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Information Theory Insights into Molecular

Electronic Structure and Reactivity

Roman F. Nalewajski

Abstract Selected concepts and techniques of Information-Theory (IT) are

summarized and their use in probing the molecular electronic structure is

advocated. The electron redistributions accompanying formation of chemical

bonds, relative to the (molecularly placed) free atoms of the corresponding

“promolecule,” generate the associated displacements in alternative measures of

the amount of information carried by electrons. The latter are shown to provide

sensitive probes of information origins of the chemical bonds, allow the spatial

localization of bonding regions in molecules, and generate attractive entropy/

information descriptors of the system bond multiplicities. Information-theoretic

descriptors of both the molecule as a whole and its diatomic fragments can be

extracted. Displacements in the molecular Shannon entropy and entropy deficiency,

relative to the promolecular reference, are investigated. Their densities provide

efficient tools for detecting the presence of the direct chemical bonds and for

monitoring the promotion/hybridization changes the bonded atoms undergo in a

molecular environment. The nonadditive Fisher information density in the Atomic
Orbital (AO) resolution is shown to generate an efficient Contra-Gradience (CG)

probe for locating the bonding regions in molecules. Rudiments of the Orbital
Communication Theory (OCT) of the chemical bond are introduced. In this

approach molecules are treated as information systems propagating “signals” of

electron allocations to basis functions, from AO “inputs” to AO “outputs.” The

conditional probabilities defining such an information network are generated using

the bond-projected superposition principle of quantum mechanics. They are pro-

portional to squares of the corresponding elements of the first-order density matrix

in AO representation. Therefore, they are related to Wiberg’s quadratic index of the

chemical bond multiplicity. Such information propagation in molecules exhibits

typical communication “noise” due to the electron delocalization via the system
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chemical bonds. In describing this scattering of electron probabilities throughout

the network of chemical bonds, due to the system occupied Molecular Orbitals
(MO), the OCT uses the standard entropy/information descriptors of communica-

tion devices. They include the average communication noise (IT covalency) and

information flow (IT ionicity) quantities, reflected by the channel conditional

entropy and mutual information characteristics, respectively. Recent examples of

applying these novel tools in an exploration of the electronic structure and bonding

patterns of representative molecules are summarized. This communication perspec-

tive also predicts the “indirect” (through-bridge) sources of chemical interactions,

due to the “cascade” probability propagation realized via AO intermediates.

It supplements the familiar through-space mechanism, due to the constructive

interference between the interacting AO, which generates the “direct” communi-

cations between bonded atoms. Such bridge “bonds” effectively extend the range of

chemical interactions in molecular systems. Representative examples of the p
systems in benzene and butadiene are discussed in a more detail and recent

applications of the information concepts in exploring the elementary reaction

mechanisms are mentioned.

Keywords Bond information probes • Bond localization • Chemical bonds •

Chemical reactivity • Contra-gradience criterion • Covalent/ionic bond

components • Direct/indirect bond multiplicities • Entropic bond indices • Fisher

information • Information theory • Molecular information channels • Orbital

communications
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1 Introduction

The Information Theory (IT) [1–8] is one of the youngest branches of the applied

probability theory, in which the probability ideas have been introduced into the field

of communication, control, and data processing. Its foundations have been laid in

1920s by Sir R. A. Fisher [1] in his classical measurement theory and in 1940s by

C.E. Shannon [3] in his mathematical theory of communication. The quantum state

of electrons in a molecule is determined by the system wave function, the amplitude
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of the particle probability distribution which carries the information. It is thus

intriguing to explore the information content of electronic probability distributions

in molecules and to extract from it the pattern of chemical bonds, reactivity trends

and other molecular descriptors, e.g., the bond multiplicities (“orders”) and their

covalent/ionic composition. In this survey we summarize recent applications of IT

in probing chemical bonds in molecules. In particular, changes in the information

content due to subtle electron redistributions accompanying the bond formation

process will be examined. Elsewhere, e.g., [9–14], it has been amply demonstrated

that many classical problems of theoretical chemistry can be approached afresh

using such a novel IT perspective. For example, the displacements in the informa-

tion distribution in molecules, relative to the promolecular reference consisting of

the nonbonded constituent atoms, have been investigated [9–16] and the least-

biased partition of the molecular electron distributions into subsystem

contributions, e.g., densities of bonded Atoms-in-Molecules (AIM), have been

investigated [9, 17–24]. These optimum density pieces have been derived from

alternative global and local variational principles of IT. The IT approach has been

shown to lead to the “stockholder” molecular fragments of Hirshfeld [25].

The spatial localization of specific bonds presents another challenging problem

to be tackled by this novel treatment of molecular systems. Another diagnostic

problem in the theory of molecular electronic structure deals with the shell structure

and electron localization in atoms and molecules. The nonadditive Fisher informa-

tion in the Atomic Orbital (AO) resolution has been recently used as the Contra-

Gradience (CG) criterion for localizing the bonding regions in molecules [10–14,

26–28], while the related information density in the Molecular Orbital (MO)

resolution has been shown [9, 29] to determine the vital ingredient of the

Electron-Localization Function (ELF) [30–32].

The Communication Theory of the Chemical Bond (CTCB) has been developed

using the basic entropy/information descriptors of molecular information (commu-

nication) channels in the AIM, orbital and local resolutions of the electron proba-

bility distributions [9–11, 33–48]. The same bond descriptors have been used to

provide the information-scattering perspective on the intermediate stages in the

electron redistribution processes [49], including the atom promotion via the orbital

hybridization [50], and the communication theory for the excited electron

configurations has been developed [51]. Moreover, a phenomenological treatment

of equilibria in molecular subsystems has been proposed [9, 52–54], which formally

resembles the ordinary thermodynamic description.

Entropic probes of the molecular electronic structure have provided attractive

tools for describing the chemical bond phenomenon in information terms. It is the

main purpose of this survey to summarize alternative local entropy/information

probes of the molecular electronic structure [9–14, 21, 22] and to explore the

information origins of the chemical bonds. It is also our goal to present recent

developments in the AO formulation of CTCB, called the Orbital Communication

Theory (OCT) [10, 11, 39, 48, 55–58]. The importance of the nonadditive effects in

the chemical-bond phenomena will be emphasized and the information-cascade

(bridge) propagation of electronic probabilities in molecular information systems,
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generating the indirect bond contributions due to the orbital intermediaries [59–63],

will be examined. Throughout the article symbol A denotes a scalar quantity,

A stands for the row-vector, and A represents a square or rectangular matrix.

In the logarithmic measure of information the logarithm is taken to base 2,

log ¼ log2, which expresses the amount of information in bits (binary digits).

Accordingly, selecting log ¼ ln measures the information in nats (natural units):
1 nat ¼ 1.44 bits.

2 Measures of Information Content

We begin with a short summary of selected IT concepts and techniques to be used in

diagnosing the information content of electronic distributions in molecules and in

probing their chemical bonds. The Shannon entropy [3, 4] in the (normalized)

discrete probability vector p ¼ {pi},

SðpÞ ¼ �
X

i
pi log pi;

X
i
pi ¼ 1, (1)

where the summation extends over labels of all elementary events determining the

probability scheme in question, provides a measure of the average indeterminacy in p.
This function also measures the average amount of information obtained when the

uncertainty is removed by an appropriate measurement (experiment).

The Fisher information for locality [1, 2], called the intrinsic accuracy, histori-
cally predates the Shannon entropy by about 25 years, being proposed in about the

same time when the final form of quantum mechanics was shaped. It emerges as an

expected error in a “smart” measurement, in the context of an efficient estimator of

a parameter. For the “locality” parameter, the Fisher measure of the information

content in the continuous (normalized) probability density p(r) reads:

I½p� ¼
ð
pðrÞ r ln pðrÞ½ �2dr ¼

ð
rpðrÞ½ �2=pðrÞdr;

ð
pðrÞ dr ¼ 1: (2)

This Fisher functional can be simplified by expressing it as the functional of

the associated classical (real) amplitude A(r) ¼ [p(r)]�1/2 of the probability

distribution:

I½p� ¼ 4

ð
rAðrÞ½ �2dr � I½A�: (3)

The amplitude form is then naturally generalized into the domain of com-

plex probability amplitudes, e.g., the wave functions encountered in quantum

mechanics [2, 26]. For the simplest case of the spinless one-particle system, when

p(r) ¼ y *(r)y (r) ¼ |y (r)|2,
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I½y � ¼ 4

ð
ry ðrÞj j2dr ¼ 4

ð
ry �ðrÞ � ry ðrÞdr �

ð
f ðrÞdr: (4)

The Fisher information is reminiscent of von Weizsäcker’s [64] inhomogeneity

correction to the electronic kinetic energy in the Thomas–Fermi theory. It charac-

terizes the compactness of the probability density p(r). For example, the Fisher

information in the familiar normal distributionmeasures the inverse of its variance,

called the invariance, while the complementary Shannon entropy is proportional to

the logarithm of variance, thus monotonically increasing with the spread of the

Gaussian distribution. Therefore, the Shannon entropy and intrinsic accuracy

describe complementary facets of the probability density: the former reflects the

distribution “spread,” providing a measure of its uncertainty (“disorder”), while the

latter measures a “narrowness” (“order”) in the probability density.

An important generalization of Shannon’s entropy, called the relative (cross)
entropy, also known as the entropy deficiency, missing information or the directed
divergence, has been proposed by Kullback and Leibler [5, 6]. It measures the

information “distance” between the two (normalized) probability distributions

for the same set of events. For example, in the discrete probability scheme

identified by events a ¼ {ai} and their probabilities P(a) ¼ {P(ai) ¼ pi} � p,
this discrimination information in p with respect to the reference distribution

p0 ¼ {P0(ai) ¼ pi
0} reads:

DSðpjp0Þ ¼
X

i
pilog pi=pi

0
� � � 0: (5)

The entropy deficiency provides a measure of the information resemblance between

the two compared probability schemes. The more the two distributions differ from

one another, the larger the information distance. For individual events the logarithm

of the probability ratio Ii ¼ log(pi/pi
0), called the surprisal, provides a measure of

the event information in the current distribution relative to that in the reference

distribution. The equality in the preceding equation takes place only for the

vanishing surprisal for all events, i.e., when the two probability distributions are

identical.

For two mutually dependent (discrete) probability vectors P(a) ¼ {P(ai) ¼ pi}
� p and P(b) ¼ {P(bj) ¼ qj} � q, one decomposes the joint probabilities of the

simultaneous events a∧b ¼ {ai∧bj} in the two schemes, P(a∧b) ¼ {P(ai∧bj) ¼
pi,j} � p, as products of the “marginal” probabilities of events in one set, say a,
and the corresponding conditional probabilities P(b|a) ¼ {P(j|i)} of outcomes

in another set b, given that events a have already occurred: {pi,j ¼ pi P(j|i)}.
Relevant normalization conditions for the joint and conditional probabilities

then read:

X
j
pi;j ¼ pi;

X
i
pi;j ¼ qj;

X
i

X
j
pi;j ¼ 1;X

j
PðjjiÞ ¼ 1; i ¼ 1; 2; . . .

