
Chapter 5
Set Oriented Methods for the Numerical
Treatment of Multiobjective Optimization
Problems

Oliver Schütze, Katrin Witting, Sina Ober-Blöbaum, and Michael Dellnitz

Abstract. In many applications, it is required to optimize several conflicting ob-
jectives concurrently leading to a multobjective optimization problem (MOP). The
solution set of a MOP, the Pareto set, typically forms a (k− 1)-dimensional object,
where k is the number of objectives involved in the optimization problem. The pur-
pose of this chapter is to give an overview of recently developed set oriented tech-
niques – subdivision and continuation methods – for the computation of Pareto sets
P of a given MOP. All these methods have in common that they create sequences of
box collections which aim for a tight covering of P . Further, we present a class of
multiobjective optimal control problems which can be efficiently handled by the set
oriented continuation methods using a transformation into high-dimensional MOPs.
We illustrate all the methods on both academic and real world examples.

Keywords: multiobjective optimization, multiobjective optimal control, set ori-
ented methods, subdivision, continuation

5.1 Introduction

In a variety of applications one is faced with the problem that several objectives
have to be optimized concurrently leading to a multiobjective optimization problem
(MOP). Typically, the solution set of a MOP – the Pareto set – is not given by a
single point as in scalar optimization but forms a (k− 1)-dimensional object, where
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University of Paderborn, Chair of Applied Mathematics, Warburger Str. 100,
D-33098 Paderborn, Germany
e-mail: {witting,sinaob,dellnitz}@math.uni-paderborn.de

E. Tantar et al. (Eds.): EVOLVE- A Bridge between Probability, SCI 447, pp. 187–219.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2013

schuetze@cs.cinvestav.mx
{witting,sinaob,dellnitz}@math.uni-paderborn.de


188 O. Schütze et al.

k is the number of objectives involved in the MOP. In case k is low (i. e., two to four),
it makes sense to compute the entire solution set since this is the set of ‘optimal
compromises’ and hence of particular interest for the decision making process.

In the literature, a huge variety of different methods for the computation of the
Pareto set can be found. There exist, for instance, many scalarization methods which
transform the MOP into a ‘classical’ scalar optimization problem (SOP). By choos-
ing a clever sequence of SOPs a suitable finite size approximation of the entire
Pareto set can be obtained (see [7, 40, 18, 32, 17, 16] and references therein). Fur-
ther, there exist continuation methods that, starting from one or several solutions,
perform a search along the Pareto set which is possible due to the geometry of the
solution set (e. g., [26, 52, 23, 54]). Another way – and probably the most promi-
nent one – is to use metaheuristics such as evolutionary algorithms (see [8, 20, 6]
and references therein). The underlying idea is to evolve an entire set of solutions
(population) during the optimization process. By this, an approximation of the entire
Pareto set can be obtained by one single run of the algorithm.

The methods we consider here differ in the sense that in each iteration step a set
of boxes is created with the aim to tightly cover P . This can be done by subdivision
techniques or by using certain continuation methods (so-called recover techniques).
In the former, a sequence of nested box collections is generated that converges (ide-
ally) to P , and in the latter a given collection C is extended by a local search which
is performed around promising elements (boxes) of C . Subdivision techniques are
due to their global approach highly competitive in particular if the dimension of
the parameter space is moderate (say, n < 50), and the number of objectives is low
(k < 5). Continuation methods are of local nature (i. e., restricted to the connected
component of the solution set in which the given solution is contained), but in turn
applicable to higher dimensional problems (n' 1000). Set oriented methods have
been successfully applied to, for example, space mission design problems ([60, 13]),
the design of electromagnetic shielding materials ([59]), the optimization of several
subsystems of a rail-bound vehicle ([51, 37, 21, 22, 62, 56, 34]), an energy manage-
ment problem of a tram ([33]), and the design of electrical circuits ([4]).

Next to the computation of the Pareto set of a given MOP we address the rel-
atively young field of the numerical treatment of multiobjective optimal control
problems. Whereas in multiobjective optimization one searches for Pareto optimal
parameters, in optimal control one searches for optimal trajectories, which are solu-
tions of a dynamical system given by a differential equation. Common approaches,
such as direct methods (for an overview of different methods we refer to [3]), are
based on a discretization of the trajectories and the differential equation such that
in the end one is faced with a high-dimensional constrained (multiobjective) opti-
mization problem. One of first works combining methods of direct optimal control
and multiobjective optimization is e. g. [38]. In this contribution it is described how
the set oriented continuation methods are combined with the recently developed di-
rect optimal control method DMOC (Discrete Mechanics and Optimal Control [48])
which is in particular suitable for Lagrangian systems, e. g. systems in space mis-
sion design ([30, 42]), or constrained multi-body dynamics ([36, 49]). Additionally,
the special case of differentially flat systems is addressed. We demonstrate on two
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examples that the resulting high-dimensional MOPs can be handled by the set ori-
ented continuation methods.

The remainder of this chapter is organized as follows: In Section 5.2, we present
the required background in multobjective optimization. In Section 5.3, we describe
a subdivision technique for the computation of relative global attractors of a given
dynamical system. In Section 5.4, we present four basic algorithms for the compu-
tation of Pareto sets, two subdivision algorithms and two continuation methods. In
Section 5.5, we present two particular approaches for the treatment of multiobjective
optimal control problems. And finally, in Section 10.6, we state some concluding re-
marks.

5.2 Multiobjective Optimization

In the following we consider MOPs which can be stated as follows:

min
x∈Q
{F(x)}, Q = {x ∈�n : h(x) = 0, g(x)≤ 0}, (5.1)

where F is defined as the vector of the objective functions, i. e.

F : Q→�
k, F(x) = ( f1(x), . . . fk(x)), (5.2)

with f1, . . . , fk : Q→�, h : Q→�
m, m≤ n, and g : Q→�

q. Though the methods
presented in the following are in principle applicable to general restriction sets Q,
we will primarily consider unconstrained problems (i. e., Q =�n) or domains that
result from box constraints, i. e.,

Q := {x ∈�n : li ≤ xi ≤ ui, i = 1, . . . ,n}, (5.3)

where l ∈�n and u ∈�n define the lower and upper bounds, respectively.
In the next definition we state the classical concept of optimality for MOPs.

Definition 5.1. (a) Let v,w ∈ �k. Then the vector v is less than w (v <p w), if
vi < wi for all i ∈ {1, . . . ,k}. The relation ≤p is defined analogously.

(b) A vector y ∈�n is dominated by a vector x ∈�n (in short: x≺ y) with respect
to (9.1) if F(x)≤p F(y) and F(x) �= F(y).

