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On Gradient-Based Local Search
to Hybridize Multi-objective Evolutionary
Algorithms
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Abstract. Using evolutionary algorithms when solving multi-objective optimization
problems (MOPs) has shown remarkable results during the last decade. As a con-
solidated research area it counts with a number of guidelines and processes; even
though, their efficiency is still a big issue which lets room for improvements. In this
chapter we explore the use of gradient-based information to increase efficiency on
evolutionary methods, when dealing with smooth real-valued MOPs. We show the
main aspects to be considered when building local search operators using the objec-
tive function gradients, and when coupling them with evolutionary algorithms. We
present an overview of our current methods with discussion about their convenience
for particular kinds of problems.

9.1 Introduction

Over the last few decades, a huge development on theoretical and practical ap-
proaches on solving multi-objective optimization problems (MOPs) has been done;
either as multi-objective mathematical programming [14], or also as stochastic
heuristics like evolutionary algorithms—named in this case as multi-objective evo-
lutionary algorithms (MOEAs) [10, 9]. MOEAs are suitable to numerically approx-
imate solutions of MOPs for several reasons; we can specially mention that, by
nature, they spring an entire set of solutions on each run—instead of just one so-
lution point as the traditional methods do. Having a set-oriented procedure is very
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convenient when solving MOPs—we will clarify this idea later, using the next defi-
nitions.

Definition 9.1.1. The multi-objective problem (MOP) is defined as minimizing

F(x) := [ f1(x), f2(x), . . . , fk(x)]
T (9.1)

subject to:
gi(x)≤ 0 i = 1,2, . . . ,m (9.2)

where x = [x1,x2, . . . ,xn]
T ∈ R

n is the vector of decision variables (or decision pa-
rameters), fi : Rn → R, i = 1, ...,k, are the objective functions and gi : Rn → R,
i = 1, ...,m, are the constraint functions, which define the feasible region X of the
problem. The problem above is also known as a vector optimization problem. If
functions gi are not present, we are dealing with an unconstrained MOP.

Solving a MOP is very different than solving a single-objective optimization
problem (i.e. k = 1). Since some of the fi are normally “in conflict” with each other,1

the solution of a MOP is not given by a unique point; this is because normally no
single solution exists that provides the best possible value for all the objectives.
Consequently, solving a MOP implies finding a trade-off between all the objective
functions; this requires the generation of a set of possible solutions instead of a sin-
gle one—as in the single-objective optimization case. The notion of “optimality”
that we just informally described, was originally proposed by Francis Ysidro Edge-
worth in 1881 [13] and it was later generalized by Vilfredo Pareto, in 1896 [37].
This concept is known today as Pareto optimality and will be formally introduced
next.

Definition 9.1.2. Given two vectors x,y ∈ R
n, we say that x dominates y (denoted

by x≺ y) if fi(x)≤ fi(y) for i = 1, ...,k, and F(x) �= F(y).

Definition 9.1.3. We say that a vector of decision variables x ∈X ⊆ R
n is non-

dominated with respect to X , if there does not exist another x′ ∈ X such that
x′ ≺ x.

Definition 9.1.4. We say that a vector of decision variables x∗ ∈X ⊂Rn is Pareto
optimal if it is non-dominated with respect to X .

Definition 9.1.5. a) The Pareto set P∗ is defined by:

P∗ = {x ∈X |x is Pareto optimal}.

b) The Pareto front PF ∗ is defined by:

PF ∗ = {F(x) ∈R
k | x ∈P∗}

1 For example, one objective may refer to manufacture cost and another to quality of the
product.
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We thus wish to determine the Pareto optimal set, from the set X of all the decision
variable vectors that satisfy the constraints of the problem. Note, however, that in
practice just a finite representation of the Pareto optimal set is normally achievable.

Assuming x∗ as a Pareto point of (9.1), there exist [27] a vector α ∈ R
k, with

0≤ αi, i = 1, . . . ,k and ∑k
i=1 = 1 such that

k

∑
i
αi∇ fi(x

∗) = 0. (9.3)

A point x∗ that satisfies (9.3) is called a Karush-Kuhn-Tucker (KKT) point.

Example 9.1. Consider the following unconstrained MOP:

minimize F(x,y) :=
[
x2 + y2 , (x− 10)2 + y2]T

, (9.4)

where x,y ∈ R.
The Pareto set of this problem is the line segment [(0,0),(10,0)]⊂ R

2, and the
Pareto front is shown, as a continuous line, in Figure 9.1.
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Fig. 9.1 This figure illustrates the Pareto front for the Example 9.1, the axes represent the
value regarding each function—what we call the objective space. The points of Y are the
images of randomly taken vectors inside the domain.
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The set oriented nature of MOEAs had made them very popular among cur-
rently available methods for solving MOPs (see [8] for application examples). Even
though, efficiency is the main drawback when they are used, since the evaluation
of the objective functions is constantly made, each generation, for the whole popu-
lation. Current research about improving MOEAs includes their hybridization with
local searchers, in order to make a guided search at a particular moment of the pro-
cedure. The coupling of evolutionary algorithms with any local search procedure is
also known as a memetic algorithm [35].

Local search operators depend on the domain, since the goal is precisely to take
advantage of previous knowledge of the problem. A lot of research has been done on
local searchers, and memetic MOEAs, for discrete and combinatorial optimization
problems (see for example [25, 24, 26]). For multi-objective problems with contin-
uous domains, the local search has not been deeply studied as itself; this is probably
due to the fact that neighborhoods on continuous spaces have an infinite cardinal-
ity. The vicinity notion in continuous domain problems is related with open balls or
manifolds, so the natural choice is to study them by the differential properties of the
functions; this leads to the use of gradient information to compute better solutions.

