
Chapter 8
Chemical Pretreatment Techniques for Biofuels
and Biorefineries from Softwood

Fang Huang and Arthur J. Ragauskas

Abstract Lignocellulosic materials, such as wood, grass, and agricultural and forest
residues, are potential resources for the production of bioethanol. The biochem-
ical process of converting biomass to bioethanol typically consists of three main
steps: pretreatment, enzymatic hydrolysis, and fermentation. During the whole pro-
cess, pretreatment is probably the most crucial step since it has a large impact on
the efficiency of the overall bioconversion. The aim of pretreatment is to disrupt
recalcitrant structures of cellulosic biomass to make cellulose more accessible to
the enzymes that convert carbohydrate polymers into fermentable sugars. Physical,
physical-chemical, chemical, and biological processes have been used for pretreat-
ment of lignocellulosic materials. This chapter summarizes the leading technologies
in chemical pretreatment on softwood, particularly pine species, which generally
show relatively higher recalcitrance than hardwood, grass, and other lignocellu-
losic materials. Different chemical pretreatment techniques, including dilute acid
pretreatment, alkaline hydrolysis, wet oxidation, sulfite pretreatment to overcome
recalcitrance of lignocellulose (SPORL), organosolv, ionic liquids pretreatment, and
ozonolysis process are intensively introduced and discussed. In this chapter, the key
points are focused on the structural changes primarily in cellulose, hemicellulose,
and lignin during the above leading pretreatment technologies.
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8.1 Introduction

In order to cope with growing demand for energy, the depletion of fossil fuel re-
sources, and environmental concerns raised by fossil fuel use, countries wishing
to limit their energy dependence on petroleum exporting countries are developing
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Fig. 8.1 Schematic
presentation of effects of
pretreatment on
lignocellulosic biomass.
(Reprint from Ref. [10], U.S.
Department of Energy
Genomic Science program
(http://genomicscience.
energy.gov))

alternative energy sources, such as bioethanol produced from renewable biomass
[1–4]. Cellulosic bioethanol is regarded as one of the most promising renewable
biofuels in the transportation sector for the coming next few decades [5]. Current pro-
duction of bioethanol relies on sugars that are obtained from starch-based agricultural
crops by using first-generation conversion technologies [6]. Nowadays bioethanol
produced from lignocellulosic biomass using second-generation technologies has
become an interesting alternative, mainly because lignocellulosic raw materials do
not compete with food crops or productive agricultural land, and they are also less
expensive than conventional agricultural feedstocks [7, 8].

The biological process of converting biomass to bioethanol typically consists of
three main steps: pretreatment, enzymatic hydrolysis, and fermentation. During the
whole process, pretreatment is the most crucial step since it has a large impact on
the efficiency of the overall bioconversion. In lignocellulosic biomass, cellulose and
hemicellulose are densely packed together with lignin, which serves several func-
tions including protection against enzymatic hydrolysis [9]. The aim of pretreatment
is to disrupt recalcitrant structures of cellulosic biomass to make cellulose more ac-
cessible to the enzymes that convert carbohydrate polymers into fermentable sugars
(Fig. 8.1). During the pretreatment, the extent of removal of lignin and hemicellulose
depends on the pretreatment conditions and severity. For example, acidic chemical
pretreatment removes most of hemicellulose. The lignin is condensed when pretreat-
ing temperature reaches above 170 ◦C. On the contrary, the ammonia fiber explosion
(AFEX) pretreatment does not significantly remove hemicellulose.

Numerous pretreatment strategies have been developed to enhance the reactiv-
ity of cellulose and to increase the yield of fermentable sugars. Typical goals of
pretreatment include [11]:

• Production of highly digestible solids that enhances sugar yields during enzyme
hydrolysis.

• Avoiding the degradation of sugars (mainly pentoses) including those derived
from hemicellulose.

• Minimizing the formation of inhibitors for subsequent fermentation steps.
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Table 8.1 Typical
lignocellulosic biomass
compositions (% dry basis)
[3, 4, 5, 13, 14]

Cellulose Hemicellulose Lignin

Pine 43.3 20.5 28.3
Spruce 45.0 22.9 27.9
Douglas fir 45.0 19.2 30.0
Poplar 44.7 18.5 26.4
Eucalyptus 49.5 13.1 27.7
Corn stover 36.8 30.6 23.1
Miscanthus 52.1 25.8 12.6
Wheat straw 44.1 23.8 20.5
Switchgrass 33.5 26.1 17.4

Among the numerous types of biomass, softwoods (SW) are generally recognized
as being much more refractory than hardwoods (HW) or agricultural residues in the
pretreatment process. This is, in part, due to the fact that SW have a more rigid
structure and contains more lignin [12].

The goal of this paper is to review promising chemical pretreatments technologies
on softwood, particularly pine species, and to discuss recent developments which
have greatly aided the production of bioethanol. For each technology, a brief process
description is first given with recent developments, and then the feedstocks on which
these technologies are used are highlighted, followed by discussion of the technol-
ogy’s advantages and disadvantages. The key points will be focused on the structural
changes primarily in cellulose, hemicellulose, and lignin during the above leading
pretreatment technologies.

8.2 Understanding Lignocellulosic Biomass

8.2.1 Composition of Lignocellulosic Biomass

The term “lignocellulosic biomass” is used when referring to higher plants, such as
grasses, SW or HW. Understanding lignocellulosic biomass, particularly its chemi-
cal composition, is a prerequisite for developing effective pretreatment technologies
to deconstruct its rigid structure, designing enzymes to liberate sugars, particularly
cellulase to release glucose (Glu), from recalcitrant cellulose, as well as engineer-
ing microorganisms to convert sugars into ethanol and other bio-based chemicals.
The main components of the lignocellulosic materials are cellulose, hemicellu-
lose, lignin, and a remaining smaller part (extractives and ash). The composition
of lignocellulose highly depends on its source. There is a significant variation of
the lignin and (hemi)cellulose content of lignocellulosics depending on whether it
is derived from hardwood, softwood, or grasses. Table 8.1 summarizes the com-
position of lignocellulose encountered in some of the most common sources of
biomass.