(6)
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The Shannon entropy of this “product” distribution,

SðpÞ ¼ �
X

i

X
j
pi;j logpi;j ¼ �

X
i

X
j
piPðjjiÞ logpi þ logPðjjiÞ½ �

¼ �
X

j
PðjjiÞ�

X
i
pilogpi �

X
i
pi
X

j
PðjjiÞlogPðjjiÞ

h i
¼ SðpÞ þ

X
i
piSðqjiÞ � SðpÞ þ SðqjpÞ; ð7Þ

has been expressed above as the sum of the average entropy S(p) in the marginal

probability distribution, and the average conditional entropy in q given p:

SðqjpÞ ¼ �
X

i
pi;jlogPðjjiÞ�: (8)

The latter represents the extra amount of uncertainty about the occurrence of events

b, given that events a are known to have occurred. In other words, the amount of

information obtained as a result of simultaneously observing events a and b of the

two discrete probability distributions equals to the amount of information in one set,

say a, supplemented by the extra information provided by the occurrence of events

in the other set b, when a are known to have occurred already. This is qualitatively

illustrated in Fig. 1 [7, 8].

The common amount of information in two events ai and bj, I(i:j), measuring the

information about ai provided by the occurrence of bj, or the information about bj
provided by the occurrence of ai, is called the mutual information in two events:

Fig. 1 Diagram of the conditional entropy and mutual information quantities for two dependent

probability distributions p and q. Two circles enclose areas representing the entropies S(p) and S(q)
of the separate probability vectors, while their common (overlap) area corresponds to the mutual

information I(p:q) in two distributions. The remaining part of each circle represents the

corresponding conditional entropy, S(p|q) or S(q|p), measuring the residual uncertainty about events

in one set, when one has the full knowledge of the occurrence of events in the other set of outcomes.

The area enclosed by the circle envelope then represents the entropy of the “product” (joint)

distribution: SðpÞ ¼ S Pða ^ bÞð Þ ¼ SðpÞ þ SðqÞ � Iðp : qÞ ¼ SðpÞ þ SðqjpÞ ¼ SðqÞ þ SðpjqÞ:
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Iði : jÞ ¼ log Pðai ^ bjÞ=PðaiÞPðbjÞ
� � ¼ log pi;j=ðpiqjÞ

� � � log PðijjÞ=pi½ �
� log PðjjiÞ=qj

� � ¼ Iðj : iÞ: ð9Þ

It may take on any real value, positive, negative, or zero. It vanishes when both

events are independent, i.e., when the occurrence of one event does not influence

(or condition) the probability of the occurrence of the other event, and it is negative

when the occurrence of one event makes a nonoccurrence of the other event more

likely. It also follows from the preceding equation that

Iði : jÞ ¼ IðiÞ � IðijjÞ ¼ IðjÞ � IðjjiÞ ¼ IðiÞ þ IðjÞ � Iði ^ jÞ or

Iði ^ jÞ ¼ IðiÞ þ IðjÞ � Iði : jÞ; (10)

where the self-information of the joint event I(i∧j) ¼ �logpi,j. Hence, the infor-

mation in the joint occurrence of two events ai and bj is the information in the

occurrence of ai plus that in the occurrence of bj minus the mutual information. For

independent events, when pi,j ¼ piqj, I(i:j) ¼ 0 and hence I(i, j) ¼ I(i) + I(j).
The mutual information of an event with itself defines its self-information:

I(i:i) � I(i) ¼ log[P(i|i)/pi] ¼ �logpi, since P(i|i) ¼ 1. It vanishes when pi ¼ 1,

i.e., when there is no uncertainty about the occurrence of ai, so that the occurrence

of this event removes no uncertainty and hence conveys no information. This

quantity provides a measure of the uncertainty about the occurrence of the event

itself, i.e., the information received when the event occurs. The Shannon entropy of

Eq. (1) can be thus interpreted as the mean value of self-information in all individ-

ual events: S(p) ¼ ∑i pi I(i). One similarly defines the average mutual information

in two probability distributions as the p-weighted mean value of the mutual

information quantities for individual joint events:

Iðp : qÞ ¼
X

i

X
j
pi;jlogðpi;j=pi;j0Þ ¼ SðpÞ þ SðqÞ � SðpÞ

¼ SðpÞ � SðpjqÞ ¼ SðqÞ � S qjpð Þ � 0; (11)

where the equality holds only for the independent distributions, when pi,j ¼
pi,j

0 ¼ piqj. Indeed, the amount of uncertainty in q can only decrease when p has

been known beforehand, S(q) � S(q|p) ¼ S(q) � I(p:q), with the equality being

observed only when the two sets of events are independent (nonoverlapping). These
average entropy/information relations are also illustrated in Fig. 1.

The average mutual information is an example of the entropy deficiency,

measuring the missing information between the joint probabilities P(a∧b) ¼ p
of the dependent events a and b, and the joint probabilities Pind(a∧b) ¼ p0 ¼ pTq
for the independent events: I(p:q) ¼ DS(p|p0). The average mutual information

thus reflects a degree of dependence between events defining the compared proba-

bility schemes. A similar information-distance interpretation can be attributed to

the conditional entropy: S(p|q) ¼ S(p)�DS(p|p0).
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3 Communication Systems

We continue this short introduction to IT with the entropy/information descriptors

of a transmission of signals in communication systems [3, 4, 7, 8] (Fig. 2). The

signal emitted from n “inputs” a ¼ (a1, a2, . . ., an) of the channel source A is

characterized by the probability distribution P(a) ¼ p ¼ (p1, p2, . . ., pn). It can be

received at m “outputs” b ¼ (b1, b2, . . ., bm) of the system receiver B. A transmis-

sion of signals in the channel is randomly disturbed thus exhibiting the communi-

cation noise. Indeed, in general the signal sent at the given input can be received

with a nonvanishing probability at several outputs. This feature of communication

systems is described by the conditional probabilities of outputs-given-inputs,
P(b|a) ¼ {P(bj|ai) ¼ P(ai∧bj)/P(ai) � P(j|i)}, where P(ai∧bj) � pi,j stands for

the probability of the joint occurrence of the specified pair of the input–output

events. The distribution of the output signal among the detection “events” b is thus

given by the output probability distribution P(b) ¼ q ¼ (q1, q2, . . ., qm) ¼ p P(b|a).
The Shannon entropy S(p) of the input (source) probabilities p determines the

channel a priori entropy. The average conditional entropy H(B|A) � S(q|p) of the
outputs-given-inputs, determined by the scattering probabilities P(b|a), then

measures the average noise in the a ! b transmission. The so-called a posteriori
entropy H(A|B) � S(p|q), of inputs-given-outputs, is similarly defined by

the “reverse” conditional probabilities of the b ! a transmission signals:

P(a|b) ¼ {P(ai|bj) ¼ P(i|j)}. It reflects the residual indeterminacy about the

input signal, when the output signal has already been received. The average

conditional entropy S(p|q) thus measures the indeterminacy of the source with

respect to the receiver, while the conditional entropy S(q|p) reflects the uncer-

tainty of the receiver relative to the source. Hence, an observation of the output

signal provides on average the amount of information given by the difference

between the a priori and a posteriori uncertainties, which defines the mutual
information in the source and receiver: S(p) � S(p|q) ¼ I(p:q). This quantity

measures the net amount of information transmitted through the communication

channel, while the conditional information S(p|q) reflects a fraction of S(p)
transformed into “noise” as a result of the input signal being scattered in the

channel. Accordingly, S(q|p) reflects the noise part of S(q) ¼ S(q|p) + I(p:q)
(see Fig. 1).

Consider as an illustrative example the familiar Binary Channel of Fig. 3 defined

by the symmetric conditional probability matrix of observing its two outputs, given

the two inputs,

PðbjaÞ ¼ 1� o o
o 1� o

� �
: (12)

The given input probabilities p ¼ (x, 1 – x) characterize the way this communica-

tion device is used. Its input (a priori) entropy is determined by the Binary Entropy
Function (BEF) S(p) ¼ �xlogx � (1 � x)log(1 � x) � H(x) shown in Fig. 4. The
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system output entropy is also determined by another BEF, S(q) ¼ H(z(x, o)), where
z(x, o) � q2 ¼ xo + (1 � x)(1 � o), while the channel conditional entropy S(q|
p) ¼ H(o) measures its average communication noise. The mutual information

between the system inputs and outputs, I(p:q) ¼ S(q) � S(q|p) ¼ H[z(x, o)] � H
(o), thus reflects the system net information flow (see Fig. 4). Since z always lies
between o and 1 � o, H(z) ¼ H(1 � z) � H(o) ¼ H(1 � o). This demonstrates

Fig. 3 The symmetric binary channel

Fig. 2 Schematic diagram of the communication system characterized by two probability vectors:

P(a) ¼ {P(ai)} ¼ p ¼ (p1, . . ., pn), of the channel “input” events a ¼ (a1, . . ., an) in the system

source A, and P(b) ¼ {P(bj)} ¼ q ¼ (q1, . . ., qm), of the “output” events b ¼ (b1, . . ., bm) in the

system receiver B. The transmission of signals in this communication channel is described by the

(n � m)-matrix of the conditional probabilities P(b|a) ¼ {P(bj|ai) � P(j|i)}, of observing differ-

ent “outputs” (columns, j ¼ 1, 2, . . ., m), given the specified “inputs” (rows, i ¼ 1, 2, . . ., n).
For clarity, only a single scattering ai ! bj is shown in the diagram

Fig. 4 The binary entropy function H(x) ¼ �xlog2x � (1 � x)log2(1 � x) and the geometric

interpretation of the conditional entropy S(q|p) ¼ H(o) � H(B|A) and mutual information

I(p:q) ¼ H(z) � H(o) � I(A:B) quantities for the information network of Fig. 3
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the nonnegative character of the mutual information, represented by the overlap areas

between the two entropy circles in a qualitative diagram of Fig. 1.

The amount of information I(p:q) flowing through this transmission system thus

depends on both the cross-over probability o, which characterizes the communica-

tion channel itself, and on the input probability x, which determines the way the

device is exploited (probed). For x ¼ 0 (or 1) H(z) ¼ H(o) and thus I(p:q) ¼ 0,

i.e., there is no net flow of information from the source to the receiver. For x ¼ ½

one finds H(z) ¼ 1 bit, thus giving rise to the maximum value of the mutual

information (transmission capacity): C(o) � maxp I(p:q) ¼ maxx{H[z(x, o)] �
H(o)} ¼ 1 – H(o). Hence, for o ¼ ½ the information capacity of SBC identically

vanishes.

4 Information Displacements in Molecules

The separated atoms (in their ground states), when shifted to their molecular

positions define the (isoelectronic) molecular prototype called the “promolecule”

[9, 25]. Its overall electron density, given by the sum of the free-atom distributions

{ri
0}, r0 ¼ ∑i ri

0, defines the initial stage in the bond-formation process.

It determines a natural reference for extracting changes due to formation of chemical

bonds. They are embodied in the density-difference functionDr ¼ r � r0, between
the molecular ground-state density r ¼ ∑iri, a collection of the AIM densities

{ri}, and the promolecular electron distribution r0. This deformation density has

been widely used to probe the electronic structure of molecular systems. In this

section we compare it against selected (local) IT probes, in order to explore the

information content of the molecular ground-state electron distribution r(r), or
its shape (probability) factor p(r) ¼ r(r)/N [9–16], obtained from the

Kohn–Sham (KS) [65] calculations in the Local Density Approximation

(LDA) of the Density Functional Theory (DFT) [66].