In this chapter we focus on local searchers, for continuous MOPs, built to use
(implicitly and/or explicitly) the gradient information of the objective functions. We
focus mainly on unconstrained cases, but give some insights for the extension to
constrained search spaces.

In the rest of this chapter we develop the main ideas from particular work
[31, 28, 32, 29, 30] on local searchers for continuous memetic algorithms. We in-
troduce in the next section the basic concepts to study the gradient geometry in the
case of MOPs. In Section 9.3 we present algorithms, based on multi-objective line
search, emphasizing their particular features. The applicability of these methods,
when hybridizing MOEAs, is presented in Section 9.4 as well as some discussion
over the main hybridization aspects. Finally some conclusions and possible exten-
sions are included in Section 9.5.

9.2 Descent Cones and Directions

When solving an optimization problem with several objective functions, we have to
deal with several gradients—one for each function. Some gradient-based MOEAs
have been built to perform descent movements alternating the single gradient of
each objective function [16, 21]; this could have certain applications on prefer-
ences management. However, when designing a special local searcher for contin-
uous multi-objective problems, our focus lies on finding a suitable mechanism to
improve solutions using simultaneously every function gradient. The reason is that
such a good local searcher must have the feature that after its application, over a
single solution xi, it throws a new solution xi+1 which is better in the Pareto sense
(i.e. xi+1 dominates xi). This feature is very important when analyzing the global
convergence of the methods.
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Using gradient information to guide the simultaneous descent of several func-
tions can not be done in a straightforward way. The main reason is that, since the
objective functions are each other in conflict, their gradients typically point toward
different directions. This turns the task of finding a common improving direction
into another multi-objective problem. To understand the local behavior of gradient-
based methods in multi-objective optimization, descent cones constitute the main
tool since they were first used in the multi-objective evolutionary context by Brown
and Smith [6, 7].

We state next the main concepts and introduce the notation required for further
discussion.

Let f1, . . . , fk : Rn → R be continuous and differentiable, and 〈·, ·〉 denote the
standard inner product in R

n.
Let

∇ fi(x) =

(
∂ fi(x)
∂x1

, . . . ,
∂ fi(x)
∂xn

)

be the gradient of the function fi at x. Then, for each x ∈R
n and each i ∈ {1, . . . ,k},

with ∇ fi(x) �= 0, we define:

Hx,i =

{
v ∈ R

n :
〈
∇ fi(x),v

〉
= 0

}
,

H+
x,i =

{
v ∈R

n :
〈
∇ fi(x),v

〉≥ 0

}
,

and

H−
x,i =

{
v ∈ R

n :
〈
∇ fi(x),v

〉 ≤ 0

}
.

Since the set Hx,i is the orthogonal complement of the vector∇ fi(x), it is (if∇ fi(x) �=
0) in general a hyperplane2 of Rn; also, it divides the space in two n–dimensional
sets: H+

x,i and H−
x,i (see Figure 9.2).

Definition 9.2.1. We denote

Cx(−,−, . . . ,−) =
k⋂

i=1

H−
x,i. \ {0}.

as the descent cone pointed at x (see Figure 9.3). Similarly, the ascent cone is defined
by Cx(+,+, . . . ,+) =

⋂k
i=1 H+

x,i. \ {0}, and the diversity cones are the intersection
of hyperplanes when they are not all of the form H+

x,i and neither all of them of the
form H−

x,i.

When having k functions in a MOP, each function fi determines a gradient∇ fi and a
hyperplane Hx,i for a certain solution x. Summarizing, for each point x in the search

2 A hyperplane of an n-dimensional space is a subspace with dimension n1.
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Fig. 9.2 This figure shows the division of R2 into the two half-spaces, H+
x,i and H−x,i, induced

by the gradient of the function fi at the point x

Fig. 9.3 This figure shows the ascent cone Cx(+,+), the descent cone Cx(−,−), and the
diversity cones Cx(+,−) and Cx(−,+), for a certain point x, for a bi-objective problem



9 Gradient-Based Hybrid Multi-objective Evolutionary Algorithms 311

space, the k functions determine a division of this space into one descent cone, one
ascent cone and 2k− 2 diversity cones—as they were previously named in [6]3.

Descent cones describe the dynamics of the search from a gradient-based geom-
etry point of view, and this has several important implications (see for example the
results presented in [42]) that are useful when building local search operators for
algorithms over real numbers. One primary observation [6] is that when the point
x is far away from any Pareto optimal point the descent cone is big. This happens
because the gradients are almost aligned; then, the chance of randomly generating
a direction/solution which simultaneously improves all the functions is high (nearly
50%). On the other hand, when the point x is near a Pareto optimal point, the gradi-
ents are almost linearly dependent, which means that the descent cone shrinks, and
the possibility of randomly generating a better point is low (see Figure 9.4).

Fig. 9.4 This figure shows two cases, when the point is near and when it is far from a Pareto
set; the descent cone Cx(−,−) shrinks down when the Pareto set is reached

The above analysis could explain why MOEAs have good performance at the
beginning of the search, and a slow convergence rate at latter stages—when points
are near to the Pareto front and the chance of generating randomly better points
is reduced. This observation inspires guidelines for a suitable hybridization; if it
is possible to identify when the evolutionary search is no longer producing good
results, this is then the time when the gradient-based local search can take part of
the process—in order to certainly improve solutions in a deterministic way.

3 In [6] the descent cones are defined, for illustrative purposes, by pictures of the corre-
sponding affine hyperplanes described here. We are stating the formal definitions using no
affine hyperplanes just to be consistent with our approach.
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Improving solutions implies performing movements in specific search directions.
In multi-objective optimization, as we have noticed, these directions should be able
to throw (at least locally) better solutions regarding all the functions simultaneously;
this is formally said by the next definition.