154 F. Huang and A. J. Ragauskas

Fig. 8.2 The structure of cellulose [15]

8.2.2 Physical and Chemical Characteristics
of Lignocellulosic Biomass

Lignocellulosic biomass has a complex internal structure. The major components of
lignocellulosic biomass, that is, cellulose, hemicellulose, and lignin, also have intri-
cate structures. To obtain a clear picture of the material, an analysis of the structure
of each main component is made in this section, concluding with the description of
the structure of lignocellulose itself. The physical properties of each component and
how these components contribute to the behavior of the complex structure are also
addressed. The study is oriented toward breaking down the complex of lignocellulose
and utilizing the components to produce sugars, as this is one of the main goals of
pretreatment.

8.2.2.1 Cellulose

Cellulose is the β-1,4-polyacetal of cellobiose (4-O-β-D-glucopyranosyl-D-Glu).
Cellulose is more commonly considered as a polymer of Glu because cellobiose
consists of two molecules of Glu. The chemical formula of cellulose is (C6H10O5)n
and the structure of one chain of the polymer is presented in Fig. 8.2. Many prop-
erties of cellulose depend on its degree of polymerization (DP), that is, the number
of Glu units that make up one polymer molecule. The DP of cellulose varies from
5,000 in native wood to approximately 1,000 in bleached wood pulp [15]. Each d-
anhydroglucopyranose unit possesses hydroxyl groups at C2, C3, and C6 positions,
capable of undergoing the typical reactions known for primary and secondary al-
cohols. The molecular structure imparts cellulose with its characteristic properties:
hydrophylicity, chirality, degradability, and broad chemical variability initiated by
the high donor reactivity of hydroxyl groups.

The nature of the bonding between the Glu molecules (β-1,4 glycosidic) allows
the polymer to be arranged in long linear chains. The latter arrangement of the
molecule, together with the fact that the hydroxyl groups are at C2, C3 and C6
positions, allows for the formation of intra- and inter-molecular hydrogen bonds
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between the molecules of cellulose [16]. The coalescence of several polymer chains
leads to the formation of microfibrils, which in turn are united to form fibers.

The hydrogen bonds in the linear cellulose chains promote aggregation into a
crystalline structure and give cellulose a multitude of partially crystalline fiber struc-
tures and morphologies [17]. The average degree of crystallinity of native cellulose
ranges 50–70 % [18, 19]. The ultrastructure of native cellulose (cellulose I) has been
discovered to possess unexpected complexity in the form of two crystal phases: Iα
and Iβ [20]. The relative amounts of Iα and Iβ have been found to vary between
samples from different origins. The Iα-rich specimens have been found in the cell
wall of some algae and in bacterial cellulose, whereas Iβ-rich specimens have been
found in cotton, wood, and ramie fibers [21, 22]. Native cellulose also contains para-
crystalline and amorphous portion. Para-crystalline cellulose is loosely described as
chain segments having more order and less mobility than amorphous chains segments
but less-ordered and more mobile than chains within crystals [23, 24]. The presence
of crystalline cellulose, with regions of less order, and the size of the elementary
fibrils work together to produce interesting combination of contrary properties such
as stiffness and rigidity on one hand and flexibility on the other hand [25].

Crystalline cellulose has a very limited accessibility to water and chemicals.
Chemical attack can, therefore, be expected to occur primarily on amorphous cellu-
lose and crystalline surface. Cellulose is a relatively hygroscopic material absorbing
8–14 % water under normal atmospheric conditions (20 ◦C, 60 % relative humid-
ity) [26]. Nevertheless, it is insoluble in water, where it swells. Cellulose is also
insoluble in dilute acid solutions at low temperature. The solubility of the polymer is
strongly related to the degree of hydrolysis achieved. As a result, factors that affect
the hydrolysis rate of cellulose also affect its solubility that takes place. In alkaline
solutions extensive swelling of cellulose takes place as well as dissolution of the low
molecular weight fractions of the polymer (DP < 200) [27].

8.2.2.2 Hemicellulose

The term hemicellulose is a collective term. It is used to represent a family of polysac-
charides that are found in the plant cell wall and have different composition and
structure depending on their source and the extraction method. Unlike cellulose,
hemicellulose is composed of combinations of pentose (xylose (Xyl) and arabinose
(Ara)) and/or hexoses (mannose (Man), galactose (Gal), and Glu); and it is frequently
acetylated and has side chain groups such as uronic acid and its 4-O-methyl ester. The
chemical nature of hemicellulose varies from species to species. In general, the main
hemicelluloses of softwood are galactoglucomannans and arabinoglucuronoxylan,
while in hardwood is glucuronoxylan (Fig. 8.3) [28]. Table 8.2 summarizes the main
structural features of hemicelluloses appearing in both softwood and hardwood.

Important aspects of the structure and composition of hemicellulose are the lack of
crystalline structure, mainly due to the highly branched structure, and the presence of
acetyl groups on the polymer chain. Hemicellulose extracted from plants possesses
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Fig. 8.3 Principal polysaccharides in woody hemicellulose. (Reproduced from Ref. [28] by
permission of Wiley)

a high degree of polydispersity, polydiversity, and polymolecularity (a broad range
of size, shape, and mass characteristics). However, the DP does not usually exceed
300 units whereas the minimum limit can be around 50 monomers, which are much
lower than cellulose.

In addition, most sugar components in the hemicellulose can take part in the
formation of lignin–carbohydrate complexes (LCC) by covalent linkages between
lignin and carbohydrates [31, 32]. The most frequently suggested LCC-linkages in
native wood are benzyl ester, benzyl ether, and glycosidic linkages [33]. The benzyl
ester linkage is alkali-labile and may, therefore, be hydrolyzed during the alkaline
pretreatment. The latter two linkages are alkali-stable and would survive from the
hydrolysis during alkaline pretreatment.
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Table 8.2 Major hemicellulose component in softwood and hardwood [29, 30]

Wood Hemicellulose type Amount
(% on
wood)

Composition

Units Molar
ratio

Linkage DP

SW Galactoglucomannans 10–15 β-D-Manp 4 1→4 100
β-D-Glcp 1 1→4
β-D-Galp 0.1 1→6
Acetyl 1

Arabinoglucuronoxylan 7–10 β-D-Xylp 10 1→4 100
4-O-Me-α-D-GlcpA 2 1→2
β-L-Araf 1.3 1→3

