

Lecture Notes in Computer Science 7187
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Aggelos Kiayias Helger Lipmaa (Eds.)

E-Voting
and Identity
Third International Conference, VoteID 2011
Tallinn, Estonia, September 28-30, 2011
Revised Selected Papers

13

Volume Editors

Aggelos Kiayias
National and Kapodistrian University of Athens
Department of Informatics and Telecommunications
Panepistimiopolis, 15784 Athens, Greece
E-mail: aggelos@di.uoa.gr

Helger Lipmaa
University of Tartu, Institute of Computer Science
J. Liivi 2, 50409 Tartu, Estonia
E-mail: helger.lipmaa@gmail.com

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-32746-9 e-ISBN 978-3-642-32747-6
DOI 10.1007/978-3-642-32747-6
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012944270

CR Subject Classification (1998): E.3, D.4.6, K.6.5, C.2, J.1, K.4.4, K.5.2

LNCS Sublibrary: SL 4 – Security and Cryptology

© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

These are the proceedings of VoteID 2011, the third in the series of International
Conferences on E-Voting and Identity. The conference was held in Tallinn, Esto-
nia, during September 28–30, 2011. The previous two VoteID conferences were
held in 2007 (Bochum) and 2009 (Luxembourg). Since then, several countries
have moved forward (and a few, backward) on e-voting. In particular, Estonian
parliamentary e-voting in Spring of 2011 resulted both in a record number of
remote votes (140,846 voters chose to vote remotely) and new controversies. In
parallel, Norway has gone forward to start its own remote e-voting process. The
current proceedings contain papers that describe both systems.

Since e-voting is already applied in the real world (and often, we have to
say, not in an ideally secure way), research on e-voting is gaining in impor-
tance. We hope that VoteID 2011 helped not only to further academic research
on e-voting, but also to tighten the contacts between the theory and the prac-
tice of the discipline. In particular, the Program Committee accepted works on
both theoretical and practical aspects (“experience” or system-oriented papers).
Moreover, the two invited talks, one by Henrik Nore and Ida Stenerud and the
second one by Jens Groth, were explicitly chosen to reflect both sides of e-voting
research. We would like to thank the invited speakers for accepting our invita-
tion and for delivering excellent talks. In addition, VoteID 2011 has a panel on
“Verifiable E-Voting and Real World,” and we would like to thank the panelists
(Tarvi Martens, Kristian Gjøsteen, Henrik Nore, Alexander Trechsel, and An-
drew Regenscheid) for participation. The Program Committee selected 15 papers
for presentation at the conference out of a total of 33 anonymous submissions.
Each submission was reviewed by at least three Program Committee members,
while Program Committee submissions were reviewed by at least four Program
Committee members.

We would like to thank everyone who helped make this conference happen.
Our thanks go to the Program Committee and their subreviewers, as listed on
the following pages. The submission and review process was greatly simplified by
the Web submission and review software written by Shai Halevi. We thank all
the submitters as well as the authors for revising their papers accordingly to the
reviewers’ suggestions. The revised versions were not checked by the Program
Committee so the authors bear full responsibility for their contents. We thank
Nikolaos Karvelas of the University of Athens and the staff at Springer for their
help with producing the proceedings.

VI Preface

VoteID 2011 was generously supported by Scytl. We note that these pro-
ceedings include a paper authored by Scytl employees. This contribution was
evaluated by the Program Committee entirely independently of the company’s
support. In the local organization, the General Chair (H. Lipmaa) was helped
very professionally by a team, lead by Kerli Kangro, from the conference center
of the Tallinn University.

January 2012 Aggelos Kiayias
Helger Lipmaa

VoteID 2011

The Third International Conference on E-voting
and Identity 2011

Tallinn, Estonia
September 28–30, 2011

Program Chairs

Aggelos Kiayias University of Athens, Greece
Helger Lipmaa University of Tartu, Estonia

Program Committee

Josh Benaloh Microsoft Research, USA
Felix Brändt Technische Universität München, Germany
Yvo Desmedt University College London, UK
Edith Elkind Nanyang Technological University, Singapore
Jens Groth University College London, UK
Joseph Lorenzo Hall UC Berkeley and Princeton, USA
Hugo Jonker University of Luxembourg, Luxembourg
Aggelos Kiayias University of Connecticut, USA
Helger Lipmaa University of Tartu, Estonia
Tal Moran Harvard, USA
Rene Peralta NIST, USA
Olivier Pereira Université Catholique de Louvain, Belgium
Mark Ryan University of Birmingham, UK
Peter Ryan University of Luxembourg, Luxembourg
Berry Schoenmakers University of Eindhoven, The Netherlands
Jörg Schwenk Ruhr-Universität Bochum, Germany
Vanessa Teague University of Melbourne, Australia
Melanie Volkamer TU Darmstadt, Germany
Moti Yung Columbia University and Google, USA

VIII VoteID 2011

External Reviewers

Haris Aziz
Catherine Baker
Stephanie Bayer
Markus Brill
Marco Cova
Chris Culnane
Denise Demirel
Naipeng Dong
Richard Frankland
Kristian Gjøsteen
Paul Harrenstein
Simon Kramer

Dalia Khader
Gabriele Lenzini
Maina Olembo
Doron Peled
Ariel Procaccia
Kim Ramchen
Michael Schläpfer
Hans Georg Seedig
Nicolas Troquard
Dominique Unruh

Table of Contents

Norwegian Internet Voting

The Norwegian Internet Voting Protocol . 1
Kristian Gjøsteen

Transparency and Technical Measures to Establish Trust in Norwegian
Internet Voting . 19

Oliver Spycher, Melanie Volkamer, and Reto Koenig

Internet Voting System with Cast as Intended Verification 36
Jordi Puiggaĺı Allepuz and Sandra Guasch Castelló

Voting Systems 1

Linear Logical Voting Protocols . 53
Henry DeYoung and Carsten Schürmann

Efficient Vote Authorization in Coercion-Resistant Internet Voting 71
Michael Schläpfer, Rolf Haenni, Reto Koenig, and Oliver Spycher

The Bug That Made Me President a Browser- and Web-Security Case
Study on Helios Voting . 89

Mario Heiderich, Tilman Frosch, Marcus Niemietz, and
Jörg Schwenk

Voting Systems 2

An Efficient and Highly Sound Voter Verification Technique and Its
Implementation . 104

Rui Joaquim and Carlos Ribeiro

Single Layer Optical-Scan Voting with Fully Distributed Trust 122
Aleksander Essex, Christian Henrich, and Urs Hengartner

Paperless Independently-Verifiable Voting . 140
David Chaum, Alex Florescu, Mridul Nandi, Stefan Popoveniuc,
Jan Rubio, Poorvi L. Vora, and Filip Zagórski

Prêt á Voter and Trivitas

Feasibility Analysis of Prêt à Voter for German Federal Elections 158
Denise Demirel, Maria Henning, Peter Y.A. Ryan,
Steve Schneider, and Melanie Volkamer

X Table of Contents

Prêt á Voter with Write-Ins . 174
Steve Schneider, Sriramkrishnan Srinivasan, Chris Culnane,
James Heather, and Zhe Xia

Trivitas: Voters Directly Verifying Votes . 190
Sergiu Bursuc, Gurchetan S. Grewal, and Mark D. Ryan

Experiences

The Application of I-Voting for Estonian Parliamentary Elections
of 2011 . 208

Sven Heiberg, Peeter Laud, and Jan Willemson

Towards Best Practice for E-election Systems: Lessons from Trial and
Error in Australian Elections . 224

Richard Buckland, Vanessa Teague, and Roland Wen

On the Side-Effects of Introducing E-Voting . 242
James Heather, Morgan Llewellyn, Vanessa Teague, and Roland Wen

Author Index . 257

The Norwegian Internet Voting Protocol

Kristian Gjøsteen�

Norwegian University of Science and Technology
kristian.gjosteen@math.ntnu.no

Abstract. The Norwegian government will run a trial of internet remote
voting during the 2011 local government elections. A new cryptographic
voting protocol will be used, where so-called return codes allow voters
to verify that their ballots will be counted as cast.

This paper discusses a slightly simplified version of the cryptographic
protocol. The description and analysis of the simplified protocol contains
most of the ideas and concepts used to build and analyse the full protocol.
In particular, the simplified protocol uses the full protocol’s novel method
for generating the return codes.

The security of the protocol relies on a novel hardness assumption
similar to Decision Diffie-Hellman. While DDH is a claim that a random
subgroup of a non-cyclic group is indistinguishable from the whole group,
our assumption is related to the indistinguishability of certain special
subgroups. We discuss this question in some detail.

Keywords: electronic voting protocols, Decision Diffie-Hellman.

1 Introduction

The Norwegian government will run a trial of internet remote voting during the
2011 local government elections. During the advance voting period, voters in 10
municipalities will be allowed to vote from home using their own computers.

Internet voting, and electronic voting in general, faces a long list of security
challenges. For Norway, the two most significant security problems with internet
voting will be compromised voter computers and coercion.

Coercion will be dealt with by allowing voters to revote electronically. Revot-
ing cancels previously submitted ballots. Also, the voter may vote once on paper,
in which case every submitted electronic ballot is canceled, even those submitted
after the paper ballot submission. In theory, almost everyone should therefore
have sufficient tools to avoid coercion.

This leaves compromised computers as the main remaining threat. Since a sig-
nificant fraction of home computers are compromised, the voting system must
allow voters to detect ballot tampering without relying on computers. This is
complicated by the fact that voters are unable to do even the simplest crypto-
graphic processing without computer assistance.

� Funded in part by the Norwegian Research Council’s VERDIKT programme
project 183195.

A. Kiayias and H. Lipmaa (Eds.): VoteID 2011, LNCS 7187, pp. 1–18, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

2 K. Gjøsteen

Norwegian municipal elections are somewhat complicated. The voter chooses
a party list, he is allowed to give personal votes to candidates on the list, and he
is allowed to amend the list by adding a certain number of candidates from other
party lists. Essentially then, a ballot consists of a short, variable-length sequence
of options (at most about a hundred options) chosen from a small set of possible
options (at most a few thousand). Note that the entire sequence is required to
properly interpret and count the ballot, but order within the sequence does not
matter.

We note in Norway paper ballots submitted in an election are considered
sensitive and access is restricted. One reason for this is that because of the
complex ballots, many distinct ballots will have essentially the same effect on
the outcome. Therefore, it is possible to mark ballots, which means that if the
counted ballots were public, anyone could reliably buy votes.

Related work. We can roughly divide the literature into protocols suitable for
voting booths [6,7,21,22], and protocols suitable for remote internet voting
[1,8,14,16,19], although protocols often share certain building blocks. One dif-
ference is that protocols for voting booths should be both coercion-resistant
and voter verifiable, while realistic attack models (the attacker may know more
than the voter knows) for remote internet voting probably make it impossible
to achieve both voter verifiability and coercion-resistance.

For internet voting protocols, we can again roughly divide the literature into
two main strands distinguished by the counting method. One is based on homo-
morphic tallying. Ballots are encrypted using a homomorphic cryptosystem, the
product of all the ciphertexts is decrypted (usually using some form of threshold
decryption) to reveal the sum of the ballots. For simple elections, this can be
quite efficient, but for the Norwegian elections, this quickly becomes unwieldy.

The other strand has its origins in mix nets [4]. Encrypted ballots are sent
through a mix net. The mix net ensures that the mix net output cannot be
correlated with the mix net input. There are many types of mixes, based on
nested encryption [4] or reencryption, verifiable shuffles [11,19] or probabilis-
tic verification [2,14], etc. These can be quite efficient, even for the Norwegian
elections.

Much of the literature ignores the fact that a voter simply will not do any
computations. Instead, the voter delegates computations to a computer. Unfor-
tunately, a voter’s computer can be compromised, and once compromised may
modify the ballot before submission.

One approach to defend against compromised computers is so-called preen-
crypted ballots and return codes [5,3], where the voter well in advance of the
election receives a table with candidate names, identification numbers and return
codes. The voter inputs a candidate identification number to vote and receives a
response. The voter can verify that his vote was correctly received by checking
the response against the printed return codes. In Norway, preencrypted ballots
will be too complicated, but return codes can still be used.

Note that unless such systems are carefully designed, privacy will be lost.
Clearly, general multiparty computation techniques can be used to divide the

The Norwegian Internet Voting Protocol 3

processing among several computing nodes (presumably used by [5]). In practice,
few independent data centres are available that have sufficient quality and repu-
tation to be used in elections. This means that general multiparty computation
techniques are not so useful.

One approach for securely generating the return codes is to use a proxy obliv-
ious transfer scheme [12,13]. A ballot box has a database of return codes and the
voter’s computer obliviously transfers the correct one to a messenger, who then
sends the return code to the voter. The main advantage of this approach is that
very few computing nodes are required. Unfortunately, this particular solution
is probably too computationally expensive to be used for Norwegian elections.

Another useful tool is the ability for out-of-band communication with voters
[17]. This allows us to give the voter information directly, information that his
computer should not know and not be able to tamper with. The scheme in [12,13]
sends return codes to the voter out-of-band. This helps ensure that a voter is
notified whenever a vote is recorded, preventing a compromised computer from
undetectably submitting ballots on the voter’s behalf.

Our contribution. The cryptographic protocol to be used in Norway is designed
by Scytl, a Spanish electronic voting company, with contributions by the present
author. It is mostly a fairly standard internet voting system based on ElGamal
encryption of ballots and a mix-net before decryption.

The system works roughly as follows (see Fig. 1). The voter V gives his ballot
to a computer P , which encrypts the ballot and submits it to a ballot box B.
The ballot box and a return code generator R cooperate to compute a sequence
of return codes for the submitted ballot. These codes are sent by SMS to the
voter’s mobile phone F . The voter verifies the return codes against a list of
precomputed option–return code pairs printed on his voting card.

Once the ballot box closes, the submitted ciphertexts are decrypted by a
decryptor D. An auditor A supervises the entire process.

V P

F

B

R

D

A

Fig. 1. Overview of the protocol

The main contribution of the current author to the protocol, and the focus
of this paper, is a novel method for computing the return codes efficiently. We
use the fact that exponentiation is in some sense a pseudo-random function
[9,10], and since ElGamal is homomorphic, exponentiation can be efficiently
done “inside” the ciphertext.

4 K. Gjøsteen

The mechanics of the Norwegian electoral system means that we must en-
crypt each option separately in order to generate return codes for each option
separately. If every ballot consisted of up to 100 ElGamal ciphertexts, mixing
would be prohibitively expensive. Therefore, Scytl uses a clever encoding of op-
tions [18,20] to allow the protocol to compress ciphertexts before mixing and
then recover the complete ballot after decryption. However, this encoding forces
us to do a more careful security analysis of the return code computation.

The main advantage of our contribution is that generating return codes is
cheap, amounting to just a few exponentations. At the same time, mixing is
reasonably fast. Since the protocol requires very few players to achieve reasonable
security, we have a protocol that is deployable in practice. Indeed, the protocol
has already been used for several smaller elections, and will be used in municipal
elections August–September 2011.

Overview of the paper. Due to space restrictions, this paper can only present a
simplified version of the cryptographic voting protocol used in the 2011 elections.
However, the simplified version and its analysis already contains most of the ideas
and concepts used in the analysis of the full protocol, and will give the reader a
clear idea of how the full protocol works.

The cryptographic protocol is essentially based on ElGamal encryptions.
Sect. 2 describes the group structure used for ElGamal and the special proper-
ties we require of it to be able to compress many ciphertexts into one, and still
recover complete ballots from the decryption. It then defines and discusses a con-
jecturally hard problem on this group structure, a problem that is similar to De-
cision Diffie-Hellman and required for the security of the system.

Sect. 3 defines a cryptosystem with corresponding security notions, an in-
stantiation of this cryptosystem, and relates the security of this instantiation to
the conjecturally hard problem discussed in Sect. 2. This cryptosystem encap-
sulates the essential cryptographic operations in the voting protocol. We also
briefly discuss the differences between the cryptosystem described here and the
corresponding cryptosystem used in the full protocol.

Sect. 4 then shows how we build the cryptographic voting protocol on top of
the cryptosystem defined in Sect. 3, and how the security of the voting proto-
col essentially follows from the security of the cryptosystem. While the voting
protocol described is very close to the full voting protocol, it does not achieve
as strong security as the full protocol. However, the analysis still shows many of
the ideas and techniques used in the analysis of the full protocol.

2 The Underlying Group Structure

Underlying the entire voting protocol is a group structure with certain very
specific properties, needed to be able to compress ElGamal ciphertext. The basic
idea is that from the product of not too many small primes computed modulo a
large prime, the small primes can still be recovered efficiently by trial division.
These small primes then lead to a problem similar to Decision Diffie-Hellman.

The Norwegian Internet Voting Protocol 5

The Group Structure. Let q be a prime such that p = 2q + 1 is also a prime.
Then the quadratic residues of the finite field with p elements is a finite cyclic
group G of prime order q. Let g be a generator.

Let �1, �2, . . . , �L be the group elements corresponding to the L smallest primes
that are quadratic residues modulo p. Let O = {1, �1, �2, . . . , �L}.

Factoring. Factoring products of small primes is efficient. Suppose that all of
these primes are smaller than k

√
p for some integer 0 < k. Then if we select

k elements from O and multiply them, then we can efficiently recover the k
elements from the product, up to order. If we use the obvious ordering on the
group elements, we get a map from the set of all such products to Ok, and this
map can be extended to a map φ : G→ Gk by taking any other group element
x to the k-tuple (1, . . . , 1, x).

A Related Problem. We are interested in a problem related to the prime p and the
elements �1, �2, . . . , �L. We begin our discussion with the usual Decision Diffie-
Hellman (DDH) problem, which can be formulated as follows:

Decision Diffie-Hellman. Given (g1, g2) ∈ G×G (where at least g2 is sampled
at random), decide if (x1, x2) ∈ G × G was sampled uniformly from the set
{(gs1, gs2) | 0 ≤ s < q} or uniformly from G×G.

It is well-known (e.g. [9,10]) that this is equivalent to the following problem:

Alternative DDH. Given (g1, . . . , gL) ∈ GL (where at least g2, . . . , gL are
sampled at random), decide if the tuple (x1, . . . , xL) ∈ GL was sampled uni-
formly from the set {(gs1, . . . , gsL) | 0 ≤ s < q or uniformly from GL.

However, suppose the subgroup is generated by small primes instead of ran-
dom group elements. We get the following problem, which we call the Subgroup
Generated by Small Primes (SGSP) problem:

Subgroup Generated by Small Primes. Let the prime p be chosen at ran-
dom from an appropriate range, and let the generator g be chosen at random.
Determine the group elements �1, �2, . . . , �L as above. The problem is to decide
if (x0, x1, . . . , xL) ∈ Gn was sampled uniformly from the set {(gs, �s1, . . . , �sL) |
0 ≤ s < q} or uniformly from GL+1.

While this problem is very similar to Decision Diffie-Hellman, and indeed cannot
be hard unless Decision Diffie-Hellman is hard, it seems unlikely that its hardness
follows from hardness of Decision Diffie-Hellman.

It is generally believed that the best way to solve the Decision Diffie-Hellman
is to compute one of the corresponding discrete logarithms. It is known [15] that
solving the static Diffie-Hellman problem with a fairly large number of oracle
queries is easier than solving the discrete logarithm problem.

For fairly large L, a static Diffie-Hellman solver could be applied to decide
the above problem. This would be faster than the fastest known solver for the
Decision Diffie-Hellman problem in the same group. However, for our application,
L will always be small, hence the static Diffie-Hellman solver can not be directly

6 K. Gjøsteen

applied. A hybrid approach could perhaps be deployed, but for small L such
an approach would not be significantly faster than simply computing a discrete
logarithm.

Remark 1. Note that it will probably be possible to choose the prime together
with a relation among the small primes. Given such a relation, the decision
problem above will be easy, since the relation will hold for prime powers as well.
It is therefore important for our purposes that the prime p is chosen verifiably
at random. There are straight-forward ways to do this.

Further Analysis. While the problem discussed above is sufficient for our pur-
poses, it is not necessary. A weaker, sufficient condition would be if, given a
permutation of a subset of {�s1, . . . , �sL} and gs for some random s, it was hard
to deduce any information about which primes were involved and what the per-
mutation was.

We study the case when there are only two elements, say �0 and �1, and the
subset contains one of them. Let A be an algorithm that takes as input five
group elements and outputs 0 or 1. Define

π00 = Pr[A(�0, �1, g, g
s, �s0) = 0],

π11 = Pr[A(�0, �1, g, g
s, �s1) = 1], and

πi,rnd = Pr[A(�0, �1, g, g
s, gt) = i], i ∈ {0, 1},

where s and t are sampled uniformly at random from {0, 1, . . . , q − 1}. Note
that π0,rnd = 1 − π1,rnd, since the input distribution to A is identical for both
probabilities.

We may define the advantage ofA as |π00+π11−1|. Observe that if |π00−π0,rnd|
or |π11 − π1,rnd| are large, we have a trivial solver for Decision Diffie-Hellman
with the generator fixed to either �0 or �1.

We may assume that π00 + π11 − 1 = 2ε > 0. Then either π00 ≥ 1/2 + ε or
π11 ≥ 1/2+ε, so assume the former. Furthermore, let π00−π0,rnd = μ. If |μ| ≥ ε,
we have an adversary against Decision Diffie-Hellman with the generator fixed
to �0, so assume |μ| < ε. Then

π11 − π1,rnd = 1 + 2ε− π00 − (1− π0,rnd) = 2ε− μ ≥ ε,

which means that we must have an adversary with advantage at least ε against
Decision Diffie-Hellman with the generator fixed to either �0 or �1.

The same arguments applies to an algorithm that can recognize one out of
multiple elements. It must lead to a successful adversary against Decision Diffie-
Hellman with the generator fixed to one of the elements.

Unfortunately, the above argument breaks down if the algorithm is allowed to
see multiple elements raised to the same power, that is, if given {�si | i ∈ I} for
some small index set I, the algorithm can decide what I is. It is not unlikely that
a careful analysis could reduce this problem to our alternative DDH problem (for
a smaller number of primes), but such a result is of questionable value.

The Norwegian Internet Voting Protocol 7

3 The Cryptosystem

In order to simplify the analysis of the Norwegian internet voting protocol, we
isolate the most essential cryptographic operations into a cryptosystem that can
be considered in isolation. We can then later use the security properties of the
cryptosystem to reason about the voting protocol’s security.

We briefly summarize the relevant cryptographic operations.
Before an election can be run, keys must be generated and the per-voter

option–return code correspondence must be set up.
During ballot submission, the voter V ’s computer P encrypts the voters’ ballot

into a ciphertext that is tied to the voter’s identity. The ballot box B transforms
this ciphertext into a new ciphertext that contains pre-codes, a half-way step
between options and return codes. The return code generator R decrypts this
ciphertext in order to get the pre-codes, which it will turn into human-readable
return codes.

During counting, the ballot box extracts “naked” ciphertexts that cannot be
tied to individual voters. The decryptor D decrypts the naked ciphertexts and
convinces the auditor A that the decryptions are correct.

3.1 Preliminaries

Let I be a set of identities, M a set of messages and O ⊆ M a set of options,
one of which is the null option denoted by 1O. A ballot is a k-tuple of options.
We denote options by v and a ballot (v1, v2, . . . , vk) by v.

Let C be a set of pre-codes, one of which is the null pre-code denoted by
1C . We shall have a set S of pre-code maps from M to C such that for every
s ∈ S, s(1O) = 1C . We also need a set of commitments to pre-code maps, one
commitment for each map.

We extend pre-code maps to k-tuples of messages m = (m1,m2, . . . ,mk) as
s(m) = (s(m1), . . . , s(mk)) ∈ Ck.

We also require a total order ≺ on the set of options, and a canonical ordering
map on ballots ω : Ok → Ok such that for any ballot v, if ω(v) = (v1, v2, . . . , vk),
then for any 1 ≤ i ≤ j ≤ k, vi ≺ vj . This map is extended in some way to a map
ω : Mk →Mk.

3.2 Definition

Our cryptosystem consists of six algorithms and one protocol:

– A key generation algorithm K that outputs a public key ek , a decryption
key dk1, a transformation key dk2 and a code decryption key dk3.

– A pre-code map generation algorithm S that on input of a public key ek and
an identity V outputs a pre-code map s and a commitment γ to that map.

– An encryption algorithm E that on input of an encryption key ek , an identity
V ∈ I and a message sequence m ∈Mk outputs a ciphertext c.

8 K. Gjøsteen

– A deterministic extraction algorithm X that on input of a ciphertext c out-
puts a naked ciphertext c̃.

– A transformation algorithm T that on input of a transformation key dk2,
an identity V ∈ I, a pre-code map s and a ciphertext c outputs a pre-code
ciphertext č or the special symbol ⊥.

– A deterministic pre-code decryption algorithm DR that on input of a pre-
code decryption key dk3, an identity V ∈ I, a pre-code map commitment γ,
a ciphertext c and a pre-code ciphertext č outputs a sequence of pre-codes
ρ ∈ Ck.

– A decryption protocol ΠDP between a prover and a verifier. The common
input is a public key ek and a sequence of naked ciphertexts c̃1, . . . , c̃n. The
prover’s private input is a decryption key dk1. The prover and the verifier
output either ⊥ or a sequence of messages m1, . . . ,mn.

Such a cryptosystem cannot be useful unless it guarantees correct decryption
of ciphertexts and transformed ciphertexts. We capture this with the following
completeness requirements:

C1. For any sequence of messages, encrypting, extracting and then running the
decryption protocol should faithfully reproduce the messages, up to the ac-
tion of the order map.

For any message and identity sequencesm1,m2, . . . ,mn and V1, V2, . . . , Vn,
if the following actions happen:

(ek , dk1, dk2, dk3) ← K; for i from 1 to n: ci ← E(ek , Vi,mi), c̃i ←
X (ci); the protocol ΠDP is run with ek and (c̃1, . . . , c̃n) as public
input and dk1 as the prover’s private input.

Then the prover and verifier in the protocol both output the same se-
quence of messages, and that sequence is a permutation of the sequence
ω(m1), . . . , ω(mn).

C2. Transformation of a ciphertext should apply the given pre-code map to the
content of the ciphertext.

For any m ∈Mk and any V ∈ I, if the following actions happen:

(ek , dk1, dk2, dk3) ← K; (s, γ) ← S(ek , V); c ← E(ek , V,m); č ←
T (dk2, V, s, c); ρ← DR(dk3, V, γ, c, č).

Then č �= ⊥ and ρ = s(m).

3.3 Security Requirements

We define a set of fairly natural notions of security for the cryptosystem, relating
to privacy and integrity.

D-Privacy. Naked ciphertexts should not be correlatable to identities.

For any V ∈ I and m ∈Mk, if the following actions happen:

(ek , dk1, dk2, dk3)← K; c← E(ek , V,m); c̃← X (c).
Then the distribution of c̃ should be independent of V .

The Norwegian Internet Voting Protocol 9

B-Privacy. An adversary that knows the transformation key should not be able
to say anything about the content of any ciphertexts he sees. We play the
following game between a simulator and an adversary, and the probability
that the adversary wins should be close to 1/2.

A simulator samples b ← {0, 1} and computes (ek , dk1, dk2, dk3) ← K.
The simulator also chooses a sequence of random messagesm1

1,m
1
2, . . . ,m

1
n.

The adversary gets ek and dk2, and sends a sequence of challenge mes-
sages m0

1,m
0
2, . . . ,m

0
n to the simulator, one by one, along with identities

V1, V2, . . . , Vn.
When the simulator gets (m0

i , Vi), 1 ≤ i ≤ n, it computes ci ←
E(ek , Vi,m

b
i) and sends ci to the adversary.

Finally, the adversary outputs b′ ∈ {0, 1} and wins if b = b′.
R-Privacy. An adversary that controls the pre-code decryption key and sees

many transformed encryptions of valid ballots from Ok should not be able to
say anything non-trivial about the content of those encryptions. We play the
following game between a simulator and an adversary, and the probability
that the adversary wins should be close to 1/2.

A simulator samples b← {0, 1}, a random permutation π1 on O and sets
π0 to be the identity map on O. It computes (ek , dk1, dk2, dk3) ← K. The
adversary gets ek and dk3, and chooses a challenge identity V . The simulator
computes (s, γ)← S(ek , V) and sends γ to the adversary.
The adversary then submits a sequence of ballots v1,v2, . . . ,vn from Ok, one
by one. The simulator computes ci ← E(ek , V, πb(vi)), č ← (T (dk2, V, s, ci)
and sends (ci, či) to the adversary.
Finally, the adversary outputs b′ ∈ {0, 1} and wins if b = b′.

A-Privacy. An honest-but-curious adversary that runs the verifier part of the
decryption protocol should not be able to correlate ciphertexts with decryp-
tions. We play the following game between a simulator and an adversary,
and the probability that the adversary wins should be close to 1/2.

A simulator samples b ← {0, 1} and computes (ek , dk1, dk2, dk3) ← K.
The adversary gets ek , then chooses a sequence of identities V1, . . . , Vn and
messages m1, . . . ,mn.

The simulator sets π0 to be the identity map on {1, 2, . . . , n}, and samples
a random permutation π1 on {1, 2, . . . , n}. Then the simulator computes
ci ← E(ek , Vi,mπb(i)), c̃i ← X (ci) for i = 1, 2, . . . , n, sends c1, . . . , cn to the
adversary and runs the prover part of the protocol ΠDP with appropriate
input against the adversary’s verifier.
Finally, the adversary outputs b′ ∈ {0, 1} and wins if b = b′.

P -Integrity. An adversary that knows the public key ek should not be able to
create an identity, a ballot and a ciphertext such that the transformed ci-
phertext decryption is consistent with the ballot, but the decryption of the
ciphertext is inconsistent with the ballot. We play the following game be-
tween a simulator and an adversary, and the probability that the adversary
wins should be close to 0.

A simulator computes (ek , dk1, dk2, dk3)← K. The adversary gets ek , then
produces a tuple (V,v, c). The simulator computes (s, γ) ← S(ek , V), ρ ←

10 K. Gjøsteen

DR(dk3, V, γ, c, č), c̃← X (c) and runs both parts of the protocol ΠDP on the
public input c̃ and appropriate private input to get the decryption m.
The adversary wins if the simulator’s computation completes without error
and s(v) = ρ, while ω(v) �= ω(m).

Remark 2. The cryptosystem is a convenient abstraction of one part of the vot-
ing protocol. Sect. 4 shows that security of the voting protocol follows from the
above security properties and other security measures in the protocol.

Remark 3. Recall that we only have space for proving a weak notion of security
for the voting system. The security notions B-Privacy,A-Privacy and P -Integrity
have therefore been weakened to simplify the presentation. The full security
analysis also requires a form of plaintext awareness for the encryption and a
notion of D-Integrity, which are not discussed here.

3.4 Instantiation

We shall now describe an instantiation of the above cryptosystem, which is a
simplified version of the instantiation that will be deployed in the Norwegian
trials. It will be based on the group structure described in Sect. 2.

The set of group elements of G will be both the message space M and the set
of pre-codes C. We interpret O as the set of options, and 1 as the null option
and null code.

The set of pre-code maps S is the set of automorphisms on G, which corre-
sponds to the set of exponentiation maps {x �→ xs | s ∈ {1, 2, . . . , q − 1}}. We
commit to a pre-code map s by computing s(g) ∈ G.

We define the map ω as

ω(m) = φ(m1m2 · · ·mk).

– The key generation algorithm K samples a1 and a2 uniformly at random
from {0, 1, . . . , q− 1}, then computes a3 = a1+a2 mod q, y1 = ga1 , y2 = gy2

and y3 = gy3 . The public key is ek = (y1, y2, y3). The decryption key is
dk1 = a1, the transformation key is dk2 = a2 and the code decryption key
is dk3 = a3.

– The pre-code map generation algorithm S(ek , V) samples s uniformly from
the set {1, 2, . . . , q−1}. It computes γ = gs and outputs the map determined
by s and the commitment γ.

– The encryption algorithm E(ek , V,v) samples t1, t2, . . . , tk uniformly at ran-
dom from {0, 1, 2, . . . , q − 1}, then computes (xi, wi) = (gti , yti1 vi) for i =
1, 2, . . . , k. The ciphertext is c = ((x1, w1), (x2, w2), . . . , (xk, wk)).

– The extraction algorithm X (c), c = ((x1, w1), . . . , (xk, wk)), computes x̃ =
x1x2 · · ·xk and w̃ = w1w2 · · ·wk, then outputs the naked ciphertext c̃ =
(x̃, w̃).

– The transformation algorithm T (dk2, V, s, c), c = ((x1, w1), . . . , (xk, wk)),
computes (x̌i, w̌i) = (xs

i , (wix
a2

i)s) for i = 1, 2, . . . , k, and outputs the pre-
code ciphertext č = ((x̌1, w̌1), . . . , (x̌k, w̌k)).

The Norwegian Internet Voting Protocol 11

– The pre-code decryption algorithm DR(dk3, V, γ, c, č), with č = ((x̌1, w̌1), . . . ,
(x̌k, w̌k)), computes ρi = w̌ix̌

−dk3

i for i = 1, 2, . . . , k and outputs the precodes
ρ = (ρ1, . . . , ρk).

– The simplified decryption protocol is a trivial protocol. The prover gets as in-
put a1 and c̃1, c̃2, . . . , c̃n, where c̃i = (x̃i, w̃i). It selects a random permutation
π on the set {1, 2, . . . , n} and computes m̃π(i) = w̃ix̃

a1

i , which it shares with
the verifier. They then separately compute mj = φ(m̃j) for i = 1, 2, . . . , n
and output the result.

The first completeness requirement C1 is satisfied, because ElGamal encryptions
are homomorphic and the map φ recovers a proper representation of the ballot
from the product. The second completeness requirement C2 is again satisfied
because ElGamal is homomorphic. For an encryption of m and a pre-code map
s, we get that x̌ = gts and

w̌ = wsxa2 = gtsa1msgtsa2 = gts(a1+a2)ms) = gtsa3ms = yts3 ms.

We argue briefly for security, under the assumption that the problem described
in Sect. 2 is hard, which also implies that Decision Diffie-Hellman is hard.

D-Privacy. Since the voter identity is not used to create the ciphertext, this
holds trivially. (This will essentially be true for the full protocol too.)

B-Privacy. The encryption algorithm is essentially parallel ElGamal encryp-
tion. Since ElGamal is secure if Decision Diffie-Hellman is hard, we have
B-Privacy.

R-Privacy. For any one voter, the adversary cannot decide if the pre-code ci-
phertexts contain vs for the various options v ∈ O, or values ts chosen at
random, one for each option. It follows that the adversary cannot decide if
the options are permuted or not.
This holds as long as the SGSP problem described in Sect. 2 is hard. The
proof is fairly straight-forward, but somewhat technical, so we omit it.

A-Privacy. The naked ciphertexts that the honest-but-curious adversary gets
are just ElGamal encryptions of the ballots. Since Decision Diffie-Hellman
is hard, ElGamal will be secure and the adversary cannot distinguish en-
cryptions of the real ballots from encryptions of random nonsense. It then
follows that the adversary cannot decide if the ballots are permuted before
encryption or not.

P -Integrity. Since the transformation algorithm essentially applies an auto-
morphism to the content of the ciphertext, P -Integrity follows trivially.

Remark 4. The full cryptosystem is an extension of this system. The encryp-
tion algorithm adds a proof of knowledge of decryption to ElGamal ciphertexts
that also ties the voter’s identity to the ciphertext. The transformation algo-
rithm verifies this proof, and itself includes a proof of correct computation in
the pre-code ciphertext. The pre-code decryption algorithm verifies both proofs
before decryption. The decryption protocol first runs a verifiable mix-net, then
verifiably decrypts the shuffled ciphertexts.

12 K. Gjøsteen

The proof of knowledge essentially provides a form of plaintext awareness, and
also ties the ciphertext to the voter’s identity. The proof of correct computation
reduces the opportunities a corrupt ballot box has to deviate from honest-but-
curious behaviour. The mix-net and verifiable decryption hide the relationship
between the ciphertexts and their decryptions from the verifier without allowing
the prover to cheat.

4 The Voting Protocol

The voting protocol is built on top of the cryptosystem from Sect. 3, together
with several other tools.

The players in the voting protocol are the voters, the voters’ computers, the
voters’ telephones, the electoral board and four infrastructure players: a ballot
box B, a return code generator R, a decryptor D and an auditor A.

4.1 Assumptions about the Environment

We idealize the environment in which the voting protocol is deployed. We as-
sume that each voter V has his own personal computer PV and personal phone
FV , that there are secure, identified and authenticated channels between the
voters’ computers and the ballot box, that there are secure channels between
the infrastructure players, and that there is a secure one-way channel from the
return code generator to the voters’ phones.

We shall assume the existence of an ideal PKI such that each computer can
digitally sign on behalf of its voter and that every infrastructure player can
verify such signatures. We shall also assume that the return code generator has
a signing key and that every computer has the corresponding verification key.

The only functionality we require of the telephones is the ability to receive
messages from the return code generator and show these messages to the voters.
We shall also assume that delivery of these messages are under the adversary’s
control, subject to the requirement that before the voter begins a new ballot
submission process, any pending messages to the phone should be processed and
delivered to the voter.

All of these assumptions and idealizations are reasonable, but lack of space
prevents further discussion.

4.2 Additional Cryptography

The return code generator will need a random-looking function from I×C into a
(small) set of human-readable codes CH . Therefore, we shall assume that we have
a pseudo-random function family F of function from I×C to CH , subject to the
requirement that the blank pre-code is taken to a special blank human-readable
code.

Furthermore, a collision resistant hash function is needed.

The Norwegian Internet Voting Protocol 13

4.3 Key Generation

Since our focus in this paper is not on the key generation, we shall assume that
all key generation is done by a trusted dealer. This trusted dealer does as follows:

(ek , dk1, dk2, dk3)← K; d← F ; for each voter V , (sV , γV)← S(ek , V).

The trusted dealer sends the generated keys to the players as detailed in Table 1.

Table 1. Distribution of key material to the players

Player Key material

V The set {(m, d(V, sV (m))) | m ∈ O \ {1O}}.
P The public key ek .
B The transformation key dk2 and the set {(V, sV)}.
R The pre-code decryption key dk3, the pseudo-random func-

tion d and the set {(V, γV)}.
D The decryption key dk1.
A The public key ek .

4.4 Protocol

After key generation, the protocol runs in two phases: ballot submission and
counting. During the submission phase, only the voters, their computers and
phones, the ballot box and the return code generator are active. During the
counting phase, only the infrastructure players are active.

V FVPV B R

v
(V, c, σ)

(seq , V, c, σ, č)

(seq , σ′)
σ′

ok

r
r

Fig. 2. Overview of messages sent during ballot submission

14 K. Gjøsteen

Submission Phase During the submission phase, the players do as follows (as
summarized in Fig. 2):

– The voter V will not submit multiple ballots in parallel. When he wants to
submit a ballot v, he sends the ballot to his computer. He then waits for the
computer to accept the ballot as cast and the phone to display the message
r. The voter accepts the ballot as cast if for i = 1, 2, . . . , k, if vi = 1O, then r
is the blank code, otherwise (vi, ri) is in the set he received from the trusted
dealer. If any of the above steps fail, the voter does not accept the ballot as
cast.

If the voter’s phone ever displays a message r when the voter is not
submitting a ballot, the voter will complain about a forgery.

– On input v from V , the computer PV computes c ← E(ek , V,v), computes
a signature σ on c and sends (V, c, σ) to the ballot box. It waits for σ′ from
the ballot box and verifies that σ′ is the return code generator’s signature
on a hash of V and c.

– On input r from R, the voter’s phone sends r to the voter.
– On input (V, c, σ) from PV , the ballot box temporarily blocks ballot submis-

sions by V and chooses the next sequence number seq. It then computes
č← T (dk2, V, sV , c) and sends (seq , V, c, č, σ) to the return code generator.
Then it waits for the reply (seq, σ′) from the return code generator, in which
case it verifies that σ′ is the return code generator’s signature on a hash of
V and c, records (seq, V, c) and sends σ′ to PV .

Finally, it removes the block on ballot submission by V .
– On input (seq, V, c, č, σ) from the ballot box, the return code generator blocks

any further processing of submissions from V , checks that it has not seen c
before, nor a ballot submission for V with a sequence number higher than
or equal to seq. Then it computes ρ ← DR(dk1, V, γ, c, č), and a signature
σ′ on a hash of V and c. For i = 1, 2, . . . , k, if ρi = 1C , then ri is the blank
human-readable code, otherwise ri = d(V, ρi).

The return code generator then records that it has seen c and (seq, V, c, σ),
sends (seq , σ′) to B, sends r to the voter’s phone FV , and removes the block
on processing submissions by V .

Counting Phase. During the counting phase, the players do as follows:

– The ballot box selects for each voter the ciphertext c with the highest se-
quence number and extracts the naked ciphertext by computing c̃ ← X (c).
It then sorts the resulting ciphertexts, resulting in a sequence of naked ci-
phertexts c̃1, . . . , c̃n, which is sent to D.

Finally, the ballot box sends every recorded submission to the auditor A.
– The return code generator sends a hash of everything it has seen, along with

the corresponding identities and sequence numbers to the auditor A.
– On input c̃1, . . . , c̃n from the ballot box, the decryptor runs the prover part

of the protocol ΠDP with appropriate public and private input against the
auditor’s verifier run. If the protocol run produces a sequence of plaintext
ballots, the decryptor outputs this sequence.

The Norwegian Internet Voting Protocol 15

– The auditor receives the contents of the ballot box and the return code
generator’s records. It verifies that the content of the ballot box matches
the return code generator’s records, specifically that they agree on sequence
numbers. It extracts naked ciphertexts exactly as the ballot box does, re-
sulting in a sequence of naked ciphertexts c̃1, . . . , c̃n, then runs the verifier
part of the protocol with appropriate public input against the decryptor’s
prover run. If the protocol run produces a sequence of plaintext ballots, the
auditor outputs this sequence.

4.5 Security Analysis

The simplified protocol does not achieve as strong security as the full protocol.
However, to illustrate that even such a weak protocol can achieve interesting
security properties, we prove a number of results for a somewhat weak adversary.

We shall consider a very restricted adversary model, described by the following
two disjoint cases:

A1. A subset of the voters’ computers are corrupt.
A2. Exactly one infrastructure player is honest-but-curious (he follows the pro-

tocol, but shares his knowledge with the adversary), every other player is
honest.

We make the following (weak) security claims, all under the assumption that
keys are all honestly generated:

S1. At most one ballot per voter will be counted. The number of ballots counted
will not be higher than the number of voters who submitted a ballot, at-
tempted to submit a ballot or complained about a forgery.

S2. If the voter accepts his ballot as cast, it is counted as cast except with small
probability, unless the voter later revotes or complains about a forgery.

S3. If the voter’s computer and the return code generator are both honest, the
content of the voter’s ballot remains private.

S4. If the return code generator is honest-but-curious, the adversary learns the
number of null options in each ballot submission, and if a voter submits
multiple ballots, can learn where these ballots differ.

Note that when the voter’s computer is corrupt, privacy is lost.
The claim S1 holds trivially for both adversary models.
The claim S2 holds trivially for A2. We need to consider what happens when

the voter’s computer is corrupt.
The voter does not accept the ballot as cast unless he receives the correct

human-readable return code. If the return code generator receives the wrong
pre-code, the pseudo-random function ensures that the voter gets the wrong
human-readable return code, except with small probability.

By P -Integrity of the cryptosystem, the return code generator will get the
wrong pre-code unless the corrupt computer has encrypted the intended ballot.

In other words, a voter will incorrectly accept a ballot as cast only with small
probability. Once a ballot has been accepted as cast, the formal requirements on

16 K. Gjøsteen

the cryptosystem ensures that it will be counted as cast, unless further ballots
are submitted.

Furthermore, if the computer submits a ballot on the voter’s behalf without
the voter’s knowledge, the voter will receive a human-readable return code and
complain about a forgery.

Consider the claim S3. If the ballot box is honest-but-curious, this follows
directly from B-Privacy of the cryptosystem. The honest-but-curious ballot box
will receive the encryptions of the ballots, but cannot distinguish them from
encryptions of random nonsense. It then follows that he cannot deduce anything
about the content of the ciphertexts.

The honest-but-curious decryptor sees the naked ciphertexts and knows the
decryption key. The distribution of each naked ciphertext is statistically indepen-
dent from the identity that was used to create it. That is, the naked ciphertext
depends only on the message it contains and the randomness used, nothing else.
It then follows that the naked ciphertexts are independent of the order in which
they were created.

This means that once the ciphertexts are sorted by the ballot box, the resulting
order is independent of the order in which the ciphertexts were created. Which
in turn means that there is no correlation between voter identities and naked
ciphertexts, beyond the fact that the ciphertext contains the voter’s ballot.

The honest-but-curious auditor learns the contents of the ballot box and in-
spects the decryption of the naked ciphertexts. The claim then follows directly
from A-Privacy. An adversary that runs the verifier part of the protocol and
controls the identities and the messages to be encrypted, cannot decide if the
ciphertext order has been permuted or not. This implies that when the adversary
does not control all of the messages to be encrypted, he still cannot correlate
decrypted ballots and voters.

The claim S4 follows from R-Privacy of the cryptosystem. The honest-but-
curious return code generator cannot decide if he sees encryptions of chosen op-
tions or random permutations of these chosen options. It follows that the attacker
cannot deduce anything about the content of the ciphertexts, beyond identifying
where two submitted ballots differ (in which case, the pre-codes should differ).

Note that the return code generator cannot decide if two voters submit the
same ballot, since the voters have distinct, personal pre-code maps.

5 Conclusion

We have discussed a new cryptographic problem related to the Decision Diffie-
Hellman problem. We have described a simplified version of the cryptographic
voting protocol that will be used in the Norwegian goverment’s e-voting experi-
ment in 2011 and analysed its security based on our new cryptographic problem.

While this protocol is quite efficient and practical, we stress that it is possible
to improve performance even further by using multi-ElGamal instead of ElGa-
mal. While there are some technical problems, such a change yields a significant
performance improvement without reducing security.

The Norwegian Internet Voting Protocol 17

Acknowledgements. The author would like to thank Kjell Jørgen Hole, the e-
valg 2011 people, the people at Scytl, Helger Lipmaa, Filip van Laenen, David
Wagner, Mariana Raykova and Berry Schoenmakers, as well as many others, for
useful discussions and feedback.

References

1. Cohen [Benaloh], J.D., Fischer, M.J.: A robust and verifiable cryptographically
secure election scheme (extended abstract). In: Proceedings of 26th Symposium on
Foundations of Computer Science, pp. 372–382. IEEE (1985)

2. Boneh, D., Golle, P.: Almost entirely correct mixing with applications to voting.
In: Atluri, V. (ed.) ACM Conference on Computer and Communications Security,
pp. 68–77. ACM (2002)

3. e-voting security study. CESG, United Kingdom, Issue 1.2. (July 2002)
4. Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms.

Commun. ACM 24(2), 84–88 (1981)
5. Chaum, D.: Surevote (2000), http://www.surevote.com
6. Chaum, D.: Secret-ballot receipts: True voter-verifiable elections. IEEE Security &

Privacy 2(1), 38–47 (2004)
7. Chaum, D., Ryan, P.Y.A., Schneider, S.: A Practical Voter-Verifiable Election

Scheme. In: De Capitani di Vimercati, S., Syverson, P.F., Gollmann, D. (eds.)
ESORICS 2005. LNCS, vol. 3679, pp. 118–139. Springer, Heidelberg (2005)

8. Cramer, R., Franklin, M.K., Schoenmakers, B., Yung, M.: Multi-authority Secret-
Ballot Elections with Linear Work. In: Maurer, U.M. (ed.) EUROCRYPT 1996.
LNCS, vol. 1070, pp. 72–83. Springer, Heidelberg (1996)

9. Damg̊ard, I., Dupont, K., Pedersen, M.Ø.: Unclonable Group Identification. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 555–572. Springer,
Heidelberg (2006)

10. Gjøsteen, K.: A Latency-Free Election Scheme. In: Malkin, T. (ed.) CT-RSA 2008.
LNCS, vol. 4964, pp. 425–436. Springer, Heidelberg (2008)

11. Groth, J.: A Verifiable Secret Shuffle of Homomorphic Encryptions. In: Desmedt,
Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 145–160. Springer, Heidelberg (2002)

12. Heiberg, S., Lipmaa, H., van Laenen, F.: On achieving e-vote integrity in the pres-
ence of malicious trojans. Submission to the Norwegian e-Vote 2011 tender (August
2009), http://eprint.iacr.org/2010/195

13. Heiberg, S., Lipmaa, H., van Laenen, F.: On E-Vote Integrity in the Case of Ma-
licious Voter Computers. In: Gritzalis, D., Preneel, B., Theoharidou, M. (eds.)
ESORICS 2010. LNCS, vol. 6345, pp. 373–388. Springer, Heidelberg (2010)

14. Jakobsson, M., Juels, A., Rivest, R.L.: Making mix nets robust for electronic voting
by randomized partial checking. In: Boneh, D. (ed.) USENIX Security Symposium,
pp. 339–353. USENIX (2002)

15. Joux, A., Lercier, R., Naccache, D., Thomé, E.: Oracle-Assisted Static Diffie-
Hellman Is Easier Than Discrete Logarithms. In: Parker, M.G. (ed.) Cryptography
and Coding 2009. LNCS, vol. 5921, pp. 351–367. Springer, Heidelberg (2009)

16. Juels, A., Catalano, D., Jakobsson, M.: Coercion-resistant electronic elections.
Cryptology ePrint Archive, Report 2002/165 (2002), http://eprint.iacr.org/

17. Kuty�lowski, M., Zagórski, F.: Verifiable Internet Voting Solving Secure Platform
Problem. In: Miyaji, A., Kikuchi, H., Rannenberg, K. (eds.) IWSEC 2007. LNCS,
vol. 4752, pp. 199–213. Springer, Heidelberg (2007)

http://www.surevote.com
http://eprint.iacr.org/2010/195
http://eprint.iacr.org/

18 K. Gjøsteen

18. Naccache, D., Stern, J.: A New Public-Key Cryptosystem. In: Fumy, W. (ed.)
EUROCRYPT 1997. LNCS, vol. 1233, pp. 27–36. Springer, Heidelberg (1997)

19. Andrew Neff, C.: A verifiable secret shuffle and its application to e-voting. In: ACM
Conference on Computer and Communications Security, pp. 116–125 (2001)

20. Peng, K.: A Hybrid E-Voting Scheme. In: Bao, F., Li, H., Wang, G. (eds.) ISPEC
2009. LNCS, vol. 5451, pp. 195–206. Springer, Heidelberg (2009)

21. Ryan, P.Y.A., Peacock, T.: Prêt à voter: a systems perspective. Technical Report
CS-TR No 929, School of Computing Science, Newcastle University (September
2005)

22. Sako, K., Kilian, J.: Receipt-Free Mix-Type Voting Scheme - A Practical Solution
to the Implementation of a Voting Booth. In: Guillou, L.C., Quisquater, J.-J. (eds.)
EUROCRYPT 1995. LNCS, vol. 921, pp. 393–403. Springer, Heidelberg (1995)

Transparency and Technical Measures

to Establish Trust in Norwegian Internet Voting

Oliver Spycher1,2, Melanie Volkamer3, and Reto Koenig1,2

1 Bern University of Applied Sciences, CH-2501 Biel, Switzerland
{oliver.spycher,reto.koenig}@bfh.ch

2 University of Fribourg, CH-1700 Fribourg, Switzerland
{oliver.spycher,reto.koenig}@unifr.ch

3 TU Darmstadt, CASED, Mornewegstrasse 34, D-64293 Darmstadt
melanie.volkamer@cased.de

Abstract. The short history of e-voting has shown that projects are
doomed to fail in the absence of trust among the electorate. The first
binding Norwegian Internet elections are scheduled for fall 2011. Notably,
transparency is taken as a guideline in the project. This article discusses
transparency and other measures the Norwegians apply that are suited to
establish profound trust, i.e. trust that grounds on the system’s technical
features, rather than mere assertions. We show whether at all, how and
to which degree these measures are implemented and point out room for
enhancements. We also address general challenges of projects which try
to reach a high level of transparency for others as lessons learned.

1 Introduction

Voting technology comes with many promises. While some see the potential of
saving significant time and money, others will hope to increase voter turnout
due to easy and flexible participation. Also, voters may expect mechanisms to
validate their ballot and avoid casting an invalid vote. Although many stake-
holders in voting are likely to benefit from such features in some way, voting
technology still faces much opposition. Correspondingly, only few countries in-
troduced internet voting and so far only Estonia has offered their citizens to vote
through the internet at nation-wide parliamentary elections. Critics most com-
monly express their doubts regarding the integrity of the outcome of elections,
arguing that citizens need to be able to verify the correct functioning of the
electronic procedure based on the processed data. Accordingly, mistrust towards
the Irish voting machines culminated in the cancelation of the respective project
shortly before going live. For the same reason Germany and the Netherlands
have persistently banned their voting machines from use at political elections.
Trust in voting technology that lasts can only be established when operating a
system that complies with high security standards. On the other hand, even the
perfectly secure system alone will hardly increase any trust among the public.
In order to avoid the fate of the voting machines in Germany, the Netherlands
and Ireland, we must not only ask ourselves how to make systems that are more

A. Kiayias and H. Lipmaa (Eds.): VoteID 2011, LNCS 7187, pp. 19–35, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

20 O. Spycher, M. Volkamer, and R. Koenig

secure. The focus should rather lie on the primary, superordinate question of
how to establish trust itself.

Soon we may add Norway to the list of countries offering internet voting for
governmental elections. The Norwegian government’s motivation is to increase
the availability of the voting system and to reduce costs in the long term. Binding
trials of internet voting are planned in ten municipalities for the 2011 local elec-
tions in September. Afterwards, the parliament will decide whether to continue
the project and enable remote electronic voting for federal elections in the future.
The e-voting project called E-valg is currently widely discussed and particularly
special due its open information policy. Their motivation for transparency is to
increase trust among experts but also among voters in general.

We have taken advantage of the open information policy and expose some
implemented techniques that are suited for establishing trust as per [27]. [27]
identifies appropriate measures to establish trust not only among experts but
also among a non-technical audience. These measures comprise: transparency,
implementing separation of duty, enabling verifiability, enabling vote updating,
evaluating the system according to international standards and test elections.
This set strongly grounds on the ’Guidelines on transparency of e-enabled elec-
tions’ published by the Council of Europe in [19], the discussion in [26] on ad-
vantages and disadvantages evaluation and certification versus verifiability, and
the recommendation on the information that an e-voting project should publish
in [24]. The objective of this paper is twofold: On one hand we validate the
recommended measures meant to establish trust [27], by analysing a concrete
Internet voting project. At the same time we reveal whether and to which degree
the Norwegian Internet voting project adheres to these recommendations.

After providing the necessary background on Norwegian Internet voting in
Section 2, we will revisit and briefly introduce each measure in the subsequent
sections. We summarize how these measures are addressed and expose room for
enhancements where it seems applicable.

2 The Norwegian Internet Voting Project and System

The main manufacturer of the voting system is Scytl, a company specialized in
Internet voting solutions. The Norwegian project distinguishes itself from other
electronic voting projects in many ways: for instance they put an emphasis on
verifiability, they address the untrustworthiness of home computers, publish sys-
tem specifications, security analyses, the source code and many other project
related documents. Furthermore, they are working towards an evaluation ac-
cording to the Common Criteria [1].

2.1 System Description from the Voters’ Perspective

The voters’ perspective of the system is rather simple and convenient. They au-
thenticate using their MinID1 account (two-level authentication). After placing

1 MinID is a well established service in Norway. It can be used to access more than
50 online services from various Norwegian public agencies [11].

Measures to Establish Trust in Norwegian Internet Voting 21

the right mouse clicks to select their preferred parties and candidates and cast
their vote, they receive an SMS containing personalized verification codes corre-
sponding with the vote received by the voting servers (one code representing the
selected party and one code per candidate position of the party list). If the codes
correlate with the expected codes of the voting card they previously received by
postal mail, voters may be confident that their vote has reached the servers as
intended.

2.2 System Entities

The system comprises the following key components.

1. Voter’s Computer: Downloads and runs the voting client application (Java
Applet).

2. Electoral Roll (ERoll) Service: Holds information on the electorate.

3. Authentication Service: Holds and sends voter credentials to the voter’s com-
puter (upon successful authentication by MinID). The credentials include a
private key for signing votes.

4. Vote Collector Service (VCS): Stores encrypted votes.

5. Return Code Generator (RCG): Computes the information required by the
voter to verify the correct inclusion of her vote in the ballot box. She receives
that information by SMS.

6. Key Management Service (KMS): Creates and distributes keys. It is also in
charge of establishing the private key used for decrypting the votes. The keys
form VCS are generated on KMS-VCS, the ones for RCG on KMS-RCG.

7. Cleansing Service: Discards electronic votes (e-votes) of voters that cast a
paper vote (p-vote).

8. Mix-Net (as described in [18]): Mixes and re-encrypts the encrypted votes
signs the output. The mix-net consists of four nodes that form a LAN.

9. Decryption / Counting Service: Decrypts and counts the votes.

Except for the ERoll service (developed by Ergo), they all run software developed
by Scytl.

The main task of the Electoral Board (EB) is to securely store shared of the
decryption key and to initiate the Decryption / Counting Service. There are also
auditors involved to verify the integrity of the ballot. The RCG is operated by
The Directorate for Civil Protection and Emergency Planning (DSB), which is
subordinate to The Ministry of Justice and located in Tønsberg (about 100 km
from Oslo and 700 km from Brønnøysund), the VCS (and the rest of the online
system) is operated by the Brønnøysund Registry Centre, which is subordinate
to The Ministry of Trade and Industry. The isolated components of the system
(KMS, cleansing service, mix-net and decryption service) are located in the Crisis
Support Unit, a high security facility subordinate to The Ministry of Justice and
located in Oslo, but the servers are managed by security cleared representatives
of The Ministry of Local Government and Regional Development (KRD).

22 O. Spycher, M. Volkamer, and R. Koenig

2.3 Setup

The following steps are conducted prior to the voting phase.

1. Establish Electoral Register: Eligible voters are included in the ERoll.
2. Key Generation:

(a) The KMS generates and distributes RSA key pairs for all components
to sign messages.2 Voters’ key-pairs denoted as (hvoter , svoter) are saved
in the KMS.

(b) It also generates ElGamal key pairs for VCS (hV CS, sV CS), for RCG
(hRCG, sRCG) and for EB (hEB, sEB). These are used with respect to
encrypting, decrypting and partially encrypting and decrypting votes
(voters encrypt their vote using the public key of the electoral board
hEB). The private keys must satisfy sV CS + sEB = sRGC , accordingly
the public keys hV CS · hEB = hRGC . VCS and RCG receive their keys
from the KMS through a secure channel (each of the two private keys
is generated using an individual isolated machine denoted as KMS-VCS
and KMS-RCG respectively). Each electoral board member presents one
personal smartcard to KMS-VCS to obtain sV CSi and the other personal
smartcard to KMS-RCG to obtain sRCGi . The values sV CSi and sRCGi

are chosen such that a majority of all shares suffice to compute sEB (t,n
- threshold). The KMS does not persistently save any private keys. The
containing storage media are destroyed after the setup phase.

(c) Finally, the KMS generates private symmetric keys KV CS and KRCG

and sends them to VCS and RCG through a secure channel. VCS and
RCG decrypt and save these values in the private partition of secure
hardware (HSM). Again, the values are separately generated in KMS-
VCS and KMS-RCG and the storage media destroyed after the setup
phase.

3. Establish public parameters: Election specific public values are established in
KMS, including values P (the global value associated with a party), C (the
global value associated with a candidate), and T (the global value associated
with a candidate position in his party list). These values are chosen within
the ElGamal plaintext space.

4. Establish Return Codes (KMS-VCS):
(a) For each voter, using KV CS and the voter’s social security number

(SSID), KMS-VCS computes a secret value s.
(b) For each voter and each of the values P and C, using s KMS-VCS com-

putes the partial values of the long party codes P ′ as P s and the partial
values of the long candidate codes C′ as Cs. 3 P is the global value asso-
ciated with a party, C the one associated with a candidate. The values
P ′ and C′ are sent to KMS-RCG along with information which voter
they correspond to.

2 Outgoing messages are always signed and the signature of incoming messages always
verified throughout the voting procedure, even if not explicitly stated here.

3 Note, that given P ′ (C′), P (C) can only be computed when knowing s and s cannot
be computed unless knowing KV CS .

Measures to Establish Trust in Norwegian Internet Voting 23

(c) For each voter, KMS-VCS sends RCG the value gs, where g is a publicly
known generator of the ElGamal space. RCG will need these values to
assess the correctness of VCS computations during the voting phase.

(d) For each voter, using KV CS, the VCS’ generates a list B which maps a
random identifier to each SSID. This list is passed to the RCG’ for the
next step, and to the printing service.

5. Establish Party Return Codes (KMS-RCG):

(a) For each voter, using KRCG, P
′ and the voter’s SSID, KMS-RCG com-

putes the long party codes P ′′ and the short party codes P ′′′ (return
codes to be sent by SMS).

(b) A hash of each long party code P ′′ is mapped to an encryption of its
corresponding short party code P ′′′ under key P ′′.

(c) All mapped pairs in random order per voter are sent to RCG along with
information which voter they refer to. (RCG does not learn the return
codes P ′′′, since they are encrypted.)

(d) All return codes P ′′′ are associated with the random identifier of list B
and sent to the printing service.

(e) The storage media of KMS-RCG are destroyed.

6. Establish Position Return Codes (KMS-RCG):

(a) For each voter, using KRCG, P
′ and the voter’s SSID, KMS-RCG com-

putes the long candidate codes C′′ (return codes to be sent by SMS).
(b) For each voter and each value T , usingKRCG and the voter’s SSID KMS-

RCG computes the short position codes T ′′′ (return code to be sent by
SMS). T is the global value associated with a candidate position in any
party list.

(c) A hash of each long candidate code C′′ is mapped to an encryption of
its corresponding short position code T ′′′ under key C′′.

(d) All mapped pairs are further processed like the party return codes.

7. Print Voting Cards (Printing Service):

(a) A first process of the printing service prints the return codes P ′′′ and
T ′′′ (received from KMS-RCG) onto each voter’s voting card. The voting
card is labeled with the random identifier obtained from KMS-RCG.

(b) A second process (involving a second printer) uses the list B obtained
from KMS-VCS to interpret the random identifier of the voting cards
and label them with the home address of the voters. The second process
only sees the random identifier of the voting cards. Thus, the printing
service should not be able to learn which voters the return codes are
associated with.

Note, that after the setup phase no single entity can elicit which voter a return
code corresponds with. Furthermore, no single entity can elicit which party or
candidate position a return code refers to. Possible attack scenarios require for
instance VCS colluding with RCG, information being copied from KMS-RCG
and retained prior to the destruction of storage media or the printing service
combining the information of both processes.

24 O. Spycher, M. Volkamer, and R. Koenig

2.4 Voting

The voting process contains the following steps.

1. The voter accesses the e-voting web-site and a session request is sent to the au-
thentication service. The voter redirected toMinID and prompted to enter her
MinID user name and password.Upon successful authentication on theMinID
system, the authentication service sends the voter her voting credentials if she
is enlisted in the ERoll. These include her private key sV oter for signing her en-
crypted vote, the public key of the electoral board hEB for encrypting her vote
and the values P and C that represent the competing parties and candidates,
mapped to the corresponding party and candidate names.

2. The browser displays the ballot. The voter makes her choice.
3. The voting client application computes an ElGamal encryptionEhEB (P̂), P̂ ∈

P representing the selected party, and one ElGamal encryptionEhEB (Ĉi), per
selected candidate Ĉi ∈ C. Further, it signs the encryptions using her private
key sV oter and generates one zero-knowledge proof ZKP1 per encryption to
prove that they are not deduced from an other voter’s submission. The values
generated in this step are sent to V CS.

4. VCS verifies the voter’s zero-knowledge proofs ZKP1 and the signatures
to ensure that the vote has been cast by an eligible voter. Upon successful
verification, from each encryption it computes the encryptions EhRCG(P̂

s),
and EhRCG(Ĉ

s
i), by partially encrypting with s and partially decrypting

with sV CS .
4 This is easily done knowing the secret value s associated with

the voter, knowing the ElGamal private key sV CS , exploiting the relation
sV CS + sEB = sRCG, as well as the homomorphic property of the ElGamal
crypto system. Finally, it computes two zero-knowledge proofs ZKP2 and
ZKP3 to prove the correctness of its computations. All received values, along
with the values generated in this step are sent to RCG.5

5. RCG performs the same verification steps as VCS. Additionally it uses the
values gs to verify VCS’s computations. Upon success, it uses its private
keys sRCG and KRCG to compute the long party codes P̂ ′′ and the long
candidate codes Ĉ′′

i . It computes the hash values to look up the encrypted

return codes P̂ ′′′ and T̂ ′′′ in the map established in the setup phase and uses
P̂ ′′ and Ĉ′′

i to decrypt them. If the corresponding entries are found, RCG

sends the decrypted P̂ ′′′ and all T̂ ′′′
i to the voter via SMS. It also sends a

signature of approval (voting receipt) to VCS to confirm that the vote is
accepted and the SMS has been sent. Upon reception, VCS permanently
stores the vote and forwards the voting receipt to the voter for confirmation.
RCG saves its signature of approval for the purpose of verification during
the tallying phase.

6. The voter compares the codes sent to her by SMS with the values on her
voting card.

4 VCS cannot decrypt the values since it does not know the required private key sEB.
5 The obtained encryptions allow RCG to obtain the values P̂ s and Ĉs

i . However,
RCG cannot compute s and thus learns nothing regarding the selected party and
the candidates.

Measures to Establish Trust in Norwegian Internet Voting 25

2.5 Tallying

The tallying phase contains the following steps.

1. The ERoll and data stored by VCS and RCG during the voting are signed by
the corresponding entity and imported in the cleansing service on a physical
storage media (e.g. DVD), i.e. the encrypted votes as sent by the voter, her
signature, the data stored by RCG, including its signature of approval. The
cleansing service thus verifies that the votes recorded in the databases of VCS
and RCG are valid and consistently correspond with each other. The latest
valid votes of VCS per voter are further processed. Auditors can verify that
this process is performed correctly by performing the same steps themselves
and comparing their output with the output of the cleansing service.

2. Paper mark-offs from the polling-stations reach the ERoll Service to indicate
which voters have cast a paper vote. The digitalized data from the ERoll is
imported in the cleansing service from a physical storage device. The cleans-
ing service removes e-votes by voters that cast a paper vote. The cleansing
service signs the resulting set of mere votes and transfers them to the offline
mix-net. Similarly as above, auditors can verify this process and even import
the output into the mix-net themselves on a physical storage media.

3. The first node of the mix net receives the votes from the cleansing service
as its input and each node forwards its output to the next one. After the
final node has produced its output, the mixed and re-encrypted votes along
with the signatures can be accessed by the the auditor through a designated
terminal connected to the LAN.

4. The auditor computes and sends a challenge to each mix node. Correspond-
ing with the challenge, each mix-node computes a zero-knowledge proof to
prove that it did not alter any votes at mixing. The proofs along with all
inputs and outputs of each node data are signed and stored on a DVD to
allow verification by the auditor using own equipment. If the signatures and
the proofs hold, the auditor imports the DVD in the Decryption / Counting
Service.

5. The members of EB provide their shares sEBi of the private decryption
key sEB to the Decryption / Counting Service. The Decryption / Counting
Service reconstructs sEB, decrypts the votes and generates a zero-knowledge
proof of correct decryption. After the auditor has verified the proof, the votes
are counted and the result is published.

3 Transparency

This is the key-measure for the successful application of the subsequent ones. The
more information is withheld, the less the public will appreciate the added value
gained by applying the remaining measures. As per [27] the idea behind estab-
lishing trust among IT-literates is to publish the full logical and technical system
documentation - voting protocol, components, software documents including the
source code, all involved parties at development and operation, evaluation reports

26 O. Spycher, M. Volkamer, and R. Koenig

- and relate its analysis to a security concept. Trust among the full population
will be supported by publishing a simplified system documentation that explains
and if applicable quantifies the remaining measures for trust establishment. Inde-
pendent experts who have assessed the full documentation would need to confirm
that the simplified documentation has been derived correctly. The public should
be informed as early as possible and be able to participate in an open discussion.
It should be possible to comment on the project, ask questions and request for
more information or clarification.

Transparency in the Norwegian Project. At the point of writing this article,
the project is still in its development stage, i.e. the public documentation has not
been finalized yet. Although we were able to learn much from the information on
the project site, we required further explanations from E-valg and Scytl. Both
were very active at providing us with additional detailed information through
pre-versions of documents yet to be published, shared documents and personal
discussions.

The available documentation shows high quality and is presented in a logi-
cal, accessible structure on the Web-site of the Ministry of Local Government
and Regional Development. [6] and [2] give an introduction to the project, in [16]
technical documents can be found. In [7] the security objectives of the project are
stated based on a security domain model and a threat analysis. They formulate
technology independent, high level requirements for a secure, transparent and
verifiable e-voting system. [21] contains the description and an analysis of the
voting protocol that underlies the implemented system. The described mech-
anism aims at sidestepping single points of failure regarding privacy and the
integrity of the ballot. Under [13] the requirements specification, tenders, eval-
uation and contract documents can be accessed. On the Web site one may also
find presentations and videos that document the project.

Documents describing the implemented system were not yet published when
writing this article. However pre-versions of the documentations were made avail-
able to us without any complicated NDA procedure. In the meantime the source
code [12] and system documentation including Common Criteria Security Tar-
gets have been published [15]. They explain in [4] that they publish the source
code hoping to get useful comments from the public for making improvements.
However the auditing software to verify the tallying process is not yet imple-
mented. That will actually be done through a properly open source (”free soft-
ware”) project during the summer.

Recently E-valg have published a couple of more documents in both English
and Norwegian. Thus in the short time of preparing this paper, it was hard to
get an overview and link theses different documents to each other, e.g. which
is a refinement of which document or which document has been taken as input
for other documents. However, a very valuable document is the one providing a
summary of the threat assessment [17]

There is a Web-site to explain the system in a simplified fashion [5]. According
to [27] it would be beneficial to additionally relate the explanations to a security
concept and underline how and to which degree the security requirements are met.

Measures to Establish Trust in Norwegian Internet Voting 27

There is a blog [4] where people from the public can ask questions and place
comments on the system. On the same site, the responsibles of the project are
introduced. E-valg are also active on the social network twitter [3]. In order
to address concerns from technical experts appropriately, for the future they
consider using their issue tracking tool on [12].

4 Separation of Duty

By distributing secrecy-critical duties, one can exclude the event of a single
entity being able to break secrecy, i.e. compromise the voters’ privacy or elicit
partial results prior to the tallying phase. Under separation of duty, secrecy
is only broken if a whole group of entities fail (or choose not) to follow their
respective procedures correctly.6 Since it is effective and easy to explain, [27]
captures separation of duty as a measure suited for trust establishment.

Responsibilities can be separated on various levels, i.e. organizational (en-
forcing restricted access to information within an organization), architectural
(physically and logically separating information) and evolutionary (having the
organizations in charge use their own equipment, particularly use self-developed
or independent 3rd party software). The potential to gain trust heavily re-
lies on the selection of the responsible parties, their ability to perform their
duties independently and to confirm to the public that they have done so
truthfully.

Separation of Duty in the Norwegian System. Separation of duty will
widely be implemented throughout the voting procedure of the Norwegian
system. The efforts are summarized as follows.

1. The three respective environments that run RCG, the remaining online com-
ponents (VCS, authentication service), and the isolated components (KMS,
cleansing service, decryption service) are operated by independent govern-
mental departments. Violating secrecy requires that information kept by at
least 2 of the 3 sites be shared. The fact that all departments operate at least
100 km apart from eachother, induces additional trust in their independence
(organizational and architectural separation).

2. The secret key sEB required to decrypt votes is not kept anywhere during
the vote casting phase. (It is not even explicitly computed during the setup
phase, since its creation is distributed among KMS-VCS and KMS-RCG in
the KMS.) Thus, a potentially malicious member of the electoral board EB
cannot break the secrecy of the ballot or prematurely elicit partial results
even if he gets hold of encrypted votes (e.g. through VCS, RCG, or from
malware running on voters’ computers).

6 Apart from secrecy, separation of duty can also be employed similarly in order to
circumvent the violation of a vote’s integrity. This aspect is discussed in the context
of verifiability in Section 5.

28 O. Spycher, M. Volkamer, and R. Koenig

3. The mix-net consists of four nodes. Including the mix-net service in breaking
the voter’s privacy thus involves convincing four players (each operator in
charge of a mixing node) in participating in an illegal action. Given that
the nodes are operated independently from eachother, each of their opera-
tors can strengthen public trust in privacy just by officially confirming their
independent participation.

These precautions are explicitly outlined in the system documentation and there-
fore likely to have a positive influence at creating trust among the electorate.
We believe that their influence will additionally be strengthened by publicly
identifying the responsible of each duty, explaining to which degree they are
independent (organizational, architectural, evolutionary), and having them con-
firm to the public that they have acted truthfully.

The following points summarize potential for further enhancements.

1. Key Generation: The key-generation service creates secret keys for all system
players. In particular, all information needed to compute the private key sEB

used at the decryption of votes is established at KRD. Unfortunately it is
inherently difficult for independent auditors to verify that the information is
not persistently stored, i.e. that it is not copied before the destruction of the
storage media. Having the system players independently compute their own
keys can increase trust. Such an enhancement grounds on the mechanism
introduced in [23]. Nevertheless, we point out that the secrecy critical keys
for VCS and RCG are generated on independent machines of KMS (KMS-
VCS and KMS-RCG).

2. VCS / RCG: Since sEB is shared among the members of EB, it is un-
likely that any of them can assist any other component at breaking secrecy.
However, sEB is also shared among VCS and RCG, due to the relation
sV CS + sEB = sRGC . Thus, if one of the two players reveals its private key
to the other, the latter learns all the information it takes to prematurely de-
crypt votes and find out who voted how, even without the assistance of KMS.
Just as with sEB, trust can be gained by establishing and sharing the keys
sV CS and sRCG among multiple entities within the respective organization.
Clearly this would yield additional complexity and costs.

3. Mix-Net: Separating the duty of mixing votes among four mixing nodes
holds much potential of increasing the public’s confidence. However, the
documentation suggests that each node is kept in the same physical envi-
ronment (KRD). To build trust, it would be beneficial to outline how the
independence of the node is enforced, i.e. whether they are meant to be inde-
pendently maintained, supervised or operated (organizational) and whether
they should run independent software (evolutionary). We point out that the
E-valg project management and Scytl are in favour of including more inde-
pendent nodes for mixing at some point.

4. Malicious software running on the voter’s computer, potentially even the
voting client application downloaded from the authentication service itself,
could forward the voting choices entered by the voter to a third party in

Measures to Establish Trust in Norwegian Internet Voting 29

plain-text. E-valg have studied the option of having voters enter person-
alized codes as their voting choices, i.e. not only have them use codes for
verification, but also use codes for expressing their will. However, such an
approach has been conciously outruled, due to the inherent loss of usability.

5 Verifiability

In verifiable voting systems voters can verify that their vote is cast as intended
and stored as cast (individual verifiability [22,20]) by accessing the relevant data
collected by the voting servers. They can even verify that all collected votes
were cast by eligible voters and that all these votes are correctly counted, i.e.
one per voter (eligibility and universal verifiability [22,20]).7 If all processed data
can be verified as correct, it becomes obsolete to trust in any system players at
preserving the integrity of the vote. Verifiability has been identified as a measure
for trust establishment in [27].

Verifiability in the Norwegian System. The SMS received upon casting a
vote distinguishes the Norwegian e-voting system from others. It confirms to
the voter that her vote has reached VCS as intended. Note, that employing an
independent channel for the purpose of verifiability, the event of a corrupted
computer is addressed, who potentially may display misleading information to
the user (trusted platform problem). In this respect, Evalg do not only comply
with point 16 of the Council of Europe in [19], they also exclude the need to
trust one’s own platform with regard to verification.

On the other hand, the solution comes with a price. Since the voter has no
possibility of accessing any public information from the ballot-box, she will inher-
ently need to trust system players regarding the storage of her vote (individual
verifiability). Accordingly, she has no means of verifying herself that the tally
includes all and none but authorized votes (universal and eligibility verifiabil-
ity).8 Separation of duty thus comes in to play again, this time with respect to
verifiability. On the positive side, some separation of duty is actually in place.

5.1 Individual Verifiability

Due to the return codes sent to her by SMS, the voter is able to verify that her
first vote has been cast as intended and reached the VCS. She can not verify
that VCS actually stores her vote. Nevertheless, this is mitigated by the fact
RCG is supposed to store its signature of approval (voting receipt) as pointed
out in Section 3. If only one of both refuses its duty, the auditors will observe
the inconsistency during the first step of the tallying phase and include that

7 Note that in internet voting systems one must weaken the notion of eligibility ver-
ifiability. In this article therm captures the ability to verify that all collected votes
have been cast using the credentials of eligible voters.

8 Not offering a public bulletin board is an intentional measure, aiming at circumvent-
ing vote buying by individuals from the public.

30 O. Spycher, M. Volkamer, and R. Koenig

finding in the report addressed to the authorities of their municipality. Just as
in the traditional polling-station elections, the municipality will use the report
to decide whether the inconsistency is acceptable or whether they need to fail
the election.9

When casting subsequent votes, voters have to bring forward some more trust:
If voters cast a subsequent vote that contains some repeated choices, the com-
puter can cast a different value for these choices and inform RCG which ones
these are. RCG then re-sends the codes as expected by the voter. A similar at-
tack can be performed by a computer that colludes with the device receiving the
SMS.

Thus, voters are reassured that their vote is stored as cast when they trust
either RCG along with one of the two user devices, or VCS along with the
computer. Further, they need to be given at least one report from a trusted
auditor that states no inconsistencies.

In the meantime the aim is to enhance the system and have RCG store the
votes as well and have a vote counted if at least one out VCS and RCG holds
it along with a corresponding voting receipt issued by the other party. Thus, if
the voter trusts in the independence of VCS and RCG despite running software
from the same vendor, and if she believes in the trustworthiness of at least one
of both environments of operation, she can be confident that her vote reaches
the tallying stage (despite inconsistencies detected by an auditor). Further, it
has been discussed whether to have VCS publish the voting receipts received
from RCG. Thus after verifying that the receipt is published, even voters who
trust neither VCS nor RCG only need to confide in at least one honest auditor
reporting voting receipts that do not correspond with any vote in VCS or RCG.
Counterarguments to this approach include usability concerns (how do voters
verify that the receipt is published) and the fact that this would yield vote
buying by individuals from the public more feasible.

5.2 Universal and Eligibility Verifiability

Universal and eligibility verifiability are not granted to the voter. Nevertheless,
the system foresees the auditors to perform verification tasks. In that sense,
the voter delegates verification. Clearly, the more trustworthy and the more
independent the voter believes an auditor to be from the rest of the system,
the more will she trust in the integrity of the final tally. For the sake of public
trust, we encourage to employ multiple independent auditors (in a strong sense
of separation of duty, i.e. operating on their own equipment and running own
software) for verifying the necessary tallying steps and have them confirm to the
public that their verification was successful.

9 We point out that the auditing service running in Brønnøysund Registry Centre
would detect the inconsistency in real-time and allow action prior to the audit. Yet,
taking this as the solution would still require full trust in Brønnøysund Registry
Centre (since VCS is also run there) and thus offers no mitigation regarding the lack
of individual verifiability in terms of stored as cast under the organizational and
architectural separation of VCS and RCG.

Measures to Establish Trust in Norwegian Internet Voting 31

As shown in Section 3, All steps of the tallying phase can be audited - the voter
merely needs to trust at least one auditor, i.e. believe that he would publicly
reveal failing verification steps. Since anybody can ask to be an auditor and use
own equipment to perform verification, the auditability of the system becomes
comparable to traditional polling station elections.

6 Further Measures to Establish Trust

In this section we discuss vote updating, standardised security evaluations and
test elections as measures to establish trust.