Definition 9.2.2. A vector v∈R
n is called a multi-objective descent direction of the

point x ∈ R
n if

v ∈Cx(−,−, . . . ,−).
In other words, a multi-objective descent direction is such that the directional deriva-
tives with respect to v in x are non-positive, i.e. 〈∇ fi(x),v〉 ≤ 0 for all i ∈ 1, . . . ,m
without allowing them to be all equal to zero. This means that if we perform a small
movement over v, we obtain a local improvement (decrease) simultaneously for all
the objective functions. In the next section, we present different ways to calculate
descent directions and to perform movements toward (and along) the Pareto set.
In particular, we present a result for the construction of a descent direction in the
simplest multi-objective case—two objectives.

9.3 Practical Approaches

9.3.1 Movements toward the Optimum

When running a MOEA, new points are generated by variation operators in or-
der to move (evolve) the population of solutions toward an approximation of the
Pareto set. Due to the stochastic nature of the process, a probability to generate non-
improving points does exist. On the other hand, when using gradient information
within a MOEA, the resulting hybrid algorithm is able to perform directed accurate
movements toward an improved solution. This newly computed point dominates
the original one when multi-objective descent search directions—together with a
suitable step size control—are used. As we mentioned before, computing such di-
rections is also a multi-objective problem [2]; since each objective provides its own
(gradient-based) range of movements for descent, all of these possible directions
need to be properly combined into a single one in order to efficiently guide a MOEA.

9.3.1.1 A Simple Bi-objective Descent Direction

The simplest way to combine two gradients, in order to get a common descent di-
rection, is by adding them. This fact has been already observed (e.g. [11]) but it has
not been exploited in memetic algorithms yet. The next result shows that this opera-
tion throws, in fact, a bi-objective descend direction. Unfortunately, Proposition 9.1
cannot be generalized for more than two objective functions. For that case, applying
other approaches—mentioned next—is necessary to obtain the descent direction;
even when this represents a higher computational cost.
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Proposition 9.1. Let x ∈ R
n, and let f1, f2 : Rn → R define a bi-objective MOP.

Then, the direction

∇x =−
(

∇ f1(x)
||∇ f1(x)|| +

∇ f2(x)
||∇ f2(x)||

)
, (9.5)

where || · ||= || · ||2, is a descent direction at x for the MOP.

Proof: Let us denote ∇i := ∇ fi(x)
||∇ fi(x)|| for i = {1,2}, and θ be the angle between ∇1

and ∇2. Then
Similarly, 〈∇x,∇2〉 ≤ 0; then, ∇x is a descent direction of the point x for the

defined MOP. Note that if ∇ fi(x) = 0, for i = 1 or i = 2, then x is a KKT point. ��
One of the main issues when using gradient-based tools is how to validate the

increase of the computational cost, after using the method, with the achieved im-
provements. The currently available MOEAs that use descent directions as local
search engines have two sources of computational cost. The first one is associated
to the fitness function evaluations required to estimate the gradients and to perform
the line search. The second source is related to the computation of the descent di-
rection itself. In this sense, and unlike previous approaches [15, 2, 20], this way
(Equation 9.5) of calculating a direction has the advantage of having a zero cost for
the computation of the descent direction. We claim that this procedure is the sim-
plest way to combine the gradients of two functions, but it can not be generalized
to more than two functions, since a similar arithmetic combination of them does not
produce a descent direction in general, see the following example:

Example 9.2. Assuming a three-objective problem such that, for a certain x,

∇ f1(x) = (1.000,1.000,1.000)

∇ f2(x) = (−0.944,0.970,0.374)

∇ f3(x) = (0.836,−0.177,−0.334).

Then, computing

∇x = −
(

∇ f1(x)
||∇ f1(x)|| +

∇ f2(x)
||∇ f2(x)|| +

∇ f3(x)
||∇ f3(x)||

)

= (−0.3826,−0.5262,−0.3730)

leads to
〈∇x,∇1〉=−1.2818< 0.

〈∇x,∇2〉 = 0.4423 > 0.

〈∇x,∇3〉=−0.2889< 0.

with ∇i := ∇ fi(x)
||∇ fi(x)|| for i = {1,2,3}. Then ∇x is not a common descent direction.
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9.3.1.2 General Approaches

The most commonly used proposals for computing multi-objective descent direc-
tions are the one from Fliege and Svaiter [15] and the one from Schäffler et al. [38].
Theoretical results about their efficacy and convergence are available. These meth-
ods return a common descent direction for all the objectives after solving a quadratic
optimization problem—which could be derived into a linear one. These approaches
have been already incorporated into multi-objective memetic strategies [44], [28],
[31]. Their main drawback is that, being greedy methods used to perform descents,
they can present a bias in case of unbalanced magnitudes of the gradient vectors.
However, these methods present some advantages, like having an intrinsic stopping
criterion and being quite effective in practice.

As an unbiased alternative, it is possible to use normalized gradients and to work
with the proposals developed by Bosman and DeJong [2], and, to manage con-
straints, by Harada et al. [20]. These methods look into the entire Pareto set of
descent directions and choose (randomly, at each step) one direction within it. The
cost of this approach is again related to solving a system of linear equations.

It is worth noting that other approaches [7, 31], which do not explicitly compute
the gradients, have also an acceptable performance using less resources. They are
completely based on the information extracted from the descent cones, at a partic-
ular moment during the search. One of these methods will be presented in the next
section.