(c) A point x ∈ Q is called Pareto optimal or a Pareto point if there is no y ∈ Q
which dominates x.

In the following, we denote by PQ the set of Pareto points (or Pareto set). The image
F(PQ) of the Pareto set is called the Pareto front.

In case all the objectives are differentiable, the theorem of Kuhn and Tucker
([35]) states a necessary condition for optimality. We state the result in the following
for the unconstrained case. For a more general formulation of the theorem we refer
e. g. to [40].
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Theorem 5.1 ([35]). Let x∗ be a Pareto point of (9.1). Then there exist vectors α ∈
�

k with αi ≥ 0, i = 1, . . . ,k, and ∑k
i=1αi = 1 such that

k

∑
i=1

αi∇ fi(x
∗) = 0. (5.4)

Points x∗ that satisfy Equation (5.4) are called Karush-Kuhn Tucker1 (KKT) points
or substationary points. The above theorem can be used to give a qualitative descrip-
tion of PQ (which has first been observed in [26]). Denote by F̃ :�n+m+k→�

n+m+1

the following map:

F̃(x,α) =

⎛
⎜⎜⎜⎝

k
∑

i=1
αi∇ fi(x)

k
∑

i=1
αi− 1

⎞
⎟⎟⎟⎠ . (5.5)

By Theorem 5.1 it follows that for every KKT point x∗ ∈ �n there exists a vector
α∗ ∈�k such that

F̃(x∗,α∗) = 0. (5.6)

Hence, one expects – as a result of the Implicit Function Theorem – that the set of
KKT-points defines a (k− 1)-dimensional manifold. This is indeed the case under
certain smoothness assumptions, see [26] for a thorough discussion of this topic.

5.3 A Subdivision Algorithm for the Computation of Relative
Global Attractors

The relative global attractor of a dynamical system contains all invariant sets and is
hence (among other examples, see [11, 12]) interesting for the detection of substa-
tionary points of a given MOP. In the following we present the object of interest,
the framework of a subdivision technique for the computation of such objects, and
describe further on a numerical realization.

5.3.1 The Relative Global Attractor

Here we define the object of interest, the relative global attractor of a dynamical
system. For a more detailled discussion we refer e. g. to [11, 12].

We consider discrete dynamical systems

δ
∫ t f

0
L(q(t), q̇(t)) dt +

∫ t f

0
f (q(t), q̇(t),u(t)))δq dt = 0 (5.7)

1 Named after the works of Karush [31] and Kuhn & Tucker [35] for scalar–valued opti-
mization problems.
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where f : �n → �
n. A subset A ⊂ �n is called invariant if f (A) = A. We say an

invariant set A is an attracting set if there exist a neighborhood U of A such that for
every open set V ⊃ A there is a N ∈� such that f j(U)⊂V for all j ≥ N. Note that
for every invariant set also its closure is invariant. Hence, we can restrict ourselves
to closed invariant sets A, and in this case we obtain

A =
⋂
j∈�

f j(U). (5.8)

Hence, we can say that all the points in U are attracted by A (under iteration of
f ), and U is called the basin of attraction of A. If U = �n, then A is called the
global attractor. The knowledge of the global attractor is in general beneficial since it
contains all the potential interesting dynamics ([12]). For numerical aproximations,
however, we have to restrict ourselves to a compact subset of the �n as domain
which leads directly to the notion of the relative global attractor.

Definition 5.2. Let Q ⊂ �n be a compact set. The global attractor relative to Q is
defined by

AQ :=
⋂
j≥0

f j(Q). (5.9)

Example 5.1. Consider the one-dimensional dynamical system

f (x) = αx, (5.10)

where α ∈� is a constant, and let Q = [a,b], where a < 0 and b > 0.

(a) Let α ∈ (−1,1). Since |x j+1| = |α||x j| the relative global attractor is given by
AQ = {0}.

(b) Let |α| ≥ 1. Since for all j ∈� it is f j(Q)⊃ Q and f 0(Q) = Q, it is AQ = Q.

As an example related to optimization consider the application of the steepest de-
scent method ([45]) to a scalar optimization problem

min
x

g(x), (5.11)

where g :�n →� is a smooth function. This leads to the dynamical system

x j+1 = f (x j) = x j− t∇g(x j), j = 0,1,2, . . . , (5.12)

where t ∈ �+ is a (fixed) step size. It is important to note that the relative global
attractor contains all invariant sets A ⊂ Q and is hence interesting in the present
context:

Let x∗ ∈�n be a substationary point (i. e., ∇g(x∗) = 0), then it is

x∗ = f (x∗) (5.13)
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i. e., x∗ is a fixed point of f (and in particular invariant). Note that this statement
holds regardless of the choice of the step size t.

5.3.2 The Algorithm

Here we describe a subdivision technique that creates in each iteration step j a
collection of sets Q j such that each Q j is an outer approximation of AQ and that
the sequence of Q j’s converges to AQ in the Hausdorff sense.

Let B0 be an initial collection of finitely many subsets of the compact set Q such
that ∪B∈B0B = Q. Then B j is inductively obtained from B j−1 in two steps:

(i) Subdivision Construct from B j−1 a new system B̂ j of subsets such that

⋃

B∈B̂ j

B =
⋃

B∈B j−1

B (5.14)

and
diam(B̂ j) = θ j diam(B j−1), (5.15)

where 0 < θmin ≤ θ j ≤ θmax < 1.
(ii) Selection Define the new collection B j by

B j =
{

B ∈ B̂ j : there exists B̂ ∈ B̂ j such that f−1(B)∩ B̂ �= /0
}
. (5.16)

Denote by Q j the collection of compact subsets obtained after j subdivision steps,
i. e.,

Q j :=
⋃

B∈B j

B (5.17)

One can show that the limit of the Q j’s converges to the relative global attractor.

Proposition 5.1 ([12]). Let AQ be a global attractor relative to the compact set Q,
f be a diffeomorphism, and let B0 be a finite collection of closed subsets with
Q0 := ∪B∈B0B = Q. Then

AQ =
∞⋂

j=0

Q j. (5.18)

The above result can alternatively be stated as

lim
j→∞

dH(AQ,Q j) = 0, (5.19)

where dH(·, ·) denotes the Hausdorff distance between two sets.
Note that the above result holds for the usage of one dynamical system through-

out the entire iteration process. In the context of optimization, however, this might
be too restrictive. As a general example, consider the dynamical system (5.12).
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Instead of using a fixed step size t, one is typically interested in using several step
sizes which formally leads to an entire family of dynamical systems. In the case of
steepest descent this would be

x j+1 = fi(x j) = x j + ti∇g(x j), i ∈I (5.20)

For an adaption of the subdivision technique to that context we refer to [15].