6.1 Vote Updating

According to [27] vote updating increases trust in the Internet voting system for
many reasons, e.g. to overcome family voting, vote buying or problems with the
PC. However, [27] also mention that it is important to ensure that the ’last’ vote
is the one that is counted.

Vote Updating in the Norwegian Project. In the Norwegian system vote
updating is possible. Voters can repeat the electronic voting procedure several
times or cast a paper vote at the polling station, where the latter overrules any
electronic vote. This holds in particular if voters do not get the success message
on their screen or if they do not get the SMS containing the expected codes.

One point that could be improved is that voters cannot verify whether their
electronic vote has been replaced by a paper vote cast by collaborating poll
workers in the polling stations. There should be some way for voters to be
informed whether their electronic vote has been overwritten by a paper vote.
Further, vote-updating protects the system from vote-buying initiated by non-
system players. However, vote-buying can still be performed by any entity who
sees the vote as encrypted by the voter’s computer or the collection of decrypted
votes.

6.2 Evaluation

Evaluating the system according to international standards increases trust in the
system according to [27]. This is meant to confirm to voters that the developed
system corresponds to the one that is documented and that experts analysed
it according to widely accepted standards including the formal voting proto-
col analysis, Common Criteria, ISO 27001, the k-resilience value [25], process
observation, and usability standards.

Evaluation in the Norwegian Project. According to the procurement[14] ’
The supplier shall in the development process create the necessary documenta-
tion for a formal review process and Common Criteria certification to EAL4+10

10 EAL means Evaluation Assurance Level; while level 1 is the lowest one and 7 requires
the most thorough evaluation.

32 O. Spycher, M. Volkamer, and R. Koenig

of all components directly related to e-voting, including counting and returning
of members. [..] The supplier shall in the development process of Election System
components not directly related to e-voting create the necessary documentation
for a Common Criteria certification to EAL2.’ It has been decided that for the
test run the availability of corresponding documents is sufficient while before us-
ing the system after the test election again, the documentation and the system
will be undertaken a Common Criteria (CC) evaluation. For average voters these
documents are meaningless. While they might know that in general people could
now evaluate, they do not know whether a single person/institute has done this.

With respect to CC documentation, the following Security Targets (ST) are
available on the Internet:

– Election Administration software according to EAL2 [8]
– Electronic counting of paper votes software according to EAL2 [9]
– Electronic Voting Software according to EAL4+ [10]

These documents seem to be pre-documents yet to be evaluated. [10] does not
base on the existing Protection Profile defining basic requirements for Internet
voting [28]. One difference is that [10] other than [28] does not include the
assumption of trustworthy computers at the voters’ side. However, whether this
is acceptable by the CC evaluators is questionable, since one might assume that
voters will generally not update their votes, which would permit manipulated
PC’s to elicit who voted how. Other CC documents like the high level system
description are also not yet available.

The data centers seem not to have a formal ISO 27001 certificate, However,
they are owned by the government and run other critical applications. It is also
planned to compute and illustrate the k-resilience value of the whole system
according to [25] in order to show more precisely than in section 4 which entities
need to be trusted regarding which security property.

A description of the protocol and its analysis exists [21]. However it would be
interesting to see an analysis of the implemented system, i.e. without assuming
ideal functionality.

Currently there is no information on how the observation of the security crit-
ical processes is organized. It is also unclear how the process is defined that
ensures that the systems in use for the election correspond to what has been
documented and announced on the Web. While we are also not aware of classi-
cal user test, the test elections (see section 6.3) can be seen as such. In addition,
the reason for using T was based on usability argumentations.

6.3 Test Elections

Test elections were included in the list of trust establishment measures in [27] as
it allows voters to experience the full voting process beforehand. Thus, voters’
doubts and concerns that emerge from the act of casting their vote itself can be
addressed without requiring them to simultaneously question the success of a
real election.

Measures to Establish Trust in Norwegian Internet Voting 33

Test Elections in the Norwegian Project. It is very hard to describe the
technical delta for 10 pre-pilots performed from October of last year up until mid
May of this year, and with continuous development in between. However, all 10
pre-pilots have used MinID, and two have in fact used return codes on SMS (in
the first test 78% of voters reported checking their code). The last pre-pilot in
Re (from May 13-19) used a near-complete system, where all proofs etc. from
the protocol were generated.

Using pre-versions of the software may have disadvantages. Voters might be
confused about different interfaces and the SMS having not being relevant for
the test elections while very important for the legal binding election. However,
maybe this is all clearly communicated to those who participated in test elections
but we are not aware of this as this information is only available in Norwegian.
In principal, one could also define the election in September as test with the full
system and all processes implemented.

7 Conclusion

We have described the Norwegian Internet voting system with respect to the
measures for trust establishment proposed in [27].

Transparency and the technical measures we discuss imply significant extra
costs and complexity for the project. We may conclude that E-valg make signifi-
cant extra efforts in trust establishment although a high degree of public trust is
assumed towards the central election administration. Taken from the published
information, as well as from the discussions with the people in charge, it became
obvious that being transparent is no easy task even if there is much willingness
and even if the legal premises are given. Document management and version
control becomes even more important.

Although we identified some possible enhancements to the system, we do not
claim by any means that our additional propositions need to be implemented
in order for the project to find acceptance among the Norwegian electorate; in
particular not for the elections in September. They are rather meant to expose
further possibilities that may also be found useful and relevant in the context
of Internet voting projects for future large scale deployments as well as in other
countries and as a proactive means to address concerns among the public that
may arise due to irregularities at operation in the future.

Regarding transparency, one might get the impression that E-valg concentrate
very much on the experts while this might also be the case as documents and
information for the voters are only available in Norwegian. From our understand-
ing, information regarding the remaining risks, the trust in different entities, and
the restrictions of the verifiability are hardly communicated to the public.

With this analysis, we also validated the trust established measures proposed
in [27] and demonstrated that it is possible to address all of them in one
project.

34 O. Spycher, M. Volkamer, and R. Koenig

8 Late Remarks

Since the Norwegian project is still very new, not all information is yet available
in the documentation. Also parts of the system naturally tend to change during
the initial development process. At least we would like to point out two relevant
aspects that we became aware of only at a very late stage of our research.

– RCG accesses MinID to obtain the voters’ mobile number in order to send
the SMS containing the verification codes. By indicating a wrong mobile
number, MinID alone can cast votes without the voters noticing. With regard
to individual verifiability, voters will additionally need to trust in MinID not
launching any such attacks.

– As described in this paper, the system has been designed and implemented
to send voters an SMS containing codes relating to the selected party and the
selected candidates, i.e. their position in the party list. However, the SMS’s
in the fall elections will only contain one code representing the party. Thus,
the exposition of verifiability as described in the corresponding chapter only
relates to the selected party, not the selected candidates.

References

1. Common Criteria for Information Technology Security Evaluation. Version 3.1,
Revision 3, Final (July 2009), http://www.commoncriteriaportal.org/cc/ (re-
trieved: June 07, 2011)

2. About the e-vote project @ONLINE (May 2011), http://www.regjeringen.no/

en/dep/krd/prosjekter/e-vote-2011-project.html?id=597658

3. E-valg 2011 (krd evalg2011) on twitter @ONLINE (July 2012),
http://www.regjeringen.no/pages/16539918/03SystemArchitecture-Evote.pdf

4. e-valgbloggen @ONLINE (June 2011), http://www.e-valgbloggen.no/
5. E-valglosningen @ONLINE (June 2011), http://www.regjeringen.no/nb/dep/

krd/prosjekter/e-valg-2011-prosjektet/e-valgsystemet1.html?id=597799

6. E-vote 2011-project @ONLINE (May 2011), http://www.regjeringen.no/en/dep/
krd/prosjekter/e-vote-2011-project.html?id=597658

7. e-vote 2011 security objectives @ONLINE (May 2011),
http://www.regjeringen.no/upload/KRD/Kampanjer/valgportal/e-valg/

tekniskdok/Security Objectives v2.pdf

8. Election administration software according to eal2 @ONLINE (June 2011),
http://www.regjeringen.no/pages/16539918/

SecurityTargetforElectionadministrationsoftwarev1 0.pdf

9. Electronic counting of paper votes software according to eal2 @ONLINE (June
2011), http://www.regjeringen.no/pages/16539918/
SecurityTargetfore-countingofp-votesv1 0.pdf

10. Electronic voting software according to eal4+ @ONLINE (June 2011),
http://www.regjeringen.no/pages/16539918/

SecurityTargetforElectronicVotingSoftware.pdf

11. Minid @ONLINE (June 2011), http://minid.difi.no/minid/minid.php?lang=en

12. source.evalg.stat.no @ONLINE (June 2011), https://source.evalg.stat.no

http://www.commoncriteriaportal.org/cc/
http://www.regjeringen.no/en/dep/krd/prosjekter/e-vote-2011-project.html?id=597658
http://www.regjeringen.no/en/dep/krd/prosjekter/e-vote-2011-project.html?id=597658
http://www.regjeringen.no/pages/16539918/03SystemArchitecture-Evote.pdf
http://www.e-valgbloggen.no/
http://www.regjeringen.no/nb/dep/krd/prosjekter/e-valg-2011-prosjektet/e-valgsystemet1.html?id=597799
http://www.regjeringen.no/nb/dep/krd/prosjekter/e-valg-2011-prosjektet/e-valgsystemet1.html?id=597799
http://www.regjeringen.no/en/dep/krd/prosjekter/e-vote-2011-project.html?id=597658
http://www.regjeringen.no/en/dep/krd/prosjekter/e-vote-2011-project.html?id=597658
http://www.regjeringen.no/upload/KRD/Kampanjer/valgportal/e-valg/tekniskdok/Security_Objectives_v2.pdf
http://www.regjeringen.no/upload/KRD/Kampanjer/valgportal/e-valg/tekniskdok/Security_Objectives_v2.pdf
http://www.regjeringen.no/pages/16539918/SecurityTargetforElectionadministrationsoftwarev1_0.pdf
http://www.regjeringen.no/pages/16539918/SecurityTargetforElectionadministrationsoftwarev1_0.pdf
http://www.regjeringen.no/pages/16539918/SecurityTargetfore-countingofp-votesv1_0.pdf
http://www.regjeringen.no/pages/16539918/SecurityTargetfore-countingofp-votesv1_0.pdf
http://www.regjeringen.no/pages/16539918/SecurityTargetforElectronicVotingSoftware.pdf
http://www.regjeringen.no/pages/16539918/SecurityTargetforElectronicVotingSoftware.pdf
http://minid.difi.no/minid/minid.php?lang=en
https://source.evalg.stat.no

Measures to Establish Trust in Norwegian Internet Voting 35

13. Specification, tenders, evaluation and contract @ONLINE (May 2011),
http://www.regjeringen.no/upload/KRD/Kampanjer/valgportal/e-valg/

tekniskdok/Security Objectives v2.pdf

14. System requirements specification @ONLINE (May 2011),
http://www.regjeringen.no/upload/KRD/Kampanjer/valgportal/e-valg/

Anskaffelse/System Requirements Specification1.pdf

15. Systemarkitektur @ONLINE (June 2011), http://www.regjeringen.no/nb/dep/
krd/prosjekter/e-valg-2011-prosjektet/kildekode/

dokument.html?id=645240

16. Technical documents @ONLINE (May 2011),http://www.regjeringen.no/en/dep/
krd/prosjekter/e-vote-2011-project/technical-documents.html?id=612104

17. Threat assessment summary e-voting, admin, and pvoting toe’s @ONLINE (May
2011), http://www.regjeringen.no/pages/16539918/
ThreatAssessmentSummary.pdf

18. Allepuz, J.P., Castelló, S.G.: Universally verifiable efficient re-encryption mixnet.
In: Electronic Voting, pp. 241–254 (2010)

19. Directorate general of democracy and politcal affairs: Guidelines on transparency
of e-enabled elections. GGIS (2010) 5 E, Council of Europe (2010)

20. Gharadaghy, R., Volkamer, M.: Verifiability in electronic voting - explanations for
non security expert. In: Krimmer, R., Grimm, R. (eds.) Electronic Voting 2010 - 4th
International Conference. LNI, vol. 167, pp. 151–162. Gesellschaft für Informatik,
Bonn (2010)

21. Gjøsteen, K.: Analysis of an internet voting protocol. Cryptology ePrint Archive,
Report 2010/380 (2010), http://eprint.iacr.org/

22. Kremer, S., Ryan, M., Smyth, B.: Election verifiability in electronic voting proto-
cols (2010)

23. Pedersen, T.P.: A Threshold Cryptosystem without a Trusted Party. In: Davies,
D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 522–526. Springer, Heidelberg
(1991)

24. Volkamer, M.: Evaluation of Electronic Voting - Requirements and Evaluation
Procedures to Support Responsible Election Authorities. LNBIP, vol. 30. Springer
(2009)

25. Volkamer, M., Grimm, R.: Determine the Resilience of Evaluated Internet Voting
Systems. In: First International Workshop on Requirements Engineering for E-
Voting Systems, Atlanta, GA, USA, pp. 47–54. IEEE CS Digital Library (2009),
doi:10.1109/RE-VOTE.2009.2

26. Volkamer, M., Schryen, G., Langer, L., Schmidt, A., Buchmann, J.: Elektronische
Wahlen: Verifizierung vs. Zertifizierung. In: Fischer, S., Maehle, E., Reischuk, R.
(eds.) Informatik 2009: Im Focus das Leben, Beiträge der 39. Jahrestagung der
Gesellschaft für Informatik e.V. (GI). LNI, vol. 154, pp. 1827–1836. Gesellschaft
für Informatik, Bonn (2009)

27. Volkamer, M., Spycher, O., Dubuis, E.: Measures to establish trust in internet vot-
ing. In: ICEGOV. ACM International Conference Proceeding Series. ACM (2011)

28. Volkamer, M., Vogt, R.: Basissatz von Sicherheitsanforderungen an Online-
Wahlprodukte (BSI-PP-0037), common Criteria Protection Profile (2008),
http://www.bsi.de/cc/pplist/pplist.html

http://www.regjeringen.no/upload/KRD/Kampanjer/valgportal/e-valg/tekniskdok/Security_Objectives_v2.pdf
http://www.regjeringen.no/upload/KRD/Kampanjer/valgportal/e-valg/tekniskdok/Security_Objectives_v2.pdf
http://www.regjeringen.no/upload/KRD/Kampanjer/valgportal/e-valg/Anskaffelse/System_Requirements_Specification1.pdf
http://www.regjeringen.no/upload/KRD/Kampanjer/valgportal/e-valg/Anskaffelse/System_Requirements_Specification1.pdf
http://www.regjeringen.no/nb/dep/krd/prosjekter/e-valg-2011-prosjektet/kildekode/dokument.html?id=645240
http://www.regjeringen.no/nb/dep/krd/prosjekter/e-valg-2011-prosjektet/kildekode/dokument.html?id=645240
http://www.regjeringen.no/nb/dep/krd/prosjekter/e-valg-2011-prosjektet/kildekode/dokument.html?id=645240
http://www.regjeringen.no/en/dep/krd/prosjekter/e-vote-2011-project/technical-documents.html?id=612104
http://www.regjeringen.no/en/dep/krd/prosjekter/e-vote-2011-project/technical-documents.html?id=612104
http://www.regjeringen.no/pages/16539918/ThreatAssessmentSummary.pdf
http://www.regjeringen.no/pages/16539918/ThreatAssessmentSummary.pdf
http://eprint.iacr.org/
http://www.bsi.de/cc/pplist/pplist.html

Internet Voting System

with Cast as Intended Verification

Jordi Puiggaĺı Allepuz and Sandra Guasch Castelló

Scytl Secure Electronic Voting

Abstract. In remote electronic elections the voting client software is
usually in charge of encoding the voting options chosen by the voter.
Cast as intended verification methods can be used to audit this process,
so that voters do not need to trust the voting client software. In this paper
we present the revision of our initial proposal for the eValg2011 project
for an Internet voting protocol providing cast as intended verification
functionalities, and evaluate its security.

1 Introduction

In remote electronic elections, the voting client software is generally in charge
of encoding the voting options chosen by the voter before sending the encrypted
vote to a remote voting server. Most of the times, that means that voters have
to trust that the voting client is not going to change their selections before they
are encrypted. In case the voting client would do it, the probability of being
detected is very low. For this purpose, cast as intended verification methods
have been designed: voters do not need to trust the voting client software to
properly encode the selected voting options, since they can audit the process.

As stated in [1], the purpose of the eValg2011 project is to establish a secure
electronic voting solution for general, municipal and county council elections.
For this purpose, a set of Objectives of Security [2] for the eVoting system to
be implemented for the eValg2011 project was defined for the bidding phase.
Specifically, the ability of detecting potential vote manipulations by a malicious
voting client when casting a vote was required (zero trust in the voting client).

The aim of this paper is the presentation of our initial proposal for the
eValg2011 project for an Internet voting protocol providing cast as intended
verification functionalities. The current eValg2011 eVoting system is a modifica-
tion of this proposal in order to perform some cryptographic operations in the
voting server instead of in the voting client. It is not an objective of this paper
to compare both proposals but to introduce a revised version of the original
proposal. A description of the eValg2011 system currently implemented can be
found in [8].

Specifically, we are going to describe the processes of the original proposal
that provide cast as intended verifiability of the voting process and evaluate the
security of this proposal.

A. Kiayias and H. Lipmaa (Eds.): VoteID 2011, LNCS 7187, pp. 36–52, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Internet Voting System with Cast as Intended Verification 37

2 Previous Work

The verification done by a voter to check that her vote has been registered cor-
rectly in the election platform server is a critical task. This verification must be
done in such a way that the voters obtain a verification proof that unequivo-
cally prove if their voting intent has been properly recorded and, at the same
time, cannot be used latter to correlate the vote with the voter (in order to pre-
vent vote buying). Another consideration is that the proofs must be verifiable
by human means or with assisted means that do not pose any usability and
privacy issue. For instance, verification processes that require voters to perform
mathematical operations should consider the human limitations.

Several proposals for cast as intended verification in remote electronic voting
schemes have been proposed in the literature. In code voting methods, also
known as Pollsterless or pre-encrypted ballots [18], [15], [13], [5], [6], [19], [9],
[12], the voter receives in advance a voting card with voting codes and validation
codes related to the voting options eligible in the election. In order to vote, the
voter enters the codes representing her choices in the voting client, which sends
them to the voting server. The voting server then replies to the voter with
validation codes that are calculated from the received voting codes. The voter
can compare them with those assigned to the selected voting options in her
voting card, so that she can verify if the encrypted voting options received in
the voting server represent her voting intent.

There are other alternative proposals to code voting that do not require the
use of voting and validation codes for providing cast as intended verification. This
makes the election configuration easier and reduces logistic costs. For instance,
in the method proposed in [4], the voter challenges the voting application in
order to verify that the encrypted values match her selections: before the vote is
cast, the voting application commits to the generated encryption (e.g., showing
the digest value of the cipher text) and the voter can opt to challenge the voting
application to disclose the contents of the encrypted vote. If the voter requests
the verification, the random factor used to encrypt the vote is revealed by this
application, so that the voter can verify that the cipher text (according to the
commitment generated by the voting application) corresponds to the chosen
voting options. After that, the disclosed encrypted vote is dropped and a new
encryption with the same selected options is generated again with new random
values (in order to prevent vote selling practices). If the voter does not want
to verify her encrypted vote, this is sent to the voting service. Since the voting
client does not know when the voter will ask for verifying her vote, it is difficult
to cheat the voter when encrypting the voting options without being noticed.

When considering which method could be the basis of our proposal, the ap-
proach of challenging the voting client was discarded due to usability and in-
dependent verification issues: the operations for checking the proper encryption
of a vote cannot be done by human means. Since a validation mechanism pro-
vided by the voting application could be also modified by the malicious client,
the voter needs an external tool or the collaboration of a third party to verify
the correct encryption of her vote. Even the election talliers could decrypt the

38 J.P. Allepuz and S.G. Castelló

votes to be audited (at the end of the election) in order to let the voters verify
the decrypted contents match their voting intent. However, the process can be
complex and difficult to understand for an average voter.

Regarding code voting methods, the approach of comparing the received codes
after casting the vote with the validation codes present in a voting card, seems
more familiar for the voters (e.g., it is similar to looking if you have won the
lottery) and can be done without any support or tool. The drawback, compared
with the challenge method, is that the voter needs to trust that the voting cards
have been generated properly and their information is not stored anywhere.
However, security controls can be implemented to verify that voting cards are
correctly generated and there is no disclosure of information.

Furthermore, there are still some usability and accessibility issues remaining
in the code voting methods related to the voting process: these methods require
voters to enter codes representing the candidates for casting a vote, which could
lead to mistakes and is less usable than a click and select interface (which is
feasible in challenge methods).

To overcome these issues, our proposal for cast as intended verification intro-
duced a new variant of code voting that does not use codes for casting votes,
but keeps the validation codes for allowing voter verification. The novelty of this
scheme is that, instead of using voting codes, it uses a click and select scheme for
vote casting (in order to make the system more usable) combined with validation
codes for voter verifiability.

3 Proposed Solution

3.1 Design Requirements

The main challenge when designing a code voting solution that only uses valida-
tion codes, is how to combine probabilistic and deterministic encryption schemes:
votes shall be encrypted using a probabilistic encryption scheme in order to main-
tain voter privacy. However, validation codes are calculated from the encrypted
votes and their values have to be always the same (i.e., they should be deter-
ministic) in order to generate the voting cards in advance. Finally, the system
shall provide a high level of usability.

3.2 Overview of the Proposed Solution

Voters use validation codes (called return codes in our scheme) for verifying the
proper recording of their vote contents in the voting server. To this end, before
the voting phase, the voters are equipped with voting cards containing the return
codes assigned to each voting option. Voting cards are not linked to a specific
voter, so that they may be exchanged between voters or a voter can request more
than one card in case she thinks her first card may have been intercepted by an
attacker.

The generation of such voting cards is done during the election configuration
phase. Some secret keys are involved in the generation of the return codes of

Internet Voting System with Cast as Intended Verification 39

the voting cards, and these keys will be required by the voting platform for
generating the return codes from the votes cast. Therefore, during the election
configuration stage, these keys are generated, used in the return code generation
process and installed in the voting platform. It is assumed that a secure method
for protecting the keys is used.

The eVoting platform server side is composed by two main modules: the voting
server (Vote Collector Server or VCS), which contains the Ballot Box storing the
votes to be counted at the end of the election and participates in the generation
of the return codes for voter validation, and the validation server (Return Code
Generator or RCG), which generates the final values of the return codes and
sends them to the voters.

When the voting phase starts, voters connect to the voting platform, authenti-
cate themselves and select their preferences. After the voter confirms her choices,
the voting client encrypts the vote using the election public key.

The voter proceeds to the audit phase in order to verify that her vote is cast
as intended. In this phase, she is asked to introduce a special code present in
the voting card: the voting card identifier VCID. A second encryption is then
generated using this value and the RCG public key. The first encryption is the
vote which is received in the VCS, stored in the Ballot Box and counted in
the tallying process. The second encryption is used by the RCG for generating
the return codes associated to the vote contents.

In addition, the voting client generates a cryptographic proof correlating the
contents of both encryptions. This prevents a malicious voting client from gen-
erating two encryptions based on different voting options in order to cheat the
voter (e.g., the encrypted vote over which the return codes are generated con-
tains the selections made by the voter, but the encrypted vote stored in the
Ballot Box contains different selections).

Both encryptions and the proof are sent to the remote voting server VCS,
which forwards the contents to the RCG.

The RCG verifies the proof and uses its cryptographic keys to generate the
return code from the second cipher text. The return code is sent back to the voter
using a channel independent from the one used to cast the vote (e.g., SMS).

After that, the RCG notifies the VCS about the successful process sending
back a digitally signed hash of the encrypted vote (called the voting receipt).
The VCS then stores the first cipher text in the Ballot Box and forwards the
voting receipt to the voting client, which shows it to the voter. This receipt can
be used as a proof that the vote has been recorded as cast : as the VCS publishes
the voting receipts corresponding to the contents in the Ballot Box, voters can
verify that their votes are correctly stored.

The voter receives the return code and compares it with the code assigned to
the selected voting option in her voting card in order to check the correctness of
the encrypted vote.

It is assumed that multiple voting is allowed (the system supports it), so that
in case wrong return codes are generated the voter can opt to cast her vote from
another computer.

40 J.P. Allepuz and S.G. Castelló

If multiple voting is not allowed, the verification of correct encoding of the
vote could be done before the casting process: the second encryption is generated
in first place and sent to the RCG, which generates the return code and sends
it to the voter. In case the verification is successful, the voter can decide to cast
the vote (the first encryption), so that it is stored in the Ballot Box.

The ability of asking multiple times for return codes, by multiple voting or
by this second system, prevents vote selling practices based on the values of the
received return codes.

4 Detailed Cryptographic Protocol

The participants of the voting process are the voter V, the voting client C, the
voting server VCS containing the Ballot Box and the validation server RCG,
which generates the return codes to be sent to the voter.

The encryption algorithm is ElGamal [7]. During the election configuration
phase, the election cryptosystem parameters p, q, g are defined:

– The modulo p is chosen as a large safe prime, where p = 2q + 1 and q is a
prime number.

– g is a generator of Gq , a q-order subgroup of Z∗
p .

As it has been explained in the overview section, the two encryptions of the vote
are calculated under different keys: the election and the RCG public keys.

The election and RCG private keys xe and xrcg are independently selected
from Zq, and the public keys he and hrcg are calculated as he ≡ gxe mod p,
hrcg ≡ gxrcg mod p (modular operations will be obviated from now).

Symmetric keys Kvcs and Krcg for the VCS and the RCG respectively are
also generated in the configuration phase. The Kvcs key will be used to generate
the second encryption of the vote, while Krcg will be used to generate the return
code values.

The following sections describe the steps of the voting process.

4.1 Vote Preparation for Vote Casting

After the voter confirms her selections, the voting client C proceeds to encrypt
the vote using the ElGamal encryption algorithm and the election public key.

The vote is encrypted using a random exponent r in Zq as:

cprob = (v · hr
e, g

r) = (α, β) (1)

A proof of knowledge proof1 of the random exponent using the Schnorr Identifi-
cation Protocol [11] is generated for the encrypted vote in order to prevent reply
attacks based on re-using a valid vote from a voter to discern the voter intent
based on the return codes received by the attacker.

Internet Voting System with Cast as Intended Verification 41

4.2 Vote Preparation for Verification

A second deterministic encryption using a fixed exponent (in order to be able to
generate the return codes) and a cryptographic proof relating both encryptions
are generated in the voting client.

This second encryption is based on generating a cipher text using the ElGamal
encryption algorithm as a deterministic algorithm by using a fixed exponentgen-
erated from information only known by the voter and by the VCS, so that the
RCG cannot learn about the voting options selected by the voter when gener-
ating the return codes. It is generated in such a way that the resulting cipher
text is different for each voter and voting option in order to calculate suitable
values for the return codes from it. The cipher text is then re-encrypted using
the RCG public key hrcg and the ElGamal encryption algorithm with a random
exponent, so that VCS never learns about the selected voting options.

Generation of a Fixed Exponent in the Voting Client. A first fixed
exponent is generated in the voting client using information only known by the
voter (the voting card identifier VCID and the vote content):

a = H(V CID, v), where H is a pseudorandom function1.

Request of a Second Fixed Exponent to the VCS. The voter enters the
VCID code identifying her voting card into the voting client application, which
is used to request a value for a fixed exponent to the voting server VCS without
revealing it. The VCS uses its secret key Kvcs to generate that value:

C → V CS : b = H(V CID)
V CS → C : d = H(Kvcs, b),

A blind signature mechanism could be used in order prevent the VCS from
knowing the value d.

For example, the VCS could have a keypair tvcs (public), svcs (private) from
an RSA scheme. The Voting Client could then send the value b to the VCS,
blinded by a random value r: b′ = rtvcs · b. The VCS would then answer with
b′′ = b′svcs , and the Voting Client could recover the exponent d′ = bsvcs as
d′ = b′′/r.

Encryption with Fixed Exponents Generated by the Voting Client
and the VCS. The deterministic encryption of the voting options is generated
as:
1 Since a is part of the fixed exponent used to generate the deterministic encryption

of the vote, the function H might be hard to compute in order to prevent effective
brute-force attacks to disclose the voter intent. For example, H could be a Password
Based Key Derivation Function ([3], [10]), which can be defined as a pseudorandom
function slow to compute, and it is usually used to derive cryptographic keys from
non-strong passwords. The number of bits generated by the PBKDF shall be defined
in such a way that this computation is not too slow to be executed by the voting
client while maintaining the robustness of the encryption.

42 J.P. Allepuz and S.G. Castelló

cdet = (v · ha+d
e , ga+d) = (α′, β′) (2)

Generation of Proof of Equality of Plaintexts. The proof (proof2) is used
to demonstrate to the RCG that both encryptions, the one which will be stored
in the Ballot Box and the one used to generate the return codes, contain the same
plaintext (selected voting options). This way, it is ensured that the information
which is audited (the contents over which the return codes are calculated) is the
same stored in the Ballot Box.

This proof is a Non-Interactive Zero Knowledge Proof based in the Schnorr
Signature protocol [17], which is used to prove that both encryptions (α, β),
(α′, β′) contain the same plaintext (see [14] with corrections in [16]).

In order to do that, both cipher texts are divided and the voting client proves
knowledge of the equivalent encryption exponent (a+ d)/r.

(α′/α, β′/β) = (h(a+d)/r
e , g(a+d)/r) (3)

Re-encryption Using the RCG Public Key. The cipher text obtained from
the encryption of the vote with fixed exponents is re-encrypted using the El-
Gamal encryption algorithm, the RCG public key hrcg and the same random
exponent r used for the first encryption. This re-encryption prevents VCS from
being able to perform a brute force attack on the value v · ha

e . The RCG will
need to remove this re-encryption layer in order to recover α′, which is needed
to verify proof2. The value β′ is re-encrypted with a different random exponent
in order to prevent an observer to infer if the voter has chosen twice the same
voting option or not.

α′′ = α′ · hr
rcg (4)

β′′ = β′ · gr′ (5)

c′det = (v · ha+d
e · hr

rcg, g
a+d · hr′

rcg, g
r′) = (α′′, β′′, γ) (6)

4.3 Vote Casting

Both encryptions and the proofs are digitally signed using the voter credentials
and sent to the VCS.

C → V CS : Sig((α, β), (α′′, β′′, γ), proof1, proof2;Svoter)
The proof1 and the voter digital signature are verified at reception in the

VCS. In case the verification is successful, both encryptions and the proofs are
forwarded to the RCG.

V CS → RCG : Sig((α, β), (α′′, β′, γ), proof1, proof2;Svoter)

Internet Voting System with Cast as Intended Verification 43

4.4 Generation of Return Code

The RCG verifies the proof1 and the voter digital signature at reception. If the
verification is successful, it performs the following steps in order to generate the
return code from the cipher text (α′′, β′′, γ).

Decryption with RCG Private Key. The RCG uses its ElGamal private key
to decrypt the second cipher text in order to obtain the original deterministic
encryption with the fixed exponents generated in the voting client (see Eq. 2):

(α′, β′) = (α′′ · (β−xrcg), β′′ · (γ−xrcg)) = (v · ha+d
e , ga+d) (7)

Verification of Proof of Equality of Plaintexts. Once the RCG has ob-
tained the cipher text (α′, β′), it can verify that this cipher text is a re-encryption
of (α, β)using proof2 and following the steps described in [14] and [16].

Calculation of Return Code. Finally, the RCG generates the return code
value using its symmetric key as:

RC = H(α′;Krcg) (8)

4.5 Delivering Return Code and Voting Receipt

The return code is sent to the voter using an alternative channel to the one
used to cast the vote (e.g. SMS). After sending the return code to the voter,
a confirmation is sent to the VCS in order to store the encrypted vote in the
Ballot Box. This confirmation is the signed hash of the encrypted vote to be
stored in the Ballot Box (the voting receipt). Once the VCS has stored the
vote, it forwards the voting receipt to the voting client as a confirmation of the
recording of the vote. The VCS publishes the voting receipt (hash of the stored
vote) in a Bulletin Board.

RCG→ V : RC
RCG→ V CS : Sig(H(α, β);Srcg)
V CS : Publish Sig(H(α, β);Srcg)

In order to prevent some attacks hidden as transaction problems (e.g., a mali-
cious VCS claims not having received the voting receipt from the RCG, so that
the vote is not stored, but the RCG claims having sent that receipt to the VCS),
both the VCS and the RCG store the whole set of information generated dur-
ing the voting phase: the VCS stores the set of information cast by the voter
(digitally signed by the voter) and the voting receipt (digitally signed by the
RCG). The RCG stores the information cast by the voter and forwarded by the
VCS (digitally signed by both the voter and the VCS), the vote encryption with
fixed exponent over which the return code is generated (Eq. 2), and the voting
receipt.

44 J.P. Allepuz and S.G. Castelló

4.6 Validation of Return Code and Voting Receipt

The voter receives the return code and compares it with the code assigned to
the selected voting option in her voting card in order to check the correctness of
the encrypted vote.

The voter also receives the voting receipt digitally signed by the RCG, so that
she can verify that her vote has been stored in the Ballot Box by comparing this
value with the list published by the VCS in the Bulletin Board.

This explanation abstracts a vote as a container of one selected voting option.
In case of multiple selections they are independently encrypted and the same
process is repeated for each one, so that independent return codes are obtained.

All the information sent from one component to another is digitally signed in
order to provide integrity and proof of origin (e.g., it is assumed that encrypted
votes are digitally signed by voters).

5 Generation of Voting Cards

Both the voting card identifier VCID and the VCS symmetric key Kvcs are very
sensitive, since they together can be used to guess the voting options selected
by the voter during the voting phase.

Therefore, it is recommended to generate them in two isolated and indepen-
dent environments. Each environment can be identified as a Voting Card Gen-
eration (VCG) module, VCG1 and VCG2. The same environments can then be
used to implement a multiparty generation process to calculate the return codes
for the voting cards: one environment for generating partial values, and another
for generating the final ones.

The generation of partial and final return code values follows similar steps
to those defined in the voting protocol. The main difference is that the starting
point is not a cipher text, but a cleartext voting option.

Voting Card generation in VCG1

– A random voting card identifier VCID is generated for each set of return
codes belonging to a voting card. The length of this VCID must consider
both security and usability requirements.

– A fixed exponent is calculated for each voting option using the ballot iden-
tifier and a pseudorandom function: a = H(V CID, v).

– A partial return code for each voting option is calculated following the equa-
tion:

rc′ = v · ha
e (9)

– The set of partial return codes generated for each voting card, related to the
voting card code VCC, where V CC = H(V CID), is passed to the following
module.

Internet Voting System with Cast as Intended Verification 45

Voting Card generation in VCG2

– A second fixed exponent is generated using the VCC value and the VCS
symmetric keyKvcs as d = H(Kvcs, V CC) (see 4.2). In case a blind signature
scheme is used, d may be generated as d = V CCsvcs .

– The final return code value for each voting option is calculated in two steps,
using the fixed exponent and then the RCG symmetric key Krcg:

rc′′ = rc′ · hd
e, (10)

RC = H(rc′′;Krcg) (11)

Two different environments are used to generate the return code values for the
voting cards, in such a way that a single entity has no knowledge of the return
codes values assigned to a specific voting card. It is assumed that the service in
charge of printing the voting cards processes this information in a separate way
in order to preserve the secrecy of the voting cards.

6 Security Analysis

The proposal is designed to provide cast as intended and recorded as cast prop-
erties, without compromising voter privacy. However, it is important to analyze
the robustness of the proposed method against any possible compromise of its
components and under which assumptions these components are expected to be
deployed to reduce the risks. We are organizing this analysis based on the differ-
ent stages of the election process and which components could be compromised.
For each possible component compromise, the impact, difficulty of implementing
an attack and the probability of success are briefly analyzed. It is not the aim of
this section to make a strict threat assessment but to provide an initial analysis
of the risks.

6.1 Election Configuration

During the election configuration phase the return codes and cryptographic keys
needed during the protocol execution are generated. The disclosure of any of
these components could potentially compromise the security properties of the
proposal.

a) Return codes disclosure: If the return code values are intercepted by a
third party at this stage they could be potentially used to compromise voter
privacy or to cheat the voter without being noticed, changing the vote to be
cast and sending the return codes of the original one. However, these potential
attacks cannot be implemented without compromising other components of the
system.

46 J.P. Allepuz and S.G. Castelló

Voter privacy only can be compromised if the attacker also intercepts the
return codes of the selected voting options when the vote is cast (i.e., intercepts
the communications in the alternative channel or gains access to the RCG).
Furthermore, voting cards are not linked to voters, can be exchanged between
voters, and one return code value is probable to be connected to different options
in different voting cards. Therefore, an attacker also needs to gain access to
the voting card identifier to make the attack effective. Nevertheless, if multiple
voting is allowed, voters can cast a vote latter on using a different voting machine
and a different voting card. Therefore, the attacker needs to intercept all these
communications as well.

For cheating the voter, the malicious voting client needs to send the manip-
ulated vote to the VCS and the real selections made by the voter to the RCG.
That way, the RCG could send the return codes of the options selected by the
voter instead of the options contained in the vote. Otherwise, the voter could
detect the attack when receiving the SMS messages with return codes of the
manipulated vote. The protocol does not require any direct connection between
the client and the RCG and therefore, this should be explicitly done without
being detected (i.e., requires also control of the RCG server infrastructure). The
success of the attack will depend also on the ability to the voter for casting
another vote in another machine. If so, the attacker needs also to control any
machine that could be used by the voter. The scalability of this attack depends
also in the number of machines controlled, the number of voting cards stolen and
the ability to control the RCG and hide unexpected connections from Internet
to this machine (initially it should not accept any connection from Internet).

As a general assumption, it is expected that the return code generation pro-
cess is implemented using the two-step process mentioned in Section 5, using
an isolated environment under the supervision of auditors. The files with the
return codes to be printed should be exported in two different files encrypted
using two private keys, so that two separate services process them independently.
Voting cards will be printed in tamper evident sealed blind envelopes (e.g., PIN
envelopes). The storage devices used in this process are destroyed or completely
wiped as soon as they are not longer required. This prevents accidental disclosure
of information that could potentially be used in other attacks. At this stage of
the voting process, the main risk is compromising the whole set of voting cards,
since this could allow a large scale attack. Compromising only one or a small set
makes attacks more difficult to target to a specific voter or reduces their impact.

b) VCS Kvcs symmetric key disclosure: in case this key is compromised,
the attacker could try a brute force attack focused to disclose the voter intent
from the deterministic encrypted vote (see Eq. 9), if it also colludes with the
RCG. If so, the hardness of the attack will depend on the length of the voting
card identifier VCID (e.g., for a 16 char base32 identifier, it will be 80bits). The
use of a slow function as a PBKDF to generate the fixed exponent in Eq. 9 would
increase the time needed to disclose the vote contents with such a brute force
attack.

Internet Voting System with Cast as Intended Verification 47

As a general assumption, this Kvcs key is generated using a cryptographically
secure PRNG in an isolated environment (e.g., HSM) and it has a length of at
least 128 bits. The length of the voting card identifier VCID should be of at
least 80 bits and it should be generated using also a cryptographically secure
PRNG.

c) VCS Signature key disclosure: assuming that the RCG also stores the
vote, if this key is compromised, an attacker colluding with the RCG could store
in this machine a vote that has not been stored in the VCS but with a proof that
says it should (the digital signature of a vote stored in the RCG using the VCS
private key). The main motivation of this attack is to disrupt the election and
try to discredit the VCS, since privacy of the voter is not compromised. This
attack also requires having access to a vote cast by a valid voter but that has not
been stored in the VCS (since the voter has to be digitally signed using voter
credentials). The attack could be detected if the contents stored in the RCG are
crosschecked against the voting receipts published by the VCS in the Bulletin
Board.

As a general assumption, this key is generated using a cryptographically secure
PRNG in an isolated environment (e.g., HSM) and it has a length of at least
2048 bits. It is also expected that the contents of the RCG and the Bulletin
board are checked periodically to detect discrepancies.

d) RCG xrcg ElGamal private key disclosure: if this key is compromised,
the attacker can decrypt the second encryption cast by the voter (see Eq. 2)
in order to recover the vote encrypted by the fixed exponents. However, this
information does not disclose enough details to discern the voter intent. Only
colluding with the VCS the attacker could try a brute force attack over the
voting card identifier VCID.

As a general assumption, this key is generated using a cryptographically secure
PRNG in an isolated environment (e.g., HSM) and it has a length of at least
2048 bits. The length of the voting card identifier should be at least of 80 bits
and it should be generated using also a cryptographically secure PRNG.

e) RCG Signature key disclosure: if this key is compromised and the at-
tacker is colluding with the VCS, she could sign the voting receipt of a vote in
order to provide confirmation to the voting applet without forwarding the vote
the RCG. In this case, if the vote is not stored in the Ballot Box, this could be
detected, since the voting receipt is not published in the Bulletin Board. Pub-
lishing the voting receipt without storing the vote can be detected crosschecking
both repositories. In any case, the voter could detect this attack since she does
not receive the return codes of the cast vote.

As a general assumption, this key is generated using a cryptographically secure
PRNG in an isolated environment (e.g., HSM) and it has a length of at least
2048 bits. It is also expected that the contents of the Ballot Box and the bulletin
board are checked periodically to detect discrepancies.

48 J.P. Allepuz and S.G. Castelló

f) Election xe ElGamal private key disclosure: if this key is compromised
and attacker could decrypt any vote and compromise voter privacy.

As a general assumption, this key is generated using a cryptographically secure
PRNG in an isolated environment and split in shares using a secure multiparty
computation protocol with a pre-defined threshold. Shares shall be distributed
among members of an Electoral Board with divergent interest, using a HSM
(smartcards). The system shall not store any copy of the shares or the whole
election private key. All the storage devices (except the smartcards of the elec-
toral board members) shall be wiped or destroyed. The key shall have a length
of at least 2048 bits.

6.2 Voting Process

During the voting phase, attacks can be targeted to the voters that are par-
ticipating (or not) in the election, and against the votes cast. Assuming that
attackers did not succeed on compromising the components in the configura-
tion phase, we will consider in this stage risks in case of component compromise
during the voting phase. Risks based on a previous compromise are the same
as described before. In this phase, we will consider the risks more related to a
system component compromise (Voting Client, VCS and RCG) rather than a
cryptographic component compromise (keys). The only exception is the set of
return codes (voting cards).

a) Return codes disclosure: In this phase, compromising a meaningful num-
ber of voting cards is more complex since they are already in possession of voters
and the information of the configuration phase has been destroyed (i.e., it will
require physical access to each voter location). Therefore, the attacks can be
mainly focused on coercion or vote buying practices. Since voting cards are not
linked to voters, if voters are allowed to cast more than one vote using different
voting cards, coercers or vote buyers cannot use the voting cards to be sure of
the voter intent even though they keep these voting cards.

As a general assumption, it is expected that the return code generation process
destroys all the information of the return codes after voting cards are printed. It
is also an assumption that voters are allowed to vote multiple times. Since the
vote casting and vote verification processes can be executed in different order, in
case the voter only can cast one vote, the processes could be reversed, sending
first the deterministic encrypted vote to check the return codes before casting
the vote. This is an option whose impact we are still evaluating in case the voter
does not cast the vote, makes changes in the selection and requests again the
return codes (sending another deterministic vote).

b) Voting client compromise: If the voting client is compromised (virus,
malware, etc.), any attempt to make changes in the voter intent will be detected
by the voter when checking the return codes. RCG can also detect any attempt
of using a deterministic encryption with a different content than the vote (by

Internet Voting System with Cast as Intended Verification 49

means of a cryptographic proof, see Section 4.2). Only collusion between the
voting client and the RCG could pose some risk, as described in the section a)
of the Risks during the Election configuration process. However, this will require
also compromise other components of the infrastructure to hide any direct dialog
between the voting client and the RCG.

As a general assumption, it is expected that the RCG is completely isolated
from the public network (i.e., Internet) and connections restricted to those com-
ing from the VCS. Voting client is expected to be digitally signed to prevent the
use of manipulated or non-validated client software.

c) VCS compromise: If the VCS is compromised, it cannot gain access to the
voter intent (it cannot decrypt the information) or manipulate the vote, since
it is assumed that is digitally signed by the voter. It could disrupt the election
by not storing the votes but publishing the voting receipts (to prevent voters
to detect that their votes were not recorded as cast). However, this malicious
practice could be detected by periodically cross-checking the Ballot Box contents
with the Bulletin Board ones. If the RCG is also storing a copy of the valid votes
from which it has generated return codes, votes eliminated by the VCS could be
recovered. Only collusion between VCS and RCG could prevent the recovery of
the vote. Attacks described in section b) and c) also apply in this case.

As a general assumption, it is expected that the keys of the VCS are stored in a
cryptographic device that prevents them from being exported (HSM). Periodical
checks of the Ballot Box and Bulletin Board contents are also expected.

d) RCG compromise: If the RCG is compromised, it can send return codes
to voters without sending the voting receipt to the VCS, so that the votes are
not stored in the Ballot Box. However, this will be detected by voters when
a timeout is reached in their voting client since the receipt is not received. In
the other hand, trying to guess the selected voting options after decrypting the
deterministic vote (see Eq. 7) is not feasible. Only with the collaboration of
the VCS, that could recover its part of the fixed exponent, could reduce the
complexity of the brute force attack to the length of the voting card identifier
value (usually 80 bits). The other attacks described in sections d) and e) of the
Election configuration phase also apply in this case.

As a general assumption, it is expected that the keys of the RCG are stored in a
cryptographic device that prevents them from being exported (HSM). Periodical
checks of the RCG stored information (validated votes and voting receipts) and
Bulletin Board contents are also expected.

6.3 Post Election

Once the election is done, the main risks are related to threat the data that
has been registered during the election. Mainly, the following datasets will be
vulnerable to attacks: the votes encrypted under the election public key, the votes
encrypted under the RCG public key, votes decrypted with the RCG private

50 J.P. Allepuz and S.G. Castelló

key and the voting receipts. The attack objectives in all the cases could be to
compromise voter privacy or to disrupt the election.

As a general assumption, it is expected that the encryption and digital sig-
nature keys of the VCS and RCG, as well as the electoral board shares are
destroyed once they are no longer required (usually when the results are ob-
tained). It is also expected that vote encryption sets are not public disclosed.
Only the Bulletin Board contents (voting receipts) and the decrypted votes will
be public available.

a) Attacks on the votes encrypted under the election public key or the
RCG public key: Crypto-analysis attacks for disclosing the encrypted voter
intent are not expected in these votes. In fact it is expected that these attacks
will be more probably studied in the votes decrypted by the RCG for the nature
of the deterministic encryption exponent. In the other hand, any attempt to
manipulate these votes to disrupt the election could be detected by checking
the digital signatures and the ZKP that connect them to the deterministically
encrypted votes. Therefore, no successful attacks are expected.

b) Attacks on the votes decrypted with the RCG private key: Since
these votes derivate the encryption exponent in a deterministic way, it is ex-
pected that attacks will be concentrated on breaking this key derivation mech-
anism. Three components are used for the exponent derivation: the voting card
identifier, the selected voting option and a VCS key. Considering that the set of
voting options is very limited, we can consider that the strength will depend on
the voting card identifier and the VCS key strength. The VCS key will have 2048
bits length and, therefore, is the main one that provides long term protection.
If this key is compromised, the strength will depend on the length of the voting
card identifier that usually is limited for usability issues since the voters need to
type it (e.g., 80 bits). This will make an attack more feasible in a shorter time-
frame, since at the end the fixed exponent protecting the privacy of the voting
options in the RCG is derived from a master key with lower entropy. Solutions
to increase this strength without compromising usability are under examination
for future improvements. It is also important to consider that if the voting card
identifiers are known in advance, the attack could be straight forward. Therefore,
preserving the VCID ’s as secret and destroying them at the end of the election
is of paramount importance to prevent any possible success of this attack.

c) Voting Receipt attacks: Attacks to voting receipts could be focused to
discern the original cipher text cast by the voters (since initially these encrypted
votes are not public available). However, this will be practically unfeasible since
the receipt value is obtained using a hash function.

Internet Voting System with Cast as Intended Verification 51

6.4 Summary

The system is not vulnerable to individual component compromise, requiring in
most cases the collusion of several components for staring to design an attack.
The main risks are located in the election configuration period, where the voting
cards and keys could be compromised. However, these keys can be created in
isolated environments (i.e., do not require online processes) and the voting cards
can be created using incremental steps in different isolated environments that
will prevent having access to all the information at the same time.

The second important risk is related to the protection of the VCS symmetric
key. Since this key is required to compensate the strength limitations of the
voting card identifier (for usability reasons), it is important to it keep safe and
destroy it when the election is done. Otherwise, crypto-analysis attacks could
be designed that could make possible an attack in an acceptable timeframe (not
confirmed yet). Further work is done in this area.

Other attacks require complex collusions that are more difficult to implement
without being detected. Furthermore, the impact in case of success seems more
limited to disrupt the process.

References

1. http://www.regjeringen.no/en/dep/krd/prosjekter/e-vote-2011-project/

about-the-e-vote-project/presentation-of-the-project.html?id=598565

2. evalg 2011 security objectives, http://www.regjeringen.no/upload/KRD/

Kampanjer/valgportal/e-valg/tekniskdok/Security Objectives v2.pdf

3. Pkcs#5, note = http://www.rsa.com/rsalabs/node.asp?id=2127

4. Adida, B.: Helios: Web-based open-audit voting. In: van Oorschot, P.C. (ed.)
USENIX Security Symposium, pp. 335–348. USENIX Association (2008)

5. Chaum, D.: Surevote: Technical overview. In: Proceedings of the Workshop on
Trustworthy Elections, WOTE 2001 (2001)

6. CESG (Communications and Electronic Security Group). E-voting secu-
rity study, annex C (2002), http://www.edemocracy.gov.uk/library/papers/

study.pdf2002

7. El Gamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory 31(4) (1985)

8. Gjøsteen, K.: Analysis of an internet voting protocol. Cryptology ePrint Archive,
Report 2010/380 (2010), http://eprint.iacr.org/

9. Helbach, J., Schwenk, J.: Secure Internet Voting with Code Sheets. In: Alkassar,
A., Volkamer, M. (eds.) VOTE-ID 2007. LNCS, vol. 4896, pp. 166–177. Springer,
Heidelberg (2007)

10. American National Standards Institute. Accredited standards committee x9 work-
ing draft. ANSI X9.42-1993: Public Key Cryptography for the Financial Services
Industry: Management of Symmetric Algorithm Keys Using Diffie-Hellman (1994)

11. Jakobsson, M.: A Practical Mix. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS,
vol. 1403, pp. 448–461. Springer, Heidelberg (1998)

http://www.regjeringen.no/en/dep/krd/prosjekter/e-vote-2011-project/about-the-e-vote-project/presentation-of-the-project.html?id=598565
http://www.regjeringen.no/en/dep/krd/prosjekter/e-vote-2011-project/about-the-e-vote-project/presentation-of-the-project.html?id=598565
http://www.regjeringen.no/upload/KRD/Kampanjer/valgportal/e-valg/tekniskdok/Security_Objectives_v2.pdf
http://www.regjeringen.no/upload/KRD/Kampanjer/valgportal/e-valg/tekniskdok/Security_Objectives_v2.pdf
http://www.rsa.com/rsalabs/node.asp?id=2127
http://www.edemocracy.gov.uk/library/papers/study.pdf2002
http://www.edemocracy.gov.uk/library/papers/study.pdf2002
http://eprint.iacr.org/

52 J.P. Allepuz and S.G. Castelló

12. Joaquim, R., Ribeiro, C.: Codevoting: protecting against malicious vote manipula-
tion at the voter’s pc. In: Chaum, D., Kutylowski, M., Rivest, R.L., Ryan, P.Y.A.
(eds.) Frontiers of Electronic Voting. Dagstuhl Seminar Proceedings, vol. 07311. In-
ternationales Begegnungs- und Forschungszentrum fuer Informatik (IBFI), Schloss
Dagstuhl, Germany (2007)

13. Malkhi, D., Margo, O., Pavlov, E.: E-voting without ’Cryptography’. In: Blaze, M.
(ed.) FC 2002. LNCS, vol. 2357, pp. 1–15. Springer, Heidelberg (2003)

14. Markus, J., Ari, J.: Millimix: Mixing in small batches. Technical report (1999)
15. Morales-Rocha, V., Soriano, M., Puiggali, J.: New voter verification scheme using

pre-encrypted ballots. Computer Communications 32(7-10), 1219–1227 (2009)
16. Nguyen, L., Safavi-Naini, R.: Breaking and Mending Resilient Mix-Nets. In: Din-

gledine, R. (ed.) PET 2003. LNCS, vol. 2760, pp. 66–80. Springer, Heidelberg
(2003)

17. Schnorr, C.-P.: Efficient signature generation by smart cards. J. Cryptology 4(3),
161–174 (1991)

18. Storer, T.W.: Practical pollsterless remote electronic voting (2006)
19. Voutsis, N., Zimmermann, F.: Anonymous code lists for secure electronic voting

over insecure mobile channels. In: Proceedings of Euro mGov. Sussex University,
Brighton (2005)

Linear Logical Voting Protocols

Henry DeYoung1 and Carsten Schürmann2

1 Carnegie Mellon University, Pittsburgh, PA, USA
hdeyoung@cs.cmu.edu

2 IT University of Copenhagen, Copenhagen, Denmark
carsten@itu.dk

Abstract. Current approaches to electronic implementations of voting
protocols involve translating legal text to source code of an imperative
programming language. Because the gap between legal text and source
code is very large, it is difficult to trust that the program meets its
legal specification. In response, we promote linear logic as a high-level
language for both specifying and implementing voting protocols. Our
linear logical specifications of the single-winner first-past-the-post (SW-
FPTP) and single transferable vote (STV) protocols demonstrate that
this approach leads to concise implementations that closely correspond
to their legal specification, thereby increasing trust.

1 Introduction

Determining the outcome of an election is rarely as straightforward as simply
counting the votes and declaring the candidate with the most votes to be the
winner. Even for relatively simple voting protocols, such as first-past-the-post,
election laws prescribe the detailed provisions for tallying votes and computing
the final result. Legal language is precise enough to be used in courts of law to
settle debates about the lawfulness of a traditional election implementation (e.g.,
one that uses paper ballots), but computer-based implementations pose unique
challenges.

Because election laws are not written in a formal language, they cannot be
directly executed by a computer. Instead, humans translate the legal text to
source code of a programming language; typically a general-purpose imperative
language, such as Java or C, is the target.

However, this approach to computer-based implementations is problematic: it
is unreasonable to expect that the translation from the informal specification in
legal text to its implementation as source code will be trusted outright. In large
part, this is because programs written in general-purpose imperative languages
are comparatively low-level and complex. To verify that such programs correctly
implement their legal specifications, one must reason about concrete data struc-
tures, exotic language features (e.g., inheritance and method overloading), and
vast third-party libraries. Certifying all of these components in full detail is ex-
tremely challenging and costly, if not impossible—the gap between legal text
and source code is simply much too large.

A. Kiayias and H. Lipmaa (Eds.): VoteID 2011, LNCS 7187, pp. 53–70, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

54 H. DeYoung and C. Schürmann

In response to these problems, this paper proposes to use formal logic—more
specifically, linear logic—as a foundation for electronic elections. First, logic will
serve as an intermediate, formal specification language: rather than translating
the legal text to low-level source code, it will be translated to a set of logical
formulas. Because the logic allows a high level of abstraction, these formulas will
be in close correspondence with the legal text from which they were derived.
This minimizes the conceptual distance between the two, thereby increasing
trustworthiness.

Second, by way of logic programming languages like the well-known Prolog [6],
formal logic also provides a means of programming voting protocols declaratively.
The declarative programming paradigm has the advantage of narrowing the gap
between the formal specification and its implementation. In logic programming,
for instance, the specification’s logical formulas and the program’s source code
are one and the same; the operational behavior of the program is derived from
a fixed proof-search strategy for the logical connectives that comprise the spec-
ification.

Thus, the trusted components of this approach are: 1) that the formal, logical
specification adequately reflects the informal, legal specification; and 2) that the
logic programming engine is correctly implemented. Requiring some degree of
trust in the adequacy of the logical specification is unavoidable; however, as
described above, because the logical specification is in close correspondence with
the legal text, the conceptual gap to be bridged by adequacy is minimized and
trustworthiness increases. Moreover, instead of trusting the logic programming
engine, one can choose to trust a much simpler proof checker that validates the
explicit proof objects produced by the engine; these proof objects are essentially
human-readable abstract execution traces, and therefore can also be audited.

To meet the above goals, first-order logic (and its corresponding logic pro-
gramming language, Prolog) would indeed be a technically adequate choice of
logic. But, we contend that it is not an ideal choice. This paper instead advo-
cates the use of linear logic [12,4], a logic in which assumptions are treated as
resources that must be used exactly once. (Sect. 2 provides a brief introduction
to linear logic and contrasts it with first-order logic.)

To illustrate the benefits of linear logic as a foundation for electronic elections,
this paper presents full linear logical specifications of two voting protocols: single-
winner first-past-the-post (SW-FPTP, Sect. 3) and proportional representation
through the single transferable vote (STV, Sect. 5). Both protocols are widely
used in practice: for example, first-past-the-post (also known as winner-take-all)
for national elections in the United States and single transferable vote for par-
liamentary elections in Ireland, Malta, and Australia. More importantly, these
protocols are valuable benchmarks because they represent two extremes of pro-
tocol complexity. That elegant characterizations of two such diverse protocols
are possible speaks to linear logic’s robustness as a specification language.

Linear logical specifications of these protocols can be transliterated, in a fully
syntactic way, to source code of linear logic programming languages, such as Lol-
liMon [13] and Celf [14]. To provide intuition about the operational behavior of

Linear Logical Voting Protocols 55

specifications, Sect. 4 of this paper sketches a typical Celf execution of the single-
winner first-past-the-post protocol. The transliterations of both protocols to Celf
syntax are available at http://www.itu.dk/~carsten/files/voteid2011.tgz,
if the reader wishes to experiment further.

Another benefit of our linear logical approach is the ability to formally prove
the operational correctness of specifications using existing techniques [10,9]. In
Sect. 6, we sketch proofs of correctness for the SW-FPTP and STV protocols.

Finally, it is also important to clarify what this paper does not set out to ac-
complish. First, this paper concentrates on verified elections, wherein an a priori
static analysis verifies that the election software meets its specification. This is
in contrast with voter-verifiable elections, which use end-to-end techniques, such
as Prêt à Voter [5], whereby voters can convince themselves that the final tally
is correct. In general, we believe that the two approaches are complementary:
even with end-to-end techniques for detecting anomalies, one should still strive
to minimize the occurrence of such costly errors beforehand by running verified
software.

Second, beyond operational correctness, voters expect voting protocols to pos-
sess security properties such as privacy and coercion-resistance. Although we
contend that linear logical protocol specifications will be readily amenable to
reasoning about such meta-theoretic properties, we leave this to future work.

Related Work. In the past, there have been attempts to formally prove the imple-
mentation of an electronic voting protocol correct. Using the applied π-calculus,
Delaune, Kremer, and Ryan [8] modeled a simple protocol and proved its fair-
ness, eligibility, privacy, receipt-freeness, and coercion-resistance with Blanchet’s
ProVerif tool. Their work differs from ours in that they concentrate on the se-
curity of the protocol whereas we are interested in the auditable correctness
of implementations. Perhaps most closely related is the work by Cochran and
Kiniry on specifying STV in JML and ESC/Java [7]. Unfortunately, JML and
ESC/Java are logically unsound. Program verification must be supplemented
by testing to guarantee a reasonable level of program correctness. In contrast,
our logical approach to implementing STV guarantees correctness automatically,
thereby rendering testing superfluous. Aside from implementation concerns, the
literature also contains proposals to improve the security of the STV protocol
using cryptography [2]. Those ideas are largely orthogonal to the ambitions of
this paper.

2 A Brief Introduction to Linear Logic1

Traditional first-order logic is concerned solely with truth. Being an abstract
idea, truth is inherently free. Consequently, in traditional logic, each logical
assumption may be used as many or as few times (including none) as desired—
it has no cost.

1 We encourage the reader who is interested in a more complete introduction to linear
logic to refer to Philip Wadler’s excellent tutorial [15].

http://www.itu.dk/~carsten/files/voteid2011.tgz

56 H. DeYoung and C. Schürmann

On the other hand, linear logic admits that, unlike truth, not everything
is free. It instead concerns itself with consumable, valuable resources. Because
resources are consumable, they may not be freely duplicated and may be used at
most once; because resources are also valuable, they may not be freely disposed
and must be used at least once. To reflect this, linear logic represents resources as
logical assumptions that must be used exactly once. With this resource discipline,
linear logic is able to express—more elegantly and concisely than can traditional
first-order logic—operations that must occur only once. Because voting protocols
in particular rely significantly on the one-occurrence idiom (e.g., registering each
voter only once or counting each ballot only once), this elegance is crucial to
minimizing the conceptual gap between the informal, legal specification and the
formal, logical specification.

2.1 Connectives of Linear Logic

Full linear logic contains a rich set of connectives for building formulas. To
assign a logic programming interpretation, restrictions must be placed on the
ways in which these connectives fit together so that proof search becomes more
deterministic. Thus, in Celf [14] and its predecessor, LolliMon [13], the formulas
of linear logic are polarized into positive and negative classes [1] and a monad
is used to prevent interference between the two [16]. For the examples in this
paper, only the following fragment of polarized monadic linear logic is needed:

Negative Formulas A−, B− ::= P− | ∀x:τ. A− | A+ � {B+}
Positive Formulas A+, B+ ::= A+ � B+ | 1 | !A− | A−

The fragment includes atomic formulas P−, universal quantification ∀x:τ. A−,
linear implication A+ � {B+}, simultaneous conjunction A+ �B+ and its unit
1, the unrestricted modality !A−, and an inclusion, A−, of negative formulas as
positive formulas.

To present the meanings of these connectives, we will now develop a specifica-
tion of voter check-in at a polling place. Prior to election day, each voter receives
a voting authorization card in the mail. To check in at her designated polling
place on election day, the voter exchanges her voting authorization card for a
blank ballot form. Because each voter receives only one authorization card, the
card thus helps prevent ballot stuffing.

In traditional logic, one might try to specify this check-in process by taking
as an axiom the formula

voting-auth-card→ blank-ballot :

if a voter has a voting authorization card, then she may have a blank bal-
lot form. However, this specification would allow proofs of such nonsense as
voting-auth-card→ blank-ballot∧ voting-auth-card: if a voter has a voting autho-
rization card, she can receive a blank ballot and keep her authorization card. By
iterating this proof, one can show that, under this specification, ballot stuffing
is possible: voting-auth-card→ blank-ballot∧· · ·∧blank-ballot∧voting-auth-card.
Therefore, this specification of the check-in procedure is clearly unsound.

Linear Logical Voting Protocols 57

Linear Implication, �. The problem is one of expressivity—traditional im-
plication does not express that the check-in process consumes the voter’s au-
thorization card. But, as a logic of resources, linear logic provides just the right
expressive power. It includes the linear implication formula A+ � {B+}, which,
like the traditional implication, is a procedure for producing resource B+ if
given A+; unlike the traditional implication, however, this procedure consumes
resource A+ as part of the production.2

Thus, a sound specification of voter check-in is given by taking as an axiom
the linear logical formula

voting-auth-card � {blank-ballot} :

the check-in process consumes the voter’s authorization card and gives her a
blank ballot in exchange.

Simultaneous Conjunction, �, and Its Unit, 1. Now suppose that voters
are also required to present a photo ID during check-in. The specification will
have the same basic structure: ‘a voting authorization card and a photo ID’ �
{blank-ballot}. But how can we express the ‘a voting authorization card and a
photo ID’ resource as a formula of linear logic?

Fortunately, linear logic provides a simultaneous conjunction, A+ �B+ (read
‘both resourcesA+ andB+’). Thus, a specification of the revised check-in process
can be given by the formula

voting-auth-card � photo-ID � {blank-ballot} :

when a voter gives a voting authorization card and a photo ID, she receives a
blank ballot form in exchange. (Note that � binds more tightly than �.)

Linear logic also includes a unit for simultaneous conjunction, 1 (read ‘noth-
ing’), which represents the empty collection of resources. The proposition 1 is
primarily used in the idiom A+ � {1}, which consumes resource A+ and pro-
duces nothing in return.

Unrestricted Modality, !. The prior specification of the check-in process,
voting-auth-card � photo-ID � {blank-ballot}, is not fully satisfactory, however.
Because photo-ID is treated as a resource and linear implication (which consumes
the resources it is given) is used, this axiom specifies a check-in process in which
voters must relinquish their photo IDs to vote! This is not the intent; voters
should always retain their photo IDs. And so, at first glance, photo-ID does not
appear to fit into the resource discipline of linear logic.

However, the unrestricted modality, !A−, of linear logic provides a way out.
The proposition !A− is a version of A− that is not subject to the resource

2 The braces around B+ denote a monad that is not found in conventional presentations
of linear logic. It is used to give a committed-choice operational semantics for the
logic programming interpretation [13] that is important to our work.

58 H. DeYoung and C. Schürmann

discipline—an assumption !A− can be used an unlimited number of times (in-
cluding none). Alternatively, one may think of !A− as stating that A− is a fact
that will remain true regardless of how the system evolves.

Using the ! modality, the revised specification can therefore be given by

voting-auth-card � !photo-ID � {blank-ballot} :

when a voter gives an authorization card and shows a photo ID, she receives a
blank ballot form. (Note that ! binds more tightly than � and �.)

Universal Quantification, ∀x:τ . Strictly speaking, the current specification
of voter check-in does not capture the requirement that the name on the autho-
rization card must match the name on the photo ID.

This problem can be resolved using universal quantification. In linear logic,
multi-sorted universal quantification, ∀x:τ. A−, behaves just as in traditional
logic. In particular, the members of the domain of quantification are not subject
to a resource discipline. Thus, the specification may be revised to

∀v:voter.
(
voting-auth-card(v) � !photo-ID(v) � {blank-ballot}

)
:

when a voter v gives her authorization card and shows her photo ID, she receives
a blank ballot form.

3 A Linear Logical Specification of First-Past-the-Post

To demonstrate how linear logic can be used to specify voting systems, we now
present a concise, elegant specification of single-winner first-past-the-post voting
(SW-FPTP). In SW-FPTP voting, each voter casts a ballot on which she has
selected a single candidate. After all ballots have been counted, the candidate
with greatest vote total is determined; this candidate is declared the winner.
Because SW-FPTP voting is relatively simple, it makes an ideal first example.

For our specification of SW-FPTP, we must introduce several predicates,
which are summarized in Table 1. The uncounted-ballot, hopeful, defeated, and
elected predicates are used to characterize the ballot box and the candidates’
electoral statuses, and the count-ballots and determine-max predicates indicate
progress through the algorithm’s two phases. We also assume the existence of
the usual ordering predicates on natural numbers, such as !(N ≥ N ′).

SW-FPTP voting is specified by the collection of linear logical axioms shown
in Fig. 1. (For conciseness, we follow the standard convention that universal
quantification is implicit for all variables written in upper case.) The count/run
and count/done axioms specify how the ballot counting phase of SW-FPTP
works, whereas max/run and max/done characterize a random tournament for
finding the candidate who has the greatest vote total. Although it would be
straightforward to use other tie-breaking criteria, for simplicity of presentation
we will assume that ties are broken arbitrarily.

Linear Logical Voting Protocols 59

Table 1. Descriptions of predicates used in the SW-FPTP specification

Predicate Meaning

uncounted-ballot(C) An uncounted ballot for candidate C.

hopeful(C,N) Candidate C is not yet defeated nor elected, and N ballots
have been counted for C thus far.

!defeated(C) Candidate C has been (and will remain) defeated.

!elected(C) Candidate C has been (and will remain) elected.

count-ballots(U,H) Token to indicate that the algorithm is in the process of
counting ballots; there are U uncounted ballots remaining,
and H candidates are hopefuls.

determine-max(H) Token to indicate that the algorithm is in the process of de-
termining which candidate has the greatest vote total; there
are H hopeful candidates remaining.

count/run : count-ballots(U,H) �

uncounted-ballot(C) � hopeful(C,N)
� {hopeful(C,N+1) � count-ballots(U−1,H)}

count/done : count-ballots(0,H)
� {determine-max(H)}

max/run : determine-max(H) �

hopeful(C,N) � hopeful(C′, N ′) � !(N ≥ N ′)
� {hopeful(C,N) � !defeated(C′) � determine-max(H−1)}

max/done : determine-max(1) � hopeful(C,N)
� {!elected(C)}

Fig. 1. A linear logical specification of single-winner first-past-the-post voting

3.1 Counting Ballots with Count/Run and Count/Done

An intuitive reading of the axioms used to specify SW-FPTP ballot counting is:

count/run: ‘If we are in the process of counting ballots (count-ballots(U,H)) and
there is an uncounted ballot for some candidate C (uncounted-ballot(C))
and C’s vote count is currently N (hopeful(C,N)), then C’s vote count
is updated to N+1 (hopeful(C,N+1)) and we continue counting ballots
(count-ballots(U−1, H)).’

count/done: ‘If we are in the process of counting ballots and no uncounted bal-
lots remain (count-ballots(0, H)), then we have finished counting ballots and
should now begin determining which candidate has the greatest vote total
(determine-max(H)).’

There are several key observations to be made.

60 H. DeYoung and C. Schürmann

Use of Linearity. The linear resource discipline is crucial for the count/run
and count/done axioms to adequately specify SW-FPTP ballot counting.

First, the hopeful propositions that record candidates’ vote counts are treated
as linear resources. That is, they are not prefixed with the unrestricted modal-
ity, !, which would escape the resource discipline. Being linear resources allows
the vote counts to be mutable. This is fundamental to the correctness of the
count/run axiom: whenever a ballot for candidate C is counted, the record of
C’s vote count (hopeful(C,N)) is consumed and is replaced with a new, updated
record (hopeful(C,N+1)). If these hopeful records were not linear resources, then
they would not be consumed and the old vote counts would persist alongside the
new count, causing untold confusion.

Second, and equally crucial, uncounted-ballot(C) is treated as a linear re-
source. Consequently, ballots are consumed whenever they are counted by the
count/run axiom. If ballots were not linear, they would not be consumed upon
being counted; they would effectively remain in the ballot box, leaving open
the possibility that a ballot could be counted more than once. (Note that we
need not preserve the ballot in a counted form, e.g., as in counted-ballot(C); the
candidate’s vote count is sufficient to reconstruct the ballots that were cast.)

Treating uncounted ballots as linear resources also provides a further benefit.
Because linear logic demands that resources be used at least once, the specifica-
tion framework itself ensures that all ballots are eventually counted by count/run.
This is a strong guarantee that is provided to the specification for free!

Tracking the Number of Uncounted Ballots. The reader may wonder why
we bother to maintain the invariant that there are U uncounted ballots and H
hopeful candidates remaining whenever count-ballots(U,H) holds. For example,
couldn’t one just use

count-ballots′ �
uncounted-ballot(C) � hopeful(C,N)

� {hopeful(C,N+1) � count-ballots′}

in place of the count/run axiom?
The answer is that this invariant makes it possible to decide when there are no

more ballots to count: there are no more ballots exactly when count-ballots(0, H)
holds. This forms the basis for count/done. Without tracking this information,
count/done would need to rely on extra-logical machinery, such as negation-
as-failure, to check for the absence of uncounted-ballot(C). And, extra-logical
machinery would forfeit the benefits of a purely logical specification as discussed
in Sect. 1.

The count-ballots and determine-max predicates track the number of remain-
ing hopefuls for similar reasons. Doing so provides a purely logical way to de-
termine when exactly one hopeful remains, forming the basis for max/done, as
described below.

Linear Logical Voting Protocols 61

3.2 Determining the Winner with Max/Run and Max/Done

The max/run and max/done axioms characterize a random tournament for de-
termining which candidate has the greatest vote total. An intuitive reading of
the axioms is as follows:

max/run: ‘If we are in the process of determining who has the greatest vote total
(determine-max(H)) and there are at least two candidates C and C′ that
remain hopefuls, with vote totals N and N ′ respectively, (hopeful(C,N) �
hopeful(C′, N ′)) and C’s vote total is larger (!(N ≥ N ′)), then C remains a
hopeful (hopeful(C,N)) and C′ is defeated (!defeated(C′)) and we continue
to determine who has the greatest vote total (determine-max(H−1)).’

max/done: ‘If we are in the process of determining who has the greatest vote
total and only one candidate remains a hopeful (determine-max(1)) and that
candidate is C (hopeful(C,N)), then C is declared the winner (!elected(C)).’

Two key points benefit from further explanation.

Use of the Unrestricted Modality, !. The unrestricted modality is used
strategically at three points in the max/run and max/done axioms.

First, the max/run axiom includes !(N ≥ N ′) to ensure that C’s vote total is
no smaller than that of C′. As presented in Sect. 2.1, the unrestricted modality,
!, denotes a fact that remains true regardless of how the system’s state evolves.
Because natural number inequalities are true independent of the voting system’s
state, the use of ! here is justified.

Second and third, the max/run and max/done axioms use !defeated(C′) and
!elected(C), respectively, to reflect changes in a candidate’s status. Just as !
denotes a fact that remains true regardless of how the system’s state evolves,
these uses of ! express that once a candidate is either defeated or elected her
status (in that election) never changes.

No Axiom Dual to Max/Run. At first glance, it may be surprising that
there is no axiom, dual to max/run, for the case !(N ≤ N ′). In fact, max/run
itself handles this case. For a fixed pair of hopeful assumptions, the premise
hopeful(C,N) � hopeful(C′, N ′) can be instantiated in two ways: one for each
permutation of those two assumptions. At least one of these will satisfy the
inequality !(N ≥ N ′), and so the single max/run axiom suffices.

4 Viewing Specifications as Linear Logic Programs

Thus far we have given a static specification of SW-FPTP as a collection of
linear logical axioms. However, viewed through the lens of linear logic program-
ming, such specifications can also be seen as rules defining a forward-chaining,

62 H. DeYoung and C. Schürmann

committed-choice linear logic program [13,14]. Thus, specifications can be di-
rectly executed using a logic programming engine. (As a demonstration, a
transliteration of the SW-FPTP specification into Celf source code is available
at http://www.itu.dk/~carsten/files/voteid2011.tgz.)

Rules of such logic programs are essentially multiset rewriting rules [3]. For
instance, max/run can be seen as the following multiset rewriting rule: choose
any two hopeful terms and replace the one having a smaller vote count with a
corresponding !defeated term. Given similar interpretations of the other axioms,
the SW-FPTP algorithm can be run by issuing logic programming queries.

Example 1. Consider the following election scenario. Three candidates, a, b, and
c, are running for office. We model this with three linear resources that initialize
the candidates’ vote counts to 0: hopeful(a, 0), hopeful(b, 0), and hopeful(c, 0).
Each uncounted ballot is also modeled as a linear resource:

uncounted-ballot(a), uncounted-ballot(b), uncounted-ballot(a),
uncounted-ballot(c), uncounted-ballot(b), uncounted-ballot(a).

To initiate the execution, we add the resource count-ballots(6, 3), which is indexed
by the number of uncounted ballots and the number of hopefuls. The execution
consists of two phases: in the first phase, the votes are tallied, and in the second
phase, the candidate who has the most votes is determined. At each step of the
execution, one of the SW-FPTP axioms is applied as a multiset rewriting rule,
following the rules of linear logic. First, count/run fires exactly six times, once
for each ballot. Next, the rule count/done fires, and the execution commences
with the second phase. Determining the winner requires two comparisons, which
means that max/run fires twice. And finally, the max/done rule fires, announcing
a as the winner and concluding the execution.

The logic programming approach therefore provides two key benefits. First, and
most importantly, there is no need to verify the executable code against a sepa-
rate formal specification: the code and specification are one and the same! (Only
a linear logic proof engine needs to be trusted as an interpreter.) This benefit
cannot be overemphasized, and is a direct result of choosing linear logic as the
high-level, yet fully rigorous, specification language.

Second, the traces of rewriting steps that are produced by the logic program-
ming engine provide an immediate means for auditing the election. Because the
traces are, in fact, proof objects in linear logic, auditing is easy: a lightweight
linear logic proof checker can formally verify the validity of a trace. In particu-
lar, costly recounts become unnecessary because the verifiable traces record each
step of vote counting.

5 Single Transferable Vote in Linear Logic

To show that linear logic is robust enough to be used for specifying complex
voting systems, we now turn our attention to single transferable vote (STV).

http://www.itu.dk/~carsten/files/voteid2011.tgz

Linear Logical Voting Protocols 63

In STV, each voter casts a ballot that lists candidates in order of the voter’s
preference. To be elected, a candidate must reach a threshold, or quota, of votes.
For the purposes of this paper, the particular choice of quota is arbitrary. Because
it is commonly used in practice, we choose the Droop quota,

quota =
#ballots

#seats + 1
+ 1 ,

however any quota could easily be substituted. Once the quota is computed, the
ballots are counted and the following rules are repeated until all open seats are
filled.

1. If a candidate has enough votes to meet the quota, she is declared elected.
Any surplus votes for this candidate are transferred.

2. If all ballots have been assigned to candidates and no candidate meets the
quota, then the candidate with the fewest votes is eliminated and her votes
are transferred. If several candidates tie for the fewest votes, one is eliminated
at random.

3. When a vote is transferred, it is assigned to the hopeful candidate with the
next highest preference listed on that ballot. That is, candidates that are
already elected or defeated do not receive transferred votes.

4. If, at any point, there are at least as many open seats as hopeful candidates
remaining, then all remaining hopefuls become elected.

5.1 A Linear Logical Specification of Single Transferable Vote

For our specification of STV, we must introduce several predicates, which are
summarized in Table 2. The uncounted-ballot, counted-ballot, hopeful, defeated,
elected, quota, and winners predicates characterize the ballot box, candidates’
statuses, and the election’s state. The elect-all, defeat-min, defeat-min′, transfer,
and begin predicates are used to indicate progress through the STV algorithm’s
phases. Finally, minimum is an auxiliary predicate used in determining a candi-
date with the fewest votes. (We again assume the usual ordering predicates on
natural numbers, such as !(N ≥ N ′).)

The linear logical axioms that specify STV are given in Fig. 2. Several of these
axioms pattern-match on the shape of a list of candidates. Following standard
convention, we use [] to stand for the empty list and [C | L] to stand for the
non-empty list with head C and tail L. (We again follow the convention that
universal quantification is implicit for variables written in upper case.)

These axioms faithfully encode STV in a concise and elegant fashion—rather
than requiring hundreds or thousands of lines of imperative source code, our full
STV specification fits on a single page! To make plain the close correspondence
of the axioms with the natural language description of STV used in current
practice, we will now walk through their meanings.

64 H. DeYoung and C. Schürmann

Beginning the STV Algorithm. The begin/1 axiom describes the initial
step of the STV algorithm: the Droop quota is computed and recorded. Ballot
counting is initiated, with no candidates having been declared winners.

Table 2. Descriptions of predicates used in the STV specification

Predicate Meaning

uncounted-ballot(C,L) An uncounted ballot with highest preference for candidate
C and list L of lower preferences.

counted-ballot(C,L) A ballot counted for candidate C, with list L of lower
preferences.

hopeful(C,N) Candidate C is not yet defeated nor elected, and N ballots
have been counted for C thus far.

!defeated(C) Candidate C has been (and will remain) defeated.

!elected(C) Candidate C has been (and will remain) elected.

!quota(Q) Q votes are needed to be elected.

winners(W) The candidates in list W have been elected thus far.

begin(S,H,U) Token to signal that the STV algorithm should begin run-
ning. There are S seats up for election, H hopeful candi-
dates, and U ballots cast.

count-ballots(S,H,U) Token to indicate that the algorithm is counting ballots,
and that there are S open seats, H hopeful candidates,
and U uncounted ballots remaining.

