
A Relative Feature Selection Algorithm
for Graph Classification

Yaser Keneshloo and Sasan Yazdani

Abstract. Graph classification is one of the most important research fields in data
mining nowadays and many algorithms have been proposed to address this issue.
In practice, labeling large or even medium-size graphs is a hard task and we need
experts to do so. The biggest challenge in graph classification is extracting a set of
proper features from graphs. Since graphs are represented by a complex data struc-
ture, this issue has been dealt with for a long time. Previous methods focused on
extracting features from a certain class in a dataset. In this paper we propose a new
feature selection method that extracts features from each graph rather than extract-
ing them from a certain class in the dataset. We extract only frequent subgraphs
as features. These subgraphs are chosen according to their number of occurrences
in a graph. Moreover, we proposed a new formula which calculates the minimum
number of occurrences required for a subgraph to be considered as frequent. We ex-
perimented on five real datasets and reached 7-17% higher accuracy than previously
proposed methods.

1 Introduction

In recent years, there has been a great emphasis on graph mining due to its vast
application in web, bio-informatics, social sciences and networks. Great number of
algorithms has been proposed on graph clustering, graph classification, graph query-
ing, motif finding and finding dense patterns in graph [3, 1, 17, 2]. Among these
fields, graph classification recently has been focused on greatly. Labeling graphs
is usually time consuming, expensive and requires experts. For example in order
to label a chemical compound of an AIDS sample, we need to perform lots of

Yaser Keneshloo · Sasan Yazdani
Iran University of Science and Technology
e-mail: {yaser_keneshloo,sasan_yazdani}@comp.iust.ac.ir

T. Morzy et al. (Eds.): Advances in Databases and Information Systems, AISC 186, pp. 137–148.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2013

{yaser_keneshloo,sasan_yazdani}@comp.iust.ac.ir

138 Y. Keneshloo and S. Yazdani

experiments to extract important information required to determine whether the
virus is active or not [10]. In intrusion detection systems (IDS) a network analyzer
is needed to detect an intrusion based on network logs accumulated over months
and years [16]. Therefore if we can build a model to detect these structures we can
cut these complexities both in cost and time consumption. The biggest challenge in
graph classification is feature extraction, thus the better the features extracted from
the graph, the higher the chance of correct classification. For example, in Fig. 1, we
presented the output of a Decision Tree classifier used in our experiments on AIDS
dataset. As we can see in this figure, at level two of this decision tree we have the
chemical compound, C− 1−C− 1−C− 1−N − 1−C1. With a simple threshold
value we can easily separate two classes, CA and CI from each other. In common
approaches, a graph dataset is postulated and for each class in the dataset, a set of
features known as frequent subgraphs is extracted. For labeling an unlabeled graph,
classification is continued by checking whether each class’s features are occurred
in the unlabeled graph or not. Afterwards, classifier measures the structure simi-
larity between the unlabeled graph and every class in the dataset. Finally, graph’s
label will be whichever class its structure similarity is closest to. Instead of extract-
ing a feature set of frequent subgraphs for each class in dataset, we extract a set
of features for each graph in the dataset and then unlabeled graphs are classified
based on their distinct frequent subgraphs. After feature extraction, graphs are rep-
resented by a real valued vector which can then be used by any known classifier for
classification.

Current approaches in graph classification suffer from some inefficiencies as de-
scribed below:

1. Initial Parameter: All recent graph classification approaches use an initial param-
eter known as Min Sup, which is set by user. If this value is not set appropriately,
algorithm’s performance are affected extremely [21, 9, 13].

2. Dataset size: If a dataset is small or has small number of samples in a specific
class, usually previous algorithms are unable to find a proper feature set because
they are concentrated to extract features from a class as a whole rather than ex-
tracting features from each sample.

Fig. 1 Separation of two classes using a single rule at level 2

1 When we show a chemical compound as C− 1−C − 1−C − 1−N − 1−C it means the
first Carbon joins second with a one bond join and the second is jointed with the third with
another one bond join and so on.

A Relative Feature Selection Algorithm for Graph Classification 139

In this paper we propose a novel model, RelativeGraphMiner (RgMiner), for graph
classification which can classify graphs without any starting parameters. To the best
of our knowledge, this model is the first model to classify graphs without starting
parameters. Moreover, It is the first model to use frequent subgraphs extracted from
a single graph as the kernel for classification task. In this approach, by adding a new
graph to a dataset, we only need to find frequent subgraphs for this new graph while
in previous approaches features must be re-extracted from scratch.