5.3.3 Realization of the Algorithm

Here we describe a possible realization of the subdivision technique.

Subdivision

For the representation of the collections B j we use boxes: Let us assume that every
parameter is restricted to a certain range, i. e., ai ≤ xi ≤ bi, i = 1, . . . ,n. The search
space thus is given by

Q = [a1,b1]× . . .× [an,bn]⊂�n. (5.21)

Every box B⊂�n can be represented by a center c ∈�n and a radius r ∈�n
+ such

that
B = B(c,r) = {x ∈�n : |xi− ci| ≤ ri ∀i = 1, . . . ,n}. (5.22)

The box B can be subdivided with respect to the j-th coordinate. This division leads

to two boxes B(c−,r̂)
− and B(c+,r̂)

+ , where

r̂i =

{
ri for i �= j

ri/2 for i = j
, c±i =

{
ci for i �= j

ci± ri/2 for i = j
.

Let P(Q,0) := Q, that is, P(Q,0) = B(c0,r0), where

c0
i =

ai + bi

2
, r0

i =
bi− ai

2
, i = 1, . . . ,n.

Denote by P(Q,d),d ∈�, the set of boxes obtained after d subdivision steps start-
ing with B(c0,r0), where in each step i = 1, . . . ,d the boxes are subdivided with re-
spect to the ji-th coordinate, where ji is varied cyclically. That is, ji = ((i− 1)
mod n)+ 1. Note that for every point y ∈ Q\∂Q and every subdivision step d there
exists exactly one box B = B(y,d) ∈P(Q,d) with center c and radius r such that
ci− ri ≤ yi < ci + ri, ∀i = 1, . . . ,n. Thus, every set of solutions SB leads to a set
of box collections Bd . These collections can easily be stored in a binary tree with
depth d. In Figure 5.1 a representation of five boxes with subdivision step three and
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three dimensions (i. e., n = 3) together with the corresponding set B3 is shown.
Note that each Bd is completely determined by the tree structure and the initial box
B(c0,r0). Using this scheme, the memory requirements grow only linearly in the di-
mension n of the problem.

Fig. 5.1 The data structure used for the representation of the solution set

Selection

A box B is removed from the collection in the above algorithm if

∀B̂ ∈ B̂k : f−1(B)∩ B̂ = 0 (5.23)

Apparently, this is hard to decide apart for trivial problems. As a remedy, the follow-
ing heuristic can be chosen which has shown its efficiency in numerous examples:
One can discretize each box of the collection by selecting a finite set of test points
(e. g. , grid points in low dimensions n of the parameter space or Monte Carlo
points in higher dimensions). Then, one can replace removal strategy (5.23) by the
following one:

f (x) �∈ B for all test points x ∈ B̂k. (5.24)

Similar strategies can be found in cell-mapping techniques (e. g., [28, 29]).

5.4 Basic Algorithms for Multiobjective Optimization

In the following, we present four different algorithms for the numerical treatment of
MOPs, two subdivision algorithms and two continuation strategies. In all cases, we
emphasize on the general idea, for details or comparisons to other methods we refer
to the original works.
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5.4.1 Subdivision Techniques

5.4.1.1 DS-Subdivision

The first algorithm we present here is in principle constructed as the one presented in
(5.12), albeit tailored to the context of multiobjective optimization ([14]). Assume
the MOP is unconstrained and all objectives are continuously differentiable. The
following result gives a way to compute a descent direction – i. e., a direction ν ∈�n

where all objectives can be improved simultaneously – at every non-optimal point
x ∈�n.

Theorem 5.2 ([55]). Let (MOP) be given and q :�n →�
n be defined by

q(x) =
k

∑
i=1

α̂i∇ fi(x), (5.25)

where α̂ is a solution of

min
α∈�k

⎧⎨
⎩

∥∥∥∥∥
k

∑
i=1

αi∇ fi(x)

∥∥∥∥∥
2

2

;αi ≥ 0, i = 1, . . . ,k,
k

∑
i=1

αi = 1

⎫⎬
⎭ . (5.26)

Then either q(x) = 0 or −q(x) is a descent direction for all objective functions
f1, . . . , fk in x.

Note that since each x with q(x) = 0 is a substationary point, the computation of the
descent direction includes a test for Pareto optimality.

Having the descent direction q, a possible dynamical system that ‘pushes’ the
iterates toward the set of interest, the Pareto set, is now at hand: Analog to the line
search method in (5.12) we can define

x j+1 = f (x j) = x j− tq(x j), j = 0,1,2, . . . , (5.27)

where t ∈ �+ is a chosen step size. DS-Subdivision is the subdivision technique
described in Section 5.3.2 using (5.27) as dynamical system.

Example 5.2. Consider the following bi-objective problem

f1, f2 :�2 →�

f1(x) = (x1− 1)4 +(x2− 1)2,

f2(x) = (x1 + 1)2 +(x2 + 1)2

(5.28)
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The Pareto set of MOP (5.28) is a curve connecting the points (−1,−1)T and
(1,1)T . Figure 5.2 shows the result of an application of the subdivision scheme
where (5.27) has been used as dynamical system. After several iteration steps a
tight covering of the Pareto set can be obtained. For the evaluation of a box we have
chosen the four corners as test points.

(a) Iteration 10 (b) Iteration 15 (c) Iteration 20

Fig. 5.2 Box collections generated by DS-Subdivision applied on MOP (5.28) after 10, 15,
and 20 iteration steps. Here, we have chosen Q = [−5,5]2 as domain.

Indeed one can show convergence to the set of interest if it is connected.

Proposition 5.2 ([14]). Suppose that the set S of substationary points is bounded
and connected. Let Q be a compact neighborhood of S . Then, an application of
the subdivision algorithm to Q with respect to the iteration scheme (5.27) leads to a
sequence of coverings which converges to the entire set S ; that is,

dH(S ,Q j)→ 0, for j→ ∞. (5.29)

If e. g. the problem is convex, then it is known that S is equal to PQ which is fur-
thermore connected. Unfortunately, analog results cannot be obtained for the case
where the set S is disconnected. The reason for this is that the relative global at-
tractor is always connected. The following example demonstrates this in the present
context.