!elect-all Token to indicate that there are more open seats than
hopefuls remaining; all remaining hopefuls should become
elected.

defeat-min(S,H,M) Token to indicate that the algorithm is in the first step of
determining a candidate who has the fewest votes. There
are S open seats, H hopeful candidates, and M potential
minimums remaining.

defeat-min′(S,H,M) Token to indicate that the algorithm is in the second step
of determining a candidate who has the fewest votes. There
are S open seats, H hopeful candidates, and M potential
minimums remaining.

minimum(C,N) Candidate C’s vote count of N is a potential minimum.

transfer(C,N, S,H,U) Token to indicate that newly defeated candidate C’s re-
maining N votes are being transferred. There are S open
seats, H hopeful candidates, and U uncounted ballots.

Linear Logical Voting Protocols 65

begin/1 :
begin(S,H,U) �

!(Q = U/(S + 1) + 1)
� {!quota(Q) � winners([]) �

count-ballots(S,H,U)}
count/1 :
count-ballots(S,H,U) �

uncounted-ballot(C,L) �

hopeful(C,N) �

!quota(Q) � !(N+1 < Q)
� {counted-ballot(C,L) �

hopeful(C,N+1) �

count-ballots(S,H,U−1)}
count/2 :
count-ballots(S,H,U) �

uncounted-ballot(C,L) �

hopeful(C,N) �

!quota(Q) � !(N+1 ≥ Q) �

!(S ≥ 1) � winners(W)
� {counted-ballot(C,L) �

!elected(C) � winners([C | W]) �

count-ballots(S−1, H−1, U−1)}
count/3.1 :
count-ballots(S,H,U) �

uncounted-ballot(C, [C′ | L]) �

!elected(C)
� {uncounted-ballot(C′, L) �

count-ballots(S,H,U)}
count/3.2 :
count-ballots(S,H,U) �

uncounted-ballot(C, [C′ | L]) �

!defeated(C)
� {uncounted-ballot(C′, L) �

count-ballots(S,H,U)}
count/4.1 :
count-ballots(S,H,U) �

uncounted-ballot(C, []) �

!elected(C)
� {count-ballots(S,H,U−1)}

count/4.2 :
count-ballots(S,H,U) �

uncounted-ballot(C, []) �

!defeated(C)
� {count-ballots(S,H,U−1)}

count/5 :
count-ballots(S,H, 0) � !(S < H)

� {defeat-min(S,H, 0)}
count/6 :
count-ballots(S,H, 0) � !(S ≥ H)

� {!elect-all}
defeat-min/1 :
defeat-min(S,H,M) �

hopeful(C,N)
� {minimum(C,N) �

defeat-min(S,H−1,M+1)}
defeat-min/2 :
defeat-min(S, 0,M)

� {defeat-min′(S, 0,M)}
defeat-min′/1 :
defeat-min′(S,H,M) �

minimum(C,N) �

minimum(C′, N ′) �

!(N ≤ N ′)
� {minimum(C,N) �

hopeful(C′, N ′) �

defeat-min′(S,H+1,M−1)}
defeat-min′/2 :
defeat-min′(S,H, 1) �

minimum(C,N)
� {!defeated(C) �

transfer(C,N, S,H, 0)}
transfer/1 :
transfer(C,N, S,H,U) �

counted-ballot(C,L)
� {uncounted-ballot(C,L) �

transfer(C,N−1, S,H,U+1)}
transfer/2 :
transfer(C, 0, S,H,U)

� {count-ballots(S,H,U)}
elect-all/1 :
!elect-all �
hopeful(C,N) � winners(W)

� {!elected(C) � winners([C | W])}
cleanup/1 :
!elect-all �
counted-ballot(C,L)

� {1}

Fig. 2. A linear logical specification of single transferable vote

66 H. DeYoung and C. Schürmann

Counting the Ballots

– count/1 describes counting a ballot that does not cause its candidate, C, to
reach the quota: C’s vote total increases and ballot counting continues.

– count/2 describes counting a ballot that causes its candidate, C, to finally
reach the quota. C becomes elected, being a hopeful no longer, and is added
to the list of winners. Any ballots remaining uncounted for C constitute C’s
vote surplus; the surplus is randomly selected because ballots are counted in
a random order. After C is elected, ballots continue to be counted.

– count/3.1, count/3.2, count/4.1, and count/4.2 express that no more ballots
are counted for candidates that are already either elected or defeated. The
ballots transfer to the next highest preference; if none exists, the ballot is
consumed—that is, the vote is wasted.

– Finally, count/5 and count/6 describe what happens when there are no
more ballots to count. If there are fewer open seats than hopefuls remaining
(count/5), then a candidate with the fewest votes is defeated; the generated
defeat-min token begins this process. Otherwise, if there are at least as many
open seats as hopefuls (count/6), then all remaining hopefuls are elected.

Defeating a Candidate with the Fewest Votes

– defeat-min/1 labels all hopeful candidates as potential minimums. When
there are no more hopefuls to label (i.e., when the H counter reaches 0),
defeat-min/2 transitions to the second phase of defeating a candidate.

– defeat-min′/1 and defeat-min′/2 describe a random tournament for finding,
among the potential minimums, a candidate with the fewest votes. Can-
didates not selected as the minimum are restored to their hopeful status
(defeat-min′/1). When only one candidate is a potential minimum (i.e., when
the M counter reaches 1), that candidate must have the fewest votes; she is
defeated and the process of transferring her votes begins (defeat-min′/2).

Transferring a Defeated Candidate’s Votes

– transfer/1 expresses that ballots counted for a newly defeated candidate, C,
are returned to the ballot box as uncounted ballots. As transfer/2 shows,
when the N counter reaches 0, these ballots will be re-counted. Because C is
now defeated, re-counting these ballots will effectively transfer them to the
next highest preference, if one exists (count/3.2 and count/4.2).

Finishing the STV Election

– elect-all/1 expresses that the STV algorithm finishes by electing all remaining
hopefuls. (Note that there may possibly be no remaining hopefuls at this
point.) Because this is the last step of the STV algorithm, we may think of
this step as continuing forever, idling once all remaining hopefuls have been
elected. This justifies the use of the ! modality here and also in count/6.

Linear Logical Voting Protocols 67

– When the STV algorithm finishes, the counted ballots will remain as linear
resources. The resource discipline of linear logic demands that these be used
once. Therefore, the cleanup/1 axiom consumes any remaining ballots. This
is safe because the STV algorithm has already filled all seats.

5.2 Viewing the STV Specification as a Linear Logic Program

As we did for SW-FPTP (Sect. 4), we can view the STV specification as a linear
logic program. This provides executable code for STV with the same benefits
as for SW-FPTP before: a close correspondence between code and specification,
with no separate verification needed, and verifiable traces to audit the election.
As a demonstration, a transliteration of the STV specification into Celf source
code is available at http://www.itu.dk/~carsten/files/voteid2011.tgz.

For STV, because of the coercion problem [2], only trusted individuals should
be given access to these traces. Determining the right way to adapt the crypto-
graphic solutions of the coercion problem to the logic programming approach is
an intriguing area for future work.

6 Proving the Specifications Correct

From the preceding discussions of their axioms, it should be clear that the speci-
fications correspond to the SW-FPTP and STV protocols, respectively. However,
we would like to rigorously prove these claims of correctness. Following ideas for
other logical specifications [10,9], we can prove such properties by straightfor-
ward induction on the specification’s operational semantics. To demonstrate this
technique, we will sketch correctness proofs for our protocol specifications.

6.1 Correctness of the SW-FPTP Specification

To prove that the SW-FPTP specification is correct, we must show that all exe-
cutions elect a candidate who has at least as many votes as all other candidates.
First, we establish invariants that characterize valid states in executions of the
SW-FPTP protocol.

Lemma 1. All SW-FPTP axioms preserve the following state invariants.

– Exactly one of the following holds:
• there is exactly one assumption count-ballots(U,H),
• there is exactly one assumption determine-max(H), or
• there are no assumptions count-ballots(U,H) and determine-max(H).

– For each candidate C, exactly one of the following holds:
• !elected(C) and there are no uncounted-ballot(C) assumptions,
• !defeated(C) and there are no uncounted-ballot(C) assumptions, or
• there is exactly one assumption hopeful(C,N).

http://www.itu.dk/~carsten/files/voteid2011.tgz

68 H. DeYoung and C. Schürmann

– If count-ballots(U,H), then
• there are no !elected(C) or !defeated(C) assumptions,
• there are H assumptions of the form hopeful(C,N), and
• there are U assumptions of the form uncounted-ballot(C).

– If determine-max(H), then
• there are no !elected(C) assumptions,
• there are H assumptions of the form hopeful(C,N), and
• there are no assumptions of the form uncounted-ballot(C).

– If neither count-ballots(U,H) nor determine-max(H), then
• either there is exactly one candidate C for which !elected(C), or
there are no !elected(C) or !defeated(C) assumptions; and
• there are no hopeful(C,N) assumptions.

Proof. Directly by case analysis on the SW-FPTP axioms.

Next, let a hopeful candidate C’s vote total be the sum of the number of
uncounted-ballot(C) assumptions and the unique valueN for which hopeful(C,N)
holds. Correctness of our SW-FPTP specification then follows:

Theorem 1. For all partial executions, the following hold for each candidate C:

– If hopeful(C,N1) holds at the end of the partial execution, then, at the begin-
ning of the partial execution, hopeful(C,N0) holds and C’s vote total is the
same as it will be at the end of the partial execution.

– If !defeated(C) holds at the end of the partial execution, then, at the beginning
of the partial execution, either:
1. !defeated(C) holds, or
2. hopeful(C,N0) holds and C’s vote total is no larger than the vote total

of some candidate C′ for which hopeful(C′, N ′
0) holds.

– If !elected(C) holds at the end of the partial execution, then, at the beginning
of the partial execution, either:
1. !elected(C) holds, or
2. hopeful(C,N0) holds and C’s vote total is at least as large as the vote

totals of all candidates C′ for which hopeful(C′, N ′
0) holds.

Proof. By induction on the specification’s operational semantics (that is, the
length of the execution’s trace), using the invariants from Lemma 1.

6.2 Correctness of the STV Specification

Unfortunately, unlike for SW-FPTP, there is no independent, formal model of
STV against which we might prove the full correctness of our specification. This,
in a sense, is a primary benefit of our linear logical approach: the specification’s
operational semantics serves as a formal model of STV.

Despite the absence of an independent model, we can prove properties that we
expect the putative STV specification to possess. For instance, when the STV
protocol finishes, it should be that the number of elected candidates exactly
equals the number of seats, SEATS, that were to be filled by the election (assuming
that, initially, there are at least as many candidates as seats). To prove this, we
follow a similar strategy as for SW-FPTP.

Linear Logical Voting Protocols 69

Let #elected and #hopeful be the number of distinct candidates C for which
!elected(C) and hopeful(C,N), for some N , hold, respectively. We first establish
invariants that characterize valid states in executions of the STV protocol.

Lemma 2. All STV axioms preserve the following state invariants provided that
begin(S,H,U) implies S = SEATS, #elected = 0, H = #hopeful, and S ≤ H.

– If count-ballots(S,H,U), then S = SEATS − #elected, H = #hopeful, and
S ≤ H.

– If defeat-min(S,H,M) or defeat-min′(S,H,M), then S = SEATS−#elected,
H = #hopeful, and S < H +M .

– If transfer(C,N, S,H,U), then S = SEATS − #elected, H = #hopeful, and
S ≤ H.

– If !elect-all, then #elected+#hopeful = SEATS.

Proof. Directly by case analysis on the STV axioms.

Then, because !elect-all holds and no hopefuls remain when the execution con-
cludes, the property is immediate:

Corollary 1. For all executions of the STV specification, the final state satisfies
#elected = SEATS.

Because STV is the more complicated protocol, it may seem counterintuitive
that the STV invariants stated in Lemma 2 are simpler than the SW-FPTP
invariants of Lemma 1. In fact, the invariants of Lemma 2 are not the strongest
invariants that we could prove, but suffice to prove the property of interest.

7 Conclusion

In this paper, we have promoted linear logic as a practical, mathematical lan-
guage for the rigorous specification and implementation of voting protocols. We
have demonstrated this methodology on the SW-FPTP and STV protocols. Lin-
ear logic yields concise specifications, implementations for free, auditable execu-
tions, and, perhaps most importantly, formal proofs of operational correctness.

In future work, we plan to extend our linear logic and its logic programming
engine with modalities for knowledge, possession, and secrecy, which will greatly
increase the expressive strength of the logic. For example, an epistemic modality
would give logical meaning to the secrecy properties of encryption. Modal logics
of Garg et al. [10,11] will serve as a foundation on which to build. We also
intend to develop techniques for reasoning about the security of voting protocols
specified in linear logic, such as for proving privacy and coercion-resistance.

Acknowledgements. This material is based upon work supported by a Na-
tional Science Foundation Graduate Research Fellowship for the first author.
The second author was supported in part by grant 10-092309 from the Danish
Council for Strategic Research, Programme Commission on Strategic Growth
Technologies, and by grant 10-093084 from the Danish Council for Independent
Research, Natural Sciences. The authors also wish to thank the anonymous re-
viewers for their invaluable comments.

70 H. DeYoung and C. Schürmann

References

1. Andreoli, J.M.: Logic programming with focusing proofs in linear logic. Journal of
Logic and Computation 2(3), 297–347 (1992)

2. Benaloh, J., Moran, T., Naish, L., Ramchen, K., Teague, V.: Shuffle-sum: Coercion-
resistant verifiable tallying for STV voting. IEEE Transactions on Information
Forensics and Security 4(4), 685–698 (2009)

3. Cervesato, I., Scedrov, A.: Relating state-based and process-based concurrency
through linear logic. Information & Computation 207(10), 1044–1077 (2009)

4. Chang, B.Y.E., Chaudhuri, K., Pfenning, F.: A judgmental analysis of linear logic.
Tech. Rep. CMU-CS-03-131R, Carnegie Mellon University (December 2003)

5. Chaum, D., Ryan, P.Y.A., Schneider, S.: A Practical Voter-Verifiable Election
Scheme. In: De Capitani di Vimercati, S., Syverson, P.F., Gollmann, D. (eds.)
ESORICS 2005. LNCS, vol. 3679, pp. 118–139. Springer, Heidelberg (2005)

6. Clocksin, W.F., Mellish, C.S.: Programming in Prolog, 5th edn. Springer (2003)
7. Cochran, D., Kiniry, J.: Vótáil: A formally specified and verified ballot counting sys-

tem for Irish PR-STV elections. In: Beckert, B., Marché, C. (eds.) Pre-proceedings
of the International Conference on Formal Verification of Object-Oriented Soft-
ware, Paris, France (June 2010)

8. Delaune, S., Kremer, S., Ryan, M.: Verifying privacy-type properties of electronic
voting protocols. Journal of Computer Security 17(4), 435–487 (2009)

9. DeYoung, H., Pfenning, F.: Reasoning about the consequences of authorization
policies in a linear epistemic logic. In: Cortier, V., Shmatikov, V. (eds.) Proceedings
of the Workshop on Foundations of Computer Security, Los Angeles, California
(August 2009)

10. Garg, D., Bauer, L., Bowers, K.D., Pfenning, F., Reiter, M.K.: A Linear Logic of
Authorization and Knowledge. In: Gollmann, D., Meier, J., Sabelfeld, A. (eds.)
ESORICS 2006. LNCS, vol. 4189, pp. 297–312. Springer, Heidelberg (2006)

11. Garg, D., Pfenning, F.: A proof-carrying file system. In: 31st IEEE Symposium on
Security and Privacy, pp. 349–364. IEEE Computer Society Press, Oakland (2010)

12. Girard, J.Y.: Linear logic. Theoretical Computer Science 50(1), 1–102 (1987)
13. López, P., Pfenning, F., Polakow, J., Watkins, K.: Monadic concurrent linear logic

programming. In: Barahona, P., Felty, A.P. (eds.) Proceedings of the 7th Inter-
national ACM SIGPLAN Conference on Principles and Practice of Declarative
Programming, pp. 35–46. ACM Press, Lisbon (2005)

14. Schack-Nielsen, A., Schürmann, C.: Celf – A Logical Framework for Deductive
and Concurrent Systems (System Description). In: Armando, A., Baumgartner,
P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 320–326. Springer,
Heidelberg (2008)

15. Wadler, P.: A Taste of Linear Logic. In: Borzyszkowski, A.M., Sokolowski, S. (eds.)
MFCS 1993. LNCS, vol. 711, pp. 185–210. Springer, Heidelberg (1993)

16. Watkins, K., Cervesato, I., Pfenning, F., Walker, D.: A concurrent logical frame-
work I: Judgments and properties. Tech. Rep. CMU-CS-02-101, Carnegie Mellon
University (2002) (revised May 2003)

Efficient Vote Authorization in Coercion-Resistant
Internet Voting

Michael Schläpfer1, Rolf Haenni2, Reto Koenig2,3, and Oliver Spycher2,3

1 ETH Zurich, CH-8092 Zurich, Switzerland
michschl@inf.ethz.ch

2 Bern University of Applied Sciences, CH-2501 Biel, Switzerland
{rolf.haenni,reto.koenig,oliver.spycher}@bfh.ch

3 University of Fribourg, CH-1700 Fribourg, Switzerland
{reto.koenig,oliver.spycher}@unifr.ch

Abstract. Some years ago, Juels et al. introduced the first coercion-resistant In-
ternet voting protocol. Its basic concept is still the most viable approach to ad-
dress voter coercion and vote selling in Internet voting. However, one of the main
open issues is its unrealistic computational requirements of the quadratic-time
tallying procedure. In this paper, we examine the cause of this issue, namely the
authorization of votes, and summarize the most recent proposals to perform this
step in linear time. We explain the key underlying concepts of these proposals and
introduce a new protocol based on anonymity sets. The size of these anonymity
sets serves as an adjustable security parameter, which determines the degree of
coercion-resistance. The main advantage of the new protocol is to move compu-
tational complexity introduced in recent works from the voter side to the tallying
authority side.

1 Introduction

Remote voting over the Internet gains increasing attention as many governments aim
at providing their citizens with electronic voting services. Although tremendous effort
was put in research to understand the various aspects involved in electronic voting, no
widely accepted solution to overcome all the security problems has been presented so
far. One particular problem, namely voter coercion, was introduced in 2005 by Juels
et al. in [13]. They propose a coercion-resistant Internet voting protocol to which we
will simply refer as JCJ. Their protocol has been widely discussed and examined in the
literature, and its basic concept still seems to be the most viable solution to address the
voter coercion and vote selling problems. As appealing the approach may look in theory,
it leaves some critical issues unanswered, for example the board-flooding problem or
the quadratic running time of the tallying procedure. As we will not address the board-
flooding problem in this paper, we refer to some of the most recent proposals in the
literature [14].

This paper deals with the latter problem, i.e., the quadratic running time of the tal-
lying procedure. We particularly focus on the two main building blocks of JCJ-based
protocols, namely the elimination of duplicate votes and the detection of fake votes.
These components are responsible for the expensive computations during tallying. To-
gether with the elimination of invalid votes (those with invalid zero-knowledge proofs),

A. Kiayias and H. Lipmaa (Eds.): VoteID 2011, LNCS 7187, pp. 71–88, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

72 M. Schläpfer et al.

we generally refer to these steps as vote authorization. We propose a modified proto-
col based on anonymity sets to address the efficiency problems of these building blocks
and compare our protocol to some recent proposals for efficient vote authorization. In
comparison with the closest recent protocol [6, 7], our approach is more expensive for
the tallying authorities, but less expensive for voters. We consider this as an important
property, because the computational resources on the voters’ side are usually limited
(e.g. in Internet voting, low-power devices or slow interpreted languages might be used
by voters).

In Section 2, we first introduce the JCJ protocol, its critical building blocks, and recent
improvements. In Section 3, we propose a modified protocol for efficient vote authoriza-
tion. We compare the performance of our approach to existing protocols in Section 4.
Finally, we summarize our conclusions and suggest some future work in Section 5.

2 Coercion-Resistant Internet Voting

Coercion-resistant Internet voting protocols follow in general the phases depicted in
Figure 1. Prior to any voting event, eligible voters must register with the authority to
get their credentials for participating at future elections. This phase is individual for
the voters and usually carried out only once for a number of subsequent voting events.
For every election, the following phases are repeatedly performed: election setup, vote
casting, vote authorization, tallying. Note that some protocols allow to partly carry out
vote authorization already during the vote casting phase.

Registration

Election
Setup

Vote
Casting

Vote
Authorization

Tallying

Performed for every election

Performed for multiple elections

Fig. 1. Phases of coercion-resistant Internet voting protocols

While efficient and scalable solutions exist for most of the above phases, the vote
authorization phase—as proposed by JCJ—requires computing capacities which grow
quadratically in the number of votes cast. In a large-scale election setting such as nation-
wide parliamentary elections, this leads to unrealistic performance requirements. In the
following, we explain the vote authorization phase in more detail, and then we provide
a summary of the original JCJ protocol and of some recently proposed improvements.

Efficient Vote Authorization in Coercion-Resistant Internet Voting 73

2.1 Vote Authorization

Voting from a remote private place is inherently problematic with respect to privacy,
because no privacy-preserving voting booth is used to protect it. Therefore, other mea-
sures must be taken to protect voters from coercion and to prevent vote selling. The
main measures for this in JCJ are (a) the ability of coerced voters to create and cast fake
votes, the coercer cannot distinguish from valid votes, and (b) the ability for voters to
cast multiple votes, of which only one will be counted. Hence, various types of unau-
thorized votes may appear in the electronic ballot box and must thus be excluded before
tallying. In some protocol descriptions, this phase is called pre-tallying phase, whereas
sometimes it is implicitly included in the tallying phase. We call it vote authorization
phase, which consists of the following three consecutive vote elimination steps:

Invalid Votes Elimination. The ballots created and cast by the voters usually include
cryptographic zero-knowledge proofs for various purposes, for example for the correct
construction of the encryptions, the correctness of the selected candidate choices, or
the knowledge of the plaintexts. In the first step of the vote authorization phase, the
authorities verify the validity of the proofs to exclude ballots with invalid proofs from
further processing.

Duplicate Votes Elimination. In the second step, among all ballots that were cast with
the same credential, exactly one is chosen for further processing according to some
policy. In the “last-vote-counts” policy, for example, the last valid vote cast is selected
to be included in the tallying, whereas all other votes from the same credential are
excluded from further processing. This enforces the “one-voter-one-vote” principle.

Fake Votes Elimination. To conclude the vote authorization phase, all remaining fake
votes have to be detected and removed. For this, the authorities need to check whether
or not the ballots include credentials from eligible voters. Only the ballots passing this
test are kept for the final tallying. Note that before eliminating fake votes, they must be
unlinked from the actual votes cast. Otherwise, a coercer or vote buyer could easily de-
tect the voter’s attempt of not fulfilling the demands. The unlinking is usually achieved
by shuffling the votes in a verifiable (re-encryption) mix-net.

2.2 The JCJ Protocol

In the following paragraphs, we briefly explain the phases of the JCJ protocol. Since
we focus on the main building blocks, we settle for a semi-formal style of exposi-
tion. In particular, we do not thoroughly explain well-known cryptographic techniques.
Furthermore, we assume the application of publicly verifiable group threshold mecha-
nisms whenever registering or tallying authorities perform joint computations, even if
the text might suggest a single entity. All ciphertexts are ElGamal encryptions over a
pre-established multiplicative cyclic group (Gq , ·, 1) of order q, for which the decisional
Diffie-Hellman problem (DDHP) is assumed to be hard. Note that the authors of the JCJ

74 M. Schläpfer et al.

protocol propose a modified version of ElGamal encryption for their formal proofs
to work. The discussion in this paper is based on a simplified version with ordinary
ElGamal encryptions as it is used by CIVITAS [9].

Registration. The registrars establish the random credential σ ∈ Gq and pass it to the
voter via an untappable channel. Additionally, they append a public credential, i.e.,
a randomized encryption S = Encε(σ, αS) of σ, to the voter’s entry in the public
voter roll, which is part of a public bulletin board. Value αS denotes the encryption’s
randomness, and ε stands for the tallying authorities’ common public key. Assuming a
majority of trustworthy registrars, in the end only the voter will know σ and no one will
know αS .

Vote Casting. The voter identifies a choice c from the available set of valid choices (or
candidates) C. To cast the vote, the encryptionsA = Encε(σ, αA) andB = Encε(c, αB)
are posted to the public bulletin board, via an anonymous channel. The pair (A,B) must
be accompanied by two non-interactive zero-knowledge proofs (NIZKP), one to prove
knowledge of σ and one to prove c ∈ C. Requiring the first proof prevents attackers
from casting unauthorized votes by re-encrypting entries from the voter roll (recall that
αS is not known to anyone). Since each authorized vote on the voting board will be de-
crypted during the tallying phase, the second proof is needed to prevent coercers from
forcing voters to select c �∈ C according to some prescribed pattern, thus obtaining a
receipt as described in [10].

To circumvent coercion, the voter can deceive the coercer by posting a fake vote
to the voting board. To do so, the voter simply claims some arbitrary σ′ ∈ Gq to be
the proper credential and uses it to compute A. The encrypted vote B is computed
according to the coercer’s preference and the plaintexts of A and B are revealed to
justify compliance. Alternatively, the voter can even let the coercer compute A and B
and cast the vote using σ′.

Vote Authorization. At the end of the vote casting phase, the voting board contains a
certain number N of votes cast, of which not all might make it to the final tally. First,
the authorities verify all NIZKPs that were cast along with the votes. If a proof does not
hold for a vote (A,B), it is marked accordingly and excluded from further processing
(invalid votes elimination). Then the tallying authorities need to filter out votes that were
cast multiple times with a proper credential (duplicate votes elimination) and votes that
were cast with a fake credential (fake votes elimination). For both tasks, the authors
of JCJ propose the application of plaintext equivalence tests (PET) [11]. Given two
ElGamal encryptions X = Encε(x, αX) and Y = Encε(y, αY), the group threshold
algorithm PET(X,Y) returns true for x = y and false for x �= y, without revealing
any information on x or y.1

Tallying. At the end, i.e., after eliminating all unauthorized votes, all remaining votes
are jointly decrypted and counted. The final result is published.

1 A common way of performing PET in a homomorphic encryption scheme is to check whether
the decryption of (X/Y)z equals 1 for some random value z.

Efficient Vote Authorization in Coercion-Resistant Internet Voting 75

2.3 Improvements of the JCJ Protocol

Several proposals for improving the quadratic running-time of the tallying procedure in
JCJ exist in the recent literature. In this subsection, we give a short overview of these
developments. Two of them will be described in more details, as some of their ideas
will re-appear in the description of our contribution in Section 3.

Smith, Weber [17, 19, 20]. Instead of applying PET(Ai, Aj), 1 ≤ i, j ≤ N , on all
pairs of distinct ciphertexts for removing duplicates, both Smith and Weber suggested
computing and decrypting Az

1 = Encε(σ
z
1), . . . , A

z
N = Encε(σ

z
N), where z is a ran-

dom value shared among the tallying authorities. The resulting blinded values σz
i are

stored in a hash table for collision detection in linear time. Clearly, σi = σj whenever
σz
i = σz

j . In addition to eliminating duplicate votes, both authors propose using the
same procedure for eliminating fake votes. In that case, however, based on the fact that
the same exponent z is used across all ciphertexts, the coercer gets an attack strategy to
identify whether a vote with known σ is counted [2, 9, 15]. Note that this attack does
not apply to the elimination of duplicate votes.

Araujo et al. [1–4]. To solve the efficiency problem of the JCJ scheme, Araujo et al.
suggest an approach based on group signatures. At registration, voters obtain their cre-
dentials. Unlike JCJ, no public values are related to voter roll entries. Their credentials
enable the voters to deduce invalid credentials and mislead coercers. If the provided
proofs hold, duplicates on the voting board are publicly identifiable by the equality of
two values that are cast along with the vote. After mixing the relevant values on the
voting board, the tallying authorities use their private keys to identify the legitimate
votes. Notably, all information on their legitimacy is sent along with the vote itself, but
can only be assessed by a sufficiently large group of tallying authorities. Fully avoiding
plaintext equivalence tests between cast values and voter roll entries summarizes the
essence of this elegant approach to avoid the inefficient comparison procedure.

An inherent weakness of this approach is the fact that a majority of colluding regis-
trars could compute valid (but illegitimate) credentials unnoticed. As described earlier,
adding illegitimate votes to the tally in JCJ requires the knowledge of a credential σ that
complies with an entry S in the voter roll, i.e., such attacks could easily be detected.
This is not the case in Araujo et al.’s scheme. Nevertheless, we believe that the approach
holds much potential.

Spycher et al. [18]. This protocol strongly relates to the original JCJ protocol. For
removing duplicates, they suggest using the linear-time scheme proposed by Smith and
Weber. For fake vote elimination, they suggest preserving the use of the voter roll.
The key to better efficiency lies in requiring voters to indicate which voter roll entry
their vote (A,B) relates to. Tallying authorities then apply PET only on respective
re-encryptions of A and S, where S is the public credential copied from the indicated
voter roll entry. To preserve privacy, a certain number of fake votes is introduced by
the authorities for each voter roll entry. This allows voters to deny the fact of having
submitted their vote. Vote authorization thus becomes linear over the total number of
submitted votes. More details on each steps of this protocol are given below.

76 M. Schläpfer et al.

Registration. The registration step is conducted according to JCJ. Additionally, it is
assumed that a distinct public number, for example the index i ∈ {1, . . . , n} of the
voter’s entry in the voter roll, is assigned to each voter.

Vote Casting. To cast a vote, the voters perform the same steps as in JCJ. In addition
to the values A and B along with corresponding proofs, the value C = Encε(i, αC),
accompanied by a NIZKP to prove knowledge of i, is posted to the bulletin board.
The authorities later use i to locate the public credential S on the voter roll and thus
to perform a single PET to efficiently eliminate fake votes. Note that the voting board
must also accept encryptions C of values different from the voter’s public number i.

Vote Authorization. After excluding votes with invalid proofs, the authorities add a
random number βi of additional fake votes for each voter (let β denote the average
number of additional votes per voter). After duplicate elimination by applying Smith’s
and Weber’s scheme on values A, the resulting adjusted list is passed as input to a first
re-encryption mix-net, which outputs tuples (A′, B′, C′). Next, the authorities decrypt
C′ to extract i and establish a list of tuples (A′, B′, S). Votes for which the decryption
renders an invalid index i �∈ {1, . . . , n} are excluded from further processing. The
remaining tuples are passed to a second re-encryption mix-net, which outputs tuples
(A′′, B′′, S′). Now the tallying authorities perform PET(A′′, S′) for each tuple. If the
algorithm returns false , which is the case for all fake votes, the tuple is marked to be
excluded from further processing.

Tallying. At the end, the tallying authorities jointly decrypt the values B′′ of all remain-
ing votes and publish the result.

Selections [6, 7]. Although SELECTIONS is based on JCJ, the approach presented by
Clark and Hengartner has a slightly different setting. We will shortly summarize its
phases and point out the differences.

Registration. The public credential is not an encryption of the voter’s credential σ, but
an encryption of gσ for a publicly known generator g, i.e., S = Encε(g

σ, αS).

Election Setup. For every election, the public credentials are re-randomized into S′ =
Encε(ĝ

σ, αS′), where ĝ = gα is a fresh generator and αS′ = αS ·α the new randomiza-
tion for a random (but unknown) value α. The fresh generator ĝ is also used for casting
votes. This mechanism prevents information leakage across elections.

Vote Casting. When casting a vote, the voter sends a commitment A = ĝσ, the en-
crypted vote B = Encε(c, αB), and a re-encryption of the public credential C =
ReEncε(S

′, αC) to the public bulletin board. Additionally, an anonymity set containing
S′ and β− 1 randomly chosen public credentials different from S′ is selected. Then the
voter constructs a NIZKP to prove that C is a re-encryption of one of the β public cre-
dentials in the anonymity set. This proof together with a proof of knowledge of σ and a
proof of well-formedness for c ∈ C are added to the ballot.

Efficient Vote Authorization in Coercion-Resistant Internet Voting 77

Vote Authorization. Similarly to JCJ, the tallying authorities first verify the proofs re-
lated to the submitted votes. If a proof does not hold for a vote, it is marked and ex-
cluded from further processing, i.e., invalid votes are eliminated. This can be performed
during the vote casting phase, in particular at the moment the individual ballots arrive
on the public bulletin board. The detection and elimination of duplicate votes follows
from the simple fact that votes with the same credential will have the same commitment
A = ĝσ . In that case, only one vote is kept for further processing (according to some
policy). After eliminating duplicate votes, the remaining tuples (A,B,C) are mixed
and re-encrypted (the commitment A is treated as an encryption with randomness 0)
into (A′, B′, C′). For fake vote elimination, a simple PET between A′ and C′ is per-
formed. If PET(A′, C′) returns false , which is the case for all fake votes, the vote is
marked and excluded from further processing.

Tallying. At the end, all remaining votes B′ are jointly decrypted and tallied. The final
result is published.

3 A New Protocol Based on Anonymity Sets

Similar to the protocols of Spycher et al. and SELECTIONS, our protocol strongly re-
lates to the original JCJ protocol. For eliminating duplicate votes, we propose using
the linear-time scheme of Smith and Weber, and for fake votes elimination, we suggest
linking the vote to the voter roll. Instead of explicitly introducing fake votes by the au-
thorities, we require the voter to specify an anonymity set of voters, similar to the one in
SELECTIONS. The difference is that in our protocol, the voter only claims to be one of
β voters without any proof for this claim. In contrast to SELECTIONS, the voter is thus
not required to construct an expensive zero-knowledge proof during vote casting. In the
vote authorization phase, the authorities replicate every submitted ballot into β ballots,
one for each voter in the anonymity set. In other words, every submitted proper ballot
leads to one authorized vote and β − 1 implicit fake votes. The protocol can therefore
be regarded as a synthesis between SELECTIONS and the protocol of Spycher et al.,
where β, the size of the anonymity sets, constitutes an adjustable security parameter
that determines the degree of coercion-resistance. More details on this idea are given in
the subsequent description of the protocol. An overview of the protocol is depicted in
Figure 2.

3.1 Protocol Description

In our description of the protocol, we follow the same style of exposition and nota-
tion as for the protocols described in Section 2. As many elements strongly relate to
the original JCJ protocol and its successors, we will not explain everything again in
comprehensive detail. Note that our protocol, in contrast with SELECTIONS, does not
require a particular election setup phase.

Registration. The registration step is conducted according to Spycher et al. It is thus
assumed that a distinct public number, for example the index i ∈ {1, . . . , n} of the
voter’s entry in the voter roll, is assigned to each voter.

78 M. Schläpfer et al.

Voters

Registrars

Tallying
Authorities

Re-
Encryption
Mix-Net

Fa
ke

 V
ot

es

El
im

in
at

io
n

D
ec

ry
pt

io
n

D
up

lic
at

e
Vo

te
s

El
im

in
at

io
n

In
va

lid
 V

ot
es

El

im
in

at
io

n

Vote Authorization

B
al

lo
t

R
ep

lic
at

io
n

Voter
Roll

Electronic
Ballot
Box

Encrypted
Votes

Encrypted
Votes

Fig. 2. Overview of the new protocol with some details about the vote authorization phase

Vote Casting. To cast a vote, the voter performs the same steps as in JCJ. Additionally
to posting values A and B along with corresponding proofs, a subset I ⊆ {1, . . . , n}
of size β is chosen at random and added to the ballot. This is the ballot’s anonymity
set, which must include the voter’s own index i to become a vote that counts. Since the
voting board is a public bulletin board, the voter is able to individually verify that the
vote has been cast as intended and recorded as cast.

Vote Authorization. In a first step, all votes with invalid proofs are marked to be ex-
cluded from further processing. Then duplicate votes are eliminated by applying Smith’s
and Weber’s scheme on values A. Next, the authorities create β new ballots (A,B, Sj)
for every submitted ballot and for every j ∈ I in the corresponding anonymity set.
These ballots are published on the voting board and thus, the correct construction
is universally verifiable. The adjusted list of ballots is passed as input to a verifi-
able re-encryption mix-net, which outputs tuples (A′, B′, S′

j). Now the authorities per-
form PET(A′, S′

j) for each tuple. All ballots for which the algorithm returns false are
marked and excluded from further processing.

Tallying. The remaining unmarked ballots are authorized as legitimate votes and for
every such ballot, B′ is jointly decrypted and counted.

3.2 Security

Our protocol strongly relates to SELECTIONS and generally the same security consid-
erations apply to our protocol. We do neither argue about the registration phase that
corresponds to the original JCJ protocol nor about the final talling phase, which essen-
tially consists of decrypting the authorized ballots and counting them.2 In the following,

2 The security properties of the tallying phase depend on the encryption scheme that is used and
is not related to the security properties of our protocol (as long as the encryption scheme allows
verifiable mixing and does not allow the coercer to link the cast vote to the mixed ballots).

Efficient Vote Authorization in Coercion-Resistant Internet Voting 79

A

A

B

B

A B

A B Si

...

1 : S1

i : Si

n : Sn

...

...

Voter Roll

Submitted Ballot

Generated Ballots

{j1, . . . , jβ−1, i}

Sj1

Sjβ−1

...

Fig. 3. The ballot replication step for one submitted ballot

we will briefly explain how vote casting and vote authorization in our protocol relates
to SELECTIONS and recap the security considerations of SELECTIONS with respect to
the security parameter β.

Vote Casting. As it is the case for every coercion-resistant voting protocol, the voter
must have one moment of privacy to cast the real vote. Hence, the coercer can only
observe the public bulletin board to check for the voter’s compliance. During the vote
casting phase, the public bulletin board reveals the same information to a coercer as
it is the case for SELECTIONS. Particularly, the coercer knows the number of votes
associated with each voter. The greater the security parameter β, the more likely the
coerced voter’s index occurs in someone else’s anonymity set and thus the less certain
the coercer will be regarding the voter’s compliance.

Vote Authorization. The coercer does not get additional information on whether the vote
will be tallied or not from observing the elimination of invalid votes. The next step, the
elimination of duplicate votes using the technique of Smith and Weber is the same as
in the scheme of Spycher et al. and is similar to SELECTIONS, i.e., the same security
considerations apply. The ballot replication step is different to all existing approaches.
However, the straightforward inflation of the submitted ballots with the indices of the
anonymity set is public and does obviously not reveal any additional information to
the coercer. The last step of the vote authorization phase, the mixing of the remaining
ballots and the elimination of fake votes, is again the same as in Spycher et al. and
SELECTIONS, i.e., the same security arguments apply here. In particular, because of the
fact that the coercer cannot link the eliminated ballots to the initial votes, no information
is leaked to the coercer on whether the coerced voter’s fake vote was finally accepted
or not.

Security Parameter β. Clark and Hengartner provide a thorough analysis regarding the
security parameter β (size of the anonymity sets) in SELECTIONS [7]. The exact same
considerations can be applied for our approach. There are essentially three interesting
cases:

80 M. Schläpfer et al.

1. The anonymity set includes the entire voter roll, that is β = n. In this case, the
degree of coercion-resistance corresponds to JCJ, but vote authorization (or more
precisely fake vote elimination) is again quadratic in n (or more precisely multilin-
ear in n and N , see Table 3).

2. The anonymity set has a fixed size, for example β = 50. Clark and Hengartner
showed that a coercer may decide with small but non-negligible probability whether
or not the coerced voter complied with the instructions. Hence, if β is a constant
value, coercion-resistance is not given to the full, but depending on the value of β,
to a reasonable extent.

3. The size of the anonymity set varies among voters, but has a minimal size βi ≥ β,
for example βi ≥ 50. Clark and Hengartner point out the possibility of coerced
voters to place their real vote as stealth votes with βi = n. They also emphasize
that in this situation, they need to assume that other stealth votes are cast as well to
assure adversarial uncertainty.

Temporal Aspects. The security experiments of JCJ do not fully capture some important
temporal aspects. For example, it is assumed that all honest voters submit their ballots
in only one step (i.e., in parallel). In a more realistic setting, the coercer may observe
the order and time when the ballots arrive on the public bulletin board. Consider for
example the case where the coerced voter has only a short moment of privacy during
night time, when only few other voters are casting votes. Observing the public bulletin
board during this time, the coercer might get a strong indication whether or not the
coerced voter really complied. The problem is especially problematical in both SELEC-
TIONS and our approach, since the probability that the coerced voter appears in another
voter’s anonymity set might be low (depending on the actual choice of the security pa-
rameter β). To counteract the corresponding advantage for the coercer, we propose the
following extension to our approach:

1. Before casting the ballot, the voter encrypts the anonymity set with the public key
of the tallying authorities.

2. After eliminating duplicates, but before ballot replication, the ballots are mixed and
re-encrypted in an additional re-encryption mix-net (similar to Spycher et al.).

3. The tallying authorities jointly decrypt the anonymity sets included in the mixed
ballots.

Formal Proofs. Coercion-resistance of our protocol can be proved under the game-
based definition of Juels et al. [13]. Since our approach is close to the approach pre-
sented by Clark and Hengartner, their security games serve as a starting point for the
formal proofs, which we will carry out as future work.

4 Performance Comparison

This section is dedicated to a performance comparison of all the above introduced ap-
proaches. Our comparison excludes the one-time registration phase. In our results, the
number of registered voters is denoted by n, the number of submitted ballot by N , the
number of mixing and tallying authorities by T , the number of candidates by m, and

Efficient Vote Authorization in Coercion-Resistant Internet Voting 81

the size of the anonymity sets by β. We take the work of Clark and Hengartner [6, 7]
as a starting point and augment their findings with the performance properties of our
protocol and the one of Spycher et al. We make similar assumptions to facilitate a better
comparison:

– We only use standard ElGamal encryption over a modular multiplicative group of
integers (i.e., not the modified ElGamal version of JCJ).

– We only count the number of necessary modular exponentiations to perform the
respective tasks (i.e., all other arithmetic operations are neglected).

– We do not use techniques, which could equally improve the performance of all
protocols (e.g., the “blocking technique” of CIVITAS).

– We assume that a valid vote consists of exactly one candidate c ∈ C, where m = |C|
denotes number of candidates.

– We assume that the re-encryption mix-nets use randomized partial checking [12]
for proving the correctness of the mixing (i.e., each authority mixes the encryptions
twice and half of these re-encryptions are checked).

– We assume that all encrypted votes are decrypted during the tallying phase (i.e., no
homomorphic tallying).

– We assume that all tallying authorities participate at the vote authorization phase
(e.g., distributed instead of threshold decryption or PET).

– We assume that all commitments in the distributed operations are based on hash
functions.

In contrast to Clark and Hengartner, we include the proofs of well-formedness of the
encrypted votes in our calculations. We also take the election setup of their protocol and
the tallying phase into consideration. For improving the readability of the results, we
have re-arranged the values for checking the proofs in a separate verification phase. To
simplify the results given in [6, 7], we consider only the worst case when all submitted
ballots reach the fake vote elimination phase. In other words, we assume that all sub-
mitted ballots contain valid proofs and that the ballot box contains no duplicate votes
(but searching for invalid and duplicate votes is still necessary). We also assume that
every registered voter has submitted at least one valid vote, i.e., the number of votes to
decrypt during tallying is exactly n and N ≥ n.

4.1 Performance Analysis

Table 2 and Table 3 summarize the results of the performance analysis. Table 2 is based
on corresponding values for the cryptographic primitives as given in Table 1, and Ta-
ble 3 shows the same results more compactly in Big-Oh notation. Note that some of
the values in Table 1 slightly differ from the ones given in [6, 7]. Since proving knowl-
edge of a plaintext requires only a proof of knowledge of the encryption randomness
(Schnorr), it can be constructed with 1 and verified with 2 exponentiations. Proving
the correct decryption corresponds to proving a single equality of discrete logarithms
(Chaum-Pederson). In the distributed case with T authorities, this simply scales up to
T , 2T , and 4T exponentiations for performing the partial decryptions, constructing the
proofs, and verifying the proofs, respectively. Finally, a proof of encrypting 1-out-of-m
plaintexts requires 4m−2 exponentiations to construct (2 for the correct value and 4 for

82 M. Schläpfer et al.

Table 1. Number of necessary exponentiations for various cryptographic primitives according to
the procedures as described in [5, 8, 16]

Perform
Operation

Generate
Proof(s)

Verify
Proof(s)

Encryption: Standard ElGamal encryption with proof of knowledge of plaintext
(Schnorr).

2 1 2

Well-Formed Encryption: Standard ElGamal encryption of 1-out-of-m possible
plaintexts with proof of well-formedness (Chaum-Pederson, OR-composition).

2 4m − 2 4m

Re-Encryption: Standard ElGamal re-encryption with proof of correctness
(Chaum-Pederson).

2 2 4

Well-Formed Re-Encryption: Standard ElGamal re-encryption of 1-out-of-β
possible encryptions with proof of well-formedness (Chaum-Pederson).

2 4β − 2 4β

Mixing: Re-encryption and permutation of N ciphertext tuples of length k. 2kN 2kN 4kN

Mix-Net: T authorities perform a re-encryption mix-net with randomized partial
checking (double re-encryption, but only half of the proofs are provided).

4kNT 2kNT 4kNT

Commitment: Applying an exponent with proof of knowledge (Schnorr). 1 1 2

Distributed Commitment: T authorities applying exponents with proofs of
knowledge (Schnorr).

T T 2T

Blinding: Applying an exponent on the ciphertext with proof of correctness
(Chaum-Pederson).

2 2 4

Distributed Blinding: T trustees applying exponents on the ciphertexts with
proofs of correctness (Chaum-Pederson).

2T 2T 4T

Decryption: Standard ElGamal decryption with proof of correctness (Chaum-
Pederson).

1 2 4

Distributed Decryption: T trustees performing distributed ElGamal decryptions
with proofs of correctness (Chaum-Pederson).

T 2T 4T

Plaintext Equivalence Test: Distributed blinding followed by distributed decryp-
tion.

3T 4T 8T

every m−1 simulated values in the OR-composition) and 4m exponentiations to verify.
Similarly, proving the re-encryption of 1-out-of-β ciphertexts requires 4β−2 exponen-
tiations to construct and 4β to verify the proof. The results given in Table 2 are based on
these modifications, but they have no impact on the asymptotic results of Table 3. Note
that the performance of the final tallying by decrypting the valid votes in a distributed
way is the same in all protocols (nT exponentiations for performing the decryptions,
2nT for constructing the proofs, and 4nT for verifying the proofs). More details about
the performance calculations are given in the upcoming paragraphs.

a) JCJ (CIVITAS). Vote casting consist of two encryptions (= 4) with one proof of
knowledge of plaintext (= 1) and one proof of well-formedness (= 4m−2). Vote au-
thorization requires verifying N proofs of knowledge (= 2N) and N proofs of well-
formedness (= 4mN) to eliminate invalid votes,

(
N
2

)
many PETs (= 3

2 (N
2−N)T)

Efficient Vote Authorization in Coercion-Resistant Internet Voting 83

Table 2. Performance comparison by counting the number of modular exponentiations required
in each phase

JCJ
(CIVITAS)

Araujo
et al.

Spycher
et al.

Clark et al.
(SELECTIONS)

Our
Protocol

Election Setup – – – (4n+2)T –

Vote Casting 4m+3 4m+13 4m+6 4β+4m+2 4m+3

Vote Authorization

Eliminate Invalid Votes (4m+2)N (4m+10)N (4m+4)N (4β+4m+2)N (4m+2)N

Insert Fake Votes – – 6βn – –

Elim. Duplicate Votes 7
2 (N

2−N)T 0 7(N+βn)T 0 7NT

1st Mixing of Ballots 12NT 30NT 18(N+βn)T 18NT 18βNT

2nd Mixing of Ballots – – 21(N+βn)T – –

Mixing of Credentials 6NT – – – –

Eliminate Fake Votes 7nNT (14T+6)N 7(N+βn)T 7NT 7βNT

Tallying 3nT 3nT 3nT 3nT 3nT

Verification

Election Setup – – – 4(n+1)T –

Eliminate Invalid Votes (4m+2)N (4m+10)N (4m+4)N (4β+4m+2)N (4m+2)N

Elim. Duplicate Votes 4(N2−N)T 0 8(N+βn)T 0 8NT

1st Mixing of Ballots 8NT 20NT 12(N+βn)T 12NT 12βNT

2nd Mixing of Ballots – – 16(N+βn)T – –

Mixing of Credentials 4NT – – – –

Eliminate Fake Votes 8nNT (16T+8)N 8(N+βn)T 8NT 8βNT

Tallying 4nT 4nT 4nT 4nT 4nT

with proofs (= 2(N2−N)T) to eliminate duplicates, a re-encryption mix-net for N en-
cryption pairs (= 8NT) with proofs (= 4NT) to mix the ballots, a second re-encryption
mix-net for n single encryptions (= 4NT) with proofs (= 2NT) to mix the credentials,
and finally nN many PETs (= 3nNT) with proofs (= 4nNT) to eliminate fake votes.
Corresponding values for verifying the proofs follow accordingly.

b) Araujo et al. We use the latest version of the protocol for the comparison [3] and adopt
the analysis provided in [7]. Vote casting consists of four encryptions (= 8) with three
proofs of knowledge of plaintext (= 3) and one proof of well-formedness (= 4m− 2).

84 M. Schläpfer et al.

Table 3. Performance comparison by describing the asymptotic growth of the numbers of expo-
nentiations in each phase using the Big-Oh notation (relative to n, N , β, m, and T)

JCJ
(CIVITAS)

Araujo
et al.

Spycher
et al.

Clark et al.
(SELECTIONS)

Our
Protocol

Election Setup – – – nT –

Vote Casting m m m β+m m

Vote Authorization N2T+nNT+mN NT+mN NT+βnT+mN NT+βN+mN βNT+mN

T,m = const. N2+nN N N+βn βN βN

Tallying nT nT nT nT nT

Verification N2T+nNT+mN NT+nT+mN NT+βnT+mN NT+βN+nT+mN βNT+nT+mN

T,m = const. N2+nN N+n N+βn βN + n βN + n

Two of the encrypted values and one of the non-encrypted values need one exponentiation
to compute (= 3). A proof of representation that relates the non-encrypted to one of the
encrypted values (= 1) is added to the ballot. To eliminate invalid votes, vote authoriza-
tion requires verifying 3N proofs of knowledge (= 6N), N proofs of well-formedness
(= 4mN), and N proofs of representation (= 4N). Duplicates can be removed at no ad-
ditional costs. As suggested in [7], we omit the additional encryption step, which can be
performed by the first mix-net authority. The re-encryption mix-net takes N encryption
5-tuples (= 30NT) as input and produces corresponding proofs (= 20NT). Finally,
eliminating fake votes requires for each vote two commitments (= 2N), two Chaum-
Pederson proofs (= 4N), and two PETs (= 6NT) with proofs (= 8NT). Corresponding
values for verifying the proofs follow accordingly.

c) Spycher et al. Vote casting consist of three encryptions (= 6) with two proofs of
knowledge of plaintext (= 2) and one proof of well-formedness (= 4m−2). Vote
authorization requires verifying 2N proofs of knowledge (= 4N) and N proofs of
well-formedness (= 4mN) to eliminate invalid votes, three encryptions without proofs
for each of the βn inserted fake votes (= 6βn), N+βn many distributed blinding
operations (= 2(N+βn)T) with proofs (= 2(N+βn)T) and distributed decryptions
(= (N+βn)T) with proofs (= 2(N+βn)T) to eliminate duplicates (Smith’s and We-
ber’s scheme), a re-encryption mix-net for N+βn encryption triples (= 12(N+βn)T)
with proofs (= 6(N+βn)T) to mix the ballots, N+βn distributed decryptions
(= (N+βn)T) with proofs 2(N+βn)T plus another re-encryption mix-net for
N+βn encryption triples (= 12(N+βn)T) with proofs (= 6(N+βn)T) to mix the
ballots a second time, and finally N+βn many PETs (= 3(N+βn)T) with proofs
(= 4(N+βn)T) to eliminate fake votes. Corresponding values for verifying the proofs
follow accordingly.

Efficient Vote Authorization in Coercion-Resistant Internet Voting 85

d) Clark et el. (SELECTIONS). The election setup requires n distributed blinding op-
erations (= 2nT), one distributed commitment (= T) and an AND-composition of
corresponding proofs (= 2nT + T). Vote casting consist of a commitment (= 1) with
a proof of knowledge (= 1), a re-encryption (= 2) with a proof of well-formedness
(= 4β − 2), and one encryption (= 2) with a proof of well-formedness (= 4m−2).
Vote authorization requires a re-encryption mix-net for N encryption triples (= 12NT)
with proofs (= 6NT) to mix the ballots, and finally N many PETs (= 3NT) with
proofs (= 4NT) to eliminate fake votes. Corresponding values for verifying the proofs
follow accordingly.

e) Our Protocol. Vote casting consist of two encryptions (= 4) with one proof of
knowledge of plaintext (= 1) and one proof of well-formedness (= 4m−2). Vote au-
thorization requires verifying N proofs of knowledge (= 2N) and N proofs of well-
formedness (= 4mN) to eliminate invalid votes, N many distributed blinding opera-
tions (= 2NT) with proofs (= 2NT) and distributed decryptions (= NT) with proofs
(= 2NT) to eliminate duplicates (Smith’s and Weber’s scheme), a re-encryption mix-
net for βN encryption triples (= 12βNT) with proofs (= 6βNT) to mix the ballots,
and finally βN many PETs (= 3βNT) with proofs (= 4βNT). Corresponding values
for verifying the proofs follow accordingly.

4.2 Discussion

In our new protocol, casting a vote is as efficient as in the original JCJ protocol or in
CIVITAS. For a fixed candidate set, a constant number of exponentiations is needed. If
the candidate set is reasonably small, this seems to be feasible on today’s typical client
platforms (e.g., 11 exponentiations are needed for m = 2 choices in a referendum).
Compared to SELECTIONS, where casting a vote depends on the security parameter β,
this is the main advantage of our approach. We think that for reasonably large anonymity
sets, the protocol of Clark et al. is not competitive enough to be considered as a solu-
tion for a coercion-resistant voting system (e.g., 210 exponentiations are needed for
β = 50 and m = 2). Asymptotically, the number of exponentiations is O(β+m) for
SELECTIONS and O(m) for all the others (see Table 3).

To determine the protocol with the most efficient vote authorization procedure, for
example by interpreting the general asymptotic results in Table 3, we need to take into
account multiple systems parameters. To facilitate this task, we propose two simplifi-
cations: we consider a constant number of authorities and a fixed candidate set (both T
and m affect all protocols in a similar way). The corresponding simplified growth rates
are shown in Table 3 below the general results. While JCJ and CIVITAS are essentially
quadratic in N , it turns out that Araujo et al.’s protocol—although it has relatively high
constant factors—is the only one that is truly linear in N . Among the others, the ad-
vantage of Spycher et al’s protocol is the fact that β only multiplies with n, the number
of voters, which is fixed for a given election (whereas the number of submitted ballots
N has no upper bound). On the other hand, Spycher et al’s protocol has the least fa-
vorable constant factors among all. Our new protocol and SELECTIONS are comparable
with respect to their growth rates, but SELECTIONS has a significantly lower constant

86 M. Schläpfer et al.

factor for βN . However, SELECTIONS allows to carry out the invalid votes elimination
already during the vote casting phase, which is a considerable advantage compared to
our protocol. Note that the same conclusions hold for the verification procedure.

5 Conclusion

We have presented a new improvement of the JCJ protocol that allows efficient vote
authorization without requiring more computation power on the voter’s side. Concep-
tually, it is a mix between the existing protocols of Spycher et al. and SELECTIONS. To
conclude this paper, we summarize the phases with emphasis on vote authorization and
compare our protocol with the different approaches discussed in this paper.

Election Setup. In contrast to SELECTIONS, our protocol as well as the other examined
protocols require no election setup.

Vote Casting. Compared with the protocol of Spycher et al. we do not require the
authorities to generate random fake votes during the vote casting phase and therefore
we reduce the effort for the authorities in this phase. In contrast to SELECTIONS, our
improvement introduces no additional effort for the voter in terms of modular expo-
nentiations. The voter only has to add a set of β voter roll indices to the ballot. When
applied on systems and technologies with limited computing resources such as mobile
phones or web applications using JavaScript, all additional performance requirements
are undesirable. Another advantage of our approach is the fact, that security parameter
β does not affect the client-side at all. We believe that security should not be bounded
by the computing equipment of the individual voters or even require them to buy better
computers to protect their privacy or an e-voting protocol to a reasonable degree. More-
over, this contradicts the fundamental principle of equality. In our approach β only
affects the server-side performance requirements which is more scalable with respect to
computation power.

Vote Authorization. The lower computation requirements for the voters during the vote
casting phase yield more effort to put in the vote authorization phase. Security param-
eter β affects the computational requirements on the server-side as a linear factor. In
particular, we need to explicitly remove duplicates using the linear approach of Smith
and Weber and we enlarge the input of the mix-net by factor β. Hence, mixing in our
protocol requires additional computing power compared to the other protocols.

Current and Future Work. Since our protocol strongly relates to existing proven
concepts, we informally justified the correctness of the individual phases. However,
future work includes formal proofs of correctness of these arguments. Currently, we
are engaged in developing prototypes for various coercion-resistant voting protocols.
Our experience with these realizations will allow us to compare the existing approaches
from a more practical perspective.

Efficient Vote Authorization in Coercion-Resistant Internet Voting 87

Acknowledgments. We thank Jeremy Clark and the three anonymous reviewers for
their constructive comments. This research is supported by the Swiss Federal Chan-
cellery, the Hasler Foundation (project No. 09037), and the Mittelbauförderung of the
Bern University of Applied Sciences.

References

1. Araujo, R.: On Remote and Voter-Verifiable Voting. PhD thesis, Department of Computer
Science, Darmstadt University of Technology, Darmstadt, Germany (2008)

2. Araújo, R., Foulle, S., Traoré, J.: A practical and secure coercion-resistant scheme for re-
mote elections. In: Chaum, D., Kutylowski, M., Rivest, R.L., Ryan, P.Y.A. (eds.) FEE 2007,
Frontiers of Electronic Voting, Schloss Dagstuhl, Germany, pp. 330–342 (2007)

3. Araújo, R., Foulle, S., Traoré, J.: A Practical and Secure Coercion-Resistant Scheme for In-
ternet Voting. In: Chaum, D., Jakobsson, M., Rivest, R.L., Ryan, P.Y.A., Benaloh, J., Kuty-
lowski, M., Adida, B. (eds.) Towards Trustworthy Elections. LNCS, vol. 6000, pp. 330–342.
Springer, Heidelberg (2010)

4. Araújo, R., Ben Rajeb, N., Robbana, R., Traoré, J., Youssfi, S.: Towards Practical and Secure
Coercion-Resistant Electronic Elections. In: Heng, S.-H., Wright, R.N., Goi, B.-M. (eds.)
CANS 2010. LNCS, vol. 6467, pp. 278–297. Springer, Heidelberg (2010)

5. Brandt, F.: Efficient Cryptographic Protocol Design Based on Distributed El Gamal Encryp-
tion. In: Won, D.H., Kim, S. (eds.) ICISC 2005. LNCS, vol. 3935, pp. 32–47. Springer,
Heidelberg (2006)

6. Clark, J.: Democracy Enhancing Technologies: Toward Deployable and Incoercible E2E
Elections. PhD thesis, University of Waterloo, Canada (2011)

7. Clark, J., Hengartner, U.: Selections: Internet Voting with Over-the-Shoulder Coercion-
Resistance. In: Danezis, G. (ed.) FC 2011. LNCS, vol. 7035, pp. 47–61. Springer, Heidelberg
(2012)

8. Clarkson, M.R., Chong, S., Myers, A.C.: Civitas: Toward a secure voting system. Technical
Report TR 2007-2081, Department of Computer Science. Cornell University (2007)

9. Clarkson, M.R., Chong, S., Myers, A.C.: Civitas: Toward a secure voting system. In:
SP 2008, 29th IEEE Symposium on Security and Privacy, Oakland, USA, pp. 354–368
(2008)

10. Di Cosmo, R.: On privacy and anonymity in electronic and non electronic voting: the ballot-
as-signature attack. Hyper Articles en Ligne, hal-00142440(2) (2007)

11. Jakobsson, M., Juels, A.: Mix and Match: Secure Function Evaluation via Ciphertexts. In:
Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 162–177. Springer, Heidelberg
(2000)

12. Jakobsson, M., Juels, A., Rivest, R.L.: Making mix nets robust for electronic voting by ran-
domized partial checking. In: Boneh, D. (ed.) SS 2002, 11th USENIX Security Symposium,
San Francisco, USA, pp. 339–353 (2002)

13. Juels, A., Catalano, D., Jakobsson, M.: Coercion-resistant electronic elections. In: Atluri,
V., De Capitani di Vimercati, S., Dingledine, R. (eds.) WPES 2005, 4th ACM Workshop on
Privacy in the Electronic Society, Alexandria, USA, pp. 61–70 (2005)

14. Koenig, R., Haenni, R., Fischli, S.: Preventing Board Flooding Attacks in Coercion-Resistant
Electronic Voting Schemes. In: Camenisch, J., Fischer-Hübner, S., Murayama, Y., Portmann,
A., Rieder, C. (eds.) SEC 2011. IFIP AICT, vol. 354, pp. 116–127. Springer, Heidelberg
(2011)

15. Pfitzmann, B.: Breaking an Efficient Anonymous Channel. In: De Santis, A. (ed.)
EUROCRYPT 1994. LNCS, vol. 950, pp. 332–340. Springer, Heidelberg (1995)

88 M. Schläpfer et al.

16. Rjasková, Z.: Electronic voting schemes. Diploma thesis, Department of Computer Science.
Comenius University, Bratislava, Slovak Republic (2002)

17. Smith, W.D.: New cryptographic voting scheme with best-known theoretical properties. In:
FEE 2005, Workshop on Frontiers in Electronic Elections, Milan, Italy (2005)

18. Spycher, O., Koenig, R., Haenni, R., Schläpfer, M.: A New Approach towards Coercion-
Resistant Remote E-Voting in Linear Time. In: Danezis, G. (ed.) FC 2011. LNCS, vol. 7035,
pp. 182–189. Springer, Heidelberg (2012)

19. Weber, G., Araujo, R., Buchmann, J.: On coercion-resistant electronic elections with linear
work. In: ARES 2007, 2nd International Conference on Availability, Reliability and Security,
Vienna, Austria, pp. 908–916 (2007)

20. Weber, S.: Coercion-Resistant Cryptographic Voting: Implementing Free and Secret Elec-
tronic Elections. VDM Verlag, Saarbrücken (2008)

The Bug That Made Me President

a Browser- and Web-Security Case Study
on Helios Voting

Mario Heiderich, Tilman Frosch, Marcus Niemietz, and Jörg Schwenk

Chair for Network and Data Security
Ruhr-University Bochum, Germany

Abstract. This paper briefly describes security challenges for critical
web applications such as the Helios Voting system. After analyzing the
Helios demonstration website we discovered several small flaws that can
have a large security critical impact. An attacker is able to extract sen-
sitive information, manipulate voting results, and modify the displayed
information of Helios without any deep technical knowledge or laboratory-
like prerequisites. Displaying and processing trusted information in an
untrustworthy user agent can lead to the issue that most protection
mechanisms are useless. In our approach of attacking Helios voting sys-
tems we do not rely on an already infected or trojanized machine of the
user, instead we use simple and commonly known web browser features
to leverage information disclosure and state modification attacks. We
propose that online voting applications should at least follow the latest
vulnerability mitigation guidelines. In addition, there should be thorough
and frequent coverage with automated as well as manual penetrations
tests in privacy sensitive applications. E-Voting software driven by web
browsers is likely to become an attractive target for attackers. Successful
exploitation can have impact ranging from large scale personal informa-
tion leakage, financial damage, calamitously intended information and
state modification as well as severe real life impact in many regards.

Keywords: Web Application Security, Privacy, E-Voting, Browser
Security, Vulnerability Mitigation, Information Disclosure.

1 Introduction

Helios is an online voting web application framework composed in Python. The
core is fully open sourced, can be reviewed and forked on Github and is currently
being maintained by B. Adida, O. de Marneffe, and O. Pereira [1]. Helios was
peer-reviewed in 2008 [2]. It makes use of client-side data encryption to sustain
its security model. Furthermore, it ensures that the surveyed ballot data can se-
curely traverse the communication layers from user agent to verification instances
and voting servers. Since version three, Helios does not exclusively rely on Java
Applets and LiveConnect [3] for client side encryption anymore. Instead Helios
makes use of a JavaScript-based encryption library. However, fully JavaScript-
based client side cryptography is currently being implemented, but not deployed

A. Kiayias and H. Lipmaa (Eds.): VoteID 2011, LNCS 7187, pp. 89–103, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

90 M. Heiderich et al.

in public versions so far. Still parts of the application do not work properly in
case that a user has deactivated JavaScript or uses a restricted configuration.

The currently available demonstration website1 allows users to log in via Twit-
ter, Google, Facebook, or Yahoo and to quickly set up elections containing dif-
ferent questions with different sets of possible answers. Helios also allows to have
voters publish their voting results with the help of social networking features by
interacting with Twitter and Facebook APIs. Helios is fully open sourced so that
anyone who is questioning its inner workings can have a closer look into the source
code by analyzing the Python and JavaScript files of the system. Another benefit
of Helios is being open-audit - which means that even without a source code au-
dit or external validation mechanisms the election data can be verified based on
individual ballot encryption – adding another layer of security and trustability.

The International Association for Cryptologic Research (IACR) initiated an
electronic election demonstration in August 2009 [4]. As a consequence they used
Helios as voting system later on to get feedback from the IACR members. The
results were inter alia that over ninety-one percent want to switch to electronic
voting over the Internet for IACR decisions. In addition, over eighty-eight per-
cent would like to use Helios as voting system. The acceptance of an electronic
voting system and, especially, of Helios is extremely high. This underlines the im-
portance to conduct a security analysis of this tool.

Risk Assessment. A serious risk for Helios-based applications and voting pro-
cesses are client side attack techniques and patterns such as Cross-Site Scripting
(XSS), Cross-Site Request Forgery (CSRF), or remote state detection and ma-
nipulation as well as phishing attacks [5]. The cryptographic protocol and the
security mechanisms protecting the voting process and the vote transmission be-
come meaningless as soon as an attacker is able to inject client side JavaScript
or even plugin code, for the reason that he or she is able to modify the data
the voter is working on – or record and extract keystrokes, clicks, and mouse
movements to unveil the voters actions and voting intents.

Whereas after a short test no “low hanging fruit” XSS vulnerabilities were
spotted, Helios nevertheless suffers several feature-based weak spots – including
more complex XSS problems an attacker might initially overlook. They allow for
an attacker to easily interfere with the voting process by manipulating data or
by redirecting users to different domains providing malicious lookalike pages of
the voting application. Attacker-controlled malicious web pages offer possibilities
for stealing and back-channeling voting results and other sensitive information.
This can be done by using user interface (UI)-based attack techniques such as
Clickjacking [6], Drag & Drop-based attacks [7], which can lead to content ex-
traction, and other recently published techniques.

Attacks. In section 2 we elaborate on some simple yet effective web attacks
against Helios-based voting applications. We show that simple measures are suf-
ficient to interrupt or heavily disturb the voting process. These measures lead

1 https://vote.heliosvoting.org

https://vote.heliosvoting.org

The Bug That Made Me President a Browser- and Web-Security Case Study 91

to a situation, where it is at least feasible to leak private information. We also
present several trivial but effective attacks against Helios by utilizing a Docu-
ment Object Model (DOM) property, which is used to name frames and identify
window handles for redirects and cross-domain location changes. Furthermore
we list and discuss further design and implementation bugs we discovered in
Helios, including CSRF problems, XSS bugs and additional ways to attack the
platform and extract sensitive data.

We demonstrate how an attacker is able to use small and seemingly harmless
features and tricks to generate a compound of attacks capable of completely
compromising a Helios-based voting application. Unlike Esteghahri et al. [8] we
actually found existing client side vulnerabilities in Helios and didn’t require
the user to open a PDF or any other malicious file to successfully compromise
an election. We will further point out the dangers as well as the risks of web-
based voting systems and survey software. In addition, we provide mitigation
concepts and suggestions how to remedy the vulnerabilities we discovered. With
the fixing instruction we provide, we hope to improve Helios one step further
to be a robust and secure web-based voting system, to make it capable to cope
with the immane tasks such a software is entrusted with.

2 Exploits and Vulnerabilities

One of the most effective ways to interfere with the voting process of a possible
victim is abusing a window handle the Helios application is connected with. In
case an attacker can spawn or even just link a Helios instance with a name
that he or she controls, there is an easy way to remote control the handle’s
location – even across domain borders. This allows an attacker to interfere with
an election process, leak sensitive data and redirect a user to a different website
in the middle of a voting step without him necessarily noticing this dangerous
interruption. Among other reasons we will point out, this is due to the fact
that the public Helios demonstration application neither uses HTTP headers,
which check if a browser is allowed to render the web page in a frame or not,
nor JavaScript frame busting code performing this task. Neither does the Helios
application reset the window’s name to prevent any UI redressing attack. Thus,
an attacker can control the tab, frame, or pop-up’s location string. We discuss
the implication below.

2.1 Attacking Named Windows

Consider the following attack case: during the time of a public voting an attacker
sends out many phishing mails inviting a user to the real and unmodified voting
application. The user will access a website, crafted by the attacker, where he
finds a link to the actual benign voting website. Alternatively the attacker will
use a HTML mail already containing the link to the election website. Note: In
this scenario nothing is wrong with the linked target – it is the actual application

92 M. Heiderich et al.

without having any suspicious parameters attached. No modifications have mali-
ciously taken place with the voting application before. The attacker amends the
link pointing to the voting application with a target attribute. This attribute
ensures that the window.name variable of the resulting new tab or window will
be pre-set to the exact value of the target attribute. The example code shown
in Listing 1.1 demonstrates that.

<a t a r g e t=”pub l i c hand l e ”
h r e f=”https : // benign . vot ing . webs i te/”>

Voting Appl i ca t ion

Listing 1.1. Malicious website linking the voting application

The attacker can now interact with the freshly created frame, tab, or pop-
up window and change its URL without any restrictions. This is caused by
the frame’s Document Object Model (DOM) property window.name; it will
be assigned to the value public_handle and any other clicked link or call on
window.open() bearing this target will cause a location change on the voting
application tab.

<a h r e f=”#” onc l i c k=”open (’// e v i l . com ’ , ’ pub l i c handle ’) ;
r e turn f a l s e ;”>

Voting Appl i ca t ion

Listing 1.2. The window.open() method addressing a specific frame handle

The only limitation in this context are Cross Site Scripting (XSS) attempts
to set the target’s URL to a JavaScript URI and thereby executing JavaScript
cross domain and stealing sensitive data directly from the attacked DOM. This
is not working in modern browsers as our tests showed. However, the attacker
can still use timing attacks to find out, which state of the voting process the
victim is currently residing in and thus deploy specific and visually matching
arbitrary content by changing the URL in the correct moment. The only neces-
sary requirement for this is to have an active tab, window, or even pop-under,
in which the attacker can execute JavaScript over a long period of time. If the
user closes this browser instance the attack will not work anymore – unless the
attacker spawns a new tab or window in case of an onunload event.

More specific UI attacks are possible based on an unset or guessable
window.name variable. Nevertheless, this example shows the true potential quite
well. Few to no suspicious user interactions are necessary to be able to read
sensitive data, redirect the user to a different but similar looking application
on a different domain and retrieve passwords and other sensitive information.
Clickjacking attacks can be considered even more dangerous in this case, since
an attacker only has to take different frames of the same voting application and
overlap them with each other to trick the user into selecting choices and casting

The Bug That Made Me President a Browser- and Web-Security Case Study 93

a ballot for arbitrary candidates – which might possibly differ from the original
voting intention [9]. The Tab-Nabbing attacks described by Raskin [10,11] relate
to these kinds of tricks as well, same as the CSS-based injection attacks published
by Barth et al [12], discussed in subsection 2.3.

During our tests against the public Helios demonstration website we also
noticed a lack of security measures to protect the DOM against an attacker
who is capable to execute JavaScript on this domain. There are several ways
to limit the possibilities for post exploitation in case of an XSS attack. This
includes JavaScript sandboxes, proper Content Security Policy (CSP) headers
as well as a good architectural style chosen for the websites client side business
logic [13]. Almost the whole client side business logic relies on global variables
easily accessible to the attacker, which includes the whole cryptographic logic.
The attacker can – in case that JavaScript code was injected successfully –
easily overwrite and thus tap global methods such as save_questions() or
str_hmac_sha1().

A first aid approach to fix the global leakage of important and critical DOM
methods would be to wrap the whole business logic into an anonymous JavaScript
method – this would prevent easy DOM clobbering and method overwriting [14].
Furthermore, a JavaScript sand-boxing approach should be chosen to make sure
an attacker cannot execute arbitrary client side script code without having to
bypass the sandbox restrictions [15]. Instrumentation of a library such as the
OWASP ESAPI for JavaScript could help encoding user generated data properly,
in case it’s being handled by the JavaScript layer only, to prevent DOMXSS [16].
It’s worth to note though: none of the currently available JavaScript sandboxes
provide reliable and tamper-proof security on all modern browsers. Nevertheless
a JavaScript sandbox is one of many ways to raise the bar in terms of web ap-
plication security. An application, which is as critical as a voting tool, should
include any available countermeasure to provide a higher degree of security.

2.2 Cross-Site Scripting and Open Redirects

The Helios system suffers a vulnerability in the administration area allowing an
attacker to create an open redirect. The URL parameter continue_url offers
the possibility to place malicious code into the web page via an a-tag, which
can be influenced by an attacker to redirect the administrator to an external
domain without necessarily noticing the domain change. The attack scenario is
surprisingly simple to set up – nothing more has to be done than to trick the
election administrator into clicking a malicious link from arbitrary sources. These
can include emails, instant messaging (IM), or even documents such as DOC files
and PDFs. The attacker does not have to know any secret data such as a URL
token representing the unique ID of the election - the URL is fully generic. This
attack enables effective and simple phishing attempts and can easily be carried
out even by non-tech-savvy adversaries.

To escalate the whole attack and therefore accomplish a fully reflected script
execution on the actual domain where the election is being stored, an attacker
can utilize a self-contained URI resource, also known as data URI [17]. Data URIs

94 M. Heiderich et al.

are capable of containing any given user input, introduced by the schema handler
data: followed by a MIME type declaration with optional encoding parameters.
An sample attack against the publicly available demonstration application of
Helios is shown in Listing 1.3.

https : // vote . h e l i o s v o t i n g . org / h e l i o s / nocook ie s ?
c on t i nu e u r l=data : t ex t /html ,< s c r i p t>a l e r t (1)</ s c r i p t>

Listing 1.3. A malicious link introducing an injection

The resulting markup on the Helios application is shown in Listing 1.4; a
harmless link asking the administrator to proceed to finishing the election and
prepare the ballot.

Enable c o ok i e s and then <a
h r e f=”/ h e l i o s / t e s t c o o k i e ? c on t i nu e u r l=data

%3Atext%2Fhtml%2C%3Csc r ip t%3Ea l e r t%281%29%3C%2Fsc r ip t%3E
”>proceed to prepar ing your ba l l o t

Listing 1.4. The injection result reflected on Helios

This attack requires user interaction – namely a click on the now infected
link. Modern browsers such as Firefox 4 or Chrome do not allow the executed
JavaScript to access the election domain and read sensitive data. Older user
agents such as Firefox 3 and older Safari and Opera versions nevertheless treat
data URIs less carefully and allow the rendered markup access to the origin
domain. This enables a fully reflected Cross-Site Scripting (XSS) attack includ-
ing theft and manipulation of sensitive election data – either from the logged
in voter or administrator. A different attack yields a much higher impact and
resided in a bug we discovered embedded in the actual voting process, having
the application attempt to use the data supplied by the parameter election url
to fuel the voting application with a JavaScript Object Notation (JSON) literal
containing the necessary data for displaying the questions or candidates. The
request URI necessary to fetch the JSON contains the election ID - a string usu-
ally carried on between administration pages via GET, thus publicly visible and
easy to retrieve for an attacker. An example snippet of an infected JSON file is
shown in Listing 1.5 When opening the URL directly, the name of the election
will be reflected unfiltered, since the application assumes that in a JSON context
no additional HTML encoding is necessary. This vulnerability could be used to
conduct a full stack XSS attack allowing the attacker to obtain read and write
access to the whole election process and a voters, or even administrators account.
The approach worked on all tested user agents, including Internet Explorer 9,
Firefox 4, Safari 5, and Opera 11.

The vulnerability enabled an attacker to craft a dummy election on the same
voting server as the targeted election, send the link to his or her very own JSON
file to the logged in victim and thus perform a Cross-Site Scripting attack using
a persistent XSS – even avoiding detection by client side filters. In a worst case

The Bug That Made Me President a Browser- and Web-Security Case Study 95

scenario an attacker could steal sensitive information, change the displayed data
or the whole ballot and election configuration and even get hands on the logged
in administrators credentials by extracting cookie data and plain text password
via XSS. Note that the JSON file is publicly requestable, depending on the
election configuration, and capable of harming any user being logged in on the
election server.

[{” answer u r l s ” : [nu l l , nu l l , nu l l , n u l l] , ” answers ” :
[” Yes ” , ”No” , ””]
. . . }]

Listing 1.5. An infected Helios JSON file

In general the Helios application should consider user generated output as
untrusted and encode it properly – no matter in which context it is being dis-
played. Also each of the several parameters allowing specification of URLs to
load data from or redirect to should be validated internally before being used.
Otherwise open redirects, phishing attacks, and worse can result.

2.3 Extracting Sensitive Data via CSS

During our tests we noticed that in most situations critical characters, able to
introduce XSS attacks, are being encoded properly. This is especially the case for
characters such asU+0022, U+003C andU+003E. There are also couple of other
special characters – namely the characters U+007B and U+007D (curly brack-
ets). These two characters have semantic use in Cascaded Style Sheets (CSS)
and mark the delimiters for a CSS property value assignment block preceded by
a selector. An attacker can inject the code sequence {}*{font-family:{ which
will, in the eyes of the user agent, turn the Helios website into a valid style-sheet
that can further be included by a malicious website. When this malicious website
is then visited by the targeted user or administrator, it will apply any text be-
hind the last U+007B character of the injected string as the font family for any
element in its context. The attacker can now use JavaScript code running in the
context of the visiting user to extract the CSS font-family data and send it to
any arbitrary domain – an example shown in Listing 1.6 demonstrates the data
extraction involved in this attack. This enables large scale data theft from the
Helios election website including sensitive data such as candidates available in
the election and the user’s vote, as well as election IDs, CSRF tokens, and other
values that should not leave the Helios domain context. Note that with a stolen
CSRF token an attacker can easily remote administrate an election by luring the
administrator to a malicious website which then will auto-submit forms with ar-
bitrary form element values on behalf of the administrator – fully transparent
and without user interaction. To fix this issue it is highly recommended to encode
those curly characters to hexadecimal or decimal HTML entities – including the
character U+0040 capable of initiating @charset and @import directives. The
attack was documented and discussed by Barth et al. and Phung [12,18].

96 M. Heiderich et al.

<s c r i p t>window . onload = func t i on (){
i f (window . getComputedStyle) {

var va lue = window . getComputedStyle (t e s t , nu l l)
. getPropertyValue (’ font−family ’) ;

} e l s e {var va lue = t e s t . c u r r en tS ty l e . fontFamily }
a l e r t (va lue + document . s t y l e She e t s [0] .

c s sRu l e s . item (0) . cssText) ;
}</ s c r i p t>

Listing 1.6. Accessing CSS properties via JavaScript

2.4 Real Life Impact

Each of the aforementioned exploitation techniques already poses high risk for
a Helios voting application and its users. Nevertheless we decided to craft and
discuss a real life attack scenario to underline the impact of combining the dis-
cussed attacks in Section 2.1, 2.2, and 2.3. By using the available techniques an
attacker is able to inject malicious code for inter alia compromising the account
of a Helios voting system administrator. This can be done by luring the adminis-
trator into clicking a malicious link, which leads to loading JavaScript code into
the administrators browser context to eavesdrop on every keystroke entered (JS
keylogger) or extract the content entered in a specific part of the website (see
Section 2.2). After exfiltrating the administrator’s credentials, the authenticity
of the administrator account is no longer given.