Consider the density Ds(r) of the Kullback–Leibler functional for the informa-

tion distance between the molecular and promolecular electron distributions,

DS½rjr0� ¼
ð
r rð Þln½r rð Þ=r0 rð Þ�dr ¼

ð
r rð ÞI wðrÞ½ �dr �

ð
Ds rð Þdr; (13)

where w(r) and I[w(r)] denote the density-enhancement and surprisal functions

relative to promolecule, respectively. We shall also explore the density Dhr(r) of
the molecular displacement in the Shannon entropy,

DH½rjr0� ¼ S½r� � S½r0� � �
ð
r rð Þln r rð Þdr þ

ð
r0 rð Þln r0 rð Þdr �

ð
Dhr rð Þdr;

(14)
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testing its performance as an alternative IT tool for diagnosing the presence of

chemical bonds and monitoring the effective valence states of bonded atoms.

It should be observed that the molecular electron density r(r) ¼ r0(r) + Dr(r) is
only slightly modified relative to the promolecular distribution r0(r): r(r) 	 r0(r)
or w(r) 	 1. Indeed, the formation of chemical bonds involves only a minor

reconstruction of the electronic structure, mainly in the valence shells of the

constituent atoms, so that |Dr(r)| � |r(r) � r0(r)| 
 r(r) 	 r0(r). Hence, the

ratio Dr(r)/r(r) 	 Dr(r)/r0(r) is generally small in the energetically important

regions of large density values.

As explicitly shown in the first column of Fig. 5, the largest values of the density

difference Dr(r) are observed mainly in the bond region, between the nuclei of

chemically bonded atoms. The accompanying reconstruction of atomic lone pairs is

also seen to lead to an appreciable displacement in the molecular electron density.

By expanding the logarithm of the molecular surprisal I[w(r)] around w(r) ¼ 1, to

the first-order in the relative displacement of the electron density, one obtains the

following approximate relation between the local value of the molecular surprisal

density and that of the difference function itself:

I½wðrÞ� ¼ ln½rðrÞ=r0ðrÞ� ¼ lnf½r0ðrÞ þ DrðrÞ�=r0ðrÞg ffi DrðrÞ=r0ðrÞ
	 DrðrÞ=rðrÞ: (15)

It provides a semiquantitative IT interpretation of the relative density difference

diagrams and links the local surprisal of IT to the density difference function of

quantum chemistry. This equation also relates the integrand of the information-

distance functional with the corresponding displacement in the electron density:

Ds(r) ¼ r(r)I[w(r)] ffi Dr(r)w(r) 	 Dr(r).
This approximate relation is numerically verified in Fig. 5, where the contour

diagram of the directed-divergence density Ds(r) (second column) is compared with

the corresponding map of its first-order approximation Dr(r)w(r) (third column)

and the density difference function itself (first column). A general similarity

between the diagrams in each row of the figure confirms a semiquantitative

character of this first-order expansion. A comparison between panels of the first

two columns in the figure shows that the two displacement maps so strongly

resemble one another that they are hardly distinguishable. This confirms a close

relation between the local density and entropy-deficiency relaxation patterns, thus

attributing to the former the complementary IT interpretation of the latter. The

density displacement and the missing-information distribution can be thus viewed

as practically equivalent probes of the system chemical bonds.

The density difference function Dr(r) for representative linear diatomic and

triatomic molecules reflects all typical reconstructions of free atoms in molecules,

which accompany the formation of a single or multiple chemical bonds with

varying degree of the covalency (electron sharing) and ionicity (charge transfer)
components. For example, the single covalent bond in H2 gives rise to a relative

accumulation of electrons in the bond region, between the two nuclei, at the
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Fig. 5 The contour diagrams of the molecular density difference function Dr(r) ¼ r(r) � r0(r)
(first column), the information-distance density Ds(r) ¼ r(r)I[w(r)] (second column), and its

approximate, first-order expansion Ds(r) ffi Dr(r)w(r) (third column), for selected diatomic and

linear triatomic molecules: H2, HF, LiF, HCN, and HNC. The solid, pointed and broken lines
denote the positive, zero, and negative values, respectively, of the equally spaced contours [15, 67]
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expense of the outer, nonbonding regions of space. The triple-bond pattern for N2

reflects density accumulation in the bonding region, due to both the s and p bonds,

and the accompanying increase in the density of the lone pairs on both nitrogen

atoms, due to their expected sp-hybridization. One also observes a decrease in the

electron density in the vicinity of the nuclei and an outflow of electrons from the

2pp AO to their overlap area, a clear sign of their involvement in formation of

the double p bond system. In triatomic molecules one identifies a strongly covalent

pattern of the electron density displacements in the regions of the single N–H

and C–H atoms. A typical buildup of the bond charge due to the multiple CN

bonds in the two isomers HCN and HNC can be also observed. The increase in

the lone-pair electron density on the terminal heavy atom, N in HCN and or C in

HNC, can be also detected, thus confirming the expected sp-hybridization of these

bonded atoms.

Both heteronuclear diatomics represent partially ionic bonds between the two

atoms exhibiting a small and large difference in their electronegativity (chemical

hardness) descriptors, respectively. A pattern of the density displacement in HF

reflects a weakly ionic (strongly covalent) bond, while in LiF the two AIM are seen

to be connected by the strongly ionic (weakly covalent) bond. Indeed, in HF one

detects a common possession of the valence electrons by the two atoms, giving rise

to the bond charge located between them, and hence a small H ! F charge transfer.

Accordingly, in LiF a substantial Li ! F electron transfer is detected.

In Fig. 6 the contour maps of the entropy-displacement density Dhr(r) are

compared with the corresponding density difference diagrams for representative

linear molecules of Fig. 5. Again, Dr and Dhr diagrams for H2 are seen to

qualitatively resemble one another and the corresponding Ds map of Fig. 5. The

main feature of Dhr plot, an increase in the electron uncertainty between nuclei, is

due to the inflow of electrons to this region. Again this covalent charge/entropy

accumulation reflects the electron-sharing effect and the delocalization of the AIM

valence electrons, which effectively move in the field of both nuclei, towards the

bond partner. The entropy difference function is seen to display typical features in

the reconstruction of atomic electron distributions in a molecule, relative to the

promolecule.

Next we examine the central-bond problem in small [1.1.1], [2.1.1], [2.2.1], and

[2.2.2] propellanes shown in Fig. 7. The main purpose of this study [9, 16] was to

examine the effect on the central C0–C0 bond between the “bridgehead” carbon

atoms of an increase in the size of the carbon bridges. The contour maps of Fig. 8

compare Dr, Ds, and Dhr plots in the planes of section shown in Fig. 7 generated

using the DFT–LDA calculations in the extended (DZVP) basis set. They display

a depletion of the electron density between the bridgehead carbons in [1.1.1] and

[2.1.1] propellanes, while larger bridges in [2.2.1] and [2.2.2] systems generate a

density buildup in this region. A similar conclusion follows from the entropy-

displacement and entropy-deficiency plots of the figure. The two entropic diagrams

are again seen to be qualitatively similar to the corresponding density difference

plots. As before, this resemblance is seen to be particularly strong between the Dr
and Ds diagrams.
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5 Contra-Gradience Probe of Bond Localization

Each density functional A[r] can be regarded as the corresponding multicomponent

functional A[r] � Atotal[r] of the pieces r ¼ {ra} into which the electron distribu-
tion is decomposed:

Fig. 6 Comparison between the nonequidistant contour diagrams of the density-difference Dr(r)
(first column) and entropy-difference Dhr(r) (second column) functions for the linear molecules of

Fig. 5; third column shows the profiles of Dhr(r) for cuts along the bond axis [9, 16]

64 R.F. Nalewajski



r ¼
X

a
ra: (16)

Such functionals appear in the non-Born–Oppenheimer DFT of molecules [68], in

partitioning the electron density into distributions assigned to AIM, and in the

fragment embedding problems [69–72]. Each resolution of the molecular electron

density also implies the associated division of the molecular (total) quantity

Atotal[r] into its additive, Aadd.[r], and nonadditive, Anadd.[r], contributions:

Aadd:½r� ¼
X

a
A½ra�; Anadd:½r� ¼ Atotal½r� � Aadd:½r�: (17)

For example, the Gordon–Kim [73] type division of the kinetic energy func-

tional defines the nonadditive contribution which constitutes the basis of the DFT-

embedding concept of Cortona and Wesołowski [69–72]. Similar partition can be

used to resolve the information quantities themselves. In particular, the inverse of

the nonadditive Fisher information in the MO resolution has been shown to define

the IT-ELF concept [29], in the spirit of the original Becke and Edgecombe

formulation [30], while the related quantity in the AO resolution of the SCF MO

theory generates the CG criterion for localizing the chemical bonds [9–14, 26–28].

It has been argued elsewhere that the valence basins of the negative CG density

identify the bonding (constructive) interference of AO in the direct bonding mech-

anism, while the positive values of this local IT probe similarly delineate the

antibonding regions in molecules (see Fig. 9).

For the given pair of AO, say A(r) and B(r) originating from different atoms

A and B, respectively, the negative contribution to the nonadditive Fisher

Fig. 7 The propellane

structures and the planes of

sections containing the bridge

and bridgehead (C0) carbon
atoms, all identified by black
circles
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information results, when the gradient of one AO exhibits the negative projection

on the direction of the gradient of the other AO. This explains the name of the CG

criterion itself. The zero contour, which encloses the bonding region and separates

it from the antibonding environment, is thus identified by the equation

icgðrÞ � rAðrÞ � rBðrÞ ¼ 0 . As shown in the qualitative diagram of Fig. 9, for

the two 1 s orbitals in H2 this dividing surface constitutes the sphere passing

through both nuclei, on which the two AO gradients are mutually perpendicular.

Integration of icg over the whole space gives the associated CG integral,

Icg ¼
ð
icgðrÞdr ¼

ð
rAðrÞ � rBðrÞdr ¼�

ð
AðrÞDBðrÞdr ¼ 2m

�h2
Ah j T̂ Bj i � 2m

�h2
TA;B;

(18)

where m stands for the electronic mass, while limiting this integration to the valence

(bonding) region of the negative icg, inside the closed surface icg(r) ¼ 0 (see Fig. 9),

provides a useful tool for indexing the chemical bonds [28]. As also indicated in the

preceding equation, the CG integral measures the coupling (off-diagonal) element

Fig. 8 A comparison between the (equidistant) contour maps of the density-difference function

Dr(r) (first column), the information-distance density Ds(r) (second column), and the entropy-

displacement density Dhr(r) (third column), for the four propellanes of Fig. 7 [9, 16]
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TA,B of the electronic kinetic energy operator T̂ . Thus, CG integral reflects the

kinetic energy coupling between the two chemically interacting AO. Such integrals

are routinely calculated in typical quantum-chemical packages for determining the

electronic structure of molecular systems. This observation emphasizes the crucial

role of the kinetic energy component in interpreting the IT origins of the chemical

bonding [74–77].

