Inference of XML Integrity Constraints*

Matej Vitdsek and Irena Mlynkova

Abstract. In this paper we expand upon the previous efforts to infer schema
information from existing XML documents. We focus on inference of integrity
constraints, more specifically ID/IDREF/IDREFS attributes in DTD. Building
on the research by Barbosa and Mendelzon (2003) we introduce a heuristic ap-
proach to the problem of finding an optimal ID set. The approach is evaluated and
tuned in a wide range of experiments.

1 Introduction

The XML is one of the leading formats for representing structured data. However,
even though languages such as DTD and XML Schema [4] to describe XML struc-
ture exist for a long time, most of the documents use outdated or have no schema
at all [[17]]. To tackle this problem one may employ reverse-engineering techniques
to infer the schema from existing documents [1, 3]. In particular, [12]] introduces
the jInfer schema inference framework, dealing primarily with the structural parts
of the schema: how all the elements, attributes and text data are to be organized in
an XML document conforming to that schema.

But the structural requirements of a schema is not the only constraint that can be
imposed on an XML document. The concept of keys and foreign keys, well known
from the relational database world, applies to schemas as well and will be the topic
of this paper.

From all the constraints that can be applied to an XML document by means of
its schema, this paper will focus on keys and foreign keys. The most important con-
cepts in this field are introduced in [5] and formalized in the notions of ID/IDREF/
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IDREFS attributes in DTD and XSD and xs : key/xs : keyref structures in XSD
[4]. The scope of this paper is focussed on inference of ID/ITDREF/IDREFS from
existing XML documents. We discuss the equivalence of ID set search and max-
imum weighted independent set. We introduced the mixed integer problem and
demonstrated how to solve it using external GLPK] solver in the environment of
the jInfer framework [13]].

The paper is structured as follows: In Section [2 we describe all necessary def-
initions and terms used in the rest of the text. In Section [3] we discuss the related
papers and problems. In Section[d] we specify the MIP approach and in Section[3]we
discuss related experiments. Finally in Section[@ we conclude.

2 Definitions

We use the representation introduced in [2]], where an XML file is represented by a
labeled tree consisting of nodes for elements, attributes and simple text data. Parent
nodes are connected to child nodes with edges. This tree shall be called an XML
tree. For a given node v of an XML tree we define label(v) (name of the node in
the document, only for elements and attributes), id(v) (unique identifier across the
document) and value(v) (text content, only for attributes and simple text data). We
denote .# the set of all ids in the document. Without loss of generality we ignore
the actual ordering of nodes in the tree.

From [4]]: an XML attribute may have the type ID, IDREF or IDREFS. In short,
ID attribute values must be unique across the document, element cannot have more
than one ID attribute, IDREF and IDREFS values must reference an ID value.

Attribute Mapping

We will use a slightly different definition of attribute mappings (AMs) than [2]
(without introducing keys from [3]) that will however give us the same result.

Definition 1 (X%, X4, X). XF is the set of all element labels, =4 is the set of all
attribute labels. £ = XF UXA4 is their union and effectively the set of all labels in the
document.

Definition 2 (Attribute mapping). For x € ¥ and y € X we define the attribute
mapping of y over x, denoted My, the & x ¥ relation defined by

M) = {(z,w) : label(z) = x,label(w) =y, parent(w) = z}.

Thus the relation My contains edges in the XML tree connecting element nodes
labeled x and attribute nodes labeled y. We can use a projection to retrieve all the
unique ids of either elements or attributes from the relation, with notation 7z (My)
and 74 (M3).

I GNU Linear Programming Kit, http://www.gnu.org/s/glpk/
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Definition 3 (Type of the attribute mapping). AM M; is of the type T(My) = x.

Definition 4 (Image of attribute mapping). Image 1 of the attribute mapping M;
is defined as \(My) = {z: z = value(w),w € s (My)}.

So the image of an AM is a set of all the values of all attribute nodes contained in
the mapping.

Definition 5 (name()). Given an attribute mapping m = My, name(m) shall be de-
fined as the string x — y.

