this system. Starting with the base case that
all initial states and all successors to the initial states are safe:

M |= ∀i ∈ I, j ∈ S : safei ∧ (T (i, j)⇒ safej)

We then formulate the inductive step, that if two successive states are safe, then
the third successor must also be a safe state.

M |= ∀i, j, k ∈ S :
(
safei ∧ safej ∧ T (i, j) ∧ T (j, k)

)
⇒ safek

Recall that to prove these formulae we try to assert their negation in Z3. When
the solver concludes that the negated formula is unsatisfiable, we know that the
formula is a consequence of the model M , and that all reachable states are safe.
If, on the other hand, the solver finds a solution to the constraint problem there
are two possibilities. Either the system is not safe, in which case the variable
assignment that satisfies the negation of what we want to prove provides us with
an example of how the system can enter an unsafe state. This provides useful
information for debugging the formulation of the model.

The other case is worse. The fact that the inductive step is false does not
necessarily mean that the system is unsafe. If the solver finds a case where the
safe states i and j lead to an unsafe state k, but i and j are not reachable states,
the counterexample is of no use. In this case, the system might or might not be
safe; we have no way of knowing. Increasing K does not help in our case since
we do not enforce maximal progress of timed transitions. Moreover, the safe
safeDist predicate only considers the positions of the vehicles. Thus, to prove
safety we need to replace the safety criterion with a stronger invariant that also
ensures proper speed and resource allocation.

4.2 Safety Invariants

The problem of finding invariants is often the key of automated theorem proving.
Fortunately, in our case, the invariants are fairly straightforward to the problem
at hand. Moreover, we do not consider it to be a problem that these need to
be defined manually. When designing a system for automotive safety, there will
be a large number of criteria in the system specification and these definitely fall
within this range. Apart from the safeDist i property (equation (1)) we add two
more invariants. The first hasResInInter requiring that if the entity is in the
intersection, then it must (1) have acquired the resource (2) have this resource
for a sufficient amount of time (3) have decided to pass the intersection and (4)
have a minimum target speed vmin.

Finally, the predicate safeSpeed limits the maximum speed that the entity can
have when being close to the intersection, but not having acquired the resource.
Or, similar to the above, the entity has decided to pass, to have a minimum target
speed. Figure 5 shows a graphical representation of the maximum speed before
an intersection. When the vehicle is far away from the intersection, there is a
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Fig. 5. SafeSpeed

fixed maximum speed. However, when the vehicle approaches the intersection, if
it has not decided to pass, it must start to slow down. The final safety invariant
is then defined as safe i ≡ safeDist i ∧ hasResInInter i ∧ safeSpeed i.

With these additions and the induction scheme outlined in the previous sub-
section we were able to prove the safety of all reachable states using the Z3
solver.

4.3 Deadlock Freedom

The final step in our verification process is to ensure that the model is sound
in the sense that we have not made it overly restrictive. In particular, it should
always be possible to transition to a new state. If the model is stuck, it means
that we have made an error. One possible approach to show this is to use the
same inductive reasoning as for proving safety.

M |= ∀i, j ∈ S : T (i, j)⇒ ∃k ∈ S : T (j, k)

However, when feeding the negation of this formula to Z3 it returns “unknown”.
It turns out that one of the core reasons for this is that time must increase for
a continuous transition (tj > ti). Unfortunately we cannot not just remove this
criterion, since it is required to prove safety. Instead we found another solution
to this problem, based on constructing a successor to every state.

We introduced a successor function succ : S → S that for each state returns
a new state to which there is a valid transition. The successor function can be
derived without major effort from the definition of the transition function. Since
succ is always guaranteed to give an output for every input state, we can prove
freedom from deadlock by proving the following formula.

M |= ∀i, j : T (i, j)⇒ T (j, succ(j))

The reason for having an antecedent (T (i, j)) is that this ensures that the state
variables in state j are not in themselves contradictory.

4.4 Final Remarks

In addition to the above, we asserted basic properties such as that no two entities
both believe that they had the resource and that there is a sequence of transitions
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in which A can pass the intersection. We did not formally prove progress of the
model, but this would also be an important aspect for a model checking tool.
We believe that our approach can be extended to handle this aspect provided
stronger assumptions on the underlying communication system, this is currently
work in progress. The entire model is composed of 825 lines of SMT-lib code
(including comments), and the verification by Z3 took 14 seconds on a Dell
optiplex 990 with a 3.4 GHz Intel Core i7 processor. According to the statistic
outputs by Z3 109MB of memory was consumed and 965k equations were added
by the constraint solver in the process.

5 Related Work

There is a rich field of research on verification of hybrid systems, see Alur [2] for a
nice historic overview. Thanks to the foundational research on basic theories for
hybrid automata and satisfiability [8,12], there are now a number of very powerful
verification tools available. Our focus is on the application of such automatic
formal verification tools on distributed coordination problems. Several works
such as [14,24] use SMT solvers to verify real-time communication protocols
but do not consider mobility and spatial safety constraints. The problem of
how autonomous traffic agents (or robots) should avoid collisions has also been
treated formally with manual proof strategies. For example, Damm et al. [7]
present a proof rule for collision freedom of two vehicles. Such work is crucial for
the understanding of the basic characteristics of the coordination problem, but
can be difficult to directly translate in to a model which is machine verifiable.

Our approach to traffic management is based on a coordination scheme where
a physical resource is allocated using a distributed coordination protocol. How-
ever, the collision avoidance can also be assured with the help of other abstrac-
tions. If a central authority can be deployed as in the case of the European Train
Control System (ETCS), it is enough to verify that the agent does not go outside
the boundary given by the manager [13,29]. Collision avoidance between two
entities has also been studied in the context of air traffic management [26,15].

Another approach to ensuring collision freedom is to verify that the trajecto-
ries of the different entities do not intersect. Clearly, such an approach requires
very sophisticated reasoning about the differential equations relating the vehicle
movements. Althoff et al. [1] use reachability analysis to prove safety of eva-
sive manoeuvres. Strong results can be shown with deductive methods as shown
by Platzer [19]. This approach has been applied to platooning [16], air traffic
management [20], and intersection collision avoidance [17]. While this method
allows more powerful model of the vehicle dynamics than what was possible to
verify in our model, verifying properties with a deductive approach often require
manual interaction. For example, the safety of the intersection control appli-
cation [17] required in total over 800 interactive steps to complete. Moreover,
this study assumes the existence of a stop light, and does not explicitly model
communication.
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Autonomous intersection management has been extensively explored in the
intelligent transportation community [10,22,28], though usually not with a focus
on proving correctness. Naumann et al. [18] consider a formal model of the
scenario, but it is based on a discrete set of locations for each car. The Comhordú
coordination scheme on which the coordination approach presented here is based
was formalised by Bhandal et al. [4] using a process algebraic approach.

6 Conclusions

In this paper we have presented a formalisation of the distributed coordination
problem encountered by intelligent vehicles while contending for the same physi-
cal resource. We formalised a coordination protocol and an intersection collision
avoidance case study in the SMT-lib language and proved system safety using
the Z3 theorem prover.

We can draw two conclusions from this work. First, the responsibility approach
to distributed coordination is a suitable abstraction for formal reasoning on
system safety. The core of this approach is that every entity is responsible for
making sure that it does not enter an unsafe state with respect to any other
entity. This can be contrasted with the other approaches where consensus is
required between all nodes, decisions are made by a central manager, or where
each pair of nodes negotiates independently, all of which seem problematic from
a scalability point of view.

The second conclusion is that automatic verification of collaborative vehic-
ular applications with the help of SMT solvers is at least plausible. We have
encountered some cases where the model could not be verified, and increasing
the detail and scale of the model would certainly enlarge this problem. However,
there are certainly domain-specific approximations that can be made to alleviate
some of these problems. Our next step is to generalise our specific case study to
construct a tool that allows high level models of applications for smart vehicles
to be automatically verified using an underlying formal reasoning engine. This
includes dealing with more general physical environment models (e.g., multiple
intersections). Another interesting direction is to explore more detailed formal
models of the membership protocol.
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Abstract. Runtime verification is the process of checking a property on a trace
of events produced by the execution of a computational system. Runtime verifica-
tion techniques have recently focused on parametric specifications where events
take data values as parameters. These techniques exist on a spectrum inhabited by
both efficient and expressive techniques. These characteristics are usually shown
to be conflicting - in state-of-the-art solutions, efficiency is obtained at the cost
of loss of expressiveness and vice-versa. To seek a solution to this conflict we ex-
plore a new point on the spectrum by defining an alternative runtime verification
approach. We introduce a new formalism for concisely capturing expressive spec-
ifications with parameters. Our technique is more expressive than the currently
most efficient techniques while at the same time allowing for optimizations.

1 Introduction

Runtime Verification [1–5, 7, 9–12] is the process of checking a property on a trace
of events produced by the execution of a computational system. Over the last decade, a
number of different formalisms were proposed for specifying such properties and mech-
anisms for checking traces. Early work focused on propositional events but recently
there has been a growing interest in so-called parametric properties where events carry
data values. Challenges that arise when designing a runtime verification framework
incorporating parametric properties are twofold. The first lies in the (parametric) speci-
fication formalism used to specify the property; usually one seeks expressiveness. The
second lies in the efficiency of monitoring algorithms associated with the formalism.

A spectrum of runtime verification. Specification formalisms differ in their level of ex-
pressiveness and usability and, monitoring algorithms differ in efficiency. In developing
monitoring frameworks, one can distinguish between systems such as JAVAMOP [11]
and TRACEMATCHES [1], which focus on efficiency rather than expressiveness, and
systems such as EAGLE [2], RULER [2, 5], LOGSCOPE [3] and TRACECONTRACT [4],
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which focus on expressiveness rather than efficiency. The development in this paper
arose from our attempt to understand, reformulate and generalise parametric trace slic-
ing (as adopted by JAVAMOP [7]), and more generally from our attempt to explore the
spectrum between JAVAMOP and more expressive systems such as EAGLE, RULER,
LOGSCOPE and TRACECONTRACT.

Contributions. This paper contributes to the general effort to understand the spectrum
of monitoring techniques for parametric properties. We propose Quantified Event Au-
tomata (QEA) as a formalism for defining parametric properties that is more expressive
than the formalisms behind the current most efficient frameworks such as JAVAMOP
and TRACEMATCHES. This formalism is as expressive as the formalisms behind the
most expressive frameworks, such as RULER, but is, in our opinion, more intuitive and
allows for optimisation. Additionally we include guards and assignments in our new
formalism. We present both a big-step semantics, operating on full finite traces, and a
small-step semantics, operating on the trace step-by-step. The small-step semantics acts
as a basis from which monitoring algorithms can be derived.

Paper Organization. Section 2 motivates our approach by exhibiting the limitations
of parametric trace slicing and overviews how we overcome them. We introduce QEA
in Sec. 4 by first defining Event Automata (EA) in Sec. 3. An EA defines a property
over a set of parametric events, and QEA generalise these by quantifying over some
variables in the EA. As we separate quantifications from the definition of the property
we could replace Event Automata with some other formalism, such as context-free
grammars, in the future. Sections 3 and 4 are concerned with the a big-step semantics
of our formalism, whereas Sec. 5 presents a small-step semantics, along with a notion of
acceptance in a four-valued verdict domain. Finally, we discuss related work in Sec. 6
and draw conclusions in Sec. 7.

2 Background

Runtime monitoring is the process of checking a property on a trace (finite sequence)
of events. In this context, an event records some action or snapshot from the monitored
system. A property defines a language over events and a monitor is a decision procedure
for the property. An event is said to be propositional if it consists of a simple name, e.g.,
open, and parametric if it contains data values, e.g., open(‘file42’). We name properties
and monitors in a similar way: propositional and parametric monitors, respectively.

A previous approach to parametric runtime monitoring is called parametric trace
slicing [7] (an approach taken by JAVAMOP [11]). Here a parametric monitor, from a
theoretical point of view, works by slicing its parametric input trace to a set of proposi-
tional traces that are then processed by separate propositional monitors. Let us illustrate
this approach with a simple example. Consider the parametric property stating that for
any file f , open(f ) and close(f ) events for that file f should alternate. This property
can be formalised as the parametric regular expression (open(f).close(f))∗. Consider
now the parametric trace open(1).close(2).close(1). In this parametric trace there
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are two different instantiations of f , namely f=1 and f=2. In this case slicing produces
the following configuration consisting of two bindings associated with propositional
traces:

[f �→ 1] : open.close [f �→ 2] : close

Each of these traces are then monitored by the monitor corresponding to the proposi-
tional property (open.close)∗. It is clear that for [f �→ 2] the property does not hold.

For practical purposes, instead of mapping each binding to a propositional trace as
above, a configuration instead maps the binding to a propositional monitor state, the
state the monitor will be in after observing that propositional trace. When a monitor
receives an event it combines the event’s parameters with the variables associated with
that event to construct a binding (a map from variables to concrete values), and looks
up the appropriate propositional monitor state for that binding, and then applies the
propositional event in that monitor state to obtain a new state. For example, given the
above trace, the first event open(1) would be used to construct the binding [f �→ 1].
However, note that the binding constructed from an event does not necessarily match
exactly any of the bindings in the configuration. Instead, a monitor state is updated if it
is mapped to by any binding that includes the binding produced by the event. Looking
up monitor states directly from events makes a slicing approach efficient.

The following definition defines for a given trace and a given binding what proposi-
tional trace this binding is mapped to, namely the slice corresponding to that binding.

Definition 1 (Parametric Trace Slicing). Given a trace of parameterised events τ and
a binding θ, the θ-slice of τ , written τ ↓θ, is the propositional trace defined by:

ε ↓θ= ε e(θ′).τ ↓θ=
{
e.(τ ↓θ) if θ′ � θ
τ ↓θ otherwise

where ε is the empty trace, each parameterised event e(θ′) consists of an event name e
and a binding θ′, and � is the submap relation on bindings.

However, as we shall see, parametric trace slicing has two main shortcomings. First, it
is not possible to write a property where an event name is associated with two different
lists of variables, for example open(f) and open(g), as when observing an event, such
as open(1), it must be possible to construct a unique binding, such as [f �→ 1], hence
relying on only one unique variable associated with open (in this case f ). Second, the
theory assumes that all variables take part in slicing - forcing their values to remain
fixed w.r.t. a monitor. Third, the theory implicitly assumes universal quantification on
all parameters, hence forbidding alternation with existential quantification. Below are
some properties that are not expressible in this parametric trace slicing setting:

Talking Philosophers. Any two philosophers may not speak at the same time - if one
starts talking another cannot start until the first stops. Given any philosophers x and
y, the property must therefore differentiate between events start(x) and start(y).

Auction Bidding. Amounts bid for an item should be strictly increasing. If bidding is
captured by the event bid(item, amount) the value given to item should be fixed
w.r.t. a monitor, but the value given to amount should be allowed to vary.
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Candidate Selection. For every voter there must exist a party that the voter is a mem-
ber of, and the voter must rank all candidates for that party.

Our more general formalism allows us to express these and other properties with addi-
tional new features. We first introduce Event Automata (EA) to describe a property with
parametric events containing both values and variables. An event name can occur with
different (lists of) parameters, for example start(1), start(x) and start(y). We then
introduce Quantified Event Automata (QEA), which generalise EA by quantifying over
some of the variables, making them bound. Variables that are not quantified over, hence
free, can be rebound as a trace is analysed. This is useful for specification purposes as
we shall see. As we will always instantiate Event Automata before using them we can
treat all variables as free variables and rebind them where necessary. In theory, trace
acceptance can be decided using a set of instantiated EA generated using the QEA as a
template and replacing quantified variables with values from their domain. In practice
this approach is inefficient and we present an alternative that allows for optimisation.

3 Event Automata

An Event Automaton is a non-deterministic finite-state automaton whose alphabet con-
sists of parametric events and whose transitions may be labelled with guards and as-
signments. These are generalised in the next section by quantifying over zero or more
variables appearing in parametric events. Here we assume the Event Automaton has
been instantiated and all quantified variables replaced with values.

We begin by formalising the structure of Event Automata, then give a transition
semantics and define an Event Automaton’s language, finishing with three examples.

We use s to denote a tuple 〈s0, . . . , sk〉. We use X → Y and X ⇁ Y to denote sets
of total and partial functions between X and Y , respectively. We write maps (partial
functions) as [x0 �→ v0, . . . , xi �→ vi] and the empty map as [ ]. Given two maps A and
B, the map override operator is defined as:

(A † B)(x) =

⎧⎨
⎩

B(x) if x ∈ dom(B),
A(x) if x �∈ dom(B) and x ∈ dom(A),
undefined otherwise.

3.1 Syntax

We build the syntax from a set of propositional event names Σ, a set of values Val 1,
and a set of variables Var (disjoint from Val) as follows.

Definition 2 (Symbols, Events, Alphabets and Traces). Let Sym = Val ∪ Var be
the set of all symbols (variables or values). An event is a pair 〈e, s〉 ∈ Σ × Sym∗,
written e(s). An event e(s) is ground if s ∈ Val∗. Let Event be the set of all events and
GEvent be the set of all ground events. A trace is a finite sequence of ground events.
Let Trace = GEvent∗ be the set of all traces.

1 For example, integers, strings or objects from an object-oriented programming language.
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We use x, y to refer to variables, s to refer to symbols, a to refer to ground events , b
to refer to events which are not necessarily ground, and σ, τ to refer to traces. Note that
we focus on finite traces. A continuously evolving system could be monitored through
snapshots of finite traces - the trace seen so far.

Bindings are maps from variables to values, i.e., elements of Bind = Var ⇁ Val .
There is a partial order� on bindings such that θ1 � θ2 iff θ1 is a submap of θ2. Guards
are predicates on bindings, i.e., total functions in Guard = Bind → B. We use θ and
ϕ to denote bindings and g to denote guards. A binding can be applied to a symbol as a
substitution – replacing the symbol if it is defined in the binding. This can be lifted to
events and used to give a definition of a ground event and an event matching:

Definition 3 (Substitution). The binding θ = [x0 �→ v0, . . . , xi �→ vi] can be applied
to a symbol s and to an event e(s) as follows:

s(θ) =

{
θ(s) if s ∈ dom(θ)
s otherwise

e〈s0, . . . , sj〉(θ) = e〈s0(θ), . . . , sj(θ)〉

Definition 4 (Matching). Given a ground event a and event b, the predicate
matches(a, b) holds iff there exists a binding θ s.t.b(θ) = a. Moreover, let match(a,b)
denote the smallest such binding w.r.t � if it exists (and is undefined otherwise).

Assignments are total functions on bindings, i.e., elements of Assign = Bind → Bind .
We use γ to denote assignments. Guards and assignments may be described in suitable
languages. We do not need to specify particular languages, but will use standard pro-
gramming language notation in examples and assume that assignments maintain values
they do not explicitly update. Now we are in a position to define Event Automata (EA).

Definition 5 (Event Automaton). An EA 〈Q,A, δ, q0, F 〉 is a tuple where Q is a finite
set of states, A ⊆ Event is a finite alphabet, δ ∈ (Q ×A×Guard×Assign×Q) is
a finite set of transitions, q0 ∈ Q is an initial state, and F ⊆ Q is a set of final states.

3.2 Semantics

We give the semantics of EA within the context of an EA E = 〈Q,A, δ, q0, F 〉.

Definition 6 (Configurations and Transition Relation). We define configurations as
elements of the set Config = Q × Bind . Let →⊆ Config × GEvent × Config be
a relation on configurations s.t. configurations 〈q, ϕ〉 and 〈q′, ϕ′〉 are related by the
ground event a, written 〈q, ϕ〉 a→ 〈q′, ϕ′〉, if and only if

∃b ∈ A, ∃g ∈ Guard, ∃γ ∈ Assign : (q,b, g, γ, q′) ∈ δ ∧
matches(a,b) ∧ g(ϕ † match(a,b)) ∧ ϕ′ = γ(ϕ † match(a,b)).

Let the transition relation →E be the smallest relation containing→ such that for any
event a and configuration c if �c′ : c

a→ c′ then c
a→E c. The relation →E is lifted to

traces. For any two configurations c and c′, c
ε→E c holds, and c

a.τ→E c′ holds iff there
exists a configuration c′ s.t. c

a→E c′′ and c′′
τ→E c′.
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In an EA, a configuration contains the values bound to the variables. These bindings are
local to each EA – notably there is no shared global state. A ground event a can take
〈q, ϕ〉 into 〈q′, ϕ′〉 if there exists a transition in δ starting in q, s.t. the events match, the
guard is satisfied, and the new configuration contains the binding given by the assign-
ment and state q′. Note that EA are non-deterministic.

Note. When we encounter an event for which there is no matching transition in the
automaton we wait in the current state. There are alternative accounts, which are equiv-
alent in the sense that we can translate automata between the different semantics. We
have made this choice as our initial experience is that this makes writing specifications
more straightforward as, when defining a property, we do not need to write transitions
for events with no role in the specification.

Let us now define the language of an EA. An event denotes a set of ground events –
for example, the event start(x) denotes the set {start(v) | v ∈ Val} and a ground
event denotes the singleton set containing itself. We use this notion to define the ground
alphabet of an EA. Let the ground alphabet of the EA E be

ground(E) = {a ∈ GEvent | ∃b ∈ A : matches(a,b)}.
We say that there is a run on τ reaching a configuration c iff 〈q0, [ ]〉 τ→E c. An EA
accepts a trace if there is a run on that trace reaching a configuration in a final state.

Definition 7 (Event Automaton Language). The language of the Event Automaton E
is noted and defined as

L(E) = {τ ∈ ground(E)∗ | ∃〈q, ϕ〉 ∈ Config : 〈q0, [ ]〉 τ→E 〈q, ϕ〉 ∧ q ∈ F}.

3.3 Examples

To illustrate Event Automata and their languages, consider the three examples in
Sec. 2, Talking Philosophers, Auction Bidding and Candidate Selection. Recall that
all variables occuring in an EA are unquantified (free).

1 2

3

start(x)

stop(y) y=x

start(y) y �=x

(a) Talking Philosophers

1 2

3

bid(‘hat’, max)
bid(‘hat’, new) new>max

max:=new

bid(‘hat’, new) new≤max

(b) Auction Bidding

1

2 3

4

member(‘tom’,‘red’)

candidate(‘flo’,‘red’)

rank(‘tom’,‘flo’,r)

(c) Candidate Selection

Fig. 1. Three EAs. We use shaded states to indicate final states and the notation guard
assignment

for
writing guards and assignments on transitions.
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Talking Philosophers. The EA Phil in Fig. 1a captures the property that no two
philosophers can be talking at the same time. The philosopher currently talking is
recorded in variable x, which can only be rebound after that philosopher stops talking.
If a different philosopher starts talking before this happens this is an error. Consider the

trace τ1 = start(1).stop(1).start(2). This is in L(Phil) as the run 〈1, [ ]〉 start(1)−→
〈2, [x �→ 1]〉 stop(1)−→ 〈1, [x �→ 1, y �→ 1]〉 start(2)−→ 〈2, [x �→ 2, y �→ 1]〉 ends in a
final state. However, the trace τ2 = start(1).start(2) is not in L(Phil) as the run

〈1, [ ]〉 start(1)−→ 〈2, [x �→ 1]〉 start(2)−→ 〈3, [x �→ 1, y �→ 2]〉 does not end in a final state.

Auction Bidding. The EA Hat in Fig. 1b captures the property that bids on item
‘hat’ must be strictly increasing. Consider the trace τ3 = bid(‘hat’, 1).bid(‘hat’, 10).

bid(‘hat’, 5). The only run on τ3 is 〈1, [ ]〉 bid(‘hat’,1)−→ 〈2, [max �→ 1]〉 bid(‘hat’,10)−→
〈2, [max �→ 10, new �→ 10]〉 bid(‘hat’,5)−→ 〈3, [max �→ 10, new �→ 5]〉. As state 3 is non-
final, τ3 �∈ L(Hat). In this example, a guard is used to capture the failing behaviour out
of state 2 and an assignment is used to keep track of the maximum bid.

Candidate Selection. The EA Candi in Fig. 1c captures the property that voter tom is
a member of the red party, candidate flo is a candidate for the red party and voter tom
ranks flo in position r - a variable. State 2 is accepting as tom only needs to rank flo
if she is a candidate for the red party. The more general case is dealt with in the next
section by replacing values ‘tom’, ‘flo’, and ‘red’ by quantified variables.

4 Quantified Event Automata

We now define Quantified Event Automata (QEA), which generalise EA by quantifying
over zero or more of the variables used in an EA. Acceptance is decided by replacing
these quantified variables by each value in their domain to generate a set of EA and then
using the quantifiers to determine which of these EA must accept the given trace. We
begin by considering the syntax of QEA and then present their acceptance condition,
finishing by returning to our three running examples.

4.1 Syntax

A QEA consists of an EA with some (or none) of its variables quantified by ∀ or ∃. The
domain of each quantified variable is derived from the trace. The variables of an EA are
those that appear in its alphabet:

vars(E) = {x | ∃e(s) ∈ E.A : x ∈ s ∧ x ∈ Var}.

Not all variables need to be quantified. Unquantified variables are left free in E and can
be rebound during the processing of the trace - as seen in the previous section.
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Definition 8 (Quantified Event Automaton). A QEA is a pair 〈Λ,E〉 where E is an
EA and Λ ∈ ({∀, ∃}×vars(E)×Guard)∗ is a list of quantified variables with guards.

A QEA is well-formed if Λ contains each variable in vars(E) at most once. In the
following, we consider a QEA Q = 〈Λ,E〉.

4.2 Acceptance

In Sec. 3 we defined the language of an EA. The intuitive idea here is to use the EA E
in QEA Q as a template for generating a set of EA and then check if the trace is in the
language of each generated EA. To do this, quantified variables in E are replaced by
the values taken from the domain of these quantified variables. First we introduce the
concept of EA instantiation to replace variables in E with values.

Definition 9 (Event Automaton Instantiation). Given a binding θ, let E(θ) = 〈Q,
A(θ), δ(θ), q0, F 〉 be the θ-instantiation of E where

A(θ) = {b(θ) | b ∈ A}
(q,b(θ), g′, γ′, q′) ∈ δ(θ) iff (q,b, g, γ, q′) ∈ δ and g′(ϕ) = g(θ † ϕ)

and γ′(ϕ) = γ(θ † ϕ).
The domain of each quantified variable is derived from the values in the trace. The
intuition here is that the events start(x) and stop(x) allow us to identify the values
that the quantified variable x can take. Therefore, the domain for x is computed by
finding all values bound to x when matching any event in the trace with any event in
the alphabet of the EA that uses x.

Definition 10 (Derived Domain). The derived domain of a trace τ is a map from vari-
ables quantified in Λ to sets of values:

Dom(τ)(x) = {match(a,b)(x) | b = e(..., x, ...) ∈ A ∧ a ∈ τ ∧ matches(a,b)}.
Each instantiation of E is concerned only with the behaviour of a small set of values (or
the events using those values) but a trace can contain other values - that is for binding
θ a trace can contain events not in ground(E(θ)). We need to restrict the trace so that
we can test whether it is in the language of E(θ). We do this by filtering out any event
not in ground(E(θ)). Note that our notion of projection is w.r.t. a set of parametric
events (captured by an EA), which differs from the projection in parametric trace slicing
(Definition 1) done w.r.t. a binding. Therefore, we are able to deal with event names
which are associated with multiple different variable lists.

Definition 11 (Projection). The projection of τ ∈ Trace w.r.t. E is defined as:

ε ↓E= ε a.τ ↓E=
{
a.(τ ↓E) if a ∈ ground(E),
(τ ↓E) otherwise.

A trace τ satisfies the property w.r.t. a binding θ iff τ ↓E(θ)∈ L(E(θ)). Note that we
could use a different formalism to define such a language, or alter the semantics of EA,
and this notion of satisfaction would remain unchanged. Finally, the quantifiers use the
derived domain to inductively generate bindings and dictates which of these bindings
the trace must satisfy the property with respect to.
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1 2

3∀item

bid(item , max )

bid(item , new ) new>max
max :=new

bid(item , new ) new≤max

(a) Auction Bidding QEA

1

2 3

4

∀v ,∃p,∀c

member(v, p)

candidate(c, p)

rank(v, c, r)

(b) Candidate Selection QEA

Fig. 2. Two QEAs

Definition 12 (Acceptance). Q accepts a ground trace τ if τ |=[ ] Λ.E where |=θ is
defined as

τ |=θ (∀x : g)Λ′.E iff for all d in Dom(τ)(x) if g(θ † [x �→ d]) then τ |=θ†[x �→d] Λ
′.E

τ |=θ (∃x : g)Λ′.E iff for some d in Dom(τ)(x) g(θ † [x �→ d]) and τ |=θ†[x �→d] Λ
′.E

τ |=θ ε.E iff τ ↓E(θ)∈ L(E(θ))

Universal (resp. existential) quantification means that a trace must satisfy the property
w.r.t. all (resp. at least one) generated bindings.

4.3 Examples

We revisit the examples introduced in Sec. 2 and used in Sec. 3.

Talking Philosophers. The EA in Fig. 1a can be treated directly as a QEA with no
quantifications - in this case a single global value (x) is used to record the currently
talking philosopher and we are not concerned with the behaviour of individual philoso-
phers in isolation.

Auction Bidding. The QEA Bid in Fig. 2a captures the general Auction Bidding prop-
erty. The quantifications indicate that only the item variable should be instantiated, thus
leaving the max and new variables free to be rebound whilst processing the trace.

Candidate Selection. The QEA Select in Fig 2b captures the general Candidate Se-
lection property that for every voter there is a party that the voter is a member of, and
the voter ranks all candidates for that party. Let us consider the following trace τ4

member(‘tom’,‘red’).member(‘ali’,‘blue’).candidate(‘jim’,‘red’).candidate(‘flo’,‘red’).
candidate(‘don’,‘blue’).rank(‘tom’,‘jim’,1).rank(‘ali’,‘don’,1).

In this trace ali ranks all candidates for the blue party but tom only ranks one of the can-
didates for the red party. The derived domain is Dom(τ4) = [v �→ {‘tom’, ‘ali’}, p �→
{‘red’, ‘blue’}, c �→ {‘jim’, ‘flo’, ‘don’}] leading to 12 possible bindings. For space
reasons we do not enumerate these bindings here, but leave it to the reader to verify
that for five of these bindings the instantiated EA accepts the trace, and that adding the
event rank(‘tom’,‘flo’,2) to the trace would make the trace accepting.
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5 Step-Wise Evaluation of QEA

In the previous section, we presented an acceptance condition to decide whether a trace
satisfies the property represented by a QEA. This first built up the derived domain by
inspecting the trace, then used bindings generated from this domain to generate a set
of instantiated EA, checked whether the trace was in the language of each instantiated
EA and finally used this information, along with quantifiers, to decide whether the trace
was accepted. This requires us to pass over the trace at least twice - first to generate the
bindings and then to check the EAs instantiated with them.

For runtime verification purposes, we need to combine these two passes into one –
passing over the trace as it is produced. To do this we process each event when it arrives
by building the derived domain and keeping track of the status of each instantiated EA
on the fly. To decide the acceptance of the trace received up to a certain point we need
to compute the information required by Def. 12. This can be split into two concerns

1. Building the Derived Domain. When a new event is received the values it con-
tains must be recorded. These values are obtained by matching (as per Def. 4) the
received event with the events in the alphabet of the given EA.

2. Tracking the status of Instantiated EAs. The relevant bindings for Def. 12 are those
that can be generated from the derived domain and that bind all quantified variables
- we call such bindings total. We need to track the status of the EA instantiated with
each such total binding.

For efficiency reasons, we capture the derived domain in the bindings that can be built
from it, instead of storing this separately. The status of each instantiated EA can be
captured by the configurations reachable by the trace received so far projected with
respect to that instantiated EA. In the following we break this down into three steps:

1. Generating bindings and associating with them the relevant projected traces
2. Adapting this approach to generate configurations rather than projected traces
3. Showing how acceptance can be decided based on these configurations

When considering runtime verification, efficiency is obviously a major concern. We do
not present an optimised algorithm here, but keep optimisation in mind when discussing
design decisions. The approach presented here can be optimised in a number of ways -
note that the main structure of the approach is similar to that taken by JAVAMOP, and
therefore many optimisations applied in this tool would be applicable here.

We illustrate how to monitor a trace in a step-wise fashion by discussing the Can-
didate Selection example. We consider how the data structures relevant for monitoring
are built up for the QEA Select in Fig 2b and the trace τ4 given on page 76.

5.1 Generating Projections

In this section we show how to use a trace and a QEA to construct a monitoring state,
which associates bindings with projected traces:

MonitoringState = Binding ⇁ Trace
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Table 1. The monitor state generated by monitoring τ4 for Select. Event names have been trun-
cated to three letters and parameter values to their first letter.

Partial bindings Total bindings
[ ] �→ ε [v �→ t, p �→ r, c �→ j] �→ mem(t,r).can(j,r).ran(t,j,1)
[v �→ t, p �→ r] �→ mem(t,r) [v �→ t, p �→ r, c �→ f] �→ mem(t,r).can(f,r)
[v �→ a, p �→ b] �→ mem(a,r) [v �→ t, p �→ r, c �→ d] �→ mem(t,r)
[p �→ r, c �→ j] �→ can(j,r) [v �→ t, p �→ b, c �→ d] �→ can(d,b)
[p �→ r, c �→ f] �→ can(f,r) [v �→ a, p �→ r, c �→ j] �→ can(j,r)
[p �→ b, c �→ d] �→ can(d,b) [v �→ a, p �→ r, c �→ f] �→ can(f,r)

[v �→ a, p �→ b, c �→ j] �→ mem(a,b)
[v �→ a, p �→ b, c �→ f] �→ mem(a,b)
[v �→ a, p �→ b, c �→ d] �→ mem(a,b).can(d,b).ran(a,d,1)

The monitoring state for our example is given in Table 1. Note that the bindings contain
quantified variables only. Let us consider how this monitoring state was built starting
with the empty monitoring state [ ] �→ ε. We first examine the QEA Select and note
that its alphabet is {member(v, p), candidate(c, p), rank(v, c, r)}.

On observing τ4’s first event, member(‘tom’,‘red’), we construct the binding [v �→
‘tom’, p �→ ‘red’] by matching with member(v,p). This binding is added to the monitor-
ing state, along with the associated projected trace. We process τ4’s second event in a
similar way to add:

[v �→ ‘tom’, p �→ ‘red’] �→ member(‘tom’, ‘red’)
[v �→ ‘ali’, p �→ ‘blue’] �→ member(‘ali’, ‘blue’)

We did not add single bindings such as [v �→ ‘tom’] as the projected traces associated
with these bindings would be empty, and therefore recording them would be redundant.
We only record bindings for which the projected trace is non-empty. On observing τ4’s
third event, candidate(‘jim’,‘red’), we construct the binding [p �→ ‘red’, c �→ ‘jim’]
by matching with candidate(c,p) and add this to the monitoring state:

[p �→ ‘red’, c �→ ‘jim’] �→ candidate(‘jim’, ‘red’)

We then combine this binding with the existing binding [v �→ ‘tom’, p �→ ‘red’] to get
the binding [v �→ ‘tom’, c �→ ‘jim’, p �→ ‘red’]. The projected trace for this new binding
is the trace associated with the original binding extended with the current event.

[v �→ ‘tom’, p �→ ‘red’, c �→ ‘jim’] �→ member(‘tom’, ‘red’).candidate(‘jim’, ‘red’)

To see why we do this recall that the submap relation� gives a partial order on bindings
– illustrated in Fig.3. By definition, the projected trace for a new binding will include
all the projected traces for existing bindings it subsumes w.r.t.�, and when it is created
all such events are captured by the largest such existing binding. Like JAVAMOP we
call this notion maximality. Therefore, the projected trace mapped to by a new binding
must extend the projected trace mapped to by the maximal existing binding.

As noted earlier, we must record any binding that can be built from the derived
domain that has a non-empty projection. We can build two such bindings by combining
submaps of [v �→ ‘tom’, p �→ ‘red’] with existing bindings as follows:

[v �→ ‘ali’, p �→ ‘red’, c �→ ‘jim’] �→ candidate(‘jim’, ‘red’)
[v �→ ‘ali’, p �→ ‘blue’, c �→ ‘jim’] �→ member(‘ali’, ‘blue’)
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[ ]

[v �→ ‘tom’, p �→ ‘red’][c �→ ‘jim’, p �→ ‘red’] [c �→ ‘flo’, p �→ ‘red’]

[v �→ ‘tom’, c �→ ‘jim’, p �→ ‘red’] [v �→ ‘tom’, c �→ ‘flo’, p �→ ‘red’]

Fig. 3. A subset of bindings from Table 1 ordered by the submap relation

We now formalise how these bindings and projected traces are generated. We will need
to select the quantified part of a binding, hence, for an assumed quantifier list Λ, let
quantified(θ) = [(x �→ v) ∈ θ | x ∈ vars(Λ)] where vars(Λ) = {x ∈ V ar |
( , x, ) ∈ Λ}. A binding θ is total if dom(θ) = vars(Λ) and partial otherwise.

An event is added to the projection for a binding θ if it matches with an event in
E(θ).A and the resulting binding does not contain quantified variables - this second
part is necessary as θ may be partial. For example, member(‘tom’,‘red’) is not added
to the projection for [ ] as the binding that makes it match with member(c, p) binds c
and p.

Definition 13 (Event Relevance). A ground event a is relevant to a binding θ iff

∃b ∈ A(θ) : matches(a,b) ∧ quantified(match(a,b)) = [ ]

To extend a binding θ we first find all bindings that match the received event with an
event in E(θ).A, and then compute all possible extensions to θ based on these bindings.
If the received event is relevant to a generated new binding we add this event to the
previous trace, otherwise the previous trace is just copied.

Definition 14 (Extending a Binding). Let direct(θ, a) be the bindings that directly
extend θ given a, defined in terms of those bindings that can be built from a.

from(θ, a) = {quantified(match(a,b)) | b ∈ A(θ)}
direct(θ, a) = {θ † θ′ | ∃θ′′ ∈ from(θ, a) : θ′ � θ′′ ∧ θ′ �= [ ]}

Let all (θ, a) be the smallest superset of direct(θ, a) containing θ1†θ2 for all compatible
θ1 and θ2 in direct(θ, a). The required extensions extend(a, θ, σ) are given by

(θ′ �→ σ′) ∈ extend(a, θ, σ) iff θ′ ∈ all(θ,a) ∧ σ′=
{
σ.a if ∃θ′′ ∈ from(θ,a) : θ′′ � θ′

σ otherwise

On receiving a new event the next monitoring state is built by iterating through the cur-
rent monitoring state and, for each binding, adding the event to its associated projected
trace if it is relevant and adding new extending bindings as described above. To ensure
that new bindings extend the maximal existing binding we iterate through bindings in
the reverse order defined by � and only add bindings that do not already exist. This en-
sures that the maximal existing binding for a new binding will always be encountered
first. By adding all bindings that extend existing bindings we ensure that the derived
domain is correctly recorded and that all necessary total bindings will be created.

Definition 15 (Single Step Monitoring Construction). Given ground event a and
monitoring state M . Let θ1, . . . , θm be a linearisation of the domain of M i.e. if θj � θk
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then j > k and every element in the domain of M is present once in the sequence, hence
m = |M |. We define (a ∗M) = Nm ∈ MonitoringState where Nm is iteratively de-
fined as follows for i ∈ [1,m].

N0 = [ ] Ni = Ni−1 † Addi †
{

[θi �→M(θi).a] if a is relevant to θi
[θi �→M(θi)] otherwise

where Addi = [(θ′ �→ σ′) ∈ extend(a, θi,M(θi)) | θ′ /∈ dom(Ni−1)]

Finally, for the input trace the construction of Def. 15 is applied to each event, starting
with an initial monitoring state - the empty binding with the empty projection.

Definition 16 (Stepwise Monitoring). For a trace τ = a0.a1 . . . an we define the final
monitoring state Mτ as an ∗ (. . . ∗ (a0 ∗ [ [ ] �→ ε ]) . . .).

The final monitoring state Mτ contains the information required to decide whether the
trace τ is accepted (as specified in Def. 12) (discussed in Sec. 5.3).

5.2 Generating Configurations
Algorithm 1. Finding the next configura-
tions when adding an event to a projection

function NEXT(θ : Binding, a : GEvent,
C : Set[Config]) :Set[Config]

next ← ∅
for 〈q, ϕ〉 in C do

for (q1,b, g, γ, q2) ∈ E.δ do
if q1=q ∧ matches(a,b(θ)) then

ϕ′ ← ϕ † match(a,b(θ))
if quantified(ϕ′)=[ ] and
g(unquantified(ϕ′)) then

next ← next + 〈q2,
γ(unquantified(ϕ′))〉

if no transitions are taken then
next ← next ∪〈q, ϕ〉

return next

In the previous section we associated
bindings with projected traces. However,
using projected traces directly would not
be efficient, especially as we would need
to run through each projected trace to
decide the status of acceptance on each
step. Instead, we record the configura-
tions reachable by those projections. To
do this we define a new structure:
MonitorLookup = Binding ⇁ P(Config)
The monitor lookup for our example is
given in Table 2. We adapt the con-
struction in the previous section to build
a monitor lookup by defining a func-
tion in Algorithm 1 that computes the
next configurations for a binding given a received event. Let unquantified(θ) =
θ\quantified(θ). We can modify Def. 15 to produce a monitoring lookup instead
of a monitoring state by replacing the inductive definition of Ni with

Ni = Ni−1 † Addi † [θi �→ NEXT(θi, a,M(θi))]

where Addi = [θ �→ NEXT(θ, a,M(θi)) | θ ∈ all (θi, a)]. This processes the projected
trace for a binding as it is produced as NEXT(θ,a,C) gives all configurations reachable
by event a from configurations in C on E(θ), staying in the same configuration if no
transition can be taken. Because of this last point no changes are made if the event is
not relevant to the binding. The check that quantified(ϕ′) = [ ] ensures that no new
quantified variables are bound when taking a transition. Note that this function relies
on the wait semantics of EA and could not necessarily be used without modification if
we were to replace EA with an alternative formalism - the previous construction only
assumes an alphabet of events to construct projected traces.
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Table 2. The monitor lookup generated by monitoring τ4 for Select. Parameter values have been
truncated to their first letter.

[ ] �→ 〈1, [ ]〉 [p �→ b, c �→ d] �→ 〈1, [ ]〉 [v �→ t, p �→ b, c �→ d] �→ 〈1, [ ]〉
[p �→ r, c �→ j] �→ 〈1, [ ]〉 [v �→ a, p �→ b, c �→ d] �→ 〈4, [r �→ 1]〉 [v �→ a, p �→ r, c �→ j] �→ 〈1, [ ]〉
[v �→ t, p �→ r] �→ 〈2, [ ]〉 [v �→ t, p �→ r, c �→ j] �→ 〈4, [r �→ 1]〉 [v �→ a, p �→ r, c �→ f] �→ 〈1, [ ]〉
[p �→ r, c �→ f] �→ 〈1, [ ]〉 [v �→ t, p �→ r, c �→ f] �→ 〈3, [ ]〉 [v �→ a, p �→ b, c �→ j] �→ 〈2, [ ]〉
[v �→ a, p �→ b] �→ 〈2, [ ]〉 [v �→ t, p �→ r, c �→ d] �→ 〈2, [ ]〉 [v �→ a, p �→ b, c �→ f] �→ 〈2, [ ]〉

5.3 Acceptance

Here we consider when a monitor lookup is accepted. We adapt the notion of accep-
tance given in Def. 12 to detect success or failure as soon as it is possible. We define a
four valued verdict domain containing the classifications Strong Success, Weak Success,
Strong Failure and Weak Failure. The strong versions of success and failure indicate that
no extensions of the trace can alter the verdict. For example, τ3 is strongly failing for
the QEA in Fig. 2a as no extensions will be accepted. We first identify the special states
of E such that all extensions of trace τ reaching that state will be in L(E) iff τ is.

Definition 17 (Strong Success and Failure States). Let reach(q) be the set of reach-
able states of q ∈ Q. Let strongS = {q ∈ F | reach(q) ⊆ F} be the strong success
states. Let strongF = {q ∈ Q\F | reach(q) ∩ F = ∅} be the strong failure states.
Note that it is not necessarily the case that (strongS∪ strongF) = Q.

If all quantifiers are universal then all total bindings must reach successful configu-
rations, and if one cannot (i.e., is in a strongly failing state) a strong failure can be
reported, similarly if all quantifiers are existential then a single total binding reaching a
configuration in a strongly successful state means that strong success can be reported.
Strong success or failure cannot be reported where we have a mix of existential and
universal quantification.

Definition 18 (Monitor Lookup Classification). We define the function Check(L,Q)
to decide whether a monitor lookup L satisfies a QEA Q. Let uni be true if all quanti-
fiers in Q.Λ are universal, exi be true if they are all existential and G be the combina-
tion of all guards in Q.Λ, i.e, G(θ) iff ∀( , , g) ∈ Λ : g(θ).

Check(L,Q) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

StrongSuccess iff exi ∧ ∃θ ∈ dom(L) : G(θ)
∧ ∃〈q, ϕ〉 ∈ L(θ) : q ∈ StrongS

StrongFailure iff uni ∧ ∃θ ∈ dom(L) : G(θ)
∧ ∀〈q, ϕ〉 ∈ L(θ) : q ∈ StrongF

WeakSuccess iff not a strong result and L |=[ ] Q.Λ
WeakFailure iff not a strong result and L �|=[ ] Q.Λ

for L |=θ Λ, defined as

L |=θ (∀x : g)Λ′ iff for all d in DL(x) if g(θ † [x �→ d]) then L |=θ†[x �→d] Λ
′

L |=θ (∃x : g)Λ′ iff for some d in DL(x) g(θ † [x �→ d]) and L |=θ†[x �→d] Λ
′

L |=θ ε iff

{
∃〈q, ϕ〉 ∈ L(θ) : q ∈ E.F if θ ∈ dom(L)
q0 ∈ F otherwise

where DL(x) = {θ(x) | θ ∈ dom(L) ∧ x ∈ dom(θ)}
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Note that if θ /∈ dom(L) then there were no events relevant to θ in the trace and there-
fore the projected trace for θ is empty. An efficient algorithm for computing Check

(L,Q) would keep track of the current status and update this whenever a relevant change
is made to the monitor lookup, rather than recomputing it on each step.

The monitor lookup in Table. 2 is weakly failing. The monitor lookup for the trace
τ4.rank(‘tom’, ‘flo’, 2) is weakly successful as this changes the configuration associ-
ated with [c �→ t, p �→ r, c �→ f ] to 〈4, [r �→ 2]〉 and then tom ranks all candidates for
the red party and ali ranks all candidates for the blue party. Observe that it is important
that state 2 is accepting – as voters only need to rank candidates for the given party.

6 Related Work

QEA extends the parametric trace slicing approach [7] taken by JAVAMOP [11] by al-
lowing event names to be associated with multiple different variable lists, by allowing
non-quantified variables to vary during monitoring, and by allowing existential quantifi-
cation in addition to universal quantification. This results in a strictly more expressive
logic. JAVAMOP can be considered as a framework supporting parameterization for any
propositional logic, provided as a plugin. QEA is similarly composed of quantification
added to event automata, which can be replaced with other forms of logic. Parametric
trace slicing can be seen as a special case of our notion of projection used to define
whether a trace is in the language of a monitor for some binding.

TRACEMATCHES [1] is an extension of AspectJ where specifications are given
as regular expressions over pointcuts. Parametric properties are monitored rather effi-
ciently, but TRACEMATCHES, like JAVAMOP, suffers from the the limitation that each
event name is associated with a unique list of variables.

A number of expressive techniques supporting data parameterization are based on
rewriting. EAGLE [2] is based on rewriting of temporal logic formulas. For each new
event, a formula is rewritten into a new formula that has to hold in the next step.
RULER [2, 5] supports a specification language based on explicit rewrite-rules. Param-
eterized state machines are supported by LOGSCOPE [3] and TRACECONTRACT [4].
TRACECONTRACT is defined as an internal DSL in Scala (an API), re-usingScala’s
language constructs, including for example pattern matching. In both cases, states are
explicitly parameterized with data, similar to how for example functions in a program-
ming language are parameterized. A variant of LOGSCOPE has been created (not de-
scribed in [3]) where the notion of maximality can be encoded by allowing transitions to
refer to the presence (or non-presence) of other states with specific bindings as guards.

JLO [14] is a parameterized LTL, from which monitors are generated. A formula is
rewritten into a new formula for each new event, as in EAGLE. JLO events are defined
by pointcuts inspired by aspect-oriented programming, and monitors are generated as
AspectJ aspects. An embedding of LTL in Haskell is described in [15]. It is sim-
ilar to TRACECONTRACT, but whereas TRACECONTRACT handles data parameteri-
zation by re-using Scala’s built-in notion of partial functions and pattern matching,
[15] introduces a concept called formula templates instantiated for all possible permu-
tations of propositions. Stolz introduced temporal assertions with parametrized propo-
sitions [13] with a similar aim of adding free variables and quantification to a runtime
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monitoring formalism (next-free LTL). The main distinction wrt. this work is the treat-
ment of quantification - in [13] the domain of quantification is based on the current
state only.

In Sec. 5 we use a four-valued verdict domain, which has been previously studied in
the context of runtime monitoring e.g., in [6, 8]. RULER also uses a four-valued logic.

7 Conclusion and Future Work

We have introduced a new formalism for parametric runtime monitoring that is more
expressive than the current most efficient techniques. We have presented both big-step
and small-step semantics for our new formalism. Although not described in this pa-
per, we have used these small-step semantics to implement a basic runtime monitoring
algorithm in Scala and carried out initial testing.

We plan to explore four main areas of future work. Firstly, we intend to explore fur-
ther the language theoretic properties of QEA. Secondly, we wish to explore different
efficient runtime monitoring implementations. As our approach generalises the para-
metric trace slicing approach we may adapt optimisations implemented in JAVAMOP.
Our stepwise construction also allows for alternative optimisations. Thirdly, we wish
to consider the utility of QEA as a specification language. So far we have structured
the development to separate EA, which define properties of specific sets of values, and
QEA which generalise these. We may exploit this separation to replace EA with dif-
ferent formalisms, such as regular or context-free grammars, leading to a more general
framework for specifying properties. These replacements would be to increase the us-
ability rather than expressiveness of the framework. Finally, whilst developed in the
context of runtime verification, the ideas in this paper appear to be relevant to specifi-
cation mining (attempting to derive specifications by examining patterns in traces) and
we intend to explore this link further.
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Abstract. Users wanting to monitor distributed or component-based systems of-
ten perceive them as monolithic systems which, seen from the outside, exhibit
a uniform behaviour as opposed to many components displaying many local be-
haviours that together constitute the system’s global behaviour. This level of ab-
straction is often reasonable, hiding implementation details from users who may
want to specify the system’s global behaviour in terms of an LTL formula. How-
ever, the problem that arises then is how such a specification can actually be
monitored in a distributed system that has no central data collection point, where
all the components’ local behaviours are observable. In this case, the LTL spec-
ification needs to be decomposed into sub-formulae which, in turn, need to be
distributed amongst the components’ locally attached monitors, each of which
sees only a distinct part of the global behaviour.

The main contribution of this paper is an algorithm for distributing and mon-
itoring LTL formulae, such that satisfaction or violation of specifications can be
detected by local monitors alone. We present an implementation and show that
our algorithm introduces only a minimum delay in detecting satisfaction/violation
of a specification. Moreover, our practical results show that the communication
overhead introduced by the local monitors is generally lower than the number of
messages that would need to be sent to a central data collection point.

1 Introduction

Much work has been done on monitoring systems w.r.t. formal specifications such as
linear-time temporal logic (LTL [1]) formulae. For this purpose, a system is thought of
more or less as a “black box”, and some (automatically generated) monitor observes its
outside visible behaviour in order to determine whether or not the runtime behaviour
satisfies an LTL formula. Applications include monitoring programs written in Java or
C (cf. [2,3]) or abstract Web services (cf. [4]) to name just a few.

From a system designer’s point of view, who defines the overall behaviour that a sys-
tem has to adhere to, this “black box” view is perfectly reasonable. For example, most
modern cars have the ability to issue a warning if a passenger (including the driver) is
not wearing a seat belt after the vehicle has reached a certain speed. One could imagine
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using a monitor to help issue this warning based on the following LTL formalisation,
which captures this abstract requirement:

ϕ = G
(
speed low ∨ ((pressure sensor 1 high ⇒ seat belt 1 on)

∧ . . . ∧ (pressure sensor n high ⇒ seat belt n on))
)

The formulaϕ asserts that, at all times, when the car has reached a certain speed, and the
pressure sensor in a seat i ∈ [1, n] detects that a person is sitting in it (pressure sensor i
high), it has to be the case that the corresponding seat belt is fastened (seat belt i on).

Moreover, one can build a monitor for ϕ, which receives the respective sensor values
and is able to assert whether or not these values constitute a violation—but, only if some
central component exists in the car’s network of components, which collects these sen-
sor values and consecutively sends them to the monitor as input! In many real-world
scenarios, such as the automotive one, this is an unrealistic assumption mainly for eco-
nomic reasons, but also because the communication on a car’s bus network has to be
kept minimal. Therefore one cannot continuously send unnecessary sensor information
on a bus that is shared by critical applications where low latency is paramount (cf. [5,6]).
In other words, in these scenarios, one has to monitor such a requirement not based on
a single behavioural trace, assumed to be collected by some global sensor, but based
on the many partial behavioural traces of the components which make up the actual
system. We refer to this as decentralised LTL monitoring when the requirement is given
in terms of an LTL formula.

The main constraint that decentralised LTL monitoring addresses is the lack of a
global sensor and a central decision making point asserting whether the system’s be-
haviour has violated or satisfied a specification. We already pointed out that, from a
practical point of view, a central decision making point (i.e., global sensor) would re-
quire all the individual components to continuously send events over the network, and
thereby negatively affecting response time for other potentially critical applications on
the network. Moreover from a theoretical point of view, a central observer (resp. global
sensor) basically resembles classical LTL monitoring, where the decentralised nature of
the system under scrutiny does not play a role. Arguably, there exist many real-world
component-based applications, where the monitoring of an LTL formula can be realised
via global sensors or central decision making points, e.g., when network latency and
criticality do not play an important role. However, here we want to focus on those cases
where there exists no global trace, no central decision making point, and where the goal
is to keep the communication, required for monitoring the LTL formula, minimal.

In the decentralised setting, we assume that the system under scrutiny consists of a
set of components C = {C1, C2, . . . , Cn}, communicating on a synchronous bus acting
as global clock. Each component emits events synchronously and has a local monitor
attached to it. The set of all events is Σ = Σ1 ∪ Σ2 ∪ . . . ∪ Σn, where Σi is the set
of events visible to the monitor at component Ci. The global LTL formula, on the other
hand, is specified over a set of propositions, AP , such that Σ = 2AP . Moreover, we
demand for all i, j ≤ n with i �= j that Σi ∩ Σj = ∅ holds, i.e., events are local w.r.t.
the components where they are monitored.

At first, the synchronous bus may seem an overly stringent constraint imposed by our
setting. However, it is by no means unrealistic, since in many real-world systems, es-
pecially critical ones, communication occurs synchronously. For example, the FlexRay
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bus protocol, used for safety-critical systems in the automotive domain, allows syn-
chronous communication (cf. [7,5,8]). What is more, experts predict “that the data vol-
ume on FlexRay buses will increase significantly in the future” [6, Sec. 2], promoting
techniques to minimise the number of used communication slots. Hence, one could
argue that synchronous distributed systems such as FlexRay, in fact, motivate the pro-
posed decentralised monitoring approach. (Although, one should stress that the results
in this paper do not directly target FlexRay or any other specific bus system.)

Let as before ϕ be an LTL formula formalising a requirement over the system’s
global behaviour. Then every local monitor, Mi, will at any time, t, monitor its own
LTL formula, ϕt

i, w.r.t. a partial behavioural trace, ui. Let us use ui(m) to denote the
(m+ 1)-th event in a trace ui, and u = (u1, u2, . . . , un) for the global trace, obtained
by pair-wise parallel composition of the partial traces, each of which at time t is of
length t+1 (i.e., u = u1(0)∪ . . .∪un(0) ·u1(1)∪ . . .∪un(1) · · ·u1(t)∪ . . .∪un(t), a
sequence of union sets). Note that from this point forward we will use u only when, in
a given context, it is important to consider a global trace. However, when the particular
type of trace (i.e., partial or global) is irrelevant, we will simply use u, ui, etc. We also
shall refer to partial traces as local traces due to their locality to a particular monitor in
the system.

The decentralised monitoring algorithm evaluates the global trace u by considering
the locally observed traces ui, i ∈ [1, n], in separation. In particular, it exhibits the
following properties.

• If a local monitor yieldsϕt
i = ⊥ (resp.ϕt

i =  ) on some componentCi by observing
ui, it implies that uΣω ⊆ Σω \ L(ϕ) (resp. uΣω ⊆ L(ϕ)) holds where L(ϕ)
is the set of infinite sequences in Σω described by ϕ. That is, a locally observed
violation (resp. satisfaction) is, in fact, a global violation (resp. satisfaction). Or, in
other words, u is a bad (resp. good) prefix for ϕ.

• If the monitored trace u is such that uΣω ⊆ Σω \ L(ϕ) (resp. uΣω ⊆ L(ϕ)), one
of the local monitors on some component Ci yields ϕt′

i = ⊥ (resp. ϕt′
i =  ), t′ ≥ t,

for an observation u′
i, an extension of ui, the local observation of u on Ci, because

of some latency induced by decentralised monitoring, as we shall see.

However, in order to allow for the local detection of global violations (and satisfac-
tions), monitors must be able to communicate, since their traces are only partial w.r.t.
the global behaviour of the system. Therefore, our second objective is to monitor with
minimal communication overhead (in comparison with a centralised solution where at
any time, t, all n monitors send the observed events to a central decision making point).

Outline. Preliminaries are in Sec. 2. LTL monitoring via formula rewriting (progres-
sion), a central concept to our paper, is discussed in Sec. 3. In Sec. 4, we lift it to the
decentralised setting. The semantics induced by decentralised LTL monitoring is out-
lined in Sec. 5, whereas Sec. 6 details on how the local monitors operate in this setting
and gives a concrete algorithm. Experimental results are presented in Sec. 7. Section 8
concludes and gives pointers to related work. Formal proofs are available in an extended
version of this paper, available as technical report [9].
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2 Preliminaries

Each component of the system emits events at discrete time instances. An event σ is a
set of actions denoted by some atomic propositions from the set AP , i.e., σ ∈ 2AP . We
denote 2AP by Σ and call it the alphabet (of system events).

As our system operates under the perfect synchrony hypothesis (cf. [10]), we assume
that its components communicate with each other in terms of sending and receiving
messages (which, for the purpose of easier presentation, can also be encoded by ac-
tions) at discrete instances of time, which are represented using identifier t ∈ N≥0.
Under this hypothesis, it is assumed that neither computation nor communication take
time. In other words, at each time t, a component may receive up to n−1 messages and
dispatch up to 1 message, which in the latter case will always be available at the respec-
tive recipient of the messages at time t + 1. Note that these assumptions extend to the
components’ monitors, which operate and communicate on the same synchronous bus.
The hypothesis of perfect synchrony essentially abstracts away implementation details
of how long it takes for components or monitors to generate, send, or receive messages.
As indicated in the introduction, this is a common hypothesis for certain types of sys-
tems, which can be designed and configured (e.g., by choosing an appropriate duration
between time t and t+ 1) to not violate this hypothesis (cf. [10]).

We use a projection function Πi to restrict atomic propositions or events to the lo-
cal view of monitor Mi, which can only observe those of component Ci. For atomic
propositions, Πi : 2AP → 2AP and we denote AP i = Πi(AP ) for i ∈ [1, n]. For
events, Πi : 2Σ → 2Σ and we denote Σi = Πi(Σ) for i ∈ [1, n]. We also assume
∀i, j ≤ n. i �= j ⇒ AP i ∩ AP j = ∅ and consequently ∀i, j ≤ n. i �= j ⇒ Σi ∩Σj =
∅.Seen over time, each component Ci produces a trace of events, also called its be-
haviour, which for t time steps is encoded as ui = ui(0) · ui(1) · · ·ui(t − 1) with
∀t′ < t. ui(t

′) ∈ Σi. Finite traces over an alphabet Σ are elements of the set Σ∗ and
are typically encoded by u, u′, . . ., whereas infinite traces over Σ are elements of the
set Σω and are typically encoded by w,w′, . . . The set of all traces is given by the set
Σ∞ = Σ∗ ∪ Σω. The set Σ∗ \ {ε} is noted Σ+. The finite or infinite sequence wt is
the suffix of the trace w ∈ Σ∞, starting at time t, i.e., wt = w(t) · w(t + 1) · · · . The
system’s global behaviour, u = (u1, u2, . . . , un) can now be described as a sequence
of pair-wise union of the local events in component’s traces, each of which at time t is
of length t+ 1 i.e., u = u(0) · · ·u(t).

Moreover since we use LTL to specify system behaviour, we also assume that the
reader is familiar with the standard definition of LTL (cf. [1,9]) and the usual syntactic
“sugar”. We refer to the syntactically correct set of LTL formulae over a finite set of
atomic propositions, AP , by LTL(AP ). When AP does not matter or is clear from
the context, we also refer to this set simply by LTL. Finally, for some ϕ ∈ LTL(AP ),
L(ϕ) ⊆ Σω denotes the individual models of ϕ (i.e., set of traces). A set L ⊆ Σω is
also called a language (over Σ).

3 Monitoring LTL Formulae by Progression

Central to our monitoring algorithm is the notion of good and bad prefixes for an LTL
formula or, to be more precise, for the language it describes:
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Definition 1. Let L ⊆ Σω be a language. The set of all good prefixes (resp. bad pre-
fixes) of L is given by good(L) (resp. bad(L)) and defined as follows:

good(L) = {u ∈ Σ∗ | u ·Σω ⊆ L}, bad(L) = {u ∈ Σ∗ | u ·Σω ⊆ Σω \ L}.

We will shorten good(L(ϕ)) (resp. bad(L(ϕ))) to good(ϕ) (resp. bad(ϕ)).
Although there exist a myriad of different approaches to monitoring LTL formulae,

based on various finite-trace semantics (cf. [11]), one valid way of looking at the moni-
toring problem for some formulaϕ ∈ LTL is the following: The monitoring problem of
ϕ ∈ LTL is to devise an efficient monitoring algorithm which, in a stepwise manner, re-
ceives events from a system under scrutiny and states whether or not the trace observed
so far constitutes a good or a bad prefix of L(ϕ). One monitoring approach along those
lines is described in [12]. We review an alternative monitoring procedure based on for-
mula rewriting, which is also known as formula progression, or just progression in the
domain of planning with temporally extended goals (cf. [13]).

Progression splits a formula into a formula expressing what needs to be satisfied by
the current observation and a new formula (referred to as a future goal or obligation),
which has to be satisfied by the trace in the future. As progression plays a crucial role in
decentralised LTL monitoring, we recall its definition for the full set of LTL operators.

Definition 2. Let ϕ, ϕ1, ϕ2 ∈ LTL, and σ ∈ Σ be an event. Then, the progression
function P : LTL×Σ → LTL is inductively defined as follows:

P (p ∈ AP, σ) =  , if p ∈ σ,⊥ otherwise
P (ϕ1 ∨ ϕ2, σ) = P (ϕ1, σ) ∨ P (ϕ2, σ)
P (ϕ1Uϕ2, σ) = P (ϕ2, σ) ∨ P (ϕ1, σ) ∧ ϕ1Uϕ2

P (Gϕ, σ) = P (ϕ, σ) ∧G(ϕ)
P (Fϕ, σ) = P (ϕ, σ) ∨ F(ϕ)

P ( , σ) =  
P (⊥, σ) = ⊥
P (¬ϕ, σ) = ¬P (ϕ, σ)
P (Xϕ, σ) = ϕ

Note that monitoring using rewriting with similar rules as above has been described,
for example, in [14,15], although not necessarily with the same finite-trace semantics in
mind that we are discussing in this paper. Informally, the progression function “mimics”
the LTL semantics on an event σ, as it is stated by the following lemmas.

Lemma 1. Let ϕ be an LTL formula, σ an event and w an infinite trace, we have
σ · w |= ϕ⇔ w |= P (ϕ, σ).

Lemma 2. If P (ϕ, σ) =  , then σ ∈ good(ϕ), if P (ϕ, σ) = ⊥, then σ ∈ bad(ϕ).

Moreover it follows that if P (ϕ, σ) /∈ { ,⊥}, then there exist traces w,w′ ∈ Σω, such
that σ · w |= ϕ and σ · w′ �|= ϕ hold. Let us now get back to [12], which introduces a
finite-trace semantics for LTL monitoring called LTL3. It is captured by the following
definition.

Definition 3. Let u ∈ Σ∗, the satisfaction relation of LTL3, |=3: Σ
∗ × LTL → B3,

with B3 = { ,⊥, ?}, is defined as

u |=3 ϕ =

⎧⎨
⎩
 if u ∈ good(ϕ),
⊥ if u ∈ bad(ϕ),
? otherwise.
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Based on this definition, it now becomes obvious how progression could serve as a
monitoring algorithm for LTL3.

Theorem 1. Let u = u(0) · · ·u(t) ∈ Σ+ be a trace, and v ∈ LTL be the verdict,
obtained by t + 1 consecutive applications of the progression function of ϕ on u, i.e.,
v = P (. . . (P (ϕ, u(0)), . . . , u(t)))). The following cases arise: If v =  , then u |=3

ϕ =  holds. If v = ⊥, then u |=3 ϕ = ⊥ holds. Otherwise, u |=3 ϕ = ? holds.

Note that in comparison with the monitoring procedure for LTL3, described in [12],
our algorithm, implied by this theorem, has the disadvantage that the formula, which
is being progressed, may grow in size relative to the number of events. However, in
practice, the addition of some practical simplification rules to the progression function
usually prevents this problem from occurring.

4 Decentralised Progression

Conceptually, a monitor, Mi, attached to component Ci, which observes events over
Σi ⊆ Σ, is a rewriting engine that accepts as input an event σ ∈ Σi, and an LTL
formula ϕ, and then applies LTL progression rules. Additionally at each time t, in our
n-component architecture, a monitor can send a message and receive up to n− 1 mes-
sages in order to communicate with the other monitors in the system, using the same
synchronous bus that the system’s components communicate on. The purpose of these
messages is to send future or even past obligations to other monitors, encoded as LTL
formulae. In a nutshell, a formula is sent by some monitor Mi, whenever the most ur-
gent outstanding obligation imposed by Mi’s current formula at time t, ϕt

i , cannot be
checked using events from Σi alone. Intuitively, the urgency of an obligation is defined
by the occurrences (or lack of) certain temporal operators in it. For example, in order
to satisfy p ∧Xq, a trace needs to start with p, followed by a q. Hence, the obligation
imposed by the subformula p can be thought of as “more urgent” than the one imposed
by Xq. A more formal definition is given later in this section.

When progressing an LTL formula, e.g., in the domain of planning to rewrite a tem-
porally extended LTL goal during plan search, the rewriting engine, which implements
the progression rules, will progress a state formula p ∈ AP , with an event σ such that
p /∈ σ, to ⊥, i.e., P (p, ∅) = ⊥ (see Definition 2). However, doing this in the decen-
tralised setting, could lead to wrong results. In other words, we need to make a distinc-
tion as to why p /∈ σ holds locally, and then to progress accordingly. Consequently, the
progression rule for atomic propositions is simply adapted by parameterising it with a
local set of atomic propositions AP i:

P (p, σ,AP i) =

⎧⎨
⎩
 if p ∈ σ,
⊥ if p /∈ σ ∧ p ∈ AP i,

Xp otherwise,
(1)

where for every w ∈ Σω and j > 0, we have wj |= Xϕ if and only if wj−1 |= ϕ. In
other words, X is the dual to the X-operator, sometimes referred to as the “previously-
operator” in past-time LTL (cf. [16]). To ease presentation, the formula X

m
ϕ is a short

for
m︷ ︸︸ ︷

XX . . .X ϕ.
Our operator is somewhat different to the standard use of X: it can
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only precede an atomic proposition or an atomic proposition which is preceded by fur-
ther X-operators. Hence, the restricted use of the X-operator does not give us the full
flexibility (or succinctness gains [17]) of past-time LTL. Using the X-operator, let us
now formally define the urgency of a formula ϕ using a pattern matching as follows:

Definition 4. Let ϕ be an LTL formula, and Υ : LTL→ N≥0 be an inductively defined
function assigning a level of urgency to an LTL formula as follows.

Υ (ϕ) = match ϕ with ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 → max(Υ (ϕ1), Υ (ϕ2))

| Xϕ′ → 1 + Υ (ϕ′)
| → 0.

A formula ϕ is said to be more urgent than formula ψ, if and only if Υ (ϕ) > Υ (ψ)
holds. A formula ϕ where Υ (ϕ) = 0 holds is said to be not urgent.

Moreover, the above modification to the progression rules has obviously the desired
effect: If p ∈ σ, then nothing changes, otherwise if p /∈ σ, we return Xp in case that the
monitor Mi cannot observe p at all, i.e., in case that p /∈ AP i holds. This effectively
means, that Mi cannot decide whether or not p occurred, and will therefore turn the state
formula p into an obligation for some other monitor to evaluate rather than produce a
truth-value. Of course, the downside of rewriting future goals into past goals that have
to be processed further, is that violations or satisfactions of a global goal will usually
be detected after they have occurred. However, since there is no central observer which
records all events at the same time, the monitors need to communicate their respective
results to other monitors, which, on a synchronous bus, occupies one or more time
steps, depending on how often a result needs to be passed on until it reaches a monitor
which is able to actually state a verdict. We shall later give an upper bound on these
communication times, and show that our decentralised monitoring framework does not
introduce any additional delay under the given assumptions (see Theorem 2).

Example 1. Let us assume we have a decentralised system consisting of components
A,B,C, s.t. APA = {a}, APB = {b}, and APC = {c}, and that a formula ϕ =
F(a ∧ b ∧ c) needs to be monitored in a decentralised manner. Let us further assume
that, initially, ϕ0

A = ϕ0
B = ϕ0

C = ϕ. Let σ = {a, b} be the system event at time 0; that
is, MA observes ΠA(σ) = {a} (resp. ΠB(σ) = {b}, ΠC(σ) = ∅ for MB and MC)
when σ occurs. The rewriting that takes place in all three monitors to generate the next
local goal formula, using the modified set of rules, and triggered by σ, is as follows:

ϕ1
A = P (ϕ, {a}, {a}) = P (a, {a}, {a}) ∧ P (b, {a}, {a}) ∧ P (c, {a}, {a}) ∨ ϕ

= Xb ∧Xc ∨ ϕ
ϕ1
B = P (ϕ, {b}, {b}) = P (a, {b}, {b})∧ P (b, {b}, {b})∧ P (c, {b}, {b})∨ ϕ

= Xa ∧Xc ∨ ϕ
ϕ1
C = P (ϕ, ∅, {c}) = P (a, ∅, {c}) ∧ P (b, ∅, {c}) ∧ P (c, ∅, {c}) ∨ ϕ

= Xa ∧Xb ∧ ⊥ ∨ ϕ = ϕ

But we have yet to define progression for past goals: For this purpose, each monitor has
local storage to keep a bounded number of past events. The event that occurred at time
t − k is referred as σ(−k). On a monitor observing Σi, the progression of a past goal
X

m
ϕ, at time t ≥ m, is defined as follows:
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P (X
m
ϕ, σ,AP i) =

⎧⎨
⎩
 if ϕ = p for some p ∈ AP i ∩Πi(σ(−m)),
⊥ if ϕ = p for some p ∈ AP i \Πi(σ(−m)),

X
m+1

ϕ otherwise,
(2)

where, for i ∈ [1, n], Πi is the projection function associated to each monitor Mi,
respectively. Note that since we do not allow X for the specification of a global system
monitoring property, our definitions will ensure that the local monitoring goals, ϕt

i, will
never be of the form XXXp, which is equivalent to a future obligation, despite the
initial X. In fact, our rules ensure that a formula preceded by the X-operator is either
an atomic proposition, or an atomic proposition which is preceded by one or many
X-operators. Hence, in rule (2), we do not need to consider any other cases for ϕ.

5 Semantics

In the previous example, we can clearly see that monitors MA and MB cannot deter-
mine whether or not σ, if interpreted as a trace of length 1, is a good prefix for the
global goal formula ϕ.1 Monitor MC on the other hand did not observe an action c and,
therefore, is the only monitor after time 0, which knows that σ is not a good prefix and
that, as before, after time 1, ϕ is the goal that needs to be satisfied by the system under
scrutiny. Intuitively, the other two monitors know that if their respective past goals were
satisfied, then σ would be a good prefix, but in order to determine this, they need to
send and receive messages to and from each other, containing LTL obligations.

Before we outline how this is done in our setting, let us discuss the semantics, ob-
tained from this decentralised application of progression. We already said that monitors
detect good and bad prefixes for a global formula; that is, if a monitor’s progression
yields  (resp. ⊥), then the trace seen so far is a good (resp. bad) prefix, and if neither
monitor yields a Boolean truth-value as verdict, we keep monitoring. The latter case
indicates that, so far, the trace is neither a good nor a bad prefix for the global formula.

Definition 5. Let C = {C1, . . . , Cn} be the set of system components, ϕ ∈ LTL be a
global goal, and M = {M1, . . . ,Mn} be the set of component monitors. Further, let
u = u1(0) ∪ . . . ∪ un(0) · u1(1) ∪ . . . ∪ un(1) · · ·u1(t) ∪ . . . ∪ un(t) be the global
behavioural trace, at time t ∈ N≥0. If for some component Ci, with i ≤ n, containing
a local obligation ϕt

i, Mi reports P (ϕt
i, ui(t), AP i) =  (resp.⊥), then u |=D ϕ =  

(resp. ⊥). Otherwise, u |=D ϕ = ?.

By |=D we denote the satisfaction relation on finite traces in the decentralised setting to
differentiate it from LTL3 as well as standard LTL which is defined on infinite traces.
Obviously, |=3 and |=D both yield values from the same truth-domain. However, the
semantics are not equivalent, since the modified progression function used in the above
definition sometimes rewrites a state formula into an obligation concerning the past
rather than returning a verdict. On the other hand, in the case of a one-component sys-
tem (i.e., all propositions of a formula can be observed by a single monitor), the defini-
tion of |=D matches Theorem 1, in particular because our progression rule (1) is then
equivalent to the standard case. Monitoring LTL3 with progression becomes a special
case of decentralised monitoring, in the following sense:

1 Note that L(ϕ), being a liveness language, does not have any bad prefixes.
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Corollary 1. If |M| = 1, then ∀u ∈ Σ∗. ∀ϕ ∈ LTL. u |=3 ϕ = u |=D ϕ.

6 Communication and Decision Making

Let us now describe the communication mechanism that enables local monitors to de-
termine whether a trace is a good or a bad prefix. Recall that each monitor only sees a
projection of an event to its locally observable set of actions, encoded as a set of atomic
propositions, respectively.

Generally, at time t, when receiving an event σ, a monitor, Mi, will progress its
current obligation, ϕt

i , into P (ϕt
i, σ, AP i), and send the result to another monitor,

Mj �=i, whenever the most urgent obligation, ψ ∈ sus(P (ϕt
i, σ, AP i)), is such that

Prop(ψ) ⊆ (AP j) holds, where sus(ϕ) is the set of urgent subformulae of ϕ and
Prop : LTL→ 2AP yields the set of occurring propositions of an LTL formula.

Definition 6. The function sus : LTL→ 2LTL is inductively defined as follows:

sus(ϕ) = match ϕ with ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 → sus(ϕ1) ∪ sus(ϕ2)
| ¬ϕ′ → sus(ϕ′)
| Xϕ′ → {Xϕ′}
| → ∅

The set sus(ϕ) contains the past sub-formulae of ϕ, i.e., sub-formulae starting with a
future temporal operator are discarded. It uses the fact that, in decentralised progres-
sion, X-operators are only introduced in front of atomic propositions. Thus, only the
cases mentioned explicitly in the pattern matching need to be considered. Moreover, for
formulae of the form Xϕ′, i.e., starting with an X-operator, it is not needed to apply sus

to ϕ′ because ϕ′ is necessarily of the form X
d
p with d ≥ 0 and p ∈ AP , and does not

contain more urgent formulae than Xϕ′. Note that, if there are several equally urgent
obligations for distinct monitors, then Mi sends the formula to only one of the corre-
sponding monitors according to a priority order between monitors. This order ensures
that the delay induced by evaluating the global system specification in a decentralised
fashion is bounded, as we shall see in Theorem 2. For simplicity in the following, for
a set of component monitors M = {M1, . . . ,Mn}, the sending order is the natural
order on the interval [1, n]. This choice of the local monitor to send the obligation is
encoded through the function Mon : M× 2AP→M. For a monitor Mi ∈ M and a
set of atomic propositions AP ′ ∈ 2AP , Mon(Mi, AP

′) is the monitor Mjmin s.t. jmin

is the smallest integer in [1, n] s.t. there is a monitor for an atomic proposition in AP ′.
Formally: Mon(Mi, AP

′) = jmin = min{j ∈ [1, n] \ {i} | AP ′ ∩ AP j �= ∅}.
Once Mi has sent P (ϕt

i, σ, AP i), it sets ϕt+1
i = #, where # /∈ AP is a special

symbol for which we define progression by

P (#, σ, AP i) = #, (3)

and ∀ϕ ∈ LTL. ϕ ∧ # = ϕ. On the other hand, whenever Mi receives a formula,
ϕj �=i, sent from a monitor Mj , it will add the new formula to its existing obligation,
i.e., its current obligation ϕt

i will be replaced by the conjunction ϕt
i ∧ ϕj �=i. Should Mi

receive further obligations from other monitors but j, it will add each new obligation as
an additional conjunct in the same manner.
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Let us now summarise the above steps in the form of an explicit algorithm that de-
scribes how the local monitors operate and make decisions.

Algorithm L (Local Monitor). Let ϕ be a global system specification, and M =
{M1, . . . ,Mn} be the set of component monitors. The algorithm Local Monitor, ex-
ecuted on each Mi, returns  (resp. ⊥), if σ |=D ϕt

i (resp. σ �|=D ϕt
i) holds, where

σ ∈ Σi is the projection of an event to the observable set of actions of the respective
monitor, and ϕt

i the monitor’s current local obligation.

L1. [Next goal.] Let t ∈ N≥0 denote the current time step and ϕt
i be the monitor’s

current local obligation. If t = 0, then set ϕt
i := ϕ.

L2. [Receive event.] Read next σ.
L3. [Receive messages.] Let {ϕj}j∈[1,n],j �=i be the set of received obligations at time

t from other monitors. Set ϕt
i := ϕt

i ∧
∧

j∈[1,n],j �=i ϕj .

L4. [Progress.] Determine P (ϕt
i, σ, AP i) and store the result in ϕt+1

i .
L5. [Evaluate and return.] If ϕt+1

i =  return  , if ϕt+1
i = ⊥ return ⊥.

L6. [Communicate.] Let Ψ ⊆ sus(ϕt+1
i ) be the set of most urgent obligations of ϕt+1

i .
Send ϕt+1

i to monitor Mon(Mi,∪ψ∈Ψ Prop(ψ)).
L7. [Replace goal.] If in step L6 a message was sent at all, set ϕt+1

i := #. Then go
back to step L1. !"

The input to the algorithm, σ, will usually resemble the latest observation in a consecu-
tively growing trace, ui = ui(0) · · ·ui(t), i.e., σ = ui(t). We then have that σ |=D ϕt

i

(i.e., the algorithm returns  ) implies that u |=D ϕ holds (resp. for σ �|=D ϕt
i).

Example 2. To see how this algorithm works, let us continue the decentralised moni-
toring process initiated in Example 1. Table 1 shows how the situation evolves for all
three monitors, when the global LTL specification in question is F(a ∧ b ∧ c) and the
ordering between components is A < B < C. An evolution of MA’s local obligation,
encoded as P (ϕ1

B ∧#, σ, APA) (see cell MA at t = 1) indicates that communication
between the monitors has occurred: MB (resp. MA) sent its obligation to MA (resp. to
another monitor), at the end of step 0. Likewise for the other obligations and monitors.
The interesting situations are marked in grey: In particular at t = 0, MC is the only
monitor who knows for sure that, so far, no good nor bad prefix occurred (see grey cell
at t = 0). At t = 1, we have the desired situation σ = {a, b, c}, but because none of the

Table 1. Decentralised progression of ϕ = F(a ∧ b ∧ c) in a 3-component system

t: 0 1 2 3

σ: {a, b} {a, b, c} ∅ ∅

MA:
ϕ1

A = P (ϕ, σ, APA)

= Xb ∧Xc ∨ ϕ

ϕ2
A = P (ϕ1

B ∧#, σ, APA)

= X
2
c ∨ (Xb ∧Xc ∨ ϕ)

ϕ3
A = P (ϕ2

C ∧#, σ, APA)

= X
2
b ∨ (Xb ∧Xc ∨ ϕ)

ϕ4
A = P (ϕ3

C ∧#, σ, APA)

= X
3
b ∨ (Xb ∧Xc ∨ ϕ)

MB :
ϕ1

B = P (ϕ, σ,APB)

= Xa ∧Xc ∨ ϕ

ϕ2
B = P (ϕ1

A ∧#, σ, APB)

= X
2
c ∨ (Xa ∧Xc ∨ ϕ)

ϕ3
B = P (#, σ, APB)

= #

ϕ4
B = P (ϕ3

A ∧#, σ, APB)

= �

MC :
ϕ1

C = P (ϕ, σ,APC)

= ϕ

ϕ2
C = P (ϕ, σ,APC)

= Xa ∧Xb ∨ ϕ

ϕ3
C = P (ϕ2

A ∧ ϕ2
B ∧#, σ, APC)

= X
2
a ∧X

2
b ∨ ϕ

ϕ4
C = P (#, σ, APC)

= #
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monitors can see the other monitors’ events, it takes another two rounds of communica-
tion until both MA and MB detect that, indeed, the global obligation had been satisfied
at t = 1 (see grey cell at t = 3).

This example highlights a worst case delay between the occurrence and the detection of
a good (resp. bad) trace by a good (resp. bad) prefix, caused by the time it takes for the
monitors to communicate obligations to each other. This delay depends on the number
of monitors in the system, and is also the upper bound for the number of past events
each monitor needs to store locally to be able to progress all occurring past obligations:

Theorem 2. Let, for any p ∈ AP , X
m
p be a local obligation obtained by Algorithm L

executed on some monitor Mi ∈ M. At any time t ∈ N≥0, m ≤ min(|M|, t+ 1).

Proof. For a full proof cf. [9]. Here, we only provide a sketch, explaining the intuition
behind the theorem. Recall that X-operators are only introduced directly in front of
atomic propositions according to rule (1) when Mi rewrites a propositional formula p
with p /∈ AP i. Further X-operators can only be added according to rule (2) when Mi is

unable to evaluate an obligation of the form X
h
p. The interesting situation occurs when

a monitor Mi maintains a set of urgent obligations of the form {Xh
p1, . . . ,X

j
pl} with

h, j ∈ N≥0, then, according to step L6 of Algorithm L, Mi will transmit the obligations
to one monitor only thereby adding one additional X-operator to the remaining obli-

gations: {Xh+1
p2, . . . ,X

j+1
pl}. Obviously, a single monitor cannot have more than

|M|− 1 outstanding obligations that need to be sent to the other monitors at any time t.
So, the worst case delay is initiated during monitoring, if at some time all outstanding
obligations of each monitor Mi, i ∈ [1, |M|], are of the form {Xp1, . . . ,Xpl} with
p1, . . . , pl /∈ AP i (i.e., the obligations are all equally urgent), in which case it takes
|M|−1 time steps until the last one has been chosen to be sent to its respective monitor
Mj . Using an ordering between components ensures here that each set of obligations
will decrease in size after being transmitted once. Finally, a last monitor, Mj will re-

ceive an obligation of the form X
|M|

pk with 1 ≤ k ≤ l and pk ∈ AP j . !"

Consequently, the monitors only need to memorise a bounded history of the trace read
so far, i.e., the last |M| events.

Example 2 also illustrates the relationship to the LTL3 semantics discussed earlier
in Sec. 3. This relationship is formalised by the two following theorems stating the
soundness and completeness of the algorithm.

Theorem 3. Let ϕ ∈ LTL and u ∈ Σ∗, then u |=D ϕ =  /⊥ ⇒ u |=3 ϕ =  /⊥,
and u |=3 ϕ = ?⇒ u |=D ϕ = ?.

In particular, the example shows how the other direction of the theorem does not nec-
essarily hold. Consider the trace u = {a, b} · {a, b, c}: clearly, u |=3 F(a∧ b∧ c) =  ,
but we have u |=D F(a∧ b∧ c) = ? in our example. Again, this is a direct consequence
of the delay introduced in our setting. However, Algorithm L detects all verdicts for a
specification as if the system was not distributed.

Theorem 4. Let ϕ ∈ LTL and u ∈ Σ∗, then u |=3 ϕ =  /⊥ ⇒ ∃u′ ∈ Σ∗. |u′| ≤
n ∧ u · u′ |=D ϕ =  /⊥, where n is the number of components in the system.
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7 Experimental Results

DECENTMON is an implementation, simulating the above distributed LTL monitoring
algorithm in 1,800 LLOC, written in the functional programming language OCaml. It
can be freely downloaded and run from [18]. The system takes as input multiple traces
(that can be automatically generated), corresponding to the behaviour of a distributed
system, and an LTL formula. Then the formula is monitored against the traces in two
different modes: a) by merging the traces to a single, global trace and then using a
“central monitor” for the formula (i.e., all local monitors send their respective events to
the central monitor who makes the decisions regarding the trace), and b) by using the
decentralised approach introduced in this paper (i.e., each trace is read by a separate
monitor). We have evaluated the two different monitoring approaches (i.e., centralised
vs. decentralised) using two different set-ups described in the remainder of this section.
Evaluation using randomly generated formulae. DECENTMON randomly generated
1,000 LTL formulae of various sizes in the architecture described in Example 1.

Table 2. Benchmarks for random formulae

centralised decentralised diff. ratio
|ϕ| |trace| #msg. |trace| #msg. |trace| #msg.
1 1.369 4.107 1.634 0.982 1.1935 0.2391
2 2.095 6.285 2.461 1.647 1.1747 0.262
3 3.518 10.554 4.011 2.749 1.1401 0.2604
4 5.889 17.667 6.4 4.61 1.0867 0.2609
5 9.375 28.125 9.935 7.879 1.0597 0.2801
6 11.808 35.424 12.366 9.912 1.0472 0.2798

How both monitoring approaches com-
pared on these formulae can be seen in
Table 2. The first column shows the size
of the monitored LTL formulae. Note,
our system measures formula size in
terms of the operator entailment2 in-
side it (state formulae excluded), e.g.,
G(a ∧ b) ∨ Fc is of size 2. The en-
try |trace| denotes the average length of
the traces needed to reach a verdict. For
example, the last line in Table 2 says
that we monitored 1,000 randomly gen-
erated LTL formulae of size 6. On average, traces were of length 11.808 when the cen-
tral monitor came to a verdict, and of length 12.366 when one of the local monitors
came to a verdict. The difference ratio, given in the second last column, then shows
the average delay; that is, on average the traces were 1.0472 times longer in the decen-
tralised setting. The number of messages, #msg., in the centralised setting, corresponds
to the number of events sent by the local monitors to the central monitor (i.e., the length
of the trace times the number of components) and in the decentralised setting to the
number of obligations transmitted between local monitors. What is striking here is that
the amount of communication needed in the decentralised setting is ca. only 25% of the
communication overhead induced by central monitoring, where local monitors need to
send each event to a central monitor.

Evaluation Using Specification Patterns. In order to evaluate our approach also at the
hand of realistic LTL specifications, we conducted benchmarks using LTL formulae
following the well-known LTL specification patterns ([19], whereas the actual formu-
lae underlying the patterns are available at this site [20] and recalled in [18]). In this

2 Our experiments show that this way of measuring the size of a formula is more representative
of how difficult it is to progress it in a decentralised manner. Formulae of size above 6 are not
realistic in practice.
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context, to randomly generate formulae, we proceeded as follows. For a given specifi-
cation pattern, we randomly select one of the formulae associated to it. Such a formula
is “parametrised” by some atomic propositions. To obtain the randomly generated for-
mula, using the distributed alphabet, we randomly instantiate the atomic propositions.

The results of this test are reported in Table 3: for each kind of pattern (absence, exis-
tence, bounded existence, universal, precedence, response, precedence chain, response
chain, constrained chain), we generated again 1,000 formulae, monitored over the same
architecture as used in Example 1.

Discussion. Both benchmarks substantiate the claim that decentralised monitoring of
an LTL formula can induce a much lower communication overhead compared to a
centralised solution. In fact, when considering the more realistic benchmark using the
specification patterns, the communication overhead was significantly lower compared
to monitoring randomly generated formulae. The same holdstrue for the delay: in case
of monitoring LTL formulae corresponding to specification patterns, the delay is al-
most negligible; that is, the local monitors detect violation/satisfaction of a monitored
formula at almost the same time as a global monitor with access to all observations.

Besides the above, we conducted further experiments to determine which are the
parameters that make decentralised monitoring (less) effective w.r.t. a centralised so-
lution, and whether or not the user can control them or at least estimate them prior to
monitoring. To this end, we first considered a policy change for sending messages: Un-
der the new policy, components send messages to the central observer only when the
truth values have changed w.r.t. a previous event. The experimental results generally
vary with the size of the formulae, but the decentralised case induced only around half
the number messages under this policy. Moreover, the advantage remains in favour of
decentralised monitoring as the size of the local alphabets was increased. We then ex-
tended this setting by considering specific probability distributions for the occurrence
of local propositions. As one would expect, the performance of decentralised monitor-
ing deteriorates when the occurrence of a local proposition has a very high or a very low
probability since it induces a low probability for a change of the truth value of a local

Table 3. Benchmarks for LTL specification patterns

centralised decentralised diff. ratio

pattern |trace| #msg. |trace| #msg. |trace| #msg.

absence 156.17 468.51 156.72 37.94 1.0035 0.0809

existence 189.90 569.72 190.42 44.41 1.0027 0.0779

bounded existence 171.72 515.16 172.30 68.72 1.0033 0.1334

universal 97.03 291.09 97.66 11.05 1.0065 0.0379

precedence 224.11 672.33 224.72 53.703 1.0027 0.0798

response 636.28 1,908.86 636.54 360.33 1.0004 0.1887

precedence chain 200.23 600.69 200.76 62.08 1.0026 0.1033

response chain 581.20 1,743.60 581.54 377.64 1.0005 0.2165

constrained chain 409.12 1,227.35 409.62 222.84 1.0012 0.1815
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proposition to occur. Similar to the first setting, as the size of local alphabets grows, the
performance of decentralised monitoring improves again.

Clearly, further experiments are needed to determine the conditions under which the
decentralised case unambiguously outperforms alternatives, but the above gives first
indications. The detailed results are available and continuously updated at [18].

8 Conclusions and Related Work

This work is by no means the first to introduce an approach to monitoring the behaviour
of distributed systems. For example, the diagnosis (of discrete-event systems) has a
similar objective (i.e., detect the occurrence of a fault after a finite number of discrete
steps) (cf. [21,22,23]). In diagnosis, however, one tries to isolate root causes for failure
(i.e., identify the component in a system which is responsible for a fault). A key concept
is that of diagnosability: a system model is diagnosable if it is always the case that
the occurrence of a fault can be detected after a finite number of discrete steps. In
other words, in diagnosis the model of a system, which usually contains both faulty and
nominal behaviour, is assumed to be part of the problem input, whereas we consider
systems more or less as a “black box”. Diagnosability does not transfer to our setting,
because we need to assume that the local monitors always have sufficient information to
detect violation (resp. satisfaction) of a specification. Also, it is common in diagnosis of
distributed systems to assert a central decision making point, even if that reflects merely
a Boolean function connecting the local diagnosers’ verdicts, while in our setting the
local monitors directly communicate without a central decision making point.

A natural counterpart of diagnosability is that of observability as defined in decen-
tralised observation [24]: a distributed system is said to be x-observable, where x ranges
over different parameters such as whether local observers have finite or infinite mem-
ory available to store a trace (i.e., jointly unbounded-memory, jointly bounded-memory,
locally unbounded-memory, locally finite-memory), if there exists a total function, al-
ways able to combine the local observers’ states after reading some trace to a truthful
verdict w.r.t. the monitored property. Again, the main difference here is that we take
observability for granted, in that we assume that the system can always be monitored
w.r.t. a given property, because detailed system topology or architectural information
is not part of our problem input. Moreover, unlike in our setting, even in the locally-
observable cases, there is still a central decision making point involved, combining the
local verdicts. Note also that, to the best of our knowledge, both observation and diag-
nosis do not concern themselves with minimising the communication overhead needed
for observing/diagnosing a distributed system.

A specific temporal logic, MTTL, for expressing properties of asynchronous multi-
threaded systems has been presented in [25]. Its monitoring procedure takes as input a
safety formula and a partially ordered execution of a parallel asynchronous system.
It then establishes whether or not there exist runs in the execution that violate the
MTTL formula. While the synchronous case can be interpreted as a special case of the
asynchronous one, there are some noteworthy differences between [25] and our work.
Firstly, we take LTL “off-the-shelf”; that is, we do not add modalities to express prop-
erties concerning the distributed/multi-threaded nature of the system under scrutiny.
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On the contrary, our motivation is to enable users to conceive a possibly distributed
system as a single, monolithic system by enabling them to specify properties over the
outside visible behaviour only—independent of implementation specific-details, such
as the number of threads or components—and to automatically “distribute the monitor-
ing” process for such properties for them. Secondly, we address the fact that in some
distributed systems it may not be possible to collect a global trace or insert a global
decision making point, thereby forcing the automatically distributed monitors to com-
municate. But at the same time we try and keep communication at a minimum. This
aspect, on the other hand, does not play a role in [25] where the implementation was
tried on parallel (Java) programs which are not executed on physically separated CPUs,
and where one can collect a set of global behaviours to then reason about. Finally, our
setting is not restricted to safety formulae, i.e., we can monitor any LTL formula as long
as its set of good (resp. bad) prefixes is not empty. However, we have not investigated
whether or not the restriction of safety formulae is inherent to [25] or made by choice.
Other recent works like [26] target physically distributed systems, but do not focus on
the communication overhead that may be induced by their monitoring. Similarly, this
work also mainly addresses the problem of monitoring systems which produce partially
ordered traces (à la Diekert and Gastin), and introduces abstractions to deal with the
combinational explosion of these traces.

To the best of our knowledge, our work is the first to address the problem of automat-
ically distributing LTL monitors, and to introduce a decentralised monitoring approach
that not only avoids a global point of observation or any form of central trace collec-
tion, but also tries to keep the number of communicated messages between monitors
at a minimum. What is more, our experimental results show that this approach does
not only “work on paper”, but that it is feasible to be implemented. Indeed, even the
expected savings in communication overhead could be observed for the set of chosen
LTL formulae and the automatically generated traces, when compared to a centralised
solution in which the local monitors transmit all observed events to a global monitor.
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Abstract. We demonstrate the use of the process algebra PEPA for
realistic models of epidemiology. The results of stochastic simulation of
the model are shown, and ease of modelling is compared to that of Bio-
PEPA. PEPA is shown to be capable of capturing the complex disease
dynamics of the historic data for measles epidemics in the UK from
1944–1964, including persistent fluctuations due to seasonal effects.

1 Introduction

According to the World Health Organization [26], in 2002, about 19.1% of
worldwide deaths, and 52.7% of deaths in Africa were caused by infectious and
parasitic diseases. Understanding a given disease, to prevent, cure or reduce
its impact, is inherently a multidisciplinary endeavour, involving medicine, ge-
ography, sociology and biology, but also, through modelling, mathematics and
computer science. Most epidemiological modelling has been mathematical; for
example, using Ordinary Differential Equations (ODEs) [1]. Formal methods,
traditionally used for computer science, are beginning to be more widely used
to construct computational models of disease [3,17,18,7]. Process algebras are
designed to describe a system of interacting autonomous agents and allow study
of emerging collective dynamics (the epidemic). This is in contrast to the typical
mathematical biology approach which is forced to make assumptions about how
interaction leads to population-level effects. Using process algebra, those effects
are generated by the underlying semantics of interaction.

We present a novel case study in using PEPA (Performance Evaluation Pro-
cess Algebra) [14] for epidemiology. The discussion of general principles of mod-
elling disease spread is focussed through application to the specific example of
measles dynamics in England and Wales between 1944 and 1964. The emergent
behaviour of measles is complex, involving recurrent outbreaks in small popula-
tions and cyclic outbreaks in larger populations [4]. Adequate modelling requires
a number of features common to other diseases, including transmission, popu-
lation growth, seasonality and immigration. Moreover, a large data set is freely
available of the number of reported cases of measles in England and Wales over
more than 20 years. This allows the model to be validated.
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Our group has long experience of applying process algebra to epidemiology.
Initially WSCCS [24], a CCS inspired process algebra, was used by Norman and
Shankland [21] to model basic transmission mechanisms. Further work with Mc-
Caig incorporated the essential features of population growth [18] and showed
the advantages of the approach over traditional styles of epidemiological mod-
elling [17]. PEPA has also been used by our group [3]. Few other groups have
made extensive study of epidemiology using process algebra beyond simple ex-
amples. A notable exception is the study of contact network structure and avian
influenza by Ciocchetta and Hillston [7] using Bio-PEPA [6]. Their models are
on a closed population, and do not include seasonal behaviour.

This paper is organised as follows. A brief introduction to PEPA is given
in Section 2 and to measles at the start of Section 3. Modelling of measles
dynamics raises generic issues for modelling epidemiology: these are discussed in
the context of PEPA in Section 3. The complete model appears at the end of that
section. No new language features are introduced: our contribution is to test the
expressivity of PEPA for realistic models of epidemiology. Stochastic simulations
of the model are compared in Section 3.2 with data available on the University
of Cambridge website [25]. Since Bio-PEPA has features especially designed for
biology, Section 3.3 gives details of how to model measles dynamics in Bio-PEPA
and a comparison with PEPA. Conclusions are drawn in Section 4 regarding the
benefits and limitations of PEPA as a modelling tool for epidemiology.

2 PEPA

PEPA [14] has been used to study the performance of a wide variety of sys-
tems [15]. PEPA has a small set of combinators, allowing system descriptions to
be built up as the concurrent execution and interaction of simple sequential com-
ponents which undertake actions. We informally introduce the syntax required
for the model of Section 3 below. More detail can be found in [14].

Prefix: (α, r).P carries out action α at rate r, behaving subsequently as P .
In PEPA actions have a duration, or delay. Thus the expression (α, r).P denotes
a component which can undertake an α action, at rate r defining an exponential
distribution (where rate is 1/delay) to evolve into a component P .

Choice: P +Q represents a system which may behave either as P or as Q.

Constant: X
def
= E assigns the name X to the pattern of behaviour E.

Cooperation: P ��
L

Q denotes cooperation between P and Q over L. The
cooperation set L determines those activities on which the cooperands are forced
to synchronise. For action types not in L, the components proceed independently
and concurrently with their enabled activities. P ‖ Q abbreviates P ��

{} Q.

Unlike some other stochastic process algebras, PEPA assumes bounded capacity:
a component cannot be made to perform an activity faster by cooperation, so
the rate of a shared activity is the minimum of the rates of the activity in the
cooperating components. In some cases, when an activity is known to be carried
out in cooperation with another component, a component may be passive with



Measles and PEPA 103

respect to that activity. This means that the rate of the activity is left unspecified
(denoted  ) and is determined upon cooperation by the rate of the activity in
the other component. All passive actions must be synchronised.

3 Modelling Measles Dynamics in PEPA

Despite the worldwide efforts to vaccinate children against it, measles is still
the vaccine-preventable disease of childhood that causes the most deaths [9].
Without vaccination, measles infects 95-98% of children before they turn eigh-
teen [22], and an infectious person will infect 75%-90% of susceptible household
contacts. The incubation period lasts for six to nine days [4], then measles symp-
toms begin with increasing fever, cough, coryza and conjunctivitis [22]. This is
when the infectivity is highest. A rash then appears on the face and the neck,
and may spread to the rest of the body. Usually, the individual recovers after
six to seven days and then has lifelong immunity to the disease.

Measles has been extensively studied, giving an opportunity to show that for-
mal methods can perform as well as long-established techniques of mathematical
biology. A detailed set of data is freely available for measles in England andWales
between 1944 and 19641 giving an excellent opportunity to validate results from
modelling. Certain key features are required to model disease transmission in
general. We demonstrate that PEPA can be used to capture these, specifically
in relation to the benchmark disease measles, despite not being designed for
this purpose. Benkirane’s thesis [2] identified the following key characteristics of
measles epidemics:

Transmission of Disease. McCaig [19, page 137-138] showed in his work on
epidemiology and WSCCS that in process algebra all forms of transmission
can be reduced to either direct or indirect transmission. Direct transmis-
sion indicates that the disease is passed through host-to-host contact, as in
measles. Indirect transmission uses an intermediary (e.g. air, surface, or via a
vector). For human diseases it is common to assume the number of contacts
an individual makes is constant and independent of population size. In ODE
models this is known as frequency dependent transmission.

Births and Deaths. For anything other than a short timescale epidemic, the
population must have births and deaths, immigration and emigration. In
the case of measles, if these are not included the model shows a single initial
epidemic, after which the whole population becomes resistant to the disease
and there are no further outbreaks, in contradiction with observed behaviour.

Timed Events. Timed events are essential in many biological and epidemiolog-
ical systems, whether these are one-off events (e.g. control measures such as

1 In 1944, national notification of measles patients was made mandatory in England
and Wales [11]. This provides the number and location of measles cases, with a
reporting rate of over 50% [4]. Mass vaccination was introduced in 1968 [23], changing
the landscape of the disease entirely. We use an earlier cut-off for data, due to some
changes in administrative regions.
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vaccination), or recurring events (e.g. circadian clock and seasonality). Sea-
sonality is an essential feature of measles epidemics: disease dynamics are
strongly dependent on transmission rate, which is in turn influenced by the
aggregation of children at school [4]. In addition, immigration provides new
infectious individuals to a city where the disease had faded out, especially
in the case of small and isolated cities.

Structured Populations. The capacity to allocate the population to different
categories can be essential in describing certain diseases. The structuring
category can be diverse: age, social, hobbies, space, etc., depending on which
feature has an important influence on the behaviour of the disease. In the
case of measles dynamics, the spatial location of cities and their degree of
connection impacts the overall behaviour of the disease. Smaller cities usually
experience fade-outs of the disease, but still experience regular outbreaks,
often within weeks of those in neighbouring cities.

Benkirane shows it is possible to code all of these features using PEPA [2], but
due to limited space, only the first three will be illustrated here. The model
presented is a representation of the city of Leeds from 1944 to 1964. The city
initially has a population of 508, 010, ten of whom are assumed to be infec-
tious. The model is based on Bjørnstad et al. [4], apart from the immigration
mechanism and parameters, which are inspired by Finkenstädt et al. [12]. In the
following sections, modelling of the elements above will be discussed in turn.

3.1 Presentation of the Model

Transmission of Disease. The classic mathematical model of disease trans-
mission is the SIR model, first described by Kermack and McKendrick [16] in
1927. SIR corresponds to Susceptible, Infectious and Recovered as follows:

Susceptibles represent the people that never had the disease, and may acquire
it after exposure to the infection.

Infectious are the people who carry the disease, and may pass it (directly or
indirectly) to susceptible individuals.

Recovered (or Removed) are immune to the disease. This might be because
they have been infectious and recovered from it, because they have been
vaccinated, or because they are naturally immune to the disease.

Additional classes may be necessary for particular diseases. For example, measles
requires an Exposed class:

Exposed are infected susceptibles who are not yet infectious, i.e. they are un-
dergoing an incubation period.

This general model of disease spread has been successfully applied to a wide
range of different diseases. It is straightforward to encode these behaviours as
separate process algebra agents: see the model of Figure 1, where the agents
S, E, I and R respectively represent the Susceptible, Exposed, Infectious and
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S
def
= (contact ,�).E

E
def
= (infected, ir).I

I
def
= (contact ,�).I + (recover , rr).R

R
def
= (contact ,�).R + (lose immunity , li).S

I ′ = (contact , cr).I ′ + (recover ,�).Rest ;
Rest = (infected ,�).I ′;

(S[990] ‖ I [10]) ��
{infected,contact,recover} (I

′[10] ‖ Rest [990])

Fig. 1. Simple direct transmission in PEPA

Recovered individuals. Activities occur at rates controlled by the exponential
variables ir (incubation), rr (recovery), li (loss of immunity), and cr (contact).
Exponential rates are highly suitable for the first three, since these take place at
a constant rate, and provide a reasonable approximation for contact behaviour.

The additional agents I ′ and Rest are required to implement direct trans-
mission2. With standard PEPA syntax it is possible to have all I agents com-
municate with all S agents, or none, but not a single I communicating with a
single S. One solution would be to introduce new operators capturing the de-
sired behaviour. Instead, we wish to operate within the constraints of standard
PEPA. To achieve direct transmission, it is necessary to have a main population
of S and I who do not communicate directly with each other (‖) but who can
communicate one-to-one with the “mirror group” of I ′ and Rest . The addition
of the mirror group splits the Infectious functionality between two agents. On
one hand, agent I, the infectious individual who can be passively contacted,
or recover. On the other hand, agent I ′, the infectious individual actively con-
tacting other individuals to pass on infection. This idea of where the driver of
functionality lies is reflected in the choice to make contact passive in I but not
in I’. To guarantee that the model remains consistent, the number of I and their
mirror I ′ must be equal at all times. The mirror Rest agents have been added so
that the mirror I ′ group can grow and shrink with the I population correctly.
Note that Rest does not have to model all the behaviour of agents S, E and
R: it only has to capture the movement from exposed to infectious. A more de-
tailed discussion of direct transmission and the mirror group may be found in
Benkirane’s thesis [2].

Births and Deaths. PEPA is limited when expressing births and deaths be-
cause agents cannot be created or deleted: a more inventive approach must be
adopted. Three different approaches to births and deaths are considered in Benki-
rane’s thesis [2]: only the one adopted for his measles model is described here.

2 Indirect transmission is straightforward. To agents S, E, I and R of Figure 1 add
agents for the environment and a suitable system equation describing interaction [3].
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A method to describe births and deaths arises naturally from the introduction
of a reserve pool of dormant agents, as shown in this simple example:

Active
def
= (death , death rate).Dormant

Dormant
def
= (birth , birth rate).Active

The pool corresponds to available agents, ready to be activated when needed.
Also, when an individual dies, it returns to the pool. The initial size of the
pool has to be chosen carefully: too many means longer processing times for the
model, too few and the pool might run out and the number of births will be
blocked as long as it is empty, leading to unexpected behaviour.

In the complete measles model of Figure 2 a similar Dormant population
is used, while the Active agents correspond to the S, Exp, Inf and R agents.
All agents S, Exp, Inf and R can give birth and die naturally. Newborns are
susceptible. This new behaviour is added to the mirror group via the DS agents.

Although not done for this reason here, the introduction of Dormant also
gives a way to regulate population size. If the birth and death rate are roughly
constant, the number of agents initially in Dormant can be chosen such that
Dormant + Active = K with K the carrying capacity of the population. This
way, the population can never increase past the carrying capacity, and the overall
number of births naturally decreases with the number dormant. Although in
general this solution is biologically unrealistic, it may be useful for cases where
the population does not fluctuate much. This is true for measles dynamics: the
disease is not usually deadly, and the number of immigrants over the period is
low compared to the total population. The number of Dormant here is selected
to ensure that as many births or immigrations as required can take place.

Timed Events. Infectious immigrants to the city can start a new outbreak, if
the timing is right3. Immigration is represented by a subgroup formed by a single
component type, Immigration. The action immigration fires every 1/imrate time
step and one agent in Dormant moves to the Inf state. This models the arrival
of one infectious immigrant in the city. Note the asymmetry between births
and immigration. Births are driven from the main group, while immigration is
driven from its own subgroup. In PEPA, given P = (α, r).Q the rate r follows the
cumulative distribution function of the exponential distribution Fα(t) = 1−e−rt.
That is, on average, α will be fired after 1/r time steps. The actual moment at
which the intervention takes place varies. This is very suitable for immigration:
the timing of immigration is not precise. It is not suitable for seasonality, where
more control over the timing of events is required.

Still considering P = (α, r).Q , an action firing at rate 1 has actually only a
38% probability of happening between 0.5 and 1.5 time steps. In order to reduce
this variability, one solution is to split the action into several steps. In other

3 Susceptible or recovered immigrants and emigrants do not influence the dynamics of
the disease and are not modelled here. Similarly, infectious or exposed emigrants do
not have any influence on the dynamics of the disease in the studied city, and their
number is sufficiently low to have a negligible impact on population size.
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words, an expression (α, r).Q is replaced by (α′, r×n).(α′, r×n).....(α′, r×n).Q
with n the number of steps, that we will denote (α′, r × n)n .Q for readability
purposes. The distribution of the resulting chain of actions can be calculated
using the following theorem [10]:

Theorem 1. If X1,X2,...Xn are independent following an exponential distribu-

tion Exp(α) then
n∑

i=1

Xi follows a Gamma distribution Gamma(n, 1/α)

As the rate of each of the activities is actually rn, the resulting probability
density function is:

fn,r(x) =
xn−1.e−rnx.(rn)n

(n− 1)!
(1)

The cumulative density function can be simplified, in the special case where
n ∈ N to the following expression:

Fn,r(x) =

∞∑
i=n

(rnx)i

i!
e−rnx (2)

This formula allows us to estimate the probability of an event happening between
time t = a and t = b (with b > a) as:

Fn,r(b)− Fn,r(a) =

∞∑
i=n

(rnb)i

i!
e−rnb −

∞∑
i=n

(rna)i

i!
e−rna (3)

Thus, the number of steps n can be chosen to provide the modeller with what
she deems an acceptable probability of an action occurring within the desired
time. We use this technique to model seasonality using the following agent:

Summer
def
= (go winter ,n/summer duration)n.Winter + (insummer , big).Summer

Winter
def
= (go summer ,n/winter duration)n.Summer + (inwinter , big).W inter

The season agent has two roles: performing the chain of actions leading to a
change in season (go winter and go summer), or broadcasting the current sea-
son (inwinter or insummer) to all agents for the whole season. The rate big is
introduced as a practical proxy for  in simulations.

Seasonality affects measles dynamics through a varying contact rate. The
average age of the infected individual according to data is low [20, Table II]:
the disease is very infectious, and getting infected grants lifelong immunity. The
average number of contacts a child makes change significantly depending on
season, as more contacts are made when children go to school (in winter). The
two seasons only affect Inf ′, the mirror component of Inf , which has been divided
into Inf ′s for the summer, and Inf ′w for the winter. The difference between the
two is contact rate (crs and crw). The model is composed of two seasons: a four
month summer, and an eight month winter.

To explain the seasonality mechanism further, for example, once the season
changes from Summer to Winter, Winter cooperates with the agents in Inf ′s (of
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Figure 2) over the action inwinter, in order for them all to move to Inf ′w (also of
Figure 2). The rate at which the cooperation is performed has to be very large
compared to the other parameters of the model in order for the process to be
considered instantaneous. In this model, this rate is at least big/crs ≈ 1.66×108

times bigger than any other rate in the model. The number of infectious individu-
als is always under 1000, so the whole operation takes less than 1000/big ≈ 10−6

time step to be performed. Note that any immigrating individuals move to Inf ′s
initially, but if the season is winter they will move almost instantaneously to
Inf ′w . After the action go summer has been fired n times, the agent describing
the season moves from Winter to Summer, and the agents in Inf ′w are forced to
move to Inf ′s . The choice of the value of n depends on the precision required by
the modeller, as well as the processing time of the model.

Complete Model and Parameters. The measles model is presented in Fig-
ure 2, and the parameters used presented in Figure 3 (taken from the litera-
ture [4,12,25] except n, srs, srw) . In the final measles model of Figure 2 there
are agents for S, Exp, Inf, R and Dormant, as above. There is not a direct map-
ping between agents in the main group and and the mirror group (S ′, Inf ′s , Inf

′
w

and DS ). In particular,DS only models movement of births andDS �= Dormant .
Other Dormant behaviour is captured in S′. The model obeys two invariants con-
cerning agent numbers: Inf = Inf ′s +Inf ′w , and S+Exp+R+Dormant+Immi =
S′ +DS.

Summer
def
= (go winter , srs)n.Winter + (insummer , big).Summer

Winter
def
= (go summer , srw)n.Summer + (inwinter , big).Winter

S
def
= (contact ,
).Exp + (birth, br).S + (die , dr).Dormant

Exp
def
= (contact ,
).Exp + (incubation , ir).Inf + (die , dr).Dormant + (birth, br).Exp

Inf
def
= (contact ,
).Inf + (recover , rr).R + (dieI , dr).Dormant + (birth, br).Inf

R
def
= (contact ,
).R + (birth, br).R + (die , dr).Dormant

Dormant
def
= (born , big).S + (immigration ,
).Immi

Immi
def
= (gotoInf , big).Inf

S ′ def
= (incubation ,
).Inf ′s + (birth,
).DS + (gotoInf ,
).Inf ′s

Inf ′s
def
= (contact , crs).Inf ′s + (recover ,
).S ′ + (inwinter ,
).Inf ′w + (dieI ,
).S ′

Inf ′w
def
= (contact , crw).Inf ′w + (recover ,
).S ′ + (insummer ,
).Inf ′s + (dieI ,
).S ′

DS
def
= (born ,
).S ′ + (timeout , 100.0).S ′

Immigration
def
= (immigration , imrate).Immigration

((S [508000] ‖ Inf [10] ‖ Dormant [100000] ��
{born,birth,incubation,recover,contact,dieI ,gotoInf}

S ′[608000] ‖ Inf ′w [10]) ��
{immigration} Immigration) ��

{insummer,inwinter}Winter

Fig. 2. PEPA measles model for Leeds

According to Bjørnstad et al. [4, p. 171], the critical community size, in order
for the virus not to go extinct, lies between 300, 000 and 500, 000 in England and
Wales. For this reason, the city of Leeds has been chosen to test this model: its
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Parameter Rate (per day) Description

popn 508010 Total population size [25]

big 999999999 The fast rate used for immigration and seasonality

ir 1/7.5 Incubation rate is 1/incubation period [4]

rr 1/6.5 Recovery rate is 1/infectious period [4]

crw 39.1/6.5 Winter contact rate [4]

crs 19.8/6.5 Summer contact rate [4]

br, dr 0.017/360 Birth rate and Death rate [4]

imrate 0.02 ∗ √popn/360 Immigration rate of infectious individuals [12]

n 96 Number of iterations of the change of season action

srw 1/(8× 30)× n Rate of one iteration of change season (winter)

srs 1/(4× 30)× n Rate of one iteration of change season (summer)

Fig. 3. The parameters used in the model in Figure 2

population in 1944 was about 508, 000 inhabitants. The model starts with 100%
susceptible individuals, and evolves naturally towards its steady state susceptible
proportion of between 3.5 and 9%. This number of susceptibles is consistent
with biological studies [4, p. 180]. The model displays transient behaviour while
establishing the susceptible population. This has been empirically determined to
correspond to the first thousand steps, and has been removed from the results
shown in Figure 4 as it does not relate to the observed behaviour of measles.

Finkenstädt et al [12, p. 755] give immigration of infectious individuals as:

average number of imports per year = 0.02
√
population size

In the case of our model, it results in 0.02
√
508000= 14.25 infectious imports per

year. This results in a total of 285 immigrants across the twenty-one years stud-
ied, who increase the overall population by 0.056%. The birth and death rates
are assumed to be constant by taking average figures for the period. While this
was not the case in reality (the maximum number of births recorded was 10821
in 1947, and the minimum was 7584 in 1954), the difference can be considered
negligible for the scope of this analysis.

The contact rate has been chosen based on the value of R0 given in the
paper by Bjørnstad et al. [4, p. 180]. R0 is the number of successful contacts an
infectious individual would make in an entirely susceptible population. According
to that paper, its maximum value is 39.1 in December, and its minimum value
is 19.8 in August. In the absence of an average value over the course of a season,
or a monthly value, these values are used for the winter and summer season
respectively. The daily number of contacts are derived in a standard way from
R0 by dividing it by the infectious period.

Finally, the parameters related to the seasons are srw, srs and n. Seasonality
has been simplified by assuming that a month lasts 30 days, and a year 360 days.
Winter has been assumed to last eight months. The choice of the value of n lies
in the hands of the modeller: it must be chosen in order to give an acceptable
variability in the season length, while not increasing the length of the simulations
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too much. With n = 96, and using equation (3), the probability that the winter
lasts between 7 and 9 months, and that the summer lasts between 3.5 and 4.5
months, is 78%, which is deemed sufficient for the scope of this study.

3.2 Results

Analysis of the model is performed through a series of single stochastic simula-
tions. Due to variability in the timing of season change, stochastic simulations
cannot be meaningfully averaged. Moreover, the analysis will only be performed
on semi-quantitative factors, such as the length of the cycle between two con-
secutive outbreaks and the average size of the peak of each epidemic. Although
Benkirane developed a tool to derive ODEs from PEPA models [2], this cannot
be used here as the hypothesis behind the derivation, that the number of agents
is large, is not met by the subgroups for seasonality and immigration (one in-
stance each). Their effect of the main group would not be correctly captured
in the derived ODEs. A benefit of process algebra (not explored here) is that
additional analyses are possible via the PEPA plugin [13].

(a) Measles Data (b) PEPA: 1 simulation

(c) Bio-PEPA: 1 simulation (d) Bio-PEPA: 100 simulation average

Fig. 4. Graphical results for Measles epidemics in Leeds between 1944 and 1964. The
horizontal axis is year, and the vertical axis is number of infectious individuals.

Comparing the model with measured data is not straightforward: this is one of
the problems of carrying out a realistic case study. The data to which the model
is compared (city of Leeds only) is available from University of Cambridge [25].
The data must be normalised to match the format of the simulated data. The
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simulated data reports number of infected individuals every day, while the field
data is reported every 14 days. Each data point in the original data has been
divided by 14 (to get the number of reported infectious individuals per day) and
multiplied by 6.5 (to reflect the average infectious period of 6.5 days). Bjørnstad
et al. [4, p. 172] mention a reporting rate across England and Wales of just
over 50%. We assume every individual is infected at some point in her life,
therefore, the number of births should correspond to the number of cases. For
Leeds between 1944 and 1964 (inclusive), 181, 539 births were recorded, while
109, 730 cases of measles were reported. Assuming the birth rate was constant
(as above) gives an average reporting rate of 60.4%. A constant reporting rate
will be assumed. The number of infectious individuals at each data point are
corrected by multiplying the reported number of cases by (number of births /
reported cases). Figure 4(a) shows the corrected data.