Consider a general case of the AO basis set x ¼ (w1, w2, . . ., wm) used to describe
the occupied MO in the N-electron system. In the ground-state electron configura-

tion defined by the singly occupied subspace c ¼ fy kg of the N lowest spin-MO,

with the spatial (MO) parts w ¼ xC ¼ f’k; k ¼ 1; 2; . . . ; Ng generated by the

Hartree–Fock (SCF MO) or KS calculations, the nonadditive Fisher information in

AO resolution reads as follows:

Inadd:½x� ¼ 4
Xm
k¼1

Xm
l¼1

ð
gk;lð1� dk;lÞrw�l ðrÞ � rwkðrÞdr � 2

ð
f nadd:ðrÞdr ¼ 8Tnadd:½x�:

(19)

Here, the elements of the Charge-and-Bond-Order (CBO), first-order density

matrix,

g ¼ x
XN
k¼1

’kj i ’kh j
 !�����

�����x
* +

¼ x wj i wh jxh i � x P̂w

�� ��x	 
 ¼ CCy ¼ gu;w
� �

;

(20)

provide the AO representation of the projection operator P̂w onto the occupied MO

subspace. The average nonadditive information is thus proportional to the

associated component Tnadd.[x] of the system average kinetic energy: Ttotal[x] ¼
tr(gT) ¼ Tadd.[x] + Tnadd.[x], where the kinetic energy matrix in AO representa-

tion T ¼ fTk ;l ¼ wkh j T̂ wlj ig and Tadd.[x] ¼ ∑kgk,kTk,k.

Fig. 9 The circular contour passing through both nuclei of the vanishing CG integrand for two 1s
orbitals on atoms A and B, icg(r) ¼ 0. It separates the bonding region (inside the circle), where

icg(r) < 0, from the region of positive contributions icg(r) > 0 (outside the circle). One observes

that the heavy arrows representing the negative gradients of the two basis functions are mutually

perpendicular on the dividing (spherical) surface icg(r) ¼ 0
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In this orbital approximation one uses the most extended (valence) basins of the

negative CG density, fnadd.(r) < 0, enclosed by the associated fnadd.(r) ¼ 0 surfaces,

as locations of the system chemical bonds. This probe has been successfully

validated in recent numerical calculations [28]. In the remaining part of this section,

we shall present selected results of this study. They have been obtained using the

standard SCF MO calculations (GAMESS software) in the minimum (STO-3 G)

Gaussian basis set. The contour maps, for the optimized geometries, are reported in

atomic units. In these plots the broken-line contours correspond to the negative CG

values. For visualization purposes representative perspective views of the CG

bonding regions are also presented.

The contour map of Fig. 10 confirms qualitative predictions of Fig. 9 for H2.

In the minimum basis set one indeed observes a spherical CG bonding region

between the two nuclei, with the accompanying increases of this quantity being

observed in the nonbonding surroundings. A similar analysis for HF is presented in

Fig. 11. It indicates existence of three basins of the negative CG density: a large

valence region between the two atoms, and two small volumes in the inner shell of F.

In the triple-bond case of N2 (Fig. 12) the bonding basin is now distinctly

extended away from the bond axis, due to the presence of the two p bonds

Fig. 10 The contour map of the CG density f nadd:ðrÞ for H2
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accompanying the central s bond. Small core-polarization basins near each

nucleus are again seen in the perspective plot. The sp-hybridization promotion

of the nonbonding regions on both atoms is again much in evidence in the

accompanying contour map, and the bonding region is seen to be “squeezed”

between the two atomic cores. The positive values of CG density in transverse

Fig. 11 The perspective view of the negative CG basins and the contour map of f nadd:ðrÞ for HF

Fig. 12 The same as in Fig. 11 for N2
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directions on each nucleus reflect the charge displacements accompanying the p-
bond formation (see also the N2 diagrams in Figs. 5 and 6).

The chemical bonds in hydrocarbons are similarly probed in Figs. 13 and 14.

These diagrams testify to the efficiency of the CG criterion in localizing both the

C–C and C–H bonding regions in acetylene, butadiene, and benzene. In Fig. 13a the

CG pattern of the triple bond between the carbon atoms in acetylene strongly

resembles that observed in N2. It directly follows from the two perpendicular cuts

of Fig. 13b that the p bond between the neighboring peripheral carbons in butadiene

is stronger than its central counterpart. One thus concludes that the CG probe of

chemical bonds indeed provides an efficient tool for locating the directly bonded

regions in typical diatomic and polyatomic molecules.

Finally, the bonding patterns in a series of four small propellanes of Fig. 7 are

examined in the contour maps of Fig. 15. Each row of this figure is devoted to a

different propellane in a series: [1.1.1], [2.1.1], [2.2.1], [2.2.2]. The left panels of

each row correspond to the plane of section perpendicular to the central bond

between the bridgehead carbons, at the bond midpoint, while the axial cuts of the

Fig. 13 The contour map of the CG density f nadd:ðrÞ for acetylene (left diagram of panel a) and
butadiene (remaining diagrams). The right diagram of panel a shows the contour map in the

molecular plane of butadiene, reflecting only the s-bonds, while panel b reports additional,

perpendicular cuts for this molecule, passing through terminal (lower-left diagram) and central

(lower-right diagram) C–C bonds, which additionally reflect the p-bonds
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right panels involve one of the carbon bridges. The main result of the density-

difference and entropy-deficiency analysis of Fig. 8, of an apparent absence of the

direct (through-space) bond between the carbon bridgeheads in the [1.1.1] and

[2.1.1] systems and its full presence in the [2.2.1] and [2.2.2] propellanes, remains

generally confirmed by the CG probe of Fig. 15. However, this transition is now

seen to be less sharp, with very small bonding basins between bridgeheads being

also observed in the two smallest molecules. This small bonding basin of [1.1.1]

system is seen to gradually evolve into that attributed to the full bond in the [2.2.2]

propellane. The bridge C–C and C–H chemical bonds are again seen to be perfectly

localized by the closed valence surfaces of the vanishing CG density.

One of the primary goals of theoretical chemistry is to identify also the physical

sources of the chemical bond. Most of existing theoretical interpretations of its

origins emphasize, almost exclusively, the potential (interaction) aspect of this

phenomenon, focusing on the mutual attraction between the accumulation of

electrons between the two atoms (the negative “bond charge”) and the partially

screened (positively charged) nuclei. This is indeed confirmed by the virial-theorem

decomposition of the diatomic Born–Oppenheimer potentials. The latter indicates

that for the equilibrium bond length it is the change in its potential component,

relative to the dissociation limit, which is ultimately responsible for the net bonding

effect of the atomic interaction.

The ELF and CG criteria adopt the complementary view, stressing the impor-

tance of the kinetic-energy bond component in locating the bonding regions in

molecules. We recall that the associated displacement of the total kinetic energy of

electrons, relative to that in the separated atom limit, is bonding only at an earlier

stage of the mutual approach by both atoms. At this stage it is dominated by the

longitudinal contribution associated with the gradient component along the bond

axis. It then assumes the destabilizing character at the equilibrium internuclear

Fig. 14 The contour maps of the CG density f nadd:ðrÞ for benzene: in the molecular plane (left
panel) and in the perpendicular plane passing through the C–C bond (right panel)
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Fig. 15 The same as in Fig. 10 for the four propellanes of Fig. 7
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separation, mainly due to its transverse contribution due to the gradient components

in the directions perpendicular to the bond axis [74, 76, 77]. This virial theorem

perspective also indicates that the kinetic energy constitutes a driving force of the

bond-formation process. It follows from the classical analysis by Ruedenberg and

coworkers [74, 76, 77] that a contraction of atomic electron distributions is possible

in molecule due to this very lowering of the kinetic energy at large internuclear

separation. The process of redistributing electrons in the chemical bond formation

can be thus regarded as being “catalyzed” by the gradient effect of the kinetic

energy. A similar conclusion follows from the theoretical analysis by Goddard and

Wilson [75].

Therefore, the overall change in the kinetic energy (Fisher information) due to

the chemical bond formation emphasizes a contraction of the electronic density in

the presence of the remaining nuclear attractor in the molecule. It only blurs the

subtle (interference) origins of chemical bonds. Indeed, the total kinetic energy

component combines delicate, truly bonding (nonadditive) interatomic effects,

originating from the stabilizing combinations of AO in the occupied MO, and the

accompanying processes of the intraatomic polarization. In other words, the overall
displacement in the kinetic energy contribution effectively hides a contribution due

to minute changes in the system valence shell, which are associated by chemists

with the chemical bond concept. Some partitioning of this overall energy compo-

nent is thus called for to separate these subtle bonding phenomena from the

associated nonbonding promotion of constituent atoms. Only by focusing on the

nonadditive part of the electronic kinetic energy in CG criterion can one uncover

the real information origins of the chemical bond and ultimately define efficient IT

probe for its localization.

6 Orbital Communications and Information Bond

Multiplicities

The molecular information system [9–13, 33, 39, 48, 55–58] represents the key

concept of CTCB. It can be constructed at alternative levels defined by the

underlying electron-localization “events,” which determine the channel inputs

a ¼ {ai} and outputs b ¼ {bj}. In OCT the AO basis functions of the SCF MO

calculations determine a natural resolution for discussing the information multi-

plicity (order) of the system chemical bonds: a ¼ {wi} and b ¼ {wj}. This AO

network describes the probability/information propagation in the molecule. It can

be described by the standard quantities developed in IT for real communication

devices. The transmission of the AO-assignment “signals” becomes randomly

disturbed, due to the electron delocalization throughout the network of chemical

bonds, thus exhibiting typical communication “noise.” Indeed, an electron initially

attributed to the given AO in the channel “input” can be later found with a

nonvanishing probability at several AO in the molecular “output.”

Information Theory Insights into Molecular Electronic Structure and Reactivity 73



This electron delocalization is embodied in the conditional probabilities of the

“outputs-given-inputs,” P(b|a) ¼ {P(wj|wi) � P(j|i)}, which define the “forward”

channel of orbital communications. In OCT one constructs these probabilities

[39, 48, 55–58, 78] using the bond-projected superposition principle of quantum

mechanics [79]. This “physical” projection involves all occupied MO, which

ultimately determine the entire network of chemical bonds in the molecular

system of interest. Both the molecule as a whole and its constituent subsystems

can be adequately described in terms of such IT bond multiplicities [9–13]. The

off-diagonal orbital communications are related to the familiar Wiberg [80]

contributions to the molecular bond orders or the related “quadratic” bond

multiplicities [81–90] formulated in the MO theory.

The IT descriptors of the chemical bond pattern have been shown to account for

the chemical intuition quite well providing the resolution of the diatomic bond

multiplicities into the complementary IT-covalent and IT-ionic components

[10, 11, 56]. The internal (intrafragment) and external (interfragment) indices of

molecular subsystems (groups of AO) can be efficiently generated using the

appropriate reduction of the molecular AO channel by combining the selected

outputs into larger molecular fragments [9, 37, 42, 78].

In the SCF MO theory the bond network is determined by the occupied MO in

the system ground state. For reasons of simplicity we assume the closed-shell (cs)
configuration of N ¼ 2n electrons in the standard (spin-restricted) Hartree–Fock

(RHF) description, which involves n lowest (doubly occupied, orthonormal) MO.