ID Set

Based on the requirements for an ID attribute [4] we define ID set with the help of
the following definition.

Definition 6 (Candidate attribute mapping). An attribute mapping m is a can-
didate attribute mapping if it is an injective function, that is, |m| = |ng(m)| =

|74 (m)| = [t(m)].

Definition 7 (ID set). A set of candidate attribute mappings I = {my,...m,} is an

ID set iff
() ©(mi) =0and () 1(m;) = 0.

m;€l m;€l

That is, an ID set has images without repeating values and all the types are unique
(an element cannot have more than one ID attribute).

Given an ID set I, the requirements from [4] give us the following condition
for an attribute mapping m to be marked IDREF (IDREFS in case of multivalued
attributes): 1(m) C U,y,e; L(mi).

Attribute Mapping Weight
This definition of weight for AMs or AM sets comes from [2] again. Let M =

{my,...m;} be the set of all non-empty AMs in the document.

Definition 8 (Support). Support of AM m is defined as ¢(m) = 2,,5\14‘ ol

Definition 9 (Coverage). Coverage of AM m is defined as

x(m) = ( )y Il(m)m(p)l> /2 1)l

PEM p#m PEM

Definition 10 (Weight). For o, B > 0 as relative priorities of support and coverage
we define the AM weight as weight(m) = o.¢(m) + B.x (m). For a set of AMs S =
{mi,...m;} we define weight(S) = Y,,,cgweight (m).
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Definition 11 (Independent set). Given an undirected graph G = (V,E), a set of
vertices I C 'V is an independent set, iff Vvi,vy € I,vi vy : (vi,v2) ¢ E.

Definition 12 (Maximum weighted independent set). Given an undirected graph
G =(V,E) and a weight functionw : V — R, an independent set Iqy is the maximum
weighted independent set, iff the following is satisfied:

vI' CV,I'is an independent set : 2 w(v) < 2 w(v).
vel vEInax

Finding the maximum weighted IS is an NP-hard optimization problem [[15].

Linear Programming

The problem of linear programming is optimization of a linear function under a set
of linear constraints. The formulation is usually called a linear program (LP). It can
be written in the following form (a minimization version is possible, too).

maxz — CTX
X

b
0

s.t.AX

VoA

X

where x is the vector of variables (to be found by the optimization), b is the vector
and A its accompanying matrix of constraints and ¢ is the vector of coefficients for
the objective function.

Definition 13 (Mixed integer problem). A mixed integer problem (MIP) is an in-
stance of LP in which some or all variables are limited to integral or boolean values.

While solving LP is usually possible in polynomial time using the simplex algorithm
(see [6]]), solving MIP in general is NP-hard.

3 Related Work

According to the article [2, Chapter 4], the problem of finding an ID set with weight
more than some given K (K-IDSET) is in NP. Furthermore, the independent set (IS)
problem can be reduced to K-IDSET, meaning K-IDSET is NP-hard and thus NP-
complete. The article continues by proving that finding the maximum weighted IS
can be reduced to the problem of finding an ID set with maximum weight (MAX-
IDSET). This again means that MAX-IDSET is NP-complete and, furthermore, un-
less P = NP, MAX-IDSET has no constant factor approximation algorithm. The
transformation works in both ways: it is equivalently possible to create a maximum
weighted IS instance for a given MAX-IDSET instance. The authors then suggest
a heuristic algorithm, which is incorporated into the framework proposed by this
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paper. To the best of our knowledge, there are no other articles dealing with this
problem.

Finding XML Keys

XML keys are a structure somewhat similar to ID attributes, but with a much larger
expressive strength. They have been introduced in [5] and implemented in XML
Schemd?.

Fajt in [8] summarizes several algorithms to help find XML keys in existing
data, namely Gordian, XML Primary Keys, SPIDER and DBA Companion. Except
for XML Primary Keys, they all are originally purposed to find keys in relational
databases.

In our paper we find ID attributes directly. And even though we can always con-
vert them to XML keys by the process mentioned above, we are unable to find more
complex keys this way.