A sample simulation of the model of Figure 2 is shown in Figure 4(b). It
corresponds to 8560 days of simulations, where the first 1000 days have been
removed, as described previously. The two graphs exhibit comparable behaviour.
In both cases, measles outbreaks occur on a regular cycle. The length of the cycle
varies between the collected data and the stochastic simulation. In the case of the
data, the cycle lasts exactly two years, with very little variation over the length
of the studied period, apart from a single one year cycle between the 1963 and
the 1964 epidemics. The simulation on the other hand, has biennial cycles most
of the time, but sometimes exhibits 2.5 year cycles. Across the studied period,
the collected data experiences 11 outbreaks, for 9 in the simulation. As detailed
by Bjørnstad et al. [4], the cycles are a consequence of the addition of seasonality
to the model. The presence of a summer season where the contact rate is lower
allows more time for the pool of susceptibles to increase in size, until the contact
rate increases again in the winter. The number of infectious individuals at the
peak of infection in both cases can vary a lot, between 260 and 920 in the case
of the collected data, and 260 and 710 in the simulation. The average of the
number of individuals at the peak of each outbreak confirms this difference: 479
infecteds in the case of the collected data, for 424 in the case of the simulations.

3.3 Comparison with Bio-PEPA

It can be seen from the discussion above that some epidemiological features,
while they can be modelled in PEPA, are not naturally expressed. For example,
neither direct transmission, nor births and deaths, are very elegantly expressed
in PEPA. An obvious question arises: are these features better modelled in Bio-
PEPA, which was designed for biological systems? Brief details of repeating the
modelling exercise with Bio-PEPA are given here. The model was based on a
combination of standard mathematical biology techniques [1,11] and the model
of Figure 2. The Bio-PEPA model is shown in Figure 5. The syntax used here
is the syntax of the Bio-PEPA tool [8]. Parameter values are as in Figure 3.

Transmission of Disease. Control is given to the modeller via the kinetic
laws: any rate expressed via arithmetic and trigonometric functions can be
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endWinter
def
= 4; startWinter

def
= 9;month

def
= floor(time/30);

season time
def
= H(((month − 12 ∗ floor(month/12)) − endWinter)

∗(startWinter − (month − 12 ∗ floor(month/12))));

kineticLawOf birth : br ∗ (S + Exp + Inf +R);

kineticLawOf dieS : dr ∗ S;

kineticLawOf dieExp : dr ∗ Exp;

kineticLawOf dieInf : dr ∗ Inf ;

kineticLawOf dieR : dr ∗R;

kineticLawOf contact : ((crw ∗ S ∗ Inf )/(S + Exp + Inf + R)) ∗ (1− season time)+

((crs ∗ S ∗ Inf )/(S + Exp + Inf + R)) ∗ (season time);

kineticLawOf incubation : ir ∗ Exp;

kineticLawOf recover : rr ∗ Inf ;

kineticLawOf immigration : imrate;

S = (contact , 1) � +(birth, 1) � +(dieS , 1) �;
Exp = (contact , 1) � +(incubation, 1) � +(dieExp, 1) � +(birth, 1)(.);
Inf = (contact , 1)(.) + (incubation , 1) � +(dieInf , 1) � +(birth, 1)(.)

+(recover , 1) � +immigration �;
R = (recover , 1) � +(birth, 1)(.) + (dieR, 1) �;

Inf [10] < ∗ > S[508000] < ∗ > Exp[0] < ∗ > R[0]

Fig. 5. Bio-PEPA measles model for Leeds

given. This is rather similar to the way in which mathematical biologists
choose terms in their ODE models: the link with interacting processes is de-
creased. Thus incorporating direct transmission is no longer about designing
the right sort of interaction, it is simply a matter of writing the commonly
used term for frequency-dependent direct transmission in the kinetic law for
contact.

Births and Deaths. In Bio-PEPA the style is to describe change to species
numbers, where species are similar to agents in PEPA. In Figure 5 the species
are S, Exp, Inf and R. For example, increasing population through birth
is described by the event (birth, 1) $ and decreasing population through
death by the event (dieS, 1) % (increase or decrease being indicated by
the direction of the arrows). The 1 in these events describes the change to
the number of susceptibles, but not the rate. The rate is described by the
appropriate kinetic laws for birth and death.

Timed Events. Time can be used explicitly in the model through the variable
time, and thus can influence variables and hence kinetic laws. In Figure 5
the variable season time switches between 0 and 1 (with the use of the built-
in Heaviside function H) to indicate winter or summer respectively. This is
then used in the kinetic law for contact.

Bio-PEPA, like PEPA, gives access to a range of analysis techniques through a
tool: the Bio-PEPA plugin [8], which offers, for example, stochastic simulations,
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interpretation as ODEs, translation to SBML, invariant inference and model-
checking. The result of a single simulation of the Bio-PEPA model is given in
Figure 4(c): the pattern of outbreaks is similar to the collected data of 1944–1964,
although the peaks are significantly higher. In Bio-PEPA the switch between
seasons happens on the same day every year, in every simulation. For interest,
Figure 4(d) shows the average of one hundred simulations for both the seasonally
switching contact rate (lighter line) and a fixed (crw) contact rate (heavier line).
For the former, the average tends to peak lower, and annually: the period between
epidemics varies from one to three years. For the latter, the long-term pattern
shows a more steady rate of infection of around 150 individuals. Both of these
simulations are shown starting after 1720 steps: the Bio-PEPA simulation takes
slightly longer to stabilise than the PEPA simulations.

Bio-PEPA overcomes some of the feature-capturing problems of PEPA. Ar-
guably the model of Figure 5 is simpler and more elegant: the species are no
longer confused with modelling artefacts to handle one-to-one communication.
Bio-PEPA also has limitations. The formulation of kinetic laws means rates no
longer depend on interaction and semantics: they come from implicit assump-
tions the modeller has made about population-level dynamics. This is therefore
rather similar to the standard mathematical biology approach.

4 Conclusions

PEPA and Bio-PEPAmodels have been constructed to reflect cyclic epidemics of
measles, and their output compared to collected data. While PEPA is not ideally
suited to capturing all features of disease progression, suitable approximations
can be made. An important feature is that the population dynamics emerge
from the specified individual behaviour. In contrast, the Bio-PEPA model may
be simpler, but required high-level assumptions to be made about population dy-
namics. In both cases, existing well-developed tools [13,8] were used for analysis.
The results are promising: the simulated results for both PEPA and Bio-PEPA
are comparable to the collected data and would allow meaningful exploration of
patterns of epidemics under different parameter regimes. The PEPA results are
closer to the collected results than the Bio-PEPA results, which demonstrate too
much regularity. Differences between our results and the data may be associated
with the granularity of modelling. For example, birth and death rates have the
same value throughout the simulation. Seasonality has been approximated by
splitting the year into two seasons each with a single contact rate which does
not change throughout the season. The value used by Bjørnstad et al. [4, Fig. 7,
p. 178] varies noticeably within each season. The models presented here could
be altered to reflect these changes, with varying degrees of difficulty.

One of the difficulties encountered in this study, and encountered in any re-
alistic modelling exercise, is the problem of parameter values. For example, the
main source for this model was Bjørnstad et al. [4] who give incubation rate and
infectious period as 7.5 and 6.5 days respectively. As shown in Section 3.2 this
gives a good match to the measured data. Our models have also been tested
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with data from Bolker et al. [5] who propose an incubation period of ten days,
and infectious period of 3.7 days. This gives fewer disease outbreaks than shown
by the data (3-4 years between outbreaks, with peaks between 600-1500 cases).
The beauty of modelling is that the parameter choices can be easily explored.
A further difficulty of dealing with collected data for measles is estimating the
reporting rate. The approximation used might impact the number of infectious
individuals at a given time, but would not influence cycle duration.

Due to lack of space, the influence of the nearby cities have been completely
ignored in this study. Benkirane [2] has developed a novel extension to PEPA
to allow structured populations to be easily expressed, and demonstrates its
use through a more complex model of measles in the linked cities of Cardiff,
Newport, Bristol and Bath. Similarly, Bio-PEPA has compartments which allow
spatial elements of epidemiology to be modelled.

Process algebra has been shown here to be useful in modelling quite complex
infectious disease systems. Determining which approach is suitable for a given
problem depends on which questions we wish to answer about that problem; that
is, the sort of analysis we wish to carry out. An advantage of process algebra over
traditional mathematical biology is the range of automated analyses available.
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Abstract. Constraint programs such as those written in modern Con-
straint Programming languages and platforms aim at solving problems
coming from optimization, scheduling, planning, etc. Recently CP pro-
grams have been used in business-critical or safety-critical areas as well,
e.g., e-Commerce, air-traffic control applications, or software verification.
This implies a more skeptical regard on the implementation of constraint
solvers, especially when the result is that a constraint problem has no
solution, i.e., unsatisfiability. For example, in software model checking,
using an unsafe constraint solver may result in a dramatic wrong an-
swer saying that a safety property is satisfied while there exist counter-
examples. In this paper, we present a Coq formalisation of a constraint
filtering algorithm — AC3 and one of its variant AC2001 — and a simple
labeling procedure. The proof of their soundness and completeness has
been completed using Coq. As a result, a formally certified constraint
solver written in OCaml has been automatically extracted from the Coq
specification of the filtering and labeling algorithms. The solver, yet not
as efficient as specialized existing (unsafe) implementations, can be used
to formally certify that a constraint system is unsatisfiable.

1 Introduction

Context. Automated software verification relies on constraint resolution [23],
either to prove functional properties over programs or to generate automatically
test inputs [13]. For example, formal verification involves showing that a formula
embedding the negation of a property is unsatisfiable, i.e., the formula has no
model or solution. While most verification techniques are based on SAT and
SMT (Satisfiability Modulo Theory), tools built over Constraint Programming
over Finite Domains, noted CP(FD) [14], become more and more competitive
e.g., CPBPV [11], or OSMOSE [5,4]. In this context, finite domains mean finite
sets of labels or possible values associated to each variable of the program. Exist-
ing results show that CP(FD) is a complementary approach to SMT for certain
classes of verification problems [5,3].
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Problem. Effective constraint-based verification involves using efficient con-
straint solvers. However, efficiency comes at the price of complexity in the design
of these solvers. And even if developing CP(FD) solvers is the craft of a few great
specialists, it is nearly impossible to guarantee by manual effort that their results
are error-free. A constraint solver declaring a formula being unsatisfiable while
it is not the case, can entail dramatic consequences for a safety-critical software
system. Thus, an emerging trend in software verification is to equip code with
correctness proofs, called certificates [12], that can be checked by third-party cer-
tifiers [20,8,1,7]. As soon as these certificates involve finite domains constraint
systems, external constraint solvers are used without any guarantee on their
results.

Contribution. Following the research direction opened up by CompCert [17]
that offered us a formally certified compiler for a subset of C, the work pre-
sented in this paper is part of a bigger project aiming at building a certified
testing environment for functional programs based on finite domains constraint
solving. A significant first step has been reached by formally certifying the test
case generation method [9], provided that a correct constraint solver is available.
This paper specifically tackles this second step of the project by building a cer-
tified CP(FD) solver. We developed a sound and complete CP(FD) solver able
to provide correct answers, relying on the Coq interactive proof assistant. The
constraints are restricted to binary normalized constraints, i.e., distinct relations
over two variables [10], but are not necessarily represented as set of binary tu-
ples. The language of constraints is in fact a parameter of our formalisation. Our
certified CP(FD) solver implements a classical filtering algorithm, AC3 [19] and
one of its extension AC2001 [10], thus focuses on arc-consistency. By filtering
algorithm, we mean a fixpoint computation that applies domain filtering oper-
ators to the finite domains of variables. The Coq formalisation is around 8500
lines long. The main difficulties have been to discover or re-discover implicit
assumptions and classical knowledge about these algorithms.

Following the Coq proof extraction mechanism, the executable code of the
solver in OCaml has been automatically derived from its formal development,
and used to solve some constraint systems. The solver, yet not as efficient as
specialized existing but unsafe implementations, can be used to formally certify
that a constraint system is unsatisfiable or satisfiable. According to our knowl-
edge, this is the first time a constraint solver over finite domains is formally
certified. The Coq code and the OCaml extracted files are available on the web
at www.ensiie.fr/~dubois/CoqsolverFD .

Outline. The rest is organized as follows: Sec. 2 introduces the notations and the
definitions of the notions of consistency, solution, solving procedure used in our
formalisation. Sec. 3 presents the filtering algorithm AC3 and an implementation
of the local consistency property called REVISE. It also presents an optimized
version of the filtering algorithm called AC2001. Sec. 4 describes the formalisa-
tion of the search heuristics. Sec. 5 presents our first experimental results and
discusses related work. Finally, sec. 6 concludes the paper.

www.ensiie.fr/~dubois/CoqsolverFD
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2 Formalisation of a Constraint Solving Problem

A Constraint Satisfaction Problem (csp for short) or network of constraints [19]
is a triple (X, D, C) where X is a set of ordered variables, C is a set of binary
normalized constraints over X and D is a partial function that associates a finite
domain D(x) to each variable x in X . In our setting, the values of a finite domain
belong to a set V equipped with a decidable equality. The set C is composed of
binary and normalized constraints, meaning respectively that constraints hold
over 2 variables, and that two distinct constraints cannot hold over exactly the
same variables. The function get vars retrieves the ordered pair of variables of
a constraint c. For example, get vars(c) returns (x1, x2) iff x1 is smaller than
x2, (x2, x1) otherwise. Note that this ordering is introduced for convenience, but
does not limit the generality of the purpose. We also suppose that each variable
of X appears at least once in a constraint of C. Restricting to binary normalized
constraints does not weaken the contribution as constraints over finite domains
with higher arity can always be rewritten into binary constraints [2], and it is
always possible to merge two constraints holding over the same two variables
into a single one. Omitting unary constraints is not a restriction either since
unary constraints are semantically equivalent to domain constraints, that are
captured by D in our formal settings

Fig.1 shows the Coq formalisation of constraint network where types of con-
straints, variables and values are made abstract. To define constraints, we only re-
quire the definition of 2 functions get vars and an interpretation function interp.
We expect the following meaning: if get vars(c) = (x, y), then interp c u v =
true iff c is satisfied by substituting x by u and y by v, noted c(u, v) or (consis-
tent value c x u y v ) in Coq code. In the following, Coq excerpts are not true
Coq code in the sense that mathematical notations are used when they ease the
reading, e.g. ∈ denotes list or set membership, whereas prefixe notation In is
kept for membership in domain tables. The formalisation of domains Doms is

Parameter constraint : Set.
Parameter interp : constraint → value → value → bool.
Parameter get vars : constraint → variable × variable.
Parameter get vars spec : ∀ c x1 x2, get vars c = (x1, x2 ) → x1 < x2.
Record network : Type := Make csp {
CVars : list variable ; Doms : mapdomain ; Csts : list constraint }.

Fig. 1. Coq formalisation of constraint network

captured by lists without replicates and saved in a table (of type mapdomain)
indexed by the variables1.

The Coq record network inv csp that captures well-formedness properties of
a constraint network csp, is given in Fig2. The first proj. Dwf specifies that

1 The Coq module Fmap is used to keep these tables, and the AVL implementation
from the Coq’s standard library is used in the extracted code.
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the network variables (and only those), have an associated domain in the table
embedded in csp. The second proj. Cwf1 specifies that the variables of a con-
straint are indeed variables of the network csp. The third proj. Cwf2 specifies
that each variable appears at least once in the network. Finally, norm specifies
that two constraints sharing the same variables must be identical.

Record network inv csp : Prop := Make csp inv {
Dwf : ∀ x, In x (Doms csp) ↔ In x (CVars csp) ;
Cwf1 : ∀ (c:constraint) (x1 x2 : variable),

c ∈ (Csts csp) → get vars c = (x1, x2 ) →
x1 ∈ (CVars csp) ∧ x2 ∈ (CVars csp) ;

Cwf2 : ∀ x, x ∈ (CVars csp) → ∃ c,
c ∈ (Csts csp) ∧ (fst (get vars c) = x ∨ snd (get vars c) = x);

Norm : ∀ c c’, c ∈ (Csts csp) → c’ ∈ (Csts csp) →
get vars c = get vars c’ → c = c’ }.

Fig. 2. Well-formedness properties of a constraint network in Coq

2.1 Assignment - Solution

Following the definitions given in [6], an assignment is a partial map of some vari-
ables of the constraint network to values2, a valid assignment is an assignment
of some variables to a value from their domain, a locally consistent assignment is
a valid assignment of some variables that satisfy the constraints that hold over
them (and only those), and finally a solution is a locally consistent assignment of
all the variables of the constraint network. We formalized these notions but do
not expose their Coq specification very close to the previous informal definitions.

An important lemma about solutions, named no sol given below, is involved
in the completeness proof of the CP(FD) solver. It establishes that as soon
as a domain in the constraint network csp becomes empty, then csp is shown
be unsatisfiable, i.e., it has no solution. The lemma states that, in this case,
any assignment defined over the set of variables of csp cannot be a solution. It
uses the find function defined on tables such that find x a returns the value
v associated to x in the instantiation a (encoded as Some v), fails otherwise
(None is returned).
Lemma no sol : ∀ csp,
(∃ v, find v (Doms csp) = Some []) → ∀ a , ¬ (solution a csp).

2.2 Arc-Consistency

The main idea of constraint filtering algorithms such as those used in CP(FD)
solvers is to repeatedly filter inconsistent values from the domains. Thus, they
reduce the search space while maintaining solutions. Several local consistency
properties have been proposed to characterize the pruned domains [14,6], but

2 Implemented in Coq by using the Fmap module, as variable-indexed table.
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we focus here on the former and widely used arc-consistency property. Roughly
speaking, a binary constraint c(x, y) is arc-consistent w.r.t (X, D, C) iff for any
value u in the domain of x (i.e., u ∈ D(x)), there exists a value v in the domain of
y such as c(u, v) is consistent, and conversely for any value v ∈ D(y), there exists
a value u ∈ D(x) such as c(u, v) is consistent. A constraint network (X, D, C)
is arc-consistent iff any of its constraints c in C is arc-consistent. It is worth
noticing that a constraint network can be arc-consistent, while it has no solution
[6]. If a constraint network is arc-consistent and all of its domains are singletons,
then it has a single solution.

In the original presentation of arc-consistency, a constraint network is repre-
sented with an undirected graph where nodes are associated to the variables, and
edges are used to capture the constraints [19]. An edge between node x and node
y exists iff there is a constraint c containing variables x and y (c(x, y)) in the
constraint network. However, by considering that constraints are undirected rela-
tions, this representation is implicitly ambiguous as it does not distinguish con-
straint c(x, y) from c(y, x). In our Coq formalisation, we tackled this problem by
considering an order over the variables, and specified arc-consistency by distin-
guishing two arcs, denoted (x, c, y) and (y, c, x). Reconsidering the definition of
arc-consistency given above, we say that (x, c, y) is arc-consistent if for each value
v of the domain of x, there exists a value t in the domain of y, such that c is satisfied.
The value t is usually called the support of v for c. Note that nothing is required
regarding to the values from the domain of y. Our Coq formalisation is given in
Fig.3, where d is the table of domains and compat var const is the predicate that
associates a constraint and its variables.

Definition arc consistent x y c d :=
compat var const x y c →
∀ dx dy, find x d = Some dx → find y d = Some dy →
∀ v, v ∈ dx → ∃ t, t ∈ dy ∧ consistent value c x v y t.

Fig. 3. Our Coq formalisation of arc-consistency

3 Formalisation and Verification of a Filtering Algorithm

In a CP(FD) solver, local consistency property, such as arc-consistency, is re-
peatedly applied over each constraint in a fixpoint computation algorithm, i.e., a
filtering algorithm. Several distinct filtering algorithms exist, but the most well-
known is AC3 [19,6]. At the heart of AC3 is a function that prunes the domain
of a variable according to a constraint, commonly named REVISE.

Unlike existing pseudo-code presentations of AC3, we introduce in this section
a Coq functional programming code of both algorithms REVISE and AC3.

3.1 Formalisation and Verification of Algo. REVISE

In our Coq formalisation shown in Fig.4, the function revise takes as argu-
ments c, x, y, dx and dy where x and y are the variables of constraint c, with
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resp. domain dx and dy. Function revise returns a new domain d′ for x and a
boolean bool rev. If dx has been revised, i.e., dx has been pruned to d′ where d′ is
strictly included in dx, then bool rev is true. Otherwise, bool rev is false. A lot of

Fixpoint revise c x y dx dy {struct dx} :=
match dx with

nil ⇒ (false, dx)
| v ::r ⇒ let (b, d) := revise c x y r dy in

if List.existsb (fun t ⇒ consistent value c x v y t) dy
then (b, v ::d)
else (true, d)

end.

Fig. 4. Coq formalisation of Algo REVISE (function revise)

theorems about revise are required in the following, but we present only a se-
lection of them in Fig.5. Many of these properties are demonstrated with the
help of a functional induction on revise which is a tailored induction schema
that follows carefully the different paths of the function. Part a. contains theo-
rems showing the conformity of the functional text with respect to the informal
specification. Part b. presents 2 theorems: the first one establishes that once a
domain dx has been revised to d′, then its associated arc (x, c, y) is arc-consistent
with d′. And the second one: when dx is not revised, it means that arc (x, c, y)
was already locally consistent. Part c. contains a formal explanation of puzzling
elements of AC3, it is concerned with the relationship between arc (x, c, y) and
(y, c, x) w.r.t. arc-consistency. Roughly speaking, it means the modification of
the domain of x does not affect the arc-consistency of y. Finally, theorems in
part d. state that revise preserves the solutions of a csp, and, equally important,
does not add extra solutions.

3.2 Formalisation of Algorithm AC3

The main idea behind AC3 consists to revise the domains of all the variables
in order to make all arcs arc-consistent. When this is done for arc (x, c, y), we
remove only values from the domain of x. Hence, other arcs whose target is also
x may not be consistent anymore, and they have to be revisited. AC3 maintains
a queue containing all the arcs to be visited or revisited. When the queue is
empty, AC3 has reached a fixpoint which is a state on which no more pruning
is possible. During this fixpoint computation, if a domain becomes empty, then
the constraint system is shown to be unsatisfiable.

The corresponding AC3 function shown in Fig.6 takes as arguments the set of
constraints of the network and a pair, composed of an initial map of variables to
domains and a queue, containing arcs to be made arc-consistent. It results either
in the pruned domains (of type option mapdomain), or None if the network has
no solution or if the network is not well-formed. To add arcs in the queue, we
use the function ⊕ that appends two lists without repetition.
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a. Conformity of revise

Lemma revise true sublist : ∀ c x y dx dy newdx,
compat var const x y c →
revise c x y dx dy = (true, newdx ) →

newdx ⊂ dx.

Lemma revise false eq : ∀ c x y dx dy newdx,
revise c x y dx dy = (false, newdx ) → newdx = dx.

b. revise and arc-consistency

Lemma revise arc consistent : ∀ csp c x y ,
c ∈ (Csts csp) → compat var const x y c →
∀ dx dy dx’ b,

find x (Doms csp) = Some dx → find y (Doms csp) = Some dy →
revise c x y dx dy = (b, dx’) →

arc consistent x y c (add x dx’ (Doms csp)).

Lemma revise false consistent : ∀ csp c x y dx dy,
c ∈ (Csts csp) → compat var const x y c →
find x (Doms csp) = Some dx → find y (Doms csp) = Some dy →
∀ newdx, revise c x y dx dy = (false, newdx ) →

arc consistent x y c (Doms csp).

c. Relations on arcs (x, y, c) and (z, x, c) w.r.t. arc-consistency

Lemma revise x y consistent y x : ∀ csp c x y dx dy ,
c ∈ (Csts csp) → compat var const x y c →
find x (Doms csp) = Some dx → find y (Doms csp) = Some dy →

∀ newdx, revise c x y dx dy = (true, newdx ) →
arc consistent y x c (Doms csp) →

arc consistent y x c (add x newdx (Doms csp)).

Lemma revise x y consistent x z : ∀ d x y dx dy c newdx,
compat var const x y c →
find x d = Some dx → find y d = Some dy →
revise c x y dx dy = (true, newdx ) →
∀ z c0, compat var const x z c0 →

arc consistent x z c0 d →
arc consistent x z c0 (add x newdx d).

d. Completeness of revise

Theorem revise complete : ∀ csp c x y dx dy (a : assign) ,
network inv csp →
c ∈ (Csts csp) → compat var const x y c →
find x (Doms csp) = Some dx → find y (Doms csp) = Some dy →
solution a csp →

∀ newdx, revise c x y dx dy = (true, newdx ) →
solution a (set domain x newdx csp).

Theorem revise strict solution : ∀ csp c x y dx dy ,
network inv csp →
c ∈ (Csts csp) → compat var const x y c →
find x (Doms csp) = Some dx → find y (Doms csp) = Some dy →

∀ a newdx, solution a (set domain x newdx csp) →
revise c x y dx dy = (true, newdx ) →

solution a csp.

Fig. 5. Properties of revise
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Function AC3 (csts : list constraint)
(d q : mapdomain × list arc) {wf AC3 wf d q} : option mapdomain :=

let (doms, qu) := d q in
match qu with
| nil ⇒ Some (doms)
| (x, c, y)::r ⇒
match find x doms, find y doms with
| Some dx, Some dy ⇒
let (bool red, newdx) := revise c x y dx dy in
if bool red then
if is empty newdx
then None
else AC3 csts (add x newdx doms, r ⊕ (to be revised x y csts))

else AC3 csts (doms, r)
| , ⇒ None

end end.

Definition measure map (d : mapdomain) :=
fold (fun x ⇒ fun l ⇒ fun sum ⇒ (length l) + sum) d 0.

Fig. 6. Formalisation of AC3

In this function, to be revised x y c computes the set of arcs (z, c′, x) where
z �= y, that is the arcs that may have become inconsistent. Arc (y, c, x) and
arcs having x as a source are discarded because the domain of x after revision
is necessarily included in the previous domain of x, and arc-consistency asks for
a support for y for each value of the domain of x. In our settings, we proved
the above assertions (as captured by theorems revise x y consistent y x and
revise x y consistent x z ) which are required to establish soundness of AC3.

AC3 is defined as a general recursive function with the Coq construction
Function which allows us to write the function as in any functional programming
language. The overhead includes the definition of a well-founded order and the
proof of decrease in the arguments in the recursive calls. For that, a lexicographic
ordering, AC3 wf, defined on pairs (d, q) was built from two measures. The
measure of a queue was introduced as its number of elements. For maps, the
measure measure map was introduced as the sum of the lengths of the domains,
as shown in Fig.6.3 The proof of the decrease of the arguments required, in
the case of the first recursive call, tedious manipulations of maps and lists and
application of the lemma revise true sublist (see Fig.5, part a).

3.3 Correction of AC3

Soundness. The main soundness theorem, AC3 sound, shown in Fig.7 states
that AC3 reduces the domains in order to achieve arc-consistency for each con-
straint at the end of the computation. In our formalisation, complete graph com-
putes the graph associated with the constraints, as a list of arcs. Soundness is
3 Implemented with the map iterator fold defined in the module Fmap.
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proved using a functional induction on AC3 and the invariant PNC (for Poten-
tially Non arc-Consistent), given in Fig.7. If l is a list of arcs from the constraint
network csp, PNC csp d l holds iff each arc (x, c, y) not arc consistent w.r.t.
the table of domains d are in l. The main idea is to verify that at each step of
the computation all the arcs that may be non arc-consistent are in the queue.
The corresponding lemmas are given in Fig.7. Difficulties in these proofs have
been to discover the invariant and the properties on which correctness relies. As
often when formalizing existing algorithms, implicit hypotheses are to be made
explicit and it can be hard work.

a. Soundness theorem
Theorem AC3 sound : ∀ csp d’,

network inv csp →
AC3 (Csts csp) (Doms csp, complete graph (Csts csp)) = Some d’ →
∀ x y c, (x, c, y) ∈ (complete graph (Csts csp)) →

arc consistent x y c d’.
b. Invariant
Definition PNC csts (d : mapdomain) (l : list arc): Prop := ∀ x y c,

(x, c, y) ∈ (complete graph csts) → ¬(arc consistent x y c d) →
(x, c, y) ∈ l.

Lemma PNC invariant to be revised : ∀ csp c x y dx dy r newdx,
network inv csp → (x, c, y) ∈ (complete graph (Csts csp)) →
find x (Doms csp) = Some dx → find y (Doms csp) = Some dy →
revise c x y dx dy = (true, newdx) →
PNC (Csts csp) (Doms csp) ((x, c, y)::r) →

PNC (Csts (set domain x newdx csp)) (add x newdx (Doms csp))
r ⊕ (to be revised x y (Csts csp))).

Lemma PNC invariant tail : ∀ csp d x y c r,
(x, c, y) ∈ (complete graph (Csts csp)) → arc consistent x y c d →
PNC (Csts csp) d ((x, c, y)::r) →

PNC (Csts csp) d r.
c. Completeness
Theorem AC3 complete : ∀ csp (a : assign) d’,

network inv csp → solution a csp →
AC3 (Csts csp) (Doms csp, (complete graph (Csts csp))) = Some (d’ ) →

solution a (set domains d’ csp).

Fig. 7. Correction of AC3

Completeness. Completeness means that AC3 preserves the set of solutions.
If a is a solution of a constraint network, then filtering with AC3 will preserve it.
In the formal settings of Fig.7 part c, the constraint networks before and after
filtering only differ by their map of domains. In addition, a more general theorem
where an arbitrary queue q is introduced under the hypothesis that it is included
in (complete graph (Csts csp)), has been proved by functional induction on AC3,
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relying mainly on revise completeness. We have also proved that AC3 does not
add any supplementary solution. The statement and proof of this theorem relies
on the analogous property for revise. Those theorems are not given here to save
space in the paper, but they are all available on our webpage.

3.4 An Optimization: AC2001

AC2001 is an improvement of AC3 published in [10] which achieves optimal time
complexity of arc-consistency. When a support has to be found for a value, AC3
starts to search in the entire domain for the support, without remembering what
happened in a previous step of filtering. AC2001 improves searching of a support
by maintaining a structure named last which records, for each arc (x, c, y) and
value v ∈ D(x), the smallest value t ∈ D(y) such that c(v, t) holds. So AC2001
requires a set of ordered values, while it is not the case for AC3. Hence, each
time an arc is enforced to arc-consistency, the algorithm checks for each value
v in D(x) whether the value t recorded in last still belongs to D(y). When
it is not the case, AC2001 looks for a new value by enumerating all values in
D(y) greater than t. AC2001 shares all the AC3 formalisation items, but the
revise function. Let us call this function revise2001 for AC2001. It takes an
extra argument, the last structure which we call a memory (of type memory)
in our formalisation. The function returns also the new memory state, since it
is modified when a revision takes place. A memory m is represented by a table
from variable ∗ variable to list (value ∗ value): if the variables of the constraint
c are x and y (in this order), then for (v, t) ∈ m(x, y), t is the smallest support
found for v. It means that c is satisfied for these values (c(v, t)) and that c is not
satisfied when assigning v to x and a value w < t to y. Furthermore, for efficiency
reasons, we require the list m(x, y) to be ordered (on the first components of the
pairs). All these properties are recorded in an invariant we call memory inv. The
core of revise2001 is the function formalized in Fig. 8 which acts directly on the
list last defined as m(x, y). Cases (1) and (2) are very similar but differ wrt
the existence or not of a support for the value vx in last. The former happens
when it is the first time the revision is done (revise exists c x y vx dy tries to
find a support for vx in the entire domain dy), the latter is the nominal case
(revise2001 a value c x y vx vy dy tries to find a support for vx in dy, starting
from the old recorded support vy). Initial memory is the memory where each
pair of variables is assigned the empty list. The final function revise2001 is just a
wrapping embedding a memory m. All theorems that we proved for revise can be
established for revise2001, in particular soundness and completeness. Of course,
they are modified w.r.t. the input and output memories. We also demonstrated
that revise2001 preserves the memory invariant.

The Coq model corresponding to Sec. 2 and Sec. 3 contains ≈ 6000 lines of
code. A functor has been implemented in order to factorize the formalisation of
AC3 and AC2001 allowing us to share around 1500 lines.
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Fixpoint revise2001 aux (c : constraint) (x y : variable) dx dy
(last elem : list (value × value)) {struct dx}
: (bool × (list value × list (value × value))) :=

match dx with
nil ⇒ (false, (dx, nil))

| vx ::dx ⇒ let (o vy, last elem) := last elem get vx last elem in
let (bool red, (dx, last)) := revise2001 aux c x y dx dy last elem in
match o vy with

(1) | None ⇒ match revise exists c x y vx dy with
| None ⇒ (true, (dx, last))
| Some vy ⇒ (bool red, (vx ::dx, (vx, vy)::last))
end

(2) | Some vy ⇒ match revise2001 a value c x y vx vy dy with
| None ⇒ (true, dx last)
| Some vy ⇒ (bool red, (vx ::dx, (vx, vy) :: last))
end

end end.

Fig. 8. Coq definition of AC2001

4 Labeling Search

Labeling implements a systematic search based on backtracking interleaved with
local-consistency domain filtering. Backtracking incrementally attempts to ex-
tend an assignment toward a complete solution, by repeatedly choosing a value
for an uninstantiated variable. Thus, the algorithm chooses a not yet assigned
variable x and a value v in its domain following a given search heuristics, en-
forces the unary constraint x = v (by assigning the domain to this unique value),
re-establishes local consistency by applying the filtering algorithm (e.g., AC3)
on each constraint. At this stage if filtering fails, it means there is no solution
with v as a value for the variable x, then backtrack to another value for x or
another variable, if possible. If filtering succeeds then go on with another vari-
able if any. The labeling search procedure is complete if it can explore the overall
search space. In our Coq formalisation, we implemented a complete search pro-
cedure with a simple heuristics, taking the first non assigned variable, with the
first value met in the domain. Furthermore the labeling search procedure is in-
dependant from the filtering algorithm (e.g., AC3 or AC2001). In our settings,
labeling is formalized in a module parameterized by the filtering algorithm and
its required properties. Thus proofs about labeling are done only once, whatever
be the filtering algorithm. Quantitatively, it means 1800 shared Coq lines vs
30 lines per instance. We adopted a style mixing computation and proof with
the help of dependent types and the Program Definition construct, that eases
a lot that style. The labeling function takes a well-formed constraint network
and returns the first found solution if any, None otherwise. It uses an auxiliary
function that takes as argument a list of constraints csts, a list of variables to
be assigned vars, the map d of non empty domains for those variables satisfying
arc-consistency. The type of the result is written as follows: {ret : option domain
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| result ok ret csts vars d}. The result is either None or Some d’ and it must
verify the expected soundness property, that is: if None, the csp (vars, d, csts)
has no solution, if Some d’, then d’ can be turned in a solution of (vars, d,
csts): d′ assigns a unique value to the variables of vars, and all the constraints
are arc-consistent w.r.t. d’. Program Definition generates 28 proof obligations,
e.g., each recursive call requires to receive arguments verifying the embedded
pre-conditions. In particular, the proof relies on properties about AC3 such as
its soundness, and the fact that it reduces the domains. Some of these proof
obligations concern the termination of the function, it relies again on a mea-
sure on maps of domains. We do not expose the code of the labeling function,
as it just follows the informal description given above and encodes chronological
backtracking in a recursive functional manner. All can be found on the webpage.

5 Evaluation

5.1 Extracting the Certified CP(FD) Solver

The extraction mechanism of Coq allows one to transform Coq proofs and func-
tions into functional programs, erasing logical contents from them. Currently,
we extract executable OCaml code only from Coq functions, as our proofs have
no computational content. In a function defined with Function, such as AC3, or
with Program Definition, such as labeling, proofs attached to proof obligations
are just erased. So we can extract an operational certified CP(FD) solver for
any language of binary constraints and arbitrary values. By certified, we mean
a CP(FD) solver that returns provably-correct results in both cases, satisfiable
and unsatisfiable formulas.

However the user still has to provide the constraint language, including (i) the
OCaml type for the variables and the associated equality and ordering, (ii) the
OCaml type for the variables and also the associated equality and ordering
if AC2001 is used, and (iii) the OCaml type of constraints with the OCaml
implementation of the get vars and interp functions. It is worth noticing that
the user still has to ensure the conformity of the interp function with the expected
behaviour of the constraints. For our experiments, we introduce a language of
binary constraints including operators <, =, >, the �= (e.g. x > z), conjunctions
(x > y∧x mod y = 0) and disjunctions (e.g., x mod y = 0∨x mod y = 2) and the
add/mult/sub/mod operators over 2 variables and a constant (e.g, x = y+3). We
also implemented in OCaml a function translating addition constraints between 3
variables into binary constraints. Again the correctness of this preprocessing step,
or more ambitious decomposition approaches, is not ensured by our formalisation
and could be an extension. However, it seems that constraint decomposition
requires source-to-source semantics preserving proofs which are less challenging
than proving the correctness of filtering algorithms.

5.2 Experimental Results

The goal of our experiment was to evaluate the capabilities of the automat-
ically extracted CP(FD) solver to solve classical benchmark programs of the
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Constraints community. Of course, we did not expect our solver to compete
with optimized (but unsafe) existing CP(FD) solvers, but we wanted to check
whether our approach was feasible or not. We selected five well-known prob-
lems that may have interesting unsatisfiable instances, as we believe that a
certified CP(FD) solver is much more interesting in this case. We selected a
small puzzle (sport) (find a place to go to do sport with friends), the generic
SEND+MORE=MONEY (smm) puzzle problem, the SUDOKU (sudoku) prob-
lem, the pigeon-hole problem (pigeon) and the Golomb rulers (golomb) prob-
lem. All problems but sport rely on a symbolic language of constraints whereas
sport is defined via relations and tuples. Unlike the first four, the last one is
a constraint optimization problem. Certifying unsatisfiability in this case is in-
teresting for demonstrating that a given value for a cost objective function is
actually a minimum value, i.e., any smaller value leads to the unsatisfiability of
the problem. The Golomb rulers problem has various applications in fields such
as Radio communications or X-Ray crystallography. A Golomb ruler is a set
x1, .., xm of m ordered marks such as all the distances {xj − xi| 1 ≤ i < j ≤ m}
between two marks are distinct. The goal of Golomb rulers problem is to find
a ruler of order m with minimal length (minimize xm). For example, [0, 2, 5, 6]
is an optimal Golomb ruler with 4 marks. All our experiments4 have been per-
formed on a standard 3.06Ghz clocked Intel Core 2 Duo with 4Gb 1067 MHz
DDR3 SDRAM and are reported in Tab.1. The results show that extracting a
reasonably-efficient certified CP(FD) solver is feasible. The solver is powerful
enough to handle some classical problems of the CP Community, and useful to
certify unsatisfiability. For instance, certifying that there is no Golomb ruler with
6 marks of length less than 17 takes about 23 sec (i.e., the Golomb ruler found
by our solver is [0, 2, 7, 13, 16, 17]).

Table 1. CPU Time required with our certified AC3-based CP(FD) solver

Examples sport smm sudoku p(6) p(7) p(8) p(9) p(10) g(4) g(5) g(6)
in ms 0,02 117 253 6 17 158 1611 17541 7 350 23646

5.3 Related Work and Discussion

A first concretization of automated certifying processes lates back to the middle
of the nineties with the work of Necula on proof-carrying code [21]. The idea was
to join correctness proof evidence to mobile code in order to offer the receiver
some guarantee over the code. Since then, several large initiatives have been
undertaken to build certifying compilers [22] or certified compilers [17] But,
it is only recently that the needs for certifying/certified constraint solvers, i.e.
SMT solvers, emerged from formal verification [12,20]. For certifying a SMT
solver, one can think of two distinct approaches. A first approach is to make the
4 We have no specialized implementation for the global constraint ALLDIFF. It is

translated into a list of binary difference constraints.
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constraint solver produce an external trace of its computations in addition of its
sat/unsat result. This external trace, sometimes called a certificate [12], can then
be formally verified by a proof checker. Examples of such an approach include
HOL Light used to certify results of the CVC Lite solver [20], or Isabelle/HOL
to certify results of Harvey [12] and Z3 [8]. More recently, proof witnesses based
on Type Theory in the proof assistant Coq have also been used to certify the
results of decision procedures in SMT solvers [1,7]. A second approach, which is
the one we picked up in our work even if it is considered harder than the first
one, is 1) to develop the solver within the proof assistant, 2) to formally prove its
correctness and 3) to extract automatically its code. For SAT/SMT solver, [18]
is the only work we are aware of following this research direction. In this work,
a Coq formalisation of an algorithm deciding the satisfiability of SAT formulas
is proposed, and a fully reflexive tactic is automatically extracted to solve these
formulas. According to our knowledge, the approach reported in this paper is the
first attempt to certify a CP(FD) constraint solver. CP(FD) solving is currently
outside the scope of arithmetic decision procedures, and SMT solvers rely on
the BitVectors Theory to handle finitely-encoded integers [5]. We selected the
second approach discussed above, to build our certified CP(FD) solver, because
unsatisfiability in these solvers is not reported with certificates or proof trees.
It means that using an external certified checker is not possible in that case. As
a drawback, our approach cannot currently be used to certify directly the most
advanced CP(FD) solvers such as Gecode or Zinc5 that are used in industrial
applications of CP. But, although our certified CP(FD) is not competitive with
these hand-crafted solvers, it could be integrated as a back-end to certify a
posteriori the unsatisfiable constraint systems detected by these solvers.

6 Conclusion

This paper describes a formally certified constraint solver over finite domains,
i.e. CP(FD) with Coq6. Our formal model contains around 8500 lines (≈ 110 def-
initions and 200 lemmas). The OCaml code of the solver has been automatically
extracted. The solver implements either AC3 or AC2001 as a filtering algorithm,
and can be used with any constraint language, provided that a constraint inter-
pretation is given. According to our knowledge, this is the first time a CP(FD)
solver can be used to formally certify the absence of solution, or guarantee that an
assignment is actually a solution. Our main short-term future work involves the
application of this certified solver to software verification. For that, we envision
to integrate the solver within FocalTest our formally certified test case generator
[9]. We will also parametrize the solver with another local consistency property,
called bound-consistency [14], mainly used because it handles efficiently large
sized finite domains. Other longer-term perspectives include the usage of our
certified solver for solving constraint systems extracted from business or critical
constraint models, e.g., in e-Commerce [15] or Air-Traffic Control.
5 http://www.gecode.org/ and http://g12.research.nicta.com.au/
6 Available at http://www.ensiie.fr/~dubois/CoqsolverFD

http://www.ensiie.fr/~dubois/CoqsolverFD
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Thanks. We are very grateful to Benoit Robillard who helped us proving for-
mally the termination of the AC3 function. We also thank the anonymous ref-
erees.
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Abstract. Many mainstream static code checkers make a number of
compromises to improve automation, performance, and accuracy. These
compromises include not checking certain program properties as well as
making implicit, unsound assumptions. Consequently, the results of such
static checkers do not provide definite guarantees about program correct-
ness, which makes it unclear which properties remain to be tested. We
propose a technique for collaborative verification and testing that makes
compromises of static checkers explicit such that they can be compen-
sated for by complementary checkers or testing. Our experiments sug-
gest that our technique finds more errors and proves more properties than
static checking alone, testing alone, and combinations that do not explic-
itly document the compromises made by static checkers. Our technique
is also useful to obtain small test suites for partially-verified programs.

1 Introduction

Static program checkers are increasingly applied to detect defects in real-world
programs. There is a wide variety of such checkers, ranging from relatively simple
heuristic tools, over static program analyzers and software model checkers, to
verifiers based on automatic theorem proving.

Although effective in detecting software bugs, many practical static check-
ers make compromises in order to increase automation, improve performance,
and reduce both the number of false positives and the annotation overhead.
These compromises include not checking certain properties and making implicit,
unsound assumptions. For example, HAVOC [1] uses write effect specifications
without checking them, Spec# [3] ignores arithmetic overflow and does not con-
sider exceptional control flow, ESC/Java [16] unrolls loops a fixed number of
times, and the Code Contracts static checker, Clousot [13], assumes that the
arguments to a method call refer to disjoint memory regions, to name a few.

Due to these compromises, static checkers do not provide definite guaran-
tees about the correctness of a program—as soon as a static checker makes
a compromise, errors may be missed. This has three detrimental consequences:
(1) Static checkers that make such compromises cannot ensure the absence of er-
rors. (2) Even though one would expect static checking to reduce the test effort,
it is unclear how to test exactly those properties that have not been soundly
verified. In practice, programmers need to test their programs as if no static
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checking had been applied, which is inefficient. (3) Static checkers cannot be
easily integrated to complement each other.

In this paper, we propose a technique that enables the combination of mul-
tiple, complementary static checkers and the reinforcement of static checking
by automated, specification-based test case generation to check the program
executions and properties that have not been soundly verified. Our technique
handles sequential programs, properties that can be expressed by contract lan-
guages [12,20], and the typical compromises made by abstract interpreters and
deductive verifiers. An extension to concurrent programs, more advanced proper-
ties (such as temporal properties), and the compromises made by model checkers
(such as bounding the number of heap objects) are future work.

Our work is closely related to conditional model checking [6], which is an
independently developed line of work. Both approaches make the results of static
checking precise by tracking which properties have been verified, and under which
assumptions. By documenting all compromises, a static checker becomes sound
relatively to its compromises. However, accidental unsoundness, for instance due
to bugs in the implementation of the checker, is neither handled nor prevented.
Moreover, both approaches promote the collaboration of complementary static
checkers and direct the static checking to the properties that have not been
soundly verified. A detailed comparison of the two approaches is provided in
Sect. 5. The three contributions made by our paper are:

1. It proposes a simple language extension for making many deliberate com-
promises of static checkers explicit and marking every program assertion as
either fully verified, partially verified (that is, verified under certain assump-
tions), or not verified. This information is expressed via two new constructs
whose semantics is defined in terms of assignments and assertions. They are,
thus, easy to support by a wide range of static checkers. All assumptions are
expressed at the program points where they are made. Therefore, modular
static checkers may encode their verification results locally in the checked
module (for instance, locally within a method). This is crucial to allow sub-
sequent checkers to also operate modularly. Moreover, local assumptions and
verification results are suitable to automatically generate unit tests for the
module. We demonstrate the effectiveness of our language extension in en-
coding typical compromises of mainstream static checkers.

2. It presents a technique to automatically generate unit tests from the results
of static checkers providing the user with a choice on how much effort to
devote to static checking and how much to testing. For example, a user
might run an automatic verifier without devoting any effort to making the
verification succeed (for instance, without providing auxiliary specifications,
such as loop invariants). The verifier may prove some properties correct, and
our technique enables the effective testing of all others. Alternatively, a user
might try to verify properties about critical components of a program and
leave any remaining properties (e.g., about library components) for testing.
Consequently, the degree of static checking is configurable and may range
from zero to complete.
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3. It enables a tool chain that directs the static checking and test case gen-
eration to the partially-verified or unverified properties. This leads to more
targeted static checking and testing, in particular, smaller and more effective
test suites. We implemented our tool chain based on an adaptation of the
Dafny verifier [21] and the concolic testing tool Pex [24]. Our experiments
suggest that our technique finds more errors and proves more properties
than static checking alone, testing alone, and combined static checking and
testing without our technique.

Outline. Sect. 2 gives a guided tour to our approach through an example.
Sect. 3 explains how we encode the results and compromises of static checkers.
We demonstrate the application of our technique to some typical verification
scenarios in Sect. 4. We review related work in Sect. 5 and conclude in Sect. 6.

2 Guided Tour

This section gives a guided tour to collaborative verification and testing with
explicit assumptions. Through a running example, we discuss the motivation
behind the approach and the stages of the tool chain.

Running Example. Let us consider the C# program of Fig. 1 with .NET Code
Contracts [12]. Method foo takes two Cell objects with non-zero values. The
intention of the if statement is to guarantee that the two values have different
signs and therefore, ensure that their product is negative. However, this program
violates its postcondition in two cases: (1) The multiplications in the if and
return statements (lines 16 and 20, respectively) might overflow and produce a
positive result even if the integers have different signs. (2) In case parameters c
and d reference the same object, the assignment on line 16 changes the sign of
both c.value and d.value and the result is positive.

Checking this program with the Code Contracts static checker, Clousot, de-
tects none of the errors because it ignores arithmetic overflow and uses a heap
abstraction that assumes that method arguments are not aliased. A user who is
not familiar with the tool’s implicit assumptions does not know how to interpret
the absence of warnings. Given that errors might be missed, the code has to be
tested as if the checker had not run at all.

Running the Code Contracts testing tool, Pex, on method foo generates a
test case that reveals the aliasing error, but misses the overflow error. Since no
branch in the method’s control flow depends on whether the multiplications in
the if and return statements overflow, the tool does not generate a test case
that exhibits this behavior. So, similarly to the static checker, the absence of
errors provides no definite guarantee about program correctness.

Our technique enables collaborative verification and testing by making explicit
which properties have been verified, and under which assumptions. The tool
chain that we propose is presented in Fig. 2 and consists of two stages: static
verification and testing.
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1 public class Cell
2 {
3 public int value ;
4
5 public static int foo( Cell c, Cell d)
6 {
7 Contract . Requires (c != null && d != null );
8 Contract . Requires (c. value != 0 && d. value != 0);
9 Contract . Ensures ( Contract .Result <int >() < 0); // verified under a_na , a_ui0 , a_ui1

10
11 // assumed c != d as a_na
12 if ((0 < c. value && 0 < d. value ) || (c.value < 0 && d. value < 0))
13 {
14 // assumed new BigInteger (-1) * new BigInteger (c. value) ==
15 // new BigInteger (-1 * c. value) as a_ui0
16 c. value = ( -1) * c. value;
17 }
18 // assumed new BigInteger (c. value) * new BigInteger (d. value ) ==
19 // new BigInteger (c. value * d. value ) as a_ui1
20 return c.value * d. value ;
21 }
22 }

Fig. 1. Example program that illustrates the motivation for our technique. The method
postcondition is violated if one of the multiplications overflows or if parameters c and
d reference the same object. The comments document the compromises made by a
checker that ignores arithmetic overflow and assumes that parameters are not aliased.

Automated Test Generation Tools 

Runtime Check Instrumentation 

Instrumented Executable 

Stage 1 

Stage 2 

Verifier 
Verifier 

Static Checker Program 

Fig. 2. The collaborative verification and testing tool chain. Tools are depicted by
boxes and programs with specifications by flowchart document symbols.

Stage 1: Collaborative Verification. The static checking (or verification)
stage allows the user to run an arbitrary number (possibly zero) of static check-
ers. Each checker reads the program, which contains the code, the specification,
and the results of prior static checking attempts. More precisely, each assertion
is marked to be either fully (that is, soundly) verified, partially verified under
certain explicit assumptions, or not verified (that is, not attempted or failed to
verify). A checker then attempts to prove the assertions that have not been fully
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verified by upstream tools. For this purpose, it may assume the properties that
have already been fully verified. For partially-verified assertions, it is sufficient
to show that the assumptions made by a prior checker hold or the assertions
hold regardless of the assumptions, which simplifies the verification task. For in-
stance, if the first checker verifies that all assertions hold assuming no arithmetic
overflow occurs, then it is sufficient for a second (possibly specialized) checker
to confirm this assumption. Each checker records its results in the program that
serves as input to the next downstream tool.

The intermediate versions of the program precisely track which properties
have been fully verified and which still need validation. This allows developers
to stop the static verification cycle at any time, which is important in practice,
where the effort that a developer can devote to static checking is limited. Any
remaining unverified or partially-verified assertions may then be covered by the
subsequent testing stage.

The comments in Fig. 1 illustrate the result of running the Code Contracts
static checker on the example. The checker makes implicit assumptions in three
places, for the non-aliasing of method arguments (line 11) and the unbounded
integer arithmetic (lines 14 and 18). Since some assumptions depend on the cur-
rent execution state, we document them at the place where they occur rather
than where they are used to prove an assertion. We give each assumption a
unique identifier (such as ana for the assumption on line 11), which is used
to document where this assumption is used. Running the checker verifies the
method postcondition under these three assumptions, which we reflect by mark-
ing the postcondition as partially verified under assumptions ana, aui0, and aui1
(line 9). We will show how to formally encode assumptions and verification re-
sults in Sect. 3.

Note that the Code Contracts static checker works modularly, that is, it checks
each method independently of its clients. Therefore, all assumptions are local to
the method being checked; for instance, method foo is analyzed independently
of any assumptions in its callers. Consequently, the method’s verification results
are suitable for subsequent modular checkers or unit test generation tools.

Since our example actually contains errors, any subsequent checker will nei-
ther be able to fully verify that the assumptions always hold nor that the post-
condition holds in case the assumptions do not. Nevertheless, the assumptions
document the precise result of the static checker, and we use this information to
generate targeted test cases in the subsequent testing stage.

Stage 2: Testing. We apply dynamic symbolic execution [18,23], also called
concolic testing [23], to automatically generate parameterized unit tests from
the program code, the specification, and the results of static checking.

Concolic testing collects constraints describing the test data that will cause the
program to take a particular branch in the execution or violate an assertion1.
1 An assertion is viewed as a conditional statement, where one branch throws an

exception. A test case generation tool aiming for branch coverage will therefore
attempt to generate test data that violates the assertion.
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To use this mechanism, we instrument the program with assertions for those
properties that have not been fully verified. That is, we assert all properties
that have not been verified at all, and for partially-verified properties, we assert
that the property holds in case the assumptions made by the static checker do
not hold. This way, the properties that remain to be checked as well as the
assumptions made by static checkers occur in the instrumented program, which
causes the symbolic execution to generate the constraints and test data that
exercise these properties.

In our example, the postcondition has been partially verified under three as-
sumptions. The instrumentation therefore introduces an assertion for the prop-
erty that all three assumptions hold or the original postcondition holds: ana ∧
aui0 ∧ aui1∨ c.value * d.value < 0. Here, we use the assumption identifiers
like boolean variables, which are assigned to when the assumption is made (see
Sect. 3 for details), and we substitute the call to Contract.Result by the ex-
pression that method foo returns.

Running Pex on the instrumented version of the partially-verified program
generates unit tests that reveal both errors, whereas without the instrumentation
Pex finds only the aliasing error. A failing unit test is now also generated for
the overflow error because the explicit assumptions on lines 14 and 18 of the
program create additional branches in the method’s control flow graph, thus
enriching the constraints that are collected and solved by the testing tool.

In case the code must be fully verified, an alternative second stage of the
tool chain could involve proving the remaining, precisely documented program
properties with an interactive theorem prover. The intention then is to prove
as many properties as possible automatically and to direct the manual effort
towards proving the remaining properties. Yet another alternative is to use the
explicit assumptions and partial verification results for targeted code reviews.

3 Verification Results with Explicit Assumptions

To make assumptions and (partially) verified properties explicit in the output of
static checkers, we extend the programming and specification language with two
new constructs: assumed statements and verified attributes for assertions. In
this section, we present these extensions and define their semantics in terms of
their weakest preconditions.

Extensions. An assumed statement of the form assumed P as a records that
a checker assumed property P at a given point in the code. P is a predicate
of the assertion language, and a is a unique assumption identifier, which can
be used in verified attributes to express that a property has been verified
using this assumption. assumed statements do not affect the semantics of the
program, but they are used to define the semantics of verified attributes, as
we discuss below. In particular, our assumed statements are different from the
classical assume statements, which express properties that any static checker or
testing tool may take for granted and need not check.
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In our example of Fig. 1, the assumptions on lines 11, 14, and 18 will be
formalized by adding assumed statements with the respective predicates. We also
allow programmers, in addition to static checkers, to add assumed statements in
their code, which is for instance useful when they want to verify the code only
for certain cases and leave the other cases for testing.

In order to record (partial) verification results, we use assertions of the form
assert V P , where P is a predicate of the assertion language and V is a set of
verified attributes. A verified attribute has the form {:verified A}, where
A is a set of assumption identifiers, each of which is declared in an assumed
statement.

When a static checker verifies an assertion, it adds a verified attribute to
the assertion that lists the assumptions used for its verification. Consequently,
an assertion is unverified if it has no verified attributes, that is, V is empty (no
static checker has verified the assertion). The assertion is fully verified if it has
at least one verified attribute that has an empty assumption set A (at least
one static checker has verified the assertion without making any assumptions).
Otherwise, the assertion is partially verified.

Note that it is up to each individual verifier to determine which assumptions
it used to verify an assertion. For instance, a verifier based on weakest precon-
ditions could collect all assumptions that are on any path from the start of a
method to the assertion; it could try to minimize the set of assumptions using
techniques such as slicing to determine which assumptions actually influence the
truth of the assertion. In our example, the assertion for the postcondition will
be decorated with the attribute {:verified {ana, aui0, aui1}} to indicate that
the static checker used all three assumptions to verify the postcondition.

Semantics. The goal of collaborative verification and testing is to let static
checkers and test case generation tools benefit from the (partial) verification
results of earlier static checking attempts. This is achieved by defining a seman-
tics for assertions that takes into account what has already been verified. For a
fully-verified assertion, a static checker or test case generation tool later in the
tool chain does not have to show anything. For partially-verified assertions, it is
sufficient if a later tool shows that the assertion holds in case the assumptions
made by earlier static checking attempts do not hold. We formalize this intuition
as a weakest-precondition semantics.

In the semantics, we introduce a boolean assumption variable for each assump-
tion identifier that occurs in an assumed statement; all assumption variables are
initialized to true. For modular static checking, which checks each method in-
dividually, assumption variables are local variables of the method that contains
the assumed statement. Assumptions of whole-program checking may be en-
coded via global variables. An assumed statement replaces the occurrence of an
assumption variable by the assumed property:

wp(assumed P as a, R) ≡ R[a := P ]
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where R[a := P ] denotes the substitution of a by P in R. This semantics en-
sures that an assumption is evaluated in the state in which it is made rather
than the state in which it is used. Since each assumption variable is initialized
to true, every occurrence of an assumption variable in a weakest-precondition
computation will eventually be substituted either by the assumed property or
by true in those execution paths that do not include an assumed statement for
that assumption variable.

We define the semantics of assertions as follows:

wp(assert V P, R) ≡
(( ∨

A∈V
CA(A)

)
∨ P

)
∧ (P ⇒ R)

where CA(A) denotes the conjunction of all assumptions in one verified at-
tribute (all assumptions of one static checker). That is, CA(A) ≡ ∧

a∈A var(a),
where var(a) is the assumption variable for the assumption identifier a.

The first conjunct in the weakest precondition expresses that in order to fully
verify the assertion, it is sufficient to show that all assumptions made by one
of the checkers actually hold or that the asserted property P holds anyway.
The disjunction weakens the assertions and therefore, lets tools benefit from the
partial results of prior static checks. Note that in the special case that one of the
verified attributes has an empty assumption set A, CA(A) is true, and the first
conjunct of the weakest precondition trivially holds (that is, the assertion has
been fully verified and nothing remains to be checked). Since the first conjunct of
the weakest precondition ensures that assertion P is verified, the second conjunct
requires only that postcondition R is verified under the assumption that P holds.

In our example, the weakest precondition of the partially-verified postcondi-
tion is ana ∧ aui0 ∧ aui1∨ c.value * d.value < 0. As we explained in Sect. 2,
we use this condition to instrument the program for the test case generation.

When multiple static checkers (partially) verify an assertion, we record each
of their results in a separate verified attribute. However, these attributes are
not a mere accumulation of the results of independent static checking attempts.
Due to the above semantics, the property to be verified typically becomes weaker
with each checking attempt. Therefore, many properties can eventually be fully
verified, without making any further assumptions. The remaining ones can be
tested or verified interactively.

4 Examples

For the evaluation of our tool chain and the underlying technique, we used the
Dafny language and verifier, and the testing tool Pex. Dafny is an imperative,
class-based programming language with built-in specification constructs to sup-
port sound static verification. For our purposes, we extended the Dafny language
with the assumed statements and verified attributes of Sect. 3, and changed
the Dafny verifier to simulate common compromises made by mainstream static
checkers. For the instrumentation phase of the architecture, we extended the
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existing Dafny-to-C# compiler to generate runtime checks, expressed as Code
Contracts, for program properties that have not been fully verified.

In this section, we demonstrate how common compromises may be encoded
with our language extensions and subsequently tested. We apply our technique
to three verification scenarios and show that it finds more errors than the archi-
tecture’s constituent tools alone and achieves small, targeted test suites.

4.1 Encoding of Common Compromises

To simulate common compromises, we implemented three variants of the Dafny
verifier: (1) ignoring arithmetic overflow, like e.g. Spec#, (2) unrolling loops a
fixed number of times, like e.g. ESC/Java, and (3) using write effect specifications
without checking them, like e.g. HAVOC.

Unbounded Integers. A common compromise of static checkers is to ignore
overflow in bounded integer arithmetic, as in the case of ESC/Java and Spec#.
To model this behavior in Dafny, which uses unbounded integers, we adapted
the verifier to add explicit assumptions about unbounded integer arithmetic and
modified the compiler to use bounded (32-bit) integers.

We use BigInteger to express that a static checker that ignores arithmetic
overflow considers bounded integer expressions in the code to be equivalent to
their mathematical counterparts. For instance, the assumption that the expres-
sion c.value * d.value from Fig. 1 does not lead to an overflow is expressed
as:

assumed new BigInteger(c. value ) * new BigInteger(d. value) ==
new BigInteger(c. value * d.value) as aui1 ;

Loop Unrolling. To avoid the annotation overhead of loop invariants, some
static checkers unroll loops a fixed number of times. For instance, ESC/Java
unrolls loops 1.5 times by default: first, the condition of the loop is evaluated
and in case it holds, the loop body is checked once; then, the loop condition is
evaluated again after assuming its negation. As a result, the code following the
loop is checked under the assumption that the loop iterates at most once.

This compromise cannot be modeled using explicit assumptions alone. For this
reason, we implemented a variant of the Dafny verifier that transforms loops as
shown in Fig. 3. After unrolling the loop once, an explicit assumption is added
which states that the loop condition does not hold. Assertions following the
assumed statement are verified under this assumption. Note that the loop is still
part of the transformed program so that the original semantics is preserved for
downstream static checkers, which might not make the same compromise, and
testing tools.

Write Effects. Another compromise made by static tools, such as HAVOC and
ESC/Java, involves assuming write effect specifications without checking them.
We encode this compromise by simply leaving all the required checks unverified,
that is, by not marking them with a verified attribute.
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Original loop.
while (C) {

B
}

Transformed loop.
if (C) {

B
}
assumed ¬C as a;
while (C) {

B
}

Fig. 3. Loop transformation and explicit assumption about loop unrolling. The loop is
unrolled 1.5 times.

4.2 Improved Defect Detection

Having shown how assumed statements may be used to encode common compro-
mises of static checkers, we will now discuss two scenarios in which Pex exploits
explicit assumptions made by upstream static checkers to find more errors than
any of these tools alone.

Scenario 1: Overflow Errors. The method of Fig. 4 computes the sum of
squares

∑to
i=from i2, where from and to are input parameters. When we run the

version of the Dafny verifier that ignores arithmetic overflow on this method,
no verification errors are reported and the invariant is partially verified un-
der explicit assumptions about unbounded integer arithmetic. For instance, an
assumed statement with predicate

new BigInteger(i) + new BigInteger(1) == new BigInteger(i + 1)

is added before line 10. Running Pex on the original method, where the invariant
has been translated into two Code Contracts assertions (one before the loop and
one at the end of the loop body), generates five failing unit tests in all of which
the invariant is violated before the loop due to an overflow. However, when we
run Pex on the partially-verified program produced by the verifier, an additional
failing unit test is generated revealing a new error: the invariant is not preserved
by the loop due to an overflow in the loop body.

In analyzing these results, we notice that without the explicit assumptions Pex
is not able to craft appropriate input values for the method parameters such that

0 static method SumOfSquares( from: int , to: int ) returns (r: int )
1 requires from ≤ to;
2 {
3 r := from * from ;
4 var i := from + 1;
5 while (i ≤ to)
6 invariant from * from ≤ r;
7 decreases to - i;
8 {
9 r := r + i * i;

10 i := i + 1;
11 }
12 }

Fig. 4. Method that computes the sum of squares
∑to

i=from i2. The loop invariant is
violated in case an integer overflow occurs before the loop or in the loop body.
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the invariant preservation error also be revealed. This is because after a bounded
number of loop iterations the constraints imposed by the invariant become too
complex for the underlying constraint solver to solve under certain time limits,
if at all. However, the explicit assumptions added by the verifier create new
branches in the method’s control flow graph which Pex tries to explore. It is
these branches that enrich the tool’s path constraints and guide it in picking
input values that reveal the remaining error.

Scenario 2: Aliasing Errors. In this scenario, we consider an object hier-
archy in which class Student and interface ITeacher both inherit from inter-
face IAcademicPerson, and class TeachingAssistant inherits both from class
Student and interface ITeacher. Interface IAcademicPerson declares a method
Evaluate for giving an evaluation grade to an academic person, and a method
Evaluations for getting all the evaluation grades given to an academic person.
Method EvaluateTeacher of Fig. 5 takes a student and a rating for the teacher
that is associated with the student, and ensures that evaluating the teacher does
not affect the student’s evaluation grades. The postcondition may be violated
when a teaching assistant that is their own teacher is passed to the method.
Clousot misses this error because of its heap abstraction, which assumes that
certain forms of aliasing do not occur. Pex is also unable to generate a failing
unit test because no constraint forces it to generate an object structure that
would reveal the error. However, with the explicit assumption shown on line 7
of Fig. 5, Pex does produce a unit test revealing this error.

1 public static void EvaluateTeacher( Student s, char rating)
2 {
3 Contract . Requires (s != null && s. Teacher() != null && " ABCDF". Contains( rating));
4 Contract . Ensures (s. Evaluations() == // verified under a_nse
5 Contract .OldValue <string >(s. Evaluations()));
6
7 // assumed s. Teacher () != s as a_nse
8 s. Teacher(). Evaluate( rating);
9 }

Fig. 5. Method for the evaluation of a student’s teacher. The postcondition may be
violated when a teaching assistant that is their own teacher is passed to the method.

4.3 Small Test Suites

In addition to finding more errors, our technique is also useful in obtaining
small, targeted test suites for partially-verified programs as methods that are
fully verified need not be tested. To illustrate this, we developed a List class
with a number of common list operations: the constructor of the list and meth-
ods Length, Equals, ContainsElement, Head, Tail, LastElement, Prepend,
Append, Concatenate, Clone, and ReverseInPlace2. This implementation is
written in Dafny, consists of about 270 lines of code, and may be found at the
URL http://www.pm.inf.ethz.ch/publications/FM12/List.dfy.
2 ReverseInPlace is the only method that is implemented iteratively.

http://www.pm.inf.ethz.ch/publications/FM12/List.dfy
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In order to simulate a realistic usage scenario of our tool chain, we decided
to spend no more than two hours on attempting to soundly verify the code.
By the end of that time frame, we had not managed to complete the proof of
the ReverseInPlace method and were obliged to add assumed statements in
methods Equals and ContainsElement.

To evaluate the effectiveness of our technique in achieving small test suites,
we compared the size of the suite that was generated by running Pex alone on
the list implementation to the number of unit tests that were produced with
collaborative verification and testing. For the verification stage of the tool chain,
we employed the following four variants of the Dafny verifier: sound verification
(S), verification with unbounded integer arithmetic (UIA), verification with loop
unrolling (LU), and verification with unbounded integer arithmetic and loop
unrolling (UIA & LU). Table 1 shows the percentage by which the size of the
test suite was reduced using our technique, and the methods that were still tested
(that is, had not been fully verified) in each of the aforementioned verification
attempts.

Table 1. Effectiveness of our technique in achieving small test suites

Verification Test Reduction Tested Methods
S 66% Equals, ContainsElement, ReverseInPlace
UIA 58% Length, Equals, ContainsElement, ReverseInPlace
LU 65% Equals, ContainsElement, ReverseInPlace
UIA & LU 58% Length, Equals, ContainsElement, ReverseInPlace

5 Related Work

Many automatic static checkers that target mainstream programming languages
make compromises to improve performance and reduce the number of false pos-
itives and the annotation overhead. We already mentioned some of the com-
promises made by HAVOC, Spec#, ESC/Java, and the Code Contracts static
checker. In addition to those, KeY [4] does not soundly support multi-object
invariants, Krakatoa [14] does not handle class invariants and class initialization
soundly, and Frama-C [7] uses plug-ins for various analyses with possibly con-
flicting assumptions. Our technique would allow these tools to collaborate and
be effectively complemented by automatic test case generation.

Integration of Checkers. The work most closely related to ours is conditional
model checking (CMC) [6], which combines complementary model checkers to im-
prove performance and state-space coverage. A conditional model checker takes
as input the program and specification to be verified as well as a condition that
describes the states that have already been checked, and it produces another such
condition to encode the results of the verification. The focus of CMC is on encoding
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the typical limitations of model checkers, such as space-out and time-out, but it
can also encode compromises such as assuming that no arithmetic overflow occurs.
Beyer et al. performed a detailed experimental evaluation that demonstrates the
benefits of making assumptions and partial verification results explicit, which is
in line with our findings. Despite these similarities, there are significant technical
differences between CMC and our approach. First, as is common in model check-
ing, CMC is presented as a whole-program analysis, and the resulting condition
may contain assumptions about the whole program. For instance, the verification
of a method may depend on assumptions made in its callers. By contrast, we have
demonstrated how to integrate modular static analyzers, such as Clousot, and de-
ductive verifiers, such as Dafny and Spec#. Second, although Beyer et al. mention
test case generation as a possible application of CMC, they do not explain how to
generate test cases from the conditions. Since these conditions may include non-
local assumptions, they might be used to generate system tests, whereas the gener-
ation of unit tests seems challenging. However, test case generation tools based on
constraint solving (such as symbolic execution and concolic testing) do not scale
well to the large execution paths that occur in system tests. By contrast, we have
demonstrated how to use concolic testing to generate unit tests from our local as-
sumptions and verification results.

A common form of tool integration is to support static checkers with in-
ference tools, such as Houdini [15] for ESC/Java or Daikon [11] for the Java
PathFinder [19] tool. Such combinations either assume that the inference is
sound and thus, do not handle the compromises addressed in our work, or they
verify every property that has been inferred, which is overly conservative and
increases the verification effort. Our technique enables a more effective tool in-
tegration by making all design compromises explicit.

Integration of Verification and Testing. Various approaches combine ver-
ification and testing mainly to determine whether a static verification error is
spurious. Check ’n’ Crash [9] is an automated defect detection tool that inte-
grates the ESC/Java static checker with the JCrasher [8] testing tool in order to
decide whether errors emitted by the static checker truly exist. Check ’n’ Crash
was later integrated with Daikon in the DSD-Crasher tool [10]. DyTa [17] in-
tegrates the Code Contracts static checker with Pex to reduce the number of
spurious errors compared to static verification alone and perform more efficiently
compared to dynamic test generation alone. Confirming whether a failing ver-
ification attempt refers to a real error is also possible in our technique: The
instrumentation phase of the architecture introduces assertions for each prop-
erty that has not been statically verified (which includes the case of a failing
verification attempt). The testing phase then uses these assertions to direct test
case generation towards the unproved properties. Eventually, the testing tools
might generate either a series of successful test cases that will boost the user’s
confidence about the correctness of their programs or concrete counterexamples
that reproduce an error.

A perhaps more precise approach towards the same direction as the aforemen-
tioned tools is counterexample-guided abstraction refinement (CEGAR) [2,5].
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CEGAR exploits the abstract counterexample trace of a failing proof attempt
to suggest a concrete trace that might reveal a real error. If, however, the ab-
stract trace refers to a spurious error, the abstraction is refined in such a way that
subsequent verification attempts will not reproduce the infeasible abstract trace.
More recently, YOGI [22], a tool for checking properties of C programs, was de-
veloped to refine CEGAR with concolic execution. Such techniques, if regarded
as tool chains, address the issue of program correctness from the opposite direc-
tion than we do: they use concrete traces to refine static over-approximations,
whereas, in our work, combinations of potential under-approximations made by
different static checkers are checked by the testing tools. If, on the other hand,
these techniques are regarded as single tools, they could also be integrated in
our architecture.

6 Conclusion

We have presented a technique for collaborative verification and testing that
makes compromises of static checkers explicit with a simple language extension.
In our approach, the verification results give definite answers about program cor-
rectness allowing for the integration of multiple, complementary static checkers
and the generation of more effective unit test suites. Our experiments suggest
that our technique finds more errors and proves more properties than verification
alone, testing alone, and combined verification and testing without the explicit
assumptions. As future work, we plan to implement our technique for Spec#
and the Code Contracts static checker and to use them for experiments on large
code bases. We expect such experiments to shed light on the impact of some
design compromises and suggest guidelines for the effective use of static checkers
in industrial projects.
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Abstract. TLA+ is a specification language based on standard set the-
ory and temporal logic that has constructs for hierarchical proofs. We
describe how to write TLA+ proofs and check them with TLAPS, the
TLA+ Proof System. We use Peterson’s mutual exclusion algorithm as
a simple example and show how TLAPS and the Toolbox (an IDE for
TLA+) help users to manage large, complex proofs.

1 Introduction

TLA+ [5] is a specification language originally designed for specifying concurrent
and distributed systems and their properties. It is based on Zermelo-Fraenkel set
theory for modeling data structures and on the linear-time temporal logic TLA
for specifying system executions and their properties. More recently, constructs
for writing proofs have been added to TLA+, following a proposal for presenting
rigorous hand proofs in a hierarchical style [8].

In this paper, we present the main ideas that guided the design of the proof
language and its implementation in TLAPS, the TLA+ proof system [3,13]. The
proof language and TLAPS have been designed to be independent of any par-
ticular theorem prover. All interaction takes place at the level of TLA+. Users
need know only what sort of reasoning TLAPS’s backend provers tend to be
good at—for example, that SMT solvers excel at arithmetic. This knowledge is
gained mostly by experience.

TLAPS has a Proof Manager (PM) that transforms a proof into individual
proof obligations that it sends to backend provers. Currently, the main back-
end provers are Isabelle/TLA+, an encoding of TLA+ as an object logic in
Isabelle [14], Zenon [2], a tableau prover for classical first-order logic with equal-
ity, and a backend for SMT solvers. Isabelle serves as the most trusted backend
prover, and when possible, we expect backend provers to produce a detailed
proof that is checked by Isabelle. This is currently implemented for the Zenon
backend.

TLAPS has been integrated into the TLA+ Toolbox, an IDE (Integrated De-
velopment Environment) based on Eclipse for writing TLA+ specifications and
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running the TLA+ tools on them, including the TLC model checker. The Tool-
box provides commands to hide and unhide parts of a proof, allowing a user to
focus on a given proof step and its context. It is also invaluable to be able to
run the model checker on the same formulas that one reasons about.

We explain how to write and check TLA+ proofs, using a tiny well-known
example: a proof that Peterson’s algorithm [12] implements mutual exclusion. We
start by writing the algorithm in PlusCal [6], an algorithm language that is based
on the expression language of TLA+. The PlusCal code is translated to a TLA+

specification, which is what we reason about. Section 3 introduces the salient
features of the proof language and of TLAPS with the proof of mutual exclusion.
Liveness of Peterson’s algorithm (processes eventually enter their critical section)
can also be asserted and proved with TLA+. However, liveness reasoning makes
full use of temporal logic, and TLAPS cannot yet check temporal logic proofs.

Section 4 indicates the features that make TLA+, TLAPS, and the Toolbox
scale to realistic examples. A concluding section summarizes what we have done
and our plans for future work.

2 Modeling Peterson’s Algorithm in TLA+

Peterson’s algorithm is a classic, very simple two-process mutual exclusion al-
gorithm. We specify the algorithm in TLA+ and prove that it satisfies mutual
exclusion: no two processes are in their critical sections at the same time.1

A representation of Peterson’s algorithm in the PlusCal algorithm language
is shown on the left-hand side of Figure 1. The two processes are named 0 and 1;
the PlusCal code is embedded in a TLA+ module that defines an operator Not
so that Not(0) = 1 and Not(1) = 0.

The variables statement declares the variables and their initial values. For
example, the initial value of flag is an array such that flag[0] = flag[1] = false.
(Mathematically, an array is a function; the TLA+ notation [x ∈ S �→ e] for
writing functions is similar to a lambda expression.) To specify a multiprocess
algorithm, it is necessary to specify what its atomic actions are. In PlusCal, an
atomic action consists of the execution from one label to the next. With this
brief explanation, the reader should be able to figure out what the code means.

A translator, normally called from the Toolbox, generates a TLA+ specifica-
tion from the PlusCal code. We illustrate the structure of the TLA+ translation
in the right-hand part of Figure 1. The heart of the TLA+ specification consists
of the predicates Init describing the initial state and Next , which represents the
next-state relation.

The PlusCal translator adds a variable pc to record the control state of each
process. The meaning of formula Init in the figure is straightforward. The formula
Next is the disjunction of the two formulas proc(0) and proc(1), which are in
turn defined as disjunctions of formulas corresponding to the atomic steps of
the process. In these formulas, unprimed variables refer to the old state and

1 The TLA+ module containing the specification and proof as well as an extended
version of this paper are accessible at the TLAPS Web page [13].
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--algorithm Peterson {
variables

flag = [i ∈ {0, 1} �→ false],
turn = 0;

process (proc ∈ {0, 1}) {
a0: while (true) {
a1: flag [self ] := true;
a2: turn := Not(self );

a3a: if (flag [Not(self )])
{goto a3b}

else {goto cs} ;
a3b: if (turn = Not(self ))

{goto a3a}
else {goto cs} ;

cs: skip; \∗ critical section
a4: flag [self ] := false;

} \∗ end while
} \∗ end process

} \∗ end algorithm

variables flag , turn, pc

vars
Δ
= 〈flag , turn, pc〉

Init
Δ
= ∧ flag = [i ∈ {0, 1} �→ false]

∧ turn = 0

∧ pc = [self ∈ {0, 1} �→ “a0”]

a3a(self )
Δ
=

∧ pc[self ] = “a3a”

∧ if flag [Not(self )]

then pc′ = [pc except ![self ] = “a3b”]

else pc′ = [pc except ![self ] = “cs”]

∧ unchanged 〈flag , turn〉

\∗ remaining actions omitted

proc(self )
Δ
= a0(self ) ∨ . . . ∨ a4(self )

Next
Δ
= ∃ self ∈ {0, 1} : proc(self )

Spec
Δ
= Init ∧�[Next ]vars

Fig. 1. Peterson’s algorithm in PlusCal (left) and in TLA+ (excerpt, right)

primed variables to the new state. The temporal formula Spec is the complete
specification. It characterizes behaviors (ω-sequences of states) that start in a
state satisfying Init and where every pair of successive states either satisfies Next
or else leaves the values of the tuple vars unchanged.2

Before trying to prove that the algorithm is correct, we use TLC, the TLA+

model checker, to check it for errors. The Toolbox runs TLC on a model of a
TLA+ specification. A model usually assigns particular values to specification
constants, such as the number of processes. It can also restrict the set of states
explored, which is useful if the specification allows an infinite number of reachable
states. TLC easily verifies that the two processes can never both be at label cs by
checking that the following formula is an invariant (true in all reachable states):

MutualExclusion
Δ
= (pc[0] �= “cs”) ∨ (pc[1] �= “cs”)

Peterson’s algorithm is so simple that TLC can check all possible executions. For
more interesting algorithms that have parameters (such as the number of pro-
cesses) and perhaps an infinite set of reachable states, TLC cannot exhaustively
verify all executions, and correctness can only be proved deductively. Still, TLC
is invaluable for catching errors, and it is much easier to run TLC than to write
a formal proof.

3 Proving Mutual Exclusion for Peterson’s Algorithm

The assertion that Peterson’s algorithm implements mutual exclusion is formal-
ized in TLA+ as the theorem in Figure 2. The standard method of proving this

2 “Stuttering steps” are allowed in order to make refinement simple [4].
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theorem Spec ⇒ �MutualExclusion
〈1〉1. Init ⇒ Inv
〈1〉2. Inv ∧ [Next ]vars ⇒ Inv ′

〈1〉3. Inv ⇒ MutualExclusion
〈1〉4. qed

Fig. 2. The high-level proof

invariance property is to find an inductive invariant Inv such that the steps
〈1〉1–〈1〉3 of Figure 2 are provable.

TLA+ proofs are hierarchically structured and are generally written top-down.
Each proof in the hierarchy ends with a qed step that asserts the proof’s goal.
We usually write the qed step’s proof before the proofs of the intermediate
steps. The qed step follows easily from steps 〈1〉1–〈1〉3 by standard proof rules
of temporal logic. However, TLAPS does not yet handle temporal reasoning, so
we omit that step’s proof. When temporal reasoning is added to TLAPS, we
expect it easily to check such a trivial proof.

Figure 3 defines the inductive invariant Inv as the conjunction of two formu-
las. (A definition must precede its use, so the definition of Inv appears in the
module before the proof.) The first, TypeOK , asserts simply that the values of
all variables are elements of the expected sets. (The expression [S → T ] is the
set of all functions whose domain is S and whose range is a subset of T .) In
an untyped logic like that of TLA+, almost any inductive invariant must assert
type correctness. The second conjunct, I , is the interesting one that explains
why Peterson’s algorithm implements mutual exclusion. We again use TLC to
check that Inv is indeed an invariant. In our simple example, TLC can even
check that Inv is inductive, by checking that it is an (ordinary) invariant of
the specification Inv ∧�[Next ]vars , obtained from Spec by replacing the initial
condition by Inv .

We now prove steps 〈1〉1–〈1〉3. We can prove them in any order; let us start
with 〈1〉1. This step follows easily from the definitions, and the following leaf
proof is accepted by TLAPS:

by def Init , Inv , TypeOK , I

TypeOK
Δ
= ∧ pc ∈ [ {0, 1} → {“a0”, “a1”, “a2”, “a3a”, “a3b”, “cs”, “a4”} ]

∧ turn ∈ {0, 1}
∧ flag ∈ [ {0, 1} → boolean ]

I
Δ
= ∀i ∈ {0, 1} :

∧ pc[i ] ∈ {“a2”, “a3a”, “a3b”, “cs”, “a4”} ⇒ flag [i ]
∧ pc[i ] ∈ {“cs”, “a4”} ⇒ ∧ pc[Not(i)] /∈ {“cs”, “a4”}

∧ pc[Not(i)] ∈ {“a3a”, “a3b”} ⇒ turn = i

Inv
Δ
= TypeOK ∧ I

Fig. 3. The inductive invariant



TLA+ Proofs 151

〈1〉2. Inv ∧ [Next ]vars ⇒ Inv ′

〈2〉1. suffices assume Inv ,Next prove Inv ′

〈2〉2. TypeOK ′

〈2〉3. I ′

〈3〉1. suffices assume new j ∈ {0, 1} prove I !(j )′

〈3〉2. pick i ∈ {0, 1} : proc(i)
〈3〉3. case i = j
〈3〉4. case i �= j
〈3〉5. qed

〈2〉4. qed

Fig. 4. Outline of a hierarchical proof of step 〈1〉2

TLAPS will not expand definitions unless directed to so. In complex proofs,
automatically expanding definitions often leads to formulas that are too big for
provers to handle. Forgetting to expand some definition is a common mistake. If
a proof does not succeed, the Toolbox displays the exact proof obligation that
it passed to the prover. It is then usually easy to see which definitions need to
be invoked.

Step 〈1〉3 is proved the same way, by simply expanding the definitions of
MutualExclusion, Inv , I , and Not . We next try the same technique on 〈1〉2. A
little thought shows that we have to tell TLAPS to expand all the definitions in
the module up to and including the definition of Next , except for the definition
of Init . Unfortunately, when we direct TLAPS to prove the step, it fails to do
so, reporting a 65-line proof obligation.

TLAPS uses Zenon and Isabelle as its default backend provers. However,
TLAPS also includes an SMT solver backend [10] that is capable of handling
larger “shallow” proof obligations—in particular, ones that do not contain sig-
nificant quantifier reasoning. We instruct TLAPS to use the SMT backend when
proving the current step by writing

by SMT def . . .

The backend translates the proof obligation to the input language of SMT
solvers. In this way, step 〈1〉2 is proved in a few seconds. For sufficiently compli-
cated algorithms, an SMT solver will not be able to prove inductive invariance as
a single obligation. Instead, the proof will have to be hierarchically decomposed.
We illustrate how this is done by writing a proof of 〈1〉2 that can be checked
using only the Zenon and Isabelle backend provers.

The outline of a hierarchical proof of step 〈1〉2 appears in Figure 4. The proof
introduces more elements of the TLA+ proof language that we now explain.

A suffices step allows a user to introduce an auxiliary assertion, from which
the current goal can be proved. For example, step 〈2〉1 reduces the proof of
the implication asserted in step 〈1〉2 to assuming predicates Inv and Next , and
proving Inv ′. In particular, this step establishes that the invariant is preserved
by stuttering steps that leave the tuple vars unchanged. Steps 〈2〉2 and 〈2〉3
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establish the two conjuncts in the definition of Inv . Whereas 〈2〉2 can be proved
directly by Isabelle, 〈2〉3 needs some more interaction.

Following the definition of predicate I as a universally quantified formula, we
introduce in step 〈3〉1 a new variable j , assume that j ∈ {0, 1}, and prove I !(j )′,
which denotes the body of the universally quantified formula, with j substituted
for the bound variable, and with primed copies of all state variables. Similarly,
step 〈3〉2 introduces variable i to denote the process that makes a transition,
following the definition of Next (which is assumed in step 〈2〉1). Even after this
elimination of two quantifiers, Isabelle and Zenon cannot prove the goal in a
single step. The usual way of decomposing the proof is to reason separately
about each atomic action a0(i), . . . , a4(i). However, Peterson’s algorithm is
simple enough that we can just split the proof into the two cases i = j and i �= j
with steps 〈3〉3 and 〈3〉4. Isabelle and Zenon can now prove all the steps.

4 Writing Real Proofs

Peterson’s algorithm is a tiny example. Some larger case studies have been car-
ried out using the system [7,9,11]. Several features of TLAPS and its Toolbox
interface help in coping with the complexity of large proofs.

4.1 Hierarchical Proofs and the Proof Manager

Hierarchical structure is the key to managing complexity. TLA+’s hierarchical
and declarative proof language enables a user to keep decomposing a complex
proof into smaller steps until the steps become provable by one of the backend
provers. In logical terms, proof steps correspond to natural-deduction sequents
that must be proved in the current context. The Proof Manager tracks the
context, which is modified by non-leaf proof steps. For leaf proof steps, it sends
the corresponding sequent to the backend provers, and records the result of the
step’s proof that they report.

Proof obligations are independent of one another, so users can develop proofs
in any order and work on different proof steps independently. The Toolbox makes
it easy to instruct TLAPS to check the proof of everything in a file, of a single
theorem, or of any step in the proof hierarchy. Its editor helps reading and writing
large proofs, providing commands that show or hide subproofs. Although some
other interactive proof systems offer hierarchical proofs, we do not know of other
systems that provide the Toolbox’s abilities to use that structure to aid in reading
and writing proofs and to prove steps in any order.

Hierarchical proofs are much better than conventional lemmas for handling
complexity. In a TLA+ proof, each step with a non-leaf proof is effectively a
lemma. One typical 1100-line invariance proof [7] contains 100 such steps. A
conventional linear proof with 100 lemmas would be impossible to read.

Unlike most interactive proof assistants [15], TLAPS is independent of any
specific backend prover. There is no way for a user to indicate how available facts
should be used by backends. TLA+ proofs are therefore less sensitive to changes
in any prover’s implementation.



TLA+ Proofs 153

4.2 Fingerprinting: Tracking the Status of Proof Obligations

During proof development, a user repeatedly modifies the proof structure or
changes details of the specification. By default, TLAPS does not re-prove an
obligation that it has already proved—even if the proof has been reorganized. It
can also show the user the impact of a change by indicating which parts of the
existing proof must be re-proved.

The Proof Manager computes a fingerprint of every obligation, which it stores,
along with the obligation’s status, in a separate file. The fingerprint is a compact
canonical representation of the obligation and the relevant part of its context.
The Toolbox displays the proof status of each step, indicating by color whether
the step has been proved or some obligation in its proof has failed or been
omitted. The only other proof assistant that we know to offer a mechanism
comparable to our fingerprinting facility is the KIV system [1].

5 Conclusion

The proof of Peterson’s algorithm illustrates the main constructs of the hierar-
chical and declarative TLA+ proof language. The algorithm is so simple that we
had to eschew the use of the SMT solver backend so we could write a nontrivial
proof. Section 4 explains why TLAPS, used with the TLA+ Toolbox, can handle
more complex algorithms and specifications.

A key feature of TLAPS is its use of multiple backend provers. Different proof
techniques, such as resolution, tableau methods, rewriting, and SMT solving offer
complementary strengths. Future versions of TLAPS will probably support ad-
ditional backend provers. Because multiple backends raise concerns about sound-
ness, TLAPS provides the option of having Isabelle certify proof traces produced
by backend provers; and this has been implemented for Zenon. Still, it is much
more likely that a proof is meaningless because of an error in the specification
than that it is wrong because of an error in a backend. Soundness also depends
on parts of the proof manager.

We cannot overstate the importance of having TLAPS integrated with the
other TLA+ tools—especially the TLC model checker. Finding errors by run-
ning TLC on finite instances of a specification is much faster and easier than
discovering them when writing a proof. Also, verifying an algorithm or system
may require standard mathematical results. For example, the correctness of a
distributed algorithm might depend on known facts about graphs. Engineers
want to assume such results, not prove them. However, it is easy to make a
mistake when formalizing mathematics. TLC can check the exact TLA+ for-
mulas assumed in a proof (on finite instances), greatly reducing the chance of
introducing an unsound assumption.

We are actively developing TLAPS. Our main short-term objective is to add
support for temporal reasoning. We have designed a smooth extension of the
existing proof language to sequents containing temporal formulas. We also plan
to improve support for standard TLA+ data structures such as sequences.
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Abstract. Controller synthesis is a well studied problem that attempts
to automatically generate an operational behaviour model of the system-
to-be such that when deployed in a given domain model that behaves
according to specified assumptions satisfies a given goal. A limitation
of known controller synthesis techniques is that they require complete
descriptions of the problem domain. This is limiting in the context of
modern incremental development processes when a fully described prob-
lem domain is unavailable, undesirable or uneconomical. In this paper we
study the controller synthesis problem when there is partial behaviour
information about the problem domain. More specifically, we define and
study the controller realisability problem for domains described as Modal
Transition Systems (MTS). An MTS is a partial behaviour model that
compactly represents a set of complete behaviour models in the form of
Labelled Transition Systems (LTS). Given an MTS we ask if all, none
or some of the LTS it describes admit an LTS controller that guaran-
tees a given property. We show a technique that solves effectively the
MTS realisability problem and is in the same complexity class as the
corresponding LTS problem.

1 Introduction

Michael Jackson’s Machine-World model [15] establishes a framework on which
to approach the challenges of requirements engineering. In this model, require-
ments R are prescriptive statements of the world expressed in terms of phe-
nomena on the interface between the machine we are to build and the world in
which the real problems to be solved live. Such problems are to be captured with
prescriptive statements expressed in terms of phenomena in the world (but not
necessarily part of the world-machine interface) called goals G and descriptive
statements of what we assume to be true in the world (domain model D).

Within this setting, a key task in requirements engineering is to understand
and document the goals and the characteristics of the domain in which these are
to be achieved, in order to formulate a set of requirements for the machine to
be built such that assuming that the domain description and goals are valid, the
requirements in such domain entail the goals, more formally R,D |= G.
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Thus, a key problem of requirements engineering can be formulated as a syn-
thesis problem. Given a set of descriptive assumptions on the environment be-
haviour and a set of system goals, construct an operational model of the machine
such that when composed with the environment, the goals are achieved. Such
problem is known as the controller synthesis [24] problem and has been stud-
ied extensively resulting in techniques which have been used in various software
engineering domains.

Controller synthesis [24] is a well studied problem that attempts to auto-
matically generate an operational behaviour model of the system-to-be such
that when deployed in a given environment that behaves according to specified
assumptions satisfies a given goal. Controller synthesis techniques have been
used in several domains such as safe synthesis of web services composition [14]
or synthesis of adaptation strategies in self-adaptive systems [26].

In practice, requirements engineering is not a waterfall process. Engineers do
not build a complete description for G and D before they construct or synthesise
R. Typically D, G and R are elaborated incrementally. Furthermore, multiple
variations of partial models of D, G and R are explored to asses risk, cost and
feasibility [18]. In particular a key question that drives requirements engineering
forward and consequently drives elaboration of a partial description of D, G and
R is if it is feasible to extend them to D′, G′ and R′ such that R′, D′ |= G′.

In this context, existing controller synthesis techniques are not such a good
fit because they require complete domain descriptions. Typically, the domain is
described in a formal language with its semantics defined as some variation of
a two-valued state machine such as Labelled Transition Systems (LTS) [17] or
Kripke structures. Thus, the domain model is assumed to be complete up to some
level of abstraction (i.e, with respect to an alphabet of actions or propositions).

An appropriate formalism to support modelling when behaviour information is
lacking is one in which currently unknown aspects of behaviour can be explicitly
modelled [27]. A number of such formalisms exist such as Modal Transition
Systems (MTS) [19] and Disjunctive MTS [20]. Partial behaviour models can
distinguish between required, possible, and proscribed behaviour.

In this paper, we define controller synthesis in the context of partially specified
domain models. More specifically, we study the problem of checking the existence
of an LTS controller (i.e. controller realisability) capable of guaranteeing a given
goal when deployed in a completely defined LTS domain model that conforms
to the partially defined domain model given as an MTS.

The semantics of MTS is given in terms of a set of LTS implementations
in which each LTS provides the required behaviour described in the MTS and
does not provide any of the MTS proscribed behaviour. We define the MTS
control problem as follows: given an MTS we ask if all, none or some of the LTS
implementations it describes admit an LTS controller that guarantees a given
goal given as a Fluent Linear Temporal Logic [11] formula. The realisability
question we address in the context of MTS has a three valued answer.

From a model elaboration perspective, a none response indicates that there
is no hope of building a system that satisfies the goals independently of the
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aspects of the domain that have been modelled as uncertain. This entails that
either goals must be weakened or stronger assumptions about the domain must
be made. An all response indicates that the partial domain knowledge modelled
is sufficient to guarantee that the goals can be achieved, consequently further
elaboration may not be necessary. Finally, a some response indicates that further
elaboration is required. Feedback as to why in some domains which conform to
the partial model the goal may not be realisable may be good indicators as to
in which direction should elaboration proceed. Note that the latter, feedback on
some realisability, is beyond the scope of this paper.

The technique we present yields an answer to the MTS control problem show-
ing that, despite dealing with a potentially infinite number of LTS, the MTS
control problem is actually in the same complexity class as the underlying LTS
synthesis problem. The results for MTS realisability can be used with controller
synthesis techniques that deal efficiently with restricted yet expressive goals such
as [1,22]. Note that our results are limited to deterministic domain models.

The rest of this paper is organised as follows. In Section 2 we introduce the
required concepts and notations. Then, in Section 3 we define the MTS control
problem and show how to solve it. We then optimise our algorithmic solution
to achieve optimal complexity bounds in Section 4. Finally, we discuss related
work in Section 5 and conclude in Section 6.

Due to lack of space all proofs are omitted and given in [7].

2 Preliminaries

2.1 Transition Systems

We fix notation for labelled transition systems (LTSs) [17], which are widely used
for modelling and analysing the behaviour of concurrent and distributed systems.
LTS is a state transition system where transitions are labelled with actions. The
set of actions of an LTS is called its communicating alphabet and constitutes
the interactions that the modelled system can have with its environment.

Definition 1. (Labelled Transition Systems [17]) Let States be the universal
set of states, Act be the universal set of action labels. A Labelled Transition
System (LTS) is a tuple E = (S,A,Δ, s0), where S ⊆ States is a finite set of
states, A ⊆ Act is a finite alphabet, Δ ⊆ (S × A × S) is a transition relation,
and s0∈S is the initial state.

If for some s′ ∈ S we have (s, �, s′) ∈ Δ we say that � is enabled from s.

Definition 2. (Parallel Composition) Let M = (SM , AM , ΔM , sM0 ) and N =
(SN , AN , ΔN , sN0 ) be LTSs. Parallel composition ‖ is a symmetric operator
(up to isomorphism) such that M‖N is the LTS P = (SM × SN , AM ∪ AN , Δ,
(sM0 , sN0 )), where Δ is the smallest relation that satisfies the rules below, where
� ∈ AM ∪ AN :

(s,�,s′)∈ΔM

((s,t),�,(s′,t))∈Δ �∈AM\AN
(t,�,t′)∈ΔN

((s,t),�,(s,t′))∈Δ �∈AN\AM

(s,�,s′)∈ΔM , (t,�,t′)∈ΔN

((s,t),�,(s′,t′))∈Δ �∈AM∩AN
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Definition 3. (Traces) Consider an LTS L = (S,A,Δ, s0). A sequence π =
�0, �1, . . . is a trace in L if there exists a sequence s0, �0, s1, �1, . . ., where for
every i ≥ 0 we have (si, �i, si+1) ∈ Δ.

Modal Transition System (MTS) [19] are abstract notions of LTSs. They extend
LTSs by distinguishing between two sets of transitions. Intuitively an MTS de-
scribes a set of possible LTSs by describing an upper bound and a lower bound
on the set of transitions from every state. Thus, an MTS defines required tran-
sitions, which must exist, and possible transitions, which may exist. By elimina-
tion, other transitions cannot exist. Formally, we have the following.

Definition 4. (Modal Transition Systems [19]) A Modal Transition System
(MTS) is M = (S,A,Δr , Δp, s0), where S ⊆ States, A ⊆ Act, and s0 ∈ S
are as in LTSs and Δr ⊆ Δp ⊆ (S × A × S) are the required and possible
transition relations, respectively.

We denote by Δp(s) the set of possible actions enabled in s, namely Δp(s) =
{� | ∃s′ · (s, �, s′) ∈ Δp}. Similarly, Δr(s) denotes the set of required actions
enabled in s.

Definition 5. (Refinement) Let M = (S,A,Δr
M , Δp

M , sM0 ) and N = (T,A,Δr
N ,

Δp
N , sN0 ) be two MTSs. Relation H ⊆ S × T is a refinement between M and N

if the following holds for every � ∈ A and every (s, t) ∈ H.
– If (s, �, s′) ∈ Δr

M then there is t′ such that (t, �, t′) ∈ Δr
N and (s′, t′) ∈ H.

– If (t, �, t′) ∈ Δp
N then there is s′ such that (s, �, s′) ∈ Δp

M and (s′, t′) ∈ H.
We say that N refines M if there is a refinement relation H between M and N
such that (sM0 , sN0 ) ∈ H, denoted M & N .

Intuitively, N refines M if every required transition of M exists in N and every
possible transition in N is possible also in M . An LTS can be viewed as an
MTS where Δp = Δr. Thus, the definition generalises to when an LTS refines
an MTS. LTSs that refine an MTS M are complete descriptions of the system
behaviour and thus are called implementations of M .

Definition 6. (Implementation and Implementation Relation) An LTS N is an
implementation of an MTS M if and only if N is a refinement of M (M & N).
We shall refer to the refinement relation between an MTS and an LTS as an
implementation relation. We denote the set of implementations of M as I(M).

An implementation is deadlock free if all states have outgoing transitions. We
say that an MTS is deterministic if there is no state that has two outgoing
possible transitions on the same label, more formally, an LTS E is deterministic
if (s, �, s′)∈ΔE and (s, �, s′′)∈ΔE implies s′ = s′′. For a state s we denoteΔ(s) =
{� | ∃s′ · (s, �, s′) ∈ Δ}. We refer to the set of all deterministic implementations
of an MTS M as Idet[M ].

2.2 Fluent Linear Temporal Logic

We describe properties using Fluent Linear Temporal Logic (FLTL) [11]. Lin-
ear temporal logics (LTL) [23] are widely used to describe behaviour require-
ments [11,21]. The motivation for choosing an LTL of fluents is that it provides
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π, i |= Fl � π, i |= Fl

π, i |= ¬ϕ � ¬(π, i |= ϕ)

π, i |= ϕ ∨ ψ � (π, i |= ϕ) ∨ (π, i |= ψ)

π, i |= Xϕ � π, 1 |= ϕ

π, i |= ϕUψ � ∃j ≥ i · π, j |= ψ ∧ ∀ i ≤ k < j · π, k |= ϕ

Fig. 1. Semantics for the satisfaction operator

a uniform framework for specifying and model-checking state-based temporal
properties in event-based models [11]. An LTL formula checked against an LTS
model requires interpreting propositions as the occurrence of events in the LTS
model. Some properties can be rather cumbersome to express as sequences of
events, while describing them in terms of states is simpler. Fluents provide a
way of defining abstract states. FLTL is a linear-time temporal logic for reason-
ing about fluents. A fluent Fl is defined by a pair of sets and a Boolean value:
Fl = 〈IFl, TFl, InitFl〉, where IFl ⊆ Act is the set of initiating actions, TFl ⊆ Act
is the set of terminating actions and IFl ∩ TFl = ∅. A fluent may be initially
trueor falseas indicated by InitFl. Every action � ∈ Act induces a fluent, namely

�̇ = 〈�, Act \ {�}, false〉.
Let F be the set of all possible fluents over Act. An FLTL formula is de-

fined inductively using the standard Boolean connectives and temporal opera-
tors X (next), U (strong until) as follows: ϕ ::= Fl | ¬ϕ | ϕ ∨ ψ | Xϕ | ϕUψ,

where Fl ∈ F . As usual we introduce ∧,F (eventually), andG (always) as syn-
tactic sugar. Let Π be the set of infinite traces over Act. The trace π = �0, �1, . . .
satisfies a fluent Fl at position i, denoted π, i |= Fl, if and only if one of the
following conditions holds:
– InitFl ∧ (∀j ∈ N · 0 ≤ j ≤ i→ �j /∈ TFl)
– ∃j ∈ N · (j ≤ i ∧ �j ∈ IFl) ∧ (∀k ∈ N · j < k ≤ i → �k /∈ TFl)

In other words, a fluent holds at position i if and only if it holds initially or some
initiating action has occurred, but no terminating action has yet occurred. The
interval over which a fluent holds is closed on the left and open on the right,
since actions have an immediate effect on the value of fluents.

Given an infinite trace π, the satisfaction of a formula ϕ at position i, denoted
π, i |= ϕ, is defined as shown in Figure 1. We say that ϕ holds in π, denoted
π |= ϕ, if π, 0 |= ϕ.

A formula ϕ ∈ FLTL holds in an LTS E (denoted E |= ϕ) if it holds on every
infinite trace produced by E.

Consider P , shown in Figure 2.3, and the FLTL formula φ = ¬ ˙idleUCooking,
where Cooking = 〈{cook}, {doneCooking}, false〉, and the trace π = idle, cook,
doneCooking, moveToBelt, cook, doneCooking, . . . of the LTS shown in Fig-
ure 2.3. Since at position 1 ˙idle holds (i.e, π, 1 |= ˙idle) but Cooking does not
(i.e, π, 1 �|= Cooking) it follows that π, 0 �|= φ. On the other hand, at time 2 ˙idle
does not holds (i.e, π, 2 �|= ˙idle) but Cooking does hold (i.e, π, 2 |= Cooking),
hence, π, 2 |= φ. Note that φ holds in P , i.e, P |= φ.

In this paper we modify LTSs and MTSs by adding new actions and adding
states and transitions that use the new actions. It is convenient to change FLTL
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formulas to ignore these changes. Consider an FLTL formula ϕ and a set of
actions Γ such that for all fluents Fl = 〈IFl, TFl, InitFl〉 in ϕ we have Γ ∩ (IFl ∪
TFl) = ∅. We define the alphabetised next version of ϕ, denoted XΓ (ϕ), as follows.

– For a fluent Fl ∈ F we define XΓ (Fl) = Fl.
– For ϕ ∨ ψ we define XΓ (ϕ ∨ ψ) = XΓ (ϕ) ∨ XΓ (ψ).
– For ¬ϕ we define XΓ (¬ϕ) = ¬XΓ (ϕ).
– For ϕUψ we define XΓ (ϕUψ) = XΓ (ϕ)UXΓ (ψ).
– For Xϕ we define XΓ (Xϕ) = X((

∨
f∈Γ f)UXΓ (ϕ))

Thus, this transformation replaces every next operator occurring in the formula
by an until operator that skips uninteresting actions that are in Γ . The transfor-
mations in Section 3 force an action not in Γ to appear after every action from
Γ . Thus, the difference between U under even and odd number of negations is
not important. Given a trace π = �0, �1, . . ., we say that π′ = �′0, �

′
1, . . . is a

Γ -variant of π if there is an infinite sequence i0 < i1 < . . . such that �j = �ij for
every j. That is, π′ is obtained from π by adding a finite sequences of actions
from Γ between actions in π.

Theorem 1. Given a trace π = �0, �1, . . . in E = (S,A,Δ, s0), an FLTL for-
mula ϕ and a set of actions Γ ∈ Act. If Γ ∩ A = ∅ then the following holds.
For every trace π′ that is a Γ -variant of π we have π |= ϕ iff π′ |= XΓ (ϕ).

We note that our results hold for properties that describe sets of traces that can
be modified easily to accept Γ -variants as above. We choose to focus on FLTL
as it makes all complexity results concrete and is a well accepted standard.

2.3 LTS Controller Synthesis

Given a domain model, which is a description of what is known about the world,
the problem of controller synthesis is to construct a machine / controller that will
interact with the world and ensure that certain goals are fulfilled. In our context,
the domain model is given as and LTS and the goal of the machine is defined
as an FLTL formula. The interface between the machine and the domain model
is given by partitioning the events that can occur to those that are controllable
by the machine and those that are uncontrollable by it. Then, the controller
restricts the occurrence of events it controls to ensure that its goals are fulfilled.

Definition 7. (LTS Control [8]) Given a domain model in the form of a deter-
ministic LTS E = (S, A, Δ, s0), a set of controllable actions Ac ⊆ A, and an
FLTL formula ϕ, a solution for the LTS control problem E = 〈E,ϕ,Ac〉 is an
LTS M = (SM , AM , ΔM , s0M ) such that AM = A, from every state in SM all
actions in AM\Ac are enabled, E‖M is deadlock free, and every trace π in E‖M
is such that π |= ϕ.

That is, looking for a solution of an LTS control problem with domain model E,
is to verify the existence of an LTS M such that when composed in parallel with
E (i.e. E‖M), it does not block uncontrollable actions in E and every trace of
E‖M satisfies a given FLTL goal ϕ (i.e. E‖M |= ϕ).
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We may refer to the solution of an LTS control problem as controller or LTS
controller. Whenever such a controller exists we say that the control problem is
realisable and unrealisable otherwise. In case that a domain model E is given
and Ac and ϕ are implicit we denote by E the control problem E = 〈E,ϕ,Ac〉.

Theorem 2. (LTS Control [24]) Given an LTS control problem E = 〈E,ϕ,Ac〉
it is decidable in 2EXPTIME whether E is realisable. The algorithm checking
realisability can also extract a controller M .

Note that determinism of the domain model is required. As LTS controllers
guarantee the satisfaction of their goals through parallel composition, having
nondeterministic domain models means that the controller would not be able to
know the exact state of the domain model. This leads to imperfect information, as
the controller would only be able to deduce which set of states the domain model
is in. Translation of the existing results on synthesis with imperfect information
to the context of nondeterministic LTSs is out of the scope of this paper.

For example, consider E, the simple domain model in Figure 2.3, where a
ceramics cooking process is described. The aim of the controller is to produce
cooked ceramics by taking raw pieces from the in-tray, placing them in the oven
and moving them once cooked to a conveyor belt. In addition, raw pieces have to
be cooked twice before being moved to the conveyor belt. A natural solution for
such a problem is to build a controller guaranteing that raw pieces are cooked
twice and moved to the conveyor belt infinitely often. The solution for this simple
example is shown in Figure 2.3. Note that the controller has the memory needed
to remember how many times a piece has been cooked.
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3

idle

cook

moveToBelt

doneCooking

cook

(a) P .

1
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4

cook cook

moveToBelt doneCooking

(b) CP

Fig. 2. Ceramic Cooking Example

3 MTS Control Problem

The problem of control synthesis for MTS is to check whether all, none or some
of the LTS implementations of a given MTS can be controlled by an LTS contro-
ller [9]. More specifically, given an MTS, an FLTL goal and a set of controllable
actions, the answer to the MTS control problem is all if all implementations of
the MTS can be controlled, none if no implementation can be controlled and
some otherwise. This is defined formally below.

Definition 8. (Semantics of MTS Control) Given a deterministic MTS E = (S,
A, Δr, Δp, s0), an FLTL formula ϕ and a set Ac ⊆ A of controllable actions,
to solve the MTS control problem E = 〈E,ϕ,Ac〉 is to answer:



162 N. D’Ippolito et al.

Fig. 3. Server Example.

– All, if for all LTS I∈Idet[E], the control problem 〈I, ϕ,Ac〉 is realisable,
– None, if for all LTS I∈Idet[E], the control problem 〈I, ϕ,Ac〉 is unrealisable,
– Some, otherwise.

Note that, as in the case of LTS control problem, we restrict attention to deter-
ministic domain models. This follows from the fact that our solution for MTS
realisability is by a reduction to LTS realisability.

Consider E, shown in Figure 3(a), that describes the interactions between
a server and clients. Note that although it is certain that client requests can
be responded by the server, definitions regarding when clients may ping the
server have not been made yet. Suppose that we want to build a controller
for this server such that the server guarantees that after receiving a request
it will eventually yield a response and if there are enough requests, responses
of both kinds will be issued. We formally describe this requirement as the

FLTL formula: ϕ =GF¬ResponseOwed∧ (GF ˙req ⇒ (GF ˙resp1∧GF ˙resp2)),
where ResponseOwed = 〈{req}, {resp1, resp2}, false〉. As expected, the server
can only control the response. Hence, we have the MTS control problem E =
〈E,ϕ, {resp1, resp2}〉. Consider the implementation I1, shown in Figure 3(b).
The uncontrollable self loop over ping in state 1 allows the environment to flood
the controller impeding it from eventually producing a response (i.e. no contro-
ller can avoid the trace req, ping, ping, . . .). The implementation I2, shown in
Figure 3(d), allows only a bounded number of pings after a request, hence, the
server cannot be flooded and a controller for the property exists . Since I1 and
I2 are implementations of E such that I2 can be controlled and I2 cannot, it
follows that the answer for the MTS control problem E is some.

A naive approach to the MTS control problem may require to evaluate an in-
finite number of LTS control problems. Naturally, such approach is not possible,
hence, it is mandatory to find alternative ways to handle MTS control problems.
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We reduce the MTS control problem to two LTS control problems. The first
LTS control problem encodes the problem of whether there is a controller for each
implementation described by the MTS. It does so by modelling an environment
that can pick the “hardest” implementation to control. In fact, in the LTS control
problem, the environment will pick at each point the subset of possible transitions
of the MTS that are available. If there is a controller for this environment, there
is a controller for all implementations.

The second LTS control problem encodes the problem of whether there is
no controller for every implementation of the MTS. Similarly, this is done by
modelling an LTS control problem in which the controller can pick the “easiest”
implementation to control (in fact, it is now the controller that picks the subset
of possible transitions of the MTS that are available at each point). If there is no
controller in this setting, then for every implementation there is no controller.

The two LTS problems are defined in terms of the same LTS. The only differ-
ence is who controls the selection of the subset of possible actions, i.e. implemen-
tation choice. We now define the LTS EI in which additional transition labels are
added to model explicitly when either the controller or the environment choose
which subset of possible transitions of the MTS are available.

Definition 9. Given an MTS E = (S,A,Δr, Δp, s0). We define EI = (SEI ,
AEI , ΔEI , s0) as follows:

– SEI = S ∪ {(s, i) | s ∈ S and i ⊆ A and Δr(s) ⊆ i}
– AEI = A ∪ A, where A = {�i | i ⊆ A}

– ΔEI =
{(s, �i, (s, i)) | s ∈ S and i ⊆ Δp(s) and Δr(s) ⊆ i} ∪
{((s, i), �, s′) | (s, �, s′) ∈ Δp and � ∈ i}
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Fig. 4.

States in EI are of two kinds. Those that are of the form s with s ∈ S encode
states in which a choice of which subset of possible transitions are implemented
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has to be made. Choosing a subset i ⊆ A, leads to a state (s, i). States of latter
form (s, i) have outgoing transitions labelled with actions in i. A transition from
(s, i) on an action � ∈ i leads to the same state s′ in EI as taking � from s in
E. For example, the model in Figure 3 is obtained by applying Definition 9 to
model in Figure 3.

The LTS EI provides the basis for tractably answering the MTS control ques-
tion. The following algorithm shows how to compute the solution for the MTS
control problem.

Algorithm 1. (MTS Control) Given an MTS control problem E = 〈E,ϕ,Ac〉.
If EI is the LTS model obtained by applying Definition 9 to E, then the answer
for E is computed as follows.
– All, if there exists a solution for EIA = 〈EI ,XA(ϕ), Ac〉
– None, if there is no solution for EIN = 〈EI ,XA(ϕ), Ac ∪ A〉
– Some, otherwise.

Algorithm 1 shows how to compute the answer for a given MTS control problem.
Consider the case in which the answer for the MTS control problem is all.

As stated by Algorithm 1, the answer to E is all, if there is solution to the LTS
control problem EIA. Intuitively, if we give control over the new actions �i to the
environment, it can choose the hardest implementation to control. Thus, this
solves the question of whether all implementations are controllable.

Lemma 1 proves that the case all in Algorithm 1 is sound and complete.

Lemma 1. (All) Given an MTS control problem E = 〈E,ϕ,Ac〉 where E =
(S,A, Δr, Δp, s0E ). If EI is the LTS obtained by applying Definition 9 to E,
then the following holds. The answer for E is all iff the LTS control problem
EIA = 〈EI ,XA(ϕ), Ac〉 is realisable.

Consider the case in which the answer for the MTS control problem is none.
The answer to E is none, if there is no solution to the LTS control problem EIN .
Intuitively, if we give control over the new actions �i to the controller, it can
choose the easiest implementation to control. Thus, this solves the question of
whether no implementation is controllable.

Lemma 2 proves that the case none in Algorithm 1 is sound and complete.

Lemma 2. (None) Given an MTS control problem E = 〈E,ϕ,Ac〉 where E =
(S,A,Δr, Δp, s0). If E

I is the LTS obtained by applying Definition 9 to E, then
the following holds.

The LTS control problem EIN = 〈EI ,XA(ϕ), Ac∪A〉 is realisable iff there exists
I ∈ Idet[E] such that the LTS control problem I = 〈I, ϕ,Ac〉 is realisable.

The answer to E is some whenever there exists an implementation of E that can
be controlled and an implementation of E that cannot be controlled.

Lemma 3. (Some) Given an MTS control problem E = 〈E,ϕ,Ac〉. The answer
for E is some iff EIA is unrealisable and EIN is realisable.
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4 Linear Reduction into LTS Control Problems

Algorithm 1 shows that the MTS control problem can be reduced to two LTS
control problems. Hence, our solution to the MTS control problem is, in general,
doubly exponential in the size of EI (cf. [24,8]). Unfortunately, the state space
of EI is exponential in the branching degree of E, which in turn is bounded
by the size of the alphabet of the MTS. More precisely, for a state s ∈ EI the
number of successors of s is bounded by the number of possible combinations of
labels of maybe transitions from s in E. In this section we show that to compute
the answer for EIAand EIN it is enough to consider only a small part of the states
of EI . Effectively, it is enough to consider at most linearly (in the number of
outgoing transitions) many successors for every state. This leads to the MTS
control problem being 2EXPTIME-complete.1

First, we analyse EI in the context of EIA. We define a fragment EI+

A of EIA.
Let EI+

= (SEI , AEI , Δ+, s0
EI

), where only the following transitions from ΔEI

are included in Δ+.

1. Consider a state s ∈ E that has at least one required uncontrollable succes-
sor. In Δ+ we add to s only the transition (s, �i, (s, i)), where i = Δr

E(s) ∪
(Δp

E(s)∩Aμ). That is, in addition to required transitions from s we include
all uncontrollable possible successors of s.

2. Consider a state s ∈ E that has no required uncontrollable successors but
has a required controllable successor. In Δ+ we add to s only the transitions
(s, �i, (s, i)), where i is either Δ

r
E(s) or i is Δ

r
E(s)∪(Δ

p
E(s)∩Aμ). That is, we

include a transition to all required transitions from s as well as augmenting
all required transitions by all uncontrollable possible transitions.

3. Consider a state s ∈ E that has no required successors. In Δ+ we add to
s a transition to (s, �i, (s, i)), where i = Δp

E(s) ∩ Aμ, and for every � ∈
Δp

E(s) ∩ Ac we add to s the transition (s, �{�}, (s, {�})). That is, we include
a transition to all possible uncontrollable transitions from s and for every
possible controllable transition a separate transition.

4. For a state (s, i) we add to Δ+ all the transitions in ΔEI .

Lemma 4. The problem EIAis realisable iff EI+

A = 〈EI+

,XA(ϕ), Ac〉 is realisable.
We now analyse EI in the context of the EIN . We define a fragment EI−

N of EIN .

Let EI−
= (SEI , AEI , Δ−, s0,EI ), where only the following transitions from ΔEI

are included in Δ−.

1. Consider a state s ∈ E that has at least one required uncontrollable succes-
sor. In Δ− we add to s only the transition (s, �i, (s, i)), where i = Δr

E(s).
That is, include only the required transitions from s.

2. Consider a state s ∈ E that has no required uncontrollable successors. In
Δ− we add to s a transition to (s, �i, (s, i)), where i = Δr

E(s)∪ (Δ
p
E(s)∩Ac),

1 We can avoid adding states altogether by having a per state definition of what are
controllable and uncontrollable actions. For simplicity of presentation we choose to
add states. The modification is not complicated. In an enumerative implementation
of game analysis this would be our suggested treatment.
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and for every � ∈ Δp
E(s) ∩ Aμ we add to s the transition to (s, �Δr

E(s)∪{�},
(s,Δr

E(s) ∪ {�})). That is, we include a transition to all controllable tran-
sitions from s and for every possible uncontrollable transition a separate
transition.

3. For a state (s, i) we add to Δ− all the transitions in ΔEI .

Lemma 5. The problem EIN is realisable iff EI−
N = 〈EI−

,XA(ϕ), Ac∪A〉 is realis-
able.

Using EI+

A and EI−
N can establish the complexity of the MTS control problem.

Theorem 3. (MTS Control Complexity) Given an MTS control problem E =
〈E,ϕ,Ac〉 it is 2EXPTIME-complete to decide whether the answer to E is all,
none, or some.

