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Preface

This volume comprises a collection of research contributions that were presented
at the international workshop EVOLVE 2011. The aim of the EVOLVE workshop,
the originating point of this book, is to build a bridge between probability, statistics,
set oriented numerics and evolutionary computing, as to identify new common and
challenging research aspects. The event is also intended to foster a growing inter-
est for robust and efficient new methods with a sound theoretical background and,
last but not least, to unify theory-inspired methods and cutting-edge techniques that
ensure performance guarantee factors. By gathering researchers with different back-
grounds, e.g. ranging from computer science to mathematics, statistics and physics,
to name just a few, a unified view and vocabulary can emerge where theoretical ad-
vancements may echo in different domains. What is more, the massive use and large
applicability spectrum of evolutionary algorithms for real-life applications deter-
mined a need for establishing solid theoretical grounds. Only to offer one example,
one may consider mathematical objects that are sometimes difficult and/or costly to
calculate, in the light of acknowledged new results showing that evolutionary algo-
rithms can act in some cases as good and fast estimators. Similarly, the handling of
large quantities of data may require the use of distributed environments where the
probability of failure and the stability of the algorithms may need to be addressed.
What is more, common practice confirms in many cases that theory-based results
have the advantage of ensuring performance guarantee factors for evolutionary al-
gorithms in areas as diverse as optimization, bio-informatics or robotics. Summariz-
ing, the EVOLVE focuses on challenging aspects arising at the passage from theory
to new paradigms and practice, aiming to provide a unified view while, at the same
time, raising questions related to reliability, performance guarantees and modeling.

EVOLVE 2011 was jointly organized by the University of Luxembourg, CIN-
VESTAV, Mexico (Research and Advanced Studies Center of the National Poly-
technic Institute of Mexico) and INRIA, France (National Institute for Research in
Computer Science and Control), being a follow-up of the Workshop on Evolution-
ary Algorithms – New Challenges in Theory and Practice, organized by the ALEA
Working Group in Bordeaux, France, March 2010, with the support of the EA
association.
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Focusing more on the direct scope and aims of this book, when considering the
current advancements in the evolutionary computing domain, one has to conclude
that evolutionary type algorithms are very often presented with limited regard to
their rigorous mathematical foundations and without any strong analysis of the
underlying random evolutionary processes. Nonetheless, under certain regularity
conditions, most of the genetic type evolutionary computing algorithms converge
towards some particular probability distributions. At the same time, although for
the significant results shown in practice, most if not all of the existing approaches
are often derived on intuition with nothing but numerical observations for support,
making evolutionary computing research to recurrently fall into the exploration of
obscure inspired paradigms. And while to some extent this makes sense and can
be sustained for a real world setup where finite time and resource constraints are
imposed, understanding the different paradigms and afferent convergence proper-
ties demands an accurate description of the underlying mathematical models. In this
context, several questions arise: To what extent do we accept numerical evidence as
a proof when dealing with complex systems of high risk as nuclear plants, health
care management, security or defense systems? What is the sensitivity and the error
those paradigms introduce as part of a solution’s design? What is the impact and
how uncertainties propagate w.r.t. time? Answering to all these questions amounts
to rigorously analyzing the convergence and the performance of these stochastic
gradients, or these genetic particle sampling models, as later detailed in this book.
Where from the aims of this work in presenting not only current advancements in
the evolutionary computing domain, or connected areas of interest, but also in pro-
viding a strong theoretical support for understanding and analyzing the behavior of
these approaches, i.e. creating a bridge between probability, set-oriented numerics
and evolutionary computation.

The book encloses several of the contributions of the EVOLVE 2011 invited
speakers along with a selection of the best full-length papers submitted, peer-
reviewed by an international program committee. In order to offer a structured and
easy to follow view, the book was divided into four parts, standing as segments of
the underlying idea of EVOLVE, i.e. of creating a bridge between probability, set
oriented numerics and evolutionary computation.

The first part, Part I, consists of three contributions that make the passage from
the probabilistic bases of evolutionary algorithms to probabilistic driven paradigms,
applied as per se methods, namely estimation of distribution algorithms.

Throughout the first chapter, while adopting a pedagogical perspective, the aim
is on setting the bases of evolutionary algorithms under a probabilistic formulation,
hence connecting the foundations of those algorithms with the afferent results that
echoed in practice. The covered areas range from theoretical aspects, with a brief
outline of absorption models, Bayesian inference and interacting Kalman filters,
to conceptual ideas and guidelines for a more practical framework, e.g. stochastic
optimization, signal processing or analysis of convergence under uncertain behavior
and rare events simulation and analysis.

For the next two chapters, Estimation of Distribution Algorithms (EDAs) are dis-
cussed along with novel extensions for using graph based models inside continuous
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EDAs. As later described, the presented results allow a better understanding of the
dependencies generated within this well-established branch of probabilistic based
evolutionary algorithms, while introducing new powerful mechanisms for problem
modeling.

Thus, Chapter 2 elaborates on the use of regular vines within EDAs, providing
the means of learning the structure of a probabilistic model by taking into account
dependencies among variables, and this regardless of the behavior marginal distribu-
tions have. Regular vines, originating from graph theory, are based on bivariate and
conditional bivariate copula functions, and can be used to model the most important
dependencies in a specific population. The chapter concentrates on the use of trun-
cated regular vines (for C-vines and D-vines), which are adequate for modeling high
dimensional distributions. Specifically, the approach relies on using copula entropy
as a measure of dependency, the most important dependencies being represented
as part of a graphical model through copula functions. Lower copula functions are
also employed to factorize joint distributions. The results are applied in a numerical
optimization context by making use of continuous EDAs, nevertheless being em-
phasized that they can also be used in other areas such as classification problems.

The third chapter represents a natural continuation of the second one, providing
a Gaussian Poly-Tree Estimation that extends the idea of employing graph based
models inside EDAs. In this approach, the graph based models encode the joint
probability distribution of the population as a product of conditional distributions.
Through this chapter the authors provide an answer to the question: to what extent
does a graph model approximate the true distribution of an EDA’s population? New
extensions, including the use of Gaussian copula functions and that of local opti-
mizers, are also provided, along with an extensive experimental validation on a set
of 20 well-established convex (unimodal) and multimodal benchmark functions.

The second part of the book, Set Oriented Numerics, focuses on providing qual-
ity indicators, with an explicit aim for quantifying the quality of an experimental
testing output result, section followed by set oriented methods for multi-objective
optimization.

The fourth chapter and the first of this second part provides a thorough review of
quality distance or biodiversity based indicators for the approximation of level sets.
One of the straightforward applications of these indicators is in multi-objective op-
timization, given that Pareto front approximations, under certain conditions, can be
recasted as level set problems. The authors provide an elaborated and motivational
overview of the role quality indicators have, in a multi-objective decision theory
inspired context. Furthermore, the focus is set on some selected quality indicators
and their properties, providing the grounds to introduce novel quality indicators, e.g.
Hausdorff distance (concept) based, that can be used in cases where knowledge of
the level set is absent. Properties like continuity, spread, and monotonicity are stud-
ied, together with computational complexity considerations, followed by an analysis
conducted on an indicator-based evolutionary algorithm for level set approximation.

The results on set oriented numerics are completed by Chapter 5, which presents
the advancement on set oriented techniques, focusing on subdivision and continua-
tion methods, applied to the computation of Pareto set approximations. The authors
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tackle the efficiency of using sequences of box collections (common characteristic
for all the outlined methods) in a new context, that of multi-objective optimal con-
trol problems. Both synthetic and real-life problems are used for testing purposes, by
means of continuation methods and by using a transformation into high-dimensional
multi-objective optimization problems. In this chapter, the authors present subdivi-
sion and recover techniques for multi-objective optimization, oriented either toward
the parameter or the image space. The continuation methods are furthermore mod-
eled as to fit to the context of multi-objective optimal control, for both differential
flat systems and Lagrangian systems. The efficiency of the approaches has been ex-
perimentally tested on several problems, for which promising results were obtained.

The third part of the book, ”Landscape, coevolution and cooperation”, focuses
on providing a better understanding of what complexity means by modeling and
analyzing fitness landscapes through complex networks that capture the neighbor-
hood structure of a function as explored by cellular genetic algorithms. Through the
coevolution paradigm, ways of using problem’s information by bayesian network
structure learning in a more decentralized manner are provided and the findings
illustrated on a concrete example. The second and third chapters of this section dis-
cuss aspects related to co-evolutionary, respectively hybrid designs, as an example
of how specific characteristics can be exploited, e.g. problems that allow a decom-
position into subcomponents, or of how algorithms can be combined for a more
flexible and exploration efficient design.

The sixth chapter deals with aspects from hard combinatorial search spaces us-
ing a complex-networks oriented perspective. As a main contribution, the chapter
introduces a novel, graph-based approach for representing the fitness landscape of
combinatorial search problems, where vertices stand for local optima and oriented
edges are used to represent transition probabilities between those optima. A focus
for exploiting local optima networks knowledge is considered with a final aim of ad-
vancing our current state of the art for local search heuristics. The chapter starts by
introductory notions like neighborhood, fitness landscape, local optima and basin of
attraction, followed by definitions and a brief outline of local optima networks and
weighted complex networks. Next, after a short review of NK landscapes (specific
family of multimodal fitness landscapes that can be adapted to include features from
smooth to rugged and for which all feasible solutions can be enumerated), a detailed
analysis and discussion of different topological attributes like shortest path to the
global optimum, outgoing weight distribution, disparity or basins of attraction are
presented. In addition, a similar discussion is carried for the Quadratic Assignment
Problem fitness landscapes with a short comparative view of the NK and QAP fam-
ilies as well as insights for optima distribution and clustering. Analysis and results,
as a final aspect, are shown to provide grounds for qualitatively relating topological
features like node degrees, clustering coefficients or edge weight disparity, among
others, to problem difficulty. Furthermore, it is shown through experimentation that
the distribution of the basin of attraction size is not uniform but rather right skewed
with a positive correlation of the optimum fitness and basin size.

In the seventh chapter, a cooperative co-evolution approach is presented, address-
ing a specific case where solutions are represented not by single individuals but as
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aggregations of several individuals. As a main advantage of this representation, a
more economic simulation of the evolution principles becomes possible, although
restricted to problems where a decomposition into subcomponents can be made and
at the price of a more complex design phase. Furthermore, as a specific characteristic
of the proposed algorithm, the interaction of the different subspecies evolved within
a population is not constrained to act at evaluation only, e.g. independent, partial
fitness vs an aggregation-based evaluation process, but can also be triggered via ge-
netic operators. The approach is detailed and analyzed by considering an industrial
agricultural-food process with a study on (1) a deterministic modeling problem and
(2) a complex NP optimization problem in the form of a Bayesian network structure
estimation.

The eight chapter, authored by Alba and Villagra, addresses a series of aspects
from hybrid algorithms’ design, having as case study a new approach where the
active components of a population based evolutionary paradigm are inserted within
a cellular genetic algorithm. After a brief outline of Particle Swarm Optimization
(PSO) and Cellular Genetic Algorithms (cGA), i.e. the two metaheuristics consid-
ered within the chapter, a short discussion of the main ideas is given. A modified
cGA is afterwards introduced, enclosing a specific operator that captures the main
characteristics of PSO, i.e. by maintaining information about cognitive and social
factors. Two different versions are proposed, a local neighborhood based one and,
the second one, global oriented, based on exploiting the best solution found within
the population. Results, comparable to or better than the counterpart results of a
standard approach, are reported on a large set of benchmarks. Those benchmarks,
among others, include Massively Multimodal Deceptive Problems, Frequency Mod-
ulation Sounds or the Error Correcting Code Design Problem. As a last side note,
the proposed hybrid algorithm, as the authors mention, can be extended to include
other metaheuristics like, for example, the Ant Colony Optimization, the Simulated
Annealing or the Variable Neighborhood Search.

The fourth part, dedicated to multi-objective optimization theoretical aspects and
real-life applications, encloses several ideas on what problems multiple objectives
pose and how to address them by exploiting different approaches or hybrid tech-
niques. A more abstract perspective is adopted for the first two chapters while the
ending chapter, of this section and of the book, is more concerned with aspects one
would expect more to find in a real-world context.

In Chapter 9, Lara, Schtze and Coello Coello detail on the possibility of em-
ploying the objective-function gradients in constructing local search operators for
continuous multi-objective optimization problems. The chapter encloses practical
approaches of using this type of information, through descent direction methods,
hill climbers, but also directed movements. A sum of new ideas, including the use
of gradient information in a side-step procedure, is proposed and their role and util-
ity detailed. All these ideas make place for new means of hybridization that open the
path for various possible uses of the gradient information in a variety of methods,
such as population-based algorithms. Some interesting remarks are also provided
regarding the already existing hybridization techniques and an overview regarding
the early hybrids concludes the contribution.
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Grimme, Kemmerling and Lepping make the passage in Chapter 10, from
theoretical single-objective scheduling to multi-objective optimizers. The main
foundation of the article stays on the construction of a framework capable of creat-
ing multi-objective optimizers through the modular composition of single-objective
scheduling heuristics. The approach has as grounds the predator-prey model and it is
based on cellular and agent-based paradigms. The properties of the agent-based sys-
tem are carefully detailed on a spatial population, as preys are placed on a toroidal
grid to represent a spatially distributed population, while the predators move across
the spatial structure. Multiple types of operators (as mutation, recombination) can be
used in the proposed model by simply defining different predator species. Different
classes of coupling variation operators and predator agents are enclosed. The model
was experimentally validated on a set of 100 synthetic test problem instances, by
using the predator-prey model, but also an extended version englobing ε-constraint
principles, against NSGA-II variants. The proposed method is modularly composed
and escapes the monolithic structure of classical multi-objective evolutionary algo-
rithms. Results are illustrated through two strongly NP-hard problems (variants of
the identical parallel machine offline scheduling) with clear advantages acquired,
e.g. the use of available knowledge from single-objective scheduling techniques
mapped on a dedicated to multi-objective optimization structure.

Chapter 11, is dedicated to using multi-objectivisation in order to avoid stag-
nation, i.e. single-objective problems reformulated and solved in a multi-objective
form. The method used for constructing bi-objective formulations relies on the
aggregation of a new alternative function as the second objective, e.g. an Eu-
clidean distance in the decision space. Multi-objectivisation, in this work, is ap-
plied and analyzed as part of a hybrid model constructed on top of a hyper-heuristic
and DCN-THR. The approach has been tested on several benchmarks, the re-
sults obtained by single objective optimization being compared to the ones of the
multi-objective counterparts. The chapter discusses two different versions, with and
without parameter control, different adaptation levels being proposed for the mix-
ture of parameters with hyper-heuristics and multi-objectivisation. A series of exper-
iments that consider a large number of variables are also presented, reflecting not
only the performance of the hybridization scheme but also revealing cases where
multi-objectivisaiton can produce a negative effect.

The last chapter offers an insight into aspects related to applying evolutionary al-
gorithms for real-world stock market problems. As a main area of study, the authors
address the predictability of heuristic conversion algorithms in the German stock
market, e.g. Moving Average Crossover and Trading Range Breakout. The nature
of those heuristics, i.e. designed as a predefined set of buying and selling rules and
based on data from technical analysis, leads to a static runtime behavior, where from
the directory lines of the work. The study is constructed in the limits of a competi-
tive analysis framework, with multiple online conversions of assets where time wise
buying and selling decisions need to be taken and where the behavior of several
algorithms like GP, VMA or TRB, is studied. Last but not least, several questions
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are raised for further study, among others pointing at non-trending market with sta-
tistical and worst-case analysis studies, positive excess returns or realistic entry and
exit signals.

As an ending thought, our gratitude goes out to all the invited speakers for accept-
ing to give an outstanding presentation and an overview of their latest work during
the event as well as for contributing to this book, to all the authors, for sharing their
knowledge and expertise, also summarized in this book, and last but not least, to all
the participants for their extraordinary support and contribution. We would also like
to express our foremost appreciation to all the referees and members of the program
committee which, by their considerate work, contributed to the creation of a bridge
between the different fields that stand at the basis of the event. The editors would
furthermore like to thank Professor Janusz Kacprzyck (Editor-In-Chief, Springer
Studies in Computational Intelligence Series) for the editorial assistance and ex-
cellent collaboration during the development of this volume. Finally, we gratefully
thank the partner institutions and sponsors of the event for providing support for
making from EVOLVE 2011 a success.