In the familiar LCAO MO approach they are expanded as linear combinations of

the (Löwdin) orthogonalized AO x ¼ (w1, w2, . . ., wm) ¼ {wi} contributed by the

system constituent atoms:

xh jxi ¼ fdi;jg � I; w ¼ ð’1; ’2; . . . ; ’nÞ ¼ f’sg ¼ xC;

here, the rectangular matrix C ¼ fCi;sg ¼ xh jwi groups the relevant LCAO MO

coefficients to be determined using the iterative self-consistent-field procedure.

The molecular electron density,

rðrÞ ¼ 2wðrÞwyðrÞ ¼ xðrÞ½2CCy�xyðrÞ � xðrÞgxyðrÞ ¼ NpðrÞ; (21)

and hence also the probability distribution p(r) ¼ r(r)/N, the shape-factor of r, are
both determined by the CBO matrix,

g¼ 2 xh jwi wh xj i ¼ 2CCy � 2 xh jP̂w xj i ¼ fgi;j ¼ 2 wih jP̂w wj
�� 
� 2 ih jP̂w jj ig: (22)

The latter constitutes the AO representation of the projection operator onto the

subspace of all (doubly) occupied MO, P̂w ¼ jwihwj ¼Psj’sih’sj �Ps P̂s, and

satisfies the idempotency relation:

ðgÞ2 ¼ 4 xh jP̂w xj i xh jP̂w xj i ¼ 4 xh jP̂2w xj i ¼ 4 xh jP̂w xj i ¼ 2g: (23)
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The CBO matrix reflects the promoted, valence state of AO in the molecule. Its

diagonal elements reflect the effective electron occupations of the basis functions,

{Ni ¼ gi,i ¼ Npi}, with the normalized probabilities p ¼ {pi ¼ gi,i/N} of the basis

functions occupancy in molecule: ∑i pi ¼ 1.

The orbital information system involves the AO events in the channel input

a ¼ {wi} and output b ¼ {wj}. In this description the AO ! AO communication

network is determined by the conditional probabilities:

PðbjaÞ ¼ fPðjjiÞ ¼ Pði ^ jÞ=pig;
X

j
PðjjiÞ ¼ 1; (24)

where the joint probabilities of simultaneously observing two AO in the system

chemical bonds P(a∧b) ¼ {P(i∧j)} exhibit the usual normalization relations:

X
i
Pði ^ jÞ ¼ pj;

X
j
Pði ^ jÞ ¼ pi;

X
i

X
j
Pði ^ jÞ ¼ 1: (25)

These probabilities involve squares of corresponding elements of the CBO matrix

[39, 48]:

PðbjaÞ ¼ fPðjjiÞ ¼ Ri ih jP̂w jj i�� ��2 ¼ ð2gi;iÞ�1gi;jgj;ig; (26)

where the constant Ri ¼ (2gi,i)
�1 satisfies the normalization condition of Eq. (24).

These probabilities explore the dependencies between AO resulting from their

participation in the framework of the occupied MO, i.e., their simultaneous involve-

ment in the entire network of chemical bonds in the molecule. This orbital channel

can be subsequently probed using both the promolecular (p0 ¼ {pi
0}), molecular

(p ¼ {pi}), or general (ensemble) input probabilities, in order to extract the desired

aspects of the chemical bond pattern [10, 11, 56, 63].

The off-diagonal conditional probability of jth AO output given ith AO input

is thus proportional to the squared element of the CBO matrix linking the two AO,

gj,i ¼ gi,j, thus being also proportional to the corresponding AO contribution

Mi,j ¼ gi,j
2 to Wiberg’s [80] index of the overall chemical bond order between

two atoms in the molecule,

MA;B ¼
X

i2A
X

j2B
Mi;j; (27)

or to related quadratic descriptors of molecular bond multiplicities [81–90].

In OCT the entropy/information indices of the covalent/ionic components of

chemical bonds represent complementary descriptors of the average communica-

tion noise and the amount of information flow in the molecular information channel

[9–13, 33, 63]. One observes that the molecular input P(a) � p generates the same

distribution in the output of the molecular channel,

q ¼ pPðbjaÞ ¼
X

i
pi PðjjiÞ �

X
i
Pði ^ jÞ ¼ pj

n o
¼ p; (28)
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thus identifying p as the stationary probability vector of the molecular ground state.

This purely molecular channel is devoid of any reference (history) of the chemical

bond formation and generates the average-noise index of the molecular overall IT

covalency. It is measured by the conditional entropy of the system outputs given

inputs:

SðxjxÞ � SðPðaÞjPðbÞÞ ¼ SðpjpÞ ¼ �
X

i

X
j
Pði ^ jÞ log½Pði ^ jÞ=pi� � S: (29)

The AO channel with the promolecular input “signal,” P(a0) ¼ p0, refers to the

initial state in the bond formation process. It corresponds to the ground state

(fractional) occupations of the AO contributed by the system constituent (free)

atoms, before their mixing into MO. These input probabilities give rise to the

average information flow descriptor of the bond IT ionicity, given by the mutual

information in the channel inputs and outputs [63]:

I0ðx : xÞ � IðPða0Þ : PðbÞÞ ¼ Iðp0 : pÞ
¼
X

i

X
j
Pði ^ jÞlog½Pði ^ jÞ=ðpjpi0Þ� ¼ SðpÞ þ DSðpjp0Þ � S � I0: (30)

In particlular, for the molecular input, when p0 ¼ p and hence the vanishing

information distance DS(p|p0) ¼ 0, I(p:p) ¼ S(p) � S � I.
The sum of these two bond components,

V0ðx;xÞ � VðPða0Þ;PðbÞÞ ¼ Vðp0; pÞ ¼ Sþ I0 ¼ SðpÞ þ DSðpjp0Þ � V0; (31)

measures the overall IT bond multiplicity of all bonds in the molecular system

under consideration. For the molecular input this quantity preserves the Shannon

entropy of the molecular input probabilities:

Vðp; pÞ ¼ SðpjpÞ þ Iðp : pÞ ¼ SðpÞ � V: (32)

As an illustration consider the familiar problem of combining the two (Löwdin-

orthogonalized) AO, A(r) and B(r), say, two 1s orbitals centered on nuclei A and B,

respectively, which contribute a single electron each to form the chemical

bond A–B. The two basis functions x ¼ (A, B) then form the bonding (’b) and

antibonding (’a) MO combinations, w ¼ (’b, ’a) ¼ xC:

’b ¼
ffiffiffi
P

p
Aþ

ffiffiffiffi
Q

p
B; ’a ¼ �

ffiffiffiffi
Q

p
Aþ

ffiffiffi
P

p
B; Pþ Q ¼ 1; (33)

where the square matrix

C ¼
ffiffiffi
P

p � ffiffiffiffi
Q

pffiffiffiffi
Q

p ffiffiffi
P

p
� �

¼ ½Cb¦Ca� (34)
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groups the LCAO MO expansion coefficients expressed in terms of the comple-

mentary probabilities: P and Q ¼ 1 � P. They represent the conditional proba-

bilities of observing AO in MO:

PðAj’bÞ ¼ jCA;bj2 ¼ PðBj’aÞ ¼ jCB;aj2 � P;

PðBj’bÞ ¼ jCB;bj2 ¼ PðAj’aÞ ¼ jCA;aj2 ¼ Q:

In the ground-state configuration of the doubly occupied bonding MO ’b the

CBO matrix g ¼ 2d, the double density matrix d ¼ xh j’bi ’bh xj i, reads:

g ¼ fgi;jg ¼ 2CbCb
y ¼ 2

P
ffiffiffiffiffiffiffi
PQ

pffiffiffiffiffiffiffi
QP

p
Q

� �
� 2d: (35)

It generates the following conditional probabilities of communications between AO

in the molecular bond system,

PðbjaÞ ¼ PðxjxÞ ¼ fPðjjiÞ ¼ gi;jgi;j=ð2gi;iÞg ¼ P Q
P Q

� �
; (36)

which determine the x ! x communication network shown in Fig. 16.

This nonsymmetrical binary channel adopts the molecular input signal

p ¼ (P, Q) to extract the bond IT covalency, measuring the channel average

communication noise, and the promolecular input signal p0 ¼ (½, ½), in which

the two basis functions contribute a single electron each to form the chemical bond,

in order to determine the model IT-ionicity index measuring the channel informa-

tion capacity. The bond IT covalency S(P) is determined by the binary entropy

function H(P) reaching the maximum value H(P ¼ ½) ¼ 1 bit for the symmetric

bond P ¼ Q ¼ ½, e.g., the s bond in H2 or p-bond in ethylene (see also Figs. 4 and
17). It vanishes for the lone-pair molecular configurations, when P ¼ (0, 1),

H(P ¼ 0) ¼ H(P ¼ 1) ¼ 0, marking the alternative ion-pair configurations A+B�

and A�B+, respectively, relative to the initial AO occupations N0 ¼ (1, 1) in the

assumed promolecular reference, in which both atoms contribute a single electron

each to form the chemical bond.

The complementary descriptor I0(P) ¼ 1 � H(P) of the bond IT ionicity (see

Fig. 17), which determines the channel mutual information relative to the

Fig. 16 Communication channel of the 2-AO model of the chemical bond and its entropy/

information descriptors in bits
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promolecular input, reaches the highest value for the two limiting (electron-

transfer) configurations: I0(P ¼ 0) ¼ I0(P ¼ 1) ¼ H(½) ¼ 1 bit, and identically

vanishes for the purely covalent, symmetric bond, I0(P ¼ ½) ¼ 0. As explicitly

shown in Fig. 17, these two components of the chemical bond multiplicity compete

with one another, yielding the conserved overall IT bond index V0(P) ¼ S(P) +
I0(P) ¼ 1 bit, marking a single bond in OCT in the whole range of admissible bond

polarizations P 2 [0, 1]. This simple model thus properly accounts for the competi-

tion between the bond covalency and ionicity, while preserving the single IT bond

order measure reflected by the conserved overall multiplicity of the chemical bond.

Similar effects transpire from the quadratic bond indices formulated in the MO

theory [81, 82, 87]. The corresponding plot of the Wiberg bond order for this model

is given by the parabola (see Fig. 17):

MA;BðPÞ ¼ ½gA;BðPÞ�2 ¼ 4PQ ¼ 4Pð1� PÞ; (37)

which closely resembles the IT-covalent plot S(P) ¼ H(P) in the figure.

7 Localized Bonds in Diatomic Fragments

The bond components of Fig. 17 can be also decomposed into the corresponding

atomic contributions [9]. In communication theory this partition is accomplished by

using the partial (row) subchannels of Fig. 18, each determining communications

originating from the specified atomic input. The partial entropy covalencies of the

given atomic channel, calculated for the full (unit) probability of its input, again

recover the binary entropy estimate of Fig. 17. However, the partial mutual infor-

mation indices of the bond IT iconicity (charge transfer) have to be calculated for

Fig. 17 Conservation of the overall entropic bond multiplicity V0(P) ¼ 1 bit in the 2-AO model

of the chemical bond. It combines the conditional entropy (average noise, bond covalency)

S(P) ¼ H(P) and the mutual information (information capacity, bond ionicity) I0(P) ¼ 1 � H(P).
In MO theory the direct bond order of Wiberg is represented by (broken-line) parabola

MA,B(P) ¼ 4P(1 � P) � 4PQ
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the full list of inputs, thus being equal to the promolecular mutual information index

of Fig. 16.

