
Internet Voting System

with Cast as Intended Verification

Jordi Puiggaĺı Allepuz and Sandra Guasch Castelló

Scytl Secure Electronic Voting

Abstract. In remote electronic elections the voting client software is
usually in charge of encoding the voting options chosen by the voter.
Cast as intended verification methods can be used to audit this process,
so that voters do not need to trust the voting client software. In this paper
we present the revision of our initial proposal for the eValg2011 project
for an Internet voting protocol providing cast as intended verification
functionalities, and evaluate its security.

1 Introduction

In remote electronic elections, the voting client software is generally in charge
of encoding the voting options chosen by the voter before sending the encrypted
vote to a remote voting server. Most of the times, that means that voters have
to trust that the voting client is not going to change their selections before they
are encrypted. In case the voting client would do it, the probability of being
detected is very low. For this purpose, cast as intended verification methods
have been designed: voters do not need to trust the voting client software to
properly encode the selected voting options, since they can audit the process.

As stated in [1], the purpose of the eValg2011 project is to establish a secure
electronic voting solution for general, municipal and county council elections.
For this purpose, a set of Objectives of Security [2] for the eVoting system to
be implemented for the eValg2011 project was defined for the bidding phase.
Specifically, the ability of detecting potential vote manipulations by a malicious
voting client when casting a vote was required (zero trust in the voting client).

The aim of this paper is the presentation of our initial proposal for the
eValg2011 project for an Internet voting protocol providing cast as intended
verification functionalities. The current eValg2011 eVoting system is a modifica-
tion of this proposal in order to perform some cryptographic operations in the
voting server instead of in the voting client. It is not an objective of this paper
to compare both proposals but to introduce a revised version of the original
proposal. A description of the eValg2011 system currently implemented can be
found in [8].

Specifically, we are going to describe the processes of the original proposal
that provide cast as intended verifiability of the voting process and evaluate the
security of this proposal.

A. Kiayias and H. Lipmaa (Eds.): VoteID 2011, LNCS 7187, pp. 36–52, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Internet Voting System with Cast as Intended Verification 37

2 Previous Work

The verification done by a voter to check that her vote has been registered cor-
rectly in the election platform server is a critical task. This verification must be
done in such a way that the voters obtain a verification proof that unequivo-
cally prove if their voting intent has been properly recorded and, at the same
time, cannot be used latter to correlate the vote with the voter (in order to pre-
vent vote buying). Another consideration is that the proofs must be verifiable
by human means or with assisted means that do not pose any usability and
privacy issue. For instance, verification processes that require voters to perform
mathematical operations should consider the human limitations.

Several proposals for cast as intended verification in remote electronic voting
schemes have been proposed in the literature. In code voting methods, also
known as Pollsterless or pre-encrypted ballots [18], [15], [13], [5], [6], [19], [9],
[12], the voter receives in advance a voting card with voting codes and validation
codes related to the voting options eligible in the election. In order to vote, the
voter enters the codes representing her choices in the voting client, which sends
them to the voting server. The voting server then replies to the voter with
validation codes that are calculated from the received voting codes. The voter
can compare them with those assigned to the selected voting options in her
voting card, so that she can verify if the encrypted voting options received in
the voting server represent her voting intent.

There are other alternative proposals to code voting that do not require the
use of voting and validation codes for providing cast as intended verification. This
makes the election configuration easier and reduces logistic costs. For instance,
in the method proposed in [4], the voter challenges the voting application in
order to verify that the encrypted values match her selections: before the vote is
cast, the voting application commits to the generated encryption (e.g., showing
the digest value of the cipher text) and the voter can opt to challenge the voting
application to disclose the contents of the encrypted vote. If the voter requests
the verification, the random factor used to encrypt the vote is revealed by this
application, so that the voter can verify that the cipher text (according to the
commitment generated by the voting application) corresponds to the chosen
voting options. After that, the disclosed encrypted vote is dropped and a new
encryption with the same selected options is generated again with new random
values (in order to prevent vote selling practices). If the voter does not want
to verify her encrypted vote, this is sent to the voting service. Since the voting
client does not know when the voter will ask for verifying her vote, it is difficult
to cheat the voter when encrypting the voting options without being noticed.

When considering which method could be the basis of our proposal, the ap-
proach of challenging the voting client was discarded due to usability and in-
dependent verification issues: the operations for checking the proper encryption
of a vote cannot be done by human means. Since a validation mechanism pro-
vided by the voting application could be also modified by the malicious client,
the voter needs an external tool or the collaboration of a third party to verify
the correct encryption of her vote. Even the election talliers could decrypt the



38 J.P. Allepuz and S.G. Castelló

votes to be audited (at the end of the election) in order to let the voters verify
the decrypted contents match their voting intent. However, the process can be
complex and difficult to understand for an average voter.