Luxembourg, Bordeaux, and Mexico City Emilia Tantar
August 2012 Alexandru-Adrian Tantar

Pascal Bouvry
Pierre Del Moral
Pierrick Legrand

Carlos A. Coello Coello
Oliver Schütze
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e-mail: schuetze@cs.cinvestav.mx

Ignacio Segovia Domı́nguez
Center for Research in Mathematics (CIMAT), Guanajuato, México
e-mail: ijsegoviad@cimat.mx

Eduardo Segredo
Dpto. de Estadı́stica, I.O. y Computación. Universidad de La Laguna, La Laguna,
38271, Santa Cruz de Tenerife, Spain
e-mail: esegredo@ull.es

Carlos Segura
Dpto. de Estadı́stica, I.O. y Computación. Universidad de La Laguna, La Laguna,
38271, Santa Cruz de Tenerife, Spain
e-mail: csegura@ull.es

Mariette Sicard
UMR782 Génie et Microbiologie des Procédés Alimentaires. AgroParisTech,
INRA, F-78850 Thiverval-Grignon, France

Alexandru-Adrian Tantar
Computer Science and Communications Research Unit, University of Luxembourg
e-mail: alexandru.tantar@uni.lu

Emilia Tantar
Computer Science and Communications Research Unit, University of Luxembourg
e-mail: emilia.tantar@uni.lu

Marco Tomassini
Faculty of Business and Economics, Information System Department, University
of Lausanne, Switzerland
e-mail: Marco.Tomassini@unil.ch

sinaob@math.uni-paderborn.de
rsalinas@cimat.mx
gs@itm.uni-sb.de
schuetze@cs.cinvestav.mx
ijsegoviad@cimat.mx
esegredo@ull.es
csegura@ull.es
alexandru.tantar@uni.lu
emilia.tantar@uni.lu
Marco.Tomassini@unil.ch


XXII List of Contributors

Enrique R. Villa-Diharce
Center for Research in Mathematics (CIMAT), Guanajuato, México
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Foundations, Probability and

Evolutionary Computation



Chapter 1
On the Foundations and the Applications
of Evolutionary Computing

Pierre Del Moral, Alexandru-Adrian Tantar, and Emilia Tantar

Abstract. Genetic type particle methods are increasingly used to sample from com-
plex high-dimensional distributions. They have found a wide range of applications
in applied probability, Bayesian statistics, information theory, and engineering sci-
ences. Understanding rigorously these new Monte Carlo simulation tools leads to
fascinating mathematics related to Feynman-Kac path integral theory and their in-
teracting particle interpretations. In this chapter, we provide an introduction to the
stochastic modeling and the theoretical analysis of these particle algorithms. We
also illustrate these methods through several applications.

1.1 Introduction

Most of population-based algorithms are described in terms of interacting samples
evolving in some solution state space. The random samples are also termed solu-
tions, particles, individuals or genotypes. Their time evolution mimics natural se-
lection, physical adaptation, reinforced principles, or some social behavior. For a
detailed discussion, and an overview of these classes of evolutionary computing
models we refer the reader to the couple of books [8, 115], and references therein.
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4 P. Del Moral, A.-A. Tantar, and E. Tantar

Evolutionary type algorithms are very often presented with limited regard to their
rigorous mathematical foundations, without any rigorous analysis of the underlying
random evolutionary processes. Their performance often relies on intuition driven
by numerical observations, so that evolutionary computing research sometimes falls
in obscure inspired paradigms.

In this context, several questions arise: To what extent do we accept numerical
evidence as a proof when dealing with complex systems of high risk as nuclear
plants, health care management, security or defense systems? What is the sensitivity
and the error those paradigms introduce as part of a solution’s design? What is the
impact and how uncertainties propagate w.r.t. time?

Evolutionary type algorithms can be interpreted in two different ways.
Firstly, population-based algorithms w.r.t. optimization problems can be viewed

as a gradient type hole puncher in complex solution state spaces. In this context, the
central idea is to use natural evolution mechanisms to improve step by step the pop-
ulation adaptation. For convex optimization problems, the performance and conver-
gence of the algorithm follows from standard analysis of stochastic gradient models.
For more complex optimization problems, we expect large population explorations
to escape from local minima.

On the other hand, under certain regularity conditions, most of genetic type evo-
lutionary computing algorithms converge towards some particular probability dis-
tributions. These target probability measures are often prescribed by distributions
on path spaces w.r.t. a series of conditioning events. For regulation problems, and
open loop optimal control problems, these two viewpoints can be encapsulated in a
single mathematical framework [107, 108, 119].

Answering to all the questions provided above amounts to rigorously analyzing
the convergence and the performance of these stochastic hole puncher gradients, or
these genetic particle sampling models. The second and rather recent viewpoint is
the central theme of this chapter.

We end this introduction with a brief discussion on the origins and the mathemat-
ical foundations of genetic type particle models.

Genetic type stochastic models are increasingly used to sample from complex
high-dimensional distributions. As we mentioned above, they approximate, as the
population size tends to infinty, a given target probability distributions by a large
cloud of random samples termed particles. Practically, the particles evolve randomly
around the space independently and to each particle is associated a positive poten-
tial function. Periodically we duplicate particles with high potentials at the expense
of particles with low potentials which die. This intuitive genetic mutation-selection
type mechanism appears in numerous applications ranging from nonlinear filtering
[22, 36, 52, 45, 38, 68, 67, 69, 89, 118, 120], Bayesian statistics [29, 40, 76, 123],
combinatorial counting [3], molecular and polymer simulation [90], rare events sim-
ulation [26, 27, 82], quantum Monte Carlo methods [6, 102, 125] and genetic algo-
rithms [47, 48, 87, 104], among others.

From a mathematical point of view, these methods can be interpreted as stochas-
tic numerical approximations of Feynman-Kac measures. These measures represent
the distribution of the paths of a reference Markov process, weighted by a collection
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of potential functions. These functional models are natural mathematical extensions
of the traditional change of probability measures, commonly used in importance
sampling. The particle interpretation consists in evolving a population of particles
mimicking natural evolution mechanisms. During the mutation stage, the particles
evolve independently of one another, according to the same probability transitions
as the ones of the reference Markov chain. During the selection stage, each parti-
cle evaluates the potential value of its location. The ones with small relative values
are killed, while the ones with high relative values are multiplied. The correspond-
ing genealogical tree occupation measure converges, as the population size tends to
infinity, to the complete Feynman-Kac distribution on path space.

The origins of stochastic particle simulation certainly start with the seminal paper
of N. Metropolis and S. Ulam [126] published in 1949. As explained by these two
physicists in the introduction of their pioneering article, the Monte Carlo method
is, ”essentially, a statistical approach to the study of differential equations, or more
generally, of integro-differential equations that occur in various branches of the nat-
ural sciences”. The links between genetic type particle Monte Carlo models and
quadratic type parabolic integro-differential equations have been developed in the
beginning of 2000’ in the series of articles on continuous time models [51, 52, 54].

The earlier works on heuristic type genetic particle schemes seem to have started
in Los Alamos National Labs with works of M.N. Rosenbluth and A.W. Rosen-
bluth [143], and T.E. Harris and H. Kahn [94]. We also quote the work on artificial
life of Nils Aall Barricelli at the Institute for Advanced Study in Princeton [10, 11].
In all of these works, the genetic Monte Carlo scheme is always presented as a nat-
ural heuristic resampling type algorithm to generate random population models, to
sample molecular conformations, or to estimate high energy particle distributions,
without a single convergence estimate to ensure the performance, nor the robustness
of the Monte Carlo sampler.

Since the mid 90’s, genetic particle algorithms have recorded a dramatic popu-
larity increase due to the proliferation and wide accessibility of powerful computing
resources. They are now extensively and routinely used in engineering, machine
learning, statistics and physics under sometimes different names, such as: parti-
cle filters, bootstrap or genetic filters, population Monte Carlo methods, sequen-
tial Monte Carlo models, genetic search models, branching and multi-level splitting
particle rare event simulations, condensation models, go-with-the winner, spawning
models, walkers population reconfigurations, pruning-enrichment strategies, quan-
tum and diffusion Monte Carlo, rejuvenation models, and many others.

The mathematical foundations, and the performance analysis of all of these dis-
crete generation particle models are rather recent. The first rigorous study in this
field seems to be the article published by the first author in 1996 on the applications
of particle methods to nonlinear estimation problems [36]. This article provides the
first proof of the unbiased property of particle likelihood approximation models
(lemma 3 page 12); and adaptive resampling criteria w.r.t. the weight dispersions
(see remark 1 on page p.4).

This article also presents the first convergence results for a new class of inter-
acting particle filters, originally presented as heuristic Monte Carlo schemes in the
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beginning of the 1990’s in three independent schools. A series of classified indus-
trial Research Contracts on tracking and control developed between 1990 and 1993
by the P. Del Moral, J.C. Noyer, G. Rigal, and G. Salut [59, 60, 61, 62, 63, 64],
and [23, 65, 66]. The first journal article presenting the heuristic of particle fil-
ters is the article by N.J. Gordon, D. Salmond and A.F.M. Smith [89], and the first
conference article presenting the heuristic of particle filters is the article by G. Kita-
gawa [118].

For a more thorough discussion on these models, we refer the reader to [37, 52,
38, 58, 67], as well as in [8, 115, 9, 72, 5, 152], and references therein.

1.1.1 From Evolutionary Computing to Particle Algorithms

Besides a sustained research on evolutionary computing, theoretical support and
convergence proofs were until recently regarded as non mandatory. While leading
to significant results in practice [34, 8, 115], advances were only derived on intu-
ition and empirical grounds. And while this can be sustained for a real world setup
where finite time and resource constraints are imposed, understanding the different
paradigms and afferent convergence properties demands an accurate description of
the underlying mathematical models.

A first aspect to address is what evolutionary computing is applied for and what
information is expected? As later detailed in this section, different classes of prob-
lems are considered, e.g. non-linear, non-convex, discrete or continuous, with one or
multiple objectives to optimize, highly multimodal, ill-conditioned or with epistatic
interactions defined, within dynamic environments or subject to stochastic pertur-
bations (uncertainty). All are finally connected by assumptions implying (i) no
asymptotic convergence proof, with no exact solution or reproducible (stochas-
tic) behavior expected under finite time constraints, (ii) nonexistence of a polyno-
mial time alternative approach, e.g. due to a combinatorial explosion of the search
space, intractability or exponential increase of the number of local optima, and
(iii) exploration (classically) ended with no explicit information on the distribution
of the optima, only the best found solution being provided as a result.

At the opposite end, deterministic algorithms (not covered here), e.g. interval
methods, branch-and-bound, provide an optimal solution within a finite time and
with finite resources, nonetheless requiring an exponentially increasing time (as a
function of instance size). With respect to the last assumption, while different evolu-
tionary algorithms enclose by definition intrinsic support for estimating normalizing
constants, observing ancestral and genealogical structures or convergence towards
target distributions, in most cases this information is not regarded as relevant and
discarded. And, while those aspects fall by excellence in the domain of particle algo-
rithms, commonly referred to, for example, as particle filters, sequential, diffusion or
quantum Monte Carlo, and with a focus for estimating distribution laws, evolution-
ary and particle algorithms, with marginal exceptions, follow identical conceptual
lines.
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From the probabilistic point of view, genetic type particle algorithms are a natural
class of Monte Carlo methods for sampling complex high-dimensional probability
distributions and estimating their normalizing constants. As we already mentioned,
this class of algorithms approximate a given sequence of target probability mea-
sures by a large cloud of random samples termed particles (equivalent of individu-
als in evolutionary algorithms). The particles evolve randomly in the solution space
(mutation and free exploration). A positive potential/fitness function is associated
to each particle. Periodically, the particles with high potential value are duplicated
at the expense of particles with low potentials which are discarded (selection and
replacement).

An overview of the evolutionary computing domain is offered in the following,
to no extent exhaustive, only in order to highlight connection points with particle
algorithms. For the remainder of this section, let us consider a simplified scenario
where, given an arbitrary deterministic, static black-box function, the optimal solu-
tion (or approximation of) is demanded. Having as sole assumption that the function
can be sampled within the entire definition domain, i.e. with no other information
on the nature of the function, continuous or discrete, and disregarding the encod-
ing of solutions, e.g. fixed or variable size array of binary, integer or real values,
Gray coding (reflected binary code), graphs, trees, cellular, messy, direct or indirect
encoding, a straightforward approach would be to draw samples until some termi-
nation criterion is met. Except the simplification, this portrays the basic idea of a
simple Monte Carlo algorithm. Extending this direction, a first axis of discussion
leads to single-solution based exploration paradigms. Note that while this partic-
ular class is commonly referred to as local search algorithms this only relates to
exploration being conducted by sampling from the neighborhood of a single solu-
tion, evolved in iterative manner, and does not automatically imply a limitation for
the algorithm’s exploration capabilities. A second part of the discussion focuses on
algorithms that simultaneously evolve a set of independent solutions while ensuring
a balance or trade-off between local and global exploration, later moving to hybrid
and parallel aspects.

1.1.1.1 Local Search Algorithms

As a general classification, direct and indirect search methods can be considered
[141]. The first class, also denominated as zero order methods, only relies on a
direct sampling of the objective function, with no partial derivatives, i.e. no ana-
lytic or numeric gradient employed. Initially introduced in the work of Hooke and
Jeeves [105], the direct search denomination offers an explicit delimitation from
higher complexity methods: “the phrase implies our preference, based on experi-
ence, for straightforward search strategies which employ no techniques of classi-
cal analysis [...]”. Examples include Hill-Climbing, Nelder-Mead [153, 135, 121],
where the exploration is conducted by a set of perturbations applied to a randomly
generated initial simplex, Solis and Wets [151], including self-adaptive mecha-
nisms, Tabu Search [83, 84], Variable Neighborhood Search [131, 132], Guided
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Local Search [161], Iterated Local Search [13, 124] or Simulated Annealing [117],
developed as a generalization of Metropolis Monte Carlo [127]. The latter class
can be further divided into first and second order methods, using the first, respec-
tively second or higher order derivatives (analytic or numerical approximations of)
for guiding the exploration process. Examples include steepest descent, Conjugate
Gradient [100, 101, 77, 78, 139, 150] and second order methods like the Limited
Memory BFGS [17, 79, 88, 149, 137, 140] or the Adaptive Simulated Annealing
[112, 111, 109, 110, 113].

1.1.1.2 Set of Solutions Based Algorithms

A reference in the evolutionary computing domain, Genetic Algorithms (GAs), de-
veloped through the work of Holland [104], define a structure that inspired and set
the bases for different other paradigms. The approach relies on several distinct stages
as follows: (i) initialization – a set of initial solutions (chromosomes in the case of
GAs) are randomly sampled, forming a population, (ii) selection – a subset of the
best fit solutions is constructed, (iii) recombination and perturbation – new sam-
ples are drawn by applying several operators on the previously selected solutions,
e.g. crossover and mutation operators, and (iv) replacement – least fit solutions in
the initial population are replaced, the algorithm iterating steps (ii) to (iv) until a
termination criterion is met.

While no in-depth details will be provided here, it may be worthwhile mentioning
that different strategies and operators were proposed and analyzed for all stages of a
genetic algorithm. Examples of mutation and recombination operators include (i) di-
versification oriented or mutation constructions [128] like bit-flip or swap operators,
polynomial transforms, (non) uniform, Gaussian or Cauchy distribution based, as
well as (ii) intensification, or crossover operators [97, 95, 98, 99, 96]. This latter class
was extensively investigated, leading to operators with one or multiple cutting or
intersection points, uniform, arithmetic, geometric, Wright’s heuristic, linear BGA,
α,β -blend, simulated binary crossover, fuzzy recombination or dynamic operators.
At the same time, multiple offspring operators were studied, with only the best two
offspring solutions out of all finally selected, e.g. linear or the min-max arithmetic
operator. Examples of more advanced operators include higher or adjustable arity
operators (multiple parent solutions), including global recombination, gene-pool re-
combination, linkage evolving operator or the m-tuple mating [70, 16, 148, 134].