Maximum Weighted IS

Maximum weighted IS is a well researched topic with a lot of known direct or ap-
proximation algorithms, see e.g. [15] or [9]. According to [14], the best known
approximation algorithm for weighted IS to-date achieves an approximation ratio of
3(A +2), where A is the maximum degree of a vertex in the IS graph.

4 MIP Approach

In this section we introduce a new approach to finding maximum ID sets. First,
we transform the problem formulation to maximum weighted IS problem formu-
lation. Then we transform this into an MIP formulation and demonstrate how this
can be solved using a solver such as GLPK. We will continue by applying heuristic
approaches to improve the performance of the process.

4.1 ID Set to IS Formulation

Given C = {my,...,my,} a set of all AMs in a document, we construct a graph
G = (V,E) as follows. For each AM m; € C we create a Vertex V,gpe(m;)- TWO ver-
tices Vygme(m;) and Vname(m;) shall be connected by an edge iff they cannot share the
same ID set, either because they have the same type (7(m;) = T(m;)), or their im-
ages intersect (1(m;) N1 (m;) # 0). Weight of a vertex v, ume(m,) is the weight of the

attribute mapping: w(Vyame(m,)) = weight (m;).

2 http://www.w3.0org/TR/xmlschemall-1/#Identity-constraint__
Definition details
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Now finding the maximum weighted IS in G finds the maximum (optimal) ID set
in the original document.

4.2 IS to MIP Formulation

Given a graph G = (V,E) with a weight function w : V — R, we introduce a bi-
nary variable x; for each vertex v; € V and an inequality constraint x; +x; < 1 for
each edge e = (v;,v;) € E. Furthermore we introduce an objective function in form
T Xiw(vi).

It is obvious that the objective function and all the constraints consitute a MIP
instance, and that solving it finds the maximum weigthed IS in G.

4.3 Finding ID Sets with GLPK

By chaining these two translations we can create a MIP formulation for a given set
of AMs from a document. Solving this MIP instance will give us the optimal ID set
for this document.

GLPK is a multi-platform, multi-purpose solver well suited for this task. This ap-
proach works and for any possible input we can let GLPK find the optimal solution.
However, sometimes it takes too long to find the optimum, thus the aim of this paper
is to improve this process.

A heuristic is an approach to problem solving based on prior experience, edu-
cated guess or common knowledge. A heuristic algorithm is one that, in a reason-
ably short time, generates a good, maybe even optimal solution to an optimization
problem. However, it will not provide any formal guarantee about its quality.

While a heuristic algorithm can be seen as a tool designed to solve one spe-
cific problem, the notion of a metaheuristidl is a recipe to solve a whole family of
problems.

Definition 14 (Solution Space, Solution Quality). Solution space in general is the
set of all permissible solutions (not violating any constraints). In the specific case
of a MIP formulation it is the set of all X subject to Ax < b. Every solution in the
solution space has its quality, in case of MIP for solution X it is the value of the
objective function in X.

Definition 15 (Solution Neighborhood). A neighborhood of a solution x in the so-
lution space are all the other solutions close to X according to some metric.

The precise definition of the neighborhood is always adjusted according to specific
needs. However, the neighborhood should be defined so that it is continuous (with
respect to quality).

3 A metaheuristic covers a wide range of topics in the field of heuristics, such as Tabu Search
10, Ant Colony Optimization [1] or Genetic Algorithms [11]], to name a few.
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Fig. 1 Metaheuristic Schema

Definition 16 (Solution Pool, Incumbent Solution). Solution pool (sometimes
called pool of feasible solutions or feasible pool) is a set of solutions of different
qualities that were found in one of the stages of the metaheuristic. The solution with
the highest quality is called the incumbent solution.

Our problem is the following: given a list of AMs with weights, find a non-con-
flicting subset maximizing the sum of weights in the subset. This sum will be the
quality of the solution (subset). Our metaheuristic from Figure [[l works as follows:
First we take the list of candidate AMs and ask a construction heuristic (CH) to
provide us with a pool of solutions. Then, in a loop, we use this pool as input for im-
provement heuristics (IH) and in turns ask them to improve it. All the time we check
whether termination criteria are met, and if so, we terminate the metaheuristic. The
incumbent solution from the last pool is then the output ID set.