In the following sections, we first point some preliminaries in section 2. Section
3 will focus on related work in graph classification proposed in recent years. Section
4 presents our proposed method. In section 5, we’ll present our experimentations on
real datasets. Finally section 6, concludes materials proposed in this paper.

2 Preliminary

This section provides basic definitions needed for the rest of this paper. Weighted
graph is a common representation in graph classification problems. A weighted
graph G can be represented as a quaternary G = (V,E, l(V), l(E)) where V is the
set of nodes, E is the set of edges and L(v) and L(E) are two functions that label
nodes and edges, respectively in G. A subgraph Gs of G, denoted as Gs ⊆ G and is
represented as follows:

Gs = (Vs,Es, ls(Vs), ls(Es))

Where Vs ⊆ V,Es ⊆ E,Ls(Vs) = L(V) and Ls(Es) = L(E). Support of a graph Gs in
dataset D is calculated by the number of graphs, G∈ D in dataset where Gs ⊆G. We
define a new concept of support and show the support of Gs as Ss and define it as
number of occurrences of Gs in G. In both definitions Gs is called frequent if number
of its occurrences in G is greater or equal to a threshold parameter called Min Sup.
G1 is isomorph with G2, if there exists a bijection function f : V (G1) → V (G2)
such that for any two adjacent vertex u and v in G1, f (u) and f (v) are also adjacent
in G2.

3 Related Works

As mentioned before the most important part of classification is extraction of a good
feature set. Frequent subgraphs are one of the most common features in graph clas-
sification problems. Various methods have been proposed for extracting frequent
subgraphs from a graph dataset [12, 13, 9, 15, 21]. All previous methods extract
frequent subgraphs from a graph dataset hence they cannot be used for extracting
frequent subgraphs, existing in a single graph.

gActive[10] and gSSC[18] used gSpan as their core feature extracting method.
In these approaches, for a dataset, all frequent subgraphs are extracted and if a sub-
graph occurs in a graph G, its corresponding entry in G’s feature vector will set to
1, otherwise it will be set to zero. There are other approaches like fragment based

140 Y. Keneshloo and S. Yazdani

approaches [6, 20], kernel based method [19] and topological methods [14]. In
fragment based approaches each graph is considered as structures like frequent sub-
graphs. Kernel based approaches check two graphs similarity using different kernels
like random walks, shortest path, cyclic pattern, subtree and graphlet. For detailed
discussion refer to [19]. Topological approaches select different characteristics in a
single graph like average degree, average clustering coefficient, effective radius and
diameter and etc and use them for classification [14].

Our proposed approach doesn’t fall in neither of these categories. It takes some
of its concept from algorithms like [10] and some from fragment based approaches.
Our algorithm is based on extracting frequent subgraphs in a single graph, not a
graph dataset. We could see the discriminative power of frequent subgraphs in dif-
ferent categories of application. In [22] the authors used frequent subgraphs as a
tool for filtering irrelevant graphs when it is searching for a query graph in a dataset.
Grafil attempts to filter out as many irrelevant graphs as possible to apply the graph
isomorphism operation, which is proved to be an NP-Complete problem, on small
number of graphs. Although frequent subgraphs are powerful feature, to discrim-
inate graphs for all algorithms that used this frequent subgraphs as features, there
is another important parameter namely, Min Sup, that should be selected carefully.
Min Sup determines the minimum number of occurrences of each subgraph in order
to be considered as frequent. So, an important question in these kinds of algorithms
is to figure how we can determine a proper value for this parameter. All feature
extraction algorithms that use frequent subgraphs as features have an important pa-
rameter namely, Min Sup, that should be selected carefully. Min Sup determines
minimum number of occurrences of each subgraph in order to be considered as fre-
quent. Therefore, an important issue in these kinds of algorithms is to figure how
we can determine the proper value for this parameter. All previous algorithms con-
sidered this parameter as user-defined, so if this parameter is set inappropriately,
the final result is affected extremely [9, 21]. In order to find the best value for
Min Sup, one can tune this parameter by running algorithm several times with differ-
ent Min Sup values and then pick the best result, which of course is time-consuming.