In typical SCF LCAO MO calculations, the lone pairs of the valence- and/or
inner-shell electrons can strongly affect the overall IT descriptors of the chemical

bonds. Elimination of such lone-pair contributions in the resultant IT bond indices

of diatomic fragments of molecules requires an ensemble (flexible input) approach
[10, 11, 56]. In this generalized procedure the input probabilities are derived from

the joint (bond) probabilities of two AO centered on different atoms, which reflect

the actual simultaneous participation of the given pair of basis functions in chemi-

cal bonds. Such an approach effectively projects out the spurious contributions

due to the inner- and outer-shell AO, which are excluded from mixing into the

delocalized, bonding MO combinations. This probability-weighting procedure is

capable of reproducing the Wiberg bond orders in diatomics, at the same time

providing the IT-covalent/ionic resolution of these overall bond indices.

Let us illustrate this weighting procedure in the 2-AO model of the preceding

section. In the bond-weighted approach, one uses the elementary subchannels of

Fig. 18 and their partial entropy/information descriptors {S(x|i)}, I0(i:x) ¼
I0(x:x); {i ¼ A, B}, which are also listed in the diagram. In this particular case

they are equal to the corresponding molecular conditional-entropy and mutual-

information quantities of Fig. 16. Since these row descriptors represent the IT

indices per electron in the diatomic fragment, these contributions have to be

multiplied by NAB ¼ N ¼ 2 in the corresponding resultant IT components and

the overall measure of multiplicity of the effective diatomic bond. Using the off-

diagonal joint probability P(A∧B) ¼ P(B∧A) ¼ PQ ¼ gA,BgB,A/4 as the ensemble

probability for both AO inputs gives the following average quantities for this model

diatomic system (see Fig. 19):

SAB ¼N½PðA^BÞSðxjAÞþPðB^AÞSðxjBÞ� ¼ 4PQHðPÞ¼MA;BHðPÞ;
I0AB ¼N½PðA^BÞI0ðA:xÞþPðB^AÞI0ðB:xÞ� ¼ 4PQ½1�HðPÞ� ¼MA;B ½1�HðPÞ�;
V0
AB ¼ SABþI0AB ¼ 4PQ¼ðgA;BÞ2 ¼MA;B: ð38Þ

We have thus recovered the Wiberg index as the overall IT descriptor of the

chemical bond in the 2-AO model, VAB
0 ¼ MA,B, at the same time establishing

Fig. 18 The elementary partial (row) subchannels due to atomic inputs A (solid lines) and B
(broken lines) in the 2-AOmodel of the chemical bond and their IT covalency/ionicity components
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its covalent, SAB, and ionic, IAB
0, contributions. Again, these IT-covalency and

IT-ionicity components compete with one another, while conserving the Wiberg

bond order as the overall information measure of the bond multiplicity (in bits).

This procedure can be generalized into the SCF MO calculations for general

polyatomic systems and basis sets [10, 11, 56]. Illustrative RHF bond orders in

diatomic fragments of representative molecules, for their equilibrium geometries in

the minimum (STO-3G) basis set, are compared in Table 1. It follows from this

numerical analysis that in polyatomics this weighting procedure gives rise to an

Fig. 19 Variations of the IT-covalent [SAB(P)] and IT-ionic [IAB
0(P)] bond components [in the

MA,B(P) units] of the 2-AO model with changing MO polarization P and conservation of the

relative total bond order VAB
0(P)/MA,B(P) ¼ 1

Table 1 Comparison of the diatomic Wiberg indices and the entropy/information bond-

multiplicity descriptors in selected molecules: RHF results in the minimum (STO-3G) basis set

Molecule A–B MA,B VAB
0 SAB IAB

0

H2 H–H 1.000 1.000 1.000 0.000

F2 F–F 1.000 1.000 0.947 0.053

HF H–F 0.980 0.980 0.887 0.093

LiH Li–H 1.000 1.000 0.997 0.003

LiF Li–F 1.592 1.592 0.973 0.619

CO C–O 2.605 2.605 2.094 0.511

H2O O–H 0.986 1.009 0.859 0.151

AlF3 Al–F 1.071 1.093 0.781 0.311

CH4 C–H 0.998 1.025 0.934 0.091

C2H6 C–C 1.023 1.069 0.998 0.071

C–H 0.991 1.018 0.939 0.079

C2H4 C–C 2.028 2.086 1.999 0.087

C–H 0.984 1.013 0.947 0.066

C2H2 C–C 3.003 3.063 2.980 0.062

C–H 0.991 1.021 0.976 0.045

C6H6
a C1–C2 1.444 1.526 1.412 0.144

C1–C3 0.000 0.000 0.000 0.000

C1–C4 0.116 0.119 0.084 0.035
aFor sequential numbering of carbon atoms in the ring
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excellent agreement with both the Wiberg bond orders and the accepted chemical

intuition.

This ensemble averaging for the localized bond descriptors reproduces exactly

the Wiberg bond order in diatomic molecules [56]. In a series of related com-

pounds, e.g., in hydrides or halides, the trends exhibited by the entropic covalent

and ionic components of a roughly conserved overall bond order also agree with

intuitive expectations. For example, the single chemical bond between two “hard”

atoms in HF appears predominantly covalent, while a substantial ionicity is

detected for LiF, for which both Wiberg and information-theoretic results predicts

roughly 3/2 bond, consisting of approximately 1 covalent and ½ ionic contributions.

One also observes that all carbon–carbon interactions in the benzene ring are

properly differentiated. The chemical orders of the multiple bonds in ethane,

ethylene, and acetylene are properly reproduced and the triple bond in CO is

correctly accounted for. As intuitively expected, the C–H bonds are seen to slightly

increase their information ionicity when the number of these terminal bonds

increases in a series: acetylene, ethylene, ethane.

8 Through-Space and Through-Bridge Bond Components

In OCT the direct communication wi ! wj between the given pair of AO,

manifested by the nonvanishing conditional probability P(j|i) > 0, reflects a “dia-

logue” between these basis functions in the molecular ground state. It indicates the

existence of the direct (through-space) chemical bonding between these orbitals,

due to their nonvanishing overlap/interaction giving rise to their constructive

interference in the bonding MO combination. As we have demonstrated in the

preceding section, theWiberg bond-order contribution [see also Eqs. (20) and (22)],

Mi;j ¼ gi;jgj;i ¼ 4di;jdj;i

¼ 4 j P̂w
�� ��i	 


i P̂w
�� ��j	 
 ¼ 4 jh P̂w

�� ��� �
P̂w
�� ij i� �

ih P̂w
�� ��� �� �

P̂w
�� jj i� � � 4 jb P̂

b

i

��� ���jbED
¼ 4 ib

	 ��jb
2��� ��� � 4 di;jb
��� ���2; ð39Þ

provides a useful measure of the multiplicity of this explicit interaction. In this

equation we have used the idempotency property of the projector P̂w onto the

bonding (doubly occupied) subspace of MO, P̂
2

w ¼ P̂w. This operator determines the

associated nonorthogonal projections of AO:

jxbi ¼ P̂wjxi ¼ fjwibig:

The direct “bond order” measures the magnitude of the overlap di,j between bond

projections of the interacting basis functions.
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However, communications between wi and wj can be also realized indirectly via a
cascade involving other orbitals, i.e., as a “gossip” spread through the remaining

AO, x0 ¼ {wk 6¼(i,j)}. For example, this implicit scattering process may involve a

single AO intermediates, in the single-step “cascade” propagation: wi ! x0 ! wj.
However, since in the molecular channel each AO both emits and receives the

signal to/from remaining basis functions, this process may also involve any admis-

sible multistep cascade, wi ! {x0! x0! . . .. ! x0} ! wj, in which the consecu-

tive sets of AO intermediaries {x0 ! x0 ! . . .. ! x’} form an effective multistep

“bridge” for the information scattering. The OCT formalism has been recently

extended to tackle such indirect chemical communications [59–62]. The corres-

ponding Wiberg-type bond multiplicities and the associated IT bond descriptors for

such cascade information channels have been proposed, capable of describing these

through-bridge chemical interactions.

In MO theory the chemical coupling between, say, two (valence) AO or general

basis functions originating from different atoms is strongly influenced by their

direct overlap and interaction. Together these two factors condition the bonding

effect experienced by electrons occupying their bonding combination in the mole-

cule, compared to the nonbonding reference of electrons on the separated AO. This
through-space bonding mechanism is generally associated with an accumulation of

the valence electrons in the region between the two nuclei, due to the constructive

interference in the bonding MO. Indeed, such “shared” bond charge is customarily

regarded as the prerequisite for the bond covalency in the direct interaction between
the two AO. It is also reflected by the familiar covalent Valence-Bond (VB)

structure. In Sects. 4 and 5 a similar effect of the bonding accumulation of the

information densities relative to the promolecular distribution has been detected.

The complementary, ionicity aspect of the direct chemical bonding is manifested by

the MO polarization, reflecting the charge transfer effects, or by the participation of

the orthogonal part of the ionic structure in the ground-state wave function in VB

theory. In OCT the bond ionicity descriptor reflects a degree of “localization”

(determinicity) in direct communications between AO, while the complementary

bond covalency index measures the “delocalization” (noise) aspect of the direct

orbital channel.

To summarize, the direct (“through-space”) bonding interaction between neigh-

boring atoms is in general associated with the presence of the bond charge between

the two nuclei. However, for more distant atomic partners such an accumulation of

valence electrons can be absent, e.g., in the cross-ring p-interactions in benzene or

between the bridgehead carbon atoms in small propellanes [59]. Nonetheless, the

bonding interaction lacking this accumulation of the charge (information) can be

still realized indirectly, through the neighboring AO intermediaries forming a

“bridge” for an effective interaction between more distant (terminal) AO, e.g., in

the cross-ring interactions between two meta- or para-carbons in benzene, two

bridgehead carbons in small propellanes [59], or higher order neighbors in the

polymer chain [61, 62]. This indirect mechanism was shown to reflect the implicit

dependencies between the AO bond projections xb [60], which reflect the resultant

AO participations in all chemical bonds in the molecular system under
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consideration. Indeed, the orthonormality constraints imposed on the occupied MO

imply the implicit dependencies between the (nonorthogonal) bond projections of

AO on different atoms, due to real chemical bridges in molecules (see Fig. 20).

In this generalized outlook on the chemical bond-index concept, emerging from

both the Wiberg, quadratic measure of MO theory and the IT bond multiplicities

of OCT, one thus identifies the chemical bond “order” as a measure of a “depen-
dence” (nonadditivity) between orbitals on different atomic centers. On one hand,

this dependence can be realized directly (through space), by the constructive

interference of orbitals (probability amplitudes) on two atoms, which generally

increases the electron density between them. On the other hand, it can also have an

indirect origin, through the dependence on orbitals of the remaining AIM used to

construct the occupied MO subspace wo ¼ xCo. These implicit (“geometrical”)

dependencies are embodied in the (idempotent) density matrix:

d ¼ hxbjxbi ¼ g=2 ¼ CoCoy ¼ fdi;j ¼ hibjjbig; dn ¼ d: (40)

Each pair of AO on different atoms is thus capable of exhibiting a partial

through-space and through-bridge bond components. The order of the former

quickly vanishes with an increase of the inter-atomic separation, and when the

interacting AO are heavily engaged in forming chemical bonds with other atoms.