5 Discussion and Related Work

Automated construction of event-based operational models of intended system
behaviour has been extensively studied in the software engineering community.

Synthesis from scenario-based specifications (e.g. [27,6]) allows integrating a
fragmented, example-based specification into a model which can be analysed
via model checking, simulation, animation and inspection, the latter aided by
automated slicing and abstraction techniques. Synthesis from formal declarative
specification (e.g. temporal logics) has also been studied with the aim of provid-
ing an operational model on which to further support requirements elicitation
and analysis [16]. The work presented herein shares the view that model elabora-
tion can be supported through synthesis and analysis. Furthermore, analysis of
a partial domain model for realisability of system goals by means of a controller
allows prompting further elaboration of both domain model and goals.

Synthesis is also used to automatically construct plans that are then straight-
forwardly enacted by some software component. For instance, synthesis of glue
code and component adaptors has been studied in order to achieve safe compo-
sition at the architecture level [14], and in particular in service oriented archi-
tectures [2]. Such approaches cannot be applied when a fully specified domain
model is not available, hence their application is limited in earlier phases of
development. Our approach allows the construction of glue code and adaptors
earlier without necessarily requiring the effort of developing a full domain model.

In the domain of self-adaptive systems there has also been an increasing in-
terest in synthesis as such systems must be capable of designing at run-time
adaptation strategies. Hence, they rely heavily on automated synthesis of be-
haviour models that will guarantee the satisfaction of requirements under the
constraints enforced by the environment and the capabilities offered by the self-
adaptive system [26,5]. We speculate that controller synthesis techniques that
support partial domain knowledge, such as the one presented here, may allow
deploying self-adaptive systems that work in environments for which there is
more uncertainty.
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Partial behaviour models have been extensively studied. A number of such
modelling formalisms exist, e.g., Modal Transition Systems (MTSs) [19] and
variants such as Disjunctive MTS [20]. The results presented in this work would
have to be revisited in the context of other partial behaviour formalisms. How-
ever, since many complexity results for MTS hold for extensions such as DMTS,
we believe that our results could also extend naturally to these extensions.

The formal treatment of MTSs started with model checking, which received
a lot of attention (cf. [3,4,12]). Initially, a version of three-valued model check-
ing was defined [3] and shown to have the same complexity as that of model
checking. Generalised model checking [4] improves the accuracy of model check-
ing of partial specifications. Indeed, three-valued model checking may yield that
the answer is unknown even when no implementations of an MTS satisfy the
formula. However, complexity of generalised model checking is much higher [12].

In order to reason about generalised model checking one has to go from the
model of transition systems (for 3-valued model checking) to that of a game. Our
definition of MTS control is more similar to generalised model checking than to
3-valued model checking. We find it interesting that both MTS and LTS control
problems are solved in the same model (that of a game) and that MTS control
does not require a more general model.

Another related subject is abstraction of games. For example, in [13] abstrac-
tion refinement is generalised to the context of control in order to reason about
larger games. Their main interest is in applying abstraction on existing games.
Thus, they are able to make assumptions about which states are reasoned about
together. We, on the other hand, are interested in the case that an MTS is used
as an abstract model. In this case, the abstract MTS is given and we would like
to reason about it.

Of the huge body of work on controller synthesis and realizability of temporal
logic we highlight two topics. First, we heavily rely on LTS control. For example,
we use the 2EXPTIME-completeness of LTL controller synthesis [24]. Second,
we would like to mention explorations of restricted subsets of LTL in the context
of synthesis (cf. [1,22]). These results show that in some cases synthesis can be
applied in practice. Similar restrictions, if applied to MTS control combined with
our reductions, would produce the same reduction in complexity.

Our previous work on usage of controller synthesis in the context of LTSs has
been incorporated in the MTSA toolset [10]. We have implemented a solver to
GR(1) [22] formulas in the context of the LTS control problem [8].

More specifically, from a descriptive specification of the domain model in the
form of an LTS and a set of controllable actions, the solver constructs an LTS
controller that when composed with the domain model satisfies a given FLTL [11]

formula of the form GI ∧ (
∧n

i=1
GFAi →

∧m
j=1

GFGj) where GI is a safety

system goal, GFAi represents a liveness assumption on the behaviour of the

environment, GFGj models a liveness goal for the system and Ai and Gj are
non-temporal fluent expressions, while I is a system safety goal expressed as
a Fluent Linear Temporal Logic formula. We have implemented the reductions
proposed in this paper and extended MTSA to support MTS control. The tool
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implements the conversion of the MTS E to the LTSs EI+

and EI−
(cf. Section 4)

and calls our implementation for the LTS control solution on both problems.
The structure of specification does not change when introducing the additional
actions. Thus, starting from GR(1) formulas, we can call our GR(1) LTS solver.

6 Conclusions and Future Work

We present a technique that solves the MTS control problem showing that,
despite dealing with a potentially infinite number of LTS implementations, the
MTS problem is actually in the same complexity class that the underlying LTS
synthesis problem.

Specifically, we have defined the MTS control problem that answers if all,
none or some implementations of a given MTS, modelling a partially defined
domain model, admit an LTS controller that guarantees a given goal. Although
an MTS has a potentially infinite number of implementations, we provide an
effective algorithm to compute the answer for the MTS control problem without
requiring going through all the implementations described by the MTS.

The algorithm reduces the MTS control problem to two LTS control problems
in which the controller or the environment get to choose which implementation
described by the MTS must be LTS controlled. In principle, both LTS control
problems are exponentially larger than the original MTS model. Nevertheless,
we show that the number of states of each LTS problem that must be considered
is in fact linear in the alphabet of the input MTS. Hence, the MTS control
problem remains in the same complexity as the LTS control problems. In fact,
as mentioned before we have implemented a solver for GR(1) [22] style formulas
applied to LTS control [8]. Hence, our tool checks realisability of an expressive
class of MTS control problems in polynomial time.

As mentioned in previous sections, having nondeterminism in the domain
model leads to synthesis with imperfect information. Such a setting is much
more computationally complex than synthesis with full information. Only in
recent years a few approaches towards imperfect information have started to
emerge [25]. However, most of them are far from actual applications. In a setting
of a nondeterministic domain model but giving the controller full information of
actions and states, our technique works with no changes. Similarly, our technique
can handle the setting of nondeterministic MTSs and considering only determin-
istic implementations. Solving the synthesis problem for nondeterministic MTS,
which corresponds to imperfect information games, is not straightforward. Nev-
ertheless, we believe that it would reduce to synthesis for nondeterministic LTS
in much the same way as with the deterministic variant.

The semantics of MTS is given in terms of a set of LTS implementations. In
the context of controller synthesis an MTS is interpreted as the characterisation
of a set of possible problem domain models. Hence, the MTS control problem
could be used as a mechanism to explicitly identify which are the behaviour
assumptions in problem domain that guarantee realisability of a certain goal:
We are interested in studying the problem of characterising the set of realisable
implementations whenever the answer for a given MTS control problem is some.
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Having solved the realisability of the MTS control problem, the next logical
step is to an algorithm that will produce controllers if the MTS control problem
is realisable. We expect that synthesising controllers for the two LTS control
problems derived from the MTS control problem should serve as templates to
construct controllers for specific LTSs that are implementations of the MTS.
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Abstract. Dynamic reconfigurations increase the availability and the
reliability of component-based systems by allowing their architecture to
evolve at runtime. Recently, a linear temporal pattern logic, called FTPL,
has been defined to express desired—architectural, event and temporal—
properties over dynamic reconfigurations of component systems. This pa-
per is dedicated to the preservation of the FTPL properties when refining
components and introducing new reconfigurations. To this end, we use
architectural reconfiguration models giving the semantics of component-
based systems with reconfigurations, on which we define a new refine-
ment relation. This relation combines: (i) a structural refinement which
respects the component encapsulation within the architectures at two
levels of refinement, and (ii) a behavioural refinement which links dy-
namic reconfigurations of a refined component-based system with their
abstract counterparts that were possible before the refinement. The main
advantage of the new refinement is that this relation preserves the FTPL
properties. The main contributions are illustrated on the example of an
HTTP server architecture.

1 Introduction

The refinement-based design and development simplifies complex system speci-
fication and implementation [1,2]. For component-based systems, it is important
in practice to associate a design by refinement with a design by a composition of
their components [3,4]. Dynamic reconfiguration of software architectures is an
active research topic [5,6,7] motivated by practical distributed applications like,
e.g., those in Fractal [8] or OSGi1.

In this paper we propose a refinement of component-based systems with re-
configurations which preserves event and temporal properties. Our main goal is
to respect component encapsulation, i.e. the refinement of a component must
not cause any changes outside of this component. Moreover, we want the refine-
ment to respect the availability of reconfigurations from an abstract level to a
refined one: new reconfigurations handling new components introduced by the
1 http://www.osgi.org
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refinement must not take control forever, and no new deadlock is allowed. The
present paper’s contributions as displayed in Fig. 1, are based on our previous
works [9,10,11] where the semantics of component-based architectures with dy-
namic reconfigurations has been given in terms of labelled transition systems
(1 in Fig. 1). The first contribution of this paper is a definition of a structural
refinement (2 in Fig. 1) which links two architectures at two development levels:
in a refined architecture every refined component must have the same interfaces
of the same types as before. This way other components do not see the difference
between the refined components and their abstract versions, and thus there is
no need to adapt them. The second contribution is the definition of a recon-
figuration refinement relation (3 in Fig. 1) linking dynamic reconfigurations of
a refined component-based system with their abstract counterparts that were
possible before the refinement.

FTPL
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Abstract reconfiguration model
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Fig. 1. Verification and preservation through refinement

Moreover, we want
the refinement to
preserve temporal
properties. To express
temporal properties
over architectural
reconfigurations of
Fractal [8] component-
based systems, a
temporal pattern logic,
called FTPL, has
been defined [9] (4 in
Fig. 1). FTPL allows
expressing architec-

tural invariants, both event and temporal properties involving different kinds
of temporal patterns which have been shown useful in practice. The third
contribution of this paper consists in proving that the refinement relation—a
special kind of simulation—preserves (5 in Fig. 1) the FTPL properties: any
property verified at a given refinement level is ensured, “for free”, at the following
refinement levels, provided that the refinement relation holds.

The remainder of the paper is organised as follows. We briefly recall in Sect. 2
the architectural (re-)configuration model and the FTPL syntax and semantics.
We then define in Sect. 3 the structural refinement between two architectural
configurations, before integrating it into the reconfiguration model refinement.
Section 4 shows that the refinement relation preserves FTPL properties. Finally,
Section 5 concludes and gives some perspectives.

2 Architectural Reconfiguration Model

This section briefly recalls, because of a lack of room, the architectural reconfigu-
ration model formally given in [9,10], and the temporal pattern logic for dynamic
reconfigurations, called FTPL in [9].
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2.1 Component-Based Architectures

In general, the system configuration is the specific definition of
the elements that define or prescribe what a system is composed
of. The architectural elements we consider (components, interfaces
and parameters) are the core entities of a component-based system,

Components

Parameters

Required
Interfaces

Provided
Interfaces

PTypes ITypes Interfaces

mandatory

optional

stopped

started

Binding

Delegate

InterfaceType

Contingency

Requirer

Provider

SupplierParent
State

Definer

ParamType
Value

Fig. 2. Architectural elements and relations

and relations over them ex-
press various links between
these basic architectural el-
ements. In this section we
sum up formal definitions
given in [9,10]. To this end,
we consider a graph-based
representation in Fig. 2, in-
spired by the model for
Fractal in [6].

In our model, a configuration c is a tuple 〈Elem, Rel〉 where Elem is a set
of architectural elements, and Rel ⊆ Elem × Elem is a relation over architec-
tural elements. The architectural elements of Elem are the core entities of a
component-based system:

– Components is a non-empty set of the core entities, i.e. components;
– RequiredInterfaces and ProvidedInterfaces are defined to be subsets of

Interfaces;
– Parameters is a set of component parameters;
– IT ypes is the set of the types associated with interfaces;
– PType is a set of data types associated with parameters. Each data type is

a set of data values. For the sake of readability, we identify data type names
with the corresponding data domains.

The architectural relation Rel then expresses various links between the previ-
ously mentioned architectural elements.

– InterfaceType is a total function that associates a type with each interface;
– Supplier is a total function to determine the component of a provided or of

a required interface; Provider is a total surjective function which gives the
component having at least a provided interface of interest, whereas Requirer
is only a total function;

– Contingency is a total function which indicates for each required interface
whether it is mandatory or optional;

– Definer is a total function which gives the component of a considered pa-
rameter;

– Parent is a relation linking sub-components to the corresponding com-
posite component. Composite components have no parameter, and a sub-
component must not be a composite including its parent component;

– Binding is a partial function to connect a provided interface with a required
one: a provided interface can be linked to only one required interface, whereas
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a required interface can be the target of one or more provided interfaces.
Moreover, two linked interfaces do not belong to the same component, but
their corresponding components are sub-components of the same composite
component. The considered interfaces must have the same interface type.
Also, they have not been involved in a delegation yet;

– Delegate describes delegation links. It is a partial bijection which associates
a provided (resp. required) interface of a sub-component with a provided
(resp. required) interface of its parent. Both interfaces must have the same
type, and they have not been involved in a binding yet;

– State is a total function which associates a value from {started, stopped}
with each instantiated component: a component can be started only if all
its mandatory required interfaces are bound or delegated;

– Last, V alue is a total function which gives the current value of a considered
parameter.

Example 1. To illustrate our model, let us consider an example of an HTTP
server from [12,6]. The architecture of this server is depicted in Fig. 3. The Re-
questReceiver component reads HTTP requests from the network and transmits
them to the RequestHandler component. In order to keep the response time as
short as possible, RequestHandler can either use a cache (with the component
CacheHandler) or directly transmit the request to the RequestDispatcher com-
ponent. The number of requests (load) and the percentage of similar requests
(deviation) are two parameters defined for the RequestHandler component:

1. The CacheHandler component is used only if the number of similar HTTP
requests is high.

2. The memorySize for the CacheHandler component must depend on the over-
all load of the server.

3. The validityDuration of data in the cache must also depend on the overall
load of the server.

4. The number of used file servers (like the FileServer1 and FileServer2 compo-
nents) used by RequestDispatcher depends on the overall load of the server.

HttpServer

httpRequest

RequestHandler
(deviation, load)

handler getDispatcher

getCacheRequestReceiver

request getHandler

RequestDispatcher

dispatcher getServer

CacheHandler
(validityDuration,

memorySize)

cache

FileServer2

server2

FileServer1

server1

Fig. 3. HTTP Server architecture

We now introduce a set CP of configuration propositions which are constraints
on the architectural elements and the relations between them. These constraints
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are specified using first order (FO) logic formulas over constants {�, ⊥}, variables
in V to reason on elements of Elem, functions and relations from Rel, predicates
SP = {∈,=, . . .}, connectors ∧, ∨, ¬, ⇒, and quantifiers ∃, ∀ [13]. Then the
interpretation of functions, relations, and predicates over Elem is done according
to basic definitions in [13] and the model definition in [9].

The configuration properties are expressed at different specification levels. At
the component model level, the constraints are common to all the component ar-
chitectures. Furthermore, some constraints must be expressed to restrict a family
of component architectures (a profile level), or to restrict a specific component
architecture (an application level).

Example 2. Let CacheConnected be a configuration property defined by

∃ cache, getCache ∈ Interfaces.

�
�Provider(cache) = CacheHandler

∧ Requirer(getCache) = RequestHandler
∧ Binding(cache) = getCache

�
�

This property expresses that the CacheHandler component is connected to the
RequestHandler component through their respective interfaces.

2.2 Reconfigurations: From a Component Architecture to Another

To make the component-based architecture evolve dynamically, we introduce
reconfigurations which are combinations of primitive operations such as instan-
tiation/destruction of components; addition/removal of components; binding/
unbinding of component interfaces; starting/stopping components; setting pa-
rameter values of components. The normal running of different components also
changes the architecture by modifying parameter values or stopping components.
Let Rrun = R ∪ {run} be a set of evolution operations, where R is a finite set
of reconfiguration operations, and run is an action to represent running opera-
tions. Given a component architecture and Rrun, the possible evolutions of the
component architecture are defined as a transition system over Rrun.

Definition 1. The operational semantics of component systems with reconfigu-
rations is defined by the labelled transition system S = 〈C, C0, Rrun , →, l〉 where
C = {c, c1, c2, . . .} is a set of configurations, C0 ∈ C is a set of initial configu-
rations, Rrun is a finite set of evolution operations, → ⊆ C × Rrun × C is the
reconfiguration relation2, and l : C → CP is a total function to label each c ∈ C
with the largest conjunction of cp ∈ CP evaluated to true on c.

Let us note c
ope→ c′ when a target configuration c′ = 〈Elem′, Rel′〉 is reached

from a configuration c = 〈Elem, Rel〉 by an evolution operation ope ∈ Rrun.
Given the model S = 〈C, C0, Rrun , →, l〉, an evolution path (or a path for
short) σ of S is a (possibly infinite) sequence of configurations c0, c1, c2, . . . such
that ∀i ≥ 0.(∃ opei ∈ Rrun.(ci

opei→ ci+1 ∈→)). We write σ(i) to denote the
i-th configuration of a path σ. The notation σi denotes the suffix path σ(i),

2 Actually, → is a reconfiguration function because of the architectural model.
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σ(i + 1), . . ., and σj
i denotes the segment path σ(i), σ(i + 1), σ(i + 2), ..., σ(j −

1), σ(j). The segment path is infinite in length when the last state of the segment
is repeated infinitely. Let Σ denotes the set of paths, and Σf (⊆ Σ) the set of
finite paths.

Example 3. For the HTTP server, the reconfiguration operations are: Add-
CacheHandler and RemoveCacheHandler which are respectively used to add and
remove the CacheHandler component; AddFileServer and removeFileServer which
are respectively used to add and remove the FileServer2 component; Memory-
SizeUp and MemorySizeDown which are respectively used to increase and to
decrease the MemorySize value; DurationValidityUp and DurationValidityDown to
respectively increase and decrease the ValidityDuration value. A possible evolu-
tion path of the HTTP server architecture is given in Fig. 4.
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Fig. 4. Part of an evolution path of the HTTP server architecture

2.3 FTPL: A Temporal Logic for Dynamic Reconfigurations

<temp>::= after <event> <temp>
| before <event> <trace>
| <trace> until <event>

<trace> ::= always cp
| eventually cp
| <trace> ∧ <trace>
| <trace> ∨ <trace>

<event>::= ope normal
| ope exceptional
| ope terminates

Fig. 5. FTPL syntax

Let us first give the FTPL syntax in Fig. 5.
Basically, constraints on the architectural
elements and the relations between them
are specified as configuration propositions in
Sect. 2.1. In addition, the language contains
events from reconfiguration operations, trace
properties and, finally, temporal properties.
Let PropFTPL denote the set of FTPL for-
mulae.

Let cp ∈ CP be a configuration property, and c a configuration. We say that
c satisfies cp, written c |= cp, when l(c) ⇒ cp. We also say that cp is valid
on c. Otherwise, we write c �|= cp when c does not satisfy cp. For example, for
the CacheConnected configuration property from Example 2 and the path from
Fig. 4, we have c2 |= CacheConnected whereas c1 �|= CacheConnected.

Definition 2 (FTPL semantics). Let σ ∈ Σ. The FTPL semantics Σ ×
PropFTPL → B is defined by induction on the form of the formulae as follows:
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For the events:
σ(i) |= ope normal if i > 0 ∧ σ(i − 1) �= σ(i) ∧ σ(i − 1)

ope→ σ(i) ∈→
σ(i) |= ope exceptional if i > 0 ∧ σ(i − 1) = σ(i) ∧ σ(i − 1)

ope→ σ(i) ∈→
σ(i) |= ope terminates if σ(i) |= ope normal ∨ σ(i) |= ope exceptional

For the trace properties:
σ |= always cp if ∀i.(i � 0 ⇒ σ(i) |= cp)
σ |= eventually cp if ∃i.(i � 0 ∧ σ(i) |= cp)
σ |= trace1 ∧ trace2 if σ |= trace1 ∧ σ |= trace2
σ |= trace1 ∨ trace2 if σ |= trace1 ∨ σ |= trace2

For the temporal properties:
σ |= after event temp if ∀i.(i � 0 ∧ σ(i) |= event ⇒ σi |= temp)

σ |= before event trace if ∀i.(i > 0 ∧ σ(i) |= event ⇒ σi−1
0 |= trace)

σ |= trace until event if ∃i.(i > 0 ∧ σ(i) |= event ∧ σi−1
0 |= trace)

An architectural reconfiguration model S = 〈C, C0, Rrun , →, l〉 satisfies a prop-
erty φ ∈ PropFTPL, denoted S |= φ, if ∀σ.(σ ∈ Σ(S) ∧ σ(0) ∈ C0 ⇒ σ |= φ).

Example 4. The FTPL framework allows handling architectural invariants
from [12,6]. The following property expresses an architectural constraint saying
that at least there is always one file server component connected to Request-
Dispatcher.

always

�
∃getServer ∈ Interfaces.

�
Requirer(getServer) = RequestDispatcher
∧∃i ∈ Interfaces.(Binding(i) = getServer)

��

Example 5. The following temporal property specifies that after calling up the
AddCacheHandler reconfiguration operation, the CacheHandler component is
always connected to RequestHandler. In other words, the CacheConnected
configuration property from Example 2 holds on all the path after calling up
AddCacheHandler:

after AddCacheHandler normal always CacheConnected

3 Refinement of Architectural Reconfiguration Models

This section defines a new notion of a structural configuration refinement be-
tween two architectural configurations, and then gives the reconfiguration model
refinement as defined in the style of Milner-Park’s simulation.

3.1 Structural Configuration Refinement

In this section we introduce a structural refinement of a component-based ar-
chitecture. This refinement aims to respect component encapsulation, i.e. the
refinement of a component does not cause any changes outside of this compo-
nent. In fact, the refined component must have the same interfaces of the same
types as before. This way other components do not see the difference between
the component and its refined version, and thus there is no need to adapt them.

Example 6. Let us illustrate our goal on the example of the HTTP server. We
consider the configuration cA given Fig. 6, and we refine the RequestHandler
by two new components: RequestAnalyzer and Logger, to obtain a new refined
configuration cR. RequestAnalyzer handles requests to determine the values of
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Fig. 6. A refinement of the HttpServer component

the deviation and load parameters. Logger allows RequestAnalyzer to memorise
requests to choose either RequestDispatcher or CacheHandler, if it is available,
to answer requests. The “old” RequestHandler component becomes a composite
component which encapsulates the new components. Its interfaces remain the
same as the interfaces of the old component.

Let cA = 〈ElemA, RelA〉 and cR = 〈ElemR, RelR〉 be two architectural configu-
rations at two—an abstract and a refined—levels of refinement. To distinguish
architectural elements at the abstract level and at the refined level, the elements
are renamed to have ElemA ∩ ElemR = ∅. To define the structural refinement,
we have to link together an abstract and a refined configuration, i.e. express
how all the architectural elements and relations are associated with their refined
versions: a gluing predicate gp : ElemA → ElemR must be defined as a mapping
to link the abstract and the refined elements which respects the Elem signature.

In addition to this gluing predicate gp, component-based structural con-
straints are necessary to ensure that the proposed refinement respects the
component semantics, i.e. which changes are allowed or prescribed during the
refinement process. These architectural constraints, named AC, are defined as
the conjunction of the propositions given in Table 1, with the following meanings:

– In the system parts not concerned by the refinement, all the core entities
and all the relations between them remain unchanged through refinement
(constraints (G), (H), (I) and (J));

– The new elements introduced during the refinement process must satisfy the
following constraints:

• In the refined architecture the new components must be subcomponents
of components existing before refinement (constraint (K));

• The new interfaces are associated with the new components (con-
straint (C));
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Table 1. Structural refinement constraints AC

∀iA ∈ InterfacesA,
∃iR ∈ InterfacesR

.

�
� (gp(iA) = iR ∧ ContingencyA(iA) = ContingencyR(iR)) ∧

∀tA ∈ ITypesA.(InterfaceTypeA(iA) = tA ⇒
∃tR ∈ ITypesR.(InterfaceTypeR(iR) = tR ∧ gp(tA) = tR))

�
� (A)

∀iA ∈ InterfacesA,
∀cA ∈ ComponentsA

.

�
� SupplierA(iA) = cA ⇒

∃iR ∈ InterfaceR, ∃cR ∈ ComponentsR.
(SupplierR(iR) = cR ∧ gp(iA) = iR ∧ gp(cA) = cR))

�
� (B)

∀iR ∈ InterfaceR,
∀iA ∈ InterfaceA

.

�
� gp(iA) �= iR ⇒

∃cR ∈ ComponentsR.(SupplierR(iR) = cR∧
∀cA ∈ ComponentsA. gp(cA �= cR))

�
� (C)

∀pA ∈ ParametersA,
∀tA ∈ PTypesA

.

�
����

ParameterTypeA(pA) = tA ⇒
∃pR ∈ ParametersR, ∃tR ∈ PTypesR.�
� ParameterTypeR(pR) = tR

∧ V alueA(pA) = V alueR(pR)
∧ gp(pA) = pR ∧ gp(tA) = tR)

�
�

�
���� (D)

∀pR ∈ ParametersR,
∀pA ∈ ParametersA

.

�
� gp(pA) �= pR ⇒

∃cR ∈ ComponentsR. ∀cA ∈ ComponentsA.
(DefinerR(pR) = cR ∧ gp(cA) �= cR)

�
� (E)

∀pA ∈ ParametersA,
∀cA ∈ ComponentsA

.

�
���

DefinerA(pA) = cA ⇒
∃pR ∈ ParametersR, ∃cR ∈ ComponentsR.�

gp(pA) = pR ∧ gp(cA) = cR ∧
(Definer(pR) = cR ∨ ((DefinerR(pR), cR) ∈ Parent+R)

�
�
��� (F)

∀riA ∈ IRequiredA,
∀piA ∈ IProvidedA

.

�
� BindingA(riA) = piA ⇒

∃riR ∈ IRequiredR , ∃piR ∈ IProvidedR.
(BindingR(riR) = piR ∧ gp(riA) = riR ∧ gp(piA) = piR)

�
�(G)

∀iA, i′
A ∈ InterfaceA.

�
� DelegateA(iA) = i′

A ⇒
∃iR, i′

R ∈ InterfaceR.
(DelegateR(iR) = i′

R ∧ gp(iA) = iR ∧ gp(i′
A) = i′

R)

�
� (H)

∀cA, c′
A ∈ ComponentsA,

∃cR, c′
R ∈ ComponentsR

.

�
(gp(cA) = cR ∧ gp(c′

A) = c′
R ∧ (c′

A, cA) ∈ ParentA)
⇒ (c′

R, cR) ∈ ParentR

�
(I)

∀cA ∈ ComponentsA.

� ∃cR ∈ ComponentsR.
(gp(cA) = cR ∧ StateA(pA) = StateR(pR))

�
(J)

∀cA, c′
A ∈ ComponentsA,

∀cR ∈ ComponentsR
.

�
� (cA, c′

A) �∈ ParentA ∧ (gp(c′
A) �= cR) ⇒

∃c′
R ∈ ComponentsR.

(gp(c′
A) = c′

R ∧ (cR, c′
R) ∈ ParentR)

�
� (K)

∀cA, c′
A ∈ ComponentsA,
∀i′

A ∈ InterfaceA

∀c′
R ∈ ComponentsR

.

�
���

(cA, c′
A) �∈ ParentA ∧ gp(c′

A) = c′
R ∧ SupplierA(i′

A) = c′
A ⇒

∃cR ∈ ComponentsR.((cR, c′
R) ∈ ParentR) ∧

∃iR, i′
R ∈ InterfaceR.	

gp(i′
A) = iR ∧ SupplierR(i′

R) = c′
R ∧ i′

R = Delegate(iR)



�
��� (L)
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• The new parameters are associated with the new components (con-
straint (E));

– Finally, for the architectural elements existing before and impacted by the
refinement, the constraints are as follows:

• All the interfaces of the components existing before and detailed during
the refinement must be delegated interfaces, these components being
composites after refinement (constraints (A), (B) and (L));

• All the parameters of the components existing before and detailed during
the refinement must be associated with the new subcomponents (con-
straints (D) and (F)).

Definition 3 (Structural Configuration Refinement). Let cA =
〈ElemA, RelA〉 and cR = 〈ElemR, RelR〉 be two configurations, and AC the
architectural constraints. The configuration cR refines cA wrt. AC, written
cR � cA, if lR(cR) ∧ AC ⇒ lA(cA).

3.2 Reconfiguration Models Refinement

As an architecture may dynamically evolve through reconfigurations, it con-
cerns refined architectures, where new non primitive reconfigurations may be
introduced to handle the new components. For example, in the refined system
presented Fig. 6, a possible new reconfiguration RemoveLogger consists in re-
moving the Logger component which does not exist at the abstract level.

We consider the new reconfigurations introduced during the refinement pro-
cess as being non observable: they are called τ -reconfiguration. In addition,
we define a one-to-one function fc to link the refined reconfiguration actions
with the abstract ones as follows: fc : RrunR \ {τ} → RrunA such that
∀rR.(rR ∈ RrunR \ {τ} ⇒ ∃rA.(rA ∈ RrunA ∧ fc(rR) = rA).

Following [14], the refinement relation ρ is defined in the style of Milner-
Park [15] as a τ -simulation having the following properties3:

1. The new reconfiguration actions renamed by τ should not take control for-
ever: the τ - livelocks are forbidden.

2. Moreover, the new reconfiguration actions should not introduce deadlocks.

Definition 4 (Refinement relation). Let SA = 〈CA, C0
A, RrunA , →A, lA〉 and

SR = 〈CR, C0
R, RrunR , →R, lR〉 be two reconfiguration models, r ∈ RrunR and

σR a path of SR. We define the relation ρ ⊆ CR × CA as the greatest binary
relation satisfying the following conditions: structural refinement (cR � cA),
strict transition refinement (4.1), stuttering transition refinement (4.2), non τ-
divergence (4.3), non introduction of deadlocks (4.4).

3 These features are common to other formalisms, like action systems refinement [16]
or LTL refinement [1].
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∀cA ∈ CA, ∀cR, c
′
R ∈ CR.(cR ρ cA ∧ cR

r→ c
′
R ⇒ ∃c

′
A.(cA

fc(r)→ c
′
A ∧ c

′
R ρ c

′
A)) (4.1)

∀cA ∈ CA, ∀cR, c′
R ∈ CR.(cR ρ cA ∧ cR

τ→ c′
R ⇒ c′

R ρ cA) (4.2)

∀k.(k ≥ 0 ⇒ ∃k′.(k′ > k ∧ σR(k′ − 1)
r→ σR(k′) ∈ →R)) (4.3)

∀cA ∈ CA, ∀cR ∈ CR.(cR ρ cA ∧ cR �→ ⇒ cA �→) (4.4)

We say that SR refines SA, written SR �ρ SA, if ∀cR.(cR ∈ C0
R ⇒ ∃cA.(cA ∈

C0
A ∧ cR ρ cA)).
As a consequence of Definition 4, we give an important property of this relation

allowing to ensure the existence of an abstract path for any refined path.

Proposition 1. Let SA and SR be two reconfiguration models such that SR �ρ

SA. Then, ∀cR.(cR ∈ CR ⇒ ∃cA.(cA ∈ CA ∧ cR ρ cA)).

Proof (Sketch). Suppose that cR can be reached by a path σR such that σR(0) ∈
C0

R and σR(i) = cR. By Clause (4.3) of Def. 4 σR contains a finite number of τ -
reconfiguration actions, and σR is of the form σR(0)

τ→ . . .
τ→ σR(n1)

r1→ σR(n1+
1) τ→ . . .

rn→ σR(i − nm) τ→ . . . σR(i). Moreover, there is a configuration cA ∈ C0
A

such that σR(0) ρ cA. We can then build a path from cA = σA(0) such that
the configurations of σA are linked by transitions labelled by reconfigurations
fc(r1) . . . fc(rn) : σA = c0

A

fc(r1)→ c1
A

fc(r2)→ . . .
fc(rn)→ cn

A(= σA(j)). This way the
configuration σA(j) is reached, and by Clauses (4.1) and (4.2) of Def. 4 we have
σR(i) ρ σA(j). ��
Example 7. The reconfiguration path of the HTTP server from Fig. 4 can be
refined as depicted in Fig. 7, where the abstract configuration c4 is refined by
the configurations r5 and r6: the new reconfigurations renamed by τ concern the
new component Logger introduced during the refinement: it is possible to add
or to remove the Logger component.

4 Preservation of FTPL Properties through Refinement

In many formalisms supporting a design by refinement, systems properties are
preserved from abstract models to their refined models [17,1,18]. In this section
we show that FTPL properties are also preserved through our architectural
reconfiguration models refinement. This idea is depicted by Fig. 1.

Let SA and SR be two reconfiguration models such that SR refines SA. These
systems being defined over different sets of architectural elements and recon-
figurations, we have to give a new validity definition to be able to deal with
an abstract system at a refined level. Actually, we make use of the fc function
to link reconfiguration actions, and of the ρ refinement relation to define the
validity of a FTPL property by preservation, as follows.
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Fig. 7. A refinement of a reconfiguration path of the HTTP server

Definition 5 (FTPL semantics by preservation). Let SR =
〈CR, C0

R, RrunR , →R, lR〉 and SA = 〈CA, C0
A, RrunA , →A, lA〉 be two recon-

figuration models such that SR �ρ SA. Let σR be a path of SR, φA a FTPL
property over SA. We define the validity of φA on σR by preservation, written
σR |=p φA, by induction on the form of φA:

σR(i) |=p cpA if σA(j) |= cpA ∧ σR(i) ρ σA(j)

σR(i) |=p opeA normal if i > 0 ∧ σR(i − 1) �= σR(i) ∧ σR(i − 1)
fc−1(opeA)−−−−−−−−−→R σR(i)

σR(i) |=p opeA exceptional if i > 0 ∧ σR(i − 1) = σR(i) ∧ σR(i − 1)
fc−1(opeA)−−−−−−−−−→R σR(i)

σR |=p always cpA if ∀i.(i ≥ 0 ⇒ σR(i) |=p cpA)
σR |=p eventually cpA if ∃i.(i ≥ 0 ∧ σR(i) |=p cpA)
σR |=p after eA tppA if ∀i.(i ≥ 0 ∧ σR(i) |=p eA ⇒ σiR |=p tppA)

σR |=p before eA trpA if ∀i.(i > 0 ∧ σR(i) |=p eA ⇒ σi−1
0 R

|=p trpA)

σR |=p trpA until eA if ∃i.(i > 0 ∧ σR(i) |=p eA ∧ σi−1
0 R

|=p trpA)

We note SR |=p φA when ∀σR.(σR ∈ Σ(SR) ∧ σR(0) ∈ C0 ⇒ σR(0) |=p φA).
Now, we prove that FTPL properties are preserved by the reconfiguration

refinement defined in Sect. 3.

Theorem 1 (Preservation of a FTPL property on a path). Let SA and
SR be two reconfiguration models such that SR �ρ SA. Let φ be a FTPL property.
Let σA ∈ Σ(SA) and σR ∈ Σ(SR) be two paths. Then we have ∀i, j.(0 ≤ i ≤
j ∧ (σR(j) ρ σA(i)) ∧ σA |= φ ⇒ σR |=p φ).

Proof (Part of Theorem 1). Let σR ∈ Σ(SR) be a path refining a path
σA ∈ Σ(SA) (the proof of Proposition 1 ensures that this path exists). Besides,
opeR, ope′R, . . . ∈ RrunR label the transitions of SR, and τ labels each transition
introduced during refinement. The proof is done by structural induction on the
form of φ; only two cases are given here because of lack of room4.

4 The whole proof can be found in [19].
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1. Let us prove that opeA normal is preserved by refinement. By hypothe-
sis, σA(i) |= opeA normal, and so, by Def. 2 we have (i). As by hypoth-
esis σR(j) ρ σA(i), by construction there is a path σA such that σR(0)
refines σA(0) and where opeA = fc(opeR). Consequently, by Proposition 1
we have (ii). Moreover, it implies that there are two configurations σR(j)
and σR(l) such that σR(l) ρ σA(i − 1) and σR(j) ρ σA(i). There are two
cases:
(a) If σR(l)

opeR→ R σR(j) then l = j −1, and immediately we can deduce (iii).
Then by Def. 5, σR |=p opeA normal, and we are done.

(b) If σR(l)
τ→R σR(l + 1), then by Clause (4.2) of Def. 4 we have σR(l +

1) ρ σA(i − 1), and we can continue with the following configuration of
σR. According to Clauses (4.3) and (4.4) of Def. 4, the reconfigurations
labelled by τ cannot take control forever, and the refinement does not
introduce deadlocks. So, there is a configuration σ(l+n) such that σR(l+
n) ρ σA(i − 1) and σR(l + n) opeR→ σR(j). We set l + n = j − 1 and
consequently we have (iii). Then, by Def. 5, σR |=p opeA normal.

i > 0 ∧ σA(i − 1) �= σA(i) ∧ (σA(i − 1)
fc(opeR)→ A σA(i)) ∈ →A (i)

∀j.(j ≥ 0 ⇒ ∃k.(k ≥ 0 ∧ σR(j) ρ σA(k))) (ii)

j > 0 ∧ σR(j − 1) �= σR(j) ∧ (σR(j − 1)
opeR→ R σR(j)) ∈ →R (iii)

2. Let us prove that trpA until eA is preserved by refinement, with the re-
currence hypotheses that trpA and eA are preserved by refinement. By hy-
pothesis, we have σA |= trpA until eA. So, by Def. 2 we have (iv). As by
hypothesis σR(j) ρ σA(i), by construction there is a path σA such that σR(0)
refines σA(0) and where opeA = fc(opeR). Consequently, by Proposition 1
we have (v). Moreover, by construction, there is a finite part σj−1

0 R of σR

whose configurations refine the configurations of a corresponding finite part
σi−1

0 A of σA, ensuring (vi). By recurrence hypotheses, trp and e are preserved
by refinement. So, we have (vii). Then, by Def. 5, σR |=p trpA until eA.

∃i.(i > 0 ∧ σA(i) |= eA ⇒ σ
i−1
0 A |= trpA) (iv)

∀j.(j ≥ 0 ⇒ ∃k.(k ≥ 0 ∧ σR(j) ρ σA(k))) (v)

∀k.(0 ≤ k < j ⇒ ∃k
′
.(0 ≤ k

′
< i ∧ σ

j−1
0 R

(k) ρ σ
i−1
0 A(k

′
))) (vi)

∃j.(j > 0 ∧ σR(j) |=p eA ⇒ σj−1
0 R

|=p trpA) (vii)

��
We are ready to generalise Theorem 1 from paths to reconfiguration models.

Theorem 2 (Preservation of a FTPL property by refinement). Let
SA = 〈CA, C0

A, RrunA , →A, lA〉 and SR = 〈CR, C0
R, RrunR , →R, lR〉 be two recon-

figuration models such that SR �ρ SA. Let φ be a FTPL property. If SA |= φ
then SR |=p φ.
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Proof. Immediate. If SR �ρ SA then ∀σR.(σR ∈ Σ(SR) ∧ σR(0) ∈ C0
R ⇒

∃σA.(σA ∈ Σ(SA)∧ σA(0) ∈ C0
A ∧ σR(0) ρ σA(0))). Moreover, if SA |= φ then by

definition ∀σA.(σA ∈ Σ(SA) ⇒ σA |= φ). The reconfiguration relations of both
SR and SA being functional, there is no abstract path different from σA which
could be refined by σR. We then can apply Theorem 1. ��
Example 8. For our running example of the HTTP server, let us consider again
the path refinement in Fig. 7. In this refinement, the RequestHandler component
is refined as depicted in Fig. 6. Let us consider again the temporal property from
Example 5:

σ |= after AddCacheHandler normal always CacheConnected

It is easy to see that this property is valid on the abstract path depicted in
Fig. 7. Moreover, as presented in this figure, the ρ refinement relation holds
between the configurations of the illustrated part of the refined path and the
corresponding part of the abstract path. Consequently, this property is also
valid by preservation on the refined path depicted in Fig. 7.

5 Conclusion

In this paper, we have enriched a theoretical framework for dynamic reconfigu-
rations of component architectures with a new notion of a structural refinement
of architectures, which respects the component encapsulation. Then we have
integrated this structural refinement into a behavioural refinement relation for
dynamic reconfigurations defined in the style of Milner-Park’s simulation [15] be-
tween reconfiguration models. Afterwards, we have shown that this refinement
relation preserves the FTPL properties—architectural invariants, event proper-
ties and temporal properties involving different kinds of temporal patterns shown
useful in practice. The preservation means that any FTPL property expressed
and established for an abstract system is also established for the refined coun-
terparts, provided that the refinement relation holds. This way we ensure the
system’s consistency at different refinement levels, and we free the specifier from
expressing and verifying properties at these levels with new details, components,
reconfigurations.

To check the structural refinement, we plan to pursue further and to extend
our previous work on the verification of the architectural consistency through
reconfigurations [10]. The structural refinement constraints in Table 1 could
be formalised and validated in a similar manner. Another solution would be
to exploit the architectural description language (ADL) describing component
architectures in XML. It becomes possible then to use XML tools for checking
the structural refinement between two component architectures.

To conclude, this work on property preservation is used as a hypothesis for our
running work on the runtime FTPL verification [11]. We have reviewed FTPL
from a runtime point of view [11] by introducing a new four-valued logic, called
RV-FTPL, characterising the “potential” (un)satisfiability of the architectural
and temporal constraints: potential true and potential false values are chosen
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whenever an observed behaviour has not yet lead to a violation or satisfiability
of the property under consideration. We intend to accompany this work with a
runtime checking of a “potential” reconfiguration model refinement.
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Abstract. Localizing the cause of an error in an error trace is one of the most
time-consuming aspects of debugging. We develop a novel technique to automate
this task. For this purpose, we introduce the concept of error invariants. An error
invariant for a position in an error trace is a formula over program variables that
over-approximates the reachable states at the given position while only capturing
states that will still produce the error, if execution of the trace is continued from
that position. Error invariants can be used for slicing error traces and for obtaining
concise error explanations. We present an algorithm that computes error invari-
ants from Craig interpolants, which we construct from proofs of unsatisfiability
of formulas that explain why an error trace violates a particular correctness as-
sertion. We demonstrate the effectiveness of our algorithm by using it to localize
faults in real-world programs.

1 Introduction

A central element of a programmer’s work routine is spending time on debugging. Par-
ticularly time-consuming (and often the most frustrating part of debugging) is the task
of fault localization [1, 3, 9, 10, 13, 14, 18, 20, 21], i.e., isolating the cause of an error by
inspecting a failed execution of the program. This task encompasses, for instance, the
identification of the program statements that are relevant for the error, and determining
the variables whose values should be tracked in order to understand the cause of the
error.

In this paper, we present a novel technique that enables automated fault localization
and the automatic generation of concise error explanations. The input to our technique
is a an error trace of the program, which consists of the sequence of program state-
ments whose execution produced an error, and formulas describing the initial states of
the trace and the expected output states (i.e., the assertion that was violated). Such error
traces can be obtained either from failing test cases or from counterexamples produced
by static analysis tools. Our technique is based on the new concept of error invariants.
An invariant for a given position in a trace is a formula satisfied by all states reaching
that position in an execution of the trace. An error invariant is an invariant for a position
in an error trace that only captures states that will still produce the error, if execution of
the trace is continued from that position. Hence, an error invariant provides an expla-
nation for the failure of the trace at the given position. We observe that inductive error
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invariants, which are those error invariants that hold for consecutive positions in an er-
ror trace, characterize statements in the trace that are irrelevant for the error. That is,
if an error invariant holds for an interval of consecutive positions, no relevant changes
have occurred to error relevant variables in that interval. A statement that is enclosed by
an inductive error invariant can thus be replaced by any other statement that preserves
the invariant, without changing the nature of the error. Hence, inductive error invariants
can be used to compute slices of error traces that contain only relevant statements and
information about reachable states that helps to explain the cause of an error. Moreover,
error invariants characterize the relevant variables whose values should be tracked along
the execution of the error trace.

To compute inductive error invariants, we build on the idea of extended trace for-
mulas [14] to obtain an unsatisfiable formula from an error trace. We then compute
Craig interpolants for each position in the trace from the proof of unsatisfiability of this
formula. These Craig interpolants serve as candidate error invariants which we sub-
sequently propagate through the trace to check their inductiveness. Thus, we build on
existing techniques for synthesizing inductive invariants in program verification [12] to
compute inductive error invariants. We implemented our technique in a prototype tool
and evaluated it on error traces taken from the literature as well as real-world exam-
ples. For the error traces that we have considered, the error invariants computed by our
technique capture the precise cause of the error.

Related Work. Minimizing error traces to aid debugging is an active area of research.
Recently, static techniques for identifying relevant fragments of error traces have been
developed. Closest to our approach is Bug-Assist [13, 14], which uses a MAX-SAT
based algorithm to identify a maximal subset of statements from an error trace that can-
not be responsible for the failing of the execution. The remaining statements then form
an error trace such that removing any statements from this trace will result in a trace
that has normally terminating executions. One benefit of this approach is that a compact
error trace can be computed with a single MAX-SAT query while our approach requires
several calls to a theorem prover. On the other hand, our approach can further simplify
the error traces obtained by Bug-Assist because it may replace some of the remaining
statements with error invariants. For instance, if a relevant variable is incremented sev-
eral times in a row (e.g., in a loop), our approach may replace all these statement by
one invariant stating that the incremented variable is within a certain bound. Also, error
invariants identify variables that should be tracked during debugging and that highlight
the relevant changes to the program state. This is particularly useful for dense errors,
where the length of the error trace cannot be reduced significantly. A common limi-
tation of our approach and Bug-Assist is that control-relevant variables might not be
considered relevant. This, however, depends on the way error traces are encoded as
formulas.

Another way to minimize error traces is to compare failing with successful execu-
tions (e.g., [1, 9, 10, 17, 18, 20]). Ball et al. [1] present an algorithm for isolating parts
of an error trace that do not occur on feasible traces. Groce et al. [9–11] use distance
metrics for program executions to find minimal abstractions of error traces. For a given
counterexample, they find a passing execution that is as similar to the counterexample as
possible. The deviations between the passing and failing executions are then presented
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int y=0;

void testFoo() {
int res = foo(0,-2,1);
CU_ASSERT(res>=0);

}

int foo(int a, int b, int x) {
x = x + a;
x = x + b;
y = y + a;
return x;

}

Fig. 1. Example of a failing unit test

as an explanation for the error. The major difference of these approaches to ours is that
they require passing executions that are similar to the failing execution as an additional
input. Hence, these approaches are limited to cases where it is possible to find adequate
passing runs that cover large portions of the original error trace.

Dynamic approaches can be used to reduce the cognitive load for the programmer.
Delta Debugging (e.g., [3]) compares failing executions with passing executions to
identify relevant inputs that can be blamed for the failing of the execution. Dynamic
slicing (see, e.g., [21] for an overview) removes irrelevant fragments from error traces
based on dynamic control and data dependencies. Both approaches return a compact
representation of the original error trace. Hence, our approach of using error invariants
is orthogonal to delta debugging and dynamic slicing. Similar to Bug-Assist, dynamic
techniques can be used to compute a compressed error trace that serves as input to our
static analysis algorithm, which then computes further information about the error.

2 Overview and Illustrative Example

We demonstrate how error invariants can help to produce a more compact representa-
tion of an error trace using the illustrative example in Figure 1. We call this compact
representation an abstract error trace. The figure shows a procedurefoo and a unit test
testFoo, which checks if foo returns a certain value when it is called on a particular
input. The tested procedure foo adds the variables a and b to x before returning the
new value of x. Further, foo increments the global variable y. The unit test testFoo
calls foo on an initial state where a=0, b=-2, and x=1, and then checks if foo re-
turns a value greater or equal to 0. However, this is not the case and the unit test fails.
From the failing test case we can derive the following error trace (ψ, π, φ), where the
path π is the sequence of statements executed on the trace:

ψ ≡ (a = 0 ∧ b = −2 ∧ x = 1 ∧ y = 0) φ ≡ x ≥ 0
π = �0 : x = x+ a; �1 : x = x+ b; �2 : y = y + a; �3 :

To understand why the post-conditionx ≥ 0 of our unit test is violated, we first compute
a trace formula for the error trace, which is a conjunction of the pre-condition ψ, the
post-condition φ, and a formula representation TF(π) of the path π, such that the sat-
isfying assignments of the trace formula exactly correspond to the possible executions
of the path π that satisfy the pre and post-condition. The resulting formula

(a=0)∧(b=−2)∧(x=1)∧(y=0)∧(x′ =x+a)∧(x′′=x′+b)∧(y′=y+a)∧(x′′ ≥ 0)
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is unsatisfiable, as the execution of the test case violates the assertion at the end of
the error trace. From the proof of unsatisfiability, we compute a sequence of formulas
I0, . . . , I3, where each Ii is an error invariant for position �i of the error trace. This
means that for each i, the formula ψ ∧ TF(π[0, i]) ⇒ Ii is valid and the formula
Ii∧TF(π[i, 3])∧φ is unsatisfiable, where π[0, i] is the prefix of the trace up to position
i and π[i, 3] the corresponding suffix. For our example, a possible sequence of error
invariants is as follows:

I0 ≡ (x = 1) ∧ (a = 0) ∧ (b = −2) I2 ≡ (x = −1)
I1 ≡ (x = 1) ∧ (b = −2) I3 ≡ (x = −1)

An error invariant Ii can be seen as an abstraction of the set of post states of the prefix
trace π[0, i] such that any execution of the suffix trace π[i, 3] that starts in a state sat-
isfying Ii will still fail. Thus, for each point of the error trace, the error invariant can
provide a concise explanation why the trace fails when the execution is continued from
that point. In particular, error invariants provide information about which variables are
responsible for an execution to fail and which values they have at each point. In our
example, I0 is a summary of the initial state and indicates that the variable a, b, and x
are responsible for the error. After executing x = x + b, we can see from I2 that a and
b are no longer relevant and only x has to be considered. Further, we can see that the
value of variable y does not matter at all. Error invariants also help to identify irrelevant
statements in an error trace. Note that the formula I1 is a valid error invariant for both
positions �2 and �3. That is, I2 is inductive with respect to the statement y = y + a
and any execution of the suffix trace π[2, 3] that starts in a state satisfying I2 will still
fail. The fact that I2 is an error invariant for both �2 and �3 implies that the formula
ψ ∧ TF(π) ∧ φ will remain unsatisfiable even if y = y + a is removed from the
trace π. Thus, this statement is irrelevant for the error.

In the following sections, we formalize the concept of error invariants and present
an algorithm that synthesizes error invariants to compute concise abstractions of error
traces.

3 Preliminaries

We present programs and error traces using formulas in first-order logic. We assume
standard syntax and semantics of such formulas and use and⊥ to denote the Boolean
constants for true and false, respectively. Let X be a set of program variables. A state
is a valuation of the variables from X . A state formula F is a first-order constraint over
free variables from X . A state formula F represents the set of all states s that satisfy F
and we write s |= F to denote that a state s satisfies F .

For a variable x ∈ X and i ∈ N, we denote by x〈i〉 the variable obtained from
x by adding i primes to it. The variable x〈i〉 models the value of x in a state that is
shifted i time steps into the future. We extend this shift function from variables to sets
of variables, as expected, and we denote by X ′ the set of variables X〈1〉. For a formula
F with free variables from Y , we write F 〈i〉 for the formula obtained by replacing each
occurrence of a variable y ∈ Y in F with the variable y〈i〉. We denote by x〈−i〉 the
inverse operation of x〈i〉, which we also extend to formulas. A transition formula T is
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a first-order constraint over free variables from X ∪X ′, where the variables X ′ denote
the values of the variables from X in the next state. A transition formula T represents a
binary relation on states and we write s, s′ |= T to denote that the pair of states (s, s′)
is in the relation represented by T .

A program P over variables X is simply a finite set of transition formulas over
X ∪ X ′. Each transition formula T ∈ P models the semantics of a single program
statement. Note that control can be model implicitly via a dedicated program variable
pc ∈ X for the program counter. The correctness assertion of a program can be stated as
a relation between the pre and the post states of the program’s executions. A witness of
the incorrectness of the program is given by an error trace. An error trace consists of a
state formula, describing the initial states from which a failed execution can start, a path
of the program describing the statements of the failed execution, and a state formula,
which describes the violated correctness assertion.

Formally, a path π of a program P is a finite sequence of transition formulas in P .
Let π = T0, . . . , Tn−1 be a path. For 0 ≤ i ≤ j ≤ n, we denote by π[i, j] the subpath
Ti, . . . , Tj−1 of π that goes from position i to position j. We use π[i] to represent the
i-th transition formula Ti of path π. A trace τ of a programP is a tuple (ψ, π, φ) where
π is a path of P and ψ and φ are state formulas. We say that τ has length n if π has
length n. An execution of a trace (ψ, π, φ) is a sequence of states σ = s0 . . . sn such
that (1) s0 |= ψ, (2) sn |= φ, and (3) for all 0 ≤ i < n, si, si+1 |= π[i]. The trace
formula TF(τ) of a trace τ = (ψ, π, φ) of length n is the formula ψ ∧ (π[0])〈0〉 ∧
. . . ∧ (π[n − 1])〈n−1〉 ∧ φ〈n〉. Thus, there is a one-to-one correspondence between the
executions of τ and the models of TF(τ). For a path π we write TF(π) as a shorthand
for the trace formula TF(( , π, )). A trace τ is called feasible, if its trace formula
TF(τ) is satisfiable. A trace is called error trace if it is infeasible.

4 Error Invariants

An error trace provides sufficient information to repeat the program’s behavior that
violates the correctness assertion. There are many ways to obtain error traces, e.g.,
from a failing test case, from a counterexample returned by a static analysis tool [15], or
when debugging, by manually marking a particular state as violation of the correctness
assertion. By limiting the scope to only one control-flow path, error traces can help the
programmer to detect the cause of the unexpected behavior. However, the error trace
itself does not give any insight into which transitions on the path of the trace are actually
responsible for the incorrect behavior. Further, the trace does not say which variables
on this path should be tracked to identify the cause of the error. This is particularly
challenging for error traces of large programs, where the number of transitions and
variables might become intractable for the programmer.

In this paper, we propose the concept of error invariants as a means to rule out
irrelevant transitions from an error trace, to identify the program variables that should
be tracked along the path in order to understand the error, and to obtain a compact
representation of the actual cause of an error.



192 E. Ermis, M. Schäf, and T. Wies

Definition 1 (Error Invariant). Let τ = (ψ, π, φ) be an error trace of length n and
let i ≤ n be a position in π. A state formula I is an error invariant for position i of τ , if
the following two formulas are valid:

1. ψ ∧TF(π[0, i])⇒ I 〈i〉

2. I ∧TF(π[i, n]) ∧ φ〈n−i〉 ⇒ ⊥
An error invariant for a position in an error trace can be understood as an abstract
representation of the reason why the execution will fail if it is continued from that
position. We next explain how error invariants can be used to identify transitions and
program variables that are relevant for the fault in the error trace.

Using Error Invariants for Fault Localization. In the following, let τ be an error
trace. We say that a state formula I is an inductive error invariant for positions i ≤ j, if
I is an error invariant for both i and j. Given such an inductive error invariant, we can
argue that the execution of the path of the error trace will still fail for the same reason,
even if the transitions between positions i and j are not executed. Thus, we can use
inductive error invariants to identify irrelevant transitions in error traces. Inductive error
invariants further help to identify the relevant program variables that should be tracked
while debugging an error trace. Namely, if I is an inductive invariant for positions i < j,
then only the program variables appearing in I should be tracked for the trace segment
between the positions i and j. We can make these observations formal.

Abstract Error Traces. We say that a trace τ# abstracts a trace τ if for every n-
step execution σ of τ there exists an m-step execution σ# of τ# such that σ#[0] =
σ[0], σ#[m] = σ[n], and σ# & σ. Here, & denotes the subsequence ordering, i.e.,
a0 . . . am & b0 . . . bn iff a0 = bi0 , . . . , am = bim for some indices 0 ≤ i0 < . . . <
im ≤ n. The problem we are attempting to solve in this paper, is to find for a given
error trace τ = (ψ, π, φ) an error trace τ# = (ψ, π#, φ) such that τ# abstracts τ and
π# concisely explains why π is failing for (ψ, φ). We use inductive error invariants to
define such abstract error traces.

Let π# = I ′0, T1, I
′
1, . . . , Tk, I

′
k be an alternating sequence of primed state formulas

I ′j and transition formulas Tj . Note that a primed state formula I ′ can be interpreted as
a transition formula that models transitions in which all program variables are first non-
deterministically updated and then assumed to satisfy the formula I . Thus, π# is also
a path. We call (ψ, π#, φ) an abstract error trace for (ψ, π, φ) if there exist positions
i0 < . . . < ik+1 such that i0 = 0, ik+1 = n+ 1, for all j with 1 ≤ j ≤ k, Tj = π[ij ],
and for all j with 0 ≤ j ≤ k, Ij is an inductive error invariant for ij and ij+1 − 1.

Theorem 2. If τ# is an abstract error trace for an error trace τ , then τ# abstracts τ .

In the next section, we show how abstract error traces can be computed using Craig
interpolants, which we obtain automatically from the unsatisfiability proof of the ex-
tended path formula.

5 Error Invariants from Craig Interpolants

There are different ways to obtain error invariants for error traces. For instance, given
an error trace τ = (ψ, π, φ) of length n, the weakest error invariant for position i in
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π is given by the weakest (liberal) precondition of the negated post-condition and the
suffix of the path starting from i: wlp(π[i, n],¬φ). However, weakest error invariants
are typically not inductive, nor do they provide compact explanations for the cause of
an error. What we are really interested in are inductive error invariants.

Error invariants are closely related to the concept of Craig interpolants [5]. Let A and
B be formulas whose conjunction is unsatisfiable. A formula I is a Craig interpolant
for A and B, if the following three conditions hold: (a) A ⇒ I is valid, (b) I ∧ B
is unsatisfiable, and (c) all free variables occurring in I occur free in both A and B.
Thus, given a position i in an error trace, we can split the unsatisfiable path formula ψ∧
TF(π)∧φ〈n〉 into two conjuncts A = ψ∧TF(π[0, i]) and B = TF(π[i, n])〈i〉∧φ〈n〉,
for which we can then obtain interpolants1.

Proposition 3. Let (ψ, π, φ) be an error trace of length n, let i be a position in π, and
let A = ψ ∧TF(π[0, i]) and B = TF(π[i, n])〈i〉 ∧ φ〈n〉. Then for every interpolant I
of A,B, the formula I 〈−i〉 is an error invariant for i.

Interpolants are always guaranteed to exist for first-order logical formulas A and B
whose conjunction is unsatisfiable [5]. In fact, for many first-order theories there al-
ways exist quantifier-free interpolants that can be directly constructed from the proof
of unsatisfiability of the conjunction A∧B [2,16]. Interpolants constructed in this way
often give concise explanations for the infeasibility of a trace. For this reason, they have
shown to be useful for finding inductive invariants in program verification [12]. We ar-
gue that the same is true for error traces and show how to find interpolants that are,
both, inductive error invariants and useful for fault localization.

Computing Abstract Error Traces. In the following, let (ψ, π, φ) be an error trace
with π = (Ti)0≤i<n. The problem we want to solve is to compute an abstract error trace
for (ψ, π, φ), i.e., an alternating sequence of inductive error invariants and transitions
I0, Ti1 , I1, . . . , Tik , Ik where the Tij are the relevant transition formulas in π and each
Ij abstracts the intermediate sequences of irrelevant transition formulas between the

Tij . Given the unsatisfiable trace formulaψ∧T0∧. . .∧T 〈n−1〉
n−1 ∧φ〈n〉, we can use a single

call to an interpolating theorem prover to obtain a sequence of interpolants I0, . . . , In
such that each Ii is an error invariant for position i in the error trace. The basic idea
underlying our algorithm is to use these interpolants as candidates for the inductive error
invariants that occur in the computed abstract error trace. A naive algorithm to obtain the
abstract error trace from the computed interpolants is to compute an (n+ 1)× (n+ 1)
matrix I where an entry Iij indicates whether interpolant Ii is an error invariant for
position j of the error trace. The matrix I can then be used to obtain an abstract error
trace by replacing maximal sequences of transition formulas Ti1 , . . . , Ti2 in the error
trace by interpolant Ij , if Ij was found to be inductive for i1 < i2.

We have applied this naive algorithm to a number of example error traces and have
found that it produces abstract error traces that concisely explain the cause of the error.
The only problem with this naive algorithm is that it can be expensive: the number of
theorem prover calls that is needed to compute the matrix I is quadratic in the length of
the error trace. We have therefore developed an algorithm that obtains a better running

1 Note that whenever we say interpolant we always mean Craig interpolant.
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time. This improved algorithm is based on an observation that we made during the
evaluation of the naive algorithm: if an interpolant I is an inductive error invariant
for positions i < j of an error trace, then it is also often an error invariant for all
intermediate positions between i and j. Thus, instead of checking for each position i
and interpolant Ij , whether Ij is an error invariant for i, we instead compute for each
Ij the end positions of the interval of π on which Ij holds. Using a binary search, this
can be done with fewer theorem prover calls than required by the naive algorithm.

Algorithm 1. Algorithm for computing abstract error traces
Input: error trace τ = (ψ, π, φ) of length n
Output: abstract error trace for τ

def search(low : Int, high : Int, incLow : Int → Boolean) : Int = {
if (high < low) return low
val mid = (low + high)/2
if (incLow(mid)) search(mid + 1, high, incLow )
else search(low ,mid − 1, incLow ) }

def isErrInv(I : Formula, i : Int) : Boolean =

valid(ψ ∧TF(π[0, i])⇒ I 〈i〉) ∧ valid(I ∧TF(π[i, n] ∧ φ〈n−i〉 ⇒ ⊥)
var interpolants = interpolate(TF(τ ))
var intervals = interpolants map (λIj. { start = search(0, j, (λi.¬isErrInv(Ij , i)))

end = search(j, n, (λi. isErrInv(Ij , i)))− 1
inv = Ij })

var sortedIntervals = intervals sortWith (λ(a, b). a.start ≤ b.start)
var maxInterval = sortedIntervals [0]
var prevEnd = 0
for (currInterval ← sortedIntervals) {

if (currInterval .start > prevEnd) {
yield maxInterval .inv
if (maxInterval .end < n) yield π[maxInterval .end ]
prevEnd = maxInterval .end
maxInterval = currInterval

} else if (currInterval .end > maxInterval .end) maxInterval = currInterval
}

Algorithm 1 shows the pseudo code for our improved algorithm in a syntax akin
to the Scala programming language. The algorithm takes an error trace τ as input and
returns an abstract error trace for τ . It first computes a sequence of candidate error
invariants interpolants by calling the interpolating theorem prover. It then computes
for each interpolant Ij in interpolants a maximal interval on which Ij is inductive.
Each interval is represented as a record with fields start and end storing the start and
end position of the interval, and field inv storing the actual interpolant Ij . The interval
boundaries are computed using a binary search that is implemented by the function
search . The binary search is parameterized by a function incLow , which guides the
search depending on which of the two interval bounds is to be computed. In either
case, the function incLow is implemented using the function isErrInv , which checks
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whether the given formula I is an error invariant for the given position i. The algorithm
then computes a minimal subset of the intervals that cover all positions of the error trace.
This is done by first sorting the computed intervals according to their start time and
then selecting maximal intervals to cover all positions. The latter step is implemented
in the final for-comprehension, which directly yields the error invariants and relevant
transition formulas of the resulting abstract error trace.

Note that each binary search requires at most O(logn) theorem prover calls, which
gives O(n log n) theorem prover calls in total (as opposed to O(n2) for the naive al-
gorithm). Also the sorting of the intervals can be done in time O(n log n), which gives
total running time O(n log n), if we factor out the actual running time of the theorem
prover calls.

6 Evaluation

We have implemented a prototype of Algorithm 1 on top of the interpolating theorem
prover SMTInterpol [2] and applied it to compute abstractions of several error traces
that we obtained from real-world programs. In the following, we present two of these
examples in detail.

6.1 Faulty Sorting

Our first example is a faulty implementation of a sorting algorithm that sorts a sequence
of integer numbers. This program is taken from [3] and shown in Figure 2. The program
takes an array of numbers as input and is supposed to return a sorted sequence of these
numbers. An error is observed when the program is called on the sequence 11, 14.
Instead of the expected output 11, 14, the program returns 0, 11. The corresponding
error trace consists of the preconditionψ ≡ (a[0] = 11∧a[1] = 14), the post-condition
φ ≡ (a′[0] = 11∧ a′[1] = 14) and the path π containing the sequence of 27 statements
shown in Figure 3.

We translated each statement in path π into a corresponding transition formula.
While there exist interpolation procedures for reasoning about arrays, SMTInterpol
does not yet provide an implementation of such a procedure. We therefore encoded ar-
rays using uninterpreted function symbols and added appropriate axioms for the array
updates. Before calling the theorem prover, we instantiated all axioms with the ground
terms occurring in the path formula. This resulted in an unsatisfiable quantifier-free
formula which we used as input for our algorithm.

The theorem prover computed 28 interpolants, one for each position in the error
trace. Table 1 shows the error invariant matrix for these interpolants. The matrix indi-
cates for each computed interpolant Ii at which positions Ii is a valid error invariant.
Note that the matrix is not actually computed by our algorithm. Instead, Algorithm 1
only computes for each Ii the boundaries of the interval of positions for which Ii is a
valid error invariant. The marked interpolants I1, I10, I12, I19, I22, and I26 are the ones
that our algorithm selects for the computation of the abstract error trace. Thus, the only
relevant statements for the error are the statements at positions 6, 11, 13, 20, 23, as well
as the post-condition.



196 E. Ermis, M. Schäf, and T. Wies

static void shell_sort(int a[], int size) {
int i, j;
int h = 1;
do {

h = h * 3 + 1;
} while (h <= size);
do {

h /= 3;
for (i = h; i < size; i++) {

int v = a[i];
for (j = i; j >= h &&
a[j - h] > v; j -= h)
a[j] = a[j-h];

if (i != j) a[j] = v;
}

} while (h != 1);
}

int main(int argc, char *argv[]) {
int i = 0;
int *a = NULL;

a = (int*)malloc((argc-1) *
sizeof(int));

for (i = 0; i < argc - 1; i++)
a[i] = atoi(argv[i + 1]);

shell_sort(a, argc);

for (i = 0; i < argc - 1; i++)
printf("%d", a[i]);

printf("\n");

free(a);
return 0;

}

Fig. 2. Faulty implementation of a sort algorithm taken from [3]. The faulty behavior can be
observed, e.g., for the input value sequence 11, 14.

0 int i,j, a[];
1 int size=3;
2 int h=1;
3 h = h*3+1;
4 assume !(h<=size);
5 h/=3;
6 i=h;
7 assume (i<size);
8 v=a[i];
9 j=i;

10 assume !(j>=h && a[j-h]>v);
11 i++;
12 assume (i<size);
13 v=a[i];

14 j=i;
15 assume (j>=h && a[j-h]>v);
16 a[j]=a[j-h];
17 j-=h;
18 assume (j>=h && a[j-h]>v);
19 a[j]=a[j-h];
20 j-=h;
21 assume !(j>=h && a[j-h]>v);
22 assume (i!=j);
23 a[j]=v;
24 i++;
25 assume !(i<size);
26 assume (h==1);

Fig. 3. Error path π of the program in Figure 2 for the input sequence 11, 14

Table 1. Error invariant matrix for the error trace of the program in Figure 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

I0 � � � � � � � - - - - - - - - - - - - - - - - - - - - -
I1 � � � � � � � - - - - - - - - - - - - - - - - - - - - -
I2 � � � � � � � - - - - - - - - - - - - - - - - - - - - -
I3 - - - � - - � - - - - - - - - - - - - - - - - - - - - -
I4 - - - - � � - - - - - - - - - - - - - - - - - - - - - -
I5 - - - - � � - - - - - - - - - - - - - - - - - - - - - -
I6 - - - � - - � - - - - - - - - - - - - - - - - - - - - -
I7 - - - - - - - � � � � � - - - - - - - - - - - - - - - -
I8 - - - - - - - � � � � � - - - - - - - - - - - - - - - -
I9 - - - - - - - � � � � � - - - - - - - - - - - - - - - -
I10 - - - - - - - - - - � � - - - - - - - - - - - - - - - -
I11 - - - - - - - � � � � � - - - - - - - - - - - - - - - -
I12 - - - - - - - - - - - - � � - - - - - - - - - - - - - -
I13 - - - - - - - - - - - - � � - - - - - - - - - - - - - -
I14 - - - - - - - - - - - - - - � - - - - - - - - - - - - -
I15 - - - - - - - - - - - - - - - � � - - - - - - - - - - -
I16 - - - - - - - - - - - - - - - � � - - - - - - - - - - -
I17 - - - - - - - - - - - - - - - � � � - - - - - - - - - -
I18 - - - - - - - - - - - - - - � - - - � - - - - - - - - -
I19 - - - - - - - - - - - - - - � - - - � � � - - - - - - -
I20 - - - - - - - - - - - - - - � - - - � � � - - - - - - -
I21 - - - - - - - - - - - - - - - - - - - - - � � � - - - -
I22 - - - - - - - - - - - - - - - - - - - - - � � � - - - -
I23 - - - - - - - - - - - - - - - - - - - - - � � � - - - -
I24 - - - - - - - - - - - - - - - - - - - - - - - - � - - -
I25 - - - - - - - - - - - - - - - - - - - - - - - - � � � -
I26 - - - - - - - - - - - - - - - - - - - - - - - - � � � -
I27 - - - - - - - - - - - - - - - - - - - - - - - - � � � �
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a[2]=0

6:i=h;

a[2]=0 ∧ h=1 ∧ i=h

11:i = i + 1;

a[2]=0 ∧ h=1 ∧ i=2

13:v = a[i];

h=1 ∧ i=2 ∧ v=0 ∧ h≤j ∧ j≤1
20:j = j - h;

h=1 ∧ i=2 ∧ v=0 ∧ j=0

23:a[j] = v;

a[0]=0

27:assert (a[0]=11 ∧ a[1]=14);

Fig. 4. Abstract error trace for the error path in Figure 3

The resulting abstract error trace is shown in Figure 4. We use boxed code such as
a[2]=0 to highlight the error invariants. From the first error invariant a[2]=0 we

can see that the only information we need to track until position 6 of our error trace is the
value at index 2 of the array a. This error invariant is also the summary of the relevant
part of the failing initial state ψ. Hence, we do not need to mention ψ explicitly in our
abstract error trace. At position 6, the variable i is initialized. The error invariant no
longer holds after this statement. The new error invariant now also states that h=1 and
i=h hold up to position 11. The next statement, which cannot be rendered irrelevant, is
i = i + 1 and sets i to 2. This statement already indicates the problem, as i should
always be strictly smaller than the array bounds of a. The next error invariant now
states that i=2. This error invariant holds up to position 13, where the value a[2] is
stored in the local variable v. The new error invariant I20 keeps track of v=0, while the
current content of the array a is completely irrelevant for the following parts of the error
trace. The error invariant I20 also states that j=1. This property is temporarily violated
from positions 14 to 17 but reestablished at position 18. The context of the variable j is
abstracted away as all necessary information about j is provided by the error invariants.
One could also think of a different algorithm that does not allow error invariants to be
temporarily violated. Such an algorithm would further add the statements �14 :j=i and
�17 :j=j-h to the error trace because we cannot find an invariant that holds at the
enclosing positions of these statements. However, the relevant information about the
variable j is provided by the error invariant. Hence, these statements can be omitted.
The new error invariant holds up to position 20, when j is set to 0. This is recorded in
the new error invariant, which holds up to position 23, when a[0] is finally set to 0.
This is the only information we need to keep track of for the remainder of the error trace,
as it contradicts the post-condition. Hence, Algorithm 1 is able to reduce the error trace
from its original 27 statements to only six statements. The computed error invariants
further highlight the information about the state that is crucial for the error at each point
of the error trace.

For comparison with the state of the art, we have also applied the tool Bug-Assist [13,
14] to the error trace in Figure 3. Bug-Assist returns a set of potential bugs, each of
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0 int OLEV = 600;
1 int MAXALTDIFF = 600;
2 int MINSEP = 300;
3 int NOZCROSS = 300;
4 int NO_INTENT = 0;
5 int DO_NOT_CLIMB = 1;
6 int DO_NOT_DESCEND = 2;
7 int TCAS_TA = 1;
8 int OTHER = 2;
9 int UNRESOLVED = 0;

10 int UPWARD_RA = 1;
11 int DOWNWARD_RA = 2;
12 int Positive_RA_Alt_Thresh = 740;
13 bool enabled = High_Confidence && (Own_Tracked_Alt_Rate <= OLEV) &&

(Cur_Vertical_Sep > MAXALTDIFF);
14 bool tcas_equipped = (Other_Capability == TCAS_TA);
15 bool intent_not_known = (Two_of_Three_Reports_Valid&&(Other_RAC==NO_INTENT));
16 int alt_sep = UNRESOLVED;
17 assume(enabled && ((tcas_equipped && intent_not_known) || !tcas_equipped));
18 assume(Climb_Inhibit);
19 inhibitBiasedClimb = Up_Separation + NOZCROSS;
20 ownBelowThreat = (Own_Tracked_Alt < Other_Tracked_Alt);
21 ownAboveThreat = (Other_Tracked_Alt < Own_Tracked_Alt);
22 upward_preferred = (inhibitBiasedClimb > Down_Separation);
23 assume(upward_preferred);
24 nonCrossingBiasedClimb = !(ownBelowThreat) || ((ownBelowThreat) &&

(!(Down_Separation > Positive_RA_Alt_Thresh)));
25 need_upward_RA = nonCrossingBiasedClimb && ownBelowThreat;
26 upward_preferred = inhibitBiasedClimb > Down_Separation;
27 assume(upward_preferred);
28 nonCrossingBiasedDescend = ownBelowThreat && (Cur_Vertical_Sep >= MINSEP) &&

(Down_Separation >= Positive_RA_Alt_Thresh);
29 need_downward_RA = nonCrossingBiasedDescend && ownAboveThreat;
30 assume !(need_upward_RA && need_downward_RA);

Fig. 5. Error path π for faulty TCAS produced by the model checker ULTIMATE

which is a statement in the input error trace. If ordered by their location, these state-
ments form a reduced error trace. For our example, this reduced error trace still contains
18 statements.

6.2 Faulty TCAS

Our second example is a faulty implementation of the Traffic Alert and Collision Avoid-
ance System (TCAS). TCAS is an aircraft collision detection system used by all US
commercial aircraft. The TCAS example can be found in [8] and has been used in
many papers to test algorithms that explain error traces (e.g., [10, 11, 13, 17, 19]). The
error in this TCAS implementation is inflicted by a wrong inequality in the function
Non_Crossing_Biased_Climb(). On some inputs, the error causes the Boolean
variable need_upward_RA to become true. The effect is that the controlled aircraft
will eventually rise even though its altitude is lower than the other aircraft’s altitude.
This may potentially lead to a collision.

To obtain an appropriate error trace for this error we applied the software model
checker ULTIMATE [7] to the faulty TCAS implementation. The correctness condition
that exposes the error in the implementation has been taken from [4] and is as follows:
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need upward RA⇒(¬(Up Separation < Positive RA Alt Thresh)∧
(Down Separation ≥ Positive RA Alt Thresh))

This property is also the post-condition φ of our error trace (ψ, π, φ). When we checked
this property with ULTIMATE, the model checker produced the error path π shown in
Figure 5.

Note that the statement at position 24 is the problematic statement from function
Non_Crossing_Biased_Climb() that causes the error. The strict inequality >
should be replaced by >= for the implementation to be correct.

In order to obtain a suitable precondition ψ for our error trace, we used the SMT
solver Z3 [6] to produce a model for the formula TF(π) ∧ ¬φ. We then encoded this
model in a corresponding formulaψ. Applying our algorithm to the resulting error trace
produces the abstract error trace shown in Figure 6. The error invariant matrix in Table 2
highlights the five interpolants that are selected for the abstract error trace.

Table 2. Error invariant matrix for the error trace of the TCAS example

0 1 . . . 11 12 13 14 . . . 19 20 21 22 23 24 25 26 27 . . . 30 31

I0 � � . . . � � - - - - - - - - - - - - -
. . . . . .
I12 � � . . . � � - - - - - - - - - - - - -
I13 - - - - � � . . . � � - - - - - - - - -
. . . . . .
I20 - - - - � � . . . � � - - - - - - - - -
I21 - - - - - - - - � � � � - - - - -
. . . . . .
I24 - - - - - - - - � � � � - - - - -
I25 - - - - - - - - - - - - � - - - -
I26 - - - - - - - - - - - - - � � . . . � �

. . . . . .
I31 - - - - - - - - - - - - - � � . . . � �

The abstract error trace shows how the infliction at position 24 affects the value
assigned to need_upward_RA at position 25 and eventually leads to the error. The
last error invariant forces the execution to take the then branch of the conditional,
which is encoded as an implication in the post condition φ. The algorithm reduces the
error trace from 31 to 4 statements. These statements are sufficient to understand the
causality between the erroneous line and the error. The abstract error trace depends
only on 7 instead of 37 variables. The number of input variables is reduced from 12
to 5. The abstract error trace thus significantly simplifies the search for the erroneous
statement at position 24. For the purpose of comparison, we also ran Bug-Assist on the
TCAS example. The reduced error trace thus obtained still contained 14 statements. We
therefore believe that error invariants provide a valuable instrument that improves upon
the state of the art.

7 Conclusion

We have introduced the concept of error invariants for reasoning about the relevancy
of portions of an error trace. Error invariants provide a semantic argument why certain
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Up Separation = 441 ∧ Down Separation = 740 ∧ Own Tracked Alt = -1 ∧
Other Tracked Alt = 0

12:Positive_RA_Alt_Thresh = 740;

Positive RA Alt Thresh = 740∧ Up Separation = 441 ∧Down Separation = 740 ∧
Own Tracked Alt = -1 ∧ Other Tracked Alt = 0

20:ownBelowThreat = Own_Tracked_Alt < Other_Tracked_Alt;

ownBelowThreat ∧Positive RA Alt Thresh = 740 ∧Up Separation = 441 ∧
Down Separation = 740 ∧ Own Tracked Alt = -1 ∧ Other Tracked Alt = 0

24:nonCrossingBiasedClimb = !ownBelowThreat ||
(ownBelowThreat && (!(Down_Separation > Positive_RA_Alt_Thresh))));

nonCrossingBiasedClimb ∧ownBelowThreat ∧ Positive RA Alt Thresh =740 ∧
Up Separation = 441 ∧ Down Separation = 740

25:need_upward_RA = nonCrossingBiasedClimb && ownBelowThreat;

need upward RA ∧ Positive RA Alt Thresh = 740 ∧ Up Separation = 441 ∧
Down Separation = 740

31:assert (need_upward_RA ==> !(Up_Separation < Positive_RA_Alt_Thresh) &&
(Down_Separation >= Positive_RA_Alt_Thresh));

Fig. 6. Abstract error trace of the TCAS example

portions of an error trace are irrelevant to the search for the cause of an error. Removing
those irrelevant portions from the error trace will not alter the observable error. This is in
contrast to related static approaches for slicing error traces that are based on computing
unsatisfiable cores of extended path formulas. We have presented an algorithm that
synthesizes error invariants from Craig interpolants and uses them to obtain compact
abstractions of error traces. Our evaluation has shown that our algorithm can indeed
help programmers understand the cause of an error more easily. We therefore believe
that our algorithm will be a useful component in future debugging tools.

We see many opportunities to further improve the performance of the presented algo-
rithm, which will be subject to our future work. For instance, our approach can be used
on already reduced error traces, to further compress them. Also, many theorem prover
calls during the binary search can be avoided by first syntactically checking whether a
candidate invariant speaks about variables that do not occur in both the prefix and suffix
of the trace. In this case, it is not necessary to invoke the theorem prover because the
candidate invariant cannot be a Craig interpolant. Further optimizations are possible if
the theorem prover is not treated as a black box. In particular, we will explore different
approaches to compute Craig interpolants from unsatisfiable path formulas. If we have
more control over the structure of the computed interpolants, this will allow us to build
more efficient algorithms for computing inductive error invariants.
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Correctness of Pointer Manipulating Algorithms

Illustrated by a Verified BDD Construction

Mathieu Giorgino and Martin Strecker
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Abstract. This paper is an extended case study using a high-level ap-
proach to the verification of graph transformation algorithms: To repre-
sent sharing, graphs are considered as trees with additional pointers, and
algorithms manipulating them are essentially primitive recursive traver-
sals written in a monadic style. With this, we achieve almost trivial
termination arguments and can use inductive reasoning principles for
showing the correctness of the algorithms. We illustrate the approach
with the verification of a BDD package which is modular in that it can
be instantiated with different implementations of association tables for
node lookup. We have also implemented a garbage collector for freeing
association tables from unused entries. Even without low-level optimiza-
tions, the resulting implementation is reasonably efficient.

Keywords: Verification of imperative algorithms, Pointer algorithms,
Modular Program Development, Binary Decision Diagram.

1 Introduction

There is now a large range of verification tools for imperative and object-oriented
(OO) languages. Most of them have in common that they operate on source code
of a particular programming language like C or Java, annotated with pre- and
post-conditions and invariants. This combination of code and properties is then
fed to a verification condition generator which extracts proof obligations that
can be discharged by provers offering various degrees of automation (see below
for a more detailed discussion).

This approach has an undeniable success when it comes to showing that a
program is well-behaved (no null-pointer accesses, index ranges within bounds,
deadlock-freedom of concurrent programs etc.). Program verification and in par-
ticular static analysis often amounts to showing the absence of undesirable situ-
ations with the aid of a property language that is considerably more expressive
than a traditional type system, but nevertheless has a restricted set of syntactic
forms for program verification that cannot be user-extended unless the impera-
tive programming language is embedded into a general purpose proof-assistant.

These limitations turn out to be a hindrance when one has to build up a
larger “background theory” capable of expressing deeper semantic properties of
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the data structures manipulated by the program (such as the notions of inter-
pretation and validity of a formula used in this paper). Even worse, high-level
mathematical notions (such as “sets” and “trees”) are often not directly available
in the specification language. Even if they are, recovering an algebraic data type
from a pointer structure in the heap is not straightforward: one has to ensure,
for example, that a structure encoding a list is indeed an instance of a data type
and not cyclic.

In this paper, we explore the opposite direction: we start from high-level data
structures based on inductive data types, which allows for an easy definition
of algorithms with the aid of primitive recursion and for reasoning principles
based on structural induction and rewriting. References are added explicitly to
these data structures, which makes it possible to express sharing of subtrees
with a simple notion of reference equality as well as associating mutable con-
tent to nodes. The notion of state is manipulated with a state-exception monad
(see Section 2), thus allowing for a restricted form of object manipulation (in
particular object creation and modification).

We illustrate our approach with the development of a Binary Decision Di-
agram (BDD) package. After recalling the basic notions and the semantics of
BDDs in Section 3, we describe a first, non-optimized version of the essential
algorithms in Section 4 and the implementation of association tables in Sec-
tion 6. Section 5 introduces a garbage collector and memoization, which lead to
a substantial speed-up.

As formal framework, we use the Isabelle proof assistant [16] and its extension
Imperative HOL [8], together with its Isabelle-to-Scala code extractor. Our al-
gorithms are therefore executable in Scala and, as witnessed by the performance
evaluation of Section 7, within the realm of state-of-the-art BDD packages.

A further gain in efficiency might be achieved by mapping our still rather
coarse-grained memory model to a fine-grained memory model, which would al-
low us to introduce bit-level optimizations. Even though this is compatible with
our approach, we have refrained from it here because it would lead to a consid-
erable increase in complexity and is not central to the approach of this paper.
The formal development is available on the authors’ home pages1 and more de-
tailed discussions of some topics will appear in the first author’s forthcoming
PhD thesis [11].

Related Work – Program Verification: There are roughly two broad classes of
program verifiers - those aiming at a mostly automatic verification, as Spec# [2],
VCC [9], Frama-C2 or Why3 [4], or at mostly interactive proofs, such as the ones
based on Dynamic Logic like KeY[3], KIV3 or codings of programming languages
and their associated Hoare logics in proof assistants [10,19]. The borderline is
not clear-cut, since some of the “automatic” tools can also be interfaced with
interactive proof assistants such as Coq and Isabelle, as in [5].

1 http://www.irit.fr/~Mathieu.Giorgino/Publications/GiSt2012BDD.html
2 http://frama-c.com/
3 http://www.informatik.uni-augsburg.de/lehrstuehle/swt/se/kiv/

http://frama-c.com/
http://www.informatik.uni-augsburg.de/lehrstuehle/swt/se/kiv/
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The work that comes closest to ours is the extension of Isabelle with OO
features [6]. It is at the same time more complete and considerably more com-
plex, since it has the ambition to simulate genuine OO capabilities such as late
binding, which requires, among others, the management of dynamic type tags of
objects. Our approach remains confined to what can be done within a conven-
tional polymorphic functional type system. Our aim is not to be able to verify
arbitrary programs in languages such as Java or Scala, but to export programs
written and verified in a functional style with stateful features to a language such
as Scala. We thus hope to reduce the proof burden, while still obtaining relatively
efficient target code in an idiomatic style (using subtyping and inheritance) and
compatible with a widely used language.

Related Work – Verification of BDDs: Binary Decision Diagrams (BDDs) [7]
are a compact format for representing Boolean formulas, making extensive use
of sharing of subtrees and thus achieving a canonical representation of formulas,
and a verified BDD package might become useful for the formal verification of
decision procedures

Even without such an application in mind, BDDs have become a favorite case
study for the verification of pointer programs. As mentioned above, all the ap-
proaches we are aware of use a low-level representation of BDDs as linked pointer
structures. The idea of representing the state space in monadic style is introduced
in [13], but ensuring the termination of the functions poses a problem because
termination and well-formedness of the state space are closely intertwined.

There is a previous verification [18] in the Isabelle proof assistant, starting
from an algorithm written in a C-like language. As in our case, it is possible to
take semantic properties of BDDs into account, but the proof of correctness has
a considerable complexity. By a tricky encoding, the PVS formalization in [21]
can avoid the use of the notion of “state” altogether, but the encoding creates
huge integers even for a small number of BDD nodes, so that the approach might
not scale to larger examples.

The most comprehensive verification [20] (apart from ours) describes a veri-
fication in the Coq proof assistant, including some optimizations and a garbage
collector. The state space is explicitly represented and manipulated by a func-
tional program, and also the OCaml code extracted from Coq is functional.
This seems to account for the lower performance (slower execution and faster
exhaustion of memory) as compared to genuine imperative code.

2 Memory and Object Models

We first present a shallow embedding of an OO management of references in
Isabelle. As a basis we use the Imperative HOL theory [8] belonging to the
Isabelle library. This theory provides imperative features to Isabelle/HOL by
defining a state-exception monad with syntax facilities like do-notation. We then
add object-oriented features that should eventually improve code generation
to Scala. In the following, we put the Isabelle keywords corresponding to the
discussed concepts in parentheses.
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Language. Imperative programs returning values of type ′a have type ′a Heap.
They can manipulate references of type ′b ref using the usual ML syntax to
allocate (ref a), read (!r) and write (r := a) references. On the logical level, the
term effect m h h ′ v states that if m terminates, it transforms the heap h (of
type heap) into h ′ and returns the value v.

To get closer to an OO development, a reference to a record should be seen
as a handle to an object, without giving the ability in the language to retrieve
the record itself. To do this, we define accessors (of type ′a � ′b where ′a and
′b are respectively the types of the record and the field) as a means to describe
an abstract attribute in an object. These allow us to introduce primitives lookup
(denoted r ·ac) and update (r ·ac .= v) to read and write fields of the record
referenced by r, which can be seen as attributes of an object. A ‘$‘ character will
start accessor names to avoid name clashes with other identifiers.

For example, with the definition of accessors $fst and $snd for the first and
second components of pairs, the definition m p ≡ do{ a ← p·$fst ; p·$snd .= a;
p·$fst } defines a monadic operation m replacing the second component of the
pair referenced by p by its first component and returns it.

We also note that in Isabelle/HOL, implication is written at object or meta
level as −→ or =⇒ but can be read indifferently as implication.

Objects and Classes as Types. Hierarchical definition of data (with sub-
typing) is provided by extensible records (record) as described in [15]. A record
runit is used as a top element of a record hierarchy, in the same way as Object
in Java or Any in Scala are the top classes of their class hierarchies. In contrast
to the implicit object sub-typing, record types are explicitly parameterized by
their extension types as for example ′a in ′a runit-scheme.

Methods and Classes as Modules. Locales (locale) [1] allows the creation
of a context parameterized by constants (fixes) and assumptions (assumes).
We use them to define functions in the context of a reference called this in the
same way as for OO languages. Then the functions defined in this locale and used
from the outside take an additional argument being a reference to the record.

locale object = fixes this :: ′a ref

They can also be used as an equivalent of interfaces or abstract classes. They can
be built upon each other with multiple inheritance (+) for which assumptions
(including types of constants) can be strengthened (for). Finally they can be
instantiated by several implementations.

In This Development. Objects and classes are used at two levels:

– for the state of the BDD factory containing the two True and False leaves
and the association tables for maximal sharing and memoization. This state
and its reference is unique in the context of the algorithms and provided by
the locale object as a this constant parameter.
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– for the nodes, each one containing a reference to a mutable extension of
itself. This extension is initially empty and called runit to be extended later
to refCount to store the reference counter for the garbage collection.

Figures 1a and 1b present the hierarchies of records and locales used in this de-
velopment. We also take advantage of locales to specify the logical functions used
only in proofs (locale bddstate) and the abstract methods (locales bddstate-mk
and bddstate-mk-gc).

runit (any)

refCount leaves

leaves-memo

bddstate-hash

(a) Data (records)

object
(this of type runit)

leaves
(this of type leaves)

bddstate
(logical trees and invar)

bddstate-mk
(abstract method mk)

bddstate-mk-gc
(abstract method gc)

bddstate-mk-memo
(this of type leaves-memo)

implementation
with bddstate-hash

(b) Methods/Logic (locales)

Fig. 1. Hierarchies of data and methods

3 Binary Decision Diagrams

3.1 Tree Structure and Interpretation

BDDs are used to represent and manipulate efficiently Boolean expressions. We
will use them as starting point of our algorithms, by defining a function con-
structing BDDs from their representation of type ( ′v , bool) expr in which ′v is
the type of variable names. The definition of expressions is rather standard:

datatype ( ′v , ′a) expr =
Var ′v | Const ′a | BExpr ( ′a ⇒ ′a ⇒ ′a) (( ′v , ′a) expr) (( ′v , ′a) expr)

and their interpretation is done by interp-expr taking as extra argument the
variable instantiations represented as a function from variables to values:
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fun interp-expr :: ( ′v , ′a) expr ⇒ ( ′v ⇒ ′a) ⇒ ′a where
interp-expr (Var v) vs = vs v

| interp-expr (Const a) vs = a
| interp-expr (BExpr bop e1 e2) vs = bop (interp-expr e1 vs) (interp-expr e2 vs)

We now define BDDs as binary trees where the two subtrees represent the BDDs
resulting from the instantiation of the root variable to False or True :

datatype ( ′a, ′b) tree = Leaf ′a | Node ′b (( ′a, ′b) tree) (( ′a, ′b) tree)
type-synonym ( ′a, ′b, ′c) rtree = ( ′a × ′c ref , ′b::linorder × ′c ref ) tree

( ′a, ′b, ′c) rtree is the type of referenced trees with leaf content of type ′a,
node content of type ′b and mutable extension of type ′c. These trees contain a
reference to this mutable extension that will be used as an identifier. Each node
contains a variable index whose type is equipped with a linear order (as indicated
by Isabelle’s sort annotation ::linorder) and each leaf contains a value of any type
instantiated later in the development (for interpretations) to Booleans.

BDDs can be interpreted (i. e. evaluated) by giving values to variables which is
what the interp function does (l and h abbreviate low and high):

fun interp :: ( ′a, ′v , ′r) rtree ⇒ ( ′v ⇒ bool) ⇒ ′a where
interp (Leaf (b,r)) vs = b
|interp (Node (v ,r) l h) vs = (if vs v then interp h vs else interp l vs)

3.2 Sharing

We first illustrate the concept of subtree-sharing by an example. A non-shared
BDD (thus, in fact, just a decision tree) representing the formula (x ∧ y) ∨ z is
given by the tree on the left of Figure 2.

There is a common subtree (shaded) which we would like to share. We there-
fore adorn the tree nodes with references, using the same reference for struc-
turally equal trees. The result of sharing is illustrated on the right of Figure 2.

4, x

2, z

0, false 1, true

3, y

2, z

0, false 1, true 1, true

4, x

3, y

2, z

0, false 1, true

sharing

Fig. 2. Sharing nodes in a tree

In this way, as long as subtrees having identic references are the same, we can
represent sharing. To ensure this property giving meaning to references, we use
the predicate ref-unique ts :
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definition ref-unique :: ( ′a, ′v , ′r) rtree set ⇒ bool where ref-unique ts ≡
∀ t1 t2. t1 ∈ ts −→ t2 ∈ ts −→ (ref-equal t1 t2 ←→ struct-equal t1 t2)

in which ref-equal means that two trees have the same reference attribute, and
struct-equal is structural equality neglecting references, thus corresponding to
the typical notion of equality of data in functional languages.

While the left-to-right implication of this equivalence is the required property
(two nodes having the same reference are the same), the other implication ensures
maximal sharing (same subtrees are shared, i. e. have the same reference).

3.3 Ordering and Reducedness

With this definition, and without any other property, BDDs would be rather
hard to manipulate. For one, same variable indices could appear several times
on paths from root to leaves. Also, variables would not be in the same order,
making comparison of BDDs harder. Moreover, a lot of space would be wasted.
To circumvent this problem, one often imposes a strict order on variables, the
resulting BDDs being called ordered (OBDDs). We define this property using
the tree-vars constant to collect all variables of a tree:

fun ordered :: ( ′a, ′v ::linorder , ′r) rtree ⇒ bool where
ordered (Leaf b) = True

| ordered (Node (i , r) l h) =
((∀ j ∈ (tree-vars l ∪ tree-vars h). i < j ) ∧ ordered l ∧ ordered h)

An additional important property is to avoid redundant tests, which occur when
the two children of a node have the same interpretation. All the nodes satisfying
this property can be removed. In this case, the OBDD is said to be reduced
(ROBDD).

fun reduced :: ( ′a, ′v , ′r) rtree ⇒ bool where
reduced (Node vr l h) = ((interp l �= interp h) ∧ reduced l ∧ reduced h)

| reduced (Leaf b) = True

This property uses a high-level definition (interp), but it can be deduced
(cf. Lemma 1) from the three low-level properties ref-unique, ordered (already
seen) and non-redundant :

fun non-redundant :: ( ′a, ′v , ′r) rtree ⇒ bool where
non-redundant(Node vr l h)=((¬ref-equal l h) ∧ non-redundant l ∧ non-redundant h)
|non-redundant(Leaf b) = True

We then merge these properties into two definitions robdd (high-level) and
robdd-refs (low-level):

definition robdd t ≡ (ordered t ∧ reduced t)
definition robdd-refs t ≡ (ordered t ∧ non-redundant t ∧ ref-unique (treeset t))

From these definitions, we finally show that ROBDDs are a canonical represen-
tation of Boolean expressions, i. e. that two equivalent ROBDDs are structurally
equal at high (robdd) and low (same with robdd-refs) level:
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Theorem 1 (canonic robdd)

robdd t1 ∧ robdd t2 ∧ interp t1 = interp t2 =⇒ struct-equal t1 t2

Proof. By induction on the pair of trees: the leaves case is trivial, heterogeneous
cases (leaf and node or nodes of different levels) lead to contradictions, and the
remaining case (two nodes of same level) is proved by applying the induction
hypothesis on subtrees.

Also high- and low-level properties are related in Theorem 2 as a consequence
of Lemma 1:

Lemma 1 (non redundant imp reduced)

ordered t ∧ non-redundant t ∧ ref-unique (treeset t) =⇒ reduced t

Proof. By induction on t : the leaf case is trivial and the node case is proved by
applying the induction hypothesis on the subtrees and proving that trees with
different references are structurally different (from definitions of non-redundant
and ref-unique) and then have different interpretations (with contrapositive of
Theorem 1).

Theorem 2 (robdd refs robdd)

ref-unique (treeset t) =⇒ robdd-refs t = robdd t

4 Constructing BDDs

The simplest BDDs are the leaves corresponding to the True and False values.
These ones have to be unique in order to permit sharing of nodes. We put them
in the BDD factory whose data is this record:

record ( ′v , ′c) leaves = runit +
leafTrue :: (bool , ′v , ′c) rtree
leafFalse :: (bool , ′v , ′c) rtree

We define the context of this state by constraining the type of the referenced
record this. This context together with the leaves record would be equivalent to
a class definition class Leaves extends Object in Java where type of this is
constrained from Object to Leaves.

locale leaves = object this for this :: ( ′v , ′c, ′a) leaves-scheme ref

Then we extend it to add logical abstractions trees and invar that will be instan-
tiated during the implementation to provide the correctness arguments we will
rely on in the proofs. The trees parameter abstracts the set of trees already con-
structed in the state. The invar parameter is the invariant of the data-structures
that will be added to the heap by the implementation and that will have to be
preserved by BDD operations.
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locale bddstate = leaves +
fixes trees :: heap ⇒ (bool , ′v , ′c) rtree set
fixes invar :: heap ⇒ bool

To be well-formed (wf-heap), the heap needs to follow the abstract implementa-
tion invariant invar and its trees need to contain the leaves and to be maximally
shared and closed for the subtree relation.

definition wf-heap :: heap ⇒ bool where
wf-heap s ≡ (invar s ∧ ref-unique (trees s) ∧ subtree-closed (trees s) ∧ leaves-in s)

Finally we add an abstract function mk and its specification (mk-spec) especially
ensuring that mk i l h constructs a ROBDD whose interpretation is correct under
the precondition that the heap is well-formed, level i is consistent with levels of
l and h and trees in the heap are already ROBDDs. It uses the function levelOf
returning the level of a BDD.

locale bddstate-mk = bddstate +
fixes mk :: ′v ⇒ (bool , ′v , ′r) rtree ⇒ (bool , ′v , ′r) rtree ⇒ (bool , ′v , ′r) rtree Heap
assumes mk-spec: effect (mk i l h) s s ′ t ∧ wf-heap s ∧ {l ,h} ⊆ trees s =⇒ (
(LevNode i < Min (levelOf ‘ {l ,h}) ∧ (∀ t ′ ∈ trees s. robdd-refs t ′) −→ robdd-refs t)
∧ (∀ vs. interp t vs = (if vs i then interp h vs else interp l vs))
∧ (wf-heap s ′) ∧ (trees s ′ = insert t (trees s)))

In this context we define the app function which applies a binary Boolean opera-
tor to two BDDs. If these BDDs are both leaves, it returns a leaf corresponding to
the application of the binary Boolean operator to their contents. Else it returns
a new BDD constructed with mk from its recursive calls to the left and right
subtrees of BDDs with the same level. For this purpose it uses the select function
which returns two pairs of BDDs corresponding to the subtrees (split-lh) of the
BDD(s) with the smallest level and the duplication (dup) of the other (if any).
It also uses the function varOfLev retrieving the variable corresponding to the
level of a node.

function app :: (bool ⇒ bool ⇒ bool)
⇒ ((bool , ′v , ′r) rtree ∗ (bool , ′v , ′r) rtree) ⇒ (bool , ′v , ′r) rtree Heap where
app bop (n1, n2) = do {
if tpair is-leaf (n1, n2) then (constLeaf (bop (leaf-contents n1) (leaf-contents n2)))
else (do {

let ((l1, h1), (l2, h2)) = select split-lh dup (n1, n2);
l ← app bop (l1, l2); h ← app bop (h1, h2);
mk (varOfLev (min-level (n1, n2))) l h })}

This is the only function whose termination proof is not automatic, but still
very simple: it suffices to show that select split-lh dup decreases the sum of
the sizes of the trees in the pair. Indeed by representing BDDs as an inductive
structure instead of pointers in the heap, the termination condition does not
appear anymore in the implicit nested recursion on the heap like in [13] and we
do not need to add a phantom parameter as a bound like in [20].
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Finally, we define the build function which is a simple traversal recursively
constructing BDDs for sub-expressions and then joining them with app.

primrec build :: ( ′v , bool) expr ⇒ (bool , ′v , ′r) rtree Heap where
build (Var i) = (do{ cf ← constLeaf False; ct ← constLeaf True; mk i cf ct})

| build (Const b) = (constLeaf b)
| build (BExpr bop e1 e2) = (do{ n1 ← build e1; n2 ← build e2; app bop (n1, n2)})

The verification of these functions involves the preservation of the well-formedness
of the heap (Theorems 3 and 4) – implying that the returned BDD (as well as
the others in the heap) is a ROBDD and that it is interpreted like the expression
– and the construction of canonical BDDs (Theorem 5) – implying for example
that a tautology constructs Leaf True.

Theorem 3 (wf heap app)

wf-heap s ∧ {t1, t2} ⊆ trees s ∧ effect (app f (t1, t2)) s s ′ t =⇒
interp t vs = f (interp t1 vs) (interp t2 vs) ∧ insert t (trees s) ⊆ trees s ′ ∧ wf-heap s ′

Proof. We use the induction schema generated from the termination proof of
app working on a pair of trees – following the order relation infered from select
split-lh dup. If both trees are leaves, the BDD is a leaf already in the unchanged
state. Else the induction hypotheses hold for the subtrees provided by select.
The specification of mk and the transitivity of ⊆ finish the proof.

Theorem 4 (wf heap build)

effect (build e) s s ′ t ∧ wf-heap s =⇒
interp t = interp-expr e ∧ insert t (trees s) ⊆ trees s ′ ∧ wf-heap s ′

Proof. By induction on the expression: In the cases of Const or Var, the result
is immediate from the specification of mk and the definition of constLeaf. In the
case of BExpr, the induction hypotheses hold for the sub-expressions and the
result is obtained from Theorem 3.

Theorem 5 (build correct)

(∀ t∈trees s1. robdd-refs t) ∧ wf-heap s1 =⇒
(∀ t∈trees s2. robdd-refs t) ∧ wf-heap s2 =⇒
effect (build e1) s1 s1

′ t1 ∧ effect (build e2) s2 s2
′ t2 =⇒

struct-equal t1 t2 = (interp-expr e1 = interp-expr e2)

Proof. In the same way as for Theorem 4, by proving a similar property for app.

5 Optimizations: Memoization and Garbage Collection

The app and build functions have been presented in their simplest form and
without optimizations. We present in this section the two optimizations we have
made to them.



212 M. Giorgino and M. Strecker

Memoization During the BDD construction, several identical computations can
appear. This happens mostly within the recursive calls of the app function during
which the binary operation stays the same and identical pairs of BDDs can arise
by simplifications and sharing. In order to avoid these redundant computations,
the immediate solution is to use a memoization table – recording the arguments
and the result for each of its calls and returning directly the result in case the
arguments already have an entry in the table. This optimization is essential as
it cuts down the complexity of the construction of highly shared BDD.

We add this memoization table to the state by extending the record containing
the leaves. Then the only changes to the app function are the memoization table
lookup before the eventual calculation and the table update after.

By adding an invariant on all the trees in the memoization table ensuring the
properties desired for the resulting tree (mostly the conclusion of Theorem 3), the
changes in the proof follow the changes of the function. With a case distinction
on the result of the table lookup for the arguments, if there is an entry for them,
the result follows the invariant, else the original proof remains and the result
following the invariant is stored in the table.

Garbage Collection. Using an association table avoids duplication of nodes and
allows us to share them. However, recording all created nodes since the start of
the algorithm can lead to a very huge memory usage. Indeed keeping a reference
to a node in an association table prevents the JVM garbage collector to collect
nodes that could have been discarded during BDD simplifications.

We chose to remove these unused nodes from the association table by a ref-
erence counting variant. The principle of reference counting is simply to store
for each node the number of references to it. Instead of counting references for
all nodes, we only count them for the BDD roots. This allows us to keep the
mk function independent of the reference count. Then, we parametrized the de-
velopment with a garbage collection function gc whose specification ensures the
preservation of used nodes (i. e. nodes reachable from a node with a non-null
reference count). We call it in the build function when the association table
becomes too large.

For this improvement, the proof additions were substantial. Indeed, several
mutations to the reference counters appear in the functions, causing inner mod-
ifications in proofs. Moreover the invariant insert t (trees s) ⊆ trees s ′ for build
had to be weakened to insert t (reachable s) ⊆ reachable s ′ . These difficulties
attributable to mutability highlight the simplifications provided by the encoding
of BDDs as inductive datatypes instead of nodes and pointers.

6 Implementation of Abstract Functions

It is now time to implement the abstract function mk as well as the logical
functions invar and trees. We wrote two implementations and present the most
efficient one using a hash-map provided by the Collection Framework [14].

Following its specification, mk needs to ensure the maximal sharing of nodes.
To do this, we add in the state a table associating the components of a node (its
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children and variable name) to itself. Then by looking in this table, we know
whether a BDD that could be returned has already been created.

record ( ′v , ′c) bddstate-hash =
( ′v ,( ′c ref × ′c ref , (bool , ′v , ′c) rtree) hashmap, ′c) leaves-memo +
hash :: ( ′v × ′c ref × ′c ref , (bool , ′v , ′c) rtree) hashmap

We also define two auxiliary monadic functions add and lookup adding and
looking for nodes of the table in the state. For example, the lookup function is:

definition lookup where
lookup i l h = do{ hm ← this·$hash; return (ahm-lookup (i , ref-of l , ref-of h) hm) }

They are used in the definition of mk :

definition mk where
mk i l h = (if ref-equal l h then return l else
do{ to ← lookup i l h; (case to of None ⇒ add i l h | Some t ⇒ return t) })

The garbage collector gc is then also implemented using two auxiliary monadic
functions referencedSet – computing the set of nodes reachable from a node with
a non-null reference count – and hash-restrict – restricting the domain of the
hash table to the set given as argument:

definition gc :: unit Heap where gc = do { hs ← referencedSet ; hash-restrict hs }

To avoid too frequent calls to the garbage collector, it is triggered only when the
table size exceeds 10000 which is an acceptable condition for preliminary tests
but that could be improved by adding a counter in the state.

We finally use these functions satisfying the specifications of the locales to
obtain instantiated app and build functions for which we can generate code.

7 Performance Evaluation

Finally we evaluate the performance of our BDD construction development.
As a comparison point we developed a BDD package directly in Scala whose

code would be naively expected from the code generation from the Isabelle the-
ories. This allows us to evaluate the efficiency of the default code generation
of Isabelle into Scala wrt our encoding of objects. We also compare these two
implementations with a third one being a highly optimized BDD library called
JavaBDD4 providing a Java interface to several BDD libraries written in C or
Java. The results are given in Figure 3.

For this evaluation we construct BDDs for two kinds of valid formulas both
of which are standard benchmarks. The first one is the Urquhart’s formulae Un

defined by x1 ⇔ (x2 ⇔ . . . (xn ⇔ (x1 ⇔ . . . (xn−1 ⇔ xn)))). The second one
is a formulae Pn stating the pigeonhole principle for n + 1 pigeons in n holes
i. e. given that n+1 pigeons are in n holes, at least one hole contains two pigeons.

4 http://javabdd.sourceforge.net/

http://javabdd.sourceforge.net/


214 M. Giorgino and M. Strecker

0 1,000 2,000
102

104

variable number

ti
m
e
(m
s)

Urquhart benchmark

8 10 12
102

103

104

105

holes number

Pigeonhole benchmark

Isabelle/Scala; Scala; JavaBDD (106); JavaBDD (5× 106)

Fig. 3. Evaluation of the generated code efficiency by comparison with a direct imple-
mentation and the JavaBDD library

In the Scala version, we use the standard hash map of the Scala library
(scala.collection.mutable.HashMap)which has an adaptable size. Its garbage
collection is triggered when the table size exceeds a threshold value initially set
to 1000 and increased by one half when unavoidable.

On the other side, JavaBDD lets the user choose the right table size which
is increased, if necessary, after garbage collections by an initially fixed value. In
the benchmarks, we set it to 106 and 5 × 106. We can see that increasing the
initial table size for the JavaBDD version leads to better performances for large
expressions but then more space is needed even for smaller ones.

As it can be seen on the pigeonhole benchmark, the memory consumption is
still a limiting factor of the Scala versions compared to the JavaBDD one which
manages to construct the BDD for 13 pigeon-holes. Also while the generated
code is 100 times slower than the JavaBDD one (using low-level optimizations),
it is only 10 times slower than the hand-written code that was the lower bound
for its efficiency – the algorithms being identical. We suspect several causes of
inefficiency and space usage introduced by the code extraction:

– Monad operations are converted into method calls. The presence of monadic
operators at each line could explain some performance penalties.

– A “Ref” class is introduced to allow reference manipulations in Scala. This
is unnecessary for objects as long as we don’t use references on primitive
types and referenced values are accessed only through accessors.

– Record extensions are translated to class encapsulations leading to waste of
space and several indirections at the time of attribute accesses.

Improving on these points is current work and we think that these optimizations
in the code generation could improve the general performances, to the point that
the generated code would be comparable to the hand-written code. However, the
confidence in the code generator is an essential component of the whole process
that makes it hard to modify. More details on possible solutions will be discussed
in [11].
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8 Conclusions

This paper has presented a verified development of a BDD package in the Is-
abelle proof assistant, with fully operational code generated for the programming
language Scala. It represents BDDs by trees containing references allowing for
easy definitions and proofs – done by natural induction schemas and rewriting.
The development time for the formalization itself (around 6 person months) is
difficult to estimate exactly, because it went hand in hand with the development
of the methodology. In the light of the performance of the code obtained, the
result is encouraging, and we expect to explore the approach further for the
development of verified decision procedures.

As mentioned in the outset, bit-level optimizations could be introduced, at
the price of adding one or several refinement layers, with corresponding simu-
lation proofs. Even though feasible, this is not our current focus, since we aim
at a method for producing reasonably efficient verified code with a very mod-
erate effort. Indeed this development stretches over about 7500 lines – 5000
before optimizations – among them about 1500 are generic and concern object
management. This compares very favorably with the verification in Coq of the
same algorithm including optimizations [20] (about 15000 lines), and with the
verification of normalization of BDDs in Isabelle/HOL [18] (about 10000 lines).

Consequently, our method is not a panacea. As far as the class and object
model is concerned: The type system has intentionally been kept simple in the
sense that classes are essentially based on record structures and inductive data
types as found in ML-style polymorphism. Such a choice is incompatible with
some OO features such as late method binding, which appears to be acceptable
in the context of high-integrity software. As mentioned in Section 7, we are
aware of some inefficiencies that arise during code extraction to Scala, and which
have as deeper cause a mismatch between pointer-manipulating languages (as
incorporated in the Imperative HOL framework) and “all is object” languages,
such as Java and Scala. We will address this issue in our future work.

Finally, even though the representation “trees with sharing” appears to be a
severe limitation at first glance, its combination with cute functional data struc-
tures [17] allows to represent quite general pointer meshes (see for example the
verification of the Schorr-Waite algorithm [12] using a “zipper” data structure).
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A Formal Framework for Modelling Coercion

Resistance and Receipt Freeness

James Heather and Steve Schneider
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Abstract. Coercion resistance and receipt freeness are critical proper-
ties for any voting system. However, many different definitions of these
properties have been proposed, some formal and some informal; and there
has been little attempt to tie these definitions together or identify rela-
tions between them.
We give here a general framework for specifying different coercion re-

sistance and receipt freeness properties using the process algebra CSP.
The framework is general enough to accommodate a wide range of defini-
tions, and strong enough to cover both randomization attacks and forced
abstention attacks. We provide models of some simple voting systems,
and show how the framework can be used to analyze these models un-
der different definitions of coercion resistance and receipt freeness. Our
formalisation highlights the variation between the definitions, and the
importance of understanding the relations between them.

Keywords: secure voting, CSP, coercion-resistance, receipt-freeness.

1 Introduction

Much work has been published over the last couple of decades concerning secure
voting protocols. Many proposals come with claims that they meet appropriate
security guarantees; but the properties in question are often poorly defined, and
for the most part any proofs offered have been informal at best.

More recently, there have been attempts to formalize some of the desirable
properties of voting systems [MN06, DKR09, DLL11]. These results have been
useful, because they have been able to give precise answers to previously vague
questions about the security of various systems. The approach has been to con-
struct a model, and to verify it against a formalization of the relevant property.

However, since the informal definitions vary considerably, these formal defini-
tions inevitably capture what is meant by some authors’ use of the terms, and
not others’; consequently, one can debate whether the formalisms really have
captured the ‘right’ understanding of the various properties.

Our approach here is a little different. We take two commonly discussed
properties—coercion resistance and receipt freeness—and construct a framework
that is rich enough to cope with a large variety of definitions. This has the advan-
tage of allowing us to formalize many definitions and analyze a voting system to
see which definitions it satisfies and which it does not. A simplified CSP model
of Prêt à Voter is then considered against a range of coercion resistance prop-
erties expressed in our framework. Two further examples of voting systems are
presented to highlight differences between definitions in the literature.
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1.1 Characterisations

Characterisations of coercion resistance and receipt freeness are plentiful in the
literature, but rarely do two definitions coincide. The following characterisa-
tions are examples from the literature. They are a mixture of coercion resistance
and receipt freeness definitions; once we have seen the flavour of some of these
definitions, then we will consider the differences. They apply to systems which
voters interact with in order to cast votes, and which potential coercers may also
observe and interact with.

Characterisation 1 (Okamoto [RF]). For any two candidates c and c′, a
voter can vote for c in a way that is consistent (from the coercer’s point of view)
with having voted for c′ [Oka97].

Characterisation 2 (Benaloh/Tuinstra [RF]). A voter should be unable to
prove that a vote was cast in a particular way [BT94].

Characterisation 3 (Delaune/Kremer/Ryan [CR]). Coercion resistance
holds if a coerced voter behaving as instructed is indistinguishable from one voting
a different way, to a coercer interacting with the voter [DKR09]. (A weaker
notion of receipt freeness is also provided.)

The issue here is what can qualify as instruction. The difference between coercion
resistance and receipt freeness is usually phrased in terms of the coercer’s ability
to interact with the voter during the voting process: coercion resistance includes
protection against a coercer who can interact in this way, whereas receipt freeness
does not. This is a slippery distinction, for two reasons. First, interacting with
the voter before the voting process, and interacting during the voting process,
are hard to distinguish cleanly. For instance, there is nothing in principle to stop
the coercer from interacting before voting takes place, and providing the voter
with a flowchart showing how the voter is to act in any given situation. Secondly,
it is not clear what constitutes interaction. If it is known to me that someone
is offering money for receipts that show a vote for a particular candidate, does
the fact that the knowledge has reached me (by whatever means) constitute
interaction with the coercer?

Since coercion resistance is generally considered to be a stronger property
than receipt freeness, the approach we will take in this paper is to see receipt
freeness properties as a subclass of coercion resistance properties. We will assume
that receipt freeness deals with a coercer who is concerned only with deducing
information about how someone voted from receipts and any public information,
but who does not give detailed instructions on how to cast the vote. Coercion
resistance, on the other hand, includes dealing with a coercer who gives details
not just on which candidate to vote for but also on how to cast the vote.

This understanding of receipt freeness has the advantage that it can be mod-
elled in the same way as coercion resistance. Receipt freeness, on this definition,
is equivalent to coercion resistance against a coercer who can specify which can-
didate the voter should choose, but cannot specify how the voter should make
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the choice. If the voting process is deterministic (as it is, for example, in Prêt
à Voter), then these two notions will coincide, but if it is non-deterministic (as,
for example, in ThreeBallot [Riv06]) then they might not.

Because receipt freeness properties are, on this understanding, a subclass of
coercion resistance properties, we will focus on the larger problem of coercion
resistance. Receipt freeness is discussed in more detail in an expanded and more
technical version of this paper [HS12].

2 Modelling Voting Systems in CSP

CSP (Communicating Sequential Processes) provides a language for describing
concurrent systems, and a theory for reasoning about them, in terms of events
that they can perform. Events can be atomic, e.g., start , or they can be struc-
tured with several fields, e.g., vote.i .p.v . The language of processes includes:

– a → P , which can perform a and then behave as P ;
– c?v → P(v) which inputs value v over channel c and then behaves as P(v);
– c!v → P which outputs v on channel c;
– P \ A which hides the set of events in A, which are performed internally;
– Stop is the process that does nothing.
– Chaos(H ) is the process that can nondeterministically perform or refuse to

perform any event from H at any time.
– P ! Q makes an internal (nondeterministic) choice between P and Q ;
– P � Q offers an external choice between P and Q ;
– P ‖ Q runs P and Q in parallel, synchronising on their common events.

The last three operators also have indexed forms. The language also includes
recursive definitions N = P .

The theory provides a hierarchy of semantic models, including the Stable Fail-
ures model, which models a process as the set of traces (sequences of events) and
subsequent sets of events that can be refused and the Failures/Divergences model
which also includes information about divergent (infinite internal) behaviour. A
process P is refined by another process Q , written P �F Q (or Q 'F P), and
P �FD Q for the respective models, if all observations of Q in that model are
also observations of P . See [Ros98, Sch99] for further details.

Throughout this section, we shall assume that voting systems are modelled
as follows. The system as a whole is modelled by a CSP process SYSTEM ; this
will be responsible for receiving votes, publishing receipts, tallying, publishing
audit data, and whatever else the system in question may need to do.

Voters will interact with the system by being placed in parallel with it. We
will model voter behaviour by a process VOTER(i , c), which represents the most
general behaviour of a voter with ID i who chooses to vote for candidate c.

Preferential voting systems allow voters to rank the candidates, rather than
asking them to choose one candidate. The framework presented here is expressive
enough to allow for this: c would be the vote in whatever form it might take,
rather than necessarily being a specific candidate, and each possible ranking
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would effectively be treated as a separate ‘candidate’. However, for clarity of
exposition, we will continue to talk in terms of votes for particular candidates.

We will consider coercion resistance and receipt freeness from the perspective
of an arbitrarily chosen voter, to whom we will give the name of Zara and the
ID of 0. Thus, roughly speaking, we will want to know whether a coercer can
distinguish SYSTEM ‖ VOTER(0, c) from SYSTEM ‖ VOTER(0, c′). In the
first case, the target voter casts a vote for c; in the second case, for c′.