4 RgMiner Algorithm

In this section first we describe how features are extracted from graphs in a dataset.
Then we propose a formula which helps us extract suitable features from graphs
with respect to their size and density. Afterwards in section 4.3, we explain how
normalized feature vectors can help improving classification results. Finally, we de-
scribe how to use extracted features for classification.

4.1 Creating Frequent Subgraphs

In RgMiner, each graph is represented by a vector of its frequent subgraphs. This
can best be shown by an example. Suppose we want to extract features for the graph

A Relative Feature Selection Algorithm for Graph Classification 141

in Fig. 2(a). As we can see, Fig. 2(b) and 2(c) are two arbitrary subgraphs extracted
from Fig. 2(a), where the subgraph represented in Fig. 2(b) has support value of 1
and the one in Fig. 2(c) has support value of 4, which is the number of its isomorph
as shown in Fig. 2(c) through Fig. 2(f). Usually many subgraphs exist in a graph,
so finding all of them is time consuming. In order to solve this issue we only find
and extend subgraphs which their support are greater than Min Sup. Therefore, sub-
graphs not satisfying this rule are discarded. Also, in order to decrease RgMiner’s
complexity even more, we only evaluate subgraphs that are simple walks [5]. A
simple walk is a path which nodes can repeat more than once but edges cannot be
repetitive. After extending new subgraphs, their support must be calculated in order
to find whether they are frequent or not. If a subgraph’s support is equal or greater
than Min Sup then it is counted as frequent. Also, this subgraph will be considered
for next expansions.

(a) (b) (c) (d) (e) (f)

Fig. 2 A simple graph with some of its subgraphs. Graph (b) has support value=1 and graphs
(c-f) are isomorph with support value=4.

4.2 Relative Min Sup

As described in section 3, Min Sup plays an important role in finding frequent sub-
graphs. If Min Sup is set inappropriately large, algorithms may not be able to find
any frequent subgraph at all. On the other hand if Min Sup is set too small, many
frequent subgraphs will be found. In previous approaches, this value is always set by
user and if it is not set properly or if the user has a little or no knowledge about the
dataset to select this value correctly, classification results will be poor. In order to
prevent this kind of problems we proposed Relative Min Sup which finds the value
of Min Sup relatively based on graph’s size and density. Relative Min Sup works
based on the following rule: The bigger and denser a graph, the higher its Min Sup.

In recent approaches, first a threshold value θ ∈ [0,1] is specified by user for a
dataset, then Min Sup value for this dataset is calculated using �θ × |D|�, where
|D| shows the number of graphs in dataset. We can use this naı̈ve approach for our
problem, i.e. setting a threshold for all of our graphs and multiplying it by the graph
size (�θ ×|V |�). However, this approach has a big disadvantage: through our exper-
iments on chemical datasets, we figured that determining Min Sup value for each
graph does not have a linear relation with its size and density. In the naı̈ve approach
this relation is calculated with a linear function. We can show the effectiveness of
a feature extracting algorithm using feature variance. feature variance can be used
to show how well an algorithm performs in extracting features for a given graph.
In order to calculate feature variance, first we need to calculate how many features

142 Y. Keneshloo and S. Yazdani

are extracted from a graph with respect to its size, i.e. δ= (number of frequent sub-
graphs / number of graph nodes). Clearly more frequent subgraphs are extracted
from bigger graphs. Therefore, to be able to compare two graphs, no matter how big
or small, we divided the number of frequent subgraphs by the number of graph’s
nodes. A dataset D = {G1, . . . ,GN} can be represented by δD = {δ1, . . . ,δN}, where
δi is the corresponding feature to size ratio for Gi. We can then define feature vari-
ance of an algorithm A on dataset D using δD as follows:

f eature variance = γA
D = max(δD)−min(δD) (1)

This measure can be used to compare how well two feature extraction algorithm
are doing on dataset D. A small γA

D shows that algorithm A extracts appropriate
number of subgraphs proportional to graph’s size, while a large γA

D means that A
is performing poorly on D. We compare feature variance of our proposed measure
against naı̈ve approach at the end of this section.