As the attacker gained control over the administrative interface, a modification
of the respective election is possible. Thus, an attacker can act in the context
of this user and influence wide parts of the survey assets. A XSS vulnerability
found in the questions section the user is confronted with again allows for the
inclusion of arbitrary code that will be executed in the voters context, as soon as
he or she accessed the respective section during the voting process. By now the
attacker has gained complete control over the interaction between the user and
the Helios voting system, as he or she an modify the user input before it reaches
the voting application and can also modify the output delivered by the voting
system before the user receives it. The most simple application of this power can
be referred to as a social engineering DoS (Denial-of-Service) attack: while the
Helios applications continues to work underneath, the user is presented with a
new layer controlled by the attacker using Clickjacking-techniques. Examples for
attacks like these include showing a blank frame, non-suspicious error messages
overlapping the requested web page or an overlay that informs the user that the
survey is already expired or can be found at a different location.

Based on the position gained by the attacker so far, the verification specifi-
cations [19] will still work, but not necessarily on the correct data. The voter is
unable to verify, if the vote was captured correctly, as the attacker controls the
visual interface the user reviews and can present an output that is consistent
with the user input captured before, while the input passed to the voting system
can differ. Especially an unobservant voter has no reason to suspect that anyone

The Bug That Made Me President a Browser- and Web-Security Case Study 97

tampered with their vote. Because of the adversarially controlled visual interface
of the Helios voting system, the voter may be duped to follow a bad link to a
ballot verifier site that is controlled by the adversary. In this way there will be
no hope to detect a bad ballot. On the other hand, if the voter starts a new
browser session and goes independently to a ballot verifier web-site copy pasting
the bad encryption data then the attacker is caught.

The possibility for an attacker to compromise a Helios administrator account
yields further problems: Assuming an attacker is able to inject scripting code as
shown in Section 2.2 it is possible to de-anonymize the user. This can be done by
using HTML5 geo-location techniques, overlaying elements with UI redressing
attacks to capture user input [1], setting cross-domain and flash cookies [20]
to track a voter on websites accessed after or during the voting process, and
inter alia utilize CSS-based history detection [21,22]. Allowing an attacker to
gain access to the voter’s browsing history and other information can thus lead
to de-anonymization and is another example of threats birthing from scripting
attacks against browser based voting systems.

3 Mitigation Techniques

The following section will outline several proposed protection mechanisms to
help Helios-based voting applications provide better protection of the voters and
their data security and integrity. The most important issue to allude is the lack
of header directives enabled by default to prevent the most serious UI redressing
techniques such as Clickjacking.

Recommended Headers for Helios-Based Voting Applications

– HTTP/1.1 200 OK

– Content-Type: text/html; charset=utf-8

– Transfer-Encoding: chunked

– Connection: keep-alive

– Keep-Alive: timeout=20

– Vary: Accept-Encoding

– Cache-Control: max-age=0, private, must-revalidate

– X-UA-Compatible: IE=Edge,chrome=1

– X-Frame-Options: SAMEORIGIN

– X-XSS-Protection: 1;mode=block;

– X-Content-Type-Options: nosniff

Note that not all the headers listed above are necessarily security relevant and
thus might not be discussed in the following paragraphs. Most importantly the
XSS protection headers have been introduced, signalizing a browser to block
script execution in case an injection was detected [23]. This is important -
since omitting this header completely will make the application prone to at-
tacks against an un-patched Internet Explorer 8 and a bug in its XSS filter,
unveiled in 2009 [24].

98 M. Heiderich et al.

The X-Content-Type-Options header will forbid user agents to sniff content
types, in case mismatches between extension, MIME type, and file name are
being spotted. This kind of attack has been seen rather often in real life and
can possibly be used against the platforms’ image upload tool and other compo-
nents [25]. The header setting might as well help prevent XSS attacks delivered
via JSON files – in case the correct MIME type is given by the server. Otherwise
an attacker can abuse the content type sniffing features of common user agents to
execute active HTML in arbitrary file types such as discussed in subsection 2.2.
Also worth considering is the implementation of a framekiller fall-back composed
in JavaScript making sure that the website cannot be framed. This is interest-
ing for the reason that the HTTP header was introduced by Microsoft in 2008
and therefore is not supported by older web browsers like Internet Explorer 7
or Firefox 2 [26]. An academic publication by Jackson et al. sheds more light
on proper ways to install JavaScript-based frame-busting code and how to avoid
common pitfalls [27]. Another suggestion regarding such a frame-buster was de-
veloped by Jason Li et al. [28]. The DOM property window.name should be set
to an unguessable random value changing with every request. This makes sure
the application cannot be opened in a named frame or pop-up window and later
be remotely controlled by the attacker via a different frame, tab, or website.
While a header and JavaScript-based frame buster provides better protection
against framing attacks, a pop-up attack can not be easily mitigated with these
header directions. It has proven helpful in our tests to have a website check for
the existence of a global opener variable - and deny operations in case it was
found, thus indicating the presence of a potentially malicious website spawning
the victim window in a pop-up.

The analysis of the demo website markup showed that in the header area two
of the <meta> tags were separated by two newlines. This is actually a very well
working protection against MHTML-based attacks, where an attacker transforms
the website into a valid MHTML document, and opens it in Internet Explorer
with the prefix mhtml: and a trailing file identifier such as !xss.html. These
kinds of attacks have been rarely documented, information can be found on the
HTML5 Security Cheatsheet [29]. It should be noted for further development it-
erations that every HTML view possibly containing user generated data should
have two newlines in a very early location of the HTML header. We consider this
protection mechanisms to be accidentally in place – since this kind of attack is
not very well known. Finally the set of escaped and encoded characters should
be extended to decrease and mitigate the risk of Cross-Site Scripting attacks and
CSS-based information theft. This holds for critical characters in any context,
as illustrated by the attack described in subsection 2.2 as well as subsection 2.3.
Also the CSRF protection should be reviewed closely to avoid problems with the
application ignoring faulty or even missing CSRF tokens in critical forms. We
noticed that most of the forms used by Helios are applied with a CSRF token
to prevent remote submission and data manipulation, but sometimes simply re-
moving the token did surprisingly not have any effect on the form submit. This
means an attacker can easily submit forms on behalf of a logged in user lured on

The Bug That Made Me President a Browser- and Web-Security Case Study 99

a specially prepared website. Our tests showed that some forms do not possess
a protecting CSRF token at all – it is highly recommended to enforce usage of
the tokens and make sure each and every non-idempotent request is protected
properly. A single gap in the protection grid can allow an attacker to start with
an initial injection and use it to escalate further into the system to change crit-
ical settings after some steps. Ultimately there’s a multitude of attack patterns
we did not test again yet – so the platform developers should keep awareness on
what happens in the web and browser security research community and harden
Helios accordingly.

4 Related Work

There are many publications focusing on the attack of booth-based e-voting
systems, where the paper ballot is replaced by an electronically submitted bal-
lot. However, the voter still casts a ballot at a polling place using a dedicated
computer system. For example, Bannet et al. use a simplified direct recording
electronic (DRE) voting system called Hack-a-Vote to demonstrate how these
systems are susceptible to manipulation [30]. Diebold’s AccuVote-TS DRE has
been subject to a source code analysis by Kohno et al. [31]. They discovered that,
besides other security problems, voters can cast unlimited votes without being
detected and without having insider privileges. Feldman et al. analyzed a live
Diebold AccuVote-TS used in US elections and point out further vulnerabilities
in software and hardware that could allow for vote stealing and viral spreading of
malicious code from machine to machine [32]. Gonggrijp and Hengeveld studied
the Nedap/Groenendaal ES3B voting computer used in elections in the Nether-
lands, Germany, and France [33]. They show that brief access to the machine
before an election suffices to gain complete and virtually undetectable control
over the election outcome. Bishop and Wagner state that, while assessing voting
systems certified for use in California, they found that the systems appeared not
to be designed with security in mind [34]. Appel et al. analyse the Sequoia AVC
Advantage DRE voting system and find it vulnerable to a variety of attacks,
including unnoticed vote stealing [35]. Balzarotti et al. develop a methodology
for attacking electronic voting systems [36] that can partially be abstracted for
attacking remote or Internet voting systems.

Volkamer et al. point out [37] that Internet voting systems deal with a much
less controlled environment than booth-based e-voting systems. This is under-
lined by the fact that the entity responsible for the election has commonly no or
limited control over the client used by the voter. The authors propose a solution
where trust in a certain system configuration is assured by means of trusted com-
puting. They also point out that the common cryptographic measures of resilient
voting protocols are not enough, as client-side manipulations take place before
cryptographic operations are applied. Joaquim et al. [38] argue along similar
lines, as the main concern of many protocols proposed so far is vote manipu-
lation at server side, while assuming a trusted client. Burmester and Magkos [39]

100 M. Heiderich et al.

as well as Pasquinucci [40] also acknowledge that even if it is possible to as-
sure that the server the voting application is running on is configured correctly
and kept up to date the same can not be assured for the voters computer and
browser. The integrity of the voters computer however is a basic assumption in
the design of RIES, the Rijnland Internet Election system [41]. RIES was at-
tacked by Gonggrijp et al. [42] who found several weaknesses within the source
code, among them opportunities for Cross-Site-Scripting and SQL injection due
to a lack of user input validation.

In addition to RIES, prior versions of Helios have also been subject to attacks
both on design and implementation level. Cortier and Smyth present an attack
that violates the security objective of ballot secrecy within Helios [43]. This
vulnerability will be fixed in Helios 3.1 [44]. Helios 2.0 was prone to an attack that
exploits a known vulnerability in Adobe Reader to install a malicious browser
extension [8]. The extension was capable of manipulating the ballot cast by the
user. However, the approach exploits a vulnerability previously and explicitly
acknowledged by the Helios authors [45]. In contrast, the attacks presented by
us do neither rely on a flawed third-party browser extension nor the installation
of malicious code on the voter’s computer, but make use of features available in
every recent browser.

5 Conclusion

While the back-end of Helios based voting applications might be provable secure,
the front-end so far is not. Even with a decent protection level against common
web application attack techniques there remain a lot of unpublished and less
known ways to get hands on sensitive information and interfere with critical
processes. The client side security of a system such as Helios should be considered
with the same closeness as its cryptographic features and ways of submitting
sensitive voter data to the voting verifier and servers.

Web application security is, considering that its actual outcome is affected by
many layers, a troubled field. Whereas many high-profile websites and critical
web applications ensure that network, protocol, and application layers are well
secured by providing a state of the art protection, the client side is often being
forgotten or treated insufficiently. Web developers have yet to fully grasp that
the weakest link in the security chain is still the browser and the user operating
on it.

Not only due to the mentioned reasons, securing web applications is not an
effortless task – facing the unpredictable cloud of outdated, insecure, and quirky
browser implementations. A voting system attackable via browser quirks, legacy
features, and vulnerabilities might fuel either simple and less relevant surveys
or in the worst case actual political elections. Attackers can use simple tricks to
attack even highly secure web applications by tricking their users perceptions.
We suggest to consider voting applications as critical components and make sure
the environment, which is running the user agent, as well as the user agent itself,
is trusted and can not be modified by adversaries with malicious intent.

The Bug That Made Me President a Browser- and Web-Security Case Study 101

After we spotted the aforementioned security bugs and implementation prob-
lems we contacted Helios’ maintaining author B. Adida to go through the dis-
cussed bugs and consider the suggested fixes. At the time of writing most of the
vulnerabilities have already been approved and addressed for in-time fixes. The
Helios application should therefore soon be a more secure and trustworthy appli-
cation, capable of handling the immane responsibility a browser based software
voting system demands. It is to be noted that Helios being open sourced and
openly testable via a public demonstration application was highly beneficiary
and enabled us to spot, describe, and submit the issues we spotted; many other
applications suffer from the principle security by obscurity and thus it is difficult
for them to gain a similar security level as Helios.

References

1. Adida, B.: benadida/helios-server - GitHub (2011), https://github.com/

benadida/helios-server

2. Adida, B.: Helios: Web-based open-audit voting. In: Proceedings of the 17th
USENIX Security Symposium, Security 2008 (2008)

3. Mozilla Foundation: LiveConnect (MDC Documentation) (2011),
https://developer.mozilla.org/en/LiveConnect

4. Haber, S., Benaloh, J., Halevi, S.: The Helios e-Voting Demo for the IACR (2010),
http://www.iacr.org/elections/eVoting/heliosDemo.pdf

5. Johns, M.: Code Injection Vulnerabilities in Web Applications - Exemplified at
Cross-site Scripting. PhD thesis, University of Passau, Passau (2009)

6. Balduzzi, M.: New insights into clickjacking. In: OWASP AppSec Research (2010)
7. Stone, P.: Next Generation Clickjacking (2010), https://media.blackhat.com/

bh-eu-10/presentations/Stone/

BlackHat-EU-2010-Stone-Next-Generation-Clickjacking-slides.pdf

8. Estehghari, S., Desmedt, Y.: Exploiting the client vulnerabilities in internet E-
voting systems: hacking Helios 2.0 as an example. In: Proceedings of the 2010
International Conference on Electronic Voting Technology/Workshop on Trust-
worthy Elections, EVT/WOTE 2010 (2010)

9. Niemietz, M.: UI redressing: Attacks and countermeasures revisited (2011),
http://ui-redressing.mniemietz.de/uiRedressing.pdf

10. Raskin, A.: Tabnabbing: A new type of phishing attack (2010),
http://www.azarask.in/blog/post/a-new-type-of-phishing-attack/

11. Krebs, B.: Devious new phishing tactic targets tabs (2010),
http://krebsonsecurity.com/2010/05/

devious-new-phishing-tactic-targets-tabs/

12. Barth, A., Caballero, J., Song, D.: Secure content sniffing for web browsers, or how
to stop papers from reviewing themselves. In: Proc. of the 30th IEEE Symposium
on Security and Privacy (Oakland 2009), Oakland (2009)

13. Stamm, S., Sterne, B., Markham, G.: Reining in the web with content security
policy. In: Proceedings of the 19th International Conference on World Wide Web
(2010)

14. Heiderich, M.: <malicious></markup>: HTML form controls reviewed (2008),
http://maliciousmarkup.blogspot.com/2008/11/

html-form-controls-reviewed.html

https://github.com/benadida/helios-server
https://github.com/benadida/helios-server
https://developer.mozilla.org/en/LiveConnect
http://www.iacr.org/elections/eVoting/heliosDemo.pdf
https://media.blackhat.com/bh-eu-10/presentations/Stone/BlackHat-EU-2010-Stone-Next-Generation-Clickjacking-slides.pdf
https://media.blackhat.com/bh-eu-10/presentations/Stone/BlackHat-EU-2010-Stone-Next-Generation-Clickjacking-slides.pdf
https://media.blackhat.com/bh-eu-10/presentations/Stone/BlackHat-EU-2010-Stone-Next-Generation-Clickjacking-slides.pdf
http://ui-redressing.mniemietz.de/uiRedressing.pdf
http://www.azarask.in/blog/post/a-new-type-of-phishing-attack/
http://krebsonsecurity.com/2010/05/devious-new-phishing-tactic-targets-tabs/
http://krebsonsecurity.com/2010/05/devious-new-phishing-tactic-targets-tabs/
http://maliciousmarkup.blogspot.com/2008/11/html-form-controls-reviewed.html
http://maliciousmarkup.blogspot.com/2008/11/html-form-controls-reviewed.html

102 M. Heiderich et al.

15. Phung, P.H., Sands, D., Chudnov, A.: Lightweight Self-Protecting javascript. In:
ACM Symposium on Information, Computer and Communications Security (ASI-
ACCS) (March 2009)

16. OWASP: Enterprise security API (2011), http://www.owasp.org/index.php/

Category:OWASP Enterprise Security API
17. Masinter, L.: RFC 2397 - the “data” URL scheme (1998), http://www.ietf.org/

rfc/rfc2397.txt
18. Huang, L., Weinberg, Z., Evans, C., Jackson, C.: Protecting browsers from Cross-

Origin CSS attacks. In: Proc. of the 17th ACM Conference on Computer and
Communications Security, CCS 2010 (2010)

19. heliosvoting.org: Helios v1 and v2 Verification Specs (2011),
http://documentation.heliosvoting.org/verification-specs/

helios-v1-and-v2-verification-specs
20. Ayenson, M., Wambach, D.J., Soltani, A., Good, N., Hoofnagle, C.J.: Flash

cookies and privacy ii: Now with html5 and etag respawning (2011),
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1898390

21. Janc, A., Olejnik, L.: Web Browser History Detection as a Real-World Privacy
Threat. In: Gritzalis, D., Preneel, B., Theoharidou, M. (eds.) ESORICS 2010.
LNCS, vol. 6345, pp. 215–231. Springer, Heidelberg (2010)

22. Weinberg, Z., Chen, E.Y., Jayaraman, P.R., Jackson, C.: I still know what you
visited last summer (2011), http://websec.sv.cmu.edu/visited/visited.pdf

23. Ross, D.: IE8 security part IV: the XSS filter - IEBlog (2008),
http://blogs.msdn.com/b/ie/archive/2008/07/02/

ie8-security-part-iv-the-xss-filter.aspx
24. Maone, G.: IE’s XSS filter creates XSS vulnerabilities (2009),

http://hackademix.net/2009/11/21/

ies-xss-filter-creates-xss-vulnerabilities/
25. MSDN: MIME type detection in internet explorer (2011),

http://msdn.microsoft.com/en-us/library/ms775147(v=vs.85).aspx
26. Mozilla Foundation: The X-Frame-Options response header (MDC Documenta-

tion) (2010), https://developer.mozilla.org/en/
the x-frame-options response header

27. Rydstedt, G., Bursztein, E., Boneh, D., Jackson, C.: Busting frame busting: a study
of clickjacking vulnerabilities on popular sites. In: Web 2.0 Security and Privacy
2010 (W2SP 2010) (2010)

28. Li, J., Schmidt, C., Crawford, B.: Clickjacking defense (2011),
https://www.codemagi.com/blog/post/194

29. Silin, A.: HTML5 security cheatsheet: MHTML Attacks (2011),
http://html5sec.org/?mhtml

30. Bannet, J., Price, D.W., Rudys, A., Singer, J., Wallach, D.S.: Hack-a-vote: Security
issues with electronic voting systems. IEEE Security & Privacy 2, 32–37 (2004)

31. Kohno, T., Stubblefield, A., Rubin, A.D., Wallach, D.S.: Analysis of an electronic
voting system. In: Proceedings of the 25th IEEE Symposium on Security and Pri-
vacy, Oakland 2004 (2004)

32. Feldman, A.J., Halderman, J.A., Felten, E.W.: Security analysis of the Diebold
AccuVote-TS voting machine. In: Proceedings of the USENIX Workshop on Accu-
rate Electronic Voting Technology (2007)

33. Gonggrijp, R., Hengeveld, W.: Studying the Nedap/Groenendaal ES3B voting com-
puter: a computer security perspective. In: Proceedings of the USENIX Workshop
on Accurate Electronic Voting Technology (2007)

34. Bishop, M., Wagner, D.: Risks of e-voting. Communications of the ACM 50 (2007)

http://www.owasp.org/index.php/Category:OWASP_Enterprise_Security_API
http://www.owasp.org/index.php/Category:OWASP_Enterprise_Security_API
http://www.ietf.org/rfc/rfc2397.txt
http://www.ietf.org/rfc/rfc2397.txt
http://documentation.heliosvoting.org/verification-specs/helios-v1-and-v2-verification-specs
http://documentation.heliosvoting.org/verification-specs/helios-v1-and-v2-verification-specs
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1898390
http://websec.sv.cmu.edu/visited/visited.pdf
http://blogs.msdn.com/b/ie/archive/2008/07/02/ie8-security-part-iv-the-xss-filter.aspx
http://blogs.msdn.com/b/ie/archive/2008/07/02/ie8-security-part-iv-the-xss-filter.aspx
http://hackademix.net/2009/11/21/ies-xss-filter-creates-xss-vulnerabilities/
http://hackademix.net/2009/11/21/ies-xss-filter-creates-xss-vulnerabilities/
http://msdn.microsoft.com/en-us/library/ms775147(v=vs.85).aspx
https://developer.mozilla.org/en/the_x-frame-options_response_header
https://developer.mozilla.org/en/the_x-frame-options_response_header
https://www.codemagi.com/blog/post/194
http://html5sec.org/?mhtml

The Bug That Made Me President a Browser- and Web-Security Case Study 103

35. Appel, A.W., Ginsburg, M., Hursti, H., Kernighan, B.W., Richards, C.D., Tan,
G., Venetis, P.: The new jersey voting-machine lawsuit and the AVC advantage
DRE voting machine. In: Proceedings of the 2009 Conference on Electronic Vot-
ing Technology/Workshop on Trustworthy Elections, EVT/WOTE 2009. USENIX
Association (2009)

36. Balzarotti, D., Banks, G., Cova, M., Felmetsger, V., Kemmerer, R., Robertson,
W., Valeur, F., Vigna, G.: An Experience in Testing the Security of Real-World
Electronic Voting Systems. IEEE Transactions on Software Engineering 36 (2010)

37. Volkamer, M., Alkassar, A., Sadeghi, A.R., Schulz, S.: Enabling the application
of open systems like PCs for online voting. In: Proceedings of the Workshop on
Frontiers in Electronic Elections 2006 (2006)

38. Joaquim, R., Ribeiro, C., Ferreira, P.: Improving Remote Voting Security with
CodeVoting. In: Chaum, D., Jakobsson, M., Rivest, R.L., Ryan, P.Y.A., Be-
naloh, J., Kutylowski, M., Adida, B. (eds.) Towards Trustworthy Elections. LNCS,
vol. 6000, pp. 310–329. Springer, Heidelberg (2010)

39. Burmester, M., Magkos, E.: Towards secure and practical E-Elections in the new
era. In: Secure Electronic Voting. Advances in Information Security, pp. 63–76
(2003)

40. Pasquinucci, A.: Web voting, security and cryptography. Computer Fraud & Secu-
rity 2007, 5–8 (2007)

41. Hubbers, E., Jacobs, B., Schoenmakers, B., van Tilborg, H., de Weger, B.: De-
scription and analysis of RIES (2008), http://www.win.tue.nl/eipsi/images/

RIES descr anal v1.0 June 24.pdf

42. Gonggrijp, R., Hengeveld, W.-J., Hotting, E., Schmidt, S., Weidemann, F.: RIES
- Rijnland Internet Election System: A Cursory Study of Published Source Code.
In: Ryan, P.Y.A., Schoenmakers, B. (eds.) VOTE-ID 2009. LNCS, vol. 5767, pp.
157–171. Springer, Heidelberg (2009)

43. Cortier, V., Smyth, B.: Attacking and fixing Helios: An analysis of ballot secrecy.
Technical Report 2010/625 (2010)

44. Adida, B.: Attacks and Defenses - Helios (2011),
http://documentation.heliosvoting.org/attacks-and-defenses

45. Adida, B., De Marneffe, O., Pereira, O., Quisquater, J.: Electing a university presi-
dent using open-audit voting: analysis of real-world use of helios. In: Proceedings of
the 2009 Conference on Electronic Voting Technology/Workshop on Trustworthy
Elections (2009)

http://www.win.tue.nl/eipsi/images/RIES_descr_anal_v1.0_June_24.pdf
http://www.win.tue.nl/eipsi/images/RIES_descr_anal_v1.0_June_24.pdf
http://documentation.heliosvoting.org/attacks-and-defenses

An Efficient and Highly Sound Voter Verification
Technique and Its Implementation

Rui Joaquim1 and Carlos Ribeiro2

1 Inesc-ID \ISEL
Rua Conselheiro Emídio Navarro 1, 1959-007 Lisboa, Portugal

rjoaquim@cc.isel.pt
2 Inesc-ID \UTL

Rua Alves Redol 9 - 6 andar, 1000-029 Lisboa, Portugal
carlos.ribeiro@ist.utl.pt

Abstract. This paper presents MarkPledge3 (MP3), the most efficient
specification of the MarkPledge (MP) technique. The MP technique al-
lows the voter to verify that her vote is correctly encrypted with a sound-
ness of 1−2−α, with 20 ≤ α ≤ 30, just by performing a match of a small
string (4-5 characters). Due to its simplicity, verifying the election public
data (vote encryptions and tally) in MP3 is 2.6 times faster than with
MP2 and the vote encryption creation on devices with low computational
power, e.g. smart cards, is approximately 6 times better than the best of
the previous MP specifications (MP1 and MP2).

Keywords: Verifiability, Voter Vote verification, MarkPledge.

1 Introduction

The MarkPldege (MP) technique was introduced by Neff in 2004 [22] with the
goal of providing high vote encryption assurance to the voter, i.e. give the voter
high certainty that the encrypted vote, generated by the voting machine, is an en-
cryption of the voter’s choice. In its essence MP defines how to encrypt two types
of votes: a vote in favor of a candidate, a Y ESvote, and a vote against/neutral
to a candidate, a NOvote. The MP candidate vote encryption is special because
it contains random data that is used to create a verification code, which can to
prove to the voter the type of the candidate vote encryption. The voter verifies
that a candidate vote encryption is in fact a Y ESvote by doing a short string
match. The verification of a NOvote usually requires some extra effort from the
voter, but can be made unneeded by the specific vote protocol where it is used.

In MP based vote protocols [1,3,4,19,22], the voter’s choice is encrypted with
a Y ESvote, for the selected candidate, and with several independent NOvotes
for the non selected candidates. Then, a vote receipt is created with the veri-
fication codes of all candidate vote encryptions. To simplify the voter’s receipt
verification, the vote protocol provides a mathematical proof that there is only
one Y ESvote in the set of candidate encryptions, therefore the voter only needs
to verify the Y ESvote candidate encryption.

A. Kiayias and H. Lipmaa (Eds.): VoteID 2011, LNCS 7187, pp. 104–121, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

MarkPledge 3 105

The soundness of the voter verification process is 1 − 2−α, where α is a con-
figurable security parameter that defines the size in bits of the verification code
to match. To achieve a usability vs security balance, α is usually set to a value
between 20 and 30, corresponding to a verification code of 4 to 5 characters.

The high soundness of the voter’s receipt verification is only guaranteed if
the vote encryption is valid and the vote receipt correct, i.e. if there is only
one Y ESvote and if all verification codes match the corresponding individual
candidate vote encryptions. However, the proofs of vote validity and receipt cor-
rectness require some complex math, which the common voter cannot perform.
Thus, the MP technique, and the vote protocols that use it, define public veri-
fiable vote validity and receipt correctness proofs to protect the voter’s privacy.
Anyone with the sufficient knowledge and computational power can verify the
validity and correctness of all vote-receipt pairs.

Our major contribution is a faster MP solution (MP3) that can be proven to
be as sound and privacy-keeping as any of previous MP solutions [4,22], without
consuming more memory. Both previous MP solutions [4, 22] have high com-
putational vote generation costs, which makes them unsuitable to be used in
mobile voting scenarios where the voting machine has low computational power,
e.g. a smart-card or a secure element of a mobile phone, both usually standard
JavaCards. MP3 also offers a considerable 2.6 times improvement on the public
vote-receipt validity and correctness verifications over the best previous solu-
tion (MP2). This improvement enlarges the number of public organizations with
enough computer power to verify all the votes of a national general election .

Our second contribution is an abstraction layer for the MP technique, com-
posed of 5 functions: the vote encryption function VEpk, which creates the can-
didate vote encryption; the vote receipt creation function RCpk, which given
a candidate encryption generates the corresponding verification code; the vote
validity function VVpk, which verifies the validity of a candidate encryption;
the receipt validity function RVpk, which validates the correspondence between
a candidate vote encryption and a verification code; and, finally, a canonical-
ization function Cpk which prepares the candidate vote encryption for the vote
tally process. The MP abstraction layer adds nothing to the MP solutions (MP1,
MP2 and MP3) or to the MP based vote protocols. It only identifies common
processes to all MP solutions, thus, it facilitates the comparison of the different
MP solutions and their substitution in a MP based vote protocol.

We have partially implemented each one of the three MP solutions (MP1, MP2
and MP3) in two types of smart-cards, a MULTOS smart card and a JavaCard.
The former is faster, but the latter is more ubiquitous, being deployed in secure
elements of recent mobile phones and many National Identity Cards. In both
cases MP3 is the only viable solution given that the time required to vote with
MP1 and MP2 exceeds the time a user will be, usually, willing to wait.

The next section presents the related work and describes the simplified version
of a MP vote protocol. Sections 3 and 4 describe the new MP3 proposal and
present a detailed description of its cryptographic functions. Section 5 provide
a comparative analysis of all MP solutions. Finally, we conclude in section 6.

106 R. Joaquim and C. Ribeiro

2 Related Work

The research on electronic voting protocols always had the goal to provide verifi-
able protocols [7,8,13,14,16,17,20,24]. However, the verification procedures are
usually too difficult for a human to do, requiring the use of a trusted Vote Ma-
chine (V M) to help the voter in the process. In 2004, Chaum [9] and Neff [22]
(MarkPledge) introduced techniques that enable a human to verify a crypto-
graphic vote, eliminating the need for a trusted V M .

In the original Chaum’s work [9] the voter verifies her vote through a two-
sheet ballot print, by a special printer, that uses transparent sheets and visual
cryptography to show the voter choices in a human readable format. The voter
then destroys one sheet and keeps the other as a verifiable privacy-preserving
receipt. This procedure models a simple “cut-and-choose" technique giving the
voter a 1

2 probability to detect a fraud. Punchscan [10] and Pret a Voter [12]
simplify the Chaum’s system setup by using a simpler pre-printed ballot. In both
systems the voter still have only a probability of 1

2 to detect any fraud with her
vote. Both systems allow for pre-election cut-and-choose verification aiming to
reduce the danger of a large scale fraud. The verification procedure consists in
printing an excess of ballots and then randomly auditing the extra ballots.

Adida and Neff [3] and Joaquim et al. [19] present simplifications to the voter
interaction of MP, improving its usability. In 2006, and also based on the MP
construction, Moran and Naor presented a voter verifiable voting system with
everlasting privacy [21], replacing the vote encryption with vote commitments.
The main disadvantage of the original MP specification (MP1) is the high com-
putational costs of the technique, specially when compared to a vote protocol
that encrypts the vote as a simple encryption of the candidate identifier. In MP1
the vote is encrypted with 2 · α encryptions for each candidate. A direct conse-
quence of the MP1 vote encryption structure is that the vote encryption needs
2 · α · k more disk space when compared to a simple vote encryption, where k
is the number of running candidates. The performance issues of MP were first
addressed in MP2 [4]. However, MP2 is still too heavy for low computational
power devices (cf. section 5.1).

A completely different voter verification approach was proposed by Benaloh
in [5, 6]. His proposal consists in separating the vote encryption process from
the vote casting process. The V M is responsible only for the vote encryption,
which it delivers to the voter (e.g. in a paper receipt). The voter can then choose
to cast the vote or to verify it by asking to decrypt the encrypted vote. In this
solution the voter can verify as many vote encryptions as she wants until she
gains confidence in the V M . In theory, this approach can have the same 1−2−α

MP soundness if a voter is allowed to use the V M to create 2α independent vote
encryptions. This procedure is clearly unpractical and would yield a computa-
tional cost much higher than the one of the original MP. The ideas of Benaloh’s
work were used for the voter verification mechanisms used by the VoteBox [25]
and Helios [2] voting systems.

MarkPledge 3 107

2.1 MarkPledge Simplified Vote Protocol Overview

Usually, a voter has no way to be assured that the cryptographical representation
of her vote, produced by the voting machine, encodes her candidate choice. MP
attains that goal by performing a zero-knowledge proof (ZKP) with the voter
herself, not with some proxy, that the encrypted vote for the chosen candidate
is, in fact, a Y ESvote. In order to ensure receipt-freeness a simulated ZKP is
conducted for every other candidate encryption (NOvotes), in such a way that
only the voter is able to tell which is the real proof among the simulated ones.

More precisely, zero-knowledge, in the MP context, means that it is not possi-
ble to identify the type of a candidate encryption from the corresponding public
data: candidate encryption, verification code and corresponding mathematical
proofs of vote validity and verification code correctness. To protect the voter’s
privacy, the correctness verification is the same for every candidate encryption,
whether it bares a Y ESvote or a NOvote. In fact, the correctness verification is,
in both cases, a ZKP that aims to prove that the candidate encryption bares a
Y ESvote. The proof is only real if the candidate encryption bares a Y ESvote.
This is because only the commit value (verification code) of the ZKP of the
Y ESvote is shown (pledged) to the voter. The commit values (verification codes)
of the ZKP of the NOvotes are not shown to anyone a may therefore be crafted
so that the ZKP on NOvotes seem real although they are simulated.

To clarify the MP technique use within a vote protocol follows a short descrip-
tion of the simplified vote protocol of [3]. Note however, that each MP version
(MP1, MP2 and MP3) may be used in different voting protocols, e.g. the origi-
nal one [22], the simplified versions [3,22], and the Internet protocol of [19]. The
described MP vote protocol has four phases [3]: the first three match the usu-
ally ZKP (commit, challenge, validation), and the last one is an anonimization
and counting step. The following protocol description also introduces the MP
abstraction layer, i.e. it shows where each of the five MP functions are used. The
specification of each function is given in section 4, for the MP3 solution, and in
an extended version of this paper [18], for the MP1 and MP2 solutions.

Phase 1. Vote Encryption

1. The vote machine (V M) presents the list of candidates to the voter.
2. The voter enters her vote selection (candidate j).
3. The V M , using the candidate vote encryption function VEpk, creates the

vote encryption as a sequence of individual MP candidate vote encryptions
(dubbed as bit encryptions, BitEnc(b) in [1,3,4,19]). The selected candidate
(candidate j) gets a Y ESvote = BitEnc(1), and each other candidate gets
an individual NOvote = BitEnc(0).
Each candidate vote encryption BitEnc(b)i encrypts a random commit code
θi, which later allows the voter to verify the vote encryption by matching
the verification code ϑj in the vote receipt. At this point in the protocol only
the verification code of the Y ESvote is known ϑj = θj .

4. The V M commits to the vote encryption, e.g. by printing or publishing it
in a public bulletin board.

108 R. Joaquim and C. Ribeiro

5. The V M pledges (reveals on an untappable channel) to the voter the
Y ESvote verification code ϑj = θj as the pledge value.

Phase 2. Receipt Creation and Voter Verification

1. The voter sends a random vote challenge c to the V M . Originally the chal-
lenge value was chosen by the voter herself [22]; subsequent versions remove
this task from the voter with the help of a trusted third party [3, 19].
This step is crucial for the voter’s verification soundness because the random
challenge is what prevents the V M to pledge a valid verification code for a
NOvote in the previous protocol step.

2. The V M , using the candidate receipt creation function RCpk, computes
the verification codes for the non-selected candidates (ϑi : i �= j), i.e. the
verification codes for all the NOvotes. Each computed verification code ϑi :
i �= j is the result of a function between the random commit code θi inside
the corresponding NOvotei and the challenge value c.

3. The V M prints/publishes in a public bulletin board the receipt as the se-
quence of all the verification codes ϑi, in the same order of the candidate
vote encryptions in the vote encryption. Along with the vote receipt, the
V M publishes the data necessary to verify the vote validity (voteV alidityi)
and the receipt correctness (ωi). The voteV alidityi and ωi are, respectively,
outputs of the VEpk and RCpk functions.

4. The voter verifies the correction of the vote encryption by verifying if the
pledge value, pledged in step 5 of phase 1, matches the verification code ϑj

associated to her chosen candidate (candidate j) in the vote receipt.

Phase 3. Third Party Vote/Receipt Validation

To certify the voter receipt verification, one or several third parties validate the
vote/receipt pair validity and correctness, using the vote validity (VVpk) and re-
ceipt validity (RVpk) functions. The VVpk function attests that each BitEnc(b)i

is valid, i.e that it is either a BitEnc(0) or a BitEnc(1). The RVpk function
attests that each verification code ϑi corresponds to BitEnc(b)i. Both certifica-
tions are performed only on public data, thus they do not compromise the voter’s
privacy. Optionally, using the techniques described in section 4.1, the third par-
ties can also verify that the encrypted vote has only one Y ESvote. Without
this verification the V M can create invalid votes, i.e. votes with more than one
Y ESvote. Although, several MP based vote protocols omit this verification step
and only verify that there is only one Y ESvote in the vote encryption in the
tally phase, after the anonymous vote decryption.

Phase 4. Vote Canonicalization and Counting

Finally, the vote encryptions are made uniform, by the vote canonicalization
function Cpk, and then anonymized and counted. The results are published in a
public bulletin board.

MarkPledge 3 109

The canonicalization process is necessary because every candidate vote en-
cryption encrypts a random one-time commit code (θi), that is used to deter-
ministically compute the verification codes of the BitEnc(b)s. Thus, revealing
the θi commit codes would enable to identify the voter’s candidate choice by a
simple correlation with the verification codes ϑi in the voter’s vote receipt.

The vote canonicalization process is public and therefore verifiable. Once all
vote encryptions are in the canonical form it is possible to decrypt them and
compute the election vote tally, usually using a mix-net or a homomorphic vote
tally process to protect the voter’s privacy.

The BitEnc(b), voteV alidity and ω details, and the procedures to verify the
vote validity and receipt correctness, are presented in sections 3 and 4, for the
MP3 solution, and in the extended version of this paper [18] for the MP1 and
MP2 solutions.

3 MarkPledge3

The key aspect of every MP system is the two step verification of the vote encryp-
tion, carried by the V M to the voter, to prove that the encrypted vote expresses
the voter’s intentions, cf. phases 2 and 3 of the protocol described in section
2.1. This section describes the key insight of this two step proof verification in
MP3. It starts by describing the cryptosystem used by MP3, and continues by
showing how its homomorphic properties are used to implement the candidate
vote encryption, the proof and the two step proof validation.

3.1 Homomorphic Cryptosystem Details

The MP3 implementation is based on the homomorphic properties of the ElGa-
mal cryptosystem [15]. The ElGamal cryptosystem works in the Z

∗
p subgroup Gq

of order q, where p and q are large primes such that q|p−1. Both primes p, q and
a generator g of Gq are public parameters of the system. The ElGamal key pair
consist of a private key s and the corresponding public key h = pk = gs mod p.
The private key s is a randomly chosen integer such that 0 < s < q. Algorithms
to generate secure ElGamal parameters can be found in [23].

A message m ∈ Gq is encrypted by selecting a random integer value r ∈
Zq, and constructing the following pair EGh(m, r) = 〈x, y〉 = 〈gr mod p, hr ·
m mod p〉. To recover the message m one computes m = y

xs . In order to have the
desired homomorphic properties we use a variant known as exponential ElGamal
[14]. In exponential ElGamal the message to encrypt m is chosen from Zq and
it is encrypted as gm, instead of m, in order to respect the ElGamal message
space, i.e. Eh(m, r) = EGh(gm, r). The exponential ElGamal has the following
homomorphisms (we have omitted the mod p notation from the equations):

Additive homomorphism between two encryptions

Eh(m1, r1) ⊕ Eh(m2, r2) = 〈gr1 , hr1 · gm1〉 · 〈gr2 , hr2 · gm2〉 =

〈gr1 · gr2 , hr1 · gm1 · hr2 · gm2〉 = 〈gr1+r2 , hr1+r2 · gm1+m2〉 =
Eh((m1 + m2) mod q, (r1 + r2) mod q)

110 R. Joaquim and C. Ribeiro

Prover Verifiers
Vote Machine Voter Third Party

b′ ∈ {−1, 1}
τ, δ, θ ∈R Zq

u← 〈gτ , hτ · gb′〉
v ← 〈gδ, hδ · gθ〉

pledge−−−−−→
u, v−−−−−→

c ∈R Zq
c←−−−−−

ϑ← b′·c−c+θ
b′

ω ← τ · (c− ϑ) + δ
ϑ,ω−−−−−→ u, v, c, ϑ, ω−−−−−−−−→

pledge ?
= ϑ uc−ϑ · v ?

= 〈gω, hω · gc〉

Fig. 1. MP3 Y ESvote (b′ = 1) candidate encryption and verification protocol. The
NOvote (b′ = −1) case is identical, the only difference is that the voter verifies that
pledge = 2 · c− ϑ instead of pledge = ϑ, cf. section 3.2. ϑ and ω are computed mod q.

Multiplicative Homomorphism between an Encryption and a Value n

Eh(m, r) ⊗ n = 〈gr, hr · gm〉n = 〈(gr)n, (hr)n · (gm)n〉 = 〈gr·n, hr·n · gm·n〉 =
Eh((m · n) mod q, (r · n) mod q)

3.2 MarkPledge3 Insights

Figure 1 depicts the MP3 candidate vote encryption and verification. A MP3
candidate vote encryption BitEnc(b) = 〈u, v〉 is composed by two independent
encryptions: u is the encryption of either b′ = 1 for a Y ESvote or b′ = −1 for
a NOvote; v is the encryption of a random commit code (θ), which, in the case
of a Y ESvote, is pledged over an untappable channel to the voter as being the
corresponding verification code.

After the encrypted vote creation by the vote machine, the voter selects a
random challenge c that will be used by the vote machine to create a public
verifiable receipt (ϑ, ω). ϑ is the public verification code and ω the public data
that allows to prove that ϑ is the correct verification code for the pair (u, v).
ϑ correctness is guaranteed by an independent third party verification of the
following equality: uc−ϑ · v = 〈gω, hω · gc〉 = Epk(c, ω). Thus, assuming that
u encrypts a value b′ ∈ {−1, 1}, which can be proved by known techniques, cf.
section 4, the preceding equality and the homomorphic properties of the ElGamal
cryptosystem guarantee that ϑ ∈ {θ, 2 · c − θ}, cf. equation 1. The encryption
factor ω can be easily computed by the vote machine as ω = τ · (c − ϑ) + δ.

MarkPledge 3 111

uc−ϑ · v = Epk(c, ω) ⇒

b′ · (c − ϑ) + θ = c ⇔ ϑ =
b′ · c − c + θ

b′

thus:
b′ = 1 ⇒ ϑ = θ ∧ b′ = −1 ⇒ ϑ = 2 · c − θ

(1)

By equation 1, before knowing the challenge value c, the vote machine can only
pledge the verification code ϑ for a Y ESvote (b′ = 1), which is the random
commit code θ encrypted in v. Thus, the voter receipt verification for a Y ESvote
is just the verification that pledge = ϑ, which is a simple string match.

A NOvote verification requires some extra work for the voter. In this case, the
vote machine pledges the value θ and the voter must reconstruct the verification
code ϑ = 2 · c − θ. Although, the MarkPledge based vote protocols usually do
not require the voter to perform this verification by providing a proof that there
is only one Y ESvote candidate encryption in the vote, cf. sections 1 and 2.1.
The details on how to create such proof for MP3 are presented in section 4.1.

The voter verification, as described in this section, requires the match of a
long string by the voter, i.e. both the pledge value and the verification code
domains are Zq. This usability issue is addressed in section 4.2.

Finally, note that in the special case where c = θ nothing is proved about the
value of b′. However, assuming that the c value is selected randomly from a large
domain this possibility is negligible.

3.3 MarkPledge3 Soundness and Zero-Knowledge Properties

This section provides proof sketches for the MP3 soundness and zero-knowledge
properties. The proof sketches follow the MP3 candidate encryption and verifi-
cation protocol described in figure 1.

Theorem 1. Under the semantic security of the ElGamal cryptosystem, MP3
offers a verification soundness of 1 − 2/q, provided that the value u is a valid
encryption, i.e. u encrypts either b′ = 1 or b′ = −1.

Proof Sketch. In order to prove the soundness of MP3, we will show that the
probability that the voting machine or any other adversary have to cheat the
voter in believing that she has issued a Y ESvote while she has actually issued
a NOvote is 1− 2/q. The converse probability of cheating the voter in believing
that she had issued a NOvote while she had issued a Y ESvote may be easily
shown to also be 1 − 2/q.

Assuming a valid u, the validation of the equality uc−ϑ · v = 〈gω, hω · gc〉
ensures by equation 1 that ϑ = θ if b′ = 1 (Y ESvote), and that ϑ = 2 · c − θ if
b′ = −1 (NOvote). Given that the voter checks that the pledge of her’s vote is
pledge = ϑ, the only way the vote machine or another adversary have to fool the
voter is to pledge to the voter a value pledge = ϑ = 2 · c − θ, without knowing
the challenge c (the challenge is revealed only after the pledge). Since c ∈R Zq

112 R. Joaquim and C. Ribeiro

it is trivial to note that pledge = 2 · c− θ would also have a random distribution
in Zq. Therefore, the vote machine has only a probability of 1/q to guess such
value. Finally, removing the case where nothing is proved about b′, when c = θ,
we can conclude that MP3 offers a vote verification soundness of 1 − 2/q.

Theorem 2. Under the semantic security of ElGamal cryptosystem, the candi-
date vote encryption verification is zero-knowledge to every one not knowing the
pledge, provided that the challenge c is randomly and independently chosen from
the pledge value.

Proof Sketch. Assuming the semantic security of ElGamal cryptosystem nei-
ther u or v reveal anything about the vote encrypted in u. Identically, under
the challenge c independence generation assumption, c reveals nothing about
the value encrypted in u, or v. Given that ω = ((c − ϑ) · τ + δ) is a linear com-
bination of the two ElGamal random factors, used to generate u and v, it can
reveal one of the encryptions u or v but only if the other one is broken. Since no
individual public factor used by the verification code correctness proof reveals
the vote, the only other solution is testing all together with the verification code
validation equation: uc−ϑ ·v = 〈gω, hω ·gc〉. However, by equation 1, for the same
combination of public values u, v, c, ϑ and ω there is always two possible scenar-
ios for which the equation holds, i.e. the scenario in which u encrypts b′ = −1
(NOvote) and v is the encryption of θ = 2 · c − ϑ is indistinguishable from the
scenario in which u encrypts b′ = 1 (Y ESvote) and v encrypts θ = ϑ.

4 MarkPledge 3 Functions Details

In order to better compare MP3 with MP1 and MP2, this section presents the
MP abstraction layer, along with its MP3 specification. The MP abstraction layer
is composed by a set of five functions that all MP solutions have, although these
functions in the previous MP specifications were implicit in the vote protocols.
Due to space constrains the functions implementations for MP1 and MP2 are
presented in an extended version of this paper [18].

The first two functions execute the candidate vote encryption (VEpk) and
the receipt (verification code) creation (RCpk). The first one corresponds to the
BitEnc(b) encryption in MP1 and MP2, whilst the second one bares no name in
MP1 and MP2 previous descriptions. The next two functions are the candidate
vote (VVpk) and receipt (RVpk) validation functions. Finally, the last function
(Cpk) prepares the candidate votes for an anonymous vote tally process with
a canonization process. All functions use the election’s public key pk, which is
usually generated by a set of trustees using a threshold scheme.

Additionally, in section 4.1 it is described how to verify that a set of candidate
votes contains only one Y ESvote and how to perform a verifiable homomorphic
vote tally with MP3. Finally, section 4.2 shows how to adjust the ϑ verification
code to a size that is easily usable by humans.

MarkPledge 3 113

Vote Encryption

VEpk(b, θ, r) = 〈BitEnc(b), voteV alidity〉
Where:

BitEnc(b) = 〈u, v〉 = 〈Epk(b′, τ) = gτ , hτ · gb′ , Epk(θ, δ)〉

b′ =

{
1 if b = 1 (Y ESvote)
−1 if b = 0 (NOvote)

r = τ ‖ δ, h = election public key (pk)
voteV alidity = 〈a1, a2, b1, b2, d1, d2, r1, r2, c〉

if b = 1 (Y ESvote)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σ, r1, d1 ∈R Zq

a1 = gr1+τ ·d1, a2 = gσ

b1 = hr1+τ ·d1 · g2·b′·d1 , b2 = hσ

d2 = c − d1, r2 = σ − τ · d2

if b = 0 (NOvote)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σ, r2, d2 ∈R Zq

a1 = gσ, a2 = gr2+τ ·d2

b1 = hσ, b2 = hr2+τ ·d2 · g2·b′·d2

d1 = c − d2, r1 = σ − τ · d1

c = Hash(u, a1, a2, b1, b2)

The vote encryption function VEpk is used in the first phase of a vote protocol
to generate each candidate vote encryption, cf. step 3 of the simplified MP vote
protocol presented in section 2.1. In MP3 each candidate vote BitEnc(b) is a
simple pair of exponential ElGamal encryptions, dubbed u and v. The first one
encrypts a value b′ ∈ {−1, 1} accordingly to the value of b and the second is
just the encryption of θ ∈R Zq. Both encryptions use exponential ElGamal with
the randomization factors τ and δ derived from the input value r = τ ‖ δ. The
voteV alidity data proves that u is an ElGamal exponential encryption of a value
b′ ∈ {−1, 1}. In MP3 it consists in the output of the ballot validity proof protocol
of Cramer et al. [14]. In its original context, the Cramer et al. protocol proves
that a vote is an ElGamal exponential encryption of a message m ∈ {−1, 1},
which is exactly our definition of a valid u.

Receipt Creation

RCpk(BitEnc(b), r, c) = 〈ϑ, ω〉
Where:

BitEnc(b) = 〈Epk(b′, τ), Epk(θ, δ)〉
r = τ ‖ δ, c ∈R Zq

ϑ =

{
θ if b′ = 1 (Y ESvote)
2 · c − θ mod q if b′ = −1 (NOvote)

ω = τ · (c − ϑ) + δ mod q

114 R. Joaquim and C. Ribeiro

In the simplified protocol of section 2.1, the RCpk function is used in step 2 of
the protocol’s second phase, after the pledge has been shown to the voter and
after the challenge c disclosure to the vote machine. This function generates a
receipt (verification code ϑ) as explained in section 3.2, i.e. it outputs the ran-
dom commit code θ, if the candidate vote is a BitEnc(1) (i.e. a Y ESvote), or
outputs the θ symmetric value, taking c as the symmetry axis, if the candidate
vote is a BitEnc(0) (i.e. a NOvote). The ω data is the combination of the ran-
domization factors used in the u and v encryptions, which is needed to verify
that the verification equation results in an encryption of the challenge value c, as
described by the RVpk function below. In order to work in accordance with the
ElGamal homomorphic properties, both the ϑ and ω values are computed mod q.

Vote Validity

VVpk(BitEnc(b), voteV alidity) = validity

Where:
BitEnc(b) = 〈u = 〈x, y〉, v〉, voteV alidity = 〈a1, a2, b1, b2, d1, d2, r1, r2, c〉

validity =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

True if c = Hash(u, a1, a2, b1, b2)
∧ c = d1 + d2

∧ a1 = gr1 · xd1

∧ a2 = gr2 · xd2

∧ b1 = hr1 · (y · g)d1

∧ b2 = hr2 · (y · g−1)d2

False otherwise

h = election public key (pk)

The VVpk function corresponds to the Cramer et al. ballot validity proof [14].
It is used to ensure that the u component of the candidate vote (BitEnc(b)) is
in fact the encryption of b′ = 1 or b′ = −1, i.e. it is a valid candidate vote. The
function outputs true if the candidate vote is valid and false if it is invalid. In
the simplified MP protocol of section 2.1, this function can be used immediately
after the first phase of the protocol, to ensure the correctness of the vote as soon
as possible, or at the end of the voting process in phase 3.

Receipt Validity

RVpk(BitEnc(b), c, ϑ, ω) = validity

Where:
BitEnc(b) = 〈u, v〉

validity =

{
True if φ = Epk(c, ω) = uc−ϑ · v
False otherwise

The receipt validity function corresponds to the zero knowledge verification code
ϑ validation, which can be conducted by any trusted third party to prove that

MarkPledge 3 115

uc−ϑ · v is the encryption of c, without any special knowledge but the public
values. This is possible by a reconstruction of the c encryption using the ω
encryption factor, revealed by the RCpk function. From equation 1, proving that
uc−ϑ · v = Epk(c, ω) is enough to prove that ϑ = θ if b′ = 1 or that ϑ = 2 · c − θ
if b′ = −1, which is enough to complement the voter’s verification, unless c = θ
where in both cases ϑ = θ. However, since c and θ are chosen randomly from Zq,
this case probability is negligible. The RVpk function is used in the 3rd phase of
the simplified MP vote protocol presented in section 2.1.

An alternative to the encryption reconstruction method, it is possible to prove
that uc−ϑ · v = Epk(c, ω) is an encryption of the value c without revealing ω
using the Chaum and Pedersen protocol for proving the equality of discrete
logarithms [11]. The Chaum and Pedersen protocol can be used to prove the
encryption Epk(c, ω) = 〈x, y〉 proving that logg x = logh y/(gc).

Canonicalization

Cpk(BitEnc(b), c, ϑ) = 〈canonicalV ote〉
Where :

BitEnc(b) = 〈u, v〉 ∧ canonicalV ote = u

The MP3 candidate vote canonicalization is very simple because the u element
of the BitEnc(b) is already an encryption of a fixed value, b′ ∈ {−1, 1}, that
depends on the candidate vote type, i.e. ∀ BitEnc(1) : b′ = 1 and ∀ BitEnc(0) :
b′ = −1. Therefore, in MP3 the u encryption can be used directly as the
canonicalV ote because after an anonymization process, e.g. mix-net anonymiza-
tion, it can be safely decrypted without revealing any link to the voter, i.e. the
only thing we will see are the 1 and −1 values. MP1 and MP2 require a slightly
more complex vote canonicalization.

4.1 Homomorphic Vote Tally

If the vote protocol uses the vote validity proof (i.e. ensures that all votes either
encrypt a 1 or a -1) it is possible to use the efficient homomorphic vote tally
process of the Cramer et al. vote protocol [14], since the MP3 candidate vote
encryption u is equal to its vote encryption construction. Therefore, instead of
decrypting each vote before counting it, which requires a previous anonymization
process for each vote (usually using a mix-net), the MP3 homomorphic counting
process performs the homomorphic addition of every encrypted vote votej =
BitEnc(b)j

1 ‖ BitEnc(b)j
2 ‖ . . . ‖ BitEnc(b)j

k, where BitEnc(b)j
i = 〈uj

i , v
j
i 〉, j =

1..n, n is the number of valid votes and k is the number of candidates in each
vote. Given that the vote validity function VVpk ensures that each uj

i = Epk(1)
or uj

i = Epk(−1), then the vote counting for candidate i will be counti = n+di

2 ,
where di is the decryption of the homomorphic addition

⊕n
j=1 uj

i . However, to
ensure democracy, the protocol must also guarantee that each vote is counted for
only one candidate, which means that the system must ensure that there is only

116 R. Joaquim and C. Ribeiro

Table 1. MarkPledge functions computational costs in mod p exponentiations. The
MP2 voteV alidity, VVpk and Cpk values reflect our adjustments to the MP2 solution,
cf. [18]. The MP2 matrix exponentiation, in mod q, is denoted as me.

VEpk [BitEnc(b)] + [voteV alidity] RCpk VVpk RVpk Cpk

MP3 [5] + [5] 0 8 5 0
MP1 [4 · α] + [−] 0 - 2 · α ≈ α

2

MP1a [2 + 4 · α] + [5] 0 8 + 2 · α 2 · α 0
MP2 [6 + 1 ·me] + [8 + 1 ·me] 1 ·me 8 8 + 1 ·me 3 + 1 ·me

one uj
i = Epk(1) in each vote. Once again, given that each uj

i is the encryption of
the value 1 or -1, it is only necessary to prove that

⊕k
i=1 uj

i = Epk(2−k), e.g. using
the Chaum and Pedersen protocol for proving the equality of discrete logarithms
[11] or by revealing the sum of the encryption factors of the uj

i elements, as
suggested for the validation of the c encryption in the RCpk and RVpk functions.

4.2 Adjusting the Voter’s View of MP3 Output to the α Parameter

Usually, the MP security parameter α is set to a value between 20 and 30, which
means that the voter must compare 4 to 5 character strings to verify that pledge
= ϑ. In MP3 the c, ϑ and θ domains, and consequently the pledge domain, are
defined by the cryptosystem parameter q and not by α. Since the size of q is in the
hundreds of bits range we clearly have a usability issue. To solve this usability
issue we propose a change in the voter’s view of the MP3 functions output,
namely the voter’s view of the verification code ϑ and pledge value should be
truncated to α bits by applying the mod 2α operation to the referred values.
Assuming an uniform and random distribution of ϑ and θ over Zq, the voter
verification has a statistical soundness of 1 − 21−α, just because q ≫ 2α, i.e.
the voter still performs the verification of a random value uniformly distributed
over Z2α , cf. [18]. The soundness is 1 − 21−α and not 1 − 2−α due to the case
where c = θ, where nothing is proved about the value b′ encrypted in u.

5 Evaluation

This section discusses the improvements of MP3 over previous MP proposals
in terms of each of the described functions. We first give a theoretical com-
parison of the techniques and then present the times for real implementations
on smart cards. Note that by implementing MP in smartcards we may provide
to each voter her own mobile voting machine without forcing her to trust any
hardware/software device.

Table 1 shows the computational cost of the different MP functions in terms
of the number of exponentiations per function. The values for MP3 are accord-
ingly to the MP3 functions definition of section 4, and the MP1, MP1a and MP2

MarkPledge 3 117

values are accordingly to the correspondent functions definition in [18]. All MP
solutions use the exponential ElGamal encryption, which requires 3 exponenti-
ations. Although, when the message to encrypt is a constant the corresponding
message exponentiation was not considered. This is the case for all ElGamal
encryptions in MP1 and MP1a and for the u encryption of MP3.

As detailed in [18], in MP1 each candidate encryption corresponds to α pairs
of ElGamal encryptions, which corresponds to 4 · α exponentiations. The MP1
RVpk function performs α 1-out-of-2 cut-and-choose verifications, one for each of
the α encryption pairs, which correspond to 2 ·α exponentiations. The MP1 Cpk

function consists in homomorphically inverting the value inside approximately
α/2 ElGamal encryptions.

The MP1a row in table 1 represents the variant of MP1 proposed by Adida
in [1]. MP1a adds an extra ElGamal encryption to each candidate vote, which
allows the use of the voteV alidity proof and verification proposed for MP3 in
section 4. The MP1a VVpk function also needs to attest that the extra encryption
“match” each one of the base α MP1 encryption pairs, cf. [1, 18].

The MP2 solution, cf. [4, 18], encrypts each candidate vote as the encryption
of a 2D vector, which corresponds to 2 ElGamal encryptions, one for each of
the vector coordinates. To compute the 2D vector it is necessary to perform a
modular matrix exponentiation in q. The matrix exponentiation costs turned
out to have a huge impact on the MP2 real performance, cf. section 5.1, thus
they where also included in table 1. The MP2 voteV alidity proof uses the same
technique of MP1a and MP3, but needs some homomorphic vector algebra on
the candidate vote encryption. The RCpk, RVpk and Cpk costs also reflect the
need of homomorphic vector algebra.

Excluding the matrix exponentiation, both MP2 and MP3 present an α order
improvement over MP1(a) on the VVpk and RVpk functions, and on the can-
didate vote BitEnc(b) creation. In the Cpk function both MP1a and MP3 are
clearly better as they do not require any computation. The RCpk implementa-
tion on all MP versions is very simple and do not require any complex operation,
except in MP2 where it is required a matrix exponentiation. Even excluding the
matrix exponentiation operations, the improvements of MP3 over MP2 in the
VEpk and RVpk functions are noteworthy. In the VEpk MP3 presents an 17%
improvement in number of exponentiations that grows up to 28.5% with the vote
validity, and in the RVpk MP3 presents an improvement of 37.5%.

When compared in terms of disk usage, MP3 and MP2 present approximately
an α factor improvement over the MP1 and MP1a. In MP3 and MP2 a BitEnc(b)
is composed by two ciphertexts, while in MP1 and MP1a a BitEnc(b) is com-
posed respectively by 2 · α and 1 + 2 · α ciphertexts.

5.1 Implementation Results

In order to verify the real performance impact of MP3 we have partially imple-
mented all MP solutions (MP1, MP2 and MP3). The two main reasons that lead
us to the implementation were: i) the difficulty to compare the matrix exponenti-
ation (required by MP2) to the large integer modular exponentiations needed for

118 R. Joaquim and C. Ribeiro

the ElGamal encryptions, which are the base of all MP solutions, and ii) the curios-
ity to see if any MP solution can actually be run on limited devices, such as smart
cards or secure elements inside a mobile phone (usually also implemented as smart
cards) which can open the door for new vote protocols based on the MP technique.

We have implemented the matrix exponentiation using the non-recursive ex-
ponentiation by squaring algorithm (“computation by powers of 2”) described
in [27]. We have optimized the matrix multiplication algorithm to take advan-
tage of the special form of the SO(2, q) matrices used by MP2. The SO(2, q)
test matrices, as defined by MP2, have elements in Zq and are exponentiated to
random exponents in Zq±1 (note that in MP2 the α bits vector indexes must be
transformed into the corresponding exponents, which are uniformly distributed
in Zq±1, cf. [4,18]). We have tested the matrix exponentiation both on a PC and
on smart cards (JavaCard and MULTOS). In the PC we have implemented the
algorithm in Java. Our test code is available on request.

Our implementation results show that on a modern computer (Intel i5 2400
3.1GHz CPU) the matrix exponentiation time for |q| = 160 is about the same of
an integer modular 1024 bits exponentiation with a 160 bits exponent. Thus, the
VEpk function in MP3 presents an improvement of about 40% when compared to
MP2. Moreover, the MP3 RVpk and Cpk functions together, which are necessary
to validate the election public data, are about 2.6 times faster than MP2. In
other words, if with MP3 the election data verification takes one day it would
take two and a half days with MP2.

Again, in a modern computer, the voter’s perception of the different vote en-
cryption times would be close to none, as a large integer modular exponentiation
takes only a few milliseconds. However, our implementation shows that the same
is not true for more limited devices, e.g. smart cards or secure elements inside a
mobile phone (also implemented as smart cards). We have partially implemented
the different MP solutions in two different smart cards technologies: a JavaCard
v2.2.1 (JCOP 31 v2.2) and a MULTOS v4.2.1 smart card (MC1-36K-61). The
JavaCard technology was selected because it is widely deployed and it is being
integrated as the secure element in many mobile phones; however the JavaCard
API for large integer modular arithmetic is very limited, which has a negative
impact on the MP performance. Thus, we also use a MULTOS card with a full
large integer modular arithmetic native API.

Due to the very restricted large integer modular JavaCard 2.2.1 API (only
modular exponentiation is available through the RSA engine) we had to program
the modular addition, subtraction and multiplication operations. The addition
and subtraction operations were implemented exclusively in “software”. On the
other hand, the pure software approach for the modular multiplication was not
viable. Thus, we use the formula (a + b)2 − (a − b)2 = 4 · a · b, as in [26]. This
allowed us to perform the modular multiplication in an acceptable time, with the
help of the JavaCard cryptographic processor; however it restricts the modulus
size to values equal or above 512 bits. The “new” JavaCard 3 API still does
not provide a large integer modular arithmetic support. On the other hand, the
MULTOS card has all modular operations available in its native API.

MarkPledge 3 119

Table 2. VEpk times in a NXP JCOP 31 v2.2 (JavaCard v2.2.1) with parameters
|p| = 1024, |q| = 512 and α = 24

JCOP 31 v2.2 (JavaCard) MarkPledge VEpk times (|p| = 1024, |q| = 512, α = 24)

MP1a MP2 MP3
BitEnc(b) 44.2 sec (1921%) 45 min (117391%) 2.3 sec (100%)

voteValidity 6.5 sec (100%) 45 min (41538%) 6.5 sec (100%)
Total 50.7 sec (576%) 90 min (30681%) 8.8 sec (100%)

Table 3. VEpk times in a MULTOS v4.2.1 MC1-36K-61 smart card with parameters
|p| = 1024, |q| = 512 and |q| = 160, and α = 24

MC1-36K-61 (MULTOS) MarkPledge VEpk times (|p| = 1024, |q| = 512, α = 24)

MP1a MP2 MP3
BitEnc(b) 29.4 sec (1729%) 1.5 min (5294%) 1.7 sec (100%)

voteValidity 2.6 sec (100%) 1.5 min (3462%) 2.6 sec (100%)
Total 32.0 sec (744%) 3.0 min (4186%) 4.3 sec (100%)

MC1-36K-61 (MULTOS) MarkPledge VEpk times (|p| = 1024, |q| = 160, α = 24)

MP1a MP2 MP3
BitEnc(b) 22.8 sec (1900%) 8.2 sec (683%) 1.2 sec (100%)

voteValidity 1.6 sec (100%) 8.8 sec (550%) 1.6 sec (100%)
Total 24.4 sec (871%) 17.0 sec (607%) 2.8 sec (100%)

Tables 2 and 3 present the performance times of the MarkPledge VEpk func-
tion on a smart card support. We only present times for this primitive as it is
the only intensive cryptographic function that must be performed by the vote
encryption device. The results for MP3 in Table 2 are real whilst for MP1a and
MP2 were lower estimated. Table 3 presents real results for all MP versions.

The JavaCard times, in table 2, for the MP1a and MP2 are estimated
as follows: the MP1a BitEnc(b) generation time is estimated as 80% of
α · 〈MP3 BitEnc(b) time〉. Each of the MP1a α encryption pairs is composed
of 2 ElGamal encryptions, just like the BitEnc(b) of MP3. The 80% adjustment
comes from the fact that it takes one less exponentiation because it encrypts
two constant values, cf. [1, 18, 22] and table 1. The MP1a voteV alidity gen-
eration time is equal to the MP3 voteV alidity generation time, since both use
exactly the same technique. The MP2 BitEnc(b) generation time is estimated as
〈MP3 BitEnc(b) time〉 + 〈matrix exponentiation time〉. The MP2 BitEnc(b)
is also composed of 2 ElGamal encryptions, however the values to encrypt are
the result of a matrix exponentiation and therefore this time must be added to
the encryption time. The MP2 voteV alidity (as we have specified in [18]) needs
another matrix exponentiation and three integer exponentiations to enable the
use of the vote validity technique proposed for MP3 and MP1a. Therefore, we use

120 R. Joaquim and C. Ribeiro

〈MP3 voteV alidity time〉+ 〈matrix exponentiationtime〉 as a lower estimative
for the MP2 voteV alidity time.

As can be easily seen in tables 2 and 3, the use of any non native cryptographic
function comes at a huge cost. In the best scenario MP2 only presents a 30%
improvement over MP1 and is 6 times worst than MP3.

Note that the results are for one invocation of the VEpk function, i.e. the
results are for each individual candidate vote encryption. Thus, the values pre-
sented must be multiplied by the number of candidates to give the full vote
encryption time. In practice, a full 10 candidate ballot encryption with proofs
takes on the JavaCard 8.45 minutes, 15 hours or 1.47 minutes using respectively
MP1a, MP2 and MP3. The results for the MULTOS card, with the same setup,
are respectively 5.3 minutes, 30 minutes and 43 seconds. With a more standard
parameters setup (|p| = 1024 and |q| = 160), the results for the MULTOS card
are respectively 4 minutes, 2.8 minutes and 28 seconds.

6 Conclusions

This paper presented the MP3 specification, which is more efficient and simpler
than all other previous MP solutions. Moreover, our implementation tests show
that, in low computational power devices, e.g. smart cards or secure elements
inside a mobile phone (usually also smart cards), only MP3 presents an accept-
able performance. The MP3 performance improvements are mainly due to its
simple mathematical structure. That simple structure comes with a small price:
the MP3 soundness is 1 − 21−α vs the 1 − 2−α soundness of the previous MP
solutions.

References

1. Adida, B.: Advances in Cryptographic Voting Systems. Ph.D. thesis, MIT (August
2006)

2. Adida, B.: Helios: Web-based open-audit voting. In: 17th USENIX Security Sym-
posium (2008)

3. Adida, B., Neff, A.: Ballot casting assurance. In: EVT 2006.
USENIX/ACCURATE, Vancouver, B.C. (2006)

4. Adida, B., Neff, A.: Efficient receipt-free ballot casting resistant to covert chan-
nels. In: EVT/WOTE 2009. USENIX/ACCURATE/IAVOSS, Montreal, Canada
(August 2009)

5. Benaloh, J.: Simple verifiable elections. In: EVT 2006. USENIX/ACCURATE,
Vancouver, B.C. (2006)

6. Benaloh, J.: Ballot casting assurance via voter-initiated poll station auditing. In:
EVT 2007. USENIX/ACCURATE, Boston, MA (2007)

7. Benaloh, J.C.: Verifiable Secret-Ballot Elections. Ph.D. thesis, Yale University
(1987)

8. Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms.
Commun. ACM 24(2), 84–88 (1981)

9. Chaum, D.: Secret-ballot receipts: True voter-verifiable election. IEEE Security &
Privacy 02(1), 38–47 (2004)

MarkPledge 3 121

10. Chaum, D.: Punchscan (September 2009), http://www.punchscan.org/
11. Chaum, D., Pedersen, T.P.: Wallet Databases with Observers. In: Brickell, E.F.

(ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993)
12. Chaum, D., Ryan, P.Y.A., Schneider, S.: A Practical Voter-Verifiable Election

Scheme. In: De Capitani di Vimercati, S., Syverson, P.F., Gollmann, D. (eds.)
ESORICS 2005. LNCS, vol. 3679, pp. 118–139. Springer, Heidelberg (2005)

13. Clarkson, M., Chong, S., Myers, A.: Civitas: Toward a secure voting system. In:
IEEE Symposium on Security and Privacy, pp. 354–368 (May 2008)

14. Cramer, R., Gennaro, R., Schoenmakers, B.: A Secure and Optimally Efficient
Multi-authority Election Scheme. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS,
vol. 1233, pp. 103–118. Springer, Heidelberg (1997)

15. ElGamal, T.: A public-key cryptosystem and signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory IT-31(4), 469–472 (1985)

16. Fujioka, A., Okamoto, T., Ohta, K.: A Practical Secret Voting Scheme for Large
Scale Elections. In: Seberry, J., Zheng, Y. (eds.) AUSCRYPT 1992. LNCS, vol. 718,
pp. 244–251. Springer, Heidelberg (1993)

17. Hirt, M., Sako, K.: Efficient Receipt-Free Voting Based on Homomorphic Encryp-
tion. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 539–556.
Springer, Heidelberg (2000)

18. Joaquim, R., Ribeiro, C.: An efficient and highly sound voter verification tech-
nique and its implementation - extended version. Tech. Rep. 40/2011, INESC-ID
(September 2011)

19. Joaquim, R., Ribeiro, C., Ferreira, P.: VeryVote: A Voter Verifiable Code Vot-
ing System. In: Ryan, P.Y.A., Schoenmakers, B. (eds.) VOTE-ID 2009. LNCS,
vol. 5767, pp. 106–121. Springer, Heidelberg (2009)

20. Juels, A., Catalano, D., Jakobsson, M.: Coercion-resistant electronic elections. In:
WPES, Alexandria, Virginia, USA, pp. 61–70 (November 2005)

21. Moran, T., Naor, M.: Receipt-Free Universally-Verifiable Voting with Ev-
erlasting Privacy. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117,
pp. 373–392. Springer, Heidelberg (2006), http://www.seas.harvard.edu/
˜talm/papers/MN06-voting.pdf

22. Neff, C.A.: Practical high certainty intent verification for encrypted votes (2004),
http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.134.1006&rep=rep1&type=pdf

23. NIST: Gigital signature standard (dss) (June 2009), http://csrc.nist.gov/
publications/fips/fips186-3/fips_186-3.pdf, FIPS 186-3

24. Okamoto, T.: Receipt-free Electronic Voting Schemes for Large Scale Elections. In:
Christianson, B., Crispo, B., Lomas, M., Roe, M. (eds.) Security Protocols 1997.
LNCS, vol. 1361, pp. 25–35. Springer, Heidelberg (1998)

25. Sandler, D., Derr, K., Wallach, D.S.: Votebox: A tamper-evident verifiable elec-
tronic voting system. In: 16th USENIX Security Symposium (2007)

26. Sterckx, M., Gierlichs, B., Preneel, B., Verbauwhede, I.: Efficient implementation
of anonymous credentials on java card smart cards. In: 1st IEEE International
Workshop on Information Forensics and Security, pp. 106–110 (2009)

27. Wikipedia: (April 2011), http://en.wikipedia.org/wiki/
Exponentiation_by_squaring#Computation_by_powers_of_2

http://www.punchscan.org/
http://www.seas.harvard.edu/~talm/papers/MN06-voting.pdf
http://www.seas.harvard.edu/~talm/papers/MN06-voting.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.134.1006&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.134.1006&rep=rep1&type=pdf
http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
http://en.wikipedia.org/wiki/Exponentiation_by_squaring#Computation_by_powers_of_2
http://en.wikipedia.org/wiki/Exponentiation_by_squaring#Computation_by_powers_of_2

Single Layer Optical-Scan Voting

with Fully Distributed Trust�

Aleksander Essex1, Christian Henrich2, and Urs Hengartner1

1 Cheriton School of Computer Science
University of Waterloo

Waterloo, ON, Canada N2L 2G1
{aessex,uhengart}@cs.uwaterloo.ca

2 Institut für Kryptographie and Sicherheit/EISS
Kahrlsruhe Institute of Technology

76128 Karlsruhe, Germany
christian.henrich@kit.edu

Abstract. We present a new approach for cryptographic end-to-end
verifiable optical-scan voting. Ours is the first that does not rely on a
single point of trust to protect ballot secrecy while simultaneously offer-
ing a conventional single layer ballot form and unencrypted paper trail.
We present two systems following this approach. The first system uses
ballots with randomized confirmation codes and a physical in-person dis-
pute resolution procedure. The second system improves upon the first by
offering an informational dispute resolution procedure and a public pa-
per audit trail through the use of self-blanking invisible ink confirmation
codes. We then present a security analysis of the improved system.

1 Introduction

Research into cryptographically “end-to-end” verifiable optical-scan voting sys-
tems has come a long way toward practicality. This progress has not come easily:
academics and election administrators often struggle to agree on a vast and of-
ten orthogonal set of core system properties. Similar in spirit to Benaloh [2],
we advocate the coexistence of modern cryptographic proofs of correctness and
conventional, lower-tech, methods for auditing elections. In this paper we tackle
a long standing trade-off of properties in the voting literature: distributed trust
versus a conventional optical-scan paper ballot form.

Typically cryptographic voting schemes allow the voter to construct a receipt
of their vote enabling each voter to confirm the inclusion of their ballot in the
election tally. In order to protect ballot secrecy, the association between a receipt
and the corresponding (clear-text) vote must be kept hidden at all times. Many
proposals have relied on trusted entities or hardware to enforce this, especially
with regards to ballot printing. Other proposals distribute trust among multiple
entities through the use of specialized multi layer ballot forms.

� Full version available: http://eprint.iacr.org/2011/568

A. Kiayias and H. Lipmaa (Eds.): VoteID 2011, LNCS 7187, pp. 122–139, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://eprint.iacr.org/2011/568

Single Layer Optical-Scan Voting with Fully Distributed Trust 123

Our Proposal. We consider a list of requirements for end-to-end verifiable
optical scan voting that factors a diverse set of stakeholders (i.e., cryptographers,
election officials, legislators, democracy groups, etc). This list is by no means
exhaustive and does not encompass challenges faced by other voting methods
(e.g., internet, mail-in, etc). Our list is as follows:

1. Distributed trust: No single party, including the ballot printer(s), gains
an advantage in deducing how a voter voted or in linking a receipt to its
corresponding clear-text vote. This is a vital requirement of any secret ballot
election employing the receipt paradigm.

2. Single layer ballot form: A ballot is a single sheet of paper with a fixed
order candidate list1 and the voter marks the optical scan ovals directly beside
their chosen candidate. Multi layer ballots are an artifact of cryptographic
voting, requiring voters to re-learn how to cast a ballot. Our experience in
running real-world cryptographic elections—both with single layer and with
multi layer ballot forms—has indicated to us that multi layer ballots are
more cumbersome for voters and more difficult to administer for election
officials [14,5,41].

3. Human-readable paper audit trail: Pursuant to the legal requirements
of many jurisdictions voting, voting intent remains plainly evident on cast
ballot forms. Such an audit trail also allows for recoverability in the event
of lost or forgotten cryptographic keys or other unforeseen errors.

4. Public paper audit trail: The collection of cast ballot forms (i.e., the
paper audit trail) can be made public without revealing the link between
receipt and clear-text vote. A public audit paper trail may also be a le-
gal requirement and is critical in protecting ballot secrecy during a manual
recount.

In this paper we propose two novel end-to-end verifiable optical scan voting sys-
tems that meet all four of these requirements. Some of these properties have
been examined in the literature, but no proposal has achieved all of them.
Scantegrity achieves 2 and 3 [9,7]. Prêt à Voter and Scratch & Vote achieve
2 and 4 [10,37,1,42], two Punchscan variants achieve only 4 [19,22], and each of
Split-Ballot Voting, ClearVote and Kusters et al. achieve 1 and 4 [28,34,23]. A
proposal due to Benaloh [2] achieves 2, 3, and 4. See the section on related work
for additional discussion.

Contributions. We present two novel systems for single layer optical-scan vot-
ing with distributed trust based respectively on the ballot styles used by Scant-
egrity [9] and Scantegrity II [7].

Basic System: We propose a basic two-party system for creating ballot forms
with randomized confirmation codes that meets properties 1, 2, and 3. It
relies on a private paper audit trail and an in-person physical dispute-
resolution procedure.

1 There are also potential advantages to using ballots with randomized candidate lists.
Our system can accommodate this approach with minor protocol changes.

124 A. Essex, C. Henrich, and U. Hengartner

Improved System: We then propose an improved two-party system that uses
‘self-blanking’ invisible ink confirmation codes. It improves on the basic sys-
tem by allowing the paper audit trail to be made public, thereby achieving
all four properties. In addition it offers an informational dispute-resolution
procedure allowing disputes to be resolved based on knowledge of a confir-
mation code (as opposed to physical possession of a receipt).

2 Preliminaries

2.1 Physical Primitives

End-to-end verifiable ballots often employ physical security methods as part
of the receipt creation process. The use of physical security mechanisms can
be contentious due to inherent questions regarding their cost, feasibility, and
real-world security properties. However, there is precedent for protocols built
around ideal physical security mechanisms (c.f. [18,27]). Throughout the rest
of this paper we assume that all physical security mechanisms function ideally.
Broadly speaking the ballot secrecy properties of our systems reduce to those
of Scantegrity’s when the physical security mechanism fail. A brief discussion of
this is included in our security analysis in the full paper. 2

Physical Security Mechanisms. We briefly summarize the physical security
mechanisms employed by our systems.

Invisible ink as its name implies is initially invisible when printed and becomes
visible only after activation. It was proposed for use in the Scantegrity II
system [7], and has been implemented and fielded in a live municipal election
in the United States [5]. For the improved system presented in Section 4 we
additionally make use of a ‘slow’ developing ink,

Scratch-off coating is a convenient, cost-effective and widely available method
for concealing (and subsequently revealing) printed information. It has been
employed in several voting schemes (cf. [1,39]) to protect ballot secrecy,

Visual cryptography [29] is a well known technique for visually implement-
ing a logical exclusive disjunction (i.e., an xor) built from a physical medium
acting as a logical disjunction (i.e., an or). A message or graphical im-
age can be split into two or more information-theoretically secure shares.
When the shares are combined (i.e., overlayed) the message becomes visually
perceptible.

Physical Security Sub-protocols: We briefly summarize the physical security
sub-protocols used by our systems.

2 http://eprint.iacr.org/2011/568

http://eprint.iacr.org/2011/568

Single Layer Optical-Scan Voting with Fully Distributed Trust 125

Document Authenticity: We require a method for determining a document’s
authenticity. Classicalmethods for anti-counterfeiting (e.g., watermarks, holo-
graphic foil, embedded magnetic strips, etc) can be cost-prohibitive. Paper fi-
bre analysis (cf. [12]) using commercial-grade scanners is possible3. For the sake
of our description we assume that there exists an efficient physical scheme for
determining a ballot’s authenticity,

Private Printing: we make use of private printing techniques to pick and print
human-readable confirmation codes on ballots without either printer individ-
ually knowing which codes were printed. A proposal for two-party private
printing was made in [15]. Private printing is used in the improved system.

2.2 Cryptographic Primitives

We briefly outline themain cryptographic primitives used by our systems.We note
that these primitives are standard across the cryptographic voting literature.