Constructions Heuristics

The purpose of a CH is to find at least one solution. Some IHs can profit from having
several sub-optimal solutions, and some CHs can produce this pool from them. We
implemented the following CHs:

e FIDAX: The deterministic algorithm described in [2] gives us one feasible
solution.
Random: Greedy algorithm, picks AMs at random and adds them if possible.
Fuzzy: Greedy algorithm, similar to Random, but picks on weighted random.
Incremental: Greedy algorithm, iterates AMs by descending weight, adds if
possible.

e Removal: Greedy algorithm, adds all AMs, then iterates by ascending weight
and removes until the ID set condition is not violated.
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e GIlpk (Truncated Branch & Bound): This is a time-constrained run of GLPK:
limiting the run time gives us the best solution found so far. To be able to create
a pool of solutions, the GLPK input is always shuffled. This causes the solver
to explore the search tree in various orders, producing different solution in each
run.

Improvement Heuristics

IHs start with a solution pool, attempt to improve one or more solutions in it and then
return this improved pool. Intensification is the attempt to move the solution towards
the nearby local optimum in the solution space. Diversification is the attempt to
escape the local optimum, to be able to explore more of the solution space when the
metaheuristic starts stagnating. A metaheuristic needs to combine both tendencies
to explore the solution space and finally arrive at a local optimum.

We implemented the following IHs:

Remove Worst: Removes the worst solution from the pool.
Random Remove: Removes a random subset of specified size from each solu-
tion in the pool.

e Hungry: Intensification IH, tries to improve each solution in the pool by itera-
tively adding AMs sorted by weight, whenever possible.

e Mutation: Assumes that an incumbent solution already contains some AMs
from the optimal solution. It takes a random guess and fixes some them, i.e.
adds new constraints to the MIP formulation setting values of the respective
variables to 1. This new formulation contains less free variables and is easier
to solve, probably even to optimum. GLPK is run again with the constrained
formulation. The solution found this way is a feasible solution of the original
problem, but its optimum is not necessarily the same as in unconstrained formu-
lation. It is intensification: we limit the search to the neighborhood of incumbent
solution.

e Crossover: This IH looks for commonalities among the solutions in the pool.
This is based on the idea that if more solutions agree on the same AMs, those
probably are in the optimal solution, too. Crossover takes a parameter — frac-
tion of solutions in the pool among which to look for commonalities. AMs found
in every one of them are fixed in the modified MIP formulation the same way as
in Mutation. This is again intensification.

e Local Branching: Another intensification IH, where the neighborhood be-
ing searched is defined by edit distance. The incumbent solution is represented
by a vector of ones and zeroes, signifying which AMs belong to the ID set. A new
constraint is added to the MIP formulation: for every other solution its edit dis-
tance, i.e. number of positions in which this solution and the incumbent solution
differ, will have to be less than some threshold.
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5 Experiments

Our aim in performing experiments is: firstly, to describe behavior of the system
and its components. Secondly, to evaluate performance in terms of speed and results

quality. And finally, to find the “best” heuristic configuration.

In our experiments, we are using realistic, converted and artificial XML docu-
ments. Converted documents were created taking some of the values in text nodes
and converting them to attributes. Artificial documents are randomly generated and

have the following structure:

<graph>
<vertex(0 attr="-296887"/>
<vertexl attr="1729745"/>
<vertex2 attr="-902054/>

<vertex99 attr="-75459"/>
<vertex82 attr="0"/><vertex2l attr="0"/>
<vertex64 attr="1"/><vertex2l attr="1"/>

<vertex44 attr="2"/><vertex2 attr="2"/>

<vertex96 attr="99"/><vertex40 attr="99"/>
</graph>

It is interesting to look at graphs from the IS interpretation of our problem. Two
of them are in Figure 2] one for a realistic XML document, one for an artificial. A
quick reminder: vertices are AMs, edges connect pairs of AMs that cannot be in the

same ID set together.
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Fig. 2 IS Graphs for XML Documents

The size and density of these IS graphs determines how hard it is to solve the
maximum ID set problem. It is obvious that the artificial document (70-245) is
much harder — we created these artificial XML files to test our algorithms in the

Worst-case scenarios.