From a mathematical point of view, disregarding recombination operators, these
methods can be interpreted as stochastic numerical approximations of Feynman-
Kac measures, representing the distribution of paths for a reference Markov pro-
cess weighted by a collection of potential functions. These functional models are
natural mathematical extensions of the traditional change of probability measures,
commonly used in importance sampling. The particle interpretation, as a direct anal-
ogy to genetic algorithms, consists in evolving a population of particles that mimic
natural evolution mechanisms. During the transition (mutation) stage, the particles
evolve independently one of another, according to the same probability transitions



1 On the Foundations and the Applications of Evolutionary Computing 9

as the ones of the reference Markov chain. During the selection stage, each par-
ticle evaluates the potential value of its location and the ones with small relative
values are discarded while the ones with high relative values are multiplied. The
corresponding genealogical tree occupation measure converges, as the population
size tends to infinity, to the complete Feynman-Kac distribution on path space. As
a direct analogy, particle algorithms also rely on transition operators (equivalent of
mutation) although imposing to leave the initial distribution measure invariant. No
direct equivalent of crossover operators exists however as a straightforward under-
standing and modeling of a recombination transition does not always make sense or
is even possible and coherent in a simulation context. Analogously, different selec-
tion strategies were explored, including proportional selection, stochastic universal
sampling, tournament, (linear, exponential) ranking, sigma scaling or Boltzmann
selection, all with or without elitism or truncation. Additionally, replacement may
consider the depletion of the worst, best or most similar individuals (crowding),
replacement of parent(s) or of randomly selected individuals. While selection is
also considered in particle algorithms, semantics may differ depending on the spe-
cific application area, e.g. being referred to as resampling, filtering, absorption, etc.,
and implicitly encloses replacement. Additional examples and applications are pre-
sented in Section 1.5, allowing for a direct analogy between evolutionary computing
and particle algorithms.

Extensions of the classical genetic paradigm fostered different axes of study,
leading to co-evolution and memetic algorithms [133, 136, 1], e.g. hybrid local
vs global exploration strategies, Lamarckian evolution and Baldwin effect, meta
and hyper-heuristics [18], cultural algorithms [142], differential evolution [157],
swarm intelligence (ant colony, particle swarm, artificial immune systems, etc.)
[15, 33, 116, 35], scatter search and path relinking [85, 93], genetic programming
[122] (symbolic regression), or evolution strategies [7, 14], among many others.
All and each of these paradigms finally led to intense research on, for example,
different hybridization strategies at low-level, operator enclosed, or at high-level,
as a sequence of heuristics or independently evolving parallel algorithms, different
strategies in differential evolution, etc. Furthermore, different approaches like the
Covariance Matrix Adaptation Evolution Strategies [92, 91], Estimation of Distri-
bution Algorithms [138] or the Reactive Search [12] (sub-symbolic learning, adap-
tation and incremental model development) were introduced, exploiting landscape
information in the form of second order model approximations, estimations of op-
tima distribution or reinforcement based learning. As a side note, landscape stud-
ies developed as a standalone axis of research in an attempt to understand what
correlation exists between specific features in an objective function’s landscape or
definition and the (non) efficiency of the different exploration strategies [159, 160,
154, 155, 162]. Extensive research was also conducted on (self) tuning and adaptive
paradigms [103, 73, 71] with applications in ill-conditioned, dynamic and stochastic
problems, including online problems or aspects as state dependency and decision
making [106]. Additional axes, although out of scope and not detailed in this intro-
duction, include multi-objective evolutionary computing algorithms [31, 30] where
a set of best-compromise solutions have to be found (Pareto set and front in the
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solution, respectively objective space), and parallel models [2, 21], e.g. multi-start,
islands and topological (a)synchronous information exchange models. As a con-
verging trend, an affinity for including or exploiting aspects and techniques from
probability and statistics is emerging, making that, except for correspondences with
filtering algorithms and sampling, different analogies are possible with applications
in tracking, non-linear estimation problems, signal processing or stochastic opti-
mization [47, 48, 40, 38, 58, 67].

1.1.2 Outline of the Chapter

The remainder of this chapter includes a pedagogical introduction to the stochastic
modeling and the theoretical analysis of interacting particle algorithms in an effort
to shed new light on some interesting links between physical, engineering, statisti-
cal and mathematical domains that appear disconnected at first glance. Second, the
mathematical concepts and models are now at a point where they provide a very nat-
ural and unifying mathematical basis for a large class of Monte Carlo algorithms. To
simplify the presentation and to clarify the main ideas behind these stochastic mod-
els, we have chosen to restrict the contents of this chapter to finite or countable state
space models, avoiding any measure theory irrelevancies. In this simplified frame-
work, we develop a rigorous mathematical analysis only involving vector and matrix
operations. We emphasize that all of these particle models and the associated conver-
gence results can be extended to general state-space models, including path-space
models and excursion spaces on abstract measurable state spaces. In Section 1.5 sev-
eral application areas are presented and a detailed description of interacting particle
algorithms is provided.

1.2 Basic Notation and Motivation

In this section, we provide some basic notation and some comments on the stochas-
tic models presented in this chapter. First, we mention that probabilistic models are
always defined in terms of measures, numerical functions, as well as operators on
functions and measures. Besides the fact that measures on finite spaces can be seen
as elementary functions and linear operators as simple matrices, in order to provide
a rigorous presentation and to facilitate the extensions to more general models we
have chosen to keep the probabilistic terminology and the corresponding notation.

Let E be a finite set equipped with a matrix (Q(x,y))x,y∈E . A signed measure
on a finite set E is a mapping x ∈ E �→ μ(x) ∈ R. For any subset A ⊂ E , and any
numerical function x ∈ E �→ f (x) we set

μ(A) := ∑
x∈A

μ(x) = ∑
x∈E

μ(x) �A(x) and μ( f ) = ∑
x∈E

μ(x) f (x)
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with the indicator function �A of a subset A. The Dirac measure at some point x ∈ E
is the indicator function �x : y ∈ E �→ �x(y) of the set {x}. In this slightly abusive
notation, we have μ(A) = μ(�A) and �x(A) = �A(x). A probability measure is a non
negative measure μ such that μ(E) = 1. Given some nonnegative measure μ on E ,
sometimes we use the proportional relation and we write

ν ∝ μ to define the probability measure ν(x) = μ(x)/∑z∈E μ(z).

The empirical measure associated with a set of N states (x1, . . . ,xN) ∈ EN is the
measure defined by

y ∈ E �→ ηN(y) :=
1
N

N

∑
i=1

�xi(y)

with N ≥ 1. By construction, we have

ηN( f ) = ∑
y∈E

f (y)ηN(y) =
1
N

N

∑
i=1

f (xi)

We also denote by Q( f ) and (μQ) the function x �→ Q( f )(x) and the measure y �→
(μQ)(y) defined below

Q( f )(x) :=∑
y

Q(x,y) f (y) and (μQ)(y) :=∑
x
μ(x)Q(x,y) (1.1)

In this notation, reversing the summation order, we have μ(Q( f )) = (μQ)( f ).
For instance, for finite ordered state spaces with cardinality d ≥ 1 there is no loss

of generality to suppose that E = {1, . . . ,d}. In this case, we can identify measures
μ , matrices Q, and functions f by the conventional notation of vector calculus

μ := [μ(1), . . . ,μ(d)] Q :=

⎛
⎜⎝

Q(1,1) · · · Q(1,d)
...

...
...

Q(d,1) · · · Q1(d,d)

⎞
⎟⎠ f :=

⎛
⎜⎝

f (1)
...

f (d)

⎞
⎟⎠

In this situation, the formulae (1.1) coincide with the usual matrix operations, with
the x-th entry Q( f )(x) of the column vector Q f , and the y-th entry (μQ)(y) of the
line vector μQ.

Given a sequence of matrices (Qn(x,y))x,y∈E , indexed by the parameter n ∈ N,
we denote by (Q1 . . .Qn) the composition of the matrices Qp, from p = 1 to p = n;
that is, we have that

(Q1 . . .Qn)(x0,xn) = ∑
x1,...,xn−1∈E

Q1(x0,x1)Q2(x1,x2) . . .Qn(xn−1,xn)

For time homogeneous matrices Qn = Q, we set Qn = (Q1 . . .Qn).
A Markov transition is a positive matrix (M(x,y))x,y∈E such that ∑y M(x,y) =

1, for any x ∈ E . These matrices are sometimes called stochastic matrices in the
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literature on probability and Markov chains. We say that a measure μ(x) on E is
reversible for a Markov transition M(x,y) if we have for any states x,y ∈ E

μ(x)M(x,y) = μ(y)M(y,x)

We say that a probability measure μ(x) is invariant for the Markov transition M(x,y)
if we have for each y ∈ E

μ(y) =∑
x
μ(x)M(x,y)

Measures, matrices and functions are defined in the same way on more general
measurable state spaces E under appropriate well known regularity conditions. We
denote respectively by M (E), and B(E), the set of all finite signed measures on
some measurable space (E,E ), and the Banach space of all bounded and measurable
functions f equipped with the uniform norm ‖ f‖.

We let μ( f ) =
∫
μ(dx) f (x), be the Lebesgue integral of a function f ∈B(E),

with respect to a measure μ ∈M (E). We recall that a bounded integral operator
M from a measurable space (E,E ) into an auxiliary measurable space (F,F ) is an
operator f �→M( f ) from B(F) into B(E) such that the functions x �→M( f )(x) :=∫

F M(x,dy) f (y) are E -measurable and bounded, for any f ∈B(F). A Markov ker-
nel is a positive and bounded integral operator M with M(1) = 1. Given a pair of
bounded integral operators (M1,M2), we let (M1M2) the composition operator de-
fined by (M1M2)( f ) = M1(M2( f )). For time homogenous state spaces, we denote
by Mm = Mm−1M = MMm−1 the m-th composition of a given bounded integral op-
erator M, with m≥ 1.

We shall slightly abuse the notation and we denote by 0 and 1 the zero and the
unit elements in the semi-rings (R,+,×) and in the set of functions on some state
space E . We recall that the gradient ∇ f and the Hessian ∇2 f of a smooth function

f : θ = (θ i)1≤i≤d ∈R
d �→ f (θ ) ∈R are defined by the functions

∇ f =

(
∂ f
∂θ 1 ,

∂ f
∂θ 2 , . . . ,

∂ f
∂θ d

)
and ∇2 f =

⎛
⎜⎜⎜⎜⎜⎝

∂ 2 f
∂ 2θ1

∂ 2 f
∂θ1∂θ2 · · · ∂ 2 f

∂θ1θd

∂ 2 f
∂θ2∂θ1

∂ 2 f
∂ 2∂θ2 · · · ∂ 2 f

∂θ2θd

...
...

...
∂ 2 f

∂θd∂θ1
∂ 2 f

∂θd∂θ2 · · · ∂ 2 f
∂ 2θd

⎞
⎟⎟⎟⎟⎟⎠

Given a (d × d′) matrix M with random entries M(i, j), we write E(M) the de-
terministic matrix with entries E(M(i, j)). We also denote by (.)+, (.)− and 
.�
respectively the positive, negative and integer part operations. The maximum and
minimum operations are denoted respectively by ∨ and ∧

a∨b = max(a,b) and a∧b = min(a,b)

We also use the traditional conventions
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(
∑

/0

,∏
/0

)
= (0,1) and

(
sup

/0
, inf

/0

)
= (−∞,+∞)

1.3 Genetic Particle Models

Genetic algorithms are often presented as a random search heuristic that mim-
ics the process of evolution to generate useful solutions to complex optimization
problems. The genetic evolution starts with a population of N candidate possible
solutions (ξ 1

0 , . . . ,ξN
0 ) randomly chosen w.r.t. some distribution η0(x) on some ini-

tial finite state space, say E0, where the coordinates ξ i
0 are also called individuals

or genotypes, with 1 ≤ N. In discrete generation models, the genetic evolution is
decomposed into two main steps: the selection and the mutation transitions. Dur-
ing the selection-reproduction stage, multiple individuals in the current population
(ξ 1

n , . . . ,ξN
n ) at time n ∈ N are stochastically selected based on some problem de-

pendent fitness function Gn that measure the quality of a solution on a given finite
solution space En. In practice, we choose a random proportion Bi

n of an existing so-
lution ξ i

n in the current population with a mean value∝Gn(ξ i
n) to breed a brand new

generation of “improved” solutions (ξ̂ 1
n , . . . , ξ̂N

n ). During the mutation step, every

selected individual ξ̂ i
n mutates to a new solution ξ i

n+1 = x randomly chosen with a

distribution Mn+1(ξ̂ i
n,x) on a possibly different finite solution space En+1. This gen-

erational random process is repeated until some desired termination condition has
been reached.

An informal pseudocode description is provided in figure 1.
The question of why these genetic algorithms often succeed at generating high

fitness solutions of complex practical problems is not really well understood. Some-
times some researchers say: “If God uses this natural evolution procedures why I
shouldn’t use it to solve my problem?”. More surprisingly, genetic type selection-
mutation models are currently used in a variety of application domains, including
numerical physics, biology, signal processing, Bayesian statistics, rare event simu-
lation, uncertainty propagation in numerical codes, and many others. In Sequential
Monte Carlo literature, the mutation and the selection steps are called the sam-
pling and the resampling transition. In advanced signal processing, particle filters
also coincide with these genetic models with mutation-selection stages given by the
prediction-updating steps. In Diffusion Monte Carlo methods as well as in Quan-
tum Monte Carlo methods, the mutation and the selection steps are interpreted as
the free evolution of walkers and the reconfiguration of the population. In polymer
chain simulations, the selection transition is often called pruning. Many other botan-
ical names are given to the selection transition, including cloning, replenish, go with
the winner, and many others. For a more thorough discussion on this question with
rather detailed bibliographical references, we refer the reader to [52, 38].

One crucial comment is that the size of the population N should be a precision
parameter, so that in some sense we solve the problem at hand when N tends to
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Algorithm 1.1. Genetic algorithm pseudocode
{Fix some population size (precision of the algorithm) parameter N}
Initialization
ξ0:= sample N particles, (ξ i

0)1≤i≤N randomly with some given law η0.
for k = 1 to n do

Selection
for i = 1 to N do

{For each particle}

ξ̂ i
k−1:=

⎧⎪⎨
⎪⎩

ξ i
k−1, with probability Gk−1(ξ i

k−1)/max1≤ j≤N Gk−1(ξ
j

k−1) (1)

ξ̃ i
k−1, a random variable with law

N

∑
i=1

Gk−1(ξ i
k−1)

∑N
j=1 Gk−1(ξ

j
k−1)

δξ i
k−1

, otherwise (2).

end for
{We can replace the acceptance probability in the r.h.s. of (1) by the quantity ε Gk−1(ξ i

k−1),

for any ε ≥ 0, such that ε max1≤ j≤N Gk−1(ξ
j

k−1)≤ 1. If we choose ε = 0, we simply remove
the line (1), so that the selection transition coincides with the proportional/roulette selection}

Transition
for i = 1 to N do

{For each particle}
ξ i

k:= Fk(ξ̂ i
k−1,ω

i
k),

{Fk(.,ω i
k) designates the perturbation operator generating new candidate solutions. In

other words, ξ i
k = x with probability Mk(ξ̂ i

k−1,x).}
end for

end for

infinity. In other words, when the computational resources N→∞ the genetic search
model should increased its ability to find the desired solution. One way to under-
stand these questions is to analyze the genealogical tree of a given population of
individuals. If we interpret the genetic algorithm as a birth and death branching pro-
cess, then we can trace back in time the whole ancestral line of the individual ξ i

n at
the n-th generation.

ξ i
0,n ←− ξ i

1,n ←− . . .←− ξ i
n−1,n ←− ξ i

n,n = ξ i
n

The random state ξ i
p,n represents the ancestor of the individual ξ i

n at the level p, with
0≤ p≤ n, and 1≤ i≤ N.

One could expect that this genealogical tree models have different asymptotic be-
haviors depending on their sampling and on the problem at hand. In fact, in terms of
proportions and probability measures we don’t have a lot of variability. The random
occupation measure of the tree becomes more and more deterministic and we have
the following convergence result
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lim
N→∞

1
N

N

∑
i=1

�(ξ i
0,n,ξ

i
1,n,...,ξ i

n,n)
(x0,x1, . . . ,xn) =

1
Zn

{
∏

0≤p<n

Gp(xp)

}
×Pn(x0, . . . ,xn)

(1.2)
with some normalizing constant Zn, and the probability distribution of a Markov
chain sequence

Pn(x0, . . . ,xn) := η0(x0)M1(x0,x1) . . .Mn(xn−1,xn)

Furthermore, the product of the empirical population mean values of the fitness
functions we used in the genetic evolution provides an unbiased estimate of the
unknown normalizing constants

Z N
n := ∏

0≤p<n

1
N

N

∑
i=1

Gp(ξ i
p)−→N→∞ Zn

These limiting probability measures in the r.h.s. of (1.2) are often called Feynman-
Kac measures or Boltzmann-Gibbs distributions in physics and in the applied prob-
ability literature. Inversely, suppose that we have to sample from a Feynman-Kac
probability measure on some product space and/or we need to compute their nor-
malizing constants. Then, one particle sampling strategy is to run a genetic particle
approximation model.