Homomorphic Encryption. Let 〈DKG,Enc,DDec〉 be a distributed public-
key encryption scheme. Without loss of generality, DKG generates two private
key shares x1 and x2 for parties P1 and P2 respectively and a joint public
key Y . Encryption �m� = EncY (m, r) is semantically secure and homomorphic
in at least one operation. Decryption m = DDec(x1, x2)(�m�) requires both key
shares. Specifically we will make use of exponential Elgamal [13] with distributed
decryption [33]. For simplicity we will omit the public-key when implied. We
additionally require a partially-homomorphic xor operation ⊕̃ such that, for a
pair of messages m1,m2 ∈ {0, 1}, �m1�⊕̃m2 produces a ciphertext that encrypts
the bitwise xor of the associated plaintext bits, i.e., �m1 ⊕ m2�. We present a
bit encryption scheme based on exponential Elgamal in the full paper2 though
there is more than one way to accomplish this (cf. [20,30]).

Mixnets. Mixnets have long been a fixture in cryptographic voting. We make
use of a simple re-encryption mixnet (cf. [31]) structure to create our proofs
(we do not utilize a separate proof of correct mixing, as it is provided by other
parts of our system). Re-randomization (a.k.a., re-encryption) of a ciphertext c is
accomplished by computing c′ = ReRand(c, r) = c ·Enc(0, r)4. By rerandomizing
and shuffling a batch of ciphertexts we implement a simple reencryption mixnet,
Mix. In this paper, when applying Mix to a matrix of ciphertexts, we describe
mixing as occurring on tuples of ciphertexts grouped by columns and shuffled
by rows.

Commitments. We use a cryptographic commitment scheme to commit to
permutations as part of a cut-and-choose proof of shuffle. The dispute resolution

3 In general there are privacy threats due to fingerprinting documents however this is
not a threat to ballot secrecy assuming non-collusion.

4 Replace 0 with the identity element for other groups.

126 A. Essex, C. Henrich, and U. Hengartner

procedure in the improved system requires the prover to either unveil (i.e., de-
commit to) the code, or alternatively to issue a non-interactive proof of plaintext
inequality. A commitment inherent to IND-CPA secure encryption fits this dual
role. Here a sender commits to a message m by posting its encryption �m� =
Enc(m, r). Later the commitment can be unveiled when the sender reveals an
m′, r′, allowing anyone to verify Enc(m′, r′) = �m�, and hence m′ = m. This
approach is commonly used in several voting schemes (e.g., [3,1,40]).

Non-interactive Challenges. As part of our cut-and-choose correctness proof
we require a method for fairly generating random challenge bits. Loosely speak-
ing, fairness, requires that no one is able to predict, or controllably influence the
output with non-negligible advantage. Furthermore, the fairness of the method
should be convincing to voters. Both the heuristic due to Fiat and Shamir [17],
and the notion of a random beacon (cf. [36,11]) are possibilities.

2.3 Participants

There are several entities that participate in the election.

– A set of voters with the authority to cast a ballot in the election, optionally
construct a privacy-preserving receipt of their vote, and optionally partici-
pate in an election audit,

– An election operations commission C with the capability and authority
to organize and run an election, operate a polling place, optically scan ballots,
report results, act as a custodian of the cast ballot record, and participate
in an in-person dispute resolution procedure,

– Two independent ballot printers P1,P2 who possess the capability and
authority to print documents in the untrusted printing model and participate
in a secure (cryptographic) two-party computation,

– An election scrutineer S with the authority to audit the correctness of
printed ballots relative to their cryptographic representation. Additionally
S acts as a proxy for voters during disputes with C to protect their identity.
In practice there might be any number of election auditors, representing the
candidates or other democracy groups.

As a fundamental requirement of our security model, we assume that neither
printer nor election commission collude with one another.

3 The Basic System

The basic system produces a public and universally verifiable cryptographic proof
attesting to the correctness of the election’s outcome. This correctness proof is
based on standard cut-and-choose techniques (cf. [9,7,8]). Without loss of gen-
erality we consider a single-contest election involving n ballots5 and m candi-
dates. The basic system involves several protocols. The protocols generateBallots,

5 The number of ballots printed is the total number of voters times a heuristically
chosen expansion factor to account for audited and spoiled ballots.

Single Layer Optical-Scan Voting with Fully Distributed Trust 127

Table 1. Notations

n Number of ballots to print T List of all ballot-tuples
m Number of candidates BallotTable Table of ballot information
d Bit-length of ballot-id ReceiptTable Table of receipt information
L List of candidate names MP1/MP2 Printer 1/2’s master permutation
Σ Confirmation code alphabet π/ρ Random perm’ns composing to MP1

α Soundness parameter σ/τ Random perm’ns composing to MP2

b/B Ballot-id/list of ... MidMarks Intermediate mark state list
r/R Receipt-id/list of ... MidMarksP1 P1’s intermediate mark state list
c/C Confirmation code/list of ... MidMarksP2 P2’s intermediate mark state list
μ Mark-state of opscan oval eid Election-unique identifier

preElectionPrep, postElectionPrep encompass the preparation for the public elec-
tion audits. Note that each of these protocols taken individually is only secure in
an honest-but-curious setting. To make them robust against an active adversary
we make use of a set of audit protocols proveScan, proveReceipt, provePrinting
and resolveDispute. A summary of notations used is presented in Table 1.

The Ballot. The basic optical-scan paper ballot form has a pre-printed, fixed-
order candidate list L = {l1 . . . lm}. Adjacent to each candidate is an optical
scan oval with a mark state μ ∈ {0, 1} corresponding respectively to whether
the oval was unmarked or marked. The ballot form is separated into two re-
gions by a perforation. The top constitutes the ballot portion, and the bot-
tom is the receipt portion. An alphabet Σ of m confirmation codes is defined.
Each optical scan oval (and hence each candidate) is associated with a confir-
mation code drawn independently at random, and without replacement, from
Σ. A ballot-id b is a d-bit6 vector printed on the ballot portion. An indepen-
dent receipt-id r is printed on the receipt portion. The first printer prints the
receipt-ids under a scratch-off coating and the second prints the confirmation
codes. Both printers will jointly print the ballot-id in invisible ink. Printing of
the ballot- and receipt-ids is done such that each printer only knows what it
prints (and not what its counterpart prints). The basic ballot is depicted in
Figure 1(a).

Ballot Tuple. A ballot is fully specified by the tuple {b, r, c}, which denotes the
association between a unique ballot-id bit vector b ∈ {0, 1}d, a unique receipt-id
r ∈ {1 . . . n}, and a random permutation of confirmation codes c = π(Σ) for a
permutation π drawn independently and uniformly at random from the set of
possible permutations of Σ.

6 Since in the basic scheme ballot-ids are the xor of random bit vectors, d is chosen to
be large enough so as to make duplicate ballot-ids highly unlikely.

128 A. Essex, C. Henrich, and U. Hengartner

Alice

Bob

Carol

Y

Z

X

For office use only

(a) Unmarked ballot form.

Alice

Bob

Carol

Y

Z

X

For office use only

#1573My confirmation code is Z

(b) Top: Cast ballot portion with activated
ballot-id. Bottom: Completed receipt por-
tion with revealed receipt-id.

Fig. 1. Basic ballot: Optical-scan ballot form with ballot portion (top) and tear-off
receipt portion (bottom) depicting a randomized confirmation code list, a unique ballot-
id printed in invisible ink visual-crypto and a unique receipt-id beneath a scratch-off
coating. Ballot printing is distributed between two printers such that neither can match
receipts with cast ballots.

3.1 Election Preparation

The election is initialized as follows: election commission C initializes a pub-
lic bulletin board BB7 and a unique election identifier eid. Printers P1 and P2

jointly run DKG. They post the public key Y to public bulletin board BB and
retain their respective private key shares x1, x2. This list of public parameters
pubParam = {n,m, d, L,Σ, α, eid, Y } is posted to BB. All functions/protocols
accept pubParam as input.

Ballot Tuple Creation. The printers now jointly generate encrypted ballot
tuples by running generateBallots. This protocol is given in Algorithm 1.

Ballot Printing. The n ballot forms are printed in three steps. For each ballot-
tuple a paper ballot is prepared in the following order:

– Static background: directions, candidate names, etc, printed in black ink,
– P1’s share: the receipt-id is printed and concealed under scratch-off coating,
P1’s share of the ballot-id printed in invisible ink visual-crypto,

– P1’s share: the confirmation codes are printed in regular ink, P2’s share of
the ballot-id printed in invisible ink visual-crypto over P1’s share.

The completed ballot forms are then randomly shuffled and delivered into the
custody of the election commission C. Throughout the ballot printing and vot-
ing phases the printers will conduct random audits of ballot forms to ensure their

7 Typically modelled as an append-only broadcast channel with state (cf. [4]).

Single Layer Optical-Scan Voting with Fully Distributed Trust 129

Algorithm 1. generateBallots

Participants: Printers P1,P2

Printer P1 should:1

for i ∈ {1 . . . n} do2

Encrypt vectors of random bits:3

B′(i) ← (Enc(randBit), . . . ,Enc(randBit))4

Post a non-malleable commitment to each randBit along with the5

random factor used to encrypt it.

Encrypt and shuffle receipt-ids:6

R ← Shuffle(Enc(1) . . .Enc(n))7

end8

Printer P2 should:9

for i ∈ {1 . . . n} do10

Randomly shuffle and encrypt code confirmation codes:11

C(i) ← Shuffle(Enc(Σ(1)) . . .Enc(Σ(m)))12

end13

Both Printers should:14

Simultaneously and respectively output B′, R and C to BB.15

end16

Printer P2 should:17

for i ∈ {1 . . . n}; j ∈ {1 . . . d} do18

Homomorphically xor random bits:19

b′1 . . . b
′
d ← B′(i)20

B(i) ← (b′1⊕̃ randBit, . . . , b′d⊕̃ randBit)21

Post a non-malleable commitment to each randBit along with the22

random factor used in computing the xor.

Output B to P123

end24

//Remark: Shuffle(X) applies a permutation to a list X, drawn independently
and uniformly randomly from the set of permutations of size |X|. randBit
returns a single bit drawn independently and uniformly at random. It is
possible that P2 might attempt to maliciously select its bits as a function of
P1’s. However P2 will not know (beyond a guess) what to print on the ballot,
and will be caught in ProvePrinting with statistical certainty.

authenticity and to look for signs of tampering (e.g, to catch if someone reveals
the secret information then replaces the ballot with a replica). Note that if either
printer prints something other than their contribution in generateBallots (e.g., if
a printer prints an all-black VC pixel), this will be caught in provePrinting with
statistical confidence dependent on the number of audited ballots.

Pre-election Proof Preparation. The printers initialize the public audit
dataset and cut-and-choose correctness proofs by running preElectionPrep. This
protocol is given in Algorithm 2.

130 A. Essex, C. Henrich, and U. Hengartner

Voting and Receipt Creation. An individual wishing to vote shall attend the
polling place and authenticate themselves to C. All qualified and authenticated
individuals (i.e., voters) are then eligible to receive a ballot. The voter selects
a ballot form at random from a stack of unmarked ballot forms and takes it, a
regular (black) marking pen, and a privacy sleeve into a private voting booth.
The voter marks the oval next to their preferred candidate li on the ballot
portion. Then, if they so choose, the voter creates a receipt of their vote by
noting the code letter ci and writes it in the appropriate space on the receipt
portion. The voter then places the marked ballot form into the privacy sleeve and
returns it to the poll worker. The poll worker confirms the receipt-id’s scratch-
off coating is still intact and the ballot-id has not been activated (rejecting the
ballot in such a case), then detaches the receipt portion and places it on a table
in view of the voter. The ballot portion is then fed into the optical scanner. If
the ballot is accepted the receipt portion is retained by the poll worker. If the
ballot portion is successfully cast, the receipt portion is returned to the voter
and the voting process is complete. A diagram showing completed ballot and
receipt portions is depicted in Figure 1(b).

A Note about Timing Attacks. In some jurisdictions, poll workers keep
a poll book of voter identities in the order they voted. If the scanner were to
likewise maintain the order of cast ballots it, taken along with the poll book,
would compromise ballot secrecy. Since in our case the ballot is drawn at random
from the pile, and the poll worker does not see the ballot- or receipt-ids, this
threat can be mitigated by having voters cast ballots into a ballot box at the
polling place and then scanning them later at a central location.

Post-election Proof Preparation. After the election C populates the
BallotTable with the mark state information collected by the optical scanners.
With this data the printers and can now finalize the cut-and-choose correctness
proof by running postElectionPrep. This protocol is given in Algorithm 3.

3.2 Audits

There are three simultaneous properties that must be proven in order for the
overall results to be proven correct. These audits include,

– Proving correct mark-state reporting by C: Using their receipt, a voter
V checks whether C correctly registered their vote by running proveScan,

– Proving mark-state propagation by P1,P2: The printers prove to any
interested party that they honestly applied their master permutations to
mark state information in BallotTable by running proveReceipt,

Single Layer Optical-Scan Voting with Fully Distributed Trust 131

Algorithm 2. preElectionPrep

Participants: Printers P1,P2

Public Input: Candidate list L
Private Input: Lists of encrypted ballot-ids B, receipt-ids R, and code shuffles

C

Both Printers should:1

//Expand the n ballot tuples into a table of mn rows (one for every
candidate on every ballot):

for i ∈ {0 . . . n− 1} do2

c1 . . . cm ← C(i)3

for 0 ≤ j ≤ m− 1 do4

T (1,mi + j) ← B(i)5

T (2,mi + j) ← Enc(L(j + 1))6

T (3,mi + j) ← R(i)7

T (4,mi + j) ← cj8

//P1 followed by P2 using master permutations MP1 and MP2 respectively:
T ′ ← Mix(T)9

//Create ballot and receipt tables:
BallotTable ← DDec(T ′(1 . . . 2, :))10

ReceiptTable ← DDec(Mix(T ′(3 . . . 4, :))11

Post BallotTable,ReceiptTable to BB12

end13

//Prepare cut-and-choose proof of correspondence between elements in the ballot
and receipt tables:

Printer P1 should:14

for i ∈ {1 . . . α} do15

Choose πi ∈R Πmn16

Set ρi such that ρi ◦ πi = MP117

Post Commit(πi),Commit(ρi) to BB18

end19

Printer P2 should:20

for i ∈ {1 . . . α} do21

Choose σi ∈R Πmn22

Set τi such that τi ◦ σi = MP223

Post Commit(σi),Commit(τi) to BB24

end25

//Remark: Let x ∈r Πy denote a permutation function x drawn independently
and uniformly at random from the set of permutations of list of y elements.
Let MP1,MP2 ∈R Πmn. Then for i ∈ {1 . . . α}, we have
τi ◦ σi ◦ ρi ◦ πi = MP2 ◦MP1.

132 A. Essex, C. Henrich, and U. Hengartner

Algorithm 3. postElectionPrep

Participants: Election Commission C, Printers P1,P2

Private Input: Secret Master permutations MP1,MP2, Scanned Cast Ballots

//Populate BallotTable with scanner data
Election commission C should:1

foreach {b, s, μ} recorded by scanner do2

Find i for which ballotTable(1, i) = b3

and ballotTable(2, i) = s4

ballotTable(3, i) ← μ5

Post ballotTable(3, :) to BB.6

end7

//Propagate marks from BallotTable to ReceiptTable
Printer P1 should:8

MidMarks ← MP1(BallotTable(3, :))9

Post MidMarks to BB for i ∈ {1 . . . α} do10

MidMarksP1i ← πi(BallotTable(3, :))11

Post MidMarksP1i to BB12

end13

Printer P2 should:14

ReceiptTable(3, :) ← MP2(MidMarks)15

Post ReceiptTable(3, :) to BB. for i ∈ {1 . . . α} do16

MidMarksP2i ← σi(MidMarks)17

Post MidMarksP2i to BB18

end19

– Proving printed ballot forms match BB: A scrutineer S8 runs
provePrinting with the printers to verify that the ballot tuple information
conveyed by the paper ballot forms matches the ballot tuple representation
in BB. Audited ballots are spoiled and not counted.

Because receipt creation is unsupervised, a dispute may arise between C and V
over the correct confirmation code. In such an event a dispute resolution pro-
tocol can be run. For space reasons we defer complete listings of proveScan,
proveReceipt, provePrinting and the dispute resolution procedure to the full pa-
per.2

4 Improved System

In this section we present a system that improves upon the basic system in
two ways: First, it replaces the physical dispute resolution procedure with an
informational dispute procedure. Second, the collection of cast ballots (i.e., the
paper audit trail) can be viewed publicly without compromising ballot secrecy.

8 A scrutineer is not strictly necessary. Voters themselves may choose to initiate this
audit, although in our experience they rarely do!

Single Layer Optical-Scan Voting with Fully Distributed Trust 133

Informational Dispute Resolution. The dispute resolution procedure of the
basic system is inefficient and time consuming. Chaum et al. proposed the notion
of invisible ink confirmation codes in Scantegrity II [7] as an informational means
of resolving dispute. Under this approach, codes are printed in invisible ink, and
only revealed to the voter if marked. Assuming the code space is sufficiently large
so as to make successful random guess unlikely, then knowledge of any valid
code can be taken as evidence that a voter correctly created their receipt. Any
discrepancy found between a receipt and the ReceiptTable can then be attributed
to C (assuming the other correctness proofs are valid). In the improved system,
we create and print the codes using a private printing protocol. Thus the role
of invisible ink is twofold: it restricts the voter’s knowledge of unmarked codes
and it prevents the printers from linking receipts to votes.

Public Paper Trail. Invisible ink confirmation codes require a code space
that makes random guessing statistically unlikely. For example Scantegrity II
proposes a 3-digit code (making a random guess successful 0.1% of the time on
average). However in the presence of unique (or semi-unique) codes, access to cast
ballots coupled with the public audit dataset is sufficient (or nearly sufficient)
to allow any observer to link receipts to clear-text votes. This not only means
that the paper ballot record must be kept secret, but further that the custodian
of the ballot record (i.e., C) is trusted with knowledge of how voters voted.
This is one of the major limitations of Scantegrity II. To address this privacy
weak-spot, we require a method for not only privately printing a confirmation
code, but for displaying it only while the voter is in the booth. In the presence
of “disappearing” codes, not only can we offer distributed trust with respect to
P1,P2 and C, but we can also make the paper ballot record public.

Self-blanking Confirmation Codes. We propose a method for printing of
confirmation codes that is self-blanking (i.e., the message is only temporarily
visible). The standard invisible ink described by Scantegrity II activates instan-
taneously. That is to say, the chemical reaction responsible for the ink’s pig-
mentation completes on the order of milliseconds. It was suggested in [7] that a
slower reacting ink might by the addition of an anti-catalyst. This substance, if
present, can slow down pigmentation by seconds or minutes (depending on design
needs). Combining the technique of visual cryptography with such a ‘slow’ invis-
ible ink, we can construct a self-blanking pixel (see Table 2). Finally, combining
self-blanking pixels with the private printing protocol of [15], we can print con-
firmation codes that are both distributed between two-parties and self-blanking.

The Improved Ballot. The improved ballot differs from the basic ballot in
that it makes use of self-blanking invisible ink confirmation codes. The codes
are printed inside the optical scan ovals in self-blanking invisible ink. When the
voter marks an oval using the specially provided activator pen, the confirmation
code is revealed allowing the voter (finite) opportunity to write down the code

134 A. Essex, C. Henrich, and U. Hengartner

Table 2. Self-blanking VC Pixel. Two sub-pixels contain invisible ink. Each party
applies an anti-catalyst (cyan) to one sub-pixel. Sub-pixels containing this substance
darken more slowly than those without (t = 0 is the moment of activation). Eventually
all sub-pixels darken “blanking” the pixel’s value.

Result when activated
a b VC(a) VC(b) t = 0 t > 0 t >> 0

0 0 ∅ ∅

0 1 ∅ ∅

1 0 ∅ ∅

1 1 ∅ ∅

on their receipt. Eventually the oval darkens completely indicating that the oval
was chosen by the voter, but not what the confirmation code was (see Figure 2).

(a) t = 0 (b) t > 0 (c) t >> 0

Fig. 2. Optical-scan oval with self-blanking confirmation code after being
marked with an activator pen (t = 0 is the moment of activation)

Changes to the Protocols. The addition of self-blanking invisible-ink confir-
mation codes induces some changes the protocols presented in Section 3. Details
are presented in the full paper2 and are summarized as follows:

– Ballot tuples: P2 generates ballot-ids. Both printers run a private printing
protocol to select a confirmation code and distribute it to VC shares,

– Ballot printing: P2 prints ballot-ids in invisible ink. Both printers print
their shares of the confirmation codes using self-blanking visual crypto pixels,

– Informational dispute resolution: As in Scantegrity II, the printers only
publish the confirmation code corresponding to the voted candidate. In the
case of a dispute, the printers jointly issue a non-interactive proof of plaintext
inequality between all remaining (unencrypted) codes on the disputed ballot.

5 Security Analysis of the Improved System

For space reasons we defer our security analysis to the full paper.2 To briefly
summarize our results, owing to the similarities between systems, we reduce the
correctness of the improved system to that of Scantegrity II. Although Scant-
egrity has been peer reviewed and used in a real election we are not aware
of a formal proof of the correctness. A proof of correctness of Eperio, a related

Single Layer Optical-Scan Voting with Fully Distributed Trust 135

system, does offer some insight into how such a proof would proceed [16]. With
respect to secrecy we present an argument that the improved system protects
voter privacy even when one printer is corrupted. Assumptions regarding the
physical primitives can be found there as well.

6 Related Work

We review some work related to verifiable voting systems with optical-scan paper
ballots. This literature can be roughly separated into two categories: systems us-
ing single layer ballot forms but reliant on trusted parties/hardware and systems
with distributed trust but with multi layer ballot forms.

Single Layer Ballot Forms with Trusted Components. The Scantegrity
[9] and Scantegrity II [7,8,5] systems offer both a simple single layer fixed can-
didate list and an unencrypted paper trail, but make extensive use of trusted
components to protect ballot secrecy including a computer for blackbox con-
struction of the correctness proofs, the polling place scanner, the ballot printer
as well as the custodian of cast ballots. Additionally the paper record reveals the
link between receipt and clear-text vote making it unsuitable for public viewing.
The Prêt-à-Voter [10,37] system and its variants [1,42,38] also offer the voter a
single-layer ballot form with randomized candidate list. Although the correctness
proofs are usually described as a multi-party computation, ballot forms are gen-
erated by a trusted printer. Cast ballots are generally “encrypted” though vari-
ants exist that leave a human readable paper trail [26,16]. Benaloh [2] proposes
that receipts be generated and printed by a special-purpose device connected to
the optical scanner. This has the distinct advantage that the ballots contain no
identifying information (beyond the vote). However the issue of trusted ballot
printing instead becomes a matter of trusted receipt printing.

Distributed Trust with Multi Layer Ballot Forms. Kubiak [22] and Car-
back et al. [19] propose mostly distributed modifications of the Punchscan sys-
tem [35]. The former still relies on a trusted ballot printer, the later distributes
printing but still relies on trusted hardware to generate ballot tuples. Carback
and Popoveniuc [34] later propose a three-party distributed version of Punchscan
in which top- middle- and bottom-sheet permutations are each generated by in-
dependent printing authorities. In all cases voters must use an indirect marking
procedure. Moran and Naor [28] propose an improved multi layer ballot form that
does not rely on indirection and with considerably stronger, provable, security
properties. Voters are issued layers in separate sealed envelopes. Once inside the
booth the voters are directed to remove each layers from its envelope and stack
the layers in a particular order. The resultant candidate list is horizontally offset
from the optical scan ovals by a randomized amount. Lundin et al. [25] propose a
distributed construction of the Prêt-à-Voter ballot based on a form of dealerless
2-party visual cryptography. The voter must be careful to align the VC shares

136 A. Essex, C. Henrich, and U. Hengartner

in the booth in order to reconstruct the candidate list. Most recently Küsters
et al. [23] present a version of Prêt-à-Voter system without a trusted printer,
physically implementing a re-encryption mixnet using scratch-off coatings. The
voter receives a separate ballot for each candidate, which can be cumbersome
for races involving more than a few candidates.

Other Schemes. Chaum proposed the first physical receipt based voting sys-
tem in [6]. It consists of two visual crypto layers showing the name of the voted
candidate. A receipt is created by separating the layers and destroying one of
them. Paul et al. [32] propose visual crypto for use in voter authentication for
(non-cryptographic) remote voting systems. Scratch & Vote [1], Scratch, Click
& Vote [24] and Pretty Good Democracy [38] make use of scratch-off coating
to conceal encryption random factors and confirmation codes. Finally, Kelsey et
al. [21] propose a voter-coercion strategy involving the use of scratch-off cards
to direct voter action.

7 Future Work: Toward a Secure Multi-party Protocol

The systems described in this paper are both two-party protocols. Ultimately
however it would be desirable to be able to distribute trust among arbitrarily
many printers. With some modification the improved system presented in Sec-
tion 4 could likely be extended to a secure multi-party protocol. With regard
to creating the audit dataset this would be mostly a straightforward extension
of the two-party approach with each of the n > 2 printers generating their own
master permutations and issuing their own cut-and-choose proofs. Generating
ballot tuples in a multi-party setting should also be a fairly straightforward
extension of the two-party setting.

The primary challenge will be to develop an effective approach to distribute
the ballot printing among more than two printers. This will undoubtedly require
a fundamentally different approach from the two-party private printing scheme
presented in [15] and is an interesting potential direction for future work.

Conclusion

Techniques for cryptographically verifiable elections offer unprecedented poten-
tial for making electronically-tabulated elections trustworthy. In this paper we
presented two systems for cryptographically verifiable optical-scan voting that
we believe offer properties that are desirable to both election officials and cryp-
tographers.With this new approach election officials can continue to use a system
with the familiar characteristics of optical-scan voting such as single layer bal-
lots and paper audit trails which are both human-readable and conventionally
auditable. Simultaneously the cryptographic audits can be conducted in a way
that distributes trust such that no individual entity or piece of hardware has
sufficient information to break voter privacy.

Single Layer Optical-Scan Voting with Fully Distributed Trust 137

Acknowledgements. The authors wish to thank Jöern Mueller-Quade and
the anonymous reviewers for their helpful feedback. Special thanks go to Jeremy
Clark for many helpful discussions throughout the writing of this paper. This
research is supported in part by the Natural Sciences and Engineering Research
Council of Canada (NSERC)—the first author through a Postgraduate Scholar-
ship and the third through a Discovery Grant. The second author was supported
through a foreign exchange scholarship from the Karlsruhe House of Young Sci-
entists (KHYS).

References

1. Adida, B., Rivest, R.L.: Scratch & vote: self-contained paper-based cryptographic
voting. In: ACM WPES, pp. 29–40 (2006)

2. Benaloh, J.: Administrative and public verifiability: Can we have both? In: EVT
(2008)

3. Benaloh, J.: Ballot casting assurance via voter-initiated poll station auditing. In:
EVT (2007)

4. Benaloh (né Cohen), J.D., Fisher, M.J.: A robust and verifiable cryptographically
secure election scheme. In: SFCS (1985)

5. Carback, R.T., Chaum, D., Clark, J., Conway, J., Essex, A., Hernson, P.S., May-
berry, T., Popoveniuc, S., Rivest, R.L., Shen, E., Sherman, A.T., Vora, P.L.: Scant-
egrity II election at takoma park. In: USENIX Security Symposium (2010)

6. Chaum, D.: Secret-ballot receipts: True voter-verifiable elections. IEEE Security
and Privacy 2(1), 38–47 (2004)

7. Chaum, D., Carback, R., Clark, J., Essex, A., Popoveniuc, S., Rivest, R.L., Ryan,
P.Y.A., Shen, E., Sherman, A.T.: Scantegrity II: end-to-end verifiability for optical
scan election systems using invisible ink confirmation codes. In: EVT (2008)

8. Chaum, D., Carback, R., Clark, J., Essex, A., Popoveniuc, S., Rivest, R.L., Ryan,
P.Y.A., Shen, E., Sherman, A.T., Vora, P.L.: Scantegrity ii: end-to-end verifiability
by voters of optical scan elections through confirmation codes. IEEE Transactions
on Information Forensics and Security 4(4), 611–627 (2009)

9. Chaum, D., Essex, A., Carback, R., Clark, J., Popoveniuc, S., Sherman, A.T., Vora,
P.: Scantegrity: End-to-end voter verifiable optical-scan voting. IEEE Security and
Privacy 6(3), 40–46 (2008)

10. Chaum, D., Ryan, P.Y.A., Schneider, S.: A Practical Voter-Verifiable Election
Scheme. In: De Capitani di Vimercati, S., Syverson, P.F., Gollmann, D. (eds.)
ESORICS 2005. LNCS, vol. 3679, pp. 118–139. Springer, Heidelberg (2005)

11. Clark, J., Hengartner, U.: On the use of financial data as a random beacon. In:
EVT/WOTE (2010)

12. Clarkson, W., Weyrich, T., Finkelstein, A., Heninger, N., Alex Halderman, J.,
Felten, E.W.: Fingerprinting blank paper using commodity scanners. In: IEEE
Symposium on Security and Privacy (2009)

13. Cramer, R., Gennaro, R., Schoenmakers, B.: A Secure and Optimally Efficient
Multi-authority Election Scheme. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS,
vol. 1233, pp. 103–118. Springer, Heidelberg (1997)

14. Essex, A., Clark, J., Carback, R.T., Popoveniuc, S.: Punchscan in practice: an e2e
election case study. In: WOTE (2007)

15. Essex, A., Clark, J., Hengartner, U., Adams, C.: How to print a secret. In: HotSec
(2009)

138 A. Essex, C. Henrich, and U. Hengartner

16. Essex, A., Clark, J., Hengartner, U., Adams, C.: Eperio: Mitigating technical com-
plexity in cryptographic election verification. In: EVT/WOTE (2010)

17. Fiat, A., Shamir, A.: How to Prove Yourself: Practical Solutions to Identification
and Signature Problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987)

18. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: One-Time Programs. In: Wagner, D.
(ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 39–56. Springer, Heidelberg (2008)

19. Carback III, R.T., Popoveniuc, S., Sherman, A.T., Chaum, D.: Punchscan with
independent ballot sheets: Simplifying ballot printing and distribution with inde-
pendently selected ballot halves. In: WOTE (2007)

20. Jarrous, A., Pinkas, B.: Secure Hamming Distance Based Computation and Its
Applications. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.)
ACNS 2009. LNCS, vol. 5536, pp. 107–124. Springer, Heidelberg (2009)

21. Kelsey, J., Regenscheid, A., Moran, T., Chaum, D.: Attacking Paper-Based E2E
Voting Systems. In: Chaum, D., Jakobsson, M., Rivest, R.L., Ryan, P.Y.A., Be-
naloh, J., Kutylowski, M., Adida, B. (eds.) Towards Trustworthy Elections. LNCS,
vol. 6000, pp. 370–387. Springer, Heidelberg (2010)

22. Kubiak, P.: A modification of punchscan: Trust distribution. In: FEE (2006)
23. Küsters, R., Truderung, T., Vogt, A.: Improving and Simplifying a Variant of Prêt à

Voter. In: Ryan, P.Y.A., Schoenmakers, B. (eds.) VOTE-ID 2009. LNCS, vol. 5767,
pp. 37–53. Springer, Heidelberg (2009)

24. Kuty�lowski, M., Zagórski, F.: Scratch, Click & Vote: E2E Voting over the Internet.
In: Chaum, D., Jakobsson, M., Rivest, R.L., Ryan, P.Y.A., Benaloh, J., Kutylowski,
M., Adida, B. (eds.) Towards Trustworthy Elections. LNCS, vol. 6000, pp. 343–356.
Springer, Heidelberg (2010)

25. Lundin, D., Treharne, H., Ryan, P.Y.A., Schneider, S., Heather, J., Xia, Z.: Tear
and destroy: Chain voting and destruction problems shared by prèt â voter and
punchscan and a solution using visual encryption. In: FEE (2006)

26. Lundin, D., Ryan, P.Y.A.: Human Readable Paper Verification of Prêt à Voter.
In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS, vol. 5283, pp. 379–395.
Springer, Heidelberg (2008)

27. Moran, T., Naor, M.: Basing Cryptographic Protocols on Tamper-Evident
Seals. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.)
ICALP 2005. LNCS, vol. 3580, pp. 285–297. Springer, Heidelberg (2005)

28. Moran, T., Naor, M.: Split-ballot voting: Everlasting privacy with distributed trust.
In: ACM CCS (2007)

29. Naor, M., Shamir, A.: Visual Cryptography. In: De Santis, A. (ed.) EUROCRYPT
1994. LNCS, vol. 950, pp. 1–12. Springer, Heidelberg (1995)

30. Andrew Neff, C.: Practical high certainty intent verification for encrypted votes.
Technical report, VoteHere Whitepaper (2004)

31. Park, C., Itoh, K., Kurosawa, K.: Efficient Anonymous Channel and All/Nothing
Election Scheme. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765,
pp. 248–259. Springer, Heidelberg (1994)

32. Paul, N., Evans, D., Rubin, A.D., Wallach, D.S.: Authentication for remote voting.
In: HCISS (2003)

33. Pedersen, T.P.: A Threshold Cryptosystem without a Trusted Party. In: Davies,
D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 522–526. Springer, Heidelberg
(1991)

34. Popoveniuc, S., Carback, R.: Clearvote: An end-to-end voting system that dis-
tributes privacy between printers. In: WPES (2010)

Single Layer Optical-Scan Voting with Fully Distributed Trust 139

35. Popoveniuc, S., Hosp, B.: An introduction to punchscan. In: WOTE (2006)
36. Rabin, M.: Transaction protection by beacons. Journal of Computer and System

Sciences 27(2) (1983)
37. Ryan, P.Y.A., Schneider, S.A.: Prêt à Voter with Re-encryption Mixes. In: Goll-

mann, D., Meier, J., Sabelfeld, A. (eds.) ESORICS 2006. LNCS, vol. 4189,
pp. 313–326. Springer, Heidelberg (2006)

38. Ryan, P.A., Teague, V.: Ballot permutations in prèt â voter. In: EVT/WOTE
(2009)

39. Ryan, P.A., Teague, V.: Pretty good democracy. In: Workshop on Security Proto-
cols (2009)

40. Sandler, D.R., Derr, K., Wallach, D.S.: VoteBox: a tamper-evident, verifiable elec-
tronic voting system. In: USENIX Security Symposium (2008)

41. Sherman, A.T., Carback, R.T., Chaum, D., Clark, J., Essex, A., Hernson, P.S.,
Mayberry, T., Popoveniuc, S., Rivest, R.L., Shen, E., Sinha, B., Vora, P.L.: Scant-
egrity mock election at takoma park. In: EVOTE (2010)

42. Xia, Z., Schneider, S.A., Heather, J.: Analysis, improvement and simplification of
prèt â voter with paillier encryption. In: EVT (2008)

Paperless Independently-Verifiable Voting�

David Chaum, Alex Florescu1, Mridul Nandi3, Stefan Popoveniuc, Jan Rubio1,
Poorvi L. Vora1,2, and Filip Zagórski1

1 The George Washington University, Washington D.C.
2 Indian Institute of Technology, Bombay

3 Indian Statistical Institute, Kolkata

Abstract. We present a new model for polling-booth voting: the voter enters the
polling booth with a computational assistant which helps her verify that her vote
is correctly recorded. The assistant interacts with the voting system while the
voter votes on the machine in the polling booth. We present an independently-
verifiable, coercion-resistant protocol based on this model. Unlike all other
independently-verifiable protocols, this one is completely paperless and does not
require the voter to perform any tasks outside the polling booth. We provide prop-
erty definitions, rigorous claims and a description of a prototype.

1 Introduction

Independently-verifiable protocols were first proposed almost a decade ago, and have
been tried in binding elections, including one small governmental election. All of the
secure independently-verifiable protocols require the use of paper, however, and also
require the voter to perform checks outside the polling booth. This has perhaps slowed
down the adoption of these protocols, which have particularly strong verifiability prop-
erties. Additionally, Direct Recording Electronic (DRE) voting machines—with all their
flaws—enable voters with disabilities to vote independently for the first time ever. The
use of paper hence presents a step backwards for this category of voter. In a first at-
tempt towards rectifying some of these problems, this paper presents an independently-
verifiable polling-booth protocol which is completely paperless.

The protocol is based on a new model for independently-verifiable polling booth
voting: the voter enters the polling booth with a computational assistant that she has
brought with her. This could be, say, a smartphone, or special-purpose hardware. She
puts it into a special docking station where she can see its output behind a transparent
cover (much like the screen used for VVPATs), but cannot provide any input to it. A
blind voter may obtain output through the use of headphones, and be prevented from
providing input by disabling the microphone; again, specially-designed hardware could
be useful. We assume that the voter takes no pictures and votes alone so no one can
watch her vote. An adversary may, however, query her through alternate channels (such
as the scratch-off cards proposed in [13]).

� This work was done while Nandi was at The George Washington University. Florescu, Rubio
and Vora were supported in part by NSF Award No. 0831149, Nandi and Zagórski by NSF
Award No. 0937267. Zagórski was also supported in part by the Polish Ministry of Science
and Higher Education scientific project - grant N N206 369839.

A. Kiayias and H. Lipmaa (Eds.): VoteID 2011, LNCS 7187, pp. 140–157, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Paperless Independently-Verifiable Voting 141

In the protocol, while the voter votes on the machine in the polling booth (this could
be a DRE machine that is capable of performing cryptographic operations), the as-
sistant interacts with the machine. It performs computations based on the interaction,
and provides information to the voter to help her determine if her vote is recorded
correctly. The role of the assistant is to provide the voter the capability to perform
digital signatures and commitments, and to perform the random challenges on behalf
of the voter. The assistant cannot determine the vote from the information it obtains.
The data communicated in both directions between assistant and voting machine is
signed by the sender and verified by the receiver, and made public immediately after the
protocol ends. Hence, as with other independently-verifiable protocols, the encryption-
correctness proof—which is based on the interaction between the computational as-
sistant and the voting machine—can be checked by anyone. In contrast with existing
independently-verifiable protocols, the voter’s tasks are completed inside the polling
booth, and the process is entirely paperless. We do not assume the existence of a
randomness beacon.

We present a coercion-resistant independently-verifiable fully-electronic protocol us-
ing this model. We are not aware of any other such protocols that do not require an
external independent randomness beacon.

1.1 Existing Paperless Protocols and Their Limitations

It may be argued that the design of an independently-verifiable paperless protocol has
been the goal of cryptographers since the invention of secure electronic voting in the
early eighties. However, all the existing all-electronic protocols have vulnerabilities.

The classical protocols are vulnerable because the vote is entered through the voter’s
machine which is trusted to keep the vote secret. Malware on the voter’s machine knows
the vote, and can also change it.

The newer, all-electronic independently-verifiablevoting systems may be represented
by polling-booth-Helios. While Helios is a remote voting system, it is an all-electronic
simplification of polling-booth protocols Simple-Verifiable-Voting [3] or Voter-Initiated
Poll Station Auditing [4] which provide paper receipts. It is hence easily modified for
polling booth use, and we use it for illustrative purposes. When we refer to polling-
booth-Helios in this paper, we will mean an all-electronic polling-booth protocol where
the voter communicates an electronic vote to the untrusted voting machine, obtains an
electronic hash of her receipt as a commitment from the machine, communicates elec-
tronically whether she wants to cast (or audit) the receipt, and receives an electronic re-
ceipt (or proof of encryption-correctness). We use it to represent a simple all-electronic
independently-verifiable polling-booth system.

Polling-booth-Helios is vulnerable to two types of attacks:

1. Coercive attack: the adversary coerces the voter to make a challenge that is a func-
tion of the receipt hash. Because the voter does not know whether her vote will be
cast or audit when she is entering it, and she knows that there is a possibility it will
be audited, or exposed to the adversary, she has an incentive to vote as directed by
the adversary. Further, if this adversary colludes with the voting system, the latter’s
attempts at cheating cannot be detected because it will know what challenge to ex-
pect. This attack can be avoided if the voter is required to commit to her challenge

142 D. Chaum et al.

bit before she sees any information on the ballot, however a voter cannot commit
to the bit on an all-electronic system without access to trusted computation1.

2. Challenge correctness: the voting system can choose to ignore the challenge and
proceed to cast or audit as it wishes. While the voter knows the system is cheating,
she cannot prove it. The inability to resolve a dispute about the correctness of the
challenge can also allow a voter to falsely claim a voting system is cheating.

1.2 Our Contributions

We address the problem of making and checking commitments in an all-electronic
protocol by having the computational assistant perform a more active role than in the
current independently-verifiable voting systems. The assistant makes and verifies cryp-
tographic commitments and digital signatures on behalf of the voter. We avoid the co-
ercion attacks possible in the classical cryptographic protocols—where too the voter’s
computer performed an active role—by preventing the voter from providing any input
to the assistant. Finally, we make fewer assumptions than in the classical model where
the voter’s computer is trusted to follow instructions. We also do not assume the avail-
ability of a beacon of randomness. Our contributions are as follow:

�We model an Actively-Assisted-Human Interactive Proof (AAHIP). In this model the
voter votes on the voting machine and does not provide any input to the assistant.
The assistant interacts with the voting machine and provides information to the
voter. The interaction between assistant and voting machine takes place over an
authenticated channel, where both assistant and voting machine sign messages and
check signatures. All the data sent over the channel, in both directions, is made
public immediately after the protocol ends. The assistant is allowed to deviate from
protocol, and its memory and logs can be examined by anyone once the vote is cast.
We also allow the assistant to instruct the voter before the protocol begins, and to
query her at any time.

� We provide a rigorous description of a paperless vote-casting protocol based on
a cut-and-choose AAHIP. We provide definitions and rigorous statements of our
results. Space limitations prevent us from providing proofs. We assume the model
of an AAHIP and that either the voting machine or the assistant is honest. We define
soundness and coercion-resistance and demonstrate that the protocol achieves both
given the assumptions. We are not aware of other all-electronic protocols that have
these properties. In particular, note that when the assistant is dishonest the protocol
is still coercion-resistant. Classical all-electronic protocols are coercion-resistant
only when the voter’s computer is trusted.

1 Paper-based systems can enable the voter to make a commitment without using computation–
for example, poll workers may mark the voter’s choice of challenge on her paper ballot before
handing it to her. In an all-electronic voting system, however, without access to any other
computation while voting, the voter is unable to make the commitment. In order to do so, the
commitment would need to be digital and the voter would need access to a trusted computer.
This computer could change the challenge as it wished without informing the voter. An audit
challenge would result in an audit of both the voter and the voting machine. In trying to avoid
one coercive adversary, the Helios voter is exposed to another.

Paperless Independently-Verifiable Voting 143

� We describe a simpler challenge-response AAHIP for vote-casting, which is much
like polling-booth-Helios with an assistant. We show that it has weaker coercion-
resistance. Thus the vulnerabilities of polling-booth-Helios are not overcome by
naturally extending it to the AAHIP model. We are not aware of any other work that
observes a distinction between cut-and-choose and challenge-response protocols.

� We describe our prototypes for both challenge-response and cut-and-choose pro-
tocols. An Android-based smartphone performs the role of the computational as-
sistant in the prototypes. Note, of course, that the voter’s device can be a special
hardware device and not a smartphone; at this time, however, we do not have access
to special hardware.

1.3 Comparison with Other Approaches

Our protocol provides the following security improvements over polling-booth-Helios
(note that the remote version also possesses these vulnerabilities, but they may not
be of as much consequence in the elections Helios was designed for). Again, polling-
booth-Helios is being used only for illustrative purposes, as a representative simple
all-electronic system:

� In contrast with polling-booth-Helios, the voter can prove that a challenge bit was
changed if the assistant is honest.

� Further, in contrast with polling-booth-Helios, the voter cannot be coerced if the
voting machine is honest.

We are able to achieve the above two properties because we have constructed a proto-
col where the challenge bit is issued by the assistant and not by the voter. One cannot
simply add digital signatures to the challenge bit in Helios to achieve the first prop-
erty, because the voter cannot check digital signatures without an assistant. Further, the
second property is not achieved by naturally extending Helios to use a computational
assistant to issue the challenge bit and to make and verify digital signatures. We show
that a protocol that is a natural extension of Helios with a computational assistant is not
coercion resistant, even if it is assumed that the voter does not provide input to the as-
sistant. That is, it is not possible to achieve the properties achieved by our main protocol
by simply extending Helios to the AAHIP model.

On the other hand, our protocol also shares some of the limitations of polling-booth-
Helios and does not achieve all the security properties of paper-ballot-based voting
systems. If the voting machine is dishonest, an honest assistant can help the voter detect
the cheating, but neither can prove it. In a paper-ballot-based system, the voter and one
of the computational assistants she uses can provide the proof.

Note that one may fault our protocol because, if the assistant and voting machine are
both dishonest and colluding, the voter will not detect an attempt to change the tally.
While this is possibly a consequence of more general results on protocols in which more
than half of the parties are dishonest, note that polling-booth-Helios also has a similar
problem. Consider an adversary colluding with the voting system to change the tally
in our protocol. The adversary prevents the voter from using her chosen assistant and
requires her to use one the adversary provides. This assistant can provide pre-prepared

144 D. Chaum et al.

challenges known to the voting system. This will result in a fraudulent encryption-
correctness proof. The same adversary can use the coercion channel present in polling-
booth-Helios to force the polling-booth-Helios voter to execute a challenge that is a
function of the receipt-hash. In collusion with this adversary, the polling-booth-Helios
voting system can also predict challenges, also resulting in a fraudulent encryption-
correctness proof. However, in our protocol, the coercive adversary cannot coerce the
voter if the voting machine is honest; this is not true with polling-booth-Helios.

1.4 Organization

The paper is organized as follows. Section 2 reviews related work. Section 3 provides an
informal description of the model. Section 4 describes the challenge-response protocol
which is a natural extension of polling-booth-Helios to the AAHIP model, and describes
a simple coercion attack on it. The main protocol is described informally in 5. Section 6
provides a rigorous description of the model and the main protocol. Section 7 provides
a rigorous set of property definitions with theorem statements, and section 8 describes
the prototypes. Section 9 presents our conclusions.

2 Related Work

The first description of the notion of coercion-resistance is due to Benaloh and Tuinstra
[5]. Their protocol assumes the existence of a randomness beacon, avoiding the coer-
cion avenue created when voters are allowed to issue the challenges. Later protocols
in the classical model, such as that of Juels, Catalano and Jakobsson [11] assume that
the computer used to encrypt the vote may be trusted to do so correctly (or that voters
are Interactive Turing Machines — ITMs). This is clearly not a valid model for polling-
place voting. The first description of a secure voting protocol where voters are not ITMs
is due to Chaum [7]; however this protocol requires the use of visual cryptography and
two transparent layers stacked one on top of the other with very good registration and
is highly impractical. These protocols were quickly followed by several others, such
as MarkPledge [14], Prêt à Voter [16], Punchscan [15], Simple-Voter-Verifiable [3],
Votebox [17], Helios [2] and Scantegrity [8].

Of the independently-verifiableprotocols, most are paper-based. Votebox and Helios,
based on Simple-Voter-Verifiable, are fully-electronic, but limit themselves to elections
where coercion is not a concern.

The protocols we describe and study in this paper were first informally proposed by
Chaum, Popoveniuc and Vora [9]. We present slightly modified versions in this paper.
The original paper does not contain rigorous descriptions or proofs and they do not
present any information on prototypes. Additionally, the original paper was not pre-
sented at a venue with proceedings.

Our notion of an AAHIP extends Adida’s work on AHIPs [1].

3 The Informal Model

In our protocols, we use the notion of a commitment, and that of oblivious transfer. A
cryptographic commitment scheme enables a sender to “commit” to a value M without

Paperless Independently-Verifiable Voting 145

revealing it. It does so by providing a “commitment”, comM , to the receiver. At a later
stage, the sender can “open” the commitment and reveal M to the receiver. The receiver
can verify that M is the original value committed to. 1-out-of-2 oblivious transfer is a
protocol between a sender and a receiver by which the receiver can obtain only one of
two secret elements K0 and K1 from the sender. The sender is oblivious of which of
the two values the receiver received.

In all the protocols described here, there are three participants: voter, voting machine
and computational assistant. The voter is human. Its computational capability is limited
to the ability to compare small strings. The voting machine and computational assis-
tant are Probabilistic Polynomial Time (PPT) Interactive Turing Machines (ITMs) with
authenticated write access to a secure append-only bulletin board that can be read by
anyone.

The general purpose of all the participants is as in other independently-verifiable
voting systems, except for two important distinctions: the computational assistant is an
interactive participant in the protocol and does not receive any input from the voter. All
its input is provided by the voting machine.

We provide more detail on the similarities. As before, the voting machine presents
the voter with a ballot. The voter votes on the voting machine, which provides a string
which it claims is the encryption of the vote. The voting machine provides an interac-
tive proof supporting this claim. The computational assistant checks the correctness of
the proof transcript without knowing how the voter voted. The voter performs a check
inside the booth. The voting machine is said to provide a correct encryption only when
both checks are passed.

Details on the distinctions are as follow.

� The computational assistant (and not the voter) obtains the vote encryption and pro-
vides challenges to the voting machine to obtain a proof that the encryption is cor-
rect.

� The assistant provides information to the voter based on how the voting system
responds to the challenges. This information may consist of more than the binary
outcome of its checks. It may also include information on what should be on the
ballot (for example, the correct ordering of candidates, or the correct association of
candidates with dummy variables). The voter compares this information to that on
the ballot presented to her by the voting machine. If the information matches, she
accepts that the encryption is correct.

� The voter does not provide any information to the assistant and only receives infor-
mation from it.

� The voter has to choose a single assistant to participate in the protocol (in an AHIP,
the voter can present her receipt to several distinct assistants asking each to check
for her).

All interaction between the two ITMs is signed and verified. If a signature does not ver-
ify, the recipient party requests a resend and aborts after a pre-determined fixed number
of failed attempts to verify. Similarly, when a commitment is not opened correctly,
the aggrieved ITM can abort the protocol. Thus, either party can perform a denial-of-
service. As this possibility exists in the use of all computational devices, we do not
consider it any further. Note that, because information between the two ITMs is signed

146 D. Chaum et al.

and published after the protocol ends, the channel between the two parties is much like a
public append-only channel. The data across this channel will demonstrate which party
has cheated.
The voter can also abort the protocol if she catches a party behaving dishonestly. How-
ever, because he is not an ITM, she cannot sign and verify signatures and hence does not
share a verifiable tape with any party. Hence she is typically not able to prove certain
types of dishonest behavior.

The assistant would typically be provided by an individual or organization the voter
chose. This is not to say the individual or organization is not malicious or dishonest
and will not attempt to coerce the voter to vote in a certain manner. Our main protocol
is coercion-resistant if at least one of the voting machine or assistant is honest and the
voter does not provide any input to the assistant during the protocol. This is true even
if the adversary can query the voter and examine the memory and logs of the assistant
after the vote is cast and if the assistant is allowed to deviate from protocol.

4 The Challenge-Response Protocol and a Weakness

In this section we present a slight generalization of the protocol named eTegrity in
[9]—a challenge-response-style protocol which is the natural extension of Helios to
the AAHIP model. The voter familiar with the ballot audits of Prêt à Voter [16] or
Scantegrity [6] will notice the similarity with ballot audits. We name the generalized
protocol eChallengeResponse. The protocol uses the assistant to make and verify com-
mitments and digital signatures in a straightforward manner. Its simplicity makes it easy
to use. Space restrictions prevent us from going into more detail. We describe a coer-
cive attack on this protocol, illustrating the difficulty of designing a coercion-resistant
all-electronic protocol.

In this protocol, the assistant first commits to the challenge bit on behalf of the voter.
It sends the challenge bit to the voter, and the commitment to the voting machine. The
voter enters her vote and the voting machine sends the vote-encryption to the assistant.
The assistant opens its commitment and the voting machine audits or casts the encryp-
tion based on what the challenge bit is. The assistant checks encryption-correctness if
the challenge corresponds to an audit. After describing the protocol we describe a sim-
ple coercive attack, thus motivating the somewhat more complicated protocol which
is our main contribution. The challenge-response protocol and the coercive attack are
interesting because they illustrate the subtle problems involved in designing an inco-
ercible protocol.

4.1 eChallengeResponse: Informal Description

In general, an independently-verifiable voting system will provide a receipt which func-
tions as an encryption of the vote. We will denote by Es the cipher for the ballot with
serial number s. That is, whether Es is implemented as a cipher or a look-up table, it
has the properties of a secure cipher. In order to vote, a voter walks into a polling booth
with a computational assistant.

Paperless Independently-Verifiable Voting 147

To begin the protocol, the assistant and the voting machine set up a communication
link. Before the voter and voting machine interact, the assistant performs a crypto-
graphic commitment to a uniformly-distributed bit b representing whether or not it will
audit the upcoming encryption. It sends b to the human voter and the commitment cb to
the voting machine. Note that it has not been possible to perform this step electronically
in an AHIP, and independently-verifiable voting systems have required a combination
of paper and procedures for this step 2.

The voting machine sends to the assistant the serial number s of the ballot it will
use. After the assistant checks that s is fresh, the voting machine presents the fresh
ballot with serial number s to the voter. The voter selects her candidate, v, on the voting
machine and confirms her vote. The voting machine then presents the signed pair of
the serial number and encrypted vote, (serial, encryption), to the assistant. In correct
instances of the protocol, (serial, encryption) := (s, Es(v)).

The assistant opens cb to reveal b to the voting machine.

� If the commitment verifies and corresponds to a choice of “cast”, the vote is cast.
Both voting machine and assistant post the signed pair (serial, encryption) in the
list of verified votes on the secure bulletin board. The protocol ends.

� If the commitment verifies and corresponds to a choice of “audit”, the voting ma-
chine reveals the vote it encrypted, vote, and the encryption parameters. Both vot-
ing machine and assistant post the signed pair (serial, encryption) in the list of au-
dited votes on the secure bulletin board. The assistant provides the value of serial
and vote to the voter. If vote is the vote she cast, ı.e. if vote = v, and serial is the
serial number of the ballot presented to her, ı.e. if s = serial, the voter knows the
encryption was correctly performed.

The voter may repeat the above protocol many times if she desires, at different times
during the day, and at different voting machines.

4.2 A Coercive Attack

We now describe a simple coercion attack when the voting machine is honest but the
assistant is not. This motivates the use of the more complicated cut-and-choose protocol
we describe next, which is not vulnerable to this attack. The coercer tells the voter to
vote for candidate i and provides her with the assistant. An examination of the assistant
after the vote is cast will demonstrate to the coercer whether the voter used it or not,
so the voter cannot use another assistant. The assistant is programmed to perform the
correct protocol, except for the fact that it provides no information to the voter in the
first step (when it is supposed to send her the challenge bit). The voter will always

2 As in an AHIP, the voter may choose b and communicate it to the assistant. However, because
the assistant commits to b, any security analysis must assume that the assistant chooses b.
Further, the coercion-resistance analysis also requires that the voter not be allowed to provide
input to the assistant, so, if the voter were allowed to choose this bit, she should not be allowed
to provide any other information to the assistant. This bit itself does not provide any informa-
tion because it could as well have been communicated outside the booth. (It is obtained from
the voter before she herself has been provided any information in the polling booth).

148 D. Chaum et al.

vote for candidate i because she does not know when her commitment to her vote (the
encrypted vote) will be audited by the coercer (assistant).

We now propose the following, more complicated protocol, based on a cut-and-
choose approach which we implement with the use of 1-out-of-2 Oblivious Transfer.

5 The Cut-and-Choose Protocol

In this section we informally describe the protocol named ePunchscan in [9] with a few
modifications; our protocol is named eCutAndChoose. It is a cut-and-choose protocol
for a commitment-based cryptographic voting system. It uses a mix of ideas from Prêt à
Voter, Punchscan and Scantegrity. Its most striking aspect, the use of oblivious transfer,
is, however, common only to Punchscan among the independently-verifiable protocols
that have been used in real elections.

The ballot consists of a serial number s and two ballot parts: (i) Part0 contains a
permutation πs of the c candidates, reflecting the order in which candidates will be pre-
sented to the voter (ii) Part1 consists of a list of Scantegrity codes, one for each of
c candidate positions. Each part bears the serial number s. Part0 also bears another
serial number, sL.

Assistant

Voter

1. Commitment to ballot-part choice, cb
2. Serial Number s, Encrypted Files

3. OT Kb

6. (s, s(v))

8. b, Kb, Opens cb

7. Partb, (s, s(v))

Voting

Machine

4. Part
0

5. Vote v
6. Part

1 , (s,
s (v))

9. b
ends

Fig. 1. The Cut-And-Choose Protocol. Arrows denote direction of communication.

5.1 Protocol Description

Before the election starts, the voting system makes cryptographic commitments to the
two ballot parts separately, as well as to the commitments required by a Scantegrity
back-end that will obtain vote tallies from confirmation codes. To begin, a voter walks
into a polling booth with a computational assistant. The assistant and the voting machine
set up a communication link.

Commitment to Choice Of Ballot Part: [Step 1 in Figure 1] The assistant performs a
cryptographic commitment to a bit b representing the ballot part it will choose to get by

Paperless Independently-Verifiable Voting 149

Oblivious Transfer. It sends b to the human voter and the commitment cb to the voting
machine. Let us say the voter gets bit. In correct instances of the protocol, bit := b.
Note that, in AHIP-based Punchscan, this step is performed using a combination of pa-
per and polling procedures. Polling officials note down whether a voter will take home
the top or bottom layer before the voter is allowed to see the ballot3.

Ballot Preparation: [Step 2] The voting machine sends to the assistant the serial num-
ber s of the ballot it will use, and the assistant checks that s is fresh. The voting machine
creates two ciphertexts. The ith ciphertext, i = 0, 1 is a symmetric-key encryption of
Filei, which consists of Parti and the information required to verify its published com-
mitments. Filei is encrypted with symmetric-key encryption using key Ki for i = 0, 1.
Each key is pseudo-randomly generated afresh for each ballot.

Oblivious Transfer: [Step 3] The assistant obtains Kb from the voting machine by
oblivious transfer, obtains Fileb by decrypting the appropriate ciphertext, and checks
the commitments to Parti.

Displayed on Voting Machine Displayed on Assistant if
Assistant obtains Ballot Part0

Displayed on Assistant if
Assistant obtains Ballot Part1

35967

Bob

Alice

Carol

Confirmation Code 447

35967

293

447

530

Confirmation Code 447

35967

Bob 293

Alice 447

Carol 530

Confirmation Code 447

Fig. 2. Voter’s View of the Ballot After Casting a Vote for Alice

Ballot Presentation: [Step 4] The voting machine presents Part0 of the ballot with
serial number s to the voter. This looks much like a Prêt à Voter ballot.

Voting: [Steps 5] The voter enters her vote v on the voting machine and confirms it.

Receipt: [Step 6] The voting machine now presentsPart1and the traditional Scantegrity
confirmation number,Es(v), to the voter. It also presents the signed confirmation number
to the assistant.

Receipt: [Step 7] The assistant presents Partb and the confirmation code to the voter.
The voter checks that the ballot part and confirmation number presented by the assis-
tant matches the corresponding part and confirmation number presented by the voting
machine. (See Figure 2.)

Closing: [Steps 8-9] The assistant opens its commitment to bit b for the Voting Machine
and also provides Kb. The Voting Machine provides bit b to the voter, so it may know
how to lie about the ballot half the assistant does not have if coerced by the assistant.
The voting machine casts the vote by posting the signed pair of serial number and vote

3 As in an AHIP, the voter may choose b and communicate it to the assistant. However, because
it is the assistant that performs the cryptographic commitment to b, any security analysis must
assume that the assistant chooses b. Further, as in eChallengeResponse, the voter must not be
allowed to provide any other information to the assistant during the protocol.

150 D. Chaum et al.

encryption in the list of cast votes on the secure bulletin board. It informs the voter and
assistant that the vote is cast. The assistant posts the signed pair of serial number and
vote encryption it received from the voting machine in Step 6 in the list of verified votes
on the secure bulletin board. The protocol ends.

5.2 Dispute Resolution

Notice that, if the voter and the voting machine disagree about what transpired between
them over their private channel, it is not possible to resolve the dispute except through
physical observation. So, for example, the voting machine might constantly behave as
though the voter voted v′ �= v, or might refuse to abort when instructed to, etc. While
the voter would be aware that the voting machine was cheating, she would not be able to
prove it as the tape between the two parties is not verifiable and can be easily overwritten
by the voting machine. While this is not as bad as the original problem with Direct
Recording Electronic voting machines, it demonstrates the difference between the use
of electronic and paper tapes (paper ballots) between voting machines and voters. Every
interaction between voter and voting system in paper ballot independently-verifiable
systems such as Prêt à Voter and Scantegrity is on an append-only write-once tape
such as a paper ballot or through physical processes. This allows the voter to provide
evidence when the voting system does not follow protocol. Notice that this can be a
problem even if the voting system is honest, when the voter is dishonest. A small group
of vocal dishonest voters can call into question an honest election by accusing the voting
machine of not following protocol.

A possible solution to this problem is to allow the voter to interact with the assistant
to obtain a blind signature on her confirmation code and to vote by casting the blinded
confirmation code, through the assistant. The voting machine then will not know what
the vote is and cannot change it. It is not clear whether this opens the voter up to more
coercion-attacks, and whether there are verifiability and security problems with this
protocol that are similar to those found in the past with blind-signature-based protocols.

6 Rigorous Description: eCutAndChoose

In this section, we provide a rigorous description of the model and of the informally-
described cut-and-choose protocol in [9], where it is referred to as ePunchscan. We
describe only set-up and vote-casting; vote tallying proceeds as with Scantegrity.

6.1 The AAHIP Model

We do not describe the most general version of this model here. We focus only on
the specific case when a voting machine seeks to prove to a voter that a string x is an
encryption of her vote v using a cipher E . There are three participants in the protocol: the
voter V ; the voting machineVM and the assistantA. V is a human whose computational
capability is limited to the comparison of strings of size n bits. VM and A are PPT
ITMs. There are the following channels among the participants:

Paperless Independently-Verifiable Voting 151

1. A two-way private channel between V and VM provided by the poll booth. No one
other than V or VM can read from, or write to, this channel.

2. A two-way authenticated channel between A and VM made append-only through
the use of digital signatures. This channel can be read by anyone at any time. Only
A and VM have read-write access to it.

3. A one-way channel from A to V which is private during the voting process and
public thereafter. Only A can write to it.

Note that there is no channel from V to A during the protocol; however, A may query
V after the vote is cast.

The view of participant X is denoted viewX . The transcript of the interaction be-
tween participants X and Y is denoted TapeX ,Y .

The protocol takes as input (private) vote v from V and (public) challenge bit b from
A. We denote it AAHIP (V(v),A(b)). It produces the following output:

1. The receipt, public output from VM :

(Receipts, ReceiptE , ReceiptP) :=

Receipt(v, b) = (s, Es(v), Proof(Es(v), b))

where s is the serial number of the ballot, Es(v) the claimed encryption of the vote,
and Proof(Es(v), b) the proof that Es(v) is correctly constructed, for challenge b.
It consists of the transcript between VM and A.

2. The check of the assistant, public output (True or False) fromA:

CheckProof(Receipt(v, b))

indicating whether the commitments are correctly opened by VM in Receipt. This
is similar to the output produced byA in an AHIP.

3. The ballot-part, (private during the protocol but public after the vote is cast) from
A to V :

Part(viewA)

which represents what A has learnt about the manner in which Es(v) was con-
structed by VM . In our cut-and-choose protocol, Part(viewA) is the ballot part
obtained by oblivious transfer.

4. The check of the voter, public output (True or False) from V :

CheckPart(Part(viewA), viewV)

which indicates whether Part(viewA) is consistent with what V observes in the
private channel with VM . In our cut-and-choose protocol, CheckPart indicates
whether the chosen part—as determined by the assistant through the opening of the
original commitments—matches the corresponding part in the ballot displayed to
the voter.

152 D. Chaum et al.

6.2 Initial Set-Up by Election Officials

Let C define the Scantegrity code-space; that is, it is the set of all possible Scantegrity
confirmation codes. It can be any set such that (a) individual elements of the set can be
compared by humans (that is, each code is no longer than n bits long) and (b) the size
of C is large enough so that probability ε := |C|−1 is small enough.

We consider each race separately. Let c be the number of candidates in the race and
N the number of ballots to be generated. Election officials (EOs) perform the following
tasks prior to the election:

1. Generate confirmation codes codes,i, for all serial numbers 1 ≤ s ≤ N and candi-
dates i ∈ Zc. The c confirmation codes on a single ballot are distinct. That is,

codes,i �= codes,j i �= j, i, j,∈ Zc 1 ≤ s ≤ N

Informally speaking, codes,i should be the secure symmetric-key encryption of
i corresponding to ballot s. That is, the function f : {0, 1, 2, .., N} × Zc → C
with f(s, i) = codes,i should have the properties of a symmetric-key encryption
(with keyspace {0, 1, 2, .., N}, message space Zc and ciphertext space C) where
the key is a secret function of s. The scheme should be such that the advantage of a
PPT adversary in the eavesdropping indistinguishability experiment [12, page 63]
is negligible in the length of s.

2. Generate a secret pseudo-random permutation πs(.) of Zc (the candidates) which
is independent of f(s, .) ∀s.

3. Generate the ballots, as pairs. For each serial number s, generate the ballot:
(s, Part0, Part1) where Part0 = πs and Part1 = πs(〈codes,i〉i∈Zc).

4. Generate commitments to the correspondence between candidate and confirmation
code for each ballot and candidate separately, as well as commitments to both parts
separately for each ballot using commitment scheme C (see Appendix for defini-
tion)

(coms,i, opens,i) = CEO(s, codes,i) ∀ s, i ∈ Zc

(coms,part0 , opens,part0) = CEO(s, part0) ∀ s

and
(coms,part0 , opens,part0) = CEO(s, part0) ∀ s

5. Keep a secret record of

(opens,part0 , opens,part1 , opens,0, opens,1, ...

..., opens,i, ..., opens,c−1) ∀ s

and publish the values of

(coms,part0 , coms,part1 , coms,0, coms,1, ...

..., coms,i, ..., coms,c−1)∀ s

on a secure public bulletin board.

Paperless Independently-Verifiable Voting 153

6.3 Casting a Vote

As with eChallengeResponse, this protocol is interactive among three parties: voter V ,
voting machine VM and assistant A. The steps below are numbered as in Figure 1.
Note that any time a party finds that a commitment is not opened correctly, or finds
that a signature is not verified, or notices that another party fails a check, it aborts the
protocol.

1. A chooses b ∈ {0, 1} (b = i implies that A will check Parti). A sends signed
commitment cb to VM where (cb, ob)← CA(b‖b).

2. VM verifies signature on cb. VM chooses a fresh serial number s at random
and generates two secret encryption-keys K0,K1 at random. VM sends a signed
message to A consisting of the serial number s and the ciphertext of two files
Ci = E(Ki, F ilei), i = 0, 1, where Filei = (Parti‖opens,parti). E denotes
a secure symmetric-key encryption scheme.

3. A verifies the signature and checks on the secure bulletin board that s is unused.
A performs an oblivious transfer with VM to obtain Kb: OTA,VM (b,K0,K1). A
decrypts Fileb with Kb and verifies the opened commitments in Fileb. A sends
the “ready” signal to V .

4. VM presents File0 with serial number s to V .
5. V sends vote v to VM .
6. VM sends the signed pair (serial, code) := (s, codes,v)—signed serial number

and confirmation code—toA and to V . It also sends Part1 to V .
7. A verifies the signature and that serial = s. A presents Partb and the pair

(serial, code) to V . V checks that Partb as presented by VM is identical to Partb
as presented by A, and that the confirmation and serial numbers presented by both
match. If they match, V sets CPart := CheckPart(Part(viewA), viewV) =
“True”. Practically speaking, this is conveyed when V leaves the polling site
without complaint. We denote the two identical parts as seen by the voter as
ObservedPartb.

8. A opens commitment cb and sends signed values of b and Kb to VM which verifies
both. VM now knows the value of b.

9. VM sends b to V . The vote v is cast for the ballot and VM publishes the signed
pair (s, codes,v) in the list of cast ballots on the public bulletin board.A publishes
the signed pair (s, code) in the list of verified ballots on the public bulletin board.
Discrepancies in the list are resolved by the examination of the public transcript
between the two ITMs.

If a participant observes dishonest behavior by another participant, it aborts. When V
aborts, she sets CPart := “False” (that is, she makes a complaint to a polling official).
When A aborts, it sets CProof := “False”.

The outputs are as follow:

1. The receipt:
Receipt(v, b) =

(Receipts, ReceiptE , ReceiptP)

:= (s, code, TapeA,VM)

154 D. Chaum et al.

2. The check of the assistant: CProof := CheckProof(Receipt(v, b)) is “True” if
A publishes the signed pair (Receipts, ReceiptE) in the list of verified votes, and
is “False” else.

3. The ballot-part, sent by A to V : ObservedPartb
4. The check of the voter: if CPart �= “True” then CPart := “False”.

7 Properties of the eCutAndChoose Protocol

In this section we provide rigorous statements for properties of the eCutAndChoose
protocol, proof sketches may be found in the appendix. We model these properties on
the more general ones for an AHIP in [1]. We assume that all cryptographic primitives
used are secure and all adversaries are PPT.

Theorem 1 (COMPLETENESS). If all three parties are honest, ReceiptE = Es(v),
CProof = “True” and CPart := “True”.

Lemma 1. If ReceiptE �= Es(v) andA and V are honest,

Pr[CProof = False OR CPart = False] ≥ 1

2
− α

for some small value α

Lemma 2. There is no means by which A can change a vote without colluding with
VM .

Theorem 2 (SOUNDNESS). If at least one of A and VM is honest and ReceiptE �=
Es(v),

Pr[CProof = False OR CPart = False] ≥ 1

2
− α

Theorem 3 (PRIVACY). A public transcript for vote v is computationally indistin-
guishable from one for vote v′ for all pairs (v, v′).

We denote the protocolP . Consider a dishonestA, denoted Adv desiring to coerce voter
V to vote v. Suppose Adv designs a new interaction with V during the protocol, instructs
V to vote v before or during the protocol, and queries V after the protocol is over. The
purpose of this would be to coerce V into voting in a certain manner. Let us denote the
new protocol P ′, and the view of original participant X in P ′ as viewP′,X . Note that,
from the perspective of VM , the protocol is identical to P . We denote by Vcoerced,P′

the voter in P ′ obeying the instructions of A. We say a protocol is coercion-resistant if
there exists a strategy V∗ for the voter which is indistinguishable from Vcoerced,P′ for
Adv in protocol P ′.

Theorem 4 (COERCION-RESISTANT). If VM is an honest participant in protocol P ,
∃ PPT V∗ such that viewP′,Adv when interacting with V∗(v′) in protocol P ′ is compu-
tationally indistinguishable from viewP′,Adv when interacting with Vcoerced,P′(v).

Paperless Independently-Verifiable Voting 155

8 Prototypes

We have implemented proofs of concept which are fully functional for both
eChallengeResponse and eCutAndChoose, and for both the voting machine and the
personal assistant. Our implementation uses parts of the open-source Scantegrity II
code. We use the Scantegrity II back-end implementation (which is actually a modified
version of the Punchscan back-end [6]) to perform a verifiable-tally.

The prototype implements two modules:DRE (the voting machine) andsmartphone
(the computational assistant), which handle their own network communication.

The implementation of the DRE module is in Java 1.5, and has an interactive voice
control system, as well as a synchronized visual interface. The two interfaces can be
checked for consistency using observational testing. Full functionality for the DREmod-
ule has been tested to date on Microsoft Windows XP, Microsoft Windows 7 and Mac
OS X Snow Leopard; there are some known problems on Linux systems that currently
prevent full functionality. In our implementation, each instance of the DREmodule posts
confirmation codes directly online, to a secure public bulletin board (which we assume
exists, but did not implement).

The smartphone module is implemented on an Android 1.6 platform, using
Java 1.5 and the Bouncy Castle cryptographic library. We have successfully tested
it on the HTC Hero and the Nexus One. Our security model assumes that the
smartphone module take no input from the voter. For research and testing rea-
sons, however, our current implementation allows the voter to choose whether to
cast or audit (eChallengeResponse) or whether the left or right ballot half is opened
(eCutAndChoose). As we describe in section 5, this has no impact on security results
as long as the voter does not provide any other information to the smartphone mod-
ule during the protocol. The application design assumes a touchscreen front-end and
does not use any other type of input device (such as a hardware keyboard).

An essential part of the project is communication between DRE and smartphone.
We connected the two using USB and we used the Android Debug Bridge, a tool con-
tained in the Android SDK. Using adb we were able to initiate port forwarding on
the host, meaning that all communication aimed at a certain port on the localhost is
automatically forwarded to the smartphone through the USB connection. We then im-
plemented sockets on top of this to achieve network communication between the two
devices. Newer versions of Android, starting with 2.0, have added better support for
networking over bluetooth so this could be a new approach in a future version.

In addition to standard libraries, we also used open source code from the Helios and
Scantegrity codebases. To commit to a single bit, we use Pedersen bit-commitments,
and to commit to larger messages we use Scantegrity commitments. We use the 1-2
oblivious transfer protocol of Even, Goldreich and Lempel [10].

8.1 Network Access

One of the major real-world threats for a voting system like ours is to be online. Voting
machines can be hacked, and the leakage of cryptographic keys can lead to unauthorized
ballot casting. On the other hand, if we choose to be offline we face two important issues.

156 D. Chaum et al.

First, the assistant cannot check if a given ballot is fresh. Second, the assistant is required
to verify the opening of commitments against those published before the election.

A solution to the first problem is to pre-distribute ballots among voting machines. A
voting machine that reuses a ballot is caught because it signs the serial number when it
offers the ballot to the assistant. A solution to the second problem is for the assistant to
maintain a root of a Merkle tree (hash tree) of the commitments so it can verify commit-
ments offline. The voting machine is required not only to open audited commitments but
also to show the hash path. This is preferable to storing all commitments locally on the
assistant. It allows us to perform ballot casting offline at the cost of increasing the com-
munication complexity between the voting machine and assistant by O(logN) where
N is the number of ballots.

8.2 Security of the Implemented Protocols

We describe common security concerns in implementations. First, there is the possibility
of an attacker tapping the communication between the devices. This is not a concern for
us because the transcripts between the two devices are assumed public. Second, there is
the possibility of an attacker changing the communication. All messages between the two
devices are hence digitally signed. Third, the smartphone is not an output-only device.
However, in our implementation, the smartphone will have to be in a special docking
station while the protocol is on. In the station, it is is protected by a transparent casing
or sheet, so that the voter may obtain information from it, but not provide it any input.
The voter can only provide input when it is not in the station, and if it is removed from
the station the voting system aborts the protocol.

8.3 Ongoing Work

Scantegrity’s back-end does not explicitly commit to the correspondence between can-
didates and confirmation codes; this correspondence may be deduced from other com-
mitments made by the back-end. We are in the process of writing code to generate these
commitments ourselves for use with eChallengeResponse. Since the system uses an elec-
tronic voting machine instead of a paper ballot, some sort of voter authorization mecha-
nism should be used to ensure that each voter casts only one ballot, but is allowed to audit
multiple ballots in eChallengeResponse. Such functionality has been discussed, but is
not yet implemented—the voter would use a one-time password when she wished to cast
a vote. An open-source release of the current version of our code will soon be complete.

9 Conclusions

We have described a paperless vote-casting protocol where the voter uses a computa-
tional assistant that participates in an interactive protocol with the voting machine. We
propose the Actively-Assisted Human Interactive Proof model to study these types of
protocols. We have rigorously described the AAHIP and demonstrated its security prop-
erties, assuming that the voting system and assistant do not collude and that communica-
tion is synchronous. The assistant may be malicious, however, and provide false values or

Paperless Independently-Verifiable Voting 157

refuse to provide them. Its memory and logs may be examined by anyone after the vote is
cast. We also show that a simple challenge-response-style AAHIP has weaker coercion-
resistance. We have described our prototypes of both protocols, using a smartphone for
the assistant.

Some interesting questions remain open. Is the cut-and-choose protocol secure against
stronger adversarial models—for example, if communication is asynchronous? What is
the most security one can obtain in the AAHIP model? Does the blind-signature-based
protocol solve the problem of dispute resolution in paperless protocols?

References

1. Adida, B. Advances in Cryptographic Voting Systems. PhD thesis, MIT (2006)
2. Adida, B.: Helios: Web-based Open-Audit Voting. In: Usenix Security Symposium (2008)
3. Benaloh, J.: Simple verifiable elections. In: USENIX/Accurate Electronic Voting Technology

Workshop (2006)
4. Benaloh, J.: Ballot casting assurance via voter-initiated poll station auditing. In:

USENIX/Accurate Electronic Voting Technology Workshop (2007)
5. Benaloh, J., Tuinstra, D.: Receipt-free secret-ballot elections. In: ACM Symposium on Theory

of Computing (1994)
6. Carback, R., Chaum, D., Clark, J., Essex, A., Mayberry, T., Popoveniuc, S., Rivest, R.L., Shen,

E., Sherman, A.T., Vora, P.L.: Scantegrity II Municipal Election at Takoma Park: The First
E2E Binding Governmental Election with Ballot Privacy. In: Usenix Security Symposium
(2010)

7. Chaum, D.: Secret-ballot receipts: True voter-verifiable elections. IEEE Security and Privacy,
38–47 (January/February 2004)

8. Chaum, D., Carback, R., Clark, J., Essex, A., Popoveniuc, S., Rivest, R.L., Ryan, P.Y.A., Shen,
E., Sherman, A.T., Vora, P.L.: Scantegrity: End-to-end verifiability for optical scan elections.
IEEE Transactions on Information Forensics and Security: Special Issue on Electronic Vot-
ing 4(4), 611–627 (2009)

9. Chaum, D., Popoveniuc, S., Vora, P.L.: eTegrity and ePunchscan. In: NIST End-to-
End Voting Systems Workshop (October 2009), http://csrc.nist.gov/groups/
ST/e2evoting/documents/papers/Popoveniuc_PaperlessVoting.pdf

10. Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts. Commu-
nications of the ACM 28(6), 637–647 (1985)

11. Juels, A., Catalano, D., Jakobsson, M.: Coercion-resistant electronic elections. In: Workshop
on Privacy in the Electronic Society, WPES (2005)

12. Katz, J., Lindell, Y.: Introduction to Modern Cryptography. Chapman & Hall/CRC (2008)
13. Kelsey, J., Regenscheid, A., Moran, T., Chaum, D.: Attacking Paper-Based E2E Voting Sys-

tems. In: Chaum, D., Jakobsson, M., Rivest, R.L., Ryan, P.Y.A., Benaloh, J., Kutylowski, M.,
Adida, B. (eds.) Towards Trustworthy Elections. LNCS, vol. 6000, pp. 370–387. Springer,
Heidelberg (2010)

14. Neff, C. A.: Practical high certainty intent verification for encrypted votes (2004)
15. Popoveniuc, S., Hosp, B.: An Introduction to PunchScan. In: Chaum, D., Jakobsson, M.,

Rivest, R.L., Ryan, P.Y.A., Benaloh, J., Kutylowski, M., Adida, B. (eds.) Towards Trustworthy
Elections. LNCS, vol. 6000, pp. 242–259. Springer, Heidelberg (2010)

16. Ryan, P.Y.A.: A variant of the Chaum voter-verifiable scheme. Tech. Rep. CS-TR: 864, School
of Computing Science, Newcastle University (2004)

17. Sandler, D.R., Derr, K., Wallach, D.S.: VoteBox: a tamper-evident, verifiable electronic voting
system. In: USENIX Security Symposium (2008)

http://csrc.nist.gov/groups/ST/e2evoting/documents/papers/Popoveniuc_PaperlessVoting.pdf
http://csrc.nist.gov/groups/ST/e2evoting/documents/papers/Popoveniuc_PaperlessVoting.pdf

Feasibility Analysis of Prêt à Voter

for German Federal Elections

Denise Demirel1, Maria Henning2, Peter Y.A. Ryan3, Steve Schneider4,
and Melanie Volkamer1

1 Technische Universität Darmstadt / Center for Advanced Security Research
Darmstadt, Germany

2 Project Group Constitutionally Compatible Technology Design (provet),
Universität Kassel, Germany

3 University of Luxembourg/ Interdisciplinary Centre for Security and Trust,
Luxembourg

4 University of Surrey, United Kingdom

Abstract. Prêt à Voter is one of the most well-known and most exten-
sively analysed electronic voting systems for polling stations. However,
an analysis from a legal point of view has not yet been conducted. The
purpose of this paper is to analyse the readiness of Prêt à Voter for legally
binding federal elections in Germany. This case is of particular interest
as Germany has with the Constitutional Court Decision from 2009 prob-
ably the most restrictive requirements on electronic voting in particular
regarding the public nature of elections and verifiability respectively.
While many aspects are analysed, some remain open for further legal
and technical discussions. Thus, a final decision is not yet possible. As-
pects analysed are the ballot paper layout, different processes from ballot
printing through to the publishing of results, as well as verifiability, and
the overall election management.