Regarding code voting methods, the approach of comparing the received codes
after casting the vote with the validation codes present in a voting card, seems
more familiar for the voters (e.g., it is similar to looking if you have won the
lottery) and can be done without any support or tool. The drawback, compared
with the challenge method, is that the voter needs to trust that the voting cards
have been generated properly and their information is not stored anywhere.
However, security controls can be implemented to verify that voting cards are
correctly generated and there is no disclosure of information.

Furthermore, there are still some usability and accessibility issues remaining
in the code voting methods related to the voting process: these methods require
voters to enter codes representing the candidates for casting a vote, which could
lead to mistakes and is less usable than a click and select interface (which is
feasible in challenge methods).

To overcome these issues, our proposal for cast as intended verification intro-
duced a new variant of code voting that does not use codes for casting votes,
but keeps the validation codes for allowing voter verification. The novelty of this
scheme is that, instead of using voting codes, it uses a click and select scheme for
vote casting (in order to make the system more usable) combined with validation
codes for voter verifiability.

3 Proposed Solution

3.1 Design Requirements

The main challenge when designing a code voting solution that only uses valida-
tion codes, is how to combine probabilistic and deterministic encryption schemes:
votes shall be encrypted using a probabilistic encryption scheme in order to main-
tain voter privacy. However, validation codes are calculated from the encrypted
votes and their values have to be always the same (i.e., they should be deter-
ministic) in order to generate the voting cards in advance. Finally, the system
shall provide a high level of usability.

3.2 Overview of the Proposed Solution

Voters use validation codes (called return codes in our scheme) for verifying the
proper recording of their vote contents in the voting server. To this end, before
the voting phase, the voters are equipped with voting cards containing the return
codes assigned to each voting option. Voting cards are not linked to a specific
voter, so that they may be exchanged between voters or a voter can request more
than one card in case she thinks her first card may have been intercepted by an
attacker.

The generation of such voting cards is done during the election configuration
phase. Some secret keys are involved in the generation of the return codes of



Internet Voting System with Cast as Intended Verification 39

the voting cards, and these keys will be required by the voting platform for
generating the return codes from the votes cast. Therefore, during the election
configuration stage, these keys are generated, used in the return code generation
process and installed in the voting platform. It is assumed that a secure method
for protecting the keys is used.

The eVoting platform server side is composed by two main modules: the voting
server (Vote Collector Server or VCS), which contains the Ballot Box storing the
votes to be counted at the end of the election and participates in the generation
of the return codes for voter validation, and the validation server (Return Code
Generator or RCG), which generates the final values of the return codes and
sends them to the voters.

When the voting phase starts, voters connect to the voting platform, authenti-
cate themselves and select their preferences. After the voter confirms her choices,
the voting client encrypts the vote using the election public key.

The voter proceeds to the audit phase in order to verify that her vote is cast
as intended. In this phase, she is asked to introduce a special code present in
the voting card: the voting card identifier VCID. A second encryption is then
generated using this value and the RCG public key. The first encryption is the
vote which is received in the VCS, stored in the Ballot Box and counted in
the tallying process. The second encryption is used by the RCG for generating
the return codes associated to the vote contents.

In addition, the voting client generates a cryptographic proof correlating the
contents of both encryptions. This prevents a malicious voting client from gen-
erating two encryptions based on different voting options in order to cheat the
voter (e.g., the encrypted vote over which the return codes are generated con-
tains the selections made by the voter, but the encrypted vote stored in the
Ballot Box contains different selections).

Both encryptions and the proof are sent to the remote voting server VCS,
which forwards the contents to the RCG.

The RCG verifies the proof and uses its cryptographic keys to generate the
return code from the second cipher text. The return code is sent back to the voter
using a channel independent from the one used to cast the vote (e.g., SMS).

After that, the RCG notifies the VCS about the successful process sending
back a digitally signed hash of the encrypted vote (called the voting receipt).
The VCS then stores the first cipher text in the Ballot Box and forwards the
voting receipt to the voting client, which shows it to the voter. This receipt can
be used as a proof that the vote has been recorded as cast : as the VCS publishes
the voting receipts corresponding to the contents in the Ballot Box, voters can
verify that their votes are correctly stored.

The voter receives the return code and compares it with the code assigned to
the selected voting option in her voting card in order to check the correctness of
the encrypted vote.

It is assumed that multiple voting is allowed (the system supports it), so that
in case wrong return codes are generated the voter can opt to cast her vote from
another computer.



40 J.P. Allepuz and S.G. Castelló

If multiple voting is not allowed, the verification of correct encoding of the
vote could be done before the casting process: the second encryption is generated
in first place and sent to the RCG, which generates the return code and sends
it to the voter. In case the verification is successful, the voter can decide to cast
the vote (the first encryption), so that it is stored in the Ballot Box.

The ability of asking multiple times for return codes, by multiple voting or
by this second system, prevents vote selling practices based on the values of the
received return codes.

4 Detailed Cryptographic Protocol

The participants of the voting process are the voter V, the voting client C, the
voting server VCS containing the Ballot Box and the validation server RCG,
which generates the return codes to be sent to the voter.

