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Abstract. Currently used latency models in stream databases are based on the
average values analysis that results from Little’s law. The other models apply theory
of M/G/1 queuing system. Theses solutions are fast and easy to implement but they
omit the impact of streams synchronization. In this paper, we introduce a heuristic
method which measures the synchronization impact. Then we have used this solu-
tion to extend the popular model based on average values analysis. This modification
allows us to achieve better accuracy of latency estimation. Because schedulers and
stream operator optimization require a fast and accurate model, we find our model
a good starting point to create better optimizers.

1 Introduction

A well-written and scheduled Data Stream Management System(DSMS) should
meet deadlines and provide predictable performance. Real stream databases are
highly complex systems which implement different optimization algorithms.

The latency and memory optimization has been widely analyzed in scheduler
algorithms [8, 14, 13, 10, 7, 5, 2]. Also, big latency of tuples can result from
temporary overload. At such moments, calculations cannot be processed fluently
and stream queues rapidly become longer. Eventually, this situation may lead to a
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breakdown because of the shortage of storage resources. If a system specification
allows a generation of incomplete results, we can randomly delete some tuples from
data streams. Thanks to this, the amount of data to be processed is reduced and la-
tency requirements can be satisfied for part of the data. The above solution is named
load shedding and its usability was presented in [15, 3, 16].

The estimation of the average latency time is useful to tune schedulers which
switch between time and memory optimization. This value is also helpful to adjust
starting time when partial results should be generated when some data streams are
temporarily not available. In the paper, we show that the synchronization of inputs
in the presence of binary operators such as joins can cause a skew in the way tuples
are introduced into downstream operators. This causes a substantial error of latency
estimation which we want to reduce. We have run extensive experiments to find a
model which can be easily applied in DSMS. Finally, we arrived at some heuristic
model which describes the relations between utilization level, query definition and
latency. Our model does not take into account moments when a node is temporar-
ily overloaded beyond its CPU capacity. Our solution also does not focus on the
impact of network links either. Despite those assumptions, its accuracy is bigger in
comparison with popular average values analysis in DSMS.

The rest of this paper is organized as follows: Section 2 introduces the back-
ground of modeling stream queries; Section 3 describes the basic approach to mod-
eling; Section 4 defines our theory of modeling stream queries; Section 5 explains
how latency is calculated; next in section 6 our model is tested against competitive
solutions; and finally Section 7 concludes the paper.

2 Basic Terms

Stream query Q is defined as a directed acyclic graph (DAG), whose nodes and
arcs represent stream operators and streams respectively. Query Q is divided into
sub queries Q = {u1,u2, ...,un} and each of them is deployed on a calculation node
in a distributed system. The calculation node is a separate processor or computer
in a stream database. Besides, each stream operator has the following parameters
defined:

1. Selectivity sx is an average number of output tuples resulting from processing
one input tuple by operator x.

2. Productivity ux is the probability of generating at least one tuple by operator
x when one input tuple is processed. Productivity and selectivity are equal for
selection, projection and map operators. In contrast to them, a join operator’s
productivity and selectivity are different.

3. Processing cost cx is the time required for an input tuple to be processed by
operator x.
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A single portion of data transmitted by a stream is a tuple. It has a timestamp which
defines the time of its entry into a system. Each stream contains tuples ordered
chronologically. Besides, each stream is described by the average tuple latency l.
The time when a tuple enters a stream database and the time when this tuple causes
the generation of a new tuple at the output of a given operator A constitute the
beginning and the end of measured latency for operator A. In the paper, the latency
is decomposed on three elements: operator processing time, synchronization time
and queuing time.

We can classify stream operators according to the number of their input streams.
Operators with one input stream are called unary operators, while operators with
two input streams are labeled as binary operators. Stream operators process tuples
in chronological order. Consequently, at each point of time instance an operator
processes an input tuple with the smallest timestamp. When an operator is of binary
type then the tuple with the smallest timestamp can be identified only when neither
of the input streams is empty [11, 4].