Example 5.3. Consider the bi-objective problem as shown in Figure 5.3. This prob-
lem is constructed such that S = [0,1]∪ [1.5,2], where the interval [0,1] contains
only locally optimal solutions and the interval [1.5,2] is equal to the Pareto set. An
application of DS-Subdivision to Q = [−1,3] will converge to the relative global
attractor AQ = [0,2]. To see this, one has to consider the neighborhood around the
number 1: a box B that contains 1 as well as points that are bigger than one has al-
ways a nonzero intersection with its image under iteration (5.27). Further, the image
of this box has also a nonzero intersection with its right neighbor Br. Proceeding
with Br, we see that all the boxes between 1 and 1.5 have preimages in other boxes
in each step of the subdivision process. Hence, the interval (1,1.5) is never removed
in the selection step.
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However, it has to be noted that this holds for an ideal application of the algo-
rithm. In case the removal strategy (5.24) is used in the selection strategy, it is most
likely to observe convergence toward S .

Fig. 5.3 Example of a bi-objective optimization problem where the set S of locally optimal
solutions is disconnected

Remark 5.1. We have utilized in our studies the descent method presented in [55].
However, we have to note that there are other ways to compute descent directions
(e. g., [18, 5]) which might lead to similar results.

5.4.1.2 Sampling Algorithm

Note that the algorithm described above suffers several potential drawbacks, namely:

(a) The objectives’ gradients have to be at hand or have to be approximated.
(b) The set S of substationary points is typically a strict superset of the Pareto set,

and points that are only locally optimal are typically not of interest (compare to
Example 5.3).

(c) The algorithm is in principle capable of finding local Pareto points on the
boundary of the domain Q. However, empirical tests have shown that in many
cases a significant fraction of the boundary ∂Q is locally but not globally opti-
mal wrt the given MOP.

The following algorithm, the Sampling Algorithm, tries to avoid all these potential
problems. This is done by merely considering the objective values of the set of
test points in each iteration. To be more precise, given a box collection B j−1, the
collecion B j is obtained as follows:

(i) Subdivision This is as in Section 5.3.2.
(ii) Selection For all B ∈ B̂ j , choose a set of test points XB ⊂ B.

Nj := nondominated points of
⋃

B∈B̂ j
XB

B j := {B ∈ B̂ j : ∃y ∈ XB∩Nj}
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Note that this approach has some analogies to branch and bound strategies used for
scalar optimization problems (e. g., [27]), but omits any bounding strategy. This is
due to the fact that the larger the number k of objectives is, the more robust the
selection strategy gets (note that for k = 1, Nj will typically consist of one element,
which is normally not the case for k > 1).

Example 5.4. Consider the following bi-objective problem taken from [55]:

f1, f2 :�n →�,

f1(x) =
n

∑
j=1

x j,

f2(x) = 1−
n

∏
j=1

(1−wj(x j)),

(5.30)

where

wj(z) =

{
0.01 · exp(−( z

20)
2.5) for j = 1,2

0.01 · exp(− z
15) for 3≤ j ≤ n

Figure 5.4 shows a numerical result obtained by the Sampling Algorithm. Here, we
have taken 10 randomly chosen test points per box. When choosing Q = [0,40]3 the
set S contains the two faces of Q with xi = 0, i = 1,2. Hence, an application of
DS-Subdivision leads to a tremendous effort since both faces will be kept in the box
collections (see also [57]). This is avoided by the sampling approach.

5.4.2 Recover Techniques in Parameter Space

In the course of the two algorithms described above it can happen that boxes are
lost that contain a part of the set of interest (e. g., due to a discretization error in
the removal strategy (5.24)). The following algorithms are intended to ‘heal’ (or
recover) the box collection. The underlying idea is that the set of interest (Pareto set
or front) forms locally a manifold. That is, in the neighborhood of a ‘good’ box (i. e.,
a box with nonzero intersection with the set of interest) it is likely that there are other
‘good’ boxes due to the geometry of the problem. Hence, given a box collection B j,
it makes sense to perform a local search around each box of the collection (once),
and to see if neighboring boxes should be added to B j. It has to be noted that this
approach is restricted to the connected components of the set of interest that have
nonzero intersection with the given collection B j . On the other hand, it has turned
out that the usage of the data structure is well suited to maintain a ‘global’ view on
the part of the solution set which is already computed, and is in particular interesting
for the efficient treatment of high-dimensional problems.

The idea of the recover techniques in parameter space is to recover the box col-
lection in order to maintain a perfect covering of the Pareto set ([14]). The following
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(a) Iteration 10 (b) Iteration 20

(c) Iteration 30 (d) Pareto front

Fig. 5.4 Numerical results for MOP (5.30) using the Sampling Algorithm.

pseudo-code gives the framework of the Recover Algorithm to extend an existing
collection B j (see also Figure 5.5).

(i) Step 1 Mark all boxes B ∈B j

(ii) Step 2 (i) For all marked B ∈Bk: unmark the box and choose starting points
(si)i=1,...,l near B
(ii) For each si, i = 1, . . . , l, compute a substationary point pi starting from si.
(iii) For all pi, i = 1, . . . , l, if B(y, j) �∈Bk, add B(y, j) to the collection Bk and
mark the box.
(iv) Repeat Step 2 while new boxes are added to Bk or until a prescribed number
of steps is reached.

Note that the Recover Algorithm is similar in spirit to predictor corrector (PC) meth-
ods used for numerical (multiobjective) continuation ([53, 1, 26, 24, 52, 23]). Cru-
cial are certainly the proper choices of the starting points si and the performance
of the local searcher. In low dimensions it might be sufficient to choose the starting
points in coordinate directions from the center of a box (as seen in Figure 5.5) to-
gether with an application of the map (5.27), i. e., to take pi = f p(si), for a power
p ∈�. In higher dimensions, however, this is not advisable. Instead, it makes sense
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to lean elements from existing PC methods applied on the map (9.11). This has
been done in [58]. For an application of the recover techniques for high-dimensional
problems (n' 1000) we refer to [54].

Fig. 5.5 Recover algorithm: uncomplete covering of the Pareto set (left) and possible choice
of test points for a given box B (right)

Example 5.5. We consider the following MOP ([58]):

minF(x) :=

⎛
⎝

(x1− 1)4 +(x2− 1)2 +(x3− 1)2

(x1 + 1)2 +(x2 + 1)4 +(x3 + 1)2

(x1− 1)2 +(x2 + 1)2 +(x3− 1)4

⎞
⎠

s.t. h(x) = 1− x2
3− (

√
x2

1 + x2
2− 4)2 = 0

(5.31)

The MOP is given by three convex objectives which are constrained to a torus.
Figure 5.6 shows a numerical result of the Recover Algorithm where the initial box
collection consists of one single solution of the MOP.