HW Glucuronoxylan 15–30 β-D-Xylp 10 1→4 200
4-O-Me-α-D-GlcpA 1 1→2
Acetyl 7

Glucomannan 2–5 β-D-Manp 1–2 1→4 200
β-D-Glcp 1 1→4

8.2.2.3 Lignin

Of the three major biopolymers that constitute wood, lignin is distinctly different
from the other macromolecular polymers [34]. Lignin is an amorphous, cross-linked,
and three-dimensional polyphenolic polymer that is synthesized by enzymatic de-
hydrogenative polymerization of 4-hydroxyphenyl propanoid units [35, 36]. The
biosynthesis of lignin stems from the polymerization of three types of phenylpropane
units as monolignols: coniferyl, sinapyl, and p-coumaryl alcohol [37, 38]. Figure 8.4
depicts these three structures. It has been identified that lignin from softwood is
made up of more than 90 % of coniferyl alcohol with the remaining being mainly
p-coumaryl alcohol units. Contrary to SW, lignin contained in hardwood is made up
of varying ratios of coniferyl, sinapyl, and typically lesser amounts of p-coumaryl
alcohol type of units.

The polymerization process is initiated by an enzyme-catalyzed oxidation of the
monolignol phenolic hydroxyl groups to yield free radicals. A monolignol free radical
can then couple with another monolignol to generate a dilignol. Subsequent nucle-
ophilic attack by water, alcohols, or phenolic hydroxyl groups on the benzyl carbon
of the quinone methide intermediate, restores the aromaticity of the benzene ring.
The generated dilignols then undergo further polymerization to form protolignin.

Although the exact structure of protolignin is unknown, improvements in meth-
ods for identifying lignin-degradation products and advancements in spectroscopic
methods have enabled scientists to elucidate the predominant structural features of
lignin. Table 8.3 showed the typical abundance of common linkages and functional
groups found in softwood lignin [39, 40].

The property of polydispersity, just as with hemicellulose, characterizes lignin as
well. The DP for softwood lignin is approximately 60–100 and the molecular weight
is in excess of 10,000 [41, 42].
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Fig. 8.4 Three building
blocks of lignin. (Reproduced
from Ref. [28] by permission
of Wiley)

Table 8.3 Proportions of
different types of linkages
connecting the phenylpropane
units in softwood lignin.
(Reproduced from Ref. [28]
by permission of Wiley)

Linkage type Dimer structure ∼Percentage

β-O-4 Phenylpropane β-aryl ether 50
β-5 Phenylcoumaran 9–12
5-5 Biphenyl 15–25
5-5/α-O-4 Dibenzodioxicin 10–15
4-O-5 Diaryl ether 4
β-1 1,2-Diaryl propane 7
β-β β-β-linked structures 2

Lignin in wood behaves as an insoluble three-dimensional network. It plays an
important role in the cell’s endurance and development, as it affects the transport of
water, nutrients, and metabolites in the plant cell. It acts as binder between cells cre-
ating a composite material that has a remarkable resistance to impact, compression,
and bending [26].

Lignin is much less hydrophilic than either cellulose or hemicelluloses, and it
has a general effect of inhibiting water adsorption and fiber swelling. Solvents that
have been identified to significantly dissolve lignin include low molecular alcohols,
dioxane, acetone, pyridine, dimethyl sulfoxide and select ionic liquids. Further-
more, it has been observed that at elevated temperatures, thermal softening of lignin
takes place, which allows depolymerization reactions of acidic or alkaline nature to
accelerate [43].

8.3 Chemical Pretreatment of Lignocellulosic Biomass

8.3.1 Dilute Acid Pretreatment (DAP)

Among the numerous pretreatment techniques, dilute acid pretreatment (DAP) has
been shown as a leading pretreatment process that is currently under commercial de-
velopment. DAP can significantly reduce lignocellulosic recalcitrance by disrupting
the composite material linkage, such as the covalent bonds, hydrogen bonds, and
van der Waals forces [44]. The most widely used and tested approaches in DAP are
based on dilute sulfuric acid (H2SO4) since it is inexpensive and effective [45, 46].
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However, nitric acid [47], hydrochloric acid (HCl) [48], and phosphoric acid [49]
have also been examined. In addition, it was shown that sulfur dioxide (SO2) was
also an efficient acid catalyst in the DAP, especially for softwood [50–52]. How-
ever, there are certain drawbacks with such an approach. It is difficult to handle SO2

(gas) at large scales, as safety issues may constitute a concern, and it is also a more
expensive option as compared to similar alternatives such as using H2SO4.

8.3.1.1 Process Description

DAP is usually performed over a temperature range of 120–210 ◦C, with acid con-
centration typically less than 4 wt%, and residence time from several minutes to an
hour [53]. In the DAP pretreatment, the combined severity (CS) is used for an easy
comparison of pretreatment conditions and for facilitation of process control, which
relates to the experimental effects of temperature, residence time, and acid concen-
tration [54]. Lower CS is beneficial for the hemicellulose to hydrolyze to oligomers
and monomers while higher CS could bring these monomers to furfurals, which are
inhibitors for the subsequent enzymatic hydrolysis [55]. In order to maximize the
efficiency of pretreatments, several studies have proposed a two-step procedure for
DAP of SW [45, 56]. The conditions in the first step are less severe and serve to
hydrolyze the hemicelluloses resulting in a high recovery of hemicellulose-derived
fermentable sugars in the pretreatment effluent. By separating the solid and liquid
phases after the first step, it is possible to minimize the degradation of hemicellulosic
sugars to furfural and hydroxymethylfurfural (HMF). The solid material recovered
from the first step is treated again under more severe conditions which promotes the
enzymatic digestibility of cellulose fibers.

The DAP offers good performance in terms of recovering hemicellulose sugars
but there are also some drawbacks. The dilute acid applied in the process could cause
corrosion that mandates expensive materials of construction, such as hastelloy steel
and ceramic valves. The neutralization of acid before the fermentation results in
the formation of solid waste. In addition, the hemicellulose sugars might be further
degraded to furfural and HMF, which are strong inhibitors to microbial fermentation
[57]. Furthermore, most of the reported work used materials with significant size
reduction, which consumes additional energy. Previous report indicated that grinding
the materials to 1 mm accounted for 33 % of the power requirement of the entire
process [58]. However, this is not practical in large-scale production. In addition, the
detoxification step is required in DAP when running high solids pretreatment, which
adds additional cost to the process.