However, we start by observing that no voting system can be coercion resistant
from voter 0’s perspective if every other voter is under the complete control of
the coercer. The coercer will know what the tally should be without voter 0’s
vote, and so he will be able to establish how voter 0 voted by seeing how the tally
has changed. We will need to assume that there is at least one other voter who
lies outside the control of the coercer. Since we will need to reason about this
voter, we will identify him by the name of Juan and the ID of 1. This approach
is also taken in the formalisations given in [DKR09].

The idea will be that Juan will cover Zara’s tracks. Consider the case where
the coercer instructs Zara to vote for Alice. Coercion resistance will mean that
the coercer is unable to distinguish between Zara’s compliance by voting for
Alice and Juan’s voting for Bob, and Zara’s disobedience by voting for Bob and
Juan’s voting for Alice. The underlying assumption is that there is at least one
voter (whom we will call Juan) who, as far as the coercer is concerned, might or
might not vote for Alice, but who in fact does so. As long as at least one voter
casts a vote for Alice but is not known by the coercer to have done so, then
Zara’s non-compliance will be masked. The precise masking behaviour will vary
according to the voting system and the model of coercion resistance.

We are now ready to state the formal definition. We start with some assump-
tions on the model of the system and the model of a general voter. We denote the
set of all candidates by CANDIDATES . This set includes the special value abs;
a voter who ‘chooses’ the candidate abs chooses to abstain from voting.

Assumption 4 (System Model). The system is modelled by a pro-
cess SYSTEM , and the most general behaviour of a voter with ID i who chooses
to vote for candidate c is modelled by VOTER(i , c). Voter behaviour is also
defined for a set of candidates: the most general behaviour of a voter who
chooses non-deterministically from the set CANDS �= ∅ of candidates is

VOTER(i ,CANDS ) =!
c∈CANDS

VOTER(i , c)

These processes must meet the following conditions:

SYSTEM \ (Σ \{open,close}) =FD open → close → Stop

VOTER(i ,CANDIDATES ) \ (Σ \ {open,close}) =FD open → close → Stop

SYSTEM ‖ ( ‖
i∈IDS

VOTER(i ,CANDIDATES )) \ (Σ \ {open,close})

=FD open → close → Stop
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One consequence of these assumptions is that voter behaviour and overall system
behaviour are both finitary. This rules out, for instance, unbounded auditing of
ballot papers in a system like Prêt à Voter [CRS05], or unbounded re-voting in
a system like Helios [Adi08]. This is not unreasonable, since in practice polling
closes at a fixed time, meaning that systems and voters must eventually termi-
nate their interaction.

What is more important from a technical point of view is that it eliminates the
possibility of divergence in any of the processes involved in the model. When we
consider the coercer’s view of the system, we will abstract away all of the events
that the coercer cannot see; if unbounded sequences of such events were allowed,
then the abstraction would introduce divergence. By ensuring that every process
is divergence free, we will be able to analyze the model in stable failures without
concerning ourselves with divergence. Hence for the remainder of this paper we
will use the stable failures semantic model.

Definition 5 (Coercer’s control). We use ‘H ’ for the set of events invisible
to the coercer. The only restriction is that {open, close}∩H = ∅; in other words,
the coercer must be able to see the opening and closing of the election.

Definition 6 (Candidates and abstentions). The set of all candidates under
consideration is denoted by ‘C ’. This will denote all the candidates for whom
Zara may wish to vote, and all of the candidates for whom the coercer may wish
her to vote. Typically we will have either C = CANDIDATES \ {abs}, if we do
not want to consider abstentions, or C = CANDIDATES if we do.

We now define the set of all instructions the coercer might give Zara. Instruc-
tions will come in the form of a process whose behaviour Zara must mimic; for
compliance to be possible, the process must be a refinement of VOTER(0,C ),
Zara’s most general behaviour.

Definition 7. We use ‘I ’ to denote the set of instructions that the coercer might
give Zara. It must be a subset of the set of all possible instructions that the coercer
could give Zara, with the set C of candidates under consideration:

I ⊆ {P | P 'F VOTER(0,C )}
Definition 8 (Coercion resistance [CR]). Suppose that we are given some
system model SYSTEM (with associated voter model VOTER(i , c)).

We say that SYSTEM meets CR(I ,C ,H ,mask), with

I ⊆ {P | P 'F VOTER(0,C )}
C ⊆ CANDIDATES

H ⊆ Σ \ {open, close}
mask ⊆ (H ×H ) ∪ (H̄ × H̄ )

if, for all c ∈ C and Zx ∈ I , there exist some Zc 'F VOTER(0, c) and Jx 'F

VOTER(1,C ) such that

LH (mask(SYSTEM ‖ Zx ‖ VOTER(1,C )))
�F LH (mask(SYSTEM ‖ Zc ‖ Jx )) (1)
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In this definition, J is a shorthand for VOTER(1,C ), Juan’s most general be-
haviour. The set I represents the set of processes that the coercer is able to
choose from when giving instructions to Zara; we must have I ⊆ {P | P 'F

VOTER(0,C )} if Zara is to be able to comply. The second parameter, C , de-
termines the set of candidates under consideration; in particular, the flavour
of coercion resistance will change if this contains the special abs candidate. If
abs ∈ C , then Zara must be able to abstain if she so wishes, and the coercer
may try to force her to abstain.

The coercer’s view is controlled by the third parameter, H . The LH function
is lazy abstraction, and is defined in [Ros98]; it provides a mechanism for masking
all of the events (in traces and in refusals) from the hidden set H . It is defined
as LH (P) = (P ‖ Chaos(H )) \ H . Essentially, by applying lazy abstraction over
the set H , we ensure that events from the set H are invisible, so that the coercer
can neither see such events nor see the refusal to engage in such events. This is a
stronger form of abstraction than simply hiding events, for which hidden events
cannot be refused.

The purpose of the fourth parameter, mask , is to allow us to model semantic
security of an encryption function. There will be times when we want to say that
encryptions are essentially opaque to an observer: he cannot learn anything from
seeing an encryption, including determining whether two encryptions represent
the same value. The mask function is applied to events, and then lifted to whole
processes; usually it will involve mapping all encryptions to a single value. The
conditions on it state that it should act reasonably with respect to the events
that are being entirely abstracted away: it will not move a whole event from
hidden (in H ) to visible (in Σ \ H ) or from visible to hidden. For most of the
models in this paper, we will use the identity function id as the mask, because
there is no encryption to deal with; but for the Prêt à Voter model in Section 4,
we will need to mask encryptions from the observer’s view.

What Definition 8 states, then, is that whatever candidate c Zara wishes to
vote for, and whatever instructions Zx the coercer might give her from the set I ,
there is some possible behaviour Zc of hers that casts a vote for c, and some
possible behaviour Jx of Juan, such that, when we abstract away the set of all
hidden events H , any behaviour of the system when Zara acts as Zc and Juan
acts as Jx is also a possible behaviour of the system when Zara acts as instructed
by the coercer.

An alternative definition replaces the refinement relation with equality:

Definition 9 (Coercion resistance [CR∗]). The coercion resistance property
CR∗(I ,C ,H ,mask) has the same definition as CR of Definition 8 except that it
uses equality instead of refinement, replacing Line (1) with the following:

∃ Jc 'F VOTER(1, c) . LH (mask(SYSTEM ‖ Zx ‖ Jc))
=F LH (mask(SYSTEM ‖ Zc ‖ Jx ))

In Definition 8, the question is whether some strategy of Zara’s is sufficient to
allow her to vote according to her own wishes whilst claiming plausibly to have
obeyed the coercer; in Definition 9, the question is whether every observation
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that the coercer might make of a compliant voter is also possible for a voter
voting for c. Definition 9 is stronger than Definition 8 since equality implies
refinement. For most voting systems there will be no difference; but we will see
in Section 4.1 that this is not always the case. Hence we illustrate the difference
between approaches based on CR and those based on CR∗.

The line we will adopt here is to use Definition 8 for the bulk of our work, to
illustrate how the definition can be applied. Similar results hold for Definition 9.

3 Definitions of Coercion Resistance

In this section, we will give formal definitions within our framework of several
different informal definitions of coercion resistance and receipt freeness, including
some of those found in Section 1.1. In each case, we will give the definition of the
set I of instructions that the coercer can give. This set will be defined in terms
of C , the set of candidates under consideration. We will then give a useful result
that allows us to compare definitions; this will enable us to set up a hierarchy
of definitions of coercion resistance and receipt freeness.

Since the definitions are in terms of the set I of instructions, they can apply
equally to CR and to CR∗.

3.1 Formal Definitions

For convenience, we will attach a superscript of ‘abs’ when the definition in-
cludes the special abstention candidate. The definitions below are given in their
undecorated form; but later we will use the decorated forms of some of these
definitions when we want to consider abstentions.

One notion of coercion resistance that is not given a formal definition below
is that of resistance to randomization attacks, in which the coercer attempts
to force Zara to vote randomly. This type of attack can occur in a system like
Prêt à Voter, where the coercer can insist that Zara bring back a receipt with
a cross in the top box, without the coercer knowing which candidate the top
box will represent. The formal definition of such attacks varies according to the
system in question, so we cannot give a general definition, but we will discuss
randomization attacks further in Section 4.

We start with the definition of a general kind of receipt freeness property, in
the context of a voter who wishes to deceive the coercer where possible.

Definition 10 (Receipt Absence). Our informal definition of receipt absence
allows the coercer to specify the content of the vote, but not how to cast the vote.
In its most general form, the coercer may specify any non-empty subset X of
candidates, and require the voter to cast the vote for a candidate from X . The
set of instructions that the coercer may give, then, is

IRFGEN = {VOTER(0,X ) | X ⊆ C ∧ X �= ∅}

We shall shortly give some results that enable us to say when one definition is
stronger than another.
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Definition 11 (Okamoto). Characterisation 1 is encapsulated formally by us-
ing the following set within the definition of CR or CR∗:

IOK = {VOTER(0, c) | c ∈ C}

The coercer may specify a candidate to vote for, but may not specify how the
voter is to cast it. This turns out to be equivalent to IRFGEN .

Definition 12 (Benaloh/Tuinstra). We here give the formal definition of
coercion resistance for Characterisation 2. This holds when a voter aiming to
deceive the coercer can avoid leaking information about how the vote was cast.
The Benaloh/Tuinstra definition is encapsulated by using the following set within
the definition of CR or CR∗:

IBT = {P | P ' VOTER(0, c) ∧ c ∈ C}

This is stronger than the Okamoto definition. Here, the coercer can require spe-
cific evidence that Zara has complied with specific instructions not just on voting
for c but on voting for c in a particular way.

Definition 13 (Delaune/Kremer/Ryan). Characterisation 3 says that a
system is coercion resistant if the coercer cannot tell whether a coerced voter
has behaved as instructed or voted differently. This leaves open the question of
what possible instructions the coercer may give, but it appears that in their model
a coercer’s instructions must always be instructions to vote for a particular can-
didate, possibly in a specific way. The formal definition of the set I within our
framework is then the same as that for the Benaloh/Tuinstra definition: the co-
ercer can choose any candidate, then specify any refinement of the process that
always casts a vote for that candidate. Note that Delaune, Kremer and Ryan
use observational equivalence, so CR∗ will always be the appropriate definition
corresponding to theirs.

Definition 14 (Forced abstention attacks). A forced abstention attack is an
attack in which the coercer attempts to force Zara to abstain. Since it makes sense
only when abstentions are under consideration, we give the formal definition in
its decorated form: I abs = {VOTER(0, abs)}.

Definition 15 (Maximum strength). Our framework finds its strongest
possible notion of coercion resistance in the set of all refinements of Zara’s
most general behaviour, VOTER(0,C ). This includes everything covered by Be-
naloh/Tuinstra, but it also includes randomization attacks, and any other sort of
instruction that Zara is able to follow: for instance, an instruction to use the last
digit of the ballot serial number to determine which candidate to vote for. When
abs ∈ C, it also includes instructions to abstain, or instructions to participate.

IMAX = {P | P 'F VOTER(0,C )} where abs �∈ C

I absMAX = {P | P 'F VOTER(0,C )} where abs ∈ C
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The possibility of randomisation attacks is dependent on the particular system
under consideration, and there is not a generic characterisation. We see an ex-
ample of a randomisation set IRND in the next section, under Proposition 20.

3.2 Relationships between Definitions

Some of the associated CR and CR∗ definitions are stronger than others. We now
state some results that allow us to formalize relations between notions of coercion
resistance. Proofs of the results given in this paper can be found in [HS12].

Definition 16 (Dominance). Suppose that I1 and I2 are sets of processes. We
say that I1 dominates I2 if ∀P2 ∈ I2. ∃P1 ∈ I1.P2 �F P1.

Theorem 17 (CR and dominance). Suppose that I1 dominates I2, and
SYSTEM meets CR(I1,C ,H ,mask). Then it also meets CR(I2,C ,H ,mask).

Corollary 18 (CR and subset). Suppose that I2 ⊆ I1, and SYSTEM meets
CR(I1,C ,H ,mask). Then it also meets CR(I2,C ,H ,mask).

These results allow us to give a hierarchy of definitions, whose relationships are
shown in Figure 1.

I abs
MAX

I abs
BT

I abs
OK

IMAX

IBT

IOK

I abs
RND

IRND

I abs

I abs
RFGEN IRFGEN

Receipt freeness specifications below
Non-receipt freeness specifications above

Fig. 1. Hierarchy of definitions of coercion resistance

4 Example: Simplified Prêt à Voter

Figure 2 shows the CSP for a simplified model of Prêt à Voter running a ref-
erendum. Voters receive a value b ∈ {0, 1} on channel ballot , which indicates
the ordering of the boxes on the ballot form: 0 or 1 means that the top box
represents ‘yes’ or ‘no’ respectively. They also receive a pair of encryptions, the
first (second) of which will decrypt to the value represented by the top (bottom)
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BOOTH = open → WAITING(∅, ∅)
WAITING(VTD,BOX ) = arrive?id : IDS \ VTD → VOTING(VTD,BOX , id)

� close → mix .1!BOX → Stop

VOTING(VTD,BOX , id) = newBallot → genBallot?b?encs → ballot.id!b!encs

→ �
v∈{0,1}

(vote.id.v .encs[v ] → write!encs[v ] →

WAITING(VTD ∪ {id},BOX ∪ {encs[v ]}))

MIX (n) = close → mix .n?BOX → REMIX (n,BOX , ∅)
REMIX (n, ∅,NEW ) = mix .(n + 1)!NEW → Stop

REMIX (n,OLD,NEW ) = !
v∈OLD

reenc.n!v → genReenc.n?v ′ →

REMIX (n,OLD \ {v},NEW ∪ {v ′})

DEC = mix .(K + 1)?BOX → announce!cnt(BOX , 0).cnt(BOX , 1) → Stop

SYSTEM = (BOOTH ‖

⎛
⎜⎝ ‖

1�i�K

MIX (i)

⎞
⎟⎠ ‖ ENCSVR(RAND) ‖ DEC )

\ {|newBallot, genBallot, reenc, genReenc|}

ENCSVR(R) = newBallot → !
b∈{0,1}

genBallot!b!〈Enc.b.R[0],Enc.(1 − b).R[1]〉 → ENCSVR(R[2..])

� reenc?n?Enc.b.r → genReenc!n!Enc.b.R[0] → ENCSVR(R[1..])

VOTER(i, c) = open → if (c �= abs) then

arrive!i → ballot.i?b?xs → vote.i.c ⊕ b.xs[c ⊕ b] → close → Stop

else close → Stop

cnt(BOX , b) = #{r | Enc.b.r ∈ BOX}

Fig. 2. A simplified model of Prêt à Voter: defining the system and voter behaviour

box. They then submit an ID from the finite set IDS of all voter IDs, and the
encryption associated with the box they want to choose; the system returns this
encryption to them, and then stores the encrypted value.

When voting closes, the set of votes is passed through each of the K mix
servers in turn, which each re-encrypt them all. The votes are then decrypted
and the totals announced.

Here and throughout, ‘v̄ ’ represents 1 ⊕ v , where ‘⊕’ is bitwise exclusive-or.
(The special candidate abs is treated as invariant under this operation.) The bal-
lots and re-encryptions are produced by ENCSVR, which models the assumption
that no two encryptions ever have the same randomness. It is initialized with
an infinite sequence RANDS of distinct random numbers, and it uses these to
generate new ballots and re-encryptions of existing ballots.

The voter process is finitary (Assumption 4) because it is non-recursive. The
system is finite because on each step the number of people who have voted
strictly increases, and cannot exceed #IDS .
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Our Prêt à Voter model is rich enough to allow for analysis under various
definitions of coercion resistance. We consider several here. Initially, we will not
take abstentions into account.

For what follows, we define the function mask to model the semantic security
of the encryption: it abstracts the system so that all encryptions appear as the
value ‘⊥’. This prevents agents from ‘reading’ inside the encryptions:

mask(ballot .i .b.E ) = ballot .i .b.〈⊥ | e ∈ E 〉 mask(mix .n.B) = mix .n.{⊥ | b ∈ B}
mask(vote.i .p.v) = vote.i .p.⊥ mask(write.v) = write.⊥

Proposition 19 (Okamoto and PaV, no abs).
The set of candidates under consideration, when abstentions are not taken

into account, is C2 = {0, 1}.
The Okamoto definition in this setting is encapsulated by IOK =

{VOTER(0, c) | c ∈ C2}.
Suppose that we set HPUB = {|ballot |}. In other words, the coercer cannot see

the ordering of the names on the ballot paper (the ballot channel), but can see
who arrives to vote (the arrive channel) and who ticks which box (the masked
vote channel). We use the name ‘HPUB ’ because this models a scenario in which
it is made public which voter is associated with each encrypted receipt.

The simplified Prêt à Voter model meets CR(IOK ,C2,HPUB ,mask).

Proposition 20 (Randomization attacks and PaV, no abs). To mount
a randomization attack, the coercer specifies a particular box to be ticked (for
instance, the top box). The coercer cannot know whether this box represents a
‘yes’ or a ‘no’ vote. Such an attack is represented in our model by setting

IRND = {open → arrive!0→ ballot .0?b?xs →
vote.i .xs [v ]→ close → Stop | v ∈ {0, 1}}

We consider candidates in C2 = {0, 1}, and HPUB = {|ballot |}. The coercer can
see which box Zara ticks, but not which candidate it represents.

Our simplified model of Prêt à Voter does not meet
CR(IRND ,C2,HPUB ,mask).

Corollary 21 (IMAX and PaV, no abs). It is an immediate corollary of
Proposition 20 and Corollary 18 that our simplified Prêt à Voter does not meet
CR(IMAX ,C2,HPUB ,mask).

Any set of coercer instructions must be a subset of IMAX , so Corol-
lary 18 tells us that if Prêt à Voter met CR(IMAX ,C2,HPUB ,mask) then
it would meet CR(I ,C2,HPUB ,mask) for any I . But Proposition 20 shows
that it does not meet CR(IRND ,C2,HPUB ,mask); therefore, it cannot meet
CR(IMAX ,C2,HPUB ,mask).

We now return to the question of abstentions. In what follows, we will use
C abs

2 = C2 ∪ {abs}, and establish what effect this has on coercion resistance. In-
cluding abs has two consequences. First, Zara may now want to abstain; coercion
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resistance will imply that she is able to abstain if she wishes, without the coercer
knowing that she has not complied. If the coercer can force Zara not to abstain,
then we have a forced participation attack. Secondly, the coercer may insist on
Zara’s abstention; coercion resistance will imply that she is able to vote if she
wants to, without the coercer knowing that she has not abstained. If the coercer
can force Zara to abstain, then we have a forced abstention attack. The model
is rich enough to handle these cases independently. However, they are naturally
treated together, and we will treat them together here.

Proposition 22 (Okamoto and PaV, C abs
2 ).

The Okamoto definition, with abs included, is modelled by

I absOK = {VOTER(0, c) | c ∈ C abs
2 }

By including abs in the set of candidates, we also allow for the possibility that
Zara wishes to abstain. We continue to set HPUB = {|ballot |}, so that the coercer
can see all voter actions but cannot see the candidate ordering on the ballot paper.

Our simplified Prêt à Voter model does not meet CR(I absOK ,C abs
2 ,HPUB ,mask).

If the coercer can see anything that includes the voter’s ID, then there is no hope
of resistance to forced abstention attacks.

Corollary 23 (I absMAX and PaV, C abs
2 ). The strongest definition, with abs in-

cluded, is modelled by I absMAX = {P | P 'FD VOTER(0, c) | c ∈ C abs
2 }

Our model does not meet CR(I absMAX ,C abs
2 ,HPUB ,mask).

Finally we ask what happens if we change the level of abstraction, so that the
coercer can see fewer events. We will allow the coercer to see votes being posted
up (on the write channel), but not arrivals or vote casting. We will set HSEC =
{|arrive, ballot , vote|}.

Proposition 24 (IMAX and PaV, C abs
2 , HSEC ). Our simplified Prêt à Voter

model meets CR(IMAX ,C abs
2 ,HSEC ,mask). In other words, when all events con-

taining voter IDs are abstracted away, our model satisfies the strongest possible
definition of coercion resistance in our framework.

It is evident from this one example that the framework we have constructed is
able to handle a wide variety of notions of coercion resistance, by varying the
values of I , C and H . A summary of results is shown in Table 1.

Table 1. Summary of results for simplified Prêt à Voter model

Definition Abs? Invisible Formalism Met by PaV?
Okamoto No {|ballot|} CR(IOK ,C2,HPUB ,mask) Yes
Randomization No {|ballot|} CR(IRND ,C2,HPUB ,mask) No
Strongest No {|ballot|} CR(IMAX ,C2,HPUB ,mask) No

Okamoto / forced abs Yes {|ballot|} CR(I abs
OK ,C abs

2 ,HPUB ,mask) No

Strongest Yes {|ballot|} CR(I abs
MAX ,C abs

2 ,HPUB ,mask) No

Strongest Yes {|arrive, ballot, vote|} CR(I abs
MAX ,C abs

2 ,HSEC ,mask) Yes
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4.1 Further Examples

Two further toy examples illustrate the differences between types of coercion
resistance. ‘Two-receipt’ shows the difference between the definitions of Okamoto
(where it holds) and Benaloh/Tuinstra (where it does not hold). ‘Opt-receipt’
shows the difference between the two characterisations of coercion resistance,
CR and CR∗. In each case, we give here the informal definitions and state the
properties the systems meet; the CSP models can be found in [HS12].

Two-Receipt. This system gives voters a receipt containing two names (in
arbitrary order): the name of the candidate who received the vote, and one
other candidate of the voter’s choice. The intention is that the inclusion of an
alternative name on the receipt allows the voter to mask who received her vote.

Two-receipt meets the property CR(IOK , {c1, c2, c3}, {|vote, dummy|}, id). A
voter instructed to vote for c′ can vote for c in a way consistent with a vote for
c′. Conversely, Two-receipt does not meet the Benaloh and Tuinstra character-
isation as captured by the property CR(IBT , {c1, c2, c3}, {|vote, dummy|}, id).
This is consistent with our expectations. A voter is able to vote for her preferred
candidate c in a way consistent with a vote for c′, as required by Okamoto’s
definition. On the other hand, if the coercer can require a vote to be cast in a
particular way, then the voter might not be able to vote in her preferred way
consistent with this. Our formal characterisation captures this distinction.

Opt-Receipt. The following example is attributed to Ron Rivest. On accepting
a vote, the system chooses whether or not to offer a receipt. If offered, the voter
chooses whether or not to accept the receipt. Hence the voter might obtain a
receipt of exactly how they voted. However, they can also vote for their pre-
ferred candidate consistently with any instructions a coercer might give them,
by declining any receipt, and claiming that the system did not offer one.

The voter has a strategy for voting without production of a re-
ceipt, and so Opt-receipt meets CR(IMAX ,C ,HOPT , id), where HOPT =
{|vote, noreceipt , offerreceipt , accept , reject |}. However, it does not meet
CR∗(IMAX ,C ,HOPT , id). This example thus highlights the difference between
CR, which requires the existence of a coercion resistance strategy for a voter, and
CR∗, which requires that information about the vote should not leak whatever
the voter does.

5 Discussion

As commented in Section 1, there are a variety of definitions in the literature to
receipt-freeness and coercion-resistance, and a range of approaches to analysing
proposed voting protocols and systems. They all hinge on the required inability
of a coercer to tell whether the coerced voter has followed instructions or not.

The game-based approach typically applied to cryptographic schemes has been
applied with respect to coercion-resistance in [JCJ05, GGR09, KTV10]. In this
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approach, coercion-resistance is captured in terms of a game with a specific goal,
e.g. [GGR09] considers Indistinguishability of Encoded Votes. The nature of the
goal and the coercer’s possible instructions characterises whether abstention and
randomisation attacks are included, and so the hierarchy of Figure 1 also applies
to the range of possibilities expressible using the game-based approach.

Coercion resistance has also been characterised in the Universal Composabil-
ity (UC) framework, for example in [MN06], [UMQ10], [dMPQ07]. This approach
uses an idealised system in which voters choose whether or not to obey the co-
ercer, and then defines a coercion-resistant system to be one in which an adver-
sary cannot enable a distinguisher to tell the difference between the real system
and the idealised system. Though in a different setting, this gives the same sense
of coercion-resistance as Definition 3. The hierarchy of definitions of Figure 1
for the UC setting corresponds to what the coercer can require of the voter in
the idealised system. Abstention attacks fall naturally within this setting, but
randomisation attacks will perhaps be more difficult to characterise.

Others take a more symbolic approach. Okamoto’s original formulation
[Oka97] was epistemic. More recently the epistemic approach of [KT09] requires
that for any instructions provided by the coercer, there is a counter-strategy for
the voter to achieve their own goal, where the coercer cannot tell whether or
not his instructions were followed. The hierarchy of definitions arises naturally
with this approach, as the possible instructions and observations of the coercer
vary. A quantitative approach based on knowledge reasoning is given in [JMP09],
which gives a measure of voter privacy.

The process algebraic approaches of [DKR09, BHM08] and this paper are
also symbolic. In these approaches an observational equivalence is used for in-
distinguishability, and coercion-resistance is captured as the equivalence of two
processes, one where the voter complies and one where he does not. The mod-
els in [DKR09] provide a general framework to include the weaker properties of
receipt-freeness and privacy, but unlike our approach they do not handle absten-
tion or randomisation attacks since they are characterised in terms of a coercer
selecting a particular candidate. The extended framework of [BHM08] does ex-
plicitly handle forced abstention attacks, but not randomisation attacks.

Our approach is most closely related to the epistemic characterisation in
[KT09], but ours is cast in a process algebraic setting. This allows a higher
level description of a voting system design in CSP. Further, our emphasis is on
the hierarchy of definitions rather than the proposal of any specific one.
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Abstract. Many systems interact with their environment at physically
distributed interfaces called ports. In testing such a system we might use
a distributed approach in which there is a separate tester at each port.
If the testers do not synchronise during testing then we cannot always
determine the relative order of events observed at different ports and cor-
responding implementation relations have been developed for distributed
testing. One possible method for strengthening the implementation rela-
tion is for testers to synchronise through exchanging coordination mes-
sages but this requires sufficiently fast communications channels and can
increase the cost of testing. This paper explores an alternative in which
each tester has a local clock and timestamps its observations. If we know
nothing about how the local clocks relate then this does not help while
if the local clocks agree exactly then we can reconstruct the sequence
of observations made. In practice, however, we are likely to be between
these extremes: the local clocks will not agree exactly but we have as-
sumptions regarding how they can differ. This paper explores several
such assumptions and derives corresponding implementation relations.

1 Introduction

Testing is the most widely used method to increase the confidence regarding the
correctness of software systems. Testing has traditionally been a manual activity.
This characteristic strongly increases the cost of complex software systems, where
testing might take up to 50% of the project budget. As a result, there has been
increasing interest in the development of techniques to automate, as much as
possible, the different testing activities. One important such approach is to use
formal testing methods [1,2]. In the context of the integration of formal methods
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and testing it is important to define suitable implementation relations, that is,
formal ways to express what it means for a system to be correct with respect
to a specification. Currently, the standard implementation relation is ioco [3],
a well-established framework where a system under test (SUT) is correct with
respect to a specification if for every sequence of actions σ that both the SUT
and the specification can produce, we have that the outputs that the SUT can
show after performing σ are a subset of those that the specification can show.

Many systems interact with their environment at physically distributed ports.
Examples of such systems include communications protocols, web-services, cloud
systems and wireless sensor networks. Users perceive these systems as black-
boxes and user requirements are thus expressed at this level: users are not inter-
ested in the internal structure of a system, only in whether it delivers the services
they require. In testing such systems we place a tester at each port and we are
then using a distributed test architecture [4]. The use of the distributed test
architecture can have a significant impact on testing and this topic has received
much attention. Much of this work has concerned controllability problems, where
the observations of the tester at a port p are not sufficient for it to know when to
supply an input. There has also been interest in observability problems, where
it is impossible to reconstruct the real order in which events were produced at
different ports. A different line of work involves providing implementation re-
lations that appropriately capture the special characteristics of the distributed
test architecture. The underlying assumption in dioco [5], an extension of ioco
to the distributed setting, is that we cannot compare global traces, obtained at
different ports, by using equality. The idea is that if a trace is a reordering of
another one where the order of events at each port has been preserved, then
these two traces are indistinguishable in a distributed framework and therefore
must be considered equivalent. The dioco framework reflects the situation in
which separate agents interact with the SUT, these agents record their observa-
tions but we cannot know the causalities between events observed by different
agents. However, sometimes we wish to use a framework where it is possible to
establish information regarding causalities between events observed at different
ports through the testers at these ports exchanging messages [6,7]. In particu-
lar, if the testers can exchange synchronisation messages with an external agent
then it is possible to use such messages to establish the exact order in which
events occurred [8]. However, the assumption that the testers can synchronise
(effectively, message exchange takes no time) does not seem appropriate if the
testers are physically distributed.

This paper considers an alternative perspective to providing additional in-
formation regarding the causality between actions performed at different ports.
We use time information: if we label actions with the time when they were ob-
served then we can obtain additional information regarding the order in which
they occurred. We can consider two possibilities to include time information in
the distributed test architecture. The first one assumes the existence of a global
clock. However, usually we cannot assume that there exists a global clock. We
therefore consider a weaker assumption under which there is a local clock at each
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port. But, how do these clocks work? If we assume that the clocks are perfect,
then dioco and ioco almost coincide. Nevertheless, this is again a very unre-
alistic assumption. If we make no assumptions regarding how the times given
by these local clocks relate, then they add nothing and so we have dioco. This
paper investigates different assumptions regarding how the local clocks relate
and the corresponding implementation relations.

The use of timestamps to decorate actions is not new [9,10] and the problems
concerning the synchronisation of different clocks has also been studied [11].
Moreover, it has been shown that the use of timestamps has limitations since not
all the causality relations can be captured [12]. Adding timestamps to actions
is a common mechanism in formalisms such as process algebras to represent
concurrent timed systems [13]. In this paper we investigate the use of timing
information when testing from an input output transition system (IOTS).

The rest of the paper is structured as follows. Section 2 provides preliminary
material. Sections 3 and 4 define implementation relations that correspond to
different assumptions regarding how the clocks relate. Finally, in Section 5 we
present our conclusions and some lines for future work.

2 Preliminaries

In this section we present the main concepts used in the paper. First, we define
input output transition systems and notation to deal with sequences of actions
that can be performed by a system. Then, we review the main differences between
classical testing and testing in the distributed architecture.

2.1 Notation on Sequences

Given a set A, we let A∗ denote the set of finite sequences of elements of A;
ε ∈ A∗ denotes the empty sequence. Given a sequence σ ∈ A∗ and 1 ≤ r ≤ |σ|,
σr ∈ A denotes the r-th element of σ. Finally, let σ ∈ A∗ and a ∈ A. We have
that σa denotes the sequence σ followed by a and aσ denotes the sequence σ
preceded by a.

2.2 Input Output Transition Systems

An input output transition system is a labelled transition system in which we
distinguish between input and output. We use this formalism to define processes.

Definition 1. Let P = {1, . . . ,m} be a set of ports. An input output transition
system (IOTS) is defined by a tuple s = (Q, I,O, T, qin) in which Q is a countable
set of states, qin ∈ Q is the initial state, I is a countable set of inputs, O is a
countable set of outputs, and T ⊆ Q× (I ∪O ∪ {τ})×Q, where τ represents an
internal (unobservable) action, is the transition relation. A transition (q, a, q′),
also denoted by q a−−→ q′, means that from state q it is possible to move to state
q′ with action a ∈ I ∪O ∪ {τ}.
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We say that a state q ∈ Q is quiescent if from q it is not possible to take a
transition whose action is an output or τ without first receiving input. We extend
T , the transition relation, by adding the transition (q, δ, q) for each quiescent
state q. We say that s is input-enabled if for all q ∈ Q and ?i ∈ I there is some
q′ ∈ Q such that (q, ?i, q′) ∈ T . We say that a system s is output divergent if it
can reach a state from which there is an infinite path that contains only outputs
and internal actions.

The sets I and O are partitioned into sets I1, . . . , Im and O1, . . . , Om such that
for all p ∈ P, Ip and Op are the sets of inputs and outputs at port p, respectively.
We assume that I1, . . . Im, O1, . . . , Om are pairwise disjoint.

We let Act denote the set of observable actions, that is, Act = I ∪ O ∪ {δ}.
Given port p ∈ P, Actp denotes the set of observations that can be made at p,
that is, Actp = Ip ∪Op ∪ {δ}.

We let IOTS(I, O,P) denote the set of IOTSs with input set I, output set O
and port set P . Processes can be identified with its initial state and we can
define a process corresponding to a state q of s by making q the initial state.
Thus, we use states and process and their notation interchangeably. An IOTS can
be represented by a diagram in which nodes represent states of the IOTS and
transitions are represented by arcs between the nodes. In order to distinguish
between input and output we usually precede the name of an input by ? and
precede the name of an output by !.

In this paper, whenever we compare two elements of IOTS(I, O,P) we will
assume that they have the same Actp for all p ∈ P . Moreover, when we relate
two IOTSs we will assume that they have the same port set. As usual, we assume
that implementations are input-enabled.1 We also consider that specifications
are input-enabled since this assumption simplifies the analysis. However, it is
possible to remove this restriction in our framework [5]. Next we introduce a
system that will be used as a running example along the paper.

Example 1. The specification depicted in Figure 1 represents a simplified version
of an online travel agency that sells products and services to customers on behalf
of suppliers such as airlines, car rentals, hotels, etc. We focus on the functionality
associated with the process that begins at the moment a client request that some
services are booked and receives the confirmation. A client must ask for a flight
ticket and a booking of a hotel room. Additionally, the customer can request
either an airport transfer or to rent a car and, optionally, a day trip. The system
presents five different ports that correspond to the different suppliers. All of
them are connected to the central server where the information of the products
related to each client is collected. We denote by TA the specification of the Travel
Agency and the alphabets of the different ports are

– Airlines : Ia = {?data flight}, Oa = {!req flight}
– Hotels : Ih = {?data hotel}, Oh = {!req hotel}

1 If an input cannot be applied in some state of the SUT, then we can assume that
there is a response to the input that reports that this input is blocked.
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s0

s1 s4 s7 s8 s9 s10

s2 s3 s6

s5 s11 s12 s13

!req flight

!req hotel

?data flight

?data hotel

?data flight

?data hotel !req transfer

!req exc?data tranfer ?data exc

!req car

?data car

!req exc

?data exc

!confirm

?data client

!confirm

!confirm
!confirm

Fig. 1. Running example: travel agency

– Transport : It = {?data transfer, ?data car}, Ot = {!req transfer, !req car}
– Excursions : Ie = {?data exc}, Oe = {!req exc}
– Client : Ic = {?data client}, Oc = {!confirm}

In distributed testing each tester observes only the events at its port and this
corresponds to a projection of the global trace that occurred.

Definition 2. Let s = (Q, I,O, T, qin) be an IOTS with port set P = {1, . . . ,m}.
Let p ∈ P and σ ∈ Act∗ be a sequence of visible actions. We let πp(σ) denote
the projection of σ onto port p and πp(σ) is called a local trace. Formally,

πp(σ) =

{
ε if σ = ε
aπp(σ′) if σ = aσ′ ∧ a ∈ Actp
πp(σ′) if σ = aσ′ ∧ a ∈ Act \ Actp

Given σ, σ′ ∈ Act∗ we write σ ∼ σ′ if σ and σ′ cannot be distinguished when
making local observations, that is, for all p ∈ P(s) we have that πp(σ) = πp(σ′).

The equivalence relation ∼ among sequences is fundamental to defining our
original implementation relation dioco [5] that we give in the next section.

In distributed testing quiescent states can be used to combine the traces
observed at each port and reach a verdict. This is because we assume that
quiescence can be observed and, in addition, the testers can choose to stop
testing in a quiescent state. The use of distributed testers also leads to the
requirement for us to compare the set of local observations made with the global
traces from the specification; if we make observations in non-quiescent states then
we cannot know that the observed local traces are all projections of the same
global trace of the SUT and we will distinguish processes that are observationally
equivalent. For example, consider the processes r and s such that r can do !o1!o2
and then can only receive input (!o1 and !o2 are at different ports) and s can
do !o2!o1 and then can only receive input. We have that r can do !o1 while
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s cannot. Therefore, if we consider that non quiescent traces can be used to
compare processes then these two processes are not equivalent. However, in a
distributed environment we cannot distinguish between these two processes if
we do not have additional information (e.g. a timestamp indicating which action
was performed before). Note that if a process is output-divergent then it can go
through an infinite sequence of non-quiescent states, so that local traces cannot
be combined. In addition, output-divergence is similar to a livelock and will
generally be undesirable. We therefore restrict attention to processes that are
not output divergent2.

A trace is a sequence of observable actions that can be performed, possibly
interspersed with τ actions, from the initial state of a process. Let s be an
IOTS. Given a finite sequence of observable actions σ ∈ Act∗, we write s

σ==⇒
q if σ is a trace of s that ends in the state q. We let T r(s) denote the set
of traces of s (in particular, ε ∈ T r(s)). Given a trace σ ∈ Act∗, s after σ
denotes the set of states that can be reached from the initial state of s and
after performing σ; given a state q, out(q) denotes the set of outputs (including
quiescence) that can be performed from q possibly preceded by the performance
of τ actions. The function out can be extended to deal with sets in the expected
way, that is, out(Q′) = ∪q∈Q′out(q). The interested reader is referred either
to our previous work [5] or to the original ioco framework [3] for complete
formal definitions. Next we present the standard implementation relation for
testing from an IOTS [3] where information about different ports is not taken
into account.

Definition 3. Let r, s be IOTSs. We write r ioco s if for every σ ∈ T r(s) we
have that out(r after σ) ⊆ out(s after σ).

2.3 Adding Timestamps

We assume that there is a local clock at each port and that an event at port p is
timestamped with the current time of the local clock at port p. Therefore, timed
traces collected from the SUT are sequences of inputs and outputs annotated
with the local time at which events were observed. We assume that actions need
a minimum amount of time to be performed (this is a real assumption since we
can always consider a clock cycle as this bound) and therefore it is not possible
to have Zeno processes. As a consequence of this assumption, if two events are
produced at the same port, then one has to be produced first and, therefore, we
cannot have two events in the same port timestamped with the same value.

It is clear how a tester can timestamp inputs and outputs. In contrast, quies-
cence is typically observed through timeouts: the system is deemed to be quies-
cent if it fails to produce output for a given period of time. As a result, quiescence
is not observed at a particular time and so we do not include quiescence in timed
traces. Naturally, corresponding untimed traces with quiescence can be produced

2 It is possible to consider infinite traces rather than quiescent traces [5] but this
complicates the exposition.
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from the timed traces. Our not including quiescence in timed traces might seem
to reduce the power of testing. However, all our implementation relations will
have two parts: one part considers untimed traces, which might contain quies-
cence, and the other part considers a set of timed traces. As a result of the first
part, occurrences of δ can be safely removed from our timed traces.

Definition 4. We consider that the time domain includes all non-negative real
numbers, that is, Time = IR+. Given (a, t) ∈ Act×Time we have that act(a, t) =
a and time(a, t) = t. Let I and O be sets of inputs and outputs, respectively. Let
σ ∈ ((I ∪ O) × Time)∗ be a sequence of (observable action, time) pairs. We
let untime(σ) denote the trace produced from σ by removing the time stamps
associated with actions.

Let s ∈ IOTS(I, O,P). A timed trace of s is a sequence σ ∈ ((I ∪O)×Time)∗

such that there exists σ′ ∈ T r(s) such that σ′ ∼ untime(σ), and if there exists
p ∈ P such that act(σj1 ), act(σj2) ∈ Ip ∪ Op and j1 < j2 then time(σj1 ) <
time(σj2 ).

Let σ be a timed trace of s. We let πp(σ) denote the projection of σ onto port
p and πp(σ) is called a timed local trace (the formal definition of πp is similar
to the one given in Definition 2 for untimed traces and we therefore omit it).

We use σ both to denote timed and untimed traces: we will state what type
of sequence it represents unless this is clear from the context. We only require
that timed traces can be produced by the system, that is, its untimed version is
observationally equivalent to a trace of the system, and that actions at a port
are sorted according to the available time information. Note that the timestamps
define the exact order in which actions were produced at a given port.

2.4 Traces and Event Sets

A (timed or untimed) global trace defines a set of events, each event being either
input or output (possibly with a timestamp) or the observation of quiescence. We
will use information regarding timestamps to impose a partial order on the set of
observed events and we therefore reason about partially ordered sets (posets). In
this section we only consider sequences of events that do not include quiescence
since quiescence is not timestamped.

We first consider untimed traces, before generalising the definitions to timed
traces. Since we wish to use a set of events we need notation to distinguish
between two events with the same action and we achieve this through defining a
function e from untimed traces to sets of events. We will compare traces that are
equivalent under ∼ and so we want a representation under which ‘corresponding’
events for traces σ ∼ σ′ have the same names; this will mean that we do not
have to rename events when comparing traces. We achieve this by adding a label
to each event, with the label for event a, preceded by σ′, being k if this is the
kth instance of a in σ′a.
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Definition 5. Let σ = a1 . . . an ∈ Act∗ be an untimed trace. We define eσ :
IN −→ Act × IN as eσ(i) = (ai, k) (1 ≤ i ≤ n) if there are exactly k − 1
occurrences of ai in a1 . . . ai−1. This says that the ith element of σ is the kth
instance of ai in σ. Then we let e(σ) = {eσ(1), . . . , eσ(n)}.
Example 2. Consider the untimed trace

σ =?data client!req flight!req hotel?data hotel?data flight!confirm?data client

!req flight!req hotel?data flight?data hotel!req transfer?data transfer!confirm

For example, the second occurrence of ?data client in σ is represented by the
event eσ(7) = (?data client, 2) and the event set associated with σ is

e(σ) =

⎧⎪⎪⎨
⎪⎪⎩

(?data client, 1), (!req flight, 1), (!req hotel, 1), (?data hotel, 1),
(?data flight, 1), (!confirm, 1), (?data client, 2), (!req flight, 2),
(!req hotel, 2), (?data hotel, 2), (?data flight, 2), (!req transfer, 1),
(?data transfer, 1), (!confirm, 2)

⎫⎪⎪⎬
⎪⎪⎭

The tester at port p observes a projection of a global trace σ and so can place a
total order on the events at p. We can combine these orders to obtain a partial
order <σ.

Definition 6. Let σ = a1 . . . an ∈ Act∗ be an untimed trace. We define the
partial order <σ by: given 1 ≤ i, j ≤ n we have that eσ(i) <σ eσ(j) if and only
if i < j and there exists a port p such that ai, aj ∈ Actp.

Given a partially ordered set (E,<) with E = {e1, . . . , en} we let L(E,<) de-
note the set of linearisations of (E,<), that is, the set of sequences eρ(1) . . . eρ(n)
that are permutations of e1 . . . en and that are consistent with <: if ei < ej then
this ordering is preserved by the permutation (ρ−1(i) < ρ−1(j)).

In a slight abuse of notation, given σ, σ′ ∈ Act∗, with σ′ = a1 . . . an, we say
that σ′ ∈ L(e(σ), <σ) if there exists σ′′ ∈ L(e(σ), <σ) and k1, . . . , kn ∈ IN such
that σ′′ = (a1, k1), . . . , (an, kn).

Given a timed trace σ = (a1, t1), . . . , (an, tn), we let e(σ) denote e(untime(σ))
and <σ denote <untime(σ). Given 1 ≤ i ≤ n and event e = eσ(i), we let ησ(e) =
ti, that is, the timestamp associated with e.

Note that (e(σ), <σ) is a partially ordered set; <σ is irreflexive, transitive and
antisymmetric. We have an interesting property, whose proof can be found in
the extended version of the paper [14], that will allow us to simplify several
definitions and results, since we can quantify over all traces equivalent to σ by
considering the set L(e(σ), <σ).

Proposition 1. Let σ, σ′ ∈ (I ∪ O)∗. We have that σ ∼ σ′ if and only if
L(e(σ), <σ) = L(e(σ′), <σ′).

3 Implementation Relations for Clocks with Imprecision
Bounded by a Constant

In this section we study approaches to adapt our previous implementation rela-
tion dioco in order to take into account time information obtained from observ-
ing the behaviour of the SUT. We assume that each tester has a local clock but



240 R.M. Hierons, M.G. Merayo, and M. Núñez

there is no global clock. Under dioco we cannot order the events at different
ports but in this section we will show that more can be done if we have additional
information regarding how the local clocks relate.

First, let us note that the addition of time does not modify our implementation
relation pdioco [5]. This implementation relation assumes a framework where
the agents at the ports of the SUT are entirely independent: no external agent or
system can receive information regarding observations made at more than one
port of the SUT. Thus, an agent at a port can observe only the local trace at that
port but has no information about the observations made at the other ports. In
determining whether the behaviour of the SUT is acceptable, all an agent can do
is compare the observed local trace with the local traces that can be produced by
the specification. Therefore, in this framework, time information cannot be used
to establish causality relations between actions performed at different ports and,
therefore, the addition of time does not change the implementation relation.

The implementation relation dioco [5] allows the set of local traces observed to
be compared with the global traces of the specification. If information regarding
observations made at different ports can be combined, then it is appropriate to
use a stronger implementation relation.

Definition 7. Let r, s be IOTSs. We write r dioco s if and only if for every
quiescent trace σδ ∈ T r(r), there exists a trace σ′ ∈ T r(s) such that σ′ ∼ σδ.

As we pointed out in the previous section, the implementation relation dioco
only considers traces that end with quiescence; we will call these quiescent traces.
It is straightforward to prove that for the processes that we consider in this
paper, input-enabled and non output divergent, r ioco s implies r dioco s but
the reverse implication does not hold.

Recall that given an untimed trace σ we have the partial order <σ on e(σ)
and that L(e(σ), <σ) is the corresponding set of linearisations. Based on this we
have the following alternative characterisation of dioco.

Proposition 2. Given r, s ∈ IOTS(I, O,P), we have that r dioco s if and only
if for every quiescent trace σδ ∈ T r(r), there exists a quiescent trace σ′ ∈ T r(s)
such that σ′ ∈ L(e(σ), <σ).

Next we present how timed traces, instead of just traces, can be used to provide a
more refined implementation relation. The idea is simple: if we have timestamps
then we can try to determine the order in which events were produced at different
ports. Consider a specification that states that a correct system must produce
output !oU at port U followed by !oL at port L. If the SUT produces !oL followed
by !oU then, since these two outputs were produced at different ports, we have a
correct system with respect to dioco because we have no means of determining
that the actions were produced in the wrong order. Assume now that in addition
to the actions produced at each port we are provided with timestamps. For
example, let us suppose that we receive (!oU , 100) and (!oL, 98). If we have a
global clock or local clocks that work perfectly, then we can claim that the SUT
is not correct since !oL was performed before !oU . However, if we consider a



Using Time to Add Order to Distributed Testing 241

more realistic scenario where local clocks need not be synchronised, then we
might consider that the difference is so small that it might be the case indeed
that !oL was produced after !oU but that the clock at port U is running faster
than the one placed at port L. Therefore, we need a variety of implementation
relations to cope with the different alternatives.

We first assume the existence of a global clock or, equivalently, that local
clocks work perfectly.

Definition 8. Let I and O be sets of inputs and outputs, respectively. Given
timed trace σ = (a1, t1) . . . (an, tn) ∈ ((I ∪O) × Time)∗, %σ is the partial order
on e(σ) such that for all 1 ≤ i, j,≤ n with i �= j we have that eσ(i)%σ eσ(j) if
and only if tj > ti.

Let r, s ∈ IOTS(I, O,P) and T ∈ P(((I ∪ O) × Time)∗) be a set of quiescent
timed traces of r. We write r tdioco(T ) s if r dioco s and for every σ ∈ T
there exists a quiescent trace σ′ ∈ T r(s) such that σ′ ∈ L(e(σ),%σ).

Here a timed trace σ is a quiescent timed trace if untime(σ) is a quiescent trace.
This new implementation relation requires dioco to hold since the intention is to
strengthen dioco by including a set T of timed traces that have been observed
in testing. As we already explained, timed traces do not contain quiescence since
quiescence is not timestamped; including dioco ensures that the observation of
quiescence is not ignored.

Example 3. Consider our running example and an SUT producing the sequence
?data client!req hotel!req flight. Since !req hotel and !req flightwere produced
at different ports, the system is correct with respect to dioco. However, if
the actions produced at each port are provided with timestamps, for example
(!req hotel, 40) and (!req flight, 42), we can claim that the system is not correct
since !req hotel was performed before !req flight.

We now assume that there is a known value α such that the local clocks differ
by at most α. We will show how this information can be used to deduce the
relative ordering of events at different ports. We will express this through a
partial order on the set of events observed.

Definition 9. Let I and O be sets of inputs and outputs, respectively. Given
timed trace σ = (a1, t1) . . . (an, tn) ∈ ((I ∪ O) × Time)∗ and α ∈ IR+, %α

σ is
the partial order on e(σ) such that for all 1 ≤ i, j,≤ n with i �= j we have that
eσ(i)%α

σ eσ(j) if and only if one of the following holds.

– There exists p ∈ P such that ai, aj ∈ Ip ∪Op and i < j.
– We have that tj − ti > α.

This says that we know that event eσ(i) was before event eσ(j) if either they were
observed at the same port and eσ(i) was observed first or they were observed
at different ports but the timestamp for eσ(i) was earlier than that for eσ(j) by
more than α. In the second case, our assumption that the local clocks differ by
at most α allows us to know that eσ(i) was observed before eσ(j).
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This additional information, regarding the order in which events occurred,
can be used to define a more refined implementation relation. This operates in
the situation in which a set of timed traces has been observed, with timestamps
having been produced using local clocks that can differ by at most α. As with
dioco, we only consider quiescent traces since for these we know that the testers
have observed projections of the same trace of the SUT.

Definition 10. Let r, s ∈ IOTS(I, O,P), T ∈ P(((I ∪ O) × Time)∗) be a set of
quiescent timed traces of r, and α ∈ IR+ be a positive real number. We write
r tdiocoα(T ) s if r dioco s and for every σ ∈ T there exists a quiescent
sequence σ′ ∈ T r(s) such that σ′ ∈ L(e(σ),%α

σ).

Example 4. Let r be an SUT such that r dioco TA. Let T be a set of timed traces
obtained from the testing process of the system and containing, in particular,
the quiescent timed trace

σ =(?data client, 0.5), (!req hotel, 1.3), (!req flight, 1.7), (?data flight, 3),

(?data hotel, 4), (!req excursion, 5.8), (!req transfer, 6.2)

We have that r tdioco(T ) TA does not hold but if local clocks differ by at most
α = 0.5 units of time, then r tdiocoα(T ) TA.

We can compare implementation relations using the following relation �.

Definition 11. Given two implementation relations imp1 and imp2, we write
imp1 � imp2 if and only if for all IOTSs r, s we have that r imp2 s implies
r imp1 s.

Proposition 3. Let T be a set of quiescent timed traces and α ∈ IR+ be a
positive real number. We have that dioco � tdiocoα(T ) but it may be that we
do not have tdiocoα(T ) � dioco.

Proof. The first part is immediate from the definitions. For the second part it
is sufficient to consider a process s that has trace !o1!o2δ, a process r that has
trace !o2!o1δ and a timed trace of r with timestamps that allow us to deduce
that !o2 was produced before !o1.

If we abuse the notation slightly, to allow α to take on the value of 0, then we
obtain the following result.

Proposition 4. Given a set T of quiescent timed traces, we have that r ioco s
only if r tdioco0(T ) s. Similarly, given α ∈ IR+ we have that r dioco s if and
only if r tdiocoα(∅) s.

The following gives a more general condition under which we can compare two
implementation relations defined using different values for α and T . The proof
can be found in the extended version of the paper [14].
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Proposition 5. Given α1, α2 ∈ IR+ and sets T1 and T2 of quiescent timed
traces, we have that tdiocoα1(T1) � tdiocoα2(T2) if for all σ1 ∈ T1 there exists
σ2 ∈ T2 such that e(σ2) = e(σ1) and %α1

σ1
⊆%α2

σ2
.

We now say what it means for a set of timed traces to be valid for a process r
given α; these are the set of timed traces that can be produced if the clocks are
within α of one another.

Definition 12. Given α ∈ IR+ and timed trace σ, we say that σ is valid for pro-
cess r given α if there exists a trace σ′ = a′1 . . . a

′
n ∈ T r(r) with e(untime(σ)) =

e(σ′) such that for all 1 ≤ i < j ≤ n we have that ησ(eσ′(i))− ησ(eσ′(j)) ≤ α.

This condition requires that if eσ(i) is before eσ(j) in σ′ then the timestamp for
eσ(i) is less than the timestamp for eσ(j) in σ or the time difference is sufficiently
small for it to be possible that eσ(i) occurred before eσ(j). We now have the
following result.

Proposition 6. Given r, s ∈ IOTS(I, O,P), α ∈ IR+ and a set T of quiescent
timed traces that are valid for r given α, then tdiocoα(T ) � ioco.

We have seen that our new implementation relation lies between ioco and dioco:
it can be more powerful than dioco and can be less powerful than ioco. In the
extended version of the paper [14] we give results that explore this issue further,
showing how in the limit it can approach ioco and also how it can be reduced to
dioco even if we have many timed traces. Specifically, we show that if the set of
timed traces parameterising our implementation relations contains appropriate
instances of all the traces of the system then the stronger ioco implementation
relation can be fully captured. We also show that irrelevant time values do not
add distinguishing power to the collected set of traces, so that we still obtain
the dioco relation.

4 Clocks with Variable Imprecision

In the previous section we defined an implementation relation based on the as-
sumption that there is a known α ∈ IR+ that is an upper bound on the differences
between the local clocks. However, in practice we expect there to be drift: some
clocks will progress faster than others. As a result, the potential difference will
grow with time. Therefore, in this section we devise implementation relations
for this more general scenario.

For our next relation we assume that there is a bound α on the potential
difference between the clocks at the beginning of testing and for the difference
to be able to grow with time based on another value β. Even for small bounds, we
think that this is a very realistic assumption. As we will see later, even though we
are not able to fully capture the original ordering in which events are performed
at different ports, we can still fix the occurrence of actions that were performed
far apart. First we define the corresponding partial order on events.
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Definition 13. Let I and O be sets of inputs and outputs, respectively. Given
timed trace σ = (a1, t1) . . . (an, tn) ∈ ((I ∪O)×Time)∗ and α, β ∈ IR+, %α,β

σ is
the partial order on e(σ) such that for all 1 ≤ i, j,≤ n with i �= j we have that
eσ(i)%α,β

σ eσ(j) if and only if one of the following holds.

– There exists p ∈ P such that ai, aj ∈ Ip ∪Op and i < j.

– We have that tj − ti > α+ β ·max(ti, tj).

Let r, s ∈ IOTS(I, O,P), T ∈ P(((I ∪ O) × Time)∗) be a set of quiescent timed
traces of r, and α, β ∈ IR+ be positive real numbers. We write r tdiocoα,β(T ) s
if r dioco s and for every σ ∈ T there exists a quiescent trace σ′ ∈ T r(s) such
that σ′ ∈ L(e(σ),%α,β

σ ).

The next relation is a generalisation of tdiocoα,β(T ) where potential differ-
ence in clocks can accumulate in a non-linear way. We capture this by using an
increasing function to place a bound on the relative imprecision of clocks.

Definition 14. Let I and O be sets of inputs and outputs, respectively. Given
timed trace σ = (a1, t1) . . . (an, tn) ∈ ((I ∪ O) × Time)∗ and a monotonically
increasing function h : IR+ −→ IR+, %h

σ is the partial order on e(σ) such that
for all 1 ≤ i, j,≤ n with i �= j we have that eσ(i)%h

σ eσ(j) if and only if one of
the following holds.

– There exists p ∈ P such that ai, aj ∈ Ip ∪Op and i < j.

– We have that tj − ti > h(max(ti, tj)).

Let r, s ∈ IOTS(I, O,P), T ∈ P(((I ∪ O) × Time)∗) be a set of quiescent timed
traces of r and h : IR+ −→ IR+ be a monotonically increasing function. We write
r tdiocoh(T ) s if r dioco s and for every σ ∈ T there exists a quiescent trace
σ′ ∈ T r(s) such that σ′ ∈ L(e(σ),%h

σ).

Example 5. Consider the specification of the travel agency depicted in Figure 1.
Let r be a SUT such that its conformance to the TA specification with respect
to dioco has been established. Assume that while testing r we obtained the
following set T of timed sequences

tr1=(?data client, 0.5)(!req flight, 1)(!req hotel, 2)(?data flight, 3)(?data hotel, 4)
(!req car, 5)(?data car, 6)

tr2=(?data client, 1.5)(!req hotel, 3.4)(!req flight, 4.4)
tr3=(?data client, 1)(!req hotel, 1.3)(!req flight, 2)(?data flight, 3)(?data hotel, 4.6)

(!req transfer, 5.1)(!req excursion, 5.3)

The sequences tr2 and tr3 show that r tdioco(T ) TA does not hold since
!req hotel was produced before !req flight. Besides, r tdiocoα(T ) TA holds
if α ≥ 1, while if α < 1 the conformance does not hold. If we assume that the
difference between clocks grows with time, then for any value assigned to β when
α ≥ 1 we have that r tdiocoα,β(T ) TA holds; however if, for example, α = 0.2
and β = 0.2 then the sequence tr3 shows that r is not correct.



Using Time to Add Order to Distributed Testing 245

Proposition 7. Let r, s ∈ IOTS(I, O,P), T be a set of timed traces and α, β ∈
IR+ be positive real numbers. If r tdiocoα(T ) s then r tdiocoα,β(T ) s. However,
we might have that r tdiocoα,β(T ) s but not r tdiocoα(T ) s.

In order to conclude the paper, we would like to point out that if we consider single-
port systems then all the timed implementation relations introduced in this paper
coincide with ioco. The proof is easy and relies on the fact that ioco and dioco
are equal for single-port, input-enabled and non output-divergent systems.

5 Conclusions and Future Work

Many systems interact with their environment at physically distributed inter-
faces, which we call ports. In distributed testing we place a separate tester at
each port and the tester at port p only observes events that occur at p. As a re-
sult, it may not be possible to determine the relative order of events observed at
different ports and this has led to the development of implementation relations
such as dioco that reflect this.

This paper has explored the situation in which each tester has a local clock
and adds timestamps to the observations it makes. If we have no information
regarding how the local clocks relate then this does not help us. However, in
practice we are likely to have some information, in the form of assumptions,
regarding how much the local clocks can differ. We considered several such as-
sumptions. In one extreme case the local clocks are known to agree and so we
can reconstruct the sequence of events. However, this assumption appears to be
unrealistic. We also considered the case where there is a known upper bound α
on how much the clocks can differ. An alternative scenario is when there is an
initial bound α and the bound on the differences between the clocks can grow
linearly. We also considered the generalisation when there is a monotonically
increasing function h such that at time t the differences between the clocks is at
most h(t). For each scenario we defined a corresponding implementation relation
and we explored how these relate.

There are several possible lines of future work. First, we can integrate our
approach with methods for establishing local clocks through message exchange.
We might consider the case where the specification contains timing requirements.
Distributed testing in the situation in which there are timing requirements is
likely to be challenging, especially if there are requirements regarding the relative
timing of events at different ports. In the same line, there is a need to consider the
implications of time for test generation. Another direction worth investigating
is to study the limits of timed implementation relations. By taking into account
time we are able to distinguish processes that were undistinguishable under
dioco but it would be interesting to explore implementation relations closer
to ioco in the current framework. One issue that we did not consider in this
paper is the computational complexity of deciding the different implementation
relations, in particular, it would be important to consider the trade-off between
distinguishing power and the complexity of checking whether a given relation
holds.
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14. Hierons, R.M., Merayo, M.G., Núñez, M.: Using time to add order to distributed
testing (2012),
http://antares.sip.ucm.es/manolo/papers/fm2012_extended.pdf

http://antares.sip.ucm.es/manolo/papers/fm2012_extended.pdf


A Verification Toolkit for Numerical Transition Systems
Tool Paper�

Hossein Hojjat1, Filip Konečný2,4, Florent Garnier2,
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Abstract. This paper presents a publicly available toolkit and a benchmark suite
for rigorous verification of Integer Numerical Transition Systems (INTS), which
can be viewed as control-flow graphs whose edges are annotated by Presburger
arithmetic formulas. We present FLATA and ELDARICA, two verification tools
for INTS. The FLATA system is based on precise acceleration of the transition
relation, while the ELDARICA system is based on predicate abstraction with
interpolation-based counterexample-driven refinement. The ELDARICA verifier
uses the PRINCESS theorem prover as a sound and complete interpolating prover
for Presburger arithmetic. Both systems can solve several examples for which
previous approaches failed, and present a useful baseline for verifying integer
programs. The infrastructure is a starting point for rigorous benchmarking, com-
petitions, and standardized communication between tools.

1 Introduction

Common representation formats, benchmarks, and tool competitions have helped re-
search in a number of areas, including constraint solving, theorem proving, and compil-
ers. To bring such benefits to the area of software verification, we are proposing a stan-
dardized logical format for programs, in terms of hierarchical infinite-state transition
systems. The advantage of using a formally defined common format is avoiding ambi-
guities of programming language semantics and helping to separate semantic modeling
from designing verification algorithms. This paper focuses on systems whose transition
relation is expressed in Presburger arithmetic. Integer Numerical Transition Systems,
(denoted INTS in this paper), also known as counter automata, counter systems, or
counter machines, are an infinite-state extension of the model of finite-state boolean
transition systems, a model extensively used in the area of software verification [8].
The interest for INTS comes from the fact that they can encode various classes of sys-
tems with unbounded (or very large) data domains, such as hardware circuits, cache
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var i,j : Int
l0 : havoc(i ); assume(i >= 0)
l1 : havoc(j ); assume(j >= 0)
l2 : var x: Int = i ;

var y: Int = j
l3 : while (x != 0) {
l4 : x = x − 1;
l5 : y = y − 1 }
l6 : if ( i == j ) assert (x == y)

l0

l2

l3

l4l5

l6

err

i′ ≥ 0 ∧ j′ ≥ 0

x′ = i ∧ y′ = j

x �= 0

x′ = x − 1

y′ = y − 1

x = 0

i = j ∧ x �= y

(a) (b)

Fig. 1. Example Program and its Numerical Transition System (NTS) Representation. By con-
vention, if a variable v does not appear in the transition relation formula, we implicitly assume
that the frame condition v = v′ is conjoined. The states l1 and l2 have been merged in the NTS.

memories, or software systems with variables of non-primitive types, such as integer
arrays, pointers and/or recursive data structures. Any Turing-complete class of systems
can, in principle be simulated by an INTS. A number of recent works have revealed
cost-effective approximate reductions of verification problems for several classes of
complex systems to decision problems phrased in terms on INTS. Examples of systems
that can be effectively verified by means of integer programs include: specifications of
hardware components [10], programs with singly-linked lists [1], trees [6], and integer
arrays [2].

Consider the program in Figure 1(a). Most programmers would have little diffi-
culty observing that the assertion will always succeed, but many tools, including non-
relational abstract interpretation, as well as predicate abstraction with arbitrary interpo-
lation can fail to prove the assertion to hold [9]. The integer numerical transition system
for this program is in Figure 1(b). We have developed a toolkit for producing and ma-
nipulating such representations, as well as two very different analyzers that can analyze
such transition systems. Both analyzers, ELDARICA and FLATA, in fact succeed for this
example, as well as for several other interesting examples. Our experiments show that
the two tools are complementary in general, so users benefit from different techniques
that use the same input format.

2 The INTS Infrastructure

We have developed a toolkit for rigorous automated verification of programs in INTS
format. The unifying component is the INTS library1, which defines the syntax of the
INTS representation by providing a parser and a library of abstract syntax tree classes.
For the purposes of this paper, the INTS syntax is considered to be a textual description
of a control flow graph labeled by Presburger arithmetic formulae, as in Figure 1 (b).

At this point, there are several tools supporting the INTS format, as input and/or out-
put language. The INTS library is designed for easy bridging with new tools, which can
be either front-ends (translators from mainstream programming languages into INTS),

1 http://richmodels.epfl.ch/ntscomp/ntslib

http://richmodels.epfl.ch/ntscomp/ntslib
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back-ends (verification tools), or both. Currently, there exist tools to generate INTS
from sequential and concurrent C, Scala, and Verilog. We present two tools that can
verify INTS programs: Flata and Eldarica.

Flata Verifier. FLATA2 is a verification tool for hierarchical non-recursive INTS mod-
els. The tool computes the summary relation for each INTS independently of its calling
context, thus avoiding the overhead of procedure inlining. The verification is based
on computing transitive closure of loops. Classes of integer relations for which tran-
sitive closures can be computed precisely include: (1) difference bounds relations, (2)
octagons, and (3) finite monoid affine transformations. For these three classes, the tran-
sitive closures can be effectively defined in Presburger arithmetic. FLATA integrates the
transitive closure computation method for difference bounds and octagonal relations
from [3] in a semi-algorithm computing the summary relation incrementally, by elimi-
nating control states and composing incoming with outgoing relations.

Eldarica Verifier. ELDARICA3 implements predicate abstraction with Counter-
Example Guided Abstraction Refinement (CEGAR). It generates an abstract reacha-
bility tree (ART) of the system on demand, using lazy abstraction with Cartesian ab-
straction, and uses interpolation to refine the set of predicates [7]. For checking the
feasibility of paths, and constructing abstractions, ELDARICA employs the provers Z34

and Princess.5 In addition, ELDARICA uses caching of previously explored states and
formulae to prevent unnecessary reconstruction of trees. Large block encoding can be
performed to reduce the number of calls to the interpolating theorem prover.

Eldarica refines abstractions with the help of Craig Interpolants, extracted from in-
feasibility proofs for spurious counterexamples. The complete interpolation procedure
for Presburger arithmetic was proposed in [4], and is implemented as part of Princess.

3 Experimental Comparison of the FLATA and ELDARICA Tools

We next give an experimentally compare FLATA and ELDARICA on six sets of examples
extracted automatically from different sources: (a) C programs with arrays provided as
examples of divergence in predicate abstraction [9], (b) INTS extracted from programs
with singly-linked lists by the L2CA tool [1], (c) INTS extracted from VHDL models
of circuits following the method of [10], (d) verification conditions for programs with
arrays, expressed in the SIL logic of [2] and translated to INTS, (e) C programs pro-
vided as benchmarks in the NECLA static analysis suite, and (f) C programs with asyn-
chronous procedure calls translated into INTS using the approach of [5] (the examples
with extension .optim are obtained via an optimized translation method). Experiments
were ran on an Intel R©CoreTM2 Duo @ 2.66GHz with 3GB RAM. The two tools be-
haved in a complementary way. In some cases (examples (a)) the predicate abstraction
method fails due to an unbounded number of loop unrollings required by refinement.
In these cases, acceleration was capable to find the needed invariant rather quickly. On

2 http://www-verimag.imag.fr/FLATA.html
3 http://lara.epfl.ch/w/eldarica
4 http://research.microsoft.com/en-us/um/redmond/projects/z3/
5 http://www.philipp.ruemmer.org/princess.shtml

http://www-verimag.imag.fr/FLATA.html
http://lara.epfl.ch/w/eldarica
http://research.microsoft.com/en-us/um/redmond/projects/z3/
http://www.philipp.ruemmer.org/princess.shtml
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the other hand (examples (f)), the acceleration approach was unsuccessful in reducing
loops with linear but non-octagonal relations. In these cases, the predicate abstraction
found the needed Presburger invariants for proving correctness, and error traces, for the
erroneous examples.

Model
Time [s]

Flata Eld.
(a) Examples from [9]
anubhav (C) 0.8 2.0
copy1 (E) 1.8 13.9
cousot (C) 12.0 -
loop1 (E) 1.3 12.0
loop (E) 1.9 10.6
scan (E) 2.5 -
string concat1 (E) 4.7 -
string concat (E) 4.7 -
string copy (C) 0.4 -
substring1 (E) 0.6 5.5
substring (E) 1.6 0.7
(b) Examples from L2CA [1]
bubblesort (E) 14.1 2.5
insdel (E) 0.1 0.3
insertsort (E) 1.9 0.8
listcounter (C) 0.3 -
listcounter (E) 0.3 0.3
listreversal (C) 4.8 0.6

Model
Time [s]

Flata Eld.
(c) VHDL models from [10]
counter (C) 0.1 1.7
register (C) 0.2 1.2
synlifo (C) 16.4 20.3
(d) Verification conditions
for array programs [2]
rotation vc.1 (C) 0.8 2.0
rotation vc.2 (C) 1.1 2.2
rotation vc.3 (C) 1.2 0.3
rotation vc.1 (E) 1.1 1.4
split vc.1 (C) 3.8 3.0
split vc.2 (C) 2.8 2.2
split vc.3 (C) 2.6 0.6
split vc.1 (E) 30.2 2.2
(e) NECLA benchmarks
inf1 (E) 0.2 0.4
inf4 (E) 0.9 0.6
inf6 (C) 0.1 0.4
inf8 (C) 0.3 0.6

Model
Time [s]

Flata Eld.
(f) Examples from [5]
h1 (E) - 5.7
h1.optim (E) 0.6 1.3
h1h2 (E) - 19.0
h1h2.optim (E) 0.9 4.3
simple (E) - 6.1
simple.optim (E) 0.6 1.3
test0 (C) - 30.6
test0.optim (C) 0.3 5.3
test0 (E) - 5.0
test0.optim (E) 0.6 1.3
test1.optim (C) 0.6 8.5
test1.optim (E) 1.4 6.8
test2 1.optim (E) 1.2 4.6
test2 2.optim (E) 2.8 4.6
test2.optim (C) 6.3 72.9
wrpc.manual (C) 0.6 1.2
wrpc (E) - 9.5
wrpc.optim (E) - 3.0

Fig. 2. Benchmarks for Flata and Eldarica. The letter after the model name distinguishes Correct
from models with a reachable Error state. Items with “-” led to a timeout for the respective tool.

References

1. Bouajjani, A., Bozga, M., Habermehl, P., Iosif, R., Moro, P., Vojnar, T.: Programs with Lists
Are Counter Automata. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp.
517–531. Springer, Heidelberg (2006)
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Abstract. Satellite systems are beginning to incorporate complex autonomous
operations, which calls for rigorous reliability assurances. Human operators usu-
ally plan satellite maneuvers in detail, but autonomous operation will require
software to make decisions using noisy sensor data and problem solutions with
numerical inaccuracies. For such systems, formal verification guarantees are par-
ticularly attractive. This paper presents automatic verification techniques for pro-
viding assurances in satellite maneuvers. The specific reliability criteria studied
are rendezvous and conjunction avoidance for two satellites performing orbital
transfers. Three factors pose challenges for verifying satellite systems: (a) in-
commensurate orbits, (b) uncertainty of orbital parameters after thrusting, and (c)
nonlinear dynamics. Three abstractions are proposed for contending with these
challenges: (a) quotienting of the state-space based on periodicity of the orbital
dynamics, (b) aggregation of similar transfer orbits, and (c) overapproximation of
nonlinear dynamics using hybridization. The method’s feasibility is established
via experiments with a prototype tool that computes the abstractions and uses
existing hybrid systems model checkers.

1 Introduction

As greater numbers of satellites are deployed and maintained in space, there is a grow-
ing need for autonomy in their operation. Software-based control systems enable au-
tonomy by performing routine tasks automatically and minimize the need for human
supervision. Given the high cost of space systems, a high level of reliability assurance
is crucial. To provide such assurances, formal methods can complement traditional test-
ing and simulation-based methods, and can also help find defects early in the design
process.

� Most of this research was conducted under the Air Force’s 2011 Summer Faculty Fellowship
Program and Space Scholars Program at the Air Force Research Laboratory at Kirtland Air
Force Base. The Illinois researchers were also supported by NSF CAREER Grant 1054247.
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Fig. 1. Orbital transfer for two satellites: ν1
and ν2 are the angular positions of the passive
and active satellite, respectively, a is the semi-
major axis (max distance from the ellipse cen-
ter to the ellipse edge), and p is the semi-latus
rectum (distance from foci F to ellipse in di-
rection perpendicular to the semi-major axis).

Initial
ν̇1 = f(ν1, p1, e1)
ν̇2 = f(ν2, p2, e2)

Transfer
ν̇1 = f(ν1, p1, e1)
ν̇2 = f(ν2, p2, e2)

Rendezvous
ν̇1 = f(ν1, p1, e1)
ν̇2 = f(ν2, p2, e2)

Init: νl
1 ≤ ν1 ≤ νu

1

Init: νl
2 ≤ ν2 ≤ νu

2

Guard: GIT
Reset: ν′

2, p′2, e′2 ⊆ RIT

Guard: GTR
Reset: ν′

2, p′2, e′2 ⊆ RTR

Fig. 2. Hybrid automaton for a two-stage ren-
dezvous maneuver. The angular positions of
the passive (ν1) and active (ν2) satellites
evolve according to the nonlinear dynamics
ν̇i = f(νi, pi, ei) =

√
μ/p3i (1 + ei cos νi)

2.
Initial conditions are nondeterministically se-
lected from the indicated ranges.

In this paper, we propose and validate a methodology for verifying autonomous op-
erations between a pair of satellites. To the best of our knowledge, this is the first ap-
plication of automatic verification to autonomously maneuvering satellite systems. The
sound overapproximation approach presented in this paper allows us to nondetermin-
istically model inaccuracies due to sensor measurements and numerical errors, which
can cause serious errors in simulations. A passive satellite moves in a specific orbit, and
an active satellite performs a software-controlled orbital transfer (see Fig. 1). Orbital
transfers are performed when, for example, one satellite services (refuels or repairs)
another satellite [9]. We aim to verify two properties: (A) conjunction avoidance: two
passive (non-thrusting) satellites do not come closer than a certain distance, and (B) ren-
dezvous: given a passive and an active satellite, the two satellites come closer than a
certain distance of each other during a specified interval of time.

Our approach for verification is first to compute the reach set of an abstraction of the
system and then to check that this set satisfies the above properties. Consider two satel-
lites on different orbits with periods T1 and T2. The state of the satellites on their orbits
is completely specified by the angular positions ν1 and ν2. In verifying rendezvous or
conjunction avoidance, we are interested in computing the set of angular position pairs
(ν1, ν2) that are reachable from a given set of initial angular positions. However, we
have to overcome the following technical challenges in computing the reach set.

First, we observe that for incommensurate orbits (orbits with an irrational ratio of
periods T1/T2) the unbounded-time reach set is dense in the set of all possible relative
angular positions, [0, 2π]2. This means that for incommensurate orbits, all (ν1, ν2) pairs
are eventually visited arbitrarily closely. Therefore, we will focus on bounded-time ver-
sions of rendezvous or conjunction avoidance. In conjunction avoidance, for example,
it suffices to verify safety up to a certain time horizon because new ground-based mea-
surements are available that can be used as updated initial conditions.
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Second, for the active satellite 2 to rendezvous with the passive satellite 1, 2 must
burn its thrusters to enter a new orbit called a transfer orbit to intercept 1 (see Fig. 1).
The transfer orbit 2 follows depends crucially on the position where it burns its thrusters.
The magnitude and direction of the thrusting are determined by numerically solving a
standard orbital dynamics problem called Lambert’s problem. Due to such numerical
methods and other sources of inaccuracy like sensor noise, there are uncertainties in the
transfer orbit parameters.

Third, satellite trajectories are described by nonlinear differential equations. With
orbital transfers, these differential equations change, and we obtain a system description
as a nonlinear hybrid automaton. The software tools available for computing the reach
set of such automata are limited, and thus, we resort to overapproximating the reach set.
To address these challenges, we present three abstraction techniques.

Sequence of abstractions: Satellite orbits exhibit periodic motion, so the angular po-
sition of the satellite can be bounded between 0 and 2π. The transfer orbit parameters
are determined by numerical methods and orbit determination measurements use noisy
sensors. Thus, an exact transfer orbit may not be known, so we develop an abstrac-
tion for parameter uncertainty. The concrete model nondeterministically specifies the
movement of the satellite along all (infinitely many) transfer orbits. That is, there may
be infinitely many modes of the concrete hybrid automaton. Since the active satellite
stays in the transfer orbit for a short period of time—an upper time bound is an input to
Lambert’s problem—we aggregate the motion along all such transfer orbits into a single
mode of the hybrid system where the continuous evolution is defined by differential and
algebraic equations. To accomplish this, we exploit monotonicity of the transfer orbit
dynamics. For computing overapproximations of the reach set, nonlinear dynamics can
be overapproximated by linear or rectangular hybrid automata. We employ the (now
standard) hybridization technique [6,10]. The state space of each mode of the origi-
nal automaton is partitioned into a set of zones Z , and within each zone Z ∈ Z , the
nonlinear differential equation ẋ = f(x) is abstracted by simpler dynamics.

Contributions: The abstraction methods we develop—particularly transfer orbit
aggregation—allow us to perform verification that compensates for numerical errors
in the methods used to solve problems without analytic solutions that frequently arise
in astrodynamics. We developed an automated abstraction tool to work on the class of
periodic hybrid automata used to model systems like the satellite case studies in this
paper. The abstraction tool is fully automatic, generating inputs to existing reachability
tools for hybrid automata (HyTech [15], PHAVer [12], and SpaceEx [13]), and allows us
to automatically verify time-bounded safety properties. Specifically for the case stud-
ies, we verified conjunction avoidance and rendezvous for several realistic examples,
such as non-coaxial orbits, non-coplanar orbits, low-earth orbits, medium earth orbits,
geosynchronous orbits, and geostationary orbits. The experimental results demonstrate
the utility of different approximation methods and their associated complexities. The
abstractions we defined are useful by themselves and can be applied independently or
together for other systems that require hybridization, are periodic, or are dependent
on numerical solutions. Finally, we believe that the family of nonlinear hybrid models
presented here can serve as realistic benchmarks for future verification research.
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Related Work: Most prior work on formal verification of satellite systems requires man-
ual reasoning, but we mention a couple of semi-automatic methods. The algebraic
framework based on Gröbner, described in [14] and extended in [1], can be used to
determine the global minimum and maximum separation between two satellites. In con-
trast, our technique provides guarantees about all reachable states up to a bounded time
horizon. Other recent work uses verified integration methods and interval analysis for
proving collision avoidance of satellite systems [21]. None of these works handle orbital
transfers.

There are a variety of hybrid systems reachability algorithms. We use the hybridiza-
tion method from [6], which was extended to handle larger classes of nonlinear dynam-
ics in [10]. Another hybridization method is developed in [2], which was applied to a
truck rollover example with nonlinear dynamics in [3]. There is some theoretical work
on periodic hybrid systems [11], and some case studies from circuits use reachability
analysis for periodic hybrid systems [4]. Our work does not use an on-the-fly hybridiza-
tion approach like some of the works just referenced, but we believe this was reasonable
due to the periodicity of the examples studied.

2 Astrodynamics and Hybrid Systems Background

In this paper, a satellite is an object moving around the Earth under the influence of
the latter’s gravitational force. By Kepler’s first law, the orbit of a satellite is an ellipse
with the Earth at one of the foci, called the main focus, and thus the satellite remains in
the same plane in 3-dimensional space.1 Different orbits may or may not be coplanar
or coaxial. Given the masses of the Earth and the satellite, and the relative position and
velocity of the satellite (with respect to Earth), the orbit is uniquely defined.

Fixing an orbit, a satellite’s motion in polar coordinates is given by the following
equation, which captures Kepler’s law of equal areas:

ν̇ = f(ν, p, e) =
√

μ

p3
(1+ e cos ν)2, (1)

where ν is the angle of the satellite with respect to the major axis as measured from the
main focus (known as the true anomaly), e is the eccentricity, p = a(1 − e2) is called
the semi-latus rectum, a is the semi-major axis, and μ is the geocentric gravitational
parameter. See Fig. 1 for a graphical depiction of these quantities. We refer the inter-
ested reader to [22,8,7] for derivations of this equation. Given an angle ν, Cartesian
coordinates of the satellite are specified by

r =
p

1+ e cos ν
, x = r cos ν, and y = r sin ν. (2)

We consider verification of pairs of satellites performing the rendezvous operation (refer
to Fig. 1). One passive and one active satellite each begin in respective initial orbits.
In order to rendezvous with the passive satellite, when the active satellite arrives at a
certain pre-calculated angular position, it switches (by firing its thrusters) to a transfer

1 Generally, an orbit is some conic section, but we assume orbits are circular or elliptical (the
eccentricity e of the orbit satisfies 0 ≤ e < 1).
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orbit. We will verify properties related to the proximity of the two satellites measured by
their Euclidean distance in 3-dimensional space. Given two orbits o1, o2, and a distance
threshold d, we define the set Pd(o1, o2) ⊆ R2 to be all (ν1, ν2) values at which the
distance between the orbits is at most d. For coplanar orbits,

Pd(o1, o2)
Δ
= {(ν1, ν2) : ||(x1, y1)− (x2, y2)|| ≤ d} (3)

where ||·|| is the 2-norm, and the Cartesian coordinates of each point on the orbit are
determined by (2). See Fig. 3 for an example of this set. For non-coaxial and non-
coplanar orbit pairs, the expression for Pd(o1, o2) is analogous, albeit more complex.2

While thrusters typically actuate by burning over an interval of time, it is standard
practice to model the actuation as an instantaneous change in dynamics due to the
short duration of this burn time compared with the timescales involved in orbital mo-
tion. However, we note that approaches have been formulated to consider these finite-
duration effects [20]. To rendezvous with the passive satellite, usually the active satellite
performs two burns. The first burn puts the active satellite on an intermediate transfer
orbit that intersects the passive satellite’s orbit. This burn is modeled as an instanta-
neous switch from the initial orbit parameters (eI , pI) to the transfer orbit parameters
(eT , pT ), and causes an instantaneous switch in the dynamics of ν̇2 in (1). The second
burn makes the active and passive satellites’ orbits coincide and is modeled by another

2 Descriptions of non-coaxial and non-coplanar orbits require the introduction of more orbital
parameters, which for brevity we chose not to do, but we note that all the methods presented
in this paper apply for non-coaxial and non-coplanar orbits.
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switch. One way to determine the transfer orbit parameters is by solving a problem
called Lambert’s problem, which is discussed in more detail in Section 4. Next, we
discuss how such orbital transfers can naturally be modeled in the hybrid automata
framework.

A hybrid automaton (HA) is a (possibly nondeterministic) state machine with state
that can evolve both instantaneously (through discrete transitions) and over intervals of
time (according to trajectories). In the satellite system model, the continuous variables
of the HA model the angular positions of the satellites, and the discrete variables model
the orbital parameters. The HA of Fig. 2 shows a two-burn rendezvous maneuver de-
scribed earlier. Informally, when the HA is in a certain location (shown by the ellipses),
the satellites move along specific orbits. That is, their angular positions evolve accord-
ing to the differential equations corresponding to that location. The discrete transitions
(shown by arrows) model the instantaneous burns.

The HA models the angular positions ν1, ν2 of two satellites. The passive satellite
(ν1) always moves along the same orbit specified by constant semi-latus rectum p1 and
eccentricity e1. The active satellite (ν2) begins in an initial orbit specified by parameters
pI and eI . If the guard predicate GIT is satisfied, then the active satellite must execute
a burn that puts it on a transfer orbit. The transfer orbit is specified by the reset map
RIT that changes the valuations of p2, e2, and ν2. Resetting the variable ν2 is needed to
model transfer orbits that are not coaxial with the initial orbit. That is, the same point in
Cartesian coordinates may no longer correspond to the same polar coordinates because
the transfer orbit may not be coaxial with the initial orbit. The second burn is modeled
in an identical fashion, and sequences of burns can be modeled similarly.

Now we define the HA formally based on previous HA modeling frame-
works [5,18,16]. Variables are associated with types and are used as names for state
components, such as the angular positions and the orbital parameters. For a set of vari-
ables V , a valuation v is a function that maps each variable v ∈ V to a point in its type.
The set of all possible valuations is val(V ). For a valuation x, we use x.x to denote the
value of the variable x ∈ V .

The concrete HA is a tuple A Δ= 〈V , Q, Θ, Edg, Grd, Rst, Flow, Inv〉, where:
(a) V

Δ= {X, loc, p1, e1, p2, e2}. V is a set of variables, where X
Δ= {ν1, ν2} are real-

valued continuous variables, p1, e1, p2, and e2 are real-valued discrete variables model-
ing the orbit parameters, and loc ∈ L is a discrete variable of type L

Δ= {I, T,R}, where
elements represent respectively the initial, transfer, and rendezvous orbits. (b) Q

Δ=
val(V ) is the set of states. For a state x ∈ Q, the valuation of x.loc is called the lo-
cation; along with the valuations of the discrete variables p1, e1, p2, e2, it describes the
discrete state. The valuation of the continuous variables X , that is {x.x : x ∈ X}, is
called the continuous state and is referred to as x.X . (c) Θ ⊆ Q is a set of initial states.
(d) Edg = {(I, T ), (T,R)} is the set of edges. (e) Grd : Edg → Q is a function that
associates a guard (a valuation of V that must be satisfied) with each edge. The guards
are shown in Fig. 2. Grd((I, T )) Δ= GIT (ν1, ν2) and Grd((T,R)) Δ= GTR(ν1, ν2);
that is, they are left as parameters. (f) Rst : Edg → (Q → 2Q) is a function, called
the reset map, associated with each edge. A reset map associates a set of states with
each edge: Rst((I, T )) Δ= ν′2 = RIT (ν1, ν2) and Rst((T,R)) Δ= ν′2 = RTR(ν1, ν2).
(g) Flow : L → (Q → 2Q) associates a flow map with each location. Here, for
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l ∈ L and where f is from (1), we have Flow(l) = [f(ν1, p1, e1); f(ν2, p2, e2)].
(h) Inv : L → 2Q associates an invariant with each location. Here we assume ur-
gency, so Inv(I) = R2 \Grd((I, T ))◦ and Inv(T ) = R2 \Grd((T,R))◦, where, for
a real-valued set R, R◦ is the interior of R.

The semantics of HA A are defined in terms of sets of transitions and trajectories.
The set of transitionsD ⊆ Q×Q is defined as follows. We have (v,v′) ∈ D if and only
if for e = (v.loc,v′.loc), (a) e ∈ Edg, (b) v ∈ Grd(e), and (c) v′ ∈ Rst(e)(v.X). A
trajectory forA is a function τ : [0, t]→ Q that maps an interval of time to states such
that the following hold. (a) For all t′ ∈ [0, t], τ(t′).loc = τ(0).loc, that is, the discrete
state remains constant. (b) (τ ↓ X), that is, the restriction of τ to X is a solution of the
differential equation specified by the flow function Ẋ = Flow(τ(0).loc)(τ(0)). (c) For
all t′ ∈ [0, t], τ(t′) ∈ Inv(τ(0).loc). The set of all the trajectories of A is written T .

An execution of A is a sequence α = τ0τ1 . . ., such that (a) each τi ∈ T , (b) for
each i, (τi(t), τi+1(0)) ∈ D, where t is the right endpoint of the domain of τi, and
(c) τ0 ∈ Θ0. The set of all executions of A is denoted by ExecsA. A state v ∈ Q is
said to be reachable if there exists a closed execution α that ends at v. The set of all
reachable states of A is denoted by ReachA. The set of states reachable of A within δ
time is denoted by ReachδA and is called the set of bounded-time reachable states (see
Fig. 5 as an example). We define ReachA(t) as the set of states that are reachable by
executions of A at exactly t time, and for t ≤ δ, ReachδA(t) is defined analogously.

We write DA, TA, RstA, VA, etc., for the components of A if the automaton is not
clear from context. Similarly, when necessary to disambiguate components of HA A
from those of HA B, we use subscripts such as QA, InvA, RstB, etc. Given a pair of
HA A and B, B is said to be an abstraction for A if ExecsA ⊆ ExecsB . It follows that
if B is an abstraction of A, then ReachA ⊆ ReachB. Also, if B is safe with respect to
some property (set), then so is A.

3 Abstractions and Analysis

To verify conjunction avoidance and rendezvous properties, we compute bounded reach
sets, which is difficult for nonlinear HA. In this section, we describe three independent
abstractions of periodic, nonlinear HA (quotienting, transfer orbit aggregation, and hy-
bridization), and then apply their composition.

Quotienting: The quantities ν1 and ν2 model the angular position of the satellites on
their orbits, which are periodic with period 2π. We define a quotient HA A1 based on
an equivalence relation∼:

x ∼ x′ ⇐⇒ ∃k1, k2, ∀ i ∈ {1, 2}, x.νi = x′.νi + ki2π.

Using ∼, we reduce the unbounded state space to a bounded one by adding transitions
to each mode of the concrete HA A. If some νi reaches the 2π boundary, it is reset
to 0. These are the only edges and resets we add, since ν̇1 > 0 and ν̇2 > 0 (the
angular positions are monotonically increasing), but in general, it may be necessary
to add transitions when νi = 0 if ν̇i < 0. A1 is bisimilar to A.

Transfer orbit aggregation: Solving the Lambert problem yields a unique transfer
orbit, where the trajectory of the active satellite would begin from a ν2 angle called
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the burn point. There is also a constraint on the passive satellite’s angle so that the
two satellites can rendezvous, so the burn point is a pair of (ν1, ν2) values. However,
the burn point is not known precisely, so a burn actually takes place within a range of
(ν1, ν2) values. Each (ν1, ν2) pair will place the active satellite on a slightly different
transfer orbit. Thus, the transfer mode must take into account a set of different possible
transfer orbits. The following abstraction aggregates this set of transfer orbit parameters
into a single location of the HA.

First, we define the set of possible transfer orbits that could be reached by burning at
different points.

Definition 1. For any set O of transfer orbit parameter pairs o
Δ= (p, e) ∈ O, consider

Ri ⊆ R for i ∈ {1, 2, . . . , k} such that ∪iRi = R, where ∀i ∈ {1, 2, . . . , k},

(i) ∃(pmin, emin) such that ∀o = (p, e) ∈ O, ∀ν2 ∈ Ri, we have fmin(ν2)
Δ=

f(ν2, pmin, emin) ≤ f(ν2, p, e), and
(ii) ∃(pmax, emax) such that ∀o = (p, e) ∈ O, ∀ν2 ∈ Ri, we have fmax(ν2)

Δ=
f(ν2, pmax, emax) ≥ f(ν2, p, e).

That is, fmin(ν2) and fmax(ν2) are lower and upper bounds of the ν̇2 dynamics for a
particular region Ri.

Given a collection {Ri} that satisfies the requirements in Definition 1, the HA with
transfer orbit aggregation is a tuple A2

Δ= 〈V , Q, Θ, Edg, Grd, Rst, Flow, Inv〉,
where: (a) V = VA, (b) Q = QA, (c) Θ = ΘA, (d) Edg = EdgA, (e) Grd : GrdA,
and (f) Rst : RstA, but now the guard and reset maps between modes correspond to
sets of ν1, ν2 values. (g) FlowA2 : Using the set of all (p, e) pairs ofO, the ν̇2 dynamics
for the active satellite in the transfer mode are defined piecewise over all Ri such that
for each Ri, we have ν̇2 ∈ [fmin(ν2), fmax(ν2)].

The dynamics of A2 and A are identical except when the active satellite is in the
transfer mode. For that mode, the dynamics corresponding to any execution of A are
contained within the dynamics ofA2 by construction, sinceA2 creates piecewise upper
and lower bounds on ν̇2. Thus we have that A2 is an abstraction of A.

Hybridization: Our approach for both verification problems relies on computing the
reachable states ReachA of the HAA. Since the software tools for computing the reach
set of nonlinear HA are not as well-developed as those for linear and rectangular HA,
we abstract the given nonlinear HA by a HA with simpler dynamics. We employ the
hybridization approach [6,10], where the state-space of A is partitioned into a finite
number of zones (see the polygons in Fig. 4). The nonlinear dynamics are conserva-
tively approximated within each zone with simpler dynamics—in our case either (a)
rectangular or (b) linear (affine) dynamics.

Given HA A and a partition function P that returns, for each location l ∈ L, a par-
tition {I1, . . . , Ik} such that ∪k

j=1Ij = Inv(l), we define the hybridization abstraction

as the tupleA3
Δ= 〈V , Q, Θ, Edg, Grd, Rst, Flow, Inv〉, where: (a) V = VA ∪ zone,

where zone is a discrete variable of type Zl = {1, . . . , k} and identifies the partitions
of each mode. (b) Q = val(VA3) is the set of states. Now, for x ∈ Q, the valua-
tions of x.loc, x.zone, and the orbit parameter variables describe the discrete state.
(c) Θ ⊂ Q. (d) Edg ⊆ (L×Z)× (L×Z) is defined as follows: ((l, z), (l′, z′)) ∈ Edg
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if and only if either (i) l′ = l and Iz′ is adjacent to Iz , or (ii) l′ �= l and Iz is con-
tained in Iz′ . (e) Grd : Edg → Q is defined as Grd(((l, z), (l′, z′))) = InvA(l) ∩ Iz .
(f) Rst : Edg → (Q→ 2Q) is defined as (i) if l = l′, then the reset is the identity, and
(ii) RstA(l, l′), otherwise. (g) Flow : (L × Z) → (Q → 2Q) is the flow map defined
as follows. For each satellite i ∈ {1, 2}, location l, and zone z, we associate either (i)
rectangular differential inclusions: ν̇i ∈ [ai, bi] for

ai = min
x.νi∈Iz

FlowA(l)(x) and bi = max
x.νi∈Iz

FlowA(l)(x),

or (ii) affine (linear) differential inclusions: ν̇ = Aν + b± ε, for

A = ∇FlowA(l)(x)|c · (ν − c), b = f(c), ε = max
x.ν∈Iz

||FlowA(l)(x) −Aν − b|| ,

where c ∈ R2 is the centroid of z, and ∇FlowA(l)(x)|c is the Jacobian evaluated at c
of FlowA(l)(x). (h) Inv : (L× Z)→ 2val(X) is InvA3(l, z)

Δ= Inv(l) ∩ Iz .
By construction, the dynamics of A are contained in the conservative overapproxi-

mation, and a proof thatA3 is an abstraction ofA appears in [6]. Each of the individual
abstractions are sound and can be implemented independently of one another. Thus,
applying the abstractions A1, A2, and A3 sequentially to A yields another HA called
B (visualized in Fig. 4), which is an abstraction ofA, since the composition of abstrac-
tions is sound.

Impossibility of unbounded model checking: Consider two arbitrary orbits o1 and
o2 with periods T1 and T2. These two orbits are said to be relatively periodic if T1

T2
is

rational; otherwise, they are said to be incommensurate. For circular orbits, the right-
hand side of (1) reduces to a constant, and consequently, the reach set can be computed
exactly. However, if the ratio of the orbits’ periods is irrational, this is impossible. The
proof of this follows from the mathematical result that the reach set of a point with
irrational slope on the unit torus (or the unit square with billiards reflections at edges)
is dense [19].

4 Computation of Abstractions

In this section, we describe how the transfer orbit aggregation abstraction is computed
in our abstraction tool. We use boldface to indicate vectors.

First, we summarize how an ideal thrust vector ΔV is computed by numerically
solving Lambert’s problem. Then, we show how ΔV is applied to points nearby the
original burn point. This yields uncountably infinitely many transfer orbits, each de-
noted by oi, where i ∈ O for an uncountably infinite index set O. We collapse this set
of transfer orbits to a single mode by overapproximating the dynamics to include all
possible transfer orbits.

Computation of ideal thrust vector ΔV : To calculate the orbit of the active satel-
lite following a burn, we use an equivalent representation of the orbit dynamics—the
position and velocity of the satellite in 3-dimensional Cartesian space. Recall that a
satellite’s orbit is completely described by (1) with parameters p, e, and angular po-
sition ν. In Cartesian coordinates, the satellite is described by a position vector r and
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velocity vector V . We will use both of these representations in the following procedure
to calculate the transfer orbit.

Let TL be the time when the (instantaneous) burn occurs, and let the angular positions
of the two satellites at TL be (ν1(TL), ν2(TL)). Let the time-to-rendezvous be TR. The
next sequence of steps describes how to compute the magnitude and direction of force
that the burn applies to the active satellite. (a) ri(TL) and V i(TL) are computed at
the passive and active satellites’ initial positions νi(TL). (b) Given the time of transfer
TR, ν1(TL +TR) is computed by numerical integration of (1), and then the rendezvous
location, r1(TL +TR), is computed using ν1(TL +TR). (c) The active satellite’s states
r2(TL) and V 2(TL), and desired position for rendezvous r2(TL+TR) = r1(TL+TR),
are used to solve Lambert’s problem to determine the velocity V ′

2(TL) that defines the
transfer orbit. We then convert this velocity V ′

2(TL) to the transfer orbit parameters eT
and pT needed to achieve rendezvous.

From the transfer orbit parameters, the required change in velocity at TL is ΔV =
V ′

2(TL) − V 2(TL). In reality, the time of and angular positions at burning are not
known exactly, and as a result, the calculated ΔV puts the active satellite on one of a
collection of transfer orbits.

Expanding the Lambert burn angle to a range of angles: To construct A2 for ren-
dezvous, we have to instantiate GrdIT . Consider a point representing the minimum
energy burn in the ν1, ν2 state space. Uncertainties in initial conditions, measurements,
and numerical errors in position estimation cause the concrete system to have a larger
guard. Thus, this is also incorporated into the abstract system. As a result, a given exe-
cution of the automaton may perform the burn within a set of different angular positions
(and velocities). Also, the partitioning scheme around this minimum burn point must be
adjusted to accommodate the larger guard, as shown in Fig. 6. Next, we outline the de-
tails of calculating transfer orbits of O for points within a small neighborhood of an
ideal Lambert burn point. Let (νT1 , νT2 ) = GIT be the ideal Lambert burn point. In gen-
eral, we will add ΔV to neighboring points to obtain a new V and then convert to the
equivalent angular representation as shown in Fig. 7. The following calculations pertain
only to the active satellite for some ν̂2 location. Hence, we denote all initial orbit quan-
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tities with subscript I and transfer orbit quantities with subscript T , so V 2(TL) = V I

and V ′
2(TL) = V T .

(a) Determine nearby points within guard set of the active satellite: ν̂2 ∈ Λ
Δ= [νT2 −

ε, νT2 +ε]. (b) For ν̂2, calculate the position and velocity vectors in Cartesian coordinates
using the orbital parameters of the initial orbit. For converting between the angular
representation and Cartesian representation, we introduce an eccentricity vector eI and
angular momentum vector hI [22]. The vectors eI and hI give direction with respect
to the axes of the elliptical orbit. We write eI , hI , etc., without vector boldface, as the
magnitude of the corresponding vector. The conversion is done by computing: pI =
aI(1− e2I), eI = [eI ; 0; 0], hI = [0; 0;

√
μpI ], and

V I =
μ

h2
I

hI × (eI + [cos(ν̂2); sin(ν̂2); 0]),

rI =
pI

1 + eI cos(ν̂2)
, and rI = rI [cos(ν̂2); sin(ν̂2); 0].

(c) Now, add the Lambert burn vectorΔV corresponding to the angle νT2 to the velocity
vector V I at ν̂2, V T = V I + ΔV . (d) From the position (note that rI = rT ) and
resultant velocity vectors at ν̂2, calculate the corresponding transfer orbit parameters:

hT =V T × rT , eT =
1

μ
(V T × hT )−

rT

rT
, aT =

hT

μ
(1− e2T ),

pT =aT (1− e2T ), and ν′
2 =arctan

(
eT [2]

eT [1]

)
,

where for a vector x, the notation x[j] accesses the jth component of that vector. Here,
ν′2 is the reset value for ν2, which corresponds to the angular shift in the coordinate
frame of a single transfer orbit. Since there is a transfer orbit for each ν̂2 ∈ Λ, the reset
for ν2 will be in a range defining the reset RIT .

Now that we can calculate transfer orbits for points from Λ, there are two issues to
address. First, the dynamics of the transfer mode in the abstractionA2 must include all
possible transfer orbit dynamics. To address this, we revisit (1). The parameters eT and
pT for the transfer orbit are now defined in terms of ν̂2 for ν̂2 ∈ Λ. That is, p(ν̂2) and
e(ν̂2) are functions representing all possible transfer orbit parameters. Thus, the non-
linear differential inclusion describing all transfer orbits of the active satellite is ν̇2 =√
μ/p(ν̂2)3(1+ e(ν̂2) cos(ν2))2. In general, the definition ofA2 requires the dynamics

to be described by a function with upper and lower bounds. Thus, rectangular dynamics
satisfy this definition, although we could use any appropriate upper and lower bounded
function, e.g., the linear overapproximation used in hybridization. We construct rectan-
gular dynamics for A2 by solving the following optimization problem:

ν̇2min = min
ν2∈Ri ∧ ν̂2∈Λ

f(ν2, p(ν̂2), e(ν̂2)), ν̇2max = max
ν2∈Ri ∧ ν̂2∈Λ

f(ν2, p(ν̂2), e(ν̂2)).

For a particular partition in the transfer mode, we first minimize or maximize cos(ν̂2).
Now, replacing cos(ν2) with this optimized value in ν̇2 will allow optimization over the
single variable ν̂2.

The second issue is that since there are a continuum of possible transfer orbits, we
must generalize the distance threshold set Pd from (3) that was previously defined for a
single pair of orbits. If the active satellite is on one of many possible transfer orbits, then
to ensure the rendezvous property is satisfied, the satellites must be within d for each
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of these possible orbits. We ensure this by calculating a distance set Γd that holds for
every transfer orbit. The active satellite’s position is defined in terms of the functions
p(ν̂2), e(ν̂2) such that:

Γd
Δ
= {(ν1, ν2) : ||(x1, y1)− (x2(p(ν̂2), e(ν̂2)), y2(p(ν̂2), e(ν̂2)))|| ≤ d} . (4)

In practice, we form this as an optimization problem by maximizing the norm from (4)
over ν̂2 for any particular point (ν1, ν2) in the state space. If this maximum distance
is within the threshold d, then for any transfer orbit, the active satellite at that point is
within d of the passive satellite. For both of these issues, when there is not an analytic
solution to the optimization, we can introduce an error bound ε to the function being
optimized to preserve soundness. For instance, if ε is the maximum error in the opti-
mization of the distance equation, we would compute Γd−ε to ensure that any potential
verified rendezvous satisfies the actual distance threshold d.

We now summarize the procedure for verifying rendezvous maneuvers. With a set
of initial conditions for ν1, ν2, initial orbits o1, o2, and a Lambert burn point, the ab-
stract HA B is computed as just described. Next, using B as input to HyTech, PHAVer,
or SpaceEx, calculate ReachδB for a bounded time δ. Then, take a time intersection
ReachδB(t) for a possible rendezvous time t < δ. If ReachδB(t) ⊆ Γd, then the reachable
set of states at time t is within the distance threshold d. An example ReachδB(t) and Γd

are shown in Fig. 8.

5 Experimental Results

We present experimental results for verifying conjunction avoidance and rendezvous
using the three abstractions applied to the original system.

Once the abstract system B is constructed using our tool, the conjunction avoidance
and rendezvous properties can be verified by computing ReachδB for some bounded
time δ. Our prototype tool is written in Matlab and experiments were carried out on
a modern laptop running Windows 7 with 4GB RAM and a 2.0GHz dual-core Intel
i5 processor. We used PHAVer [12] and SpaceEx [13] for verification of B.3 SpaceEx
runs in a virtual machine, and we also ran HyTech and PHAVer in an Ubuntu virtual
machine. Overall, our results using HyTech, PHAVer, and SpaceEx suggest that tools al-
lowing for relatively complex discrete dynamics and large numbers of locations need to
be complemented with more scalable continuous reachability methods. We previously
showed conjunction avoidance verification for one set of parameters in Fig. 3. Our test
cases included Low Earth Orbits (LEO, altitude below 2000km), Medium Earth Orbits
(MEO, 2000km to 35,786km), Geo Stationary (GEO), and Geo Synchronous (GSO)
orbits with varying eccentricities. We were able to verify rendezvous for LEOs with
eccentricities between 0 and 0.1.

Table 1 shows some successful rendezvous test cases, which used a rendezvous dis-
tance d = 500km, rectangular overapproximation of dynamics, and PHAVer. The first
column is the initial state of the continuous variables. The second column is the ideal
guard GIT around which the abstracted guard Λ is built. The initial orbit parameters

3 We found HyTech [15] to be unusable for elliptical orbits due to numerical overflows.
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Table 1. Rendezvous experiments for d = 500km, ε = 0.25 for guard Λ, and partition size
20 × 20 degrees. AT is abstraction run time (sec). PT is PHAVer run time (sec). RT is the time
interval of rendezvous (sec), with the burn occurring in time at the lower bound of this inter-
val. The underline and overlined parameters eT or pT are respectively the min and max of the
nondeterministic parameter values.

Initial Guard Initial Orbit Transfer Orbit AT PT RT

(ν1, ν2) (νT
1 , νT

2 ) (e1, p1[km], eI , pI [km]) (eT , eT , p
T
[km], pT [km]) (s) (s) (s)

(270, 267.5) (330, 330) (0, 6718, 0.05, 7340) (0.05849, 0.05853, 6766, 6769) 811 3.01 (950, 1200)

(250, 246.5) (330, 330) (0, 6718, 0.05, 7340) (0.05849, 0.05853, 6766, 6769) 811 3.23 (1050, 1300)

(300, 299) (333, 333) (0.05, 7074, 0.10, 7748) (0.06468, 0.06486, 7114, 7116) 801 3.4 (500, 1250)

(300, 299) (327, 327) (0, 6718, 0.10, 7748) (0.06186, 0.06202, 6982, 6984) 834 3.37 (440, 990)

Table 2. Reachability experiments for different overapproximation techniques. Initial condition
is (ν1, ν2) = (0, 0). RA and AA columns are the abstraction times in seconds for rectangular and
affine dynamics, respectively. PR, SR, and SA columns are, respectively, the run time in seconds
of PHAVer with rectangular dynamics, SpaceEx with rectangular dynamics, and SpaceEx with
affine (linear) dynamics. The number subscript for the SpaceEx runs determine the sampling
time used in the reachability algorithm. These experiments ran until the time bound T equal to
the satellite period.

Parameters (e1, p1[km], e2, p2[km]) Partition Size RA AA PR SR20 SR100 SA20 SA100

[0.05, 7056, 0.10, 7670] 60 x 60 4.42 5.89 0.26 979 249 193 140

[0.10, 7467, 0.10, 7670] 60 x 60 9.8 9.92 0.35 1076 263 384 191

are shown as well as the parameter ranges that define the continuum of transfer orbits in
the second mode. The RT column shows the time intersection of the reach set where the
rendezvous was satisfied. To verify smaller rendezvous distances, smaller partitioning
sizes can be used. This will minimize the error accumulated in the approximation, but
will result in increased abstraction and reach set computation time. The bounded reach
set, ReachδB, is not completely contained in Γd, and only its intersection for a range of
times (ReachδB(t) for t ∈ [TR − ρ, TR + ρ]) is completely contained. For instance, one
input to Lambert’s problem is the time TR for rendezvous to occur, and we can verify
rendezvous for a range of times ρ around TR.

Table 2 compares different hybridization schemes—rectangular versus linear over-
approximations of dynamics—for conjunction avoidance. We fix the partitioning of
the hybridization and are comparing only rectangular versus linear dynamics for the
same partition shape and size. Usually, the reach sets from linear overapproximation
are smaller than rectangular. However, the support function algorithm implemented in
SpaceEx allows the user to configure the amount of error in the overapproximation.
Lower error comes at the cost of higher runtime, and we summarize runtime compar-
isons in Table 2. We can decrease this runtime cost by configuring SpaceEx, but this
may come at the expense of the rectangular overapproximation being as good, if not
better, than the linear overapproximation.
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6 Conclusion and Future Work

In this paper, we developed abstraction techniques used to enable automatic verifica-
tion of bounded-time safety properties for nonlinear satellite systems. The abstractions
account for uncertainties in observation times, sensor measurements, and thrusting. We
also showed that the unbounded model-checking of incommensurate orbits is impossi-
ble. However, the reach set for circular commensurate orbits can be computed exactly.
While we do not have space to present it here, we (a) can verify unbounded properties
of eccentric commensurate orbits by using forward and backward reachability tech-
niques, and (b) have verified time-bounded safety properties for nearby satellites using
the Clohessy-Wiltshire-Hill (CWH) dynamics in the ellipsoidal toolbox [17].

One of the primary roadblocks for analyzing more eccentric elliptical orbits or
multiple-transfer satellite maneuvers is the granularity with which we are able to parti-
tion the state space. If we are able to approximate the dynamics over smaller intervals,
we will be better equipped to analyze these more complex systems. An important fea-
ture yet to be taken advantage of is that the dynamics between the satellites is loosely
coupled. A new approach we are exploring is to decompose the multi-satellite system
into individual satellite automata, which would allow for much finer partitioning. With
each automata containing a synchronized clock variable, we are developing algorithmic
techniques that act on the individual reach sets to enable compositional verification of
the global safety properties.
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Abstract. This paper describes the K tool, a system for formally defin-
ing programming languages. Formal definitions created using the K tool
automatically yield an interpreter for the language, as well as program
analysis tools such as a state-space explorer. The modularity of K and the
design of the tool allow one semantics to be used for several applications.

1 Introduction

Programming languages are the key link between computers and the software
that runs on them. While syntax is typically formally defined for almost any
programming language, semantics is most often given in natural language, and
only rarely using mathematical language. However, without a formal semantics,
it is impossible to rigorously reason about programs in that language. Moreover,
a formal definition of a language is a specification offering its users and imple-
menters a solid basis for agreeing on the meaning of programs. Unfortunately,
tools for creating and working with formal definitions are poor and unfriendly,
causing language designers to prefer writing reference manuals or reference im-
plementations over formal definitions.

This paper presents a tool that makes it easy to write formal definitions for
large languages and use them for analysis and verification. This tool, known as
the K tool, is an executable implementation of the K framework [2], a formal
specification language that is simultaneously expressive, modular, and analyz-
able. We extend an earlier implementation [4] with a mechanism for guided
state-space search and an easy-to-use frontend that supports input and output.
These key features allow users to experiment with language design and specifica-
tion by means of testing and exhaustive non-deterministic behavior exploration.

Besides didactic and prototypical languages (such as System F and Agent), the
K tool has been used to completely formalize C and Scheme. Several other lan-
guages are currently being defined using the K tool, including Haskell, Javascript,
LLVM IR, and Python. The K tool has also been used in the development of
several analysis tools, including a new program verification tool using program
assertions based on matching logic, a model checking tool based on the CEGAR
� This work is supported by Contract 161/15.06.2010, SMISCSNR 602-12516 (DAK).
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cycle, and several runtime verification tools. References and links to these tools
and definitions can be found on the K tool website, http://k-framework.org.

2 The K Tool: Basics

K definitions of programming languages can be written in machine-readable
ASCII. The K tool provides facilities to manipulate such definitions, including
typesetting them into their LATEX mathematical representation, and generating
execution and analysis tools. For example, Figure 1 gives the definition of a
simple calculator language with variables, input, and output. We assume this
definition is saved in a file called exp.k for the following examples.

module EXP
configuration

〈k〉 $PGM:K 〈/k〉
〈state〉 $STATE:Map 〈/state〉
〈streams〉

〈in stream="stdin"〉 .List 〈/in〉
〈out stream="stdout"〉 .List 〈/out〉

〈/streams〉

syntax KResult ::= Int

syntax K ::= K + K [strict]
| K / K [strict ]

rule I1:Int + I2:Int => I1 +Int I2
rule I1:Int / I2:Int => I1 /Int I2

when I2 =/=Int 0

syntax K ::= Id

rule 〈k〉 X:Id => I ···〈/k〉
〈state〉··· X |−> I :Int ···〈/state〉

syntax K ::= read
| print K [strict ]

rule 〈k〉 read => I ···〈/k〉
〈in〉 ListItem(I:Int) => .List ···〈/in〉

rule 〈k〉 print I :Int => I ···〈/k〉
〈out〉··· .List => ListItem(I) 〈/out〉

end module

MODULE EXP
CONFIGURATION〈

$PGM
〉
k

〈
$STATE

〉
state〈 〈 · 〉

in

〈 · 〉
out

〉
streams

SYNTAX KResult ::= Int

SYNTAX K ::= K + K [strict]
| K / K [strict]

RULE I1 + I2 ⇒ I1 +Int I2

RULE I1 / I2 ⇒ I1 ÷Int I2 when I2 �=Int 0

SYNTAX K ::= Id

RULE 〈 X

I

···〉k 〈··· X �→ I ···〉state

SYNTAX K ::= read
| print K [strict]

RULE 〈read
I

···〉k 〈 I

·
···〉in

RULE 〈print I

I

···〉k 〈··· ·
I

〉out

END MODULE

Fig. 1. K definition of a calculator language with variables and I/O (left: ASCII source;
right: LATEX generated by the tool)

For execution and analysis purposes, the definitions are translated into Maude
rewrite theories. To obtain the rewrite theory associated to exp.k, we use the
kompile tool:

http://k-framework.org
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$ kompile exp.k
Compiled version written in exp-compiled.maude.

Once the definition is compiled, it can be used for interpretation and analysis.
Consider the program p1.exp:

print((read + read + read) / 3)

which reads three numbers and outputs their (truncated) mean. We can test this
program using the krun tool:

$ echo "3 14 15" | krun p1.exp
10

Notice the use of the operating system’s standard input/output streams.
Consider now the program p2.exp:

print(x + y)

which prints the sum of two externally defined variables x and y. If we forget to
pass in a value for x at the start of the program’s execution:

$ krun p2.exp --STATE="y |-> 2"
<k> x ∼> � + 2 ∼> print � </k>
<state> y |-> 2 </state>

the tool prints a configuration indicating that the execution got stuck. The con-
tents of the k cell tells us that the next computation to perform is the lookup of x.
Since x is not present in the state, the rule for variable lookup can not apply so the
execution is unable to proceed. If we instead type --STATE="y |-> 2 x |-> 3",
the tool prints the expected result of 5.

These examples demonstrate a new and important feature of the K tool: the
ability to associate cells in the configuration with data from the outside world.
In the definition above, the in and out cells are linked to standard input/output
(via the stream attribute) to achieve interactive I/O. This feature allows K
definitions to easily be tested for correctness using existing test suites and test
frameworks. Similarly, the state cell is initialized to the $STATE variable. This
allows the contents of the cell to be manipulated from the command-line, as
in the previous example. Incidentally, the k cell is also initialized to a variable,
$PGM, which is always mapped to the input program.

3 The K Tool: Analysis

The K tool is more than an interpreter front-end. Consider the program p3.exp:

print(print(read) + print(read))

The definition of EXP in Figure 1 says the value returned by print is the printed
number. Therefore, the program should read two numbers, print them, and then
print their sum. If we just execute the program as before, we see what we expect:

$ echo "3 14" | krun p3.exp
31417
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However, the definition also says that the evaluation order of + (specified by
the strict annotation on its syntax) is nondeterministic. If we search for all
possible behaviors of p3.exp, we obtain two final configurations with differing
out cells: one where “3” is printed first and one where it is printed second:

$ echo "3 14" | krun p3.exp --search
Search results:

Solution 1, state 4:
<k> 17 </k>
<state> . </state>
<streams>
<in> "" </in>
<out> "31417" </out>

</streams>

Solution 2, state 9:
<k> 17 </k>
<state> . </state>
<streams>
<in> "" </in>
<out> "14317" </out>

</streams>

The state-space exploration functionality provided by krun --search can be
used to explore all possible thread interleavings of multi-threaded programs. It
is also used to find undefined behaviors in programs (particularly C programs).

In addition to the functionality shown in the examples above, the K tool
gives K definitions access to the exploration, analysis, and proving tools avail-
able for all Maude rewrite theories [1], allowing programs written in the defined
programming languages to also be debugged, traced, and model checked, all
without modifying the definition.

4 Conclusion

The modularity and executability features provided by the K tool have made it
possible to completely define large languages like C. These features also make
it easy to experiment with language design in order to create new languages
and make modifications to existing languages. Regardless of the language being
defined, the same K definition that is tested by executing programs is used to
do program analysis and is used to do proofs about the language. One semantics
is used for all applications.

In this paper, we have shown only a subset of the features offered by
the K tool. To learn more about it, or to start developing a program-
ming language, download the K tool from our open source project page,
http://k-framework.googlecode.com, and start by reading the K Primer [3].
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Abstract. Specification and verification of real-time systems are important re-
search topics with crucial applications; however, the so-called state space ex-
plosion problem often prevents model checking to be used in practice for large
systems. In this work, we present a self-contained toolkit to analyze real-time sys-
tems specified using event-recording automata (ERAs), which supports system
modeling, animated simulation, and fully automatic compositional verification
based on learning techniques. Experimental results show that our tool outper-
forms the state-of-the-art timed model checker.

1 Introduction

Ensuring the correctness of safety-critical systems with timing requirements is crucial
and challenging. Model checking is emerging as an effective verification method and
has been widely used for timed system. However, model checking suffers from the
infamous state space explosion problem, and the problem is even graver in timed model
checking because of the timed transitions.

To alleviate this problem, we proposed an automatic learning-based compositional
verification framework for timed systems (cf. technical repoert [7]). We focus on timed
systems that are modeled by event-recording automata (ERAs) [1], which is a deter-
minizable class of timed automata. ERAs are as powerful as timed transition systems
and are sufficiently expressive to model many interesting timed systems. The proposed
framework consists of a compositional verification based on the non-circular assume-
guarantee (AG-NC) proof rule [9] and uses a learning algorithm, TL* [8], to automati-
cally generate timed assumptions for assume-guarantee reasoning (AGR).