In a stream database the time associated with an operator corresponds to a tuple
timestamp which has been recently popped from its input stream. This time is named
operator local time. From this viewpoint, the time flow is frozen between succes-
sive tuples. The shorter the interval between consecutive timestamps, the better the
freshness of the local time associated with an operator and a stream. Let us define in-
terval τ which is the time between those local time updates. There frequently exist a
few tuples with the same timestamps in a stream. This is caused by operators which
generate a few result tuples after processing one input tuple. As a consequence, if
we want to measure interval τ between local time updates, we cannot divide the
time of a stream observation by the number of popped tuples during this time. In the
analysis of binary operators more complicated situation can be encountered. They
process input tuples as long as both input streams are not empty. When one of them
becomes empty, the processing is suspended. As a result, the operator time updates
are divided into slots when stream processing is available. As a consequence, the
distribution of output tuples can be described as groups of tuples separated by in-
tervals. The bigger the interval between those groups is, the greater the number of
tuples appearing per group. The illustration of such an effect is shown in fig. 1. We
define the time of tuple group as a timestamp of the last tuple in the group. This
metric informs us how often the time associated with a given operator and stream is
updated. This is another way of representing data stream freshness [12].

Let us define global selectivity spath. A sequence of operators which connects
source a with operator b is defined as path = {a, ...,b}. The path which connects
operators O0 with O3 in fig. 2 is defined as {O0,O2,O3}. Then the global selectivity
defined on path equals spath = ∏i∈path si. Summing up, the value spath represents
the average number of tuples generated at the output of operator b when one tuple
is processed through this path.

Besides, we also define set Src, which consists of source operators 1, ...,K. The
average output rate of those operators is defined by vector X = (X (1),X (2), ...,X (K)).
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Fig. 1 The formation of groups of output tu-
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Fig. 2 Sample query graph

3 Basic Approach

The average values analysis that results from Little’s law is the basic way of model-
ing queuing systems. This approach is popular in stream databases [9] because it is
created only upon average metrics of query parameters. Our model assumes that a
stream database consists of multiple processing nodes which serve multiple classes
of clients; each processing node i evaluates sub query ui.

Figure 2 illustrates a sample query which will be used to explain an operational
analysis. Let us assume that na,b is an average number of tuples flowing into operator
b as a result of processing one tuple from source a. Besides, we define average tuple
latency la,b at the output of operator b which is a consequence of processing tuples
from source a. Now, we want to estimate cumulative latency lb, which represents
the latency of all output tuples of operator b. Let us notice that the tuple latency
of operator O2 depends on which operator path a tuple has been processed on. For
example in fig. 2, there exist two paths connected with operator O2:{O0,O2} and
{O1,O2}. In order to find cumulative latency lO2 , we have to estimate latencies for
both paths and combine them. The formula below defines cumulative latency for
operator b:

lb =
∑a∈Src X (a)na,bla,b

∑a∈Src X (a)na,b
(1)

Now we will estimate la,b. Each operator is directly or indirectly supplied by
sources. The frequencies at which tuples from sources are transfered to operator o

are defined by vector Xo = (X (1)
o ,X (2)

o , ...,X (K)
o ). The utilization of calculation node

i caused by operator o which processes tuples from source k equals:

U (o,k)
i = X (k)

o B̄(o)
i = X (k)D̄(o,k)

i (2)

where: D̄(o,k)
i = B(o)

i nk,o; B̄(o)
i - an average time of processing a tuple by operator o

deployed on processing node i.
The utilization of processing node i equals:

Ui = ∑
o∈ui

K

∑
k=1

U (o,k)
i (3)
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This formula shows how long each operator located on processing node i calculates
tuples which result from inserting tuples at source streams 1..K. The stream database
is in a steady condition when all Ui < 1.

The average visit time of tuples queued to operator o at processing node i which
results from processing one tuple from source k is:

R̄(o,k)
i =

D̄(o,k)
i

1−Ui
(4)

Finally, latency lpath is the sum of values by which latency increases when a tuple
passes successive operators on the path. After processing one tuple from source
k, a group of tuples can appear at operator o. We knew the average visit time at o
which defines the time of processing this whole group of tuples. Now we want to
find the relation between the average visit time and the value by which the latency
is increased after passing operator o. In order to solve this we have assumed that
tuples arrive evenly in time according to average throughput. Due to this arithmetic
progression is applied to approximate the value by which the latency is increased at

operator o:
R̄(o,k)

i
2 . Summing up, latency lpath is:

lpath = ∑
o∈path

R̄(o,k)
Node(o)

2
(5)

where: path - is the sequence of operators; Node(o) - is the function which returns
the processing node for stream operator o.