The encryption algorithm is ElGamal [7]. During the election configuration
phase, the election cryptosystem parameters p, q, g are defined:

– The modulo p is chosen as a large safe prime, where p = 2q + 1 and q is a
prime number.

– g is a generator of Gq , a q-order subgroup of Z∗
p .

As it has been explained in the overview section, the two encryptions of the vote
are calculated under different keys: the election and the RCG public keys.

The election and RCG private keys xe and xrcg are independently selected
from Zq, and the public keys he and hrcg are calculated as he ≡ gxe mod p,
hrcg ≡ gxrcg mod p (modular operations will be obviated from now).

Symmetric keys Kvcs and Krcg for the VCS and the RCG respectively are
also generated in the configuration phase. The Kvcs key will be used to generate
the second encryption of the vote, while Krcg will be used to generate the return
code values.

The following sections describe the steps of the voting process.

4.1 Vote Preparation for Vote Casting

After the voter confirms her selections, the voting client C proceeds to encrypt
the vote using the ElGamal encryption algorithm and the election public key.

The vote is encrypted using a random exponent r in Zq as:

cprob = (v · hr
e, g

r) = (α, β) (1)

A proof of knowledge proof1 of the random exponent using the Schnorr Identifi-
cation Protocol [11] is generated for the encrypted vote in order to prevent reply
attacks based on re-using a valid vote from a voter to discern the voter intent
based on the return codes received by the attacker.



Internet Voting System with Cast as Intended Verification 41

4.2 Vote Preparation for Verification

A second deterministic encryption using a fixed exponent (in order to be able to
generate the return codes) and a cryptographic proof relating both encryptions
are generated in the voting client.

This second encryption is based on generating a cipher text using the ElGamal
encryption algorithm as a deterministic algorithm by using a fixed exponentgen-
erated from information only known by the voter and by the VCS, so that the
RCG cannot learn about the voting options selected by the voter when gener-
ating the return codes. It is generated in such a way that the resulting cipher
text is different for each voter and voting option in order to calculate suitable
values for the return codes from it. The cipher text is then re-encrypted using
the RCG public key hrcg and the ElGamal encryption algorithm with a random
exponent, so that VCS never learns about the selected voting options.

Generation of a Fixed Exponent in the Voting Client. A first fixed
exponent is generated in the voting client using information only known by the
voter (the voting card identifier VCID and the vote content):

a = H(V CID, v), where H is a pseudorandom function1.

Request of a Second Fixed Exponent to the VCS. The voter enters the
VCID code identifying her voting card into the voting client application, which
is used to request a value for a fixed exponent to the voting server VCS without
revealing it. The VCS uses its secret key Kvcs to generate that value:

C → V CS : b = H(V CID)
V CS → C : d = H(Kvcs, b),

A blind signature mechanism could be used in order prevent the VCS from
knowing the value d.

For example, the VCS could have a keypair tvcs (public), svcs (private) from
an RSA scheme. The Voting Client could then send the value b to the VCS,
blinded by a random value r: b′ = rtvcs · b. The VCS would then answer with
b′′ = b′svcs , and the Voting Client could recover the exponent d′ = bsvcs as
d′ = b′′/r.

Encryption with Fixed Exponents Generated by the Voting Client
and the VCS. The deterministic encryption of the voting options is generated
as:
1 Since a is part of the fixed exponent used to generate the deterministic encryption
of the vote, the function H might be hard to compute in order to prevent effective
brute-force attacks to disclose the voter intent. For example, H could be a Password
Based Key Derivation Function ([3], [10]), which can be defined as a pseudorandom
function slow to compute, and it is usually used to derive cryptographic keys from
non-strong passwords. The number of bits generated by the PBKDF shall be defined
in such a way that this computation is not too slow to be executed by the voting
client while maintaining the robustness of the encryption.



42 J.P. Allepuz and S.G. Castelló

cdet = (v · ha+d
e , ga+d) = (α′, β′) (2)

Generation of Proof of Equality of Plaintexts. The proof (proof2) is used
to demonstrate to the RCG that both encryptions, the one which will be stored
in the Ballot Box and the one used to generate the return codes, contain the same
plaintext (selected voting options). This way, it is ensured that the information
which is audited (the contents over which the return codes are calculated) is the
same stored in the Ballot Box.

This proof is a Non-Interactive Zero Knowledge Proof based in the Schnorr
Signature protocol [17], which is used to prove that both encryptions (α, β),
(α′, β′) contain the same plaintext (see [14] with corrections in [16]).

In order to do that, both cipher texts are divided and the voting client proves
knowledge of the equivalent encryption exponent (a+ d)/r.

(α′/α, β′/β) = (h(a+d)/r
e , g(a+d)/r) (3)

Re-encryption Using the RCG Public Key. The cipher text obtained from
the encryption of the vote with fixed exponents is re-encrypted using the El-
Gamal encryption algorithm, the RCG public key hrcg and the same random
exponent r used for the first encryption. This re-encryption prevents VCS from
being able to perform a brute force attack on the value v · ha

e . The RCG will
need to remove this re-encryption layer in order to recover α′, which is needed
to verify proof2. The value β′ is re-encrypted with a different random exponent
in order to prevent an observer to infer if the voter has chosen twice the same
voting option or not.