We stress that the Recover Algorithm can more generally be used as a particular
continuation method for the numerical solution of

H(x) = 0, (5.32)

where H :�N+K →�
N is a map (see [57, 58]). One interesting application in the

present context is the numerical treatment of parameter dependent MOPs which can
be expressed as follows:

min
x

Fλ :�n →�
k, λ ∈�d (5.33)
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(a) Box collection

(b) Pareto front

Fig. 5.6 Numerical result of the Recover Algorithm for MOP (5.31) starting with one known
Pareto optimal solution of the problem
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This particular kind of problem e. g. occurs when λ is given data for the underlying
system which is modelled by F and can change during the optimization process (see
e. g. [51]). In case λ changes quickly it is not advisable to compute the entire Pareto
set for every value of λ but it may be more efficient to approximate the set F̃−1(0),
where

F̃ :�n+d+k →�
n+1

F̃(x,λ ,α) :=

⎛
⎜⎜⎝

k
∑

i=1
αi

∂ fi
∂x (x,λ )

k
∑

i=1
αi− 1

⎞
⎟⎟⎠ .

(5.34)

When the auxiliary system is computed, the set of substationary points for every
value λ̄ is given by the projection F̃−1(0)|λ=λ̄ , which can easily be identified in the
corresponding box collection.

Example 5.6. We consider the following parameter dependent MOP:

Fλ (x) := (1−λ )F1(x)+λF2(x), (5.35)

where

F1,F2 :�2 →�
2

F1(x1,x2) =

(
(x1− 1)4 +(x2− 1)2

(x1 + 1)2 +(x2 + 1)2

)
,

F2(x1,x2) =

(
(x1− 1)2 +(x2− 1)2

(x1 + 1)2 +(x2 + 1)2

)
.

(5.36)

Figure 5.7 shows the set F̃−1(0) for problem (5.35). Two ‘classical’ Pareto sets
for particular values of λ – using the according parts of the box collection for the
auxiliary system – can be seen in Figure 5.8.

5.4.3 Image-Set Oriented Recover Techniques

In case the dimension of the parameter space is high and only a few objectives are
beeing considered (i. e., two or three), one can alternatively generate box collec-
tions in image space ([9, 10]): For a given initial Pareto optimal solution a box on
the Pareto front is generated around the image of this solution. Step by step, all
neighboring boxes are inserted that contain points on the Pareto front. The insertion
of boxes is based on the idea to create vectors of desired values for the objectives,
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Fig. 5.7 Family of Pareto sets, see (5.35)

(a) λ = 0 (b) λ = 1

Fig. 5.8 Pareto sets for two values of λ of MOP (5.35)

so-called targets T , in the neighborhood of the given boxes. Then the following
distance minimization problem is solved:

min
x
‖F(x)−T‖2. (5.37)

Using this procedure, the entire Pareto set can be covered for unconstrained multi-
objective optimization problems with convex objective functions. In the nonconvex
case the connected components of the Pareto front that correspond to the initial
boxes can be approximated.

More precisely, the image-set oriented recover algorithm works as follows: As-
sume that we would like to compute Pareto optimal points within the region

QI = [ f min
1 , f max

1 ]× . . .× [ f min
k , f max

k ]⊂�k,
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where f min
i , f max

i ∈R, i= 1, . . . ,k, are given restrictions for the objective values. The
box QI is subdivided a set of boxes of depth d, P(QI,d), as described in Section
5.3. Then, each point y ∈ QI can be assigned to a box B(y,d).

The image-set oriented recover algorithm starts with a box collection B0 ⊂
P(QI ,d). Let xB denote a corresponding Pareto optimal solution to the box B,
i. e. F(xB) ∈ B for B ∈B0.

Step 1:
Mark all B ∈B0

Step 2:
for j = 0, . . . , maximum number of steps:

set B̂ j = B j

for all B ∈B j with B marked
choose target vectors {Ti}i=1,...,l near B

with Ti ≤p F(xB)
compute x�i = argminx∈Rn ‖F(x)−Ti‖2 for i = 1, . . . , l,
set F�

i = F(x�i ), i = 1, . . . , l,
unmark box B
for all i = 1, . . . , l:

if B(F�
i ,d) /∈B j

set B̃ = B(F�
i ,d), xB̃ = x�i , FB̃ = F�

i
mark B̃
B̂ j = B̂ j ∪ B̃

if B̂ j == B j STOP
B j+1 = B̂ j

So far, it has not been explained how suitable targets Ti can be generated. Efficient
strategies for the computation of target vectors can be defined by making use of local
information on the Pareto set. There are different possibilities how to generate good
targets. One idea presented in [10] is to generate targets along the shifted tangent
space on the image of a known Pareto optimal solution. More precisely, we have
to assume that x� is Pareto optimal, F(x�) = y� and T � is the target which leads to
the computation of x�. Additionally, it is required that the image of the Pareto set is
smooth and forms a (k− 1)-dimensional manifold in a neighborhood of y�. Then,
new targets can be generated in two steps:

(i) Compute the normal vector to the Pareto front in the point y�. As x� is a solution
of the distance minimization problem (5.37) this normal vector is given by n =

T �−x�

‖T�−x�‖ . Construct a ((k-1)-dimensional) orthonormal basis V = {b1, . . . ,bk−1}
of the tangent space at the point y� which is orthogonal to n e. g. by computing a
QR factorization of n.

(ii)Specify l targets

ti = y�i +
k−1

∑
j=1

αi, jb j +λin, i = 1, . . . , l.
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The coefficients αi, j are chosen in such a way that the points pi = ∑k−1
j=1αi, jb j

are located inside neighboring boxes of the box containing y�. The value of λi

is determined by an adaptive concept which guarantees that the targets lie below
the Pareto front (but also are not too far away).

The distance minimization problem (5.37) is solved using standard optimization
algorithms such as SQP which is implemented in the NAG library [46]. In Figure
5.9, a schematic representation of the image set-oriented recover algorithm is given.

f1f1 f1 f1

f2f2f2 f2

Fig. 5.9 Principal functioning of the image set-oriented recover algorithm (the black curve is
the unknown Pareto front and the grey dots are the targets).

Example 5.7. Consider the bi-objective problem

f1, f2 : R100 →R,

f1(x) =
100

∑
i=1

(xi− 1)2

f2(x) =
100

∑
i=1

(xi + 1)2.

(5.38)

We restrict the optimization to a box with center (0,0)T and radius 2 in each spatial
direction in image space. To demonstrate the application of the image set oriented
recover algorithm this box is subdivided into boxes of depth 12 in a first study, and
depth 18 in a second study. As a start, we consider the box of depth 12 or 18, respec-
tively, containing the point (0.25,0.25)T which lies on the Pareto front (this point
can for example be computed by minimizing the weighted sum 1

2 f1(x)+
1
2 f2(x)).