9.3.2 Movements along the Pareto Set

Descent directions are not the only interesting directions to move along during
the multi-objective optimization search. Sometimes it is also beneficial to perform
movements along the Pareto set; or also, specifically directed movements toward
a particular region. Moving in a direction along the Pareto set is also possible us-
ing gradient-based continuation methods such as those described in [22, 41, 19],
or those with no estimation of the gradients required, as in [7] and [31]. We de-
scribe next an operator which is able to perform movements either toward or along
the Pareto set, making an automatic switch between these two types of movements
when a KKT point is almost4 reached.

9.3.2.1 The Hill Climber with Side-step

In [31] a novel point-wise iterative search procedure, called the Hill Climber with
Side-step (HCS) has been proposed. This procedure is designed to perform local
search over continuous domain MOPs. Based on the descent cone size and the

4 We set a tolerance parameter to consider if an approximation is ‘good enough’.
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Karush-Kuhn-Tucker conditions [27], the HCS is capable of moving both toward
or along the set of (local) Pareto points, depending on the location of the current
iterate. Since proximity and a good distribution of solutions are features for the ap-
proximations of Pareto sets, this local search operator has shown potential when
combined with MOEAs.

Two variants of the HCS have been proposed, a gradient-free version (denoted as
HCS1) and a version that exploits explicit gradient information (denoted as HCS2).
Both of them can be used as standalone algorithms to explore parts of the Pareto
set, starting with one single solution, and are able to handle constraints of the model
to some extent. In the following we will explain the two approaches as standalone
algorithms, complemented with the recommendations to be used within a memetic
algorithm.

HCS1 is based on the observation that the objective gradients are practically
aligned when the initial point is far away from the optima—and the descent cone
is almost equal to the half-spaces associated with each objective. So, the procedure
starts with an initial point x0, and the next iterate x1 is randomly chosen from a
vicinity B(x0,r) with radius r. If x1 ≺ x0 the movement direction for improvement
is set as v = x1− x0; if x0 ≺ x1, then the direction is flipped.

When a solution is near to a Pareto point, the gradients point nearly toward op-
posite directions, and the probability of generating a dominated or a dominating
point—like in the case above—is low (see Figure 9.4). So, when x̃1 is not compa-
rable against x0, the point is stored, and labeled, as a point which corresponds to a
specific diversity cone; then, a new trial point is generated. After Nnd trials obtain-
ing mutually non-dominated solutions, the proximity with the optima is assumed
and this triggers a ‘sidestep’ movement over the Pareto front.

To perform this sidestep movement, the stored points x̃1, . . . x̃Nnd are used in the
following way. If x̃1− x0 is, for example, in the cone C(+,−), then x0− x̃1 is in the
opposite cone C(−,+) (for the bi-objective MOPs, the general k-objective case is
analogue). When the limit for unsuccessful trials is reached, a search along C(−,+)
is performed; Taking advantage of the accumulated information, the following di-
rection is used:

vacc =
1

Nnd

Nnd

∑
i=1

si
x̃i− x0

‖x̃i− x0‖ , (9.6)

where

si =

{
1 if f1(x̃i)< f1(x0).

-1 else.
(9.7)

By construction, vacc is in C(−,+), and by averaging the trial search directions we
aim to obtain a direction5 which is ideally ‘perpendicular’ to the (small) descent
cone. Note that in this case vacc is indeed a ‘sidestep’ to the upward movement of
the hill climbing process as desired, but this search direction does not necessarily
have to point along the Pareto set (see next subsection for an alternative method
with better guidance properties); also, there is no guarantee that vacc indeed points

5 This direction has previously been proposed as a local guide for a multi-objective particle
swarm algorithm in [5].
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to a diversity cone, but in other case, there will be an improvement on the solution
anyway. This means that, even with these two considerations, this sidestep is still
a good option in practice, when working with few objectives or when coupling the
operator with evolutionary methods.

Algorithm 9.1. HCS1 (without Using Gradient Information)
Require: starting point x0 ∈ Q, radius r ∈�n

+, number Nnd of trials, MOP with k = 2
Ensure: sequence {xl}l∈� of candidate solutions
1: a := (0, . . . ,0) ∈�n

2: nondom := 0
3: for l = 1,2, . . . do
4: set x1

l := xb
l−1 and choose x2

l ∈ B(x1
l ,r) at random

5: choose i0 ∈ {1,2} at random
6: if x1

l ≺ x2
l then

7: vl := x2
l −x1

l
8: compute tl ∈�+ and set x̃n

l := x2
l + tlvl .

9: choose xb
l ∈ {x̃b

l ,x
1
l } such that f (xb

l ) = min( f (x̃n
l ), f (x1

l ))
10: nondom := 0, a := (0, . . . ,0)
11: else if x2

l ≺ x1
l then

12: proceed analogous to case ”x1
l ≺ x2

l ” with
13: vl := x1

l −x2
l and x̃n

l := x1
l + tlvl .

14: else
15: if fi0(x

2
l )< fi0(x

1
l ) then

16: sl := 1
17: else
18: sl :=−1
19: end if
20: a := a+ sl

Nnd

x2
l−x1

l

‖x2
l−x1

l ‖
21: nondom := nondom+1
22: if nondom = Nnd then
23: compute t̃l ∈�+ and set x̃n

l := x1
l + t̃la.