8.3.1.2 Mode of Action

The main reaction that occurs during acid pretreatment is the hydrolysis of hemicel-
lulose. Hemicellulose mainly xylan is hydrolyzed to fermentable sugars during DAP
[59]. Solubilized hemicelluloses (oligomers) can be subjected to hydrolytic reactions
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producing monomers, furfural, HMF, and other (volatile) products in acidic environ-
ments [60, 61]. Recently, Sannigrahi et al. [62] have demonstrated that pseudo-lignin
can be generated solely from carbohydrates without significant contribution from
lignin during DAP especially under high severity pretreatment conditions. Further
analysis indicates that pseudo-lignin is in spherical droplet form and has carbonyl,
aromatic, methoxy, and aliphatic structures.

During DAP, it is generally accepted that the majority of the hemicellulose are
removed initially, followed by the hydrolyzation of cellulose and subsequently some
solubilization of Glu through the course of DAP [63–65]. Foston et al. [65] stated that
cellulose degradation pathway can be viewed as acid catalyzed, thermally accelerated
polysaccharide hydrolysis by chain scission within the fibril structure from either a
crystalline or amorphous region of cellulose. This process consists of two major
stages: The initial stage was regarded as rapid hydrolytic attack on the amorphous
chain segments while the latter stage takes place on the crystal surfaces [66, 67].
Sannigrahi et al. [68] observed an increase in the relative proportion of cellulose Iβ
accompanied by a decrease in the relative proportion of both cellulose Iα and para-
crystalline region from dilute acid pretreated Loblolly pine. This suggested that the
types of lignocellulosic materials and pretreatment conditions influence cellulose
crystalline allomorphs and para-crystalline contents during DAP.

DAP does not lead to significant delignification. Recent studies revealed an in-
crease in the degree of condensation of lignin, during the DAP. The increase in degree
of condensation is accompanied by a decrease in β-O-4 linkages which are frag-
mented and subsequently recondensed during the high-temperature acid-catalyzed
reactions [68, 69]. In addition, studies also indicated that lignin balls (or lignin
droplets) were formed during DAP. These lignin droplets originated from lignins
and possible lignin carbohydrates complexes [70, 71].

8.3.1.3 Dilute Acid Pretreatment of Softwood

SW are generally considered as being much more refractory than (HW) or agricultural
residues. This is due to the fact that SW have a more rigid structure and contain more
lignin. However, various conditions for SW DAPs have been investigated (Table 8.4),
which were performed using H2SO4 or SO2.

The effect of the pretreatment is usually evaluated by the cellulose conversion
yield during subsequent enzymatic hydrolysis process. Cellulose conversion yield is
defined as the ratio of sugars liberated in the enzymatic hydrolysis to the theoretical
value based on the sugars available in the raw material [77]. Some recent results on
cellulose conversion yields from softwood are also shown in Table 8.4. It can be seen
that the cellulose conversion yields of DAP treated SW are less than 65 %, which
are generally lower than hardwood species [5]. This is, in part, due to the fact that
SW have a more rigid structure and contains more lignin [12]. It should be noted that
the addition of surfactant (i.e., Tween 80) in the post-DAP-treated substrate could
enhance the cellulose conversion by 30 % [76]. During the hydrolysis, the surfactant
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Table 8.4 DAP investigations using various softwoods as raw material

Wood species Acid catalyst Temperature
(◦C)

Time Cellulose conversion
yield (%)

Lodgepole pine [72] 4 wt% SO2 200 ◦C 5 min ∼60
White pine [73] 1.23 wt% H2SO4 220 ◦C 5 min ∼65
Lodgepole pine [74] 4 wt% SO2 200 ◦C 5 min ∼65
Loblloy pine [68] 0.5–1.0 wt% H2SO4 180–200 ◦C 2–10 min -
Radiata pine [5] 0.5–12 wt% SO2 215 ◦C 3 min 57–60
Lodgepole pine [75] 4 wt% SO2 200 ◦C 5 min ∼63
Loblloly pine [76] 1 wt% H2SO4 180 ◦C 30 min ∼52 with Tween
Loblloly pine [76] 5 wt% SO2 180 ◦C 30 min ∼63 with Tween

was added simultaneously with the enzyme. The surfactant concentration ranged
1–3 g/L [78]. This was attributed to the fact that the surfactant could change the nature
of the substrate by increasing the available cellulose surface or by removing inhibitory
lignin [79]. The surfactant could also increase the stability of the enzymes and reduce
enzyme denaturation during the hydrolysis [80, 81]. Moreover, the surfactant could
facilitate desorption of enzymes from substrate [82]. It should be noted, as indicated
in Table 8.4, the cellulose conversion yields (52–63 %) is still low even with the
addition of Tween 80. However, this research at least afforded a way to enhance the
cellulose conversion yield through the addition of surfactant. Further study might be
needed in the selection of effective surfactant.

8.3.2 Alkaline Pretreatment

Alkaline pretreatment is one of major chemical pretreatment technologies receiving
numerous studies. It employs various bases, including sodium hydroxide (NaOH)
[83], calcium hydroxide (lime) [84], potassium hydroxide (KOH) [85], aqueous
ammonia [86], ammonia hydroxide [87], and NaOH in combination with hydrogen
peroxide or others [88–90]. Among these alkaline pretreatments, lime has received
much more attentions since it is inexpensive (about 6 % cost of NaOH), has improved
handling, and can be recovered easily by using carbonated wash water [91].

8.3.2.1 Process Description

In comparison with other pretreatment technologies, alkali pretreatment usually uses
lower temperatures and pressures and even ambient conditions. Pretreatment time,
however, is recorded in terms of hours or days which are much longer than other
pretreatment processes. In the alkaline pretreatment, the residual alkali could be
reused through the chemical recycle/recovery process, which may make the system
more complex due to the need for chemical recovery [92, 93]. The particle size of the
biomass is typically 10 mm or less [57]. A significant disadvantage of alkaline pre-
treatment is the conversion of alkali into irrecoverable salts and/or the incorporation
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of salts into the biomass during the pretreatment reactions so that the treatment of
a large amount of salts becomes a challenging issue for alkaline pretreatment [92].
The effectiveness of alkaline pretreatment varies, depending on the substrate and
treatment conditions. In general, alkaline pretreatment is more effective on hard-
wood, herbaceous crops, and agricultural residues with low lignin content than on
softwood with high lignin content [94]. In addition, in comparison with KOH and
lime, pretreatment with NaOH was found to be more efficient for the subsequent
enzymatic hydrolysis [92].