Besides the fact that these rather surprising theoretical results give some insight
on the convergence of genetic algorithms and their range of applications, many ques-
tions remain to be answered: What is the rate of convergence in the estimates given
above? Are they uniform w.r.t. the time parameter? Is it possible to quantify the
law of a finite block of individuals? Do we have Central Limit Theorems and expo-
nentially small sub-Gaussian deviation probabilities as in conventional Monte Carlo
sampling? What is the interpretation of these limiting probability measures in prac-
tical situation and real world concrete problems? How to turn a given complex esti-
mation problem into this probabilistic framework? In this chapter, we provide some
answers to these natural questions. In Section 1.4, we provide a brief overview of
the connections between abstract positive matrices and genetic type interacting par-
ticle models. This section should not be skipped since it contains a series of recipes
on matrix models and their particle interpretations to be combined with one another
and applied in the application domains discussed in Section 1.5. The displeasure
practitioners may get when analyzing these matrix models and their particle inter-
pretations will fade since the genetic type particle approximations of these quantities
presented below will provide instantly a collection of powerful simulation tools for
the numerical solution of the problem at hand. In Section 1.5, we discuss a series
of application domains of genetic particle models, by no means exhaustive. Each
application starts with an introduction connecting the results developed in earlier
parts with the current description.
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1.4 Positive Matrices and Particle Recipes

1.4.1 Positive Matrices and Measures

1.4.1.1 Description of the Models

Let E be a finite set. We consider a collection of matrices Qn := (Qn(x,y))x,y∈E
with non negative entries Qn(x,y) ≥ 0. Given a probability measure η0 on E , we
denote by Qn the measure on the product space En :=En+1 defined for any sequence
(xp)0≤p≤n ∈ En of length n by the following formula:

Qn(x0, . . . ,xn) ∝ η0(x0) Q1(x0,x1) Q2(x1,x2) . . . Qn(xn−1,xn) (1.3)

When the matrices Qn(x,y) are such that ∑y∈E Qn(x,y) = 1, for any x ∈ E , we can
interpret Qn(x,y) as the probability of the transition Xn−1 = x � Xn = y of a given
Markov chain Xn. In this situation, we have

Qn(x0, . . . ,xn) = Proba((X0, . . . ,Xn) = (x0, . . . ,xn)) (1.4)

Moreover, if we set

Mn(x,y) = Proba(Xn = y | Xn−1 = x) and η0(x) = Proba(X0 = x)

then we find that

Qn(x0, . . . ,xn)

= Pn(x0, . . . ,xn)

:= Proba((X0, . . . ,Xn) = (x0, . . . ,xn))

= Proba(X0 = x0)Proba(X1 = x1 | X0 = x0) . . .Proba(Xn = y | Xn−1 = x)

= η0(x0)M1(x0,x1) . . .Mn(xn−1,xn)

In a variety of applications, we want to approximate the integral type mean values
of functions fn on the product space En

Qn( fn) = ∑
x0,...,xn

Qn(x0, . . . ,xn) fn(x0, . . . ,xn) (1.5)

as well as their normalizing constants

Zn := ∑
x0,...,xn

η0(x0) Q1(x0,x1) Q2(x1,x2) . . . Qn(xn−1,xn) (1.6)
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Reducing a bit our initial objective, sometimes we only want to approximate the
final time marginals

ηn(xn) := ∑
x0...,xn−1

Qn(x0, . . . ,xn−1,xn) and γn(xn) := Zn×ηn(xn)

(⇒ γn(1) = Zn) (1.7)

1.4.1.2 Path Space Models

From the pure mathematical point of view, for path space models these marginal
measure models are equivalent to the model defined in (1.3). More precisely, if we
set

∀n≥ 0 xn := (x0,n,x1,n, . . . ,xn−1,n,xn,n) ∈ En

then we find that

Qn(xn) = Qn(x0,n,x1,n, . . . ,xn−1,n,xn,n)

∝ η0(x0,n) Q1(x0,n,x1,n) Q2(x1,n,x2,n) . . . Qn(xn−1,n−1,xn,n)

∝ ∑
xn−1∈En−1

Qn−1(xn−1) Qn(xn−1,xn)

with the matrices

Qn(xn−1,xn) := �xn−1(x0,n,x1,n, . . . ,xn−1,n)×Qn(xn−1,n,xn,n) (1.8)

This implies that Qn(xn) is the n-th marginal of the extended measure on the product
of the path spaces ∏0≤p≤n Ep defined by

Q
(path)
n (x0, . . . ,xn) ∝ η0(x0)Q1(x0,x1)Q2(x1,x2) . . .Qn(xn−1,xn)

for any xp ∈ Ep, with 0≤ p ≤ n.
In the case of Markov transitions Qn = Mn discussed in (1.4), we have

Qn(xn−1,xn) = Mn(xn−1,xn)

:= �xn−1(x0,n,x1,n, . . . ,xn−1,n)×Mn(xn−1,n,xn,n)

In other words, Mn(xn−1,xn) is the Markov transition of the historical process

Xn = (X0, . . . ,Xn)

of the Markov chain Xn with transitions Mn; that is, we have that
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Proba(Xn = xn |Xn−1 = xn−1)

Proba((X0, . . . ,Xn) = (x0,n, . . . ,xn,n) | (X0, . . . ,Xn−1) = (x0,n−1, . . . ,xn−1,n−1))

= �xn−1(x0,n,x1,n, . . . ,xn−1,n)×Proba(Xn = xn,n | Xn−1 = xn−1,n)

= �xn−1(x0,n,x1,n, . . . ,xn−1,n)×Mn(xn−1,n,xn,n)

Finally, in this situation we observe that

Qn(xn) =Qn(x0,n,x1,n, . . . ,xn−1,n,xn,n) = Pn(x0,n,x1,n, . . . ,xn−1,n,xn,n) = Pn(xn)

with

Pn(x0,n,x1,n, . . . ,xn−1,n,xn,n) = η0(d0,n)M1(x0,n,x1,n) . . .Mn(xn−1,n,xn,n)

Another useful state space enlargement allows to work on “transition type” state
spaces E2. These models are defined as follows. For any time n≥ 0, we set

xn := (xn−1,n,xn,n) ∈ E2 and Qn(xn−1,xn) := �xn−1,n−1(xn−1,n) Qn(xn−1,n,xn,n)

We also use the convention η0(x0) = η0(x−1,0,x0,0) = η0(x0,0), for n = 0. In this
notation, for any sequence xn with xn−1,n = xn−1,n−1, we have

η0(x0)Q1(x0,x1)Q2(x1,x2) . . .Qn(xn−1,xn)

∝ η0(x0,0)Q1(x0,0,x1,1)Q2(x1,1,x2,2) . . .Qn(xn−1,n−1,xn,n)

1.4.2 Interacting Particle Models

1.4.2.1 Genetic Population Evolution

This section is concerned with the design of a genetic particle approximation of the
measuresηn introduced in (1.7). One universal way to associate a genetic population
evolution model to positive matrices Qn(xn−1,xn) is to use the decomposition

Qn(xn−1,xn) = Gn−1(xn−1)×Mn(xn−1,xn) (1.9)

with the Markov transition Mn and the potential function Gn−1

Mn(xn−1,xn) :=
Qn(xn−1,xn)

∑xn Qn(xn−1,xn)
and Gn−1(xn−1) =∑

xn

Qn(xn−1,xn) (1.10)

We let Xn be a Markov chain with initial distribution η0 and Markov transitions
Mn. By the definition of the measure Qn, the integral type formula (1.5) has the
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following probabilistic interpretation

Qn( fn) ∝ ∑
x1,...,xn

fn(x0, . . . ,xn)

{
∏

0≤p<n

Gp(xp)

}
×
{
η0(x0) ∏

1≤p≤n

Mp(xp−1,xp)

}

∝ E

[
fn(X0, . . . ,Xn)

{
∏

0≤p<n

Gp(Xp)

}]
(1.11)

with the normalizing constant

Zn := E

[
∏

0≤p<n

Gp(Xp)

]

For unit potential functions Gn(x) = 1, the model resumes to the Markov transitions
model Qn = Mn discussed in (1.4). In this context, we clearly have that Zn = 1 and

Qn( fn) = Pn( fn) = E [ fn(X0, . . . ,Xn)]

In this situation, we can approximate these expectation by sampling N independent
copies Xi

n of the Markov chain Xn and using the traditional Monte Carlo empirical
estimates

P
N
n ( fn) :=

1
N

N

∑
i=1

fn(X
i
0, . . . ,X

i
n)

In more general situations, the potential functions Gn may change radically the prob-
ability mass distributions of the measures Qn. For instance, for indicator functions
Gn = 1A, we have

Zn := E

[
∏

0≤p<n

Gp(Xp)

]
= Proba(Xp ∈ A, ∀0≤ p < n)

and
Qn = Law((X0, . . . ,Xn) | Xp ∈ A, ∀0≤ p < n)

as soon as Zn > 0. In this situation, the probability measure Qn only charges ran-
dom trajectories that remains in the set A, for any time 0 ≤ p < n. This situation is
discussed in some details in section 1.5.1.1 dedicated to particle absorption models.
We already mention that in this case we often have

Proba(Xp ∈ A, ∀0≤ p < n)→n↑∞ 0

so that it becomes more and more unlikely that a random sample copy of Xn re-
mains in the set A for all times 0 ≤ p < n during a large horizon n. when all the N
independent copies Xi

n have left the desired A, we have
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1
N

N

∑
i=1

fn(X
i
0, . . . ,X

i
n) ∏

0≤p<n

Gp(X
i
p) = 0

To avoid this ”technical” problem, we use a genetic type acceptance rejection sam-
pling scheme. To avoid some unnecessary technical discussion, we further assume
that the functions Gn take values in ]0,1]. As we shall see, this condition can be
removed. Practically, we approximate the desired target measures ηn(xn) by a large
cloud of N random samples also termed particles ξ i

n, with 1≤ i≤ N; that is, at any
time n≥ 0, we have that

ηN
n (x) :=

1
N

N

∑
i=1
�ξ i

n
(x)−→N→∞ ηn(x) (1.12)

The particle system ξn :=
(
ξ i

n

)
1≤i≤N is a simple genetic sampling model combing a

mutation transition and a selection transition

ξn := (ξ i
n)1≤i≤N

selection−−−−−−−−−−−−→ ξ̂n := (ξ̂ i
n)1≤i≤N

mutation−−−−−−−−−−−−→ξn+1 (1.13)

During the mutation transition, every individual performs a local random move ac-
cording to the Markov transition Mn. During the selection step, every individual
evaluates its potential value Gn(ξ i

n), with 1≤ i≤ N. For every index i, with a prob-

ability Gn(ξ i
n), we set ξ̂ i

n = ξ i
n, otherwise we replace ξ i

n by a fresh new individual

ξ̂ i
n = ξ j

n randomly chosen in the whole population with a probability ∝ Gn(ξ j
n ).

For more general potential functions, we can replace the acceptance rate Gn(ξ i
n)

of any individual ξ i
n by any acceptance rate of the form εn(ξn)Gn(ξ i

n) with some
εn(ξn) ≥ 0 that may depend on the whole population and s.t. εn(ξn)Gn(ξ i

n) ∈ [0,1].
For instance, we can chose εn = 0 or εn(ξn) = 1/max1≤i≤N Gn(ξ i

n). In the first case,
the selection transition is often called the “proportional selection”. In the second
case, we notice that the best fit individuals are always accepted. In all cases, the
acceptance probability of an individual ξ i

n is proportional to Gn(ξ i
n). In the further

development of this chapter, we write that the acceptance probability is ∝ Gn(ξ i
n).

We end this section with a second important remark:
Let us suppose that Qn has the following form

Qn(xn−1,xn) = Kn(xn−1,xn)×Hn(xn)

for some Markov transition Kn and some potential function Hn. In this situation, the
decomposition (1.10) is met with

Mn(xn−1,xn) :=
Kn(xn−1,xn)Hn(xn)

∑xn Kn(xn−1,xn)Hn(xn)
and Gn−1(xn−1) =∑

xn

Kn(xn−1,xn)Hn(xn)

In practice, the numerical solving of the sum in the r.h.s. equation and the com-
putational cost of sampling a mutation xn−1 � xn with the transition Mn can be
prohibitive. One way to solve these problems is to sample a sequence of transitions
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ξ i
n−1 � ζ i, j

n , with 1≤ j≤N′ using the Markov transition Kn so that for any 1≤ i≤N
we have

KN′
n (ξ i

n−1,xn) =
1
N′

N′

∑
i=1

�ζ i, j
n
(xn)�N′↑∞ Kn(ξ i

n−1,xn)

We let MN′
n and GN′

n−1 be the Markov transitions and the potential functions defined

as Mn and Gn−1, replacing Kn by KN′
n in the above equations; that is, we have

MN′
n (ξ i

n−1,xn) :=
N′

∑
j=1

Hn(ζ i, j
n )

∑N′
k=1 Hn(ζ i,k

n )
�ζ i, j

n
(xn) and GN′

n−1(ξ
i
n−1) =

1
N′

N′

∑
j=1

Hn(ζ i, j
n )

Another strategy is to observe that the measures (1.3) are given by

Qn(x0, . . . ,xn) ∝
[
η0(x0) Q′1(x0,x1) Q′2(x1,x2) . . . Q′n(xn−1,xn)

]
Hn(xn)

with
Q′n(xn−1,xn) = Hn−1(xn−1) Kn(xn−1,xn)

and the convention H0 = 1, for n = 1. In this interpretation, we approximate the
measures

Q
′
n(x0, . . . ,xn) ∝ η0(x0) Q′1(x0,x1) Q′2(x1,x2) . . . Q′n(xn−1,xn)

using the particle occupation measures defined above (with mutation transitions Kn

and selection fitness functions Hn) weighted by the function Hn(xn)

N

∑
i=1

Hn(ξ i
n)

∑N
j=1 Hn(ξ j

n )
�ξ i

n
(x)−→N→∞ ηn(x)

1.4.2.2 Particle Normalizing Constants

In this section, we present an unbiased particle approximation of the normalizing
constants Zn introduced in (1.6). Using the decomposition

Qn(x0, . . . ,xn) =
Zn−1

Zn
Qn−1(x0, . . . ,xn−1) Qn(xn−1,xn)

we find the following matrix formulae

ηn =
Zn−1

Zn
ηn−1Qn =⇒ Zn

Zn−1
= ηn−1Qn(1) = ηn−1(Gn−1) and γn = γn−1Qn

Now, it is also easily checked that

γn(1) = γn−1Qn(1) = γn−1(1) ηn−1Qn(1) = · · ·= ∏
0≤p<n

ηpQp+1(1) = ∏
0≤p<n

ηp(Gp)
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Mimicking the r.h.s. multiplicative formula, an N-particle approximation of the nor-
malizing constants Zn is given by the following unbiased estimates

Z N
n := ∏

0≤p<n

ηN
p (Gp)−→N→∞ Zn = ∏

0≤p<n

ηp(Gp)

and for any x ∈ E

γN
n (x) := Z N

n ηN
n (x)−→N→∞ γn(x) := Zn ηn(x) (1.14)

Furthermore, the particle estimate γN
n (x) is unbiased in the sense that for any x ∈ E ,

and for any n≥ 0, we have
E
(
γN

n (x)
)
= γn(x)

The proof of this property is not so obvious. To our knowledge, in the context of
nonlinear filtering this property has first been proved in [36]. See also [52] and [38]
for more general models.

1.4.3 Genealogical and Ancestral Structures

1.4.3.1 Genealogical Trees

The aim of this section is to use the genealogical tree structure of the genetic popula-
tion model defined in the previous sections to approximate the measures Qn defined
in (1.3).