α′′ = α′ · hr
rcg (4)

β′′ = β′ · gr′ (5)

c′det = (v · ha+d
e · hr

rcg, g
a+d · hr′

rcg, g
r′) = (α′′, β′′, γ) (6)

4.3 Vote Casting

Both encryptions and the proofs are digitally signed using the voter credentials
and sent to the VCS.

C → V CS : Sig((α, β), (α′′, β′′, γ), proof1, proof2;Svoter)
The proof1 and the voter digital signature are verified at reception in the

VCS. In case the verification is successful, both encryptions and the proofs are
forwarded to the RCG.

V CS → RCG : Sig((α, β), (α′′, β′, γ), proof1, proof2;Svoter)



Internet Voting System with Cast as Intended Verification 43

4.4 Generation of Return Code

The RCG verifies the proof1 and the voter digital signature at reception. If the
verification is successful, it performs the following steps in order to generate the
return code from the cipher text (α′′, β′′, γ).

Decryption with RCG Private Key. The RCG uses its ElGamal private key
to decrypt the second cipher text in order to obtain the original deterministic
encryption with the fixed exponents generated in the voting client (see Eq. 2):

(α′, β′) = (α′′ · (β−xrcg ), β′′ · (γ−xrcg )) = (v · ha+d
e , ga+d) (7)

Verification of Proof of Equality of Plaintexts. Once the RCG has ob-
tained the cipher text (α′, β′), it can verify that this cipher text is a re-encryption
of (α, β)using proof2 and following the steps described in [14] and [16].

Calculation of Return Code. Finally, the RCG generates the return code
value using its symmetric key as:

RC = H(α′;Krcg) (8)

4.5 Delivering Return Code and Voting Receipt

The return code is sent to the voter using an alternative channel to the one
used to cast the vote (e.g. SMS). After sending the return code to the voter,
a confirmation is sent to the VCS in order to store the encrypted vote in the
Ballot Box. This confirmation is the signed hash of the encrypted vote to be
stored in the Ballot Box (the voting receipt). Once the VCS has stored the
vote, it forwards the voting receipt to the voting client as a confirmation of the
recording of the vote. The VCS publishes the voting receipt (hash of the stored
vote) in a Bulletin Board.

RCG → V : RC
RCG → V CS : Sig(H(α, β);Srcg)
V CS : Publish Sig(H(α, β);Srcg)

In order to prevent some attacks hidden as transaction problems (e.g., a mali-
cious VCS claims not having received the voting receipt from the RCG, so that
the vote is not stored, but the RCG claims having sent that receipt to the VCS),
both the VCS and the RCG store the whole set of information generated dur-
ing the voting phase: the VCS stores the set of information cast by the voter
(digitally signed by the voter) and the voting receipt (digitally signed by the
RCG). The RCG stores the information cast by the voter and forwarded by the
VCS (digitally signed by both the voter and the VCS), the vote encryption with
fixed exponent over which the return code is generated (Eq. 2), and the voting
receipt.



44 J.P. Allepuz and S.G. Castelló

4.6 Validation of Return Code and Voting Receipt

The voter receives the return code and compares it with the code assigned to
the selected voting option in her voting card in order to check the correctness of
the encrypted vote.

The voter also receives the voting receipt digitally signed by the RCG, so that
she can verify that her vote has been stored in the Ballot Box by comparing this
value with the list published by the VCS in the Bulletin Board.

This explanation abstracts a vote as a container of one selected voting option.
In case of multiple selections they are independently encrypted and the same
process is repeated for each one, so that independent return codes are obtained.

All the information sent from one component to another is digitally signed in
order to provide integrity and proof of origin (e.g., it is assumed that encrypted
votes are digitally signed by voters).

5 Generation of Voting Cards

Both the voting card identifier VCID and the VCS symmetric key Kvcs are very
sensitive, since they together can be used to guess the voting options selected
by the voter during the voting phase.

Therefore, it is recommended to generate them in two isolated and indepen-
dent environments. Each environment can be identified as a Voting Card Gen-
eration (VCG) module, VCG1 and VCG2. The same environments can then be
used to implement a multiparty generation process to calculate the return codes
for the voting cards: one environment for generating partial values, and another
for generating the final ones.

The generation of partial and final return code values follows similar steps
to those defined in the voting protocol. The main difference is that the starting
point is not a cipher text, but a cleartext voting option.

Voting Card generation in VCG1

– A random voting card identifier VCID is generated for each set of return
codes belonging to a voting card. The length of this VCID must consider
both security and usability requirements.

– A fixed exponent is calculated for each voting option using the ballot iden-
tifier and a pseudorandom function: a = H(V CID, v).

– A partial return code for each voting option is calculated following the equa-
tion:

rc′ = v · ha
e (9)

– The set of partial return codes generated for each voting card, related to the
voting card code VCC, where V CC = H(V CID), is passed to the following
module.