In Figure 5.10 the results from the application of the image-set oriented recover al-
gorithm to this example is given for the two different box depths mentioned above.
One can observe that the entire Pareto front is covered by boxes of the respective
depth.

Example 5.8. The image-set oriented recover algorithm has been applied to an en-
ergy management problem of a tram which is supplied by an overhead line (cf.
[9, 33]). This tram posesses an additional onboard storage system with an energy
storage of high capacity which is able to store energy generated from breaking, for
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Fig. 5.10 Results of the image-set oriented recover algorithm applied to the objective func-
tions given in Example 5.7: Box covering of the Pareto front for depth d = 12 (left) and
d = 18 (right)

example. The aim is to reduce both overhead line peak power and energy consump-
tion simultaneously during a realistic drive cycle of the tram. To compute reasonable
solutions the drive cycle under consideration is divided into 1241 track sections.
The energy management system has to assign a reference value to each of these
sections. Thus, a multiobjective optimization problem with two objectives and 1241
optimization parameters has to be solved. Figure 5.11 shows the results. Here, both
objectives are normed in such a way that they each equal one if no energy storage
system would be used. Note that in the figure not the resulting boxes in image space
but the solutions within these boxes are plotted.

Fig. 5.11 Approximation of the Pareto front for the energy management problem of a tram
described in Example 5.8
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5.5 Multiobjective Optimal Control Problems

In this section we consider multiobjective optimal control problems of the form

min
x,u

J(x,u) (5.39)

s. t. ẋ(t) = g(x(t),u(t)),

where x : [0, t f ]→ R
n is the state trajectory, ẋ : [0, t f ]→ R

n its derivative w. r. t. the
time parameter t ∈ [0, t f ], and u : [0, t f ]→ R

m the control trajectory. J is a vector of
objective functionals,

J(x,u) = (J1(x,u), . . . ,Jk(x,u))
T

with Ji(x,u) =
∫ t f

0 Ci(x(t),u(t))dt, i = 1, . . . ,k. In contrast to the problems we con-
sidered before, the objective function depends on functions x(t) and u(t) rather
than on single parameters. Our principal approach to solve such a trajectory op-
timization problem is to transform it into a nonlinear multiobjective optimization
problem and solve this problem numerically using the image-set oriented recover
algorithm. Such a transformation typically bases on a discretization in time such
that the time-dependent functions are represented by a sequence of discrete state and
control parameters that are approximations to the trajectories. (For an overview of
different discretization techniques for single objective optimal control methods we
refer e. g. to [2].) Thus, the mulitiobjective optimal control problem is transformed
into a multiobjective optimization problem with many parameters, which consist of
all time-discrete states and controls. To handle such high-dimensional multiobjec-
tive optimization problems, the presented image-set oriented recover algorithm is
appropriate since it works in the low-dimensional image space rather than in the
high-dimensional parameter space.

There are different possibilities how to transform the multiobjective optimal con-
trol problem into the multiobjective optimization problem, which highly depend on
the system under consideration. In the following we will focus on differentially flat
systems on the one hand and Lagrangian systems in general on the other hand. We
will describe how the multiobjective optimal control problem can be transformed
and show how these procedures can be applied to special mechatronical and me-
chanical systems.

5.5.1 Differentially Flat Systems

Differentially flat systems have the property that the inputs and states can be repre-
sented as a function of the flat outputs and a finite number of their derivatives wrt
time (cf. [19]):
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Definition 5.3 (Differential flatness [19, 43]). A system

ẋ(t) = g(x(t),u(t))

with states x(t)∈R
n and controls u(t)∈R

m is called differentially flat if there exists
a fictitious output y(t) ∈ R

m with

y = h(x,u, u̇, ü, . . . ,u(p)) such that

x = α(y, ẏ, ÿ, . . . ,y(q)) and u = β (y, ẏ, ÿ, . . . ,y(q)).
(5.40)

Here, h,α and β denote real-analytic functions and p,q∈N. y is called a flat output.

Differentially flat system can especially be utilized in trajectory optimization (cf.
[61]). The big advantage is that in this case the trajectories can be optimized in the
space of the outputs y and afterwards, the corresponding inputs and states can be
computed.

Thus, a single objective optimal control problem of the form

min
x,u

j(x,u) (5.41)

s. t. ẋ(t) = g(x(t),u(t))

with a differentially flat system ẋ(t) = g(x(t),u(t)) with x(t) ∈ R
n and u(t) ∈ R

m

can be transformed into an optimization problem of the form

min
y

f (y), (5.42)

where y(t) ∈ R
m denotes the flat output (cf. e. g. [61, 50] and [41]).

This concept can be easily extended to the case of a vector-valued objective func-
tional. In this case, the optimal control problem is transformed into a conventional
multiobjective optimization problem of the form

min
y

F(y), (5.43)

where F maps from R
m to R

k and y(t) ∈ R
m denotes the flat output.

Example 5.9 (Multiobjective optimization of the guidance of a rail-bound vehicle).
In the following we consider the trajectory optimization of the guidance module of a
rail-bound vehicle (cf. [21, 22]). More precisely, this guidance module is contained
in the RailCab vehicle, which is a linear-motor driven railway system developed
by the project RailCab (“Neue Bahntechnik Paderborn”, [44]) at the University of
Paderborn, Germany. Figure 5.12 displays the test vehicle. It belongs to a test facility
with a track length of about 530 m. The track includes a novel passive switch which
allows the processing of closely following vehicles. The vehicle itself consists of
a superstructure that carries the load and two undercarriages. Among many other
modules the RailCab is equipped with a guidance module which is based on one
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Fig. 5.12 Photograph of the RailCab test vehicle

single wheel set. It enables a driving with low attrition and allows to use the novel
concept for a passive switch (cf. [25]). The guidance module allows to actively
control the lateral displacement of the RailCab vehicle in the rails. Within a given
clearance, the RailCab can be moved freely. This is very important, because track
laying does not result in ideally straight rails and flange strikes, i. e. bumpings of
the rail-heads against the flanges, have to be avoided because they cause noise and
wear on the wheels and rails. Figure 5.13 shows a typical rail and a sketch of the
clearance, which is the maximum distance between the flanges and the rail-heads.
We assume that the measured position of the rails (the track centerline) is known a
priori.