To determine a suitable Relative Min Sup for a graph we follow a simple rule:
The sparser a graph, the less the number of frequent subgraphs. With this in mind, a
formula should be proposed to determine Min Sup with respect to graph’s size and
density. In graph theory, density of a graph can be calculated using the following
formula:

density =
2|E|

|V |(|V |− 1)
(2)

For a sparse graph like a chemical compound, density is close to zero while for a
dense graph’s density is close to one. Because of the denominator, for two large
chemical compounds, density will be nearly equal and close to zero, which is a big
issue. Therefore, density cannot help us in finding a good Min Sup in chemical com-
pounds so we propose a new measure which takes advantage of density’s statistics
and also resolves the nonlinearity issue:

Relative Min Sup = MRi = � |E|
log(|V |(|V |− 1)/2)

� (3)

In this equation, we injected graph’s statistics like number of edges and number
of nodes to find a proper Min Sup. Moreover, Relative Min Sup behaves like den-
sity, but does not have density’s denominator drawback, which is because Rela-
tive Min Sup uses logarithm function to reduce the impact of |V | in denominator.
As we can see in Eq. 3, by increasing the number of nodes in a graph, the value of
its Min Sup will increase inverse-logarithmically, which is of course in a non-linear
manner, so Relative Min Sup satisfies the condition required for selecting a proper
value for Min Sup.

We used PDC-FR dataset, which is described in section 5, to compare the fea-
ture variance of our approach with naı̈ve approach. For naı̈ve approach the value
of feature variance was γNaive

PDC−FR = 38.6, while our approach reached the value of
γRelative

PDC−FR = 12.85, which is clearly better.

A Relative Feature Selection Algorithm for Graph Classification 143

4.3 Normalized Feature Vector

In our proposed approach instead of using binary features we used integer valued
features, since number of occurrences of a frequent subgraph is very important by
itself. Each integer represents the corresponding frequent subgraph’s support. But
support value of a specific subgraph in a large graph is much greater than its sup-
port in a small one, while this specific subgraph may have equal impact in these
two graphs’ structures. So we need a normalization factor to reduce the effect of
this issue. Therefore, in order to get better results, we need to normalize them with
respect to their corresponding graph’s size, i.e .x j

i =(S j/n) where S j is support of
frequent subgraph g j and n represents number of Gi’s nodes.

4.4 Feature Aggregation

Usually there are many frequent subgraphs in large graphs but even for two graphs
with a little difference in their structure, there are some distinct subgraphs which
make them different. In order to consider all of these features, we use an aggregate
feature vector (AFV) for classification. Aggregate feature vector contains all distinct
frequent subgraphs occurring in a dataset. By using AFV, each graph in our dataset
will have nAFV number of features. So, the feature vector of a graph Gi is created as
follows:

x j
i =

{ S j
n if g j ⊂ Gi and S j ≥ MRi

0 if g j 	⊂ Gi or S j < MRi

Where MRi is the calculated relative Min Sup for the graph Gi.

5 Experiments

We used five real world datasets to evaluate RgMiner. Table 1 presents more infor-
mation about these five datasets. All datasets are comprised of graphs, each repre-
senting a chemical compound. Each graph node represents a chemical element and
each edge shows a bond between two chemical elements in that compound.

Table 1 Real world dataset used for RgMiner

Dataset #Positive #Total
AIDS 518 1237

PTC-FM 78 201
PTC-MM 67 189
PTC-FR 61 201
PTC-MR 69 193

144 Y. Keneshloo and S. Yazdani

1. AIDS Antiviral Screen Data2. This dataset is gathered by examining tens of thou-
sands of chemical compounds to identify whether they are HIV-active or not.
Chemical compounds in this dataset are divided in three categories: Active (CA),
Inactive (CI) and Moderately active (CM). We considered CA and CM com-
pounds as negative class and CI as positive class, which are the same settings
used in [10]. Finally, to have a fair classification we considered all graphs from
CM and CI and randomly chose the same amount of graphs from CA.

2. Predictive-Taxonomy Challenge (PTC): Last four datasets are taken from the
challenge proposed in Predictive-Taxonomy website3. The goal of this classifi-
cation challenge was to detect chemical compounds with carcinogenicity activity
among them for four types of animal: Male Mouse (MM), Female Mouse (FM),
Male Rat (MR) and Female Rat (FR). The compound in this dataset divided in
three categories: P: Positive, N: Negative and E: Equivocal. We used only posi-
tive and negative data for classification and ignored E samples.