8.3.2.2 Mode of Action

Alkaline pretreatment is basically a delignification process, in which a significant
amount of hemicellulose is solubilized as well. The major effect is the removal of
lignin from the biomass, thus improving the reactivity of the remaining polysaccha-
rides. In addition, the alkaline pretreatment could swell cell wall and improve cell
wall accessibility for the subsequent enzymatic hydrolysis. The action mechanism
is believed to be saponification of intermolecular ester bonds crosslink hemicellu-
lose and lignin [92]. The presence of these LCC linkages is believed to prevent
selective solubilization and removal of the wood components such as hemicelluloses
and lignin in biorefining processes [85, 95]. Therefore saponification leading to the
cleavage of these linkages and the expose of cellulose microfibrils can increase en-
zymatic digestibility of cellulose. Acetyl groups and various uronic acid substitutes
are also removed by alkali, thereby increasing the accessibility of hemicellulose and
cellulose to enzymes [96]. He et al. [97] recently characterized hemicelluloses from
untreated and dilute NaOH-treated rice straws by FTIR spectroscopy. The results
revealed that the dilute NaOH pretreatment did not change hemicellulose structure
significantly, but it altered certain functional groups and linkages. For instance, the
decrease in the hydroxyl stretching and C–OH banding peaks representing hemicel-
lulose hydroxyl groups, as well as the reduction in the carbonyl stretching region
attributed to hemicellulose acetyl and uronic ester groups were observed by dif-
ferent researchers [64, 97]. In addition, a decrease in the contents of β-glycosidic
linkages between hemicellulose sugar units was reported in the literature [97]. Fur-
thermore, the degraded hemicellulose could also form furfural and HMF in the
hydrolysates, but the amount is much lower than that with DAP [98]. In addition,
alkaline pretreatment decreases the DP of cellulose and causes swelling of cellu-
lose, leading to an increase in its internal surface area [99]. This makes cellulose
more accessible for enzymes in the subsequent hydrolysis stage. In terms of cel-
lulose crystallinity change during the alkaline pretreatment, research indicated that
the amorphous regions suffered greater peeling reactions than the crystalline re-
gions, and the occurrence of the peeling actions of the amorphous regions leads to
an increase of cellulose crystallinity [100]. During the alkaline pretreatment, lignin
suffered delignification, which is rather similar to chemical pulping technologies
[39, 57].
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8.3.2.3 Alkaline Pretreatment of Softwood

Similar to DAP, alkaline treatment has been less effective on softwood than for
hardwood, herbaceous plants or agricultural residues at the same process conditions
because of the generally higher lignin content of wood. Zhu et al. [101] reported
that a cold NaOH pretreatment could achieve about 70 % enzymatic hydrolysis Glu
yield from spruce when pretreatment was conducted at -15 ◦C in a 7 % (w/v) NaOH
solution with 12 % (w/v) urea for 24 h. However, Mirahmadi et al. [102] obtained
only 35.7 % cellulose conversion yield when treated spruce with 7.0 % (w/w) NaOH
for 2 h at 5 ◦C. In addition, research revealed that the addition of air/oxygen to
the reaction mixture could enhance the cellulose conversion yield and improve the
delignification of the biomass, especially highly lignified materials [85].

8.3.3 Wet Oxidation Pretreatment

Wet oxidation is an oxidative pretreatment method that employs oxygen or air as
catalyst. It allows reactor operation at relatively low temperatures and short reac-
tor times [103]. It has been proven to be an efficient method for solubilization of
hemicelluloses and lignin and to increase digestibility of cellulose, specially.

8.3.3.1 Process Description

Typically, the procedure for wet oxidation consists of drying and milling lignocel-
lulosic biomass to obtain particles that are 2 mm in length, to which water is added
at a ratio of 1 L to 6 g biomass. A compound, usually Na2CO3, is introduced to the
mixture to reduce the formation of by-products. Na2CO3 addition has been shown
to decrease formation of inhibitory compounds by maintaining pH in the neutral to
alkaline range. Air is pumped into the vessel until a pressure of 10–12 bar is reached.
This method of pretreatment is performed at 170–200 ◦C for a range of 10–20 min
[104, 105]. The addition of air/oxygen at temperatures above 170 ◦C makes the
process exothermic reducing the total energy demand. In general, low formation of
inhibitors and efficient removal of lignin are achieved with wet oxidation pretreat-
ment. On the other hand, cost of oxygen and catalyst are considered one of the main
disadvantages for wet oxidation development technologies [2].

8.3.3.2 Mode of Action

Wet oxidation can be used to fractionate lignocellulosic material by solubilizing
hemicellulose and removing lignin [106, 107]. During wet oxidation, lignin is oxi-
dized to carbon dioxide, water, and carboxylic acids [40, 43]. The amount of lignin
removed after pretreatment ranges from 50 to 70 % depending on type of biomass



164 F. Huang and A. J. Ragauskas

pretreated and the conditions used [108]. The by-product formed in the oxidation,
including succinic acid, glycolic acid, formic acid, acetic acid, phenolic compounds,
and furfural, were much lower than the DAP [94]. In addition, the crystalline struc-
ture of cellulose is opened during the wet oxidation pretreatment, facilitating the
enzymatic hydrolysis on the downstream process [94].

8.3.3.3 Wet Oxidation Pretreatment of Softwood

Although wet oxidation pretreatment is considered a promising technology for con-
verting biomass into biofuels, it was rarely applied on softwood species. Palonen
et al. [103] reported a 79 % cellulose conversion yield obtained from wet oxidation
pretreatment of spruce. This pretreatment was performed at 200 ◦C for 10 min. This
cellulose conversion yield was much higher than DAP and alkaline pretreatment of
similar softwood species.