Our engineering efforts realize the proposed techniques into a self-contained toolkit
for analyzing real-time systems, which is built as the ERA module (can be downloaded
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Fig. 2. Models and property of the I/O system

at [6]) in the PAT model checker [10]. Fig. 1 shows the architecture of our tool, which
consists of four components, namely the editor, the parser, the simulator and verifiers.
The editor is featured with a powerful graphic drawing component that allows users to
design system models and specify properties by drawing ERAs. The editor also sup-
ports syntax highlighting, intellisense, and undo/redo functionality such that designers
can efficiently model the systems. The parser compiles both the system models and
the properties (in the form of ERAs) into internal representations for simulation and
verification. The simulator allows users to perform various simulation tasks on the in-
put model such as user interactive simulation, trace replay and so on. Most importantly,
compositional verification is fully automated for safety properties specified using ERAs.
To the best of our knowledge, our tool is the first one supporting fully automatic compo-
sitional verification for timed systems. Our tool also supports the traditional monolithic
approach that generates the global state space based on zone abstraction. Users can
choose to use either the monolithic or our compositional approach inside the verifica-
tion interface. If the verification result is false, counterexamples will be produced and
can be visualized using the simulator. Experimental results (Section 3) show that our
tool of compositional verification for real-time systems outperforms traditional timed
monolithic approaches in many cases.

2 Compositional Verification of ERAs

An event-recording automaton (ERA) is a special case of timed automaton where each
event a on a transition is associated with a corresponding event-recording clock xa

recording the time elapsed since the last occurrence of event a. Each event-recording
clock xa is implicitly and automatically reset when a transition with event a is taken.

Fig. 2 gives an I/O system with two components, INPUT and OUTPUT, modeled
by ERAs. The pairs of event-recording clocks and the corresponding events are xi :
input, xs : send, xo : output, and xa : ack. The model of the INPUT component is
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Fig. 3. GUI of the PAT Model Checker

shown in Fig. 2 (a). It performs an input event within one time unit once it receives an
ack event from OUTPUT. Subsequently, it performs a send event to notify OUTPUT
and waits for another ack event from OUTPUT. The model of OUTPUT is shown in
Fig. 2 (b), which is similar to INPUT. The system property ϕ, as shown in Fig. 2 (c),
is that input and output events should alternate and the time difference between every
two consecutive events should not exceed five time units. Fig. 3 shows the INPUT
component modeled in PAT, where a double circle represents the initial state and a state
labeled with “A” represents an accepting state.

The flow of the proposed timed compositional verification is a two-phase process
using the TL∗ algorithm [8] to automatically learn the timed assumption needed by
AGR. The first, untimed verification, phase constructs the untimed assumption, and then
the second, timed verification, phase refines the untimed assumption into timed one and
concludes the verification result. The flow is complete, i.e., users are guaranteed to get
the verification result. Interested readers are referred to the technical report [7]. After
verification, PAT shows that the I/O system satisfies the property ϕ.

3 Experimental Results and Discussion

To show the feasibility and scalability of our tool, we present verification results of four
different applications, namely the CSS, GSS, FMS, and AIP systems, in Table 1. The
details of the four systems, their models, and the verified properties can be found in [6].
The experimental results were obtained by running PAT on a Windows 7 machine with
a 2.27 GHz Intel(R) Core(TM) i3 processor and 4 GB RAM. We also compared our
approach with the UPPAAL model checker [11]; however, we do not list the verifica-
tion time of UPPAAL for verifying the AIP system because UPPAAL does not support
events on transitions such that the AIP system cannot be modeled in UPPAAL. When
the system size is small, compositional approach does not outperform monolithic ver-
ification or UPPAAL because of the overhead of learning iterations; when the number
of components increases, the learning iterations compensate for the large global state
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Table 1. Verification Results

Monolithic Compositional UPPAAL
System n |CΣ| |P�|=| |L|max |δ|max Time Mem |L|max |δ|max Time Mem Time

|P | (secs) (MB) (secs) (MB) (secs)
CSS 3 6 0/6 11 20 0.03 0.16 19 50 0.06 0.77 0.05
GSS 3 3 2/3 29 46 0.03 0.13 56 107 0.03 0.69 0.06

FMS-1 5 3 1/3 193 514 0.03 1.18 60 138 0.03 0.89 0.08
FMS-2 10 6 3/6 76, 305 396, 789 40.71 114.08 1, 492 4, 952 0.66 6.60 2.05
FMS-3 11 6 5/7 201, 601 1, 300, 566 70.02 295.89 3, 150 16, 135 1.14 12.07 9.87
FMS-4 14 8 3/9 − − − ROM 26, 320 127, 656 51.02 41.41 ROM

AIP 10 4 5/10 104, 651 704, 110 78.05 149.68 2, 992 12, 971 1.90 7.39 N/A

n: # of components; |CΣ|: # of event-recording clocks; |P |: # of properties; |P�|=|: # of violated properties; |L|max:
# of visited locations during verification; |δ|max: # of visited transitions during verification; ROM: run out of memory

space and compositional approach can reduce the verification time and the memory us-
age significantly. For the FMS-4 system, the monolithic approach and UPPAAL cannot
even finish the verification using 4 GB memory.

Discussion. AGR has been applied to model checking to alleviate the state space ex-
plosion problem [3]. However, the construction of the assumptions for AGR usually re-
quires nontrivial creativity and experience, which limits the impact of AGR. Cobleigh
et al. [4] proposed a framework that generates the assumptions of components automati-
cally using the L∗ algorithm [2]. This work was a breakthrough of automating composi-
tional verification for untimed systems. Grinchtein et al. [5] proposed three algorithms
for learning ERAs; however, the time complexity of the algorithms depend exponen-
tially on the largest constant appearing in the time constraints. In [8], we proposed a
more efficient polynomial time algorithm, TL∗, for learning ERAs. Starting from 2010,
ERA module in PAT has come to a stable stage with solid testing. We successfully
applied it to verify real-time systems ranging from classical concurrent algorithms to
real world problems. In the future, we plan to use different techniques to generate the
assumptions and to extend the framework using other proof rules of AGR.
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Abstract. This work presents a novel approach for the verification of Behavioral
UML models, by means of software model checking.

We propose adopting software model checking techniques for verification of
UML models. We translate UML to verifiable C code which preserves the high
level structure of the models, and abstracts details that are not needed for verifi-
cation. We combine of static analysis and bounded model checking for verifying
LTL safety properties and absence of livelocks.

We implemented our approach on top of the bounded software model checker
CBMC. We compared it to an IBM research tool that verifies UML models via
a translation to IBM’s hardware model checker RuleBasePE. Our experiments
show that our approach is more scalable and more robust for finding long coun-
terexamples. We also demonstrate the usefulness of several optimizations that we
introduced into our tool.

1 Introduction

This work presents a novel approach for the verification of Behavioral UML models,
by means of software model checking.

The Unified Modeling Language (UML) [4] is a widely accepted modeling language
that is used to visualize, specify, and construct systems. It provides means to represent
a system as a collection of objects and to describe the system’s internal structure and
behavior. UML has been accepted as a standard object-oriented modeling language by
the Object Management Group (OMG) [12]. It is becoming the dominant modeling
language for embedded systems. As such, the correct behavior of systems represented
as UML models is crucial and verification techniques for such models are required.

Model checking [6] is a successful automated verification technique for checking
whether a given system satisfies a desired property. Model checking traverses all system
behaviors, and either confirms that the system is correct w.r.t. the checked property, or
provides a counterexample demonstrating an erroneous behavior.

Model checking tools expect the checked system to be presented in an appropriate
description language. Previous works on UML model checking translate UML models
to SMV [5,7] or VIS1 [25], both particularly suitable for hardware; to PROMELA (the
input language of SPIN) [17,16,20,10,1,14,11]), which is mainly suitable for commu-
nication protocols; or to IF3 [18], which is oriented to real-time systems.

1 These works were developed as part of the European research project OMEGA [19].

D. Giannakopoulou and D. Méry (Eds.): FM 2012, LNCS 7436, pp. 277–292, 2012.
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We believe that behavioral UML models mostly resemble high-level software sys-
tems. We therefore choose to translate UML models to C and adopt software model
checking techniques for their verification. Our translation indeed preserves the high-
level structure of the UML system: event-driven objects communicate with each other
via an event queue. An execution consists of a sequence of Run To Completion (RTC)
steps. Each RTC step is initiated by the event queue by sending an event to its target
object, which in turn executes a maximal series of enabled transitions.

Model checking assumes a finite-state representation of the system in order to guar-
antee termination with a definite result. One approach for obtaining finiteness is to
bound the length of the traversed executions by an iteratively increased bound. This is
called Bounded Model Checking (BMC) [3]. BMC is highly scalable, and widely used,
and is particularly suitable for bug hunting. We find this approach most suitable for
UML models, which are inherently infinite due to the unbound size of the event queue2.

We emphasize that our goal is to translate the UML model into verifiable C code
that suits model checking, rather than produce executable code. Also, we only wish to
verify user-created artifacts. When translating to C, we therefore simplify implementa-
tion details that are irrelevant for verification. For instance, the event queue is described
at a high level of abstraction, and code is sometimes duplicated to avoid pointers and
simplify the verification. The resulting code is significantly easier for model checking
than automatically generated code produced by UML tools such as Rhapsody [23].

Recall that the verifiable C code will be checked by BMC with some bound k. We
choose k to count the number of RTC steps. This implies that along an execution of size
k only the first k events in the queue are consumed, even if more were produced. It is
therefore sufficient to hold an event queue of size k. We thus obtain a finite-state model
without losing any precision. Counterexamples are also returned as a sequence of RTC
steps, but zooming in to intermediate states is available upon request.

We verify two types of properties: LTL safety properties and livelocks. Safety prop-
erties require that the system never arrives at bad states, such as deadlock states, states
violating mutual exclusion, or states from which the execution can continue nondeter-
ministically. LTL safety properties can further require that no undesired finite execution
occurs. Checking (LTL) safety properties can be reduced to traversing the reachable
states of the system while searching for bad states. We apply Bounded reachability with
increasing bounds for finding bad states. Our method can also be extended to proving
the absence of bad states, using k-induction [26].

Another interesting type of properties is the absence of livelocks. Livelocks are a
generalization of deadlocks. While in deadlock states the full system cannot progress,
in livelock states part of the system is “stuck” forever while other parts continue to run.
Livelocks can be hazardous in safety critical systems and often indicate a faulty design.

Scalable bounded model checking tools mostly handle safety or linear-time prop-
erties. However, absence of livelocks is neither safety nor linear-time property and is
therefore not amenable to bounded model checking. We identify an important subclass
of livelocks, which we refer to as cycle-livelocks, and show that they can be found by
combining static analysis and bounded reachability.

2 Variables are treated as finite width bit vectors and therefore do not hurt the model finiteness.
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The property of deadlock has been the subject of many works. In the context of
UML, [15] presents model checking for deadlocks via process algebra. The SPIN model
checker itself supports checking for deadlocks. To the best of our knowledge, absence
of livelocks has never been verified in the context of behavioral UML models.

We implemented our approach to verifying UML models with respect to LTL safety
properties and cycle-livelocks in a tool called soft-UMC (software-based UML Model
Checking). Our tool is built on top of the software model checker CBMC [8] which ap-
plies BMC to C programs and safety properties. We ran it on several UML examples and
interesting properties, and found erroneous behaviors and livelocks. For safety proper-
ties, we also compared soft-UMC with an IBM research tool that verifies UML models
via a translation to IBM’s hardware model checker RuleBasePE [24]. Our experiments
show that soft-UMC is more scalable and more robust for finding long counterexamples.
Our experimental results also demonstrate the usefulness of the optimizations applied
in the creation of the verifiable C code.

The rest of the paper is organized as follows. In Sec. 2 we present some background.
Our translation to verifiable C code is presented in Sec. 3, and our method for verifica-
tion of (LTL) safety properties and cycle-livelocks is presented in Sec 4. We show our
experimental results in Sec 5, and conclude in Sec. 6.

2 Preliminaries

2.1 Behavioral UML Models

We use a running example describing a flight ticket ordering system to explain UML.
The class diagram in Fig. 1(a)3 shows the classes DB and Agent and the connection
between them. The object diagram in Fig. 1(b) defines four objects, two of each class.
These diagrams also show the attributes (variables) of each class and their event recep-
tions. E.g., objects of class DB have two attributes (isMyF lt and space) and are able
to receive events of type evReqOwnership, evReqF lt, and evGrantOwnership.

UML objects process events. Event processing is defined by statecharts [13], which
extend conventional state machines with hierarchy, concurrency and communication.
The statecharts of DB and Agent classes are presented in Fig. 2.

Objects communicate by sending events (asynchronous messages). An event is a
pair (ev, trgt), where ev is the type of the sent event and trgt is the target object of
the event. Events are kept in an event queue (EQ), managed by an event queue manager
(EQ-mgr). When object A sends an event to object B, the event is inserted into the
EQ. The EQ-mgr executes a never-ending event-loop, taking an event from the EQ,
and dispatching it to the target object. If the target object cannot process the event,
the event is discarded. Otherwise, the event is consumed and the target object makes
a run-to-completion (RTC) step, where it processes the event, and continues execution
until it cannot continue anymore. Only when the target object finishes its RTC step, the
EQ-mgr dispatches the next event available in the EQ4.

3 We used Rhapsody [23] to generate the drawings in this paper, and will accordingly use some
of Rhapsody’s terms and conventions.

4 The order in which events are executed is under-specified in UML. We choose to follow the
Rhapsody semantics, and implement event processing as a FIFO.
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(b) object diagram

Fig. 1. Ticket Ordering System

Every object is associated with a single EQ.
In a multi-threaded model, there are several EQ-
mgrs, and objects from different threads can
communicate with each other. In this paper we
focus on the case of a single thread, and will
henceforth ignore the multi-threaded case.

Objects send events via the operationGEN().
For example, in the statechart of DB (Fig. 2(a)),
when db1 executes the operation itsA →
GEN(evF ltAprv()), an event of type evF ltAprv
is sent to the target object on the relevant link.
From the object diagram (Fig. 1(b)), we see that
the target object is a1.

Statecharts: The behavior of each object in the
system is described by the hierarchical state-
chart associated with the class of the object. Hi-
erarchical statecharts for classes DB and Agent
are given in Fig. 2. For simplicity, in the rest of
this section, notions related to statecharts and se-
mantics are first defined for non-hierarchical stat-
echarts. Needed definitions and notations are then extended for hierarchical statecharts
as well.

We first define the following notions: A guard is a boolean expression over a set of
attributes. The trivial guard is true. A trigger is the name of some event type. An action
is a possibly empty sequence of statements in some programming language. A statechart
of class Cls is a tuple sc = (Q, T, init), where Q is a finite set of states, init ∈ Q is
the initial state, and T is a finite set of transitions. For every t ∈ T , t = (q, b, e, a, q′)
where q ∈ Q is the source state, b is a guard, e is either a trigger or nil, a is an action,
and q′ ∈ Q is the destination state.

Transitions whose trigger is nil and whose guard is true are referred to as null-
transitions. In a graphical representation of a statechart, states are marked as squares.
Every transition t is marked with trig[grd]/act, representing the trigger, guard and
action of t. If trigger is nil, guard is true or action is empty then they are omitted from
the representation. The initial state is marked with a transition with no source (•→�).

We place a few restrictions on the statecharts language. We assume that every loop in
a statechart includes at least one transition with a trigger. We also place restrictions on
the action language and disallow dynamic allocation of objects and memory, dynamic
pointers, unbounded loops, and recursion. This defines a restricted case of behavioral
UML models, which is nevertheless relevant for embedded software. These restrictions
enable us to focus on software based verification for UML models, while avoiding or-
thogonal issues such as termination and pointer analysis.

The Semantics of Behavioral UML Models: Let o be an object with statechart sc(o),
and attribute evaluation ν(o), where ν(o) is a function mapping all attributes of o to
a value in the relevant domain. We say that a transition t = (q, b, e, a, q′) in sc(o) is
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Fig. 2. Ticket Ordering System - Statecharts

enabled w.r.t. ν(o) and an event ev = (e′, o) if the following holds: b evaluates to
true under ν(o), and e is either nil or e = e′. Let (e, o) be an event that was taken
from the queue. Then q, the current state of sc(o), and ν(o) determine how this event
is processed. A transition t can be executed if its source is q and t is enabled w.r.t. ν(o)
and (e, o). If there exists one or more transitions that can be executed from q, then one
is executed non-deterministically. When transition t is executed from q, the action of t
is executed, and the statechart reaches state q′, which is the destination state of t.

Let (e, o) be an event dispatched to o, whose current state is q. An RTC step is a
sequence of enabled transitions starting from q. The first transition in the sequence can
be marked with a trigger or not5. The rest of the transitions are not marked with triggers.
An RTC step terminates at a state q′ that has no enabled outgoing transitions.

The following terminology will be needed later. Objects that can send some event
(ev, o) are called producers of (ev, o). In our example, the (only) producer of event
(evReqOwnership, db1) is db2. Objects that can modify some attribute x of object
o are called modifiers of (x, o). Let b be a guard in sc(o), where b includes attributes
{x1, ..., xm}. The set of modifiers of all attributes in b are called the modifiers of (b, o).

Hierarchical Statecharts: In hierarchical statecharts states can be either simple or
composite. A composite state consists of a set of states, called its substates. A simple
state has no substates. Every composite state includes an initial state. A composite state
can also be defined with history data6, marked by in the statechart. This represents
the most recent active substate of q.

Every hierarchical statechart includes a unique top state, which is not a substate of
any other state. Hierarchical statecharts are denoted by sc = (Q, T, top). A h-state
q̄ = (q1, ..., qn) of sc describes a full hierarchical path in sc, where q1 = top, qn is
a simple state and for every i > 0, qi is a substate of qi−1. The initial h-state of sc is
q̄ = (q1, ..., qn) s.t. for every composite state qi, qi+1 is the initial state of qi.

5 This point is under-specified in UML. We chose to follow the Rhapsody semantics.
6 In this work we only consider shallow history.
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We disallow transitions to cross hierarchy levels, i.e. for t = (q, b, e, a, q′), q and q′

are substates of the same state. Given ν(o) and (e, o), a transition t can execute from
h-state q̄ = (q1, ..., qn) of sc(o) if t is enabled w.r.t. ν(o) and (e, o) from qi, 1 ≤ i ≤ n,
and no t′ is enabled from any qj , i < j ≤ n. When t is executed, sc(o) reaches the
destination h-state q̄′ = (q′1, ..., q

′
m) for some m ≥ i s.t.: (1) ∀j.1 ≤ j < i, q′j = qj ,

(2) q′i is the destination state of t, and (3) ∀j.i < j ≤ m, q′j is defined according to the
history semantics of UML. From now on we consider only hierarchical statecharts.

2.2 LTL and Automata Based Model Checking

A Kripke structure is a tuple M = (S, I0, R), where S is a set of states, I0 ⊆ S is a set
of initial states, and R ⊆ S × S is a total transition relation. An execution of M is an
infinite set of states s0, s1, ... s.t. for every i ≥ 0, (si, si+1) ∈ R. .

The Linear-time Temporal Logic (LTL) [21] is suitable for expressing properties of
a system along an execution path. We assume the reader is familiar with LTL. In this
work we restrict ourselves to a fragment of LTL, in which only safety properties are
expressible. These are properties whose violation occurs along a finite execution. [27]
gives a syntactic characterization of safety properties.

A Kripke structure M satisfies an LTL formula ψ, denoted M |= ψ, if every ex-
ecution of M starting at an initial state satisfies ψ. A general method for on-the-fly
verification of LTL safety properties is based on a construction of a regular automaton
A¬ψ, which accepts exactly all the executions that violate ψ. Given M and ψ, we con-
struct M × A¬ψ to be the product of M and A¬ψ . A path in M × A¬ψ from an initial
state (s, q) to a state (s′, q′) where q′ is an accepting state in A¬ψ represents an execu-
tion of M , and a word accepted by A¬ψ . It therefore represents an execution showing
why M does not satisfy ψ. Such executions are called counterexamples for ψ.

2.3 Bounded Model Checking

Bounded Model Checking (BMC) [3] is an iterative process for checking models against
LTL formulas. The transition relations for a Kripke structure M and its specification are
jointly unwound for k steps and are represented by a boolean formula that is satisfiable
iff there exists an execution of M of length k that violates the specification. The for-
mula is then checked by a SAT solver. If the formula is satisfiable, a counterexample is
extracted from the output of the SAT procedure. Otherwise, k is increased.

BMC is widely used for finding bugs in large systems, including software systems
([8,2,9]). BMC for software is performed by unwinding the loops in the program for
k times, and verifying the required property. The property is often described by an
assertion added to the program text. The model checker then searches for a program
execution that violates the assertion. Our method for verifying UML models relies on
invoking a software BMC tool. We require that the tool supports assumptions on the
program, given as assume(b) commands, where b is some boolean condition. Having
assume(b) at location � of the program means that only executions π that satisfy b
when passing at � are considered. If b is violated then π is ignored.
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2.4 Notations and Abbreviations

Throughout the rest of the paper we will use the following notations and abbreviations.
A model includes N objects M = {o1, ..., oN}. Every object oi is associated with a
statechart sc(oi) = (Qi, Ti, topi). For ti = (q, b, e, a, q′) a transition in Ti: grd(ti) = b,
ev(ti) = e and act(ti) = a. Given a state q ∈ Qi:

– trn(q) ⊆ Ti is the set of transitions whose source is q.
– evnts(q) =

⋃
t∈trn(q){(ev(t), i)} \ {(nil, i)} is the set of triggers on trn(q).

– grds(q) =
⋃

t∈trn(q){(grd(t), i)} is the set of guards on trn(q).
– prod(q) ⊆ {1, ..., n} denotes indexes of producers of all events in evnts(q). For

example, if evnts(q′) = {(ev, j)}, and the producers of (ev, oj) are {oi1 , ..., oik},
then prod(q′) = {i1, ..., ik}.

– modif(q) ⊆ {1, ..., n} denotes indexes of modifiers of all guards in grds(q).

These abbreviations are generalized to denote the transitions, events, guards, producers,
and modifiers of an h-state and of a subset of states.

3 Translation to Verifiable Bounded C

1: method RunRTCStepi(ev)
2: while (j < maxRTClen) do
3: if (!enabled(currSt, νi, ev)) return
4: choose T ransition t
5: assume(t ∈ trn(currSt))
6: assume(val(t, currSt, νi, ev))
7: execute act(t)
8: ev := nil
9: incr j

Fig. 3. RunRTCStepi method of oi

We translate behavioral UML models to
C. Our goal is to create code that is
most suitable for verification, rather then
an efficient implementation of the sys-
tem. Moreover, we verify our code using
a BMC verifier, therefore our code de-
scribes a bounded run of the model. In or-
der to create code suitable for verification
we avoid as much as possible the use of
pointers or of methods called with differ-
ent parameters. This results in code which
is longer in lines-of-code. However, the
model created by the verification tool is
smaller, and the model checker can then perform optimizations more efficiently.

The atomic unit in our translation is a single RTC step, rather than a single transition.
Every object is translated into a method, representing the behavior of its associated
statechart. When an event ev is dispatched to object oi, the method associated with oi
executes a single RTC step of oi.

Fig. 3 presents RunRTCStepi, the pseudo-code for a single RTC step of oi. currSt
is the current h-state of oi in sc(oi). enabled(currSt, νi, ev) is true iff there exists an
enabled transition t ∈ trn(currSt) w.r.t. νi and event ev. The method terminates when
there are no enabled transitions to execute. The while loop iterates up to maxRTClen
iterations. maxRTClen represents the maximum number of transitions of any RTC
step of oi. If this value cannot be extracted by static analysis, then the condition is
replaced by true, and the length of the RTC step is bounded by the BMC bound, k.
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val(t, currSt, νi, ev) is true iff t can be executed from currSt w.r.t. νi and event ev.
Lines 4-6 amount to a non-deterministic choice of a transition t, which can be executed
from currSt. When choosing a transition (line 4), no constraints are assumed on it. Line
5 restricts the program executions to those where t is a transition from currSt. Line 6
restricts the remaining program executions to those where t can execute. In line 7 the
action of the transition is executed. Executing the action updates the currSt according
to the destination state of t. Note line 8, where we set the event to nil. This is done
since the event is consumed once, and only in the first transition of the RTC step. The
rest of the transitions of the RTC step can be executed only if their trigger is nil.

The EQ is represented as a bounded array. The main method of the program executes
the never-ending loop of taking an event from the EQ, and dispatching it to the relevant
target object. Fig. 4 presents the pseudo-code for the main method. In line 3 an event
ev whose target is oi is taken from the EQ. In line 4 an RTC step of oi is initiated.

1: method main
2: while (true) do
3: (ev, oi) := popEv()
4: RunRTCStepi(ev)

Fig. 4. main method

When applying BMC on the main method in Fig. 4,
the while loop is unrolled k times, which means that
the model is verified for k RTC steps. Generally, plac-
ing a bound on the EQ can make the model inaccurate
due to overflows. However, k is the exact bound for a
k-bounded verification over k RTC steps, since only the
first k events that are sent will be dispatched during k
RTC steps.

Another verification oriented optimization we introduce is in the implementation of
the environment. The array is initialized with k environment events, but with head =
tail = 1. When a system event evS is sent, the tail is incremented non-deterministically,
after which evS is added to the EQ, overriding the environment event there. This models
inserting to the EQ a non-deterministic number of environment events that arrive prior
to the addition of evS to the EQ.

C code can be automatically generated by UML tools such as Rhapsody, but this code
would not be suitable for verification. Automatically generated code includes generic
code, and means for communicating with different libraries and with the operating sys-
tem. We, on the other hand, are interested in verifying only the user-created behavior
of the system, and therefore we can abstract the event queue and the operating system.
We exploit features of the model-checker, such as the assume construct, to make the
verification more efficient. Assuming a static model allows us to implement links by
direct calls rather than using pointers.

4 Model Verification

We now describe our method for verification of a given behavioral UML model. The
model includes N objects M = {o1, ..., oN}. Verification is done using assertions on
the code describing the model. We support verification in a granularity of transition level
or RTC level. First, we define the notion of configuration (CONF) of a UML model.

Definition 1. A configuration (CONF) ofM is C = (q, ν, EQ), where:

– q = (q̄1, ..., q̄N ) is a system state where q̄i is a h-state of sc(oi).
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– ν = (ν(o1), ..., ν(oN )) is an evaluation vector; ν(oi) is attribute evaluation of oi.
– EQ = ((e1, i1), ..., (em, im)) is an event queue with m elements, where (evj , ij)

represents event evj whose target is oij . (e1, i1) is the top, denoted top(EQ).

A behavioral UML model M can be viewed as a Kripke structure M = (S, I0, R),
where S is the set of all possible CONFs in M. R can be defined either at the RTC
level (denoted RRTC ) or at the transition level (denoted Rt). (C,C′) ∈ RRTC iff C′ is
reachable from C in a single RTC step. (C,C′) ∈ Rt iff C′ is reachable from C in an
execution of a single transition. Executions are defined at RTC or transition level.

Definition 2. πr = C0, C1, ... is an execution at the RTC level (RTC-execution) iff for
every n > 0, (Cn−1, Cn) ∈ RRTC .

Definition 3. πt = C0, C1, ... is an execution at the transition level (t-execution) iff for
every n > 0, (Cn−1, Cn) ∈ Rt, and πt represents an execution of RTC steps. That is, for
every i ≥ 0, there exist j ≤ i and m ≥ i s.t. Cj , ..., Cm represents a single RTC step.

For the rest of the paper, when an execution is either a t-execution or an RTC-
execution, we refer to it as an execution. In the following we first present how model
checking of an LTL safety property over a given behavioral UML model is done. We
then continue to present our algorithm for verifying cycle-livelocks.

4.1 Verifying LTL Safety Properties

We now show how to verify safety LTL properties over behavioral UML models using
an automata based approach. We assume the atomic propositions of the property are
predicates over the CONFs of the model. We extend the C program created from M
with a method representing the automaton A¬ψ. The method runs in lock step with the
system, and identifies property violations.

A safety property can be verified either at the RTC level or at the transition level,
by placing the call to the automaton method either at the end of each RTC step (within
the method main) or at the end of each transition (within the method RunRTCStepi).
The choice of the level for verification depends on the property to be verified. For ex-
ample, in our running example we might want to guarantee that, at the end of RTC steps
isMyF lt cannot be true for both db1 and db2 at the same time. This property must not
necessarily hold during an RTC step. We would therefore verify AG7(db1.isMyF lt =
0 ∨ db2.isMyF lt = 0) at the RTC level. If we want to check for dead states (unreach-
able states) we need to work at the transition level in order to recognize as reachable
also those states that are passed through during the RTC step.

Note that our method for BMC can be extended to proof by k-induction [26] in
a straightforward manner. The base case is a BMC of k steps, which is done in the
way we described above. The step is a BMC run of k + 1 steps with the initial state
completely non-deterministic, looking for a run in which a property violation occurs at
the k + 1 step after k steps with no violation. In the initial state of the step case we
assume there may already be any number of events in the queue, of any type. We can

7 G is the temporal operator with the meaning of “globally”.
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still bound the event queue to k + 1 entries because no more than k + 1 events will be
dispatched in k + 1 steps, making it sound to ignore the content of the queue beyond
k + 1 entries.

4.2 Verify Cycle-Livelocks

A Livelock describes the case where part of the system cannot progress, even though the
other parts of the system do. In this section we focus on finding livelocks in behavioral
UML models. As mentioned before, absence of livelocks in neither safety nor LTL
property and therefore cannot be handled by scalable bounded model checking tools.
For that reason, we identify a subclass of livelocks, and present a method for finding
such livelocks within our framework. This is done by a reduction to a safety property,
which requires a preceding syntactic analysis of the UML model.

We first define the notion of a livelock CONF in behavioral UML models.

Definition 4. Given a CONF C = (q, ν, EQ), where q = (q̄1, ..., q̄N ). We say that oi
is disabled under C if no transition t ∈ trn(q̄i) is enabled.

Definition 5. Given a CONF C, object oi is stuck at C if for every RTC-execution
π = C0, C1, ... s.t. C0 = C the following holds: for every Cj = (q, ν, EQ) s.t. j ≥ 0,
if top(EQ) = (ev, i) then oi is disabled under Cj .

Thus, an object oi is stuck if whenever the event at the top of the queue is targeted at oi,
meaning it is oi’s turn to execute, oi is disabled and cannot make any progress.

Definition 6. A CONF C is a livelock CONF if at least one object is stuck at C.

Following, we present a characterization for a subclass of livelock CONFs, which we
call cycle-livelocks. Intuitively, a CONF C is a cycle-livelock if there is a subset of
objects that are stuck at C, and for every object o in the subset all of the producers of
events that o is stuck on, and all of the modifiers of the guards that o is stuck on, are in
the subset as well.

Definition 7. Let C = (q, ν, EQ) where q = (q̄1, ..., q̄N ). A q′ = (q̄′1, ..., q̄′N ) is a
partial state of C if for every 1 ≤ i ≤ N , q̄′i = nil or q̄′i = q̄i.

Definition 8. Let C be a livelock CONF, and let q′ = (q̄′1, ..., q̄
′
N ) be partial state of C.

q′ is a livelock state of C if ∀i.1 ≤ i ≤ N , if q̄′i �= nil then oi is stuck at C.

Definition 9. CONF C is a cycle-livelock if there exists a livelock state of C, q′ =
(q̄′1, ..., q̄′N ) s.t. for all j ∈ prod(q′) ∪modif(q′), q′j �= nil.

Intuitively, the partial state describes a set of objects that are stuck and will stay stuck
forever. This is because all objects that may “release” a stuck object by producing an
event or changing a guard are in the same set. That is, they are stuck as well.

Our goal is to find reachable cycle-livelock CONFs. To achieve scalability, we use
SAT-based BMC and only find livelock CONFs that are reachable within k RTC steps.
Our method for finding reachable cycle-livelocks consists of two stages. We first iden-
tify system states that are cycle-states. This is a syntactic identification and can thus
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be checked independently of a CONF. This stage is performed during the analysis of
the UML model. We then search for a reachable cycle-livelock CONF. This is done by
adding an assertion describing the fact that the current CONF is a cycle-livelock. We
then apply BMC to search for a violation of the assertion. Next we define the syntactic
notion of cycle-state.

Finding Cycle-States: An object oi cannot be stuck at C = (q, ν, EQ) if q̄i ∈ q has a
null-transition, or if qi has a transition that can be enabled by an environment event.

Definition 10. An h-state q̄ is potentially stuck if for every t ∈ trn(q̄), t is not a null-
transition, and if ev(t) is an environment event, then grd(t) �= true.

Intuitively, a cycle-state represents a subset of objects that are all potentially stuck and
dependant on each other, i.e. all the necessary producers are inside this subset.

Definition 11. A cycle-state is a vector q = (q̄1, ..., q̄N ) s.t. ∀1 ≤ i ≤ N , q̄i = nil or q̄i
is a h-state of sc(oi), and the following holds for every q̄i �= nil: (1) q̄i is a potentially
stuck h-state, and (2) There is no j ∈ prod(q̄i) ∪ modif(q̄i) s.t. q̄j = nil, and (3) q
is minimal. That is, let q′ = (q̄′1, ..., q̄

′
N ) be a system state vector where ∀1 ≤ i ≤ N ,

q̄′i �= nil⇒ q̄′i = q̄i. If q′ �= q then req. 2 does not hold for q′.

The requirement of minimality (requirement (3)) is introduced for the sake of efficiency.
It reduces the number of states to be considered and also simplifies the encoding in
BMC. Further, it reduces the number of similar counterexamples returned to the user.

Note that this definition is syntactic. That is, it depends only on the system state
vector. It does not depend on the evaluation vector or the event queue, which can be
determined along an execution. As a result, the set of all cycle-states can be identified
independently of any configuration. We generate this set from the syntactic structure of
the model, as part of the analysis of the UML model.

Lemma 1. The set of cycle-states is complete. Meaning for every cycle-livelock con-
figuration C there exists a partial state of C, q, that is a cycle-state.

The set of CONFs is infinite, because the size of the EQ is not limited, and the domain
of the evaluation vector can be infinite. However, the set of cycle-states is finite.

Bounded Search for Cycle-Livelocks: We observe that if a given CONF includes
a cycle-state s.t. for every transition in the cycle-state either the guard is false or the
trigger is a system event which is not in the EQ, then this CONF is a cycle-livelock.

We adapt the translation of UML models to C (Sec. 3) to allow checking whether
a cycle-livelock CONF is reachable by adding assertions at the RTC level. When the
model checker finds an execution violating the assertion, the last CONF in the execution
is a cycle-livelock CONF. Fig. 5 presents the pseudo-code of the modified method. Line
5 and 6 show the added code.

currC = (q, ν, EQ) represents the current CONF of the system. At every iteration
of the while loop currC changes (due to the RTC step). The method partSt(q, C)
receives a cycle-state q and a CONF C, and returns true iff q is a partial state of
C. The method grdFalse(grd, ν) returns true iff grd is false w.r.t. νi. The method
notInQ(ev, EQ) returns true iff ev is a system event which is not in the EQ. The
assertion is violated on C if C is a cycle-livelock.
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1: method FindCycleLivelock()
2: while (true) do
3: (ev, i) := popEv()
4: RunRTCStepi(ev)
5: for each cycle-state q′ do
6: assert(!(partSt(q′, currC)∧

for all t ∈ trn(q′) :
notInQ(ev(t), EQ)∨
grdFalse(grd(t), ν)))

Fig. 5. FindCycleLivelock method

There is one subtle point that still needs
to be solved: We need a finite representa-
tion of the queue. Recall that for verifying
safety properties, for k-bounded executions
we bound the queue to k. However, when
searching for cycle-livelocks this is incorrect
because a configuration is a cycle-livelock if
there are no future executions that can re-
lease the stuck states. Thus, we must keep
track of all events inserted into the queue
(within k RTC steps). However, only the first
k events are dispatched, and therefore their
relative order is important. For the rest of the events, we only need to know whether
they were sent or not. indicating whether or not an instance of that event exists in the
“actual” queue. The method notInQ(ev, EQ) returns true iff the flag of event ev is
false, indicating that no such event is in the “actual” queue.

We exemplify our method on our running example. The events evV acationStart
and evV acationEnd, which are consumed by class Agent, are both environment
events. Note that none of the h-states associated with the statechart of Agent are
potentially stuck h-states. Thus, a1 and a2 can never be stuck. The system state
vector (Wait4RemDB, Wait4RemDB, nil, nil) is a cycle-state because the pro-
ducer of state Wait4RemDB of db1 is db2, and vice-versa. Note that for find-
ing prod(Wait4RemDB), we include the producers of both Wait4RemDB and
dbMain, since Wait4RemDB is a substate of dbMain. For this cycle-state, we add
the following assertion:

assert(!(!InEQ(evGrantOwnership, 1)∧!InEQ(evGrantOwnership, 2)∧
!InEQ(evReqOwnership, 1)∧!InEQ(evReqOwnership, 2)∧
partSt((Wait4RemDB,Wait4RemDB, nil, nil), currC)))

Note that it is possible to skip the first stage of our algorithm, that finds the set of cycle-
states, and incorporate it within the second stage. However, this would be inefficient due
to the number of checks that would need to be done during the model checking stage.
Further, since the first stage is applied to the UML model, it is quite “light weight”.
Model checking, on the other hand, is applied to a low-level description and is a heavy
task. Thus, the first stage is essential for the scalability of our method.

5 Experimental Results

We have implemented the algorithm described above in a tool called Soft-UMC
(software-based UML Model Checking). The implementation reads a UML (version
2.0) model, and translates it to verifiable C code. Static analysis is applied at this stage,
according to the type of property to be checked: (LTL) safety or livelock. We then apply
CBMC[8] (version 4.1) as our C verifier.

First, we compared our implementation to one translating the model to the input
language of RuleBasePE[24], IBM’s hardware model checker (we call this solution
HWMC). HWMC represents the EQ as a bounded FIFO, where the size of the FIFO
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is relative to the maximum number of events generated in a single RTC step. It also
preserves the hierarchical structure of the model.

prop. time #RTCs time # trans
RC1 155 10 44 34
RC2 198 11 145 39
RC3 868 17 2315 57
TO1 17 6 14 8
TO2 23 7 14 13
TO3 51 10 28 31
TO4 514 22 1425 67
DW1 263 12 58 37
DW2 304 18 40 95
DW3 986 30 1345 155
LM1 18 7 12 19
LM3 101 16 79 86
LM2 158 14 1320 37
LM4 555 34 645 176

Soft-UMC HWMC

Fig. 6. Soft-UMC vs.
HWMC. time in secs.
RTC and trans is number
of RTC steps and transi-
tions in counterexamples.

To compare the performance of Soft-UMC and HWMC
we used the following four examples. (1) A variant of the
railroad crossing system from [22], including a gate object
and three track objects that communicate with the gate, (2)
The ticket ordering model (Figs. 1,2), (3) A dishwasher ma-
chine (inspired by the example provided with Rhapsody), (4)
A locking model, including a manager and three lock clients.
We have checked several safety properties on the models. In
Fig. 6 we present a comparison of the runtime for finding
a counterexample in Soft-UMC and HWMC. It can be seen
that HWMC is better on short counterexamples. However,
on long ones Soft-UMC achieves results in shorter times.
This can be explained by the initialization time of CBMC
which is significant for short counterexamples but becomes
negligible on long ones.

To check the scalability of our tool compared to HMWC,
we considered three parameterized examples: The ticket or-
dering model, and variations of the dishwasher machine and
the locking model. E.g., for the ticket ordering model, the
attribute account of Agent is used as the parameter, and
the checked property is non-determinism. For increasing initial values of account, the
counterexample leading to a non-deterministic state is of increasing length. This allows
us to experiment on the same model with different lengths of counterexamples. In all
examples, a counterexample for a model with parameter i is of length∼ 2∗iRTC steps.
Each RTC step is composed of 3-5 transitions. We used a timeout of 1 hour. Results are
presented in Fig 7. From the comparison it is clear that HWMC is better for shallow
examples, however our tool is more scalable.

param

Soft-UMC 

TO

HWMC 

TO

Soft-UMC 

DW

HWMC 

DW

Soft-UMC 

LM

HWMC 

LM

5 49 21 82 23 34 30

8 113 92 242 34 101 71

11 202 380 475 66 192 180

14 364 1830 825 254 328 187

17 693 3470 1326 810 555 613

20 1740 T.O 1964 T.O 766 789

23 T.O T.O 2900 T.O 1153 889

26 T.O T.O T.O T.O 1657 1876

29 T.O T.O T.O T.O 1859 2142

32 T.O T.O T.O T.O 3049 T.O

Fig. 7. Compare scalability. time in secs.

We also evaluated the performance
impact of two of our optimizations,
the EQ (Sec. 3) and the hierarchical
model. We compared a naive imple-
mentation of the EQ against our op-
timized implementation. To analyze
the impact of maintaining the hier-
archy of the model we created a flat
model of the ticket ordering model.
The flat model has 24 states and 54
transitions, whereas the hierarchical
model has 26 states and 36 transi-
tions. The flat model is missing the
hierarchical states. However, it has an additional attribute for maintaining the history.
Fig 8 shows the results of the comparison. We compared the runtime of 4 different
implementations: Hierarchical model with optimized EQ (H-OP-EQ), flat model with
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optimized EQ (F-OP-EQ), hierarchical model with naive EQ (H-NV-EQ) and flat model
with naive EQ (F-NV-EQ).

#RTC H-OP-EQ F-OP-EQ H-NV-EQ F-NV-EQ

#1 6 21 31 369 396

10 63 94 3362 T.O

18 224 420 T.O T.O

26 524 1235 T.O T.O

#2 10 88 133 T.O T.O

20 818 3157 T.O T.O

#3 6 21 32 371 420

10 72 103 T.O T.O

14 275 550 T.O T.O

Fig. 8. Optimizations on ticket order-
ing. Bound in RTC steps; time in secs.

We verified three different properties, and mod-
ified the model s.t. counterexample is reached at
different bounds. 1,3 are safety properties. 2 is
a livelock check, checked on a slightly modified
model: the guard of transition from Processing

to F lightApproved of DB (Fig. 2(a)) is modified
to [isMyF lt && (space > 1)]. This introduces a
reachable livelock state, when db1 and db2 are in
state Processing, space = 1 and isMyF lt = true

for both objects. Each row in Fig 8 represents a
different setting defined by the property and the
initial values of the attributes, which determine the
length of the counterexample (in RTC steps). Time limit is set to 1 hour. It is clear that
the optimized implementation of the EQ scales much better w.r.t. the naive EQ imple-
mentation. This is because the naive implementation includes a loop representing the
addition of a non-deterministic number of environment events to the EQ. In the opti-
mized implementation this amounts to a non-deterministic increment of the tail. The
comparison also shows that the hierarchical implementation scales better than the flat
one. Our conjecture is that flattening increases the number of transitions in the model,
and therefore increases the search space. [11] presents similar results when comparing
verification of hierarchical UML models to flat models. The above shows the signif-
icance of optimizations. We expect to be able to further improve performance of our
solution with other optimizations.

6 Conclusions

This work is a first step in exploiting software model checking techniques for the verifi-
cation of behavioral UML models. By translating UML models to C we could preserve
the high-level structure of the model. We intend to further exploit this structure in tech-
niques such as abstraction and modularity in order to enhance UML verification.

Our translation to verifiable C code rather than executable one significantly eased the
workload of the model checker. This is demonstrated, for instance, by the comparison of
our optimized representation of the event queue with a naive one. In our translation we
also took advantage of the fact that bounded model checking is applied, and obtained
a finite representation in spite of the unbounded size of the queue. Nevertheless, our
method can be extended to unbounded model checking by means of k-induction.

The comparison with IBM’s hardware oriented tool for UML verification demon-
strates that our approach is superior for long counterexamples.

Our approach to finding cycle-livelocks in UML models is novel. Static analysis
identifies syntactically potential cycle-livelock states. A suitable finite representation of
the event queue then enables to apply BMC for finding reachable such states. We expect
similar approaches to be useful for proving additional non-safety properties.
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Abstract. A draft standard for HTML, HTML5, includes the detailed
specification of the parsing algorithm for HTML5 documents, includ-
ing error handling. In this paper, we develop a reachability analyzer for
the parsing specification of HTML5 and automatically generate HTML
documents to test compatibilities of Web browsers. The set of HTML
documents are extracted using our reachability analysis of the state-
ments in the specification. This analysis is based on a translation of the
specification to a conditional pushdown system and on a new algorithm
for the reachability analysis of conditional pushdown systems.
In our preliminary experiments, we generated 353 HTML documents

automatically from a subset of the specification and found several com-
patibility problems by supplying them to Web browsers.

1 Introduction

A draft standard for HTML, HTML5 [Con12], includes the detailed specifica-
tion of the parsing algorithm for HTML5 documents, including error handling.
Although it is intended that this will solve compatibility issues in HTML pars-
ing, several current implementations of Web browsers and parsing libraries have
compatibility issues caused by the complexity of the specification.

In this paper, we develop an analyzer for the specification that checks the
reachability of statements in the specification. We then apply the analyzer to
generate a set of HTML documents automatically, which are used to test compat-
ibilities of Web browsers with respect to the specification. The set of generated
HTML documents enables path testing. That is, the tests cover both true and
false cases for all conditional statements in the specification. The reachability
analysis is based on a translation of the specification to a conditional pushdown
system [LO10] and on a new algorithm for the reachability analysis of conditional
pushdown systems.

In the first step of the development, we introduce a specification language to
describe the parsing algorithm of HTML5 formally. We concentrate on the stage
of parsing that follows tokenization, called tree construction in the specification.
The algorithm for the tree-construction stage is specified in terms of a stack
machine, with the behaviour for each input token being described informally
in English. We formalize the specification by introducing an imperative pro-
gramming language with commands for manipulating the stack. The distinctive
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feature of the specification is that the specification inspects not only the top of
the stack, but also the contents of the whole stack. Furthermore, the parsing al-
gorithm destructively modifies the stack for elements called formatting elements.
However, we exclude formatting elements from our formalized specification be-
cause of difficulties with the destructive manipulation of the stack. This is the
main limitation of our work.

Our reachability analysis of the specification is based on that for conditional
pushdown systems. Esparza et al. introduced pushdown systems with check-
points that has the ability to inspect the contents of the whole stack and showed
that they can be translated to ordinary pushdown systems [EKS03]. Li and
Ogawa reformulated their definition and called them conditional pushdown sys-
tems [LO10]. The translation to ordinary pushdown systems causes the size of
the stack alphabet to increase exponentially, which makes direct translation in-
feasible for the implementation of the reachability analysis. To overcome this
problem, we design a new algorithm for reachability analysis that is a direct ex-
tension of that for ordinary pushdown systems [BEM97, EHRS00]. Our algorithm
is obtained by extending P-automata that describe a set of configurations to au-
tomata with regular lookahead. Although it still has an exponential complexity,
it avoids the exponential blowup caused by the translation before applying the
reachability analysis.

We have developed a reachability analyzer for the HTML5 parser specification
based on the translation to a conditional pushdown system and on the reachabil-
ity analysis on it. A nontrivial subset of the tree-construction stage consisting of
24 elements and 9 modes is formalized in our specification language. In our pre-
liminary experiments, we have generated 353 HTML documents automatically
from the subset of the specification and found several compatibility problems by
supplying them to Web browsers.

This paper is organized as follows. Section 2 reviews the HTML5 parser specifi-
cation and introduces our language for formalizing the specification. The reach-
ability analysis of the specification and its application to test-case generation
are also discussed in this section. We introduce conditional pushdown systems
and present a new algorithm for their reachability analysis in Section 3. The
translation from the specification language to conditional pushdown systems is
described in Section 4. In Section 5, we describe our implementation and present
our experimental results. Finally, we discuss related work and conclude.

2 HTML5 Parser Specification and Reachability Analysis

2.1 HTML5 Parser Specification

The algorithm for the HTML5 parsing is specified as a stack machine whose
behaviour depends on a variable called the insertion mode. The insertion mode
keeps track of the part of an HTML document that the parser is processing, such
as “initial”, “in body”, or “in table”. The stack of open elements stores elements
that have not yet been closed during parsing, and is used to match corresponding
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end tags and to handle errors. When the parser inserts a new HTML element,
it appends the new element to the top element of the stack and pushes it onto
the stack as follows.

HTML

BODYHEAD

HTML

BODY

DOM Tree Stack

insert “p”

HTML

BODY

P

HEAD

HTML

BODY

P

DOM Tree Stack

The specification is written in English and is quite complex. The following is
part of the HTML5 specification for the “in body” insertion mode.

↪→ A start tag whose tag name is one of: ..., “p”, ...

If the stack of open elements has a p element in button scope,
then act as if an end tag with the tag name “p” had been seen.
Insert an HTML element for the token.

The specification is sometimes rather difficult to interpret precisely, and it is not
possible to analyze the specification mechanically.

The first step in the analysis of the specification is to introduce a specification
language. Figure 1 is an example of a formalized specification using our specifi-
cation language. The specification comprises a set of mode definitions, with each
mode definition containing specifications of the behaviour for start and end tags
in the mode. The behaviour for each tag is described as an imperative program
that manipulates the stack of open elements with commands including PUSH and
POP. We also allow the following commands:

– MODE[mode] changes the insert mode to mode. The change of mode affects
the behaviour of the PSEUDO command below.

– PSEUDO[t] is basically a procedure call and the parser acts as if a tag t had
been seen.

– ERROR records that an error is encoutered during parsing and does nothing
in our model.

In the specification for each tag, the variable me refers to the element name for
the tag. The command insertElement is currently defined as follows.

sub insertElement [target] = PUSH [target]

This definition is used because we are currently interested only in the reachability
analysis of the specification and are ignoring the construction of the DOM tree.

The most notable feature of the specification language is the inspection of
the current stack content. In the example, the current contents of the stack
are inspected by a regular expression match[ {H1 | H2} .* ], where regular
expression {H1 | H2} .* represents stacks whose top element is either H1 or H2.
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mode inbody{

<p> : {

if isInScope[ buttonScopeElements, {P} ] then

PSEUDO[</p>];

insertElement[me]

}

<h1>, <h2> : {

...

if match[ {H1 | H2} .* ] then{

ERROR; POP

};

insertElement[me]

}

<table> : {

insertElement[{Table}];

MODE["intable"]

}

...

}

Fig. 1. Example of a formalized specification

The stack of open elements is said to have an element in a specific scope consisting of
a list of element types list when the following algorithm terminates in a match state:

1. Initialize node to be the current node (the bottommost node of the stack).
2. If node is the target node, terminate in a match state.
3. Otherwise, if node is one of the element types in list, terminate in a failure state.
4. Otherwise, set node to the previous entry in the stack of open elements and return
to step 2. (This will never fail, since the loop will always terminate in the previous
step if the top of the stack — an html element — is reached.)

Fig. 2. The algorithm of “have a element in a specific scope”

The real capability stack inspection is utilized in the definition for <p> as
isInScope[ buttonScopeElements, {P} ]. It is the formalization of “have an
element in a specific scope” and its specification is shown in Figure 2. Although
the algorithm is rather complicated, the property can be checked by the following
inspection of the stack using a regular expression:

fun isInScope [list,target] = match[ (element \ list)* target .* ]

where element is a variable representing the set of all elements, and therefore
the set element \ list contains elements that exclude those in list.

In the formalization of the HTML5 specification, we also make explicit some
of the implicit assumptions that appear in the specification. In the following
example, it is assumed that, at this point, the stack of open elements will have
either a “td” or “tr” element in the table scope.
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mode inbody {

<select> : { PUSH[ me ]; MODE["inselect"] }

}

mode inselect {

<option>, <optgroup> : { PUSH[ me ] }

</optgroup> : {

if match[ {Option} {Optgroup} .* ] then

POP // (A)

else

NOP; // (B)

if match[ me .* ] then

POP // (C)

else

ERROR // (D)

}

}

Fig. 3. Example for reachability analysis

If the stack of open elements has a td element in table scope, then act as
if an end tag token with the tag name ”td” had been seen.
Otherwise, the stack of open elements will have a th element in table
scope; act as if an end tag token with the tag name ”th” had been seen.

We formalize this specification by using the command FATAL and show that
FATAL is not reachable by applying our reachability analyzer. Please note that
it is normal to reach an ERROR command because it just records the parser
encounter an ill-formed HTML document.

if isInTableScope [ { Td } ] then ...

else if isInTableScope [ { Th } ] then ...

else FATAL

2.2 Reachability Analysis and Test Generation

We analyze the reachability of specification points via translation to a condi-
tional pushdown system. The main application is to test the compatibility of
HTML5 parsing with Web browsers and parsing libraries. Our reachability ana-
lyzer generates test cases that cover both true and false cases for all conditional
statements in the specification.

Let us consider the example shown in Figure 3. To cover both true and false
cases for all conditional statements, our reachability analyzer must check the
reachability of the points (A)–(D). By translating the specification to a con-
ditional pushdown system and applying the reachability analysis described in
Section 3.2, the analyzer finds that the point (A) is reachable from the initial
state of inbody with the empty stack by the following input.

<select><optgroup><option></optgroup>
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A test document is generated from this input by appending appropriate end
tags as follows. By executing the interpreter of the specification language, we
compute the stack after the execution for the above input. Before the execution
of (A), we have stack Option, Optgroup, Select. The pop statements at (A)
and (C) are then executed. The execution for the input then results in stack
Select. We therefore generate the following HTML document as a test case by
appending the end tag of Select.

<select><optgroup><option></optgroup></select>

By applying the same method, we obtain the following test cases for (B)–(D).

<select></optgroup></select> // (B)

<select><optgroup></optgroup></select> // (C)

<select></optgroup></select> // (D)

We can then test the compatibility of Web browsers by supplying test cases
generated in this manner as HTML documents.

3 Conditional Pushdown Systems and Reachability
Analysis

We translate our specification language into conditional pushdown systems of
Li and Ogawa [LO10], which are a reformulation of pushdown systems with
checkpoints [EKS03]. Conditional pushdown systems extend ordinary pushdown
systems with the ability to check the contents of the whole stack against a regular
language.

3.1 Regular Languages and Derivatives

We briefly review the theory of regular languages with a focus on the derivatives
of regular languages [Brz64]. The theory of derivatives has drawn renewed at-
tention as an implementation technique for parsing and decision procedures on
regular languages [ORT09, KN11]. Let Reg(Γ ) be the set of regular languages
over Γ .

For L ⊆ Γ ∗ and w ∈ Γ ∗, the derivative1 of L with respect to w is written as
w−1L and defined as follows.

w−1L = {w′ | ww′ ∈ L}

Brzozowski showed that there are a finite number of types of derivatives for
each regular language. More precisely, the set {w−1L | w ∈ Γ ∗} is finite for
any regular language L over Γ . This fact is the key to the termination of our
algorithm for the reachability analysis of conditional pushdown systems.

1 The derivative w−1L is also called the left quotient in many litterateurs.
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In this paper, regular languages are often described in terms of regular ex-
pressions. The syntax of regular expressions over Γ is defined as follows2:

R ::= ∅ | ε | γ | R · R | R+R | R∗

where γ ∈ Γ . We write L(R) for the language of regular expression R. We say
that a regular expression R is nullable if ε ∈ L(R). We characterize nullable
expressions in terms of following function ν(R).

ν(∅) = ∅ ν(ε) = ε
ν(γ) = ∅ ν(R∗) = ε

ν(R1 +R2) = ν(R1) + ν(R2) ν(R1 ·R2) = ν(R1) · ν(R2)

Brzozowski showed that the derivative γ−1R of a regular expression can be
computed symbolically using ν(R), as follows:

γ−1∅ = ∅ γ−1ε = ∅
γ−1γ = ε γ−1γ′ = ∅

γ−1R∗ = (γ−1R)R∗ γ−1(R1 +R2) = γ−1R1 + γ−1R2

γ−1R1 · R2 = (γ−1R1)R2 + ν(R1)(γ−1R2)

The derivative of a regular expression can be extended for words with ε−1R = R
and (γw)−1R = w−1(γ−1R). We then have w−1L(R) = L(w−1R).

Our implementation utilizes regular expressions extended with intersection
and complement. The derivatives of extended regular expressions are computed
similarly, as described in [ORT09]. The automaton corresponding to a regular
expression is constructed only when we decide the language inclusion between
two regular expressions.

3.2 Conditional Pushdown Systems

We now review conditional pushdown systems that have the ability to check
the current stack contents against a regular language, and then present a new
algorithm for the reachability analysis.

Definition 1. A conditional pushdown system P is a structure 〈P, Γ,Δ〉, where
P is a finite set of states, Γ is a stack alphabet, and Δ ⊆ P×Γ×P×Γ ∗×Reg(Γ )
is a set of transitions.

A configuration of conditional pushdown system P is a pair 〈p, w〉 where p ∈ P

and w ∈ Γ ∗. The set of all configurations is denoted by C. We write 〈p, γ〉 R
↪→

〈p′, w〉 if 〈p, γ, p′, w,R〉 ∈ Δ. The reachability relation is defined as an extension
of that for ordinary pushdown systems. A configuration 〈p, γw′〉 is an immediate

predecessor of 〈p′, ww′〉 if 〈p, γ〉 R
↪→ 〈p′, w〉 and w′ ∈ R: the regular language R

2 For regular expressions in our specification language, we write alternation as R1|R2

instead of R1 +R2.
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inspects the current stack contents excluding its top. The reachability relation
=⇒ is the reflexive and transitive closure of the immediate successor relation.
Then, the predecessor function pre∗ : 2C → 2C is defined by pre∗(C) = {c | ∃c′ ∈
C.c =⇒ c′}.

Let us consider the following conditional pushdown system P1 shown below.

A transition labeled with γ/w|R from p to p′ denotes transition rule 〈p, γ〉 R
↪→

〈p′, w〉, and a transition labeled with γ/w is an abbreviation of γ/w|Γ ∗.

p0 p1 p2

a/aa, a/ca
c/cc, c/ac

a/ba

a/a|a∗ccΓ ∗

a/ba, b/ab
b/ε|abΓ ∗

a/ε

a/ε

In the transition from p0 to p2, the condition a∗ccΓ ∗ is used to check that two
c’s were pushed at p0 consecutively. In the transition from p1 to p1, the condition
abΓ ∗ is used to prevent the popping of the last b on the stack.

As discussed by Esparz et al. [EKS03], a conditional pushdown system can be
translated into an ordinary pushdown system by expanding its stack alphabet.
However, the translation causes the size of the stack alphabet and the transi-
tion relation to grow exponentially, and it is therefore not feasible to apply the
translation for the reachability analysis directly.

3.3 New Algorithm for Reachability Analysis

We describe our new algorithm for the reachability analysis of conditional push-
down systems. The reachability analysis of ordinary pushdown systems repre-
sents a regular set of configurations with P-automata [BEM97, EHRS00]. We
directly extend the algorithm by representing a regular set of configurations with
P-automata using regular lookahead.

Given a conditional pushdown system P = 〈P, Γ,Δ〉, a P-automaton uses P
as a set of initial states and Γ as the input alphabet.

Definition 2. A P-automaton with regular lookahead is a structure A = 〈Γ,Q, δ,
P, F 〉, where Q is a finite set of states satisfying P ⊆ Q, δ ⊆ Q×Γ ×Q×Reg(Γ )
is a set of transition rules, and F is a set of final states.

We introduce the transition relation of the form q
w|w′
−→ q for P-automata with

regular lookahead: it means that, at the state q, the automaton may consume w
and change its state to q′ if the rest of the input is w′. This is defined as follows:

– q
ε|w−→ q for any q ∈ Q and any w ∈ Γ ∗,

– q
γ|w−→ q′ if 〈q, γ, q′, R〉 ∈ δ and w ∈ R,

– q
wγ|w′
−→ q′ if q

w|γw′
−→ q′′ and q′′

γ|w′
−→ q′.
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Then, the set of configurations represented byA is defined as Conf(A) = {〈p, w〉 |
p ∈ P and p

w|ε−→ q for some q ∈ F}.
To formulate our new algorithm for reachability analysis, we also extend the

transition rules to those involving many steps, namely q
w|R
−−⇀q′, as follows:

– q
ε|Γ∗

−−⇀q,

– q
γ|R
−−⇀q′ if 〈q, γ, q′, R〉 ∈ δ,

– q
wγ|γ−1R1∩R2

−−⇀ q′ if q
w|R1

−−⇀ q′′ and q′′
γ|R2

−−⇀q′.

In the third case of the above definition, the two transition rules are combined
by composing two lookahead sets via quotient and intersection: γ−1R1 ∩R2. At
the state q′, γ−1R1 must be satisfied because the symbol γ is consumed by the
transition from q′′ to q′. The following lemma relates the extended transition
rules to transitions.

Lemma 1.

– If q
w|R
−−⇀q′ and w′ ∈ R, then q

w|w′
−→ q′.

– If q
w|w′
−→ q′, then q

w|R
−−⇀q′ and w′ ∈ R for some R.

The P-automaton Apre∗ representing pre∗(Conf(A)) can be computed by ex-
tending the saturation rule of [BEM97]. That is, Apre∗ is obtained by adding
new transitions according to the following extended saturation rule:

– If 〈p, γ〉 R1
↪→ 〈p′, w〉 and p′

w|R2

−−⇀ q in the current automaton, add a transition

rule p
γ|R1∩R2

−−⇀ q.

Based on this saturation rule, we have also extended the efficient algorithm for
the reachability analysis [EHRS00] in a straightforward manner.

The following lemma and the finiteness of derivatives of a regular language
guarantee the termination of the application of the saturation rule.

Lemma 2. Let R = {R | 〈q, γ, q′, R〉 ∈ δ for some q, γ, q′}.

If q
w|R
−−⇀q′′, then R =

⋂
R′ for some R′ ⊆ {w−1R | R ∈ R ∧ w ∈ Γ ∗}.

Let us consider the previous conditional pushdown system P1. We apply the
saturation algorithm to P1 to check the reachability to the set of configurations
C1 = {〈p2, w〉 | w ∈ L(c(a+ c)∗bΓ ∗)}. The P1-automaton in Figure 4 excluding
the dashed transitions represents C1 by using lookahead. The dashed transitions
are added by applying the saturation rule. The three transitions from p0 to qf
are added from the top. This shows that the configuration C1 is reachable from
p0 with a stack satisfying (a+ c)+bΓ ∗.

4 Translation to Conditional Pushdown Systems

In this section, we present the translation of the specification language to con-
ditional pushdown systems.
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p0 p1 p2

qf

a, b, c

c|(a+ c)∗bΓ ∗

a

a

a|a∗ccΓ ∗

a|bΓ ∗

b|abΓ ∗

a|cΓ ∗ ∩ (a+ c)∗bΓ ∗

c|(a+ c)∗bΓ ∗

a|(a+ c)∗bΓ ∗

Fig. 4. P1-automaton obtained by the saturation algorithm

4.1 Expanding Pseudo Statements

The first step of the translation is to expand pseudo statements PSEUDO[t] at
non-tail positions. This is necessary because PSEUDO[t] is basically a procedure
call and its simulation requires another stack that is not synchronized with the
stack of open elements. Pseudo inputs at tail positions can be translated directly
into transitions of a pushdown automaton. To avoid infinite chains of inline
expansion, we do not expand PSEUDO[t] inside the code for the tag t. In the
following example, PSEUDO[</p>] in <p> and PSEUDO[<p>] in </p> should be
expanded because they are not at tail positions.

<p> : {

if isInButtonScope[ {P} ] then

PSEUDO[</p>];

insertElement[me]

}

</p> : {

if !isInButtonScope [ {P} ] then {

PSEUDO[<p>]; PSEUDO[</p>]

} else {

popuntil[{P}]

}

}

We obtain the following code by expanding them. Because we cannot expand
PSEUDO[<p>] in the code for <p>, it is translated into FATAL. If the FATAL intro-
duced in this translation is reachable, then the translation will not be faithful.
However, this is not the case in this example because PSEUDO[<p>] is constrained
by isInButtonScope[ {P} ] and !isInButtonScope[ {P} ].

<p> : {

if isInButtonScope[ {P} ] then {

if !isInButtonScope [ {P} ] then {

PSEUDO[<p>]; => FATAL

PSEUDO[</p>]
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} else {

popuntil[{P}]

}

}

insertElement[me]

}

...

In order to check that FATAL statements introduced by this expansion are not
reachable, we check their reachability after the translation to a conditional push-
down system. For the subset of the HTML5 specification we have formalized,
our reachability analyzer showed that they are not reachable.

4.2 Translation to Conditional Pushdown Systems

After expansion of pseudo statements, a specification is translated to a condi-
tional pushdown automaton. Then, a conditional pushdown system is obtained
by forgetting the input of the pushdown automaton. Let us consider the following
specification as an example.

</p> : {

if match[ {Li}*{P}.* ] then {

while !match[{P} .*] do POP; POP

}

}

<p> : { PUSH[{P}] }

This can be converted into the following state transition diagram, where each
transition is labeled with a tag indicating input, push, pop, or the condition
under which the transition occurs.

<p>

push P

</p>

¬Li∗P.∗
Li∗P.∗

¬P.∗

pop

P.∗pop

The transitions labeled with a tag, push, or pop can be translated directly to
those of pushdown automata. The transition label with a regular expression
representing the condition under which it occurs is translated as follows. Let us
consider a transition labeled with a regular expression R from q to q′.

– For each γ in the stack alphabet, a transition 〈q, γ〉 γ−1R
↪→ 〈q′, γ〉 is added to

the pushdown automaton.

In this example, the previous state transition diagram is translated to the fol-
lowing conditional pushdown automaton under the stack alphabet {P,Li}:
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<p>

push P

</p>

Li/Li | ¬Li∗P.∗

Li/Li | Li∗P.∗
P/P | .∗

Li/Li | .∗

pop

P/P | .∗pop

where push and pop are not translated for simplicity. The following derivatives
are used in the translation.

Li−1(Li∗P.∗) = (Li−1(Li∗))P.∗ + ν(Li∗)Li−1(P.∗) = Li∗P.∗

P−1(Li∗P.∗) = (P−1(Li∗))P.∗ + ν(Li∗)P−1(P.∗) = .∗

5 Experimental Results

We have implemented the reachability analyzer of our specification language. It
performs the translation from the specification language to conditional pushdown
systems and reachability analyses for these systems. It is implemented in OCaml
and based on the library for automata used in the PHP string analyzer [Min05].

The main application of the analyzer is to generate automatically a set of
HTML test documents from a specification. It is also used to check the con-
sistency of the specification and the translation. The current implementation
checks for consistency in the following two respects.

– The execution of the specification cannot cause stack underflow.
– FATAL statements in the specification or introduced by the translation are

unreachable.

The analyzer showed that these properties hold for the subset of the HTML5
parser specification described below.

We have formalized a nontrivial subset of the tree-construction stage of the
HTML5 specification. It is 438 lines in length, excluding comments and empty
lines, and contains the specification of 24 elements and 9 modes. This specifica-
tion can be obtained from http://www.score.cs.tsukuba.ac.jp/~minamide/

html5spec/model.html5. As we mentioned in the Introduction, this subset ex-
cludes the specification of formatting elements, which is one of the main limita-
tions of our work to date.

We applied our reachability analyzer to the specification using a Linux PC
with an Intel Xeon processor (3.0 GHz) and 16 GB memory. The specification
is translated to a conditional pushdown automaton with 487 states, and there
are 1186 specification points3 whose reachability had to be checked. For these
points, our reachability analyzer showed that 828 points were reachable from the
initial state and generated 353 HTML documents excluding duplicates. In the
following table, the first row shows the length of an input sequence of tags and
3 In the implementation, a specification point is represented by a pair comprising a
state and a regular expression. We may therefore have more specification points than
states.
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the second row shows the number of points. For example, there are 380 points
for which the analyzer found an input sequence of length 3.

Length 1 2 3 4 5 6
# Points 46 167 380 198 35 2

The reachability of the specification points was checked by applying the algo-
rithm described in Section 3.2 by adding the final states corresponding to them
in the P-automaton. It took 82minutes to check the reachability of all the points
and required more than 3 Gbyte of memory during the computation.

We conducted compatibility tests on the following Web browsers and HTML5
parser libraries: html5lib [htm] is implemented in Python and closely follows
the specification, and htmlparser, the Validator.nu HTML parser [Val], is imple-
mented in Java and has been used for HTML5 in the W3C markup validation
service. The experiment was conducted on Mac OS X, version 10.7.3. The follow-
ing table shows the number of incompatibilities found when using the generated
set of 353 HTML documents. The numbers in parentheses are obtained after
merging similar incompatibilities.4

Safari Firefox Opera IE 5 html5lib htmlparser
Version 5.1.3 10.0.1 11.61 - 0.95 1.3.1

# Incompatibilities 1 6 0 0 3 6
(1) (2) - - (1) (2)

The three main incompatibilities found in this experiment are listed below.
The lines labeled ‘Test’ and ‘Spec’ are the HTML documents generated by our
analyzer and the serialized representation of the results of parsing with the
HTML5 specification, respectively. The incompatible results are shown following
the Spec lines.

Test : <body><dd><optgroup><dd></dd></body>

Spec : <body><dd><optgroup></optgroup></dd><dd></dd></body>

Safari, Opera, html5lib, IE

: <body><dd><optgroup><dd></dd></optgroup></dd></body>

Firefox, htmlparser

Test : <body><ruby><button><rp></rp></button></ruby></body>

Spec : <body><ruby><button><rp></rp></button></ruby></body>

Opera, html5lib, IE

: <body><ruby><button></button><rp></rp></ruby></body>

Safari, Firefox, htmlparser

Test : <body><table><li><li></li></table></body>

Spec : <body><li></li><li></li><table></table></body>

Safari, Firefox, Opera, htmlparser, IE

<body><li></li><table><li></li></table></body>

html5lib

4 Some of the incompatibilities are caused by differences between versions of the
HTML5 specification, which is discussed below.

5 Consumer Preview, version 10.0.8250.0.



306 Y. Minamide and S. Mori

We have investigated the second case for Firefox. The specification for the start
rp tag can be written as follows.

if isInScope[{Ruby}] then {

generateImpliedEndTag[];

if !match[ {Ruby} .* ] then ERROR

};

insertElement[me]

The code of Firefox does not correspond to this, but to the specification below.
We found that this is compatible with the latest published version of the speci-
fication, W3C Working Draft 25 May 2011, although we were working with the
Editor’s Draft 22 February 2012.

if isInScope[{Ruby}] then {

generateImpliedEndTag[];

if !match[ {Ruby} .* ] then ERROR

while !match[ {Ruby} .*] do POP; <== Extra code in Firefox

};

insertElement[me]

6 Related Work

The reachability analysis of pushdown systems with checkpoints was studied by
Esparza et al. as an application of LTL model checking of pushdown systems
with regular valuations [EKS03]. They presented a translation to ordinary push-
down systems. Although reachability can be decided via the translation, it is not
practical to apply the translation because of exponential blowup of the size of
pushdown systems. They also showed that the reachability problem of pushdown
systems with checkpoints is EXPTIME-complete.

Reachability can also be decided by translation to extensions of pushdown
systems such as alternating pushdown systems and stack automata [GGH67]. An
analysis for alternating pushdown systems is given in [BEM97] and that for stack
automata is given in [HO08] as reachability analysis for higher-order pushdown
systems. Although the translations to those systems do not incur exponential
blowup, their algorithms are more complicated than our reachability analysis for
conditional pushdown systems. An efficient algorithm for alternating pushdown
systems was developed in [SSE06, Suw09]. However, only an algorithm for a
restricted class with polynomial time complexity was implemented.

7 Conclusions

We have developed a reachability analyzer for the HTML5 parser specification
based on the analysis of conditional pushdown systems. The analysis is applied to
the automated generation of HTML documents for path testing of the specifica-
tion. Several compatibility issues in Web browsers and HTML5 parsing libraries
are found by supplying the documents to them.
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One of the limitations of our work is that we cannot handle the specification
for formatting elements. This is because their specification requires destructive
manipulation of the stack. We are planning to address this limitation by checking
the reachability to the first point where a destructive operation on the stack is
required.
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Abstract. Although Breadth-First Search (BFS) has several advan-
tages over Depth-First Search (DFS) its prohibitive space requirements
have meant that algorithm designers often pass it over in favor of DFS. To
address this shortcoming, we introduce a theory of efficient BFS (EBFS),
along with a simple recursive program schema for carrying out the search.
The theory is based on dominance relations, a long standing technique
from the field of search algorithms. We also show that greedy and greedy-
like algorithms form a very useful and important sub-category of EBFS.
Finally, we show how the EBFS class can be used for semi-automated pro-
gram synthesis by introducing some techniques for demonstrating that a
given problem is solvable by EBFS. We illustrate our approach on several
examples.

1 Introduction

Program synthesis is experiencing something of a resurgence [SGF10, SLTB+06,
GJTV11] [PBS11, VY08, VYY10] following negative perceptions of its scalabil-
ity in the early 90s. Many of the current approaches aim for near-automated
synthesis. In contrast, the approach we follow, we call guided program synthe-
sis, also incorporates a high degree of automation but is more user-guided. The
basic idea is to identify interesting classes of algorithms and capture as much
generic algorithm design knowledge as possible in one place.The user instan-
tiates that knowledge with problem-specific domain information. This step is
often carried out with machine assistance. The approach has been applied to
successfully derive scores of efficient algorithms for a wide range of practical
problems including scheduling [SPW95], concurrent garbage collection [PPS10],
and SAT solvers [SW08].

One significant class of algorithms that has been investigated is search algo-
rithms. Many interesting problems can be solved by application of search. In
such an approach, an initial search space is partitioned into subspaces, a process
called splitting, which continues recursively until a feasible solution is found. A
feasible solution is one that satisfies the given problem specification. Viewed as a
search tree, spaces form nodes, and the subspaces after a split form the children
of that node. The process has been formalized by Smith [Smi88, Smi10]. Prob-
lems which can be solved by global search are said to be in the Global Search
(GS) class. The enhancements in GS over standard branch-and-bound include

D. Giannakopoulou and D. Méry (Eds.): FM 2012, LNCS 7436, pp. 308–325, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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a number of techniques designed to improve the quality of the search by elim-
inating unpromising avenues. One such technique is referred to as dominance
relations. Although they do not appear to have been widely used, the idea of
dominance relations goes back to at least the 70s [Iba77]. Essentially, a domi-
nance relation is a relation between two nodes in the search tree such that if one
dominates the other, then the dominated node is guaranteed to lead to a worse
solution than the dominating one, and can therefore be discarded. Establishing
a dominance relation for a given problem is carried out by a user. However this
process is not always obvious. There are also a variety of ways in which to carry
out the search, for example Depth-First (DFS), Breadth-First (BFS), Best-First,
etc. Although DFS is the most common, BFS actually has several advantages
over DFS were it not for its exponential space requirement. The key to carrying
out BFS space-efficiently is to limit the size of the frontier at any level. However,
this has not been investigated in any systematic manner up to now.

This paper has two main contributions:

– We show how to limit the size of the frontier in search using dominance
relations, thereby enabling space-efficient BFS. Additionally, we show that
limiting the size of the undominated frontier to a constant results in a useful
class of greedy algorithms.

– Even though our method is not automatic, we believe that the process should
be straightforward to apply, without requiring Eureka steps. For this reason,
we have devised techniques that address roadblocks in derivations, which are
illustrated on some simple but illuminating examples. Further examples are
in [NSC12]

2 Background To Guided Program Synthesis

2.1 Process

The basic steps in guided program synthesis are:

1. Start with a logical specification of the problem to be solved. A specification
is a quadruple 〈D, R, o, c〉 where D is an input type, R an output or result
type, o : D × R is a predicate relating correct or feasible outputs to inputs,
and c : D×R → Int is a cost function on solutions. An example specification
is in Eg. 1 (This specification is explained in more detail below)

2. Pick an algorithm class from a library of algorithm classes (Global Search,
Local Search, Divide and Conquer, Fixpoint Iteration, etc). An
algorithm class comprises a program schema containing operators to be in-
stantiated and an axiomatic theory of those operators (see [Ned12] for de-
tails). A schema is analogous to a template function in Java/C++ with
the difference that both the template and template arguments are formally
constrained.
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3. Instantiate the operators of the program schema using information about the
problem domain and in accordance with the axioms of the class theory. To
ensure correctness, this step can be carried out with mechanical assistance.
The result is an efficient algorithm for solving the given problem.

4. Apply low-level program transforms such as finite differencing,
context-dependent simplification, and partial evaluation, followed by code
generation. Many of these are automatically applied by Specware [S], a for-
mal program development environment.

The result of Step 4 is an efficient program for solving the problem which is
guaranteed correct by construction. The power of the approach stems from the
fact that the common structure of many algorithms is contained in one reusable
program schema and associated theory. Of course the program schema needs to
be carefully designed, but that is done once by the library designer. The focus of
this paper is the Global Search class, and specifically on how to methodically
carry out Step 3 for a wide variety of problems. Details of the other algorithm
classes and steps are available elsewhere [Kre98, Smi88, PPS10].

Example 1. Specification of the Shortest Path problem is shown in Fig. 2.1 (The
�→ reads as “instantiates to”) The input D is a structure with 3 fields, namely a
start node, end node and a set of edges. The result R is a sequence of edges ([]
notation). A correct result is one that satisfies the predicate path? which checks
that a path z must be a contiguous path from the start node to the end node
( simple recursive definition not shown). Finally the cost of a solution is the
sum of the costs of the edges in that solution. Note that fields of a structure are
accessed using the ’.’ notation.

2.2 Global Search

D �→ 〈start : Node, end : Node, edges : {Edge}〉
Edge = 〈f : Node, t : Node, cost : Nat〉

R �→ [Edge]
o �→ λ(x, z) · path?(z, x.start, x.end)

path?(p, s, f) = ...
c �→ λ(x, z) · ∑edge∈z edge.cost

Fig. 2.1. Specification of Shortest Path problem

Before delving into a program
schema for Global Search, it
helps to understand the struc-
tures over which the program
schema operates. In [Smi88],
a search space is represented
by a descriptor of some type
R̂, which is an abstraction of
the result type R. The initial
or starting space is denoted
⊥. There are also two predi-
cates split: D × R̂ × R̂, writ-
ten �, and extract : R̂ × R, written χ. Split defines when a space is a sub-
space of another space, and extract captures when a solution is extractable
from a space. We say a solution z is contained in a space y (written z ∈ y)
if it can be extracted after a finite number of splits. A feasible space is one
that contains feasible solutions. We often write � (x, y, y′) as y �x y′ for
readability, and even drop the subscript when there is no confusion. Global
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Search theory (GS-theory) [Smi88] axiomatically characterizes the relation be-
tween the predicates ⊥, � and χ, as well as ensuring that the associated
program schema computes a result that satisfies the specification. In the se-
quel, the symbols R̂, ⊥, �, χ, ⊕ are all assumed to be drawn from GS-theory.

Example 2. Instantiating GS-theory for the Shortest Path problem requires in-
stantiating the free terms in the theory. The type of solution spaces R̂ is the
same as the result type R. However, there is a covariant relationship between
an element of R̂ and of R. For example, the initial space, corresponding to all
possible paths, is the empty list. A space is split by adding an edge to the current
path - that is the subspaces are the different paths that result from adding an
edge to the parent path. Finally a solution can be trivially extracted from any
space by setting the result z to the space p. This is summarized in Fig. 2.2 ([]
denotes the empty list, and ++ denotes list concatenation).

2.3 Dominance Relations

R̂ �→ R
⊥ �→ λx · []
� �→ λ(x, p, pe) · ∃e ∈ x.edges · pe = p++[e]
χ �→ λ(z, p) · p = z

Fig. 2.2. GS instantiation for Shortest Path

As mentioned in the intro-
duction, a dominance relation
provides a way of compar-
ing two subspaces in order to
show that one will always con-
tain at least as good a solu-
tion as the other. (Goodness
in this case is measured by
some cost function on solu-
tions). The first space is said

to dominate (�) the second, which can then be eliminated from the search. Let-
ting c∗ denote the cost of an optimal solution in a space, this can be formalized
as (all free variables are assumed to be universally quantified):

y � y′ ⇒ c∗(x, y) ≤ c∗(x, y′) (2.1)

Another way of expressing the consequent of (2.1) is

∀z′ ∈ y′ · o(x, z′) ⇒ ∃z ∈ y · o(x, z) ∧ c(x, z) ≤ c(x, z′) (2.2)

To derive dominance relations, it is often useful to first derive a semi-congruence
relation [Smi88]. A semi-congruence between two partial solutions y and y′,
written y � y′, ensures that any way of extending y′ into a feasible solution can
also be used to extend y into a feasible solution. Like �, � is a ternary relation
over D×R̂×R̂ but as we have done with � and many other such relations in this
work, we drop the input argument when there is no confusion and write it as a
binary relation for readability. Before defining semi-congruence, we introduce two
concepts. One is the idea of useability of a space. A space y is is useable, written
o∗(x, y), if ∃z. χ(y, z)∧o(x, z), meaning a feasible solution can be extracted from
the space. The second is the notion of incorporating sufficient information into a
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space to make it useable. This is defined by an operator ⊕ : R̂×t → R̂ that takes
a space and some additional information of type t and returns a more defined
space. The type t depends on R̂. For example if R̂ is the type of lists, then t
might also be the same type. Now the formal definition of semi-congruence is:

y � y′ ⇒ o∗(x, y′ ⊕ e) ⇒ o∗(x, y ⊕ e)

That is, y � y′ is a sufficient condition for ensuring that if y′ can be extended
into a feasible solution than so can y with the same extension. Now if c is com-
positional (that is, c(s ⊕ t) = c(s) + c(t)) then it can be shown [Ned12] that if
y � y′ and y is cheaper than y′, then y dominates y′ (written y � y′). Formally:

y � y′ ∧ c(x, y) ≤ c(x, y′) ⇒ y � y′ (2.3)

Dominance relations are a part of GS-theory [Smi88].

Example 3. Shortest Path between two given nodes in a graph. If there are two
paths p and p′ leading from the start node, if p and p′ both terminate in the same
node then p � p′. The reason is that any path extension e (of type t = [Edge]) of
p′ that leads to the target node is also a valid path extension for p. Additionally
if p is shorter than p′ then p dominates p′, which can be discarded. Note that this
does not imply that p leads to the target node, simply that no optimal solutions
are lost in discarding p′. This dominance relation is formally derived in Eg. 5

Example 4. 0-1 Knapsack
The 0-1 Knapsack problem is, given a set of items each of which has a weight

and utility and a knapsack that has some maximum weight capacity, to pack
the knapsack with a subset of items that maximizes utility and does not exceed
the knapsack capacity. Given combinations k, k′, if k and k′ have both examined
the same set of items and k weighs less than k′ then any additional items e
that can be feasibly added to k′ can also be added to k, and therefore k � k′.
Additionally if k has at least as much utility as k′ then k � k′.

The remaining sections cover the original contributions of this paper .

3 A Theory of Space-Efficient Breadth-First Search
(EBFS)

While search can in principle solve any computable function, it still leaves open
the question of how to carry it out effectively. Various search strategies have been
investigated over the years; two of the most common being Breadth-First Search
(BFS) and Depth-First Search (DFS). It is well known that BFS offers several
advantages over DFS. Unlike DFS which can get trapped in infinite paths1,
BFS will always find a solution if one exists. Secondly, BFS does not require
backtracking. Third, for deeper trees, BFS will generally find a solution at the
1 Resolvable in DFS with additional programming effort.
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earliest possible opportunity. However, the major drawback of BFS is its space
requirement which grows exponentially. For this reason, DFS is usually preferred
over BFS.

Our first contribution in this paper is to refine GS-theory to identify the
conditions under which a BFS algorithm can operate space-efficiently. The key
is to show how the size of the undominated frontier of the search tree can be
polynomially bounded. Dominance relations are the basis for this.

In [Smi88], the relation �l for l ≥ 0 is recursively defined as follows:

y �0 y′ = (y = y′)
y �l+1 y′ = ∃y′′ · y � y′′ ∧ y′′ �l y′

From this the next step is to define those spaces at a given frontier level that
are not dominated. However, this requires some care because dominance is a
pre-order, that is it satisfies the reflexivity and transitivity axioms as a partial
order does, but not the anti-symmetry axiom. That is, it is quite possible for
y to dominate y′ and y′ to dominate y but y and y′ need not be equal. An
example in Shortest Path is two paths of the same length from the start node
that end at the same node. Each path dominates the other. To eliminate such
cyclic dominances, define the relation y ≈ y′ as y � y′ ∧ y′ � y. It is not difficult
to show that ≈ is an equivalence relation. Now let the quotient frontier at level
l be the quotient set frontierl/ ≈ . For type consistency, let the representative
frontier rfrontierl be the quotient frontier in which each equivalence class is
replaced by some arbitrary member of that class. The representative frontier
is the frontier in which cyclic dominances have been removed. Finally then the
undominated frontier undoml is rfrontierl − {y | ∃y′ ∈ rfrontierl · y′ � y}.

Now given a problem in the GS class, if it can be shown that ‖undoml‖ for any
l is polynomially bounded in the size of the input, a number of benefits accrue:
(1) BFS can be used to tractably carry out the search, as implemented in the raw
program schema of Alg. 1, (2) The raw schema of Alg. 1 can be transformed into
an efficient tail recursive form, in which the entire frontier is passed down and
(3) If additionally the tree depth can be polynomially bounded (which typically
occurs for example in constraint satisfaction problems or CSPs [Dec03]) then,
under some reasonable assumptions about the work being done at each node,
the result is a polynomial-time algorithm for the problem.

3.1 Program Theory

A program theory for EBFS defines a recursive function which given a space
y, computes a non-trivial subset Fx(y) of the optimal solutions contained in y,
where

Fx(y) = optc{z | z ∈ y ∧ o(x, z)}
optc is a subset of its argument that is the optimal set of solutions (w.r.t. the
cost function c), defined as follows:

optcS = {z | z ∈ S ∧ (∀z′ ∈ S · c(z) ≤ c(z′))}
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Algorithm 1. pseudo-Haskell Program Schema for EBFS (schema parameters
underlined)

solve :: D -> {R}
solve(x) = bfs x {initial(x)}

bfs :: D -> {RHat}-> {R}
bfs x frontier =

let localsof y = let z = extract x y
in if z!={} && o(x,z) then z else {}

locals = (flatten.map) localsof frontier
allsubs = (flatten.map) (subspaces x) frontier
undom = {yy : yy∈allsubs &&

(yy’∈subs && yy’ ‘dominates‘ yy ⇒ yy==yy’)}
subsolns = bfs x undom

in opt(locals ∪ subsolns)

subspaces :: D -> RHat -> {RHat}
subspaces x y = {yy: split(x,y,yy))

opt :: {R} -> {R}
opt zs = min {c x z | z ∈zs}

Also let undom(y) be undoml(y)+1 ∩ {yy | y � yy} where l(y) is the level of y in
the tree. The following theorem defines a recurrence that serves as the basis for
computing Fx(y):

Theorem 3.1. Let � be a well-founded relation of GS-theory and Gx(y) =
optc({z | χ(y, z)∧o(x, z)}∪⋃yy∈undom(y) Gx(yy)}) be a recurrence. Then Gx(y) ⊆
Fx(y).

The theorem states that if the feasible solutions immediately extractable from
a space y are combined with the solutions obtained from Gx of each undomi-
nated subspace yy, and the optimal ones of those retained, the result is a subset
of Fx(y). The next theorem demonstrate non-triviality2 of the recurrence by
showing that if a feasible solution exists in a space, then one will be found.

Theorem 3.2. Let � be a well-founded relation of GS-Theory and Gx be defined
as above. Then

Fx(y) �= ∅ ⇒ ({z | χ(y, z) ∧ o(x, z)} ∪
⋃

yy∈undom(y)

Gx(yy)}) �= ∅

Proofs of both theorems are in [NSC12]. From the characteristic recurrence we
can straightforwardly derive a simple recursive function bfs to compute a non-
trivial subset of Fx for a given y, shown in Alg. 1

The final program schema that is included in the Specware library is the
result of incorporating a number of other features of GS such as necessary filters,
bounds tests, and propagation, which are not shown here. Details of these and
other techniques are in [Smi88].
2 Non-triviality is similar but not identical to completeness. Completeness requires

that every optimal solution is found by the recurrence, which we do not guarantee.
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3.2 A Class of Strictly Greedy Algorithms (SG)

A greedy algorithm [CLRS01] is one which repeatedly makes a locally optimal
choice. For some classes of problems this leads to a globally optimum choice.
We can get a characterization of optimally greedy algorithms within EBFS by
restricting the size of undoml for any l to 1. If undoml �= ∅ then the singleton
member y∗ of undoml is called the greedy choice.

A perhaps surprising result is that our characterization of greedy algorithms
is broader than a well-known characterization of greedy solutions, namely the
Greedy Algorithm over algebraic structures called greedoids [BZ92], which are
themselves more general than matroids. We demonstrated this in earlier work
[NSC10] although at the time we were not able to characterize the greedy class
as a special case of EBFS.

Another interesting result is that even if ‖undoml‖, for any l, cannot be limited
to one but can be shown to be some constant value, the resulting algorithm, we
call Hardly Strictly Greedy3 (HSG), still has the same complexity as a strictly
greedy one. A number of interesting problems have the HSG property, and these
are discussed later.Note that for problems in the SG class, there is no longer any
“search” in the conventional sense.

4 Methodology

We strongly believe that every formal approach should be accompanied by a
methodology by which it can be used by a competent developer, without need-
ing great insights. Guided program synthesis already goes a long way towards
meeting this requirement by capturing design knowledge in a reusable form.
The remainder of the work to be done by a developer consists of instantiating
the various parameters of the program schema. The second main contribution of
this paper is to describe some techniques, illustrated with examples, that greatly
simplify the instantiation process. We wish to reiterate that once the dominance
relation and other operators in the schema have been instantiated, the result
is a complete solution to the given problem. We focus on dominance relations
because they are arguably the most challenging of the operators to design. The
remaining parameters can usually be written down by visual inspection.

The simplest form of derivation is to reason backwards from the conclusion
of y � y′ ⇒ o∗(x, y′ ⊕ e) ⇒ o∗(x, y ⊕ e), while assuming o∗(x, y′ ⊕ e) . The
additional assumptions that are made along the way form the required semi-
congruence condition. The following example illustrates the approach.

Example 5. Derivation of the semi-congruence relation for Shortest Path in Eg.
1 is fairly straightforward calculation as shown in Fig 4.1. It relies on the speci-
fication of Shortest Path given in Eg. 1 and the GS-theory in Eg. 2.

The calculation shows that a path y is semi-congruent to y′ if y and y′ both
end at the same node and additionally y is itself a valid path from the start node
3 This name inspired by that of the Hardly Strictly Bluegrass festival held annually in

San Francisco.
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o∗(x, y ⊕ e)
= {defn of o∗}
∃z · χ(y ⊕ e, z) ∧ o(x, z)
= {defn of χ}
o(x, y ⊕ e)
= {defn of o}
path?(y ⊕ e, x.start, x.end)
= {distributive law for path?}
∃n · path?(y, x.start,n) ∧ path?(e, n, x.end)
⇐ {o∗(x, y′ ⊕ e), ie.∃m · path?(y′, x.start,m) ∧ path?(e,m, x.end).
Let m be a witness for n}

path?(y,x.start,m) ∧ path?(e,m, x.end)
= {m = last(y).t, (where last returns the last element of a sequence)}
last(y).t = last(y′).t ∧ path?(y, x.start, n)

Fig. 4.1. Derivation of semi-congruence relation for Shortest Path

to its last node. Since the cost function is compositional, this immediately pro-
duces a dominance relation y � y′ = last(y) = last(y′) ∧ path?(y, x.start, n) ∧∑

edge∈y edge.cost ≤ ∑
edge′∈y′ edge′.cost. Note the use of the distributive law

for path? in step 4. Such laws are usually formulated as part of a domain theory
during a domain discovery process, or even as part of the process of trying to
carry out a derivation such as the one just shown. Given an appropriate con-
structive prover (such as the one in KIDS [Smi90]) such a derivation could in
fact be automated. Other examples that have been derived using this approach
are Activity Selection [NSC10], Integer Linear Programming [Smi88], and vari-
ations on the Maximum Segment Sum problem [NC09]. The next two sections
deal with situations in which the derivation is not so straightforward.

4.1 Technique 1: An Exchange Tactic

In the example just considered, and many such others, the derivation process
was free of rabbits (Dijkstra’s term for magic steps that appear seemingly out
of nowhere). However, some cases are a little more challenging. As an example
consider the following problem:

Example 6. One-Machine Scheduling. This is the problem of scheduling a num-
ber of jobs on a machine so as to minimize the sum of the completion times of
the jobs (because dividing the sum of the completion times by the number of
jobs gives the average amount of time that a job waits before being processed).
A schedule is a permutation of the set of input jobs {J1, J2, . . . Jn}. The input
to the problem is a set of tasks, where a task consists of a pair of an id and
duration, p. The result is a sequence of tasks. The output condition o requires
that every task (and only those tasks) in the input be scheduled, ie placed at a
unique position in the output sequence. Finally the cost of a solution, as stated
above, is the sum of the completion times of the tasks. The problem specification
is therefore:
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D �→ {Task}
R �→ [Task]

Task = 〈id : Id, p : T ime〉
o �→ λ(x, z) · asBag(z) = x
c �→ λ(x, z) · ∑n

i=1 ct(z, i)
ct(z, i) =

∑i
j=1 zj .p

The instantiation of terms in GS-theory is similar to that of Shortest Path:

R̂ �→ R
⊥ �→ λx · []
� �→ λ(x, s, ss) · ∃t ∈ x. ss = s++[t]
χ �→ λ(z, p) · p = z
� �→ ?

However, attempting to derive a semi-congruence relation in the same manner
as we did for the Shortest Path problem by comparing two schedules αa and αb
will not work. This is because every task must be scheduled, so any extension ω
that extends say αa must contain b but as each task can be scheduled only once,
such an extension will not be feasible for αb. Such situations are very common
in scheduling and planning problems4. For such problems, note that when R̂ is a
sequence type, every possible way a (called a choice) of extending some sequence
α ie. α++[a], written αa for conciseness, forms a subspace of α. A simple example
is the problem of generating all bit strings. If the current space is some bit string
say [1,0,0,1] then the two subspaces are [1,0,0,1]++[0] and [1,0,0,1]++[1] , written
10010 and 10011 resp. Another example occurs in CSP. If α is the sequence of
assignments to the first i variables, then αv for every v in Di+1 is a subspace of
α. The tactic to try in such situations is to compare two partial solutions that
are permutations of each other. This idea is backed up by the following theorem.

Theorem 4.1. Suppose it can be shown that any feasible extension of αa must
eventually be followed by some choice b. That is, any feasible solution con-
tained in αa must be contained in αaβb for some β. Let αbβa be the partial
solution obtained by exchanging a and b. If R(α, a, b) is an expression for the
semi-congruence relation αbβa � αaβb and C(α,a,b) is an expression for
c(αbβaγ) ≤ c(αaβbγ), for any α, β, then R(α, a, b) ∧ C(α, a, b) is a dominance
relation αb � αa.

Proof. See [Ned12]

Example 6 Revisited. We now show how to derive a dominance relation for
this problem. The tactic above suggests the following: Suppose some partial
schedule is extended by picking task a to assign in the next position and this is
4 In planning, actions that must occur after another action to achieve a feasible plan

are called action landmarks.
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followed subsequently by some task b. When is this better than picking b for the
next position and a subsequently? Let y = αaβb and y′ = αbβa. It is not difficult
to show that y and y′ are unconditionally semi-congruent. To apply Theorem 4.1
it is necessary to derive an expression for c(αbβaγ) ≤ c(αaβbγ). Let z = yγ and
z′ = y′γ and let i be the position of a (b) in y (resp. y′) and j be the position
of b (a) in y (resp. y′). As shown in Fig. 4.2, the calculation is simple enough
to be automated. The derivation shows that for any feasible solution αbβaω

c(z) ≤ c(z′)
= {unfold defn of c}

c(α) + ct(z, i) + c(β) + ct(z, j) + c(γ) ≤ c(α) + ct(z, j) + c(β) + ct(z, i) + c(γ)

= {unfold defn of ct. Realize that c(α) =
∑‖α‖

i=1

∑i
j=1 αj .p and let pt(α) =

∑‖α‖
j=1 αj .p}

c(α) + pt(α) + a.p + c(β) + pt(α) + a.p + pt(β) + b.p
≤
ct(α) + pt(α) + b.p + c(β) + pt(α) + b.p + pt(β) + a.p

= {algebra}
2(a.p) + b.p ≤ 2(b.p) + a.p

= {algebra}
a.p ≤ b.p

Fig. 4.2. Calculation of cost comparison relation for 1 mach. scheduling.

extending αb there is a cheaper feasible solution αaβbω that extends αa provided
a.p ≤ b.p. By Theorem 4.1, this constitutes the dominance relation αa � αb.
Finally, as ≤ is total order, there must be a choice that dominates all other
choices, namely the task with the least processing time. Therefore the problem
is in the SG class. Following this greedy choice at every step therefore leads
to the optimum solution. Instantiating the library schema derived from Alg. 1
with such a dominance relation (along with the other parameters ) immediately
results in a greedy algorithm for this problem. The result corresponds to the
Shortest Processing Time (SPT) rule, discovered by W.E. Smith in 1956. We
have shown how it can be systematically derived.

We have applied the tactic above to derive other scheduling algorithms, for
example an algorithm for the scheduling problem 1//Lm in which the goal is to
minimize the maximum lateness of any job (amount by which it misses its due
date), as well as variant of it to derive dominance relations for planning problems
[Ned12].

4.2 Technique 2: General Dominance

There are situations in which the above tactic will fail. Consider the following
problem from [CLRS01] and [Cur03]:

Example 7. Professor Midas’s Driving Problem
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Professor Midas wishes to plan a car journey along a fixed route.
There are a given number of gas stations along the route, and the pro-
fessor’s gas tank when full can cover a given number of miles. Derive
an algorithm that minimizes the number of refueling stops the professor
must make.

The input data is assumed to be a sequence of cumulative distances of gas
stations from the starting point (cds) along with the car’s tank capacity (cap,
measured in terms of distance). The variables will represent the gas stations along
the route, that is variable i will be the ith gas station. A stop at a gas station is
indicated in the result by assigning the corresponding variable true, and false
otherwise. The start and finish are considered mandatory stops (that is z1 and
zn are required to be true). Finally, the cost of a solution is a simple count of
the number of variables assigned true. An obvious requirement on the input is
that the distance between any two stations not exceed the tank capacity of the
car. These ideas are captured in the following specification (in the cost function
false is interpreted as 0 and true as 1). Note that a type 〈. . . | P 〉 denotes a
predicate subtype in which the type members must satisfy the predicate P .

D 
→ 〈cds : [Nat], cap : Nat | ∀x ∈ D · ∀i < ‖x.cds‖ · x.cds[i + 1] − x.cds[i] ≤ x.cap〉
R 
→ [Boolean]
o 
→ ‖z‖ = ‖x.cds‖ ∧ fsok(x, z)

fsok(x, z) = ∀i, j · i ≤ j · didntStop(z, i, j) ⇒ span(x, i, j) ≤ x.cap
didntStop(z, a, b) = ∀i · a ≤ i ≤ b · ¬zi

span(x, i, j) = x.cds[j + 1] − x.cds[i − 1]

c 
→ λx, z · ∑‖z‖
i=1 zi

The instantiation of GS-theory, with the exception of �, is as it was for the
machine scheduline example (Eg. 6). Attempting to apply the Exchange tactic
described above and derive a semi-congruence relation between αTβF and αFβT
(T is true and F is false) that does not depend on β will fail. The counter-
example of Fig 4.3 shows why (boxes represent variables, shading means the
variable was set true): it is possible that there is some extension e to αT which
delays a stop but which is too long a span for αF . In such situations, we have
found it useful to try to establish general dominance (Def. 2.2).

As before, it is useful to identify any distributive laws. In this case, the com-
bination of partial solutions r and s satisfies fsok provided each partial solu-
tion independently satisfies fsok and where they abut satisfies fsok . Express-
ing the law formally requires broadening the definition of fsok somewhat to
take into account the offset t of a particular sequence from the start, that is:
fsok (x, z, t) = ∀i, j · i ≤ j ∧ didntStop(z, i, j) ⇒ span(x, i + t, j + t) ≤ x.cap.
Then:

fsok (x, y ⊕ e, 0) = fsok (x, y, 0) ∧ fsok (x, e, ‖y‖) ∧ fs2ok (x, y, e)

where fs2ok deals with the boundary between y and e and can be shown to be

fs2ok (x, y, e) = fsok (x, lfs(y)++ffs(e), ‖y − lfs(y)‖)
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where ffs ( resp. lfs) denotes the initial (resp. last) false span of a segment, if
any.

Now consider the two possible solutions after a split again, namely αT and αF .
To demonstrate o(x, αFe) for some e, the usual backwards inference procedure
can be applied, assuming αTe′ for some e′ (for brevity, the input x to fsok has
been dropped)

o(x, αFe)
= {defn }
fsok (αFe, 0)
= {defn }
fsok (α, 0) ∧ fsok (F, ‖α‖) ∧ fs2ok (α, F ) ∧ fsok (e, ‖α‖ + 1) ∧ fs2ok (αF, e)
= {fsok(α, 0) because o(x, αTe′), fsok(F, −) because of restriction on D}
fs2ok(α, F ) ∧ fsok(e, ‖α‖ + 1)) ∧ fs2ok(αF, e)
= {see below}
fs2ok(α, F )

Partial soln 1 after split

Partial soln 2 after split

extension

<= x.cap

> x.cap

Fig. 4.3. Counter-example: extension works for
the 1st partial soln but not for the 2nd

To demonstrate both
fsok (e, ‖α‖ + 1) and
fs2ok (αF, e), let e = e′[1 = T ]
(e′ with the first vari-
able assigned true).
Clearly fsok(e, ‖α‖ + 1)
if fsok (e′, ‖α‖ + 1) and
fs2ok (αF, e) if fs2ok (α, F )
because ffs(e) is empty. As αF
has one stop less than αT and e
has at most one extra, it follows
that c(x, αFe) ≤ c(x, αTe′).
Therefore αF dominates αT
provided there is sufficient fuel to make it to the next stop. As there are only
two branches following a split, the greedy choice is clear. Informally this rule is
to travel as far as possible without stopping.

Other algorithms we have derived by applying general dominance have been
a SG algorithm for Shortest Path similar to Dijkstra’s algorithm, and SG algo-
rithms similar to Prim and Kruskal for Minimum Spanning Trees [NSC12].

4.3 Technique 3: Feasibility Problems

Finally, we show that the notion of greediness applies not only to optimality
problems, but also feasibility problems. By letting the “cost” of a solution be its
correctness and using the standard ordering on Booleans, namely that false<true,
we can derive a feasibility dominance criterion for y �F y′, namely o(x, y′) ⇒
o(x, y) [Ned12]. One way to use this constraint is derive conditions under which
o(x, y′) is false, ensuring y′ is dominated. An example of this follows.
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Example 8. Searching for a key in an ordered sequence. A combined problem
specification and GS-theory instantiation is:

D �→ 〈seq : [Int], key : Int | unique(key, seq) ∧ ordered(seq)〉
R �→ Nat
o �→ λ(x, z) · x.seq[z] = x.key

R̂ �→ (Nat, Nat)
� �→ λ(x, (i, j), (k, l)) · (k = i ∧ l = (i + j) div 2))∨

(k = (i + j) div 2) + 1 ∧ l = j)
χ �→ λ(y, z) · z = y

The input D provides the sequence and the key, requiring that the sequence be
ordered and the key occur uniquely in the sequence. The result is the index of the
desired key. The two subspaces after a split are the sequence from the start i of
the parent sequence to the midway point and from some point immediately after
the midway to the end j of the parent sequence. (This split relation is derived
in [Smi10]). In general, there could be an n-way split, or a split at any chosen
point in the range but for simplicity, only the binary midpoint case is illustrated.
There are only two subspaces after a split denoted L and R. Fig 4.4 derives
the condition under which o(x, αL) holds. Negating this condition, ie. x.key >
x.seq[(i+j) div 2] determines when o(x, αL) is false and αL is dominated, leaving
at most one undominated child, αR. Completing the instantiation of GS-theory
with this dominance condition provides the bindings for the parameters of the
program schema of Alg. 1. Since the depth of the search is O(log n), the result
is an O(log n) greedy algorithm that implements Binary Search.

4.4 HSG Problems

o(x, αL)
= {defn. of o}
∃z ∈ αL · o(x, z)
= {defn. of o}∨(i+j)/2

p=i x.seq[p] = x.key

⇒ {ordered elements}
x.key ≤ x.seq[(i + j) div 2]

Fig. 4.4. Derivation of greedy dominance
relation for binary search

The problems illustrated so far have
all been Strictly Greedy (SG). This
was intentional. For one thing, many
problems have a greedy solution (or a
greedy approximation). Additionally,
as one moves down an algorithm hi-
erarchy, the narrower class generally
has a more efficient algorithm. The
price to be paid is that it is usually
more difficult to establish the condi-
tions necessary for membership in a
tighter class. The techniques we have
demonstrated for establishing mem-

bership in SG apply equally well to the broader category of HSG and indeed
the catch-all one of EBFS. Although problems in the broader categories are
seemingly sparser, we have demonstrated several problems are in HSG ; for ex-
ample, 2-SAT (Boolean satisfiability in which there are at most 2 variables per
clause) [Ned12] as well as a family of Segment Sum problems [NC09]. Notewor-
thy is that the run-time performance of the solutions we derived for the Segment
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Sum problems consistently exceeded those obtained by program transformation
[SHT00, SHT01, SOH05]. Genetic algorithms in which the descendant popula-
tion is maintained at a constant level are another example of HSG algorithms.

5 Related Work

Gulwani et al. [SGF10, GJTV11] describe a powerful program synthesis ap-
proach called template-based synthesis. A user supplies a template or outline of
the intended program structure, and the tool fills in the details. A number of
interesting programs have been synthesized using this approach, including Bre-
senham’s line drawing algorithm and various bit vector manipulation routines.
A related method is inductive synthesis [IGIS10] in which the tool synthesizes a
program from examples. The latter has been used for inferring spreadsheet for-
mulae from examples. All the tools rely on powerful SMT solvers. The Sketching
approach of Solar-Lezama et al [PBS11] also relies on inductive synthesis. A
sketch, similar in intent to a template, is supplied by the user and the tool fills
in such aspects as loop bounds and array indexing. Sketching relies on efficient
SAT solvers. To quote Gulwani et al. the benefit of the template approach is
that “the programmer only need write the structure of the code and the tool fills
out the details” [SGF10].Rather than the programmer supplying an arbitrary
template, though, we suggest the use of a program schema from the appropri-
ate algorithm class (refer to Step 2 of the process in Sec. 2.1). We believe that
the advantage of such an approach is that, based on a sound theory, much can
already be inferred at the abstract level and this is captured in the theory as-
sociated with the algorithm class. Furthermore, knowledge of properties at the
abstract level allows specialization of the program schema with information that
would otherwise have to either be guessed at by the programmer devising a tem-
plate or inferred automatically by the tool (e.g. tail recursive implementation
or efficient implementation of dominance testing with hashing). We believe this
will allow semi-automated synthesis to scale up to larger problems such as con-
straint solvers (SAT, CSP, LP, MIP, etc.), planning and scheduling, and O/S
level programs such as garbage collectors [PPS10].

Program verification is another field that shares common goals with program
synthesis - namely a correct efficient program. The difference lies in approach -
we prefer to construct the program in a way that is guaranteed to be correct, as
opposed to verifying its correctness after the fact. Certainly some recent tools
such as Dafny [Lei10] provide very useful feedback in an IDE during program
construction. But even such tools requires significant program annotations in the
form of invariants to be able to automatically verify non-trivial examples such as
the Schorr-Waite algorithm [Lei10]. Nevertheless, we do not see verification and
synthesis as being necessarily opposed. For example, ensuring the correctness
of the instantiation of several of the operators in the program schema which is
usually done by inspection is a verification task, as is ensuring correctness of
the schema that goes in the class library. We also feel that recent advances in
verification via SMT solvers will also help guided synthesis by increasing the
degree of automation.
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Refinement is generally viewed as an alternative to synthesis. A specification
is gradually refined into an efficient executable program. Refinement methods
such as Z and B have proved to be very popular. In contrast to refinement,
guided program synthesis already has the program structure in place, and the
main body of work consists of instantiating the schema parameters followed by
various program transformations many of which can be mechanically applied.
Both refinement and synthesis rely extensively on tool support, particularly in
the form of provers. We expect that advances in both synthesis and refinement
will benefit the other field.

Curtis [Cur03] presents a classification scheme for greedy algorithms. Each
class has some conditions that must be met for a given algorithm to belong
to that class. The greedy algorithm is then automatically correct and optimal.
Unlike Curtis, our results extend beyond strictly greedy algorithms. We also rely
extensively on calculational proofs for problem instances.

Another approach has been taken by Bird and de Moor [BM93] who show
that under certain conditions a dynamic programming algorithm simplifies into
a greedy algorithm. Our characterization in can be considered an analogous
specialization of (a form of) branch-and-bound. The difference is that we do not
require calculation of the entire program, but specific operators, which is a less
onerous task.

6 Summary and Future Work

We have shown how Breadth-First Search can be carried out efficiently by relying
on dominance relations. This is an important result as Breadth-First Search has
several advantages over Depth-First Search. Secondly, we demonstrated some
techniques by which dominance relations can be derived and illustrated them
on several problems. We hope to identify and collect more techniques over time
and catalogue then in the style of design patterns [GHJV95].

Nearly all the derivations shown in this paper have been carried out by hand.
However, they are simple enough to be automated. We plan on building a prover
that incorporates the ideas mentioned in here. We are encouraged by the success
of a similar prover that was part of KIDS, a predecessor to Specware.

We are currently applying some of these ideas to the problem of synthesizing
fast planners that produce good quality plans. We hope to report on this work
in the near future.
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Abstract. Model checking timed systems through digitization is relatively easy,
compared to zone-based approaches. The applicability of digitization, however,
is limited mainly for two reasons, i.e., it is only sound for closed timed systems;
and clock ticks cause state space explosion. The former is mild as many practical
systems are subject to digitization. It has been shown that BDD-based techniques
can be used to tackle the latter to some extent. In this work, we significantly im-
prove the existing approaches by keeping the ticks simple in the BDD encoding.
Taking advantage of the ‘simple’ nature of clock ticks, we fine-tune the encoding
of ticks and are able to verify systems with many ticks. Furthermore, we de-
velop a BDD library which supports not only encoding/verifying of timed state
machines (through digitization) but also composing timed components using a
rich set of composition functions. The usefulness and scalability of the library
are demonstrated by supporting two languages, i.e., closed timed automata and
Stateful Timed CSP.

1 Introduction

Model checking of real-time systems has been studied extensively. One popular ap-
proach is zone abstraction [1,2]. The scalability and effectiveness of the zone-based ap-
proach have been proved with successful industrial applications, e.g., [3]. Meanwhile,
it is known that for a large class of timed verification problems, correctness can be es-
tablished using an integral model of time (digital clocks) as oppose to a dense model of
time [4]. For instance, Lamport argued that model checking of real-time systems can be
really simple if digitization is adopted [5]. Digitization translates a real-time verification
problem to a discrete one by using clock ticks to represent elapsed time. The advantage
is that the techniques which are developed for classic automata verification can be ap-
plied without the added complexity of zone operations. One particularly interesting
example is model checking with the assumption of non-Zenoness. A timed execution is
Zeno if infinitely many discrete steps are taken within finite time. For obvious reasons,
Zeno executions are impractical and must be ruled out during the system verification.
It is, however, nontrivial to check whether an execution is Zeno or not based on zone
graphs [6,7]. The problem is much simpler with digitization. An execution of a digitized

D. Giannakopoulou and D. Méry (Eds.): FM 2012, LNCS 7436, pp. 326–340, 2012.
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system is non-Zeno if and only if it contains infinitely many clock ticks. Thus a finite-
state system is non-Zeno if on any of its control cycles, time advances with at least one
time unit. In other words, this cycle contains at least one clock tick transition, which
can be determined efficiently with cycle-detection algorithms. Further, the experiment
in [8] showed that BDD-based model checking of digitized systems is more robust with
the increment in the number of processes, compared with zone-based approaches.

The disadvantage of digitization is that the number of reachable states of the digi-
tized system is an increasing function of the number of clock ticks, which is determined
by the upper-bound of the timing constraints. The experiments in [5] showed that UP-
PAAL has a clear advantage (over TLC or Spin in verifying the digitized systems) when
the time upper-bound is bigger than 10. The same experiments showed that the sym-
bolic model checker SMV is more robust with the increment in time upper-bounds. The
question is then: Can BDD-based symbolic model checker scale better with large time
upper-bounds? In [9], it has been shown that the size of BDD is very sensitive to time
upper-bounds through a theoretical analysis. As a result, the time upper-bounds were
thus kept very small in their experiments, i.e., no more than 16.

In this work, we re-visit the problem in order to develop efficient model checking
techniques for timed systems. Our investigation shows that if we keep clock ticks sim-
ple, by avoiding clock variables altogether, we are able to obtain a small BDD encoding
of all ticks in a system which scales significantly better than existing approaches. We
are able to verify systems with time upper-bounds in the order of thousands. Further-
more, to make this technique available for different timed modeling languages, we build
a BDD library for encoding and composing digitized timed systems. The motivation is
that complex timed systems are often composed of many components at multiple lev-
els of hierarchies. We propose to use timed finite-state machines (TFSMs) to model
timed system components, which are designed to capture useful system features like
different ways of communication among system components. Next, we define a rich
set of system composition functions accordingly based on TFSMs. The library further
complements the previous approaches (e.g., UPPAAL, Rabbit [8]) by supporting linear
temporal logic (LTL), LTL with weak/strong fairness, non-Zenoness, etc. The useful-
ness of the library is evidenced by showing that it can be readily used to build model
checkers for two different timed modeling languages, e.g., closed timed automata and
Stateful Timed CSP [10].

We evaluate the efficiency of the library using benchmark systems with different
settings. In the first experiment, systems are modeled and verified with an increment in
time upper-bounds. The objective is to show that, by taking advantage of characteristics
of clock ticks, our library is reasonably robust with larger number of clock ticks than
Rabbit. In the second experiment, the systems are verified with the increment in the
number of processes so as to show that our model checker scales up better than model
checkers like UPPAAL. Lastly, we show that our model checker verifies LTL properties,
with/without non-Zenoness, efficiently.

The rest of the paper is organized as follows. Section 2 presents the design of the
library. Section 3 presents the work on supporting two languages. Section 4 evaluates
the performance of the library. Section 5 concludes the work.
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2 System Models and BDD Encoding

A timed system may be built from the bottom up by gradually composing system com-
ponents. We propose to model system components using timed finite-state machines
(TFSMs), which are designed to capture a variety of system features. In the following,
we introduce TFSM and system compositions based on TFSMs. Furthermore, we show
abstractly how to generate a BDD encoding of TFSMs in a compositional way.

2.1 Timed Finite-State Machines

Definition 1. A TFSM is a tuple M = (GV ,LV , S , init ,Act ,Ch,T ) such that GV
is a set of finite-domain shared variables; LV is a set of finite-domain local variables
such that GV ∩LV = ∅; S is a finite set of control states; init ∈ S is the initial state;
Act is the alphabet;Ch is a set of synchronous channels1; and T is a labeled transition
relation. A transition label is of the form [guard ]evt{prog} where guard is an optional
guard condition constituted by variables in GV and LV ; evt is either an event name, a
channel input/output or the special tick event (which denotes 1-unit elapsed time); and
prog is an optional transaction, i.e., a sequential program which updates global/local
variables.

A transaction (which may contain program constructs like if -then-else or while-do)
associated with a transition is to be executed atomically. A non-atomic operation is thus
to be broken into multiple transitions. TFSMs support many system features. For in-
stance, TFSMs may communicate with each other through shared variables GV , multi-
party event synchronization (common events in parallel composition are synchronized)
or pair-wise channel communication.

The semantics of M is a labeled transition system (C , initc ,→) such that C con-
tains finitely many configurations of the form (σg , σl , s) such that σg is the valua-
tion of GV and σl is the valuation of LV and s ∈ S is a control state; initc =
(initg , initl , init) where initg is the initial valuation ofGV and initl is the initial valua-
tion ofLV ; and→ is defined as follows: for any (σg , σl , s), if (s , [guard ]e{prog}, s ′) ∈
T , then (σg , σl , s)

e→ (σ′
g , σ

′
l , s

′) if the following holds: guard is true given σg and σl ;
e is not a synchronous channel input/output; and prog updates σg and σl to σ′

g and
σ′
l respectively. Notice that synchronous input/output cannot occur on its own. Rather,

it must be jointly performed by different TFSMs which execute concurrently. Further-
more,→ contains transitions labeled with events to be synchronized, which later will be
synchronized with corresponding transitions from other TFSMs. We remark that tim-
ing constraints are captured explicitly by allowing/disallowing transitions labeled with
tick . For instance, an urgent state is a state which disallows ticks.

Example 1. Fig. 1 shows a TFSM which models a process in Fischer’s mutual exclu-
sion protocol. The double-lined circle denotes the initial state. GV contains two vari-
ables. Variable id denotes the identifier of the latest process attempting to access the
critical session. It is initially 0, which means that no process is attempting. Variable

1 Asynchronous channels can be mimicked using shared variables.
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A

B

[id = 0] start{clk := 0}

set
{id := pid; clk := 0} [id = 0]

reset{clk := 0}

[id = pid && clk >= α + 1]
enter {counter++}

exit
{id = 0; counter--}

[clk < α]
tick {clk++}

tick{clk++}tick

tick

Fig. 1. A TFSM model with clock variables

counter counts the number of processes currently accessing the critical session. By de-
sign, counter should be always less than 2. The local variable pid is a unique process
identifier which is a constant. In addition, variable clk ∈ LV is a clock variable which
tracks the passage of time. Initially, the TFSM awaits until id = 0 and then performs
event start . At state A, it can set id to its pid (indicating that it is trying to get into
the critical session). Event set must occur within α time units as the tick transition is
guarded by clk < α. At state B , the TFSM waits for at least α+ 1 time units and then
checks whether id is still same as its pid . If so, it enters the critical session; otherwise,
it restarts from the beginning via the reset event. �

TFSM can be encoded in BDD following the standard approach. That is, a BDD can be
used to encode symbolically the system configuration including valuation of global and
local variables as well as the control states. Using two sequences of Boolean variables
−→x and −→x ′ (which represent system configurations before and after a transition respec-
tively), transitions of TFSMs can be encoded as BDDs constituted by −→x and −→x ′. An
encoded transition is of the form: g ∧ e ∧ t such that g (over−→x ) is the encoded guard
condition; e is the encoded event and t (over −→x and −→x ′) is the encoded transaction.
Interested readers are referred to [11] for details on encoding TFSM.