Running back in time, we can trace back the complete ancestral lines of the in-
dividuals and the time evolution of the genealogical tree model associated with the
genetic algorithm described above. For instance, a realization of that tree for N = 3
individuals and n = 4 iterations is given by

ξ 1
0

�� ξ 1
1 ξ 1

2
�� ξ 1

3
�� ξ 1

4
�� ξ 1

5

ξ 2
0

�� ξ 2
1

���
��

��
��

���������
�� ξ 2

2 ξ 2
3

�� ξ 2
4

���
��

��
��

�� ξ 2
5

ξ 3
0

�� ξ 3
1 ξ 3

2

���������
�� ξ 3

3
�� ξ 3

4 ξ 3
5

One way to encode the ancestral line of a current individual, say ξ 2
5 , is to write ξ 2

p,5

with the level index 0 ≤ p ≤ 5 of the ancestor; with the convention ξ 2
5,5 = ξ 2

5 , for
p = 5. In this notation, we obtain N = 3 ancestral lines, and the line associated with
the i-th current individual ξ i

n is the random vector in the product space En given by
(
ξ i

0,n,ξ
i
1,n,ξ

i
2,n, . . . ,ξ

i
n−1,n,ξ

i
n,n

)
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An N-particle approximation of Qn is given by the occupation measure of these
ancestral lines

1
N

N

∑
i=1
�(ξ i

0,n,ξ
i
1,n,...,ξ i

n,n)
(x0, . . . ,xn)−→N→∞ Qn(x0, . . . ,xn) (1.15)

Furthermore, the evolution model of the genealogical N ancestral lines

ξ i
n := (ξ i

0,n,ξ
i
1,n, . . . ,ξ

i
n,n)

with 1≤ i≤ N, coincides with the genetic model defined in (1.13) on product state
spaces En = En with matrices Qn(xn−1,xn) defined in (1.8). In the path space nota-
tion used in (1.8), the convergence result (1.15) takes the following form

1
N

N

∑
i=1
�ξ i

n
(xn)−→N→∞ Qn(xn)

for any xn := (x0,n,x1,n, . . . ,xn−1,n,xn,n) ∈ En; and this property coincides with
(1.12).

Once again, this state space enlargement property is not really obvious. To our
knowledge, this property has first been proved in [53].

1.4.3.2 Complete Ancestral Trees

To simplify the presentation, sometimes we denote by Ξn the sequence of complete
genealogical trees ξp := (ξ i

p)1≤i≤N , from the origin p = 0, up to time p = n; that is,
we set

Ξn = (Ξ0,n,Ξ1,n, . . . ,Ξn,n) := (ξ0, . . . ,ξn) ∈ ∏
0≤p≤n

EN
p

with

Ξp,n = (Ξ i
p,n)1≤i≤N = (ξ i

p)1≤i≤N and Ξ i
p,n := ξ i

p :=
(
ξ i

0,p,ξ
i
1,p, . . . ,ξ

i
p,p

)

for any 0≤ p≤ n.
Combining this observation with the exchangeability of the particle system and

with the unbiased property of the unnormalized measures (1.14) discussed above,
we conclude that for any function fn on the product space En

E

(
ηN

n ( fn) Z
N
n

)
= E

(
fn
(
ξ 1

n

)
Z

N
n

)
=Qn( fn) with Z

N
n := Z N

n /Zn

and with the first ancestral line ξ 1
n =

(
ξ 1

0,n,ξ 1
1,n, . . . ,ξ 1

n,n

)
of the genealogical tree.

In other words, we have that

E

(
Z

N
n | ξ 1

n = xn

)
×Proba(ξ 1

n = xn) =Qn(xn)
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for any xn := (x0,n,x1,n, . . . ,xn,n) ∈ En. In addition, the measure defined by

T
N
n (Fn) := E

(
Fn(Ξn) Z

N
n

)
(1.16)

for any function Fn on the product space∏0≤p≤n EN
p , is a probability measure whose

ξ i
n-marginals on En coincide with Qn, for any 1≤ i≤ N.

1.4.4 Complete Genealogical Tree Model

The aim of this section is to use the genealogical tree structure of the genetic popula-
tion model defined in the previous sections to approximate the measures Qn defined
in (1.3).

1.4.4.1 Ancestral Lines Occupation Measures

The complete ancestral tree of the genetic model is the set of all the populations of
individuals ξp, from the origin p = 0, up to the final time horizon p = n. Notice that
these systems contain all the information about the genetic evolution, including the
ancestral lines that have disappeared. A basic convergence estimate is the following

1
N ∑

N
i=1�(ξ i

0,ξ
i
1,...,ξ i

n)
(x0, . . . ,xn)

−→N→∞ η0(x0)×K1,η0(x0,x1)×K2,η1(x1,x2)×·· ·×Kn,ηn−1(xn−1,xn)

with the stochastic matrices

Kn,ηn−1(x,y) = Gn−1(x) Mn(x,y)+ (1−Gn−1(x)) ∑
z

ηn−1(z)Gn−1(z)
ηn−1(Gn−1)

Mn(z,y)

It is instructive to notice that the selection-mutation Markov transition ξn−1 � ξn

defined in (1.13) is given by

Proba
(
ξn = (x1, . . . ,xN) | ξn−1

)
:= ∏

1≤i≤N

Kn,ηN
n−1

(ξ i
n−1,x

i)

We recall that ηN
n−1(x) := 1

N ∑
N
i=1�ξ i

n−1
(x) stands for the occupation measures of the

genetic population at time (n− 1) so that the probability Kn,ηN
n−1

(ξ i
n−1,x

i) that an

individual ξ i
n = xi is given by

Gn−1(ξ i
n−1) Mn(ξ i

n−1,x
i)+ (1−Gn−1(ξ i

n−1)) ∑
N
j=1

Gn−1(ξ
j

n−1)

∑N
k=1 Gn−1(ξ k

n−1)
Mn(ξ j

n−1,x
i)
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Without altering the above convergence results, we can replace the fitness function
Gn in the selection transition of the genetic model defined in section 1.4.2 by any
function of the form εnGn, for any constant εn ≥ 0 s.t. εnGn ∈ [0,1]. The selection
transition associated with the choice ε = 0 is often called a simple selection, a pro-
portional selection, as well as a multinomial branching model. In this situation, we
have the following convergence result

1
N

N

∑
i=1

�(ξ i
0,ξ

i
1,...,ξ i

n)
(x0, . . . ,xn)−→N→∞ η0(x0)×η1(x1)×·· ·×ηn(xn) (1.17)

1.4.4.2 Backward Markov Chain Model

Using the matrix formulae given above, we observe that

ηn−1Qn(xn)

ηn(xn)
× ηn−2Qn−1(xn−1)

ηn−1(xn−1)
×·· ·× η0Q1(x1)

η1(x1)
=

Zn

Zn−1
×Zn−1

Zn−2
×·· ·×Z1

Z0
=Zn

From this observation, we readily prove the following backward representation of
Qn

Qn(x0, . . . ,xn)

= ηn(xn)× ηn−1(xn−1)Qn(xn−1,xn)

ηn−1Qn(xn)
· · · η1(x1)Q2(x1,x2)

η1Q2(x2)
× η0(x0)Q1(x0,x1)

η0Q1(x1)

:= ηn(xn)× Q�
n,ηn−1

(xn,xn−1) · · · Q�
2,η1

(x2,x1)×Q�
1,η0

(x1,x0)
(1.18)

with the time reversal Markov matrices Q�
n,ηn−1

(xn,xn−1) defined below

Q�
n,ηn−1

(xn,xn−1) =
ηn−1(xn−1)Qn(xn−1,xn)

ηn−1Qn(xn)

Mimicking formula (1.18) an alternative particle approximation of the measures Qn

by the following estimate

Q
N
n (x0, . . . ,xn) = ηN

n (xn)×Q�
n,ηN

n−1
(xn,xn−1) · · ·Q�

2,ηN
1
(x2,x1)×Q�

1,ηN
0
(x1,x0)

→N↑∞ Qn(x0, . . . ,xn) (1.19)

with the time reversal random matrices Q�
n,ηN

n−1
(xn,xn−1) defined by

Q�
n,ηN

n−1
(xn,xn−1) =

ηN
n−1(xn−1)Qn(xn−1,xn)

ηN
n−1Qn(xn)

=
N

∑
i=1

Qn(ξ i
n−1,xn)

∑N
j=1 Qn(ξ j

n−1,xn)
�ξ i

n−1
(xn−1)
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Once again, for any function fn on the product space En, we have the following
unbiased property

E

(
Z

N
n Q

N
n ( fn)

)
= E

(
Z

N
n fn(ζn)

)
=Qn( fn)

where ζn := (ζn,n,ζn−1,n, . . . ,ζ1,n,ζ0,n) stands for a backward Markov chain (as well
as a complete ancestral line) with distribution Q

N
n . In other words, if we set

xn := (x0,n,x1,n, . . . ,xn−1,n,xn,n) ∈ En with
←
x n= (xn,n,xn−1,n, . . . ,x1,n,x0,n)

then we have that

E

(
Z

N
n | ζn =

←
x n

)
×Proba(ζn =

←
x n) =Qn(xn)

In addition, the measures AN
n defined by

A
N
n (Fn) := E

(
Fn(Ξn,ζn) Z

N
n

)

for any function Fn on the product space
{[
∏0≤p≤n EN

p

]×En
}

, is a probability mea-
sure whose ζn-marginals on En coincide with the measure Qn, for any 1≤ i≤ N.

1.4.5 Particle Derivation and Conditioning Principles

1.4.5.1 Particle Derivation Models

Besides the fact that the computation of Qn and Zn comes from a specific estima-

tion problem, in some application areas, the distribution η(θ)
0 , as well as the matrices

Q(θ)
n (x,y) also depend on some parameter θ ∈R

d , and we want to estimate the gra-

dient ∇Q(θ)
n and ∇Z

(θ)
n of the corresponding functions θ �→ Q

(θ)
n and θ �→Z

(θ)
n .

The computation of these quantities is again connected to the integral type compu-

tation w.r.t. the measure Q(θ)
n , with the following easy to check formulae

∇ logZ
(θ)

n =Q
(θ)
n (Λ (θ)

n ) and ∇ logQ(θ)
n =Λ (θ)

n −Q
(θ)
n (Λ (θ)

n ) (1.20)

with the gradient

Λ (θ)
n := ∇L(θ)

n of the additive functional L
(θ)
n (x0, . . . ,xn) :=

n

∑
p=0

logQ(θ)
p (xp−1,xp)

In the above display, we have used the convention Q0(x−1,x0) = η0(x0), for p = 0.
We also have the correlation representation of the Hessian functions



1 On the Foundations and the Applications of Evolutionary Computing 27

∇2 logZ
(θ)

n =Q
(θ)
n

[(
Λ (θ)

n −Q
(θ)
n (Λ (θ)

n )
)′(

Λ (θ)
n −Q

(θ)
n (Λ (θ)

n )
)]

(1.21)

and for any fn on En

∇2
Q

(θ)
n ( fn) = Q

(θ)
n

[
fn

(
Λ (θ)

n −Q
(θ)
n (Λ (θ)

n )
)′(

Λ (θ)
n −Q

(θ)
n (Λ (θ)

n )
)]

− Q
(θ)
n

[
fn

(
∇2

L
(θ)
n −Q

(θ)
n (∇2

L
(θ)
n )

)] (1.22)

The physical interpretations or the engineering meaning of these rather abstract
mathematical objects depend on the application domain they are thought for.

Next, we design particle approximations of these derivative models. We denote

by η(θ ,N)
n the occupation measures associated with a genetic particle model with

mutation transitions and fitness potential function defined by

M(θ)
n (x,y) := Q(θ)

n (x,y)/∑
z

Q(θ)
n (x,z) and Gθ

n (x) :=∑
z

Q(θ)
n+1(x,z)

We also denote by Q
(θ ,N)
n the random measures on path space defined by

Q
(θ ,N)
n (x0, . . . ,xn) := η(θ ,N)

n (xn)×Q�

n,η(θ ,N)
n−1

(xn,xn−1) · · ·Q�

2,η(θ ,N)
1

(x2,x1)

×Q�

1,η(θ ,N)
0

(x1,x0) (1.23)

and the corresponding particle normalizing constants

Z
(θ ,N)

n := ∏
0≤p<n

η(θ ,N)
p

(
Gθ

p

)

Mimicking the derivation formulae (1.20) we define the particle derivation of the
logarithm of the normalizing constants by

∇N logZ
(θ)

n :=Q
(θ ,N)
n (Λ (θ)

n ) −→N↑∞ ∇ logZ
(θ)

n

In the same vein, the particle derivation of the measure Q
(θ)
n is defined by the fol-

lowing correlation formulae

∇NQ
(θ)
n ( fn) :=Q

(θ ,N)
(

fn

[
Λ (θ)

n −Q
(N,θ)
n (Λ (θ)

n )
])

−→N↑∞ ∇Q(θ)
n ( fn)

for any function fn on En with the additive functional

Λ (θ)
n (x0, . . . ,xn) :=

n

∑
p=0

∇ logQ(θ)
p (xp−1,xp)

and the convention Q0(x−1,x0) = η0(x0) for p = 0.
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Analogously, we define the particle Hessian functions ∇2
N logZ

(θ)
n and

∇2
NQ

(θ)
n ( fn) replacing in (1.21) and (1.22) the measures Q(θ)

n by Q
(θ ,N)
n .

1.4.5.2 Particle Conditioning Models

This section is concerned with some conditional distributions of the measure Qn and
their particle approximations. First, we observe that

Q
(n)
p (x0, . . . ,xp) := ∑

xp+1,...,xn

Qn(x0, . . . ,xp,xp+1, . . . ,xn)

= ηp|n(xp) Q�
p,ηp−1

(xp,xp−1) · · ·Q�
1,η0

(x1,x0) (1.24)

with the p-th marginal ηp|n of the measure Qn defined by the matrix formula

ηp|n := ηnQ�
n,ηn−1

· · ·Q�
p+1,ηp

This clearly implies that

Qn|p((xp+1, . . . ,xn) | (x0, . . . ,xp))

:=Qn(x0, . . . ,xp,xp+1, . . . ,xn)/Q
(n)
p (x0, . . . ,xp)

=
1

ηp|n(xp)
ηn(xn)Q

�
n,ηn−1

(xn,xn−1) · · ·Q�
p+1,ηp

(xp+1,xp)

The distributions ηp|n(xp) and Qn|p((xp+1, . . . ,xn) | (x0, . . . ,xp) = Qn|p((xp+1, . . . ,
xn) | xp) can be approximated using the complete ancestral tree and replacing in
the above formulae the measures ηp by their particle approximations ηN

p , with
0≤ p≤ n:

ηN
p|n := ηN

n Q�
n,ηN

n−1
· · ·Q�

p+1,ηN
p

(1.25)

and

Q
N
n|p((xp+1, . . . ,xn) | xp) =

1

ηN
p|n(xp)

ηN
n (xn)Q

�
n,ηN

n−1
(xn,xn−1) · · ·Q�

p+1,ηN
p
(xp+1,xp)

We end this section with a probabilistic interpretation of these mathematical objects.
First, using (1.9) we find the following decomposition

Qn(x0, . . . ,xn) =
1

Zn

{
∏

0≤p<n

Gp(xp)

}
Pn(x0, . . . ,xn)

with the distribution Pn(x0, . . . ,xn) of the Markov chain sequence with initial condi-
tion Law(X0) = η0 and Markov transitions Mn
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Pn(x0, . . . ,xn) = Proba((X0, . . . ,Xn) = (x0, . . . ,xn))

= η0(x0)M1(x0,x1)M2(x1,x2) · · ·Mn(xn−1,xn)

In this interpretation, we have

Q
(n)
p (x0, . . . ,xp) :=

Zn|p(xp)

Zn

{
∏

0≤q<p

Gq(xq)

}
Pp(x0, . . . ,xp)

=
Zn|p(xp)

Zn|p
Qp(x0, . . . ,xp)

=
Zn|p(xp)

Zn|p
ηp(xp)

[
Q�

p,ηp−1
(xp,xp−1) · · ·Q�

1,η0
(x1,x0)

]

with Zn|p and Zn|p(xp) defined by

Zn|p = Zn/Zp = ∏
p≤q<n

ηq(Gq) and Zn|p(xp) := E

({
∏

p≤q<n
Gq(xq)

}
|Xp = xp

)

Using (1.24), this implies that

ηp|n(xp) =
1

Zn|p
Zn|p(xp) ηp(xp) (1.26)

and

Qn|p((xp+1, . . . ,xn) | xp) =
1

Zn|p(xp)

{
∏

p≤q<n
Gq(xq)

}
Pn|p((xp+1, . . . ,xn)|xp)

with the conditional distribution

Pn|p((xp+1, . . . ,xn)|xp) = Proba((Xp+1, . . . ,Xn) = (xp+1, . . . ,xn)|Xp = xp)

= Mp+1(xp,xp+1) · · ·Mn(xn−1,xn)

Combining (1.25) and (1.26) we also have the following particle approximations

ηN
p (x) Z N

n|p(x) :=

{
∏

p≤q<n
ηN

q (Gq)

}
ηN

p|n(x)�N↑∞ ηp(x)Zn|p(x)
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1.5 Some Application Domains

1.5.1 Particle Absorption Models

1.5.1.1 Random Walks Confined in a Set

We consider a symmetric random walk Xn on the integers Z starting at the ori-
gin X0 = 0. More formally, we take independent random variables Un, where
P(Un = 1) = P(Un =−1) = 1/2 and we set Xn = X0 +∑1≤p≤nUp. We fix A =
{−a+ 1,−a+ 2, ...,a−1}, with a ∈ N. We want to compute the conditional distri-
butions

Law
(
(X0, . . . ,Xn)

∣∣ ∀0≤ p≤ n, Xp ∈ A
)

(1.27)

as well as the quantities

Zn := P(∀0≤ p < n, Xp ∈ A)

This problem can be solved by simulation using the following particle algorithm.
We start with N particles at the origin denoted by ξ i

0 = 0, with i = 1, . . . ,N. Each of
them evolve ξ i

0 � ξ i
1 according to one transition of the random walk; more formally,

we sample N independent copies (Ui
1)1≤i≤N of the random variables U1, and we set

ξ i
1 = ξ i

0 +Ui
1. We denote

ηN
1 (�A) =

1
N ∑

1≤i≤N

�A(ξ i
1) =

1
N

Card
{

1≤ i≤ N : ξ i
1 ∈ A

}

the proportion of points ξ i
1 in the set A. We define from the sample population(

ξ i
1

)
1≤i≤N a new population of N individuals

(
ξ̂ i

1

)
1≤i≤N

as follows. For each

i= 1, . . . ,N, we perform the following operation: if ξ i
1 ∈ A, we set ξ̂ i

1 = ξ i
1. If ξ i

1 �∈A,

we pick randomly an individual ξ̃ i
1 among those ξ j

1 in the set A and we set ξ̂ i
1 = ξ̃ i

1.
In other words, individuals within A do not move, while the individuals outside A
are replaced by a randomly chosen individual among those in the set A. It may hap-
pen that all individuals ξ i

1 are outside of the set A. In this case, the algorithm stops
and we set τN = 1 to report the time of this event. If the algorithm has not stopped,

we have a new configuration
(
ξ̂ i

1

)
1≤i≤N

of N individuals in the set A. We evolve

ξ̂ i
1 � ξ i

2 according to one transition of the random walk; that is we sample N inde-

pendent copies (Ui
2)1≤i≤N of the random variables U2, we set ξ i

2 = ξ̂ i
1 +Ui

2 and we
define

ηN
2 (�A) =

1
N ∑

1≤i≤N

�A(ξ i
2) =

1
N

Card
{

1≤ i≤ N : ξ i
2 ∈ A

}
.