4 Estimation of Synchronization Impact

The analysis of synchronization impact is divided into two phases. At the beginning,
we explain when stream operators require additional time to synchronize streams.
The estimation of this time is based on the stream freshness property. In the next
subsection, we introduce the algorithm used to calculate this value for each operator
input stream.

4.1 Latency Caused by Synchronization

Figure 3 shows the notation of a binary operator and fig. 4 explains its parameters.
The vertical markers in fig. 4 represent the moments when consecutive tuple groups
arrive at inputs A and B. Variables τA and τB represent the intervals between those
tuple groups for stream A and B respectively. The average latencies of tuples at the
input of the analyzed operator are lA and lB. In other words, la is the amount of
time before the tuple in stream A synchronizes with a tuple from stream B and lb
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is the time before the next tuple in stream B synchronizes with the corresponding
tuple from stream A. It is worth noticing that we analyze only the sequence in which
tuples are processed by a binary operator. We are not interested in the semantics of
this binary operator. In order to make the description of the synchronization process
easier to follow, τA and τB have similar values in fig. 4. As a result one tuple appears
after another one arrives at the other input. Nevertheless, our model is not limited to
this scenario.

 A 
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O 

Fig. 3 The binary operator nota-
tion
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Fig. 4 Graphical representation of latency and τ
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Fig. 6 The explanation of the latency calcula-
tion

If tuples arrive at input A with a latency greater than lB + τB then stream B is not
empty. Summing up, when lB+τB < lA then tuples at input A are processed directly.
The other case is described by lB + τB ≥ lA and illustrated in fig. 5. Tuples appear
at input A with average latency lA. Because the average interval between successive
tuple groups equals τA, we assumed that one tuple appeared in the stream within τA

with 100% probability. An analogous assumption is made for stream B.
The pessimistic scenario occurs when tuples arrive at input A at time lA while

tuples at input B arrive at time lB + τB. In this case tuple buffering lasts longest.
Now we calculate the average latency for this pessimistic scenario. Let us notice
that the sum of the latencies of all the tuples queued in stream A is the sum of
the arithmetic sequence illustrated in fig. 6. Below we repeated the formula for the
sum of elements in an arithmetic sequence: Sn = a1 + a2 + ...+ an =

a1+a2
2 n. The

average number of tuples which appear at input A between consecutive tuples at
input B equals: nA = lB+τB−lA

τA
In consequence, we arrive at the following formula:

lAC = lB+τB−lA+lB+τB−lA−nAτA
2 (nA − 1) When we combine the above formulae, we

achieve the following average latency for tuples from input A.

lAC =
lB − lA + τB

2
(6)
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Summing up, the stream synchronization of binary operators introduces additional
latency, which can be estimated by the following rule.

lAC =

{
0 when lB + τB < lA

lB−lA+τB
2 otherwise

(7)

4.2 Stream Freshness

The average interval τ informs us how frequently the time of a stream is updated.
Knowing this, we can calculate the output latency of the operators attached to those
streams.

Figure 1 explains why tuple groups are inserted into output streams. Let us as-
sume the average interval between tuple groups in stream A is three times longer
than the corresponding interval in stream B. On average, three tuples from input B
are consumed at the time of the tuple arrival at input A.

Let us assume that input A started producing tuples and input B started generating
tuples after x time units. When τA > τB then we should consider each x ∈ (0,τB] so
as to cover all possibilities. Because tuples are generated evenly, we have limited
our observation to the time which passes from the appearance of one tuple from the
slower stream to appearance of another one. During this time n tuples in the faster
stream appear waiting τA−x; and one tuple appears in the slower stream and it waits
x time units. Now we can estimate the average interval between tuple groups for a
given x and it equals the weighted average value of x and τA − x.