Internet Voting System with Cast as Intended Verification 45

Voting Card generation in VCG2

– A second fixed exponent is generated using the VCC value and the VCS
symmetric keyKvcs as d = H(Kvcs, V CC) (see 4.2). In case a blind signature
scheme is used, d may be generated as d = V CCsvcs .

– The final return code value for each voting option is calculated in two steps,
using the fixed exponent and then the RCG symmetric key Krcg:

rc′′ = rc′ · hd
e, (10)

RC = H(rc′′;Krcg) (11)

Two different environments are used to generate the return code values for the
voting cards, in such a way that a single entity has no knowledge of the return
codes values assigned to a specific voting card. It is assumed that the service in
charge of printing the voting cards processes this information in a separate way
in order to preserve the secrecy of the voting cards.

6 Security Analysis

The proposal is designed to provide cast as intended and recorded as cast prop-
erties, without compromising voter privacy. However, it is important to analyze
the robustness of the proposed method against any possible compromise of its
components and under which assumptions these components are expected to be
deployed to reduce the risks. We are organizing this analysis based on the differ-
ent stages of the election process and which components could be compromised.
For each possible component compromise, the impact, difficulty of implementing
an attack and the probability of success are briefly analyzed. It is not the aim of
this section to make a strict threat assessment but to provide an initial analysis
of the risks.

6.1 Election Configuration

During the election configuration phase the return codes and cryptographic keys
needed during the protocol execution are generated. The disclosure of any of
these components could potentially compromise the security properties of the
proposal.

a) Return codes disclosure: If the return code values are intercepted by a
third party at this stage they could be potentially used to compromise voter
privacy or to cheat the voter without being noticed, changing the vote to be
cast and sending the return codes of the original one. However, these potential
attacks cannot be implemented without compromising other components of the
system.



46 J.P. Allepuz and S.G. Castelló

Voter privacy only can be compromised if the attacker also intercepts the
return codes of the selected voting options when the vote is cast (i.e., intercepts
the communications in the alternative channel or gains access to the RCG).
Furthermore, voting cards are not linked to voters, can be exchanged between
voters, and one return code value is probable to be connected to different options
in different voting cards. Therefore, an attacker also needs to gain access to
the voting card identifier to make the attack effective. Nevertheless, if multiple
voting is allowed, voters can cast a vote latter on using a different voting machine
and a different voting card. Therefore, the attacker needs to intercept all these
communications as well.

For cheating the voter, the malicious voting client needs to send the manip-
ulated vote to the VCS and the real selections made by the voter to the RCG.
That way, the RCG could send the return codes of the options selected by the
voter instead of the options contained in the vote. Otherwise, the voter could
detect the attack when receiving the SMS messages with return codes of the
manipulated vote. The protocol does not require any direct connection between
the client and the RCG and therefore, this should be explicitly done without
being detected (i.e., requires also control of the RCG server infrastructure). The
success of the attack will depend also on the ability to the voter for casting
another vote in another machine. If so, the attacker needs also to control any
machine that could be used by the voter. The scalability of this attack depends
also in the number of machines controlled, the number of voting cards stolen and
the ability to control the RCG and hide unexpected connections from Internet
to this machine (initially it should not accept any connection from Internet).

As a general assumption, it is expected that the return code generation pro-
cess is implemented using the two-step process mentioned in Section 5, using
an isolated environment under the supervision of auditors. The files with the
return codes to be printed should be exported in two different files encrypted
using two private keys, so that two separate services process them independently.
Voting cards will be printed in tamper evident sealed blind envelopes (e.g., PIN
envelopes). The storage devices used in this process are destroyed or completely
wiped as soon as they are not longer required. This prevents accidental disclosure
of information that could potentially be used in other attacks. At this stage of
the voting process, the main risk is compromising the whole set of voting cards,
since this could allow a large scale attack. Compromising only one or a small set
makes attacks more difficult to target to a specific voter or reduces their impact.

b) VCS Kvcs symmetric key disclosure: in case this key is compromised,
the attacker could try a brute force attack focused to disclose the voter intent
from the deterministic encrypted vote (see Eq. 9), if it also colludes with the
RCG. If so, the hardness of the attack will depend on the length of the voting
card identifier VCID (e.g., for a 16 char base32 identifier, it will be 80bits). The
use of a slow function as a PBKDF to generate the fixed exponent in Eq. 9 would
increase the time needed to disclose the vote contents with such a brute force
attack.