The encoding of a TFSM is a tuple B = (−→V ,−→v , Init ,Trans ,Out , In,Tick). −→V is
a set of unprimed Boolean variables encoding global variables, event names including
the clock tick, channel names, and channel buffers, which are calculated for the whole
system before encoding.−→v is a set of variables encoding local variables and local con-
trol states; Init is a formula over

−→
V and −→v , which encodes the initial valuation of the

variables. Trans is a set of encoded transitions excluding tick transitions. Out (In) is
a set of encoded transitions labeled with synchronous channel output (input). Note that
transitions in Out and In cannot occur by itself, but must be paired with corresponding
input/output communication of other components. Out and In are separated from the
rest of the transitions so that they can be matched with corresponding input/output tran-
sitions later. Lastly, Tick is a BDD which encodes all the tick transitions. Note that tick
transitions must be synchronized among all concurrent TFSMs. Keeping tick transitions
separated allows us to realize dedicated optimizations (see below).
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A

B

[id = 0] start

set{id := pid}

set{id := pid}

[id = 0] reset

tick tick tick

tick

tickticktick

tick

[id = pid]
enter {counter++}

exit
{id = 0; counter--}

tick

tick

Fig. 2. A TFSM model without clock variables

2.2 Keeping Ticks Simple

In order to handle systems with large time upper-bounds, it is important that we keep
the encoding of tick transitions small. There are different ways of capturing timing
constraints. For instance, in Fig. 1, the timing constraints at state A and B are captured
by using ‘clock’ clk , i.e., by increasing clk with the tick transitions and guarding system
transitions with conditions on clk . Another way of modeling timing constraints is to use
only tick transitions without clock variables. For instance, assuming α is 3 in Example
1, Fig. 2 models the same TFSM without clock variables. At state A, at most three tick
transitions are allowed to occur before event set occurs, which captures that set must
occur within three time units.

We argue that clock variables should be avoided altogether if possible for the fol-
lowing reason. Without clock variables, both the tick transitions and other transitions
become simpler since there is no need to introduce a new variable clk ; or have trans-
actions to increment clk or to have transition guards on clk . Moreover by generating
explicitly the model with tick transitions, we can reduce the state space of the problem.
For instance, given the encoding in Figure 1, the total number of potential states (i.e.,
the product of the control state and the clock value) is 20, whereas with the encoding in
Figure 2, it is only 11. This latter encoding thus allows us to save one boolean variable
in encoding of one TFSM. This reduction is due to the fact that the latter encodes more
‘domain knowledge’. For instance, some of the 20 states are in fact not reachable (e.g.,
state (A, clk = 4) assuming α is 3) or bi-similar to each other (e.g., state (init , clk = 0)
and (init , clk = 1) where init is the initial state).

However if tick transitions are used instead of the clock variables, the number of
tick transitions in one TFSM is bigger, linear to the product of all clock ceilings in that
TFSM. If we store Tick as a disjunctive partitioned transition function [12], the number
of BDDs to encode tick transitions in a system can grow exponentially. Given a system
with n TFSMs, each of which has m tick transitions, Tick of the resulted composition
has mn BDDs which are implicitly disjuncted. As a result, the number of BDD-based
pre-image and post-image operations grows exponentially too. Thus we store Tick as
a single BDD to encode all the tick transitions in a TFSM. It reduces the time spending
on BDD-based computation by taking one complex operation instead of mn simpler
operations. Lastly, we compare the two different approaches of encoding timing con-
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Table 1. Compare two different approaches of encoding timing constraints

#proc 4 5 6 7 8

time (s)
without clock variables 0 0 0.1 0.2 0.4

with clock variables 0.6 15 513 × ×

memory (Mb)
without clock variables 21 22 23 24 26

with clock variables 32 70 425 × ×

straint (i.e., with or without clock variables) and show that avoiding clock variables
leads to a smaller BDD (as suggested by the memory consumption) and subsequently
significantly more efficient verification (as suggested by the verification time). Table 1
summarizes the experiment results on Fischer’s protocol using the model in Figure 1
and 2. Thus, in the following, we always avoid clock variables whenever possible.

2.3 System Composition

A complicated system may consist of many components at multiple levels of hier-
archies; and components at the same level may be composed in many ways. In the
following, we define a few common system composition functions and show how to
generate encodings of these functions without constructing the composed TFSM. We
fix two TFSMs Mi = (GV ,LVi , Si , initi ,Acti ,Chi ,Ti) where i ∈ {0, 1}, and
Bi = (−→V ,−→v i , Initi ,Transi ,Outi , Ini ,Ticki ) which encodesMi respectively. Notice
that −→v 0 and −→v 1 are disjoint and

−→
V is always shared.

Parallel Composition The parallel composition of M0 and M1 is a TFSM M =
(GV ,LV , S , init ,Act ,Ch,T ) such that LV = LV0 ∪ LV1; S = S0 × S1; init =
(init0, init1); Act = Act0 ∪ Act1; Ch = Ch0 ∪ Ch1; T is the minimum transition
relation such that for any (s0, [g0]e0{prog0}, s ′0) ∈ T0; (s1, [g1]e1{prog1}, s ′1) ∈ T1,

– if e0 �∈ (Act0 ∩Act1) ∪ {tick}, ((s0, s1), [g0]e0{prog0}, (s ′0, s1)) ∈ T ;
– if e1 �∈ (Act0 ∩Act1) ∪ {tick}, ((s0, s1), [g1]e1{prog1}, (s0, s ′1)) ∈ T ;
– ((s0, s1), [g0 ∧ g1]e0{prog0; prog1}, (s ′0, s ′1)) ∈ T if e0 = e1 and e0 ∈ (Act0 ∩
Act1) ∪ {tick}. In order to prevent data race, we assume that prog0 and prog1 do
not conflict, i.e., update the same variables to different values.

– if e0 = ch!v is an output on channel ch with value v ; and e1 = ch?x is a matching
channel input, ((s0, s1), [g0 ∧ g1]ch.v{prog0; prog1}, (s ′0, s ′1)) ∈ T ;

– if e1 = ch!v is a channel output; and e0 = ch?x is a matching channel input,
((s0, s1), [g0 ∧ g1]ch.v{prog1; prog0}, (s ′0, s ′1)) ∈ T ;

Notice that a channel input/output fromMi may be matched with an output/input from
M1−i to form a transition in T . It is promoted to Ch at the same time because a channel
input/output fromMi may synchronize with another TFSM in the rest of the system. In
the contrast, an event in (Act0∩Act1)∪{tick}must be synchronized by both machines.
If Act0 ∩ Act1 = ∅, then M0 and M1 communicate only through shared variables or
channels, which is often referred to as interleaving. For instance, Fischer’s protocol is
the interleaving of multiple TFSMs defined in Fig. 1.
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Let (−→V ,−→v , Init ,Trans ,Out , In,Tick) be the BDD encoding the parallel compo-
sition of B0 and B1. We have −→v = −→v 0 ∪ −→v 1; Init = Init0 ∧ Init1. Trans contains
three kinds of transitions.

– local transition: if gi ∧ ei ∧ ti is a transition in Transi and ei is an event which
is not to be synchronized (i.e., ei �∈ (Act0 ∩ Act1) ∪ {tick}), Trans contains a
transition gi ∧ ei ∧ ti ∧ (−→v 1−i = −→v ′

1−i), where (−→v 1−i = −→v ′
1−i) denotes that

the local variables of B1−i are unchanged.
– channel communication: if gi ∧ ei ∧ ti is a transition in Outi ; and g1−i ∧ e1−i ∧
t1−i is a transition in In1−i ; and ei and e1−i are matching channel input/output,
Trans contains a transition gi ∧ g1−i ∧ ei ∧ ti ∧ t1−i

2.
– barrier synchronization: if gi ∧ ei ∧ ti is a transition in Transi and g1−i ∧ ei ∧
t1−i is a transition in Trans1−i and ei ∈ (Act0∩Act1) is a synchronization barrier
and ti and t1−i do not conflict, Trans contains transition gi ∧ g1−i ∧ ei ∧ ti ∧
t1−i .

Out /In contains a transition gi ∧ ei ∧ ti ∧ (−→v 1−i = −→v ′
1−i) if gi ∧ ei ∧ ti is

a transition in Outi /Ini respectively. These transitions could be paired with matching
input/output from other TFSMs running in parallel later. Lastly, Tick contains the tran-
sition gi ∧ g1−i ∧ tick ∧ ti ∧ t1−i if gi ∧ tick ∧ ti is a transition in Ticki and
g1−i ∧ tick ∧ t1−i is in Tick1−i .

Unconditional Choice An unconditional choice betweenM0 andM1 is a TFSMM =
(GV ,LV , S , init ,Act ,Ch,T ) such that LV = LV0 ∪ LV1; S = ((S0 ∪ {done}) ×
(S1 ∪ {done})); init = (init0, init1); Act = Act0 ∪ Act1; Ch = Ch0 ∪ Ch1; and
T is the minimum transition relation defined as follows. Notice that we introduce a
special state done which denotes the state of one component after the other component
is chosen. For any (s0, [g0]e0{prog0}, s ′0) ∈ T0; any (s1, [g1]e1{prog1}, s ′1) ∈ T1,

– if e0 = e1 = tick , ((s0, s1), [g0 ∧ g1]tick{prog0; prog1}, (s ′0, s ′1)) ∈ T ;
– if e0 �= tick , ((s0, s), [g0]e0{prog0}, (s ′0, done)) ∈ T for all s ∈ S1 ∪ {done};
– if e1 �= tick , ((s , s1), [g1]e1{prog1}, (done, s ′1)) ∈ T for all s ∈ S0 ∪ {done};
– if e0 = tick , ((s0, done), [g0]tick{prog0}, (s ′0, done)) ∈ T ;
– if e1 = tick , ((done, s1), [g1]tick{prog1}, (done, s ′1)) ∈ T ;

Initially when the choice is not resolved, if both components take a tick transition, then
so does the choice. Only after one of the components takes an action, the choice is
resolved and the other component goes to the done state.

Let (−→V ,−→v , Init ,Trans ,Out , In,Tick) be the BDD encoding of the choice between
B0 and B1 such that −→v = −→v 0 ∪ −→v 1 ∪ {choice} where choice ∈ {−1, 0, 1} is a
fresh integer variable of value -1 (i.e., the choice is not resolved), 0 (i.e.,M0 has been
chosen), or 1 (i.e., M1 has been chosen); Init = Init0 ∧ Init1 ∧ (choice = −1);
Trans ,Out , In contain the transition (choice = −1 ∨ choice = i) ∧ gi ∧ ei ∧ ti ∧
(choice ′ = i) if gi ∧ ei ∧ ti is a transition in Transi , Outi or Ini respectively. Lastly,
a transition (choice = −1) ∧ gi ∧ g1−i ∧ tick ∧ ti ∧ t1−i ∧ (choice ′ = −1) is in
Tick if gi ∧ tick ∧ ti is a transition in Ticki and g1−i ∧ tick ∧ t1−i is a transition
in Tick1−i . Moreover Tick also contains tick transitions from Mi when the choice is
already resolved, (choice = i) ∧ gi ∧ tick ∧ ti ∧ (choice ′ = i).

2 In our encoding, matching synchronous input/output are labeled with the same event.
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Timeout A common timed composition function is timeout, i.e., if a system component
is not responding within certain time units, then another component takes over control.
GivenM0 and M1 and a constant d , the timeout is a TFSM M = (GV ,LV , S , init ,
Act ,Ch,T ) such that LV = LV0 ∪ LV1; S = S0 ∪ S1 ∪ {statei | 1 ≤ i ≤ t};
init = init0; Act = Act0 ∪ Act1; Ch = Ch0 ∪ Ch1; and T is the minimum transition
relation defined as follows. Notice that we introduce t states to remember the time
passage while theM0 delays its first action. For any (s0, [g0]e0{prog0}, s ′0) ∈ T0; any
(s1, [g1]e1{prog1}, s ′1) ∈ T1, T is defined as follow

– (init0, tick , state1) ∈ T
– (statei , tick , statei+1) ∈ T where 1 ≤ i ≤ t − 1
– (statet , τ, init1). The timeout occurs and the control is passed toM1.
– (s , [g0]e0{prog0}, s ′0) ∈ T for all s ∈ init0∪{state1, ..., statet} where s0 = init0,
e0 is not a tick. Actions from initial state can happen during the d -unit-long period.

– (s0, [g0]e0{prog0}, s ′0) where s0 �= init0
– (s1, [g1]e1{prog1}, s ′1) ∈ T

The corresponding encoding ofM is built in the standard way. Notice that timeout can
be equivalently defined by adopting an integer clock variable clk which is updated by
every tick transition and guarding every transition ofM0 with a constraint on clk . The
above definition, however, keeps tick transitions simple by avoiding clock variables.

Deadline A timed system requirement may put a bound on the execution time of a
component, i.e., a component must terminate before certain time units. A TFSM M0

with a deadline d is a TFSM M = (GV ,LV , S , init ,Act ,Ch,T ) such that LV =
LV0; S = S0 × {0, 1, · · · , d} where the numbers represent the number of elapsed time
units; init = (init0, 0); Act = Act0; Ch = Ch0; and T is the minimum transition
relation such that:

– for any (s , [g]e{prog}, s ′) ∈ T0 and e �= tick , ((s , d0), [g]e{prog}, (s ′, d0)) ∈ T
for all d0 ∈ {0, 1, · · · , d}.

– for any (s , [g]tick{prog}, s ′) ∈ T0, ((s , d0), [g]tick{prog}, (s ′, d0 + 1)) ∈ T for
all d0 ∈ {0, 1, · · · , d − 1}.

Similarly, the corresponding BDD encoding ofM is built in the standard way.
Through literature survey and case studies, we collected and defined more than twenty
composition functions. Other functions like time/event interrupt, sequential composi-
tion, conditional choice, repetition, etc., are similarly defined. Interested readers can
refer to [11] for the complete list. We remark that the compositions remain as TFSM
and therefore not only system components can be composed repeatedly but also the
library of system composition functions is extensible.

3 Case Studies

In this section, we show how to support model checking of two fairly different lan-
guages, i.e., closed timed automata and Stateful Timed CSP, using our library.
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3.1 Closed Timed Automata

Given a set of clocksC , the set Φ(C ) of closed clock constraints δ is defined inductively
by: δ := x ∼ n | ¬ δ | δ ∧ δ where ∼∈ {=,≤,≥}; x is a clock in C and n ∈ R+

is a constant. Without loss of generality (Lemma 4.1 of [13]), we assume that n is an
integer constant. The set of downward closed constraints obtained with∼=≤ is denoted
as Φ≤(C ). A clock valuation v for a set of clocks C is a function which assigns a real
value to each clock. A clock valuation v satisfies a clock constraint δ, written as v |= δ,
if and only if δ evaluates to true using the clock values given by v . For d ∈ R+, let v+d
denote the clock valuation v ′ such that v ′(c) = v(c) + d for all c ∈ C . For X ⊆ C ,
let clock resetting notion [X �→ 0]v denote the valuation v ′ such that v ′(c) = v(c) for
all c ∈ C \X and v ′(x ) = 0 for all x ∈ X .

Definition 2. A closed timed automaton A is a tuple (S , init , Σ,C ,L,→) where S is
a finite set of states; init ∈ S is an initial state; Σ is an alphabet; C is a finite set of
clocks; L : S → Φ≤(C ) is a function which associates an invariant with each state;
→: S ×Σ × Φ(C ) × 2C × S is a labeled transition relation.

A transition (s , e, δ,X , s ′) ∈→ is fired only if δ and L(s) are satisfied by the current
clock valuation v and [X �→ 0]v satisfies L(s ′). After event e occurs, clocks in X are
set to zero. Given any clock c in C , the upper-bound of time constraints associated
with a clock c, denoted as ,c-, is called its ceiling. A closed timed automaton can be
digitized [4] and interpreted as a TFSM M = (∅,∅, St , xinit ,Act ,∅,T ) which is
defined as follows. A state in St is a pair (s , v) where s ∈ S and v is the valuation of
all the clocks in C such that for every clock c ∈ C , v(c) is a number in {0, · · · , ,c-};
xinit = (init , v0) where v0 is a clock valuation which assigns every clock value 0; and
T contains two kinds of transitions.

– event-transitions: for any (s , e, δ,X , s ′) ∈→, ((s , v), e, (s ′, v ′)) ∈ T if v satisfies
δ and L(s) and v ′ = [X �→ 0]v and v ′ satisfies L(s ′).

– time-transitions: for any (s , v) ∈ S , ((s , v), tick , (s , v ′)) ∈ T such that for any
c ∈ C , v ′(c) = v(c) + 1 if v(c) < ,c- or v ′(c) = v(c) otherwise; and v ′ satisfies
L(s).

Notice that timing constraints are captured using tick transitions and therefore in the
event-transitions above, the transitions are not guarded. It is obvious that our library
can be used to support verification of closed timed automata as well as many additional
features introduced in UPPAAL. For instance, interleaving of multiple closed timed au-
tomata can be encoded using the parallel composition function; pair-wise synchronous
channel communications can be captured using channels supported in the library; etc.
Furthermore, it is straightforward to support hierarchical timed automata [14,15] using
our library (by applying the corresponding composition functions) as long as all clock
constraints are closed.

It is worth mentioning that a clock which is shared by multiple timed automata is
modeled as a shared variable (ranging from 0 to ,c-) in GV rather than resolved using
tick transitions, due to arbitrary clock resetting. A tick transition in the composition
is associated with a program which increases every shared clock except those which
have reached their ceilings. This encoding complicates the encoding of tick transitions.
Nonetheless, we observe that many real-world timed systems use local clocks only.
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3.2 Stateful Timed CSP

Stateful Timed CSP (STCSP) [10] extends Timed CSP to capture hierarchical timed
systems with non-trivial data structures and operations. Different from timed automata,
STCSP relies on implicit clocks to capture timed aspects of system behaviors. It has
been shown that STCSP, like Timed CSP, is equivalent to closed timed automata with
τ -transitions [10], and thus can be potentially supported by our library.

A STCSP model is a tuple S = (Var , initG ,P) where Var is a finite set of finite-
domain global variables, initG is the initial valuation of the variables and P is a timed
process. Process P can be defined using a rich set of process constructs. The following
shows a core subset of them.

P = Stop | Skip | e → P | a{program} → P | if (b) {P} else {Q} | P ; Q
| P \X | (P | Q) | P |[X ]|Q |Wait [d ] | P timeout [d ] Q
| P interrupt [d ] Q | P within[d ] | P deadline[d ] | Q

The un-timed process operators are either borrowed from CSP [16] or self-explanatory.
We thus focus on the timed operators. Assume that d is a positive integer constant.
Process Wait [d ] idles for exactly d time units (and becomes Skip afterwards). Process
P timeout [d ]Q behaves exactly as P if the first observable event of P occurs before d
time units (since process P timeout [d ]Q is activated). Otherwise, Q takes over control
after exactly d time units. In process P interrupt [d ] Q , if P terminates before d time
units, P interrupt [d ] Q behaves exactly as P . Otherwise, P interrupt [d ] Q behaves
as P until d time units and then Q takes over. In contrast to P timeout [d ] Q , P may
engage in multiple observable events before it is interrupted. Process P within[d ] must
react within d time units, i.e., an observable event must be engaged by process P within
d time units. In process P deadline[d ], P must terminate within d time units, possibly
after engaging in multiple observable events.

Example 2. Fischer’s mutual exclusion algorithm can be modeled as a STCSP model
(V , vi ,Protocol) where V contains two variables id and counter , which play the same
roles as in Example 1.

Proc(pid) =̂ if (id = 0) {
Started(pid)

}
Started(pid) =̂ (set{id := pid} →Wait [α+ 1]) within[α];

if (id = pid) {
enter{counter := counter + 1} →
exit{counter := counter − 1; id := 0} → Proc(pid)

} else {
reset → Started(pid)

}

Process Protocol is the parallel composition of the process, i.e., Proc(1) ‖ · · · ‖
Proc(n) where n is a constant representing the number of processes. Process Proc(pid)
models a process with a unique integer identifier pid . If id is 0 (i.e., no other process
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is attempting), id is set to be pid by action set . Note that set must occur within α time
units (captured by within[α]). Next, the process idles for α+ 1 time units (captured by
Wait [α + 1]). It then checks whether id is still pid . If so, it enters the critical section
and leaves later. Otherwise, it restarts from the beginning via reset action.

Given a STCSP model S = (Var , initG ,P), its discrete operational semantics are de-
fined through a set of firing rules. Elapsed time is defined explicitly through transitions
labeled with tick. Interested readers are referred to [10]. Supporting STCSP with our
library is not trivial due to two reasons. Firstly, STCSP is capable of specifying irreg-
ular or even non-context-free languages (due to unbounded recursion, refer to [16] for
concrete examples), which are beyond the expressiveness of our library. We thus focus
on a subset of STCSP models which are finite-state, as defined in [10]. Secondly, it is
not clear what are primitive system components given a STCSP model. Notice that aux-
iliary variables are sometimes introduced in the BDD composition, which may result in
a non-optimal encoding. Given a simple system with 1000 simple choices, ideally, 10
Boolean variables are sufficient to capture all outcomes. If the choice pattern is applied
each time instead, then 999 Boolean variables are added. This example may suggest that
the composition functions should be avoided, whereas we argue that the composition
functions may be inevitable as knowing the exact number of states in the composition
is as hard as reachability analysis. In order to minimize the overall time, one thus has to
find a balance between quick encoding (which may imply more verification time) and
fast verification (which may be implied by an optimal encoding).

In this work, given a STCSP model, static system analysis is firstly performed so
as to identify maximum sub-systems which do not contain a parallel composition.
For instance, in Example 2, the identified maximum sub-system is Proc(pid) where
pid ∈ {1, · · · , n}. Next, one TFSM is generated systematically from the maximum
sub-systems, according to the firing rules, and then encoded using BDD. Finally, the
BDD encodings are composed using the respective composition functions so as to gen-
erate the BDD encoding of the model. Notice that extending our library with functions
to support process constructs in STCSP is straightforward based on its formal opera-
tional semantics.

4 Evaluation

The BDD library [11] has been implemented as part of the PAT framework [17,18].
It is based on the CUDD package, with about thirty classes and thousands of lines of
C# code. A range of properties are supported, e.g., reachability analysis or LTL with
or without non-Zenoness assumptions or fairness assumptions, etc. Verification of LTL
with non-Zenoness assumption is based on a symbolic implementation of the automata-
based approach [19], with an additional checking for non-Zenoness (i.e., a strongly
connected component is accepting if it is not only Büchi fair but also contains at least
one tick transition).

In the following, we evaluate the model checker for closed timed automata devel-
oped based on the library, by comparing its performance with existing timed automata
model checkers. An automatic translator is developed to translate timed automata into
TFSM using the approach documented in Section 3.1. Notice that there is limited tool
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Table 2. Fischer’s protocol with 4 processes

bound 32 64 128 256 512 1024 2048 3096

time
PAT 0.5 1.4 5 17 68 293 1297 3018

Rabbit 5.5 44 570 × × × × ×
memory PAT 16 21 41 49 104 298 494 519

Table 3. Railway control system with 4 stations

bound 20 40 80 160 320 640 1280 2560

time
PAT 0.5 1.3 4 9 29 105 428 1853

Rabbit 2.6 5.3 13.4 54.4 256 1510 × ×
memory PAT 17 24 31 35 62 122 303 446

support (other than our own) for STCSP. Three benchmark systems are used: Fischer’s
protocol, a railway control system and the CSMA/CD protocol. All models are avail-
able online [11]. The test bed is a PC with Intel Core 2 Duo E6550 CPU at 2.33GHz
and 2GB RAM. Because the maximal memory for Rabbit is 800MB, in the first two
experiments, PAT and Rabbit are both allocated 800MB memory. For other cases, tools
are set to run until the memory exhausts.

The first question is how well the library scales with the number of clock ticks.
In the first experiment, we exponentially increase the upper bound of the timing con-
straints while keeping the number of processes constant. Table 2, 3 and 4 summarize
the verification time, which includes both system encoding time and searching time (in
seconds), and peak memory usage (in Megabytes). × means either out of memory or
running more than 2 hours.

All of the properties verified are safety condition which are unreachable from the
initial state. The row bound shows the maximum time upper-bound. The bound in
CSMA/CD protocol is in the form m/n where m is the time for signal propagation and
n is the time for data transmission. The memory consumption of Rabbit is not available
from the tool.

The data confirm that time and memory consumptions do increase with the number
of tick transitions. Nonetheless, PAT is more robust than Rabbit, e.g., Rabbit exhausts
the memory earlier, whereas PAT is able to handle relatively large time upper bounds
(e.g., more than one thousand for all three cases). This outperformance can come from
of our strategy of Keeping Ticks Simple (section 2.2). Zone-based approaches like the
one implemented in UPPAAL are more robust to the increment of the bound . UPPAAL’s
time/memory consumption remains constant (i.e., about one second and 30Mb) as ex-
pected. However, notice that UPPAAL’s performance could be sensitive to the ratio
of time bounds in a model (even if the bounds are small), which is not the case for
digitization-based approaches. We refer the readers to [5] for details.

In the second experiment, we increase the number of processes (while keeping the
time upper bounds constant) and compare the performance of PAT, UPPAAL and Rabbit.
The verification results are summarized in Table 5, 6 and 7. It can be seen that both PAT
and Rabbit offer significantly better performance than UPPAAL on Fischer’s protocol
and the CSMA/CD protocol. For railway control system, PAT and Rabbit take more
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Table 4. CSMA/CD with 4 processes

bound 8/248 12/372 16/497 20/621 26/808 40/1243

time
PAT 5 10 21 35 67 205

Rabbit 10 32.7 67 90 342 1160
memory PAT 31 72 126 245 468 518

Table 5. Fischer’s protocol with time upper-bound 4

#proc 8 12 16 24 32 40 50

time
PAT 0.4 1.1 4 20 61 195 531

UPPAAL 1 200 × × × × ×
Rabbit 1.6 4.4 12 60 180 473 1142

memory
PAT 17 26 47 136 278 386 757

UPPAAL 29 629 × × × × ×

time than UPPAAL for less than 10 processes. It is likely due to the queue data structure
in the model, which is costly to support using BDD. Compared with Rabbit, in this
experiment, PAT is better than Rabbit in Fischer’s protocol and railway control system
whereas Rabbit is faster than PAT in CSMA/CD protocol

In addition to reachability analysis, our library offers verification of the full set of
LTL formulae, LTL with non-Zenoness assumption, etc. In the following, we compare
the performance of verifying liveness properties, with non-Zenoness (row -Zeno) or
without non-Zenoness (row +Zeno). Two approaches are compared, i.e., zone-based
approach implemented in UPPAAL and the BDD-based approach proposed in this work
(i.e., row PAT). The liveness properties are all progress properties which are supported
by UPPAAL. Notice that verification with non-Zenoness is not supported in UPPAAL.
Furthermore, Rabbit does not support liveness.

As shown in Table 8, BDD-based approach can handle more processes than UP-
PAAL for Fischer’s protocol and CSMA/CD. It is, however, slower than UPPAAL for
railway control system. Encoding the queue data structure symbolically, e.g., pushing
and popping an element, makes the BDD of the transition function complex. Thus the
BDD-based operations over the transition functions are slow. In addition, the experi-
ments suggest that checking non-Zenoness does incur computational overheads. The
reason of these overheads is that the additional computation to discard the strongly
connected components which do not contain any tick transition.

5 Discussion

The technical contribution is twofold. Firstly, we develop a BDD library which supports
verification of timed systems based on digitization. The library is shown to be reason-
ably robust with a large number of tick transitions and efficient in verifying benchmark
systems. Secondly, based on the library, two model checkers are developed to support
two different timed modeling languages.
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Table 6. Railway control system with time upper-bound 5

#proc 6 7 8 9 10

time
PAT 1.8 6 16 58 169

UPPAAL 0.2 1.1 7.9 83.1 ×
Rabbit 53 805 × × ×

memory
PAT 33 64 170 460 715

UPPAAL 26 36 111 835 ×

Table 7. CSMA/CD with time upper-bound 1/4

#proc 8 10 12 14 16 32 64 128

time
PAT 0.3 0.3 0.4 0.6 0.8 5 45 593

UPPAAL 0.4 3.0 22.9 163 × × × ×
Rabbit 1 1 1.3 1.4 1.5 3 16.1 80

memory
PAT 16 17 18 25 28 73 312 661

UPPAAL 29 51 292 1894 × × × ×

Table 8. LTL model checking with/without non-Zenoness

Model Fischer Railway Control CSMA/CD
#proc 6 8 10 12 14 16 6 7 8 9 4 6 8 9

+Zeno
PAT 5 39 177 599 1653 4345 14 48 157 887 0.2 3 24 106

UPPAAL 2.3 6711 × × × × 0.4 2.6 24.1 242 0 0.6 662 ×
-Zeno PAT 9 59 269 980 3014 × 21 66 207 1006 0.4 5 55 368

This work follows the line of research on using digital clocks for modeling and ver-
ifying timed systems. In [4], the usefulness and limitations of digital clocks have been
formally established, which forms the theoretical background of this work. In contrast
to the approach in [5] where integer clock variables are used, we use tick transitions only
and avoid clock variables so as to obtain a smaller BDD encoding of tick transitions. As
a result, we are able to verify systems with many more ticks or processes. In the name
of improving modularity, Lamport’s method is slightly improved by work in [20]. This
work continues the line of work by Beyer [9,8] to cope with large time upper-bounds
and supports liveness properties and liveness with fairness/non-Zenoness. This work
is remotely related to work on symbolic model checking of timed systems [21]. As
for future work, we are constantly optimizing the library so as to encode further state
reduction techniques, e.g., symmetry reduction and, more importantly, compositional
verification techniques.
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Abstract. This paper reports on experiences from an industrial project
related to developing control components of an interventional X-ray sys-
tem, using formal techniques supplied by the Analytical Software Design
approach, of the company Verum. We illustrate how these formal tech-
niques were tightly integrated with the standard development processes
and the steps accomplished to obtain verifiable components using model
checking. Finally, we show that applying these formal techniques could
result in quality software and we provide supporting statistical data for
this regard.

Keywords: Formal methods in industry; Analytical Software Design.

1 Introduction

This paper demonstrates experiences of developing control components of an in-
terventional X-ray imaging system, using a formal development approach, called
the Analytical Software Design (ASD). The work was carried out in one of
industrial projects of the business unit Interventional X-ray (iXR), at Philips
Healthcare.

Figure 1 presents an example of such type of systems, depicting a number of
movable parts such as the patient table, the stand that holds the X-ray collimator
and the image detector. It also depicts graphical user interfaces that facilitate
managing details of patients and their clinical examinations and visualizing live
images.

The X-ray equipment is used to support minimally invasive, image-guided
surgeries to, for instance, improve throughput of patient blood vessels by insert-
ing a stent via a catheter where the physician is guided by X-ray images. This
way open heart surgeries are avoided resulting in increasing productivity, more
effective treatments and reduce healthcare costs by shorter hospital stays and
higher throughput.

Since the healthcare domain is quickly evolving, many challenges are imposed
to such type of X-ray systems. This includes, for example, rapidly supporting the
increasing amount of medical innovations, new clinical procedures and smooth
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Fig. 1. Interventional X-ray system

integration with products of third part suppliers. Indeed, this requires a flexible
software architecture that can be easily extended and maintained without the
need of constructing the software from scratch.

To achieve this goal, Philips Healthcare is gradually shifting to a component-
based architecture with formally specified and verified interfaces. The develop-
ment of such type of components is supported by a commercial formal verification
tool called the ASD:Suite, supplied by the company Verum [17]. The aim is to
build high quality components that are mathematically verified at the design
phase by eliminating defects as early as possible in the development life cycle,
and thus reducing the effort and shortening the time devoted to testing and
integration.

A report has shown that applying the ASD formal techniques resulted in
better quality code compared to software developed in more conventional ap-
proaches [6]. Therefore, these formal techniques are becoming more and more
credible for developing software at Philips Healthcare [5,1,12,7].

The X-ray machines comprise embedded software which includes a number of
software modules. One of the key modules is the Backend Orchestration, which is
mainly responsible of controlling workflow steps required to achieve the clinical
examinations using X-ray.

The purpose of this paper is to report on our experience of how we tightly in-
tegrated the ASD approach and its formal techniques with the standard develop-
ment processes for developing control components of the Orchestration module.
It also focuses on the steps followed to design components of the Orchestration
module that preceded the steps of modeling and developing the components us-
ing the ASD technology. Furthermore, we highlight the limitations encountered
during the design process.

The paper demonstrates how these design steps effectively helped us design-
ing verifiable components. We illustrate peculiarities of these components that
facilitate verifying them compositionally following the ASD recipe, avoiding the
state space explosion problem of the behavioral verification using model check-
ing supported by the ASD:Suite. Finally, the paper investigates the effectiveness
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of using ASD to the end quality of the module and we show that the module is
stable and reliable even during the evolution of requirements.

This paper is structured as follows. Section 2 introduces the ASD approach
to the limit needed in this paper. In Section 3 the context of the Orchestration
module within the X-ray system is demonstrated. Section 4 introduces the steps
of incorporating the ASD approach to the standard development processes for
developing the components of the Orchestration module. Section 5 details the
steps accomplished for designing components of the module, and the peculiarities
that facilitate verifying them easily using model checking. Section 6 details the
end quality results of the module.

2 Principles of Analytical Software Design

ASD is a component-based, model-driven technology that incorporates formal
mathematical methods such as Sequence-Based Specification (SBS) [13], Com-
municating Sequential Processes (CSP) [14] and its model checker Failure Di-
vergence Refinement (FDR2) [2] to software development.

A common design practice in ASD is to identify a software design as inter-
acting components, communicating with one another or their environment via
communication channels (interfaces). Using ASD, the functionality of a system is
distributed among responsible components in levels (e.g., hierarchical structure),
to facilitate systematic construction and verification of components in isolation.

At the left of Figure 2 an example structure of components is depicted. It
includes a controller (Ctr) that controls a motor and a sensor assumed to be
attached to the patient table. Here, we assume that the motor component is
responsible of moving the table to the left and to the right. The sensor sends
signals to the top controller in case there is an object in the course of a movement
to prevent collisions with patients or other parts of the system. We use this
example system along with the description of the ASD approach in this section.

Any ASD component is developed using two types of models complementing
each other: the interface and the design models. The specification of both models
is supported by the ASD:Suite tool. The interface model of a component does
not only include signatures of methods to be invoked on the component but also
the externally visible behavior and the protocol of interaction exposed to client
components at an upper level. It excludes any behavior with lower-level compo-
nents. The interface model can also be used to describe the external behavior of
components not developed using ASD, representing legacy code, hardware and
manually coded modules.

The actual detailed behavior of the component is described by a design model,
which extends the interface specification with interactions with used components
at a lower level.

The ASD interface and design models are state machines, described in similar
tabular notations. Each model consists of a number of tables, each of which
represents a state in the state machine. An example specification of the interface
model of the motor component is presented in Figure 3. It describes the external
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behavior of the motor towards the top controller providing the behavior of the
very basic movements.

The specification includes two tables that represent two states: UnInitialized
and Ready. Every table comprises a number of rows called rule cases, each of
which includes a number of items, such as the interface name (channel), stimulus
event, a list of responses and a transition to a new state.

Model
checkEdit and apply

filters

State diagram
generation

code
generation

state

state

Reference to
tagged

requirements

Transition
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Fig. 3. The tabular specification of the Motor interface in the ASD:Suite

As can be seen from the specification, all possible input stimuli are listed in
each table, so that ASD users are forced to fill-in all corresponding items for
the sake of specification completeness. The main aim is to find newly unad-
dressed scenarios and thus initiating discussions with different stakeholders in
early phases of the development life cycle.

The ASD:Suite ensures consistency and correctness by automatically gener-
ating the tabular specification to corresponding mathematical CSP models [8]
and source code implementation in different languages such as C++ or C#, fol-
lowing the state machine pattern of [4]. Usually, any changes to the generated
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CSP models or the source code are not recommended. Details of such systematic
translations are irrelevant for this paper.

ASD components are built and formally verified in isolation to allow, for in-
stance, parallel, multi-site development. The isolated, compositional verification
is especially essential to circumvent the state space explosion problemwhen FDR2
is used for formal verification. Below we summarize the steps and the recipe re-
quired to develop an ASD component, considering developing the Ctr component
in the structure of models depicted in Figure 2 at the right as an example.

1. External behavior specification. Initially, the interface model of the component
is created. Interactions with used components at a lower level are excluded from
this specification. For instance ICtr is the interface model of the Ctr component,
where interactions with the sensor and the motor interfaces are not included. ICtr
specifies how the clients are supposed to use Ctr.
2. External specification of boundary components. Likewise, interface models of
used components at the lower level are specified. These models describe the ex-
ternal behavior exposed to the component being developed. For instance, Isensor
and the Imotor interface models specifies the hardware external behavior visi-
ble to the Ctr component. Any internal interactions not visible to Ctr are not
included.
3. Concrete, functional specification. Upon the completion of specifying the ex-
ternal behavior, a design model of the component is constructed. It includes
detailed behavior and interactions with used components. For instance, design
model of Ctr comprises method invocations from and to the Motor and the Sen-
sor components.
4. Formal behavioral verification. In this step the ASD:Suite translates all ASD
models to corresponding CSP processes for verification using the FDR2 model
checker. Verification includes an exhaustive check on the absence of deadlocks
(crashes or failure to proceed with any action), livelocks (hanging due to entering
an endless loop of internal events and not responding to external commands),
and illegal (unexpected) interactions for a combined CSP model that includes
the design and the used interface models. When an error is detected by FDR2,
ASD:Suite visualizes a sequence diagram and allows users to trace the source of
error back in the models. To clarify this step using the Ctr component example,
the ASD:Suite systematically constructs a combined model that composes Ctr,
Imotor and Isensor. Then, the behavioral verification checks whether Ctr uses
the motor and the sensor interfaces correctly, by checking deadlocks, livelocks,
illegal calls and race conditions.
5. Formal refinement check of external specifications. After that, ASD:Suite
checks whether the combined model created in step 4 correctly refines the in-
terface model of step 1 using failures and failures-divergences refinement. Errors
are also visualized and traced to the models to allow easy debugging. Once the
formal refinement check is succeeded, the interface model represents all lower
level components. For instance, when the Ctr combined model of step 4 refines
the ICtr interface of step 1, ICtr formally represents all lower level components
including Ctr, the Motor and the Sensor.
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6. Code generation. After all formal verification checks succeeded, source code
of the component can be generated and integrated with the rest of the code.
7. Iterative development of components. Each interface model can be used as
a building block for refinement of new design models. Hence, this allows de-
veloping ASD components top-down, middle-out or bottom-up, in parallel with
developing the manually coded modules.

3 The Context of the Orchestration Module

The embedded software of the X-ray equipment is divided into concurrent sub-
systems; among these are the Backend, the Frontend and the Image Processing
(IP), see the deployment in Figure 4. The subsystems communicate with one
another via standardized, formally verified ASD interfaces. These interfaces are
made formal in order to ensure equal understanding of the intended behavior
among separate teams developing the subsystems and to reduce communication
overhead.
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Fig. 4. Subsystems with distinct responsibilities and formal interfaces

Each subsystem comprises a number of software units, each of which includes
various modules that encapsulate a number of software components, with well-
defined interfaces and responsibilities. Below we briefly address the functionality
of the subsystems from a high-level perspective to the extent required for intro-
ducing components of the Orchestration module.

The Backend subsystem houses graphical user interfaces (GUI), patients
databases and a number of predefined X-ray settings used to achieve required
clinical examinations. Through the GUI, clinical users can manage patients’ data
and exam details and can review related X-ray images. The Backend is also re-
sponsible of supporting different types of Frontends.

The Frontend subsystem controls motorized movements of the table where
patients can lay and the stands that hold X-ray collimators and image detectors.
It is also in charge of calibrating these components upon requests sent remotely
by the Backend, based on the predefined X-ray settings, selected from the GUI.

When all components are calibrated and prepared, the Frontend demands
the Backend to prepare its internal units before it asks for permission to start
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image acquisition. Upon obtaining permission, the Frontend starts acquiring X-
ray images and sends related data to the IP subsystem for further processing.
After that, the IP subsystem sends the processed images to the Backend for
viewing on various screens and for local storage to facilitate future references.
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Fig. 5. Relation of the Orchestration as a black-box with other units

The Backend includes a total of 12 software units. One of these units is the
Backend controller (BEC), which includes the Orchestration module as one of its
control modules. Figure 5 depicts the deployment of the Orchestration module
in the Backend surrounded by a number of concurrent (i.e., multiple processes
include multiple threads) units on the boundary (e.g., the FEClient unit).

The impetus of introducing the Orchestration module was the result of mi-
grating from decentralized architecture, where units were working on their own,
observing changes in the system through a shared blackboard and then react
upon them, to a more centralized one. The main challenge imposed on the de-
centralize architecture was the need to know the overall state of the entire system
and whether all units are synchronized with one another in predefined states.
Further, maintainability was complex to achieve and utterly challenging.

Therefore, the Orchestration module is used as a central module that is re-
sponsible of coordinating a number of phases required to achieve the clinical
examinations and harmonizing the flow of events between the concurrent inter-
acted subsystems, preventing potential deadlocks, livelocks, race conditions, and
illegal interactions. These phases are summarized below.

The Initialization phase. At the start up of the system, the system controller
instructs the Orchestration module to start the initialization phase of the sys-
tem. Consequently, the Orchestration module initializes and activates a number
of internal units of the Backend and the external subsystems through bound-
ary units. This includes ensuring that all required services and configurations
are loaded, proper messages and indicators are displayed on user terminals and
further that the Backend is connected to compatible, supported subsystems.

The Selection phase. After the Orchestration module ensures that all compo-
nents of the system are fully activated, the Orchestration accepts selection re-
quests related to the patients and to the clinical examinations and subsequently
enters the Selection mode. In this mode patient’s data can be selected and sent
by the GUI to the Orchestration module through the workflow controller. At
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the moment of receiving a selection request, the Orchestration checks whether
it is allowed (e.g., there is no active image acquisition) to start the selection
procedures and then distributes the data to internal units of the Backend and
to the external subsystems.

The data includes information about a patient and is applied throughout the
system in steps. This briefly starts by distributing personal data of the patient
followed by the predefined exam and then the X-ray settings to internal units
of the Backend and to the external subsystems. Based on these settings various
software and hardware components are calibrated and prepared such as the X-
ray collimators, image detectors and performing proper automatic positioning
of the motorized movable parts such as the tables and the stands.

The Preparation and Image Acquisition phases.When the selection procedures
are successfully accomplished, the Orchestration module can enter the prepara-
tion phase. This starts when the Frontend sends corresponding settings back to
the Backend in order to properly prepare and program the IP subsystem. After
that, the Frontend asks permission to start the generation of X-ray for image
acquisition (practically the user presses the X-ray pedal).

When the Orchestration module ensures that all internal units of the Backend
and the IP subsystem are prepared for receiving incoming images, the Orches-
tration module gives permission to the Frontend subsystem to start image ac-
quisition. Based on that, the Frontend acquires the image data and sends them
to the IP subsystem for further processing. The processed images are sent to the
Backend for viewing on different terminals synchronized by the Backend.

4 Developing the Orchestration Module

We detail the activities performed to develop components of the Orchestration
module, through a total of six consecutive increments. The development process
involved 2 full-time and 2 part-time team members. Each increment included two
members who were involved not only in developing the Orchestration module
but also in building other modules of the BEC unit. The team attended ASD
training courses, to learn the fundamentals of the approach and its accompanying
tool. Team members had sufficient programming skills, but limited background
in formal mathematical methods. During the first three increments one ASD
consultant was present who devoted half of his time helping the team to quickly
understand the ASD approach.

Steps of developing components of the Orchestration module. The development
process within the context of iXR is an evolutionary iterative process. That is,
the entire software is developed through consecutive increments, each of which
requires regular review and acceptance meetings by several stakeholders. Fig-
ure 6 depicts the flow of events performed in a single increment for developing
components of the Orchestration module. It demonstrates how the formal ASD
approach was combined with the standard development approach in industry.

At the start of each increment, lead architects identify a list of features to
be implemented together with related requirements. After the features and the
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requirements are approved by various stakeholders, the development team pro-
vides project and team leaders with work breakdown estimations that include,
for instance, required functionalities to be implemented, necessary time, po-
tential risks and effort, and dependencies with other units that may block the
development progress of these features.

Based on the work breakdown estimations, team and project leaders prepare
an incremental plan, which includes the features to be implemented in a chrono-
logical order, scheduled with strict deadlines to achieve each of them. Team
leaders use the plan as a reference to monitor the development tasks during
regular weekly progress meetings.
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Fig. 6. Integrating ASD processes in a development increment

The actual building of software components begins with an approved design
that includes components with well-defined interfaces and responsibilities. Such
a design often results from iterative design sessions and a number of drafts.

When the intention is to use ASD, the design differentiates between control
(state machines) components and non-control components (e.g., data manipula-
tion, computation and algorithms, (de-)serializing xml strings ..etc). Non-control
components are developed using conventional development methods, while con-
trol components are usually constructed using ASD.

Non-control components are coded manually, so that checking coding stan-
dards is mandatory. Such a check is performed automatically using the TIOBE
technology [16]. After that, the code is thoroughly reviewed by team members
before it becomes a target of coverage testing.

For coverage testing, development teams are required to provide at least 80%
statement coverage and 100% function coverage for the manually written code,
using the NCover technology [15]. Upon the completion of coverage testing, the
code is integrated with the rest of product code, including the automatically
generated code from ASD models. For ASD components, formal verification
takes the place of coverage testing, which is typically not necessary for the ASD
generated code.

Then, the entire unit becomes a target of unit test, usually accomplished as a
black-box. The entire code is then delivered to the main code archive, managed
by the IBM clearcase technology [9], where the code is integrated with the code
delivered by other team members responsible of developing other units. At the
end of each increment developers solve problems and fix defects reported during
the construction of the components.
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Below we concentrate more on the design phase detailing steps of designing
and constructing the components of the Orchestration module using ASD.

5 Design of the Orchestration Module

The Orchestration module was one of the first modules which were built using
ASD. At the time of the first increment the ASD tooling used to construct the
models was still very immature and difficult to use since it required manual inter-
ventions to the CSP models and the generated code. Apart from that the team
members were new to ASD and were confronted with the steep learning curve
although all formal details were hidden from end users. After the third increment
all required manual CSP and code interventions were done automatically.

There was a lack of design cookbooks, guidelines, design patterns or steps that
help designers to not only design quality components but also more importantly
to construct formally verifiable components using model checking. As a result
the first version of the module suffered from some problems. For example, some
models were over-specified, too complex to understand and model checking took
a substantial amount of time for verification. During a subsequent development
increment we decided to refactor the module based on the knowledge gained.

The next section discusses the steps followed to get to a better (ASD) design
and the peculiarities of the components that facilitate verifying them composi-
tionally following the previously addressed ASD recipe (see Section 2).

5.1 Design Steps

Designing software is a creative process and typically requires several iterations
to come to a final design. So although there is no fixed recipe there are steps
that can guide this process. During the design of the Orchestration module we
applied the following steps. Consider that although the steps are described in
a linear fashion the process is iterative. Even the requirements phase might be
revisited because of questions that arise during design.

Setting the stage: the context diagram. As a first step we defined the con-
text diagram of the Orchestration module as a black-box. The context diagram
depicts the module and its external environment i.e., all other components it
interacts with. Using the requirement documents we constructed the list of mes-
sages/stimuli that the module exchanges with the external environment, in other
words its input and outputs. The context diagram was used to draw the main
sequence diagrams (between the module and its external environment) including
the sequence diagrams for the non-happy flow.

Divide and concur: decomposition. As a second step we decomposed the black
box of step 1 into smaller components. The decomposition was done by identify-
ing different aspects of the problem domain. As Orchestration is about control-
ling and coordinating changes in the overall system state (e.g., selecting a new
patient or starting image acquisition) we decided to use one overall controller
controlling the system state and separate controllers which control details of the
state transition when moving from one state to another.
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Defining responsibilities. We then re-iterated the list of requirements allocated
to the Orchestration module and assigned each requirement to one (if possible)
or more of its components. While doing so new components were identified, e.g.,
the one guarding the connection to the front-end subsystem.

Repeat the process. For each of the individual components the process was
repeated. We defined the context diagram, input and output messages/stimuli
and the main sequence diagrams for each individual component.

Define Interfaces. Based on the previous step we identified the provided and
used interfaces of each component. After that we prepared initial drafts of state
machines for each component.

Identify handwritten components and their interfaces. As we are using ASD
which does not deal very well with data it is important to factor out code that is
responsible for data related operations or code that interfaces to legacy code. In
the case of Orchestration the module distributes information which is needed for
the state transition (e.g., a reference to the patient to be selected for acquisition).
This requires retrieving data from a repository which has to be written by hand.

Constructing ASD models. After all these steps the ASD models (interface
and design) were constructed based on draft state machine for each component.
In parallel, the code of handwritten components was written.

During the creation of the ASD models, requirements were referenced in ASD
tables using tags. Since ASD forces specification completeness, a number of new
(missing) requirements were found, e.g., network outages after a failed case selec-
tion (so we asked should we reselect default or failed case after reconnection?).
This revealed omissions and gaps in requirements early, before verification or
even implementation.

5.2 The Resulting ASD Components

The final structure of the Orchestration components is depicted in Figure 7.
Below we detail their peculiarities that effectively had helped verifying them
compositionally in a reasonable time using the ASD:Suite.

The BEFacade component includes a high abstract state machine that cap-
tures the overall system states, seen at that level. This state machine knows only
whether the system is initialized, activated or deactivated. It includes events that
only affect these global states. The detailed behavior that refines these states is
pushed down to the Orchestration controller component.

The Orchestration controller state machine includes states that capture the
overall modes of the system. That is, whether the system is busy activating,
performing selection procedures, or performing image acquisition. The Orches-
tration controller, for instance, does not know which particular type of selection
is performed but it knows that the selection procedure is active or has finally
succeeded or failed. Detailed procedures of these phases are the responsibility
of lower-level components. The same concept applies to all other modes, e.g.,
activation and acquisition. The Orchestration controller component mainly co-
ordinates the behavior of the used components positioned at the lower-level,
give permissions to start certain phase and ensures that certain procedures are
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Fig. 7. Decomposition of the Orchestration components

mutually exclusive and run to completion. It also ensures that units are syn-
chronized back to a predefined state when a connection with other subsystems
is re-established (e.g., reselecting previously selected patient).

The Selection controller is in charge of performing detailed selection pro-
cedures with other subsystems after getting permission from the Orchestration
controller. The Selection controller knows which part of the system has succeeded
with the selection. It includes internal components (e.g., the SelectionMux ) used
to distribute selection related signals to other units, gather their responses and
reports back the end result to the selection controller. The selection controller
informs the Orchestration controller about the end result of the selection, i.e.,
whether succeeded or failed.

The Activation controller handles detailed initialization behavior, by peri-
odically checking connections with other subsystems. The Activation controller
retries to establish the connection in the presence of network outage and informs
the Orchestration with the connection state. When the activation is succeeded,
the Backend knows that compatible, supported subsystems are connected, and
thus accepts requests to proceed to the following phase.

Other ASD components follow the same concept and related details to their
behavior can be found in [11].

5.3 Constructing the ASD Components Following the ASD Recipe

The ASD components of the Orchestration module were realized in a mixture of
top-down and bottom-up fashions. Each ASD design model is verified in isolation
with the direct interface models of lower-level components, providing that these
interface models are refined by corresponding design and other interface models.
The compositional construction and verification is visualized in Figure 8 and is
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self-explainable. Both the Orchestration and the FEClient units were constructed
concurrently. The FEClient team provided the IFEClient ASD interface model to
the Orchestration team as a formal external specification describing the protocol
of interaction between the two units, and the allowable and forbidden sequences
of events crossing the boundary.
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Fig. 8. Compositional construction and verification of components

Table 1 includes statistical data related to the number of ASD models, speci-
fied rule cases, generated states and transitions plus time required for verification
by FDR2 and the number of (executable) lines of generated code for each ASD
component. As can be seen from the table, the models are easy to verify using
model checking and the time needed for verification ranges between 1 second to
20 minutes, using the ASD:Suite version 6.2.0.

Table 1. The ASD models of the Orchestration

Component ASD
models

Rule
cases

States Transitions Time
(sec)

Total
LOC

Exec.
LOC

AcquisitionController 9 458 576296 2173572 30 4151 3891
ActivationController 5 622 351776 1512204 28 2188 2062
BECFacadeICC 2 85 28 33 1 590 502
BlockPrepareController 2 33 16484 55298 1 838 784
OrchestrationController 8 448 9948256 42841904 1111 2940 2580
SelectionController 8 807 2257180 9657242 110 3450 3190
SelectionState 2 42 665 2393 1 622 566
ASD runtime - - - - - 852 746

Total 36 2495 - - - 15631 14321
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The sum of hours spent for developing the module was nearly 1624 hours,
with average productivity of 8.8 lines of code per hour.

6 Quality Results of the Orchestration Module

The development activities of the first three increments resulted in a release of
the product to the market. The other three increments were devoted to extending
the module with additional functionalities and new features. Notable is that
developed components were easy to maintain and to extend due to the high-level
description of ASD specification, and the abstract behavior of the components.
In general, it was easy to adapt the models and generate new verified code.

For example, in the fifth increment there were serious changes in the stan-
dard interface between the Backend and the Frontend subsystems, due to evo-
lution of requirements. The changes propagated to a number of units including
the Orchestration module. These changes caused substantially adapting existing
components and introducing new components (e.g., the BlockPrepare controller).

At the end of that increment it was of a surprise to team members especially
to those developing other units that all units worked correctly after integration,
from the first run, without any visible errors in the execution of the system. They
spend a substantial effort to bring units together based on their experience with
more conventional development approaches.

The development team submitted a total of 8 detailed reports related to errors
encountered along the construction of the module. We refer to [11] for the details
of such errors. In general, these errors were easy to locate and fix, not deep design
errors.

The development activities of the module yield 19,601 LOC, with an average
rate of 0.4 defect per KLOC. This favorably compares to the standard of 1-25
defects per KLOC for software developed in industrial settings [10].

The quality of the ASD code depends on many factors, including thorough
specification reviews and behavioral verification. The model checking technology
covered all potential execution scenarios, so that defects were found early and
quickly with the click of a button. It further took the place of manual testing
which is typically time consuming and uncertain.

The quality of the manually coded components depends on many other factors
such as code reviews, automatic code standard checks and coverage testing.
Unit testing had provided key benefits of preparing coverage reports, detecting
potential memory leaks and optimizing memory usage. The total number of test
code written for the Orchestration module is 3966 lines of code.

Although there were delays on the deliverable of the module due to spending
more time in learning ASD and obtaining verifiable design, there was less time
spent in testing and resolving problems compared to the other manually coded
modules of the same and other units [3].

Finally, feedbacks from team and project leaders were very positive, and the
module appeared to be stable and reliable. The module was robust against the
increasing evolution and the frequent changes of requirements. Team members
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appreciated the end quality of the software, relating that to the firm specification
and formal verification technologies provided by the ASD approach.
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Abstract. The first step in building a cyber-physical system is the con-
struction of a faithful model that captures the relevant behaviors. Di-
mensional consistency provides the first check on the correctness of such
models and the physical quantities represented in it. Though manual
analysis of dimensions is used in physical sciences to find errors in for-
mulas, this approach does not scale to complex cyber-physical systems
with many interacting components. We present DimSim, a tool to auto-
matically check the dimensional consistency of a cyber-physical system
modeled in Simulink. DimSim generates a set of constraints from the
Simulink model for each subsystem in a modular way, and solves them
using the Gauss-Jordan elimination method. The tool depends on user-
provided dimension annotations, and it can detect both inconsistency
and underspecification in the given dimensional constraints. In case of
a dimensional inconsistency, DimSim can provide a minimal set of con-
straints that captures the cause of the inconsistency. We have applied
DimSim to numerous examples from different embedded system domains.
Experimental results show that the dimensional analysis in DimSim is
scalable and is capable of uncovering critical errors in models of cyber-
physical systems.
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1 Introduction

Cyber-physical systems are complex computing systems that interact with phys-
ical processes. As the physical processes are closely coupled with the system, it
cannot be developed without keeping the physical process in the loop. Thus the
first step in building a cyber-physical system is the construction of a faithful
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model that captures the relevant behaviors. Physical quantities have associated
dimensions that can be represented in terms of some set of base dimensions, for
example, force can be given a dimension mass × length/(time × time), where
length, mass and time are base dimensions. Dimensions can be further classi-
fied into units so that length can be measured in inches or metres and mass
in pounds or kilograms. Dimensions are used in the physical sciences to check
the feasibility of computative formulas for physical laws for dimensional consis-
tency [13]. Such laws also satisfy dimensional invariance so that they hold even
under changes of units through scaling. Dimensions also provide a heuristic for
suggesting such laws. Finally, dimensional analysis can be used to refactor a law
involving n variables with dimensions built from d base dimensions in terms of
n− d dimensionless product terms.

As cyber-physical systems deal with physical processes, the variables associ-
ated with the model of a system often represent the numerical values of physical
quantities. While constructing the model of a cyber-physical system, many com-
mon errors are indicated by mismatches in dimensions. Dimensional consistency
provides the first check on the correctness of such models and the physical quan-
tities represented in it. Manual analysis of dimensions is used in physical science
to find errors, but this approach does not scale to complex cyber-physical systems
with many interacting components. We present DimSim, a tool to automatically
check dimensional consistency of a cyber-physical system modeled in Simulink.
DimSim relies on user-provided dimension annotations for a small subset of the
variables in the model. As type discipline plays a fundamental role in writing
software programs, dimension discipline can play the same role for the design
of cyber-physical systems where each variable has a physical meaning attached
to it. We argue that dimension discipline eliminates a common source of errors
in designing cyber-physical systems. The techniques used in DimSim are general
and can be used for languages other than Simulink.

DimSim generates a set of constraints on the dimensions of the inputs and
the outputs of the system as given by the interconnection of the system com-
ponents. Depending on the provided dimension annotations, the dimensions of
all the variables may or may not be uniquely determined. If the dimensions of
all the variables can be uniquely determined, the dimensional safety question
is reduced to the unique satisfiability question. Though the unique satisfiability
problem is in general NP-hard [19], dimensional analysis does not have disjunc-
tive constraints, and the resulting constraints can be solved in polynomial time.
DimSim uses the Gauss-Jordan Elimination method [16] to solve the constraints
and infer (possibly polymorphic) dimensions for all the variables. If the dimen-
sions cannot be determined uniquely (modulo the dimensions of the external,
i.e., input and output, variables of the block under analysis), the unification
algorithm finds the most general dimension assignment for the variables. If the
set of dimensional constraints is found to be inconsistent, DimSim provides a
minimal subset of constraints that helps pinpoint the source of the error.

One of our goals is to provide a tool that is scalable to large models. As the
Gauss-Jordan Elimination method takes cubic time to solve the constraints, we



358 S. Owre, I. Saha, and N. Shankar

cannot solve the constraints generated from large models using this technique
in reasonable time. To make DimSim scalable to large systems, we adopt a com-
positional strategy. In Simulink, one can model a cyber-physical system in a
modular way by using subsystems. DimSim analyzes one subsystem at a time,
and the constraints on the inputs and outputs of a subsystem are propagated
to its parent subsystem. While analyzing a higher level subsystem DimSim looks
only at the dimensional constraints of the inputs and outputs of each component
subsystem.

We have applied DimSim to a number of examples including a house heating
model, a collision detection algorithm from the aerospace domain, and a number
of automotive control systems. Our results show that DimSim is scalable and is
capable of uncovering critical errors in the model.

In Section 2, we introduce the basic concepts of Simulink through an exam-
ple, and provide the problem statements. In Section 3, we present our dimension
analysis technique: we describe our dimensional constraint solver, and how the
solver detects dimensional inconsistency and underspecification of dimensional
annotations. In Section 4, we present experimental results on numerous exam-
ples. In Section 5 we outline the related work, and compare and contrast our
approach.

2 Example and Problem Definitions

In this section, we introduce the basic terminology that is used in the rest of the
paper, and formally define our problem.

2.1 Simulink Model

Simulink is used to model cyber-physical systems. A Simulink model of a cyber-
physical system is composed of a number of blocks connected by wires. A block
may be an elementary block that does not contain any other block, or it may be
a subsystem that is composed of a number of elementary blocks and subsystems.
Each occurrence of a block in a subsystem has a unique name.
Example. Figure 1 depicts the Simulink model of a cruise control system [3]. The
objective of this control system is to maintain the speed of the car at a reference
point. Thus the input to the model is the reference speed and the output is the
actual speed of the vehicle. The model has two main subsystems: the Controller
subsystem generates the control signal depending on the reference speed and
the actual speed of the car, and the VehicleDynamics subsystem models the
response of the vehicle to the control inputs.

We now introduce a few terms that are used in describing the dimensional
analysis.

Source Block. A Simulink block that does not have an input port is a Source
block. For example, in Figure 1, ReferenceSpeed is a source block.

Sink Block. A Simulink block that does not have an output port is called a
Sink block. For example, VehicleSpeed is a sink block.
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Fig. 1. Simulink model of a cruise control system

Value Parameter. If a Simulink block requires an external value as a param-
eter, the parameter is called a Value parameter. For example, the constant
in VehicleMass is a value parameter.

Port Variables. As we explain later, the dimensions of the input and the out-
put ports are represented by dimensional variables. The dimension variables
corresponding to the input and output ports of a block are named with
suffixes, e.g., In1 and Out1 . For example, the variables corresponding to
the ports of the Divide block are Divide In1, Divide In2 and Divide Out1,
respectively.

Interface Variables. This set of variables covers the dimensions of the out-
put ports of the Source blocks, the input ports of the Sink blocks, and the
variables used to hold the parameter values. The user is expected to provide
dimension annotations for some of these variables.

External Variables. The variables representing the dimensions of the input
and output ports of a subsystem in a model are called external variables for
the subsystem. For example, in Figure 1, In1 Out1 (i.e., the output of the
source block In1 ), In2 Out1 and Out1 In1 are external variables in the
Controller subsystem. Note that the set of external variables of a subsystem
is a subset of its interface variables.

Internal Variables. In a subsystem, all port variables that are not external
variables are internal variables. For example, in Figure 1, Error Out1 is an
example of internal variable in the Controller subsystem.

2.2 Dimensional Constraints

Each port in a block in a Simulink subsystem is assigned a dimension variable.
A dimension variable denotes a vector of rational numbers, where each position
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Table 1. Dimensional constraints for different Simulink blocks

Simulink Block Block Type Constraints

Abs, Unary Minus [D1 → D2] D2 = D1

Add, Subtract [D1, D2 → D3] D2 = D1, D3 = D1

Product [D1, D2 → D3] D3 = add dim(D1, D2)

Divide [D1, D2 → D3] D3 = add dim(D1, inv dim(D2))

Trigonometric Function [D1 → D2] extract dim(D1, δ) =

{
1 if δ = angle
0 if δ �= angle

D2 = dimensionless

Relational Operator [D1, D2 → D3] D2 = D1, D3 = dimensionless

Memory, Unit Delay [D1 → D2] D2 = D1

Integrator [D1 → D2] D2 = inc dim(D1, time, 1)

corresponds to an exponent of a base dimension. For example, if the base dimen-
sions are length, mass, and time, then the dimension for force will be a vector
〈L = 1,M = 1, T = −2〉. Note, however, that the set of base dimensions can be
defined for each specific dimensional analysis problem.

In Table 1, we present the dimensional constraints generated from some basic
Simulink blocks. DimSim handles many other Simulink blocks that are used in
different embedded system domains. The dimension type of a Simulink block is a
relation between the dimension variables representing the input ports of the block
and the dimension variables representing the output ports. The function add dim
takes two dimension vectors as inputs and computes the output dimension vector
element-wise by adding the exponents of the base dimensions of the inputs. The
function inv dim takes a dimension vector as input and returns a dimension
vector whose components are obtained by negating the components of the input
vector. The function extract dim takes as argument, a dimension vector D and
a base dimension δ, and returns the exponent value of the base dimension δ
in the dimension vector D. The function inc dim takes as input a dimension
vector D1, a base dimension δ which appears in D1 and an integer k and returns
a dimension vector D2 which is obtained by adding k to the exponent of δ in
D1, and leaving the other base dimensions in D1 unchanged.

As an example, the dimensional constraints from the cruise control model are
shown in Figure 2.

2.3 Problem Definition

A user may provide a dimension annotation for an interface variable of a Simulink
block. For example, the dimension of the source ReferenceSpeed is 〈L = 1,M =
0, T = −1〉 and the dimension of the output of the Constant block VehicleMass
is 〈L = 0,M = 1, T = 0〉, where L, M , and T denote the exponent of the base
dimensions length, mass, and time, respectively. We do not use a fixed set of
base dimensions in DimSim, but instead extract the set of base dimensions from
those used in the model.



Automatic Dimensional Analysis of Cyber-Physical Systems 361

(VehicleDynamics In1 = 〈L = 1, M = 0, T = −1〉) ∧ (VehicleDynamics In2 =

〈L = 0, M = 0, T = 0〉) ∧ (VehicleDynamics Out1 = 〈L = 1, M = 1, T = −2〉) ∧
(constraints from VehicleDynamics Subsystem)

(Controller In1=Controller In2) ∧ (Controller Out1= 〈L = 0, M = 0, T = 0〉) ∧
(constraints from Controller Subsystem)

(ReferenceSpeed Out1 = 〈 L = 1, M = 0, T = −1〉) ∧ (VehicleMass Out1 =

〈 L = 0, M = 1, T = 0〉) ∧ (VehicleSpeed In1 = 〈 L = 1, M = 0, T = −1〉) ∧
(constraints provided for interface variables)

(Controller In1 = ReferenceSpeed Out1)∧
(Controller In2 = ComputeVelocity Out1)∧
(VehicleDynamics In1 = ComputeVelocity Out1) ∧
(VehicleDynamics In2 = Controller Out1) ∧
(Divide In1 = VehicleDynamics Out1) ∧ (Divide In2 = VehicleMass Out1)∧
(Divide Out1 = add dim(Divide In1, inv dim(Divide In2))) ∧
(ComputeVelocity Out1 = inc dim(Divide Out1, time, 1)) ∧
(Out1 In1 = ComputeVelocity Out1)

(constraints for polymorphic blocks)

Fig. 2. Dimensional constraints generated from Cruise Control model

Dimensional Safety. For a Simulink subsystem, if the port variables of the
blocks can be assigned dimensions without violating any dimensional constraint
for the basic Simulink blocks in the model, then the Simulink model is dimen-
sionally safe.
DimSim solves the following three problems related to dimension analysis:

Problem 1. Given a Simulink model, find out if it is dimensionally safe, i.e., is
there any solution to the set of dimensional constraints. If there is a solution, is
there a compact way to represent the set of all solutions. Furthermore, determine
the unique solution if there is one.

Problem 2. When a subsystem in a Simulink model is not dimensionally safe,
i.e., there is no solution to the dimensional constraints, then provide a succinct
explanation of the inconsistency.

Problem 3. When the dimensions of all the variables cannot be uniquely deter-
mined from the user provided annotations, compute a minimal set of variables
for which the user should provide dimension annotations to determine the di-
mension of all the variables uniquely. We omit the details of the solution in order
to focus on the solutions to the first two problems.



362 S. Owre, I. Saha, and N. Shankar

3 Dimension Analysis through Constraint Solving

Our objective is to find out if a Simulink model is dimensionally safe, by which we
mean that it is possible to assign dimensions to all the variables in the Simulink
model without any conflict. Our dimension analysis algorithm is modular and
is executed on a Simulink model in a bottom-up manner. Dimensional safety
analysis of a subsystem is performed when all the subsystems inside it have
already been analyzed.

DimSim accepts a Simulink model annotated by dimensions. The required
constraints are generated by a static analysis of the model, and the generated
constraints are solved using Gauss-Jordan Elimination. There may be three out-
comes of solving the constraints for a Simulink subsystem - there is no solution,
there is a unique solution, and there is an infinite number of solutions. In case
there is no solution, the Simulink subsystem is dimensionally inconsistent, and
we present to the user a minimal subset of constraints that explain the incon-
sistency. In case there is a unique solution the values of all dimension variables
are known. And in case there are an infinite number of solutions, the Simulink
subsystem is dimensionally consistent, but the dimensions of some variables are
known only in terms of other dimension variables. Our objective is to deter-
mine if there is a unique dimension assignment for all the ports in a subsystem
(modulo the dimensions of the external variables). We provide the user with a
minimal set of dimension variables that should be annotated for obtaining such
a unique dimension assignment of all the variables in the subsystem.

Constraints are solved in a modular manner so that each subsystem is ana-
lyzed exactly once using the externally visible constraints exported by each of its
component subsystems. The solver also indicates if the dimensional assignment
for the signals in a subsystem is unique relative to the dimensional assignment
for the external variables of the subsystem.

A static analysis of each subsystem yields a set of constraints (as shown in
Section 2.2) over the external and internal variables of the subsystem. For ex-
ample, a subsystem b of the form z = u + w;u = xy with output variable
z, a set of input variables {x, y, w}, and internal variable u, yields the con-
straints Z = U = W ;U = X + Y , where X is a dimension variable. Here,
each dimension variable X represents a vector 〈x1, . . . , xd〉 for base dimensions
δ1, . . . , δd, where xi is the value for x on the dimension δi. The dimension solver
transforms these constraints on dimension variables into a reduced row-echelon
form. The dimension variables are ordered so that an external dimension vari-
able, i.e., a dimension variable X corresponding to an external variable x, is
never solved in terms of an internal dimension variable, i.e., a dimension vari-
able Y corresponding to an internal variable y. In the above example, this yields
the solved form U = W,Z = W,X = W − Y . This solved form also shows
that there is a unique solution to the dimensional constraints modulo the as-
signment of dimensions to the external variables since it contains no internal
non-basic (i.e., free) dimension variables. We can then project out the solved
form on the external dimension variables to obtain Z = W,X = W − Y . This
projected set of constraints, suitably renamed in terms of port variables, is ex-
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ported to the subsystems that use b. If, for example, the dimension of w in
the parent subsystem is identified as 〈L = 1,M = 1, T = 0〉, and the dimen-
sion of x is identified as 〈L = 1,M = 1, T = −1〉, then we can infer that the
dimension of y is 〈L = 0,M = 0, T = 1〉 and the dimension of u and z is
〈L = 1,M = 1, T = 0〉. We represent constant dimension vectors with labels L,
M , and T for mnemonic convenience, but a vector 〈L = 1,M = 1, T = 0〉 would
just be 〈1, 1, 0〉, if the dimensions are length, mass, and time, in that order. Also,
the vector 〈L = 0,M = 0, T = 0〉 is written as 0.

A dimensional inconsistency can arise when an expression such as x+
∫
x dt

generates the unsolvable constraint X = X + 〈L = 0,M = 0, T = 1〉. A set
of constraints is underspecified if the dimension of some internal variable of a
subsystem is not uniquely determined by the dimensions of its external variables.
Dimensional underspecification can be ruled out for well-formed systems where
each value parameter has a given dimension, and each delay element is initialized
by such a value parameter with an associated dimension. Underspecification can
arise in the absence of well-formedness. For example, suppose a subsystem with
input variables x and y and output variable z defines internal variables u and v
such that initially, u0 = v0 = 0, and u′ = u+ux/(x+y) and v′ = v+vy/(x−y),
and z = u/(1 + v), where u′ and v′ denote the values of the internal variables
u and v in the next time step. Since 0 is a dimensionally polymorphic constant,
this yields the dimensional constraints Z = U − V ;X = Y , and there is no way
to determine the values of U and V from the dimensional assignment to x, y,
and z.

We describe below the details of our modular analysis where we solve the
constraints for each subsystem in terms of the solutions provided by analyzing its
component subsystems. The dimension solver maintains a table T that contains
an entry for each subsystem b in the design that records its

1. Set of external variables Θb

2. Set of internal variables Υb (disjoint from Θb)
3. An array Sb of reduced row-echelon solved forms

For each subsystem b, the solver takes as input the external variables Θb, internal
variables Υb, the constraints Γb, and the imported subsystems b1ρ1, . . . , bNρN ,
where each ρi is the wiring that maps the external variables of bi to Θb ∪ Υb.
Each constraint in Γb is a sum of monomials, where each monomial is either of
the form kiXi for some rational coefficient ki and Xi ∈ Θb ∪ Υb or of the form
k〈L = l,M = m, T = t〉 for rational constants k, l, m, and t. For example
X − 2Y − 〈L = 1,M = 0, T = −2〉 is a possible constraint. The interpretation
is that this represents the condition X − 2Y − 〈L = 1,M = 0, T = −2〉 = 〈L =
0,M = 0, T = 0〉, where the summation operation X + Y represents vector
addition, and kX represents scaling. The constraints imported from each block
bi are renamed using ρi so as to map the external variables of bi to the variables
of b. For example, an adder block of the form z = x+y might be used in a larger
block with the x and y inputs renamed as u and the output z renamed as v. In
this case ρ will be {x �→ u, y �→ u, z �→ v}.
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The modular solver builds Sb by computing solve(Θb, Υb, Γb ∪
⋃N

i=1 ρi(Ŝbi)).
Here, Γb represents the constraints from subsystem b on the variables in Θb∪Υb,
Ŝbi is the set of equations exported from Sbi , and ρi(Ŝbi) is the result of renaming
the equations Ŝbi using the map ρi. If ρi(x) = z, then correspondingly, ρi(X) = Z
on the dimensional variables. In placing these constraints into a reduced row-
echelon solved form, the variables are ordered so that internal variables are basic
variables in preference to external variables. This is done by numbering the
variables so that external variables are assigned smaller numbers than internal
ones, and solving each equation in terms of its largest variable. The solving
process can fail signalling an inconsistency when, for example, an equation of
the form v = 0 is introduced, where v is a non-zero vector, i.e., of the form
〈L = l,M = m, T = t〉 where l, m, or t is non-zero. In this case, the solver
returns ⊥. If we have a non-⊥ solved form Sb the exported constraints Ŝb are
those constraints of Sb in the external variables Θb.

We use a simple incremental Gauss–Jordan solver for building Sb. For a set
of constraints over Θb ∪ Υb, we order the variables so that those in Θb are below
those in Υb. For example, if Θb = {x,w} and Υb = {y, z, u}, then we can order the
variables as X < W < Y < Z < U . We assume that all linear polynomials are
always represented as ordered sum of monomials, where each monomial is either
of the form kX for a nonzero rational coefficient k or is a constant monomial kv
with a nonzero k and a vector constant v, so that k1X1 precedes k2X2 iff X1 >
X2, and the constant monomial always occurs last. For example, if a polynomial
is of the form (2Z −〈L = 1,M = 0, T = −2〉+3X − 4W )− (5Y − 2U +4Z), its
ordered sum of monomials has the form 3X+(−4)W+(−5)Y+(−2)Z+2U+〈L =
1,M = 0, T = −2〉.

The input set of polynomial constraints have the form {p0 = 0, . . . , pn = 0}.
The solved form is a polynomial constraint of the form {g0 = 0, . . . , gm = 0},
where the leading monomial in each polynomial gi has a distinct variable Xi,
i.e., the basic variable in gi, so that Xi �≡ Xj for i �= j, and no Xi occurs in gj
for i �= j. If Ψ is a solved form, then Ψ(p) represents the result of replacing each
occurrence Xi in p by g′i/ki, where Xi is a basic variable in a polynomial gi = 0
in Ψ of the form kiXi + g′i. This substitution operation can be extended to sets
of polynomials so that Ψ(Π) is just the image of Π with respect to Ψ . The solve
procedure can be defined as follows.

solve(Θ, Υ,Π) = incsolve(Π, ∅)

incsolve({p} ∪Π ′, Ψ) =

⎧⎨
⎩
⊥, if p′ ≡ k, for k �= 0
incsolve(Π ′, Ψ), if p′ ≡ k, for k = 0
incsolve(Π ′, {p′}(Ψ) ∪ {p′})

where p′ ≡ Ψ(p)

In this procedure, the initial solved form is empty, and hence there are no basic
variables. If we have processed i input constraints, then we have a state Ψi to
which we add the input constraint pi+1 = 0. We first place pi+1 in an ordered sum
of monomials form with monomials ordered in decreasing order of their variables
with the constant monomial placed last. We then obtain p′i+1 as Ψi(pi+1), the
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result of substituting each basic variable X of Ψi in pi+1 by Ψi(X) and placing
the result in an ordered sum of products form. Note that all the variables in p′i+1

are non-basic in Ψi. If the resulting p′i+1 is just a constant vector v, then either
v = 0, the equation is redundant, or v �= 0 and we have an inconsistency and
Ψi+1 = ⊥. Otherwise, p′i+1 has the form kX+p′′ with X as the maximal variable,
then we obtain Ψi+1 by adding p′i+1 = 0 to Ψi and replacing each occurrence of
X in Ψi by −p′′/k so that X is now a basic variable in Ψi+1.

For example, with Θb, Υb as before, if we start with an empty solution set
Ψ0, we can add X + 2Y − U = 0 by normalizing it as U − X − 2Y = 0 and
adding it to Ψ0 to obtain Ψ1. Next, we can add 3W −2U+X = 0 by normalizing
and substituting the solution for U to get 3W − 2(X + 2Y ) + X = 0. This is
normalized as 4Y − 3W + X = 0 which is added to Ψ1 after replacing each
occurrence of Y in g1 by 3

4W − 1
4X to obtain U − 3

2W − 1
2X so that Ψ2 is

{U − 3
2W − 1

2X,Y − 3
4W + 1

4X}. If there are n constraints in Γb, then either
Sb = ⊥ if Ψi = ⊥ for some i, or Sb = Ψn.

We can now sketch the argument for the correctness of the solver. The dimen-
sional constraints of b are given by Γb ∧

∧N
i=1 ∃Υbi .ρi(Γbi), where b1ρ1, . . . , bNρN

are the subsystems appearing in b, and ρi(Γbi) renames each external variable
X of Γbi to ρi(X).

Proposition 1. incsolve(Π, ∅) = ⊥, iff the set of constraints Π is unsatisfiable.
It can be easily checked that in each step of the incsolve procedure going from

Π,Ψ to Π ′, Ψ ′, every solution of Π,Ψ , i.e., an assignment of dimensional vector
values to variables in Π,Ψ , is a solution for Π ′, Ψ ′, and vice versa. In particular,
note that every variable in Π,Ψ also occurs in Π ′, Ψ ′, and vice versa.

Proposition 2. For a subsystem bi, any assignment satisfying Ŝbi can be ex-
tended to an assignment satisfying Sbi .

This is because the non-basic internal dimension variables in Sbi can be freely
assigned any value, e.g., the vector 0, and the assignments for the basic internal
dimension variables are computed from those of the external variables and the
non-basic ones. Strictly speaking, we disallow such internal non-basic variables
in Sbi since it implies underspecification (see below).

Proposition 3. Sb = solve(Θb, Υb, Γb ∪
⋃N

i=1 ρi(Ŝbi)) = ⊥ iff the set of con-

straints Γb ∧
∧N

i=1 ∃Υbi .ρi(Γbi) is unsatisfiable.

If we replace Π in Proposition 1 by Γb ∪
⋃N

i=1 ρi(Ŝbi), we know that the
latter set of constraints is satisfiable iff solve(Θb, Υb, Γb ∪

⋃N
i=1 ρi(Ŝbi)) �= ⊥. If

Γb∧
∧N

i=1 ∃Υbi .ρi(Γbi) is satisfiable, then so is Γb∪
⋃N

i=1 ρi(Ŝbi) since the latter is
a subset of the former. For the converse, any solution of Γb ∪

⋃N
i=1 ρi(Ŝbi) yields

a solution of Ŝbi by assigning each external variable X in Θbi the value of ρi(X).
By Proposition 2, the latter solution can be recursively extended to a solution
for Γb ∧

∧N
i=1 ∃Υbi .ρi(Γbi).
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We say that a subsystem b is underspecified if either one of its component
subsystems bi, for 1 ≤ i ≤ N is underspecified or the assignment of the internal
variables of b cannot be uniquely determined from those of Θb.

Proposition 4. If Sb = solve(Θb, Υb, Γb ∪
⋃N

i=1 ρi(Ŝbi)) �= ⊥, then Γb ∪⋃N
i=1 ρi(Ŝbi) is underspecified iff Sb contains a non-basic internal variable or

for some i, 1 ≤ i ≤ N , the component constraint set Sbi is underspecified.
If Sb contains a non-basic internal variable, then by the same argument as

the one given for Proposition 2, this variable can be freely assigned any constant
dimensional vector value. This assignment is independent of the assignments to
the external variables since for each polynomial gi in Sb where an external vari-
able is basic, i.e., maximal, gi must only contain external variables. Conversely,
if Sb contains no non-basic internal variables, then each basic internal variable
Y only occurs in a polynomial of the form kY + g′ in Sb, where all the variables
in g′ are external. Hence, any assignment of values to the external variables is
easily extended to an assignment for the basic internal variables.

Finding an Unsatisfiable Core. We can also augment the solver to identify
the unsatisfiable core in the case of an inconsistency. This is done by the conven-
tional technique of associating each input constraint with a zero-slack variable
ωi. For example, if the first input constraint is X + 2Y = 0 and the second one
is 2X + 4Y + 〈L = 0,M = 1, T = 0〉 = 0, then these are added with zero slacks
ω1 and ω2 so that the first equation is rewritten as X + 2Y +ω1 = 0 and solved
as Y = −(1/2)X − (1/2)ω1. When this solution is substituted into the second
equation 2X + 4Y + 〈L = 0,M = 1, T = 0〉 + ω2 = 0, it yields the normalized
form −2ω1 + ω2 + 〈L = 0,M = 1, T = 0〉 = 0. Since zero-slack variables are
never basic variables, this indicates that the input equations 1 and 2 projected
on the d dimensions form an unsatisfiable core. In fact, if the inconsistent equa-
tion is of the form k1ωi1 + . . .+ knωin + v = 0, where each ki and vector v are
nonzero, then if we take the corresponding input equations pi1 = 0, . . . , pin = 0,
we get that ki1pi1 + . . .+ kinpin + v = 0, yielding the contradiction v = 0. The
unsatisfiable core given by the set of zero slacks is minimal: if one of the input
equations, say pij = 0, could be dropped from the unsatisfiable core, this means
that the M entry of ωij can be given any nonzero value. In particular, if ωij

is assigned −v/kj , that is, 〈−v1/kj, . . . − vd/kj〉 where v = 〈v1, . . . , vd〉 for d
base dimensions, then the equation k1ωi1 + . . . + knωin + v = 0 is consistent.
Furthermore, this assignment can then be extended to solution set by assigning
0 to all the non-basic variables other than ωij . Hence, the constraint pij = 0 is
necessary.

Proposition 5. If Sb = solve(Θb, Υb, Γb ∪
⋃N

i=1 ρi(Ŝbi)) = ⊥, and the incon-
sistency arises when an input constraint pi = 0 is normalized as ki1ωi1 + . . . +
kijωij + v = 0, where v is a non-zero dimension vector and ki1 , . . . , kij are non-
zero rational coefficients, then normalizing ki1pi1 + . . .+ kijpij yields −v. Thus,
{pi1 = 0, . . . , pij = 0} forms an unsatisfiable core of input constraints that is
minimal.
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4 Experiments

DimSim performs two major operations: constraints generation and constraints
solving. To generate constraints from a Simulink model, DimSim parses the
model using Simulink’s model construction APIs provided by Mathworks,
for example, find system and get param. Using these APIs, DimSim gen-
erates constraints sets which are solved using a solver written in Com-
mon LISP. The source code for DimSim and the examples are available at
http://www.csl.sri.com/~shankar/dimsim.tgz.

Categories of Errors. Through dimension analysis, DimSim can discover errors
of the following categories:

Erroneous Annotation. The user provides the annotations for the interface
variables, and erroneous annotations can lead to dimensional inconsistency.

Erroneous Design. A wrong design can be detected through dimensional anal-
ysis. For example, in the implementation of an if-then-else block, the value
returned from the then block and else block should have the same dimension,
otherwise the system has some design error. Design errors include missing
blocks (e.g., a missing integrator) or an extraneous block.

Incorrect Blocks Usage. A Simulink model may contain a wrong block in
place of a correct block. This may happen due to adding a wrong block
from the library, for example, a Product block is used where a Sum block
is required. It may also be due to an incorrect selection of parameters, for
example, the Product block may be used for both multiplication and division
operations, but to use it for division, the proper sign should be provided for
the denominator parameters.

We illustrate the usefulness of DimSim on the following examples: Thermal Model
of a House (TMH) [17], Collision Detection System (CD2D) [6], Cruise Control
System (CC) [3], Rotating Clutch System (RC) [17], Engine Timing Control Sys-
tem (ETC) [17] and Transmission Control System (TC) [4]. Table 2 summarizes
the size of the models,the amount of time taken by different components of Dim-
Sim to solve different subproblems related to dimension analysis, and number
of dimensional mismatches found in the model. For each model, we report the
number of subsystems, number of blocks, number of port variables and number
of constraints generated to indicate the size of the model. To compute the time
costs, we carried out the experiments in a notebook running Mac OS X version
10.6.7, with 2.26 GHz Intel Core 2 Duo processor and 2GB 1067MHz DDR3
memory. The results show that DimSim is capable of handling large Simulink
models in reasonable time.

We found dimensional mismatches in two of our example models. In Table 3,
we present the mismatches found, their type, number of constraints in the gen-
erated unsatisfiable core and the effectiveness of the unsatisfiable core. The ef-
fectiveness of the unsatisfiable core w.r.t. the subsystem for which the set of
constraints are inconsistent is defined as the ratio of the number of constraints

http://www.csl.sri.com/~shankar/dimsim.tgz
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Table 2. Model size, time cost and mismatches found

Model Model Size Time Cost Mismatches
No. of No. of No. of No. of Constraint Constraint found

Subsystems Blocks Variables Constraints Generation Solving

TMH 3 48 79 126 0.663s 0.045s 0

CD2D 9 93 164 212 1.285s 0.142s 1

CC 6 74 139 197 1.028s 0.321s 0

RC 10 102 201 346 1.463s 0.376s 0

ETC 12 113 220 362 1.848s 0.369s 0

TC 34 930 1935 4234 13.984s 11.716s 1

Table 3. Error Data

Error Model Type of Error No. of UC Effectiveness w.r.t.
Constraints subsystem total

Constraints constraints

Error1 CD2D Erroneous Design 5 19.23% 2.36%

Error2 TC Erroneous Design 11 5.76% 0.26%

in the unsatisfiable core and the number of constraints generated from the sub-
system. The effectiveness of the unsatisfiable core w.r.t. the model is defined
in the similar way. The mismatch in the CD2D model is because the two sub-
systems corresponding to an if-then-else block return variables with different
dimensions.1 In TC, the problem arises for the two input ports of an Add block
with differing dimensions. The reason is a possible omission of a block that could
neutralize the difference.

5 Related Work

Computer Science has a very rich literature on dimension analysis, particularly
in the context of general-purpose programming languages, for example, Pas-
cal [5], Ada [8], C++ [18], Fortran [12], Java [20,7], Fortress [1] and C [9]. For
functional languages, Wand and O’Keefe [21] add dimensions and dimension
variables to the simply-typed lambda calculus and Kennedy designed dimension
types [10] for ML-style languages. Dimensional analysis was also undertaken for
simulation language gPROMS [15] and spreadsheets [2]. Mainly two approaches
have been used for dimension analysis: (1) Modification of the program source
code either based on language extension [5,20,1], or using existing language fea-
tures [8,18,12], and (2) Enhancement of the type system using dimensional types
and application of unification algorithms using Gaussian elimination to infer di-
mension types [21,10,15,2,9,7].

1 CD2D is a parametric algorithm where these two branches of the if-then-else expres-
sion correspond to two distinct modes of the system, each of which is dimensionally
consistent. We are grateful to Cesar Muñoz for this clarification.
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SimCheck [14], a contract type system for Simulink, supports dimensional
analysis of Simulink models through the translation of the model to a set of
constraints and uses off-the-shelf decision procedure to solve the constraints.
The major differences between SimCheck and DimSim are that SimCheck does
not support compositional analysis, cannot detect underspecification and always
provides solution in concrete values if feasible, cannot produce an unsatisfiable
core in case of an inconsistency, and the analysis in SimCheck is based on a fixed
set of dimensions.

DimSim uses a bottom-up compositional strategy to deal with large systems.
Among the previous works, only Unifi by Hangal and Lam [7] uses an inter-
procedural analysis. However, the goal of DimSim is different from that of Unifi.
DimSim verifies dimensional consistency in one version of a Simulink model based
on user-provided annotations, whereas Unify monitors dimensional relationships
between program variables as the program evolves.

Kennedy has developed a dimensional analysis for F# inspired by type infer-
ence in ML [11]. In his approach, dimensional constraints are expressed in the
theory of Abelian Groups where there is an associative and commutative oper-
ator ∗ with an inverse operation {}−1. For example, the dimensional constraint
m ∗ α2 = s2 ∗ β would express a constraint where m is a constant representing
metres, s is a constant representing seconds, and α and β are dimensional vari-
ables. Units as used in F# correspond to dimensions in our system in the sense
that metre is just a name for the length dimension. Finding the most general
solution to a dimensional constraint is equivalent to finding the most general
unifier for a constraint u = v in the theory of Abelian Groups using a form
of Gaussian elimination. For example, unifying α ∗ metre2 with second yields
α = metre−2 × second. In our approach, we solve directly using Gauss–Jordan
elimination to obtain α = 〈L = −2,M = 0, T = 1〉. This leads to a simpler
solver and more informative error reporting. Unlike all previous works based on
constraints solving using linear algebra, DimSim provides a concrete explanation
of an inconsistency in dimensions and helps the user pinpoint the root cause of
such inconsistency.

DimSim also takes a slightly different approach to polymorphic dimensional
inference. For example, Kennedy provides an analog of let-polymorphism, where
in a function of the form λy.let smult = (λx.x ∗ x ∗ y) in (smult l)/(smult t),
with l representing a length, t a time, and β the dimension of the variable y,
the function is given the polymorphic type ∀α.[α→α2 ∗β]. Our analysis can also
be adapted to admit this kind of let-polymorphism. For example, the expression
x ∗ x ∗ y can be seen as having input variables x and y, and a dummy output
variable z. This yields the dimensional constraint Z = 2X + Y so that smult
has the type ∀X.[X→[Z : Z = 2X+Y ]]. The dimension of (smult l) is [Z : Z =
2〈L = 1,M = 0, T = 0〉 + Y ], and that of (smult t) is [Z : Z = 2〈L = 0,M =
0, T = 1〉 + Y ]. The quotient (smult l)/(smult t) can be given the dimension
[W : W = 2〈L = 1,M = 0, T = −1〉], and the entire lambda-expression has the
dimension [Y→[W : W = 2〈L = 1,M = 0, T = −1〉]].
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6 Conclusions

We have presented DimSim , an automatic dimension analyzer for cyber-physical
systems modeled in Simulink. DimSim employs compositional analysis technique
to deal with large size Simulink model, and in case of an inconsistency, provides
a proof of the inconsistency locally on the offending subsystems. Our case studies
on numerous examples show that DimSim does find modeling errors and has the
potential to be used in the industrial context.

Our approach to dimensions is pragmatic. We have focused on finding dimen-
sion errors in Simulink models of cyber-physical systems. Our dimension system
is parametric in the choice of the base dimensions. As an example, in physical
terms, angles are treated as dimensionless, but in our system, it is possible to
introduce angles as a base dimension. Using angles as a dimension allows certain
classes of bugs to be found, but it could be incompatible with calculations of
values of trigonometric functions based on their Taylor expansion.

We have not yet extended DimSim to handle units of dimensions such as feet
and metres. There are several approaches to incorporating units. One approach
(e.g., Kennedy [11]) is to treat each such basic unit as an independent basic
dimension so that it is possible to mix different units within a single dimension
expression and use arbitrary conversions between units. Another approach is to
report an error when different units for the same dimension are mixed. We could
also restrict conversions between units to those that are derived using specific
scaling and offset operations. We plan to experiment with several different ap-
proaches to units in DimSim in order to identify the criteria that works best with
cyber-physical models.
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Abstract. We present the integration of the Kodkod high-level inter-
face to SAT-solvers into the kernel of ProB. As such, predicates from B,
Event-B, Z and TLA

+ can be solved using a mixture of SAT-solving and
ProB’s own constraint-solving capabilities developed using constraint
logic programming: the first-order parts which can be dealt with by
Kodkod and the remaining parts solved by the existing ProB kernel.
We also present an empirical evaluation and analyze the respective mer-
its of SAT-solving and classical constraint solving. We also compare to
using SMT solvers via recently available translators for Event-B.
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1 Introduction and Motivation

TLA
+ [10], B [1] and Z are all state-based formal methods rooted in predicate

logic, combined with arithmetic and set theory. The animator and model checker
ProB [12] can be applied to all of these formalisms and is being used by several
companies, mainly in the railway sector for safety critical control software [13,14].
At the heart of ProB is a kernel dealing with the basic data types of these
formalisms, i.e., integers, sets, relations, functions and sequences. An important
feature of ProB is its ability to solve constraints; indeed constraints can arise in
many situations when manipulating a formal specification: the tool needs to find
values of constants which satisfy the stipulated properties, the tool needs to find
acceptable initial values of a model, the tool has to determine whether an event
or operation can be applied (i.e., is there a solution for the parameters which
make the guard true) or whether a quantified expression is true or not. Other
tasks involve more explicit constraint solving, e.g., finding counterexamples to
invariant preservation or deadlock freedom proof obligations [7]. While ProB

is good at dealing with large data structures and also at solving certain kinds
of complicated constraints [7], it can fare badly on certain other constraints,
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in particular relating to relational composition and transitive closure. (We will
illustrate this later in the paper.)

Another state-based formalism is Alloy [8] with its associated tool which uses
the Kodkod [21] library to translate its relational logic predicates into proposi-
tional formulas which can be fed into SAT solvers. Alloy can deal very well with
complicated constraints, in particular those involving relational composition and
transitive closure. Compared to B, Z and TLA

+, the Alloy language and the
Kodkod library only allow first-order predicates, e.g., they do not allow relations
over sets or sets of sets.

The goal of this work is to integrate Kodkod into ProB, providing an alter-
native way of solving B, Z and TLA

+ constraints. Note that we made sure that
the animation and model checking engine as well as the user interface of ProB
are agnostic as to how the underlying constraints are solved. Based on this inte-
gration we also conduct a thorough empirical evaluation of the performance of
Kodkod compared to solving constraints with the existing constraint logic pro-
gramming approach of ProB. As we will see later in the paper, this empirical
evaluation provides some interesting insights. Our approach also ensures that the
whole of B is covered, by delegating the untranslatable higher-order predicates
to the existing ProB kernel.

2 B, Z, TLA
+ and Kodkod in Comparison

ProB can support Z and TLA
+ by translating those formalisms to B, because

these formalisms have a common mathematical foundation. In the case of TLA
+

a readable B machine is actually generated, whereas a Z specification is trans-
lated to ProB’s internal representation because some Z constructs did not have
a direct counterpart in B’s syntax. In the next sections we refer only to B, but
because all three notations share the same representation in ProB, all presented
techniques can be applied likewise to the two other specification languages.

If we specify a problem in B, we basically have a number of variables, each
of a certain type and a predicate. The challenge for ProB is then to find values
for the variables that fulfil the predicate. For simplicity, we ignore B’s other
concepts like machines, refinement, etc.

Kodkod provides a similar view on a problem. We have to specify a number
of relations (these correspond to our variables in B) and a formula (which corre-
sponds to a predicate in B) and Kodkod tries to find solutions for the relations.

From this point of view, the main difference between B and Kodkod is the
type system: Instead of having some basic types and operations like power set
and Cartesian product to combine these, Kodkod has the concept of a universe
consisting of atoms. To use Kodkod, we must define a list of atoms and for each
relation we must specify a bound that determines a range of atoms that can be
in the relation.

The bound mechanism can also be used to assign an exact value to a relation.
This is later useful when we have already computed some values by ProB.
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3 Architecture

3.1 Overview

We use a small example to illustrate the basic mechanism how Kodkod and SAT
solving is integrated into ProB’s process to find a model for a problem. Details
about the individual components are presented below after this overview.

Our small problem is taken from the “dragon book” [2] and formalised in B.
The aim is to find loops in a control flow graph of a program (see Figure 1).

bentry

b1

b2

b3

b4

b5

b6

bexit

Fig. 1. Control flow
graph of a program

We model the basic blocks as an enumerated set
Blocks with the elements b1, b2, b3, b4, b5, b6, bentry,
bexit. The successor relation is represented by a vari-
able succs , the set of the nodes that constitute the
loop by L and the entry point of the loop by lentry.
The problem is described by the B predicate:

succs = {bentry �→ b1, b1 �→ b2, b2 �→ b3, b3 �→ b3,
b3 �→ b4, b4 �→ b2, b4 �→ b5,
b5 �→ b6, b6 �→ b6, b6 �→ bexit}

∧ lentry ∈ L
∧ succs−1[L \ {lentry}] ⊆ L
∧ ∀l.(l ∈ L⇒ lentry ∈ (L� succs� L)+[{l}])

In total, there are seven different solutions to this
problem, for instance L = {b2, b3, b4} with lentry = b2.

After parsing and type checking the predicate, we
start a static analysis (the box “Analysis” in Fig. 2)
to determine the integer intervals of all integer expres-
sions. In our simple case, the analysis is not necessary.
In Section 3.4 we describe how this analysis works and
under which circumstances it is needed.

In the next phase, we try to translate the formula from B to Kodkod (“Trans-
lation” in Fig. 2). First we have a look at the used variables and their types:
succs is of type P(Blocks × Blocks), L of type P(Blocks) and lentry of type
Blocks . Blocks is here the only basic type that is used. Thus we have to reserve
8 atoms in the Kodkod universe to represent this type; each atom in the universe
corresponds directly to a block bi. The variables can be represented by binary
(succs) and unary (L and lentry) relations, where we have to keep in mind that
the relation for lentry must contain exactly one element. The B predicate can
be completely translated to a Kodkod problem. In Section 3.2 we will describe
the translation in more detail. It can be useful to keep a part of the formula
untranslated: since the part succs = {. . .} is very easy to compute by ProB, we
leave it untranslated. The translated formula has the form:

one lentry &&

lentry in L &&
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Interpreter

Core

Mapping

Translation

Analysis

ProB

Java
Interface

Kodkod

SAT Solver
Java

B Specification

Fig. 2. Overview of the architecture

((L-lentry) . ~succs) in L &&

all l: one Blocks | (l in L =>

lentry in (l.^(((L->Blocks)&succs)&(Blocks->L))))

The translated description of the formula is then stored and a mapping be-
tween ProB’s internal representation and Kodkod’s representation of values is
constructed (“Mapping” in Fig. 2). The message “new problem with following
properties. . . ” is sent to the Java process.

The Kodkod problem gets a unique identifier and the translated part of the
B predicate is replaced by a reference to the problem, i.e., succs = {. . .} ∧
kodkod(ID), and then given to the B interpreter of ProB.

When the ProB interpreter starts to evaluate the predicate, it prioritises
which parts should be computed first. It chooses succs = {. . .} because it can
be computed deterministically by ProB’s core and finds a value for succs . Then
a message “We have these values for succs , try to find values for the other
variables” is sent to the Java process.

The Java process has now a complete description of the problem. It con-
sists of the universe (with 8 atoms) and relations for the variables and the type
Blocks itself. The bounds define the value of succs and Blocks and ensure that
all relations contain only atoms that match their corresponding types. This in-
formation is then given together with the formula to the solver of the Kodkod
library (“Kodkod” in Fig. 2) that translates the problem into a SAT problem
and passes this to the SAT solver.

The SAT solver finds solutions that are transformed by Kodkod to instances of
the relations that fulfil the given formula The values of the previously unknown
relations that represent L and lentry are sent back in an answer to the ProB

process. The answer is then mapped to ProB’s internal representation of values.
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The B interpreter can now continue with the found values. Now all predicates
have been evaluated and the solutions can be presented to the user.

3.2 Translation

Representing Values. It turns out that the available data types in Kodkod
are the main limitation when trying to translate a problem described in B. Let’s
first have a look at the available data types in B and how they can be translated
to Kodkod. We have the basic data types:

Enumerated Sets. Enumerated sets can directly be translated to Kodkod. For
each element of the set, we add an atom to the universe and create a unary
relation that contains exactly that atom. The relation is needed in case the
element is referred to in an expression. We create another unary relation for
the whole set that contains exactly all atoms of the enumerated set.

Deferred Sets. Deferred Sets in B can have any number of elements that are
not further specified. For animation, ProB chooses a fixed finite cardinality
for the set, either by an analysis of the axioms or by using user preferences.
Then we can treat deferred sets just like a special case of enumerated sets.

Booleans. The set of Booleans is a special case of an enumerated set with two
elements TRUE and FALSE.

Integer. Integers in B represent mathematical numbers, they can be arbitrary
large. It is possible to represent integer values in Kodkod, but the support
is very limited and special care has to been taken. We describe the handling
of integers in Section 3.3 in detail.

Thus, we can map a B variable of a basic data type to a Kodkod relation. Since
Kodkod treats every relation as a set, we must ensure explicitly that the relations
for such variables contain exactly one element.

Example. Let’s assume that we use two types in our specification, an enumer-
ated set E = {a, b, c} and BOOL. Treating the Booleans as enumerated set
BOOL = {TRUE,FALSE}, we have the following universe with five atoms:

E BOOL

B value a b c TRUE FALSE
atom 0 1 2 3 4

We can now represent a variable of type E by a unary relation r1 whose elements
are bounded to be a subset of the atoms 0 .. 2. We also have to add the Kodkod
formula one r1.

In B, two or more basic types can be combined with the Cartesian product.
Variables of such a type can be represented by a relation.

Example. If we have a variable of type (E × E) × BOOL, we can represent
it by a ternary relation r2 whose elements are bound to subsets of the atoms
0 .. 2 × 0 .. 2 × 3 .. 4. Like in the example above, we have to add the condition
one r2.
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We can construct the power set P(α) for any type α in B. A variable of type
P(α) can be mapped to a Kodkod relation if α is itself not a set. A relation for
P(α) is defined exactly as a relation for α but without the additional restriction
that it must contain exactly one element.

Finally, let’s have a look at what we cannot translate. All “higher-order” data-
types, i.e. sets of sets are not translatable. E.g a function f ∈ A �→ P(B) cannot
be handled.

It turned out that unary and binary relations are handled very well. With
relations of a higher arity we encounter the problem that many operators in
Kodkod are restricted to binary relations. Thus it is not as easy to translate
many properties using these data types.

Translating Predicates and Expressions. One of the central tasks in com-
bining ProB and Kodkod is the translation of the B predicate that specifies
the problem to a Kodkod formula. Many of B’s most common operators can be
directly translated to Kodkod, especially when basic set theory and relational
algebra is used. It is not strictly necessary to cover all operators that B provides,
because we always have the possibility to fall back to ProB’s own constraint
solving technique. Of course, we strive to cover as many operators as possible.

Operators on Predicates. The basic operators that act on predicates like con-
junction, disjunction, etc. have a direct counterpart in Kodkod. This includes
also universal and existential quantification.

Arithmetic Operators. Addition, subtraction and multiplication of integers can
also directly be translated, whereas division is not supported by Kodkod. Other
supported integer expressions are constant numbers and the cardinality of a
set. If we want a variable to represent an integer, we have to convert explic-
itly between a relation that describes the value and an integer expression (see
Section 3.3).

Relational Operators. Many operators that act on sets and relations can be
translated easily to Kodkod.

Figure 3a shows a list of operators that have a direct counterpart in Kodkod.
With T (A) we denote the translated version of the expression A. Please note
that the expressions A ∈ B and A ⊆ B are translated to the same expression
in Kodkod. This is due to the fact that single values are just a special case in
Kodkod where a set contains just one element. The same effect can be found at
the Cartesian product (A×B) and a pair (A �→ B) and at the relational image
(A[B]) and the function application (A(B)).

Other operators need a little bit more work. They can be expressed by com-
bining other operators. Figure 3b shows a selection of such operators. In the
table, we use an operator A(E) to denote the arity of the relation that repre-
sents the expression E. Again we can see that different operators in B (e.g. dom
and prj1) lead to the same result.
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B Kodkod

A ∈ B T (A) in T (B)
A ⊆ B T (A) in T (B)
A×B T (A) -> T (B)
A �→ B T (A) -> T (B)
A ∩B T (A) & T (B)
A ∪B T (A) + T (B)
A \B T (A) - T (B)
A[B] T (B).T (A)
A(B) T (B).T (A)
A�−B T (A)++T (B)
A−1 ~T (A)
A+ ^T (A)

(a) direct translation

B Kodkod

dom(A) prj[1:A(α)](T (A))
with A being of type P(α× β)

ran(A) prj[A(α)+1:A(A)](T (A))
with A being of type P(α× β)

prj1(A) T (dom(A))
prj2(A) T (ran(A))
A�B (T (A) -> T (β)) & T (B)

with B being of type P(α× β)
A�−B ((univ-T (A))->T (α)) & T (B)

with B being of type P(α× β)
bool(P ) if T (P ) then T (TRUE) else T (FALSE)
f ∈ A �→B pfunc(T (f), T (A),T (B))
f ∈ A→B func(T (f), T (A),T (B))
f ∈ A�B func(T (f), T (A),T (B)) &&

(T (f).~T (f)) in iden

(b) more complex rules

Fig. 3. Examples for translation rules

3.3 Integer Handling in Kodkod

Kodkod provides only a very limited support for integers. The reason for this is
twofold. Since SAT solvers are used as the underlying technology, integers are
encoded by binary numbers. Operations like addition then have to be encoded
as boolean formulas. This makes the use of integers ineffective and cumbersome.
Another reason is that the designers of Alloy – where Kodkod has its origin
– argue [8] that integers are often not very useful and an indication of lack of
abstraction when modeling systems.

Our intention is to make our tool applicable to as many specifications as
possible, and many of the B specifications we tried contained some integer
expressions. Indeed, integers are used to model sequences in B or multi-sets
in Z.

When using Kodkod with integers, we have to specify the number of bits used
in integer expressions. Integer overflows are silently ignored, e.g. the sum of two
large naturals can be negative when the maximum integer size is exceeded. Thus
we need to ensure that we use only integers in the specified range to prevent
faulty results.

Kodkod distinguishes between relational and integer expressions. An integer
expression is for example a constant integer or the sum of two integer expressions.
Comparison of integer expressions like “less than” is also supported. In case we
want a relation (i.e. a variable) that represents an integer, we must first assign
values to some atoms. Figure 4 shows an example with a universe consisting of
9 atoms i0, . . . , i8 that represent integers.
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binary numbers

for integer sets

atom . . . i0 i1 i2 i3 i4 i5 i6 i7 i8 . . .

associated integer value . . . −1 0 3 5 1 2 4 8 −16 . . .

Fig. 4. Mapping atoms to integer values

We have basically two options when we want represent integers by a relation:

– We can represent sets of integers in the interval a .. b by having an atom for
each number in a .. b. Then the relation simply represents the integers of its
atoms.

E.g. with the universe in Figure 4, we can represent arbitrary subsets of
−1 .. 5 by using a relation that is bounded to the atoms i0, . . . , i4.

The downside of this approach is that the number of atoms can become
easily very large.

– Single integers can be represented more compactly by using a binary number.
E.g. with the universe in Figure 4, we can represent a number of the interval
−16 .. 15 by using a relation that is bounded to the atoms i4 .. i8. A relation
that consists of the atoms i4, i6, i8 would represent the sum 1+4+(−16) =
−9. Kodkod provides an operator to summarise the atoms of a relation,
yielding an integer expression.

With this approach large numbers can be handled easily. The downside is
that we cannot represent sets of numbers.

The atoms in the universe seen in Figure 4 are ordered in a way that we can use
both approaches to represent integers in the same specification.

It can be seen that we need an exact knowledge of the possible size of integer
expressions in the specification. To get the required information, a static analysis
is applied to the specification before the translation. See below in Section 3.4 for
details of the analysis.

Another problem that arises from having two kinds of integer representations,
is that we have to ensure the consistency of formulas that use integer expressions.
We briefly describe the problem in Section 3.5.

3.4 Predicate Analysis

In case that integers are used in the model, we need to know how large they
can get in order to translate the expressions. To get this information we apply
a static analysis on the given problem.

The first step of the analysis is that we create a graph that describes a con-
straint problem. For each expression in the abstract syntax tree, we create some
of nodes depending on the expression’s type that contain relevant information
associated to the syntax node. E.g. this might be the possible interval for inte-
gers, the interval of the cardinality for sets or the interval in which all elements
of a set lie.
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By applying pattern matching on the syntax tree, we add rules that describe
the flow of information in the graph. E.g. if we have a predicate A ⊂ B, we can
propagate all information about elements of B to nodes that contain informa-
tion about A. We evaluate all rules until a fixpoint or a maximum number of
evaluation steps is reached.

Example. Let’s take the predicate A ⊆ 3 .. 6 ∧ card(A) > 1. For each integer
node (1, 3, 6, card(A)) we create a node containing the integer range. For each
of the sets A and 3 .. 6 we create two nodes: One contains the range of the set’s
cardinality, the other describes the integer range of the set’s elements. Figure 5
shows the resulting graph. In the upper part of each node the expression is
shown, in the lower part the kind of information that is stored in the node. The
edges without any labels denote rules that pass information just from one node
to another. Those which are labeled with ≤, ≥, <, > express a relation between
integer ranges of the source and target node. There is a special rule marked
i→ c (“interval to cardinality”) which deduces a maximum cardinality from the
allowed integers in a set. E.g. if all elements of a set I are in the range x .. y, we
know that card(I) ≤ y−x+ 1. The graph in Figure 5 shows the information we
have about each node after the analysis. In particular, we know the bounds of
all integer expressions.

3 .. 6

each element ∈ 3 .. 6

3

∈ 3 .. 3
6

∈ 6 .. 6

3 .. 6

cardinality 0 .. 4

A

each element ∈ 3 .. 6
A

cardinality 2 .. 4

card(A)

∈ 2 .. 4

1

∈ 1 .. 1

><

i → c

i → c

≥
≤ ≤

≥

Fig. 5. Constraint system for A ⊆ 3 .. 6 ∧ card(A) > 1

Currently the analysis is limited to integer intervals and cardinality, because
this was the concrete use case given by our translation to Kodkod. We plan to
re-use the analysis for other aspects of ProB. E.g. if we can deduce the interval
of a quantified integer variable, ProB can limit the enumeration of values to
that range if it must test a predicate for all possible values of that variable.

Other types of information nodes are also of interest. For instance, we could
infer the information if an expression is a function or sequence to assist ProB
when evaluating predicates.
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3.5 Integer Representations

We have seen above in Section 3.3 that we have two distinct forms of representing
integers. Additionally we have Kodkod’s integer expressions when we want to
compare, add, subtract or multiply them. During the translation process we must
ensure that the correct representation is chosen for each expression and that the
representations are consistently used. If the take a simple equality A = B with
A, B being integers as an example, we must ensure that both sides use the same
representation.

Internally, the result of the translation is an abstract syntax tree that describes
the formula. Some expressions in this syntax tree have annotations about the
needed integer representation. E.g., if the original expression in B is a set of
integers, it has the annotation that the integer set representation and not the
the binary number representation must be used. We now impose a kind of type
checking on this syntax tree to infer if conversions between different integer
representations have to be inserted in the formula.

3.6 Extent of the Translation: Partitioning

Theoretically we can take any translatable sub-predicate of a specification and
replace it with a call to Kodkod. But usually, the overhead due to the communi-
cation between the processes can easily get so large that incorporating Kodkod
has no advantage over using ProB alone.

A more sensible approach for a specification that is a conjunction of predicates
P1∧. . .∧Pn is to apply the translation to every Pi. All translatable predicates are
then replaced by one single call to Kodkod. But even here we made the experience
that the communication overhead can become large if not all predicates are
translated.

Our current approach is to create a partition of the predicates P1, . . . , Pn.
Two predicates are then in the same set of the partition if they both use the
same variable. We translate only complete partitions to keep the communication
overhead small. There is one exception: We do not translate simple equations
where one side is a variable and the other side an easy to compute constant.
Such deterministic equations are computed first by the constraint solver, so the
value for such a variable will be computed before the call to Kodkod is made.
This keeps the translated formula small even for a large amount of data.

4 Experiments

We have chosen a number of problems to compare the performance of ProB’s
constraint solving technique and Kodkod’s SAT solving approach. We have only
used problems that can be completely translated. Completely translated models
are still fully integrated into ProB, the results are converted to ProB’s internal
format and can be used for further animation and model checking. The results
can be seen in Table 1.1 All experiments were conducted on a dual-core Intel i7
1 The source code of the examples are available in the technical report at:
http://www.stups.uni-duesseldorf.de/w/Special:Publication/

PlaggeLeuschel Kodkod2012 .

http://www.stups.uni-duesseldorf.de/w/Special:Publication/PlaggeLeuschel_Kodkod2012
http://www.stups.uni-duesseldorf.de/w/Special:Publication/PlaggeLeuschel_Kodkod2012
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2.8 GHz processor running under Linux. MiniSat was used as a SAT solver.
The measured times do not contain time for starting up ProB and for loading,
parsing and type-checking the model. We measured the time to compute all
solutions to each problem. For Kodkod, we measured two different times: The
“total time” includes the translation of the problem, the communication between
the two processes and the time needed by the solver to produce solutions. The
“solver time” is the time that the Kodkod solver itself needs to find solutions,
without the overhead of translation and communication between the processes.

Table 1. Comparing ProB and Kodkod (in milliseconds)

ProB Kodkod

Model total solver

Who Killed Agatha? 177 123 12
Crew Allocation timeout∗ 297 112
20–Queens 110 8223 8076
Graph Colouring (integer sets) 50 2323 1859
Graph Colouring (enumerated sets) 50 1037 818
Graph Isomorphism 13 553 379
Loop detection in control flow 23037 117 12
SAT instance 11830 4143 588
Send More Money 7 1773 1578
Eratosthenes’ sieve (1 step) 7 5833 5712
Union of two sets (2000 elements) 33 4880 4659
Requirements WRSPM model timeout∗ 333 89
BPEL deadlock check 20 337 68

∗: interrupted after 60 seconds

4.1 Analysis

Relational Operators. Let’s have a look at those problems where Kodkod is much
faster than ProB. These are “crew allocation”, “loop detection” and “WR-
SPM”. In all these problems we search for instances for sets or relations and the
problem is described by relational operators and universal quantification. In this
scenario, ProB sometimes starts to enumerate possible instances for the sets or
relations which leads to a dramatic decrease of performance.

Arithmetic and Large Relations. The arithmetic problems (“Send More Money”,
“Eratosthenes’ Sieve”) are solved by ProB much faster than by Kodkod. The first
two problems deal with arithmetic. ProB uses internally a very efficient finite
domain solver (CLP/FD) to tackle such problems. On the other side, arithmetic
is one of the weaknesses of Kodkod, as we already pointed out.

Kodkod does not seem to scale well when encountering large relations (e.g.
“union of two sets”). This has only been relevant for certain applications of
ProB, such as the property verification on real data [13].

The graph colouring, graph isomorphism and 20-Queens problems are clearly
faster solved by ProB. The structure of the problem is somehow fixed (by having
e.g. total functions) and constraint propagation is very effective.



Validating B,Z and TLA
+ Using ProB and Kodkod 383

Room for Optimization. It can be seen that the graph colouring problem needs
less than half the time when it is encoded with enumerated sets instead of inte-
gers. This indicates that the translation is not yet as effective as it should be. For
the “SAT” problem, the translation and communication takes six time as long
as the computation of the problem itself. This shows that we should investigate
if we can optimize the communication.

4.2 SMT and other Tools

Very recently, an Event-B to SMT-Lib converter has become available for the
Rodin platform [4]. This makes it possible to use SMT solvers (such as veriT,
CVC and Z3 [3]; we used version 3.2 of the latter within the Rodin SMT Solvers
Plug-in 0.8.0r14169 in our experiments below) on Event-B proof obligations.
We have experimented with the translator on the examples from Table 1.2 This
is done by adding a theorem 1=2 to the model: this generates an unprovable
proof obligation which in turn produces a satisfiable SMT formula encoding the
problem. For “Send More Money” from Table 1 Z3 initially reported “unknown”.
After rewriting the model (making the inequalities explicit), Z3 was able to
determine the solution after about 0.250 seconds. It is thus faster than Kodkod,
but still slower than ProB. Surprisingly, Z3 was unable to solve the SMT-Lib
translations for most of the other examples, such as the “Who killed Agatha”
example, the “Set Union” example or the “Graph Colouring” example. Similarly,
for the “Crew Allocation” example, Z3 was unable to find a solution already for
three flights.3 Furthermore, for the constraint solving tasks related to deadlock
checking, Z3 was not able to solve the translations of the simpler examples from
[7]. It is too early for a conclusive result, but it seems that more work needs to
be put into the B to SMT-Lib translator for this approach to be useful for model
finding, animation or constraint-based checking.

Other tools for B are AnimB [17], Brama and BZTT [11]. They all have much
weaker constraint-solving capabilities (see [13,14]) and are unable to solve most
of the problems in Table 1. Another tool is TLC [24] for TLA+. It is very good
at model checking, but constraints are solved by pure enumeration. As such,
TLC is unable to solve, e.g., a 20 variable SAT problem, the NQueens problem
for N>9 and takes more than 2 hours for a variation of the graph isomorphism
problem from Table 1.

5 More Related Work, Discussion and Conclusion

5.1 Alternative Approaches

Before starting our translation to Kodkod, we had experimented with several
other alternate approaches to solve constraints in ProB. [22] offers the user a

2 Apart from “loop” which cannot be easily translated to Event-B due to the use of
transitive closure.

3
ProB solves this version in 0.06 seconds; Table 1 contains the problem for 20 flights.
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Datalog-like language that aims to support program analysis. It uses BDDs to
represent relations and compute queries on these relations. In particular, one
has to represent a state of the model as a bit-vector and events have to be
implemented as relations between two of those bit-vectors. These relations have
to be constructed by creating BDDs directly with the underlying BDD library
(JavaBDD) and storing them into a file. Soon after starting experimenting with
bddbddb it became apparent that due to the lack of more abstract data types
than bit vectors, the complexity of a direct translation from B to bddbddb was
too high, even for small models, and this avenue was abandoned.

SAL [20] is a model-checking framework combining a range of tools for rea-
soning about systems. The SAL tool suite includes a state of the art symbolic
(BDD-based) and bounded (SAT-based) model checkers. Some first results were
encouraging for a small subset of the Event-B language, but the gap between
B and SAL turned out to be too big in general and no realistic way was found
to handle important B operators.4 More details about these experiments can be
found in [19]. For Z, there is an ongoing attempt to use SAL for model checking
Z specifications [5,6]. The examples presented in [5,6] are still relatively simple
and pose no serious challenge in constraint solving. As the system is not publicly
available, it is unclear how it will scale to more complicated specifications and
constraints.