8.3.4 Sulfite Pretreatment to Overcome Recalcitrance
of Lignocellulose (SPORL)

Recently Zhu et al. developed SPORL pretreatment for robust and efficient con-
version of biomass through enzymatic saccharification [109]. During the SPORL
pretreatment, the wood chips were pretreated in an aqueous sulfite solution followed
by mechanical size reduction using disk refining. The terms sulfite and bisulfite are
used interchangeably in the SPORL because the active reagents in the pretreatment
liquor can be sulfite (SO2−

3 ), bisulfite HSO−
3 , or a combination of two of the three

reagents, sulfite (SO2−
3 ), bisulfite HSO−

3 , and sulfur dioxide (SO2, or H2SO3), de-
pending on the pH of the pretreatment liquor at a pretreatment temperature [110]. The
pretreatment liquor can be prepared and recovered using existing industrial practices
as described elsewhere [111]. The pH of the solution can be easily controlled by the
amount of SO2 absorbed. SO2 can be substituted by other acids, such as H2SO4,
HCl, oxalic acid, and acetic acid (such as the acetic acid released from acetyl groups
during pretreatment of hardwood or agricultural residues).

8.3.4.1 Process Description

The development of the SPORL process is based on the fundamental understandings
of sulfite pulping [109]. Usually the SPORL pretreats the woodchips in an aque-
ous sulfite solution at 160–180 ◦C and pH 2–4 for about 30 min. The woodchips
are then fiberized (size-reduced) using a disk mill to generate fibrous substrate for
subsequent saccharification and fermentation. With low pretreatment cost, excel-
lent substrate digestibility, along with sulfite pulping and chemical recovery, and
disk refining technologies that have long been practiced in the pulp and paper in-
dustry, and existing industry infrastructure and commercial markets for high-value
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co-products from pretreatment-dissolved hemicellulose sugars and lignin, SPORL
has low environmental and technological barriers and risks [112].

8.3.4.2 Mode of Action

Since the SPORL process is based on the sulfite pulping, this pretreatment chemistry
is also similar to sulfite pulping. The major chemistry related to hemicellulose,
cellulose, and lignin can be summarized as follows:

• A considerable amount of hemicellulose degradation and removal takes place
during the pretreatment, as evidenced by the predominant Xyl content in pretreated
effluent [113].

• The degrees of polymerization of xylan [114–117] and cellulose [118] are reduced.
• Sulfonation of lignin increases the hydrophilicity of lignin, which may promote

the aqueous enzyme process.
• The degrees of dissolution of hemicellulose, degradation of cellulose, and sul-

fonation and condensation of lignin are increased as reaction time and temperature
increases, and pH decreases [111, 119].

It should be noted that the production of fermentation inhibitors HMF and furfural
in the SPORL is significantly lower than those in dilute acid, which is favorable to
the fermentation of pretreatment-dissolved sugars from cellulose and hemicellulose.
Excellent performance of the SPORL with different wood species indicates that this
process may be tree species independent [109].

8.3.4.3 SPORL Applied on Softwood

Unlike DAP, dilute alkaline pretreatment, and wet oxidation pretreatment, SPORL
was proved to be efficient for softwood species. Zhu et al. [109] investigated the
combination of a sulfite treatment with mechanical size reduction by disk refining
to enhance enzymatic hydrolysis of SW. This study was the first to establish this
novel pretreatment process. Pretreatment conditions of spruce chips (20 %, w/v) that
produced optimal cellulose conversion during enzymatic hydrolysis (>90 %) were
treatment with 8–10 wt% bisulfite and 1.8–3.7 wt% H2SO4 for 30 min at 180 ◦C.
Nearly all hemicellulose was removed, which exposed the underlying cellulose frac-
tion to enzymatic attack. Additionally, furfural and HMF were produced in minimal
concentrations, about 1 and 5 mg/g untreated wood, respectively. In addition, similar
results were also observed with Lodgepole pine and red pine [109, 120].

8.3.5 Organosolv Pretreatment

Organosolv pretreatment is a promising pretreatment strategy, since it has demon-
strated its potential for lignocellulosic materials [121]. Numerous organic or aqueous
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solvent mixtures can be utilized, including methanol, ethanol, acetone, ethylene gly-
col, and tetrahydrofurfuryl alcohol, in order to solubilize lignin and provide treated
cellulose suitable for enzymatic hydrolysis [122]. Comparing to other chemical pre-
treatments, the main advantage of organosolv process is the recovery of relatively
pure lignin as a by-product [122], which can be used as a substitute for polymeric ma-
terials, such as phenolic powder resins, polyurethane foams, and epoxy resins [123].
In some studies, these mixtures are combined with acid catalysts (HCl, H2SO4,
oxalic, or salicylic) to break hemicellulose bonds. A high yield of Xyl can usually be
obtained with the addition of acid. However, this acid addition can be avoided for a
satisfactory delignification by increasing process temperature (above 185 ◦C) [124].
Usually in the organosolv pretreatment, high lignin removal (>70 %) and minimum
cellulose loss (less than 2 %) could be achieved [121].

8.3.5.1 Process Description

Although several organic solvents can be applied in the organosolv pretreatments,
the low-molecular weight alcohols with lower boiling points such as ethanol and
methanol are favored solvent mainly due their low prices. The preferred conditions
of organosolv process depend on the nature of the feedstock being processed, but
will generally be in the following ranges: a cooking temperature of 180–195 ◦C,
a cooking time of 30–90 min, an ethanol concentration of 35–70 % (w/v), and a
liquor-to-solid ratio ranging from 4:1 to 10:1. The pH of the liquor might range from
2.0 to 3.8.

