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Abstract. The multidimensional k −NN (k nearest neighbors) query problem is
relevant to a large variety of database applications, including information retrieval,
natural language processing, and data mining. To solve it efficiently, the database
needs an indexing structure that provides this kind of search. However, attempts to
find an exact solution are hardly feasible in multidimensional space. In this paper,
a novel indexing technique for the approximate solution of k−NN problem is de-
scribed and analyzed. The construction of the indexing tree is based on clustering.
Indexing structure is implemented on top of high-performance industrial DBMS.

1 Introduction

Search efficiency is crucial for modern information retrieval. Commonly, search
queries retrieve a relatively small portion of information. In this case, indexing
search is much more efficient than a full scan. Any given process or stored object can
be characterized by a set of features that are usually called attributes. The purpose of
any index is quick access to the object based on the values of some of its attributes.
In other words, the indices provide effective implementation of associative search.

Multidimensional searching is primarily associated with processing spatial and
spatio-temporal data. Another class of applications processing multidimensional
data includes systems based on various flavors of a text vector model for meth-
ods of data mining, pattern recognition, data compression etc. Data obtained from
the application of this class are typically characterized by high dimensionality.
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In this work we present an approach to approximate k−NN multidimensional
searching. Its idea is based on tree-clustering structure. Due to the curse of dimen-
sionality we refused to provide exact k−NN queries and have concentrated on ap-
proximate ones.

The remaining part of the paper is organized as follows. Section 2 contains the
overview of related work. Section 3 informally outlines the techniques used in our
approach. Our algorithms and data structures are presented in section 4, followed
by analysis of experiments and results in section 5.

2 Related Work

Years of multidimensional searching evolution led to development of various in-
dexing algorithms. The most respected tree structure to provide multidimensional
indexing in generic metric space is M-Tree [5]. To improve the above-mentioned
algorithm, a static tree reclustering technique is proposed in bulk loading algorithm
[4]. Slim tree [20, 18] is developed to minimize overlap of nodes at the same level.
Attempts to partition the initial set of points to disjoint subsets tuned to provide
k-NN queries are made in the family of algorithms based on Voronoi diagram: D-
Tree [22] treats Voronoi diagram buckets as nodes, and VoR-Tree [15] starts query
processing with estimating a near point using R-Tree [10, 11] and then treat this
point as a start point for querying Voronoi diagram built on leaf points.

In last decade multidimensional hashing has become a serious competitor to tra-
ditional tree approach. Locality-sensitive hashing [7] uses a priori information about
a dataset to build a fast and efficient structure for approximate querying. This ap-
proach was introduced [12] and well developed [6, 1]. Yet, when dataset is changing
rapidly, this idea is not applicable.

In many cases, it is computationally complex not only to find and to prepare vec-
tors (eg. feature extraction of images), but also to calculate the function of similar-
ity (eg. the Levinstein distance, quadric form distance or tree edit distance). Search
could be greatly accelerated if it is possible to store a matrix of pairwise distances
between objects. This idea was first presented in AESA [21]. To efficiently answer
k-NN queries, Ak-LAESA [13] has been suggested. Unfortunately, this solution is
not scalable because of the quadric behavior of index size.

In [19] k-NN search problem deals with the double filtering effect of clustering
and indexing. The clustering algorithm ensures that the largest cluster fits into main
memory and that only clusters closest to a query point need to be searched and hence
loaded into main memory. In each cluster data is distributed with ordered-partition
tree (OP-tree) main memory resident index, which is efficient for processing k-NN
queries.

In [3] divide and conquer methods for computing an approximate k-NN graph
are proposed. A hash table is used to avoid repeating distance calculations during
the divide and conquer process.
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Different aspects of the curse of dimensionality are known to present serious
challenges to various machine-learning methods and tasks. In [14] a new aspect
of the curse of dimensionality, referred to as hubness, is explored. Origins of this
phenomenon, and its connection to k-NN query evaluation are discussed.