5.2 More Related Work

The first hand-translation of B to Alloy was undertaken in [18]. The pa-
per [16] contains first experiments in translating Event-B to Alloy; but the
work was also not pursued. Later, [15] presented a prototype Z to Al-
loy converter. The current status of this system is available at the website
http://homepages.ecs.vuw.ac.nz/~petra/zoy/; the applicability seems limited by
the lack of type inference and limited support for schemas. In contrast to these
works, we translate directly to Kodkod and have a fully developed system, cov-
ering large subsets of B, Event-B, Z and TLA

+ and delegating the rest to the
ProB kernel.

A related system that translates a high-level logic language based on inductive
definitions to SAT is IDP [23]. Another recent addition is Formula fromMicrosoft
[9], which translates to the SMT solver Z3 [3].

5.3 Future Work

Currently our translation is only applicable for finding constraints satisfying
the axioms as well as for constraint based deadlock checking. We are, however,
working to also make it available for computing enabled events as well as for
more general constraint-based testing and invariant checking.

Another avenue is to enlarge the area of applicability to some recurrent pat-
terns of higher-order predicates. For example, many B specifications use total
4 Private communication from Alexei Iliasov and Ilya Lopatkin, March 6th, 2012.

http://homepages.ecs.vuw.ac.nz/~petra/zoy/
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functions of the type f : DOM --> POW(RAN)which cannot be translated as such
to Kodkod. However, such functions can often be translated to relations of the
form fr : DOM <-> RAN by adapting the predicates accordingly (e.g., translat-
ing f(x) to fr[{x}]). More work is also needed on deciding automatically when
to attempt the Kodkod translation and when predicates should be better left to
the existing ProB kernel. Finally, inspired by the experiments, we also plan to
improve the ProB kernel for better solving constraints over relational operators
such as composition and closure.

5.4 Conclusion

After about three years of work and several attempts our translation to Kod-
kod is now mature enough to be put into practice and has been integrated into
the latest version of the ProB toolset. The development required a consider-
able number of subsidiary techniques to be implemented. As our experiments
have shown that the translation can be highly beneficial for certain kinds of
constraints, and as such opens up new ways to analyze and validate formal spec-
ifications in B, Z and TLA

+. However, the experiments have also shown that
the constraint logic programming approach of ProB can be superior in a con-
siderable number of scenarios; the translation to Kodkod and down to SAT is
not (yet) the panacea. The same can be said of the existing translations from
B to SMT. As such, we believe that much more research is required to reap the
best of both worlds (SAT/SMT and constraint programming). An interesting
side-effect of our work is that the ProB toolset now provides a double-chain
(relying on technology developed independently and using different program-
ming languages and paradigms) of validation for first-order predicates, which
should prove relevant in high safety integrity level contexts.
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Abstract. Matching logic reachability has been recently proposed as an alter-
native program verification approach. Unlike Hoare logic, where one defines
a language-specific proof system that needs to be proved sound for each lan-
guage separately, matching logic reachability provides a language-independent
and sound proof system that directly uses the trusted operational semantics of the
language as axioms. Matching logic reachability thus has a clear practical advan-
tage: it eliminates the need for an additional semantics of the same language in
order to reason about programs, and implicitly eliminates the need for tedious
soundness proofs. What is not clear, however, is whether matching logic reach-
ability is as powerful as Hoare logic. This paper introduces a technique to me-
chanically translate Hoare logic proof derivations into equivalent matching logic
reachability proof derivations. The presented technique has two consequences:
first, it suggests that matching logic reachability has no theoretical limitation over
Hoare logic; and second, it provides a new approach to prove Hoare logics sound.

1 Introduction

Operational semantics are undoubtedly one of the most accessible semantic approaches.
Language designers typically do not need an extensive theoretical background in order
to define an operational semantics to a language, because they can think of it as if
“implementing” an interpreter for the language. For example, consider the following
two rules from the (operational) reduction semantics of a simple imperative language:

while(e) s ⇒ if(e) s; while(e) s else skip
proc() ⇒ body where “proc() body” is a procedure

The former says that loops are unrolled and the second says that procedure calls are
inlined (for simplicity, we assumed no-argument procedures and no local variables). In
addition to accessibility, operational semantics have another major advantage: they can
be efficiently executable, and thus testable. For example, one can test an operational
semantics as if it was an interpreter or a compiler, by executing large test suites of
programs. This way, semantic or design flaws can be detected and confidence in the
semantics can be incrementally build. We refer the interested reader to [1, 3, 6] for
examples of large operational semantics (for C) and examples of how they are tested.
Because of all the above, it is quite common that operational semantics are considered

� Full version of this paper, with proofs, available at http://hdl.handle.net/2142/31335
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trusted reference models of the programming languages they define, and thus serve as
a formal basis for language understanding, design, and implementation.

With few notable exceptions, e.g. [10], operational semantics are typically consid-
ered inappropriate for program verification. That is to a large extent due to the fact
that program reasoning with an operational semantics typically reduces to reasoning
within the transition system associated to the operational semantics, which can be quite
low level. Instead, semantics which are more appropriate for program reasoning are
typically given to programming languages, such as axiomatic semantics in the form of
Hoare logic proof systems for deriving Hoare triples {precondition} code {postcondition}.
For example, the proof rules below correspond to the operational semantics rules above:

H � {ψ ∧ e � 0} s {ψ}
H � {ψ} while(e) s {ψ ∧ e = 0}

H ∪ {ψ} proc() {ψ′} � {ψ} body {ψ′}
H � {ψ} proc() {ψ′}

where “proc()body” is a procedure

The second rule takes into account the fact that the procedure proc might be recursive
(the claimed procedure specification is assumed as hypothesis when deriving its body’s
property). One may need to use several instances of this rule in order to derive the prop-
erties of mutually recursive procedures. Both proof rules above define the notion of an
invariant, the former for while loops (we assume a C-like language, where zero means
false and non-zero means true) and the latter for recursive procedures. These proof
rules are so compact only because we are making (unrealistic) simplifying assumptions
about the language. Hoare logic proof systems for real languages are quite involved
(see, e.g., [1] for C and [9] for Java), which is why, for trusted verification, one needs
to prove them sound with respect to more trusted (typically operational) semantics; the
state-of-the-art approaches in mechanical verification do precisely that [1,8–10,12,18].

Matching logic reachability [16] is a new program verification approach, based on
operational semantics. Instead of proving properties at the low level of a transition sys-
tem, matching logic reachability provides a high-level proof system for deriving pro-
gram properties, like Hoare logic. State properties are specified as (matching logic)
patterns [17], which are program configuration terms with variables, containing both
program and state fragments like in operational semantics, but the variables can be con-
strained using logical formulae, like in Hoare logic. Program properties are specified
as reachability rules ϕ ⇒ ϕ′ between patterns ϕ and ϕ′; intuitively, ϕ ⇒ ϕ′ states
that a program configuration γ that matches pattern ϕ takes zero, one or more steps in
the associated transition system to reach a configuration γ′ that matches ϕ′. Unlike in
Hoare logic, the matching logic reachability proof rules are all language-independent,
taking as axioms an operational semantics given as a set of reachability rules. The key
proof rule of matching logic reachability is Circularity, which language-independently
captures the various circular behaviors in languages, due to loops, recursion, etc.

A � ϕ⇒+ ϕ′′ A ∪ {ϕ⇒ ϕ′} � ϕ′′ ⇒ ϕ′

A � ϕ⇒ ϕ′

A initially contains the operational semantics rules. Circularity adds new reachability
rules to A during the proof derivation process, which can be used in their own proof!
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Its correctness is given by the fact that progress is required to be made (indicated by⇒+
inA � ϕ⇒+ ϕ′′) before a circular reasoning step is allowed.

Everything else being equal, matching logic reachability has a clear pragmatic advan-
tage over Hoare logic: it eliminates the need for an additional semantics of the same lan-
guage, and implicitly eliminates the need for non-trivial and tedious correctness proofs.
The soundness of matching logic reachability has already been shown in [16]. Its prac-
ticality and usability have been demonstrated by the MatchC automatic program ver-
ifier for a C fragment [14], which is a faithful implementation of the matching logic
reachability proof system. What is missing is a formal treatment of its completeness.
Since Hoare logic is relatively complete [5], any semantically valid program property
expressed as a Hoare triple can also be derived using the Hoare logic proof system (pro-
vided an oracle that knows all the properties of the state model is available). Of course,
since Hoare logic is language-specific, its relative completeness needs to be proved for
each language individually. Nevertheless, such relative completeness proofs are quite
similar and not difficult to adapt from one language to another.

This paper addresses the completeness of matching logic reachability. A technique to
mechanically translate Hoare logic triples into reachability rules and Hoare logic proof
derivations into equivalent matching logic reachability proof derivations is presented
and proved correct. The generated matching logic reachability proof derivations are
within a linear factor larger in size than the original Hoare logic proofs. Because of
the language-specific nature of Hoare logic, we define and prove our translation in the
context of a specific but canonical imperative language, IMP. However, the underlying
idea is general. We also apply it to an extension with mutually recursive procedures.

Although we can now regard Hoare logic as a methodological fragment of match-
ing logic reachability, where any Hoare logic proof derivation can be mimicked using
the matching logic reachability proof system, experience with MatchC tells us that in
general one should not want to verify programs following this route in practice. Spec-
ifying program properties and verifying them directly using the matching logic reach-
ability capabilities, without going through its Hoare logic fragment, gives us shorter
and more intuitive specifications and proofs. Therefore, in our view, the result of this
paper should be understood through its theoretical value. First, it shows that match-
ing logic reachability has no theoretical limitation over Hoare logic, in spite of being
language-independent and working directly with the trusted operational semantics. Sec-
ond, it provides a new and abstract way to prove Hoare logics sound, where one does
not need to make use of low-level transition systems and induction, instead relying on
the soundness of matching logic reachability (proved generically, for all languages).

The reminder of this paper is organized as follows. Section 2 recalls operational se-
mantics and Hoare logic, by means of the IMP language. Section 3 recalls matching logic
notions, including the sound proof system for matching logic reachability. Section 4 il-
lustrates the differences between Hoare logic and matching logic reachability. Section 5
presents our translation technique and proves its correctness. Section 6 concludes.

2 IMP: Operational Semantics and Hoare Logic

Here we recall operational semantics, Hoare logic, and related notions, and introduce
our notation and terminology for these. We do so by means of the simple IMP
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IMP language syntax

PVar � program variables
Exp� PVar | Int | Exp op Exp
Stmt � skip | PVar :=Exp | Stmt; Stmt | if(Exp) Stmt else Stmt | while(Exp) Stmt

IMP evaluation contexts syntax

Context � �
| 〈Context, State〉
| Context opExp | Exp opContext
| PVar :=Context | Context; Stmt
| if(Context) Stmt else Stmt

IMP operational semantics

lookup 〈C, σ〉[x]⇒ 〈C, σ〉[σ(x)]
op i1 op i2 ⇒ i1 opInt i2

asgn 〈C, σ〉[x := i]⇒ 〈C, σ[x← i]〉[skip]
seq skip; s2 ⇒ s2

cond1 if(i) s1 else s2 ⇒ s1 if i � 0
cond2 if(0) s1 else s2 ⇒ s2

while while(e) s⇒
if(e) s; while(e) s else skip

Generic

HL-csq
|= ψ1 → ψ3 {ψ3} s {ψ4} |= ψ4 → ψ2

{ψ1} s {ψ2}
IMP axiomatic semantics

HL-skip
·

{ψ} skip {ψ}

HL-asgn
·

{ψ[e/x]} x := e {ψ}

HL-seq
{ψ1} s1 {ψ2} {ψ2} s2 {ψ3}

{ψ1} s1; s2 {ψ3}

HL-cond

{ψ1 ∧ e � 0} s1 {ψ2}
{ψ1 ∧ e = 0} s2 {ψ2}

{ψ1} if(e) s1 else s2 {ψ2}

HL-while
{ψ ∧ e � 0} s {ψ}

{ψ} while(e) s {ψ ∧ e = 0}

Fig. 1. IMP language syntax (top), operational semantics (left) and Hoare logic (right)

imperative language. Figure 1 shows its syntax, an operational semantics based on eval-
uation contexts [7], and a Hoare logic for it. IMP has only integer expressions, which
can also be used as conditions of if and while (zero means false and non-zero means
true, like in C). Expressions are built with integer constants, program variables, and con-
ventional arithmetic constructs. For simplicity, we only show a generic binary operation,
op. IMP statements are the variable assignment, if, while and sequential composition.

The IMP program configurations are pairs 〈code, σ〉, where code is a program frag-
ment and σ is a state term mapping program variables into integers. As usual, we as-
sume appropriate definitions of the domains of integers (including arithmetic operations
i1 opInt i2, etc.) and of maps (including lookup σ(x) and update σ[x ← i] operations).
IMP’s operational semantics has seven reduction rule schemas between program con-
figurations, which make use of first-order variables: σ is a variable of sort State; x is a
variable of sort PVar; i, i1, i2 are variables of sort Int; e is a variable of sort Exp; s, s1, s2

are variables of sort Stmt. A rule mentions a context and a redex, which form a con-
figuration, and reduces the said configuration by rewriting the redex and possibly the
context. As a notation, the context is skipped if not used. E.g., the rule op is in fact
〈C, σ〉[i1 op i2] ⇒ 〈C, σ〉[i1 opInt i2]. The code context meta-variable C allows us to
instantiate a schema into reduction rules, one for each redex of each code fragment. For
example, 〈x := 5; y := 0, x �→ 0〉 can be split as 〈�; y := 0, x �→ 0〉[x := 5], which by
asgn reduces to 〈�; y := 0, x �→ 5〉[skip], or equivalently to 〈skip; y := 0, x �→ 5〉.

We can therefore regard the operational semantics of IMP above as a (recursively
enumerable) set of reduction rules of the form “l ⇒ r if b”, where l and r are program
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configurations with variables constrained by boolean condition b. There are several op-
erational semantics styles based on such rules. Besides the popular reduction semantics
with evaluation contexts, we also have the chemical abstract machine [2] and K [13].
Large languages have been given semantics with only rules of the form “l ⇒ r if b”,
including C [6] (defined in K with more than 1200 such rules). The matching logic
reachability proof system works with any such rules (taking them as axioms), and is
agnostic to the particular semantics or any other method used to produce them.

The major role of an operational semantics is to yield a canonical and typically
trusted model of the defined language, as a transition system over program configu-
rations. Such transition systems are important in this paper, so we formalize them here.
We also recall some mathematical notions and notations, although we generally as-
sume the reader is familiar with basic concepts of algebraic specification and first-order
logic. Given an algebraic signature Σ, TΣ denotes the initial Σ-algebra of ground terms
(terms without variables), TΣ(Var) the free Σ-algebra of terms with variables in Var,
and TΣ,s(Var) the set of Σ-terms of sort s. Valuations ρ : Var → T with T a Σ-algebra
extend uniquely to morphisms of Σ-algebras ρ : TΣ(Var)→ T . These notions extend to
algebraic specifications. Many mathematical structures needed for language semantics
have been defined as initial Σ-algebras: boolean algebras, natural/integer/rational num-
bers, lists, sets, bags (or multisets), maps (used as IMP’s states), trees, queues, stacks,
etc. We refer the reader to the CASL [11] and Maude [4] manuals for examples.

Let us fix the following: (1) an algebraic signature Σ, associated to some desired
configuration syntax, with distinguished sorts Cfg and Bool; (2) a sort-wise infinite set
of variables Var; and (3) a Σ-algebra T , the configuration model, which may but need
not necessarily be the initial or free Σ-algebra. As usual, TCfg denotes the elements of
T of sort Cfg, which we call (concrete) configurations. Let S (for “semantics”) be a set
of reduction rules “l⇒ r if b” like above, where l, r ∈ TΣ,Cfg(Var) and b ∈ TΣ,Bool(Var).

Definition 1. S yields a transition system (T ,⇒TS ) on the configuration model T ,
where γ⇒TS γ

′ for γ, γ′ ∈ TCfg if and only if there exist a reduction rule “l⇒ r if b” in
S and a valuation ρ : Var→ T such that ρ(l) = γ, ρ(r) = γ′ and ρ(b) holds.

(T ,⇒TS ) is a conventional transition system, i.e. a set with a binary relation on it (in
fact,⇒TS⊆ TCfg × TCfg), and captures the operational behaviors of the language defined
by S.

Hence, an operational semantics defines a set of reduction rules which can be used
in some implicit way to yield program behaviors. On the other hand, a Hoare logic de-
fines a proof system that explicitly tells how to derive program properties formalized as
Hoare triples. Operational semantics are easy to define, test and thus build confidence
in, since we can execute them against benchmarks of programs; e.g., the C seman-
tics have been extensively tested against compiler test-suites [3, 6]. On the other hand,
Hoare logics are more involved and need to be proved sound w.r.t. another, more trusted
semantics.

Definition 2. (partial correctness) For the IMP language in Fig. 1, a Hoare triple
{ψ} code {ψ′} is semantically valid, written |= {ψ} code {ψ′}, if and only if for all states
σ and σ′, it is the case that if σ |= ψ and 〈code, σ〉 terminates in (T ,⇒TS ) and
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〈code, σ〉 ⇒�TS 〈skip, σ
′〉 then σ′ |= ψ′. The Hoare logic proof system in Fig. 1 is

sound if and only if � {ψ} code {ψ′} implies |= {ψ} code {ψ′}.

In Definition 2, we tacitly identified the ground configurations 〈code, σ〉 and 〈skip, σ′〉
with their (unique) interpretation in the configuration model T . First-order logic (FOL)
validity, both in Definition 2 and in the HL-csq in Fig. 1, is relative to T . Partial correct-
ness says the postcondition holds only when the program terminates. We do not address
total correctness (i.e., the program must also terminate) in this paper.

3 Matching Logic Reachability

This section recalls matching logic and matching logic reachability notions and nota-
tions from [16, 17]. In matching logic reachability, patterns specify configurations and
reachability rules specify operational transitions or program properties. A language-
independent proof system takes a set of reachability rules (operational semantics) as
axioms and derives new reachability rules (program properties). Matching logic is para-
metric in a model of program configurations. For example, as seen in Section 1, IMP’s
configurations are pairs 〈code,σ〉 with code a fragment of program and σ a State.

Like in Section 1, let us fix an algebraic signature Σ (of configurations) with a distin-
guished sort Cfg, a sort-wise infinite set of variables Var, and a (configuration) Σ-model
T (which need not be the initial model TΣ or the free model TΣ(Var)).

Definition 3. [17] A matching logic formula, or a pattern, is a first-order logic (FOL)
formula which allows terms in TΣ,Cfg(Var), called basic patterns, as predicates. We
define the satisfaction (γ, ρ) |= ϕ over configurations γ ∈ TCfg, valuations ρ : Var→ T
and patterns ϕ as follows (among the FOL constructs, we only show ∃):
(γ, ρ) |= ∃X ϕ iff (γ, ρ′) |= ϕ for some ρ′ :Var→T with ρ′(y) = ρ(y) for all y ∈ Var\X
(γ, ρ) |= π iff γ = ρ(π) where π ∈ TΣ,Cfg(Var)

We write |= ϕ when (γ, ρ) |= ϕ for all γ ∈ TCfg and all ρ : Var→ T .

A basic pattern π is satisfied by all the configurations γ that match it; the ρ in (γ, ρ) |= π
can be thought of as the “witness” of the matching, and can be further constrained
in a pattern. If SUM is the IMP code “s:=0; while(n>0)(s:=s+n; n:=n-1)”, then
∃s (〈 SUM, (s �→ s, n �→n) 〉 ∧ n ≥Int 0) is a pattern matched by the configurations with
code SUM and state mapping program variables s,n into integers s,n with n positive.
Note that we use typewriter for program variables in PVar and italic for mathematical
variables in Var. Pattern reasoning reduces to FOL reasoning in the model T [16].

Definition 4. A (matching logic) reachability rule is a pair ϕ ⇒ ϕ′, where ϕ (the left-
hand side, or LHS) and ϕ′ (the right-hand side, or RHS), are matching logic patterns
(with free variables). A reachability system is a set of reachability rules. A reachability
system S induces a transition system (T ,⇒TS ) on the configuration model: γ⇒TS γ

′ for
γ, γ′ ∈ TCfg iff there exist ϕ⇒ ϕ′ in S and ρ : Var→ T with (γ, ρ) |= ϕ and (γ′, ρ) |= ϕ′.
Configuration γ ∈ TCfg terminates in (T ,⇒TS ) iff there is no infinite ⇒TS -sequence
starting with γ. A rule ϕ⇒ ϕ′ is well-defined iff for any γ ∈ TCfg and ρ : Var→ T with
(γ, ρ) |= ϕ, there exists γ′ ∈ TCfg with (γ′, ρ) |= ϕ′. Reachability system S is well-defined
iff each rule is well-defined, and is deterministic iff (T ,⇒TS ) is deterministic.



From Hoare Logic to Matching Logic Reachability 393

Rules of operational nature Rules of deductive nature

Reflexivity : Case Analysis :
·

A � ϕ⇒ ϕ

A � ϕ1 ⇒ ϕ A � ϕ2 ⇒ ϕ

A � ϕ1 ∨ ϕ2 ⇒ ϕ

Axiom : Logic Framing :
ϕ⇒ ϕ′ ∈ A
A � ϕ⇒ ϕ′

A � ϕ⇒ ϕ′ ψ is a (patternless) FOL formula
A � ϕ ∧ ψ⇒ ϕ′ ∧ ψ

Substitution : Consequence :
A � ϕ⇒ ϕ′ θ : Var→ TΣ(Var)

A � θ(ϕ)⇒ θ(ϕ′)
|= ϕ1 → ϕ′1 A � ϕ′1 ⇒ ϕ′2 |= ϕ′2 → ϕ2

A � ϕ1 ⇒ ϕ2

Transitivity : Abstraction :
A � ϕ1 ⇒ ϕ2 A � ϕ2 ⇒ ϕ3

A � ϕ1 ⇒ ϕ3

A � ϕ⇒ ϕ′ X ∩ FreeVars(ϕ′) = ∅
A � ∃X ϕ⇒ ϕ′

Rule for circular behavior

Circularity :
A � ϕ⇒+ ϕ′′ A ∪ {ϕ⇒ ϕ′} � ϕ′′ ⇒ ϕ′

A � ϕ⇒ ϕ′

Fig. 2. Matching logic reachability proof system (nine language-independent proof rules)

Operational semantics defined with rules “l ⇒ r if b”, like those in Section 2, are
particular well-defined reachability systems with rules of the form l∧b⇒ r. Intuitively,
the first rule states that a ground configuration γ which is an instance of the term l and
satisfies the boolean condition b reduces to an instance γ′ of r. Matching logic was
designed to express terms with constraints: l ∧ b is satisfied by exactly all the γ above.
Thus, matching logic reachability naturally captures reduction semantics (see [16] for
more details). Reachability rules can also specify program properties. The rule

∃s (〈SUM, (s �→ s, n �→ n)〉 ∧ n ≥Int 0)⇒ 〈skip, (s �→ n ∗Int (n +Int 1)/Int2, n �→ 0)〉

specifies the property of SUM. Unlike Hoare triples, which only specify properties about
the final states of programs, reachability rules can also specify properties about inter-
mediate states (see the end of Section 4 for an example). Hoare triples correspond to
particular rules with all the basic patterns in the RHS holding the code skip, like above.

Definition 5. Let S be a reachability system and ϕ⇒ ϕ′ a reachability rule. We define
S |= ϕ⇒ ϕ′ iff for all γ ∈ TCfg such that γ terminates in (T ,⇒TS ) and for all ρ : Var→
T such that (γ, ρ) |= ϕ, there exists some γ′ ∈ TCfg such that γ⇒�TS γ′ and (γ′, ρ) |= ϕ′.

Intuitively, S |= ϕ ⇒ ϕ′ specifies reachability: any terminating configuration matching
ϕ transits, on some execution path, to a configuration matching ϕ′. If S is deterministic,
then “some path” is equivalent to “all paths”, and thus ϕ ⇒ ϕ′ captures partial correct-
ness. If ϕ′ has the empty code skip, then so does γ′ in the definition above, and, in the
case of IMP, γ′ is unique and thus we recover the Hoare validity as a special case.

The above reachability rule for SUM is valid, although the proof is tedious, involving
low-level IMP transition system details and induction. Figure 2 shows the language-
independent matching logic reachability proof system which derives such rules while
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avoiding the transition system. Initially,A contains the operational semantics of the tar-
get language. Reflexivity, Axiom, Substitution, and Transitivity have an operational na-
ture and derive concrete and (linear) symbolic executions. Case Analysis, Logic Fram-
ing, Consequence and Abstraction have a deductive nature. The Circularity proof rule
has a coinductive nature and captures the various circular behaviors that appear in lan-
guages, due to loops, recursion, etc. Specifically, we can deriveA � ϕ⇒ ϕ′ whenever
we can derive ϕ ⇒ ϕ′ by starting with one or more steps in A (⇒+ means derivable
without Reflexivity) and continuing with steps which can involve both rules fromA and
the rule to be proved itself, ϕ ⇒ ϕ′. For example, the first step can be a loop unrolling
in the case of loops, or a function invocation in the case of recursive functions.

Theorem 1. (soundness) [16] Let S be a well-defined matching logic reachability sys-
tem (typically corresponding to an operational semantics), and let S � ϕ ⇒ ϕ′ be a
sequent derived with the proof system in Fig. 2. Then S |= ϕ⇒ ϕ′.

4 Hoare Logic versus Matching Logic Reachability

This section prepares the reader for our main result, by illustrating the major differences
between Hoare logic and matching logic reachability using examples. We show how the
same program property can be specified both as a Hoare triple and as a matching logic
reachability rule, and then how it can be derived using each of the two proof systems.

Recall the SUM program “s:=0; while(n>0)(s:=s+n; n:=n-1)” in IMP. Fig. 3
gives a Hoare logic proof that SUM adds the first natural numbers (bottom left column)
and a matching logic reachability proof of the same property (bottom right column). The
top contains some useful macros. For the explanations of these proofs below, “triple n”
refers to the Hoare triple numbered with n in the bottom left column, and “rule m” refers
to the matching logic sequent numbered with m in the bottom right column in Fig. 3.

The behavior of SUM can be specified by the Hoare triple {ψpre} SUM {ψpost}, that is

{n = oldn ∧ n ≥ 0} SUM {s = oldn*(oldn+1)/2∧ n = 0}

The oldn variable is needed in order to remember the initial value of n. Let us derive
this Hoare triple using the Hoare logic proof system in Fig. 1. We can derive our original
Hoare triple by first deriving triples 1 and 5, namely

{n = oldn ∧ n ≥ 0} s:=0 {ψinv} {ψinv} LOOP {s = oldn*(oldn+1)/2∧ n = 0}

and then using the proof rule HL-seq in Fig. 1. Triple 1 follows by HL-asgn and HL-
csq. Triple 5 follows by HL-while from triple 4, which in turn follows from triples 2
and 3 by HL-seq. Finally, triples 2 and 3 follow each by HL-asgn and HL-csq.

Before we discuss the matching logic reachability proof derivation, let us recall
some important Hoare logic facts. First, Hoare logic makes no theoretical distinction
between program variables, which in the case of IMP are PVar constants, and math-
ematical variables, which in the case of IMP are variables of sort Var. For example,
in the proof above, n as a program variable, n as an integer variable appearing in the
state specifications, and oldn which appears only in state specifications but never in
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Code macros:
SUM ≡ s:=0; while(n>0) (s:=s+n; n:=n-1)
LOOP ≡ while(n>0) (s:=s+n; n:=n-1)
BODY ≡ s:=s+n; n:=n-1
IF ≡ if(n>0) (s:=s+n; n:=n-1; while(n>0) (s:=s+n; n:=n-1)) else skip
S1 ≡ s:=s+n; n:=n-1; while(n>0) (s:=s+n; n:=n-1)
S2 ≡ n:=n-1; while(n>0) (s:=s+n; n:=n-1)

Hoare logic formula macros:
ψpre ≡ n = oldn ∧ n ≥ 0
ψpost ≡ s = oldn*(oldn+1)/2 ∧ n = 0
ψinv ≡ s = (oldn-n)*(oldn+n+1)/2 ∧ n ≥ 0
ψ1 ≡ ψinv ∧ n > 0
ψ2 ≡ s = (oldn-n+1)*(oldn+n)/2 ∧ n > 0

Matching logic pattern macros:
ϕLHS ≡ 〈SUM, (s �→ s, n �→ n)〉 ∧ n ≥Int 0
ϕRHS ≡ 〈skip, (s �→ n ∗Int (n +Int 1)/Int2, n �→ 0)〉
ϕinv ≡ 〈LOOP, (s �→ (n −Int n′) ∗Int (n +Int n′ +Int 1)/Int2, n �→ n′)〉 ∧ n′ ≥Int 0
ϕif ≡ 〈IF, (s �→ (n −Int n′) ∗Int (n +Int n′ +Int 1)/Int2, n �→ n′)〉 ∧ n′ ≥Int 0
ϕtrue ≡ 〈IF, (s �→ (n −Int n′) ∗Int (n +Int n′ +Int 1)/Int2, n �→ n′)〉 ∧ n′ >Int 0
ϕfalse ≡ 〈IF, (s �→ n ∗Int (n +Int 1)/Int2, n �→ 0)〉
ϕ1 ≡ 〈S1, (s �→ (n −Int n′) ∗Int (n +Int n′ +Int 1)/Int2, n �→ n′)〉 ∧ n′ >Int 0
ϕ2 ≡ 〈S2, (s �→ (n −Int n′ +Int 1) ∗Int (n +Int n′)/Int2, n �→ n′)〉 ∧ n′ >Int 0

ϕbody ≡ 〈LOOP, (s �→ (n −Int n′ +Int 1) ∗Int (n +Int n′)/Int2, n �→ n′ −Int 1)〉 ∧ n′ >Int 0
ALOOP ≡ SIMP ∪ {ϕinv ⇒ ϕRHS}

Hoare logic proof

Adtl.
Hoare triple Proof rule Steps

1.{ψpre} s:=0 {ψinv} HL-asgn 1/17
2.{ψ1}s:=s+n {ψ2} HL-asgn 1/17
3.{ψ2}n:=n-1 {ψinv} HL-asgn 1/17
4.{ψ1}BODY {ψinv} HL-seq(2, 3) 0/0
5.{ψinv} LOOP {ψpost} HL-while(4) 1/0
6.{ψpre} SUM {ψpost} HL-seq(1, 5) 0/0

Matching logic reachability proof

Reachability ASLF with Steps
1.SIMP �∃s ϕLHS⇒∃n′ϕinv asgns, seq 1/0/1/1/0
2.SIMP�ϕinv⇒+ϕif while 0/0/0/0/0
3.ALOOP �ϕtrue⇒ϕ1 lookupn, op>, 2/0/0/0/0

cond1

4.ALOOP �ϕ1⇒ϕ2 lookupn, 4/0/0/0/0
lookups, op+,
asgnn, seq

5.ALOOP �ϕ2⇒ϕbody lookupn, op−, 3/0/1/0/0
asgnn, seq

6.ALOOP �ϕbody⇒ϕRHS ϕinv ⇒ ϕRHS 0/0/0/0/0
7.ALOOP �ϕfalse⇒ϕRHS lookupn, op>, 2/0/1/0/0

cond2

8.ALOOP �ϕif⇒ϕRHS 3/1/1/0/0
9.SIMP �ϕinv⇒ϕRHS 0/0/0/0/1

10.SIMP �∃n′ϕinv⇒ϕRHS 0/0/0/1/0
11.SIMP �∃s ϕLHS⇒ϕRHS 1/0/0/0/0

Fig. 3. Side-by-side proofs for the property of SUM using the Hoare logic proof system (left) and,
respectively, the matching logic reachability proof system (right). The Adtl. Steps for the Hoare
proof mean: Consequence rules / substitution steps. The Steps for the matching logic reachability
proof mean: Transitivity / Case Analysis / Consequence / Abstraction / Circularity.
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the program, were formally treated the same way. Second, the same applies to language
arithmetic constructs versus mathematical domain operations. For example, there is no
distinction between the + construct for IMP expressions and the +Int operation that the
integer domain provides. Third, Hoare logic takes FOL substitution for granted (see
HL-asgn), which in reality adds a linear complexity in the size of the FOL specifica-
tion to the proof. These and other simplifying assumptions make proofs like above look
simple and compact, but come at a price: expressions cannot have side effects. Since
in many languages expressions do have side effects, programs typically suffer (possibly
error-prone) transformations that extract and isolate the side effects into special state-
ments. Also, in practice program verifiers do make a distinction between language con-
structs and mathematical ones, and appropriately translate the former into the latter in
specifications.

Let SIMP be the operational semantics of IMP in Fig. 1. Now we show how the
proof system in Fig. 2, using SIMP as axioms, can derive SIMP � ∃sϕLHS ⇒ ϕRHS, the
reachability rule specifying the behavior of SUM already discussed in Section 3, namely

∃s (〈SUM, (s �→ s, n �→ n)〉 ∧ n ≥Int 0)⇒ 〈skip, (s �→ n ∗Int (n +Int 1)/Int2, n �→ 0)〉

This rule follows by Transitivity with rules 1 and 10. By Axiom asgns (Fig. 1) followed
by Substitution with θ(σ) = (s �→ s, n �→n), θ(x) = s and θ(i) = 0, followed by Logic
Framing with n ≥Int 0, we derive ϕLHS ⇒ 〈skip; LOOP, (s �→0, n �→n)〉 ∧ n ≥Int 0.
This “operational” sequence of Axiom, Substitution and Logic Framing is quite com-
mon; we abbreviate it ASLF. Further, by ASLF with seq and Transitivity, we derive
ϕLHS ⇒ 〈LOOP, (s �→ 0, n �→ n)〉 ∧ n ≥Int 0. Then rule 1 follows by Consequence
and Abstraction with X = {s}. Rule 10 follows by Abstraction with {n′} from rule
9. We derive rule 9 by Circularity with rules 2 and 8. Rule 2 follows by ASLF with
while. Rule 8 follows by Case Analysis with ϕtrue ⇒ ϕRHS and ϕfalse ⇒ ϕRHS. The
latter follows by ASLF (lookupn, op>, cond2) together with some Transitivity and
Consequence steps (the rule added by Circularity not needed yet). The former fol-
lows by repeated Transitivity with rules 3, 4, 5, 6. Similarly as before, rules 3, 4, 5
follow by ASLF (lookupn, op>, cond1, lookupn, lookups, op+, asgns, seq, lookupn,
op−, asgnn, seq) together with Transitivity and Consequence steps. Rule 6, namely
SIMP ∪ {ϕinv ⇒ ϕRHS} � ϕbody ⇒ ϕRHS, follows by Axiom (ϕinv ⇒ ϕRHS) and Substitu-
tion (θ(n′)= n′ −Int 1). Note that rule 6 is in fact rule 9 with n′ −Int 1 instead of n′, but
now the axioms include rule 9, so we are done. Welcome to the magic of Circularity!

The table in Fig. 3 shows the number of Hoare logic language-dependent proof rules
(6) and the number of Hoare logic language-independent proof rules (4 HL-csq rules
and 51 low-level steps due to traversing the FOL formulae as part of the application of
substitutions in HL-asgn) used in proving the property of SUM, for a total of 61 steps.
We count the number of low-level substitution steps for the Hoare proof because those
steps, which in practice do not come for free anyway, in fact do not exist in the match-
ing logic reachability proof, being replaced by actual reasoning steps using the proof
system. Fig. 3 also shows the number of matching logic reachability proof rules (80)
used in proving the same example. At a first glance, the matching logic reachability
proof above may appear low-level when compared to the Hoare logic proof. However,
it is quite mechanical, the only interesting part being to provide the invariant pattern
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ϕinv, same like in the Hoare logic proof. Out of the 80 steps, 19 uses of the ASLF se-
quence (rule 6 only uses the Axiom and Substitution rules; each other ASLF step means
3 proof rule applications) and 16 of Transitivity account for most of them (72). Notice
that the applications of ASLF and Transitivity are entirely syntax driven, and thus com-
pletely mechanical. There are 1 step of Case Analysis (for splitting on the symbolic
condition of an if statement), and 2 steps of Abstraction (for eliminating existentially
quantified variables), which are also mechanical. That leaves us with 4 steps of Conse-
quence, and one step of Circularity (for dealing with the loop), which is similar to the
number of steps used by the Hoare logic proof. In general, a matching logic reachability
proof follows the following pattern: apply the operational rules whenever they match,
except for circularities, which are given priority; when the redex is an if, do Case
Analysis; if there are existentially quantified variables, skolemize. Our current MatchC
implementation can prove the SUM example automatically, as well as much more com-
plex programs [14, 16]. Although the paper Hoare logic proofs for simple languages
like IMP may look more compact, as discussed above they make (sometimes unrealis-
tic) assumptions which need to be addressed in implementations. Finally, note that the
matching logic reachability rules are more expressive than the Hoare triples, since they
can specify reachable configurations which are not necessarily final. E.g.,

〈SUM, (s �→ s, n �→ n)〉 ∧ n >Int 0⇒ 〈LOOP, (s �→ n, n �→ n −Int 1)〉

is also derivable and states that if the value n of n is strictly positive, then the loop is
taken once and, when the loop is reached again, s is n and n is n −Int 1.

5 From Hoare Logic Proofs to Matching Logic Reachability Proofs

Here we show how proof derivations using the IMP-specific Hoare logic proof system in
Fig. 1 can be translated into proof derivations using the language-independent matching
logic reachability proof system in Fig. 2 with IMP’s operational semantics in Fig. 1 as
axioms. The sizes of the two proof derivations are within a linear factor. We refer the
reader to [15] for the proofs of the lemmas and theorems in this section.

5.1 Translating Hoare Triples into Reachability Rules

Without restricting the generality, we make the following simplifying assumptions
about the Hoare triples {ψ} code {ψ′} that appear in the Hoare logic proof derivation
that we translate into a matching logic reachability proof: (1) the variables appearing in
code belong to an arbitrary but fixed finite set X ⊂ PVar; (2) the additional variables
appearing in ψ and ψ′ but not in code belong to an arbitrary but fixed finite set Y ⊂ PVar
such that X ∩ Y = ∅. In other words, we fix the finite disjoint sets X, Y ⊂ PVar, and they
have the properties above for all Hoare triples that we consider in this section. Note that
we used a typewriter font to write these sets, which is consistent with our notation for
variables in PVar. We need these disjointness restrictions because, as discussed in Sec-
tion 4, Hoare logic makes no theoretical distinction between program and mathematical
variables, while matching logic does. These restrictions do not limit the capability of
Hoare logic, since we can always pick X to be the union of all the variables appearing in
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the program about which we want to reason and Y to be the union of all the remaining
variables occurring in all the state specifications in any triple anywhere in the Hoare
logic proof, making sure that the names of the variables used for stating mathematical
properties of the state are always chosen different from those of the variables used in
programs.

Definition 6. Given a Hoare triple {ψ} code {ψ′}, we define
H2M({ψ} code {ψ′})

def
≡ ∃X (〈code, σX〉 ∧ ψX,Y ) ⇒ ∃X (〈skip, σX〉 ∧ ψ′X,Y )

where:

1. X, Y ⊂ Var (written using italic font) are finite sets of variables corresponding to
the sets X, Y ⊂ PVar fixed above, one variable x or y in Var (written using italic
font) for each variable x or y in PVar (written using typewriter font);

2. σX is the state mapping each x ∈ X to its corresponding x ∈ X; and
3. ψX,Y and ψ′X,Y are ψ and respectively ψ′ with x ∈ X or y ∈ Y replaced by its corre-

sponding x ∈ X or y ∈ Y, respectively, and each expression construct op replaced
by its mathematical correspondent opInt.

The H2M mapping in Definition 6 is quite simple and mechanical, and
can be implemented by a linear traversal of the Hoare triple. In fact,
we have implemented it as part of the MatchC program verifier, to al-
low users to write program specifications in a Hoare style when possible
(see, e.g., the simple folder of examples on the online MatchC interface at
http://fsl.cs.uiuc.edu/index.php/Special:MatchCOnline).

It is important to note that, like X, Y ⊂ PVar, the sets of variables X, Y ⊂ Var in
Definition 6 are also fixed and thus the same for all Hoare triples considered in this
section. For example, suppose that X = {s, n} and Y = {oldn, z}. Then the Hoare triple

{n = oldn ∧ n ≥ 0} SUM {s = oldn*(oldn+1)/2∧ n = 0}

from Section 4 is translated into the following reachability rule:

∃s, n (〈SUM, (s �→ s, n �→ n)〉 ∧ n = oldn ∧ n ≥Int 0)
⇒ ∃s, n (〈skip, (s �→ s, n �→ n)〉 ∧ s = oldn ∗Int (oldn +Int 1)/Int2 ∧ n = 0)

Not surprisingly, we can use the proof system in Fig. 2 to prove this rule equivalent to
the one for SUM in Section 4. Using FOL and Consequence the above is equivalent to

∃s (〈SUM,(s �→s, n �→oldn)〉∧oldn≥Int0)⇒〈skip, (s �→oldn∗Int (oldn+Int 1)/Int2, n �→0)〉

which, by Substitution (n↔ oldn), is equivalent to the rule in Section 4.
We also show an (artificial) example where the original Hoare triple contains a quan-

tifier. Consider the same X = {s, n} and Y = {oldn, z} as above. Then

H2M({true} n:=4*n+3 {∃z (n = 2*z+1)})

is the reachability rule

∃s, n (〈n:=4*n+3, (s �→ s, n �→ n)〉 ∧ true)
⇒ ∃s, n (〈skip, (s �→ s, n �→ n)〉 ∧ ∃z (n = 2 ∗Int z +Int 1))

Using FOL reasoning and Consequence, this rule is equivalent to

∃s, n 〈n:=4*n+3, (s �→ s, n �→ n)〉 ⇒ ∃s, z 〈skip, (s �→ s, n �→ 2 ∗Int z +Int 1)〉

http://fsl.cs.uiuc.edu/index.php/Special:MatchCOnline
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5.2 Helping Lemmas

The following holds for matching logic in general:

Lemma 1. If S � ϕ⇒ ϕ′ is derivable then S � ∃X ϕ⇒ ∃X ϕ′ is also derivable.

The following lemma states that symbolic evaluation of IMP expressions is actually
formally derivable using the matching logic reachability proof system:

Lemma 2. If e ∈ Exp is an expression, C ∈ Context an appropriate context, and σ ∈
State a state term binding each program variable in PVar of e to a term of sort Int
(possibly containing variables in Var), then the following sequent is derivable:

SIMP � 〈C, σ〉[e]⇒ 〈C, σ〉[σ(e)]

where σ(e) replaces each x ∈ PVar in e by σ(x) (i.e., a term of sort Int) and each
operation symbol op by its mathematical correspondent in the Int domain, opInt.

Intuitively, the following lemma states that if we append some extra statement to the
code of ϕ, then the execution of the original code is still possible, making abstraction of
the appended statement. This holds because of the specific (simplistic) nature of IMP
and may not hold in more complex languages (for example in ones with support for re-
flection or self-generation of code). A direct consequence is that we can (symbolically)
execute a compound statement s1; s2 by first executing s1 until we reach skip and then
continuing from there with s2.

Lemma 3. If SIMP � ϕ ⇒ ϕ′ is derivable and s ∈ Stmt then SIMP � append(ϕ, s) ⇒
append(ϕ′, s) is also derivable, where append(ϕ, s) is the pattern obtained from ϕ by
replacing each basic pattern 〈code, σ〉 with the basic pattern 〈(code; s), σ〉.

5.3 The Main Result

Theorem 2 below states that, for the IMP language, any Hoare logic proof derivation
of a Hoare triple {ψ} code {ψ′} yields a matching logic reachability proof derivation of
the corresponding reachability rule H2M({ψ} code {ψ′}). This proof correspondence is
constructive and the resulting proof derivation is linear in the size of the original proof
derivation. For example, to generate the matching logic reachability proof correspond-
ing to a proof step using the Hoare logic proof rule for while loop, HL-while, we do
the following (see the proof of Theorem 2 in [15] for all the details):

1. We inductively assume a proof for the reachability rule corresponding to the Hoare
triple for the while loop body;

2. We apply the Axiom step with while (Fig. 1), followed by Substitution, Logic Fram-
ing, and Lemma 1, and this way we “unroll” the while loop into its corresponding
conditional statement (in the logical context set by the Hoare triple);

3. Since the conditional statement contains the original while loop in its true branch
and since 2. above does not use Reflexivity, we issue a Circularity proof obligation
and thus add the claimed reachability rule for while to the set of axioms;
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4. We “evaluate” symbolically the condition, by virtue of Lemma 2;
5. We apply a Case Analysis for the conditional, splitting the proof task in two sub-

tasks, the one corresponding to the false condition being trivial to discharge;
6. To discharge the care corresponding to the true condition, we use the proof given

by 1. by virtue of Lemma 3, then the Axiom for seq, and then the reachability rule
added by Circularity and we are done.

Theorem 2. (see [15] for the proof) Let SIMP be the operational semantics of IMP in
Fig. 1 viewed as a matching logic reachability system, and let {ψ} code {ψ′} be a triple
derivable with the IMP-specific Hoare logic proof system in Fig 1. Then we have that
SIMP � H2M({ψ} code {ψ′}) is derivable with the language-independent matching logic
proof system in Fig. 2.

Theorem 2 thus tells us that anything that can be proved using Hoare logic can also be
proved using the matching logic reachability proof system. Furthermore, it gives us a
novel way to prove soundness of Hoare logic proof systems, where the low-level details
of the transition system corresponding to the target programming language, including
induction on path length, are totally avoided and replaced by an abstract, small and fixed
proof system, which is sound for all languages.

5.4 Adding Recursion

In this section we add procedures to IMP, which can be mutually recursive, and show
that proof derivations done with the corresponding Hoare logic proof rule can also be
done using the generic matching logic proof system, with the straightforward opera-
tional semantics rule as an axiom. We consider the following syntax for procedures:

ProcedureName ::= proc | . . .
Procedure ::= ProcedureName() Stmt
Stmt ::= . . . | ProcedureName()

Our procedures therefore have the syntax “proc() body”, where proc is the name of
the procedure and body the body statement. Procedure invocations are statements of the
form “proc()”. For simplicity, and to capture the essence of the relationship between
recursion and the Circularity rule of matching logic, we assume only no-argument
procedures.

The operational semantics of procedure calls is trivial:

call proc() ⇒ body where “proc() body” is a procedure

The Hoare logic proof rule needs to take into account that procedures may be recursive:

H ∪ {ψ} proc() {ψ′} � {ψ} body {ψ′}
H � {ψ} proc() {ψ′}

where “proc()body” is a procedure

This rule states that if the body of a procedure is proved to satisfy its contract while
assuming that the procedure itself satisfies it, then the procedure’s contract is indeed
valid. If one has more mutually recursive procedures, then one needs to apply this rule
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several times until all procedure contracts are added to the hypothesisH , and then each
procedure body proved. The rule above needs to be added to the Hoare logic proof
system in Fig. 1, but in order for that to make sense we need to first replace each Hoare
triple {ψ} code {ψ′} in Fig. 1 by a sequent “H � {ψ} code {ψ′}”.

Theorem 3. (see [15] for the proof) Let SIMP be the operational semantics of IMP in
Fig. 1 extended with the rule call for procedure calls above, and let H � {ψ} code {ψ′}
be a sequent derivable with the extended Hoare logic proof system. Then we have that
SIMP ∪ H2M(H) � H2M({ψ} code {ψ′}) is derivable with the matching logic reacha-
bility proof system in Fig. 2.

6 Conclusion

Matching logic reachability provides a sound and language-independent program
reasoning method, based solely on the operational semantics of the target program-
ming language [16]. This paper addressed the other important aspect of matching logic
reachability deduction, namely its completeness. A mechanical and linear translation
of Hoare logic proof trees into equivalent matching logic reachability proof trees was
presented. The method was described and proved correct for a simple imperative lan-
guage with both iterative and recursive constructs, but the underlying principles of the
translation are general and should apply to any language. The results presented in this
paper have two theoretical consequences. First, they establish the relative completeness
of matching logic reachability for a standard language, by reduction to the relative com-
pleteness of Hoare logic, and thus show that matching logic reachability is at least as
powerful as Hoare logic. Second, they give an alternative approach to proving sound-
ness of Hoare logics, by reduction to the generic soundness of matching logic reacha-
bility.
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Abstract. In order to capture all permissible implementations, partial
models of component based systems are given as at the system level.
However, iterative refinement by engineers is often more convenient at
the component level. In this paper, we address the problem of decom-
posing partial behaviour models from a single monolithic model to a
component-wise model. Specifically, given a Modal Transition System
(MTS) M and component interfaces (the set of actions each component
can control/monitor), can MTSs M1, . . . ,Mn matching the component
interfaces be produced such that independent refinement of each Mi will
lead to a component Labelled Transition Systems (LTS) Ii such that
composing the Iis result in a system LTS that is a refinement of M? We
show that a sound and complete distribution can be built when the MTS
to be distributed is deterministic, transition modalities are consistent and
the LTS determined by its possible transitions is distributable.

Keywords: Modal Transition Systems, Distribution.

1 Introduction

Partial behaviour models such as Modal Transition Systems (MTS) [LT88] ex-
tend classical behaviour models by introducing transitions of two types: required
or must transitions and possible or may transitions. Such extension supports in-
terpreting them as sets of classical behaviour models. Thus, a partial behaviour
model can be understood as describing the set of implementations which pro-
vide the behaviour described by the required transitions and in which any other
additional implementation behaviour is possible in the partial behaviour model.

Partial behaviour model refinement can be defined as an implementation sub-
set relation, thus naturally capturing the model elaboration process in which,
as more information becomes available (e.g. may transitions are removed, re-
quired transitions are added), the set of acceptable implementations is reduced.
Such notion is consistent with modern incremental development processes where
fully described problem and solution domains are unavailable, undesirable or
uneconomical.

The family of MTS formalisms has been shown to be useful as a model-
ing and analysis framework for component-based systems. Significant amount
of work has been devoted to develop theory and algorithmic support in the
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context of MTS, MTS-variants, and software engineering applications. Develop-
ments include techniques for synthesising partial behaviour models from vari-
ous specification languages (e.g. [FBD+11, SUB08, KBEM09]), algorithms for
manipulating such partial behaviour models (e.g. [KBEM09, BKLS09b]), refine-
ment checks [BKLS09a], composition operators including parallel composition
and conjunction (e.g. [FBD+11]), model checking results(e.g. [GP11]), and tools
(e.g. [Sto05, DFFU07]).

Up to now, an area that had been neglected is that of model decomposition
or distribution. Distributed implementability and synthesis has been studied for
LTS [Mor98, CMT99, Ste06, HS05] for different equivalences notion like isomor-
phism, language equivalence and bisimulation. On the other hand, work on MTSs
has mostly assumed a monolithic system model which is iteratively refined until
an implementation in the form of a LTS is reached.

Problems related to MTS distribution were studied by some au-
thors [KBEM09, QG08, BKLS09b] and we compare their work to ours in Sec-
tion 4. However the general problem of how to move from an MTS that plays
the role of a monolithic partial behaviour model to component-wise partial be-
haviour model (set of MTSs) has not been studied. We study the distribution
problem abstractly from the specification languages used to describe the MTS to
be distributed. Those languages may allow description of behaviour that is not
distributable [UKM04] and a distribution is not trivial. Furthermore we study
the problem of finding all possible distributed implementations. Appropriate so-
lutions to this problem would enable engineers to move from iterative refinement
of a monolithic model to component-wise iterative refinement.

More specifically, we are interested in the following problem: given an MTS
M and component interfaces (the set of actions each component can control/
monitor), can MTSs M1, . . . ,Mn matching the component interfaces be pro-
duced such that independent refinement of each Mi will lead to a component
LTS Ii such that composing the Iis result in a system LTS that is a refinement
of M? We show that a sound and complete distribution can be built when the
MTS to be distributed is deterministic, transition modalities are consistent and
the LTS determined by its possible transitions is distributable.

We present various results that answer the above questions to some extent.
The main result of the paper is an algorithm that, under well-defined conditions,
produces component MTSs of a monolithic partial system behaviour model with-
out loss of information. That is, the independent refinement of the component
MTSs to LTSs and their parallel composition results in exactly the set of dis-
tributable implementations of the monolithic MTS.

2 Background

We start with the familiar concept of labelled transition systems (LTSs) which
are widely used for modelling and analysing the behaviour of concurrent and
distributed systems [MK99]. An LTS is a state transition system where transi-
tions are labelled with actions. The set of actions of an LTS is called its alphabet
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and constitutes the interactions that the modelled system can have with its
environment. An example LTS is shown in Figure 5(a).

Definition 1. (Labelled Transition System) Let States be a universal set of
states, and Act be the universal set of action labels. An LTS is a tuple I =
〈S, s0, Σ,Δ〉, where S ⊆ States is a finite set of states, Σ ⊆ Act is the set of
labels, Δ ⊆ (S ×Σ × S) is a transition relation, and s0 ∈ S is the initial state.

Definition 2. (Bisimilarity) [Mil89] Let LTSs I and J such that αI = αJ . I
and J are bisimilar, written I ∼ J , if (I, J) is contained in some bisimilarity
relation B, for which the following holds for all � ∈ Act and for all (I ′, J ′) ∈ B:

1. ∀� · ∀I ′′ · (I ′ �−→ I ′′ =⇒ ∃J ′′ · J ′ �−→ J ′′ ∧ (I ′′, J ′′) ∈ B).
2. ∀� · ∀J ′′ · (J ′ �−→ J ′′ =⇒ ∃I ′′ · I ′ �−→ I ′′ ∧ (I ′′, J ′′) ∈ B).

Definition 3 (Modal Transition System). M = 〈S, s0, Σ,Δr, Δp〉 is an
MTS where Δr ⊆ Δp, 〈S, s0, Σ,Δr〉 is an LTS representing required behaviour
of the system and 〈S, s0, Σ,Δp〉 is an LTS representing possible (but not neces-
sarily required) behaviour.

Every LTS 〈S, s0, Σ,Δ〉 can be embedded into an MTS 〈S, s0, Σ,Δ,Δ〉. Hence
we sometimes refer to MTS with the same set of required and possible transitions
as LTS. We refer to transitions in Δp\Δr as maybe transitions, depict them with
a question mark following the label. An example MTS is shown in Figure 2(a).
We use αM = Σ to denote the communicating alphabet of an MTS M .

Given an MTS M = 〈S, s0, Σ,Δr, Δp〉 we say M becomes M ′ via a required
(possible) transition labelled by �, denoted M

�−→r M
′ (M �−→p M ′), if M ′ =

〈S, s′, Σ,Δr, Δp〉 and (s0, �, s′) ∈ Δr ((s0, �, s′) ∈ Δp). If (s0, �, s′) is a maybe
transition, i.e. (s0, �, s′) ∈ Δp \Δr, we write M

�−→m M ′.
Let w = w1 . . . wk be a word over Σ. Then M

w−→p M ′ means that there exist
M0, . . . ,Mk such that M = M0, M ′ = Mk, and Mi

wi+1−→p Mi+1 for 0 ≤ i < k. We
write M w−→p to mean ∃M ′ ·M w−→p M ′. The language of an MTS M is defined
as L(M) = {w ∈ αM | M w−→p}. Finally we call optimistic implementation of
M (M+) the LTS obtained by making all possible transitions of M required.

Definition 4 (Parallel Composition). Let M = 〈SM , s0M , Σ,Δr
M , Δp

M 〉 and
N = 〈SN , s0N , Σ,Δr

N , Δp
N 〉 be MTSs. Parallel composition (‖) is a symmetric

operator and M ||N is the MTS 〈SM × SN , (s0M , s0N ), Σ,Δr, Δp〉 where Δr and
Δp are the smallest relations that satisfy the rules in Figure 1.

Parallel composition for MTSs with all transitions required (i.e. an LTS) is the
same that parallel composition for LTSs [Mil89].

Strong refinement, or simply refinement [LT88], of MTSs captures the notion
of elaboration of a partial description into a more comprehensive one, in which
some knowledge of the maybe behaviour has been gained. It can be seen as being
a “more defined than” relation between two partial models. An MTS N refines
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M
�−→mM′, N

�−→mN′

M‖N �−→mM′‖N′
M

�−→mM′, N
�−→rN

′

M‖N �−→mM′‖N′
M

�−→rM
′, N

�−→rN
′

M‖N �−→rM′‖N′

M
�−→γM′, � /∈ αN, γ ∈{p,r}

M‖N �−→γM′‖N
� /∈ αM, N

�−→γN′, γ ∈{p,r}
M‖N �−→γM‖N′

Fig. 1. Rules for parallel composition

M if N preserves all of the required and all of the proscribed behaviours of M .
Alternatively, an MTS N refines M if N can simulate the required behaviour of
M , and M can simulate the possible behaviour of N .

Definition 5. (Refinement) Let MTSs N and M such that αM = αN = Σ. N
is a strong refinement of M , written M & N , if (M,N) is contained in some
strong refinement relation R, for which the following holds for all � ∈ Act and
for all (M ′, N ′) ∈ R:

1. ∀� ∈ Σ, ∀M ′′ · (M ′ �−→r M
′′ =⇒ ∃N ′′ ·N ′ �−→r N

′′ ∧ (M ′′, N ′′) ∈ R).
2. ∀� ∈ Σ, ∀N ′′ · (N ′ �−→p N ′′ =⇒ ∃M ′′ ·M ′ �−→p M ′′ ∧ (M ′′, N ′′) ∈ R).

Property 1. Refinement is a precongruence with regards to ‖ meaning that if
Mi & Ii for i ∈ [n] then ‖i∈[n]Mi & ‖i∈[n]Ii where [n] = {1, . . . , n}.

LTSs that refine an MTS M are complete descriptions of the system behaviour
up to the alphabet of M . We refer to them as the implementations of M .

Definition 6. (Implementation) We say that an LTS I = 〈SI , i
0, Σ,ΔI〉 is

an implementation of an MTS M , written M & I, if M & MI with MI =
〈SI , i

0, Σ,ΔI , ΔI〉. We also define the set of implementations of M as I[M ] =
{LTS I | M & I}.

An MTS can be thought of as a model that represents the set of LTSs that
implement it. The diversity of the set results from making different choices on
the maybe behaviour of the MTS. As expected, refinement preserves implemen-
tations: M &M ′ then I[M ] ⊇ I[M ′].

Given a word w ∈ Σ∗ the projection of w onto Σi ⊆ Σ (w|Σi) is obtained by
removing from w the actions not in Σi.

Let A ⊆ Σ, M = 〈S, s0, Σ,Δp, Δr〉 and s ∈ S then the closure of the state s
over A is the set of states reachable from s using only transitions labelled by an
action in A. Formally:

CA(s) = {s′ | s w−→p s′ ∧ w ∈ A∗}

The projection of an MTS M over an alphabet Σ is an MTS M |Σ obtained
from M by replacing the labels in M that are not in Σ by the internal action
τ (written tau in the graphic representation of the MTS). Note that for any
alphabet Σ in this paper holds that τ /∈ Σ.

We now discuss distribution of LTS models. Distribution of an LTS is with
respect to a specification of component interfaces (the actions each component
controls and monitors). Such specification is given by an alphabet distribution.
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Given an alphabet Σ we say that Γ = 〈Σ1, . . . , Σn〉 is an alphabet distribution
over Σ iff Σ = ∪i∈[n]Σi were each Σi is the (non-empty) alphabet of the local
process i.

Definition 7 (Distributable LTS). Given I, an LTS over Σ, and Γ = 〈Σ1,
. . . ,Σn〉 an alphabet distribution of Σ, I is distributable if there exist component
LTSs I1, . . . , In with αIi = Σi such that ‖i∈[n]Ii ∼ I.

The distributed synthesis problem consists on deciding whether an LTS is dis-
tributable and, if so, build the distributed component LTSs. Unfortunately, it
is unknown if deciding whether an LTS is distributable is decidable in gen-
eral [CMT99]. However, it has been solved for weaker equivalence notions such
as isomorphism [Mor98, CMT99] and language equivalence [CMT99, Ste06], and
for restricted forms of LTS such as deterministic LTS [CMT99].

The following is a formal yet abstract distribution algorithm for determinstic
LTS defined in terms of the procedure in [CMT99, Ste06]. The procedure builds
the component Ii by projecting I over Σi and then determinising (using a subset
construction [HU79]) Ii.

Definition 8 (LTS distribution). Let I = 〈S, s0, Σ,Δ〉 be an LTS and Γ
an alphabet distribution then the distribution of I over Γ is DIST LT S

Γ [I] =
{I1, . . . , In} where ∀i ∈ [1, n] · Ii = 〈Si, s

0
i , Σi, Δi〉 and:

– Si ∈ 2S where Si is reachable from the initial state following Δi.
– s0i = CΣi

(s0).

– (s, t, q) ∈ Δi ↔ q =
⋃
k∈s

{k′′ ∈ CΣi
(k′) | k t−→p k′}.

When Γ is clear from the context we just write DIST LT S [I].

Theorem 1 (LTS Distribution Soundness and Completeness). [CMT99]
Let I be a deterministic LTS, Γ an alphabet distribution and DIST LT S

Γ [I] =
{I1, . . . , In} then I is distributable (and in fact ‖i∈[n]Ii ∼ I) iff L(I) = L(‖i∈[n]Ii).

3 MTS Distribution

A distribution of an MTS according to an alphabet distribution Γ is simply a
set of component MTSs {M1, . . . ,Mn} such that αMi = Σi. Of course, a first
basic requirement for a distribution of a system MTS into component MTSs
is soundness with respect to refinement: any implementation of the component
MTSs, when composed in parallel, yields an implementation of the system MTS
(i.e. if Mi & Ii for i ∈ [n] then M & ‖i∈[n]Ii).

A second desirable requirement is completeness, meaning no distributable
implementation is lost: a decomposition of M over Γ into a set of components
{M1, . . . ,Mn} such that every distributable implementation of M is captured by
the components. In other words, ∀I implementation of M that is distributable
over Γ there are Ii with i ∈ [n] such that Mi & Ii and ‖i∈[n]Ii ∼ I.
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As discussed in the background section, multiple definitions of distribution
for LTS exist. We restrict to deterministic implementations but take the most
general distribution criteria, namely bisimilarity which under determinism is the
same as language equivalence. The restriction to deterministic implementations
is because as an LTS is also an MTS and MTS refinement applied to LTS is
bisimulation, solving sound distribution for non-deterministic MTS would solve
distribution for non-deterministic LTS considering bisimulation equivalence. The
latter is not known to be decidable [CMT99].

Definition 9 (Deterministic and Distributable Implementations). Let
M be an MTS and Γ a distribution. We define DDIΓ [M ] = {I ∈ I[M ] | I is
deterministic and distributable over Γ}.

Definition 10 (Complete and Sound MTS Distributions). Given an
MTS M and an alphabet distribution Γ , a complete and sound distribution of
M over Γ are component MTSs M1, . . . ,Mn such that αMi = Σi and:

1. (soundness) for any set of LTSs {I1, . . . , In}, if Mi & Ii then M & ‖i∈[n]Ii.

2. (completeness) for every I ∈ DDIΓ [M ] there are Ii with i ∈ [n] where
Mi & Ii and ‖i∈[n]Ii ∼ I.

A general result for distribution of MTS is not possible. There are MTS for
which all their distributable implementations cannot be captured by a set of
component MTSs.

Property 2. In general, a complete and sound distribution does not always exist.

Proof. Let’s consider the MTS M in Figure 2(a) and the distribution Γ = 〈Σ1 =
{a, w, y}, Σ2 = {b, w, y}〉. The MTSs in Figures 2(b) and 2(c) refine M . Let J
and K be the optimistic implementations of the MTSs in Figures 2(b) and 2(c)
respectively. As the MTSs in the aforementioned figures refine M , its implemen-
tations are also implementations of M . It is easy to see that J and K are both
distributable over Γ . Then, a compact complete distribution of M should cap-
ture J and K. We shall show that in order to capture J and K the distribution
cannot be sound.

Let M1,M2 be a complete distribution of M over Γ with αMi = Σi. As it is
complete and J is distributable, there must be implementations of M1 and M2

that composed are bisimilar to J . Analogously, there must be implementations
of M1 and M2 that composed are bisimilar to K. Let us consider a characteristic
that an implementation J1 of M1 must have in order to yield J when composed
with an implementation J2 of M2. As J

a−→, a ∈ αM1 and a /∈ αM2, it must be
the case that J1

a−→.
The same reasoning can be applied to an implementationK2 ofM2: In order to

yield K when composed with an implementation K1 of M1, as K
b−→, b ∈ αM2

and b /∈ αM1, it must be the case thatK2
b−→. Hence, we have an implementation

J1 of M1 such that J1
a−→ and an implementation K2 of M2 such that K2

b−→.

This entails that J1 ‖ K2
ab−→. As M

ab

�−→ then J1 ‖ K2 is not a refinement of M .
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Fig. 2. MTSs used for proof of Property 2

Having assumed that M1 and M2 where a complete distribution of M over Γ
we have concluded that it is not a sound distribution of M over Γ . !"

This above property is reasonable: not all distributable implementations of an
MTS can be achieved by refining independently partial specifications of compo-
nents. Some decisions (or lack of them) regarding system behaviour captured in
the system MTS may require coordinated refinement of component MTSs. In
the counter-example described above, the system MTS states that either a or b
will occur initially but not both. The decision on which will be provided in the
final implementation requires coordinated refinement of the component models:
Either J provides a and K does not provide b or the other way round.

3.1 Distribution of a Deterministic MTS

Despite negative result in Property 2 there is a relevant class of MTSs for which
a sound and complete distribution is guaranteed to exist and for which an al-
gorithm that produces such distribution can be formulated. The class is that
of deterministic MTSs which assign modalities consistently and their optimistic
implementation (M+) is a distributable LTS.

We first give an overview of the distribution algorithm for MTS, then prove
soundness of the distributions produced by the algorithm, then define modal
consistency of transitions and prove the distributions produced by the algorithm
are also complete under modal consistency.

The distribution algorithm requires a deterministic MTS M for which its op-
timistic implementation M+ is a distributable LTS. The algorithm builds on the
LTS distribution algorithm for deterministic LTS under bisimulation equivalence
(see Background). The main difference is that it associates modalities to tran-
sitions of component models it produces based on the modalities of the system
MTS.

As a running example consider the MTS N in Figure 3 with alphabet Σ =
{a, b, c, d} and the alphabet distribution Γ = 〈Σ1 = {a, b}, Σ2 = {b, c, d}〉.
Conceptually, the algorithm projects N+ onto the component alphabets and
determinises each projection. The modality of a component MTS transition is set
to required if and only if at least one of its corresponding transitions in the system
MTS is required. The projections of N+ on Σ1 and Σ2 are depicted in Figure 4,
the deterministic versions of these projections are depicted in Figure 5, and the
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Fig. 4. N+ projected onto the local alphabets

component MTS resulting from adding modalities to transitions is depicted in
Figure 6. Note that the numbers in states of the deterministic MTS in Figures 5
and 6 correspond to the states of N as a result of determinisation.

We now present a formal yet abstract distribution algorithm defined in terms
of the subset construction for determinising LTS models [HU79] and the LTS
distribution algorithm in [Ste06].

Definition 11 (MTS distribution). Let M = 〈S, s0, Σ,Δp, Δr〉 be an MTS
and Γ a distribution then the distribution of M over Γ is DISTMT S

Γ [M ] =
{M1, . . . ,Mn} where ∀i ∈ [1, n]Mi = 〈Si, s

0
i , Σi, Δ

p
i , Δ

r
i 〉 and:

– Si ∈ 2S where Si is reachable from the initial state following Δp
i .

– s0i = CΣi
(s0).

– (s, t, q) ∈ Δp
i ↔ q =

⋃
k∈s

{k′′ ∈ CΣi
(k′) | k t−→p k′}.

– (s, t, q) ∈ Δr
i ↔ (s, t, q) ∈ Δp

i ∧ ∃k ∈ s · k t−→r.

When Γ is clear from the context we just write DISTMT S [M ].
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Fig. 5. N+ projected onto the local alphabets and determinised
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Fig. 6. Distribution of MTS in Figure 3

Note that in component N1 of Figure 6 the required b transition from state
{8, 9, 10} to {11, 12} is a consequence of the required b transition from 9 to 11
and the maybe b transition from 10 to 12 in N . Had the transition from {8, 9, 10}
to {11, 12} in N1 been a maybe rather than required then the distribution would
not be sound. Let N ′

1 be such component. N ′
1 allows an implementation as in

Figure 5(a) but without the last b transition from {8, 9, 10} to {11, 12}. We refer

to this implementation as I1: I1 aba−→p

b

�−→. Let I2 be the LTS in Figure 5(b). I2

is actually an implementation of N2. But I1 ‖ I2 is not an implementation of N

as I1 ‖ I2 acbad−→ p

b

�−→ and N
acbad−→ p

b−→r. Hence the need to make the b transition
{8, 9, 10} to {11, 12} required in order to ensure soundness.

We now discuss soundness of MTS distributions as constructed in Defini-
tion 11. First, note that Definition 11 when applied to LTS is equivalent to
Definition 8, that is the distribution constructed when the MTS is a determin-
istic LTS is, in effect, a distribution of the LTS. What follows is a sketch of the
more general soundness proof.

Theorem 2 (Soundness). Let M be a deterministic MTS and Γ a distribu-
tion such that M+ is a distributable LTS over Γ , then the MTS distribution
(Definition 11) is sound (as defined in Definition 10).

Proof. We need to prove that for any I1, . . . , In such that Mi & Ii then M &
‖i∈[n]I. As refinement is a precongruence with regards to ‖ meaning that if
Mi & Ii for i ∈ [n] then ‖i∈[n]Mi & ‖i∈[n]Ii we just need to prove M & ‖i∈[n]Mi.
Thus M & ‖i∈[n]Ii.

We now prove M & ‖i∈[n]Mi. M+ is distributable and the component MTSs
produced by DISTMT S [M ] are isomorphic, without considering the transitions’
modality, to the component LTSs produced by DIST LT S [M+]. So the parallel
composition of the component MTSs is isomorphic, again without considering
the transitions’ modality, to the parallel composition of the component LTSs.
When the component MTSs are created if, after the closure, there is a required
transition then the component will have a required transition and so the compo-
sition may have a required transition where the monolithic MTS had a maybe
transition. But any possible behaviour in the composed MTS is also possible
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in the monolithic MTS. Therefore the composed MTS is a refinement of the
monolithic MTS. !"

We now define modal consistency of transitions, which is one of the conditions
for Definition 11 to produce complete distributions.

We say that the modalities of an MTS M are inconsistent with respect to an
alphabet distribution Γ when there is an action � such that there are two traces
w and y leading to two transitions with different modalities on � (i.e. a required
and a maybe �-transition) and that for each component alphabet Σi ∈ Γ where
� ∈ Σi, the projection of w and y on Σi are the same.

The intuition is that if M is going to be distributed to deterministic partial
component models, then some component contributing to the ocurrence of the
� after w and y must have reached both points through different paths (i.e.
w|Σi �= y|Σi). If this is not the case, then the distribution will have to make �
after w and y always maybe or always required.

Definition 12 (Alphabet Distribution Modal Consistency). Let Γ be an
alphabet distribution and M = 〈S, s0, Σ,Δr, Δp〉 an MTS then M is modal
consistent with respect to Γ iff ∀w, y ∈ Σ∗, � ∈ Σ ·M w−→p

�−→r ∧M
y−→p

�−→m

implies ∃i ∈ [n] · � ∈ Σi ∧ w|Σi �= y|Σi .

Consider model N from Figure 3. This MTS is modal consistent for Γ = 〈Σ1 =
{a, b}, Σ2 = {b, c, d}〉 as the only w, y and � such that N

w−→p
�−→m and

N
y−→p

�−→m are � = b, and w and y sequences leading to states 9 and 10
(for instance w = cabda and y = acbac). However, all sequences leading to 9
when projected onto Σ2 yield cbd while those leading to 10 yield cbc. Hence,
consistency is satisfied.

Now consider model P in Figure 7 (a modified version of N but with the
following modalities changed: 5 a−→m 8 and 6 a−→m 9). P is not modal consistent
with respect to Γ = 〈Σ1 = {a, b}, Σ2 = {b, c, d}〉: Now there are w = acb and
y = acbc such that P w−→p

a−→m and P
y−→p

a−→m yet the only Σi that includes
a is Σ1 and w|Σ1 = y|Σ1 = ab.

A sound and complete distribution of P would require a deterministic compo-
nent MTS for Σ1 = {a, b} that would either require a after ab or have a maybe a
after ab. The former would disallow the implementation I1 of Figure 8(b) which
in turn would make impossible having a component implementation I2 such that
I1 ‖ I2 yields I of Figure 8(a) which is a deterministic distributable implementa-
tion of P . Hence requiring a after ab would lead to an incomplete distribution.
Choosing the latter would allow implementation I1 which would make the dis-
tribution unsound: In order to have implementations that when composed yield
P+, an implementation with alphabet Σ2 = {b, c, d} bisimilar to Figure 8(c)
is needed. However, such an implementation, when composed with I1 is not a
refinement of P .

Theorem 3 (Completeness). Let M be a deterministic MTS and Γ a distri-
bution such that M+ is a distributable LTS over Γ , and M is modal consistent
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then the MTS distribution (Definition 11) is complete (as defined in Defini-
tion 10).

The proof of this theorem uses the following lemmas:

Lemma 1. Let M,N be deterministic MTSs with αN = αM if ∀w ∈ Σ∗, t ∈ Σ

– N
w−→p =⇒ M

w−→p.

– N
w−→p ∧M

w−→p M ′ t−→r =⇒ N ′ t−→r.

Then M & N .

Lemma 2. Let M be an MTS and I ∈ DDI [M ]. For every Σi ∈ Γ let Mi and
Ii be the components corresponding to Σi in DISTMT S [M ] and DIST LT S [I]
respectively then ∀w ∈ Σi · Ii w−→p =⇒ Mi

w−→p.

Proof (Theorem 3). Let DISTMT S
Γ [M ] = {M1, . . . ,Mn}. We need to prove that

for every I ∈ DDIΓ [M ] there are Ii with i ∈ [n] where Mi & Ii and ‖i∈[n]Ii ∼ I.
As I is distributable over Γ then DIST LT S

Γ [I] = {Q1 . . .Qn} and ‖i∈[n]Qi ∼ I.
Recall that the distribution algorithms produce deterministic components.

Therefore we can use Lemma 1 to show that each MTS component is refined
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by its corresponding LTS component. Let Mi and Qi be the MTS and LTS
components for Σi ∈ Γ . Every possible trace in Qi is possible in Mi (Lemma 2).
Then the only way Qi is not a refinement of Mi is because there is some required
behaviour in Mi that is not present in Qi. So lets suppose Mi �& Qi, then

∃z ∈ Σ∗
i , t ∈ Σi such that Mi

z−→p T
t−→r ∧ Qi

z−→p Q
t

�−→.
We now present an algorithm that creates, for every i ∈ [n], a new component

Ii from Qi by adding the missing required transitions from Mi in order to get
Mi & Ii. The algorithm iteratively takes a pair (Mi, I

j
i ), where Iji is the com-

ponent Ii constructed up to iteration j, such that Mi �& Iji and adds a required
transition for a pair mirroring Mi structure. The structure of Mi has to be kept
in the resulting Ii in order to avoid trying to add infinite required transitions
due to a loop of required transitions in Mi. If the added transitions are part,
and complete, a loop in Mi then that same loop will be created in Ii when the
algorithm adds the required transitions. Furthermore, the added transitions do
not modify the composition (Lemma 3).

Algorithm 1. Extension to each Qi to get a refinement of Mi

Input: {(M1, Q1), . . . , (Mn, Qn)}
Output: {I1, . . . , In}

I1 = Q1; . . . ; In = Qn;
while ∃i ∈ [n] ·Mi �� Ii do
take (Mi, Ii) ·Mi �� Ii;

take z ∈ Σ∗
i ·Mi

z−→p P
t−→r P

′ ∧ Ii
z−→ Q

t

�−→;
if ∃u ∈ Σ∗

i ·Mi
u−→p P ′ ∧ Ii

u−→ Q′ then

Q
t−→ Q′;

else
Add a new state Q′ to Ii and then the transition Q

t−→ Q′;
end if

end while

As an example of how the algorithm works consider the MTS E in Figure 9(a),
that is like N from Figure 3 only that the d transitions are maybe in E instead of
required, and Γ = 〈Σ1 = {a, b}, Σ2 = {b, c, d}〉. Let DISTMT S [E] = {E1, E2}.
E1 is the same as component N1 in Figure 6(a). E2 is like component N2 in
Figure 6(b) only that the d transition from {5, 8} to {6, 9} is a maybe d transition.
IE in Figure 9(b) is an implementation of E and DIST LT S [IE ] = {Q1, Q2}
(Figure 10(a) and 10(b)). The algorithm takes {(E1, Q1), (E2, Q2)} and returns
components I1 (I1 is the same as the LTS in Figure 5(a)) and I2 (I2 is in fact
Q2). As E2 & Q2 then the algorithm will not change Q2 so I2 = Q2. E1 �& Q1

because E1
aba−→p

b−→r and Q1
aba−→p

b

�−→. The algorithm then adds the missing
transition to Q1 and the result is I1 (I1 is the same as the LTS in Figure 5(a)).
Now E1 & I1 and the algorithm finishes. See how I1 ‖ I2 ∼ Q1 ‖ Q2 as the
added b transition to Q1 in I1 does not appear in the composition because Q2

does not provide the needed synchronisation.
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Finally we prove that the algorithm finishes. As there are finite components
it is sufficient to show that Mi & Imi with m finite where Iji is Ii after doing j
additions of required transitions to Ii.

Each iteration adds a missing required t transition to a Iji that is present inMi.
If the required transition in Mi goes to P ′ and there is a u ∈ Σ∗

i from Mi to P ′

such that u is possible in Iji leading to Q′ then the new transition goes to Q′. Q′

is already present in Ij−1
i and the algorithm never modifies possible transitions

so any possible behaviour in Ij−1
i is possible in Mi and the same stands for Iji .

On the other hand, if P ′ is not reachable by a word that is possible in Iji then the
added required transition goes to a new state. This procedure modifies Ii until
all reachable required transitions in Mi not present in Ii are added. As loops of
required transitions in Mi that have to be added to Ii are added preserving the
loop structure then the iterations for component Mi can not be more than the
amount of required transitions present in Mi. And this is done for every pair of
components but as they are n the algorithm finishes. !"
The following lemma is used in the proof of Theorem 3. For all i ∈ [n] Ii refines
Mi and the added transitions do not modify the composition. Formally:

Lemma 3. Let M be a deterministic MTS such that M+ is distributable over
Γ and modal consistent. Let I ∈ DDI [M ], DIST LT S [I] = {Q1, . . . , Qn},
DISTMT S [Mi] = {M1, . . . ,Mn} and {I1, . . . , In} the output of Algorithm 1
for {(M1, Q1), . . . , (Mn, Qn)}then:
– ∀i ∈ [n] Mi & Ii.
– ‖i∈[n]Ii ∼ ‖i∈[n]Qi (and therefore ‖i∈[n]Ii ∼ I).

4 Related Work

Distributed implementability and synthesis has been studied for LTS for different
equivalences notion like isomorphism, language equivalence and
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bisimulation [Mor98, CMT99, Ste06, HS05]. The general distributed implementabil-
ity problem has not been studied for MTS.

A component view of the system has been taken in the context of studies
on parallel composition of MTS [BKLS09b], however such view is bottom-up:
Given partial behaviour models of components, what is the (partial) behaviour
of the system resulting of their parallel composition. The only notable example
that takes a top-down approach is [KBEM09] A synthesis procedure is proposed
that given system level OCL properties and UML scenarios, component partial
behaviour models are automatically constructed such that their composition
requires the behaviour required by system level properties and scenarios, and
proscribes the behaviour not permitted by the same properties and scenarios.

In [QG08], MTS distribution is studied as a instance of more general contract-
based formalism. The notion that corresponds to our definition of complete and
sound MTS Distribution (see Definition 10) is called decomposability, Definition
3.8 [QG08]. Decomposability is a strictly stronger notion which requires all im-
plementations of M to be captured by some distribution ‖i∈[n]Mi. Our definition
only requires distributable implementations of M to be refinements of ‖i∈[n]Mi.
In particular Figure 3, with transition from 6 to 9 changed to being only possi-
ble, is not distributable according to [QG08] but is according to our definition.
Moreover, the distribution algorithm of [QG08] cannot handle examples such
as Figure 3.3 in [Ste06] which can be handled by standard LTS distribution
algorithms (and ours) by determinising projections.

5 Conclusions

In this paper we provide results that support moving from iterative refinement of
a monolithic system models to component-wise iterative refinement. We present
a distribution algorithm for partial behaviour system models specified as MTS
to component-wise partial behaviour models given as sets of MTSs. We precisely
characterise when the decomposition provided is sound and complete, we also
discuss why the restrictions to the distribution problem (namely determinism,
modal consistency and distributability of M+) are reasonable, are unlikely to be
avoidable for any sound and complete distribution method, and can be seen as
a natural extension of the limitations of existing LTS distribution results.

Future work will involve experimenting with case studies to assess the practi-
cal limitations imposed by the restrictions introduced to enforce completeness of
distributions. We expect insights gained to allow for definition of more generally
applicable sound but not complete distribution algorithms and elaboration tech-
niques to support refinement of system models into models for which distribution
algorithms exist.
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[BKLS09a] Beneš, N., Křet́ınský, J., Larsen, K.G., Srba, J.: Checking Thorough
Refinement on Modal Transition Systems Is EXPTIME-Complete. In:
Leucker, M., Morgan, C. (eds.) ICTAC 2009. LNCS, vol. 5684, pp. 112–126.
Springer, Heidelberg (2009)



Distribution of Modal Transition Systems 417
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Abstract. Over the past decade, malware costs more than $10 billion every year
and the cost is still increasing. Classical signature-based and emulation-based
methods are becoming insufficient, since malware writers can easily obfuscate
existing malware such that new variants cannot be detected by these methods.
Thus, it is important to have more robust techniques for malware detection. In
our previous work [24], we proposed to use model-checking to identify malware.
We used pushdown systems (PDSs) to model the program (this allows to keep
track of the program’s stack behavior), and we defined the SCTPL logic to spec-
ify the malicious behaviors, where SCTPL can be seen as an extension of the
branching-time temporal logic CTL with variables, quantifiers, and predicates
over the stack. Malware detection was then reduced to SCTPL model-checking
of PDSs. However, in our previous work [24], the way we used SCTPL to specify
malicious behaviors was not very precise. Indeed, we used the names of the reg-
isters and memory locations instead of their values. We show in this work how to
sidestep this limitation and use precise SCTPL formulas that consider the values
of the registers and memory locations to specify malware. Moreover, to make the
detection procedure more efficient, we propose an abstraction that reduces dras-
tically the size of the program model, and show that this abstraction preserves all
SCTPL\X formulas, where SCTPL\X is a fragment of SCTPL that is sufficient to
precisely characterize malware specifications. We implemented our techniques in
a tool and applied it to automatically detect several malwares. The experimental
results are encouraging.

1 Introduction

The number of malwares that produced incidents in 2010 is more than 1.5 billion [11].
A malware may bring serious damage, e.g., the worm MyDoom slowed down global
internet access by ten percent in 2004 [9]. Thus, it is crucial to have efficient up-to-date
virus detectors. Existing antivirus systems use various detection techniques to identify
viruses such as (1) code emulation where the virus is executed in a virtual environment
to get detected; or (2) signature detection, where a signature is a pattern of program code
that characterizes the virus. A file is declared as a virus if it contains a sequence of bi-
nary code instructions that matches one of the known signatures. Each virus variant has
its corresponding signature. These techniques have some limitations. Indeed, emulation
based techniques can only check the program’s behavior in a limited time interval. They
cannot check what happens after the timeout. Thus, they might miss the viral behavior if
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D. Giannakopoulou and D. Méry (Eds.): FM 2012, LNCS 7436, pp. 418–433, 2012.
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it occurs after this time interval. As for signature based systems, it is very easy to virus
developers to get around them. It suffices to apply obfuscation techniques to change the
structure of the code while keeping the same functionality, so that the new version does
not match the known signatures. Obfuscation techniques can consist of inserting dead
code, substituting instructions by equivalent ones, etc. Virus writers update their viruses
frequently to make them undetectable by these antivirus systems.

Recently, to sidestep these limitations, model-checking techniques have been used
for virus detection [5,22,7,8,16,14,17]. Such techniques allow to check the behavior
(not the syntax) of the program without executing it. These works use finite state graphs
as program model. Thus, they cannot accurately represent the program’s stack. How-
ever, as shown in [20], being able to track the program’s stack is very important for
malware detection. For example, to check whether a program is malicious, anti-viruses
start by identifying the system calls it makes. To evade these virus detectors, malware
writers try to obfuscate the system calls by using pushes and jumps. Thus, it is important
to be able to track the stack to detect such calls.

To this aim, we proposed in our previous work [24] a new approach for malware
detection that consists in (1) Modeling the program using a Pushdown System (PDS).
This allows to take into account the behavior of the stack. (2) Introducing a new logic,
called SCTPL, to represent the malicious behavior. SCTPL can be seen as an extension
of the branching-time temporal logic CTL with variables, quantifiers, and predicates
over the stack. (3) And reducing the malware detection problem to the model-checking
problem of PDSs against SCTPL formulas. Our techniques were implemented in a tool
and applied to detect several viruses.

However, [24] still has some limitations: (1) The PDS corresponding to the program
to be analyzed was generated by hand by the user. (2) Due to the high complexity of
SCTPL model-checking, we were not able to check several examples (they run out of
memory). (3) When specifying malicious behavior using SCTPL, we used formulas
where the variables range over the names of the program’s registers, not over their
values. Thus, the specifications were not precise. To understand this last problem, let us
consider the program of Figure 1(a). It corresponds to a critical fragment of the Email-
worm Klez that shows the typical behavior of an email worm: it calls the API function
GetModuleFileNameA with 0 as first parameter and an address a as second parameter1.
This function will store the file name of the worm’s own executable into the memory
pointed by a, so that later, the worm can infect other files by copying this executable
stored in the memory pointed by a into them.

Using SCTPL, in [24] we specify this malicious behavior by the following formula:

ψ = ∃a∃r1EF
(
xor(r1, r1) ∧ EXE[¬∃v mov(r1, v)Upush(r1) ∧ EXE[¬(push(r1) ∨ ∃r′(pop(r′)

∧ r1Γ
∗))Ucall(GetModuleFileNameA) ∧ r1aΓ∗ ∧ EF(call(CopyFileA) ∧ aΓ∗)]]

)

where r1aΓ∗ (resp. aΓ∗) is a regular predicate expressing that the topmost symbols of
the stack are r1 and a (resp. a). This SCTPL formula ψ states that there exists a register
r1 that is first assigned 0 (xor(r1, r1)) and such that it is not assigned any other value
later until r1 is pushed onto the stack. Later, r1 is never popped from the stack nor

1 Parameters of a function in assembly are passed by pushing them into the stack before calling
the function. The callee retrieves these parameters from the stack.
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push a
xor ebx, ebx
push ebx
call GetModuleFileNameA
...
push a
call CopyFileA

(a) (b)

push a
xor ebx, ebx
push ebx
push ebx
pop ebx
call GetModuleFileNameA
...
push a
call CopyFileA

push a
mov ebx 2
sub ebx 1
dec ebx
push ebx
call GetModuleFileNameA
...
push a
call CopyFileA

(c)

l1 : push a
l2 : mov ebx 2
l3 : sub ebx 1
l4 : dec ebx
l5 : push ebx
l6 : call GetModuleFileNameA
l7 : ...
l8 : mov eax, a
l9 : push eax
l10 : call CopyFileA

(d)

Fig. 1. (a) Worm fragment; (b), (c) and (d) Obfuscated fragments

pushed onto it again until the function GetModuleFileNameA is invoked. When this call
is made, the topmost symbols of the stack have to be r1 and a. This ensures that the
first parameter of GetModuleFileNameA is the value of r1, i.e. 0, and that the file name
of its own executable returned by the function is stored in the memory pointed by a.
This specification can detect the fragment in Figure 1(a). However, a virus writer can
easily use some obfuscation techniques in order to escape from this specification. For
example, if we add a push ebx followed by a pop ebx as done in Figure 1 (b); or instead
of using xor ebx ebx to put 0 into ebx, let us put the value 2 in ebx and then remove 1
twice as done in Figure 1 (c). These two fragments keep the same malicious behavior
than the fragment of Figure 1(a), however, they cannot be detected by the formula ψ. A
virus writer can also escape from this specification by first assigning the address a to
the register eax and then pushing the value of eax onto the stack as shown in Figure 1
(d) (instead of pushing a directly to the stack). When calling CopyFileA, the topmost
symbol of the stack is equal to the value stored in a, but is different from the name a.
Thus, this fragment cannot be detected by the above specification ψ.

To overcome this problem, we propose in this work to specify malicious behaviors
using SCTPL formulas where the variables range over the values of the program’s reg-
isters and memory, not over their names. In this way, the malicious behavior of Figures
1 (a), (b), (c) and (d) can be specified as follows:

Ω = ∃m EF
(
call(GetModuleFileNameA) ∧ {0} m Γ∗ ∧ EF(call(CopyFileA) ∧ mΓ∗)

)

This expresses that a call to the API function GetModuleFileNameA is made with 0
and the value of the address m of the memory on top of the stack, followed by a call
to the API function CopyFileA with the value of m on top of the stack. Unlike [24], m
represents the values of the program’s registers and addresses, not their names.

In order to consider such specifications, we need to track the values of the different
registers of the program. To do this, we consider an oracle O that gives an overapprox-
imation of the current state at each control point of the program, i.e., an overapproxi-
mation of the values of the different registers and memory locations. To implement this
oracle, we use Jakstab [18] and IDA Pro [13]. Based on the oracle O, we implement a
translator that automatically constructs a PDS from the binary program.

To overcome the high complexity problem of SCTPL model-checking, we introduce
the collapsing abstraction, which is an abstraction that drastically reduces the size of the
program model by removing the instructions that do not change the stack (instructions
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using push or pop are not removed), nor the control flow of the programs (instructions
using jump-like operators, e.g., jmp, jz, etc. are not removed); as well as the instructions
whose operators do not appear in the considered SCTPL formula. We show that this
abstraction preserves all SCTPL\X formulas, where SCTPL\X is a subclass of SCTPL
that uses the next time operator X only to specify the return addresses of the callers. We
show that this fragment SCTPL\X is sufficient to specify all the malicious behaviors we
considered. Our abstraction allowed to apply our techniques to large programs. In our
experiments, several examples terminate when we use our abstraction, whereas without
it, they run out of memory.

The main contributions of this paper are:

1. We propose to specify malicious behaviors using SCTPL formulas where the vari-
ables range over the values of the program’s registers, not over their names as done
in [24]. Thus, we get more precise malware specifications.

2. We present a new approach to model a binary program as a PDS. Our translation is
more precise than the other existing translations from programs to PDSs.

3. We identify the sub-logic SCTPL\X, which is a subclass of SCTPL where the next
time operator X is used only to specify the return addresses of the callers. We show
that SCTPL\X is sufficient to specify all the malware behaviors we considered,
and we proposed the collapsing abstraction and show that it preserves SCTPL\X
properties. This abstraction reduces drastically the model size, and thus makes the
model-checking problem more efficient.

4. We implement our techniques in a tool for malware detection. All the steps are com-
pletely automated. Our tool takes as input a binary program and a set of SCTPL\X
formulas representing a set of malicious behaviors. It outputs “Yes, the program
may be a malware” if the program satisfies one of the formulas, and “NO” if not.
We get encouraging results.

Related Work. These last years, there has been a substantial amount of research to
find efficient techniques that can detect viruses. A lot of techniques use signature based
or emulation based approaches. As already mentioned in the introduction, such tech-
niques have some limitations. Indeed, signature matching fails if the virus does not use
a known signature. As for emulation techniques, they can execute the program only in a
given time interval. Thus, they can miss the malicious behaviors if they occur after the
timeout.

Model-checking and static analysis techniques have been applied to detect malicious
behaviors e.g. in [5,22,7,8,16,14,17]. However, all these works are based on modeling
the program as a finite-state system, and thus, they miss the behavior of the stack. As
we have seen, being able to track the stack is important for many malicious behaviors.
[6,3] use tree automata to represent a set of malicious behaviors. However, these works
cannot specify predicates over the stack content.

[20] keeps track of the stack by computing an abstract stack graph which finitely rep-
resents the infinite set of all the possible stacks for every control point of the program.
Their technique can detect obfuscated calls and obfuscated returns. However, they can-
not specify the other malicious behaviors that we are able to detect using our SCTPL
specifications.
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[19] performs context-sensitive analysis of call and ret obfuscated binaries. They use
abstract interpretation to compute an abstraction of the stack. We believe that our tech-
niques are more precise since we do not abstract the stack. Moreover, the techniques of
[19] were only tried on toy examples, they have not been applied for malware detection.

[4] uses pushdown systems for binary program analysis. However, the translation
from programs to PDSs in [4] assumes that the program follows a standard compilation
model where calls and returns match. As we have shown, several malicious behaviors
do not follow this model. Our translation from a control flow graph to a PDS does not
make this assumption.

SCTPL can be seen as an extension of CTPL with predicates over the stack content.
CTPL was introduced in [16,14,17]. In these works, the authors show how CTPL can
be used to succinctly specify malicious behaviors. Our SCTPL logic is more expres-
sive than CTPL. Indeed, CTPL cannot specify predicates over the stack. Thus, SCTPL
allows to specify more malicious behaviors than CTPL. Indeed, most of the malicious
behaviors we considered cannot be expressed in CTPL.

Outline. In Section 2, we give our formal model. Section 3 recalls the definition of
the SCTPL logic and shows how this logic can precisely represent malicious behavior.
We give the definition of the fragment SCTPL\X and of the collapsing abstraction in
Section 4. Our experiments are described in Section 5. Due to lack of space, proofs are
omitted. They can be found in the full version of the paper [23].

2 Binary Code Modeling

In this section, we show how to build a PDS from a binary program. We suppose we are
given an oracle O that extracts from the binary program a control flow graph equipped
with informations about the values of the registers and the memory locations at each
control point of the program. In our implementation, we use Jakstab [18] and IDA Pro
[13] to get this oracle. We translate the control flow graph into a pushdown system
where the control locations store the control points of the binary program and the stack
tracks the stack of the program. This translation takes into account the values of the
different registers and memory locations of the program.

2.1 Control Flow Graphs

Let R be the finite set of registers used in the binary program. Let States be the set of
functions from R ∪ Z to 2Z where Z is the set of integers. Intuitively, let s ∈ States.
For every r ∈ R, s(r) gives the possible values of the register r in the state s, while for
every d ∈ Z, s(d) gives the possible values of the memory at address d in the state s.
Let EXP be the set of expressions over the registers and the memory locations used in
the program. States is extended over expressions in EXP in the usual way.

A control flow graph (CFG) is a tuple G = (N, I, E), where N is a finite set of
nodes corresponding to the control points of the program, I is a finite set of assembly
instructions used in the program, and E : N × I × N is a finite set of edges each of

them associated with an assembly instruction of the program. We write n1
i−→ n2 for
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every (n1, i, n2) in E. Given a binary program, the oracle O computes a corresponding
control flow graph G and a function  : N −→ States that associates to each node n an
overapproximation of the set of possible states of the program at the control point n.

2.2 Pushdown Systems

A Pushdown System (PDS) is a tuple P = (P, Γ, Δ), where P is a finite set of control
locations, Γ is the stack alphabet, Δ ⊆ (P×Γ)× (P×Γ∗) is a finite set of transition rules.

A configuration 〈p, ω〉 ofP is an element of P×Γ∗. We write 〈p, γ〉 ↪→ 〈q, ω〉 instead
of ((p, γ), (q, ω)) ∈ Δ. The successor relation �P⊆ (P × Γ∗) × (P × Γ∗) is defined as
follows: if 〈p, γ〉 ↪→ 〈q, ω〉, then 〈p, γω′〉�P 〈q, ωω′〉 for every ω′ ∈ Γ∗. A path of the
PDS is a sequence of configurations c1, c2, ... such that ci+1 is an immediate successor
of the configuration ci, i.e., ci �P ci+1, for every i ≥ 1.

2.3 From Control Flow Graphs to Pushdown Systems

In this section, we present a novel approach to derive a pushdown system from a control
flow graph. Consider a binary program. Let (N, I, E) be the CFG and  be the state
function provided by the oracle O. We construct the PDS P = (P, Γ, Δ) as follows:

– the control locations P are the nodes N;
– Γ is the smallest set of symbols satisfying the following:

• if n
call proc−−−−−−−→ n′ ∈ E, then {n′} ∈ Γ where n′ is the return address of the call;

• if n
push exp−−−−−−−−→ n′ ∈ E, where exp is an expression in EXP, then (n)(exp) ∈ Γ

where (n)(exp) denotes the set of possible values of the expression exp at the
control point n (given by the state (n));

– the set of rules Δ contain transition rules that mimic the instructions of the program:
for every edge e ∈ E, γ ∈ Γ:

• if e = n1
push exp−−−−−−−−→ n2, we add the transition rule 〈n1, γ〉 ↪→ 〈n2, γ

′γ〉 where
γ′ = (n1)(exp). This rule moves the program’s control point from n1 to n2,
and pushes the set of all the possible values of the expression exp at control
point n1 onto the stack;

• if e = n1
call proc−−−−−−−→ n2, we add the transition rule 〈n1, γ〉 ↪→ 〈proce, {n2}γ〉, for

every proce ∈ (n1)(proc). This rule moves the program’s control point to
the entry point of the procedure proc, and pushes the return address n2 onto
the stack. Here, we let proce be in (n1)(proc) because in assembly code, the
operand of a call instruction can be any expression including the address of an
instruction;

• if e = n1
pop exp−−−−−−−→ n2, we add the transition rule 〈n1, γ〉 ↪→ 〈n2, ε〉 which moves

the program’s control point to n2 and pops the topmost symbol from the stack;

• if e = n1
ret−−−→ n2, we add a transition rule 〈n1, γ〉 ↪→ 〈addr, ε〉 for every addr ∈

γ. This moves the program’s control point to every address addr in γ, and pops
the topmost symbol from the stack;
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• if e = n1
c jmp e−−−−−−→ n2 where cjmp denotes a conditional jump instruction ( je, jg,

etc.). Let flag be the flag register (ZF,CF, etc.) of cjmp. Depending on whether
the flag register satisfies the condition of cjmp or not (i.e., whether f alse ∈
(n1)( f lag) or not), we add the transition rules r1 = 〈n1, γ〉 ↪→ 〈n2, γ〉 and/or
r2 = 〈n1, γ〉 ↪→ 〈addr, γ〉 for every addr ∈ (n1)(e). r1 moves the program’s
control point to n2 whereas r2 moves the programs’s control point to the address
addr that corresponds to the value of e at point n1.

• if e = n1
i−→ n2 is any other transition, we add a transition rule r1 = 〈n1, γ〉 ↪→

〈n2, γ〉which moves the program’s control point from n1 to n2 without changing
the stack.

Note that in our modeling, the PDS control locations correspond to the program’s con-
trol points, and the PDS stack mimics the program’s execution stack. The above transi-
tion rules allow the PDS to mimic the behavior of the program’s stack. This is different
from standard program translations to PDSs where the control points of the program
are stored in the stack [10,4]. These standard translations assume that the program fol-
lows a standard compilation model, where the return addresses are never modified. We
do not make such assumptions since behaviors where the return addresses are modified
can occur in malicious code. We only make the assumption that pushes and pops can be
done only using push, pop, call, and return operations, not by manipulating the stack
pointer. Our translation is also more precise than the one given in [24]. Indeed, here the
stack content is (an over-approximation of) the program’s stack, whereas in [24], the
stack contains the names of the pushed registers, not their values. For example, in [24],

a push instruction of the form n1
push eax−−−−−−−→ n2 is modeled by a push rule where the name

of the register eax is pushed onto the stack, whereas in this work, we push the possible
values of eax onto the stack.

3 Malicious Behavior Specification

In this section, we recall the definition of the Stack Computation Tree Predicate Logic
(SCTPL) [24], and show how we can use it to specify malicious behaviors in a more
precise and succinct way than done in [24].

3.1 Environments, Predicates and Regular Variable Expressions

Hereafter, we fix the following notations. Let X = {x1, x2, ...} be a finite set of variables
ranging over a finite domain D. Let B : X ∪ D −→ D be an environment function
that assigns a value c ∈ D to each variable x ∈ X and such that B(c) = c for every
c ∈ D. B[x ← c] denotes the environment function such that B[x ← c](x) = c and
B[x← c](y) = B(y) for every y � x. Let B be the set of all the environment functions.

Let AP = {a, b, c, ...} be a finite set of atomic propositions, APX be a finite set of
atomic predicates in the form of b(α1, ..., αm) such that b ∈ AP, αi ∈ X ∪ D for every
1 ≤ i ≤ m, and APD be a finite set of atomic predicates of the form b(α1, ..., αm) such
that b ∈ AP, αi ∈ D for every 1 ≤ i ≤ m.
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Given a PDS P = (P, Γ, Δ), let R be a finite set of regular variable expressions over
X ∪ Γ given by: e ::= ∅ | ε | a ∈ X ∪ Γ | e + e | e · e | e∗.

The language L(e) of a regular variable expression e is a subset of P×Γ∗ ×B defined
inductively as follows: L(∅) = ∅; L(ε) = {(〈p, ε〉,B) | p ∈ P,B ∈ B}; L(x), where x ∈ X
is the set {(〈p, γ〉,B) | p ∈ P, γ ∈ Γ,B ∈ B : B(x) = γ}; L(γ), where γ ∈ Γ is the set
{(〈p, γ〉,B) | p ∈ P,B ∈ B}; L(e1 + e2) = L(e1) ∪ L(e1); L(e1 · e2) = {(〈p, ω1ω2〉,B) |
(〈p, ω1〉,B) ∈ L(e1); (〈p, ω2〉,B) ∈ L(e2)}; and L(e∗) = {(〈p, ω〉,B) | B ∈ B and ω =
ω1 · · ·ωn, s.t. ∀i, 1 ≤ i ≤ n, (〈p, ωi〉,B) ∈ L(e)}. E.g., (〈p, γ1γ1γ2〉,B) is an element of
L(x∗γ2) when B(x) = γ1.

3.2 Stack Computation Tree Predicate Logic

A SCTPL formula is a CTL formula where predicates and regular variable expressions
are used as atomic propositions, and where quantifiers over variables are used. Using
regular variable expressions allows to express predicates on the stack content of the
PDS. For technical reasons, we suppose w.l.o.g. that formulas are given in positive
normal form, i.e., negations are applied only to atomic propositions. More precisely,
the set of SCTPL formulas is given by (where x ∈ X, a(x1, ..., xn) ∈ APX and e ∈ R):

ϕ ::= a(x1, ..., xn) | ¬a(x1, ..., xn) | e | ¬e | ϕ ∧ ϕ | ϕ ∨ ϕ | ∀x ϕ
| ∃x ϕ | AXϕ | EXϕ | A[ϕUϕ] | E[ϕUϕ] | A[ϕRϕ] | E[ϕRϕ]

Let ϕ be a SCTPL formula. The closure cl(ϕ) denotes the set of all the subformulas of
ϕ including ϕ.

Given a PDS P = (P, Γ, Δ) s.t. Γ ⊆ D, Let λ : APD → 2P be a labeling function that
assigns a set of control locations to a predicate. Let c = 〈p,w〉 be a configuration of P.
P satisfies a SCTPL formula ψ in c, denoted by c |=λ ψ, iff there exists an environment
B ∈ B s.t. c |=B

λ ψ, where c |=B
λ ψ is defined by induction as follows:

– c |=B
λ a(x1, ..., xn) iff p ∈ λ

(
a
(
B(x1), ...,B(xn)

))
.

– c |=B
λ ¬a(x1, ..., xn) iff p � λ

(
a
(
B(x1), ...,B(xn)

))
.

– c |=B
λ e iff (c,B) ∈ L(e).

– c |=B
λ ¬e iff (c,B) � L(e).

– c |=B
λ ψ1 ∧ ψ2 iff c |=B

λ ψ1 and c |=B
λ ψ2.

– c |=B
λ ψ1 ∨ ψ2 iff c |=B

λ ψ1 or c |=B
λ ψ2.

– c |=B
λ ∀x ψ iff ∀v ∈ D, c |=B[x←v]

λ ψ.

– c |=B
λ ∃x ψ iff ∃v ∈ D s.t. c |=B[x←v]

λ ψ.
– c |=B

λ AX ψ iff c′ |=B
λ ψ for every successor c′ of c.

– c |=B
λ EX ψ iff there exists a successor c′ of c s.t. c′ |=B

λ ψ.
– c |=B

λ A[ψ1Uψ2] iff for every path π = c0, c1, ..., of P with c0 = c, ∃i ≥ 0 s.t.
ci |=B

λ ψ2 and ∀0 ≤ j < i : c j |=B
λ ψ1.

– c |=B
λ E[ψ1Uψ2] iff there exists a path π = c0, c1, ..., of P with c0 = c s.t. ∃i ≥

0, ci |=B
λ ψ2 and ∀0 ≤ j < i, c j |=B

λ ψ1.
– c |=B

λ A[ψ1Rψ2] iff for every path π = c0, c1, ..., of P with c0 = c, ∀i ≥ 0 s.t.
ci �|=B

λ ψ2, ∃0 ≤ j < i s.t. c j |=B
λ ψ1.
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– c |=B
λ E[ψ1Rψ2] iff there exists a path π = c0, c1, ..., of P with c0 = c s.t. ∀i ≥ 0 s.t.

ci �|=B
λ ψ2, ∃0 ≤ j < i s.t. c j |=B

λ ψ1.

Intuitively, c |=B
λ ψ holds iff the configuration c satisfies the formula ψ under the envi-

ronment B. Note that a path π satisfies ψ1Rψ2 iff either ψ2 holds everywhere in π, or
the first occurrence in the path where ψ2 does not hold must be preceded by a position
where ψ1 holds.

Theorem 1. [24] Given a PDS P = (P, Γ, Δ) and a SCTPL formula ψ, whether a con-
figuration of P satisfies ψ can be decided.

3.3 Using SCTPL Formulas in a Precise Manner

In [24], the stack alphabetΓ (which is a subset of the domainD) we considered consists
of the set of registers R and the set of the return addresses of the different calls. As
explained in the introduction, using the names of the registers instead of their values is
not robust and is not very precise. To sidestep this problem, we propose in this work
to use the values of the registers instead of their names. Hence, in this work, the stack
alphabet Γ consists of sets of (over-approximations of) values of registers (elements of
2Z), together with the return addresses of the calls.

Δ : for every γ ∈ Γ
〈l6, γ〉 ↪→ 〈g0, {l7}γ〉
〈l8, γ〉 ↪→ 〈l9, γ〉
〈l9, γ〉 ↪→ 〈l10, {a}γ〉
〈l10, γ〉 ↪→ 〈c0, {l11}γ〉

〈l1, γ〉 ↪→ 〈l2, {a}γ〉
〈l2, γ〉 ↪→ 〈l3, γ〉
〈l3, γ〉 ↪→ 〈l4, γ〉
〈l4, γ〉 ↪→ 〈l5, γ〉
〈l5, γ〉 ↪→ 〈l6, {0}γ〉

� :
�(l3)(ebx) = {2}
�(l4)(ebx) = {1}
�(l5)(ebx) = {0}
�(l9)(eax) = {a}

λ(push(a)) = {l1}
λ(mov(ebx, 2)) = {l2}
λ(sub(ebx, 1)) = {l3}
λ(dec(ebx)) = {l4}
λ(call(GetModuleF ileNameA)) = {l6}

(a) The labelling function λ (b) The states � (c) Transition rules Δ

λ(push(ebx)) = {l5}
λ(mov(eax, a)) = {l8}
λ(push(eax)) = {l9}
λ(call(CopyF ileA)) = {l10}

Fig. 2. (a) The labeling function λ, (b) the states  and (c) Transition rules Δ, where g0 and c0 are
entry points of the function GetModuleFileNameA and CopyFileA, respectively, and l11 is the
next location of l10

An Illustrating Example. Let us consider the fragment of Figure 1(d) and the SCTPL
formula Ω described in the introduction. Suppose the oracle O provides the function ρ
of Figure2 2(b). Then, we have:

– Γ = { {a}, {0}, {l7}, {l11} } is the stack alphabet, where l11 is the location after l10;
– R = {{0} m Γ∗,mΓ∗} is the set of regular variable expressions in the formula Ω;
– AP = {call,mov, sub, dec, push} is the set of atomic propositions corresponding to

the instructions of the program;
– APD = {push(a),mov(ebx, 2), sub(ebx, 1), dec(ebx), push(ebx),mov(eax, a),

push(eax), call(GetModuleFileNameA), call(CopyFileA)} is the set of predicates
that appear in the program;

– D = {{a}, {0}, {l7}, {l11}, 1, 2, a, eax, ebx,GetModuleFileNameA,CopyFileA};
– The labeling function λ is shown Figure 2(a).
– The set of transition rules Δ of the PDS modeling this fragment is shown in Figure

2(c), where g0 is the entry point of the procedure GetModuleFileNameA and c0 is
the entry point of the procedure CopyFileA.

2 We give only the values of ρ that are needed to compute the transition relation Δ of Figure 2(c).
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3.4 Specifying Malicious Behaviors in SCTPL

We show in this section how SCTPL allows to precisely and succinctly specify several
malware behaviors.

Data-Stealing Malware. The main purpose of a data-stealing malware is to steal the
user’s personal confidential data such as username, password, credit card
number, etc and send it to another computer (usually the malware writer).
The typical behavior of data-stealing malware can be summarized as fol-
lows: the malware will first call the API function ReadFile in order to
load some file of the victim into memory. To do this, it needs to call this
function with a file pointer f (i.e., the return value of the calling function
OpenFile) as the first parameter and a buffer m as the second parameter
(m corresponds to the address of a memory location), i.e., with f m on
the top of the stack since in assembly, function parameters are passed

push m
push f
call ReadFile
...
push m
push c
call send
Fig. 3. Data-
stealing
malware

through the stack. Then, the malware will send its file (whose data is pointed by m)
to another computer using the function send. It needs to call send with a connection c
(i.e., the return value of the calling function socket) as first parameter and the buffer m
as the second parameter, i.e., with c m on the top of the stack. Figure 3 shows a disas-
sembled fragment of a malware corresponding to this typical behavior. Before calling
the function ReadFile, it pushes the two parameters m and f onto the stack. Later it
calls the function send after pushing the two parameters m and c onto the stack. (since
in assembly, function parameters are passed through the stack.) This behavior can be
expressed by the following SCTPL formula Ωds.

Ωds = ∃m EF
(
call(ReadFile) ∧ Γ m Γ∗ ∧ AF

(
call(send) ∧ Γ m Γ∗

))

where the regular variable expression Γ m Γ∗ states that the second value of the stack is
m (corresponding to the second parameter of the function ReadFile and send).Ωds states
that there exists an address m which is the second parameter when calling ReadFile, and
such that later, eventually, send will be called with m as its second parameter.

Kernel32.dll Base Address Viruses. Many of Windows viruses use an API to achieve
their malicious tasks. The Kernel32.dll file includes several API functions that can be
used by the viruses. In order to use these functions, the viruses
have to find the entry addresses of these API functions. To do
this, they need to determine the Kernel32.dll entry point. They
determine first the Kernel32.dll PE header in memory and use
this information to locate Kernel32.dll export section and find
the entry addresses of the API functions. For this, the virus looks
first for the DOS header (the first word of the DOS header is
5A4Dh in hex (MZ in ascii)); and then looks for the PE header
(the first two words of the PE header is 4550h in hex (PE00

l1 : cmp [eax], 5A4Dh

jnz l2
...

cmp [ebx], 4550h
jz l3
l2 : ...

jmp l1
l3

Fig. 4. Virus

in ascii)). Figure 4 presents a disassembled code fragment performing this malicious
behavior. This can be specified in SCTPL as follows:

ψwv = EG
(
EF
(
∃r1 cmp(r1, 5A4Dh) ∧ EF ∃r2 cmp(r2, 4550h)

))
.
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This SCTPL formula expresses that the program has a loop such that there are two
variables r1 and r2 such that first, r1 is compared to 5A4Dh, and then r2 is compared to
4550h. Note that this formula can detect all the class of viruses that have such behavior.

Obfuscated Calls. Virus writers try to obfuscate their code by e.g. hiding the calls to
the operating system. For example, a call instruction can be replaced by pushes and
jumps. Figure 5 shows two equivalent fragments achiev-
ing a “call” instruction. Figure 5(a) shows a normal call/ret
where the function f consists just of a return instruction.
When control point f is reached, the return instruction
moves the control point to l1 which is the return address
of the call instruction (at l0). As shown in Figure 5(b), the
call can be equivalently substituted by two other instruc-
tions, where push l′2 pushes the return address l′2 onto the

l0 : call f
l1 : ...

f: ret

l
′

0 : push l
′

2

l
′

1 : jmp f
l
′

2 : ...

f: ret

(a) (b)
Fig. 5. (a) Normal call. (b)
Obfusated call

stack, and jmp f moves the control point to the entry point of f . These instructions do
exactly the same thing than the call instruction. When reaching the control point f , the
ret instruction will pop the stack and thus, move the control point to l′2. Such obfuscated
calls can be described by the following SCTPL formula:

ψoc = ∃ addr E[¬(∃ proc call(proc) ∧ AX addrΓ∗) U (ret ∧ addrΓ∗)]

The subformula (∃ proc call(proc) ∧ AX addrΓ∗) means that there exists a procedure
call having addr as return address, since when a procedure call is made, the program
will push its corresponding return address addr to the stack, and thus, at the next step,
we will have addr on the top of the stack (i.e., addrΓ∗). The subformula (ret∧ addrΓ∗)
expresses that we have a return instruction with addr on the top of the stack, i.e., a return
instruction that will return to addr. Thus the formula ψoc expresses that there exists a
return address addr such that there exists a path where there is no call to a procedure
proc having addr as return address until a return instruction with addr as return address
occurs. This formula can then detect a return that does not correspond to a call.

Obfuscated Returns. Virus writers usually obfuscate the returns of their calls in order
to make it difficult to manually or automatically analyze their code. Benign programs
move the control point to the return address using the ret instruction.
Viruses may replace the ret instruction by other
equivalent instructions such as pop eax, jmp eax,
etc. E.g., the program in Figure 6 is a disassem-
bled fragment from the virus Klinge that pops
the return address 00401028 from the stack. This
phenomenon can be detected by the following
specification:

00401023: call 004011CE
00401028: ...
...

004011CE: ...
...

0040121A: pop eax

Fig. 6. Fragment of the
Virus Klinge

ψor = AG
(
∀proc∀addr

(
(call(proc) ∧ AX addrΓ∗) =⇒ AF(ret ∧ addrΓ∗)

))
.

ψor expresses that for every procedure proc, if proc is called with addr as the return
address of the caller, then there exists a ret instruction which will return to addr. Indeed,
since when an assembly program runs, if an instruction call proc is executed, then the
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return address addr of the caller is pushed onto the stack. Thus, in the subformula
call(proc) ∧ AX addrΓ∗, addr refers to the return address of the call, because this
subformula expresses that in all the immediate successors of the call, addr is on the top
of the stack. Moreover, ret ∧ addrΓ∗ means that when the return is executed, then the
return address addr should be on the top of the stack.3

Appending Viruses. An appending virus is a virus that inserts a copy of its malicious
code at the end of the target file. To do this, the virus has to first calculate its real

absolute address in the memory, because the real OFFSET of the virus’
variables depends on the size of the infected file. To achieve this, the
viruses have to call the routine in Figure 7 (this code is a fragment of
the virus Alcaul.b). The instruction call l2 will push the return address
l2 onto the stack. Then, the pop instruction will put the value of this

l1 : call l2
l2 : pop eax

...

Fig. 7.

address into the register eax. In this way, the virus can get its real absolute address in
the memory. This malicious behavior can be detected using the specification ψor, since
there does not exist any return instruction corresponding to the call instruction.

4 SCTPL\X and the Collapsing Abstraction

As discussed in [24], the algorithm underlying Theorem 1 is very expensive. It is expo-
nential on the size of the PDS. Thus, it is important to model binary programs by PDSs
with small sizes. For this, we propose in this section to use the collapsing abstraction
to drastically reduce the size of the PDS model of the program. Moreover, we consider
SCTPL\X, a fragment of SCTPL that uses the next time operator X only to specify the
return addresses of the callers. All the malicious behaviors that we considered can be
specified using SCTPL\X formulas. We show that the collapsing abstraction preserves
SCTPL\X formulas.

4.1 SCTPL\X
SCTPL\X is defined by the following, where a(x1, ..., xn) ∈ APX, func is a function,
e ∈ R and r ∈ Γ ∪ X:

ϕ ::= a(x1, ..., xn) | ¬a(x1, ..., xn) | e | ¬e | ϕ ∧ ϕ | ϕ ∨ ϕ | ∀x ϕ | ∃x ϕ
| call( f unc) ∧ AX rΓ∗ | A[ϕUϕ] | E[ϕUϕ] | A[ϕRϕ] | E[ϕRϕ]

Intuitively, SCTPL\X is the sub-logic of SCTPL where the next time operator X is
used only to specify the return addresses of the callers. Indeed, the SCTPL formula
call( f unc) ∧ AX rΓ∗ means that r is the return address of the function f unc, since the
return address is always pushed onto the stack when a function is called. The subfor-
mula AX rΓ∗ ensures that the return address r is the topmost symbol of the stack at the
next control point after calling the function f unc.

3 Note that for the case of a procedure that has a possibly infinite loop, this specification can
detect a suspected malware. This formula can be changed slightly to avoid this. We do not
present this here for the sake of presentation.
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SCTPL\X is sufficient to specify malware. Indeed, arbitrary SCTPL formulas of
the form AXψ or EXψ that cannot be expressed by SCTPL\X should not be used for
malware specifications since such formulas are not robust. Indeed, suppose that at some
control point n, a piece of malware satisfies a formula AXψ. Then inserting some dead
code at control point n will make the formula AXψ unsatisfiable. Thus, if a specification
that involves such formulas can detect a given malware, it cannot detect variants of this
malware where dead code is added at some locations. It is then not recommended to
use such subformulas for malware specification. Thus, to make these specifications of
malicious behaviors more robust, we should specify these behaviors by AFψ or EFψ.

4.2 The Collapsing Abstraction

Given a program, the collapsing abstraction reduces the size of the program model by
removing all the irrelevant instructions of the program, i.e., all the instructions that do
not change the stack (instructions using push or pop are not removed), nor the control
flow of the program (instructions using jump-like operators, e.g., jmp, jz, etc. are not
removed); as well as the instructions whose operators do not appear in the considered
SCTPL formula.