Compared with other pretreatments, organosolv pretreatment has some advan-
tages as follows: (1) Organic solvents are always easy to recover by distillation
and recycled for pretreatment; (2) the chemical recovery in organosolv pulping pro-
cesses can isolate lignin as a solid material and carbohydrates as a syrup, both of
which show promise as chemical feedstocks [125–127]. It seems that organosolv
pretreatment is feasible for biorefinery of lignocellulosic biomass, which consid-
ers the utilization of all the biomass components. However, there are inherent
drawbacks to the organosolv pretreatment. Organic solvents are always expen-
sive, so it should be recovered as much as possible, but this causes increase of
energy consumption. In addition, organosolv pretreatment must be performed un-
der extremely tight and efficient control due to the volatility of organic solvents.
No digester leaks can be tolerated because of inherent fire and explosion hazard
[127]. This could also increase the capital cost. Moreover, removal of solvents from
the system is necessary using appropriate extraction and separation techniques, for
example, evaporation and condensation, and they should be recycled to reduce op-
erational costs. Solvents need to be separated because they might be inhibitory to
enzymatic hydrolysis and fermentative microorganisms [3]. The pretreated solids
always need to be washed with organic solvent previous to water washing in order
to avoid the reprecipitation of dissolved lignin, which leads to cumbersome washing
arrangements.
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Table 8.5 Organosolv pretreatment using various softwoods

Wood species Solvent and catalyst Temperature
(◦C)

Time (min) Cellulose conversion
yield (%)

Lodgepole pine [132] 1.1 wt% H2SO4,
65 % ethanol (v/v)

170 60 93–97

Radiata pine [133] 0.9 wt% H2SO4,
50 % acetone (v/v)

195 5 ∼99

Lodgepole pine [134] 1.1 wt% H2SO4,
65 % butanol (v/v)

170 60 ∼95

Loblolly pine [128] 1.0 wt% H2SO4,
65 % ethanol (v/v)

170 60 ∼70

Pitch pine [135] 1.0 wt% H2SO4,
50 % ethanol (v/v)

150–180 20 ∼95

Douglas fir [136] 1.0 wt% H2SO4,
50 % ethanol (v/v)

181–202 15–40 ∼80

8.3.5.2 Mode of Action

During the organosolv pretreatment, the largest component, cellulose, is partially
hydrolyzed into smaller fragments that still remain insoluble in the liquor. Recently,
Sannigrahi et al. [128] revealed that the degree of cellulose crystallinity increases
and the relative proportion of para-crystalline and amorphous cellulose decreases
after the organosolv pretreatment of Loblolly pine. The second largest component,
hemicellulose, is hydrolyzed mostly into soluble components, such as oligosaccha-
rides, monosaccharides, and acetic acid. Acetic acid lowers the liquor pH, stimulating
acid-catalyzed hydrolysis of the other components. Some of the pentose sugars are
subsequently dehydrated under the operating conditions to form furfural [129]. The
third major polymer component, lignin, is hydrolyzed under the conditions employed
in the process primarily into lower molecular weight fragments that dissolve in the
aqueous ethanol liquor. In addition, studies [130] on the depolymerization of the
lignin in macromolecule occurs primarily through cleavage of β-O-4 linkages which
significantly influences delignification of SW. Moreover, lignin condensation was
reported much lower when compared with DAP [131], owing in part to the counter-
ing effect of organic solvents that retain the lignin components in solution and slow
recombination of macromolecules.

8.3.5.3 Organosolv Pretreatment of Softwood

Generally, the organosolv pretreatment was efficient on the bioconversion of soft-
wood. After the pretreatment, the cellulose conversion yield during the subsequent
enzymatic hydrolysis could be as high as 99 %, which is much higher than other
chemical pretreatements, namely DAP, alkaline, and wet oxidation pretreatments
(Table 8.5).
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8.3.6 Ionic Liquids (ILs) Pretreatment

Ionic liquids (ILs) has recently received extensive research attention on the cel-
lulose dissolution [137–142]. Some ILs show promise as efficient and “green”,
novel cellulose solvents. They can dissolve large amounts of cellulose at consid-
erable mild conditions, and feasibility of recovering nearly 100 % of the used
ILs to their initial purity makes them attractive [143]. After the ILs pretreatment,
the precipitated cellulose is washed thoroughly with water to remove the ILs. No
negative effect of the residual ILs was reported on the subsequent cellulose hy-
drolysis and fermentation [44]. As cellulose solvents, several ILs possess several
advantages over regular volatile organic solvents of biodegradability, low toxicity,
broad selection of anion and cation combinations, low hydrophobicity, low vis-
cosity, enhanced electrochemical stability, thermal stability, high reaction rates,
low volatility with potentially minimal environmental impact, and non-flammable
property.

The dissolution mechanism of cellulose in ILs involves the oxygen and hydro-
gen atoms of cellulose hydroxyl groups in the formation of electron donor–electron
acceptor (DA) complexes which interact with the ILs [144]. Upon interaction of
the cellulose-OH and ILs, the hydrogen bonds are broken, resulting in opening
of the hydrogen bonds between molecular chains of the cellulose [144]. These
interactions result in the dissolution of cellulose. Solubilized cellulose can be re-
covered by rapid precipitation with some anti-solvents such as water, ethanol,
methanol, or acetone. The recovered cellulose was found to have the same DP
and polydispersity as the initial cellulose, but significantly different macro- and
micro-structure, especially the decreased degree of crystallinity [145]. The previ-
ously used ILs include 1-n-butyl-3-methylimidazolium chloride (BMIMCl) [146],
1-allyl-3-methylimidazolium chloride (AMIMCl) [147], 3-methyl-N-bytylpyridin-
ium chloride (MBPCl), and benzyldimethyl (tetradecyl) ammonium chloride (BD-
TACl) [143]. It should be noted that the presence of water significantly hampers
the dissolution efficiency of ILs. Thus, the water content in the wood chips should
be decreased prior to the pretreatment [148]. In addition, an IL can be recovered
after regeneration of cellulose with water or water/acetone mixture. The solvent
added to the IL should be evaporated prior to its reuse in the next extraction cycle
[148].