5.1 Classifier Production Methods

In order to evaluate our method and compare it with previous approaches, we em-
ployed three different classifiers and compared their results with previous works’
best accuracies. All classifiers have been created using Weka 3.6 [7] using 10-fold
cross-validation. Classifiers used for comparison are Decision Tree (J48), Random
Forest, LibSVM. We used these diverse classifiers in order to have different per-
spectives on discriminant functions in feature space and also to have a comprehen-
sive evaluation. Also, we built a binary version of our approach called RgMiner 0-1
which instead of using normalized support and real valued feature vectors, uses bi-
nary valued feature vectors. This means, if a frequent subgraph occurs in a graph
the corresponding value in its feature vector is set to one, otherwise it is set to zero.
We created RgMiner 0-1 in order to be able to fairly compare our approach with
gActive and also, to support two main idea of our approach: first, we wanted to
show that if we extract relevant information from each graph rather than extract-
ing them from graphs belonging to a certain class in a dataset, we’ll get better re-
sults. Second, we wanted to show that by using real values rather than binary ones,
we can achieve even higher accuracy. Fig. 3(a) through 3(c) shows final results for
these three classifiers based on their accuracy, F-Measure and MCC metrics, respec-
tively. We used gActive and gSSC which are both popular in graph classification.
gSSC uses semi-supervised feature extraction algorithm and based on experiments
in [11] , best accuracy gained by this method for PTC-FM and PTC-MM datasets are
57% and 57.7%, respectively, while our approach classifies these two datasets with
74.12% and 64.67% accuracy in best case scenario which improves gSSC algorithm
by about 17% and 7%. On the other hand, gActive results in [10] for AIDS dataset

2 Available at: http://dtp.nci.nih.gov/docs/aids/aids_data.html
3 Available at: http://www.predictive-toxicology.org/ptc/

http://dtp.nci.nih.gov/docs/aids/aids_data.html
http://www.predictive-toxicology.org/ptc/

A Relative Feature Selection Algorithm for Graph Classification 145

shows 67% classification accuracy, while our method reaches 75.9% in accuracy
which is an improvement about 9% for this dataset.

Table 2, represents these three classifier’s detailed results on each dataset based
on different performance metrics we used for evaluating RgMiner. Classifiers which
work best on each dataset based on different metrics are represented in bold.

Table 2 Result from RgMiner using different classifier and metrics

Classifier/Metric AIDS PTC-FM PTC-MM PTC-FR PTC-MR
LibSVM Accuracy 70 66.67 64.55 69.65 66.32

F-Measure 0.68 0.62 0.59 0.63 0.62
MCC 0.34 0.19 0.09 0.10 0.16

Random Forest Accuracy 75.9 74.12 64.67 64.65 67.16
F-Measure 0.759 0.62 0.61 0.63 0.64

MCC 0.50 0.20 0.14 0.11 0.22
J48 Accuracy 69.84 63.68 62.96 60.69 59.06

F-Measure 0.70 0.63 0.62 0.61 0.57
MCC 0.38 0.21 0.15 0.09 0.05

RgMiner 0-1 Accuracy 75.66 63.68 64.55 71.14 68.39
F-Measure 0.757 0.60 0.61 0.67 0.65

MCC 0.50 0.16 0.13 0.20 0.24

5.2 Discussion

In this section, we describe the result achieved by RgMiner. We used different met-
rics for our evaluation since Accuracy is not a good indicator of behavior of a clas-
sifier by itself, especially when datasets are unbalanced. Therefore, we need to use
some complementary measures to evaluate our proposed method thoroughly. In ad-
dition to accuracy, we used the F-Measure and Matthews Correlation Coefficient
(MCC) to validate our result. MCC is a performance quality measure used in two-
class classification problems and is an interesting performance metric in bioinfor-
matics. MCC measure has -1 as its lower bound and +1 as its upper bound, where
+1 indicates perfect classification, -1 shows inverse classification, and 0 represents
a random classifier. MCC can be measured using Eq. 4.

MCC =
T P×TN −FP×FN√

(TP+FP)(T P+FN)(T N +FP)(T N +FN)
(4)

In Eq. 4, parameters TP, TN, FP, FN stands for true positive, true negative, false
positive and false negative extracted from classifier’s confusion matrix.