τC(x) =
x+ n(τA − x)

1+ n
(8)

When we assume that x appears with equal probability in the range from 0 to τB, we
arrive at the formula.

τC =
1
τ0

∫ τ0

x=0

x+ n(τ1 − x)
1+ n

dx =
−2.5τ2

0 + τ0τ1 − (2τ2
0 + τ0τ1) ln τ1

τ0+τ1

τ0
(9)

where: τ0 = min(τA,τB);τ1 = max(τA,τB).
This formula allows us to simulate the average interval between groups of tu-

ples depending on the metrics of input streams. Then this interval is important in
calculating a latency increase for consecutive operators.

The graph in fig. 7 shows the value τC for different ratios τA/τB. It is worth
noticing that the average interval between consecutive groups of tuples is halved
when the ratio value ranges from 0.6 to 1. When the ratio value ranges from 0 to
0.6, then the resulting average interval is closer to τB. Moreover, the operator is
prone to generate peaks of overload.

The broken plot in fig. 7 illustrates a hypothetical case when the binary operator is
free of the synchronization burden. A situation like this occurs when the timestamps
of all tuples are known a priori. In such a case we divide the period of observation
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Fig. 7 The average interval between groups of tu-
ples for changing proportion τA/τB
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Fig. 8 Query DAG1

τB by the number of tuples which were processed by an operator. There is one tuple
in stream B and τB

τA
tuples in stream A. Summing up, the average interval between

groups of tuples is approximated as follows:

τC =
τB

1+ τB
τA

(10)

The comparison of both plots in fig. 7 shows that the synchronization of binary
operators substantially affects the result latency. In order to process streams fluently
it is important to have short intervals between groups of tuples. As it is shown in
fig. 7, this cannot be achieved when the τA/τB ratio is under 0.6.

5 Average Latency

The mixed approach combines the impact of synchronization with the operational
approach. The query DAG1 shown in fig. 8 will be used to explain the algorithm of
latency estimation. Let us assume that operator o has attribute visited which equals
f alse at the beginning of the calculation. There also exists function next(o) which
returns the set of operators connected to the output of operator o. Analogously we
define function prev(o), which returns the set of operators supplying tuples to oper-
ator o.

The latency estimation is a simple bottom-up calculation of R̄(o,k)
i for each

operator o and each source k as it is described in section 3. Having used this
algorithm upon DAG1, we can achieve the following sequence of calculation:
O1,O2,O3,O4,O5,O6,O7. Next, we evaluate latencies on the paths connecting
sources with each operator of the query according to alg. 1. Each operator o is de-
scribed by the following properties: τ - it is an interval between consecutive groups
of tuples; L - it is a map of latencies indexed by the source of stimulation.
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At the beginning of alg. 1 method initializeValues(o) setups values of source op-
erators. This method gets the value of throughput X (o.id) for operator o, then assigns
properties:

1. o.τ = 1
X(o.id)

2. o.L[X (o.id)] = 0

The consecutive steps of alg. 1 evaluate properties for unary and binary operators.
Method updateOp1(o) retrieves operator os which supplies operator o with tuples.
Next the following properties are calculated:

1. For each source k: o.L[k] = os.L[k]+
R̄(o.id,k)

i
2

2. o.τ = os.τ
o.u

The step 2 of the above method is necessary to model the extension of τ when an
operator has low productivity. Method updateOp2(o) retrieves operators: ops1 and
ops2 which supply operator o with tuples. Next, the remaining steps of the method
are processed:

1. Latency ls1(ls2) is calculated. The output rate for operator o is vector Y =

(Y (1)
o ,Y (2)

o , ...,Y (K)
o ). Those rates are divided according to data source k. Finally,

ls1 is defined as:

ls1 =
∑k∈K Y (k)

s1 os1.L[k]

∑k∈K Y (k)
s1

(11)

Analogically ls2 is calculated.
2. Formula (7) is used to calculate values ls1,o and ls2,o

3. The latency is calculated as follows: lo =
(ls1+ls1,o)as1+(ls2+ls2,o)as2

as1+as2
where as1(as2)

represents the average number of tuples generated by operator os1(os2) during a
time unit.