Application of ILs has opened new ways for the efficient utilization of lignocel-
lulosic materials in such areas as biomass pretreatment and fractionation. However,
there are still many challenges in putting these potential applications into practical
use, for example, the high cost of ILs, regeneration requirement, lack of detailed
toxicological data and knowledge about basic physico-chemical characteristics and
action mode on hemicellulose and/or lignin contents of lignocellulosic materials, and
inhibitor generation issues. Further research is required to address such challenges.
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8.3.7 Ozonolysis

Ozone treatment is one way of reducing the lignin content of lignocellulosic wastes.
This results in an increase of the in vitro digestibility of the treated material, and
unlike other chemical treatments, it does not produce toxic residues. Ozone can be
used to degrade lignin and hemicellulose in many lignocellulosic materials such
as wheat straw [149], bagasse, green hay, peanut, pine [150], cotton straw [151],
and poplar sawdust [152]. Research indicated [153] ozone is highly reactive toward
compounds incorporating conjugated double bonds and functional groups with high
electron densities. Therefore, the moiety, most likely to be oxidized in ozonization
of lignocellulosic materials, is lignin due to its high content of C=C bonds. Thus,
during the ozonolysis, the degradation is mainly limited to lignin. Ozone attacks
lignin releasing soluble compounds of less molecular weight, mainly organic acids
such as formic and acetic acid [153]. The main advantages linked to this process are
the lack of any degradation products that might interfere with subsequent hydrolysis
or fermentation and the reactions occurring at ambient temperature and normal pres-
sure. Furthermore, the fact that ozone can be easily decomposed by using a catalytic
bed or increasing the temperature means that processes can be designed to minimize
environmental pollution. A drawback of ozonolysis is that a large amount of ozone is
required, which can make the process expensive and less applicable [154]. However,
recently Hu et al. [155] demonstrated that a lower charge of ozone could be used to
enhance the enzymatic digestibility of cellulose, if the ozone-treated biomass was
not washed and the in-situ generated acids were employed in a subsequent DAP.

8.4 Summary

The effects of different chemical pretreatment technologies on the structure of lig-
nocellulose are summarized in this section. In addition, the environment impacts of
these pretreatments are also briefly discussed. Some directions and perspectives are
also proposed for the future chemical pretreatment technologies.

8.4.1 Pretreatment Effect on the Structure of Lignocellulose

Most of the chemical pretreatment technologies that have been described herein are
effective on one or more factors that contribute to lignocellulosic recalcitrance, as
shown in Table 8.6. Table 8.7 summarizes the main advantages and disadvantages
of these pretreatment technologies. Each method discussed shows the ability to take
the complex carbohydrate and depolymerize the substrate to a lower fraction for
enzymatic saccharification in the subsequent step. There are a number of feasible
routes, each of which has their own merits and disadvantages, and consequences on
the enzymatic hydrolysis.
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Table 8.6 Effect of different chemical pretreatment technologies on the structure of lignocellulose
[2, 11, 44]

Increases
accessible
surface area

Cellulose
Decrystal-
lization

Hemicellulose
solubilization

Lignin
removal

Generation
of inhibitor
compounds

Lignin
structure
alteration

DAP H – H L H H
Alkali H – L M H H
Wet oxidation H L L M H H
SPORL H L H H L H
Organosolv H L H H H H
ILs H H H H L L
Ozonolysis H L L H L H

H high-effect; M moderate-effect; low-effect; – no effect

8.4.2 Environmental Impact of Chemical Pretreatment
Technologies

Some studies were conducted on the analysis of environmental impact of chemical
pretreatment technologies. For instance, the life-cycle assessment (LCA) was used to
evaluate the impact of chemical pretreatment technologies on the environment. LCA
is a conceptual framework and methodology for the assessment of environmental
impacts of product systems on a cradle-to-grave basis [158]. Analysis of a system
under LCA encompasses the extraction of raw materials and energy resources from
the environment, the conversion of these resources into the desired products, the
utilization of the product by the consumer, and finally the disposal, reuse, or recycle
of the product after its service life [159]. The LCA approach is an effective way
to introduce environmental considerations in process and product design or selec-
tion. Based on LCA studies, the chemical pretreatment for bio-ethanol production
technologies can be compared. Energy production and utilization cycles based on
cellulosic biomass have near-zero greenhouse gas emissions on a life-cycle basis
[160]. Biomass utilization into ethanol production offers environmental benefits in
terms of nonrenewable energy consumption and global warming impact [161].

8.4.3 Future Directions and Perspectives

Most of the leading chemical pretreatment technologies that have been described
herein are effective on one or more factors that contribute to lignocellulosics recalci-
trance. Despite much research that has been dedicated to understanding the chemistry
and the plant cell wall structure changes during various pretreatment technologies,
the insufficient knowledge of cell wall structure, ultra structure, and pretreatment
effects still limits the economics and effectiveness of pretreatment. For instance, the
biological and chemical properties of plants are very complex in terms of composi-
tion, structure, and ultra-structure [162]. Although researchers have put significant
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Table 8.7 Summary of various chemical pretreatments of lignocellulosic biomass [2, 129, 156, 157]

Pretreatment
process

Advantages Disadvantages

DAP Hydrolyzes hemicellulose to xylose
and other sugars; alters lignin
structure

High cost; equipment corrosion;
formation of toxic substances

Alkali Removes hemicelluloses and lignin;
increases accessible surface area

Long residence times required;
irrecoverable salts formed and
incorporated into biomass

Wet oxidation Increase accessible surface area;
removes lignin and hemicellulose to
an extent

Expensive

SPORL Slight degradation of cellulose, nearly
complete solubilization of
hemicellulose; partial
delignification and lignin
sulfonation

Possible need great capital investment

Organosolv Hydrolyzes lignin and hemicelluloses Solvents need to be drained from the
reactor, evaporated, condensed, and
recycled; high cost

ILs Lignin and hemicellulose hydrolysis;
ability to dissolve high loadings of
different biomass types; mild
processing conditions (low
temperatures)

High solvent costs; need for solvent
recovery and recycle

Ozonolysis Reduces lignin content; does not
produce toxic residues; increase
accessible surface area; cost
effective; does not cause formation
of inhibitory compounds

Does not modify hemicelluloses; large
amount of ozone required;
expensive

effort into optimizing the pretreatment effectiveness, the fundamental science behind
these optimizations is still not fully understood. Furthermore, there has been a lack
of mechanistic understanding of the ultrastructural and physicochemical changes oc-
curring within the cell wall at the molecular level and the cellular/tissue scale during
various pretreatment technologies. It is thus essential to understand the effects of
pretreatment on plant cell walls at a more fundamental level, in order to develop a
cost-effective pretreatment technology with maximum fermentable sugar recovery,
minimum inhibitor production and energy input, low demand of post-pretreatment
processes, and low capital costs for reactors, water, and chemicals. In addition, ad-
vances in the analytical chemistry would provide useful tools to investigate the cell
wall deconstruction and understand the recalcitrance during the pretreatment process
[163, 164].
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