Keywords: Verifiable Elections, Legal Requirements, German Federal
Elections, Prêt à Voter, Election System Design.

1 Introduction

Since the 1960s several attempts have been made in Germany to replace manual
casting and counting of votes by mechanical and later electronic voting systems.
These efforts have always been based on the ambition to obtain a correct election
result within a very short period of time. Electronic voting machines were first
deployed in Germany on the occasion of the European elections in 1999. These
machines produced by the company of Nedap were used on all election levels.
After their usage for the elections of the German Bundestag (Federal Diet) in
2005 two people filed a complaint against this election. These complaints went
through several instances and ended up at the Federal Constitutional Court.
In 2009, the Federal Constitutional Court declared the used electronic voting
machines and the Federal Voting Machine Ordinance which defines the require-
ments a voting machine has to ensure, to be unconstitutional because both did

A. Kiayias and H. Lipmaa (Eds.): VoteID 2011, LNCS 7187, pp. 158–173, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Feasibility Analysis of Prêt à Voter for German Federal Elections 159

not meet the requirements emerging from Article 38 in conjunction with Article
20.1 and 20.2 of the German Constitution. From these articles the court deduced
that it must be possible to check the essential steps in the election process in-
cluding the accurate counting of votes [5, page 71]. Now, election authorities are
looking for an electronic voting machine that meets these requirements and can
therefore be classified as constitutionally compatible.

Prêt à Voter is one of the best known electronic voting systems which imple-
ments verifiability, has a prototype actually implemented, and has been success-
fully used in (test) elections in the U.K. Over time different variations of Prêt
à Voter have been published and their security has been analysed. However, an
analysis from a legal point of view has not yet been conducted.

This paper analyses which version of Prêt à Voter fits best to the regula-
tions of the Federal Electoral Act, the Federal Electoral Code, and the German
Constitution. It also discusses necessary modifications to the system and the pro-
cesses. In general, we tried to keep the process for voters as similar as possible
to what they know and as simple as possible. Such an analysis was possible due
to the cooperation and interdisciplinary work between computer scientists and
legal researchers. We categorise our discussion into the following groups: aspects
that are relevant for the ballot paper design, the different processes, verifiability,
and election management. Voting registration and authentication in the polling
station are not taken into account for this paper as these processes do not need
to be modified.

The paper is structured in the following way: we first provide an introduction
to the German federal elections in Section 2 and then to Prêt à Voter in Section
3. Afterwards, we discuss legal and technical aspects of the ballot paper design
in Sections 4 and 5, different processes starting from ballot printing until the
publishing of receipts in Section 6, the type of verifiability in Section 7 and
the overall election management in Section 8. The paper concludes with a brief
summary and remarks for future work (Section 9).

2 German Federal Election

According toArticle 38.1GermanConstitution/Grundgesetz (GG) the Bundestag
is elected in universal, direct, free, equal and secret suffrage. Subject to particular
regulations, the elections take place every four years. Voters can cast two votes on
one ballot paper (seeFig. 1).With the first vote they select a named candidate from
their home county (electoral district). With the second vote they select the list of
a party on state level. Half of the delegates move into parliament because of the
first vote, half because of the second vote. After §1.1 of the Federal Electoral Act
(FEA), the Bundestag generally consists of 598 delegates.

According to [6], roughly 62.2 million Germans were eligible to vote in the
elections for the Bundestag in 2009. 70.8 percent cast their votes while 1.7 per-
cent of the first votes and 1.4 percent of the second votes were invalid. Based
on the handover of empty or crossed ballot papers, it is assumed that nearly 70
percent of them have been spoiled on purpose. For the elections of the Bundestag

160 D. Demirel et al.

Fig. 1. Ballot paper for the German Federal Election in 2009

the territory of the 16 federal states is subdivided into 299 electoral districts. Due
to the fact that every electoral district nominates local candidates for the first
vote, the ballot papers differ from one district to another. The electoral districts
are subdivided into constituencies. After §12.1 of the Federal Electoral Code
(FEC) municipalities with no more than 2,500 inhabitants (generally 1,700 vot-
ers) usually form one constituency. Altogether there were 75,081 constituencies
in Germany in 2009.

According to §31 FEA and §54 FEC everyone (not only eligible voters but
everyone who is interested) is allowed to be present at the polling station during
the whole election procedure and during the vote counting as long as they do
not disturb any processes. Thus, people can observe the correct operation of the
election and the correct counting of votes. After §47.1 FEC the polling stations
are open from 8am until 6pm on a Sunday. The ascertainment of the results
starts right after closing the polling stations. After deciding about the validity
of every vote, the returning committee1 ascertains the votes cast in the con-
stituency according to §§67–71 FEC. Referring to this, the head of the returning
committee informs the local authority and the district election officer who passes
the respective district results to the state returning officer. The state returning
officer refers the results directly and continuously to the federal returning officer
who publishes the provisional curatorial election result. In the elections for the
Bundestag in 2009, this result was published at 3.25am Monday morning.

3 Prêt à Voter

Prêt à Voter is an end-to-end verifiable voting system. It provides secrecy of the
ballot and integrity of the election, and is designed also to allow verification of

1 The returning committee is the electoral body who takes care of the ordinary run of
the election, watches the observance of the electoral principles and counts the votes
after closing the election.

Feasibility Analysis of Prêt à Voter for German Federal Elections 161

the processing of the votes, from casting through to tallying. It achieves this by
publishing auditable information for each stage the votes pass through, so that
verification rests on the information that is published rather than the processes
which generated that information. In fact there are several versions of Prêt à
Voter, which vary in terms of the detail of how this is achieved, and an overview
of the differences and of the general Prêt à Voter approach is given in [11]. In
this paper we focus on elections where a vote is cast against a single candidate.
Variants of Prêt à Voter are also able to handle preferential voting, but we will
not consider them here.

The key idea is that Prêt à Voter sets up the voting process so that voters
cast their vote in a familiar way, but the system accepts their vote in encrypted
form. This allows publication of the list of encrypted votes cast, and also allows
the voters to retain a record of their cast vote to confirm that it appears on the
published list. The system then anonymises the votes, decrypts them, and finally
tallies the results. The anonymisation phase means that no decrypted vote can be
linked with any encrypted vote cast by a specific voter, preserving ballot secrecy.
There are verification mechanisms for each of these phases—anonymisation, de-
cryption, tallying—which mean that the integrity of the election can be verified.
A diagrammatic overview of the process is given in Figure 2.

Fig. 2. Overview of the phases of Prêt à Voter vote processing

3.1 Vote Casting

The central idea of Prêt à Voter is the use of a particular design of ballot form to
capture the vote. In the proposals to date, each ballot form contains the list of
candidate names on the left hand side, in a random order which varies between
ballot forms. The right hand side has a space against each candidate for the

162 D. Demirel et al.

voter to mark their vote, and also (at the bottom) the order of the candidates
in encrypted and hashed form2. The ballot form is perforated to allow the two
sides to be separated. The voter marks their vote against their chosen candidate,
and then separates the two halves of the ballot paper and destroys the list of
candidates on the left hand side. The right hand side contains a vote marked
in some position, and the hash value of the ciphertext containing the order of
candidates3. The right hand side is then scanned into the election system, the
scanner’s interpretation (in terms of the position of the mark) is displayed to the
voter, the voter confirms this is correct (or else corrects it either on the display
or by filling out a new paper ballot), and it is then accepted by the system for
inclusion in the published list L1 of cast votes, which is published on an online
Web Bulletin Board (BB) together with the encryption of the corresponding
candidate order. The system will only accept a vote in which exactly one selection
is made. The system provides the voter with a signed record of the encrypted
vote that has been accepted, which contains the cryptographic information on
the original right hand side, and the marked position. This can be compared
with the one the voter scanned. While the original one is put into a ballot box
the printed and signed one is kept by the voter as receipt. The voter can later
check it against the published list of votes cast by looking it up on the BB. The
record does not reveal which candidate received the vote, since the random order
of candidates means it could have been any of them.

3.2 Vote Processing

The list of accepted scanned votes L1 is a list of encrypted votes. They are now
processed through a series of stages to yield the final tally. The first stage is
anonymisation: this is achieved by passing L1 through a re-encryption mixnet
[10], which shuffles the encrypted votes through a series of mixnet nodes which
perform secret permutations, while re-encrypting the votes. The result is a new
list of different ciphertexts which encrypt the same votes as the original list but
in a different order. This resulting list L2 is also published. No vote in L2 can
be linked to any vote in the original list, and hence cannot be linked to any vote
record held by a voter. The shuffling and re-encryption can be verified, either
by randomised partial checking [8], or through proofs of re-encryption [13,9],
depending on the approach taken. Several mix servers are used, each to perform
a round of re-encryption and shuffling: secrecy of the shuffle is obtained provided
they do not all collude.

The second stage is decryption. The resulting list L2 of encrypted votes can
now be decrypted. The decryption key is shared across the election servers, so
that a minimum number (threshold set) of them are required to cooperate to
decrypt the ballots. The resulting list L3 is also published. The decryption can
be audited against L2, and verified as valid by the public.

2 The hash is used to keep it short. Instead of the hash value also a serial number
could be used while this number is bounded to the ciphertext of the candidate order
e.g. via commitments of the Web Bulletin Board.

3 In the following we will use the term hash value when referring to this ciphertext.

Feasibility Analysis of Prêt à Voter for German Federal Elections 163

The final stage is tallying. The decrypted votes are tallied in order to obtain
the result of the election. Since the tallying algorithm is public, and the decrypted
votes are published, the tallying process can be checked and verified by any party.

4 General Legal Analysis of Random Candidate Order

In this section we analyse whether shuffling candidates complies with the legal
regulations for federal elections in Germany. After §30.3 FEA the order of the
party lists on state level depends on the number of the second votes each party
achieved in the particular federal state within the last election. The parties that
are not currently represented in parliament follow in alphabetical order. The
order of the county proposals presented on the left side of the ballot paper
depends on the order of the respective party list. Other county proposals follow
in alphabetical order.

Correspondingly the random order of Prêt à Voter is not compatible with the
current regulation of the FEA. However, the question if it might be permissi-
ble in general, depends on constitutional requirements because the respective
regulation can be changed if this is constitutionally compatible. The Federal
Constitutional Court abnegated the obligation to provide equal ballot papers
in its decision from the 6th October 1970 [4, p. 164]. It pointed out that the
regulation relevant to the case ensures the ordinary flow of the election, but is
not necessary from a constitutional point of view.

The principle of the equal suffrage according to Article 38.1 GG forms the
basis for the organisation of the election and the functionality of the voting sys-
tem [14, §1, Rn. 42]. After the jurisdiction of the Federal Constitutional Court it
contains the equality of counter value4 for the first and second vote, the equal-
ity of result value5 for the second vote and the equality of opportunity for all
candidates [1, p. 246, 247].

The third aspect would be strengthened by the random order. In reference to
this every candidate needs to have the same chance to win the election. Although
a strict order is not said to violate the principle of the equal suffrage because
voters prefer to make their decisions based on the manifesto of the political party
[2, p. 18], it brings a psychological benefit to the party that achieved the highest
number of second votes within the last election and therefore comes up on the
top of the race [14, §30, Rn. 8]. This effect would be lost by using the random
order of Prêt à Voter. Therefore, non-established parties would win the benefit
to be on top of the list periodically. Consequently, the key idea of Prêt à Voter
brings a big advantage over the known paper ballot system. New parties could
obtain the benefit of getting registered first by the voters just like the catch-all
parties. Through this the constitutional requirement of the equal suffrage would
be invigorated. Furthermore, a strict order of the candidates is not compulsory
according to the election principles of Article 38.1 GG.

4 Every person, eligible to vote, has the same number of votes and is able to vote in
the same way.

5 All votes have the same influence on the election result.

164 D. Demirel et al.

5 Analysis of Design Proposals — Ballot Paper

In this section, we discuss different aspects of the ballot layout including which
of the possible types of randomization for candidates and parties is most appro-
priate, how to design the ballot paper to easily remove the part that is scanned,
how to integrate the hash value of the encrypted order of candidates, and how
to enable invalid votes.

5.1 Type of Random Order

According to [11], two different types of randomisation can be applied, namely
completely arbitrary order or cyclic shifting of candidate order. Chaum et al.
point out in [7] that the distance between marks on the receipt can leak some
information if entries are only shifted and the voter is allowed to mark more
than one entry. This is not the case for arbitrary order of entries as the successor
and predecessor of every entry differs from ballot paper to ballot paper. The
current ballot paper for the German federal election contains two races on one
paper in two columns (compare to Fig. 1) which leads to a similar problem then
mentioned in [7]. For instances, two entries in a row leak the information that
the voter cast a vote for a direct candidate and the associated party which would
violate the principle of the secret suffrage according to Article 38.1 GG. This
principle includes that it needs to remain secret whether voters split their votes
or cast them based on a single preferred party [14, §1, Rn. 95].

Cyclic shifting has, compared to an arbitrary order, the advantage that it is
easier for the voter to find their candidate and party since the sequence of the
candidates stays the same on all ballot papers. Therefore, the most appropriate
way to randomize the order seems to be the use of cyclic shifting while each race
is shifted with its own value. Note, in case where one race has more entries (can-
didates or parties), the empty columns are not included in the shifting algorithm
(compare to Fig. 3). This approach leads to two different shift values which can
either be encrypted together to one ciphertext and then hashed or the hash of
two separate ciphertexts is computed.

5.2 General Ballot Layout

Using Prêt à Voter it is necessary that the voters can easily detach their markings
and destroy the parts with the candidates on. On the current ballot paper for
federal elections the candidate list and party list respectively shows up on the
left and right hand side and voters mark their decision for both races in the
centre of the ballot paper. As approaches like using two different ballot papers,
putting the second race below the first race, and swapping the two races are
either not practical or do not comply with §30.2 FEA and §45.1 FEC including
appendix 26 of FEC respectively, we recommend to keep the ballot paper format
from the traditional system but prepare it in a way that it is easy to detach the
candidate lists on the left and right hand side. This remaining central part of
the ballot paper, containing the marked positions and the hash value is scanned.

Feasibility Analysis of Prêt à Voter for German Federal Elections 165

5.3 Obscuring Hash Values on Ballots

Although voters are not committed to keep their voting decision secret, they
are not allowed to get a receipt of it which can be used as an evidence of the
respective vote. Due to the possibility that voters might take a picture of them-
selves including the marked but not detached ballot paper and the respective
hash value which will be published on the BB later, the secrecy of the vote and
indirectly also the free suffrage of the election (compare to [14, §1, Rn. 94]) could
be violated. The picture together with the corresponding entry on the BB serves
as a proof to sell votes. By entering the code on the BB, a potential extortionist
could control if voters really cast their vote, which position they marked and
correspondingly (by using the picture) for which candidate. Note, also in the
traditional system one could take a similar picture but this picture does not
serve as proof as the voter might have asked for a new ballot paper afterwards.
Correspondingly, the hash value may not be plain as long as it is possible to link
it to the particular ballot form and the order of entries on it. This is an issue
during the vote casting process.

To solve this problem, the hash value could be hidden by various measures
e.g. a scratch strip or invisible ink. Organisational procedures need to ensure
that voters first detach the centre part of the ballot, destroy the remaining
parts in the polling booth and then reveal the covered hash value outside of the
polling booth before scanning it. While this is required from the legal perspective
more research on this approach is required including whether voters would feel
comfortable with the strict process needed in this case and technical challenges.

5.4 Enabling Invalid Votes

Due to privacy issues Prêt à Voter neither accepts under- and over-votes nor
empty votes. In the traditional system any of these possibilities can be used to
cast an invalid vote. Also paintings or writings on the ballot paper would result
in an invalid vote. If a corresponding vote is scanned by Prêt à Voter the system
will inform the voter and reject this vote.
§39 FEA defines the term of invalid votes and ascertains the way to deal with

them. According to [14, §1, Rn. 23], the principle of the free suffrage contains
the right to cast invalid votes. Otherwise people eligible to vote could be forced
to cast a vote for a candidate. In reference to this, voters are allowed to vote
the candidate they like, vote invalid while participating in the election, and to
abstain from voting as well. In Prêt à Voter this aspect can be addressed by
adding one field to the candidate/party list of every race with the option to cast
an invalid vote (as proposed in [15]).6

From a legal perspective, it needs to be discussed whether voters can be forced
to vote invalid in a certain way by marking the respective field. This might violate
the principle of the free suffrage. But electronic voting is discussed in order to

6 Note, in order to spoil the whole ballot paper it is required to mark both invalid
vote entries.

166 D. Demirel et al.

reduce the number of invalid votes cast by accident. The voting system of Prêt
à Voter is able to support this intention.

All the different aspects of the ballot designed have been combined in an
example ballot shown in Fig. 3.

Fig. 3. Proposed ballot paper

6 Analysis of Design Proposals — Processes

In this section, we discuss the relevant processes including ballot printing, vote
casting, scanning, and the publishing of the receipts on BB.

6.1 Ballot Printing Process

There are two possibilities to consider for the timing of printing the ballot forms.
It can be carried out either on demand in the polling station, or in advance
of Election Day. The advantage of printing on demand is that there are no
chain of custody issues with respect to the physical ballot forms, since they do
not exist in physical form before they are printed for immediate use. However,
printing on demand has a number of disadvantages: printers are needed in each
polling station and additional effort at local level is required. The inclusion of
measures such as scratch strips or invisible ink to mask the hash value will
require special equipment. Hence, printing on demand is not appropriate. We
therefore recommend that printing of the ballot forms is carried out in advance
of the election.

We further recommend that the Election Manager takes responsibility for
the printing at the same physical location as the generation of the ballot forms,
where they are printed directly as they are generated, so that no electronic file of
the ballot forms needs to be created. The ballot form generation system (servers
and printers) should also be isolated from any network. A high level of trust is
required in the printing provider, since it knows the association of ballot orders
and the hash values. This can be mitigated by involving several parties in the
printing process and using mechanisms to distribute the information between
them, as discussed in [12], though this can become cumbersome.

Feasibility Analysis of Prêt à Voter for German Federal Elections 167

Once generated, the chain of custody of the ballot forms through to their use
in the election must be securely managed, to ensure that the information they
contain remains secret, and that ballot forms cannot be added or removed.

6.2 Vote Casting Process

The detached centre part of the ballot form could either be scanned inside or
outside of the polling booth. In case of the first variant, voters would have to scan
the respective part on their own and without any external help. Irrespective of
the question if they might be able and willing to do so, the returning committee
could not confirm that the hash value is not revealed until the scanning process
starts. This is no option due to the possibility of violating the principle of the
secret suffrage (see Section 5.3).

In the second case, voters would have to scan the detached centre part of the
ballot paper after having revealed the hash value outside the polling booth in
front of the returning committee. Because voters might appreciate the help given
by the returning committee, this approach would probably be the more pleasant
one from a practical point of view. According to [14, §1, Rn. 95] nobody shall
know if voters cast an over, under or empty vote if they do not disclose their
voting decision by themselves. It should be noted that the system reveals some
information by rejecting the scanned paper.

However, this situation could be improved for voters by providing a separate
scanner in the polling booth. Voters could run a test scan before casting their
votes outside in order to check whether the system accepts their ballot and
whether they agree with the interpretation of the scan. While changing the rules
for casting a vote change (in particular for casting an invalid one), we expect
people to feel more comfortable pre-scanning their ballot in the voting booth.

Voters could still try to scan an invalid vote in public, disclaim the possibility
of checking their filled ballot paper in advance, add marks after they checked the
ballot paper or just ignore the feedback. But this situation might be comparable
to the one regulated in §56.6 and 8 FEC. After this the returning committee has
to rebuff every voter who tries to put an unfolded ballot paper into the ballot box.
In case the voter still wants to cast a vote, the returning committee hands out a
new ballot form after destroying the old one. Herewith the legislator wanted to
assure voters do not waive their right of secret voting. However, further research
from a legal point of view is required to back up this comparison.

6.3 Vote Scanning Process

Once the strip with the marks is scanned, there exist several possibilities to
interpret the marks as votes. For instance one can detect crossing lines or the
degree of blackening in the bubbles. The interpretation algorithm must comply
with the legal guidelines.

After §34.2 of the FEA voters cast their votes by marking the particular
section of the candidate on the ballot form with a cross or any other sign which
indicates the voting decision. Consequently voters are free to choose any mark

168 D. Demirel et al.

they like as long as it is not unconstitutional. The secret suffrage for example is
violated by using a very individual sign like signatures, which could be attributed
to a particular voter. A sign outside of the field is not forbidden if an allocation
to a certain candidate is possible [14, §34, Rn. 4]. But according to §39 FEA the
votes cast are invalid in certain cases, e.g. when the voter hands in a ballot paper
with an addition or a caveat on it. Although both terms are not defined in the
FEA, the returning committee needs to decide about the validity of every vote.
Therefore decisions can be made differently in different constituencies. After [14,
§39, Rn. 12] for example an addition is every verbal annexation on the ballot
paper which outruns the allowed annexation according to §34.2 FEA. Admittedly
non-verbal terms need to be covered as well, e. g. a skull and crossbones on the
ballot paper.

The scanner used by Prêt à Voter needs to be programmed in order to convert
the given information while taking these uncertainties into account. Note, as
voters still cast their vote on ballot papers it is possible that they could add
marks or pictures which make the vote invalid but would be accepted by the
system. The system’s interpretation of the scan will naturally depend on the
thresholds used, for example the degree of blackening accepted as a mark, in
the image processing algorithms applied to the scan, and this may differ from
the voter’s expectation. Therefore the voting system of Prêt à Voter provides
a confirmation stage for the voter. This option would show voters how their
vote is interpreted, and provide the option to fill in another ballot paper if
required. The confirmation stage would solve another problem as well: if voters
put a comment into the section for a candidate — even the comment shows
the antipathies of the voter — the system would count this as a valid vote
for the respective candidate. This can only be acceptable when the voter confirms
the interpretation of the system. On the condition of this confirmation stage, it
might be legally compatible that the scanning process ignores additional marks
or pictures and accepts ballot papers where exactly one mark per race is detected.
Further this solution provides a consistent processing of votes.

6.4 Process of Publishing Receipts

The scanner prints out a signed receipt for each voter to take home. In order
to enable voters to verify that their encrypted votes are recorded correctly, the
corresponding electronic version of these receipts are published on the BB. These
receipts could be published right after casting the vote or after the official end
of the election. If they are published during the Election Day, an internet con-
nection in the polling station would be needed. Irrespective of the increasingly
higher costs, the risk of manipulation over the internet would come up as well.
Therefore, we recommend to take the equipment first to some central places in
the election district, count and tally votes, get backups of everything and then
publish the receipts containing the position of the marks and the hash value
together with the corresponding ciphertext.

The publishing of receipts after the closing of the polling station is also com-
patible with the current regulations of the FEC. According to §§54, 67 FEC

Feasibility Analysis of Prêt à Voter for German Federal Elections 169

voters can watch the counting of votes in traditional paper based elections only
after the closing of the election. In addition, by publishing afterwards, voters
would not lose the possibility to appeal against the election or certain election
decisions. According to Article 41 GG complaints requesting the scrutiny of an
election need to be discussed and adjudicated by the Bundestag. After §2.4 of
the Law on the Scrutiny of Elections the complaints have to be submitted within
two months after the elections. After the jurisdiction of the Federal Constitu-
tional Court the unobstructed run of parliamentary elections requires that legal
control during the election is reserved for complaints requesting the scrutiny of
the election afterwards [3].

7 Analysis of Design Proposals — Verifiability

After the verdict of the Federal Constitutional Court from the 3rd March of
2009 the voter himself or herself must be able to verify whether his or her vote
as cast is properly recorded as a basis for counting [5, page 72]. It is not sufficient
if voters must rely on the functionality of the system without the possibility of
personal inspection [5, page 72]. Electronic voting systems need to provide a
possibility for the voter to check the essential steps in the election act and in the
ascertainment of the results to the same amount as in traditional paper based
elections. Here voters are able to watch the entire election procedure — from the
opening of the polling station until the vote counting and tallying. Thus, even
though only very few people take the opportunity to observe the whole process
it is in general possible.

In this section we consider the verifiability aspects of the stages of processing
the votes while we distinguish between individual and public verifiability and
discuss their compliance with the demands from the court decision.

7.1 Individual Verifiability

Individual verifiability covers well-formedness (to ensure that votes are cast as
intended) and the fact that the voter can verify that their hash value appears on
the BB (to ensure that votes are stored as cast). Well-formedness of the ballot
forms requires that the printed candidate list matches the list embedded in the
hash value. Ballot forms can be checked by requesting a decryption of the cipher-
text belonging to the hash value from the election decryption servers. There will
be some random well-formedness checks by independent auditors ahead of and
during the election. Due to the legal requirement this event will be announced
and will be accessible by the public7.

Also during the election, voters themselves may request to audit ballot forms
that they are given. When given a ballot form, a voter can choose whether to
select it for audit, or to use it to cast a vote. In the case of audit, the voter
retains an audit copy of the entire ballot form with the visible hash value, and

7 In addition, to enabling them to observe even they cannot be physically present, a
live stream could be broadcasted.

170 D. Demirel et al.

the system retains and logs that ballot form as selected for audit by entering
the hash value in a separate interface. This is necessary to prevent the form also
being used to vote, since secrecy will be lost. In the post election phase, the audit
process will be completed, by decrypting and publishing the list of candidates,
for the voter to verify.

If a vote is cast, the voter is provided with a receipt of the right hand side,
and after the election when the receipts are published, the voter can use this to
verify that the information contained on it has been included on the published
list of cast votes, which will next become mixed and decrypted.

If voters detect a problem with either of these two lists, then the voter’s
receipt and the entire ballot form respectively are evidence that can be used as a
basis for a challenge to the election. It is important that receipts and the entire
ballot form for auditing cannot easily be forged, since that would enable voters
to mount fake challenges.

7.2 Public Verifiability

The cast votes are submitted in encrypted form. The next stage of the process is
to pass them through several rounds of a re-encryption mix, where each round
re-encrypts and shuffles all of the votes. The output of that process is another
list of encrypted votes, which can then be decrypted and tallied.

Re-encryption mixes allow several approaches to verification, as described
earlier. The legal requirement that it must be possible to check the essential
steps in the election process inclines us towards the randomised partial checking
approach, rather than using proofs of re-encryption: the mechanism of random
sampling and checking is more intuitive and comprehensible to the public, and
in principle any observer can contribute to the random audit checks. Each stage
of the mix, i.e. each intermediate list of encrypted votes, is made public. A check
involves challenging a particular re-encryption link in the mix and obtaining
evidence of the re-encryption (i.e. the randomisation introduced in that step)
that can be independently checked. In a mix, half of the links will be randomly
checked, but in a way that ensures that no receipt can be traced through the mix.
More precisely, the audits, while essentially random, can be carefully constrained
to ensure that there are numerous breaks in the chain from receipt to decrypted
vote.

Several re-encryption mixes can be run, in parallel or at any later time on
request, which on decryption of the output should all yield the same result. The
confidence level can be made as high as required by adding parallel mixes and
audits. For a winning margin of n votes, the probability that a different candidate
was in fact the winner but no altered votes were found by the audit, will be at
most 2−n/2, which decreases exponentially as n increases: for example, a winning
margin of only 40 votes is 99.9999% certain to be correct if the randomised partial
checking audit on a single re-encryption net is successful, i.e. does not find any
incorrect re-encryptions. If a higher level of certainty is required, then further
mixnets can be generated and audited.

Feasibility Analysis of Prêt à Voter for German Federal Elections 171

The remaining steps of the process are all publicly verifiable: the decryption
of the outputs from the mix along with proofs of correctness of the decryptions
is published, and can be verified by anyone. The tallying of the decrypted votes
is also published and can also be checked independently.

With this proposed verifiability of the election, the level of verifiability can be
increase compared to the level of verifiability in traditional paper based election
systems. However, what remains for future work is to deduce an acceptable
certainty for both individual and public verifiability from both legal requirements
and the accepted error rate in traditional paper based elections.

8 Analysis of Design Proposals — Election Management

The election can be run centrally, or it can be distributed. The advantage of
running the election from a single central location is that the system needs to
be set up only once, and one single election system is likely to reduce costs in
terms of equipment and management in comparison to a number of smaller ones.
However, the disadvantage is that a single system will be a bottleneck, both in
terms of setting up the election in the first place, including the generation and
printing of the ballot forms, and in terms of the length of time needed to process
the large number of cast ballots.

Alternatively the election may be decentralised, and run across a number
of locations. This can be achieved by setting up completely independent Prêt
à Voter systems, each to run the election for a number of constituencies, and
collating their results. This has the advantage of processing the cast votes in
parallel, obtaining the result more quickly than a single central system would be
able to. Another advantage of decentralisation is that challenges can be handled
more efficiently at a more local level.

The election naturally separates into smaller races which can be run and pro-
cessed separately: The ballot forms differ for every electoral district, so the prepa-
ration before the election is different for each district and can be distributed.
Furthermore, the results of each electoral district must in any case be reported
separately, meaning that the votes from each electoral district must be processed
and tallied separately. The Prêt à Voter system is able to manage this by pro-
cessing the votes in batches and reporting separately on the results, one district
at a time, and this task distributes naturally across a number of such systems.

Our recommendation is therefore to decentralise the election management.
The optimal level of decentralisation balances the overall resources required
against the gains achieved in terms of efficient management of the election and
speed of reporting the result, and in this context we would recommend decen-
tralisation to the level of federal states.

9 Conclusion and Future Work

The paper analyses Prêt à Voter regarding its readiness for German federal
elections and discusses different design proposals in order to decide which of the

172 D. Demirel et al.

many different variations of Prêt à Voter fits best. While already a lot of different
aspects from the legal perspective are covered and ensured by the proposed
version, some others need to be discussed in future work. The main one is the
requirement of [5, page 39] that all essential steps in an election are subject to
public examinability (unless other constitutional interests justify an exception).
This needs to be possible without any special expert knowledge [5, page 39].
Against this background, it needs to be discussed whether and how a system
like Prêt à Voter can fulfil this requirement. Therefore, it is first necessary to
further analyse the judgement regarding the question whether voters need to
be able to check the election manually or whether tool support is acceptable
as well as understanding the general idea, or whether it is necessary to follow
all mathematical steps (which would obviously not be possible for a system
like Prêt à Voter). Besides this, future work includes discussions about data
storage (which data for how long) and responsibilities (who prints and keeps
the ballot papers, how many key holders, election servers, and mix nodes as
well as who they are). Although the receipt gives no information about the
particular voter, long term secrecy needs to be broached as well. Furthermore,
an acceptable certainty for both individual and public verifiability needs to be
deduced from legal requirements and the accepted error rate in traditional paper
based elections. Besides that we have to view the fact that visually handicapped
people cannot cast their votes by using a plastic template (with Braille on it to
put the ballot paper in) anymore when introducing Prêt à Voter. Therefore, it
needs to be discussed whether a particular amount of ballot papers with Braille
needs to be available in each polling station.

In addition to these legal aspects, there are also usability and acceptance
issues, for instance regarding whether detaching is feasible without destroying
the centre part of the ballot paper and destroying the other parts, as well as
accepting that only test ballots can be audited but not the one to cast and the
strict processes demanded in the polling station.

Another challenge is extending a suggestion regarding the vote scanning pro-
cess and enabling voters to check the signature on their receipt, to ensure their
receipt is genuine evidence of their cast ballot. This requires additional equip-
ment, perhaps provided by independent organisations. If this is not feasible then
it may be appropriate to use conventional anti-counterfeiting measures, such as
special paper for the receipts, special patterns, rubber stamping, and so on. This
challenge is the subject of current research.

This paper shows that it is worth analysing systems with an interdisciplinary
team to ensure that they are not only secure from a cryptographic point of view
but also conform to elections laws for particular elections.

Acknowledgements. This paper has been developed within the project
’VerKonWa’ — Verfassungskonforme Umsetzung von elektronischen Wahlen —
which is funded by the Deutsche Forschungsgemeinschaft (DFG, German Science
Foundation) and conducted in cooperation of provet (Project Group Constitu-
tionally Compatible Technology Design at the University of Kassel) and CASED
(Center for Advanced Security Research Darmstadt). Peter Ryan thanks the

Feasibility Analysis of Prêt à Voter for German Federal Elections 173

FNR Luxembourg for funding the SeRTVS project. Steve Schneider is grateful
for funding through the Trustworthy Voting Systems project under UK EPSRC
grant EP/G025797/1.

References

1. Bundesverfassungsgericht: Judgment. BVerfGE 1, 208–261 (April 1952),
http://sorminiserv.unibe.ch:8080/tools/

ainfo.exe?Command=ShowPrintVersion&Name=bv001208

2. Bundesverfassungsgericht: Judgment. BVerfGE 13, 1–20 (May 1961),
http://sorminiserv.unibe.ch:8080/tools/

ainfo.exe?Command=ShowPrintVersion&Name=bv013001

3. Bundesverfassungsgericht: Judgment. BVerfGE 14, 154 (June 1962)
4. Bundesverfassungsgericht: Judgment. BVerfGE 29, 154–165 (October 1970)
5. Bundesverfassungsgericht: Judgment. BVerfGE 123, 39–88 (March 2009),

http://www.bverfg.de/entscheidungen/rs20090303_2bvc000307en.html

6. Bundeswahlleiter, D.: Wahl zum 17. Deutschen Bundestag am 27. Septem-
ber 2009, Heft 5, Textliche Auswertung der Wahlergebnisse (November
2010), http://www.bundeswahlleiter.de/de/bundestagswahlen/BTW BUND 09/

veroeffentlichungen/Heft5 komplett.pdf

7. Chaum, D., Ryan, P.Y.A., Schneider, S.: A Practical Voter-Verifiable Election
Scheme. In: De Capitani di Vimercati, S., Syverson, P.F., Gollmann, D. (eds.)
ESORICS 2005. LNCS, vol. 3679, pp. 118–139. Springer, Heidelberg (2005)

8. Jakobsson, M., Juels, A., Rivest, R.L.: Making mix nets robust for electronic voting
by randomized partial checking. In: USENIX Security Symposium, pp. 339–353
(2002)

9. Neff, C.A.: A verifiable secret shuffle and its application to e-voting. In: ACM
Conference on Computer and Communications Security, pp. 116–125 (2001)

10. Park, C., Itoh, K., Kurosawa, K.: Efficient Anonymous Channel and All/Nothing
Election Scheme. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765,
pp. 248–259. Springer, Heidelberg (1994)

11. Ryan, P.Y.A., Bismark, D., Heather, J., Schneider, S., Xia, Z.: Prêt à Voter: a
voter-verifiable voting system. IEEE Transactions on Information Forensics and
Security 4(4), 662–673 (2009)

12. Ryan, P.: Prêt à Voter with Paillier encryption. Journal of Mathematical and
Computer Modelling 48(9-10), 1646–1662 (2008)

13. Sako, K., Kilian, J.: Receipt-Free Mix-Type Voting Scheme - A Practical Solution
to the Implementation of a Voting Booth. In: Guillou, L.C., Quisquater, J.-J. (eds.)
EUROCRYPT 1995. LNCS, vol. 921, pp. 393–403. Springer, Heidelberg (1995)

14. Schreiber, W.: Bundeswahlgesetz Kommentar. Carl Heymanns Verlag (March
2009)

15. Xia, Z., Schneider, S.A., Heather, J., Ryan, P.Y.A., Lundin, D., Peel, R., Howard,
P.: Prêt à voter: All-in-one. In: Proceedings of IAVoSS Workshop on Trustworthy
Elections (WOTE 2007), Ottawa, Canada, pp. 47–56 (2007)

http://sorminiserv.unibe.ch:8080/tools/ainfo.exe?Command=ShowPrintVersion&Name=bv001208
http://sorminiserv.unibe.ch:8080/tools/ainfo.exe?Command=ShowPrintVersion&Name=bv001208
http://sorminiserv.unibe.ch:8080/tools/ainfo.exe?Command=ShowPrintVersion&Name=bv013001
http://sorminiserv.unibe.ch:8080/tools/ainfo.exe?Command=ShowPrintVersion&Name=bv013001
http://www.bverfg.de/entscheidungen/rs20090303_2bvc000307en.html
http://www.bundeswahlleiter.de/de/bundestagswahlen/BTW_BUND_09/veroeffentlichungen/Heft5_komplett.pdf
http://www.bundeswahlleiter.de/de/bundestagswahlen/BTW_BUND_09/veroeffentlichungen/Heft5_komplett.pdf

Prêt á Voter with Write-Ins

Steve Schneider, Sriramkrishnan Srinivasan, Chris Culnane,
James Heather, and Zhe Xia

University of Surrey, Guildford, Surrey, GU2 7XH, UK

Abstract. This paper presents an extension of the Prêt à Voter verifi-
able voting system to handle write-ins. This is achieved by introducing
an additional ‘Write-In’ option and allowing the voter optionally to enter
a write-in candidate of their choice. The voter obtains a receipt which
includes their write-in, but that receipt does not indicate whether the
write-in candidate was selected or not. The system provides flexibility
with respect to the tallying of write-in votes. We also introduce null
ballots in order to achieve receipt-freeness with respect to write-ins.

Keywords: end-to-end verifiable voting, Prêt à Voter, write-in votes,
receipt-freeness.

1 Introduction

End-to-end verifiable voting systems provide mechanisms for verifying elections.
These generally involve checking cast votes against some evidence provided to
the voter, such as a receipt of voting, or a code number. ‘Receipt-freeness’ is an
important property of such systems. Receipt-freeness requires that the voter’s
evidence, together with the evidence of integrity of the election provided by the
authorities, should not give away how the voter voted. This protects against vote
selling and voter coercion.

Elections allowing write-in candidates pose a particular challenge for end-to-
end verifiable voting systems. A voter requires evidence of how she voted, to
verify the vote was counted correctly and to be able to challenge the election if
it was not. In the case of a write-in candidate, this means that the name entered
may well be part of the voter’s retained evidence. The election authorities may
also need to reveal the name in order to demonstrate that the write-in votes were
correctly tallied. Thus such a system can allow a voter to enter some information
of her choice into her vote, in a verifiable way. The challenge is to do this so as
to minimise the leakage of information. In particular, as noted in [9], it is not
acceptable for a receipt to provide evidence of having voted for a particular
write-in candidate.

Elections allowing write-ins are rare outside the U.S., but they are common
in the U.S. as part of the electoral landscape. Their implementation in the U.S.
varies widely[12], since rules regarding write-ins are determined at state level.
For example, in the 2008 Presidential election, some states did not allow write-in
candidates; in others, write-in candidates had to register before the election; and

A. Kiayias and H. Lipmaa (Eds.): VoteID 2011, LNCS 7187, pp. 174–189, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Prêt á Voter with Write-Ins 175

in others, any write-in is considered a legitimate candidate (subject to being
eligible for office). It appears common practice that the totals for legitimate
write-in candidates are reported as part of the election result. However, reporting
of results for ‘unofficial’ write-in candidates may or may not occur. Write-ins
are typically handled by a variety of technologies, including paper ballots and
electronic voting systems.

There are therefore a range of possible legal requirements with respect to the
results that must be reported. If a verifiable voting system is to support write-
ins, then ideally it will not tally or report on more results than are required by
the electoral rules. This will prevent unnecessary information leakage, as well as
avoiding any unnecessary processing of votes. Hence it is desirable for such a
system to provide flexibility with respect to the processing of the write-in votes.

The approach proposed in this paper also makes use of a ‘write-in’ option as an
additional choice on a Prêt à Voter ballot form. The scheme we propose includes
the write-in on the receipt and also on the bulletin board. This enables changes
to any write-in image to be challenged by the receipt-holder. The inclusion of the
write-in on the voter’s receipt introduces additional challenges that we address
by incorporating the write-in into the mix. Election officials allocate write-in
votes to candidates, and they are tallied homomorphically to protect voters’
privacy. Even if the receipt contains a recognisable write-in image which can
be linked to a specific voter, the tallying procedure does not provide evidence
of whether that vote was cast for that write-in candidate. We also introduce
dummy receipts to allow a voter to vote for one write-in and obtain a receipt
for another. This provides a stronger form of receipt-freeness with respect to
write-ins than previous schemes.

Write-ins were first considered explicitly for cryptographic secure ballots in
the Vector-Ballot scheme of [10], which uses a combination of mix networks
and homomorphic encryption. It is noted in [2], that write-ins can potentially
be incorporated into schemes such as Scratch&Vote [2], Prêt à Voter [20] and
Punchscan [5], by including a ‘write-in’ option alongside the listed candidates,
and incorporating a process such as the Vector-Ballot approach for handling the
votes that are written in. This approach was required for the Takoma Park elec-
tion [4] which was run using Scantegrity II [6]: in that election, voters ranked the
candidates in order of preference, and so the system was extended to permit a
write-in candidate in any position. This was achieved by incorporating a ‘write-
in’ option and allowing it to be selected for any rank in the list. The associated
write-in entry was scanned into the system, and processed by an ‘Election Res-
olution Manager’ component in order for it to be incorporated into the count.
We discuss these schemes and compare them to ours in Section 5.

This paper is structured as follows: Section 2 describes the ballot form and
how votes are cast, and discusses the nature of the receipt and the informa-
tion it contains; Section 3 describes how the votes are processed through the
two mixnets; Section 4 discusses the resulting scheme with respect to receipt-
freeness; finally, Section 5 discusses other aspects of the scheme, and provides a
comparison with other verifiable election schemes.

176 S. Schneider et al.

2 Incorporating Write-Ins into Prêt à Voter

Prêt à Voter uses cryptography in the construction of ballot forms, and in the
processing of votes. The key features we require of the cryptosystem for the
scheme presented in this paper are:

– probabilistic and semantically secure: that the same plaintext can be en-
crypted in many different ways, using different randomisation values, and
that it should be computationally infeasible to tell whether two ciphertexts
correspond to the same plaintext, without knowledge of the secret keys or
randomisation involved;

– that a ciphertext can be re-encrypted without knowledge of the private key;
– that the cryptosystem is additively homomorphic: ciphertexts containing in-

tegers can be combined to a ciphertext containing their sum, without knowl-
edge of the private key.

These properties are provided by the Paillier cryptosystem [17], and also by the
ElGamal cryptosystem[7] using exponents to encode integers (since ElGamal
itself is multiplicatively homomorphic).

In this paper we use the notation E(m, r) to denote a message m encrypted
under the election key with randomisation r. Re-encryption is denoted by chang-
ing the randomisation value, thus E(m, r′) is a re-encryption of E(m, r) when
r′ is derived from r, and they both encrypt m. Decryption requires a threshold
set of trusted parties, as discussed in [20].

2.1 The Ballot Form

The scheme incorporates write-ins by making an adaptation to the ballot form.
Following the approach taken in [24], the ballot form is constructed with a ran-
domised list of choices on the left hand side (and serial number at the top right)
as illustrated in Figure 1. For plurality voting the possible permutations of the
candidates could be simpler, as discussed in [22], but for this paper we will retain
arbitrary candidate lists. The information capturing the candidate list is embed-
ded in encrypted form in a code, illustrated here on the bottom of the ballot
form. For each position on the ballot this gives an encryption of the associated
candidate.

In common with other approaches, we introduce an additional ‘candidate’,
‘Write-In’, to the list of candidates on the left-hand side of the ballot, and in-
clude a space for a write-in candidate’s name on the right-hand side of the ballot.
Recall that the left-hand side is to be destroyed, and the right hand side will be
scanned into the system and recorded as the vote. Completing the ballot form is
carried out as in previous versions of Prêt à Voter[20], with the added opportu-
nity to write-in a candidate: the voter finds their choice on the randomised list
of candidates (which now includes the additional choice ‘Write-In’) and marks an

Prêt á Voter with Write-Ins 177

Fig. 1. Prêt à Voter ballot form with write-ins

‘X’ in the corresponding box on the right-hand side; the voter may also write
any name into the write-in box, which is on the right hand side.

2.2 Completing the Ballot Form

Figure 2 illustrates four ways of completing a valid ballot form. All except (d)
are valid votes, though (c) also includes a decoy name (i.e. a write-in name who
does not receive the vote).

– In vote (a), the voter has voted for Cathy, by selecting the box against
Cathy’s name. No name has been written in the write-in box.

– In vote (b), the voter has chosen to cast a vote for a write-in candidate
Bobbie. To do this, the voter selects the box against the candidate ‘Write-
In’, and writes the name ‘Bobbie’ into the write-in box on the right-hand
side of the ballot form,

– In vote (c), the voter has voted for Cathy. The name ‘Bobbie’ in the write-in
box will not be counted as a vote for Bobbie, because the Write-In option
was not selected.

– In vote (d), this is effectively a spoiled ballot: the write-in box was selected,
but no name has been provided.

2.3 Dummy Ballot Forms

The scheme introduces the idea of dummy ballot forms, used to cast null votes.
Here we first present the full scheme in which dummy ballots are provided to each
voter. In Section 4.2 we discuss the alternative approach of making them optional
for voters, and the consequences of not including them at all. Their purpose is
to allow voters to obtain a receipt of any form with any write-in, while voting
in any way they choose. A dummy ballot form is pictured in Figure 3. Following
the construction of valid ballots, the code at the bottom of the form associates
a (different) encryption of ‘null’ with each position.

178 S. Schneider et al.

(a) (b) (c) (d)

Fig. 2. Four possible ways of completing the ballot form

Fig. 3. Prêt à Voter dummy ballot form

2.4 Casting a Vote

To cast their vote, voters are given a valid ballot form and also a dummy ballot
form. There should be no relationship between the serial numbers of the two
forms. They complete both, detach and destroy both left hand sides, scan both
right hand sides into the system, and choose one receipt to retain. The receipt
can be either that from the valid ballot form or from the dummy ballot form.
The system must not know which receipt has been retained. One way to achieve
this is to produce both receipts, and then require the voter to destroy one.

The right-hand side will either contain a write-in name, or not, as pictured in
Figure 4.

– If the right-hand side contains a write-in name, as pictured in Figure 4 (a),
then either it is a vote for that candidate, or it is a vote for one of the listed
candidates as illustrated in Figure 2, or else it is a null vote from a dummy
ballot form. Without decrypting the code, and in the absence of the left-
hand side, there is no way to determine which selection was made. Hence
this right-hand side does not provide evidence that the written-in candidate
actually received the vote.

Prêt á Voter with Write-Ins 179

(a) (b)

Fig. 4. Two possible forms of the right-hand side

– If the right hand side does not contain a written-in candidate, as pictured in
Figure 4 (b), then this vote is either a vote for one of the listed candidates, or
a spoiled ballot, as illustrated in Figure 2, or else a null vote from a dummy
ballot form. It does not indicate which of these possibilities actually holds.

3 Processing the Votes

Following recent versions of Prêt à Voter [20,21,19], we use a re-encryption
mixnet [18,23,15] to process the votes.

3.1 Anonymising the Votes

A key feature of Prêt à Voter is the use of a public bulletin board to display
the votes that are cast—the marked-up right hand sides of the ballot forms that
the voters have submitted to the system. In this section we will consider
that the record of any write-in will be recorded on the bulletin board as an
image of the write-in box. The scheme works the same way if the write-ins are
in text form.

When a vote vi is scanned into the system, it is written to the bulletin board
against the serial number on the ballot form, and the voter retains a (signed)
receipt, which matches the bulletin board entry. What is recorded on the bulletin
board and on the receipt is the onion associated with the voter’s selection, to-
gether with the readable image Ii of the entry in the write-in box. The onion for
selection j on ballot form i is E(Cj , ri,j): the selected candidate Cj in encrypted
form with randomisation ri,j .

At the end of polling, the votes are prepared for mixing by encrypting each
serial number i with fixed randomiser 1, to obtain E(i, 1). The results of this
step are posted on the bulletin board and are easily verifiable. The entries to the
mix are thus pairs of the form (E(Cj , ri,j), E(i, 1)).

180 S. Schneider et al.

In principle the scheme could pass the scans Ii through the mix rather than
pass the serial number i. However, a scan image is likely to be a bitmap of
several kilobytes, and there will be practical problems encrypting such a large
item and passing it through the mix. Using a serial number of a few tens of bits
is significantly more efficient and less cumbersome.

The serial numbers are re-encrypted at each stage alongside the choice of
candidate. At each stage of the mix each vote consists of an encrypted candidate
and its associated encrypted serial number. The mix must not split the pairs at
any stage. This can be achieved using the protocol of [15,14], or can be audited
using mixnet techniques such as randomised partial checking [8]. Finally, the
shuffled and re-encrypted votes are output from the mix, as another list of pairs
of the form E(Cj , r

′
i), E(i, s′i).

Tallying the Listed Candidates

At this stage, the encrypted candidates E(Cj , r
′
i) are decrypted in the usual

way (by a threshold set of parties) to extract the candidates Cj that were se-
lected. The serial numbers E(i, s′i) are not yet decrypted. The resulting list
{(Cj , E(i, s′i))} is published. This process is illustrated in Figure 5.

After this stage, the votes have been decrypted, and so the election can be
tallied. Any vote Ci for a listed candidate can be counted as a vote for that
candidate. Any null vote is not counted against any candidate.

Tallying the Write-Ins

Any vote Ci for ‘Write-In’ cannot yet be counted, since the serial number linking
to the image is encrypted and not yet available. It remains to tally the write-in
candidates.

To obtain the write-in votes, we make use of a second mixnet. We use a
homomorphic encryption scheme such as exponential ElGamal to encrypt the
values 0 and 1 with a fixed randomiser, 1, to obtain known encryptions E(0, 1)
and E(1, 1). This will enable us to obtain the aggregate values for each candidate.
We take the list of results with their encrypted images {(Cj , E(i, s′i))} to generate
a new list {(E(bj, 1), E(i, s′i))}, where each E(bj , 1) is the known encryption of
0 or 1, chosen as follows:

– if Cj is one of the listed candidates, then include (E(0, 1), E(i, s′i)) in the
input for the second mixnet;

– if Cj is ‘Null’, then include (E(0, 1), E(i, s′i)) in the input for the second
mixnet;

– if Cj is ‘Write-In’, then include (E(1, 1), E(i, s′i)) in the input for the second
mixnet

We include all the votes as input to the second mixnet: it is important to treat
the decoy write-ins in the same way as the genuine write-in votes, otherwise the
decoys will be exposed as such (because i would not eventually be revealed).

Prêt á Voter with Write-Ins 181

Fig. 5. Mixing the votes

The resulting list is run through the second mixnet, and is re-encrypted and
shuffled. The resulting elements are of the form (E(bi, ti), E(i, s′′i)). The E(i, s′′i)
are now decrypted, to obtain all of the write-in entries. Note that the encrypted
0 or 1 values indicate whether or not those write-in entries corresponded to a
‘Write-In’ selection, i.e. whether that entry should be counted in the tally. This
process is illustrated in Figure 6.

The write-in entries are examined, and assigned to particular candidates. This
is the stage where election officials will need to make judgements as to the ‘voter’s
intention’ in each case, and where procedural and legal challenges might take
place. In due course, all of the write-ins are allocated to particular candidates.
This process is independent of the processing of the ballots through the mixes,
and can be carried out concurrently.

182 S. Schneider et al.

Fig. 6. Extracting the write-ins

The encrypted 0 or 1 values for each write-in candidate to be tallied can
then be combined homomorphically: adding them together and then decrypting
the result. This yields the total number of votes selected as ‘Write-In’ for that
candidate, but it does not reveal for any particular vote whether that was a
valid write-in, or a vote for one of the listed candidates or a null vote. This
process is illustrated in Figure 7. Hence this process does not reveal whether the
corresponding vote Cj was counted for the written-in candidate or not (except
where this is evident from the result). This prevents the voter from obtaining a
receipt for a vote for their write-in candidate.

3.2 Flexibility on Reporting Write-In Results

In practice different electoral regulations specify different rules for allowed write-
ins and for reporting on write-ins, giving rise to a whole range of situations that

Prêt á Voter with Write-Ins 183

Fig. 7. Tallying the write-ins

any election system might need to deal with, from reporting tallies for all written-
in names, to only reporting on tallies of ‘official’ write-in candidates (who have
registered with the electoral authorities in some way). The output of the first mix
(Figure 5) indicates the total number of write-ins; and the scans of the write-ins
on the bulletin board, once assigned to candidates, give an upper bound for the
number of votes received by each write-in candidate. If it is apparent from these
intermediate numbers that the write-in votes cannot make a difference to the
result of the election, it may be allowable to report on the result even before the
write-ins are tallied.

The write-ins on the bulletin board can be interpreted and sorted by candi-
date, and only those to be reported need to be tallied by means of the second
mix and homomorphic tallying. Thus the stages of the tallying process can be
tailored to the local regulations regarding write-ins.

4 Receipt-Freeness

Informally, receipt-freeness is the property that a voter cannot obtain evidence of
how they voted. Benaloh and Tuinstra [3] introduced the issue of receipt-freeness,

184 S. Schneider et al.

and considered it as the property that does not allows a voter “to prove that a
vote was cast in a particular way”.

Okamoto [16] gives a formal definition of receipt-freeness, formalising the prop-
erty as the ability of the voter to cast a vote vi so that a coercer cannot tell that
their preferred vote v∗i has not been cast. In the case where a receipt is issued,
this means that the receipt obtained by the voter following a vote vi is consis-
tent with a vote for v∗i . For the purposes of this paper, we will consider what
the coercer can learn from the information contained in the receipt retained by
the voter.

Even at this level of abstraction, an analysis is useful in the context of write-
ins since the asymmetry between listed candidates and write-in candidates al-
ready introduces some interesting considerations. A full security analysis for
receipt-freeness will require more detailed modelling of the system: the Univer-
sal Composability approach [13] is a good candidate to provide an appropriate
framework, as it provides a rigorous model for coercion, incorporates the mod-
elling of the system, and allows for the information revealed by the posting of
receipts on the bulletin board and the tallying of the election. This is the subject
of ongoing research.

We adapt Okamoto’s definition of receipt-freeness to our current setting, re-
ferring to receipts explicitly, as follows:

Definition 1 (After Okamoto). A voting scheme with receipts is receipt-free
if a coercer who requires the voter to vote for candidate c∗i , and will accept a
receipt r∗i , cannot tell that the voter’s preferred candidate ci did not receive the
vote.

In other words, any receipt that a coercer will accept is consistent with a vote
for any candidate.

Classical Prêt à Voter is receipt-free in this sense: the receipt that the voter
obtains could correspond to a vote for any of the candidates, and so it does
not provide any evidence of which candidate received the vote, or any useful
information about the vote.

In the scheme incorporating write-ins presented in Sections 2 and 3, any re-
ceipt retained by a voter is consistent with any valid vote that she may have
cast, including a valid vote for any write-in candidate. Since a dummy receipt
can be of any form at all, and bears no relationship to the valid vote cast, any
receipt a voter might retain is consistent with any valid vote. The scheme thus
meets the characterisation of receipt-freeness given in Definition 1 above.

4.1 The Scheme without Dummy Ballots

If we restrict the scheme to using only valid ballots, and not dummy ballots, then
the receipt-freeness properties are weakened with respect to write-in candidates,
and receipts do leak some information:

– A receipt of a valid ballot, with a particular write-in, is not consistent with
a vote for a different write-in candidate. It is consistent with a vote for the
written-in candidate, and for any of the listed candidates.

Prêt á Voter with Write-Ins 185

– A receipt of a valid ballot with no write-in is not consistent with a vote for
any write-in. It is consistent with a vote for any of the candidates, and for a
spoiled ballot (i.e. a vote for a write-in but no candidate written-in).

Hence the system without the use of dummy ballots does not provide receipt-
freeness in the case of write-ins. While any receipt is consistent with any vote
for a listed candidate, it is consistent with a vote for a write-in candidate only if
that name is written in the write-in box. If receipt r∗i does not contain a write-in
name, or contains a write-in name other than wii, then a coercer can tell that
a voter’s preferred (write-in) candidate wii did not receive the vote; and thus
Definition 1 does not hold.

Observe that the weaker form of Definition 1 below does hold, where the
voter’s preferred candidate ci is a listed candidate:

Definition 2 (Receipt-freeness for listed candidates). A voting scheme
with receipts is receipt-free for listed candidates if, for any listed candidate ci, a
coercer who requires the voter to vote for candidate c∗i , and will accept a receipt
r∗i , cannot tell that the voter’s preferred listed candidate ci did not receive the
vote.

The voter may vote for any listed candidate while remaining consistent with
any receipt a coercer might require. However, this definition is too weak to give
full receipt-freeness: the voter does not have the required guarantees in the case
where she wishes to vote for a write-in candidate.

4.2 Optional Dummy Ballots

Rather than give both a valid and a dummy ballot form to each voter, a sug-
gested approach is to offer the voter the option of whether they wish to take a
dummy alongside a valid form, rather than making it compulsory. An alternative
approach could offer voters the opportunity to take as many dummy ballots as
they wished.

By making the choice optional, voters still have the ability to obtain a dummy
receipt if required, thus retaining receipt-freeness of the system.

In this case it is essential that a coercer should not know whether or not a
voter opted to take the dummy ballot. Otherwise the additional knowledge that
a voter did not select a dummy reduces receipt-freeness to the case where dummy
ballots are not used. This means that the procedure for offering the voter the
choice, and providing the voter with the appropriate ballot form(s), must be
carefully designed to prevent information leaking to the coercer.

Dummy votes do not contribute to the final election result, and are provided
purely to provide receipt-freeness. Since dummy ballots are processed in exactly
the same way as valid ballots, their inclusion introduces a processing overhead,
and reducing the number of dummy ballots passed into the system will improve
efficiency. Making dummy ballots optional for voters provides a good way of
achieving this.

186 S. Schneider et al.

5 Discussion

5.1 Human Factors

The inclusion of a write-in option on the ballot form introduces an inherent
asymmetry between candidates: write-in candidates are handled differently to
listed candidates. While we see that any receipt is compatible with any vote, in
practice it may be that voters will use the ballot forms in particular ways. For
example it seems plausible that many voters will only complete the write-in box
if they are voting for that write-in candidate, and that they will otherwise leave
it blank. Such a pattern of behaviour would impact on the information given by
a receipt: a receipt including a write-in name might in practice indicate a higher
likelihood of a vote for that candidate than a receipt without that name written-
in. Empirical investigations would be necessary to gain an understanding of the
bias introduced by voter practise.

5.2 Comparison with Other Schemes

Few proposals for secure election systems explicitly address write-in ballots. For
example, the Helios online election system [1] does not address the issue of write-
ins explicitly, and the current implementation does not provide for them. The
JCJ scheme of [9] excludes write-ins, because of the concern that an attacker
could coerce voters to introduce specific strings into the write-in box and check
that they have done so. Our scheme minimises the impact of such coercion, since
the presence of a write-in on the Prêt à Voter receipt is not evidence of a vote
for that write-in candidate.

In this section we will consider two schemes which do allow write-ins: Vector
Ballots, and Scantegrity II. We will consider them with respect to the various
aspects discussed above.

Vector Ballots

The Vector Ballot approach described [11] is to our knowledge the only crypto-
graphic e-voting protocol designed specifically to support write-in ballots. It is
a purely electronic system, intended for internet voting. A vector ballot accepts
both write-in candidates and votes for listed candidates. A completed ballot is
a vector with three components: an encrypted flag indicating whether the vote
is for a write-in or a listed candidate; a ciphertext possibly containing a listed
candidate; and a ciphertext possibly containing a write-in. Correctly completed
ballots are either

1. an encrypted flag value of 0, an encryption of a selected candidate, and an
encryption of 0 for the write-in; or

2. an encrypted flag value of 1, an encryption of 0 for the selected candidate,
and an encryption of the write-in candidate name.

Prêt á Voter with Write-Ins 187

The non-write-in ballots can then be tallied using homomorphic encryption. The
write-ins cannot be tallied homomorphically since they are not predetermined;
they must be extracted and revealed individually in order to enable tallying. This
is achieved by a ‘shrink and mix’ procedure: the sequence of ballots is divided
up into batches, and then for each batch, if any of the write-in flags are set,
then the whole batch is included as input to the mix. However, any batch with
no write-ins will not be input to the mix. Hence all write-ins, and a number of
non-write-ins, will be input to the mix, but the list of ballots is reduced. The
motivation for this is to improve efficiency: mixes are computationally expensive,
and since only small proportions of voters typically opt for write-ins, many of
the ballots can be excluded from the mix while still masking which of the input
ballots are write-ins. The output of the mix can then be decrypted, the null
write-ins discarded, and the genuine write-ins tallied.

With regards to receipt-freeness, the only information provided by the system
is whether the ballot is input into the mix. If it is input then the ballot could
be for a listed candidate or a write-in. However, if it is not included in the input
then it is clearly not for a write-in candidate. Hence it is possible (indeed, likely)
for voters voting for a listed candidate to obtain evidence that they did not
vote for any write-in candidate. However, it is possible for all votes to be put
into the mix by considering all the votes as one batch, and not applying the
‘shrink’ stage of the process. Hence if necessary the scheme can provide receipt-
freeness of not having voted for a write-in, though at the cost of efficiency of the
tally.

The scheme does not allow decoy write-ins. Although voters’ receipts (i.e.
what is on the bulletin board as received votes) do not expose write-in candidate
entries, they are exposed in the output from the mix, and all such votes will have
been cast as write-ins. Since these can in principle contain arbitrary strings,
voters can be subjected to the forced abstention attack by being coerced into
entering such strings. The appearance of such a string in the mix output provides
evidence that the voter did indeed waste their vote.

This last property contrasts with our approach, where the published material
does not indicate whether the string was selected as a write-in. If the authorities
do not tally the results for such a string, then its appearance does not provide
evidence of a wasted vote.

Scantegrity II

The description of Scantegrity II in [6] does not explicitly discuss write-ins, but
they were incorporated into the system to meet the election requirements of the
Takoma Park municipal election which was run using Scantegrity II. The system
takes a different approach to the systems discussed above, in that the voters do not
retain any receipt of what they havewritten in, so they are not able to demonstrate
whether theyhaveor havenotwritten-in anyparticular candidate. In this sense, the
Scantegrity II approach provides a stronger formof receipt-freeness than the others
with respect to write-ins. In that system, the final tally for ‘Write-In’ is verifiable,
but a level of trust is required in the election authority, since a malicious authority

188 S. Schneider et al.

could change the write-in images[4]. If necessary, additional procedures could be
introduced to verify the write-ins. This contrasts with our scheme, which allows
voters to confirm that the write-in image they provided has not been changed by
virtue of the receipt and the published election data.

6 Summary

We have presented an extension of Prêt à Voter to include a mechanism for
allowing write-in candidates. The approach provides the voter with a receipt
which can contain an image of the (hand-written) write-in but still provides
receipt-freeness, in the sense that the voter’s receipt is not evidence of the voter’s
vote. The scheme provides maximum flexibility when tallying, allowing write-
ins to be assessed and assigned against write-in candidate names by election
officials before they are tallied, and tallying only when necessary according to
local requirements. Homomorphic tallying allows write-ins to be tallied without
revealing which particular votes were cast for them, providing secrecy of the
ballot. We have discussed various aspects of the property of receipt-freeness
with respect to the information contained in the receipt, and seen the need for
dummy or null ballots to provide receipt-freeness for write-ins. We believe that
the approach taken in this paper and developed for Prêt à Voter will be more
generally applicable to other voting schemes in which a voter obtains a receipt
of how they marked their ballot form.

Acknowledgements. We are grateful to Ron Rivest, Peter Ryan, and Emily
Shen for discussions and comments on these ideas. This work was funded by
EPSRC under grant EP/G025797/1, and was conducted while James Heather
was a Royal Academy of Engineering/Leverhulme Trust Senior Research Fellow.

References

1. Adida, B.: Helios: Web-based open-audit voting. In: van Oorschot, P.C. (ed.)
USENIX Security Symposium, pp. 335–348. USENIX Association (2008)

2. Adida, B., Rivest, R.L.: Scratch & vote: self-contained paper-based cryptographic
voting. In: Juels, A., Winslett, M. (eds.) WPES, pp. 29–40. ACM (2006)

3. Benaloh, J.C., Tuinstra, D.: Receipt-free secret-ballot elections (extended ab-
stract). In: STOC, pp. 544–553 (1994)

4. Carback, R., Chaum, D., Clark, J., Conway, J., Essex, A., Herrnson, P.S., May-
berry, T., Popoveniuc, S., Rivest, R.L., Shen, E., Sherman, A.T., Vora, P.L.: Scant-
egrity II municipal election at Takoma Park: The first E2E binding governmental
election with ballot privacy. In: Proceedings of the 19th USENIX Security Sympo-
sium (2010)

5. Chaum, D.: Punchscan, http://www.punchscan.org (viewed on November 12,
2010)

6. Chaum, D., Carback, R., Clark, J., Essex, A., Popoveniuc, S., Rivest, R.L., Ryan,
P.Y.A., Shen, E., Sherman, A.T., Vora, P.L.: Scantegrity II: end-to-end verifiability
by voters of optical scan elections through confirmation codes. IEEE Transactions
on Information Forensics and Security 4(4), 611–627 (2009)

http://www.punchscan.org

Prêt á Voter with Write-Ins 189

7. El Gamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory 31(4), 469–472 (1985)

8. Jakobsson, M., Juels, A., Rivest, R.L.: Making mix nets robust for electronic voting
by randomized partial checking. In: Boneh, D. (ed.) USENIX Security Symposium,
pp. 339–353. USENIX (2002)

9. Juels, A., Catalano, D., Jakobsson, M.: Coercion-resistant electronic elections. In:
Atluri, V., et al. (eds.) WPES, pp. 61–70. ACM (2005)

10. Kiayias, A., Yung, M.: The Vector-Ballot e-Voting Approach. In: Juels, A. (ed.)
FC 2004. LNCS, vol. 3110, pp. 72–89. Springer, Heidelberg (2004)

11. Kiayias, A., Yung, M.: The Vector-Ballot Approach for Online Voting Procedures.
In: Chaum, D., Jakobsson, M., Rivest, R.L., Ryan, P.Y.A., Benaloh, J., Kutylowski,
M., Adida, B. (eds.) Towards Trustworthy Elections. LNCS, vol. 6000, pp. 155–174.
Springer, Heidelberg (2010)

12. mfoster.com. 2008 Presidential Election Write-In Rules, mfoster.com/misc/

write-in rules 2008.html (viewed on November 15, 2010)
13. Moran, T., Naor, M.: Receipt-Free Universally-Verifiable Voting with Everlast-

ing Privacy. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 373–392.
Springer, Heidelberg (2006)

14. Neff, A.D.: Verifiable mixing (shuffling) of ElGamal pairs (2004),
http://web.archive.org/web/20041212174250/www.votehere.net/

documents.html (last accessed March 1, 2011)
15. Andrew Neff, C.: A verifiable secret shuffle and its application to e-voting. In: ACM

Conference on Computer and Communications Security, pp. 116–125 (2001)
16. Okamoto, T.: Receipt-Free Electronic Voting Schemes for Large Scale Elections. In:

Christianson, B., Crispo, B., Lomas, M., Roe, M. (eds.) Security Protocols 1997.
LNCS, vol. 1361, pp. 25–35. Springer, Heidelberg (1998)

17. Paillier, P.: Public-Key Cryptosystems Based on Composite Degree Residuosity
Classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999)

18. Park, C., Itoh, K., Kurosawa, K.: Efficient Anonymous Channel and All/Nothing
Election Scheme. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765,
pp. 248–259. Springer, Heidelberg (1994)

19. Ryan, P.Y.A.: Prêt à Voter with Paillier encryption. Technical Report CS-TR-965,
University of Newcastle (2006)

20. Ryan, P.Y.A., Bismark, D., Heather, J., Schneider, S., Xia, Z.: Prêt à Voter: a
voter-verifiable voting system. IEEE Transactions on Information Forensics and
Security 4(4), 662–673 (2009)

21. Ryan, P.Y.A., Schneider, S.A.: Prêt à Voter with Re-encryption Mixes. In: Goll-
mann, D., Meier, J., Sabelfeld, A. (eds.) ESORICS 2006. LNCS, vol. 4189,
pp. 313–326. Springer, Heidelberg (2006)

22. Ryan, P.Y.A., Teague, V.: Ballot permutations in Prêt à Voter. In:
USENIX/ACCURATE Electronic Voting Technology Workshop (2009)

23. Sako, K., Kilian, J.: Receipt-Free Mix-Type Voting Scheme - A Practical Solution
to the Implementation of a Voting Booth. In: Guillou, L.C., Quisquater, J.-J. (eds.)
EUROCRYPT 1995. LNCS, vol. 921, pp. 393–403. Springer, Heidelberg (1995)

24. Xia, Z., Culnane, C., Heather, J., Jonker, H., Ryan, P.Y.A., Schneider, S., Srini-
vasan, S.: Versatile Prêt à Voter: Handling Multiple Election Methods with a
Unified Interface. In: Gong, G., Gupta, K.C. (eds.) INDOCRYPT 2010. LNCS,
vol. 6498, pp. 98–114. Springer, Heidelberg (2010)

mfoster.com/misc/write-in_rules_2008.html
mfoster.com/misc/write-in_rules_2008.html
http://web.archive.org/web/20041212174250/www.votehere.net/documents.html
http://web.archive.org/web/20041212174250/www.votehere.net/documents.html

Trivitas: Voters Directly Verifying Votes

Sergiu Bursuc, Gurchetan S. Grewal, and Mark D. Ryan

School of Computer Science, University of Birmingham, UK
{s.bursuc,m.d.ryan}@cs.bham.ac.uk, research@gurchetan.com

Abstract. Individual verifiability is the ability of an electronic voting
system to convince a voter that his vote has been correctly counted in
the tally. Unfortunately, in most electronic voting systems the proofs for
individual verifiability are non-intuitive and, moreover, need trusted de-
vices to be checked. Based on the remote voting system JCJ/Civitas, we
propose Trivitas, a protocol that achieves direct and end-to-end individ-
ual verifiability, while at the same time preserving coercion-resistance.

Our technical contributions rely on two main ideas, both related to
the notion of credentials already present in JCJ/Civitas. Firstly, we pro-
pose the use of trial credentials, as a way to track and audit the han-
dling of a ballot from one end of the election system to the other end,
without increased complexity on the voter end. Secondly, due to indis-
tinguishability of credentials from random values, we observe that the
association between any credential and its corresponding vote can be
made public at the end of the election process, without compromising
coercion-resistance. The voter has more intuitive and direct evidence that
her intended vote has not been changed and will be counted in the final
tally.

Keywords: Electronic voting, Individual verifiability, Trial votes, Intu-
itive verifiability.

1 Introduction

The concept of election outcome verifiability has emerged as a vital ingredient in
electronic voting systems. This has arisen partly because some implementations
have been shown vulnerable to outcome manipulation, e.g. [8,5]. Another reason
is that, in contrast with electronic banking and social networking, it is not easy
to put mistakes right if they are uncovered after the results of the election have
been declared. A third reason is that it is notoriously difficult to prove that the
software which might be running behind the scenes has the expected properties;
it is more practical to verify the results produced by the software, than the soft-
ware itself. For this reason, election outcome verifiability is sometimes referred
to as software independence.

Election verifiability in presence of a bulletin board may be conveniently split
in three notions [19]:

Individual Verifiability [9,21,10,2,3,4,1]. To any voter, individual verifiabil-
ity should offer the possibility to verify that her cast ballot has been correctly

A. Kiayias and H. Lipmaa (Eds.): VoteID 2011, LNCS 7187, pp. 190–207, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Trivitas: Voters Directly Verifying Votes 191

recorded and tallied by the system. Ideally, the voter should also have an assur-
ance that her cast ballot correctly encodes her cast vote. In some systems this
additional assurance is offered by an option to audit a ballot [3,4,1] or a ballot
form [10] before casting a vote.

Universal Verifiability [17,20,14,15]. To any external observer, universal ver-
ifiability should offer the possibility to verify that all recorded votes have been
correctly tallied.

Eligibility Verifiability [18,11,19]. To any external observer, eligibility verifia-
bility should offer the possibility to verify that the set of tallied votes corresponds
to votes cast by eligible voters. Eligibility may be enforced at any stage in the
system: either during the casting of a vote [10], or during its recording [1], or
during its tallying [18,11]. Accordingly, eligibility verifiability will pertain to the
corresponding stage.

One problem with the way individual verifiability is usually achieved is that
the voter does not see her vote at the time she visits the bulletin board. This
is the case in Helios [1], Pret-a-Voter [10], JCJ/Civitas [18,11], and others. The
reason is in order to achieve the property of coercion-resistance, which asserts
that the voter shouldn’t be able to prove to a potential coercer how she voted.
Therefore, individual verifiability is achieved by indirect means; the voter can
check that the encrypted ballot is present, and has some other evidence (perhaps
based on auditing) that the encrypted ballot really represents her vote. Moreover,
after the ballots are anonymized, the voter looses track even of her encrypted
ballot.

Voters are likely to find this indirect achievement of individual verifiability
unsatisfactory. This feeling has arisen in the focus groups that were held as part
of the EPSRC project Trustworthy Voting Systems [23]. Four hour-long managed
discussions among groups of about 10 citizens were arranged by a professional
facilitator, with the aim of soliciting people’s opinions about Pret-a-Voter. In
at least two of the discussions, participants questioned the worthwhileness of
checking the presence of their ballot on the bulletin board, given that they did
not have any direct evidence that the ballot really contained their vote. The
issue has also been mentioned by Adida and Neff [2], where the requirement
that verifiability should be direct and end to end has been highlighted.

Our Contribution. We introduce Trivitas, an adaptation of JCJ/Civitas. We
show how the credentials of JCJ/Civitas can be adapted to improve individual
verifiability. In particular, we show how voters can see their own vote in plaintext,
making the verification experience more direct, and more intuitive.

Our first idea is the notion of trial votes. A trial vote is a vote that is cast
along with real votes, but will not be counted. It will be decrypted and exposed
along the way, in a way that is traceable by the voter that cast it. Since most
of the system components are not able to distinguish trial and real votes, it
gives confidence in the correct handling of all votes. This is an extension of the
ideas of auditing in [10,1], with the crucial difference that the auditing process
is performed not only in the phase of casting a ballot, but is spread throughout

192 S. Bursuc, G.S. Grewal, and M.D. Ryan

the whole election process. In other words, a trial credential will function as a
marker whose sign is that the handling of this ballot should be made transparent,
by e.g. decrypting and publishing its contents at every stage. There are a few
technical difficulties with that, because trial ballots can fulfill their role only as
long as they are not identified as such by possibly corrupted agents in the voting
system. To avoid this problem, we make use of the fact that the decryption key
is distributed among a set of trustees and propose to decrypt trial ballots by
running a decryption mix [9,10] among the trustees.

Our second idea is based on the following observation: real credentials are
indistinguishable for anyone (exept for the voter) from trial credentials and
fake credentials (an element that JCJ/Civitas introduces to enable coercion-
resistance). Therefore, without compromising coercion-resistance, for each bal-
lot (be it real, trial or fake) we can publish after anonymization (done by a
re-encryption mixnet [17]) its corresponding credential and the decrypted vote.
This allows a voter to verify that all its votes have made it into the final tally:
its real vote, its trial vote and its possible fake votes. There is again a technical
difficulty, related to eligibility verifiability and coercion-resistance: trial votes
and fake votes have to be eliminated from the final tally in a publicly verifiable
way, hence a coercer could observe that the credential obtained from the voter
is fake. To avoid this problem we make use again of a decrytion mix run by the
trustees: there is no way to link the decrypted contents of a ballot to ballots that
will be eliminated to enforce eligibility.

Outline of the Paper. In section 2 we describe the cryptographic primitives
used in JCJ/Civitas and in section 3 we review its design and its solutions for
election verifiability. Then, we make specific our critique of individual verifia-
bility, that can be extended to systems like Pret a Voter [10] and Helios [1]. In
section 4, we describe our proposal. In section 5, we show initial ideas about how
trial credentials could be used to improve universal verifiability and recoverabil-
ity. Finally, in section 6 we argue that changing JCJ/Civitas in the way that we
propose does not compromise the coercion-resistance guarantees of the original
system, and we give a hint of how the proof of [18] could be adapted to prove
coercion-resistance for the new system.

2 Cryptographic Primitives

JCJ/Civitas relies on the following cryptographic primitives. We do not detail
the structure of zero-knowledge proofs, because it is not relevant for our pur-
poses.

Distributed El-Gamal [7]. The encryption scheme being used is El-Gamal
over a multiplicative group of integers modulo a prime p = 2kq + 1, where q
is also prime. The plaintext space and the ciphertext space M is the order q
subgroup of Z∗

p (actually, some encoding has to be done when one wants the
plaintext space to be Zq, but we can ignore such details here). Let g be the
generator ofM. Then, a private key is a number x ∈ Z

∗
q and the corresponding

Trivitas: Voters Directly Verifying Votes 193

public key is k = gx mod p. The encryption of a message m with a public key k
is a pair (gr mod p,m · kr mod p) where r is a fresh random number in Z

∗
q . To

decrypt a ciphertext (a, b) the holder of the private key x computes b
ax mod p.

JCJ/Civitas distributes the secret key (relying on e.g. [22]) among a set of
trustees T1, . . . , Tn. In that case, the private key is split as x = x1 + . . . + xn

and each of Ti holds a secret share xi. To decrypt a ciphertext (a, b), each of Ti

publishes a partial decryption share ai = axi mod p. The final decryption can
then be publicly computed as b

a1·...·an
.

The El-Gamal encryption of a plaintext m with a public key k and random
r will be denoted in the following by {m}rk, or simply by {m}k when r is not
important or is clear from the context. The private part of a public key k will
be denoted by priv(k). The decryption of a ciphertext m with a private key x
will be denoted by dec(m,x), or simply by dec(m) when the key is clear from
the context.

Decryption Proof. Along with partial decryption shares ai the holders of pri-
vate key shares can send a zero-knowledge proof (equality of discrete logarithms)
of the fact that they have used the correct key share to construct ai. This allows
any observer to check that the final result of the decryption is correctly com-
puted, i.e. that decryption of {m}k is performed with the key priv(k) and gives
the result m.

Re-encryption and Mix Nets. Given a ciphertext (a, b) constructed using
the public key k any party can compute another ciphertext (a′, b′) such that
(a′, b′) encrypts the same plaintext as (a, b) using the same key k: choose a
random r ∈ Z

∗
q and let (a′, b′) = (a · gr mod p, b · kr mod p). We will denote the

re-encryption of a ciphertext m with a random r by renc(m, r).
A re-encryption mix net M takes as input a sequence of ciphertexts S =

m1, . . . ,mk and outputs a sequence of ciphertexts S ′ = m′
1, . . . ,m

′
k that is a

re-encryption mix of S. That is, S ′ is a formed by re-encryption of elements in a
permutation of S. Formally, there is a permutation σ of {1, . . . , k} and a sequence
of randoms r1, . . . , rk such that m′

1 = renc(mσ(1), r1), . . . ,m
′
k = renc(mσ(k), rk).

Moreover, if at least one member of M is trusted not to be controlled by an
intruder, he is unable to discover the permutation σ.

Mix Proof, e.g. [17]. Given two sequences of ciphertexts S = m1, . . . ,mk

and S ′ = m′
1, . . . ,m

′
k, a zero-knowledge mix proof shows that S ′ is a correct

re-encryption mix of S, but without revealing (a non-negligible part of) σ.

Plaintext Equivalence Test [16]. Consider two ciphertexts (a1, b1) and re-
spectively (a2, b2), encrypted with the same key k, whose plaintexts are t1
and respectively t2. Assume that the private part priv(k) is distributed among
T1, . . . , Tn. Then T1, . . . , Tn can run a protocol to determine if t1 = t2 without
them being able to learn t1 or t2: roughly, they compute (a, b) = (a1

a2
, b1
b2
) and

perform a distributed decryption of (a, b); if the result of the decryption is 1,
then t1 = t2; otherwise, t1 �= t2.