4. Value o.τ is updated according to formula (9).

5. For each source k: o.L[k] = lo +
R̄(o.id,k)

i
2

When the evaluation of alg. 1 is completed, the latency of a given operator can be
calculated by means of formula (11).

Algorithm 1 (Latency evaluation)
foreach ( op :A) {

i f ( op i s Sou rce ) {
i n i t i a l i z e V a l u e s ( op ) ;

} e l s e i f ( op i s una ry o p e r a t o r ) {
updateOp1 ( op ) ;

} e l s e i f ( op i s b i n a r y o p e r a t o r ) {
updateOp2 ( op ) ;

}
}
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6 Tests

The experiments described in this section were conducted on our stream data base
simulator which is the result of our previous experience with stream database
StreamAPAS. Thanks to this, we were able to isolate the impact of dataset rates or
other processes which share the same node. We prepared two types of datasets. One
consists of tuples whose timestamps are distributed according to the Poisson pro-
cess. The other set is based on the time distribution measured in real system [1].The
sizes of those datasets were between 100’000 and 800’000 tuples. We calculated
average metrics for each dataset and use it during empiric and analytic calculations.
Each query has been run multiple times with changing level of utilization, as a result
we verified the accuracy of our model for a range of configurations.
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Let us now define the notation used in the following figures. A graph name with
the suffix ’basic’ labels graph which depicts estimation based on the operational
approach. A graph name with the suffix ’mixed’ shows estimation according to our
mixed approach. The remaining graphs with the suffix ’simulation’ indicate empir-
ical results. Our aim was to create queries with different topologies. Because of
the page limits we confront the empirical results with the analytic estimations for
queries DAG1-DAG3, which are shown in figures: 8, 9 and 10. In fig.12 we can see
that our mixed model substantially outperforms the popular basic approach that is
used by current schedulers and optimizers. In order to measure the impact of bi-
nary operator synchronization. We have defined query DAG2 which replaces binary
operator O2 with unary operators with the same selectivity. Figure 13 shows that
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Fig. 11 Comparison of DAG3 results for different datasets
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Fig. 13 Comparison of the synchronization
impact between DAG2 and DAG1

the latency will be reduced from 300ms to values below 80ms if only synchroniza-
tion could be avoided. Finally, we have tested how latency changes when real time
distribution of data stream is applied. This effect is depicted in fig. 11.

The main conclusion drawn from our analysis of collected results is that the ac-
curacy of our model is substantially higher than that of the basic approach. Despite
the fact that our model is based on the analysis of average values, it offers nearly
ideal precision for datasets generated by the Poisson process. The estimation accu-
racy is lower for datasets based on the real distribution of timestamps. This is caused
by the fact that we measured average values for wide time windows. If we shorten
those time windows then the assumption that data streams are generated by Poisson
process will generate smaller error and we can achieve better estimation accuracy.

7 Conclusions

Multi-criteria optimization is a challenge in stream databases. When we consider a
distributed system, then we have to monitor the utilization of the processing nodes.
We can compose stream operators so as to optimize memory consumption but this
optimization strategy affects the model of synchronization. As a consequence the
memory optimization changes the latency of result tuples.

These above circumstances make the development of the analytical model im-
portant for future stream database systems. Currently the analysis based on average
values is the most popular in such systems. Unfortunately, our tests show that this
approach is weak when it comes to calculating the latency of result tuples. In the pa-
per we have introduced an additional component, which reflects the impact of syn-
chronization. The new metric in this component is the productivity property defined
for each stream operator. By means of this we are able to more efficiently estimate
the impact of synchronization. Thanks to this the exactness of latency estimation is
substantially improved in comparison with the operational approach. What seems
important, is that our component is based on average statistics, which makes our
model easy to calculate in real-time systems. Our mixed model joins the analysis of
utilization and latency in distributed stream databases which is a good foundation
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for the future schedulers. Besides, this model can be used to predict places where
processing of a stream query can be easily destabilized.

During our further research we plan to create an optimizer which controls the
frequency of boundary tuple [6] injection. In contrast to current algorithms which
try to achieve the shortest latency, we want to achieve the predefined value. The next
area of our interest is the creation of a scheduler which uses our model to strike a
balance between memory and time optimization.
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