As before, we define from the sample population
(
ξ i

2

)
1≤i≤N a new population of

N individuals
(
ξ̂ i

2

)
1≤i≤N

: individuals within A do not move, while the individuals
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outside the desired set are replaced by a randomly chosen individual among those
in the set A. If all individuals ξ i

2 fall are outside of the set A, we set τN = 2. Iterating
this stochastic process, for every time n (< τN), we define a sequence of genetic
type populations

ξn :=
(
ξ i

n

)
1≤i≤N ∈ Z

N selection−−−−−−−−→ ξ̂n :=
(
ξ̂ i

n

)
1≤i≤N

∈ Z
N mutation−−−−−−−→ ξn+1 ∈ Z

N

(1.28)
This stochastic algorithm can be interpreted as a genetic type model with mutation
transitions given by the one of a symmetric random walk and an acceptance-rejection
selection type transition associated with the potential indicator type function �A.
Several estimates can be extracted from this interacting sampling algorithm.

First, we mention that the stopping time τN tends to infinity as the size of the
population N→∞. More precisely, the probability that the algorithm stops at a given
time n tends to zero exponentially fast, as N tends to infinity. More interestingly, the
product of the proportions of surviving particles at each time step

Z N
n := ∏

0≤p<n

ηN
p (�A)

is asymptotically a consistent estimate of the quantity Pn(A) and it is unbiased; that
is we have

lim
N→∞

Z N
n = Zn and E

(
Z N

n

)
= Zn (1.29)

The convergence on the l.h.s. is an almost sure asymptotic convergence. It can be
made precise by non asymptotic estimates including non asymptotic variance es-
timates and more refined exponential type deviations. If we interpret the selection
transition as a birth and death process, then the important notion of the ancestral line
of a current individual arises. More precisely, when a particle ξ̂ i

n−1−→ ξ i
n evolves to

a new location ξ i
n, we can interpret ξ̂ i

n−1 as the parent of ξ i
n. Looking backwards in

time and recalling that the particle ξ̂ i
n−1 has selected a site ξ j

n−1 in the configuration

at time (n−1), we can interpret this site ξ j
n−1 as the parent of ξ̂ i

n−1 and therefore as
the ancestor ξ i

n−1,n at level (n−1) of ξ i
n. Running back in time we can construct the

whole ancestral line

ξ i
0,n ←− ξ i

1,n ←− . . .←− ξ i
n−1,n ←− ξ i

n,n = ξ i
n (1.30)

of each current individual. The occupation measures of the corresponding N-
genealogical tree model converge as N → ∞ to the conditional distribution (1.27).
In a sense to be given, for any function f on the set Zn+1, we have the convergence,
as N → ∞,

lim
N→∞

1
N

N

∑
i=1

f (ξ i
0,n,ξ

i
1,n, . . . ,ξ

i
n,n) �τN>n = E

(
f (X0, . . . ,Xn)

∣∣ ∀0≤ p < n, Xp ∈ A
)

(1.31)
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This convergence result can be refined in various directions. For instance, we can
prove that the ancestral lines are “almost” independent with a common distribution
given by the limiting conditional distribution. This is often called the propagation
of chaos property in applied probability. It refers to the fact that the initial popula-
tion consists of independent and identically distributed random variables and that
this property “propagates” approximately despite the introduction of interactions.
Many other results can be derived including the fluctuations and the exponential
concentration of the occupation measures of the genealogical tree around the limit-
ing conditional distribution.

Besides the fact that the particle model approximate the (rare event) probabilities
(1.29) and the conditional distributions (1.31) in path spaces, it also contains some
information about the top of the spectrum of the matrix Q defined below

∀(x,y) ∈ {−a,−a+ 1, ...,a− 1,a} Q(x,y) := G(x) M(x,y)

with

G(x) := �A(x) and M(x,y) =
1
2
�x−1(y)+

1
2
�x+1(y)

Indeed, if we consider λ to be the top eigenvalue of Q and we denote by h the
corresponding eigenvector s.t. ∑x h(x) = 1, then we have

lim
N→∞

lim
n→∞

1
n ∑

0≤p≤n

logηN
p (�A) = logλ

In addition, the value h(x) coincides with the long time proportion of visits of the
algorithm to the state x. In other words, h(x) can be interpreted as the limiting dis-
tribution of the individuals within the set A; that is

lim
N,n→∞

1
n ∑

0≤p≤n

1
N ∑

1≤i≤N

�x(ξ̂ i
n) �τN>n = h(x) = lim

N,n→∞

1
N ∑

1≤i≤N

�x(ξ̂ i
n) �τN>n

The particle approximation model discussed above is far from unique. Many other
interacting sampling strategies can be introduced by a simple change of probability
measure. For instance, we can replace the mutation or the free evolution of the
individuals in the previous algorithm by local moves restricted to the desired set
A. These mutation type transitions ξ̂n−1 � ξn can also be seen as transitions of a
simple random walk on Z reflected at the boundaries of the set A. By construction
all the individuals ξ i

n at any time horizon n and for any index i = 1, . . . ,N are in the
desired set A.

The corresponding selection transition ξn � ξ̂n is now defined as follows: each
individual ξ i

n = x on the boundary x ∈ ∂A = {−a+ 1,(a− 1)} of the set A has a
probability G(x) := 1/2 to stay in A, while the other individuals ξ i

n (which are in the

set A) have a probability G(x) = 1 to stay in A. The population ξ̂n is now defined as

follows. For every index i, with a probability G(ξ i
n), we set ξ̂ i

n = ξ i
n, otherwise we re-

place ξ i
n by a new individual ξ̂ i

n = ξ j
n randomly chosen in the whole population with



1 On the Foundations and the Applications of Evolutionary Computing 33

a probability proportional to G(ξ j
n ). If we now write ηN

n (G) = 1
N ∑1≤i≤N G(ξ i

n), all
the previous particle approximation results (corresponding to G(x) = �A(x)) remain
valid for this new particle algorithm.

1.5.1.2 Feynman-Kac Model

The sampling techniques described in section 1.5.1.1 are far from being restricted
to random walks models confined to a set. These strategies apply to a variety of
application areas including computational physics, nonlinear filtering, biology, as
well as rare event analysis. From the pure mathematical point of view, they corre-
spond to interacting particle approximation models of Feynman-Kac measures in
path spaces.

To introduce these models, we recall that the conditional distributions discussed
in (1.27) can be represented in terms of the distributions of the free path evolution

Pn(x0, . . . ,xn) = Proba((X0, . . . ,Xn) = (x0, . . . ,xn))

= �0(x0) M1 (x0,x1) . . . Mn (xn−1,xn) (1.32)

of the simple random walk starting at the origin with elementary transitions given
by the matrix Mn := (Mn(x,y))x,y∈Z with entries given by

Mn (x,y) :=
1
2
�x−1(y)+

1
2
�x+1(y)

More formally, if we set

Qn(x0, . . . ,xn) := Proba
(
(X0, . . . ,Xn) = (x0, . . . ,xn)

∣∣ ∀0≤ p < n, Xp ∈ A
)

then we have

Qn(x0, . . . ,xn) =
1

Zn

{
∏

0≤p<n

Gp(xp)

}
Pn(x0, . . . ,xn) (1.33)

with the indicator potential functions Gn(x) = �A(x) and Pn(x0, . . . ,xn) being the
distribution of a free path of length n of the symmetric random walk. In (1.33), Zn

is the normalizing constant given by

Zn = P(∀0≤ p < n, Xp ∈ A) = E

(
∏

0≤p<n

Gp(Xp)

)

These path integration type models are called Feynman-Kac measures in reference
to Feynman path integral formulation of quantum mechanics where the classical no-
tion of a single deterministic trajectory for a system is replaced by a sum over all
possible trajectories weighted by the contributions of all the histories in configura-
tion space.
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1.5.1.3 A Killed Markov Chain

The Feynman-Kac measures presented in (1.33) can be regarded as the distribution
of the paths of a Markov particle evolving using the Markov transitions Mn in an
environment with absorbing obstacles related to potential functions Gn, and starting
with some initial distribution Law(X0) = η0 with η0 (x0) = �0(x0) in (1.32). To be
more precise, we consider an auxiliary coffin or cemetery state c and we set Ec =E∪
{c}. We define an Ec-valued Markov chain Xc

n with two separate killing/exploration
transitions:

Xc
n

killing−−−−−−−−−→ X̂ c
n

exploration−−−−−−−−−→Xc
n+1 (1.34)

This killing/exploration mechanism are defined as follows:

• Killing: If Xc
n = c, we set X̂ c

n = c. Otherwise the particle Xc
n is still alive. In this

case, with a probability Gn(Xc
n ), it remains in the same site so that X̂ c

n = Xc
n , and

with a probability 1−Gn(Xc
n ) it is killed and we set X̂ c

n = c.
• Exploration: Once a particle has been killed, it can not be brought back to life

so if X̂ c
n = c then we set X̂ c

p = Xp = c for any p > n. Otherwise, the particle

X̂ c
n ∈ E evolves to a new location Xc

n+1 = x in E randomly chosen according to
the distribution Mn+1(Xc

n ,x).

In this physical interpretation, the measureQn represent the conditional distributions
of the paths of a non absorbed Markov particle. To see this claim, we denote by T
the time at which the particle has been killed

T = inf{n≥ 0 ; X̂ c
n = c}

By construction, we have

Proba(T > n− 1)

= Proba(X̂ c
0 ∈ E, . . . , X̂ c

n−1 ∈ E)

=

∫

En

η0(dx0) G0(x0) M1(x0,dx1) . . .Mn−1(xn−2,dxn−1)Gn−1(xn−1)

= E

(
n−1

∏
p=0

Gp(Xp)

)

This also shows that the normalizing constants Zn represent respectively the proba-
bility for the particle to be alive at time n− 1. In other words, we have that

Zn = Proba(T > n− 1)

Similar arguments yield that the distribution of a particle conditional of being alive
at time n− 1 is

Qn(x0, . . . ,xn) = Proba((Xc
0 , . . . ,X

c
n ) = (x0, . . . ,xn) | T > n− 1)
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Using (1.18) we also have the following backward representation of Qn

Qn(x0, . . . ,xn) = ηn(xn)×Q�
n,ηn−1

(xn,xn−1) · · ·Q�
2,η1

(x2,x1)×Q�
1,η0

(x1,x0)

(1.35)

with the time reversal Markov matrices Q�
n,ηn−1

(xn,xn−1) defined below

Q�
n,ηn−1

(xn,xn−1) =
ηn−1(xn−1)Qn(xn−1,xn)

ηn−1Qn(xn)

1.5.1.4 A Particle Sampling Model

The particle sampling technique of any distributionQn associated with some Markov
transition Mn and some sequence of [0,1]-valued potential function Gn on some
(countable) state space E is defined as before in terms of a genetic type algorithm
with Mn-mutations and Gn-selection type transitions. More precisely, at every time
step n, we sample the mutation-selection transitions as follows: during the mutation
step, every individual performs a local random move according to the Markov tran-
sition Mn. During the selection step, every individual evaluates its potential value
Gn(ξ i

n), with 1≤ i≤N. For every index i, with a probability Gn(ξ i
n), we set ξ̂ i

n = ξ i
n,

otherwise we replace ξ i
n be a fresh new individual ξ̂ i

n = ξ j
n randomly chosen from

the population with a probability proportional to Gn(ξ j
n ).

As in the confinement model (discussed in the previous section), it may happen
that all individuals ξ i

n have a null potential value Gn(ξ i
n) = 0, at some time period n

. In this case, the algorithm stops and we set τN = n to report the time of this event.
Under some rather weak regularity properties, we also mention that the stopping
time τN tends to infinity as the size of the population N → ∞.

For any time horizon n and any function f on the set En, we have

lim
N→∞

1
N

N

∑
i=1

f (ξ i
0,n,ξ

i
1,n, . . . ,ξ

i
n,n) �τN>n = ∑

x0,...,xn

f (x0, . . . ,xn) Qn(x0, . . . ,xn) (1.36)

Furthermore, the unbiased approximations of the normalizing constants Zn are
given by

Z N
n := ∏

0≤p<n

ηN
p (Gp) with ∀n ∈N ηN

n (Gn) :=
1
N ∑

1≤i≤N

Gn(ξ i
n) (1.37)

In addition, mimicking formula (1.41), an alternative particle approximation of the
measures Qn is defined, replacing the measures ηn by their particle approximations

Q
N
n (x0, . . . ,xn) = ηN

n (xn)×Q�
n,ηN

n−1
(xn,xn−1) · · ·Q�

2,ηN
1
(x2,x1)×Q�

1,ηN
0
(x1,x0)

→N↑∞ Qn(x0, . . . ,xn)
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with the time reversal random matrices Q�
n,ηN

n−1
(xn,xn−1) defined below

Q�
n,ηN

n−1
(xn,xn−1) =

ηN
n−1(xn−1)Qn(xn−1,xn)

ηN
n−1Qn(xn)

=
N

∑
i=1

Qn(ξ i
n−1,xn)

∑N
j=1 Qn(ξ j

n−1,xn)
�ξ i

n−1
(xn−1)

For time homogeneous models (Gn,Mn) = (G,M) associated with a reversible ma-
trix M w.r.t. to some measure μ on E , i.e. μ (x)M (x,y) = μ (y)M (y,x), the corre-
sponding particle model also contains information about the top of the spectrum of
the matrix Q defined through

∀(x,y) ∈ E Q(x,y) := G(x) M(x,y)

More precisely, if we consider λ to be the top eigenvalue of Q in L2(μ) and we
denote by h the corresponding eigenvector s.t. ∑x μ(x)h(x) = 1, then we have

lim
N→∞

lim
n→∞

1
n ∑

0≤p≤n

logηN
p (G) = logλ

as well as

lim
N,n→∞

1
n ∑

0≤p≤n

1
N ∑

1≤i≤N

�x(ξ̂ i
n) �τN>n = μ(x)h(x) = lim

N,n→∞

1
N ∑

1≤i≤N

�x(ξ̂ i
n) �τN>n

For further details on this subject, we refer the reader to [38, 39, 54] and references
therein.