We performed a number experiments, but due to space limitations, we cannot
possibly list them all here. Please refer to [L6] for details. Only key findings will be

mentioned here.
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Fuzzy outperforms FIDAX

First, we compared FTDAX from the original article [2]] to our trivial CHs Random
and Fuzzy. Times for each of the algorithms were very similar. However, FIDAX
was outperformed in terms of solution quality in most cases by our most trivial
construction heuristics. Interestingly enough, adding our trivial IH Hungry after
FIDAX, we were able to improve the quality of its results. This means, that FTDAX
is not “greedy enough”.

Best standalone CH is G1pk

We tried to find the CH that, on its own, produces the best results. The only CH with
a parameter is G1pk, where we set the time limit to 1 second. It became obvious
that pure G1pk is best one for this setup.

Best IH for Glpkis Mutation

After we found G1pk to be the best CH, we tried to find the best IH to complement
it. This means, our metaheuristic setup for this case was G1pk(limit = 1s) — IH,
with the selected IH constrained for 1 run only. We found that the best IH for this
purpose is Mutation, with time limit of 1 second (this was a common limit) and
fraction =0.1.

Chaining IHs — strategy

Next we tried the full strength of our metaheuristic approach by chaining several
IHs together in “strategies” and comparing them. Our chosen CH was Random
with pool size 10. The best strategy was the following.

RndRemove — Mutation — RndRemove — Crossover —

RemoveWorst — ... <repeat >.

In all IHs that support it, the fraction was 0.1 and the time limit 1 second. Results
of several runs of this strategy are visualized in Figure Bl Each broken line is a
representation of one run. X axis is time, Y axis is quality. Each break in the line
indicates an IH finishing its work and handing the pool over to the next one, in a
specific time and with a specific incumbent quality. Some lines terminate soon —
this happens when the known optimum is reached.

Chaining IHs — tuning

We then tuned fractions in IHs in our “best” strategy. We found the best values: 0.5
for RandomRemove, 0.2 for Mutation and 0.1 for Crossoverﬂ.

4 Interpretation: RandomRemove fraction of 0.5 means that a randomly chosen half of all
AMs from every ID set in the pool will be discarded. This amounts to a very strong diversi-
fication tendency and keeps the strategy from stalling in local optima. Mutation fraction
of 0.2 means around 1/5" of AMs in the incumbent solution will be fixed for the next
GLPK optimization. Crossover fraction of 0.1 means that around 10% of ID sets in the
pool (randomly chosen) will be scanned for common AMs.
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Comparison with pure Glpk

Finally, we compared our tuned strategy to the performance of pure G1pk. We
measured the time needed to find optimum in the hardest test XML document. The
results are in Figure[dl Our tuned strategy found optimum in on average almost 4x
shorter times than pure GIpk and under 10 seconds in more than a half of cases.

6 Conclusion

From all the integrity constraints in XML we chose the ID/IDREF/IDREFS at-
tributes and decided to improve upon the search for them. We discussed the ap-
proach from [2]] and the equivalence of ID set search and maximum weighted in-
dependent set. We introduced the MIP approach and demonstrated how to solve it
using external GLPK solver in the environment of jinfer framework. Afterwards,
we introduced a range of construction and improvement heuristics. We combined
these algorithms to create a metaheuristic and performed a number of experiments
to understand its behavior. Finally, we selected a promising metaheuristic strategy
and tuned its parameters to find very good ID sets in short times.

A straightforward extension granting the ability to handle more than one input
XML file has already been suggested in [2]. It is easy to add more CHs and IHs,
as well as more metaheuristics using the existing IHs. A starting point is in [16]. It
would be interesting to compare performance of our metaheuristic against two other
interesting classes: Ant Colony Optimization and Genetic Programming.
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