We employed LibSVM which uses C-SVM to build the model and with RBF as
its kernel, which is also the default setting in Weka. RBF kernel function maps the
original feature space to a higher-dimension feature space and then, the classifier
separates two classes in the dataset linearly with a spherical plane. However, RBF
kernel function results in poor classification performance. This happens because in
our created dataset, number of features dominates the number of samples by about a

146 Y. Keneshloo and S. Yazdani

AIDS FM MM FR MR

60

65

70

75

A
cc

ur
ac

y

LibSVM RandomForest J48 RgMiner 0-1

(a) Accuracy Measure

AIDS FM MM FR MR

0.55

0.6

0.65

0.7

0.75

F
-M

ea
su

re

LibSVM RandomForest J48 RgMiner 0-1

(b) F-Measure

AIDS FM MM FR MR

0

0.1

0.2

0.3

0.4

0.5

M
C

C

LibSVM RandomForest J48 RgMiner 0-1

(c) MCC Measure

Fig. 3 Result of classification using RgMiner on different classifiers

factor of 14. As stated in [4], in these situations, this method is likely to give us poor
results. In these cases since we have an enormous difference between number of
samples and features, we do not need yet another kernel function to map our feature
space into a higher dimension one. So, it is better to use a linear kernel to do the
classification.

Second classifier used for our evaluation was decision tree (J48 in Table 2), which
is a supervised rule-based classifier and use simple if-then rules to determine each
sample’s class. The prominent feature of decision tree among other classifiers is the
high interpretability of this classifier. This classifier shows us a good representa-
tion to describe our algorithm better. Fig. 1 shows a part of our final decision tree
classifier created for AIDS dataset. As we can see in second level of this partial
tree, a chemical compound can be classified by a simple rule of checking whether
a C− 1−C− 1−C− 1−N − 1−C subgraph occurs in its structure. If it does and
has a normalized support of equal or greater than 0.088 then the graph is classified
as CI, Otherwise graph’s label is considered CA. One important characteristic of
a decision tree classifier is that no matter how many features used to describe an
instance, it only chooses a subset of features that is enough to discriminate existing
classes in a dataset against one another. For instance only 11 features were used to
build a decision tree classifier for PTC-MR dataset, which compared to 2829, total
number of features in AFV for this dataset, is much smaller, which shows our fea-
ture extracting approach is performing so well that only 0.4% of features extracted
from the dataset is enough for its classification.

Also, we used Random Forest (RF) which technically is an ensemble of classi-
fiers to show that we could reach even better results by incorporating ensemble of
classifiers that take advantage of different set of features and samples in building
classifiers. Finally, in Table 2 we can see the performance of RgMiner using binary
values for each feature vector. As we can see, performance of this classifier is near to
RgMiner but in some datasets it is less preferable. This supports the idea that higher
performance can be achieved by simply extracting frequent subgraphs from each
graph in a dataset rather than extracting them for each class separately. Using real
valued feature vectors represents that relative support does even better than binary
values.

A Relative Feature Selection Algorithm for Graph Classification 147

Comparing previously proposed approaches with our approach, we can see ours
has four great advantages: First of all we use very simple subgraphs instead of using
complex ones. This reduces graph isomorphism’s cost. Second, we consider all sub-
graphs no matter how big or dense they are. This fact can be seen in level one and
two of the tree shown in Fig. 1. Third, we employ Relative Min Sup to find a proper
minimum number of occurrences of a subgraph, in order to be considered frequent.
Finally, we use real valued feature vectors by including the number of occurrences
of each subgraph, as an important factor for classification. This way each frequent
subgraph has its own impact on classification and is not considered equal to others.

6 Conclusions

In this paper we addressed the problem of graph classification and proposed a new
algorithm for this issue. In our proposed algorithm we used the concept of frequent
subgraphs in a single graph to create feature sets. Also we proposed an innovative
formula to determine the value of Min Sup dynamically based on graph’s size and
density, finally we normalized the value of supports calculated for each subgraph
with respect to graph’s size to emphasize on the relative importance of each sub-
graph. In spite of prior approaches that extract feature sets from and for a certain
class in a dataset, we create this feature set from each graph and use it for classifica-
tion. Through experiments on five real world datasets, we showed that our approach
reached up to 17% higher accuracy than prior approaches.