High-dimensional clustering is used by some content-based image retrieval sys-
tems to partition the data into groups (clusters), which are then indexed to accelerate
processing of queries. Recently, the Cluster Pruning approach was proposed in [8]
as a simple way to produce such clusters. The evaluation of the algorithm was per-
formed within an image indexing context. The paper [8] discusses the parameters
that affect the efficiency of the algorithm, and proposes changes to the basic algo-
rithm to improve performance.

[16] presents an adaptive Multi-level Mahalanobis-based Dimensionality Re-
duction (MMDR) technique for high-dimensional indexing. The MMDR technique
discovers elliptical clusters for more effective dimensionality reduction by using
only the low-dimensional subspaces, data points in the different axis systems are
indexed using a single B+-tree. The technique is highly scalable in terms of data
size and dimensionality. It is also dynamic and adaptive to insertions. An extensive
performance study was conducted using both real and synthetic datasets, and the re-
sults show that the proposed technique not only achieves higher precision, but also
enables queries to be processed efficiently.

In paper [9] a new clustering method is proposed: to group together only points
that are close to each other. The remaining points are stored separately, not clustered.
Such a structure is obtained unbalanced. In order to create the indexing structure,
in [2], the distances between the selected set of pivots and the data objects is com-
puted, sorted and nearest distances are stored in separated tables. For search at first
query is compared with pivots.

In resent research [17] general problems of metric access methods are discussed.
Relevance of metric generalization in questioned. Idea of using more data-specific
approaches to indexing is proposed.

3 The Approach and Rationale

Due to survey [17], most common metric in this case is Lp. The goal of this work is
to construct dynamic bottom-up built tree for approximate nearest-neighbor search
objects in high-dimensional vector space Lp. To build the indexing structure we use
tree based paradigm with data points stored in leafs and routing points in non-leaf
nodes. Parent points (centroid) are means of all its children. Tree is balanced by the
construction. Volume of node is a parameter of algorithm and depends on operation
system page size.

As we refused to use the metric approach, we don’t have upper bound for k-
approximate nearest-neighbor queries points, retrieved as nearest neighbors, are
allowed to be arbitrarily far from the query point. According to this approach we
choose precision (number of actual k−NN in retrieved set divided by the value of
k) as our main metric.
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The idea of the algorithm is not to split overcrowded node, but to recluster the
whole level of the tree, distinguishing new node in this level. This technique is
believed to catch the inherent structure of initial dataset. As a result we can obtain
more compact nodes. So the node size is a parameter of the algorithm. However,
inserting is performed in traditional technique 1−NN query is implemented and
new point is added to retrieved leaf node.

The algorithm is developed with keeping in mind the idea of dynamic tuning:
since in every non-leaf node we store only total number of its leaf children, the
default approach is to descend only to the nearest leaf during searching. However,
the algorithm implies the possibility of tuning the number of nodes to descend to
perform better querying. In this case we choose total number of leaf nodes to be
examinated and descend to several nodes, if number of children in nearest node is
less than chosen threshold.

In order to evaluate the characteristics and performance of this structure, we have
implemented the model over the data provided industrial relational DBMS. Perhaps
this decision affects the efficiency but also ensures quick implementation, suitable
for use in the prototype, for example, in an experimental system for content based
image retrieval. That is, the developed system allows finding images on a number
of characteristics similar to the one desired.

4 Algorithm Description

4.1 Data Structure

For indexing structure we used 4 tables. First table is a Table of points. In order
the table structure was independent from the space dimension, each vector is repre-
sented in the table as a set of rows - one row for each vector attribute. Each table
row has the Point id, Attribute id and Attribute value. The table of centroids stores
mass centers for every cluster and has the same structure as Table of points.

The third table is used to store the tree structure. Each row has Point id and
Child id.

Also we use the temporary tables for mass centers and tree structure. The rows
have Point id, Attribute id, Attribute value and Iteration.

4.2 Index Structure Parameters

The proposed algorithm has parameters. The parameters might affect the efficiency
of the algorithm. Parameters are:

• distance measure,
• maximum number of points in one node maxNodeSize,
• balancing factor to prevent frequent re-clustering balancingFactor
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In our experiments distance was calculated using the L2 metric , but algorithm works
in any vector space.