194 S. Bursuc, G.S. Grewal, and M.D. Ryan

For two ciphertexts m1 and m2, we will denote by PET(m1,m2) = true if the
plaintext equivalence test holds for m1 and m2.

PET Proof [16]. Decryption proofs for the distributed decryption performed
in a plaintext equivalence test can be used to attest that the test has been cor-
rectly performed, i.e. that PET(m1,m2) = true if and only if dec(m1, priv(k)) =
dec(m2, priv(k)).

3 Individual Verifiability in JCJ/Civitas

3.1 Overview of JCJ/Civitas

The main idea in JCJ/Civitas is the notion of credentials (with a private and
a public part), that allow eligible voters to authenticate their ballots. To allow
coercion-resistance, JCJ/Civitas distributes credential generation among a set
of parties called registrars. It is assumed that at least one of the registrars will
not be corrupted by the coercer and that the voter can communicate with this
registrar using an untappable channel. To evade coercion, the voter has the
ability to generate a fake credential, that is indistinguishable from a real one for
the coercer. The participants of the protocol are

R - the set of registrars, whose role is to authenticate eligible voters and help
generate their credentials.

T - the set of trustees, whose role is to generate and publish the public key of
the election. Each of them holds a secret share of the corresponding private
key, that will be used for ditributed decryption and plaintext equivalence
tests.

V1, . . . ,Vn - the set of eligible voters.
M - a re-encryption mix net, whose role is to anonymize the set of cast ballots

before verification of their eligibility and their decryption.
B - the bulletin board, whose role is to record the manipulation of ballots at all

stages of the election, from their recording to their tallying. It also records
proofs of correct ballot handling submitted by R, T and M, that can be
checked by external auditors.

A coercer may control some of V1, . . . ,Vn, some of R, some of T and some ofM
but not all. To achieve coercion-resistance, at least one of R, one of T and one of
M has to be outside the control of the coercer. A summary of the protocol is as
follows, complemented by solid lines in figures 1 and 2. There are three phases:
registration, voting and tabulation.

Registration. Election starts with trustees generating the public key KT of the
election in a distributed manner, such that no minority of trustees can recover the
private key priv(KT) [22] and the decryption is distributed [7]. The public part of
the key is published on the bulletin board. By running a separate protocol with
each of the registrars, the voter Vi obtains the private part ci of her credential,
together with a non-transferable proof Pi of the fact that the public part {ci}KT,
that is published in the electoral roll ER, correctly encodes the private part.

Trivitas: Voters Directly Verifying Votes 195

Voting. The ballot contains the encryption of the private credential ci (with the
keyKT and with a different random than in ER) and the encryption of the intended
vote vi (with the key KT). To prevent the re-use of the same credential by a party
that does not hold the private part, the ballot contains additionally a proof Pcv of
the fact that its creator knows both ci and vi. Additionally, Pcorr proves that vi is
a valid vote, according to the specification decided by election authorities.

Tabulation. Before tabulation starts, the proofs of cast ballots are verified and
ballots with invalid proofs are discarded. The valid ballots and the electoral roll
are then sent to a re-encryption mix net for anonymization. Credentials from
anonymized ballots are compared to credentials from the anonymized electoral
roll, to ensure that votes to be counted are cast by eligible voters only. If multiple
ballots are submitted with the same credentials, only one copy is kept accord-
ing to a predefined policy, e.g. only the last vote counts. Duplicate elimination
is done by plaintext equivalence tests and can be performed either before, or
after the mix. Finally, the decided set of countable votes is decrypted, and the
corresponding decryption proofs are posted on the bulletin board.

3.2 Election Verifiability

Universal verifiability and eligibility verifiability are achieved by proofs
posted on the bulletin board:

– Mix proofs allow auditors A to verify that all ballot coming out of the mix
net M (i.e. belonging to the set MixedBallots) corresponds to a recorded
ballot (i.e. belonging to the set CastBallots), and also that no recorded ballot
has been discarded.

– PET proofs and proofs Pcv allow A to verify that only votes coming from
eligible voters are kept on the bulletin board for final decryption (i.e. in the
set CountableVotes).

– Decryption proofs allow A to verify that all countable votes have been cor-
rectly decrypted.

Individual verifiability is achieved as follows:

1. V must trust her voting machine that her cast ballot correctly encodes her
vote.

2. V can check the bulletin board to see that the cast ballot has been correctly
recorded.

3. Universal verifiability of mix nets ensures that all the recorded votes are
correctly mixed, and therefore the vote cast by V is included in the set of
mixed ballots.

4. Universal verifiability of PETs ensures that at least one copy of V ’s ballot is
kept after the elimination of duplicates. Moreover, the proof Pi that the voter
obtains during registration ensures that her private credential corresponds
to a public credential in the electoral roll ER. Universal verifiability of mix
nets ensures that a re-encryption of her public credential is also present in

196 S. Bursuc, G.S. Grewal, and M.D. Ryan

R B Vi T

Registration

create KT, priv(KT)

KT

create c1, . . . , cn

ER := (V1, {c1}KT), . . . , (Vn, {cn}KT)

create c
t

1, . . . , c
t

n

TR := (V1, {c
t

1}KT), . . . , (Vn, {ct

n}KT)

ER

TR

ci, Pi

c
t

i, P
t

i

verify (ci, {ci}KT, Pi)

CastBallots := ∅

Voting

Bi := ({ci}KT, {vi}KT, Pcorr, Pcv)

Bt

i := ({ct

i}KT, {vt

i}KT, Pt

corr, P
t

cv)

Bi

Bt

i

CastBallots := CastBallots ∪ {Bi}

CastBallots := CastBallots ∪ {Bt

i}

Fig. 1. JCJ/Civitas (solid lines) and additions of Trivitas (dotted lines):
Registration and Voting phases

Trivitas: Voters Directly Verifying Votes 197

B M T

Validation
CastBallots

for all (ec, ev, Pcorr, Pcv) in CastBallots

if verify(Pcorr, Pcv) = true
ValidBallots := ValidBallots ∪ {(ec, ev)}

TrialsA := PETDecryptUnlink(ValidBallots, TR)

ValidBallots

TrialsA

Mixing
ValidBallots, ER

MixedBallots := ReencryptMix(ValidBallots)
MER := ReencryptMix(ER)

MixedBallots, MER, Mix proofs

Tallying
MixedBallots, MER

DecBallots := DecryptUnlink(MixedBallots)

DecBallots

for all (ec, ev) ∈ MixedBallots

if ∃ec′ ∈ MER. PET(ec, ec′) = true
CountableVotes := CountableVotes ∪ {ev}
Outcome := Outcome ∪ {dec(ev)}

for all (ec, ev) ∈ MixedBallots

if ∃ec′ ∈ TR. PET(ec, ec′) = true
TrialsB := TrialsB ∪ {(dec(ec), dec(ev))}

CountableVotes, PET proofs

Outcome, Decryption proofs

TrialsB

Final tally: count Outcome

Fig. 2. JCJ/Civitas (solid lines) and additions of Trivitas (dotted lines): Tabulation
phase

198 S. Bursuc, G.S. Grewal, and M.D. Ryan

the anonymized electoral roll MER. Universal verifiability of PETs ensures
that valid ballots are not eliminated when credentials are checked against
the electoral roll MER. Altogether, these give to V an assurance that her
ballot is identified as coming from an eligible voter and is not eliminated
during the enforcement of eligibility.

5. Finally, universal verifiability of distributed decryption ensures that V ’s bal-
lot is correctly decrypted and tallied.

Some systems, e.g Pret a Voter [10] and Helios [1], improve the first point with a
cut-and-choose mechanism, that allows the voter to audit a ballot before casting
a vote.

Our critique of individual verifiability in JCJ/Civitas, Pret a Voter and He-
lios refers more generally to systems that rely on universal verifiability to achieve
end-to-end individual verifiability. The points 3-5 above require complex mathe-
matical operations and the corresponding verification algorithms must be run on
trusted devices. Moreover, even if the corresponding zero-knowledge proofs are
rigorously tailored to ensure the desired properties, the ordinary voter may be
left wondering if her vote has actually been counted in the final tally. While au-
ditors may be expected to have access to trusted devices and to understand the
concepts behind zero-knowledge proofs, we do not consider these assumptions
satisfactory when individual verifiability is considered.

Let us also note the following limiting aspect of the cut-and-choose mechanism
in [3,10] and [1]. In all these systems, the audited ballot is handled as a real
ballot, but only up to the point when the voter decides to audit it, after which
it is discarded. Only one ballot gets to be cast and submitted to the bulletin
board. In our proposal, the audited ballot, that we call a trial ballot, will be
handled in the same way as a real ballot at each phase of the protocol, while
additionally playing its role as an audit ballot. In particular, it will be posted
on the bulletin board before mixing and handled subsequently in the mix and in
the decryption. The traditional cut-and-choose guarantees are recovered in this
setting by tracking the trial ballot and the corresponding decrypted vote on the
bulletin board before the mix.

4 Trivitas: Trial Credentials and Universal Decryption

The first proposal of Trivitas is the notion of trial credentials. A trial credential
is a credential that allows a voter to cast a vote that will not be counted in
the final tally, but will appear on the bulletin board at several stages of the
tabulation phase. Its purpose is to allow the voter to gain confidence in the
correct operation of the system. Trial ballots are identifiable as such only by a
threshold set of trustees, thus any component of the system has to treat the set
of all ballots in the same way. We show how trial credentials can be implemented
in the context of JCJ/Civitas and show their immediate benefit for individual
verifiability.

Trivitas: Voters Directly Verifying Votes 199

Moreover, we propose another addition to JCJ/Civitas, independent of trial
credentials, that brings a further improvement to individual verifiability: we de-
crypt and publish the content of all ballots after the mix. Therefore, for every
ballot that a voter has cast (real, trial or fake), she can verify that the corre-
sponding credential and vote occur on the bulletin board after the mix. This
gives a direct evidence to the voter that her ballots, and most importantly her
real ballot, have been correctly constructed and processed by the mix network.

4.1 Overview of Proposed Additions

The additions that we propose in each phase are the following. They are also
sketched in dotted lines in figures 1 and 2.

Registration. Mirroring the set of real credentials c1, . . . , cn we assume that
registrars generate a set of trial credentials ct1, . . . , c

t
n. The set ct1, . . . , c

t
n is con-

structed and distributed to voters following the same protocols as for c1, . . . , cn,
thus we can assume the same security properties: in particular, trial credentials
are indistinguishable from real credentials and fake credentials, for anyone but
for the voter that receives its shares. In addition to the electoral roll ER, now
we have a trial roll TR, that contains the public parts of the trial credentials
{ct1}KT, . . . , {ctn}KT.
Voting. In addition to Bi as in JCJ/Civitas, Vi constructs a trial ballot Bt

i =
({cti}KT, {vti}KT,Pt

corr,P
t
cv) and uploads both Bi and Bt

i to the bulletin board (at
implementation level, it has to be decided if a ballot construction form would be
used twice or if the system would allow the construction of both ballots at the
same time).

Tabulation. At the time of ballot validation (i.e. just after the voting phase
ends), the trustees T additionally perfom a PET test of each recorded ballot
against the trial roll. For all ballots for which this PET returns true, the trustees
decrypt the corresponding credential and the corresponding vote and publish
them on the bulletin board: this is the set TrialsA in figure 2. Formally, trustees
publish on the bulletin board the result of PETDecryptUnlink(CastBallots,TR),
where the motivation, specification and the algorithm for PETDecryptUnlink are
discussed in section 4.3.

The set of all the cast ballots (that includes the trial ballots) are sent to the
mixnet M for anonymization. Just after the mix and before the PET tests for
eligibility enforcement, we propose for all ballots to be decrypted and their corre-
sponding decrypted credentials and decrypted votes to be posted on the bulletin
board: this is the set DecBallots in figure 2. To preserve coercion-resistance of the
system, this has to be done in a way that does not link the published credentials
and votes to the corresponding ballot. We propose the use of a decryption mix
DecryptUnlink(MixedBallots), whose idea is discussed in section 4.3.

At the time of eligibility enforcement, credentials in ballots are additionally
tested against the trial roll TR. If a ballot is identified as trial, it is not discarded
but is labeled as such on the bulletin board. Finally, all ballots that remain on

200 S. Bursuc, G.S. Grewal, and M.D. Ryan

the bulletin board after eligibility enforcement are decrypted and only votes that
do not correspond to trial ballots are tallied. If a ballot is labeled as a trial ballot,
the corresponding credential is also decrypted. The decrypted trial ballots after
the tabulation form the set TrialsB in figure 2.

4.2 Individual Verifiabiliy in Trivitas

A voter can trace his trial vote in each phase of the system: it should be present
on the bulletin board in the set TrialsA, after the voting phase, and in the set
TrialsB, after the tabulation phase. Moreover, relying on the decryption of all
the ballots after the mix, the result of which is the set DecBallots on the bulletin
board, the voter can check that the encryption and the mix has been correct for
all of his cast ballots: the one with a real credential, the one with a trial credential
and possibly the ones with fake credentials. Hence, fake credentials can also be
used for the purpose of end-to-end individual verifiability. In summary, the voter
Vi can check that:

Verifiability test Assured property
IV1 The pair (cti, v

t
i) occurs in the set

TrialsA on the bulletin board
The machine has correctly encoded Vi’s
votes and Vi’s ballots have been cor-
rectly recorded on the bulletin board

IV2 The pairs (ci, vi), (c
t
i, v

t
i) and

all (cfi , v
f
i) occur in the set

DecBallots on the bulletin board

All of Vi’s submitted ballots have been
input in the mixnet M and have been
correctly processed and output byM

IV3 The pair (cti, v
t
i) occurs in the set

TrialsB on the bulletin board
Vi’s intended vote occurs in the final
outcome

Let us argue why all these tests are valid, in the sense that, if they are satisfied
for the voter Vi, then the claimed properties hold with high probability for all
of Vi’s ballots: trial, real and fake. We leave rigorous proofs along the lines of
[18,19] as future work, and perform only an informal analysis in the following.
As in JCJ/Civitas, we assume that either one member of T is honest or else that
auditors check decryption proofs (*). However, this is transparent for the voter,
who performs her own verification.
IV1. Assumption (*) ensures that the decryption of trials is correct: the pub-

lished trial pair is indeed the content of Vi’s trial ballot, that is present on the
bulletin board. Then, the fact that a trial credential is indistinguishable from
a real credential ensures that a cheating voting machine or a cheating bulletin
board has to make a random guess, thus having at least a 50% probability of
being detected.
IV2. Assumption (*) ensures that the set of published pairs (DecBallots) cor-

responds to the decryption of ballots output by M (MixedBallots). Therefore,
IV2 assures that all of Vi’s ballots are correctly output by the mix. Moreover,
note that IV2 increases the assurance offered by IV1, because Vi can check the
correct construction and transmission of all her ballots. Still, IV1 is useful to

Trivitas: Voters Directly Verifying Votes 201

detect a potential problem as early as possible and also to identify more pre-
cisely the elements of the system that have caused the problem. For instance, we
will see in the next section how IV1 allows for recoverability when a problem is
detected before the mix.
IV3. The parallel decryption of trial votes gives some evidence for the voter

that votes are not arbitrarily eliminated during eligibility enforcement. This is
formally ensured by assumption (*).

4.3 Anonymous PETs and Distributed Decryption with
Ciphertext-Plaintext Unlinkability

We now come back to two cryptographic components of the proposed system
that have been left out in section 4.1: PETDecryptUnlink and DecryptUnlink.
PETDecryptUnlink is used to decrypt trial ballots while keeping them indistin-
guishable from other ballots. This is necessary for being able to rely on trial
ballots to audit the system even after they are decrypted. DecryptUnlink is used
to decrypt all ballots, without revealing the link between individual ballots and
their content. This is necessary to preserve coercion-resistance: otherwise, a co-
ercer could detect that a ballot cast with a fake credential has been eliminated
before the final tally.

Recall that votes and credentials are encrypted with a public key KT, whose
corresponding private part priv(KT) is distributed among T . In the follow-
ing, we assume T = {T1, . . . , Tn}. The specification for PETDecryptUnlink and
DecryptUnlink is as follows:

PETDecryptUnlink
Input: S = (ec1, ev1), . . . , (ecm, evm) and TR = ec′1, . . . , ec′k

Output: O = {(c, v) | ∃iS ∈ {1, . . . ,m}, ∃iTR ∈ {1, . . . , k},
dec(eciS) = dec(ec′iTR) = c & dec(eviS) = v}

Unlinkability: for all (c, v) ∈ O, the index iS of ({c}KT, {v}KT) in S is
indistinguishable from a random number in {1, . . . ,m}.

DecryptUnlink
Input: S = (ec1, ev1), . . . , (ecm, evm)

Output: O = {(c, v) | ∃iS ∈ {1, . . . ,m}. dec(eciS) = c & dec(eviS) = v}
Unlinkability: for all (c, v) ∈ O, the index iS of ({c}KT, {v}KT) in S is

indistinguishable from a random number in {1, . . . ,m}.

Our proposed implementation for PETDecryptUnlink and DecryptUnlink is an
adaptation of the decryption mix idea present in [9,10] to the case of distributed
El-Gamal. This setting has already been studied in e.g. [13,12], that show more-
over how the shuffle can be made verifiable. However, since we do not require a
verifiable shuffle for our application (a misbehavior during decryption would be
detected by the voter by simply observing the trial credentials) our algorithms
are more straightforward and do not provide zero-knowledge proofs. We only de-
scribe the algorithm for PETDecryptUnlink, the second algorithm being similar
and more simple.

202 S. Bursuc, G.S. Grewal, and M.D. Ryan

PETDecryptUnlink. For all et in TR, the parties T1, . . . , Tn (holding private
key shares x1, . . . , xn) run the following protocol:

Initial Phase (can be run publicly by any party)
Assume et = (a, b) and, for all 1 ≤ i ≤ m, assume eci = (ai, bi). Compute and
publish p1 = (a1

a , b1
b), . . . , pm = (am

a , bm
b). The input for T1 in the next phase is

(p1, ec1, ev1), . . . , (pm, ecm, evm).

PET Phase (being run privately and consequently by each of T1, . . . , Tn).
Let (p1, ec1, ev1), . . . , (p

p
m, ecm, evm) be the input for Ti. Create new random

numbers rp1 , . . . , r
p
m ∈ Z

∗
q , r

c
1, . . . , r

c
m ∈ Z

∗
q , r

v
1 , . . . , r

v
m ∈ Z

∗
q and compute

– (c1, d1) = renc(p1, r
p
1), . . . , (cm, dm) = renc(pm, rpm)

– ec′1 = renc(ec1, r
c
1), . . . , ec

′
m = renc(ecm, rcm)

– ev′1 = renc(ev1, r
v
1), . . . , ev

′
m = renc(evm, rvm)

Partially decrypt (c1, d1), . . . , (cm, dm), i.e. compute d′1 = d1

c
xi
1

, . . . , d′m = dm

c
xi
m
.

Choose a permutation σ of {1, . . . ,m} and publish

((cσ(1), d
′
σ(1)), ec

′
σ(1), ev

′
σ(1)), . . . , ((cσ(m), d

′
σ(m)), ec

′
σ(m), ev

′
σ(m))

This is the input for Ti+1.
Decryption phase (run jointly by T1, . . . , Tn). For all (p, ec, ev) in the output
of Tn: if p = 1, perform a distributed decryption of ec and of ev and make the
result part of the output set: O := O ∪ {(dec(ec), dec(ev))}.

If at least one of T1, . . . , Tn behaves honestly, PETDecryptUnlink satisfies also
the unlinkability requirement, as formalized and proved in [12].

5 Other Properties

In this section we discuss other possible applications of trial credentials.

5.1 Universal Verifiability

We propose the following universal verifiability test for Trivitas:

Verifiability test Assured property
UV All the trials published before

the mix are in the set of de-
crypted ballots after the mix, i.e.
TrialsA ⊆ DecBallots, and they
have the same number of oc-
curences

The mixnet M is correctly processing
all the ballots

We propose this test as an addition to the current universal verifiability proofs,
not as a replacement: it is more efficient, but probably offers less assurance than
traditional zero-knowledge proofs. On the other hand, this test could also be
combined with other tests that offer as well lesser guarantees of correctness but
better performance [6], in order to improve their assurance while preserving their
efficiency.

Trivitas: Voters Directly Verifying Votes 203

Let us argue about the validity of UV . Because
PETDecryptUnlink(CastBallots,TR) does not give away what ballots among
CastBallots are trials,M has to treat all the ballots in CastBallots uniformly. In
particular, if it chooses to cheat on a subset of ballots in CastBallots, this subset
is random. Therefore, if there are enough trial ballots (this could be ensured for
instance by letting observers insert any number of trials), a dishonest behaviour
ofM would be detected with high probability by the test UV .

These arguments hold only when the voting machines are not corrupted. Oth-
erwise, a possibly corruptedM could differentiate trial ballots from other ballots
when they are decrypted. We address this problem by a variation of Trivitas that
does not let the machine learn which ballots are trials, even when they are de-
crypted (section 5.3).

5.2 Recoverability from Failed Verification

What happens when individual verifiability fails, e.g. an incorrect trial vote is
published along his trial credential? In general, this issue is quite complex, be-
cause it requires procedures to determine who is telling the truth: the voter or the
voting system. For Trivitas, our proposed recoverability technique is straightfor-
ward and requires only a slight modification to the system: trials are decrypted
and published in short time after the ballots are cast and the voter does not have
to wait for the end of the voting phase to verify a trial. Then, if a voter observes
a problem with her trial vote on the bulletin board, she should simply re-vote,
using a potentially safer machine. The policy for handling duplicate votes would
then be to consider only the last vote as being valid, because it is the vote in
which the voter has the highest confidence.

However, like in the case of universal verifiability, this solution is not ideal, be-
cause a compromised machine could make a distinction between trial credentials
and valid credentials, after trial ballots are decrypted. The variant of Trivitas in
the next section addresses this isue.

5.3 The Case of a Compromised Voting Machine

We propose a variant of Trivitas whose aim is to allow universal verifiability
and recoverability as discussed above, even in presence of compromised voting
machines. The main property of this variant is that it preserves the secrecy of the
trial credential, while still allowing the voter to verify a trial vote relying on that
credential. The cost is a slightly more complicated voting and vote verification
experience:

– along with c and ct, the voter additionally receives (or constructs) two num-
bers: one corresponding to a random r and one to {r}KT. We may assume
that the same protocol is run for obtaining c, ct and r and hence that the
value of r is secret and known only to the voter.

– when constructing a ballot, the voter inputs not only the credential and the
vote, but also {r}KT.

204 S. Bursuc, G.S. Grewal, and M.D. Ryan

– when decrypting trial ballots, the trustees T do not decrypt directly the
credential {ct}KT but instead multiply it with {r}KT, to obtain {ct · r}KT
(relying on the homomorphic properties of El-Gamal) and decrypt it to ct ·r.
Hence, instead of looking for a pair (ct, vt) on the bulletin board (like in the
basic version of Trivitas), the voter would look for (ct · r, vt) (for usability,
one can see that an additive homomorphism, also possible with El-Gamal,
would be better here).

In this variation of Trivitas, even if the voting machine is compromised, it can
not be used to identify which ballots are trials. Hence, trial ballots can also be
used for universal verifiability. For recoverability, a trial credential could be used
multiple times and the machine would still be forced to take a 50% chance of
getting caught each time when it is cheating.

6 Coercion-Resistance

In this section we discuss why Trivitas offers the same coercion-resistance guar-
antees as JCJ/Civitas. Coercion-resistance in JCJ/Civitas relies on the ability
of the voter to create a fake credential cf and a fake proof Pf that satisfy the
following properties:

– given a pair (c′,P′), a coercer can not determine if the pair represents a
voter’s real credential and proof (c,Pf) or if it represents a fake pair (cf ,Pf).
This is due to the fact that at least one registrar is assumed to be honest
and the communication channel used with that registrar is assumed to be
untappable.

– if a ballot with a fake credential is submitted, it will be eliminated from the
final tally in the tabulation phase, during eligibility enforcement. Crucially,
all ballots have been mixed and re-encrypted and at least one member of
the mix network is assumed to be honest. This ensures that a coercer can
not observe to what credentials correspond the ballots that have not been
included in the final tally.

As usual, we also have to assume that there are enough votes for each candidate,
so that the coercer can not observe that the voter did not follow his instructions
from the mere outcome of the election.

The first addition of Trivitas, trial credentials, does not affect the way in
which real ballots and fake ballots are handled by the election system. The only
observable difference for the coercer is the presence of decrypted trial ballots
at every phase and this does not give any information about real ballots or
fake ballots. In particular, the two properties mentioned above remain true in
presence of trial ballots.

The second addition of Trivitas, universal decryption, is potentially more
problematic for coercion-resistance, since it concerns all the recorded ballots.
However, coercion-resistance is preserved by two crucial points:

Trivitas: Voters Directly Verifying Votes 205

– all ballots are decrypted, without making a difference between real creden-
tials, fake credentials and trial credentials. This ensures that, in Trivitas as
in JCJ/Civitas, the coercer can not determine if a credential is valid or not.

– the algorithm applied to decrypt all ballots is a decryption mix, i.e. we apply
DecryptUnlink(MixedBallots). It may be surprising that a set of anonymized
ballots is decrypted with a decryption mix. However, this is needed because
trustees must eliminate fake ballots in a publicly verifiable way. In that case,
if the coercer could additionally see the contents of all ballots, he could
determine what credentials were invalid.

Towards a Formal Proof. Let us sketch how coercion-resistance proof
for JCJ/Civitas [18] could be extended to cover Trivitas. To define coercion-
resistance for an election system E in a computational model, [18] considers an
ideal system EI where the outcome of the election is “magically” computed: the
adversary can observe only the final outcome and is not able to influence any-
thing more than vote choices for the compromised voters. Then, a system is said
to satisfy coercion-resistance if the probability of a polynomial time adversary
being able to determine if it has been cheated is roughly the same when the
election is run by E as in the case when the election is run by EI .

The proof of coercion-resistance is a reduction to (a variant of) the Decision-
Diffie Hellman (DDH) assumption: no polynomial time algorithm can distinguish
between a Diffie-Hellman tuple (g1, g

x
1 , g2, g

x
2) and a random tuple (a, b, c, d).

Then, the proof relies on a simulator S that behaves either as E or as EI ,
depending on whether its input is a Diffie-Hellman tuple or not. If there would
be a polynomial time adversary that breaks coercion-resistance, i.e. it has better
chances of coercion when E is used instead of EI , then that adversary could be
used by the simulator S to determine if its input is a Diffie-Hellman tuple in
polynomial time. This would break the DDH assumption.

To extend this proof to Trivitas all we have to do is to show that the simulator
S of [18] can also execute the additional operations, i.e. the management of
trial credentials and the universal decryption of all ballots after the mix. This
is possible because the simulator of [18] holds the private key priv(T) and can
therefore decrypt ballots at any time. This makes it possible to simulate both the
audit of trial ballots and the universal decryption. Moreover, the same simulator
can easily create trial credentials and trial ballots, this process being similar to
the creation of real credentials and ballots.

7 Conclusion and Future Work

We have proposed several additions to JCJ/Civitas that improve its individual
verifiability. We introduce trial credentials that offer to voters the ability to au-
dit the election process at any stage: creation of ballots, their transmission to
the bulletin board, their processing by the mixnet and their final decryption.
Moreover, we observe that we can rely on the presence of fake ballots and trial
ballots on the bulletin board after the mix to decrypt all ballots without com-
promising coercion-resistance. This certainly improves individual verifiability: to

206 S. Bursuc, G.S. Grewal, and M.D. Ryan

our knowledge, this is the first mixnet based system where a voter can directly
verify that her actual vote is correctly recorded in the system after the mix. Not
only that, but she can also cast as many votes as she likes with fake credentials
and check that they are all correctly output after the mix.

The idea of trial ballots is not necessarily specific to JCJ/Civitas. We believe
it could be implemented in other electronic voting systems as well, although
this requires further research. The universal decryption of ballots after the mix
relies on the notion of credentials, to allow voters to identify their votes, and
of fake credentials, to allow coercion-resistance. Credentials are also interesting
for eligibility verifiability, possible in JCJ/Civitas but generally not possible in
other systems. Hence, it would be interesting to investigate the possibility of
adding a credential infrastructure on top of other E-voting protocols.

We also plan to develop ideas and variations sketched in section 5. In partic-
ular, putting the mechanism for recoverability in the hands of the voter, instead
of third party organizations, looks more appealing both from the perspective of
the voter and from the perspective of election authorities. Finally, the sketch
of coercion-resistance proof from section 6 has to be completed, and this may
open other research directions, relating iterative protocol development and the
corresponding security proofs.

Acknowledgments. Thanks to Jeremy Clark, Aleksander Essex and anony-
mous referees for useful comments and interaction on the ideas of the paper.
We gratefully acknowledge financial support from EPSRC, through the projects
EP/G02684X/1 “Trustworthy Voting Systems” and EP/H005501/1 “Analysing
Security and Privacy Properties”.

References

1. Adida, B.: Helios: Web-based open-audit voting. In: van Oorschot, P.C. (ed.)
USENIX Security Symposium, pp. 335–348. USENIX Association (2008)

2. Adida, B., Neff, A.C.: Ballot casting assurance. In: USENIX/ACCURATE Elec-
tronic Voting Technology Workshop, Vancouver, BC, Canada (2006)

3. Benaloh, J.: Simple verifiable elections. In: Proceedings of the
USENIX/ACCURATE Electronic Voting Technology Workshop 2006 on Electronic
Voting Technology Workshop, p. 5. USENIX Association, Berkeley (2006)

4. Benaloh, J.: Ballot casting assurance via voter-initiated poll station auditing. In:
Proceedings of the USENIX Workshop on Accurate Electronic Voting Technology,
p. 14. USENIX Association, Berkeley (2007)

5. Blaze, M., Cordero, A., Engle, S., Karlof, C., Sastry, N., Sherr, M., Stegers, T., Yee,
K.-P.: Source code review of the Sequoia voting system. In: Report Commissioned
as Part of the California Secretary of State’s Top-To-Bottom Review of California
Voting Systems (July 20, 2007)

6. Boneh, D., Golle, P.: Almost entirely correct mixing with applications to voting.
In: Atluri, V. (ed.) ACM Conference on Computer and Communications Security,
pp. 68–77. ACM (2002)

7. Brandt, F.: Efficient Cryptographic Protocol Design Based on Distributed El
Gamal Encryption. In: Won, D.H., Kim, S. (eds.) ICISC 2005. LNCS, vol. 3935,
pp. 32–47. Springer, Heidelberg (2006)

Trivitas: Voters Directly Verifying Votes 207

8. Calandrino, J.A., Feldman, A.J., Alex Halderman, J., Wagner, D., Yu, H., Zeller,
W.P.: Source code review of the Diebold voting system. In: Report commissioned
as part of the California Secretary of State’s Top-To-Bottom Review of California
Voting Systems (July 20, 2007)

9. Chaum, D.: Secret-ballot receipts: True voter-verifiable elections. IEEE Security &
Privacy 2(1), 38–47 (2004)

10. Chaum, D., Ryan, P.Y.A., Schneider, S.: A Practical Voter-Verifiable Election
Scheme. In: De Capitani di Vimercati, S., Syverson, P.F., Gollmann, D. (eds.)
ESORICS 2005. LNCS, vol. 3679, pp. 118–139. Springer, Heidelberg (2005)

11. Clarkson, M.R., Chong, S., Myers, A.C.: Civitas: Toward a secure voting system. In:
IEEE Symposium on Security and Privacy, pp. 354–368. IEEE Computer Society
(2008)

12. Furukawa, J.: Efficient, Verifiable Shuffle Decryption and Its Requirement of Un-
linkability. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947,
pp. 319–332. Springer, Heidelberg (2004)

13. Furukawa, J., Miyauchi, H., Mori, K., Obana, S., Sako, K.: An Implementation of
a Universally Verifiable Electronic Voting Scheme Based on Shuffling. In: Blaze,
M. (ed.) FC 2002. LNCS, vol. 2357, pp. 16–30. Springer, Heidelberg (2003)

14. Furukawa, J., Sako, K.: An Efficient Scheme for Proving a Shuffle. In: Kilian, J.
(ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 368–387. Springer, Heidelberg (2001)

15. Hirt, M., Sako, K.: Efficient Receipt-Free Voting Based on Homomorphic Encryp-
tion. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 539–556.
Springer, Heidelberg (2000)

16. Jakobsson, M., Juels, A.: Mix and Match: Secure Function Evaluation via Cipher-
texts. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 162–177.
Springer, Heidelberg (2000)

17. Jakobsson, M., Juels, A., Rivest, R.L.: Making mix nets robust for electronic voting
by randomized partial checking. In: Boneh, D. (ed.) USENIX Security Symposium,
pp. 339–353. USENIX (2002)

18. Juels, A., Catalano, D., Jakobsson, M.: Coercion-resistant electronic elections. In:
Atluri, V., De Capitani di Vimercati, S., Dingledine, R. (eds.) WPES, pp. 61–70.
ACM (2005)

19. Kremer, S., Ryan, M., Smyth, B.: Election Verifiability in Electronic Voting Proto-
cols. In: Gritzalis, D., Preneel, B., Theoharidou, M. (eds.) ESORICS 2010. LNCS,
vol. 6345, pp. 389–404. Springer, Heidelberg (2010)

20. Andrew Neff, C.: A verifiable secret shuffle and its application to e-voting. In: ACM
Conference on Computer and Communications Security, pp. 116–125 (2001)

21. Andrew Neff, C.: Practical high certainty intent verification for encrypted votes
(2004)

22. Pedersen, T.P.: Non-interactive and Information-Theoretic Secure Verifiable Secret
Sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992)

23. Schneider, S., Llewellyn, M., Culnane, C., Heather, J., Srinivasan, S., Xia, Z.:
Focus group views on Pret a Voter 1.0. In: REVOTE, International Workshop on
Requirements Engineering for Electronic Voting Systems (2011)

The Application of I-Voting

for Estonian Parliamentary Elections of 2011

Sven Heiberg1, Peeter Laud1,2, and Jan Willemson1,3

1 Cybernetica, Ülikooli 2, Tartu, Estonia
2 Institute of Computer Science, University of Tartu, Liivi 2, Tartu, Estonia

3 Software Technology and Applications Competence Center,
Ülikooli 2, Tartu, Estonia

{sven,peeter,janwil}@cyber.ee

Abstract. Estonia has implemented internet voting as a method to par-
ticipate in various types of elections since 2005. In Riigikogu (parliament)
Elections of 2011, over 140,000 voters used the internet voting method.
The share of votes cast over the internet among all votes was 24.3%. In
light of this popularity it is questioned by various stakeholders whether
internet voting can be implemented correctly and securely to support
electoral principles such as uniformity. This paper gives an overview of
the Estonian Internet Voting System and analyzes events that occurred
during the Riigikogu Elections of 2011.

1 Introduction

There are four main voting methods implemented by the Estonian National
Electoral Committee (NEC): voting on election day, voting abroad, advance
voting and internet voting (i-voting). Most of those methods are paper-based,
subject to certain organizational and procedural regulations. Internet voting is
exceptional as it offers a possibility for a voter to participate in election digitally
from his own computer over the internet anytime during the period of advance
voting.

As of August 2011, i-voting has been used in five Estonian elections starting
from the Local Government Council Elections in October 2005 and currently
ending with the Riigikogu Elections in March 2011. Before the first use, a legally
non-binding pilot was conducted in January 2005 in Tallinn. In October 2005,
there were 9,317 voters who i-voted (i-voters) and 9,287 counted ballots cast
over the internet (i-votes). 1.9% of participating voters and 7.2% of advance
voters were i-voters. Since then, the number of i-voters has increased steadily. In
March 2011, there were 140,846 i-voters and 140,764 counted i-votes. 24.3% of
participating voters and 56.4% of advance voters were i-voters. Those numbers
indicate that i-voting is accepted by the electorate. It is also evident that the
tally of i-voting has the potential to significantly influence the election outcome.

During the Riigikogu Elections of 2011, several i-voting related incidents took
place. Appeals were filed to NEC demanding that the i-voting results should be

A. Kiayias and H. Lipmaa (Eds.): VoteID 2011, LNCS 7187, pp. 208–223, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

The Application of I-Voting for Estonian Parliamentary Elections of 2011 209

revoked because of alleged vulnerabilities of the applied scheme and the legisla-
tive problems [2–4]. In one case, the revocation of election results altogether was
demanded [14]. All those appeals were dismissed by the Supreme Court [20–22].

The history of Estonian i-voting goes back to 2001, when two reports con-
cerning i-voting were published. The analysis ordered by the Ministry of Justice
[16] stated that it was unrealistic to implement statewide i-voting in 2002 be-
cause of the lack of suitable technology; instead, a research program towards
i-voting was suggested. The analysis ordered by the Ministry of Transport and
Communications [23] suggested that it was possible to implement statewide i-
voting in 2002. Both reports agreed that i-voting is inevitable in the future and
development thereof should be considered as a long term process.

In 2002, i-voting was regulated in the Riigikogu Election Act with the condi-
tion that the method shall not be applied before 2005. In 2003, a group of experts
proposed an i-voting scheme for Estonia [7]. The security analysis of the scheme
stated that in order to implement i-voting, it was necessary to find optimum
between the theoretical security of the voting scheme and the complexity of its
implementation. On one side of the compromise, there were comprehensibility,
similarity to conventional voting, maximal use of the digital signature solutions
available in Estonia, simplicity of the cryptographic protocol, and feasibility to
implement the system with the know-how present in Estonia itself [6].

The analysis also stated: “The other side of the compromise or, in principle,
the weak point of the scheme, is the need to trust central servers and computers
of the voters. Is such a compromise reasonable? In our opinion – yes.” [6]

A few months later, in 2004, another group of experts published a report
which analysed computer and communication security issues in the internet-
based voting system SERVE (Secure Electronic Registration and Voting Experi-
ment) built for the U.S. Department of Defense. The report stated that internet-
and computer-based voting systems have numerous fundamental security prob-
lems, which open the possibility for large scale attacks such as selective voter
disenfranchisement, privacy violation, vote buying and selling and vote switching
[13].

The authors of the SERVE-report made a new public statement in 2007 where
they found another Department of Defense report on electronic voting technology
quite troubling and assured that the arguments presented in 2003 still hold and
there is no way to secure internet voting [12].

In 2010, a modified version of security analysis for the Estonian i-voting
scheme found that the challenge of successful i-voting has been solved and im-
plemented in practice [5].

OSCE/ODIHR Election Assessment Mission observed the Estonian 2011 par-
liamentary election with i-voting as one focus. The final report of the mission
gave altogether 13 recommendations regarding to the legal framework, oversight
and accountability, and some technical aspects of the internet voting system [19].

In subsequent sections, we will give an overview of the i-voting scheme im-
plemented in Estonia, explain its architecture and approach to security, give an

210 S. Heiberg, P. Laud, and J. Willemson

overview of the most important incidents during Riigikogu Elections of 2011,
and propose a road ahead based on the analysis of these incidents.

2 Estonian I-Voting Scheme

2.1 Legal and Technical Framework

Requirements for the design and implementation of a voting method come from
the legislation which defines the election and the electoral system. The Constitu-
tion of the Republic of Estonian states the basic electoral principles – freedom,
generality, uniformity, directness and voting by secret ballot. The Riigikogu Elec-
tion Act defines Riigikogu Elections in detail by regulating candidates, registra-
tion, voting procedures, etc. Similar legislation exists for other types of elections.

Since 2002, Estonian citizens are issued National Identity Cards (ID-cards)
carrying a chip capable of performing RSA operations. Each chip contains two
RSA secret keys, used respectively for authentication and for signing. The cor-
responding public keys are bound to the cardowner by certificates issued by
the Estonian National Certification Authority (NCA). Various government and
private sector services use the ID-cards for identification and legally binding
digital signatures. Currently, the ID-card is the primary identity document for
both computer mediated and direct communication which makes it available to
all voters. The principle of using ID-cards to do i-voting has been present in
Estonian legislation since 2002.

To fight bribery and coercion, the concept of i-vote revocation is legislated.
A voter can cast an i-vote several times, only the last one will be counted. I-
vote is also revoked if the voter uses any paper-based voting method (casts a
p-vote) during the advance voting period. Those measures were not accepted
unanimously by the Riigikogu; there were doubts whether it violates the unifor-
mity of elections and secrecy of ballots [18]. The objection was that paper-based
voting methods do not allow revocation. As a mild compromise, the law limited
the possibility for i-vote revocation to the advance voting period.

The Penal Code has defined several election-related criminal offences such as
interference with election. NEC has authority to declare the voting invalid on
polling division, electoral district, county or state level if some detected violation
of the law significantly affected or may significantly affect the voting results. In
this case, repeat voting is held. I-voting results can currently be declared invalid
only as a whole. If the i-voting is cancelled due to some violation before the
actual election day, then the electorate is notified and voters can revote. In this
case, no repeat voting is held.

2.2 Architecture of the I-Voting Scheme

We shall describe the architecture of Estonian i-voting scheme only as much as it
is necessary to understand the case studies in the subsequent sections. Readers
can refer to [7] for a more complete description.

The Application of I-Voting for Estonian Parliamentary Elections of 2011 211

The core components of the architecture of the i-voting scheme are i-voting
protocol, i-voting system and i-voting client application (IVCA) - an election
specific application which allows voters to cast their votes from Windows, Linux
and MacOS X based computers.

I-voting system (IVS) is responsible for i-vote collection, storage and tabula-
tion. The system is interfaced with NCA, Election Management System, Pop-
ulation Register and NEC website. The roles of the IVS are fulfilled by three
different servers:

– The Vote Forwarding Server (VFS) is responsible for authenticating i-voters,
distributing candidates’ lists to i-voters and accepting the i-votes; VFS is
available over the internet.

– The Vote Storing Server (VSS) is responsible for storing the i-votes over
the period of time and for the anonymization of the i-votes before the actual
tabulation; VSS is kept behind a firewall, connections from VFS are allowed.

– The Vote Counting Server (VCS) is responsible for the tabulation process.
VCS is offline at all times.

IVS has a RSA keypair to protect ballot secrecy. The public key (ivspub) is
published with IVCA. The private key is stored in tamper-resistant hardware
security module (HSM) used only by VCS and protected by multiparty authen-
tication scheme. In practice, 4 of 7 NEC members have to be present to activate
the private key.

For Riigikogu Elections, each voter belongs to one of 12 electoral districts.
Each candidate has a unique candidate number and is registered to one electoral
district. Only voters from the same district can vote for the candidate. We refer
to the list of candidates that voter v can vote for as Cv.

Setup Phase. I-voting takes place in four phases: setup, voting, revocation,
and tabulation. In the setup phase, the IVS is prepared for election. The VSS is
set up with the list of voters and an empty digital ballot box. The VCS is set up
with the list of candidates. The IVS keypair is generated in HSM. The VFS is
set up with the list of voters, the list of candidates, and HTTPS authentication
certificate. The IVCA is set up with election specific data including ivspub and
VFS certificate. The IVCA is digitally signed by NEC; fingerprints and download
location are published in newspapers and on the NEC website.

Voting Phase. In the voting phase, the i-voting protocol is executed between
the IVCA and the VFS. Mutually authenticated HTTPS is used as the transport
protocol. The VFS verifies that v is an eligible voter and returns the candidate
list Cv with an indication whether it is a repeated vote or not. After the voter
v has selected a candidate c ∈ Cv, encryption is used to produce an anonymous
ballot: banon = RSAenc(ivspub, c). The anonymous ballot is signed with the
voter’s ID-card. The i-vote consisting of banon, a digital signature and a signing
certificate of v is sent to the VFS which verifies the signature and forwards
the ballot to the VSS for storage. The VSS verifies the signature and checks

212 S. Heiberg, P. Laud, and J. Willemson

the status of the signing certificate by NCA. If no problems occur, the i-vote is
stored before revoking any possible previous i-votes cast by the voter. HTTP is
used as the transport protocol between the VFS and the VSS.

At the end of the voting phase, the list of all i-voters is generated and sent to
the polling stations for reference. The VFS and the VSS are disconnected from
the network.

Revocation Phase. The voting phase is followed by the revocation phase
during which i-votes of those who also have p-voted are revoked.

Tabulation Phase. At the end of the revocation phase, the contents of the bal-
lot box are anonymized – digital signatures are separated from encrypted votes
so that the VCS will not be able to see which voter voted for which candidate.
Anonymized ballots are stored in 12 distinct lists according to the election dis-
tricts that the original voters belonged to. Those lists are burned to a DVD and
carried to the VCS. For the tabulation itself, the IVS’s private key is activated
and the anonymous ballots are decrypted. After the decryption, valid candidates
for the district are tabulated.

2.3 Security Considerations

The Estonian i-voting scheme relies on the assumption that we can trust the
owner of the IVS and we can trust voter’s computer. However, some measures
to reduce the necessary trust have been taken.

Trust in the IVS. For electoral principles to hold, the IVS has to function
correctly: accept all of the votes cast by eligible voters, preserve the integrity of
the ballot box at all times, anonymize the votes before the tabulation, correctly
execute the correct tabulation algorithm on the correct input and publish the
produced output. To achieve this correct behaviour, a set of organizational reg-
ulations and procedures are established, all of which are audited. For example,
the anonymization of i-votes can only occur in the presence of at least 2 election
officials, an auditor and possible external observers. All procedures are defined
beforehand in written form, and all actions and outcomes are recorded on tape.
Without enforcing those regulations, the IVS owner could manipulate the elec-
tion results on a large scale by adding or removing votes from the digital ballot
box without getting caught.

To support organizational protocols responsible for ballot box integrity, five
audit logs containing SHA1-checksums of i-votes calculated over banon are stored
in the VSS and the VCS. The contents of the log-files are following:

– L1: checksums of all i-votes accepted by VSS;
– L2: checksums of all i-votes revoked by VSS;
– L3: checksums of all i-votes sent to tabulation by VSS;
– L4: checksums of all i-votes declared invalid by VCS;
– L5: checksums of all i-votes declared valid by VCS.

The Application of I-Voting for Estonian Parliamentary Elections of 2011 213

L1, L2 and L3 also contain the personal code of the voter. This means that a
person who has access to all of the audit logs is able to link the original voter
to the hashvalue of encrypted ballot banon. At the end of the tabulation phase,
the following conditions must hold:

L1 = L2 ∪ L3 and L2 = L4 ∪ L5 . (1)

If those conditions do not hold then it can be said that the contents of the digital
ballot box have been tampered with.

Trust in Voter’s Computer. The Estonian i-voter has to trust the computer
used for i-voting with the IVCA. Malicious software executed in the computer
could manipulate the IVCA to break secrecy and integrity of the ballot. If the
malicious software could be distributed widely, the attacker would have the po-
tential to manipulate election results on a large scale. This could occur in several
ways, e.g. by sending modified votes to get his candidate elected or by sending
encrypted garbage to discredit the i-voting altogether.

Detection-Based Security. The state of the art in malware distribution leaves
no doubt that the environment where the IVCA is executed cannot generally be
considered safe. Malware can use several attack-vectors to alter the behaviour
of the IVCA with no feedback to the voter. One possible vector would be using
debugging interfaces offered by the underlying operating system. Debugging a
process means stepping through its instructions one at a time while examining
the contents of the memory. It is common that while debugging a process, a
developer decides to overwrite some memory locations with new values, thus
altering the actual state of the process. A similar approach can be taken by
malware attacking the IVCA: if a voter has selected the candidate c1 then change
the selection to c2 right before the encryption. The success of the attack depends
on the capability of finding the right breakpoint to stop the process and finding
the right memory location to alter. With the lack of the IVCA source code, an
attacker can approach those problems by reverse engineering the executable file
of the IVCA.

It is possible for a process to detect whether it is being debugged. An at-
tacker who by reverse engineering discovers that some detection is used can take
countermeasures in his malicious code.

To reduce the risk that a vote cast by the IVCA is tampered with by malicious
code to an acceptable level, the following actions have been taken: (i) a detection
system for known attack-vectors is built into IVCA; (ii) methods are used to
complicate reverse engineering. During the voting phase, the IVCA instances
report their opinion on the hostility of the environment to the IVS. The NEC,
CERT-EE and volunteers from the Estonian Cyber Defence League also monitor
the IVS and Estonian internet for known malware activity. This information is
input to the NEC to decide whether i-voting is under attack or not.

It is hoped that a 7-day i-voting period is short enough to avoid reverse engi-
neering of the IVCA, designing and implementing robust and stealthy malicious
code, distributing and activating it on a large scale.

214 S. Heiberg, P. Laud, and J. Willemson

3 Riigikogu Elections of 2011

In this section, we study two cases which occurred during the Riigikogu Elections
of 2011. On February 26th, a student turned to NEC claiming that he had written
an election rigging malware which was able to tamper with the IVCA. On March
6th, during the tabulation phase, one of the i-votes was declared invalid. Those
two cases are not directly related to one another but indicate possible problems
with the current i-voting scheme and therefore deserve some analysis.

3.1 Case: Invalid I-Vote

Invalid I-Vote Is Found. One of the i-votes was registered invalid by the
VCS during the tabulation phase of the Riigikogu Elections on March 6th, 2011.
In the case of p-voting, an invalid vote is nothing special. It is quite common
that voters cast invalid votes intentionally to express the attitude towards the
ongoing election by leaving the ballot paper empty or writing different free-text
statements on it.

The Estonian electoral system does not give any meaning to invalid votes;
they are not considered as part of the election result. The IVCA has no func-
tionality for casting an empty or otherwise invalid ballot. A voter who wants
to intentionally cast an invalid i-vote, must write a new IVCA that makes it
possible to encrypt random data, or find a way to manipulate the current IVCA
to cast an invalid vote.

Analysis of the Cause. The possibility that an i-vote could be invalid was
foreseen in the i-voting protocol. Also, the software was developed to distinguish
valid i-votes from invalid ones. On the other hand, this was the first time when
one of the i-votes was found invalid, so a bug in the software or the procedures
for handling the IVS during the election was suspected.

The analysis of the VCS error logs showed that the invalid i-vote appeared
to be correctly encrypted with ivspub. This left two conceptual possibilities for
the vote to become invalid: (i) the plaintext did not follow the formatting rules
for i-vote; (ii) the plaintext followed the formatting rules, but pointed to a non-
existent candidate number. Further analysis pointed out five possibilities for the
invalid vote to occur:

– a bug in the IVCA – sending a malformed ballot to encryption;
– a bug in the VFS – sending an invalid candidate list to the IVCA;
– a bug in the VCS – misinterpreting the decrypted vote;
– human mistake – the VCS and the VFS were set up with incompatible

candidate lists;
– someone intentionally cast an invalid i-vote.

I-vote decryption seemed to be necessary to rule out most possibilities. It would
be relatively safe to say that there is a bug in the VCS if the plaintext was a valid
vote pointing to a valid candidate and the candidate lists in the VFS and the

The Application of I-Voting for Estonian Parliamentary Elections of 2011 215

VCS were compatible. Only human mistake in the IVS setup procedures could
be excluded without decrypting the i-vote. On the grounds of this analysis, the
NEC decided on April 1st to decrypt the invalid i-vote and examine its contents.
The decision was later reverted due to the possible threat to electoral principles.

Ballot Secrecy. The Constitution of the Republic of Estonia holds voting by
secret ballot as one of the main electoral principles. To achieve this require-
ment, RSA encryption is used. To achieve another principle – uniformity – banon
is stored together with the digital signature which unanimously identifies the
original voter. To maintain ballot secrecy, i-votes are anonymized before the
tabulation.

The fact that the IVS auditing logfiles can link original voters to the hashes
of the encrypted ballots means that if the invalid i-vote was indeed decrypted
separately from other i-votes, the ballot secrecy would be protected only by
organizational means.

Invalid I-vote as a Possible Attack. In parallel to setting up the analysis
framework, additional tests and preliminary code reviews to the IVS were con-
ducted. No bugs were identified and the possibility of an intentionally spoiled
vote was taken into consideration. It occurred that there is at least one relatively
easy way to influence the contents of banon without writing a new application or
directly attacking the existing one.

If the ID-card is used for i-voting, then the HTTPS connection between the
VFS and the IVCA is mutually authenticated. In the case of cell phone based
digital identity – Mobile-ID – only the VFS is authenticated; the voter identifi-
cation follows from the Mobile-ID protocol and cannot be used on the HTTPS
level. On the Windows platform the trust to the VFS is configured via the sys-
tem certificate stores – if the HTTPS certificate of the VFS is signed by some
trusted certification authority (CA), then the connection is trusted. This opens
the possibility for a man-in-the middle attack where the user’s certificate store
is compromised with the attacker’s CA certificate and an intercepting HTTPS
proxy using a certificate signed by attacker’s CA is installed between the IVCA
and the IVS. The proxy modifies the original candidate list sent to the IVCA
so that it contains invalid candidate numbers. This is possible because the can-
didate list sent from the VFS is not digitally signed as the HTTPS channel
security is considered sufficient to guarantee the integrity of the message. The
user does not notice the invalidity of the candidate numbers and casts a vote
which is correctly formatted and encrypted by the IVCA and forwarded to the
VFS by proxy. This type of intentionally invalidated i-vote would have been
falsely identified as a bug in the IVS after the i-vote decryption.

If the attacker wasn’t aiming for the discrimination of the voter but for pub-
licity, then the previous scenario would be used by the attacker himself to decoy
the election officials to show whether the NEC can find out who did cast the
vote from the contents of the ballot. If some more sophisticated technique to
invalidate the ballot would have been applied, then the contents of the ballot
could have been anything from the personal identification of the attacker or

216 S. Heiberg, P. Laud, and J. Willemson

personal identification of someone not involved at all to a well formed ballot
with an invalid candidate number.

Reverting the Decision. After considering the matter of ballot secrecy and
the possibility of an attack against i-voting as such, the NEC reached the con-
clusion that it would be better not to create a precedent of decrypting one i-vote
separately from others. The decision from April 1st was reverted on April 8th.
It was decided to carry through only those analyses that do not require the
ballot decryption. After the analysis, it was clear that there were two possibili-
ties: (i) a hard to find bug (such as memory corruption) in the IVCA, or (ii) an
intentionally spoiled i-vote.

3.2 Case: Student Writes a Ballot-Manipulating Script

Revocation of I-Voting Results Demanded. On February 26th, student P.
sent an e-mail to the NEC and three major newspapers claiming that he had
written a prototype of an election rigging malware. Attached to the e-mail there
was a presentation which referred to the SERVE report [13]. The presentation
pointed out that a malicious piece of software controlling both input and output
interfaces on a client computer was a threat to the IVCA as it was capable of
manipulating the voter to believe that he has voted for candidate c1, although
the malware actually voted for candidate c2.

Election officials analyzed logs of both ongoing election and the test-election
from February 8th to 10th. It appeared that the most remarkable voting session
from the test-election belonged to P. The session lasted for 14 hours and indicated
several attempts to tamper with the IVCA. Also, every time P. had voted during
the real election, his voting sessions were marked suspicious.

On February 28th, P. gave election officials access to the source code of his
malware. P. also demonstrated the attack to journalists. Election officials claimed
that the type of malicious behaviour implemented by the malware was detected
by the IVS. In response to these claims P. implemented a new type of attack –
the malware now selectively held back ballots for certain candidates, whereas the
voter was left with the impression that his vote was successfully sent to the VFS.
This attack was demonstrated to observers of OSCE/OHDIR on March 1st, and
it was screened on National Television on March 9th after the election had ended.

On March 5th, P. filed an appeal to the NEC [3] demanding the revocation of
all i-votes, claiming the following:

– Ballot secrecy was not guaranteed as the IVCA can be a subject to screen
monitoring software;

– The IVS contained no protection against voter disenfranchisement type of
attacks;

– CERT-EE’s capability of monitoring malware distribution in the Estonian
internet was not proven;

– The voter cannot check whether his vote was accepted by the IVS, hence
the system did not comply with Riigikogu Election Act.

The Application of I-Voting for Estonian Parliamentary Elections of 2011 217

On March 6th, preliminary election results were published. On the same day,
the NEC decided to reclassify the appeal as a note as it did not address any
violations of personal rights. A reply was sent to P. clarifying that the NEC is
aware of potential attack objects, methods and time, which makes the task of
detection significantly easier and no attempts to attack the IVS have occurred
in any election. The NEC assured its awareness of alternative protocols reducing
the need to trust the voter’s computer and did not exclude their use in the
future. The NEC stated that the IVS has been implemented to be trustworthy
and compliant to Riigikogu Election Act [8].

P. modified his original appeal and refiled it to the NEC on March 8th, still
demanding the revocation of all i-votes [2]. The NEC, according to its procedures,
forwarded the appeal to the Supreme Court which on March 21st dismissed the
appeal arguing that although P., as an adult Estonian citizen, could be subject
and therefore an interested party to voter disenfranchisement attacks, himself
knowingly executed this type of malware in his computer, therefore his rights
were not violated. It is necessary to detect the violation of the person’s right to
vote in order to to revoke the election results, hypothetical possibility alone is
not sufficient for the revocation [21].

The actions of P. did not go unnoticed. On March 24th, one of the parliament-
parties filed an appeal and demanded the revocation of the election results as
a whole [14]. The appeal referred to findings of P. and was dismissed by the
Supreme Court on March 31st [20].

Technical Details of the Attack. The initial version of the malware attacked
both the ballot secrecy and integrity; the version presented in the television at-
tacked ballot secrecy and implemented voter disenfranchisement based on the
candidate selection. P. gave the NEC access to the initial version of the malware,
therefore, this version is described here. The modifications from the initial ver-
sion to the version presented in television should be relatively straightforward
to anybody with some programming experience.

In its general setup, the attack was related to the attack of Estehghari and
Desmedt against Helios internet voting system [9]. Both of the approaches modify
the appearance of the voting software on screen. However, since Helios is a
web-based application, Estehghari and Desmedt were able to mangle with the
document object model of the webpage to achieve the desired result. The proof of
concept malware of P. used the IVCA graphical user interface (GUI) as an attack-
vector. It was written in AutoIt scripting language [1] which is a framework for
scripting GUI-basedWindows applications. Optical character recognition (OCR)
technology was used on the IVCA screenshots to decode voter personal data
and the intended candidate. Fake-IVCA was built from the screenshots and the
message-loop of the original IVCA was poisoned with generated mouse events.
The fake-IVCA was used to leave the voter with the impression that the ballot
was cast as intended. Underneath the fake-IVCA, the original software accepted
generated events and voted for a semi-randomly selected candidate.

218 S. Heiberg, P. Laud, and J. Willemson

The malware took advantage of the fact that the IVCA is a wizard-like appli-
cation with a very simple state machine. Although it is possible to move back
and forth between various views, most people cast their ballot in one go. The
malware was implemented as a series of stages, whereas each stage and corre-
sponding actions were associated with a certain state of the IVCA. The success
of the malware depended on its ability to detect state changes in the IVCA and
hide its own existence from the voter.

To detect state changes, certain IVCA GUI regions were examined with Au-
toIt PixelChecksum function. If a voter reached the candidate selection, the
ballot manipulating code was activated. The fake-IVCA – a screenshot of the
candidate list and the selected candidate – was hiddenly generated. Regions of
the original IVCA were examined to determine whether the voter had selected
another candidate and the fake-IVCA was updated respectively. When the voter
pressed a button to encrypt and sign the ballot, the fake-IVCA was made visi-
ble on top of the real IVCA. Mouse events were generated to the fake-IVCA to
select any other candidate. This was possible as the fake-IVCA consisted of a
non-transparent clickthrough foreground window which accepted mouse events
but passed them without modification to the window underneath it. This way,
the main window of the original IVCA received the events, but the foreground
indicated no changes in the application state. After the encrypted and signed
ballot had been successfully sent to the VFS, the original data was analyzed
with OCR and saved to a log file.

Unlike the attack by Estehghari and Desmedt [9], the malware of P. did not
contain a distribution mechanism and it did not hide its existence nor behaviour
any more than it was necessary for a prototype. For example, the GUI checksum
method was not robust enough to be applied over a large set of computers
with different screen resolutions, operating system versions, display drivers and
installed fonts; fake-IVCA creation and OCR methods used the file system to
store the data, no steps were taken to hide those files, and the mouse event
insertion method to modify the ballot was not robust enough to vote for a
specific candidate. Although these shortcomings rendered this specific piece of
malware useless for a real large scale attack, it is possible to overcome them with
a reasonable amount of extra effort.

4 Discussion

Besides the two major issues discussed in Section 3, there were others as well.
Three people turned to the i-voting help-desk with the following problem: the
IVCA GUI was too large to fit onto their computer screen and two candidates
on the bottom of the list were hidden by the Windows task-bar. The problem
was caused by fixing the minimal supported resolution for the GUI design. This
event was picked up by one of the candidates who demanded nullification of
i-voting results [4].

The Application of I-Voting for Estonian Parliamentary Elections of 2011 219

The public reaction to this shortcoming in the IVCA shows clearly that for i-
voting it does not suffice to be clean; it also has to look clean. Any shortcomings
in quality of the system and transparency of the processes have a potential to
become a weapon in political battles. The abovedescribed shortcoming in the
IVCA GUI is easily avoidable in the next version of the IVCA, whereas the
two cases presented in Section 3 identify conceptual problems in the Estonian
i-voting scheme.

Invalid I-Vote. By now, it is clear that the root cause of the invalid i-vote will
never be exactly known. Although several initial versions were excluded in the
process, the distinction between a bug in the IVCA or intentionally invalidated
i-vote could not be made. Minor technical corrections to the i-voting protocol
and the IVS do not change the fact that the ballot secrecy relies heavily on
organizational procedures in the Estonian i-voting scheme. It is theoretically
possible for the NEC not to anonymize i-votes and use a modified VCS to break
the secrecy of all ballots. To break the secrecy of one ballot, it is sufficient to
decrypt it separately from others and later analyze audit log-files.

The case of an invalid i-vote could have been avoided with an i-voting protocol
using zero-knowledge ballot validity proofs [15]. The validity of i-votes could
have been verified, while the identity of the voter was still known, leaving more
room for the action to NEC. On the other hand, this raises new questions such
as the legality of validating the contents of the ballot before storing it in the
digital ballot box. An IVS implementing a mix network-based anonymization
system [15] would have reduced the required trust in the NEC and allowed the
analysis of invalid i-vote in a secure manner with respect to ballot secrecy.

Student’s Attack. P. exploited the fact that the Estonian i-voting scheme
contains no hard countermeasures against malicious computer. The anomaly
detection system only makes it possible to indicate that something is happening,
and it is not possible to exclude the possibility of something happening. Any
detection-based protection scheme has the following weaknesses:

– an attack with no signature in the detection engine is undetected;
– the efficiency of the scheme relies on the actual response to the detected

incidents.

As P. used a previously known attack-vector, his tampering with ballots was
detected by the IVS, but there were no prompt mechanisms to discover the
voter disenfranchisement attack. Neither was the IVS actively monitoring the
percentage of i-voters not finishing their transactions, nor offering a proof to a
voter that the ballot cast was accepted as intended. The lack of countermeasures
against voter disenfranchisement allowed P. to execute his attack successfully.

Most sessions associated with P. were marked as suspicious by the detec-
tion engine, but no action besides observation was taken by the NEC until the
attacker wrote an e-mail himself. Then the communication with the attacker
became possible and the NEC got to analyze the reasons for the alerts in the
log-files.

220 S. Heiberg, P. Laud, and J. Willemson

Currently, the only real action that the NEC can take in case of large scale
attacks against the IVS, is to revoke i-voting results as a whole and call people
to p-voting. A single anomaly has no significant impact to the election results
and is therefore not acted upon. In light of more than 140,000 i-voters from more
than 100 countries this lack of repertoire is dangerous.

Toward Secure I-Voting. As with the IVS server side problems, there exist
i-voting protocols which handle the problem of trusting voter’s computer.

The IVCA is executed in the malicious environment, where malware could ma-
nipulate its behaviour. One possible solution is to use a blind voting scheme such
as one proposed by Okamoto [17] where for each voter personalized candidate
numbers (codes) are generated. Codes can later be re-unified by the tabulation
process for tally. The voter gets his codes through some pre-channel and uses
computer to enter and send the code for the desired candidate. It is impossible
for a malware to know all the codes which leaves denial of service as the main
attack-vector. The problems with this protocol are (i) one cannot i-vote with-
out the codes; (ii) code generation must be performed in a privacy preserving
manner; (iii) most of the people will not find this system usable.

Tamper-indicating voting schemes such as [10] and [11] take a weaker approach
to security. Each voter again gets personalized candidate numbers (codes) over
a pre-channel. Each voter also has a post-channel with the IVS such as SMS.
After voting with a point-and-click GUI, the IVS sends a receipt to the voter
over the post-channel. The receipt can then be compared to the voter’s codes to
see if it matches the candidate the voter intended to vote for. In this scheme, a
malware can still manipulate the ballot, but will be detected when doing so. This
is enough to detect manipulations on a large scale which is crucial in assuring
free election.

From the viewpoint of ballot secrecy, tamper-indicating voting schemes run
into conflict where the IVS sends the voter a code corresponding to the can-
didate the voter voted for, but the NEC claims that the voter’s identity and
the contents of the ballot cannot be connected. Cryptographic protocols achieve
this property of ‘knowing without knowing’ for example with zero-knowledge
proofs or homomorphic encryption. If these methods are not understandable to
the general public, this property can be used as a weapon in political battles.

The multi-channel nature of tamper-indication needs further analysis to clar-
ify the security requirements and explain the risks if the requirements are not
met. For example, if it would be possible to control both the code generation and
the post-channel, a large scale attack against ballot secrecy would be possible.

Multi-channel protocols also have a higher computational cost which must be
analyzed in light of real life requirements. The protocol of [11] does not scale for
the Estonian case of ≈800 candidates and ≈900 000 voters. Gjøsteen [10] notes
that protocols based on homomorphic tallies are not efficient for Norwegian
elections. Organizational complexity which requires independent parties to host
separate components of the system makes it difficult for a single governing body
to organize elections.

The Application of I-Voting for Estonian Parliamentary Elections of 2011 221

Tamper indication is another method of detection where the question of a legal
framework for incident response is as important as with the current scheme. The
possible actions that the NEC can take, in case an anomaly is detected, have to
be regulated.

The protocol [11] is also subject to false-positives which introduces a new
attack-vector. Consider the voter claiming that he has voted for candidate a and
has in fact received the code for candidate b. The SMS contains information for
detection, but detection itself is not a proof. If we can only detect the manip-
ulation and not prove it, this opens new ways for manipulation. On the other
hand, if a voter is able to prove that his vote was accepted as intended, bribery
becomes possible which is dangerous in complex social situations.

Avoiding bribery and at the same time avoiding malware is an example of
contradictory requirements that an i-voting system must fulfil. If there is no
method to completely satisfy both requirements, a political decision has to be
reached about which risk is acceptable in the given context. For these decisions,
the i-voting requirements must be considered as a whole. The treatment of one
vulnerability in isolation from other requirements will not result in a functional
i-voting system.

5 Conclusions

Estonia has put a lot of effort into developing a usable and efficient i-voting sys-
tem. The i-voter turnout in Riigikogu Elections of 2011 shows that the Estonian
electorate has accepted i-voting as a voting method. In this article, we described
the Estonian i-voting scheme and discussed how it complies with the electoral
principles – a fair amount of the i-voting architecture is concerned with meeting
the security requirements deduced from those principles.

We saw that during Riigikogu Elections of 2011, several weaknesses present
in Estonian i-voting scheme were materialized. The analyzed events indicate
real-life attacks that an i-voting system has to withstand. From these events we
conclude that it is necessary to work toward new, more secure i-voting protocol.
We need to reduce the level of trust required in the voter’s computer and provide
the NEC with means to show that it could not act malicious even if it wanted
to. It is possible that i-voting related legislation may be refined to meet these
requirements.

The goal of secure i-voting cannot be reached by dealing with single vulner-
abilities in isolation. Requirements for an i-voting scheme must be handled as
a system. Due to the interdisciplinary and possibly contradictory nature of the
system, both the creation of the system and the design of the technical solution
according to the system require a widely-accepted political decision. It is also
important to explain the system and the possible choices among all options to
the general public in order to reduce the risk of manipulation with the election
results.

222 S. Heiberg, P. Laud, and J. Willemson

References

1. AutoIt Automation and Scripting Language, http://www.autoitscript.com/

site/autoit/

2. Appeal no. 14-11/406-2 to NEC (in Estonian) (March 8, 2011),
http://www.vvk.ee/valimiste-korraldamine/

vabariigi-valimiskomisjon-yld/kirjad

3. Appeal no. 14-11/406 to NEC (in Estonian) (March 5, 2011), http://www.vvk.ee/
valimiste-korraldamine/vabariigi-valimiskomisjon-yld/kirjad

4. Appeal no. 14-11/446 to NEC (in Estonian) (March 10, 2011), http://www.vvk.ee/
valimiste-korraldamine/vabariigi-valimiskomisjon-yld/kirjad

5. Ansper, A., Buldas, A., Jürgenson, A., Oruaas, M., Priisalu, J., Raiend, K., Vel-
dre, A., Willemson, J., Virunurm, K.: E-voting Concept Security: Analysis and
Measures. Estonian National Electoral Commitee, EH-02-02 (2010)

6. Ansper, A., Buldas, A., Oruaas, M., Priisalu, J., Veldre, A., Willemson, J.,
Virunurm, K.: E-voting Concept Security: Analysis and Measures. Estonian Na-
tional Electoral Commitee, EH-02-01 (2003)

7. Estonian National Electoral Committee. E-Voting System. General Overview
(2010)

8. Estonian National Electoral Committee. Answer to note 14-11/406 (in
Estonian) (March 7, 2011), http://www.vvk.ee/valimiste-korraldamine/

vabariigi-valimiskomisjon-yld/kirjad

9. Estehghari, S., Desmedt, Y.: Exploiting the Client Vulnerabilities in Internet E-
voting Systems: Hacking Helios 2.0 as an Example. Helios (Section 4), 0–27 (2010)

10. Gjøsteen, K.: Analysis of an internet voting protocol. Cryptology ePrint Archive,
Report 2010/380 (2010), http://eprint.iacr.org/

11. Heiberg, S., Lipmaa, H., van Laenen, F.: On E-Vote Integrity in the Case of Ma-
licious Voter Computers. In: Gritzalis, D., Preneel, B., Theoharidou, M. (eds.)
ESORICS 2010. LNCS, vol. 6345, pp. 373–388. Springer, Heidelberg (2010)

12. Jefferson, D., Aviel Rubin, D., Simons, B.: A comment on the May
2007 DoD report on Voting Technologies for UOCAVA Citizens (2007),
http://www.servesecurityreport.org/SERVE_Jr_v5.3.pdf (last accessed on
August 27, 2011)

13. Jefferson, D., Aviel Rubin, D., Simons, B., Wagner, D.: A Security Analysis
of the Secure Electronic Registration and Voting Experiment (SERVE) (2004),
http://www.servesecurityreport.org/paper.pdf (last accessed on August 27,
2011)

14. MTÜ Eesti Keskerakond. Appeal 14-12/535 (in Estonian) (March 24, 2011),
http://www.vvk.ee/valimiste-korraldamine/

vabariigi-valimiskomisjon-yld/kirjad

15. Lipmaa, H.: Secure Electronic Voting Protocols. In: The Handbook of Information
Security, vol. II. John Wiley & Sons (2006)

16. Lipmaa, H., Mürk, O.: E-valimiste realiseerimisvõimaluste analüüs (An Analysis
of the Possibility to Organize E-voting), Analysis ordered by Estonian Ministry of
Justice (2001) (in Estonian)

17. Okamoto, T.: Receipt-Free Electronic Voting Schemes for Large Scale Elections. In:
Christianson, B., Crispo, B., Lomas, M., Roe, M. (eds.) Security Protocols 1997.
LNCS, vol. 1361, pp. 25–35. Springer, Heidelberg (1998)

http://www.autoitscript.com/site/autoit/
http://www.autoitscript.com/site/autoit/
http://www.vvk.ee/valimiste-korraldamine/vabariigi-valimiskomisjon-yld/kirjad
http://www.vvk.ee/valimiste-korraldamine/vabariigi-valimiskomisjon-yld/kirjad
http://www.vvk.ee/valimiste-korraldamine/vabariigi-valimiskomisjon-yld/kirjad
http://www.vvk.ee/valimiste-korraldamine/vabariigi-valimiskomisjon-yld/kirjad
http://www.vvk.ee/valimiste-korraldamine/vabariigi-valimiskomisjon-yld/kirjad
http://www.vvk.ee/valimiste-korraldamine/vabariigi-valimiskomisjon-yld/kirjad
http://www.vvk.ee/valimiste-korraldamine/vabariigi-valimiskomisjon-yld/kirjad
http://www.vvk.ee/valimiste-korraldamine/vabariigi-valimiskomisjon-yld/kirjad
http://eprint.iacr.org/
http://www.servesecurityreport.org/SERVE_Jr_v5.3.pdf
http://www.servesecurityreport.org/paper.pdf
http://www.vvk.ee/valimiste-korraldamine/vabariigi-valimiskomisjon-yld/kirjad
http://www.vvk.ee/valimiste-korraldamine/vabariigi-valimiskomisjon-yld/kirjad

The Application of I-Voting for Estonian Parliamentary Elections of 2011 223

18. OSCE/ODIHR. Republic of Estonia. Parliamentary Elections (March 4, 2007).
OSCE/ODIHR Election Assessment Mission Report, ODIHR. GAL/56/07 (2007)

19. OSCE/ODIHR. Estonia. Parliamentary Elections (March 6, 2011). OSCE/ODIHR
Election Assessment Mission Report (2011)

20. Rask, M., Põld, J., Salmann, H.: Decision of Supreme Court 3-4-1-10-11
(in Estonian) (March 31, 2011), http://www.vvk.ee/valimiste-korraldamine/

vabariigi-valimiskomisjon-yld/kirjad

21. Rask, M., Põld, J., Salmann, H.: Decision of Supreme Court 3-4-1-4-11
(in Estonian) (March 21, 2011), http://www.vvk.ee/valimiste-korraldamine/

vabariigi-valimiskomisjon-yld/kirjad

22. Rask, M., Põld, J., Salmann, H.: Regulation of Supreme Court 3-4-1-6-11
(in Estonian) (March 23, 2011), http://www.vvk.ee/valimiste-korraldamine/

vabariigi-valimiskomisjon-yld/kirjad

23. Tammet, T., Krosing, H.: E-valimised Eesti Vabariigis: võimaluste analüüs (E-
voting in Estonia: Feasibility Study), Analysis ordered by Estonian Ministry of
Transport and Communications (2001) (in Estonian)

http://www.vvk.ee/valimiste-korraldamine/vabariigi-valimiskomisjon-yld/kirjad
http://www.vvk.ee/valimiste-korraldamine/vabariigi-valimiskomisjon-yld/kirjad
http://www.vvk.ee/valimiste-korraldamine/vabariigi-valimiskomisjon-yld/kirjad
http://www.vvk.ee/valimiste-korraldamine/vabariigi-valimiskomisjon-yld/kirjad
http://www.vvk.ee/valimiste-korraldamine/vabariigi-valimiskomisjon-yld/kirjad
http://www.vvk.ee/valimiste-korraldamine/vabariigi-valimiskomisjon-yld/kirjad

Towards Best Practice for E-election Systems
Lessons from Trial and Error in Australian Elections

Richard Buckland1, Vanessa Teague2, and Roland Wen1

1 School of Computer Science and Engineering,
The University of New South Wales,

Sydney, Australia
{richardb,rolandw}@cse.unsw.edu.au

2 Department of Computer Science and Software Engineering,
The University of Melbourne,

Melbourne, Australia
vjteague@unimelb.edu.au

Abstract. Research on mitigating vulnerabilities in electronic elections
has focused mainly on developing cryptographic voting and counting
schemes that satisfy strong mathematical requirements. However many
practical problems with e-election systems in general cannot be solved
by cryptology. In this paper we consider some of these practical problems
by examining deficiencies that are common to the many e-election sys-
tems currently used in Australia, including but not limited to e-voting
and e-counting systems. We identify poor practices in the commission-
ing, development, operation and scrutiny of these systems, and we then
make recommendations for improving practice. We argue that best prac-
tice guidelines for e-election systems need to be explicitly articulated
and should include four key elements: failure-critical engineering, risk
assessment, a culture of audit and strong transparency.

Keywords: Best practice, electronic elections, e-voting, failure-critical
engineering, strong transparency.

1 Introduction

Australia has a long tradition of trustworthy election conduct. The manual exe-
cution of elections in Australia is professional, carefully performed and open to
public scrutiny. However over the past decade much of the conduct of Australian
elections has moved from the manual into the electronic realm, without maintain-
ing the level of quality and transparency achieved with paper-based elections.
Election administrators throughout Australia (and the rest of the world) will
have to decide on the appropriate way to extend their tradition of election qual-
ity and transparency to new technologies, or risk eroding election integrity and
public confidence. Our aim in this paper is to identify some shortcomings in cur-
rent practice and offer suggestions on how to make electronic election processes
more secure, reliable and transparent.

A. Kiayias and H. Lipmaa (Eds.): VoteID 2011, LNCS 7187, pp. 224–241, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Towards Best Practice for E-election Systems 225

E-election systems (that is, any IT system used for elections) in Australia
date back to the implementation of the world’s first electronic electoral roll in
1967 [27,28]. Since then a vast array of e-election systems has been adopted for
almost all aspects of election conduct, and Australian elections have become
heavily dependent on these systems. Although publicly available information on
Australia’s e-election systems remains scant, the little that is available reveals
systemic problems. It is apparent that e-election systems are commissioned,
developed, operated and scrutinised according to standard industry practices
for commercial IT systems. These practices are entirely inadequate for failure-
critical e-election systems, where the operation of the systems is infrequent, in-
tensive, based on secrecy, and where mistakes are not publicly visible and often
not even privately evident. The risk these factors pose is of course compoun-
ded by the considerable financial incentive for malicious agents to fraudulently
manipulate system vulnerabilities to affect election outcomes. These shortcom-
ings in IT practices are most evident in e-voting systems, which have the most
stringent requirements, but are equally detrimental to the quality of all other
e-election systems.

In this paper we shed light on some of the issues that have been made public
and discuss how to address the problems that cause them. The focus of this
paper is the practical issues that are common to all e-election systems. Our
coverage does not include cryptographic protocols — the fact that Australia
does not use cryptographically verifiable e-voting and e-counting schemes is a
separate concern. The measures we propose are intended to be used in addition
to appropriate cryptographic techniques.

The contribution of this paper is two-fold. First, we gather together in one
place the publicly available information on recent incidents in e-election systems
deployed in Australia. This is important as it permits analysis and discussion of
the common underlying systemic causes, rather than allowing the problems to
be treated as a series of independent and isolated incidents. Second, we consider
best practice for e-election systems and identify four essential elements. Our
intention is to propose a reasonable starting point for developing best practice
guidelines for e-election systems.

The structure of the paper is as follows. We begin with an overview of the
e-election systems used at present in Australia. Then we examine the four pro-
posed elements of best practice for e-election systems in turn: failure-critical
engineering, risk assessment, a culture of audit, and strong transparency. For
each element we identify current problems and the steps that are necessary to
address these problems.

2 E-election Systems in Australia

Each public election in Australia is administered by a centralised independ-
ent electoral commission. The Australian Electoral Commission manages fed-
eral elections, and state electoral commissions manage state elections and most
local government elections. Electoral commissions employ permanent, full-time

226 R. Buckland, V. Teague, and R. Wen

election officials and are responsible for all aspects of electoral administration.
This includes conducting elections, reporting on election irregularities, enrolling
voters, registering candidates and political parties, redrawing electorate bound-
aries, educating voters and monitoring political donations.

This centralised approach contrasts with the predominantly decentralised ar-
rangement in the US and most European countries, where the responsibility for
conducting elections is typically delegated to the level of local government. Cent-
ralisation provides opportunities for economies of scale and professional election
administration, but also increases the potential impact of flaws in the e-election
systems used.