At these separations the indirect bond orders can still assume appreciable values,

when the remaining atoms form an effective bridge of the neighboring, chemically

interacting atoms, which links the specified pair of terminal AO. The bridging

atoms must be mutually bonded to generate the appreciable through bridge overlap

of the interacting AO, so that a variety of significant bridges is practically limited to

real chemical bridges of atoms in the molecular structural formula.

The representative indirect bond overlap through the t-bridge of Fig. 20, Si,j(k, l,
.., m, n) ¼ Si,j({r}), constitutes a natural generalization of its direct, through-space

analog by additionally including the product of bond projectors onto the indicated

intermediate AO,

Fig. 20 Direct (through-space) chemical interaction (broken line) between orbitals wi and wj
contributed by atoms A and B, respectively, and the indirect (through-bridge) interaction (solid/
pointed lines), through t AO-intermediaries (wk, wl, . . ., wm, wn) ¼ {wr , r ¼ 1, 2, . . ., t} contributed
by the neighboring bonded atoms (C, D, . . ., F, G), respectively. The strength of each partial

(direct) interaction is reflected by the magnitude of the corresponding elements of the density

matrix d ¼ hxbjxbi ¼ di ;j
� �

, which measure the overlaps between the bond projections xb of AO
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Si;j k; l; . . .m; nð Þ ¼ ib
Yt
r¼1

P̂
b

r

�����
�����jb

* +
� ib P̂

b

t�bridge

��� ���jbD E
: (41)

For specific single- or multi-step bridges realized by the indicated AO

intermediates, this indirect bond overlap is given by the relevant products of direct

overlaps in the bridge:

Si;jðkÞ ¼ di;kdk ;j;Si;jðk; lÞ ¼ di;kdk ;ldl;j; etc:

Hence, for a general t-bridge of Fig. 20 one finds

Si;jðk; l; ::;m; nÞ ¼ di;kdk ;l . . . dm;ndn;j: (42)

The square of this generalized bond overlap then defines the associated Wiberg-

type bond order for such implicit interaction between orbitals wi and wj via the

specified t-bridge:

Mi;jðk; l; . . . ;m; nÞ ¼ 22tjSi;j k; l; ::;m; nð Þj2
¼ gi;kfgk ;l . . . ½gm;nðgn;jgj;nÞgn;m� . . . gl;kggk ;i
¼ Mi;kMk ;lMl;m . . .Mm;nMn;j: ð43Þ

The sum of contributions due to the most important (chemical) bridges {a}:

Mi;jðbridgeÞ ¼
X
a

Mi;jðaÞ; (44)

then determines the overall indirect Wiberg-type bond order, which supplements

the direct component Mi,j in the full quadratic bond-multiplicitiy index, between

terminal orbitals wi and wj in presence of remaining AO:

Mði; jÞ ¼ Mi;j þMi;j bridgeð Þ; (45)

As an illustration let us examine the indirect p-bonds between carbon atoms in

benzene and butadiene, in the familiar Hückel approximation [59]. For the consec-

utive numbering of carbons in the ring/chain, the relevant CBO matrix elements in

benzene read

gi;i ¼ 1;gi;iþ1 ¼ 2=3; gi;iþ2 ¼ 0; gi;iþ3 ¼ �1=3;

while the off-diagonal part of the CBO matrix in butadiene is fully characterized by

the following elements:

g1;2 ¼ g3;4 ¼ 2=
ffiffiffi
5

p
; g1;3 ¼ g2;4 ¼ 0; g1;4 ¼ �1=

ffiffiffi
5

p
; g2;3 ¼ 1=

ffiffiffi
5

p
:
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They generate the associated direct (through-space) bond multiplicities:

benzene : Mi;iþ1 ¼ 0:44ðorthoÞ; Mi;iþ2 ¼ 0ðmetaÞ; Mi;iþ3 ¼ 0:11ðparaÞ;
butadiene : M1;2 ¼ M3;4 ¼ 0:80; M1;3 ¼ M2;4 ¼ 0; M1;4 ¼ M2;3 ¼ 0:20:

These direct bond orders are complemented by the following estimates of the

resultant multiplicities of the indirect p-interactions due to chemical bridges:

benzene:Mi;iþ1ðbridgeÞ¼0:06ðorthoÞ; Mi;iþ2ðbridgeÞ¼0:30ðmetaÞ;
Mi;iþ3ðbridgeÞ¼0:18ðparaÞ;

butadiene :M1;2ðbridgeÞ¼M3;4ðbridgeÞ¼0:03; M1;3ðbridgeÞ¼M2;4ðbridgeÞ¼0:32;

M1;4ðbridgeÞ¼M2;3ðbridgeÞ¼0:13:

Together these contributions give rise to the following resultant bond orders of

Eq. (45):

benzene : MðparaÞ ffi MðmetaÞ ¼ 0:3<M ðorthoÞ ¼ 0:5:

butadiene : Mð1� 2Þ ¼ 0:83>Mð1� 4Þ¼ 0:33 ffi Mð1� 3Þ¼ 0:32:

Of interest also is a comparison of the bond-order contributions in benzene

realized through the ring bridges of increasing length:

Mi;iþ2ðiþ 1Þ ¼ ðMi;iþ1Þ2 ¼ 0:20;

Mi;iþ3ðiþ 1; iþ 2Þ ¼ ðMi;iþ1Þ3 ¼ 0:09;

Mi;iþ4ðiþ 1; iþ 2; iþ 3Þ ¼ ðMi;iþ1Þ4 ¼ 0:04;

Mi;iþ5ðiþ 1; iþ 2iþ 3; iþ 4Þ ¼ ðMi;iþ1Þ5 ¼ 0:02:

Thus, the longer the bridge, the smaller indirect bond order it contributes. The

model and Hartree-Fock calculations for representative polymers [61, 62] indicate

that the range of bridge interactions is effectively extended to third-order neighbors
in the chain, for which the direct interactions practically vanish.

The artificial distinction in Wiberg’s multiplicity scheme of the p-interactions
with the vanishing direct CBO matrix element as nonbonding is thus effectively

removed, when the through-bride contributions are also taken into account. One

observes the differences in composition of the resultant indices for the cross-ring
interactions in benzene: the para interactions exhibit comparable through-space

and through-bridge components, the meta multiplicities are realized exclusively

through bridges, while the strongest ortho bonds have practically direct, through-

space origin. A similar pattern can be also observed in butadiene.

The conditional probabilities of Eq. (26) determine the molecular information

channel for the mutual communications between AO, which generate the associated
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covalency (noise) and ionicity (information flow) descriptors of the direct chemical

bonds. One similarly derives the corresponding entropy/information multiplicities

for the indirect interactions between the specified (terminal) orbitals wi and wj,
generated from descriptors of the associated AO information cascades for the

most important (chemical) bridges [11, 59, 61]. The resulting IT indices of specific

bridge interactions have been shown to compare favorably with the generalized

Wiberg measures of Eq. (43). For an attempt to separate the direct and indirect

energy contributions, the reader is referred to [91].

9 Information Probes of Elementary Reaction Mechanisms

Interesting new results in the IT studies of the elementary reaction mechanisms

have recently been obtained in the Granada group [92–94]. Both the global
(Shannon) and local (Fisher) information measures have been used in these

investigations. The course of two representative reactions has been examined: of

the radical abstraction of hydrogen (two-step mechanism),

H� þ H2 ! H2 þ H�; (46)

which requires extra energy to proceed, and of the nuclephilic substitution in the

hydride exchange (SN2, one-step mechanism):

H� þ CH4 ! CH4 þ H�: (47)

The abstraction process proceeds by homolysis and is kinetically of the first-
order (SN1-like). It involves two steps: formation of new radicals, via the homolytic

cleavage of the nonpolar, perfectly covalent bond in H2, in absence of any electro-

phile or nucleophile to initiate the heterolytic pattern, and the subsequent recombi-

nation of a new radical with another radical species. The hydride exchange is an

example of the kinetically second-order, the first-order in both the incoming
(nucleophile) and leaving (nucleofuge) hydride groups. It proceeds via the familiar

Walden-inversion Transition State (TS) in a single, concerted reaction.

The central quantities of these IT studies are the Shannon entropies in both the

position (r) and momentum (p) spaces,

Sr ¼ �
ð
rðrÞ ln rðrÞdr; Sp ¼ �

ð
�ðpÞ ln �ðpÞdp; (48)

and the related Fisher information measures:

Ir ¼
ð
jrrðrÞj2=rðrÞdr; Ip ¼

ð
jr�ðpÞj2=�ðpÞdp: (49)
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Here, �(p) stands for the momentum density of electrons, efficiently generated from

the Fourier transforms of the known position-space MO.

The reaction profiles of these information probes have discovered the presence

of additional features of the two reaction mechanisms by revealing the chemically

important regions where the bond forming and bond breaking actually occur. These

additional features cannot be directly identified from the energy profile alone and

from the structure of the TS densities involved. Consistency of predictions resulting

from the global (Shannon) [92] and local (Fisher) [93, 94] information measures has

additionally confirmed a more universal and unbiased character of these findings.

Indeed, either of the two complementary Shannon entropies for the model

radical abstraction reaction displays a richer structure than the associated energy

profile, which only exhibits one maximum at the TS point along the reaction

coordinate. The position entropy Sr displays a local maximum at this TS structure

and two minima in its close proximity, whereas the momentum entropy Sp exhibits
the global minimum at TS complex and two maxima at points slightly more distant

from TS than the corresponding positions of the Sr minima. It thus follows from

these entropy curves that the approach of the hydrogen molecule by the incoming

hydrogen in the proximity of TS first localizes r in preparation for the bond rupture,

which also implies an associated increase in the kinetic energy (delocalization of �).
This preparatory stage is identified by the local minima of Sr (maxima of Sp). Next,
when the system relaxes and the new bond is formed at TS, the position (momen-

tum) densities become more delocalized (localized). This is indeed manifested by

the corresponding maximum (minimum) features of Sr (Sp). The bond-breaking

process requires energy, as indeed witnessed by an earlier maximum of Sp in the

entrance valley of the reaction Potential Energy Surface (PES), which is subse-

quently dissipated by relaxing the structure at TS. In other words, the reaction

complex first gains the energy required for the bond dissociation, and then the

position-space density gets localized to facilitate the bond cleavage, which in turn

induces the energy/density relaxation towards the TS structure.

Therefore, the entropy representation of the reaction mechanism reveals the

whole complexity of this transformation, while the associated Minimum Energy
Path (MEP) profile only localizes the transition state on PES, missing the crucial

transitory localization/delocalization and relaxational phenomena involved in this

two-step process.