More precisely, consider a SCTPL formula ψ and a binary program. Let
G = (N, I, E) and  be respectively the CFG and the state function pro-
vided by the oracle O. Let op(b(a1, ..., an)) denote the operator b for every
instruction b(a1, ..., an) ∈ I. Let Iψ = {b | ∃b(x1, ..., xn) ∈ cl(ψ)} be the
set of operators that appear in the formula ψ, Istack = {push, pop, call, ret}
be the set of operators that modify the program’s stack, and I jump =

{ jmp, jz, je, jnz, jne, js, jns, jo, jno, jp, jnp, jpe, jpo, jc, jb, jnae, jnc, jnb, jae, jbe,
jna, jnbe, ja, jl, jnge, jnl, jge, jle, jng, jnle, jg, jcxz} be the set of all the jump in-

structions. Let Ntarget =
{
n ∈ N | ∃n1

b(e)
−→ n2 ∈ E s.t. e ∈ EXP, n ∈ (n1)(e) ∧ b ∈

I jump ∪ {call}
}

be the set of nodes that can be reached by a call or a jump instruction of
the program.

The collapsing abstraction removes from the program all the instructions whose op-
erators are not in Iψ ∪ Istack ∪ I jump and whose control points are not in Ntarget. More
precisely, we compute a new control flow graph Gψ = (N′, I′, E′) such that N′ is a
subset of N, I′ = {⊥} ∪ {i ∈ I | op(i) ∈ Iψ ∪ Istack ∪ I jump}, E′ is defined as follows:

n
i−→ n′ ∈ E′ iff

– n
i−→ n′ ∈ E and i ∈ I′;

– or i = ⊥ is a fake instruction that we add, n ∈ Ntarget, and ∃n
i′−→ n′ ∈ E s.t. i′ � I′;

– or i = ⊥, there exists in G a path of the form p
l1−→ n

i1−→ n1
i2−→ n2 · · · nk−1

ik−→
n′

l2−→ p′ s.t. p
l1−→ n ∈ E′ and n′

l2−→ p′ ∈ E′ are two edges in E′ meaning
that either l1 and/or l2 cannot be removed or is ⊥, whereas for every 1 ≤ j ≤ k,
the instruction i j is removed, i.e., the operator op(i j) of the instruction i j is not in
Iψ ∪ Istack ∪ I jump and for every 1 ≤ j ≤ k − 1 node n j is not in Ntarget.

We add the instructions ⊥ to relate two nodes that are related by a path in G and such
that removing the irrelevant instructions could make these nodes disconnected in G′.
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Note that we do not remove nodes in Ntarget because they could be reached by different
paths.

The control flow graph Gψ can be computed in linear time:

Lemma 1. Given a SCTPL formula ψ, and a control flow graph G, Gψ can be effec-
tively computed in linear time.

We can show that this abstraction preserves formulas that do not involve properties
about the next state. Formulas using the X operator in an arbitrary manner are not pre-
served since this abstraction removes instructions from the program. However, formulas
of the form call( f unc)∧AX rΓ∗ are preserved since they express that a call to the func-
tion f unc is made, and r is the return address of this call. Therefore, such a formula is
related to the single instruction call( f unc). So, removing the irrelevant instructions as
described above will not change the satisfiability of this formula. Thus, we can show
that this abstraction preserves SCTPL\X formulas:

Theorem 2. Let ψ be a SCTPL\X formula. Let P be the PDS modeling a CFG G w.r.t.
a state function , and let P′ be the PDS modeling the CFG Gψ w.r.t. the state function
. Then P satisfies ψ iff P′ satisfies ψ.

5 Experiments

We implemented our techniques in a tool for malware detection. Our tool gets a binary
program as input, and outputs Yes or No, depending on whether the code contains a
malicious behavior or not. To implement an oracle O, we use Jakstab [18] and IDA Pro
[13]. Jakstab performs static analysis of the binary program and provides a control flow
graph and a state function . However, it does not allow to extract API functions’ in-
formation and some indirect calls to the API functions. We use IDA Pro to get these

Fig. 8. Time Comparison Fig. 9. Memory Comparison
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informations. We use BDDs to represent sets of environments. To perform SCTPL
model-checking of PDSs, we implement the algorithms of [24]. All the experiments
were run on a Linux platform (Fedora 13) with a 2.4GHz CPU, 2GB of memory. The
time limit is fixed to 30 minutes.

We evaluated our tool on 200 malwares taken from VX Heavens [12] and 8 benign
programs taken from system32 of Microsoft Windows XP: cmd.exe, find.exe, java.exe,
notepad.exe, ping.exe, print.exe, regedt.exe and shutdown.exe. Our tool was able to de-
tect all the 200 malwares. Moreover, it reported that the benign programs that we con-
sidered are not malicious, except for java.exe. Our tool detected a malicious behavior
in this program. This behavior was introduced by the over-approximation provided by
Jakstab [18]. The time and memory consumptions are shown in Figures 8 and 9. These
figures show the gain in time and memory consumption when the collapsing abstraction
is used. The analysis of several examples (such as Bagle.m, print.exe and notepad.exe
e.g.) terminates when using the collapsing abstraction, whereas it runs out of memory
without this abstraction.

Table 1. Detection of variants generated by NGVCK and VCL32

Generator
No. of Our techniques Avira kaspersky Avast antivirus Qihoo 360

Variants detection rate detection rate detection rate detection rate detection rate

NGVCK 100 100% 0% 23% 18% 68%
VCL32 100 100% 0% 2% 100% 99%

Furthermore, to compare our techniques with the well-known existing anti-virus tools,
and show the robustness of our tool, we automatically generated 200 new malwares
using the generators NGVCK and VCL32 available at VX Heavens [12]. We gener-
ated 100 malwares using NGVCK, and 100 using VCL32. [25] showed that these sys-
tems are the best malware generators, compared to the other generators of VX Heavens
[12]. These programs use very sophisticated features such as anti-disassembly, anti-
debugging, anti-emulation, and anti-behavior blocking and come equipped with code
morphing ability which allows them to produce different-looking viruses. Our results
are reported in Table 1. Our techniques were able to detect all these 200 malwares,
whereas the four well known and widely used anti-viruses Avira [2], Avast [1], Kasper-
sky [15] and Qihoo 360 [21] were not able to detect several of these viruses.
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Abstract. We present an Isabelle/HOL formalization and total correct-
ness proof for the incremental version of the Simplex algorithm which is
used in most state-of-the-art SMT solvers. Formalization relies on step-
wise program and data refinement, starting from a simple specification,
going through a number of fine refinement steps, and ending up in a
fully executable functional implementation. Symmetries present in the
algorithm are handled with special care.

1 Introduction

Linear arithmetic solvers that decide satisfiability of linear constraint problems
have many practical uses (e.g., modeling finite sets, program arithmetic, ma-
nipulation of pointers and memory, real-time constraints, physical properties of
the environment) and are very important modules of many automated reasoning
tools (e.g., theorem provers, SMT solvers). Throughout history, many different
algorithms have been developed and, due to their importance, many have been
formally verified with machine checkable proofs [7,14,15,16].

The quantifier-free fragment of linear arithmetic is very important for many
applications (especially in SMT solving [4]). Most efficient decision procedures
for this fragment are based on an incremental version of the Simplex algorithm
[10,9]. They are specially adapted for use within SMT solvers and used in many
industrial applications. The basic procedure is formulated for linear rational
arithmetic, but its extensions use branch-and-bound and Gomory cuts tech-
niques [10] and can also handle integer constraints. We are not aware that any
Simplex based algorithm has been formally verified within a proof assistant (and
literature [9] shows only a sketch of its termination, but no partial correctness).

We present an Isabelle/HOL [18] formalization and total correctness proof of
the Simplex-based satisfiability checking procedure for linear rational arithmetic
given by Dutertre and de Moura [9,10]. Only the central case of deciding con-
junctions of constraints is considered — handling richer propositional structure
of the formula is left for future integrations with verified SAT solvers [13].

Our formalization is highly modular and based on the stepwise program and
data refinement — a well-studied technique due to Dijkstra [8] and Wirth [19],
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and given mathematical rigor by Back [2]. Our formalization exploits several
different refinement techniques described for Isabelle/HOL [11,17]. The Simplex
algorithm exhibits several symmetric cases that are handled with special care,
significantly simplifying the proofs. The importance of treating symmetries care-
fully has already been suggested in the literature [12,16].

Although unverified SMT solving procedures can be successfully used within
theorem provers using the certificate checking technique [1,5], we advocate that
the formal verification here presented has its own merits.

– The formalization offers clear explanations for subtle procedure details.
– By strictly applying the refinement techniques, the procedure can be ana-

lyzed and understood on different levels of abstraction.
– Abstract layers in the formalization allow easy porting of our formalization

to other theorem provers and verification systems.
– Executable code can be generated from the formalization and, by means of

reflection [7,15], the procedure can be used to decide validity of universally
quantified linear arithmetic constraints.

– The refinement approach makes this formalization suitable for a case study
for teaching formal methods.

– The formalization is a contribution to the growing body of verified theorem
proving algorithms.

The paper contains precise specifications (preconditions and effects) for all func-
tions and aims to describe how these are obtained from decisions made during
the algorithm development. All proofs are omitted from the presentation. Step-
wise refinement is pursued down to several simple functions, that can be easily
implemented. Their implementation is omitted from the present text, but is
given in the Isabelle/HOL formalization1 (containing a fully executable code).

Outline. The rest of the paper is structured as follows. In Section 2 we give a
brief overview of linear arithmetic and the Simplex algorithm, Isabelle/HOL and
techniques for program and data refinement in Isabelle/HOL. In Section 3 we
present our formalization of the Simplex-based LRA solver and show all refine-
ment steps. In Section 4 we discuss the related work and give some experimental
comparisons. In Section 5 we draw some conclusions and discuss further work.

2 Background

Linear arithmetic. Linear arithmetic is a decidable fragment of arithmetic involv-
ing addition and multiplication by constants. Constraints are usually formulated
either over reals or rationals (linear rational arithmetic, or LRA) or over integers
(linear integer arithmetic, or LIA). A quantifier-free linear arithmetic formula is
a first-order formula with atoms of the form: a1x1+ . . .+anxn �� c, where ai and
c are rational numbers, xi are (rational or integer) variables, and �� is one of the
operators =, ≤, <, >, ≥, or �=. Most popular methods for deciding satisfiability
of LA formulae are the Fourier-Motzkin procedure and the Simplex algorithm.
1 Available online http://argo.matf.bg.ac.rs
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Simplex. The Simplex algorithm (invented by George Dantzig in 1947.) is
listed among the top 10 algorithms of the 20th century, and it is originally
constructed to solve linear programming optimization problem (to maximize an
objective function on a convex polytope, specified by a set of linear constraints).
The decision procedure for linear arithmetic does not maximize anything, but
finds a single feasible solution of input constraints. The variant of Simplex that
can be used for this purpose is the dual Simplex algorithm which is efficient when
constraints are added incrementally.

Isabelle/HOL. Isabelle/HOL[18] is a proof assistant for Higher-order logic
(HOL). HOL conforms largely to everyday mathematical notation. Terms are
built using function applications (e.g., f x) and λ-abstractions (e.g., λx.x). let
x = t in P x reduces to P t. if-then-else and case expressions are also supported.
Basic types we use are Booleans (bool ), naturals (nat), and rationals (rat). Type
variables are denoted by ′a, ′b, . . . . Sets over type ′a (denoted by ′a set) follow
usual conventions. Lists over type ′a (denoted by ′a list) come with the empty list
[ ], the infix constructor #, and standard higher-order functionals map and foldl .
Missing values are modeled by options over type ′a (denoted by ′a option) that
are either None or Some ′a, and the is the function such that the(Some x) = x.
Finite mappings from type ′a to type ′b (denoted by (′a,′ b)mapping) come with
a lookup (here denoted by look ), and update (here denoted by upd) operators.
Algebraic datatypes (using the keyword datatype) and compound types (using
the keyword record) are supported. For each record field, there is a selector
function of the same name (e.g., accessing the field x in record r is denoted by
x r). Equality is polymorphic and is denoted by either =, ≡ or ←→ (on type
bool). Object-level implication is represented by −→, and meta-level implication
by =⇒. Functions are defined by both primitive and general recursion. From the
specifications, executable code in several functional languages can be generated.

Refinement in Isabelle/HOL. Since Isabelle/HOL is a general proof-assistant,
there are many ways to express refinement. Several frameworks for refinement
(e.g., by Proteasa and Back or by Lammich) are available at Archive of Formal
Proofs (http://afp.sf.net). However, our formalization uses only the following
two lightweight approaches.

One approach for data and program refinement, based on code-generation
facilities of Isabelle/HOL, is described by Haftmann and Nipkow [11]. To re-
place one function implementation by another, a proof of their equivalence must
be made and the code generator must be instructed to use the desired imple-
mentation. No axiomatic specification is used in this case. For data refinement,
the first step requires defining an abstract data type representation and func-
tions operating on this representation. Further steps require defining concrete
data type representation, defining the conversion from the concrete to the ab-
stract representation, and defining functions that operate on the concrete type.
Formalizations should rely only on the abstract representation, while concrete
representations are used only during code generation. For more details see [11].

Another approach for program refinement is based on locales [3] — Isabelle’s
version of parametrized theories. A locale is a named context of functions f1,

http://afp.sf.net
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. . . , fn and assumptions P1, . . . , Pm about them that is introduced roughly like
locale loc = fixes f1, . . . , fn assumes P1, . . . , Pm. Locales can be hierarchical
as in locale loc = loc1 + loc2 + fixes . . . . In the context of a locale, definitions
can be made and theorems can be proved. Locales can be interpreted by concrete
instances of f1, . . . , fn, and then it must be shown that these satisfy assumptions
P1, . . . , Pm. A locale loc is a sublocale of a locale loc ′ if all functions of loc′ can be
defined using the functions of loc and all assumptions of loc′ can be proved using
the assumptions of loc. Then every interpretation for loc can be automatically
converted to an interpretation of loc′.

In the context of program refinement, locales are used to define specifications,
i.e., abstract interfaces of functions (e.g., locale F = fixes f assumes P ). A
refinement step can consist of changing the interface by adding stronger premises
(e.g., locale F ′ = fixes f assumes P ′). Then a sublocale relation between F
and F ′ must be proved. A slightly more complicated case is when the function
f can be implemented using several functions gi, each specified in its own locale
(e.g., locale Gi = fixes gi assumes Qi). Then, a joint locale can be defined
(e.g., locale F ′ = G1 + . . . + Gk) and f can be defined in it. To prove the
refinement, the sublocale relation between F and F ′ must be proved. A similar
technique is described by Nipkow [17].

3 Formalization

Next, we present our formalization of the incremental Simplex procedure.

3.1 Linear Polynomials and Constraints

Linear polynomials are of the form a1 ·x1+...+an ·xn. Their formalization follows
the data-refinement approach of Isabelle/HOL [11]. Abstract representation of
polynomials are functions mapping variables to their coefficients, where only
finitely many variables have non-zero coefficients. Operations on polynomials
are defined as operations on functions. For example, the sum of p1 and p2 is
defined by λ x . p1 x + p2 x and the value of a polynomial p for a valuation
v (denoted by p{|v |}), is defined by

∑
x∈{x . p x �= 0}. p x · v x. Executable

representations of polynomials use either lists or red-black-tree mappings.
Linear constraints are of the form p �� c or p1 �� p2, where p, p1, and p2, are

linear polynomials, c is a rational constant and �� ∈ {<, >, ≤, ≥, =}. Their
abstract syntax is given by the constraint type, and semantics is given by the
relation |=c, defined straightforwardly by primitive recursion over the constraint
type. The list of constraints is satisfied, denoted by |=cs, if all constraints are.

datatype constraint = LT linear-poly rat | GT linear-poly rat | . . .
v |=c LT l r ←→ l{|v |} < r v |=c GT l r ←→ l{|v |} > r . . .
v |=cs cs ←→ (∀ c ∈ cs. v |=c c)

3.2 Procedure Specification

The specification for the satisfiability check procedure is given by:
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locale Solve =
— Decide if the given list of constraints is satisfiable. Return the satisfiability status
and, in the satisfiable case, one satisfying valuation.
fixes solve :: constraint list ⇒ bool × rat valuation option
— If the status True is returned, then returned valuation satisfies all constraints.
assumes let (sat , v) = solve cs in sat −→ the v |=cs cs
— If the status False is returned, then constraints are unsatisfiable.
assumes let (sat , v) = solve cs in ¬ sat −→ (� v . v |=cs cs)

Note that the above specification requires returning a valuation (defined as a
HOL function), which is not efficiently executable. In order to enable more effi-
cient data structures for representing valuations, a refinement of this specification
is needed and the function solve is replaced by the function solve-exec returning
optional (var , rat) mapping instead of var ⇒ rat function. This way, efficient
data structures for representing mappings can be easily plugged-in during code
generation [11]. A conversion from the mapping datatype to HOL function is
denoted by 〈-〉 and given by: 〈v〉 x ≡ case look v x of Some y ⇒ y.

3.3 Handling Strict Inequalities

The first step of the procedure is removing all equalities and strict inequalities.
Equalities can be easily rewritten to non-strict inequalities. Removing strict
inequalities can be done by replacing the list of constraints by a new one, formu-
lated over an extension Q ′ of the space of rationals Q. Q ′ must have a structure
of a linearly ordered vector space over Q (represented by the type class lrv) and
must guarantee that if some non-strict constraints are satisfied in Q ′, then there
is a satisfying valuation for the original constraints in Q. Our final implemen-
tation uses the Qδ space, defined in [10] (basic idea is to replace p < c by p ≤
c − δ and p > c by p ≥ c + δ for a symbolic parameter δ). So, all constraints
are reduced to the form p �� b, where p is a linear polynomial (still over Q), b is
constant from Q ′ and �� ∈ {≤, ≥}. The non-strict constraints are represented
by the type ′a ns-constraint, and their semantics is denoted by |=ns and |=nss.

datatype ′a ns-constraint = LEQns linear-poly ′a | GEQns linear-poly ′a
v |=ns LEQns l r ←→ l{|v |} ≤ r v |=ns GEQns l r ←→ l{|v |} ≥ r
v |=nss cs ←→ (∀ c ∈ cs. v |=ns c)

Specification of reduction of constraints to non-strict form is given by:

locale To-ns =
— Convert a constraint list to an equisatisfiable non-strict constraint list.
fixes to-ns :: constraint list ⇒ ′a::lrv ns-constraint list
assumes v |=cs cs =⇒ ∃ v ′. v ′ |=nss to-ns cs
— Convert the valuation that satisfies all non-strict constraints to the valuation that
satisfies all initial constraints.
fixes from-ns :: (var , ′a) mapping ⇒ ′a ns-constraint list ⇒ (var , rat) mapping
assumes 〈v ′〉 |=nss to-ns cs =⇒ 〈from-ns v ′ (to-ns cs)〉 |=cs cs

After the transformation, the procedure is reduced to solving only the non-
strict constraints, implemented in the solve-exec-ns function having an analogous
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specification to the solve function. If to-ns, from-ns and solve-exec-ns are avail-
able, the solve-exec function can be easily defined and it can be easily shown
that this definition satisfies its specification (also analogous to solve).

solve-exec cs ≡ let cs ′ = to-ns cs; (sat , v) = solve-exec-ns cs ′ in
if sat then (True, Some (from-ns (the v) cs ′)) else (False, None)

3.4 Preprocessing

The next step in the procedure rewrites a list of non-strict constraints into an
equisatisfiable form consisting of a list of linear equations (called the tableau) and
of a list of atoms of the form x i �� bi where x i is a variable and bi is a constant
(from the extension field). The transformation is straightforward and introduces
auxiliary variables for linear polynomials occurring in the initial formula. For
example, [x 1 + x 2 ≤ b1, x 1 + x 2 ≥ b2, x 2 ≥ b3] can be transformed to the
tableau [x 3 = x 1 + x 2] and atoms [x 3 ≤ b1, x 3 ≥ b2, x 2 ≥ b3].

Equations are of the form x = p, where x is a variable and p is a polynomial,
and are represented by the type eq = var × linear-poly. Semantics of equations
is given by v |=e (x , p) ←→ v x = p {| v |}. Tableau is represented as a list
of equations, by the type tableau = eq list. Semantics for a tableau is given by
v |=t t ←→ ∀ e ∈ t . v |=e e. Functions lvars and rvars return sets of variables
appearing on the left hand side (lhs) and the right hand side (rhs) of a tableau.
Lhs variables are called basic while rhs variables are called non-basic variables.
A tableau t is normalized, denoted by N t, iff no variable occurs on the lhs of two
equations in a tableau and if sets of lhs and rhs variables are disjoint. Tableaux
t1 and t2 are equivalent, denoted by t1 ≡t t2, iff ∀ v . v |=t t1 ←→ v |=t t2.

Elementary atoms are represented by the type ′a atom and semantics for
atoms and sets of atoms is denoted by |=a and |=as and given by:

datatype ′a atom = Leq var ′a | Geq var ′a
v |=a Leq x c ←→ v x ≤ c v |=a Geq x c ←→ v x ≥ c
v |=as as ←→ (∀ a ∈ as. v |=a a)

The specification of the preprocessing function is given by:

locale Preprocess = fixes preprocess:: ′a::lrv ns-constraint list ⇒ tableau× ′a atom list
assumes
— The returned tableau is always normalized.
let (t , as) = preprocess cs in N t
— Tableau and atoms are equisatisfiable with starting non-strict constraints.
let (t , as) = preprocess cs in v |=as as ∧ v |=t t −→ v |=nss cs
let (t , as) = preprocess cs in v |=nss cs −→ (∃ v ′. v ′ |=as as ∧ v ′ |=t t)

Once the preprocessing is done and tableau and atoms are obtained, their satisfi-
ability is checked by the assert-all function. Its precondition is that the starting
tableau is normalized, and its specification is analogue to the one for the solve
function. If preprocess and assert-all are available, the solve-exec-ns can be de-
fined, and it can easily be shown that this definition satisfies the specification.

solve-exec-ns s ≡ let (t , as) = preprocess s in assert-all t as
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3.5 Incrementally Asserting Atoms

The function assert-all can be implemented by iteratively asserting one by one
atom from the given list.

Asserted atoms will be stored in a form of bounds for a given variable. Bounds
are of the form l i ≤ x i ≤ ui, where l i and ui and are either scalars or ±∞. Each
time a new atom is asserted, a bound for the corresponding variable is updated
(checking for conflict with the previous bounds). Since bounds for a variable can
be either finite or ±∞, they are represented by (partial) maps from variables
to values ( ′a bounds = var ⇀ ′a). Upper and lower bounds are represented
separately. Infinite bounds map to None and this is reflected in the semantics:

c ≥ub b ←→ case b of None ⇒ False | Some b ′ ⇒ c ≥ b ′

c ≤ub b ←→ case b of None ⇒ True | Some b ′ ⇒ c ≤ b ′

Strict comparisons, and comparisons with lower bounds are performed similarly.

A valuation satisfies bounds iff the value of each variable respects both its
lower and upper bound, i.e, v |=b (lb, ub) ←→ ∀ x . v x ≥lb lb x ∧ v x ≤ub ub x.
Asserted atoms are precisely encoded by the current bounds in a state (de-
noted by .=) if every valuation satisfies them iff it satisfies the bounds, i.e.,
as

.= (lb, ub) ←→ (∀ v . v |=as as ←→ v |=b (lb, ub)).

The procedure also keeps track of a valuation that is a candidate solution.
Whenever a new atom is asserted, it is checked whether the valuation is still
satisfying. If not, the procedure tries to fix that by changing it and the tableau
if necessary (but so that it remains equivalent to the initial tableau).

Therefore, the state of the procedure stores the tableau (denoted by T ), lower
and upper bounds (denoted by Bl and Bu, and ordered pair of lower and upper
bounds denoted by B), candidate solution (denoted by V) and a flag (denoted
by U) indicating if unsatisfiability has been detected so far:

record ′a state =
T :: tableau Bl ::

′a bounds Bu ::
′a bounds V :: (var , ′a) mapping U :: bool

To be a solution of the initial problem, a valuation should satisfy the initial
tableau and list of atoms. Since tableau is changed only by equivalency preserving
transformations and asserted atoms are encoded in the bounds, a valuation is a
solution if it satisfies both the tableau and the bounds in the final state (when all
atoms have been asserted). So, a valuation v satisfies a state s (denoted by |=s)
if it satisfies the tableau and the bounds, i.e., v |=s s ←→ v |=b B s ∧ v |=t T s.
Since V should be a candidate solution, it should satisfy the state (unless the U
flag is raised). This is denoted by |= s and defined by |= s ←→ 〈V s〉 |=s s. The
notation V s will denote that all variables of T s are explicitly valuated in V s.

Assuming that the U flag and the current valuation V in the final state de-
termine the solution of a problem, the assert-all function can be reduced to the
assert-all-state function that operates on the states:

assert-all t as ≡ let s = assert-all-state t as in
if (U s) then (False, None) else (True, Some (V s))
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Specification for the assert-all-state can be directly obtained from the specifi-
cation of assert-all, and it describes the connection between the valuation in the
final state and the initial tableau and atoms. However, we will make an addi-
tional refinement step and give stronger assumptions about the assert-all-state
function that describes the connection between the initial tableau and atoms
with the tableau and bounds in the final state.

locale AssertAllState = fixes assert-all-state::tableau ⇒ ′a::lrv atom list ⇒ ′a state
assumes
— The final and the initial tableau are equivalent.
N t =⇒ let s ′ = assert-all-state t as in t ≡t T s ′

— If U is not raised, then the valuation in the final state satisfies its tableau and its
bounds (that are, in this case, equivalent to the set of all asserted bounds).
N t =⇒ let s ′ = assert-all-state t as in ¬ U s ′ −→ |= s ′

N t =⇒ let s ′ = assert-all-state t as in ¬ U s ′ −→ as
.
= B s ′

— If U is raised, then there is no valuation satisfying the tableau and the bounds in
the final state (that are, in this case, equivalent to a subset of asserted atoms).
N t =⇒ let s ′ = assert-all-state t as in U s ′ −→ (� v . v |=s s ′)
N t =⇒ let s ′ = assert-all-state t as in U s ′ −→ (∃ as ′. as ′ ⊆ as ∧ as ′ .

= B s ′)

The assert-all-state function can be implemented by first applying the init func-
tion that creates an initial state based on the starting tableau, and then by
iteratively applying the assert function for each atom in the starting atoms list.

assert-loop as s ≡ foldl (λ s ′ a. if (U s ′) then s ′ else assert a s ′) s as

assert-all-state t as ≡ assert-loop ats (init t)

Specification for init can be obtained from the specification of assert-all-state
since all its assumptions must also hold for init (when the list of atoms is empty).
Also, since init is the first step in the assert-all-state implementation, the pre-
condition for init is the same as for the assert-all-state. However, unsatisfiability
is never going to be detected during initialization and U flag is never going to
be raised. Also, the tableau in the initial state can just be initialized with the
starting tableau. The condition {} .= B (init t) is equivalent to asking that initial
bounds are empty. Therefore, specification for init can be refined to:

locale Init = fixes init ::tableau ⇒ ′a::lrv state
assumes
— Tableau in the initial state for t is t : T (init t) = t
— Since unsatisfiability is not detected, U flag must not be set: ¬ U (init t)
— The current valuation must satisfy the tableau: 〈V (init t)〉 |=t t
— In an initial state no atoms are yet asserted so the bounds must be empty:

Bl (init t) = (λ -. None) Bu (init t) = (λ -. None)
— All tableau vars are valuated: V (init t)

The assert function asserts a single atom. Since the init function does not raise
the U flag, from the definition of assert-loop, it is clear that the flag is not
raised when the assert function is called. Moreover, the assumptions about the
assert-all-state imply that the loop invariant must be that if the U flag is not
raised, then the current valuation must satisfy the state (i.e., |= s). The assert
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function will be more easily implemented if it is always applied to a state with a
normalized and valuated tableau, so we make this another loop invariant. There-
fore, the precondition for the assert a s function call is that ¬ U s, |= s, N (T s)
and V s hold. The specification for assert directly follows from the specification
of assert-all-state (except that it is additionally required that bounds reflect as-
serted atoms also when unsatisfiability is detected, and that it is required that
assert keeps the tableau normalized and valuated).

locale Assert = fixes assert :: ′a::lrv atom ⇒ ′a state ⇒ ′a state
assumes
— Tableau remains equivalent to the previous one and normalized and valuated.
[[¬ U s; |= s; N (T s); V s]] =⇒ let s ′ = assert a s in
T s ≡t T s ′ ∧ N (T s ′) ∧ V s ′

— If the U flag is not raised, then the current valuation is updated so that it satisfies
the current tableau and the current bounds.
[[¬ U s; |= s; N (T s); V s]] =⇒ ¬ U (assert a s) −→ |= (assert a s)
— The set of asserted atoms remains equivalent to the bounds in the state.
[[¬ U s; |= s; N (T s); V s]] =⇒ ats

.
= B s −→ (ats ∪ {a}) .

= B (assert a s)
— If the U flag is raised, then there is no valuation that satisfies both the current

tableau and the current bounds.
[[¬ U s; |= s; N (T s); V s]] =⇒ U (assert a s) −→ (� v . v |=s (assert a s))

Under these assumptions, it can easily be shown (mainly by induction over as)
that the given implementation of assert-all-state satisfies its specification.

3.6 Asserting Single Atoms

The assert function is split in two phases. First, assert-bound updates the bounds
and checks only for conflicts cheap to detect. Next, check performs the full
Simplex algorithm. The assert function can be implemented as assert a s =
check (assert-bound a s). Note that it is also possible to do the first phase for
several asserted atoms, and only then to let the expensive second phase work.

Asserting an atom x �� b begins with the function assert-bound. If the atom
is subsumed by the current bounds, then no changes are performed. Otherwise,
bounds for x are changed to incorporate the atom. If the atom is inconsistent
with the previous bounds for x, the U flag is raised. If x is not a lhs variable in
the current tableau and if the value for x in the current valuation violates the
new bound b, the value for x can be updated and set to b, meanwhile updating
the values for lhs variables of the tableau so that it remains satisfied. Otherwise,
no changes to the current valuation are performed.

So, the assert-bound function must ensure that the given atom is included
in the bounds, that the tableau remains satisfied by the valuation and that
all variables except the lhs variables in the tableau are within their bounds.
To formalize this, we introduce the notation v |=b (lb, ub) ‖ S, and define
v |=b (lb, ub) ‖ S ←→ ∀ x∈S . v x ≥lb lb x ∧ v x ≤ub ub x, and |=nolhs s ←→
〈V s〉 |=t T s ∧ 〈V s〉 |=b B s ‖ − lvars (T s). The assert-bound function raises
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the U flag if and only if lower and upper bounds overlap. Otherwise, bounds are
consistent, denoted by Bc s, and defined by Bc s ←→ ∀ x . if Bl s x = None ∨
Bu s x = None then True else the (Bl s x ) ≤ the (Bu s x ).

Since the assert-bound is the first step in the assert function implementation,
the preconditions for assert-bound are the same as preconditions for the assert
function. The specification for the assert-bound is:

locale AssertBound = fixes assert-bound :: ′a::lrv atom ⇒ ′a state ⇒ ′a state
assumes
— The tableau remains unchanged and valuated.
[[¬ U s; |= s; N (T s); V s]] =⇒ let s ′ = assert-bound a s in T s ′ = T s ∧ V s ′

— If the U flag is not set, all but the lhs variables in the tableau remain within their
bounds, the new valuation satisfies the tableau, and bounds do not overlap.
[[¬ U s; |= s; N (T s); V s]] =⇒

let s ′ = assert-bound a s in ¬ U s ′ −→ |=nolhs s ′ ∧ Bc s ′

— The set of asserted atoms remains equivalent to the bounds in the state.
[[¬ U s; |= s; N (T s); V s]] =⇒ ats

.
= B s −→ (ats ∪ {a}) .

= B (assert-bound a s)
— U flag is raised, only if the bounds became inconsistent:
[[¬ U s; |= s; N (T s); V s]] =⇒ let s ′ = assert-bound a s in U s ′ −→ (� v . v |=s s ′)

The second phase of assert, the check function, is the heart of the Simplex
algorithm. It is always called after assert-bound, but in two different situations.
In the first case assert-bound raised the U flag and then check should retain the
flag and should not perform any changes. In the second case assert-bound did
not raise the U flag, so |=nolhs s, Bc s, N (T s), and V s hold.

locale Check = fixes check :: ′a::lrv state ⇒ ′a state
assumes
— If check is called from an inconsistent state, the state is unchanged.
[[ U s ]] =⇒ check s = s
— The tableau remains equivalent to the previous one, normalized and valuated.
[[¬ U s; |=nolhs s; Bc s; N (T s); V s]] =⇒
let s ′ = check s in T s ≡t T s ′ ∧ N (T s ′) ∧ V s ′

— The bounds remain unchanged.
[[¬ U s; |=nolhs s; Bc s; N (T s); V s]] =⇒ B (check s) = B s
— If U flag is not raised, the current valuation V satisfies both the tableau and the
bounds and if it is raised, there is no valuation that satisfies them.
[[¬ U s; |=nolhs s; Bc s; N (T s); V s]] =⇒ ¬ U (check s) −→ |= (check s)
[[¬ U s; |=nolhs s; Bc s; N (T s); V s]] =⇒ U (check s) −→ (� v . v |=s (check s))

Under these assumptions for assert-bound and check, it can be easily shown that
the implementation of assert (previously given) satisfies its specification.

However, for efficiency reasons, we want to allow implementations that delay
the check function call and call it after several assert-bound calls. For example:

assert-bound-loop ats s ≡ foldl (λs ′ a. if U s ′ then s ′ else assert-bound a s ′) s ats

assert-all-state t ats ≡ check (assert-bound-loop ats (init t))

Then, the loop consists only of assert-bound calls, so the assert-bound postcon-
dition must imply its precondition. This is not the case, since variables on the
lhs may be out of their bounds. Therefore, we make a refinement and specify
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weaker preconditions (replace |= s, by |=nolhs s and Bc s) for assert-bound, and
show that these preconditions are still good enough to prove the correctness of
this alternative assert-all-state definition.

3.7 Update and Pivot

Both assert-bound and check need to update the valuation so that the tableau re-
mains satisfied. If the value for a variable not on the lhs of the tableau is changed,
this can be done rather easily (once the value of that variable is changed, one
should recalculate and change the values for all lhs variables of the tableau). The
update function does this, and it is specified by:

locale Update = fixes update::var ⇒ ′a::lrv ⇒ ′a state ⇒ ′a state
assumes
— Tableau, bounds, and the unsatisfiability flag are preserved.
[[N (T s); V s; x /∈ lvars (T s)]] =⇒

let s ′ = update x c s in T s ′ = T s ∧ B s ′ = B s ∧ U s ′ = U s
— Tableau remains valuated.
[[N (T s); V s; x /∈ lvars (T s)]] =⇒ V (update x v s)
— The given variable x in the updated valuation is set to the given value v while all
other variables (except those on the lhs of the tableau) are unchanged.
[[N (T s); V s; x /∈ lvars (T s)]] =⇒ x ′ /∈ lvars (T s) −→

look (V (update x v s)) x ′ = (if x = x ′ then Some v else look (V s) x ′)
— Updated valuation continues to satisfy the tableau.
[[N (T s); V s; x /∈ lvars (T s)]] =⇒ 〈V s〉 |=t T s −→ 〈V (update x c s)〉 |=t T s

Given the update function, assert-bound can be implemented as follows.
assert-bound (Leq x c) s ≡

if c ≥ub Bu s x then s
else let s ′ = s (| Bu := (Bu s) (x := Some c) |)

in if c <lb Bl s x then s ′ (| U := True |)
else if x /∈ lvars (T s ′) ∧ c < 〈V s〉 x then update x c s ′ else s ′

The case of Geq x c atoms is analogous (a systematic way to avoid symmetries
is discussed in Section 3.9). This implementation satisfies both its specifications.

Updating changes the value of x and then updates values of all lhs variables
so that the tableau remains satisfied. This can be based on a function that
recalculates rhs polynomial values in the changed valuation:

locale RhsEqVal = fixes rhs-eq-val ::(var , ′a::lrv) mapping ⇒ var ⇒ ′a ⇒ eq ⇒ ′a
— rhs-eq-val computes the value of the rhs of e in 〈v〉(x := c).
assumes 〈v〉 |=e e =⇒ rhs-eq-val v x c e = rhs e {| 〈v〉 (x := c) |}

Then, the next implementation of update satisfies its specification:

update-eq v x c v ′ e ≡ upd (lhs e) (rhs-eq-val v x c e) v ′

update x c s ≡ s(|V := upd x c (foldl (update-eq (V s) x c) (V s) (T s))|)
To update the valuation for a variable that is on the lhs of the tableau it

should first be swapped with some rhs variable of its equation, in an operation
called pivoting. Pivoting has the precondition that the tableau is normalized
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and that it is always called for a lhs variable of the tableau, and a rhs variable
in the equation with that lhs variable. The set of rhs variables for the given
lhs variable is found using the rvars-of-lvar function (specified in a very simple
locale EqForLVar, that we do not print).

locale Pivot = EqForLVar + fixes pivot ::var ⇒ var ⇒ ′a::lrv state ⇒ ′a state
assumes
— Valuation, bounds, and the unsatisfiability flag are not changed.
[[N (T s); x i ∈ lvars (T s); x j ∈ rvars-of-lvar (T s) x i]] =⇒

let s ′ = pivot x i x j s in V s ′ = V s ∧ B s ′ = B s ∧ U s ′ = U s
— The tableau remains equivalent to the previous one and normalized.
[[N (T s); x i ∈ lvars (T s); x j ∈ rvars-of-lvar (T s) x i]] =⇒

let s ′ = pivot x i x j s in T s ≡t T s ′ ∧ N (T s ′)
— x i and x j are swapped, while the other variables do not change sides.
[[N (T s); x i ∈ lvars (T s); x j ∈ rvars-of-lvar (T s) x i]] =⇒ let s ′ = pivot x i x j s in
rvars(T s ′) = rvars(T s)−{x j}∪{x i} ∧ lvars(T s ′) = lvars(T s)−{x i}∪{x j}

Functions pivot and update can be used to implement the check function. In its
context, pivot and update functions are always called together, so the following
definition can be used: pivot-and-update x i x j c s = update x i c (pivot x i x j

s). It is possible to make a more efficient implementation of pivot-and-update
that does not use separate implementations of pivot and update. To allow this, a
separate specification for pivot-and-update can be given. It can be easily shown
that the pivot-and-update definition above satisfies this specification.

Pivoting the tableau can be reduced to pivoting single equations, and substi-
tuting variables by polynomials. These operations are specified by:

locale PivotEq = fixes pivot-eq ::eq ⇒ var ⇒ eq
assumes
— Lhs var of eq and x j are swapped, while the other variables do not change sides.
[[x j ∈ rvars-eq eq ; lhs eq /∈ rvars-eq eq ]] =⇒ let eq ′ = pivot-eq eq x j in

lhs eq ′ = x j ∧ rvars-eq eq ′ = {lhs eq} ∪ (rvars-eq eq − {x j})
— Pivoting keeps the equation equisatisfiable.
[[x j ∈ rvars-eq eq ; lhs eq /∈ rvars-eq eq ]] =⇒ v |=e pivot-eq eq x j ←→ v |=e eq
locale SubstVar = fixes subst-var ::var ⇒ linear-poly ⇒ linear-poly ⇒ linear-poly
assumes
— Effect of subst-var x j lp ′ lp on lp variables.
(vars lp − {x j}) − vars lp ′ ⊆ vars (subst-var x j lp ′ lp) ⊆ (vars lp − {x j}) ∪ vars lp ′

— Effect of subst-var x j lp ′ lp on lp value.
v x j = lp ′ {|v |} −→ lp {|v |} = (subst-var x j lp ′ lp) {|v |}

Then, the next implementation of pivot satisfies its specification:

pivot-tableau x i x j t ≡ let eq = eq-for-lvar t x i; eq
′ = pivot-eq eq x j in

map (λ e. if lhs e = lhs eq then eq ′ else subst-var-eq x j (rhs eq ′) e) t
pivot x i x j s ≡ s(| T := pivot-tableau x i x j (T s) |)

3.8 Check Implementation

The check function is called when all rhs variables are in bounds, and it checks if
there is a lhs variable that is not. If there is no such variable, then satisfiability
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is detected and check succeeds. If there is a lhs variable x i out of its bounds, a
rhs variable x j is sought which allows pivoting with x i and updating x i to its
violated bound. If x i is under its lower bound it must be increased, and if x j has
a positive coefficient it must be increased so it must be under its upper bound
and if it has a negative coefficient it must be decreased so it must be above its
lower bound. The case when x i is above its upper bound is symmetric (avoiding
symmetries is discussed in Section 3.9). If there is no such x j, unsatisfiability is
detected and check fails. The procedure is recursively repeated, until it either
succeeds or fails. To ensure termination, variables x i and x j must be chosen
with respect to a fixed variable ordering. For choosing these variables auxiliary
functions min-lvar-not-in-bounds, min-rvar-inc and min-rvar-dec are specified
(each in its own locale). For, example:

locale MinLVarNotInBounds = fixes min-lvar-not-in-bounds:: ′a::lrv state ⇒ var option
assumes
min-lvar-not-in-bounds s = None −→ (∀ x∈lvars (T s). in-bounds x 〈V s〉 (B s))
min-lvar-not-in-bounds s = Some x i −→ x i∈lvars (T s) ∧ ¬in-bounds x i 〈V s〉 (B s)

∧ (∀ x∈lvars (T s). x < x i −→ in-bounds x 〈V s〉 (B s))

The definition of check can be given by:

check s ≡ if U s then s
else let x i

′ = min-lvar-not-in-bounds s in
case x i

′ of None ⇒ s
| Some x i ⇒ if 〈V s〉 x i <lb Bl s x i then check (check-inc x i s)

else check (check-dec x i s)

check-inc x i s ≡ let l i = the (Bl s x i); x j
′ = min-rvar-inc s x i in

case x j
′ of None ⇒ s (| U := True |) | Some x j ⇒ pivot-and-update x i x j l i s

The definition of check-dec is analogous. It is shown (mainly by induction)
that this definition satisfies the check specification. Note that this definition
uses general recursion, so its termination is non-trivial. It has been shown that
it terminates for all states satisfying the check preconditions. The proof is based
on the proof outline given in [10]. It is very technically involved, but due to the
lack of space we do not discuss it in more details.

3.9 Symmetries

The Simplex algorithm exhibits many symmetric cases. For example, assert-
bound treats atoms Leq x c and Geq x c in a symmetric manner, check-inc and
check-dec are symmetric, etc. These symmetric cases differ only in several as-
pects: order relations between numbers (< vs > and ≤ vs ≥), the role of lower
and upper bounds (Bl vs Bu) and their updating functions, comparisons with
bounds (e.g., ≥ub vs ≤lb or <lb vs >ub), and atom constructors (Leq and Geq).
These can be attributed to two different orientations (positive and negative) of
the rational axis. To avoid duplicating definitions and proofs, assert-bound defini-
tion cases for Leq and Geq are replaced by a call to a newly introduced function
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parametrized by a Direction — a record containing a minimal set of aspects
listed above that differ in two definition cases such that other aspects can be de-
rived from them (e.g., only < need to be stored while ≤ can be derived from it).
Two constants of the type Direction are defined: Positive (with <, ≤ orders, Bl

for lower and Bu for upper bounds and their corresponding updating functions,
and Leq constructor) and Negative (completely opposite from the previous one).
Similarly, check-inc and check-dec are replaced by a new function check-incdec
parametrized by a Direction. All lemmas, previously repeated for each symmet-
ric instance, were replaced by a more abstract one, again parametrized by a
Direction parameter.

4 Related Work

The literature on decision procedures for linear arithmetic is vast. Regarding
the formally verified algorithms, the closest work to ours is done by Chaieb and
Nipkow [7,14,15,16]. They have verified a number of quantifier-elimination algo-
rithms for both rational and integer case. They cover arbitrary quantifiers and
propositional structure (although by a simple DNF-based approach), but restrict
atoms only to < and = relations. Our approach has more limited scope since it
covers only the quantifier-free case for rational arithmetic, but our experimental
results show that, due to the Simplex procedure, it significantly outperforms
Fourier-Motzkin procedure verified by Nipkow [16]. We have tested 90 random
generated quantifier-free LRA instances with 2-10 variables and 10-100 con-
straints. Fourier-Motzkin procedure solved only 8 within a 300s time-limit with
average time of 66.40s, while Simplex solved all 90 with average time of 0.44s.

5 Conclusions and Further Work

We have presented a formalization of a functional model for the incremental
Simplex procedure [10] used in most state-of-the art SMT solvers and proved its
total correctness. Only the central case of deciding conjunctions of constraints
was discussed, while other important but simpler questions (e.g., explanations,
propagations) are left for further work.

The decision to use a stepwise refinement approach enormously simplified
reasoning about the procedure. Initially, we started a formalization by imple-
menting the whole procedure and reasoning about it at once, and our experience
shows that this monolith approach required proofs that are several times longer
and much harder to make and understand. Stepwise refinement makes the for-
malization modular and it is much easier to make changes to the procedure.

Another important decision in our formalization was to pay special attention
to symmetric cases in the proof. Pen-and-paper termination proof outline [9]
deals only with one of four symmetric cases arising in that context and con-
cludes that other cases are handled ,,similarly”. A direct approach would be to
copy-paste the case four times and adapt the proof in each case. However, our
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generalizations made in basic predicate definitions, completly removed the need
for case-analysis in the proof text.

The main obstacle for achieving the maximal efficiency is the lack of imper-
ative data-structures in our formalization. This can be improved if the Impera-
tive/HOL framework [6] is used. However, this does not fit well with our stepwise
refinement approach. Imperative/HOL would require redefining the whole code
using the monadic approach and proving some kind of equivalence with the
current purely functional implementation.
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(eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 134–149. Springer, Heidelberg (2008)

7. Chaieb, A., Nipkow, T.: Proof Synthesis and Reflection for Linear Arithmetic. J.
Automated Reasoning 41, 33–59 (2008)

8. Dijkstra, E.W.: A Constructive Approach to the Problem of Program Correctness.
BIT Numerical Mathematics 8, 174–186 (1968)

9. Dutertre, B., de Moura, L.: Integrating Simplex with DPLL(T). Technical Report
SRI-CSL-06-01, SRI International (2006)

10. Dutertre, B., de Moura, L.: A Fast Linear-Arithmetic Solver for DPLL(T). In: Ball,
T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg
(2006)

11. Haftmann, F., Nipkow, T.: Code Generation via Higher-Order Rewrite Systems.
In: Blume, M., Kobayashi, N., Vidal, G. (eds.) FLOPS 2010. LNCS, vol. 6009, pp.
103–117. Springer, Heidelberg (2010)

12. Harrison, J.: Without Loss of Generality. In: Berghofer, S., Nipkow, T., Urban, C.,
Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 43–59. Springer, Heidelberg
(2009)
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VMC: A Tool for Product Variability Analysis
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Abstract. We present VMC, a tool for the modeling and analysis of
variability in product lines. It accepts a product family specified as a
modal transition system, possibly with additional variability constraints,
after which it can automatically generate all the family’s valid products,
visualize the family/products as modal/labeled transition systems, and
efficiently model check properties expressed in an action- and state-based
branching-time temporal logic over products and families alike.

1 Introduction

Product Line Engineering (PLE) is a paradigm for developing a variety of related
products from a common product family. Commonality and variability are de-
fined in terms of features and managing variability is about identifying variation
points in a family design and deciding which combinations are valid products.

In [7], Modal Transition Systems (MTSs) were recognized as a formal method
to describe in a compact way the possible operational behavior of all products of
a product family. An MTS is a Labeled Transition System (LTS) distinguishing
optional (may) and mandatory (must) transitions. The standard way to derive
products (which become LTSs) from an MTS modeling a product family is to
include all its (reachable) must transitions and a subset of its (reachable) may
transitions; each selection is a product. However, MTSs are incapable of modeling
all common variability constraints. The solution chosen in [1,2] is to add a set of
constraints to the MTS to define which derivable products are to be considered
valid ones. In particular, an appropriate variability and action-based temporal
logic to formalize these constraints is defined in [1] and an algorithm to derive
only (and possibly all) LTSs describing valid products is defined in [2].

We introduce an experimental tool we developed to implement this solution:
the Variability Model Checker VMC. We guide the reader through a case study,
a family of coffee machines from [1,2] with the following informal requirements:

1. Initially, a coin must be inserted: either a euro, exclusively for European
products, or a dollar, exclusively for Canadian products ;

2. After inserting a coin, the user has to choose whether (s)he wants sugar, by
pressing one of two buttons, after which (s)he may select a beverage;

3. The choice of beverage (coffee, tea, cappuccino) varies, but all products must
offer coffee while only European products may offer cappuccino;

4. Optionally, a ringtone may be rung after delivering a beverage. However, a
ringtone must be rung in all products offering cappuccino;

D. Giannakopoulou and D. Méry (Eds.): FM 2012, LNCS 7436, pp. 450–454, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Fig. 1. MTS of coffee machine family (l) and apparently valid European product (r) as
generated by VMC; dashed edges labeled may(·) are may transitions, the others must

2 Encoding and Analyzing Product Families in VMC

VMC (http://fmtlab.isti.cnr.it/vmc/), beyond interactively exploring an
MTS, model checking properties over an MTS, and visualizing the interactive
explanations of a verification result, furthermore allows the generation of valid
products (according to the given constraints) of an MTS describing a product
family and the verification of properties over each valid product.

VMC takes as input the textual encoding of an MTS and a set of constraints of
the form ALTernative, EXCludes, REQuires and IFF (a shorthand for bilateral
REQs), thus hiding their logic formalization given in [1]. The distinction among
may and must transitions is encoded in the resulting LTS by structuring action
labels corresponding to may transitions as may(·) (i.e., typed actions). We model
all valid product behavior of the coffee machine family by the MTS of Fig. 1(l),
whose textual representation and associated set of constraints are as follows:

T1 = may(euro).T2 + may(dollar).T2 T11 = pour_milk.T13
T2 = sugar.T3 + no_sugar.T4 T12 = pour_coffee.T13
T3 = coffee.T5 + may(cappuccino).T6 + may(tea).T7 T13 = may(ring_a_tone).T14
T4 = coffee.T8 + may(cappuccino).T9 + may(tea).T10 + may(no_ring).T14
T5 = pour_sugar.T8 T14 = take_cup.T1
T6 = pour_sugar.T9 net SYS = T1
T7 = pour_sugar.T10 Constraints { euro ALT dollar
T8 = pour_coffee.T13 dollar EXC cappuccino
T9 = pour_coffee.T11 + pour_milk.T12 cappuccino REQ ring_a_tone
T10 = pour_tea.T13 ring_a_tone ALT no_ring }

The variability logic defined in [1] can be directly encoded in the logic accepted by
VMC by considering the typed actions. This latter logic contains the classic box
and diamond modal operators [ ], 〈 〉, the classic existential and universal state
operators E, A (quantifying over paths), and action-based versions of the CTL
until operators W, U (resulting also in an action-based version of the ‘eventually’

http://fmtlab.isti.cnr.it/vmc/
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operator F ). Using VMC it is thus possible to specify and verify properties which
are definitely preserved in all products by checking them over the family MTS:

(1) The MTS guarantees that if a euro or dollar action occurs, afterwards for all
standardly derivable products it is eventually possible to reach action coffee:
[may(euro) or may(dollar )] E [true {not may(∗)} U {coffee} true]

This formula prohibits a path leading to action coffee to contain any (i.e. ∗) may
transition (beyond the initial one). Asked to check it over the MTS of Fig. 1(l),
VMC reports it holds. It moreover offers the possibility to explain the result.

3 Generating and Analyzing Valid Products in VMC

VMC implements the algorithm defined in [2] to generate valid products deriv-
able from an MTS when taking into account an associated set of constraints. The
latter can also be used to specify (and analyze) specific subsets of the product
set. Beyond generating valid products (LTSs), VMC allows browsing them, ver-
ifying whether they satisfy a certain property (logic formula) and investigating
why a specific valid product does (not) satisfy the verified property. To do so,
VMC allows to open for each product a new window with its textual encoding.

Suppose we generate all valid products in VMC and then check for each one:

(2) If it is possible to obtain a sugared cappuccino, then also an unsugared one:
(EF 〈sugar〉 〈cappuccino〉 true) implies EF 〈no_sugar〉 〈cappuccino〉 true

Property 2 does not hold for all valid products, revealing ambiguous constraints:
the one of Fig. 1(r) satisfies all constraints but offers cappuccino only with sugar.
To resolve such ambiguity, we refine the optional actions cappuccino and tea by
explicitly distinguishing sugared and unsugared ones and extend the constraints:

Constraints {
euro ALT dollar dollar EXC unsugared_cappuccino
unsugared_cappuccino IFF sugared_cappuccino unsugared_cappuccino REQ ring_a_tone
unsugared_tea IFF sugared_tea ring_a_tone ALT no_ring }

This case study coffeemodel2.txt is available in VMC as one of the examples.
Next we check if all valid European products now offer both types of cappuccino:

[euro] ((EF 〈sugared_cappuccino〉 true) and EF 〈unsugared_cappuccino〉 true)

VMC then produces a table of 10 products (no longer containing that of Fig. 1(r))
listing which optional actions they contain and whether they satisfy the formula.

4 VMC and Related Tools

VMC’s core contains a command-line version of the model checker and a product
generation procedure, both stand-alone executables in Ada (easy to compile for
Windows|Linux|Solaris|Mac) wrapped with CGI scripts handled by a web server,
facilitating an html-oriented GUI and integration with graph drawing tools. Its
development is ongoing, a prototype for academic purposes is freely usable online
(fmtlab.isti.cnr.it/vmc) and its executables are available upon request.

fmtlab.isti.cnr.it/vmc
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The current version of VMC is not targeted to very large systems. Its main
limitation, however, lies in generating the model from its input language, while
its on-the-fly verification engine and advanced explanation techniques are those
of the highly optimized family of on-the-fly model checkers developed at ISTI–
CNR over the last decades for verifying formulae in an action- and state-based
branching-time temporal logic derived from the CTL family of logics, such as
FMC [8], UMC [3] and CMC [6]. Their on-the-fly nature means that in general
not the whole state space needs to be generated and explored. This feature
improves performance and allows to deal with infinite-state systems.

We are aware of two other tools dealing with verification of product families.
MTSA [5] is a prototype, built on top of the LTS Analyser LTSA, for the

analysis of MTSs specified in an extension of the process algebra FSP (Finite
State Processes). MTSA allows 3-valued FLTL (Fluent LTL) model checking of
MTSs by reducing the verification to two FLTL model-checking runs on LTSs.

SNIP [4] is a model checker for PLs modeled as FTSs (Featured Transition
Systems) specified in a language based on that of SPIN. Features must be de-
clared in the Text-based Variability Language TVL and are taken into account by
SNIP’s explicit-state model-checking algorithm for the verification of properties
expressed in fLTL (feature LTL) interpreted over FTSs, e.g. to verify a property
over only a subset of a family’s valid products. Exhaustive model-checking algo-
rithms (continuing the search after a violation is found) moreover allow to verify
all products of a family at once and to output all products violating a prop-
erty. SNIP treats features as first-class citizens, has built-in support for feature
diagrams, and it implements model-checking algorithms tailored for PLs.

Acknowledgment. We thank our colleagues Patrizia Asirelli, Alessandro Fan-
techi and Stefania Gnesi for their contributions to the research that has led to
VMC.
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Abstract. When a program evolves, its test suite must be modified to
reflect changes in requirements or to account for new feature additions.
This problem of modifying tests as a program evolves is termed test re-
pair. Existing approaches either assume that updated implementation is
correct, or assume that most test repairs require simply fixing compi-
lation errors caused by refactoring of previously tested implementation.
This paper focuses on the problem of repairing semantically broken or
outdated tests by leveraging specifications. Our technique, Spectr, em-
ploys a lightweight formal method to perform specification-based repair.
Specifically, Spectr supports the Alloy language for writing specifica-
tions and uses its SAT-based analyzer for repairing JUnit tests. Since
Spectr utilizes specifications, it works even when the specification is
modified but the change has not yet been implemented in code—in such
a case, Spectr is able to repair tests that previous techniques would not
even consider as candidates for test repair. An experimental evaluation
using a suite of subject programs with pre-conditions and post-conditions
shows Spectr can effectively repair tests even for programs that perform
complex manipulation of dynamically allocated data.

1 Introduction

Testing is the most commonly used technique for validating software quality.
While conceptually simple, testing can be expensive and involves much manual
effort, specifically in writing test cases and describing expected test outputs. To
reduce this cost, regression test suites are commonly used to check behavioral
modifications as a program evolves. However, behavioral modifications may ren-
der certain existing tests invalid due to new feature additions or bug fixes, which
in turn modify the expected test outputs.

Several research projects have addressed this problem of test repair [8,6,5].
Existing techniques can fix compilation errors in tests caused by simple refac-
torings such as method renamings or signature changes, so that the old tests
could run as before. Some can modify test assertions to ensure those tests that
passed before could still pass. However, all existing techniques perform test up-
dates with respect to implementation changes, assuming that implementation is
always correct. If the specification changes, but the implementation has not yet
been modified or has been modified incorrectly, existing techniques are not able
to repair tests to correctly reflect the updated specifications.

D. Giannakopoulou and D. Méry (Eds.): FM 2012, LNCS 7436, pp. 455–470, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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This paper presents Spectr, a novel specification-based test repair tech-
nique using a lightweight formal method. Given the specifications of a modified
program—pre-conditions defining expected inputs and post-conditions defining
expected behavior—and an existing test suite, Spectr repairs each test that
exercises modified behavior. Specifically, it repairs test assertions that check the
actual output against the expected output, so that failing tests reflect specifica-
tion violation and passing tests reflect specification conformance.

As an enabling technology, Spectr uses the Alloy tool set [13]. Alloy is a
first-order declarative language based on relations, and is particularly suitable
for expressing structural invariants on graphs, such as class invariants on object-
graphs in a Java program. The Alloy tool set includes a fully automatic SAT
solver engine that checks Alloy formulas within a given scope, i.e., bound on the
universe of discourse. The back-end deployment of state-of-the-art SAT solvers
makes the Alloy tool set particularly effective for test repair.

Given Alloy specifications, Spectr uses a SAT solver to compute expected
outputs for test assertions using post-conditions. The key insight behind our ap-
proach is that because each test case represents a single program execution for
deterministic programs, updating a test oracle needs to explore only one execu-
tion behavior and does not need enumerate all possible behaviors. Thus Spectr
differs from previous testing and verification techniques using Alloy [21,16,7,9]
by avoiding the traditional state-space explosion. Moreover, for manually writ-
ten tests, Spectr allows utilizing the tester’s intuition behind the design of test
inputs, since they directly form a part of the repaired test cases.

Spectr repairs JUnit [1] tests that have a fairly general structure with
three primary components: (1) initialization—initializing input values, i.e., the
pre-state, for the sequence of methods under test, e.g., using explicit object
allocations and field assignments, (2) execution—invoking the sequence of meth-
ods under test on the inputs, and (3) assertion—checking the post-state for
the sequence using a test assertion, e.g., using the assertEquals method in
org.junit.Assert. To repair a test, Spectr first uses the initialization com-
ponent to initialize an Alloy instance that represents the pre-state. Next, it uses
Alloy to compute an expected post-state subject to the execution component.
Finally, it updates affected assertions to reflect behavioral conformance to the
updated specification.

Spectr makes it possible to repair tests even before the implementation is
modified to reflect the updated specifications. Thus, Spectr directly supports
test-driven development, a key practice behind the success of Extreme Program-
ming and other agile software development processes. To the best of our knowl-
edge, Spectr is the first such technique for test repair.

This paper makes the following contributions:

– Specification-based test repair. We introduce the idea of repairing tests
to reflect modifications to expected behavior as encoded in specifications.
Previous techniques for test repair are based on implementation changes,
assuming that updated code is always correct. Therefore, they do not handle
semantic changes with respect to modified specifications.
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– A lightweight formal method for test repair. To our knowledge,
Spectr is the first technique for test repair using a lightweight formal
method. It leverages the Alloy tool set and presents a non-conventional ap-
plication of propositional satisfiability solvers for repairing tests.

– Evaluation. We perform an experimental evaluation using our prototype
embodiment of Spectr to repair tests for a suite of subject programs. Our
experiments show that Spectr effectively repairs tests, even for programs
that perform complex manipulations of dynamically allocated data.

While our approach is based on Alloy specifications, our ideas generalize to pro-
grams annotated using different specification languages, such as the Java Mod-
eling Language, which enhances the applicability of our approach. In fact, our
approach directly applies to code with Java Modeling Language (JML) annota-
tions: the JForge tool [7] performs Alloy-based static analysis of JML annotated
code and provides an enabling technology for our technique.

2 Related Work

Test Repair. The need of test repair is well-recognized in regression test-
ing [19,3] and software evolution [26]. Recent years have seen several frameworks
that automate test repair [8,6,5,18]. The key difference between Spectr and pre-
vious work is Spectr’s use of specifications for test repair. Previous techniques
for test repair use changes in implementation to repair tests, and hence can only
repair tests to reflect actual behavior, which may not be the intended behavior.
In contrast, Spectr can repair tests even when the modified implementation is
buggy. Indeed, Spectr does not even require the implementation to be modified
before the tests are repaired.

Daniel et al. [6,5] proposed a technique which performs a combined dynamic
and static analysis to find test repairs that developers are likely to accept. How-
ever, their approach assumes the implementation is correct, and then repairs
failing tests by recording its runtime behavior. [18] proposed an approach to
repairing test cases for evolving method declarations. It only repairs test case
compilation errors that depend on changes in parameters or return values. It
assumes that the original functionality is preserved for the given test inputs.

Test repair has also been investigated for GUI-based systems, where it is
common for developers to create test scripts using record-and-replay testing tools
in GUI testing. The scripts generated in this way are quite fragile and easy to be
broken when the system changes. To address this problem, Memon [17] proposed
techniques for correcting sequences of test scripts so that they compile with the
tested application. More recently, Grechanik et al. [11] presented a technique to
identify modified GUI objects and locate test script statements that reference
these modified GUI objects, so the test engineers can fix the test scripts.

Debugging. Recent years have seen much progress in automated techniques
for removing bugs, i.e., debugging – the process of locating faults, i.e., fault
localization [12,4,15] and fixing them, i.e., program repair [27,14,24,10]. Test
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repair is a special case of program repair where the program to repair is the old
test suite. However, existing techniques for program repair are not well suited
for test repair since they are ambivalent of the specific structure of test case. In
contrast, test repair techniques utilize this structure for enhanced effectiveness.

Alloy. The Alloy tool-set has provided an enabling technology for various anal-
yses for Java programs, including static checking using Jalloy [21], systematic
testing using TestEra [16], data structure repair using Tarmeem [25], and most
recently for program repair by Gopinath et al [10]. Our work shares insights with
previous work and provides a novel use of the Alloy tool-set in test repair. The
problem of test repair has similarities with the problem of test generation and
the problem of program repair. Spectr’s technical approach is different from
TestEra’s, which generates inputs at the concrete level using sequences of field
assignments and uses the Alloy Analyzer to evaluate Alloy post-conditions as
test oracles. In contrast, Spectr supports method sequences for input creation,
enables re-use of existing test inputs, and generates test assertions that directly
check correctness criteria. Also, Spectr’s approach is different from Gopinath
et al.’s approach for program repair, which repairs faulty object field assignment
statements. In contrast, Spectr repairs JUnit test assertions, which are written
using arbitrary Java expressions.

N-version Programming. Our work bears resemblance1 to N-version pro-
gramming—a methodology where the same initial specification is used to create
N ≥ 2 functionally equivalent programs to enable fault tolerance [2]. There are
three basic differences between our approach and N-version programming. First,
we are performing specification-based repair where the specification is in a declar-
ative language. We do not have two (or more) imperative programs implementing
the same specification—the central condition for N-version programming. Sec-
ond, N-version programming does not account for specification evolution, which
is the central theme of our work. Third, N-version programming is defined for
fault tolerance, not for test repair. However, we could generalize the spirit of N-
version programming to view a specification—assuming it is executable—itself
as one program version that may evolve. Then, after an evolution, the results of
specification execution, if feasible, can be used to repair tests. For Alloy spec-
ifications, execution is made feasible by Alloy’s SAT-based back-end, which is
indeed the enabling technology for Spectr’s test repair. It is plausible to opti-
mize solving of Alloy formulas in the specific context of test repair, but that is
an open research problem.

3 Illustrative Example

This section presents an example to illustrate Spectr’s test repair process; we
describe basic Alloy syntax and semantics as we introduce it; details on Alloy
can be found elsewhere [13].

1 We thank an anonymous reviewer for pointing us to N-version programming.
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1 Code

������ ����� List {
Node header;
�	�	�� ����� Node {�
	 elem; Node next;}
������ �
	 size(){...}
������ ��� add(�
	){...}

}

2

Old Spec:
acyclic, sorted
lists with unique
elements

��� RepOk(l: List , s: State) {
��� n: l.(header.s).*(next.s) {
n not �
 n.^(next.s) // list is acyclic
// list is sorted with unique elements
���� n.(next.s) => n.(elem.s) < n.(next.s).(elem.s)

}
}

��� add_pre (l: List , x: Int , s: State) {
RepOk[l, s]

}

��� add_post (l: List , x: Int , s, s’: State) {
RepOk[l, s’]
l.( header.s’).*( next.s’).(elem.s’)
= l.( header.s).*(next.s).(elem.s) + x

}

��� size_pre (l: List , s: State) {
RepOk[l, s]

}

��� size_post(l: List , result: Int , s: State) {
result = #l.(header.s).*(next.s)

}

3

New Spec:
acyclic, sorted
lists that allow
repetitions

Modified Spec:
“RepOk”,
“add post”

Unchanged Spec:
“add pre”,
“size pre”,
“size post”

��� RepOk(l: List , s: State) {
��� n: l.(header.s).*(next.s) {
n not �
 n.^(next.s) // list is acyclic
// list is sorted , while allowing repetitions
���� n.(next.s) => n.(elem.s) <= n.(next.s).(elem.s)

}
}

��� add_pre (l: List , x: Int , s: State) {...}

��� add_post (l: List , x: Int , s, s’: State) {
RepOk[l, s’]
��� i: Int {
i != x =>
#{n: l.(header.s).*(next.s) | n.(elem.s)=i}
= #{n: l.(header.s’).*( next.s’) | n.(elem.s’)=i}

����

#{n: l.(header.s).*(next.s) | n.(elem.s)=i} + 1
= #{n: l.(header.s’).*( next.s’) | n.(elem.s’)=i}

}
}

��� size_pre (l: List , s: State) {...}

��� size_post(l: List , result: Int , s: State) {...}

4
Example Test
Repair:
assertion updated

@Test ������ ��� test() {
List l = 
�� List();
l.add(0);
l.add(0);
assertEquals(1, l.size());

}
(a)

@Test ������ ��� test() {
List l = 
�� List();
l.add(0);
l.add(0);
assertEquals(2, l.size());

}
(b)

Fig. 1. Example program evolution and test repair
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Spectr takes as input an old test and a modified specification and repairs
the old test. To illustrate, consider a singly-linked acyclic list data structure that
stores integers in sorted order. Fig. 1 illustrates test repair for this example; the
figure shows 1 a Java declaration for lists; 2 an old Alloy specification that
defines the list class invariant (RepOk) and methods add and size; 3 a new
Alloy specification that defines the modified list class invariant and method add;
and 4 an example test repair performed by Spectr.

The Java code declares that each list has a header node, and each node has
an integer elem and has a next node. The method size returns the number of
elements in the list. The method add inserts a given integer into the list.

The Alloy specification in Fig. 1- 2 has five predicates; each predicate (pred)
defines a parameterized formula. The predicate RepOk states the class invariant
and has two parameters: a list l and a state s. This universally quantified (all)
formula expresses acyclicity and sortedness of unique elements. The operator
‘.’ represents relational join. An expression o.(f.s) represents dereferencing
of field f of object o in state s. ‘*’ represents reflexive transitive closure. For
example, header.*next denotes all nodes reachable from header. ‘^’ represents
transitive closure. The first sub-formula states directed acyclicity by ensuring
that a traversal that starts node x cannot revisit the same node. The second sub-
formula ensures that the list is sorted and contains no repetitions. The predicate
add post states the post-condition of method add. States s and s’ represent a
pre-state and a post-state after invoking add respectively. The first formula states
the class invariant holds in the post-state. The second formula states the elements
in the list is a union of the elements in the pre-state and an added element
x. The predicate size post states the post-condition of method size. The
operator ‘#’ denotes the cardinality of a set. The parameter result represents
the return value. Since size is a pure method, i.e., the execution of the method
does not change the state of its inputs, its predicate does not need a post-state.
The predicates add pre and size pre state the pre-conditions of add and size

respectively; both the predicates state that the class invariant holds in the pre-
state s.

An example JUnit test with respect to this specification is shown in Fig. 1-
4 -(a). The test allocates a new list and makes two invocations of add followed
by a correctness check using assertEquals. Since the class invariant does not
allow repetitions, the assertion checks that the size of the list after the two add

operations is 1. This test passes only if method add correctly avoids repetitions.
To demonstrate Spectr’s test repair process, consider the following modifica-

tion to the list specification: a list may now contain repeated elements, and must
still be acyclic and sorted (Fig. 1- 3 ). Note the comparison operator in RepOk is
now ‘��’ instead of ‘�’. The post-condition of add is updated correspondingly.
This modified post-condition states that the number of times each integer other
than x appears in the list in the pre-state is the same as the number of times
that they appear in the post-state, whereas the number of times that x appears
in the list is increased by 1.
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With respect to this modified specification, the JUnit test in Fig. 1- 4 -(a) is
no longer correct, since the list size is expected to be 2 instead of 1. Spectr
transforms the old test to the repaired test shown in Fig. 1- 4 -(b). The repaired
test is now correct with respect to the modified specification in the sense that
every test failure now represents a violated specification. We emphasize that
Spectr does not require method implementations to be correct with respect
to the modified specification. Moreover, none of the previous test repair tech-
niques [8,6,5,18] can repair the above test since they use the updated code as
opposed to the updated specification as a basis for test repair.

4 Spectr

Spectr repairs JUnit tests using method-level specifications written in Alloy.
Spectr takes as input an existing test and the modified specifications of the
methods invoked by the test, and corrects the test’s expected output. Section 4.1
describes our test repair algorithm. Section 4.2 describes how we leverage the
Alloy tool set as an enabling technology for automated test repair.

4.1 Algorithm Overview

Given a set of tests that need to be repaired with respect to the modified spec-
ifications, Spectr repairs the tests one at a time. Spectr assumes that each
test case consists of three components in the following style:
@Test ������ ��� testcase () {

// 1. initialization: code to create pre - state (inputs)
...
// 2. execution: code to execute sequence of methods under test
...
// 3. assertion: code to check post -state ( output)

}

In general, JUnit methods can contain arbitrary Java code and may not follow
this structure, e.g., have no assertion to check the output. Such non-conforming
tests are not handled by Spectr. However, our approach can, in principle, lever-
age the JForge framework [7] to handle more general JUnit tests, including those
with loops, conditional statements, or even multiple test assertions.

Fig. 2 describes our test repair algorithm. Given an old test to repair (oldTest)
and a modified specification (newSpec), it returns a repaired test (newTest) con-
forming to newSpec. The resulting repaired test must have the same initializa-
tion and method execution code as the old version followed by updated assertion
checks, conforming to modified specifications.

Identification of Expected Test Behavior. Spectr emulates the execution
of a test case by executing corresponding modified specifications using Alloy.
The execution of a JUnit test essentially makes several state transitions starting
from the initial state and checks certain properties at certain states. Given an
initial state, a sequence of method invocations, and the specifications of invoked
methods, the Alloy Analyzer generates the pre-states and post-states of those
method invocations to identify the expected behavior of the test.
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1TestCase repair(TestCase oldTest , Spec newSpec ) {
2 // extract the three elements of the given test
3 Code testInit = oldTest .getTestInitCode();
4 Code methodExec = oldTest .getMethodExecution();
5 AssertEquals assertion = oldTest .getAssertEquals();
6

7 TestCase newTest = 
�� Test(); // output
8 newTest .append(testInit );
9 newTest .append(methodExec);

10

11 // compute expected post -state
12 Instance post; // expected post -state w.r.t spec
13 Instance pre = abstract (Java.execute (testInit ));
14 post = Alloy.solve(createModel(pre, methodExec , newSpec ));
15

16 // synthesize new correctness check(s)
17 Expression actual = assertion.getActual();
18 newTest .append(
�� AssertEquals(
19 concretize(Alloy.solve(createModel(post , actual , newSpec ))), actual );
20 ��	��
 newTest ;
21}

Fig. 2. Test repair algorithm

Consider a sequence of method invocations and state transitions in a test:
〈σ0〉m1(); 〈σ1〉m2();〈σ2〉 ...; 〈σk−1〉mk(); 〈σk〉. m1 is invoked on a pre-state σ0

(initial state abstracted from test initialization code). If σ0 satisfies m1’s pre-
condition, its expected post-state σ1 is generated by the Alloy Analyzer using the
pre-state σ0 and m1’s post-condition. For the invocation of mi, where 1 < i ≤ k,
the post-state of mi−1, σi−1 is the pre-state for mi. Assuming σi−1 satisfies the
pre-condition of mi, the Alloy Analyzer computes a corresponding post-state σi

based on the post-condition of mi. If any method’s pre-condition is not satisfied
by the method invocation’s pre-state, it means that the inputs of the method
invocation do not meet a pre-condition, and thus the test is broken and cannot
be repaired. These tests need to be removed from the test suite.

Replacement of Expected Values in JUnit Assertions. JUnit provides
several assert methods to write correctness properties, which can be de-sugared
into the assertEquals method. Each test is repaired by using the post-state
Alloy instance after the invocation of the sequence of methods under test to
compute the expected value for the assertion check.

4.2 Using Alloy for Test Repair

The initialization code of the old test is used to generate the pre-state Alloy
instance using an abstraction translation [16], which traverses the Java data
structures and initializes a corresponding Alloy instance.

Each method of a class has its corresponding specification, i.e., a pre-condition
and a post-condition. Consider a method m in class C:
����� C{T m (T1 p1, T2 p2, ..., Tk pk){...}}

The Alloy pre-condition for m has the following declaration:
��� m_pre(c:C, p1:T1, p2:T2, ..., pk:Tk, s_pre:State ){...}
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If the return type T is not void, and method m is not a pure method, the post-
condition for method m has the following declaration:
��� m_post(c:C, p1:T1, p2:T2, ..., pk:Tk, result:T,

s_pre:State , s_post:State ){...}

If the return type T is void, then the parameter result:T in m post does not
exist. If method m is a pure method, the parameter s post:State does not exist,
since the values other than the return value don’t change between the pre-state
and post-state of the method invocation.

If the method m is static, for both pre-condition and post-condition, the pa-
rameter c:C does not exist in the parameter list.

To illustrate, in our running example (Section 3), the class List has methods
add and size. The method add is not pure, its return type is void, and it has an
int type parameter; while the method size is pure, its return type is int, and it
has no parameters. Their pre-conditions and post-conditions have the following
declarations:
��� add_pre (l:List , p1:Int, s_pre:State ){...}
��� add_post (l:List , p1:Int, s_pre:State , s_post:State ){...}
��� size_pre (l:List , s_pre:State ){...}
��� size_post(l:List , result:Int , s_pre:State ){...}

Alloy directly supports primitive integers. Support for other primitive types can
be provided through Alloy libraries, e.g., the standard Alloy library includes a
model for Boolean.

Given the specifications for each method, the method invocations are trans-
lated to an Alloy model using four steps:

1. Model the receiver object and include it as the first parameter for the
pre/post-conditions;

2. Model the formal parameters and append them to the parameter list for the
pre/post-conditions;

3. For post-condition specification, if there’s a return value, create an Alloy
signature with the corresponding return type, and append it to the parameter
list; and

4. Append the current state to the parameter list. If the list is for the post-
condition and the method is not pure, create a new Alloy State and append
it to the parameter list, and update the current state to the newly created
one.

For example, consider the following method invocation in state S1:
l.add(2);

This invocation is translated to the following Alloy code:
add_pre [l, 2, S1]
add_post [1, 2, S1, S2]

and the current state is updated to S2.
Given the specifications for methods invoked, and an initial state abstracted

from the execution result of test initialization code, the Alloy Analyzer checks
the satisfiability of each method’s pre-condition before the invocation of the
method, and generates a post-state using the pre-state and post-condition. For
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example, for the test shown in Fig. 1- 4 -(a), Spectr generates the following
Alloy code to check whether the pre-state of the first add method invocation
(the initial state S0) satisfies the method’s pre-condition.
�
� ��� S0 ��	�
� State {}
�
� ��� l ��	�
� List {}
���	 {
no l.( header.S0)
add_pre [l, 0, S0]

}

��� test() {}
��
 test

If the Alloy Analyzer finds no solution, which means that the pre-condition is
not satisfied, Spectr reports to the users that the inputs in the test are not
as expected and that the test cannot be repaired and should be removed from
the test suite; otherwise, the pre-condition is satisfied, and Spectr can generate
an expected post-state of the method invocation by constructing the following
Alloy code and solving it with the Alloy Analyzer.
�
� ��� S0, S1 ��	�
� State {}
�
� ��� l ��	�
� List {}
���	 {
no l.( header.S0)
add_pre [l, 0, S0] && add_post [l, 0, S0, S1]

}

��� test() {}
��
 test

The post-state of the method invocation, which is the Alloy instance at S1, is
generated using the pre-state, which is the Alloy instance at S0, and the method’s
post-condition add post. Similarly, all pre-states of other method invocations
can be checked, and all post-states of those invocations can be generated. Thus,
each method invocation triggers a state transition from a state to its next state.
Except for the initial state S0, all other states are expected states resulting from
reasoning on S0 and specifications.

The Alloy instance at the state where the assertion is to be checked is used
to compute the expected value. For the actual expression in the assertEquals

method, Spectr uses its corresponding value in the Alloy instance as expected
value and replaces the old value with it for the updated test.

For the test example shown in Fig. 1- 4 -(a), Spectr generates the following
Alloy model and solves it using the Alloy Analyzer.
�
� ��� S0, S1, S2 ��	�
� State {}
�
� ��� l ��	�
� List {}
�
� ��� Result {val: Int}
���	 {
no l.( header.S0)
add_pre [l, 0, S0] && add_post [l, 0, S0, S1]
add_pre [l, 0, S1] && add_post [l, 0, S1, S2]
size_pre [l, S2] && size_post[l, Result.val, S2]

}

��� test() {}
��
 test

Given this Alloy model and a scope, the Alloy Analyzer finds an instance that
shows at S2 Result.val is 2, which is the expected value with respect to the
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Table 1. Evolution scenarios

Sce. Subject Old Spec Modified Spec
Test Method
Executions

Assertion
Method

#1
Sorted Singly-
Linked List

The comparison
among list
elements is “<”

The comparison
among list
elements is “<=”

add(0), remove(0),
add(1), remove(1)

size()

#2 Binary Heap Min heap Max heap
insert(0), insert(1),
insert(2), insert(3)

peek()

#3
java.util.
LinkedList

Method add(E e)
appends e to the
end of the list

Method add(E e)
inserts e at the
beginning of the list

add(0), add(1),
add(2), add(3)

getFirst()

#4
java.util.
TreeSet

All integer values
are allowed in
the set

Only positive integer
values are allowed in
the set

add(-1), add(0),
add(1), add(2)

add(E e)

modified specification. Spectr then replaces the expected value of the assertion
with 2 to repair the test.

Our current Spectr prototype repairs tests by updating primitive values. A
more comprehensive tool would allow updating more complex data structures,
which can be achieved by concretizing an output from SAT and using the equals
method for checking the validity of the output from the program under test.

5 Experiments

This section describes experiments to evaluate test repair performed by our
prototype implementation of Spectr. The goal of our study is to demonstrate
Spectr’s ability to repair tests using modified specifications for structurally
complex subjects and to demonstrate its feasibility for repairing test suites with
a few hundred tests.

5.1 Evolution Scenarios

Table 1 shows the four evolution scenarios used in our study. Each row in the
table lists the subjects, specification changes, the methods under test, and the
methods used in correctness check. Those subject programs have been previously
used to evaluate various approaches in testing and verification [9,7]. Sorted
singly-linked list represents sorted acyclic lists as described in Section 3. Bi-
nary heap is a heap data structure based on a binary tree. The tree is a complete
binary tree. Heaps can be of two kinds: max-heap and min-heap. In a max-heap,
each node is greater than or equal to each of its children. In a min-heap, each node
is less than or equal to each of its children. The subjects java.util.LinkedList
and java.util.TreeSet are from the standard Java libraries. The implementa-
tions of the subjects remain the same during evolutions. Having the old specifi-
cations is not necessary for applying Spectr; however, if we also have access to
the old specifications, we can reduce the number of tests we attempt to repair by
identifying a subset of tests that invoke methods with modified specifications.

Test Case Generation Using Java PathFinder. Spectr assumes a regres-
sion test suite exists—developers may have already written test cases for the
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Table 2. Test repair by Spectr

Sce.
Old
Tests

Affected
Tests

Sucessfully
Repaired

Modified
Tests

Unchanged
Tests

Total
(seconds)

Average
(seconds)

#1 340 100% 100% 112 228 38 0.11
#2 340 100% 100% 340 0 53 0.16
#3 340 100% 100% 252 88 15 0.04
#4 340 100% 100% 99 241 12 0.03

Table 3. Test repair by ReAssert

Sce.
Old
Tests

Passing
Tests

Failing
Tests

Repaired
Tests

#1 340 340 0 0
#2 340 340 0 0
#3 340 340 0 0
#4 340 340 0 0

old program version or generated them using an automated test generation tool.
In our evaluation study, we use the Java PathFinder (JPF) model checker [22]
to automatically generate a test suite for the old program version following a
variant of an earlier approach [23].

We use JPF’s non-deterministic choice operator to enumerate JUnit tests,
where each test starts with a default constructor call, executes methods under
test, and checks a correctness property. Note that the correctness check in each
test reflects the actual behavior of the old version, but not the expected behavior
according to a given specification. Fig. 4 in Appendix A shows an example test
generator for singly-linked lists.

This JPF-based driver generates 340 tests in total for each data structure: 4
tests with one method execution, 16 tests (4*4) with two method executions, 64
tests (4*4*4) with three method executions, and 256 tests (4*4*4*4) with four
method executions. Repetition is allowed in each sequence of method execution.
Tests for TreeSet execute the last add(E e) in the sequence of method executions
in the test assertion.

5.2 Test Repair Results

We compiled all our subject programs and JUnit tests using Java version 6 and
JUnit 4.4. We used the Alloy Analyzer version 4 as a back-end for solving Alloy
specifications. The study was performed on a Dell Desktop running at 2.8 GHz
Intel Core i7 CPU with 8 GB of memory and running Windows 7 Professional.

Table 2 shows Spectr’s repairing results. Old Tests column indicates the
number of tests in the old test suite, and Affected Tests column shows the per-
centage of tests, which invoke some method with a specification change. Column
Successfully Repaired shows the percentage of tests successfully repaired out
of all affected tests. Column Modified Tests indicates the number of tests that
are modified after the repair, while column Unchanged Tests shows the number
of tests that are not changed by Spectr. Column Total is the total time taken
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@Test public void testcase47() {
LinkedList l = new LinkedList();
l.add(1);
l.add(2);
l.add(3);

− assertEquals(1, l.getFirst());
+ assertEquals(3, l.getFirst());

}
(a) Modified Test

@Test public void testcase311() {
LinkedList l = new LinkedList();
l.add(3);
l.add(2);
l.add(0);
l.add(3);
assertEquals(3, l.getFirst());

}
(b) Unchanged Test

Fig. 3. Two example test repairs performed by Spectr

to repair all the tests, while column Average is the average time taken for a
single test repair.

For all program evolutions considered in this study, all tests are affected,
and Spectr successfully repaired all of them. However, the number of modified
tests, unchanged tests, and the time cost vary for different evolution scenarios.
For instance, all tests were modified in scenario #2, while only 112 tests, less
than one third of the total, were modified in scenario #1. Moreover, 53 seconds
were spent on repairing the 340 tests in scenario #2, while only 12 seconds were
spent on repairing the same number of tests in scenario #4. The cost of repair
depends on the complexity of the modified specification and the length of the
test execution.

Note that a test repair technique that does not take into account specifications
and is driven purely by implementation would not repair any of the old tests.
We applied ReAssert [6], a recent test repair technique, in these four scenarios.
ReAssert did not repair or modify any tests since all tests passed and ReAssert
only repairs failing tests (Table 3).

To validate repairs made by Spectr, we manually inspected all repaired tests
and found that all of them correctly reflect the modified specifications.

Fig. 3-(a) shows an example of the repair done by Spectr for scenario #3.
In the modified specification, add(E e) inserts e at the beginning instead of
appending e to the end, thus the expected result of l.getFirst() in testcase47
is modified from 1 to 3 to reflect the modified specification.

Note that some tests remain unchanged after repair, since the test inputs
result in the same outputs according to the old specification as well as the
modified specification. Fig. 3-(b) shows such a case for scenario #3, where the
first element and the last element added to the list are the same.

We ran the repaired tests against the implementation, and found that all the
modified tests failed. Those failing tests reflect the errors in implementations
which have not yet undergone modifications.

Our study demonstrates that for the subject programs and the selected types
of evolution used in the study, Spectr effectively repairs existing tests to reflect
the modified specifications. Spectr automatically updates the expected test
outcomes. The cost of test repair using Spectr is reasonable, with a range from
0.03 to 0.16 seconds per test. Our Spectr prototype is not optimized, e.g., it
uses several file-I/O operations to read each old test and write each modified
test. We plan to optimize Spectr is future work.
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6 Conclusions and Future Work

This paper presents Spectr, a novel specification-based technique for test repair.
Given behavioral specifications for the modified program and an existing test
suite, Spectr repairs each test that exercises modified behaviors. It leverages
the existing test inputs and updates the test assertions to reflect the modified
specification.

The experiments conducted on a suite of subject programs with modified spec-
ifications show that Spectr can effectively repair tests with respect to modified
specifications. Moreover, Spectr is efficient in terms of test repair performance,
and the time spent on each repair is less than a half second on average for the
subject programs used in our experiments.

Spectr leverages the Alloy tool-set as an enabling technology and hence
requires the use of first-order logic and SAT. While properties of a diverse class
of programs can conveniently be expressed in Alloy and checked using SAT, for
some programs, e.g., those that perform complex numeric calculations, effective
test repair would need an alternative enabling technology. However, our basic
approach for test repair would still be applicable, for example, to enable the Pex
framework [20] to repair C# tests using Spec# specifications.

As future work, we plan to conduct more extensive evaluation of Spectr,
especially using more complex subjects, such as open source programs.
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A JPF-Based Test Generator

Fig. 4 shows an example test generator, which we use for generating singly-linked
lists using Java PathFinder in our experiments (Section 5).

1�	�	�� ��� testGenerator() {
2 Verify.resetCounter(0); // test ID
3 ��
�� �
	 SEQ_LENGTH = Verify.getInt (1, 4);
4 StringBuilder tc = 
�� StringBuilder(); // test case
5 tc.append(" List l = new List();\n");
6 List l = 
�� List();
7 ��� (�
	 i = 0; i < SEQ_LENGTH; i++) {
8 �
	 arg = Verify.getInt (0, 1);
9 �� (Verify.getBoolean()) {

10 tc.append(" l.add(" + arg + ");\n");
11 l.add(arg);
12 } ���� {
13 tc.append(" l.remove(" + arg + ");\n");
14 l.remove(arg);
15 }
16 }
17 �
	 expected = l.size();
18 tc.append(" assertEquals(" + expected + ", l.size());\n" + "}");
19 tc.insert(0, "@Test public void testcase " + Verify.getCounter(0) + "() {\n");
20 System.out.println (tc + "\n");
21 Verify.incrementCounter(0);
22}

Fig. 4. JPF-based test generator. It generates tests that represent all possible sequences
involving one to four method executions on a list l: l.add(0), l.add(1), l.remove(0),
and l.remove(1). Line 3 non-deterministically chooses the length of the sequence be-
tween 1 to 4. The for-loop from line 7 to 16 non-deterministically chooses one of the
four possible method executions. In addition to generating method sequences, JPF also
runs them on the old program implementation (Lines 6, 11, 14, and 17) and computes
the value of the expressions (l.size()) in assertion checks.
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Abstract. We propose an approach to reduce the optimal controller
synthesis problem of hybrid systems to quantifier elimination; further-
more, we also show how to combine quantifier elimination with numeri-
cal computation in order to make it more scalable but at the same time,
keep arising errors due to discretization manageable and within bounds.
A major advantage of our approach is not only that it avoids errors due
to numerical computation, but it also gives a better optimal controller.
In order to illustrate our approach, we use the real industrial example
of an oil pump provided by the German company HYDAC within the
European project Quasimodo as a case study throughout this paper, and
show that our method improves (up to 7.5%) the results reported in [4]
based on game theory and model checking.
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1 Introduction

Hybrid systems such as physical devices controlled by computer software, are
systems that exhibit both continuous and discrete behaviors. Controller synthe-
sis for hybrid systems is an important area of research in both academia and
industry. A synthesis problem focuses on designing a controller that ensures
the given system will satisfy a safety requirement, a liveness requirement (e.g.
reachability to a given set of states), or meet an optimality criterion, or a desired
combination of these requirements.

Numerous work have been done on controller synthesis for safety and/or reach-
ability requirements. For example, in [1,28], a general framework for synthesizing
controllers based on hybrid automata to meet a given safety requirement was
proposed, which relies on backward reachable set computation and fixed point
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iteration; while in [25], a symbolic approach based on templates and constraint
solving to the same problem was proposed, and in [26], the symbolic approach
is extended to meet both safety and reachability requirements.

However, the optimal controller synthesis problem is more involved, also quite
important in the design of hybrid systems. In the literature, few work has been
done on the problem. Larsen et al proposed an approach based on energy au-
tomata and model-checking [4], while Jha, Seshia and Tiwari gave a solution to
the problem using unconstrained numerical optimization and machine learning
[15]. However, in [4], allowing control only to be exercised at discrete time points
certainly limits the opportunity of synthesizing the optimal controller (though
one can get arbitrarily close). Moreover, discretizing could cause an incorrect
controller to be synthesized — which therefore requires a posterior analysis (e.g.
in [4], PHAVER [10] is used for the purpose). The approach of [15] suffers from
imprecision caused by numerical computation, and cannot synthesize a really
optimal controller sometimes because the machine learning technique cannot
guarantee its completeness.

In this paper, we propose a “hybrid” approach for synthesizing optimal con-
trollers of hybrid systems subject to safety requirements. The basic idea is as
follows. Firstly, we reduce optimal controller synthesis subject to safety require-
ments to quantifier elimination (QE for short). Secondly, in order to make our
approach scalable, we discuss how to combine QE with numerical computation,
but at the same time, keep arising errors due to discretization manageable and
within bounds. A major advantage of our approach is not only that it avoids
errors due to numerical computation, but also it gives a better optimal controller.

Application of QE in controller synthesis of hybrid systems is not new. The
tool HyTech was the first symbolic model checker that can do parametric analysis
[13] for linear hybrid automata, but for the oil pump example it will abort
soon due to arithmetic overflow. Recently, verification and synthesis of switched
dynamical systems using QE were discussed in [24], where the authors gave
principles and heuristics for combining different tools, to solve QE problems
that are out of the scope of each component tool.

Our encoding of a MIN-MAX-MIN optimization problem into a QE prob-
lem is inspired by the idea in [8]: minimizing a polynomial objective func-
tion f(x1, x2, . . . , xn) can be done by introducing an additional constraint z ≥
f(x1, x2, . . . , xn) and then eliminating variables x1, x2, . . . , xn, where z is a newly
introduced variable. Similar ideas can also be found in [5].

The computation of optimal control strategies in this paper is typically a
parametric optimization problem, a topic researched extensively in both oper-
ation research and control communities. Symbolic methods have advantages in
addressing parametric optimization problems [29,9,16]. However, we do not find
any algorithm suitable for solving a parametric quadratic optimization problem
over constraint with complex Boolean structure and hundreds of (or thousands
of) atomic formulas as in this paper.

It was shown in [2] that for certain parametric quadratic optimization prob-
lems, the closed form solution exists: the optimizer is a piecewise affine function
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in the parameters, and the optimal value is a piecewise quadratic function in the
parameters. Our experiment results confirm this.

In order to illustrate our approach, we use the oil pump industrial example
provided by the German company HYDAC within the European project Quasi-
modo as a case study throughout this paper, and show that our method results
in a better optimal controller (up to 7.5% improvement) than those reported
in [4] based on game theory and model checking. Moreover, we prove that the
theoretically optimal controller of the oil pump example can be synthesized and
its correctness is also guaranteed with our approach.

Paper Organization: In Section 2 we propose a general framework for optimal
controller synthesis of hybrid systems based on QE and numerical computation.
We focus on the oil pump case study in Section 3-5: a description of the oil pump
control problem is given in Section 3, modeling of the system and safety require-
ments is shown in Section 4, a “hybrid” approach for performing optimization
is presented in Section 5, in which further improvement by increasing activation
times of the pump is also discussed. We conclude this paper by Section 6.

2 The Overall Approach

In this section we propose an approach that reduces optimal controller synthesis
of hybrid systems subject to safety requirements to QE. Reachable sets of hy-
brid systems are modeled exactly or approximated using polynomial formulas.
Optimality criteria and safety requirements are also modeled in the same way.
Existentially quantified formulas can be reduced to a finite set of disjunctions by
discretizing the existentially quantified variables over bounded intervals, which
often leads to scalability.

Generally, a hybrid system consists of a set of discrete operating modes Q,
with each of which a continuous dynamics is associated, specifying the behavior
of a set of continuous states x. Discrete jumps between different modes may
happen if some transition conditions are satisfied by x.

The optimal controller synthesis problem studied in this paper can be stated
as follows. Suppose we are given an under-specified hybrid system H, in which
the transition conditions are not determined but parameterized by u, a vector of
control parameters. Our task is to determine values of u such that H can make
discrete jumps at desired points, thus guaranteeing that

1) a safety requirement S is satisfied, that is, x stays in a designated safe region
at any time point; and

2) an optimization goal G, possibly

min
u

g(u), max
u2

min
u1

g(u) , or min
u3

max
u2

min
u1

g(u) , 1

where g(u) is an objective function in parameters u, is achieved.
1 We assume that u is chosen from a compact (i.e. bounded closed) set, and the
elements of u are divided into groups u1,u2,u3, . . . according to their roles in G.
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Our approach for solving the synthesis problem can be described as the following
steps.

Step 1. Derive constraint D(u) on u from the safety requirements of the system.
If the reachable set R (parameterized by u) of H can be exactly computed

(e.g. for very simple linear hybrid automata), then we just require that R should
be contained in the safe region. Otherwise we have to approximate R (with
sufficient precision) by automatically generating inductive invariants of H (e.g.
for general linear or nonlinear hybrid systems). The notion of inductive invariant
is crucial in safety verification of hybrid systems [11,22], and constraint-based
approaches have been proposed for automatic generation of inductive invariants
[23,11,21,17].

Step 2. Encode the optimization problem G over constraint D(u) into a quan-
tified first-order formula Qu.ϕ(u, z), where z is a fresh variable.

Our encoding is based on the following proposition, in which we discuss all
the aforementioned optimization functions together.

Proposition 1. Suppose g1(u1), g2(u1,u2), g3(u1,u2,u3) are polynomials, and
D1(u1), D2(u1,u2), D3(u1,u2,u3) are nonempty compact semi-algebraic sets2.
Then there exist c1, c2, c3 ∈ R s.t.

∃u1.(D1 ∧ g1 ≤ z) ⇐⇒ z ≥ c1 , (1)
∀u2.

(
∃u1.D2 −→ ∃u1.(D2 ∧ g2 ≤ z)

)
⇐⇒ z ≥ c2 , (2)

∃u3.
(
(∃u1u2.D3) ∧ ∀u2.

(
∃u1.D3 −→ ∃u1.(D3 ∧ g3 ≤ z)

))
⇐⇒ z � c3 , (3)

where �∈ {>,≥}, and c1, c2, c3 satisfy

c1 = min
u1

g1(u1) overD1(u1) , (4)

c2 = supmin
u2 u1

g2(u1,u2) overD2(u1,u2) , (5)

c3 = inf supmin
u3 u2 u1

g3(u1,u2,u3) overD3(u1,u2,u3) . (6)

We omit the proof of this proposition due to space limitation. All the proofs, as
well as the formulas generated by QE, can be found in the full version [30] of
the paper.

Step 3. Eliminate quantifiers in Qu.ϕ(u, z) and from the result we can retrieve
the optimal value of G and the corresponding optimal controller u.

By Proposition 1, the optimal value of a MIN, MAX-MIN or MIN-MAX-MIN3

problem can be obtained by applying QE to the left hand side (LHS) formulas in
(1)-(3) respectively. Although QE for the first-order theory of real closed fields

2 A semi-algebraic set is defined by Boolean combinations of polynomial equations
and inequalities.

3 By Proposition 1, the MIN (MAX) notation can really be INF (SUP) sometimes.
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is a complete decision procedure [27], due to the inherent doubly exponential
complexity [6], direct QE would fail on big formulas with many alternations of
quantifiers, as in LHS of (3). It is then necessary to devise heuristics to do QE
more efficiently for such special formulas.

Note that in (3), any instantiation of the outmost quantified variables u3

would result in a simpler formula, whose quantifier-free equivalence gives an up-
per bound of c3. If in some way we know the bounds of u3, i.e. li ≤ ui

3 ≤ ui, for
1 ≤ i ≤ dim(u3), then by discretizing u3 over all [li, ui] with certain granularity
Δ, and using the set of discretized values to instantiate the outmost existential
quantifiers of (3), we can get a finite set of simplified formulas, each of which
produces an upper approximation of c3. Finally, through an exhaustive search in
this set we can select such an approximation that is closest to c3. Finer granular-
ity yields better approximation of the optimal value, so one can seek for a good
balance between timing and optimality by tuning the granularity Δ. Further-
more, the above computation is well suited for parallelization to make full use
of available computing resources, because the intervals [li, ui] and corresponding
instantiations can be divided into subgroups and allocated to different processes.

3 Description of the Oil Pump Control Problem

The oil pump example [4] was a real industrial case provided by the German
company HYDAC ELECTRONICSGMBH, and studied at length within the Euro-
pean research project Quasimodo. The whole system, depicted by Fig. 1, consists
of a machine, an accumulator, a reservoir and a pump. The machine consumes
oil periodically out of the accumulator with a period of 20s (second) for one con-
sumption cycle. The profile of consumption rate is shown in Fig. 2. The pump
adds oil from the reservoir into the accumulator with power 2.2l/s (liter/second).

Control objectives for this system are: by switching on/off the pump at certain
time points

0 ≤ t1 ≤ t2 ≤ · · · ≤ tn ≤ tn+1 ≤ · · · , (7)

ensuring that

• Rs (safety): the system can run arbitrarily long while maintaining v(t) within
[Vmin, Vmax] for any time point t, where v(t) denotes the oil volume in the
accumulator at time t, Vmin = 4.9l (liter) and Vmax = 25.1l ;

Fig. 1. The oil pump system. (This
picture is based on [4].)

Fig. 2. Consumption rate of the machine in one
cycle
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and considering the energy cost and wear of the system, a second objective:

• Ro (optimality): minimizing the average accumulated oil volume in the limit,
i.e. minimizing

lim
T→∞

1
T

∫ T

t=0

v(t)dt .

Both objectives should be achieved under two additional constraints:

• Rpl (pump latency): there must be a latency of at least 2s between any two
consecutive operations of the pump; and

• Rr (robustness): uncertainty of the system should be taken into account:
- fluctuation of consumption rate (if it is not 0), up to f = 0.1l/s ;
- imprecision in the measurement of oil volume, up to ε = 0.06l ;
- imprecision in the measurement of time, up to δ = 0.015s.4

In [4], the authors used timed game automata to model the above system, and
applied the tool UPPAAL-TIGA to synthesize near-optimal controllers. Due to
discretization made in the timed-game model, an incorrect controller might be
synthesized. Therefore the correctness and robustness of the synthesized con-
trollers are checked using the tool PHAVER. Through simulations with
SIMULINK, it was shown that the controller synthesized by UPPAAL-TIGA pro-
vides big improvement (about 40%) over the Bang-Bang Controller and Smart
Controller that are currently used at the HYDAC company. We will show how
further improvement can be achieved using our approach.

4 Deriving Constraints from Safety Requirements

Following [4], the determination of control points (7) can be localized by ex-
ploiting the periodicity of oil consumption. That is, decisions on when to switch
on/off the pump in one cycle can be made locally by measuring the initial oil
volume v0 at the beginning of each cycle. Accordingly, the safety requirement
Rs in Section 3 can be reformulated as: find an interval [L,U ] ⊆ [Vmin, Vmax] s.t.

• Rlu (constraint for L,U): for all v0 ∈ [L,U ], there is a finite sequence of
time points t = (t1, t2, . . . , tn) ,5 where 0 ≤ t1 ≤ t2 ≤ . . . ≤ tn ≤ 20 satisfy
Rpl, for turning on/off the pump so that the resulting v(t) with v(0) = v0
satisfies

• Ri (inductiveness): v(20) ∈ [L,U ]; and
• Rls (local safety): v(t) ∈ [Vmin, Vmax] for all t ∈ [0, 20]

under the constraint Rr.

Definition 1 (Local Controller). The above t corresponding to v0 is called a
local controller; the interval [L,U ] is called a stable interval.

4 In [4], δ is assumed to be 0.01. Here we include an extra rounding error of 0.005 due
to floating point calculations in the implementation of our control strategy.

5 The choice of n will be made later (in this paper n can be 0, 2, 4, 6), but larger n’s
obviously will have the potential of allowing improved controllers.
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Basically, Rlu says that there is a stable interval [L,U ] and a corresponding
family of local control strategies which can be repeated for arbitrarily many
cycles and guarantee safety in each cycle.

Modeling Oil Consumption. Let Vout(t) with Vout(0) = 0 denote the amount
of oil consumed by time t in one cycle, and modify the consumption rate in
Fig. 2 by f in (Rr). Then by simply integrating the lower and upper bounds of
the consumption rate over the time interval [0, 20] we can get

C1 =̂

(0≤t≤2 −→ Vout=0)

∧ (2≤t≤4 −→ 1.1(t−2)≤Vout≤1.3(t−2))

∧ (4≤t≤8 −→ 2.2≤Vout≤2.6)

∧ (8≤t≤10 −→ 2.2+1.1(t−8)≤Vout≤2.6+1.3(t−8))

∧ (10≤t≤12 −→ 4.4+2.4(t−10)≤Vout≤5.2+2.6(t−10))

∧ (12≤t≤14 −→ 9.2≤Vout≤10.4)

∧ (14≤t≤16 −→ 9.2+1.6(t−14)≤Vout≤10.4+1.8(t−14))

∧ (16≤t≤18 −→ 12.4+0.4(t−16)≤Vout≤14+0.6(t−16))

∧ (18≤t≤20 −→ 13.2≤Vout≤15.2)

.6

Actually, if the machine consuming oil is regarded as a hybrid system H with
state variable Vout and continuous dynamics subject to box constraints, then C1

is the exact reachable set of H from initial point Vout = 0 within 20 time units.
Therefore we do not need to approximate the reachable set of H by generating
inductive invariants. This is also the case with the following pump system. How-
ever, if the consumption profile is more complicated, say piecewise polynomial,
then approximations are indeed necessary.

Modeling Pump. In [4] it is assumed that the number of activations of pump
in one cycle is at most 2. We will adopt this assumption at first and increase this
number later on. With this assumption, there will be at most four time points
to switch the pump on/off in one cycle, denoted by 0 ≤ t1 ≤ t2 ≤ t3 ≤ t4 ≤ 20.
If the pump is started only once or zero times, then we just set t3 = t4 = 20
or t1 = t2 = t3 = t4 = 20 respectively. Then the 2-second latency requirement
(Rpl) can be modeled by

C2 =̂
(t1≥2∧ t2−t1≥2∧ t3−t2≥2∧ t4−t3≥2∧ t4≤20)

∨ (t1≥2∧ t2−t1≥2∧ t2≤20∧ t3=20∧ t4=20)

∨ (t1=20∧ t2=20∧ t3=20∧ t4=20)

.

Let Vin(t) with Vin(0) = 0 denote the amount of oil introduced into the accu-
mulator by time t in one cycle. Then we have

C3 =̂

(0≤t≤t1 −→ Vin=0)

∧ (t1≤t≤t2 −→ Vin=2.2(t−t1))

∧ (t2≤t≤t3 −→ Vin=2.2(t2−t1))

∧ (t3≤t≤t4 −→ Vin=2.2(t2−t1)+2.2(t−t3))

∧ (t4≤t≤20 −→ Vin=2.2(t2+t4−t1−t3))

.

6 In the sequel when a function γ(t) appears in a formula, the argument t is dropped
and γ is taken as a real-valued variable.
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Encoding Safety Requirements. Denote the oil volume in the accumulator
at the beginning of one cycle by v0, and the volume at time t by v(t). Then for
any 0 ≤ t ≤ 20 we have:

C4 =̂ v = v0 + Vin − Vout .

According to (Rr), the measurement of ti (1 ≤ i ≤ 4) and v0 may deviate from
their actual values, so v(t) will deviate from its predicted value as stated in the
constraint C4. Nevertheless, we have the following estimation of the deviation of
v(t).

Lemma 1. Let ṽ(t) denote the actual oil volume in the accumulator at time t.
Then for any 0 ≤ t ≤ 20, |v(t)− ṽ(t)| ≤ 8.8 δ + ε < 0.2.

Please refer to [30] for the proof of Lemma 1. By Lemma 1, it is sufficient to
rectify the safety bounds in (Ri) and (Rls) by an amount of 0.2. Let

C5 =̂ t = 20 −→ L+ 0.2 ≤ v ≤ U − 0.2
C6 =̂ 0 ≤ t ≤ 20 −→ Vmin + 0.2 ≤ v ≤ Vmax − 0.2 .

Then (Ri) and (Rls) can be expressed as

S =̂ ∀t, v, Vin, Vout.(C1 ∧ C3 ∧ C4 −→ C5 ∧ C6) .

Deriving Constraints. To find [L,U ] such that for every v0 ∈ [L,U ] there is
a local control strategy satisfying Ri and Rls, let

C7 =̂ L ≤ v0 ≤ U ,

and then Rlu can be encoded into

C8 =̂∀v0.
(
C7 −→ ∃t1t2t3t4.

(
C2 ∧ S

))
.

We use the tool Mjollnir [19] to do QE on C8 and the following result is returned:

C9 =̂L ≥ 5.1 ∧ U ≤ 24.9 ∧ U − L ≥ 2.4 .

Then the relation between L,U, v0 and the corresponding local control strategy
t = (t1, t2, t3, t4) can be obtained by applying QE to

C10 =̂C2 ∧ C7 ∧ C9 ∧ S .

The result given by Mjollnir, when converted to DNF, is a disjunction of 92
components:

D(L,U, v0, t1, t2, t3, t4) =̂
92∨
i=1

Di

(denoted by D for short), with each Di representing a nonempty closed convex
polyhedron.7

7 The fact that each Di is a nonempty closed set can be checked using QE.
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5 A “Hybrid” Approach for Optimization

5.1 Encoding of the Optimization Objective

By Definition 1, the optimal average accumulated oil volume in Ro can be rede-
fined as

• R′
o : min

[L,U]
max

v0∈[L,U]
min
t

1
20

∫ 20

t=0

v(t)dt . (8)

The intuitive meaning of (R′
o) is:

– for each admissible [L,U ] satisfying C9 and each v0 ∈ [L,U ], minimize the
average accumulated oil volume in one cycle, i.e. 1

20

∫ 20

t=0 v(t)dt, over all ad-
missible local controllers t;

– fix [L,U ] and select the worst local minimum by traversing all v0 ∈ [L,U ];
– then the global minimum is obtained at the interval whose worst local min-

imum is minimal.

Definition 2 (Local Optimal Controller). Let Dt =̂ {t | (L,U, v0, t) ∈ D}
for fixed L,U, v0. Then we call

min
t∈Dt

1
20

∫ 20

t=0

v(t)dt

the local optimal average accumulated oil volume corresponding to L,U, v0, and
the optimizer t is called the local optimal controller.

Let g(v0, t1, t2, t3, t4) =̂ 1
20

∫ 20

t=0 v(t)dt, denoted by g for short. It can be computed
from C1, C3, C4 without considering fluctuations of consumption rate that

g =
20v0 + 1.1(t21 − t22 + t23 − t24 − 40t1 + 40t2 − 40t3 + 40t4)− 132.2

20
.

Then by Proposition 1, (R′
o) can be encoded into

∃L,U.
(
C9 ∧ ∀v0.

(
C7 −→ ∃t1t2t3t4.(D ∧ g ≤ z)

))
, (9)

which is equivalent to z ≥ z∗ or z > z∗, where z∗ equals the value of (8).

5.2 Techniques for Performing QE

The above deduced (9) is a nonlinear formula with hundreds of atomic formulas
and two alternations of quantifiers, for which QE tools such as Redlog [7] or QEP-
CAD [3] fail. Therefore we have developed specialized heuristics to decompose
the QE problem into manageable parts.
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Eliminating the Inner Quantifiers. We first eliminate the innermost quan-
tified variables ∃t1t2t3t4 by employing the theory of quadratic programming.

Note that Di in D is a closed convex polyhedron for all i and g is a quadratic
polynomial function, so minimization of g on Di is a quadratic programming
problem. Then the Karush-Kuhn-Tucker (KKT) [14] condition

θkkt =̂ ∃μ.L(g,Di) , (10)

where L(g,Di) is a linear formula constructed from g and Di, and μ is a vector
of new variables, gives a necessary condition for a local minimum of g on Di.

By applying the KKT condition to each Di and eliminating all μ, we can get
a necessary condition D′, a disjunction of 580 parts, for the minimum of g on D:

D′ =
580∨
j=1

Bj .

Furthermore, each Bj has the nice property that for any L,U, v0, a unique tj is
determined by Bj .8 For instance, one of the Bj reads:

t4 = 20 ∧ 16t2 + 10L− 349 = 0∧
t2 − t3 + 2 = 0 ∧ 22t1 − 16t2 − 10v0 + 107 = 0 ∧ · · · . (11)

Since D′ keeps the minimal value point of g on D, the formula obtained by
replacing D by D′ in (9)

∃L,U.
(
C9 ∧ ∀v0.

(
C7 −→ ∃t1t2t3t4.(D′ ∧ g ≤ z)

))
(12)

is equivalent to (9). Then according to formulas like (11), ∃t1t2t3t4 in (12) can be
eliminated by the distribution of ∃ among disjunctions, followed by instantiations
of tj in each disjunct. Thus (12) can be converted to

∃L,U.
(
C9 ∧ ∀v0.

(
C7 −→

580∨
j=1

(Aj ∧ gj ≤ z)
))

, (13)

where Aj is a constraint on L,U, v0, and gj is the instantiation of g using tj
given by formulas like (11).

Eliminating the Outer Quantifiers. We eliminate the outermost quantifiers
∃L,U in (13) by discretization, as discussed in Section 2.

According to C9, the interval [5.1, 24.9] is discretized with a granularity of 0.1
(the same granularity adopted in [4]), which gives a set of 199 elements. Then
assignments to L,U from this set satisfying C9 are used to instantiate (13).
There are totally 15400 such pairs of L,U , e.g. (5.1, 7.5), (5.1, 7.6) etc, and as
many instantiations in the form of

∀v0.
(
C7 −→

580∨
j=1

(Aj ∧ gj ≤ z)
)
, (14)

8 This has been verified by QE.



A “Hybrid” Approach for Synthesizing Optimal Controllers 481

each of which gives an optimal value corresponding to [L,U ]. In practice, we
start from L = 5.1, U = 7.5, and search for the minimal optimal value through
all the 15400 cases with L or U incremented by 0.1 every iteration.

Eliminating the Middle Quantifier. We finally eliminate the only quantifier
left in (14) by a divide-and-conquer strategy. First, we can show that

Lemma 2.
∨580

j=1 Aj is equivalent to C7 in (14).

By this lemma if all Aj are pairwise disjoint then (14) is equivalent to

580∧
j=1

∀v0.
(
v0 ∈ Aj −→ (Aj ∧ gj ≤ z)

)
. (15)

Since each conjunct in (15) is a small formula with only two variables v0, z and
one universal quantifier, it can be dealt with quite efficiently.

Fig. 3. Region partition

If the set of Aj ’s are not pairwise disjoint, then we have to partition them
into disjoint regions and assign a new cost function g′k to each region. The idea
for performing such partition is simple, which is illustrated by Fig. 3.

Suppose two sets, say A1, A2, are chosen arbitrarily from the set of Aj ’s. If
A1 ∩ A2 = ∅, then we do nothing. Otherwise check wether g1 ≤ g2 (or g2 ≤ g1)
on A1 ∩ A2: if so, assign the smaller one, i.e. g1 ≤ z (or g2 ≤ z) to A1 ∩ A2;
otherwise we simply assign (g1 ≤ z) ∨ (g2 ≤ z) to A1 ∩ A2.

If at the same time of partitioning regions we also make a record of the local
control strategy in each region, i.e. tj , then in the end we can get exactly the
family of local optimal controllers corresponding to each v0.

5.3 Results of QE

Various tools are available for doing QE. In our implementation, the SMT-based
tool Mjollnir [20,19] is chosen for QE on linear formulas, while REDLOG [7] im-
plementing virtual substitution [18] is chosen for formulas with nonlinear terms.
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The computer algebra system REDUCE [12], of which REDLOG is an integral
part, allows us to perform some programming tasks, e.g. region partition. Table
1 shows the performance of our approach. All experiments are done on a desktop
running Linux with a 2.66GHz CPU and 3GB memory.

Table 1. Timing of different QE tasks

formula C8 C10 θkkt (all 92) all the rest

tool Mjollnir Mjollnir Mjollnir Redlog/Reduce

time 8m8s 4m13s 31s <1s

Remark. In Table 1, timing is in minutes (m) and seconds (s); in the last column,
the time taken to get the first optimal value9 is less than 1 second, whereas all
15400 iterations will cost more than 10 hours (using a single computing process).

The final results are as follows:

– The interval that produces the optimal value is [5.1, 7.5].
– The local optimal controller for v0 ∈ [5.1, 7.5] is

t1 =
10v0 − 25

13
∧ t2 =

10v0 + 1
13

∧ t3 =
10v0 + 153

22
∧ t4 =

157
11

, (16)

which is illustrated by Fig. 4. If v0 = 6.5, then by (16) the pump should be
switched on at t1 = 40/13, off at t2 = 66/13, then on at t3 = 109/11, and
finally off at t4 = 157/11 (dashed line in Fig. 4).

– The optimal average accumulated oil volume 215273
28600 = 7.53 is obtained

(dashed line in Fig. 5), improving by 5% the optimal value 7.95 in [4], which
is already a 40% improvement of the controllers from the HYDAC company.
The local optimal average accumulated oil volume for v0 ∈ [5.1, 7.5] under
controller (16), i.e. Vaav(v0) =

1300v20+20420v0+634817

114400 , is illustrated by Fig. 5.

5.4 Improvement by Increasing Activation Times

In the controller shown by Fig. 4, we noticed that when v0 is small and the
pump is started on for the second time, it stays on for a period longer than 4
seconds. Based on this observation, we conjectured that if the pump is allowed
to be activated three times in one cycle, then each time it could stay on for a
shorter period, and the time it is activated for the third time can be postponed.
As a result, the accumulated oil volume in one cycle may become less.

To verify the above conjecture, some modifications must be made on the
previous model. Firstly, C2 and C3 should be replaced by their counterparts
with 3 activations respectively; secondly, in C5 and C6 the tolerance of noises
9 For the model with 2 activations, this optimal value is only obtained at the 1st
iteration, using interval [5.1,7.5].
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Fig. 4. Optimal controller Fig. 5. Local optimal value for v0 ∈ [5.1, 7.5]

should be increased to 0.3, because due to the increase of times to operate the
pump, the maximal uncertainty caused by imprecision in the measurement of
volume and time is now 13.2δ+ ε < 0.3; thirdly, the objective function g should
be recomputed.

For this model, using interval [5.2, 8.1], the optimal average accumulated oil
volume 6613/900 = 7.35 is obtained, which is a 7.5% improvement over the
optimum 7.95 in [4]. The explicit form of local optimal controllers like (16) can
be found in [30].

Furthermore, the following theorem indicates that the theoretically optimal
controller can be obtained using the local control strategy with 3 activations.

Theorem 1. For each admissible [L,U ], each v0 ∈ [L,U ], and any local control
strategy s4 with at least 4 activations subject to Rlu, Ri and Rls, there exists a
local control strategy s3 subject to Rlu, Ri and Rls with 3 activations such that
1
20

∫ 20

t=0
vs3(t)dt <

1
20

∫ 20

t=0
vs4(t)dt, where vs3 (t) (resp. vs4(t)) is the oil volume

in the accumulator at t with s3 (resp. s4).

6 Concluding Remarks

We propose a “hybrid” approach for synthesizing optimal controllers of hybrid
systems subject to safety requirements by first reducing the problem to QE and
then combining symbolic computation and numerical computation for scalability.
We illustrate our approach using a real industrial case of an oil pump provided
by the HYDAC company.

Compared to the related work, e.g. [4], our approach has the following advan-
tages. 1) Using first-order real arithmetic formulas to model the system, safety
requirements as well as optimality objectives uniformly and succinctly, synthe-
sis, verification and optimization are integrated into one elegant framework. The
synthesized controllers are guaranteed to be correct. 2) By combining symbolic
and numerical computation, we can obtain both high precision and efficiency: for
the oil pump example, our approach can synthesize a better optimal controller
(up to 7.5% improvement of [4]) in a reasonable amount of time (see Table 1).
By Theorem 1, the synthesized controller is even theoretically optimal.
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The issues of evaluation and implementation of our controllers are being con-
sidered. To make our approach more general with symbolic and numerical com-
ponents, and apply it to more examples in practice will be our future work.

Acknowledgements. Special thanks go to Mr. Quan Zhao for his kind help in
writing an interface between different QE tools, and to Dr. David Monniaux for
his instructions on the use of the tool Mjollnir.
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Rümmer, Philipp 247
Rydeheard, David 68

Saha, Indranil 356
Sango, Marc 37
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