We can choose maximum number of points in one tree node - maxNodeSize. In
our experiment maxNodeSize was changed from 10 to 100. This number depends
on the space dimensionality.

In order to avoid frequent reorganization of the tree, we dont fill all clusters to
maxNodeSize by re-clusterization. Number of points in each node cant exceed two
thirds of the maxNodeSize.

4.3 Index Structure Construction

Indexing algorithm starts with an empty set of indexed points and one tree node,
considered as root node. When new point arrives, we recursively descent to node,
that is nearest to arrived point. When the leaf node is reached, new point is added
to corresponding node in tree structure. After that, algorithm rises to the root node,
recalculating all centroid points to hold keep them being mean of their children.

When node overflows, we get all children its parent’s node brothers and perform
k-means clustering with following number of centers:

k = max
(

1,
n
k
×maxnodesize× balancingFactor− k

)

where n number of obtained, k number of brothers.
If constructed cluster is overflowed, we recursively recluster upper level of tree

structure. When root node is reached, the tree is pulled up.
Initial values for k-means clustering are set to previous node centers. The point,

that overflowed cluster become the one of new centers, the others are taken randomly
from effected points. K-means algorithm is chosen according to the fact that cen-
troids in tree are already similar to k-means centers every centroid contain points,
that more similar to this centroid, than to the others. In this case we can assume,
that nodes don’t need many k-means iterations to return values of new centroids. On
the other hand, k-means doesn’t keep in mind inherent database properties and with
some assumptions has exactly Voronoi diagram in a result. Algorithmic complexity
of constructing the indexing structure equals

O(n× log2 n)

4.4 Search

The search algorithsm can be described with the following steps:

1. Start from the top level.
2. Compute distances between points of current level (inside current node) and

query point, retrieve list of points, ordered by distance to the query point
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3. Pick points from the top of the list, until total number of point’s leafs is bigger
than number of points we want to examine.

4. Descend to chosen nodes and repeat 2− 3 until leaf nodes are reached.
5. Get all points from the leaf nodes.
6. Sort obtained points and retrieve first k points, k is defined by query type.

Algorithmic complexity of searching equals:

O(d× logn)

where d dimensionality of initial dataset, n cardinality of initial dataset.

5 Experiment and Analysis

The algorithm described above, was analyzed on two different datasets.
The first one is 41-dimensional representation of image characteristics with car-

dinality of 30000. The second one is 100-dimensional synthetic dataset with values
from Gaussian distribution. Cardinality of second dataset is also 30000 vectors.

The method was implemented within the DBMS Oracle. Tables were constructed
and procedures were written. Maximum node size was set to 10/50/100.

Table 1 Experimental results ( 1% examinated)

Image representation dataset Gaussian dataset
maxNodeSize 10 50 100 50 100
1−NN query 21% 28% 85% 20% 31%
10−NN query 27% 45% 32% 3% 5%

100−NN query 45% 38% 18% 5% 3%

Table 2 Experimental results (10% examinated)

Image representation dataset Gaussian dataset
maxNodeSize 50 100 50 100
1−NN query 56% 92% 42% 50%
10−NN query 60% 47% 20% 23%

100−NN query 61% 35% 20% 21%

Each experiment was performed twice. First time we set the total number of leaf
points to be examined to 1% of initial dataset, and second time to 10%. Results for
the fast one-percent scan are shown on the figure 1 and the result for more precise
ten-percent scan are on the figure 2.
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Fig. 1 The results for scanning 1% of the dataset

Fig. 2 The results for scanning 10% of the dataset

6 Conclusion

We present the algorithm that can deal with rapidly changing data in high-
dimensional vector space. Experiments show high precision on not very high di-
mensional space. Precision in high-dimensional space strongly depends on size of a
tree node: when nodes size is approximately equal to the value of k in k−NN query,
search algorithm visits only a few number of nodes and retrieves only a few actual
nearest neighbors.

However to resolve this problem we can increase the number of nodes examined
on each level: experiments show that scanning only 10% of the database results in
significant increase of precision.
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