To help perform their numerous duties and to improve access to the demo-
cratic process for voters, each electoral commission has developed its own suite of
e-election systems for e-voting, e-counting, electoral roll management and general
election administration. This section describes a number of these systems. We
focus on those of the largest electoral commissions, namely the Australian Elect-
oral Commission (AEC), the New South Wales Electoral Commission (NSWEC)
and the Victorian Electoral Commission (VEC), as well as the Australian Cap-
ital Territory Electoral Commission (ACTEC), which was the first to introduce
e-voting in Australia.

2.1 E-voting Systems

E-voting systems are attractive in Australia because their flexibility affords high
degrees of accessibility and usability, which makes them well-suited to situations
where current voting arrangements are inadequate. This is important in Aus-
tralia, where very strong emphasis is placed on participation in elections. Indeed
voting is compulsory. Consequently electoral commissions provide an unusu-
ally wide array of voting arrangements to cater for the diverse circumstances
of voters. E-voting is becoming more popular as an additional voting option.
To date several systems have been trialled or permanently adopted with the
purpose of providing an alternative to paper-based voting for voters with visual
impairment, voters from a non-English speaking background, and voters living
in remote areas or located interstate or overseas.

In 2001 the ACTEC trialled a voting machine system called the Electronic
Voting and Counting System (EVACS), which was developed by Software Im-
provements [3]. EVACS is now used on a permanent basis in major polling
places. Each EVACS voting machine displays instructions in a choice of lan-
guages, and certain machines designed for visually impaired voters have special
facilities including large screens, headphones and audio instructions. In 2007 the
AEC conducted a trial for visually impaired voters using EVACS based voting
machines [8], but the system was abandoned because of the excessive cost.

The VEC adopted Scytl’s Pnyx.DRE voting machine system for visually im-
paired voters in 2006 [39] and rolled out the system on a larger scale in 2010. All
machines have features for non-English speaking voters and visually impaired
voters.

Towards Best Practice for E-election Systems 227

Remote e-voting systems remain less common in Australia but have recently
garnered increased interest. The AEC conducted a remote e-voting trial in
the 2007 Federal Election using the eLect remote voting system by Every-
oneCounts [9]. This was for Australian Defence Force personnel deployed over-
seas and permitted voting only on designated computers connected to a secure
private network. The system was later abandoned again due to cost factors.

Most recently the NSWEC has developed a modified version of eLect, called
iVote, for large-scale Internet voting during the 2011 NSW State Election. Ini-
tially the iVote system was only intended for visually impaired voters and voters
living in remote areas. Shortly before the election the scope was substantially
expanded to include interstate and overseas voters, as well as voters with any
disability, including for example poor literacy skills.

2.2 E-counting Systems

E-counting systems have been used in Australia since the late 1980s for the single
transferable vote (STV), which is a preferential system for proportional repres-
entation. All upper houses of parliament, some lower houses and many local
governments are elected with STV. In most cases the votes are counted elec-
tronically. This is because the STV counting procedures are sufficiently complex
that manual counting is infeasible in large-scale elections.

As multiple variants of STV are used throughout Australia, each electoral
commission has its own e-counting system. These systems perform the vote
counting and generate detailed statistical reports, many of which are published
on electoral commission websites. In response to the desire for enhanced func-
tionality and frequent changes to the STV counting rules, e-counting systems are
constantly upgraded or redeveloped. For example the NSWEC has developed at
least five new e-counting systems over the last 20 years [29,31].

The e-counting systems also require data capture systems to convert votes
from paper ballots into electronic form. Since it is very difficult to ensure the
accuracy of automated data capture for preferential ballot papers, almost all
the data capture systems currently in use are for manual data entry. The data
capture systems provide extensive reporting functions to enable thorough verific-
ation of the electronic data against the paper ballots. In the event that e-voting
is permitted, the electronic ballots are printed out and then manually entered
along with the paper ballots.

An exception is elections in the ACT, where electronic ballot data from the
e-voting system is uploaded directly into the e-counting system. In 2008 the
ACTEC began using an intelligent character recognition system to scan all paper
ballots, but this still involves intensive manual verification [4].

2.3 E-election Systems for Electoral Roll Management

Australia has long used e-election systems for electoral roll management. The
primary purpose of these systems is to ensure the roll is accurate and complete,
and this is vital given that enrolment and voting are compulsory.

228 R. Buckland, V. Teague, and R. Wen

The AEC maintains the national roll, which until recently was used by all
state electoral commissions under a joint roll agreement. Enrolment information
is mainly provided by voters, and so e-election systems are used by AEC staff to
process these applications. Since 2004 the AEC has been developing the General
Enrolment, Elections Support and Information System (GENESIS) to replace
several legacy e-election systems, and the module for adding and updating voter
enrolment details was launched in 2010 [10].

There are also efforts to improve convenience for voters when enrolling and
updating their enrolment. Since 2010 the AEC has provided SmartForm online
enrolment applications (interactive Adobe Acrobat forms), and it is currently
developing a custom online enrolment system.

The trend though is to fully automate the enrolment process so that voter
interaction is no longer required. This approach has been advocated to improve
completeness of the roll because roughly eight percent of eligible voters are not
currently enrolled [11]. In 2010 the NSWEC ended the joint roll agreement with
the AEC and began using its SmartRoll automatic enrolment system to add eli-
gible voters to the roll according to data collected from other sources. The VEC
followed soon after with its own system and other states are contemplating sim-
ilar moves. But federal legislation prohibits the AEC from adopting automatic
enrolment.

However automated data collection is nothing new. To enhance roll accuracy,
electoral commissions have continually been developing ever more sophisticated
systems for data collection and data matching. In addition to basic information
such as name, address and date of birth, a wide variety of secondary personal
information is collected from numerous sources to facilitate data matching, and
this can include occupation, previous addresses, phone numbers, drivers licence
numbers, tax file numbers and scanned documents containing signatures.

Electronic systems are also used to extract and distribute electoral roll data,
for instance to print certified lists of the voters in each electorate for roll marking
during elections. In most elections certified voter lists are printed on optical
answer sheets, which are later scanned and then uploaded to electronic reporting
systems to check for multiple or non voting. Each polling place has copies of the
certified list only for the electorate in which it is located. This leads to difficulties
in identifying voters for absent voting, where voters attend polling places outside
their own electorate.

To address this problem the NSWEC developed the iRoll system in 2007 [29].
This stores the certified lists for all electorates in the state on PDAs or laptops
at every polling place, and thus enables polling officials to verify the enrolment
details for absent voters. The ACTEC has adopted an enhanced version of iRoll
to mark all voters off the roll directly through PDAs [4].

2.4 E-election Systems for General Election Administration

Many e-election systems have been developed in Australia for a wide range of
general election administration tasks. Reporting systems extract information
from other systems to generate data for purposes such as verifying election

Towards Best Practice for E-election Systems 229

integrity (for instance by tracking ballot boxes and detecting multiple voting)
and internal research to identify problems and plan for future elections. Logistical
systems are used for operational issues including managing candidate nomina-
tions, ballot draws, polling places, polling staff, postal votes, ballot papers, ballot
boxes and manual vote counting.

While most of the e-election systems are for internal use, online systems are
becoming more common. Voters can now verify their enrolment details online.
For the 2010 Federal Election the AEC deployed two online systems: the Online
Recruitment System for the public to apply for temporary employment as polling
officials, and the Checkpoint system for training polling officials [10].

Online systems have also been used to promote open and broad consultation.
A good example is the procedure for electorate redistributions, where elect-
oral commissions periodically redraw electorate boundaries to reflect population
changes. To prevent gerrymandering, redistributions involve public inquiries that
take place in multiple stages, and any group or individual can submit comments
and objections. These inquiries are now conducted online and all the documents
and submissions are located on electoral commission websites.

The large number of e-election systems in use and the desire to provide online
interaction with these systems for both voters and electoral commission staff
has motivated the need to integrate these systems and expand interoperability.
Indeed this is the reason behind the AEC’s ongoing GENESIS project. Likewise
the NSWEC implemented a web-based Election Management Application for
similar purposes, and this was deployed in 2006 [29].

3 Failure-Critical Engineering

E-election systems are failure critical. Failures in any of these systems could
have extensive and catastrophic consequences for overall election security and
integrity, as well as undermining public confidence in the electoral process. To
maintain the quality and trustworthiness of elections, rigorous failure-critical
engineering practices need to be followed to ensure that e-election systems are
of the highest standard.

3.1 Current Problems

In Australia e-election systems are currently treated as regular commercial IT
systems instead of failure-critical systems. This approach has resulted in a large
number of systems failing during crucial periods. The problems are most evident
throughout the software development process, where “the gap between the best
software engineering practice and the average practice is very wide — perhaps
wider than in any other engineering discipline” [19].

For example, the NSWEC iVote system suffered multiple failures during the
2011 NSW State Election [33]. The most critical incident was the corruption of
votes by problems with the client-side JavaScript.

The iVote user interface required voters to enter their preference rankings in
order, starting from 1. This was done by selecting a candidate and then pressing

230 R. Buckland, V. Teague, and R. Wen

the letter ‘N’ to allocate the next preference ranking to this candidate. However
the NSWEC discovered 43 ballots where the letter ‘N’ was stored as a preference
in place of some of the numerical preferences. This shows how a single, minor
software bug has the power to corrupt votes without being detected by voters,
and raises doubts over whether any vote at all was cast as the voter intended.

Furthermore the iVote back end had inadequate input validation and error
reporting functions to identify invalid votes; the vote corruption was discovered
only when election officials noticed a discrepancy between the number of elec-
tronic ballots cast and the number of ballots printed for counting.

This incident demonstrates failings in the software design, implementation
and testing. In addition we observed that iVote compromised core requirements.
Notably iVote was supposed to provide audio instructions, like all other Aus-
tralian e-voting systems for visually impaired voters. However this requirement
was dropped.

Critical incidents have occurred previously in NSW elections. During the 2003
NSW State Election the e-counting system experienced irrecoverable failures,
and this led to delays in publishing the final result [31]. The problems were in
part due to a lack of input validation and error reporting functions in the vote
data entry system. Additionally there were separate problems with database
configuration and maintenance. The e-counting system also suffered from less
critical bugs such as inexplicable error messages.

These basic defects were not discovered during extensive end-to-end functional
testing. The heavy reliance on such high level testing techniques appears to be
commonplace. Similar functional testing was performed on the ACTEC’s EVACS
counting module [3], which likewise experienced failures during the 2001 ACT
Election [25].

Of particular concern is that end-to-end testing is used to verify the correct-
ness of the counting algorithm implementation in e-counting systems. The value
of black box testing methods for this purpose is highly questionable because STV
counting algorithms are extraordinarily complicated and prone to subtle imple-
mentation flaws. Indeed there are several instances in Australia where even the
legislation specifying the STV counting procedures contains omissions and/or
internal conflicts, so that it is mathematically impossible to count the votes
according to the prescribed algorithms [40]. The fact that such legislative irreg-
ularities were not discovered when the e-counting systems were being specified,
developed and tested reflects shortcomings in the testing as well as the specific-
ation of these systems.

The lack of testing rigour is widespread. Critical failures have occurred with
the iRoll system for marking voters off the roll using PDAs. In the 2007 Tas-
manian State Election, iRoll experienced data corruption when uploading the
details from the PDAs, which resulted in the inability to determine whether 500
voters had been marked off the roll [37]. To address this problem the ACTEC
enhanced iRoll so that the PDAs immediately backed up the data to a master
PDA in each polling place via Bluetooth. The backup system failed during the

Towards Best Practice for E-election Systems 231

2008 ACT Election [4]. Fortunately no PDA problems arose on that occasion
and no data was lost.

In the 2010 Federal Election AEC staff reported extensive failures with the
enrolment processing module of GENESIS, the Online Recruitment System and
the Checkpoint online training system [20]. The problems included poor perform-
ance (partly due to insufficiently powerful server hardware), poor usability, miss-
ing functionality and glitches such as freezes, crashes and outages. This created
numerous and unprecedented challenges for AEC staff and required temporary
workarounds to counter issues with the systems.

The testing processes for these projects had serious shortcomings. AEC staff
identified problems with GENESIS in early user testing but these were dismissed,
and the Online Recruitment System did not undergo any live testing prior to
launch despite concerns raised by staff [20].

Many of the problems with GENESIS have stemmed from inadequate require-
ments analysis. An audit of the AEC’s conduct of the 2007 Federal Election by
the Australian Auditor-General found that a poor understanding of the require-
ments for GENESIS contributed to a delay of over three years to the completion
date so far (now estimated to be the end of 2014) and a cost blowout from $27
million originally to between $56 and $60 million now expected [2].

There are also indications of problems with code design and implementation.
The public source code for the ACTEC’s EVACS was separately reviewed by
researchers from the Australian National University [1] and the University of
California, Davis [23]. Their studies found unclear design, large amounts of du-
plicate code, complex control flow, minimal error checking, memory leaks and
hard-coded values. It seems fair to expect similar software risks in other e-election
systems in Australia. EVACS has at least had the advantage of allowing open
scrutiny, and as a result some of these problems have since been fixed. Given that
no source code for any other systems has been publicly disclosed, the quality of
the code for these systems is likely to be worse.

One of the main reasons behind all these failures is that electoral commis-
sions are not equipped with the requisite expertise and resources to establish
and implement failure-critical engineering practices. Although the NSWEC ac-
knowledged this when assessing the failures of its e-counting system [31], the
same practices still persist in Australia.

At present it is commonplace for electoral commissions to engage consultants
to manage e-election projects, and to outsource part or all of the development,
evaluation and operation of e-election systems to private contractors or vendors.
However these external parties are general IT practitioners rather than spe-
cialists in failure-critical systems. Consequently electoral commissions have very
limited capabilities to ensure the quality of these systems.

Outsourcing in this manner has had catastrophic consequences for Dutch e-
voting systems [32]. The problem is even more concerning in Australia because
of the heavy usage of and reliance on e-election systems for almost all facets of
election conduct.

232 R. Buckland, V. Teague, and R. Wen

3.2 Towards Best Practice

E-election systems must be commissioned and managed as failure-critical sys-
tems. The inherent complexity of IT systems makes it very easy to inadvertently
or deliberately introduce defects into a system during the development process,
and at the same time makes it notoriously difficult to detect and eliminate all
the defects. Likewise the operation and use of IT systems is highly vulnerable
to human error and malicious activity. Best practice for e-election systems must
adhere to engineering practices that are specifically designed to mitigate these
problems from the outset and to ensure security, reliability and usability.

In more mature domains, failure-critical engineering has proven to be success-
ful in developing the highest quality systems such as avionics systems, medical
equipment and even computer hardware. For example comprehensive and sys-
tematic techniques (such as formal specification and verification) are employed
to minimise the introduction of defects and produce objective evidence that the
systems are secure and reliable. Robust safeguards are built into the systems so
that potential failures can be detected, reported and handled gracefully, rather
than causing a total and possibly unnoticed collapse.

Best practice guidelines for the engineering of e-election systems can adopt
many of these well-established practices and principles. Once these guidelines
have been prescribed, the practices need to be overseen and implemented by a
diverse range of suitably qualified experts with extensive training and experience
in the necessary areas, including software engineering, failure-critical engineering
and security engineering.

4 Risk Assessment

Risk assessment lays the foundation for sensibly managing and appropriately
dealing with the risks involved in the development, operation and use of e-election
systems. E-election systems have unique threats and vulnerabilities, with seri-
ous irreversible and far-reaching implications that may even extend beyond the
electoral realm and into the public sphere. It is essential to enumerate all the
risks and consider their potential impact. This permits well-informed manage-
ment decisions to be made about whether or not to commission a system in the
first place, and then if so what development processes are best adopted and what
further technical and procedural safeguards are needed.

4.1 Current Problems

Current e-election system risk assessments in Australia suffer from multiple in-
adequacies, most notably in their narrow scope and lack of rigour. This has led to
poor decision making that has exposed elections to high risks, and in a number
of instances these risks have been realised.

There has been a consistent failure to properly assess the risks in software
development, often resulting in foreseeable IT problems. In particular it has be-
come the norm for new e-election systems to be developed on a tight schedule and

Towards Best Practice for E-election Systems 233

then to be deployed at the most crucial point of the electoral cycle. For example
development started roughly six months before the election for the NSWEC’s
iVote, the AEC’s trial e-voting systems and the ACTEC’s EVACS. Given that
this leaves little margin for error and that IT projects have the propensity to
be delayed, such a short time frame poses a serious risk of compromising the
quality of these systems in order to meet critical deadlines. In the case of iVote,
the auditor noted that this resulted in “incomplete documentation, restricted
test case formulation and compressed testing activities” [33].

Long term projects have also experienced the same problem. Many of the
deficiencies with the AEC’s systems during the 2010 Federal Election were ag-
gravated because there was insufficient time scheduled to perform live testing.
Furthermore the decision was made to launch some of these systems even after
problems were identified.

Accurate risk assessments are vital for security. Risk profiles can change subtly
and unexpectedly, yet at present the risks are not reassessed on an ongoing basis.
This is especially problematic with function creep.

A recent case is the expansion of the NSWEC iVote system to include in-
terstate and overseas voters. As a result almost 50 000 votes were cast over
the Internet, which was ten times the number anticipated and predominantly
comprised votes from interstate and overseas. This drastically changed the risk
profile from a controlled small-scale trial, where problems would likely have a
reasonably minor impact, to an uncontrolled large-scale event, where problems
could have a major impact.

In the tightly contested seat of Balmain, the winning margin was around
100 votes. Over 900 votes for this seat were cast with iVote, and so relatively
minor problems could have affected the outcome. In close elections similar scope
changes could have implications for the integrity of the overall election result.

Standard security vulnerabilities are also frequently overlooked or underestim-
ated. Many e-election systems have been developed without protection against
even basic attacks. For instance the ACTEC’s EVACS uses voting clients that
send unencrypted votes to a ballot box server within the polling place via a
local network [23]. Hence vote privacy and integrity could easily be comprom-
ised by even an unsophisticated attacker who gains access to the network. Also
the voting clients do not store an independent audit trail of the votes cast, and
so the ballot server presents a single point of failure against malicious attack or
hardware failure.

In a similar way the use of highly insecure Bluetooth wireless technology in
the ACTEC’s iRoll backup system provides a vector for an attacker to gain un-
authorised access to the PDAs containing the certified voter lists. An attacker
could potentially violate the privacy and integrity of the certified lists, for in-
stance to facilitate multiple voting by ‘unmarking’ voters from the certified lists.
The nature of Bluetooth wireless communication means this attack could hap-
pen anonymously and at a distance. Again the attacker need not be particularly
sophisticated or well resourced to carry out such a multiple voting attack.

234 R. Buckland, V. Teague, and R. Wen

The combined usage of multiple e-election systems has introduced new risks
that have not been considered. For instance the simultaneous use of iRoll and
EVACS by the ACTEC has created the potential for voter privacy to be violated
through exploiting electronic metadata, in this case timestamps. The ACTEC’s
version of iRoll tracks voter flow in polling places by storing timestamps of
when the voters were marked off the roll [4]. Also EVACS electronic vote re-
cords include timestamps of when the votes were cast. Cross-referencing iRoll
timestamps with vote timestamps could then reveal potential matches between
voters and votes. This technique would be effective when there are large gaps
between timestamps, which will be the case during the three week pre-poll period
and at quiet times on election day, particularly in smaller polling places. This
vulnerability also highlights the subtle dangers of function creep, in this instance
through minor feature enhancements.

The possible impact of individual e-election systems on overall election quality
tends to be overlooked. Many systems are not even recognised as being failure
critical. This is compounded by the ongoing trend to integrate all e-election
systems. Systems deemed critical are placed at greater risk because an outside
attacker could exploit a vulnerability in a ‘non-critical’ system to gain inside
access. For example the AEC assumed its e-counting system was secure as the
system was (in theory) only operated on a standalone machine isolated from the
network, when in fact the system was designed with the capability to operate
in a networked environment [5]. Such intrinsically insecure systems may be per-
manently exposed to higher risk because there may be limited scope to later
harden them against attack.

There has also been a failure to consider the threats that e-election systems
may pose outside elections. A prominent example is the privacy implications of e-
election systems for the electoral roll such as the NSWEC’s SmartRoll automatic
enrolment system. These continue the expansion of function creep in electronic
electoral roll systems, where a series of seemingly minor and insignificant changes
has ended up having a large and unanticipated compound effect, not only on
elections but also potentially on the everyday lives of voters.

The increasingly large volume and variety of data collected for the electoral
roll has not only amplified the scale of the risks of violating the privacy of
personal voter information, but has also changed the very nature of the risks.
The secondary personal information now stored on voters is highly sensitive, and
so leaking roll data can have extremely harmful consequences including identity
fraud. Moreover the introduction of distributed systems such as iRoll and the
growth in authorised third party access to the roll have increased the risk for
roll data to be leaked through loss or theft.

4.2 Towards Best Practice

Risk assessments must be performed on all e-election systems, and these as-
sessments must be comprehensive, ongoing and involve broad consultation. An
overarching framework is necessary to set out the appropriate methodologies for
conducting accurate risk assessments.

Towards Best Practice for E-election Systems 235

This framework should specify a systematic approach to identifying and
gauging the full range and extent of the constantly evolving risks, especially
in relation to low-probability, high-impact events. It needs to ensure broad con-
sideration of the technologies, procedures and policies associated with e-election
systems. Furthermore it must provide a holistic examination of the risks each
system can pose to other systems and the entire election process, rather than
dealing with the risks of each system in isolation.

5 A Culture of Audit

Rigorous independent audits are crucial for assuring the quality of e-election
systems by critically reviewing all aspects of the systems. These audits cannot
be a last-minute and secondary concern whose role is to tick the box or otherwise
on an already delivered system. Instead a culture of audit needs to be adopted
throughout the design, development, operation and post-mortem of e-election
systems to develop high quality and an assurance of that high quality.

5.1 Current Problems

Audits in Australia are not conducted with sufficient time or expertise, and this
has allowed problems with e-election systems and engineering practices to be
overlooked. In many instances audits are not even performed. This was the case
for all of the AEC’s new systems and the NSWEC’s e-counting system. Further-
more the Australian Auditor-General commented on the poor documentation
of the AEC’s systems and development processes [2], which would make it very
difficult to perform audits if desired.

Even for the most critical systems, audits are often treated as an afterthought.
In the case of the NSWEC iVote system, the feasibility study [30] originally
scheduled less than eight days in total for conducting the audit and addressing
the findings, with the voting period commencing just 10 days later! It would be
unreasonable to expect that major flaws with such a complex system could be
discovered and fixed in such a short time frame.

Note that voter registration for iVote was scheduled to open two weeks before
the audit was due to be completed. Thus in the face of adverse findings, the
NSWEC would have faced a very difficult decision between proceeding with
using a vulnerable system in a failure-critical environment, or abandoning the
system and potentially disfranchising 50 000 voters who planned to use iVote.

The iVote audit reports revealed that critical issues still remained one week
prior to going live [34] and several vulnerabilities were not addressed in time [33].
There is no publicly available information on the nature or gravity of these vul-
nerabilities, but it appears that the final decision to launch iVote was made with
knowledge that the system had significant security and quality shortcomings.

We observed that iVote was highly vulnerable to malicious hacking and to
automated malware because there was no client-side encryption of the votes
(aside from TLS/SSL encryption for HTTPS), and so voters’ PCs sent, and

236 R. Buckland, V. Teague, and R. Wen

the NSWEC’s voting servers received, the votes in plaintext form. This obvious
security vulnerability was evident through our brief inspection of the live system.

The superficial nature of audits appears to be common. The ACTEC’s EVACS
counting module was certified by an independent auditor despite having serious
defects that caused failures during the 2001 ACT Election [25]. Also the aud-
itor failed to identify numerous other defects that could have caused incorrect
election results and segmentation faults, and may have permitted penetration
by malware. Many of these were obvious and elementary software defects that
were later identified using standard testing methods and very simple test cases
by the Australian National University review of EVACS [1].

Threats and vulnerabilities are consistently overlooked in security audits. For
instance in examining the eLect source code for the AEC’s remote e-voting
trial system, the auditor only considered the possibility of malicious source code
rather than inadvertent faults that could create security vulnerabilities [21].
This had longer term consequences extending beyond the AEC trial because the
NSWEC iVote system was subsequently based on eLect.

Even when well-known security vulnerabilities are identified, their significance
is not always properly understood by non-expert auditors. For example the e-
voting system for the 2010 Victorian State Election used a weak, non-standard
method for seeding pseudorandom number generators for some cryptographic
keys [22]. The auditor (and, unsurprisingly, the vendor) dismissed this vulnerab-
ility as being negligible [18,36], in spite of the fact that it belongs to a well-known
class of security vulnerabilities. Such weaknesses have been famously exploited
in other systems, for instance the Netscape SSL attack [26].

5.2 Towards Best Practice

Comprehensive and continuous expert audits must be integrated into e-election
systems practice, as they are for other failure-critical systems. Given the large
number and variety of complex issues that all need to be examined, this approach
to auditing is necessary to assure the high quality of e-election systems.

A culture of audit provides an essential layer of defence for directly identifying
problems with the technology and operational procedures, as well as uncovering
systematic weaknesses in the engineering and risk assessment practices that are
likely to cause or overlook problems. It prevents failures and vulnerabilities by
discovering and rectifying problems early on, rather than simply detecting them
when it is too late.

6 Strong Transparency

Strong transparency is a fundamental feature of trustworthy elections. It pro-
motes public understanding and involvement in the scrutiny process. By en-
abling such broad scrutiny of all aspects of elections, transparency also assures
and enhances election integrity. This unique requirement for the highest level
of transparency has even greater importance for e-election systems, which by
nature are incredibly hard to understand and scrutinise.

Towards Best Practice for E-election Systems 237

6.1 Current Problems

So far the use of e-election systems in Australia has substantially eroded election
transparency. The mere usage of these systems has managed to obscure many
formerly manual election processes. There is minimal information on what e-
elections systems are used by electoral commissions, how these systems operate
and what failures occurred during elections.

For example most of the public details regarding problems with the AEC’s
e-election systems in the 2010 Federal Election only came to light through a
parliamentary submission by the union that represents AEC staff [20]. It seems
likely that many other problems were not reported at all.

Even for the most critical failures, few or no details are made public. This
is particularly concerning in the case of the vote corruption in iVote, where
the NSWEC determined some of the corrupted votes to be invalid, whilst also
determining the intent of others [33]. The NSWEC has no intention to publish
any of the documentation relating to the iVote incidents, why they occurred and
how they were resolved.

In many instances the outsourcing of e-election systems has created barri-
ers to transparency because of the intellectual property issues. Private vendors
are reluctant to make source code or any other details of their systems pub-
licly available. Even independent experts and auditors engaged in evaluating the
security and reliability of an e-election system are usually forced to sign non-
disclosure agreements with the vendor in order to gain access to source code.
These agreements typically prohibit any comments from being made about the
system without the vendor’s prior approval, and naturally this can severely limit
the public disclosure of adverse findings.

No technical documentation on any Australian e-election systems is publicly
available. Audit reports and other high level reports have been published for
the e-voting systems used in the 2007 Federal Election [7,9,6,8,16,17], the 2010
Victorian State Election [18,22,36] and the 2011 NSW State Election [33,34].
However most contain minimal technical detail and some refer to unpublished
primary documents, including security and code reviews. In addition these re-
ports were all released well after the elections took place (six months later for
the Victorian reports).

The only publicly available source code is for the ACTEC’s EVACS, but code
for some parts of the system has not been disclosed. Other electoral commis-
sions have repeatedly resisted calls to publish source code for their systems. For
example a parliamentary inquiry recommended that the VEC should publish
the source code for its e-counting system on its website and collect comments
and bug reports from the public [35]. But this recommendation was disregarded.
Instead the VEC has so far maintained that it is sufficient to have the system
independently audited and then to provide electronic ballot data to scrutineers,
who can calculate the election result and compare it to the published results [38].
Yet the e-counting system audit report was never published.

Furthermore giving the ballot data to scrutineers does not guarantee that the
counting will be thoroughly scrutinised. Political parties may lack the expertise

238 R. Buckland, V. Teague, and R. Wen

and resources to develop complex STV software that counts the votes and gener-
ates the highly detailed data necessary to verify the official results data.

Moreover revealing ballot data in preferential electoral systems can expose
voters to coercion through signature attacks [24], which are easy to carry out
given the electronic ballot data. In an attempt to allow some verification of the
count (though not of the ballot data), the AEC and ACTEC publish ballot data
on their websites. It remains unclear how best to provide meaningful verification
of electronic STV counting while mitigating the risk of large-scale voter coercion.

A lack of transparency has in certain instances created a great deal of voter
confusion. This has been the case with automatic enrolment in NSW and Vic-
toria. For example the NSWEC SmartRoll system notifies voters of automatically
added enrolments and updated addresses. But few of these voters realise that
this is only for the state roll and that they must still manually update their
details for the federal roll [10]. Consequently the NSW state electoral roll has
diverged substantially from the federal roll for NSW.

Non-transparency of e-election systems has also had an impact outside of elec-
tions. For example the use of highly sophisticated systems to collect vast volumes
of voter data for the electoral roll has created a situation where the public has
little idea of what types of personal information are gathered, which sources
they come from, when the data is collected and to which third parties they are
subsequently provided. Although individuals can inspect roll information that
is available to the general public (primarily names and addresses), they do not
have any means to verify or identify the secondary information collected and
maintained on themselves. Concerns over privacy violations stemming from the
lack of transparency over roll data have been raised on multiple occasions, for
instance by the Australian Privacy Commissioner [12,13,14,15] and Australian
Auditor-General [2], but the issues have yet to be properly addressed.

This privacy risk highlights the dilemma where on the one hand electoral
commissions are under pressure to develop e-election systems to improve the
democratic process; but on the other these systems may unexpectedly come into
conflict with the public interest. The absence of transparency has hampered
public debate over whether the risks and trade-offs are acceptable.

6.2 Towards Best Practice

E-election systems must be strongly transparent. The existing commitment and
dedication to the transparency of manual election processes need to be applied
to e-election systems as well. While the underlying principles of transparency re-
main the same, the challenge is that the complexity and capabilities of electronic
systems make them inherently obfuscated compared to manual systems.

As a result concerted effort is necessary to make e-election systems transpar-
ent by design, so that there is openness as well as supporting material for this
openness. The highest level of disclosure is needed to reveal the full details of the
systems well in advance of an election. This includes source code and technical
documentation, user and training manuals, and reports for the development pro-
cesses, operational processes, risk assessments, reviews and audits. For this to be

Towards Best Practice for E-election Systems 239

possible the engineering, risk assessment and auditing processes must generate
high quality documentation that is promptly released for public inspection.

Only through strong transparency can the public gain a clearer understand-
ing of e-election systems and participate in the scrutiny process. This will then
improve the quality and trustworthiness of e-election systems by allowing the be-
nefits and problems with these systems to be accurately identified, and enabling
well-informed public discussion about whether the right decisions are made in
developing and using the systems.

7 Conclusion

In this paper we have set out four elements of best practice in the development,
deployment and scrutiny of e-election systems. By encouraging the development
and adherence to a process of best practice, our hope is to sustain the current
high level of quality and public confidence in the conduct of Australian elections
as they increasingly move away from manual systems over the coming decade.

So far Australia has embraced the benefits of e-election systems without suffi-
cient consideration of how they fundamentally change the nature of elections and
how to address these issues. The regularity and scale with which serious prob-
lems occur in e-election systems and their development is a clear and present
danger to the security of Australian elections.

These problems demonstrate the need for cultural change to establish and
adopt best practices that guarantee rigour in the engineering, risk assessment and
auditing processes for e-election systems, and that provide strong transparency
of these technologies and processes. This is becoming increasingly urgent as many
systems are currently being rapidly (re)developed, in particular for e-voting.

Best practice is still essential when good cryptographic solutions are adopted.
Most of Australia’s e-election systems lie outside the scope of advanced crypto-
graphic protocols, which are only for e-voting and e-counting. As a result the
overall election process cannot be protected by cryptographic means alone. Even
with strong cryptographic verifiability through protocols such as Helios, some
vote corruption would still go unnoticed by many voters. Furthermore there is
no satisfactory way to recover from catastrophic failures when (or if!) detected
by diligent voters. In a sense cryptographic verifiability is a last line of defence to
help detect failures and assure election integrity if that was indeed maintained.
Additional layers of defence are equally important to help prevent failures.

Best practices for e-election systems do not need radical new or prohibitively
expensive methods, but can be largely based on well-established best practices for
IT, failure-critical systems and traditional paper-based elections. Common sense
dictates that these very straightforward and proven practices should be applied
to e-election systems. Yet they are not followed in Australia and it seems likely
that the situation is similar elsewhere, considering the controversies over the gen-
eral poor quality of e-voting systems worldwide. This motivates the broader need
to establish guidelines that explicitly stipulate what constitutes best practice.

240 R. Buckland, V. Teague, and R. Wen

References

1. Abate, P., Dawson, J., Goré, R., Gray, M., Norrish, M., Slater, A.: Formal Meth-
ods Applied To Electronic Voting Systems. Tech. rep., College of Engineering and
Computer Science, The Australian National University (2004)

2. Australian Auditor-General: The Australian Electoral Commission’s Preparation
for and Conduct of the 2007 Federal General Election. Audit Report No. 28 2009–
2010, Australian National Audit Office (2010)

3. Australian Capital Territory Electoral Commission: The 2001 ACT Legislative
Assembly Election: Electronic Voting and Counting System Review (2002)

4. Australian Capital Territory Electoral Commission: Report on the ACT Legislative
Assembly Election 2008 (2009)

5. Australian Electoral Commission: Submission 181 (supplementary), Inquiry into
the 2001 Federal Election. Joint Standing Committee on Electoral Matters, Par-
liament of Australia (2003)

6. Australian Electoral Commission: Final Evaluation Report: Evaluation of the Elec-
tronic Voting Trial for Blind and Sight Impaired Electors at the 2007 Federal
Election (2008)

7. Australian Electoral Commission: Final Evaluation Report: Evaluation of the Re-
mote Electronic Voting Trial for Overseas Based ADF Personnel Electors at the
2007 Federal Election (2008)

8. Australian Electoral Commission: Report into Electronically Assisted Voting at
the 2007 Federal Election for Electors who are Blind or Have Low Vision (2008)

9. Australian Electoral Commission: Report into Remote Electronic Voting at the
2007 Federal Election for Overseas Australian Defence Force Personnel (2008)

10. Australian Electoral Commission: Submission 87, Inquiry into the 2010 Federal
Election. Joint Standing Committee on Electoral Matters, Parliament of Australia
(2011)

11. Australian Government: Strengthening Australia’s Democracy. Electoral Reform
Green Paper (2009)

12. Australian Privacy Commissioner: Submission 42, Inquiry into the Integrity of
the Electoral Roll. Joint Standing Committee on Electoral Matters, Parliament of
Australia (2000)

13. Australian Privacy Commissioner: Submission 154, Inquiry into the 2001 Federal
Election. Joint Standing Committee on Electoral Matters, Parliament of Australia
(2002)

14. Australian Privacy Commissioner: Submission 164 (supplementary), Inquiry into
the 2001 Federal Election. Joint Standing Committee on Electoral Matters, Par-
liament of Australia (2002)

15. Australian Privacy Commissioner: Submission 172 (supplementary), Inquiry into
the 2001 Federal Election. Joint Standing Committee on Electoral Matters, Par-
liament of Australia (2002)

16. BMM Australia: Audit and Certification of a Remote Electronic Voting System
for Overseas Australian Defence Force Personnel. Australian Electoral Commission
(2007)

17. BMM Australia: Audit of AEC’s Electronic Voting Machine for Blind and Vision
Impaired Voters. Australian Electoral Commission (2007)

18. BMM Australia: Electronically Assisted Voting Audit. Victorian Electoral Com-
mission (2010)

Towards Best Practice for E-election Systems 241

19. Brooks Jr., F.P.: No Silver Bullet - Essence and Accidents of Software Engineering.
IEEE Computer 20(4), 10–19 (1987)

20. Community and Public Sector Union: Submission 95, Inquiry into the 2010 Federal
Election. Joint Standing Committee on Electoral Matters, Parliament of Australia
(2011)

21. Computing Research and Education Association of Australasia: Submission 116.1
(supplementary), Inquiry into the 2007 Federal Election. Joint Standing Commit-
tee on Electoral Matters, Parliament of Australia (2008)

22. Computing Research and Education Association of Australasia: Report on the
VEC-Scytl Electronic Voting System for the 2010 Victorian Election. Victorian
Electoral Commission (2010)

23. Das, A., Niu, Y., Stegers, T.: Security Analysis of the eVACS Open-Source Voting
System. Tech. rep., Department of Computer Science. University of California,
Davis (2005)

24. Di Cosmo, R.: On Privacy and Anonymity in Electronic and Non Electronic Vot-
ing: the Ballot-As-Signature Attack. HAL Open Archive Document hal-00142440,
version 2 (2007)

25. Downie, G.: Libs set to take third seat in Molonglo. The Canberra Times (October
2001)

26. Goldberg, I., Wagner, D.: Randomness and the Netscape Browser. Dr. Dobb’s
Journal (1996)

27. Joint Standing Committee on Electoral Matters, Parliament of Australia: The Con-
duct of Elections: New Boundaries for Cooperation (1992)

28. Macilwain, M.: History of the State Electoral Office, 1907-2007. South Australian
Electoral Office (2007)

29. New South Wales Electoral Commission: Annual Report 2006-2007 (2007)
30. New South Wales Electoral Commission: Report on the Feasibility of Providing

iVote Remote Electronic Voting System (2010)
31. New South Wales Electoral Office: Submission 10, Inquiry into the Administra-

tion of the 2003 NSW Election. Joint Standing Committee on Electoral Matters,
Parliament of New South Wales (2005)

32. Oostveen, A.M.: Outsourcing Democracy: Losing Control of E-Voting in the Neth-
erlands. Policy & Internet 2(4), 201–220 (2010)

33. PricewaterhouseCoopers: iVote Post Implementation Report. New South Wales
Electoral Commission (2011)

34. PricewaterhouseCoopers: iVote Pre Implementation Report. New South Wales
Electoral Commission (2011)

35. Scrutiny of Acts and Regulations Committee, Parliament of Victoria: Final Report
on the Inquiry into Electronic Democracy (2005)

36. Scytl: Comments from Scytl on the CORE Report from the Electronic Voting
Solution Used in 2010 Victorian Election. Victorian Electoral Commission (2011)

37. Tasmanian Electoral Commission: Annual Report 2006-2007 (2007)
38. Victorian Electoral Commission: Submission 27, Inquiry into Electronic Demo-

cracy. Scrutiny of Acts and Regulations Committee, Parliament of Victoria (2005)
39. Victorian Electoral Commission: Report to Parliament on the 2006 Victorian State

Election — Submission 20, Inquiry into the 2006 Victorian State Election. Electoral
Matters Committee, Parliament of Victoria (2007)

40. Wen, R.: Online Elections in Terra Australis. Ph.D. thesis, School of Computer
Science and Engineering, The University of New South Wales (2010)

On the Side-Effects of Introducing E-Voting

James Heather1, Morgan Llewellyn2, Vanessa Teague3, and Roland Wen4

1 Department of Computing, University of Surrey, Guildford, Surrey GU2 7XH, UK
j.heather@surrey.ac.uk

2 IMT Lucca
hllewell@gmail.com

3 Dept. Computer Science and Software Engineering, The University of Melbourne
vjteague@unimelb.edu.au

4 The University of New South Wales, Sydney
rolandw@cse.unsw.edu.au

Abstract. The literature abounds with discussions on the relative se-
curity merits of various voting systems, and on whether a move towards
electronic voting is, from a security perspective, something to be encour-
aged or discouraged. Little has been said, however, on whether there
would be unintended side-effects of changing the voting technology, in
terms of the votes cast. Security issues aside, should we expect the in-
troduction of an electronic voting system to affect the results of the
election?

This paper attempts to tease out some of the possible effects, by
analysing ballot data from the 2008 Australian Capital Territory (ACT)
Legislative Assembly Election.

1 Introduction

Significant changes to existing voting technology may produce intended or un-
intended side-effects on voter behaviour and participation. For instance, in re-
sponse to the problems with the 2000 Florida presidential election, Florida voting
precincts experienced widespread voting technology change from 2000 to 2004.
Results of this change suggest that the change in voting technology was respon-
sible for a 90% drop in the residual vote rate (that is, the proportion of ballots
that were spoilt) during the 2004 election [HPT+10]. Similarly, a voting tech-
nology change between 2000 and 2004 is attributed to a 35% drop-off in residual
vote rates in Michigan [HPT+10]. While debate exists over the significance of
the finding, proponents of postal voting often contend this technology increases
voter turnout relative to traditional polling station voting.

New voting technologies may also affect voter behaviour by altering percep-
tions of ballot security and secrecy of the ballot choice. Differences in voter trust,
or lack thereof, is often cited as an important consideration when proposing a
change in voting technologies [AHT09]. Implementation of a new voting technol-
ogy without adequate poll worker training may reduce voter evaluations of the
voting process [HMP09]. Changes to existing voting technology can also take a

A. Kiayias and H. Lipmaa (Eds.): VoteID 2011, LNCS 7187, pp. 242–256, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

On the Side-Effects of Introducing E-Voting 243

partisan tone if ballot order and turnout are affected. It remains an open question
if differences in voting technology affect vote choice and turnout decisions.

Indeed, there are specific instances of election officials implementing a new
voting technology in an effort to change voter behaviour. For instance, in the
context of Australian elections, a randomized ballot ordering was introduced
with the explicit intent of evenly dispersing randomly cast votes across all
candidates.

This paper uses data from the 2008 Australian Capital Territory (ACT)
Legislative Assembly election to analyze differences in voter behaviour across
electronic and paper-based voting technologies. We also draw out several other
aspects of voter behaviour from the data.

The results are important in gaining an understanding of how the electoral
system can affect the results. This will be of particular interest to researchers
who design and build new election technology. For instance, one of the most
promising contenders for a secure voting system that could see real world use
is Prêt à Voter [RBH+09]. Introducing Prêt à Voter into a jurisdiction that
currently uses a traditional voting system would require switching to an elec-
tronic infrastructure; it would also involve randomizing the order of the names
of the candidates on the ballot paper; and it may mean the publication of full
(anonymized) ballot data. Would making such changes have unintended side-
effects on voter behaviour?

2 ACT Legislative Assembly Elections

The ACT Legislative Assembly is a state-level unicameral parliament with three
multi-seat electorates: Brindabella (five seats), Ginninderra (five seats) and Mo-
longlo (seven seats). Members are elected using the Simple Gregory variant of
the single transferable vote (STV), which is an electoral system where voters
rank the candidates in order of preference, with a minimum of one preference.
In a typical election there are 20–30 candidates per electorate, with the major
parties being Labor, the Liberals and the Greens.

An unusual feature of ACT Legislative Assembly elections is the use of ‘Rob-
son rotation’ ballots (see Figure 1). Under Robson rotation, the order of the
parties is fixed (chosen by a random draw, independently for each electorate),
but the order of candidates within each party is rotated in such a way that there
are numerous different versions of each ballot paper (60 for Brindabella and
Ginninderra, and 420 for Molonglo). The result of the Robson rotation is that,
taken over the entire electorate, no single candidate benefits from random voting
(such as simply voting for a party’s first n candidates). What is most interesting
about Robson rotation is that it was designed to alter voter behaviour; we will
discuss this in Section 4.

Also unlike most STV elections in Australia, Legislative Assembly elections do
not have group voting tickets, where voters have the additional option of selecting
a ticket that corresponds to an ordering of preferences predetermined by groups
of political parties and/or independent candidates. Group voting tickets tend to

244 J. Heather et al.

+ +
Ballot Paper Election of 5 Members 2008 Legislative Assembly for the Australian Capital Territory

Electorate of Brindabella
Number five boxes from 1 to 5 in the order of your choice

You may then show as many further preferences as you wish by writing numbers from 6 onwards in other boxes

A B C D E

Brendan
SMYTH

James
SIZER

Brian
McLACHLAN

Amanda
BRESNAN

Mick
GENTLEMAN

David
MORGAN

Val
JEFFERY

Ben
DOBLE

Sue
ELLERMAN

Joy
BURCH

Steve
PRATT

Geoff
RAKE

Wayne
SIEVERS

Steve
DOSZPOT

Burl
DOBLE

Tracy
MACKEY

Audrey
RAY

Bruce
RITCHIE

John
HARGREAVES

CANBERRA
LIBERALS

COMMUNITY
ALLIANCE

AUSTRALIAN
MOTORIST PARTY

THE GREENS AUSTRALIAN
LABOR PARTY

SAMPLE

1 1

+ +
Fig. 1. Sample Ballot Paper for Brindabella

discourage expressivity because voters are more inclined simply to choose the
convenience of a group ticket instead of ranking the candidates in the preferred
order. For example, in Federal STV elections, over 95% of voters typically use
group tickets. From the point of view of the data analyst, it is helpful that
the ACT does not allow group tickets, because they distort the ballot data by
encouraging voters to vote for a quick approximation to their true preferences.

Like all elections in Australia, ACT Legislative Assembly elections provide
voters with numerous voting options such as pre-poll at major polling places
and postal voting. Voters can also vote at any polling place, even outside their
home electorate. The ACT is very progressive compared to other Australian
jurisdictions in that e-voting has been available as a voting option in some polling
stations for the last 10 years.

For the 2001 Legislative Assembly Election, the ACT Electoral Commission
developed the Electronic Voting and Counting System (EVACS). The system
was initially used on a trial basis but is now widely used on a permanent basis.
The e-voting component of EVACS compromises voting machines that display
instructions in a choice of languages, and certain machines designed for visually
impaired voters have special facilities including large screens, headphones and
audio instructions. EVACS voting machines are available in major polling places
and can be used by any voter.

EVACS also has an e-counting module that implements the STV counting
procedure, which would be extraordinarily difficult to conduct by hand. Paper
ballots are scanned with an intelligent character recognition system and manually
verified, then uploaded into EVACS and combined with the electronically cast
ballots.

On the Side-Effects of Introducing E-Voting 245

This unique combination of e-voting and e-counting for STV generates ex-
traordinarily useful electronic preferential ballot data. To facilitate statistical
analysis, this data contains not only each vote’s candidate rankings but also
metadata including:

– the Robson rotation ballot positions of the candidates,
– the polling place at which the vote was cast,
– whether the vote was cast electronically or on paper, and
– whether the vote was cast during pre-polling or on election day.

This data is publicly available on the ACT Election Commission website. Our
analysis in this paper is drawn from the data for the 2008 Legislative Assembly
Election [ACT08].

3 Party Selection and Voting Interface

In some polling places, ACT voters were given a choice as to whether to vote
electronically or on paper. We analyze voter choices over the voting technology
in order to determine if correlation exists between the content of the vote and
the method of casting. Of 84 polling places in the ACT 2008 election, five lo-
cations (City, Tuggeranong, Belconnen, Gungahlin, Woden) offered the option
of electronic voting, to polling day voters and to pre-poll voters. There were no
polling places that mandated electronic voting.

Across the 84 polling sites, only 20% of votes were cast electronically. However,
the low rate of electronic voting seems to stem from the fact that only five
polling places offered the option of electronic voting rather than voters eschewing
electronic devices. In the five locations with electronic voting machines present,
approximately 82% of votes cast were done so electronically (41,016 of 50,232
total votes cast). This is a strong indication that, given the choice, ACT voters
would choose to use the ACT electronic voting interface rather than paper.

However, the choice of voting interface appears to be correlated with the
content of the vote. Table 1 shows the percentage share of the vote for each of
the three largest parties (Labor, Liberal, Greens), split by region and by voting
method.

The table shows, for each region and each party, the percentage share of the
paper votes and the percentage share of the electronic votes; the final column
shows the factor by which the vote share changes when moving from paper to
electronic (that is, it shows the electronic share divided by the paper share).

It is striking that in every region, the two largest parties, Labor and Liberals,
gained a higher share of the paper vote than the electronic vote, whereas the
Green vote share is much higher in every region in the electronic ballots than in
paper.

3.1 Analysis

Perhaps it is not surprising that Green voters are more likely to choose to vote
electronically. Familiarity with electronics seems to be negatively correlated with

246 J. Heather et al.

Table 1. First preferences split by voting interface

Party Region Paper % E-vote % Factor

Labor

Brindabella 35.88 35.03 0.98

Ginninderra 41.64 38.12 0.92

Molonglo 35.06 34.78 0.99

Overall 37.58 35.77 0.95

Liberal

Brindabella 38.86 36.55 0.94

Ginninderra 29.32 28.44 0.97

Molonglo 35.80 33.32 0.93

Overall 34.22 32.91 0.96

Green

Brindabella 10.24 14.63 1.43

Ginninderra 11.89 15.37 1.29

Molonglo 13.66 17.03 1.25

Overall 12.24 15.89 1.30

age, and Green voters are typically younger. In addition, it is plausible that
Green voters may perceive and choose electronic voting as a voting system with
a smaller footprint in terms of marginal resource consumption per voter. Fur-
thermore, since the voting machines have special features that encourage usage
by voters with visual impairment and voters from a non-English speaking back-
ground, there may also be some correlation between these voters and Green
voters.

In the ACT, and in Australia as a whole, one might expect the effect of
voting technology on the election result to be close to zero. Voting is compulsory
in Australia, and one’s choice of voting interface should have a negligible affect
on the final tally. However, preferential elections suffer from an unusually high
rate of invalid voting (roughly 3–4% in most ACT elections, which equates to
about 3000 votes per seat), primarily due to voter error in marking ballots, for
instance through duplicate or missing rankings [HY07]. For voters who choose to
vote electronically, such inadvertent errors are eliminated because the EVACS
voting machine notifies voters when they attempt to cast an invalid vote. Thus,
in the context of electronic voting it is likely that invalid voting is intentional.
Since Green voters have a greater tendency to vote electronically, we would
expect lower invalid voting rates among Greens, which would effectively increase
the overall Green share of the vote.

We predict that this effect would be much more pronounced if a voting system
with only an electronic interface were to be introduced in a jurisdiction without
compulsory voting. One’s decision on whether or not to bother to vote is likely
to be influenced by one’s level of comfort with the voting interface. We would
expect, therefore, an electronic voting system to encourage turnout among Green
voters more than among other voters.

On the Side-Effects of Introducing E-Voting 247

It will be interesting to see whether the same pattern is repeated in the 2012
Legislative Assembly election. If unfamiliarity with electronic systems is a gen-
erational phenomenon, the effect will increase as the lower voting age range is
filled with technophilic voters and the oldest technophobic voters die; then the
effect should stabilize as the first technophiles grow older.

Familiarity with the electronic voting system may also have an effect: if the
system was perceived by 2008 voters as easy to use, it might encourage reticent
voters to use it in 2012.

4 Ballot Ordering Effects

The organisation of candidate information on ballot papers can influence how
voters vote. For example, full-face ballots, which present all the information on
a single page, are used almost universally because a ballot paper comprising
multiple pages is likely to favour candidates on the first page.

Most jurisdictions worldwide currently require a fixed ballot order for a par-
ticular election, consistent across all ballot forms. However, some voting systems,
notably Prêt à Voter, mandate a random order of candidates on the ballot paper.

The ACT Legislative Assembly elections are interesting in this regard: the or-
der of the parties is fixed, but the order of candidates within each party is deter-
mined by Robson rotation. This makes it possible to analyze the data for ballot
ordering effects within parties, by considering whether the votes cast with one
order are significantly different from the votes cast with another order; however,
because the party order is fixed, it makes it rather harder to glean information
as to the effect of the ordering of parties on the ballot paper.

A system like Prêt à Voter is not designed to cope with having several can-
didates standing for each party, and yet allowing each party’s candidates to be
grouped together on the ballot paper; in fact, we are not aware of any electronic
voting system that allows for this and yet also adheres to the principle of ensur-
ing that the voting terminal does not learn the content of the vote. Enhancing
the design of Prêt à Voter to deal with this (not uncommon) situation is worthy
of investigation; the results in this section will be informative in assessing the
side effects of the various possibilities.

Table 2 shows the vote share achieved by the three main parties when their
leaders were, and were not, top of the ballot within their party. The third column
shows how many ballots were cast that had a ballot ordering placing the named
candidate first within the party, and how many when the named candidate was
not listed first; the final column shows the share of the vote received by the
party in each case. It will be seen that the effect of the relative ordering of the
leader’s name has no significant effect on the vote share for that party as a whole.
This suggests that ballot order within parties does not significantly affect voters’
choice of party.

248 J. Heather et al.

Table 2. Effect on party vote of name ordering

Candidate Top? Ballots Vote %

Jon Stanhope (Lab)
Yes 11980 40.7

No 48069 40.0

Zed Seselja (Lib)
Yes 12615 31.2

No 75651 31.6

Meredith Hunter (Green)
Yes 29955 14.1

No 30094 13.7

4.1 Donkey Votes

One natural consequence of compulsory voting is that many people who have
no interest in politics or in who wins the election are forced to vote. Some will
cast blank or spoilt ballots (‘informal votes’); but there is evidence that quite a
number of people cast votes that give preferences according to the printed order
on the ballot paper, so as to fulfil their legal duties with minimum effort. These
votes are termed ‘donkey votes’.

A previous study [TEC08] considered some forms of donkey voting in the
ACT 1998 election, and concludes that 22% of votes were donkey votes. However,
this study considers only voting behaviour that is indifferent to the ordering of
candidates within a party, and does not look at votes that are indifferent to the
relative ordering of the parties themselves. A ‘linear vote’, in the terminology
of [TEC08], is one that, for each party, gives its rankings in ascending order down
the ballot paper, and so is sensitive to the printed order of the candidates within
each party. A ‘circular vote’ is one that selects a particular candidate within
each party, and numbers downwards from that candidate, and then continues
the ranking from the top. Both linear votes and circular votes do demonstrate
some choice on the part of the voter, and are therefore not full donkey votes.

The ACT uses Robson rotation to counter the effect of linear and circular
voting by distributing such votes evenly across all candidates within a party.
However, the ordering of parties on the ballot paper is drawn by lots before the
election, and, for any given region, is the same for every ballot paper.

It is interesting to ask how many donkey votes there were in the ACT 2008
election. We will consider here only votes that show no clear preference for one
party over another.

In addition, in this section we will consider only votes that expressed a full
ranking. The reason for this is that these are the clearest candidates for donkey
votes. The quickest way to cast a legitimate ballot is to write a ‘1’ in the top
right box and then stop1; but since this is a plausible genuine expression of
preference, it is impossible to determine which of these votes are donkey votes.

1 Despite the wording on the ballot papers, votes that choose only one candidate are
treated as formal votes.

On the Side-Effects of Introducing E-Voting 249

Similar reasoning applies to votes that fill in the first column and then stop.
If the party order were randomized on the ballot papers, it would be possible
to analyze the effect of the ordering; but unfortunately the ordering is fixed for
each region.

Row-Monotonic Votes. A vote is row-monotonic if the projection that maps
each ranking to the row in which it appears is monotonic; in other words, the
vote is filled in from top to bottom down the ballot paper, but without any
constraint on the relative rankings within a row.

There were very few row-monotonic votes in the ACT 2008 election: 4 in
Brindabella (of 63,334 ballots in total), 3 in Ginninderra (of 60,049) and 3 in
Molonglo (of 88,266). In each region, one of these is also monotonic within each
row; that is, the vote is filled in from left to right (or vice versa) across the top
row, and then the same across the second row, and so on. (Not all columns are
the same length, so not every row has the same number of candidates in it.)

It seems that row-monotonic donkey votes are not a significant problem. This
is perhaps because the boxes in each column are nearer together than the boxes
within each row, and so it is less effort to fill in the columns one by one. This is
where we turn next.

Column-Monotonic Votes. A vote is column-monotonic if the projection
that maps each ranking to the column in which it appears is monotonic; in other
words, the vote is filled in from left to right or right to left across the ballot
paper, but without any constraint on the relative rankings within a column.

In Brindabella, there were 828 column-monotonic votes. Of these, 521 went
left to right, and 307 went right to left. These seem natural candidates for donkey
votes; the 120 ballots that were fully monotonic (the ranking goes down the first
column, then down the second, then down the third, and so on) in particular
show strong evidence in this direction.

However, these numbers are in stark contrast to those from Ginninderra and
Molonglo. In Ginninderra, there were 16 column-monotonic votes, all of which
went left to right; in Molonglo there were 19 that went left to right and 2 that
went right to left. Ginninderra and Molonglo each had only 9 fully monotonic
ballots.

This gives Brindabella a column-monotonic rate of 1.3%, compared with
0.026% for Ginninderra and 0.021% for Molonglo. Why so much higher in Brind-
abella?

The answer appears to be related to the ordering of the parties on the ballot
papers in the three regions. Table 3 below shows the party ordering for each
region. The Brindabella party ordering is, purely as a result of the random
draw, an ordering that may well fit in with many voters’ preferences, either in
its listed direction or in reverse. This is all the more so because the Liberal party
and the Labor party make a point of instructing their followers (not just in the
ACT but nationwide) to put the other last in their ranking, and generally adopt
this policy when constructing how-to-vote cards. Such cards are not used in the
ACT; but the thinking may well be adopted by ACT voters in any case. The

250 J. Heather et al.

Table 3. Party order on ballots in each region

Brindabella Ginninderra Molonglo

Liberal Motorists Pangallo Independents

Community Alliance Labor Labor

Motorists Community Alliance Community Alliance

Greens Greens Richard Mulcahy

Labor Liberal Motorists

Ungrouped Liberal Democrats

Ungrouped Greens

Liberals

Ungrouped

third largest party, the Green Party, is usually more friendly to the Labor party
than to the Liberals, and is in coalition with the Labor party in both the Federal
House of Representatives and the Tasmanian Parliament. A Liberal voter who
distrusts the Greens and Labor is reasonably likely to vote in the listed order,
and a Labor voter who distrusts the Liberals but is amenable to the Greens is
reasonably likely to vote in reverse order.

The Ginninderra and Molonglo orderings, however, are much less natural
orderings of the parties. In particular, none of the three main parties is listed
first or last. A carefully considered column-monotonic vote in Ginninderra or
Molonglo would require an idiosyncratic political persuasion, to say the least.

It seems likely, then, that most of the ballots in Brindabella that appear to
be full donkey votes are in fact sincerely cast ballots that accord roughly with
the voters’ preferences. (It is possible that the preference ordering of the two
very small parties, the Community Alliance and the Motorists, is still affected
by ballot ordering.) This makes for an instructive cautionary tale: if we had only
the Brindabella data, we might be all too ready to class all of the fully monotonic
ballots as donkey votes.

Moral: think carefully before you call someone a donkey.

5 Expressivity

ACT Legislative Assembly elections allow voters to express as many preferences
as they wish, from choosing a single candidate to giving a full ranking of all
candidates. Since STV satisfies the later-no-harm criterion, there is no rational
basis for not submitting a full ranking, except if the time cost of filling in the
ballot is considered to outweigh the potential benefits of changing the result.

One might therefore hope that a well designed electronic system would en-
courage voters to be more expressive, and to submit a fuller ranking than they
would otherwise do. Indeed, a first pass of the 2008 data suggests that there is
a small correlation between voting interface and expressivity.

On the Side-Effects of Introducing E-Voting 251

Table 4. Number of preferences expressed by paper and electronic voters

Region Seats/Cands Interface Votes Expressivity

Brindabella 5/19
Paper 2149 7.07

Electronic 11740 7.37

Ginninderra 5/27
Paper 3254 7.18

Electronic 11244 7.59

Molonglo 7/40
Paper 3813 9.67

Electronic 18032 9.75

Table 4 shows a measure of expressivity for paper and electronic voters in
the five regions where both interfaces were offered. The final column shows the
mean average number of candidates ranked by the voters. The figures are quite
compelling: in each region, the number of preferences given by electronic voters
was higher than that given by the paper voters.

There were more candidates in Ginninderra than in Brindabella, which has
a small effect on expressivity; but it seems that the number of seats is the
key indicator. This is because the majority of voters choose a party, rank the
candidates from their chosen party, and then stop; and since the largest parties
field the same number of candidates as there are seats, most voters’ rankings are
the same length as the number of seats.

Alas, this behaviour is what makes the numbers appear more useful than they
in fact are. The extra expressivity of electronic voters turns out to be a side effect
of the correlation with party choice we have already noted in Section 3. Figure 2
shows, for each possible length of ranking, how many voters cast a ranking of
that length. The charts are broken down according to region.

The huge numbers expressing the same number of preferences as there are
seats is immediately apparent: the peak dominates the skyline in each case. The
second highest peak is consistently for those who diligently give a complete rank-
ing of all candidates. (It is perhaps slightly disappointing from a mathematical
perspective that so few voters think to save time and energy by eliding the final
preference!)

What next catches the eye are the local maxima evident at 7 (Brindabella
and Ginninderra) and 10 (Molonglo). How do we explain these?

Australian politics is dominated by the Labor Party and the Liberal Party.
In the previous (2004) election, the Green party had won one seat in Molonglo,
and the rest of the seats were shared by Labor (nine) and the Liberals (seven).
For this reason, most other parties do not consider it worthwhile to field as
many candidates as there are seats. (The only other party to field a full set of
candidates, even in one region, was the Australian Motorist Party, with around
5% of first preferences across the ACT.) The Green party thus chose to field two
candidates in Brindabella, two in Ginninderra and three in Molonglo.

252 J. Heather et al.

(a) Brindabella

(b) Ginninderra

(c) Molonglo

Fig. 2. Expressivity in the ACT

On the Side-Effects of Introducing E-Voting 253

This explains the local maxima. In each region, the peak comes at the sum
(7/7/10) of the number of seats (5/5/7) and the number of Green party candi-
dates (2/2/3). Many of the voters who favour one of the two dominant parties
rank the candidates from their party and then stop; a large proportion of Green
voters, on the other hand, know that their candidates are less likely to win
than those under the Labor or Liberal banner, and so, having ranked the Green
candidates in order, they then choose either Labor or Liberal and rank those
candidates too.

So Labor and Liberal voters, on the whole, tended to cast rankings of length
5, 5 and 7 in Brindabella, Ginninderra and Molonglo respectively; many Green
voters cast rankings of length 7, 7 and 10. This gives us the local maxima at
7/7/10; but it also explains the greater expressivity in the electronically cast bal-
lots. Voting Green is positively correlated with voting electronically; and voting
Green is also positively correlated with greater expressivity.

The ACT data, therefore, does not support the conclusion that electronic
voting encourages voters to give a fuller ranking of candidates.

However there are some indications elsewhere in Australia that electronic vot-
ing might increase expressiveness. In the 2007 Federal Election, the Australian
Electoral Commission trialled two electronic voting systems. One trial used a
remote voting system for Australian Defence Force (ADF) personnel deployed
overseas and the other used special voting machines for blind and visually im-
paired (BVI) voters.

Ballot papers in Federal STV elections enable voters to select a group voting
ticket rather than marking their own preferences, with the latter commonly
referred to as voting ‘below-the-line’. Federal elections are very strict in that
below-the-line voting requires voters to rank every single candidate (and in many
cases there can be around 80 candidates). As a result of these onerous rules,
only 3.2% of voters overall voted below-the-line in 2007, which is quite typical
at Federal level. But post-election evaluations of the trial systems revealed that
voters who used the electronic voting systems were more likely to vote this way:
5.2% in the ADF trial [AEC08b] and 10% in the BVI trial [AEC08a]. The ADF
evaluation found a correlation between network speeds and voting below-the-
line, and this suggests that voters make a conscious trade-off between the desire
to be expressive and the time it takes to cast a vote.

Although no firm conclusions can be drawn from a data sample of this size, it
is remarkable that such a high proportion of blind and visually impaired voters
who participated in the trial chose to mark all the preferences in spite of the
obvious burden in doing so. A possible reason is that BVI voters were making
the most of the opportunity to cast a secret ballot: the BVI evaluation found
high levels of satisfaction with voter privacy.

6 ‘Italian’ Attacks

Many secure electronic voting systems require the full ballot data to be published
after the election, to enable auditing. Prêt à Voter, for instance, relies for its

254 J. Heather et al.

integrity on publication of both encrypted and unencrypted sets of ballots, with
a proof that the sets correspond to the same ballots, but without any information
as to the mapping between the sets. Some work has been done on tallying STV
elections without disclosing the full ballot data [Hea07, BMN+09], but these
solutions are expensive, and if full disclosure can be justified then it is a more
efficient option.

One potential weakness of full disclosure is that it allows so-called ‘Italian’
attacks [Hea07, DC07], where a coercer can bribe and intimidate voters to vote
for prescribed candidates. As a simple example, each coerced voter can be in-
structed to choose a specified candidate as the first preference, then mark the
lower preferences so that the ordering forms a uniquely identifiable ‘signature’.
After the election the coercer uses the electronic ballot data to check which sig-
natures appear, and hence which voters complied with their given instructions.
In this way the anonymity of the secret ballot is violated.

How easy is it to mount an Italian attack that will not be obvious from the
published ballots? Will such coerced ballots stand out as being atypical voter
behaviour?

This is a difficult question to answer definitively, because it depends on what
qualifies as ‘typical’ voter behaviour: what is needed is a coherent and accurate
model of how voters fill in their ballots. It may be possible to construct such a
model from the ACT ballot data, and this is something that we plan to consider
in future work; however, there are some natural options for an Italian attacker
that appear attractive with the analysis that we have conducted so far.

The easiest strategy for such an attacker is to specify a sequence of candidates
who must be placed at the start of the ranking, and then some random sequence
of candidates to follow. This random sequence must be different for each voter
whom the attacker wishes to coerce, so that he can determine individual com-
pliance. One might hope that such ballots would be readily identifiable: voters
do not cast their ballots randomly, but tend to give similar rankings to similar
candidates, and in particular to candidates from the same party.

The ACT ballots do not suggest that these attacks would be easy to spot:
there are, in fact, quite a number of voters who vote seemingly randomly. One
measure of this is the number of party switches on a ballot—that is, the number
of instances of two consecutive preferences that do not select candidates from
the same party. And indeed, on this measure, most voters do fill in ballots with a
small number of party switches. But a surprising number of voters switch parties
at almost every turn.

In Molonglo, for instance, there were a total of 88,266 ballots cast. Most of
these were for candidates from a single party, and thus contained no switches.
A total of 53,867 ballots contained between one and ten switches. But 63 bal-
lots contained more than thirty party switches; and 7 ballots contained thirty-
nine switches. Since there were only forty candidates, this means that seven
voters took the trouble to construct a ranking that never selected the same
party for two consecutive candidates! Similar observations apply to Brindabella
and Ginninderra. Some of these are row-monotonic donkey votes discussed in

On the Side-Effects of Introducing E-Voting 255

Section 4.1, but this by no means accounts for all of the ballots with a high
number of switches.

There are only two possibilities. Either Italian attacks are already taking place
and are present in the ACT data—a fascinating point for further investigation,
but it seems unlikely—or such attacks have plenty of room for hiding. An attacker
who wants scope for coercing 40,000 voters (quite an operation) could keep all
the ballots having at most eight party switches even if he always chose the same
eight candidates from which to choose random orderings and they all came from
different parties.

It seems likely, then, that without substantially more sophisticated models
of voter behaviour, evidence of Italian attacks will be hard to detect from the
published ballot data.

7 Conclusion and Future Work

In this paper, we have drawn various lessons from the ACT 2008 ballot data.
These lessons are vital considerations when discussing the possibility of changing
the electoral system, because it is important to think through not just the pri-
mary effects of such changes but also the secondary, often unintentional, effects.

Our ultimate aim is to use ballot data to construct a model of voter behaviour.
However, it may well be the case that real world election data is not sufficient
to model voter behaviour. Although the ACT data is rich, it does not contain
information such as which voters chose a language other than English, or used
features for the visually impaired; nor does it log the time at which each ballot
was cast. Such fine-grained details would help to rule out certain factors when
investigating trends and specific hypotheses, though they are also likely to vi-
olate anonymity, and so it seems unlikely that this level of detail will ever be
forthcoming for governmental elections. Further studies are needed to determine
how to obtain more definitive conclusions.

There appears to be growing interest in electoral systems that allow greater
expressivity than that afforded by first-past-the-post: for example, there have
recently been (unsuccessful) referenda for the alternative vote in the UK, and
STV in Canada. If these systems were to be adopted, then e-voting might have
an increased impact on voter behaviour and the election outcome. Possible pos-
itive influences might include reductions in invalid voting and donkey voting,
while negative influences might include voter confusion due to poor user inter-
face design, which could for instance cause voters to erroneously cast valid votes
that are contrary to their intention. The potential for such consequences war-
rants careful assessment when considering the adoption of e-voting and/or new
electoral systems.

More generally, electronic election systems may have already had an impact
on increasing expressivity. It would seem that large-scale STV elections are fea-
sible only with e-counting because the counting procedure is too complex to
perform manually. Without e-counting, it is improbable that STV would have
been used for Iceland’s 2010 Constitutional Assembly, which elected 25 delegates

256 J. Heather et al.

from 525 candidates. In Australia, it appears that STV would not have become
so entrenched without e-counting. For example, New South Wales Legislative
Council elections use a highly complicated version of STV and have 21 seats,
over 300 candidates and 4.5 million voters. Counting the votes manually would
simply not be possible.

References

[ACT08] Australian Capital Territory Electoral Commission: Ballot paper preference
data – 2008 Election (2008)

[AEC08a] Australian Electoral Commission: Final Evaluation Report: Evaluation of
the Electronic Voting Trial for Blind and Sight Impaired Electors at the
2007 Federal Election (2008)

[AEC08b] Australian Electoral Commission: Final Evaluation Report: Evaluation of
the Remote Electronic Voting Trial for Overseas Based ADF Personnel
Electors at the 2007 Federal Election (2008)

[AHT09] Alvarez, M.R., Hall, T.E., Trechsel, A.H.: Internet Voting in Comparative
Perspective: The Case of Estonia. Political Science Politics 42(03), 497–505
(2009)

[BMN+09] Benaloh, J., Moran, T., Naish, L., Ramchen, K., Teague, V.: Shuffle-Sum:
Coercion-Resistant Verifiable Tallying for STV Voting. IEEE Transactions
on Information Forensics and Security (2009)

[DC07] Di Cosmo, R.: On Privacy and Anonymity in Electronic and Non Electronic
Voting: the Ballot-As-Signature Attack. HAL Open Archive Document hal-
00142440, version 2 (2007)

[Hea07] Heather, J.A.: Implementing STV Securely in Prêt à Voter. In: Proceed-
ings of the 20th IEEE Computer Security Foundations Symposium, Venice,
Italy, pp. 157–169 (July 2007)

[HMP09] Hall, T.E., Quin Monson, J., Patterson, K.D.: The human dimension of
elections: How poll workers shape public confidence in elections. Political
Research Quarterly 62(3), 507–522 (2009)

[HPT+10] Hanmer, M.J., Park, W.-H., Traugott, M.W., Niemi, R.G., Herrnson, P.S.,
Bederson, B.B., Conrad, F.C.: Losing fewer votes. Political Research Quar-
terly 63(1), 129–142 (2010)

[HY07] Hill, L., Young, S.: Protest or error? Informal voting and compulsory voting.
Australian Journal of Political Science 42(3), 515–521 (2007)

[RBH+09] Ryan, P.Y.A., Bismark, D., Heather, J.A., Schneider, S.A., Xia, Z.: The
Prêt à Voter Verifiable Election System. IEEE Transactions on Information
Forensics and Security 4(4), 662–673 (2009)

[TEC08] Tasmanian Electoral Commission: A Discussion Paper on Robson Rotation
in Tasmania (2008)

Author Index

Allepuz, Jordi Puiggaĺı 36

Buckland, Richard 224
Bursuc, Sergiu 190

Castelló, Sandra Guasch 36
Chaum, David 140
Culnane, Chris 174

Demirel, Denise 158
DeYoung, Henry 53

Essex, Aleksander 122

Florescu, Alex 140
Frosch, Tilman 89

Gjøsteen, Kristian 1
Grewal, Gurchetan S. 190

Haenni, Rolf 71
Heather, James 174, 242
Heiberg, Sven 208
Heiderich, Mario 89
Hengartner, Urs 122
Henning, Maria 158
Henrich, Christian 122

Joaquim, Rui 104

Koenig, Reto 19, 71

Laud, Peeter 208
Llewellyn, Morgan 242

Nandi, Mridul 140
Niemietz, Marcus 89

Popoveniuc, Stefan 140

Ribeiro, Carlos 104
Rubio, Jan 140
Ryan, Mark D. 190
Ryan, Peter Y.A. 158

Schläpfer, Michael 71
Schneider, Steve 158, 174
Schürmann, Carsten 53
Schwenk, Jörg 89
Spycher, Oliver 19, 71
Srinivasan, Sriramkrishnan 174

Teague, Vanessa 224, 242

Volkamer, Melanie 19, 158
Vora, Poorvi L. 140

Wen, Roland 224, 242
Willemson, Jan 208

Xia, Zhe 174

Zagórski, Filip 140

	Title
	Preface
	Table of Contents
	Norwegian Internet Voting
	The Norwegian Internet Voting Protocol
	Introduction
	The Underlying Group Structure
	The Cryptosystem
	Preliminaries
	Definition
	Security Requirements
	Instantiation

	The Voting Protocol
	Assumptions about the Environment
	Additional Cryptography
	Key Generation
	Protocol
	Security Analysis

	Conclusion
	References

	Transparency and Technical Measuresto Establish Trust in Norwegian Internet Voting
	Introduction
	The Norwegian Internet Voting Project and System
	System Description from the Voters' Perspective
	System Entities
	Setup
	Voting
	Tallying

	Transparency
	Separation of Duty
	Verifiability
	Individual Verifiability
	Universal and Eligibility Verifiability

	Further Measures to Establish Trust
	Vote Updating
	Evaluation
	Test Elections

	Conclusion
	Late Remarks
	References

	Internet Voting Systemwith Cast as Intended Verification
	Introduction
	Previous Work
	Proposed Solution
	Design Requirements
	Overview of the Proposed Solution

	Detailed Cryptographic Protocol
	Vote Preparation for Vote Casting
	Vote Preparation for Verification
	Vote Casting
	Generation of Return Code
	Delivering Return Code and Voting Receipt
	Validation of Return Code and Voting Receipt

	Generation of Voting Cards
	Security Analysis
	Election Configuration
	Voting Process
	Post Election
	Summary

	References

	Voting Systems 1
	Linear Logical Voting Protocols
	Introduction
	A Brief Introduction to Linear Logic
	Connectives of Linear Logic

	A Linear Logical Specification of First-Past-the-Post
	Counting Ballots with Count/Run and Count/Done
	Determining the Winner with Max/Run and Max/Done

	Viewing Specifications as Linear Logic Programs
	Single Transferable Vote in Linear Logic
	A Linear Logical Specification of Single Transferable Vote
	Viewing the STV Specification as a Linear Logic Program

	Proving the Specifications Correct
	Correctness of the SW-FPTP Specification
	Correctness of the STV Specification

	Conclusion
	References

	Efficient Vote Authorization in Coercion-Resistant Internet Voting
	Introduction
	Coercion-Resistant Internet Voting
	Vote Authorization
	The JCJ Protocol
	Improvements of the JCJ Protocol

	A New Protocol Based on Anonymity Sets
	Protocol Description
	Security

	Performance Comparison
	Performance Analysis
	Discussion

	Conclusion
	References

	The Bug That Made Me Presidenta Browser- and Web-Security Case Study on Helios Voting
	Introduction
	Exploits and Vulnerabilities
	Attacking Named Windows
	Cross-Site Scripting and Open Redirects
	Extracting Sensitive Data via CSS
	Real Life Impact

	Mitigation Techniques
	Related Work
	Conclusion
	References

	Voting Systems 2
	An Efficient and Highly Sound Voter Verification Technique and Its Implementation
	Introduction
	Related Work
	MarkPledge Simplified Vote Protocol Overview

	MarkPledge3
	Homomorphic Cryptosystem Details
	MarkPledge3 Insights
	MarkPledge3 Soundness and Zero-Knowledge Properties

	MarkPledge 3 Functions Details
	Homomorphic Vote Tally
	Adjusting the Voter's View of MP3 Output to the Parameter

	Evaluation
	Implementation Results

	Conclusions
	References

	Single Layer Optical-Scan Voting with Fully Distributed Trust
	Introduction
	Preliminaries
	Physical Primitives
	Cryptographic Primitives
	Participants

	The Basic System
	Election Preparation
	Audits

	Improved System
	Security Analysis of the Improved System
	Related Work
	Future Work: Toward a Secure Multi-party Protocol
	References

	Paperless Independently-Verifiable Voting
	Introduction
	Existing Paperless Protocols and Their Limitations
	Our Contributions
	Comparison with Other Approaches
	Organization

	Related Work
	The Informal Model
	The Challenge-Response Protocol and a Weakness
	eChallengeResponse: Informal Description
	A Coercive Attack

	The Cut-and-Choose Protocol
	Protocol Description
	Dispute Resolution

	Rigorous Description: eCutAndChoose
	The AAHIP Model
	Initial Set-Up by Election Officials
	Casting a Vote

	Properties of the eCutAndChoose Protocol
	Prototypes
	Network Access
	Security of the Implemented Protocols
	Ongoing Work

	Conclusions
	References

	Pr\^{e}t \'{a} Voter and Trivitas
	Feasibility Analysis of Pr\^{e}t \'{a} Voter for German Federal Elections
	Introduction
	German Federal Election
	Prêt à Voter
	Vote Casting
	Vote Processing

	General Legal Analysis of Random Candidate Order
	Analysis of Design Proposals — Ballot Paper
	Type of Random Order
	General Ballot Layout
	Obscuring Hash Values on Ballots
	Enabling Invalid Votes

	Analysis of Design Proposals — Processes
	Ballot Printing Process
	Vote Casting Process
	Vote Scanning Process
	Process of Publishing Receipts

	Analysis of Design Proposals — Verifiability
	Individual Verifiability
	Public Verifiability

	Analysis of Design Proposals — Election Management
	Conclusion and Future Work
	References

	Pr\^{e}t \'{a} Voter with Write-Ins
	Introduction
	Incorporating Write-Ins into Prêt à Voter
	The Ballot Form
	Completing the Ballot Form
	Dummy Ballot Forms
	Casting a Vote

	Processing the Votes
	Anonymising the Votes
	Flexibility on Reporting Write-In Results

	Receipt-Freeness
	The Scheme without Dummy Ballots
	Optional Dummy Ballots

	Discussion
	Human Factors
	Comparison with Other Schemes

	Summary
	References

	Trivitas: Voters Directly Verifying Votes
	Introduction
	Cryptographic Primitives
	Individual Verifiability in JCJ/Civitas
	Overview of JCJ/Civitas
	Election Verifiability

	Trivitas: Trial Credentials and Universal Decryption
	Overview of Proposed Additions
	Individual Verifiabiliy in Trivitas
	Anonymous PETs and Distributed Decryption with Ciphertext-Plaintext Unlinkability

	Other Properties
	Universal Verifiability
	Recoverability from Failed Verification
	The Case of a Compromised Voting Machine

	Coercion-Resistance
	Conclusion and Future Work
	References

	Experiences
	The Application of I-Voting for Estonian Parliamentary Elections of 2011
	Introduction
	Estonian I-Voting Scheme
	Legal and Technical Framework
	Architecture of the I-Voting Scheme
	Security Considerations

	Riigikogu Elections of 2011
	Case: Invalid I-Vote
	Case: Student Writes a Ballot-Manipulating Script

	Discussion
	Conclusions
	References

	Towards Best Practice for E-election Systems
	Introduction
	E-election Systems in Australia
	E-voting Systems
	E-counting Systems
	E-election Systems for Electoral Roll Management
	E-election Systems for General Election Administration

	Failure-Critical Engineering
	Current Problems
	Towards Best Practice

	Risk Assessment
	Current Problems
	Towards Best Practice

	A Culture of Audit
	Current Problems
	Towards Best Practice

	Strong Transparency
	Current Problems
	Towards Best Practice

	Conclusion
	References

	On the Side-Effects of Introducing E-Voting
	Introduction
	ACT Legislative Assembly Elections
	Party Selection and Voting Interface
	Analysis

	Ballot Ordering Effects
	Donkey Votes

	Expressivity
	`Italian' Attacks
	Conclusion and Future Work
	References

	Author Index