The corresponding Sr(Sp) plot for the hydride-exchange SN2 process again

exhibits the maximum (minimum) at TS, with two additional minima (maxima)

in its vicinity, where the bond breaking is supposed to occur. These additional, pre-
and post-TS features are symmetrically placed in the entrance and exit valleys,

relative to TS structure, but now they appear at roughly the same values of the

Intrinsic Reaction Coordinate (IRC) in both the position and momentum

representations. This is in contrast to the two-stage abstraction mechanism, where

in the entrance valley the p-space maximum of the Shannon entropy has preceded

the associated minimum observed in the r-space. This simultaneous r-localization
(p-delocalization) may be indicative of the single-step mechanism in which the

approach of the nucleophile is perfectly synchronized with the concomitant
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departure of the nucleofuge, so that the bond forming and bond breaking occur in a

concerted manner.

It should be observed that both these displacements increase the system energy.

First, as the nucleophile approaches, this energy is required to overcome the

repulsion between reactants and create the position localization (momentum delo-

calization) facilitating the bond weakening. As the reaction progresses forward, the

energy continues to grow towards the maximum at TS, when the sufficient thresh-

old of the new chemical bond has already been reached to start the structure

relaxation inducing the reverse r-delocalization (p-localization) processes leading
to the Sr (Sp) maximum (minimum) at TS. This synchronous transformation picture

is indeed customarily associated with this particular reaction.

The same sequences of the chemical events are seen in the complementary

Fisher-information analysis of the structural features of distributions in both spaces.

For the hydrogen abstraction reaction one observes with the progress of IRC

towards TS that, relative to the separated reactants reference, both Ir and Ip at

first decrease their values, thus marking a lower average gradient content of the

associated probability amplitudes (wave functions) in both spaces, i.e., a more

regular/uniform distribution (less structure, “order”). The Ip profile is seen to

exhibit a faster decay towards the local minimum preceding TS, where Ip reaches
the maximum value. These more uniform momentum densities also correspond to

the local maxima of the system chemical hardness, with TS marking the local

minimum of the latter. The Ir monotonically decreases towards the minimum value

at TS, thus missing the additional extrema observed in the Sr plot, which have been
previously associated with the bond homolysis. Thus, the Ir is not capable of

describing the bond breaking/forming processes, which is clearly uncovered by Ip.
The disconcerted manner of the elementary bond forming and bond breaking is

directly seen in the corresponding bond-length plots: the breaking of the bond

occurs first, and then the system stabilizes by forming the TS structure. Additional

insight into the density reconstruction in this homolytic bond rupture comes from

examining the corresponding plots of the system dipole moment, reflecting the

charge distortion during reaction progress. The observed behavior of these

functions is opposite to Ip. Therefore, in regions of the minimum Ip the dipole

moment reaches the maximum value and vice versa. As intuitively expected, the

dipole moment identically vanishes at both TS and in separated reactants/products.

Finally, we turn to the Fisher-information analysis of the hydride-exchange

reaction involving the heterolytic bond cleavage, with an accompanying exchange

of charge between reactants. The corresponding Ir and Ip functions of the reaction
coordinate now display similar behavior, both exhibiting maxima at TS, where the

Shannon entropies have indicated a more delocalized position density and relatively

localized momentum density. One also observes two minima of Ir and Ip in the

proximity of TS. These IRC values coincide with the bond breaking/forming

regions, and the change in the curvature of the bond-elongation curves for the

incoming and outgoing nucleophile marks the start of an increase in the gradient

content of the momentum density, towards the maximum value at TS structure.
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10 Conclusion

Information theory has been shown to provide a novel and attractive perspective on

the entropic origins of the chemical bond. It also offers a complementary outlook on

the transformation of the electronic information content in the elementary chemical

reactions. In this short overview, we have first introduced the key IT concepts and

techniques to be used in such a complementary analysis of electron distributions in

molecular systems. They have been subsequently applied to explore the bonding

pattern in typical molecules: in terms of the information distribution, the bond

localization/multiplicity, and its ionic/covalent composition. The use of the infor-

mation densities as local probes of electronic distributions in molecules has been

advocated and the importance of the nonadditive entropy/information measures in

extracting subtle changes due to the bond formation has been stressed. The use of

the CG density, of the nonadditive Fisher information (electronic kinetic energy) in

the AO resolution, as an efficient localization probe of the direct chemical bonds

has been validated.

The OCT, in which molecules are regarded as information systems, has been

shown to be capable of tackling several classical issues in the theory of bond

multiplicities and their covalent/ionic components. The off-diagonal (inter-orbital)
conditional probabilities it generates are proportional to the quadratic bond indices

formulated in MO theory, and hence the strong inter-orbital communications

correspond to strong Wiberg bond orders. The IT “fingerprints” of typical elemen-

tary mechanisms of chemical reactions have also revealed new stages in the bond-

breaking–bond-forming processes involved. These illustrative results demonstrate

that the alternative information probes increase our understanding of the complex

chemical bond phenomena, with the communication-noise (covalency) and infor-

mation-flow (ionic) measures of the IT bond orders adequately reflecting the

accepted chemical intuition. This development extends our understanding of the

chemical bond from the complementary IT viewpoint.

The CG criterion explores the nonadditive part of the Fisher information in AO

resolution, which reflects the electron delocalization phenomena due to the direct

chemical bonds. It has been also demonstrated elsewhere [29] that the key condi-

tional probability ingredient of the original ELF concept [30–32] is also related to

the nonadditive Fisher information in MO resolution. The inverse of the latter thus

quantifies a degree of a localization of the system electrons in a molecule, in

accordance with an earlier Fermi-hole analysis by Luken et al. [95, 96]. The spatial

organization of the electronic structure can be also probed stochastically, by

combining the path integral Markovian pair-conditional probability density with

the basic concepts of the catastrophe theory [97], in a way consistent with the

Heisenberg and Pauli principles of quantum mechanics. This analysis provides the

Markovian derivation of the original ELF and extends this localization concept to

new Markovian-type ELF classes.

The entropy/information descriptors can be generated for both the molecule as a

whole and its localized fragments. The relevant OCT treatment of diatomic
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subsystems has been described. This approach reproduces the Wiberg bond multi-

plicity in diatomic molecules and closely approximates this index in polyatomic

molecules. The extra computational effort of such an IT analysis of the molecular

bonding patterns is negligible, compared to the cost of standard SCF LCAO MO

calculations of the molecular electronic structure, since practically all computations

using orbital approximation already determine the CBO and kinetic energy data

required in the OCT probe of IT bond multiplicities and the CG localization of

direct chemical bonds.

It has also been stressed that chemical interactions between the specified pair of

AO have both the direct (through-space) and, hitherto neglected, indirect (through-

bridge) components. The former reflects the direct interference between bonded

atoms, while the latter is realized indirectly, through the remaining AIM which

form effective bridges for the chemical coupling between more distant atoms. The

most efficient bridges are the real (chemical) bridges of bonded atoms connecting

such “terminal” atoms in question. Therefore, the bonded status of the given pair of

atoms can be felt also at larger separations provided there exist real bridge of the

direct chemical bonds connecting them. This implicit coupling of basis functions in

molecular states has been first conjectured to explain the central bond in small

propellanes, lacking the charge accumulation between the bridgehead carbons. This

difficulty has also prompted the alternative proposition of the VB-inspired charge-
shift [98] mechanism. The latter attributes this indirect bond to the instantaneous

charge fluctuations between the bridgehead carbons.

We have also discussed the indirect Wiberg-type indices for this “through-

bridge” interaction in molecular systems, which complement the familiar Wiberg

bond orders of the “through-space” bonding. The bridge interactions have

been shown to have important implications for the resultant multiplicities of

p-interactions between more distant carbon atoms in hydrocarbons. For example,

in benzene the ortho-carbons exhibit a strong Wiberg bond multiplicity, of almost

exclusively through-space origin, while the cross-ring interactions between the

meta- and para-carbons were shown to be described by much smaller, but practi-

cally equalized overall bond orders. The latter can be distinguished by their direct/

indirect composition: the meta bonds have been shown to be realized exclusively

through bridges, while the para bonds exhibit comparable direct and indirect

contributions.

In OCT the “explicit” (through-space) bond component contributed by the

specified pair of interacting AO originates from their mutual probability scattering.

Its covalency is thus generated by finite conditional probabilities of their direct

communications in the molecule, related to the square of the corresponding element

of the system density matrix and hence also to the associated Wiberg index. These

direct AO communications are thus determined by the electron delocalization

throughout the system occupied (bonding) subspace of MO. The “implicit”
(through-bridge) bond contributions can be similarly viewed as resulting from the

indirect (cascade) information propagation via the bridging AO. In a sense, the

through-space bonding can be regarded as reflecting the direct “conversation”

between AO, while the through-bridge channel(s) can be compared to a chatty
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talk reporting “hearsay,” the “rumor” spread between the terminal AO via the

connecting chain of the AO intermediaries of the bridge under consideration.

Together the direct (“dialogue”) and indirect (“gossip”) contributions to the chemi-

cal bond order determine the resultant bond multiplicity between the specified AO

in molecular environment. Each pair of atoms thus exhibits partial through-space
and through-bridge bond components. The “order” of the former quickly vanishes

with the increasing inter-atomic separation. The overall bond order between more

distant atomic partners can still assume appreciable values, when some of the

remaining atoms form an effective bridge of the neighboring, chemically bonded

atoms, which links the two AIMs in question.

Therefore, the requirement for a nonvanishing density-matrix element coupling

the two AO in the molecule, which in MO theory reflects their directly bonding

status, is not essential for an existence of their effective through-bridge interaction,

provided the two AO chemically couple to the bonded chain of orbitals connecting

them.

This novel perspective on the entropic origins of chemical bonds is very much in

the spirit of the Eugene Wigner’s observation, often quoted by Walter Kohn, that

the understanding in science requires insights from several different points of view.

The IT probes of molecular systems and chemical reactions generate such an

additional perspective on the genesis of chemical bonds and the course of elemen-

tary reaction mechanisms. It complements the familiar MO interpretations of

quantum chemistry and gives rise to a deeper understanding of these complex

phenomena.
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15. Nalewajski RF, Świtka E, Michalak A (2002) Int J Quantum Chem 87:198

16. Nalewajski RF, Broniatowska E (2003) J Phys Chem A 107:6270

17. Nalewajski RF, Parr RG (2000) Proc Natl Acad Sci USA 97:8879

18. Nalewajski RF, Loska R (2001) Theoret Chem Acc 105:374

19. Nalewajski RF (2002) Phys Chem Chem Phys 4:1710

20. Nalewajski RF (2003) Chem Phys Lett 372:28

21. Parr RG, Ayers PW, Nalewajski RF (2005) J Phys Chem A 109:3957

22. Nalewajski RF (2003) Adv Quant Chem 43:119

23. Nalewajski RF, Broniatowska E (2007) Theoret Chem Acc 117:7

24. Nalewajski RF, Parr RG (2001) J Phys Chem A 105:7391

25. Hirshfeld FL (1977) Theoret Chim Acta (Berl) 44:129

26. Nalewajski RF (2008) Int J Quantum Chem 108:2230

27. Nalewajski RF (2010) J Math Chem 47:667

28. Nalewajski RF, deSilva P, Mrozek J (2010) J Mol Struct Theochem 954:57
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64. vonWeizsäcker CF (1935) Z Phys 96:431

65. Kohn W, Sham LJ (1965) Phys Rev 140A:1133

66. Hohenberg P, Kohn W (1964) Phys Rev 136B:864

92 R.F. Nalewajski
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