24: nondom := 0, a := (0, . . . ,0)
25: end if
26: end if
27: end for

Algorithm 9.1 shows the pseudocode of the HCS1 operator as a standalone pro-
cess. The sidestep direction is determined by the value of i0 (see line 5 and lines
15-20). For simplicity, the value of i0 is chosen at random. In order to introduce an
orientation to the search, the following modifications can be done in the bi-objective
case: in the beginning, i0 is fixed to 1 for the following iteration steps. When the
sidestep (line 23) has been performed Ns times during the run of an algorithm, this
indicates that the current iteration is already near to the (local) Pareto set, and this
vector is stored in xp. If in the following no improvements can be achieved accord-
ing to f1 within a given number Ni of sidesteps, the HCS ‘jumps’ back to xp, and a
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similar process is started but aiming for improvements according to f2. That is, i0
is set to −1 for the following steps (see Figure 9.5). A possible stopping criterion,
hence, could be to stop the process when no improvements can be achieved accord-
ing to f2 within another Ni sidesteps along C(+,−). This is in fact used as stopping
criterion. Finally, for the computation of tl more attention has to be paid (see Section
9.3.4). In the original proposal, a strategy analog to [12] was used for the presented
experiments.
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Fig. 9.5 This figure shows the performance of the HCS1 as standalone algorithm for Example
9.1; the ‘anchor’ picture shows the entire Pareto front, built using the steering mechanism
previously described.

The second version of the HCS consists of a movement toward the Pareto front,
using either a gradient-based descent direction, or a continuation-based movement
in case this descent direction does not exist. A possible realization of the HCS2 is
by using the descent direction presented in [38] (or the one in [15] as an alternative),
which is described next.

Let a MOP be given and q : Rn → R
n be defined by

q(x) =
k

∑
i=1

α̂i∇ fi(x), (9.8)

where α̂ is a solution of

min
α∈Rk

{
‖

k

∑
i=1

αi∇ fi(x)‖2
2;αi ≥ 0, i = 1, . . . ,k,

k

∑
i=1

αi = 1

}
. (9.9)
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Then either q(x) = 0 or −q(x) is a descent direction for all objective functions
f1, . . . , fk in x. This states that for every point x ∈ Q which is not a KKT–point a
descent direction (i.e., a direction where all objectives’ values can be improved) can
be found by solving the quadratic optimization problem (9.9). In case q(x) = 0 the
point x is a KKT–point. Thus, a test for optimality is automatically performed when
computing the descent direction for a given point x ∈ Q. Given such a point x, the
quadratic optimization problem (9.9) can be solved leading to the vector α̂ . In case

‖
k

∑
i=1

α̂i∇ fi(x)‖2
2 ≥ εP , (9.10)

i.e., if the square of the norm of the weighted gradients is larger than a given thresh-
old εP ∈ R+, the candidate solution x can be considered to be ‘away’ from a local
Pareto point, and thus, it makes sense to seek for a dominating solution. For this,
the descent direction (9.8) can be taken together with a suitable step size control.
If the value of the term in (9.10) is less than εP , this indicates that x is already in
the vicinity of a local Pareto point. In that case one can integrate elements from
(multi-objective) continuation [22, 1] to perform a search along the Pareto set. For
simplicity we assume that we are given a KKT–point x̂ and the respective weight α̂
obtained by (9.9). Then the point (x̂, α̂) ∈ R

n+k is contained in the zero set of the
auxiliary function F̃ : Rn+k → R

n+1 of the given MOP which is defined as follows:

F̃(x,α) =

⎛
⎜⎜⎜⎝

k
∑

i=1
αi∇ fi(x)

k
∑

i=1
αi− 1

⎞
⎟⎟⎟⎠ . (9.11)

In [22] it has been shown that the zero set F̃−1(0) can be linearized around x̂ by
using a QU-factorization of F̃ ′(x̂, α̂)T , i.e., the transposed of the Jacobian matrix of
F̃ at (x̂, α̂). To be more precise, given a factorization

F̃ ′(x̂, α̂)T = QU ∈ R
(n+k)×(n+k), (9.12)

where Q = (QN ,QK) ∈ R
(n+k)×(n+k) is orthogonal with QN ∈ R

(n+k)×(n+1) and
QK ∈ R

(n+k)×(k−1), the column vectors of QK form—under some mild regular-
ity assumptions on F̃−1(0) at (x̂, α̂), see [22]—an orthonormal basis of the tan-
gent space of F̃−1(0). Hence, it can be expected that each column vector qi ∈ QK ,
i = 1, . . . ,k− 1, points (locally) along the Pareto set and is thus well suited for a
sidestep direction. The step size control is explained in detail in [31].

Based on the above discussion, the HCS2 is presented in Algorithm 9.2. It is
worth to remark that this is one possible realization and that there exist certainly
other ways leading, however, to similar results. For instance, alternatively to the
descent direction used in Algorithm 9.2, the ones proposed in [15] and [4] can be



9 Gradient-Based Hybrid Multi-objective Evolutionary Algorithms 319

taken as well. The threshold εP is used for the vicinity test of a given local Pareto
point. This value is certainly problem dependent, but can be made ‘small’ due to
convergence properties of the hill climber (e.g., [15]).

Further, the movement along the Pareto set can be realized by predictor-corrector
methods [22, 1] which consist, roughly speaking, of a repeated application of a
predictor step obtained by a linearization of F̃−1(0) and a corrector step which can
be done, e.g. via a Gauss-Newton method.

It is worth noting that although the HCS2 is proposed for the unconstrained case,
an extension to the constrained case for the hill climber is possible (see, e.g., [15]
for possible modifications); but, this is not straightforward for the movement along
the Pareto set (i.e., the sidestep). Though it is possible to extend system (9.11) using
equality constraints (e.g., by introducing slack variables to transform the inequal-
ity constraints into equality constraints); but according to [22], this could lead to
efficiency problems in the numerical treatment.