References

1. Aggarwal, C.C.: On classification of graph streams. In: Proceedings of Eleventh SIAM
International Conference on Data Mining, SDM 2011, Arizona, Mesa (2011)

2. Aggarwal, C.C., Li, Y., Yu, P.S., Jin, R.: On dense pattern mining in graph streams.
PVDLB 3(1), 975–984 (2010)

3. Aggarwal, C.C., Zhao, Y., Yu, P.S.: On clustering graph streams. In: Proceedings of the
SIAM International Conference on Data Mining, SDM 2010, Columbus, Ohio, USA
(2010)

4. Auria, L., Moro, R.A.: Support Vector Machines (SVM) as a technique for solvency
analysis. Discussion Papers of DIW Berlin (2008)

5. Bondy, J.A.: Graph Theory with Applications, pp. 12–21. Elsevier Science Ltd. (1976)
6. Cheng, H., Yan, X., Han, J., Hsu, C.: Discriminative frequent pattern analysis for effec-

tive classification. In: Proc. of ICDE, Istanbul, Turkey (2007)
7. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, L.H.: The Weka

data mining software: an update. SIGKDD Explor. Newsl. 11(1), 10–18 (2009)
8. He, H., Singh, A.K.: Closure-Tree: An index structure for graph queries. In: ICDE 2006,

Atlanta, Georgia (2006)
9. Huan, J., Wang, W., Prins, J.: Efficient mining of frequent subgraph in the presence of

isomorphism. In: Proceedings of the 3rd IEEE International Conference on Data Mining,
ICDM 2003, Melbourne (2003)

148 Y. Keneshloo and S. Yazdani

10. Kong, X., Fan, W., Yu, P.S.: Dual active feature and sample selection for graph classifica-
tion. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, San Diego, California (2011)

11. Kong, X., Yu, P.S.: Semi-supervised feature selection for graph classification. In: Pro-
ceeding of the 16th ACM SIGKDD International Conference on Knowledge Discovery
and Data mining, Washington, DC (2010)

12. Krishna, V., Suri, N.N.R.R., Athithan, G.: A comparative survey of algorithms for fre-
quent subgraph discovery. Current Science 100(2) (2011)

13. Kuramochi, M., Karypis, G.: An efficient algorithm for discovering frequent subgraphs.
IEEE Transactions on Knowledge and Data Engineering 16(9), 1038–1051 (2004)

14. Li, G., Semerci, M., Yener, B., Zaki, M.J.: Graph Classification via Topological and
Label Attributes. In: 9th Workshop on Mining and Learning with Graphs (with SIGKDD)
(August 2011)

15. Nijssen, S., Kok, J.: A quick start in frequent structure mining can make a difference. In:
Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pp. 647–652. ACM (2004)

16. Parveen, P., Weger, Z.R., Thuraisingham, B.M., Hamlen, K.W., Khan, L.: Insider Threat
Detection using Stream Mining and Graph Mining. In: IEEE 23rd International Confer-
ence on Tools with Artificial Intelligence, ICTAI 2011, Boca Raton, FL (2011)

17. Singh, A.K.: Graph querying, graph motif mining and the discovery of clusters, United
State Patent, Santa Barbara, CA (2011)

18. Thoma, M., Cheng, H., Gretton, A., Han, J., Kriegel, H., Smola, A., Song, L., Yu, P.S.,
Yan, X., Borgwardt, K.M.: Near-optimal supervised feature selection among frequent
subgraphs. In: SIAM International Conference on Data Mining (2009)

19. Vishwanathan, S.V.N., Schraudolph, N.N., Kondor, I.R., Borgwardt, K.M.: Graph Ker-
nels. Journal of Machine Learning Research 11, 1201–1242 (2010)

20. Wale, N., Karypis, G.: Comparison of descriptor spaces for chemical compound retrieval
and classification. In: Proc. of ICDM, Hong Kong, pp. 678–689 (2006)

21. Yan, X., Han, J.: gSpan: Graph-based substructure pattern mining. In: ICDM 2002 (2002)
22. Yan, X., Yu, P.S., Han, J.: Substructure similarity search in graph databases. In: SIGMOD

Conference (2005)

	A Relative Feature Selection Algorithm for Graph Classification
	Introduction
	Preliminary
	Related Works
	RgMiner Algorithm
	Creating Frequent Subgraphs
	Relative_Min_Sup
	Normalized Feature Vector
	Feature Aggregation

	Experiments
	Classifier Production Methods
	Discussion

	Conclusions
	References