1.5.2 Signal Processing and Bayesian Inference

1.5.2.1 Nonlinear Filtering Problems

We discuss here the application of these particle model to filtering problems. Sup-
pose that at every time step the state of the Markov chain Xn is partially observed
according to the following schematic picture

X0 −→ X1 −→ X2 −→ . . .
↓ ↓ ↓
Y0 Y1 Y2 . . .

with some random variables Yn whose values only depend on the current state of the
chain

Proba(Yn = yn | Xn = xn ) := G(xn,yn) (1.38)

We consider the following pair of events
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An(x):={(X0, . . . ,Xn)=(x0, . . . ,xn)} and Bn−1(y):={(Y0, . . . ,Yn−1)=(y0, . . . ,yn−1)}

The filtering problem consists of computing the conditional distributions of the
state variables An(x) given the observations Bn(y). By construction, given An(x),
the random variables Yn are independent and identically distributed with a distribu-
tion given by

Proba(Bn−1(y) |An(x) ) = ∏
0≤p<n

G(xp,yp)

By direct application of Bayes’ rule we have the following formula

Proba(An(x)∩Bn−1(y)) = Proba(Bn−1(y) |An(x) )×Proba(An(x))

=

{
∏

0≤p<n

G(xp,yp)

}
Pn(x0, . . . ,xn) (1.39)

with the distributions of the path sequence (X0, . . . ,Xn) given by

Pn(x0, . . . ,xn) = Proba(X0 = x0, . . . ,Xn = xn)

from which we conclude that

Proba(An(x) | Bn−1(y) ) =
1

Zn(y)

{
∏

0≤p<n

G(xp,yp)

}
Pn(x0, . . . ,xn)

with the normalizing constants

Zn(y) := Proba(Bn−1(y)) = ∑
x0,...,xn

{
∏

0≤p<n

G(xp,yp)

}
Pn(x0, . . . ,xn)

These Feynman-Kac formulae express the conditional distributions of the path se-
quence (X0, . . . ,Xn) as the distribution Pn(x0, . . . ,xn) of the signal paths
(X0, . . . ,Xn) = (x0, . . . ,xn) weighted by the product of the likelihood functions
G(xp,yp) from the origin p = 0 up to time p = n.

If we fix the observation sequence Yn = yn and set

Gn(xn) := G(xn,yn)

then we find that these measures have exactly the same form as the one presented in
(1.33). We can also rewrite these conditional distributions as follows

Qn(x0, . . . ,xn) = Proba(An(x) | Bn−1(y) )

∝

{
∏

0≤p<n

Gp(xp)

} {
η0(x0) ∏

1≤p≤n

Mp(xp−1,xp)

}

︸ ︷︷ ︸
Pn(x0,...,xn)

= η0(x0)Q1(x0,x1)Q2(x1,x2) . . .Qn(xn−1,xn) (1.40)
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with the positive matrices Qn(xn−1,xn) defined for any n≥ 1 by

Qn(xn−1,xn) := Gn−1(xn−1) Mn(xn−1,xn)

The corresponding particle approximations defined in section 1.5.1.4 are often re-
ferred to as particle filters in signal processing and statistics [36, 37, 52, 38, 67].
These particle algorithms can also be used to approximate the log-likelihood func-
tions using (1.37); that is the log-likelihood

Ln(y) := logZn(y)

is approximated using

LN
n (y) := logZ N

n (y) = ∑
0≤p<n

logηN
p (Gp).

1.5.2.2 Smoothing Estimation Models

Smoothing problems consist of estimating some values of the signal Xp at some time
p, given s series of observations Yq = yq, with 0≤ q≤ n, and p≤ n. One strategy is
to estimate the whole signal path sequence (X0, . . . ,Xn) given the observations from
the origin, up to the time horizon n. The conditional distributions on path space
defined in section 1.5.2.1 can be estimated using three methods:

• the genealogical tree evolution of the particle filters;
• the particle backward Markovian interpretation of conditional distributions;
• the particle conditional distributions of the noise of the signal.

These three methods are described below.

• The genealogical tree evolution of the particle filters. To describe with some
precision these models, let E be the finite state space of the signal, and let
En = E(n+1). These N particle approximations on path spaces coincide with a
simple genetic type evolution model with N path-valued particles

ξ i
n :=

(
ξ i

0,n,ξ
i
1,n, . . . ,ξ

i
n,n

)
and ξ̂ i

n :=
(
ξ̂ i

0,n, ξ̂
i
1,n, . . . , ξ̂

i
n,n

)
∈ En

During the selection stage, with a probability G(ξ i
n,n,yn) every path-valued in-

dividual ξ i
n stays in the same place ξ̂ i

n = ξ i
n; otherwise, we replace ξ i

n be a new

individual ξ̂ i
n = ξ j

n randomly chosen among the individuals ξ j
0 with a probability

proportional to its weight G(ξ i
n,n,yn). This mechanism is intended to favor more

likely signal path sequences. During the mutation transition, ξ̂ i
n evolves randomly

to a new path sequence

ξ i
n+1 = ((ξ i

0,n+1, . . . ,ξ
i
n,n+1),ξ

i
n+1,n+1) = ((ξ̂ i

0,n, . . . . . . , ξ̂
i
n,n),ξ

i
n+1,n+1) ∈ En+1

= (En×E)
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If ξ̂ i
n = xn, then ξ i

n+1,n+1 is a random variable that takes the value x with the
distribution Proba(Xn+1 = xn+1|Xn = xn). As usual, for any function f on En =
E(n+1) and any time horizon n, we have

lim
N→∞

1
N

N

∑
i=1

f (ξ i
0,n,ξ

i
1,n, . . . ,ξ

i
n,n) = ∑

x0,...,xn

Qn(x0, . . . ,xn) f (x0, . . . ,xn)

• Particle backward Markov models. An alternative approach is to use the back-
ward representation (1.18) of the conditional distribution Qn defined in (1.40)

Qn(x0, . . . ,xn) = ηn(xn)×Q�
n,ηn−1

(xn,xn−1) · · ·Q�
2,η1

(x2,x1)×Q�
1,η0

(x1,x0)

(1.41)

with the time reversal Markov matrices Q�
n,ηn−1

(xn,xn−1) defined below:

Q�
n,ηn−1

(xn,xn−1)=
ηn−1(xn−1)Qn(xn−1,xn)

ηn−1Qn(xn)
=

ηn−1(xn−1)Gn−1(xn−1)Mn(xn−1,xn)

∑x ηn−1(x)Gn−1(x)Mn(x,xn)

Replacing the measures ηn by their particle estimates ηN
n , we define the particle

approximation of Qn by setting

Q
N
n (x0, . . . ,xn) = ηN

n (xn)×Q�
n,ηN

n−1
(xn,xn−1) · · ·Q�

2,ηN
1
(x2,x1)×Q�

1,ηN
0
(x1,x0)

→N↑∞ Qn(x0, . . . ,xn)

with the time reversal random matrices Q�
n,ηN

n−1
(xn,xn−1) defined by

Q�
n,ηN

n−1
(xn,xn−1) =

ηN
n−1(xn−1)Qn(xn−1,xn)

ηN
n−1Qn(xn)

=
N

∑
i=1

Gn−1(ξ i
n−1,)Mn(ξ i

n−1,xn)

∑N
j=1 Gn−1(xi j

n−1)Mn(ξ j
n−1,xn)

�ξ i
n−1

(xn−1)

• Particle approximations of the noise of the signal. We further assume that the
signal process given by recursive equations on some finite state space E of the
following form

Xn := Fn(Xn−1,Un) (1.42)

with some independent random variables Un, and with distribution νn indepen-
dent of X0 on the finite set U . If we consider the following events

Cn(u) = {(X0,(U0, . . . ,Un)) = (x0,(u1, . . . ,un))}

then we find that
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Proba(Cn(u) |Bn−1(y) ) =
1

Zn(y)

{
∏

0≤p<n

G(X
(x0,u)

p ,yp)

}
Pn(x0,(u1, . . . ,un))

(1.43)
where X

(x0,u)
n stands for the solution of the discrete generation system (1.42)

associated with a given realization (un)n≥1 and some initial condition x0. The
function G is the likelihood function defined in (1.38).
In the semigroup formulation, X

(x0,u)
n is a function of the initial state and the

control sequence (u1, . . . ,un); that is, we have that X
(x0,u)

n = φn(x0,(u1, . . . ,un))
for some function φn from (E×U n) into E . For any n≥ 0, we set

Hn(x0,(u1, . . . ,un)) := G(φn(x0,(u1, . . . ,un)),yn)

In this notation we have

Proba(Cn(u) |Bn−1(y) )=
1

Zn(y)

{
∏

0≤p<n

Hp(x0,(u1, . . . ,up))

}
Pn(x0,(u1, . . . ,un))

As above, the N particle approximation of these probability measures on control
sequences is again described by genetic evolution models with N path-valued
particles

ξ i
n :=

(
ξ i

0,n,ξ
i
1,n, . . . ,ξ

i
n,n

)

ξ̂ i
n :=

(
ξ̂ i

0,n, ξ̂
i
1,n, . . . , ξ̂

i
n,n

)
∈ En := (E×U n)

During the selection stage, with a probability Hn(ξ i
n) every path-valued individ-

ual stays in the same place ξ̂ i
n = ξ i

n; otherwise, we replace ξ i
n by a new individual

ξ̂ i
n = ξ j

n randomly chosen among the individuals ξ j
0 with a probability propor-

tional to its weight Hn(ξ i
n). This mechanism is intended to favor more likely

noise sequences w.r.t. the observations. During the mutation transition, to every
selected signal-noise sequence ξ̂ i

n we add randomly new possible values of the
noise at time (n+ 1); that is, we set

ξ i
n+1 = ((ξ i

0,n+1, . . . ,ξ
i
n,n+1),ξ

i
n+1,n+1)

= ((ξ̂ i
0,n, . . . . . . , ξ̂

i
n,n),ξ i

n+1,n+1) ∈ En+1 = (En×U ) (1.44)

where ξ i
n+1,n+1 is a random variable with distribution νn on U . Various asymp-

totic estimates can be derived. For instance, for any function f on En = En and
any time horizon n, we have

lim
N→∞

1
N

N

∑
i=1

f (ξ i
0,n,ξ

i
1,n, . . . ,ξ

i
n,n) = ∑

x0,...,xn

Qn(x0,(u1, . . . ,un)) f (x0,(u1, . . . ,un))

(1.45)
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In other words, the occupation measures of the genealogical tree evolution, like
the one illustrated below for (N,n) = (4,5)

ξ 1
2,5

�� ξ 1
3,5

�� ξ 1
4,5

�� ξ 1
5,5

ξ i0
0,5

�� ξ i1
1,5

���
��

��
��

���������
ξ i3

3,5
�� ξ i4

4,5

���
��

��
��

�
�� ξ 2

5,5

ξ i2
2,5

���������
�� ξ 4

3,5
�� ξ 4

4,5

��	
		

		
		

	
ξ 3

5,5

ξ 4
5,5

with any i0 ∈ {1,2,3,4}, i2 ∈ {2,3,4}, i3 ∈ {2,3}, i4 ∈ {2,3}, represent the con-
ditional distribution of (X0,(U1,U2,U3,U4,U5)) w.r.t. the observations (Y0,Y1,Y2,

Y3,Y4), in terms of the more likely initial condition ξ i0
0,5 and the four more likely

signal-noise sequences (ξ i
1,5,ξ

i
2,5,ξ

i
3,5,ξ

i
4,5,ξ

i
5,5)i=1,2,3,4.

1.5.2.3 Approximate Bayesian Computation

Approximate Bayesian computation (abbreviate ABC) techniques are Bayesian in-
ference methods currently used to evaluate posterior distributions without having
to calculate likelihoods. For instance, in biology applications and more particularly
in predictive bacteriology and food risk analysis, the observations of a kinetic bio-
logical complex system are given by counting bacteria individuals after successive
dilutions of a food sample coming from an in vitro culture [74, 75, 80, 81]. Of
course, this experimental observation process is often modeled by a series of Pois-
son type dependent random variables but the computation of the likelihood function
often requires successive summations over the set of all the integers. In this situation
likelihood functions are computationally intractable or very costly to estimate.

One of the central ideas of ABC methods is to replace the evaluation of the like-
lihood function by a simulation-based procedure of the observation process coupled
with a numerical comparison between the observed and simulated data. This strat-
egy is rather well known in particle filtering literature, see for instance [45, 46, 44].
In the same manner, these additional levels of simulation-based approximations can
also be extended to compute the posterior distribution of fixed parameters in hidden
Markov chain models. In signal processing literature, these ABC type particle mod-
els are sometimes called convolution particle filters, see for instance [19, 20, 144].

First, we notice that the transition probabilities of the signal-observation Markov
chain Xn := (Xn,Yn) are given by

Proba(Xn = (xn,yn) |Xn = (xn−1,yn−1)) = Mn(xn−1,xn)×G(xn,yn) (1.46)
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with the likelihood function G defined in (1.38) and the Markov transitions of the
chain Xn

Proba(Xn = xn | Xn = xn−1) = Mn(xn−1,xn)

Suppose that at every time step the state of the pair signal-observation Markov chain
Xn := (Xn,Yn) is partially observed according to the following schematic picture

X0 :=

⎡
⎣

X0

↓
Y0

⎤
⎦ −→ X1 :=

⎡
⎣

X1

↓
Y1

⎤
⎦ −→ X2 :=

⎡
⎣

X2

↓
Y2

⎤
⎦ −→ . . .

↓ ↓ ↓
Y ε

0 Y ε
1 Y ε

2 . . .

with some random variables Y ε
n whose values only depend on the second component

Yn of the current state (Xn,Yn) of the chain

Proba(Y ε
n = yn | (Xn,Yn) = (xn,zn) ) := Gε(zn,yn)

We further assume that the likelihood function Gε(z,y) is a Markov transition in-
dexed by some parameter ε ∈ [0,1] s.t. limε→0 Gε(z,y) = �y(z). When the state
space of the observation process is equipped with some neighborhood system, we
can take

Gε(z,y) =
1

Card(Vε(z))
�Vε (z)(y)

where Vε(z) is a collection of neighborhoods of the point z s.t. Vε(z)→ε→0 {z}. For
instance, if the observation state space is equipped with some distance function d
we can take Vε(z) = {y : d(z,y) ≤ ε}. In this situation, given the the current state
of the chain (Xn,Yn), the observation Y ε

n is randomly chosen in the set Vε(Yn).
Using (1.46) we prove that the distribution Pn((x0,y0), . . . ,(xn,yn)) of the signal-

observation paths

(X0, . . . ,Xn) := ((X0,Y0), . . . ,(Xn,Yn)) = ((x0,y0), . . . ,(xn,yn))

is given by

Pn((x0,y0), . . . ,(xn,yn)) = Proba(An(x)∩Bn(z))

=

{
∏

0≤p≤n

G(xp,zp)

}
Pn(x0, . . . ,xn)

with the pair of events

An(x) := {(X0, . . . ,Xn) = (x0, . . . ,xn)} and Bn(z) := {(Y0, . . . ,Yn) = (z0, . . . ,zn)}

and the distribution Pn(x0, . . . ,xn) := Proba(An(x)) of the paths (X0, . . . ,Xn) =
(x0, . . . ,xn). We consider the following events
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An((x,z)) := An(x)∩Bn(z) and Bε
n(y) := {(Y ε

0 , . . . ,Y
ε
n ) = (y0, . . . ,yn)}

As in section 1.5.2.1, the filtering problem defined above consists of computing
the conditional distributions of the state variables An(x,z) given the observations
Bε

n(y). By construction, given An(x,z), the random variables Y ε
n are independent

and identically distributed with a distribution given by

Proba(Bε
n(y) |An(x,z) ) = ∏

0≤p≤n

Gε (zp,yp) −→ε→0 �(y0,...,yn)(z0, . . . ,zn)

from which we conclude that

Proba(An(x,z) | Bε
n(y) ) =

1
Z ε

n (y)

{
∏

0≤p≤n

Gε(zp,yp)

}
Pn((x0,z0), . . . ,(xn,zn))

→ε↓0 Proba(An(x)∩Bn(y))

with the normalizing constants

Z ε
n (y) := Proba(Bε

n(y))= ∑
(x0,z0),...,(xn,zn)

{
∏

0≤p≤n
Gε(zp,yp)

}
Pn((x0,z0), . . . ,(xn,zn))

→ε↓0 Proba(Bn(y))

As in section 1.5.2.1 these posterior distributions have exactly the same form as the
one presented in (1.33). Notice that in this situation, at every time step n the stochas-
tic model consists of N-particle samples ξ i

n := (ξ i,1
n ,ξ i,2

n ) with a signal component
ξ i,1

n and the corresponding observation component ξ i,2
n , with 1 ≤ i ≤ N. Given a

series of observations (yn)n≥0, the conditional distributions defined above are ap-
proximated by the N-empirical measures of the particle model