Algorithm 9.2. HCS2 (Using Gradient Information)
Require: starting point x0 ∈ Q
Ensure: sequence {xl}l∈N of candidate solutions
1: for l = 0,1,2, . . . do
2: compute the solution α̂ of (9.9) for xl .
3: if ‖∑k

i=1 α̂i∇ fi(xl)‖2
2 ≥ εP then

4: vl :=−q(xl)
5: compute tl ∈ R+ and set xl+1 := xl + tl vl
6: else
7: compute F̃ ′(x̂, α̂)T = (QN ,QK)U as in (9.12)
8: choose a column vector q̃ ∈ QK at random
9: compute t̃l ∈ R+ and set xl+1 := xl + t̃l q̃.

10: end if
11: end for

The HCS shows large potential when used within multi-objective memetic al-
gorithms; mainly because it performs an efficient local search which starts with
one point and ends not only with an improvement of this point, but also, with two
candidates for spread. Figure 9.6 ilustrates the application of the HCS as a local
searcher over a population of three individuals, when the points are far, a hill climber
movement (HC) is perfomed; and the hill climber sith side step (HCS) is applied
when the optima is ‘almost’ reached. The operator can repeat the descent step—hill
climber—several times until a sidestep is triggered. An analysis of the performance
of these two versions, and comparisons in terms of efficiency and cost, can be found
in [31].
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Fig. 9.6 This figure shows the way to use the HCS as local search operator, in order to be
coupled with a set oriented heuristic. The local search starts with a point and ends with an
improved point, or with three points, the one obtained by the gradient-based descent and the
other two obtained by sidesteps.

9.3.3 Directed Movements

It is possible, furthermore, to perform directed movements not only toward and
along the Pareto front, but also to any desired direction in the objective space; for
this, the Directed Search Method (DS) was recently proposed [40, 39]. This method
has the advantage of performing movements along determined paths in the objective
function space.

9.3.3.1 The Directed Search Method

When working with MOPs, performing local search movements toward a particular
region is sometimes desired. In this scope, a proposal [40] for the computation of
directed search movements was recently introduced. The complexity of this operator
is again linear and only first order gradient information is necessary in order to use
it. This approach calculates a gradient-based descent direction using a controlled
bias toward regions of interest determined in objective space; because of that, this
proposal has many potential applications in the context of designing hybrid MOEAs.

Under the assumption that x0 ∈ R
n is not a KKT point—in particular is also not

a Pareto optimal point—a descent direction must exist such that all the directional
derivatives must be non positive. In other words, once a vector−α ∈�k is chosen,
with α ∈ R

k, 0 ≤ α, ∑k
i=1αi = 1, representing a desired search direction in image

space. Then, a search direction ν ∈�n in parameter space is sought such that for
y0 = x0 + tν , where t ∈�+ is the step size, it holds:
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lim
t↘0

fi(y0)− fi(x0)

t
= 〈∇ fi(x0),ν〉=−αi, i = 1, . . . ,k. (9.13)

Using the Jacobian J of F,

J(x0) =

⎛
⎜⎝
∇ f1(x0)

T

...
∇ fk(x0)

T

⎞
⎟⎠ ∈�k×n, (9.14)

Equation (9.13) can be stated in matrix vector notation as

J(x0)ν =−α. (9.15)

Then, this search direction ν can be computed by solving a system of linear equa-
tions. It is important to remark that system (9.15) is typically highly underdeter-
mined—since in most cases the number of parameters is (much) higher than the
number of objectives in a given MOP—which implies that its solution is not unique.

To find a solution of this system, one option is to take the greedy choice, i.e., the
solution with the smallest norm, which is given by

ν = J(x0)
+(−α), (9.16)

where J(x0)
+ ∈�n×k denotes the pseudo inverse of J(x0). In case the rank of J :=

J(x0) is maximal (which we will assume in the following), the pseudo inverse is
given by J+ = JT (JJT )−1. Given a ‘descent direction’ −α ∈ �k, a sequence of
dominating points in ‘direction −α’ can thus be found by numerically solving the
following initial value problem:

x(0) = x0 ∈�n

ẋ(t) = J(x(t))+(−α), t > 0.
(IVP(−α))

One observation worth noting is that even if −α is a descent direction, there is no
guarantee that the solution curve c of (IVP(−α)) always leads to a Pareto optimal
solution. When the image F(�n) is bounded below, however, c leads to a bound-
ary point x∗ of the image. Since for x∗ it holds rank(J(x∗)) < k, this can be used
to trace numerically the end point of (IVP(−α)) in a certain way—the numerical in-
tegration can be stopped if the condition number κ2(J(xi)) exceeds a given (large)
threshold. In [34], more insights about efficient computation of such end points, e.g.
specialized predictor-corrector (PC) methods are presented. For the case of m active
inequality constraints, the details can be found in [40, 33].

Even when setting α looks like imposing a weights vector, this method is able
to also reach non-convex regions on the front; this is illustrated in Figure 9.7. For
several reasons, this method would be a good choice to be used as a local engine
inside a gradient-based memetic algorithm. For example, it is a good alternative to
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Fig. 9.7 Numerical result and comparison for the Directed Search method and the weighted
sum method, starting from the same point and performing the movement with direction α =
[0.55,0.45]T , toward a non-convex region

greedy approaches like [15] and [38]; it can also perform a movement similar to the
one proposed in [4], but in a user-preference controlled way. This means that, using
a reference point Z ∈ R

k we can compute α as follows

α(x0,Z) :=
F(x0)−Z
||F(x0)−Z||1 ,

having in this way a guided route for the descent (see Figure 9.8). When applying
greedy strategies, for a multi-objective gradient-based descent, for functions with
unbalanced magnitudes, it is possible to get an undesired bias. This method avoids
this potential problem. This method also gives us the best direction (nearest point)
according to the reference point Z, by applying the following continuation strategy
to perform a search along the Pareto set as follows:

Assume we are given a (local) Pareto point x and the related KKT weight α , i.e.,
such that

k

∑
i=1

αi∇ fi(x) = 0 (9.17)

and further we assume that

rank(J(x)) = k− 1 (9.18)
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Fig. 9.8 Solution paths thrown by the Directed Search method for three different starting
points, using the same target point Z

It is known (e.g., [22]) that in this case α is orthogonal to the Pareto front at y =
F(x), i.e.,

α ⊥ Ty∂F(�n), (9.19)

where ∂F(�n) denotes the border of the image F(�n). Thus, a search orthogonal to
α (again in image space) could be promising to predict a new solution near x along
the Pareto set. To use (9.15), for instance a QR-factorization of α can be computed,
i.e.,

α = QR, (9.20)

where Q = (q1, . . . ,qk) ∈�k×k is an orthogonal matrix and qi, i = 1, . . . ,k, its col-
umn vectors, and R = (r11,0 . . . ,0)T ∈�k×1 with r11 ∈�\{0} (for the computation
of such a factorization we refer e.g. to [36]). Since by Equation (9.20) α = r11q1,
i.e., α ∈ span{q1}, and Q orthogonal it follows that the column vectors q2, . . . ,qk

build an orthonormal basis of the hyperplane which is orthogonal to α . Thus, a
promising well-spread set of search directions νi may be the ones which satisfy

J(x)νi = qi, i = 2, . . . ,k. (9.21)

In a next step, the predicted points pi = x+ tiνi, where ti ∈� are step sizes, can be
corrected back to the Pareto set. For this, one can e.g. solve numerically (IVP(−α))
using pi as initial value and−α as direction in (IVP(−α)). Continuing this procedure
iteratively leads to a particular PC variant for MOPs. Note that here no Hessians of
the objectives have to be computed which is indeed the case for other existing multi-
objective PC methods.
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To conclude, we mention that when mixing local searchers with evolution-
ary algorithms, having a method to steer the search—like the Directed Search
method—has a lot of potential. We will show this in the next section.

9.3.4 Step-Length Computation

As a final remark for the section, we note that once the movement direction is set,
choosing a suitable step size is not an easy task in multi-objective optimization. In
practice, different proposals have been tested with good results [12, 43, 31]. One
possibility [15] is also to adapt the well known Armijo-Goldstein rule to the multi-
objective case, and accept any step length t that holds

F(x+ tv)≤ F(x) − ct J(x)ν,

where F : Rn → R
k is the multi-objective function and J(x) : Rn → R

n is the Jaco-
bian matrix of F at x. The value c ∈ (0,1) is a control parameter to decide how fine
grained, numerically speaking, the descent will be. A bad choice of c can highly
increase the cost related to function evaluations. With a suitable initial step length,
this method is easily applicable; however, finding an efficient approach in the gen-
eral multi-objective case is still an open problem.

9.4 Toward the Hybridization

9.4.1 Main Issues

We have shown, in the previous sections, that there are some options available
to compute directions—based on gradient information—in the context of multi-
objective optimization; but, the question of how to efficiently integrate them into
a population-based context—as in the set oriented algorithms, such as MOEAs
are—remains wide open. In this sense, it is also worth noting that the suitable choice
of the movement direction relies also on the location of the point, and on the location
of all the other population individuals (see Figure 9.9).

Once the descent direction ν, for a specific point x∈R
n, is obtained, the new line

search function is defined as

f i
ν : R−→ R

t �−→ fi(x+ tν).

Now, the difficulty turns into the computation of the step size for f i
ν at x, because

it is again a multi-objective problem (see Figure 9.10). Even when approximations
of the optimal step size for each function are easy to estimate, the question is how
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Fig. 9.9 This figure shows that, in a population context, an efficient search direction for each
individual depends on several factors

to combine this information to find a common step to maximize the improvement.
In this case an exact step size calculation is not possible; but, the use of inexact
methods, like those described at Section 9.3.4, is a good option in practice. Step
size is an important issue since it compromises the efficiency of the local search and
the memetic algorithm as well. Even when the computation of the search direction
and the step length are apparently independent of each other, a bad choice of the
second can raise the cost of the procedure by several times.

Talking about hybridization with gradient-based local searchers, another impor-
tant issue is that it is not possible to a priori determine a specific amount of re-
sources, to be specifically devoted, for the local search procedure and the global one
as well. In this sense, in order to produce efficient algorithms, an adaptive mech-
anism to control the use of local search is advised; but, this is itself a non-trivial
problem. Gradient-based local search is typically a high-cost procedure; then, such
a balance mechanism must be capable of determining when the gradient method
outperforms the pure evolutionary search, during the solution of a specific prob-
lem—which means that the procedure is cost-effective. One possible option is to
incorporate local search, as a method to refine solutions, only at the end of the
search (as suggested in [18]); but this leads to a two-stage algorithm, and the pre-
cise time to start the local search is critical. In this sense, a proposal about doing
the switch during running-time is presented in [29]. The main idea is to start the
second stage when the evolutionary procedure is not improving the solutions any-
more; for example, when all the individuals are mutually non-dominated, and the
selection mechanism of the MOEA faces troubles because of that. In this case a
refinement with a certain direction for improvements is desirable—precisely what
is done with gradient-based methods. On the other hand, using deterministic search
directions—over the stochastic technique—may accelerate the ‘convergence’ of the
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Fig. 9.10 Simultaneous line search for three functions along the direction v. Even when solv-
ing separately the m line searches getting t1, t2 and t3, it is not possible to say which is the
suitable step length for all of them together.

search when dealing with problems with very smooth fitness landscapes; then, in
this cases the use of gradient-based procedures from the beginning of the search
can be advantageous [28]. In conclusion, an adaptive switch mechanism between
the two search engines (the local and the global one) during running-time is the
desirable choice; but this is still an open research problem.