Fig. 5.13 Photograph of a rail (on the left) and sketch of the clearance (on the right) [21]

Within the clearance, the RailCab can be steered along arbitrary reference trajec-
tories. The challenge was to compute Pareto optimal trajectories that meet several
aims:

1. minimize the deviation of the vehicle from the track centerline, i. e. maximize
“safety”,

2. maximize the passenger comfort,
3. minimize the average energy consumption of the hydraulic actuators.
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Based on a linear model of fourth order for the lateral dynamics of the RailCab ve-
hicle (see [21] for more details), a multiobjective optimal control problem is formu-
lated. In this model, the controlled outputs are flat. The desired reference trajectories
of length sh for both the front and the rear axle are approximated by cubic splines.
For the computation of Pareto optimal trajectories, the image set-oriented recover
algorithm has been used. The fact that the RailCab has to stay within the clearance
is included as a constraint. Figure 5.14 shows an approximation of the Pareto front
for an exemplary track section with a length of 8 m computed by the image-set ori-
ented recover algorithm. To each point within this Pareto front corresponds a Pareto
optimal trajectory on which the RailCab vehicle can be steered.

Fig. 5.14 Approximation of the Pareto front for the guidance module [21]

Two points within the Pareto front have been chosen (marked by a circle and a
square) to demonstrate the results. The circle is an example for a more safe trajec-
tory and the square for a more comfortable one. In Figure 5.15 the corresponding
trajectories and the trajectories which stem from single objective optimizations for
each of the three objectives are given. (Here, only the optimized interpolation val-
ues at the knot points, connected with lines, are plotted.) The black line is the track
centerline and the gray lines describe the clearance around it.

One can observe that the trajectory which is more safe (line with circles) stays
close to the centerline whereas the more comfortable trajectory (line with squares)
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Fig. 5.15 Examples of Pareto optimal trajectories for the RailCab vehicle [21]

“cuts the corners” and is smoother. As expected, the energy optimal (dashed) and
comfort optimal (dash-dot) trajectories lie close together.

5.5.2 Lagrangian Systems

We consider special kinds of dynamical systems ẋ(t) = g(x(t),u(t)), namely those
systems that can be derived from a variational principle. In particular, we are in-
terested in Lagrangian systems which comprise e. g. mechanical, but also electrical
or mechatronical systems. In order to solve optimal control problems for those sys-
tems, we use DMOC (Discrete Mechanics and Optimal Control [48]), a technique
that relies on a direct discretization of the variational formulation of the dynam-
ics of the system. Based on the discretization the problem is transformed into a
finite dimensional constrained optimization problem. The principal approach can
be extended to the case of optimal control problems with multiple objectives. For
convenience, we briefly summarize the basic idea.

Let M be an n-dimensional configuration manifold with tangent bundle TM
and cotangent bundle T ∗M. Consider a mechanical system with time-dependent
configuration vector q(t) ∈ M and velocity vector q̇(t) ∈ Tq(t)M, t ∈ [0, t f ], whose
dynamical behavior is described by the Lagrangian L : T M → R. Typically, the La-
grangian L consists of the difference of the kinetic and potential energy. In addi-
tion, a force f : TM×U → T ∗M depending on a time-dependent control parameter
u(t) ∈U ⊆ R

m influences the system’s motion. The aim is to move the mechanical
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system on a curve q(t) ∈M, t ∈ [0, t f ], from an initial state (q0, q̇0) to a final state
(qt f , q̇t f ) under the influence of f (q, q̇,u) such that the curves q and u minimize a
given objective functional

J(q, q̇,u) =
∫ t f

0
C(q(t), q̇(t),u(t)) dt (5.44)

with C : TM×U →R
k. Note, that the objective functional J involves k single objec-

tive functionals given as J(q, q̇,u) = (J1(q, q̇,u), . . . ,Jk(q, q̇,u))T according to (5.39)
with

Ji(q, q̇,u) =
∫ t f

0
Ci(q(t), q̇(t),u(t)) dt, i = 1, . . . ,k,

and C(q, q̇,u) = (C1(q, q̇,u), . . . ,Ck(q, q̇,u))T . At the same time, the motion q(t) has
to satisfy the Lagrange-d’Alembert principle, which requires that

δ
∫ t f

0
L(q(t), q̇(t)) dt +

∫ t f

0
f (q(t), q̇(t),u(t)))δq dt = 0 (5.45)

for all variations δq with δq(0) = δq(t f ) = 0. The principle (5.45) is equivalent to
the forced Euler-Lagrange equations

d
dt

∂
∂ q̇

L(q, q̇)− ∂
∂q

L(q, q̇) = f (q, q̇,u), (5.46)

which provide as system of differential equations the equations of motion that can
be summarized in the general form ẋ = g(x,u) with x = (q, q̇).

The optimal control problem consisting of minimizing (5.44) subject to (5.46)
is numerically solved using a direct discretization approach [39, 48]. The state
space T M is replaced by M ×M and a path q : [0, t f ] → M by a discrete path
qd : {0,h,2h, . . . ,Nh = t f }→M, with time step h and N a positive integer such that
qk = qd(kh) is an approximation to q(kh). Similar, the control function u : [0, t f ]→U
is replaced by a discrete control function ud : {0,h,2h, . . . ,Nh = t f } →U , approx-
imating the control on each interval [kh,(k+ 1)h] by a discrete control uk (writing
uk = ud((k+

1
2 )h)).

Via an approximation of the action integral in (5.45) by a discrete Lagrangian
Ld : M×M→ R,

Ld(qk,qk+1)≈
∫ (k+1)h

kh
L(q(t), q̇(t))dt, (5.47)

and discrete forces

f−k ·δqk + f+k ·δqk−1 ≈
∫ (k+1)h

kh
f (q(t), q̇(t),u(t)) ·δq(t)dt, (5.48)

where the left and discrete forces f±k now depend on (qk,qk+1,uk) we obtain the
discrete Lagrange-d’Alembert principle (5.49). This requires to find discrete paths
{qk}N

k=0 such that for all variations {δqk}N
k=0 with δq0 = δqN = 0, one has
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δ
N−1

∑
k=0

Ld(qk,qk+1)+
N−1

∑
k=0

f−k ·δqk + f+k ·δqk+1 = 0, (5.49)

which is equivalent to the forced discrete Euler-Lagrange equations

D2Ld(qk−1,qk)+D1Ld(qk,qk+1)+ f+k−1 + f−k = 0, k = 1, . . . ,N− 1, (5.50)

where Di denotes the derivative w. r. t. the i-th argument. In the same manner we
obtain via an approximation of the objective functional (5.44) the discrete objective
function Jd(qd ,ud), such that we can formulate the Discrete Constrained Multiob-
jective Optimization Problem as

min
qd ,ud

Jd(qd ,ud) =
N−1

∑
k=0

Cd(qk,qk+1,uk) (5.51)

subject to the discretized boundary constraints and the forced discrete Euler-
Lagrange equations (5.50). Here, it holds again Jd = (Jd,1, . . . ,Jd,k)