Internet Voting System with Cast as Intended Verification 47

As a general assumption, this Kvcs key is generated using a cryptographically
secure PRNG in an isolated environment (e.g., HSM) and it has a length of at
least 128 bits. The length of the voting card identifier VCID should be of at
least 80 bits and it should be generated using also a cryptographically secure
PRNG.

c) VCS Signature key disclosure: assuming that the RCG also stores the
vote, if this key is compromised, an attacker colluding with the RCG could store
in this machine a vote that has not been stored in the VCS but with a proof that
says it should (the digital signature of a vote stored in the RCG using the VCS
private key). The main motivation of this attack is to disrupt the election and
try to discredit the VCS, since privacy of the voter is not compromised. This
attack also requires having access to a vote cast by a valid voter but that has not
been stored in the VCS (since the voter has to be digitally signed using voter
credentials). The attack could be detected if the contents stored in the RCG are
crosschecked against the voting receipts published by the VCS in the Bulletin
Board.

As a general assumption, this key is generated using a cryptographically secure
PRNG in an isolated environment (e.g., HSM) and it has a length of at least
2048 bits. It is also expected that the contents of the RCG and the Bulletin
board are checked periodically to detect discrepancies.

d) RCG xrcg ElGamal private key disclosure: if this key is compromised,
the attacker can decrypt the second encryption cast by the voter (see Eq. 2)
in order to recover the vote encrypted by the fixed exponents. However, this
information does not disclose enough details to discern the voter intent. Only
colluding with the VCS the attacker could try a brute force attack over the
voting card identifier VCID.

As a general assumption, this key is generated using a cryptographically secure
PRNG in an isolated environment (e.g., HSM) and it has a length of at least
2048 bits. The length of the voting card identifier should be at least of 80 bits
and it should be generated using also a cryptographically secure PRNG.

e) RCG Signature key disclosure: if this key is compromised and the at-
tacker is colluding with the VCS, she could sign the voting receipt of a vote in
order to provide confirmation to the voting applet without forwarding the vote
the RCG. In this case, if the vote is not stored in the Ballot Box, this could be
detected, since the voting receipt is not published in the Bulletin Board. Pub-
lishing the voting receipt without storing the vote can be detected crosschecking
both repositories. In any case, the voter could detect this attack since she does
not receive the return codes of the cast vote.

As a general assumption, this key is generated using a cryptographically secure
PRNG in an isolated environment (e.g., HSM) and it has a length of at least
2048 bits. It is also expected that the contents of the Ballot Box and the bulletin
board are checked periodically to detect discrepancies.



48 J.P. Allepuz and S.G. Castelló

f) Election xe ElGamal private key disclosure: if this key is compromised
and attacker could decrypt any vote and compromise voter privacy.

As a general assumption, this key is generated using a cryptographically secure
PRNG in an isolated environment and split in shares using a secure multiparty
computation protocol with a pre-defined threshold. Shares shall be distributed
among members of an Electoral Board with divergent interest, using a HSM
(smartcards). The system shall not store any copy of the shares or the whole
election private key. All the storage devices (except the smartcards of the elec-
toral board members) shall be wiped or destroyed. The key shall have a length
of at least 2048 bits.

6.2 Voting Process

During the voting phase, attacks can be targeted to the voters that are par-
ticipating (or not) in the election, and against the votes cast. Assuming that
attackers did not succeed on compromising the components in the configura-
tion phase, we will consider in this stage risks in case of component compromise
during the voting phase. Risks based on a previous compromise are the same
as described before. In this phase, we will consider the risks more related to a
system component compromise (Voting Client, VCS and RCG) rather than a
cryptographic component compromise (keys). The only exception is the set of
return codes (voting cards).

a) Return codes disclosure: In this phase, compromising a meaningful num-
ber of voting cards is more complex since they are already in possession of voters
and the information of the configuration phase has been destroyed (i.e., it will
require physical access to each voter location). Therefore, the attacks can be
mainly focused on coercion or vote buying practices. Since voting cards are not
linked to voters, if voters are allowed to cast more than one vote using different
voting cards, coercers or vote buyers cannot use the voting cards to be sure of
the voter intent even though they keep these voting cards.

As a general assumption, it is expected that the return code generation process
destroys all the information of the return codes after voting cards are printed. It
is also an assumption that voters are allowed to vote multiple times. Since the
vote casting and vote verification processes can be executed in different order, in
case the voter only can cast one vote, the processes could be reversed, sending
first the deterministic encrypted vote to check the return codes before casting
the vote. This is an option whose impact we are still evaluating in case the voter
does not cast the vote, makes changes in the selection and requests again the
return codes (sending another deterministic vote).

b) Voting client compromise: If the voting client is compromised (virus,
malware, etc.), any attempt to make changes in the voter intent will be detected
by the voter when checking the return codes. RCG can also detect any attempt
of using a deterministic encryption with a different content than the vote (by



Internet Voting System with Cast as Intended Verification 49

means of a cryptographic proof, see Section 4.2). Only collusion between the
voting client and the RCG could pose some risk, as described in the section a)
of the Risks during the Election configuration process. However, this will require
also compromise other components of the infrastructure to hide any direct dialog
between the voting client and the RCG.