A final consideration comes with the fact that when dealing with population-
based algorithms, it is important to keep a bounded archive of improved solutions.
When using evolutionary algorithms, there are several available mechanisms to limit
the size of this archive. This turns into an issue when resources have been spent us-
ing local search, since this bounding mechanisms typically delete solutions without
notice if it has been previously improved by an expensive mechanism or not. When
using gradient information at the end of the search, solutions are accurate in propor-
tion to the amount of resources we want to spend in the line search. Finally, when
building hybrid algorithms, saving the previously refined solutions from the trun-
cation mechanism is mandatory; then, it is necessary to set special mechanisms to
archive solutions in these cases.

9.4.2 Early Hybrids

Early attempts to combine MOEAs with gradient-based information use well-
known MOEAs as their baseline algorithms, and simply replace the mutation oper-
ator by a line search procedure [44][45]. Other proposals have used gradient-based
local search as an additional operator to be applied under certain rules during the
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MOEA run [2][3]. Within this same line of thought, other mathematical program-
ming techniques such as SQP [17] or the reference point method [49] have also been
coupled with MOEAs [23][46]. It is worth noting for completeness, that in hybrid
MOEAs using separately the gradients of single objectives is also possible, only
when dealing with few-objective problems [21].

In [28] it is presented a two-stage algorithm (GBMES) which uses gradient-based
line search in a first stage, in order to quickly reach points that are close to the Pareto
set. During this stage, a MOEA with a reduced population size was combined with
the gradient-based local search. The balance of resources to apply the local search
was naturally given by the selection of the best individuals, from the small popula-
tion. After spending a certain amount of resources, the second stage attempted to re-
construct the front (see [28] for details). This proposal has the natural drawbacks of
being a two-stage procedure and has some limitations to be applied in general. Nev-
ertheless, this work showed the potential advantages of using a descent direction of
movement when dealing with problems with a high number of parameters; mostly
because when the space is highly dimensional, the evolutionary techniques—avid
to keep a uniform distribution of the population—can easily get lost, making very
profitable to count with certain search directions.

In [31] the HCS operator is coupled with two state-of-the-art MOEAs. The effec-
tiveness of this hybrid algorithm was assessed in conventional test problems for
MOEAs. In most cases, the advantages of the hybrid method over the original
MOEA were very clear. The balance of the resources for this local search opera-
tor was made through an a priori set probability function. We confirmed (previ-
ously stated in [24]) with this work that the part of the balance (local vs. global
search) is, in general, the most important issue in terms of efficiency, for this type of
algorithms.

Also, an attempt to perform a dynamic balance control (between the two opera-
tors) is presented in [29]. Here, an indicator over the improvements made by the evo-
lutionary search is combined with a probability function, which controls the number
of individuals to be modified by the local search. This approach shows promising
results on traditional benchmarks.

9.5 Conclusions and New Trends

We presented, in this chapter, different gradient-based local search operators with
diverse features. Apart from the cost of computing the gradients of the objective
functions, we described a computational zero-cost descent direction, suitable for
bi-objective problems. We also presented operators to perform movements both to-
ward and along the Pareto set. The HCS has been presented in two versions, with
and without explicit use of gradient information, and its main feature lies on the
automatic switch between the two movements (hill climbing and sidestep) which
makes it a powerful local searcher.
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The terms convergence and spread are commonly used when talking about ap-
proximations of sets in the multi-objective context (mostly the Pareto set or its im-
age, the Pareto front). Convergence is about the proximity of the solutions toward
the set of interest, while spread relates to the minimal distance of these solutions
to each other—which should be maximized in order to ’capture’ as much as pos-
sible from the set of interest. The feature of our methods, to operate between a
range of movements—toward, along and directed—is very promising when solving
MOPs, because of the importance of the balance between convergence and spread.
Even when these method are compromised, like other gradient based local searchers,
when used in problems with a high number of local Pareto points, they have been
found to be efficient in combination with MOEAs.

Although particular descent directions, to improve the convergence of approxi-
mation sets, have been suggested for MOPs (e.g., [15, 38]), their use within memetic
strategies is not widely accepted. This is maybe due to an undesired bias of the cho-
sen descent directions. The presented DS method goes beyond and allows the search
to be steered in a particular controlled direction, which has so far not been consid-
ered. Here, the greedy direction from a given solution can be redefined according to
preferences—in order to steer the search along all the regions of the front, or those
that are difficult to explore by conventional MOEA mechanisms.

Regarding open research problems, we can state the adaptation of inexact meth-
ods for step-size control (such as Wolfe conditions, Armijo conditions, etc.) to the
multi-objective search. Ensuring convergence, and the study of speed of conver-
gence, for these methods are important issues to address when building an efficient
interleaving between MOEAs and local search. We also mention that adaptive con-
trol of the resources allowed for the local search during runtime is one of the main
issues of this hybridization. This control should automatically determine when the
evolutionary operators are not producing improvements and when the introduction
of gradient-based local search is cost effective. Another promissing possibility is to
combine several local search heuristics in a same hybrid algorithm by an adaptive
control mechanism, like in [47, 48].

Finally, a very important aspect of hybrid MOEAs is the archive management.
It is not desirable that our archiving strategy (like crowding or truncation) destroys
the refinement previously done to certain solutions. Hence, every gradient-based
algorithm should be coupled with a suitable archiving strategy. Interleaving the se-
lection process and the gradient-based improvements with the archiving strategy of
a MOEA is also a promising path for future research.
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