T and Cd =
(Cd,1, . . . ,Cd,k)

T , where Jd,i and Cd,i are approximations to Ji and Ci, respectively,
with i = 1, . . . ,k. The number of the optimization parameters qd = (q0, . . . ,qN) and
ud = (u0, . . . ,uN−1) as well as the number of the equality constraints (the forced dis-
crete Euler-Lagrange equations) of this nonlinear multiobjective optimization prob-
lem depend on the discrete grid that is used for the approximation. To meet accuracy
requirements of the approximated trajectories (for a detailed convergence analysis
dependent on the quadrature rules used in (5.47) and (5.48) we refer to [48]), typ-
ically a fine grid which corresponds to a small time step h is chosen, which leads
to a high number of optimization parameters and equality constraints, whereas the
number of objective functions Jd is independent of the time step. Thus, the image-
set oriented methods described before are suitable to numerically solve this high-
dimensional multiobjective optimization problem.

Example 5.10 (Underwater glider). As an application for multiobjective optimal
control we consider a class of Autonomous Underwater Vehicles (AUVs) known
as gliders. In order to keep the gliders autonomously operational for the greatest
amount of time, it is important to minimize the amount of energy the gliders use
for transport and - at the same time - minimize the time of operation when spe-
cific maneuvers are performed. The problem considered here is to find an opti-
mal trajectory of a glider that needs to move from one location to another within
a prescribed current (cf. [47]). The glider is assumed to be actuated by a gyro-
scopic force which implies that the relative forward speed of the glider is con-
stant. However, the orientation of the glider cannot change instantly and the control
force induces the change in the orientation of the glider. In addition to the min-
imization of the amount of control effort, the goal is to identify trajectories that
are also time-optimal, such that the glider needs as little time as possible to reach
the final destination. Thus, we have to consider a multiobjective optimization prob-
lem with the two objectives minimize control effort and minimize duration time of
the maneuver. As in [63] the glider is modeled as a pointmass (with normalized
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mass equal to 1) in R
2 and actuated by a gyroscopic force acting orthogonal to

the relative velocity between fluid and body. Let q(t) = (x(t),y(t)) be the glider
position, q̇(t) = (ẋ(t), ẏ(t)) the absolute glider velocity, V (t) = (Vx(t),Vy(t)) the
current velocity field, and u(t) ∈ R the control input representing the change in
the orientation. By introducing q̇rel(t) = (q̇(t)−V(t)) as relative velocity, the La-
grangian L(qrel(t), q̇rel(t)) =

1
2‖q̇rel(t)‖2 in the body fixed frame is the kinetic en-

ergy of the relative motion of the glider. The gyroscopic force acting on the system
is given by f (qrel(t), q̇rel(t),u(t)) =

(−u(t) q̇rel,y(t),u(t) q̇rel,x(t)
)T . The resulting

Euler-Lagrange equations read as

ẍ(t) =−u(t)(ẏ(t)−Vy(t))+ V̇x(t),

ÿ(t) = u(t)(ẋ(t)−Vx(t))+ V̇y(t).

The glider has to be steered within the time span [0, t f ] with free final time t f from
an initial configuration q(0) = q0 to a final one q(t f ) = qt f , optimally with respect
to the vector-valued objective functional

J =

(∫ t f
0 ‖ f (qrel(t), q̇rel(t),u(t))‖2 dt∫ t f

0 1dt

)
.

In the discrete setting we model the free final time by a variable step size h that
acts as an additional optimization variable bounded as 0 < h ≤ hmax to ensure posi-
tive step size and solutions of desired accuracy. For a fixed number of discretization
points the final time is then given by t f = (N−1)h. As initial constraint we assume
a prescribed initial configuration qrel(0) = (10,0) and an initial relative velocity as
q̇rel(0) = (−10,−10). The final configuration is given by qrel(t f ) = (15,2), while
the final relative velocity is free with same magnitude as the initial one, as the control
force only influences the orientation, rather than the magnitude of the relative ve-
locity. The current velocity is assumed to be configuration-dependent in x- and zero
in y-direction given as V = (x,0). The discretization of the glider model leads to a
constrained nonlinear multiobjective optimization problem. It is solved making use
of the image-set oriented recover algorithm. Here, the distance of the objective val-
ues to the targets is optimized subject to the constraints stemming from the system
dynamics. Figure 5.16 shows the results: the approximated Pareto front (left) and
some corresponding trajectories (right). As expected, the control effort increases for
decreasing maneuver time. Comparing different trajectories corresponding to differ-
ent Pareto points, all trajectories show the same qualitative behavior: As the initial
velocity is directed away from the destination, the gyroscopic control force enforces
the glider performing a circular motion starting in direction of the initial velocity.
Due to the fluid velocity in x-direction, the glider moves along a loop to reach the
desired final location as depicted on the right in Figure 5.16. For trajectories with
shorter time duration the loop becomes smaller and the corresponding control effort
becomes higher since a big change of orientation in short time requires a high force
applied to the system.
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Fig. 5.16 Pareto front for the underwater glider computed with the image-set oriented recover
algorithm (left), and the corresponding trajectories in configuration space (right)

5.6 Concluding Remarks

In this chapter, we have given an overview of recently developed set oriented meth-
ods for the numerical treatment of MOPs. The characteristic of these methods is that
they generate box collections that aim for tight coverings of the Pareto set (or front)
of a given MOP. The methods are divided into subdivision techniques and a par-
ticular kind of continuation methods (recover techniques). Subdivision techniques
generate a sequence of nested box collections that converges (ideally) to the Pareto
set, and the idea of the recover techniques is to extend a given collection C by a lo-
cal search which is performed around promising elements (boxes) of C . Subdivision
techniques are of global nature and highly competitive to other state-of-the-art meth-
ods in particular if the dimension of the parameter space is moderate (say, n < 50),
and the number of objectives is low (k < 5). Continuation methods are of local na-
ture, but in turn applicable to higher dimensional problems (n' 1000). The latter
has been demonstrated on several multiobjective optimal control problems which
were transformed into high-dimensional MOPs.
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multiobjective optimization of mechatronic systems. International Journal on Software
Tools for Technology Transfer STTT 10(3), 223–231 (2008)
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