As a general assumption, it is expected that the RCG is completely isolated
from the public network (i.e., Internet) and connections restricted to those com-
ing from the VCS. Voting client is expected to be digitally signed to prevent the
use of manipulated or non-validated client software.

c) VCS compromise: If the VCS is compromised, it cannot gain access to the
voter intent (it cannot decrypt the information) or manipulate the vote, since
it is assumed that is digitally signed by the voter. It could disrupt the election
by not storing the votes but publishing the voting receipts (to prevent voters
to detect that their votes were not recorded as cast). However, this malicious
practice could be detected by periodically cross-checking the Ballot Box contents
with the Bulletin Board ones. If the RCG is also storing a copy of the valid votes
from which it has generated return codes, votes eliminated by the VCS could be
recovered. Only collusion between VCS and RCG could prevent the recovery of
the vote. Attacks described in section b) and c) also apply in this case.

As a general assumption, it is expected that the keys of the VCS are stored in a
cryptographic device that prevents them from being exported (HSM). Periodical
checks of the Ballot Box and Bulletin Board contents are also expected.

d) RCG compromise: If the RCG is compromised, it can send return codes
to voters without sending the voting receipt to the VCS, so that the votes are
not stored in the Ballot Box. However, this will be detected by voters when
a timeout is reached in their voting client since the receipt is not received. In
the other hand, trying to guess the selected voting options after decrypting the
deterministic vote (see Eq. 7) is not feasible. Only with the collaboration of
the VCS, that could recover its part of the fixed exponent, could reduce the
complexity of the brute force attack to the length of the voting card identifier
value (usually 80 bits). The other attacks described in sections d) and e) of the
Election configuration phase also apply in this case.

As a general assumption, it is expected that the keys of the RCG are stored in a
cryptographic device that prevents them from being exported (HSM). Periodical
checks of the RCG stored information (validated votes and voting receipts) and
Bulletin Board contents are also expected.

6.3 Post Election

Once the election is done, the main risks are related to threat the data that
has been registered during the election. Mainly, the following datasets will be
vulnerable to attacks: the votes encrypted under the election public key, the votes
encrypted under the RCG public key, votes decrypted with the RCG private



50 J.P. Allepuz and S.G. Castelló

key and the voting receipts. The attack objectives in all the cases could be to
compromise voter privacy or to disrupt the election.

As a general assumption, it is expected that the encryption and digital sig-
nature keys of the VCS and RCG, as well as the electoral board shares are
destroyed once they are no longer required (usually when the results are ob-
tained). It is also expected that vote encryption sets are not public disclosed.
Only the Bulletin Board contents (voting receipts) and the decrypted votes will
be public available.

a) Attacks on the votes encrypted under the election public key or the
RCG public key: Crypto-analysis attacks for disclosing the encrypted voter
intent are not expected in these votes. In fact it is expected that these attacks
will be more probably studied in the votes decrypted by the RCG for the nature
of the deterministic encryption exponent. In the other hand, any attempt to
manipulate these votes to disrupt the election could be detected by checking
the digital signatures and the ZKP that connect them to the deterministically
encrypted votes. Therefore, no successful attacks are expected.

b) Attacks on the votes decrypted with the RCG private key: Since
these votes derivate the encryption exponent in a deterministic way, it is ex-
pected that attacks will be concentrated on breaking this key derivation mech-
anism. Three components are used for the exponent derivation: the voting card
identifier, the selected voting option and a VCS key. Considering that the set of
voting options is very limited, we can consider that the strength will depend on
the voting card identifier and the VCS key strength. The VCS key will have 2048
bits length and, therefore, is the main one that provides long term protection.
If this key is compromised, the strength will depend on the length of the voting
card identifier that usually is limited for usability issues since the voters need to
type it (e.g., 80 bits). This will make an attack more feasible in a shorter time-
frame, since at the end the fixed exponent protecting the privacy of the voting
options in the RCG is derived from a master key with lower entropy. Solutions
to increase this strength without compromising usability are under examination
for future improvements. It is also important to consider that if the voting card
identifiers are known in advance, the attack could be straight forward. Therefore,
preserving the VCID ’s as secret and destroying them at the end of the election
is of paramount importance to prevent any possible success of this attack.

c) Voting Receipt attacks: Attacks to voting receipts could be focused to
discern the original cipher text cast by the voters (since initially these encrypted
votes are not public available). However, this will be practically unfeasible since
the receipt value is obtained using a hash function.



Internet Voting System with Cast as Intended Verification 51

6.4 Summary

The system is not vulnerable to individual component compromise, requiring in
most cases the collusion of several components for staring to design an attack.
The main risks are located in the election configuration period, where the voting
cards and keys could be compromised. However, these keys can be created in
isolated environments (i.e., do not require online processes) and the voting cards
can be created using incremental steps in different isolated environments that
will prevent having access to all the information at the same time.

The second important risk is related to the protection of the VCS symmetric
key. Since this key is required to compensate the strength limitations of the
voting card identifier (for usability reasons), it is important to it keep safe and
destroy it when the election is done. Otherwise, crypto-analysis attacks could
be designed that could make possible an attack in an acceptable timeframe (not
confirmed yet). Further work is done in this area.

Other attacks require complex collusions that are more difficult to implement
without being detected. Furthermore, the impact in case of success seems more
limited to disrupt the process.

References

1. http://www.regjeringen.no/en/dep/krd/prosjekter/e-vote-2011-project/

about-the-e-vote-project/presentation-of-the-project.html?id=598565

2. evalg 2011 security objectives, http://www.regjeringen.no/upload/KRD/

Kampanjer/valgportal/e-valg/tekniskdok/Security Objectives v2.pdf

3. Pkcs#5, note = http://www.rsa.com/rsalabs/node.asp?id=2127

4. Adida, B.: Helios: Web-based open-audit voting. In: van Oorschot, P.C. (ed.)
USENIX Security Symposium, pp. 335–348. USENIX Association (2008)

5. Chaum, D.: Surevote: Technical overview. In: Proceedings of the Workshop on
Trustworthy Elections, WOTE 2001 (2001)

6. CESG (Communications and Electronic Security Group). E-voting secu-
rity study, annex C (2002), http://www.edemocracy.gov.uk/library/papers/

study.pdf2002

7. El Gamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory 31(4) (1985)

8. Gjøsteen, K.: Analysis of an internet voting protocol. Cryptology ePrint Archive,
Report 2010/380 (2010), http://eprint.iacr.org/

9. Helbach, J., Schwenk, J.: Secure Internet Voting with Code Sheets. In: Alkassar,
A., Volkamer, M. (eds.) VOTE-ID 2007. LNCS, vol. 4896, pp. 166–177. Springer,
Heidelberg (2007)

10. American National Standards Institute. Accredited standards committee x9 work-
ing draft. ANSI X9.42-1993: Public Key Cryptography for the Financial Services
Industry: Management of Symmetric Algorithm Keys Using Diffie-Hellman (1994)

11. Jakobsson, M.: A Practical Mix. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS,
vol. 1403, pp. 448–461. Springer, Heidelberg (1998)

http://www.regjeringen.no/en/dep/krd/prosjekter/e-vote-2011-project/about-the-e-vote-project/presentation-of-the-project.html?id=598565
http://www.regjeringen.no/en/dep/krd/prosjekter/e-vote-2011-project/about-the-e-vote-project/presentation-of-the-project.html?id=598565
http://www.regjeringen.no/upload/KRD/Kampanjer/valgportal/e-valg/tekniskdok/Security_Objectives_v2.pdf
http://www.regjeringen.no/upload/KRD/Kampanjer/valgportal/e-valg/tekniskdok/Security_Objectives_v2.pdf
http://www.rsa.com/rsalabs/node.asp?id=2127
http://www.edemocracy.gov.uk/library/papers/study.pdf2002
http://www.edemocracy.gov.uk/library/papers/study.pdf2002
http://eprint.iacr.org/


52 J.P. Allepuz and S.G. Castelló

12. Joaquim, R., Ribeiro, C.: Codevoting: protecting against malicious vote manipula-
tion at the voter’s pc. In: Chaum, D., Kutylowski, M., Rivest, R.L., Ryan, P.Y.A.
(eds.) Frontiers of Electronic Voting. Dagstuhl Seminar Proceedings, vol. 07311. In-
ternationales Begegnungs- und Forschungszentrum fuer Informatik (IBFI), Schloss
Dagstuhl, Germany (2007)

13. Malkhi, D., Margo, O., Pavlov, E.: E-voting without ’Cryptography’. In: Blaze, M.
(ed.) FC 2002. LNCS, vol. 2357, pp. 1–15. Springer, Heidelberg (2003)

14. Markus, J., Ari, J.: Millimix: Mixing in small batches. Technical report (1999)
15. Morales-Rocha, V., Soriano, M., Puiggali, J.: New voter verification scheme using

pre-encrypted ballots. Computer Communications 32(7-10), 1219–1227 (2009)
16. Nguyen, L., Safavi-Naini, R.: Breaking and Mending Resilient Mix-Nets. In: Din-

gledine, R. (ed.) PET 2003. LNCS, vol. 2760, pp. 66–80. Springer, Heidelberg
(2003)

17. Schnorr, C.-P.: Efficient signature generation by smart cards. J. Cryptology 4(3),
161–174 (1991)

18. Storer, T.W.: Practical pollsterless remote electronic voting (2006)
19. Voutsis, N., Zimmermann, F.: Anonymous code lists for secure electronic voting

over insecure mobile channels. In: Proceedings of Euro mGov. Sussex University,
Brighton (2005)


	Internet Voting System
with Cast as Intended Verification
	Introduction
	Previous Work
	Proposed Solution
	Design Requirements
	Overview of the Proposed Solution

	Detailed Cryptographic Protocol
	Vote Preparation for Vote Casting
	Vote Preparation for Verification
	Vote Casting
	Generation of Return Code
	Delivering Return Code and Voting Receipt
	Validation of Return Code and Voting Receipt

	Generation of Voting Cards
	Security Analysis
	Election Configuration
	Voting Process
	Post Election
	Summary

	References