ηN
n :=

1
N

N

∑
i=1
�
(ξ i,1

n ,ξ i,2
n )
−→N→∞ Proba

(
An(x,z)

∣∣ Bε
n−1(y)

)

and an unbiased estimate of the normalizing constants Z ε
n (y) is given by

Z ε,N
n (y) := ∏

0≤p≤n

1
N

N

∑
i=1

Gε(ξ i,2
p ,yp)−→N→∞ Z ε

n (y) = Proba(Bε
n(y))

1.5.3 Interacting Kalman Filters

1.5.3.1 A Brief Introduction to Kalman Filters

We consider a Rp+q-valued Markov chain (Xn,Yn) defined by the recursive relations
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{
Xn = AnXn−1 +BnWn , n≥ 1
Yn = CnXn +DnVn , n≥ 0

(1.47)

for some R
dw and R

dv-valued independent random sequences Wn and Vn, indepen-
dent of X0, and some matrices An,Bn,Cn,Dn with appropriate dimensions. We fur-
ther assume that Wn and Vn are centered Gaussian random sequences with covariance
matrices Rv

n, Rw
n and X0 is a Gaussian random variable in R

p with a mean X̂−0 and
covariance matrix P̂−0 . In the further development of this section we shall denote
by N (m,R) a Gaussian distribution in a d-dimensional space Rd with mean vector
m ∈ R

d and covariance matrix R ∈ R
d×d

N (m,R)(dx) =
1

(2π)d/2
√|R| exp [−2−1(x−m)R−1(x−m)′] dx

Using this notation, we have

Law(Xn |Y0, . . . ,Yn−1) = N (X̂−n ,P−n ) and Law(Xn | Y0, . . . ,Yn−1,Yn) = N (X̂n,Pn)

The synthesis of the conditional mean and covariance matrices is carried out using
the traditional Kalman-Bucy recursive equations

(
X̂−n ,P−n

) updating−−−−−−−−→
(

X̂n,Pn

) prediction−−−−−−−→
(

X̂−n+1,P
−
n+1

)
(1.48)

The updating and the prediction step are given below

[Updating] X̂n = X̂−n +Gn (Yn−CnX̂−n ) and Pn = P−n −GnCnP−n

with the gain matrix Gn = P−n C′n(CnP−n +DnRv
nD′n)−1, and

[Prediction] X̂−n+1 = An+1X̂n and P−n+1 = An+1 Pn A′n+1 +Bn+1 Rw
n+1 B′n+1

Proof. The proof of the updating recursion equation is based on the fact that

X̂n := X̂−n +Gn (Yn− Ŷ−n ) with Ŷ−n = E(Yn|Y0, . . . ,Yn−1) =CnX̂−n

Since E((Xn− X̂n)(Yn− Ŷ−n )′) = 0, we find E((Xn− X̂−n )(Yn− Ŷ−n )′) = Gn E((Yn−
Ŷ−n )(Yn− Ŷ−n )′), from which we find the gain matrix. Finally using the decompo-
sition Xn− X̂n = (Xn− X̂−n )+ (X̂−n − X̂n) and by symmetry argument we conclude
that

Pn = P−n −E((X̂−n − X̂n)(X̂
−
n − X̂n)

′)
= P−n −GnE((Yn− Ŷ−n )(Yn− Ŷ−n )′)G′

n = P−n −GnCnP−n

The proof of the prediction recursion is rather elementary. The first assertion is clear.
The second one comes from the fact that
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P−n+1 = E((An+1(Xn− X̂n)+Bn+1Wn+1)(An+1(Xn− X̂n)+Bn+1Wn+1)
′)

= An+1 Pn A′n+1 +Bn+1 Rw
n+1 B′n+1

It is also useful to observe that

Law(Yn | Y0, . . . ,Yn−1) = N (CnX̂−n ,Cn P−n C′n +Rv
n)

We prove this claim using the fact that, given (Y0, . . . ,Yn−1), the current observation
takes the form

Yn=CnX̃n+DnVn with some variable X̃n s.t. Law
(
X̃n | Y0, . . . ,Yn−1

)
:=N (X̂−n ,P−n ).

We slight abuse the notation and we denote by N (m,R)(x) the density of a Gaus-
sian distribution N (m,R)(dx) = N (m,R)(x)dx w.r.t. the Lebesgue measure dx.
In this notation, the density pn(y0, . . . ,yn) of the random sequence of observation
(Y0, . . . ,Yn) evaluated at the random observation path (Y0, . . . ,Yn) is given by

pn(Y0, . . . ,Yn) =
n

∏
k=0

N (CkX̂−k ,Ck P−k C′k +Rv
k)(Yk)

In Bayesian inference literature, this formula is sometimes written in the following
form

pn(Y0, . . . ,Yn) = pn(Yn |Y0, . . . ,Yn−1)× pn−1(Y0, . . . ,Yn−1) =
n

∏
k=0

pk(Yk |Y0, . . . ,Yk−1).

1.5.3.2 Interacting Kalman Filters

We consider a Markov chain Θn taking values in some finite state space E , and
a collection of matrices An(θ ),Bn(θ ),Cn(θ ),Dn(θ ) indexed by θ ∈ E , and of the
same dimension as the matrices (An,Bn,Cn,Dn) introduced in (1.47)indexed We let
(Θn,Xn,Yn) be the (E×R

p+q)-valued Markov chain defined by the same recursive
relations as in (1.47)

{
Xn = An(Θn)Xn−1 +Bn(Θn)Wn , n≥ 1
Yn = Cn(Θn)Xn +Dn(Θn)Vn , n≥ 0

(1.49)

Arguing as above, given a realization of the chainΘ = (Θn)n≥0, we have

Law(Xn |Θ , Y0, . . . ,Yn−1) = N (X̂Θ ,−
n ,PΘ ,−

n )

Law(Xn |Θ , Y0, . . . ,Yn−1,Yn) = N (X̂Θ
n ,PΘn )

with some parameters (X̂Θ ,−
n ,PΘ ,−

n ) and (X̂Θ
n ,PΘn ) that can be computed using the

same Kalman recursions given above by replacing the matrices (An,Bn,Cn,Dn) by
the matrices (An(Θn),Bn(Θn),Cn(Θn),Dn(Θn)). We observe that (X̂Θ ,−

n ,PΘ ,−
n ) only
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depends on the random sequence (Θ0, . . . ,Θn) so that

N (Cn(Θn)X̂
Θ ,−
n ,Cn(Θn) PΘ ,−

n C′n(Θn)+Rv
n)(Yn) := Gn,Yn (Θ0, . . . ,Θn) (1.50)

Therefore, the density pn((y0, . . . ,yn) | (θ0, . . . ,θn)) of the random sequence of ob-
servation (Y0, . . . ,Yn) evaluated at the random observation path (Y0, . . . ,Yn) and given
a realization of the parameters (Θ0, . . . ,Θn) = (θ0, . . . ,θn) is given by

pn((Y0, . . . ,Yn)| (θ0, . . . ,θn)) =
n

∏
k=0

Gk,Yk (θ0, . . . ,θn) (1.51)

If we denote by Pn(θ0, . . . ,θn) the probability measure of the sequence of random
parameters (Θ0, . . . ,Θn), then using Bayes’ rule we find that the probability measure

Qn(θ0, . . . ,θn) :=
1

Zn,Y

{
∏

0≤k<n

Gk,Yk (θ0, . . . ,θn)

}
Pn(θ0, . . . ,θn) (1.52)

(with some normalizing constant Zn,Y ) coincides with the conditional distribution
of the random sequence (Θ0, . . . ,Θn) given the observations (Y0, . . . ,Yn−1); that is,
we have that

Qn = Law((Θ0, . . . ,Θn) | (Y0, . . . ,Yn−1))

The corresponding particle approximations on the set of sequences are often re-
ferred as particle methods in path space in signal processing literature and Bayesian
inference studies (see for instance [38, 53, 67], and references therein).

1.5.4 Stochastic Optimization Algorithms

1.5.4.1 Interacting MCMC Models

We present now a genetic type particle strategy for sampling random states accord-
ing to a sequence of probability measures on some finite state space E given by

μn(x) =
1

λ (Gn)
Gn(x) λ (x) with Gn(x) := Gn−1(x)× gn−1(x) = ∏

0≤p<n

gp(x)

where λ (x) is a probability measure and gn is a collection of positive functions on
E .

The interacting particle sampler of these measures is defined as follows. We start
with a population of N independent individuals ξ0 :=

(
ξ i

0

)
1≤i≤N randomly cho-

sen in E according to μ0. We perform a selection transition ξ0 � ξ̂0 :=
(
ξ̂ i

0

)
1≤i≤N

using the potential functions g0. More precisely, every individual evaluates its po-
tential value g0(ξ i

0). For every index i, with a probability g0(ξ i
0), we set ξ̂ i

0 = ξ i
0,
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otherwise we replace ξ i
0 by a new individual ξ̂ i

0 = ξ j
0 randomly chosen in the whole

population with a probability proportional to g0(ξ
j

0 ). During the mutation transition

ξ̂0 � ξ1 :=
(
ξ i

1

)
1≤i≤N , every selected individual ξ̂ i

0 performs a local random move

ξ̂ i
0 � ξ i

1 (independently of one another) according to the Markov transition P1 as-
sociated with an MCMC sampler with invariant measure μ1. Then, we perform a

selection transition ξ1 � ξ̂1 :=
(
ξ̂ i

1

)
1≤i≤N

using the fitness functions g1. After this

selection stage we mutate each selected individual using the Markov transition P2

associated with an MCMC sampler with invariant measure μ2, and so on. Iterating
these transitions, we define a simple genetic model with mutations transitions Pn

and selection fitness functions gn:

ξn :=
(
ξ i

n

)
1≤i≤N ∈ EN selection−−−−−−−−→ ξ̂n :=

(
ξ̂ i

n

)
1≤i≤N

∈ EN mutation−−−−−−−→ ξn+1 ∈ EN

(1.53)
This algorithm belongs to the class of sequential Monte Carlo samplers proposed
in [40]. Many convergence results can be established. For instance, under some
weak regularity conditions we can show that for any 1≤ q≤N, and any time horizon
n ≥ 0, the first q random samples (ξ i

n)1≤i≤q among N are almost independent and
identically distributed with the desired target measure μn; that is, we have that

∑
x1,...,xq

∣∣Proba
(
ξ 1

n = x1, . . . ,ξ q
n = xq)− μn(x

1) · · ·μn(x
q)
∣∣≤ c(n)min

(
q2

N
,

√
q
N

)

and some finite constant c(n)< ∞. We also have that for any x ∈ E and any n≥ 0

lim
N→∞

1
N ∑

1≤i≤N

�ξ i
n
(x) = μn(x) and Z N

n := ∏
0≤p<n

ηN
p (gp)−→N→∞ Zn

1.5.4.2 Interacting Monte Carlo Markov Chains

Suppose we want to compute the global minima of a given non negative cost
function V on some finite state space E equipped with the counting measure
λ (x) := 1

Card(E) . From the probabilistic point of view, this problem amounts to

sampling random states according to the Boltzmann-Gibbs distributions associated
with a large inverse temperature parameter β and given

μβ (x) :=
1

Zβ
e−βV(x) λ (x) with Zβ :=∑

x
e−βV(x) λ (x)

There is no loss of generality to assume that infx V (x) = 0 and for any state x �∈V0 :=
V−1({0}), V (x)≥ δ for some δ > 0. It follows that we have

Card(V0)≤Zβ ≤ Card(V0)+Card(V c
0 ) e−βδ →β↑∞ Card(V0)
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and therefore
lim
β→∞

μβ (x) = μ∞(x) := �V0(x)/Card(V0)

This simple observation shows that sampling according to μβ is roughly equivalent
to randomly sampling an unknown state variable with minimal cost. For very large
state spaces, it is typically impossible to sample from μβ directly.The celebrated
simulated annealing algorithm to sample from μ∞ consists of sampling approxi-
mately from a sequence of distributions μβn where βn is a non-decreasing sequence
going to ∞. The rationale is that it is “easier” to sample from μβ when β is small; if
β = 0 then μ0 is the uniform counting measure on E from which it is trivial to sam-
ple. For βn > 0, we sample approximately from each intermediate distribution μβn

using Markov chain Monte Carlo (MCMC) sampling techniques; that is we select
a transition matrix Mβn =

(
Mβn(x,y)

)
x,y∈E

with left eigenvector μβn associated with
the eigenvalue 1, that is

∑
x
μβn(x)Mβn(x,y) = μβn(y)

The probabilistic interpretation of the above equation is as follows: pick randomly
a state x with distribution μβn(x) and take a random transition x � y from the dis-
tribution Mβn(x,y), then the probability of being at state y is again μβn(y). The liter-
ature on MCMC methods discusses numerous choices of transitions Mβn satisfying
this property. The most famous is the Metropolis-Hastings transition associated to a
symmetric transition matrix K(x,y) = K(y,x) and defined by

Mβn(x,y)

=K(x,y) min
(

1,e−βn(V (y)−V (x))
)
+
(

1−∑z K(x,z) min
(

1,e−βn(V (z)−V (x))
))
�x(y)

Using the fundamental ergodic theorem for regular Markov chains, starting from
any initial state x0, the n-th step of a run of the Markov chain with transitions Mβn

has a probability very close to μβn(y) of being at the site y, for a large n. Practically,
we select β1 and we run the chain starting at X0 = x0 for a large enough number of
runs n1 such that the law of the state Xn1 is close to μβ1

X0 = x0
Mβ1−→ X1

Mβ1−→ . . .
Mβ1−→ Xn1 with n1 large enough s.t. Law(Xn1)� μβ1

Notice that the choice of n1 depends on β1: the larger β1 is, the “peakier” μβ1
is and

the larger n1 is. When the chain is stabilized, we choose a β2 > β1 and we run the
chain starting at Xn1 for a new large enough number of time steps n2 such that the
law of the state Xn1+n2 is close to μβ2

Xn1

Mβ2−→ Xn1+1
Mβ2−→ . . .

Mβ2−→ Xn1+n2 with n2 large enough s.t. Law(Xn1+n2)� μβ2
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The theoretical “optimal” inverse temperature parameter ensuring convergence in
some sense of the Markov chain to μ∞ is logarithmic. This amounts to saying that
we change by one unit the parameter β on every time interval with exponential
length. This is unrealistic from a practical point of view.

We present now an alternative particle strategy for sampling random states ac-
cording to the sequence of measures μβn associated with a given non decreasing
sequence of inverse temperature parameters βn. We suppose that β0 = 0 so that μβ0

coincides with the uniform counting measure on the set E . We start with N inde-
pendent individuals ξ0 :=

(
ξ i

0

)
1≤i≤N randomly chosen in E according to μβ0

. We

perform a selection transition ξ0 � ξ̂0 :=
(
ξ̂ i

0

)
1≤i≤N

using the potential functions

G0 defined by

G0(x) = exp(−(β1−β0)V (x))

In other words, every individual evaluates its potential value G0(ξ i
0). For every in-

dex i, with a probability G0(ξ i
0), we set ξ̂ i

0 = ξ i
0, otherwise we replace ξ i

0 by a new

individual ξ̂ i
0 = ξ j

0 randomly chosen in the whole population with a probability pro-

portional to G0(ξ
j

0 ). During the mutation step ξ̂0 � ξ1 :=
(
ξ i

1

)
1≤i≤N , every selected

individual ξ̂ i
0 performs a local random move ξ̂ i

0 � ξ i
1 (independently of one an-

other) according to the Markov transition Mβ1
. Then, we perform another selection

transition ξ1 � ξ̂1 :=
(
ξ̂ i

1

)
1≤i≤N

using the fitness functions G1 defined below:

G1(x) = exp(−(β2−β1)V (x))

After this selection stage we mutate each selected individual using the Markov tran-
sition Mβ2

, and so on. Iterating these transitions, we define a simple genetic model
with mutation transitions Mβn and selection fitness functions Gn:

ξn :=
(
ξ i

n

)
1≤i≤N ∈ EN selection−−−−−−−−→ ξ̂n :=

(
ξ̂ i

n

)
1≤i≤N

∈ EN mutation−−−−−−−→ ξn+1 ∈ EN

(1.54)
This algorithm was first proposed in [40]. A variety of convergence results can be
established for this algorithm. For instance, for any function f on E and any time
horizon, we have

lim
N→∞

1
N ∑

1≤i≤N

f (ξ i
n) =∑

x
μβn(x) f (x)

In addition, if we set ηN
n (Gn) := 1

N ∑1≤i≤N Gn(ξ i
n), the unbiased N-particle approx-

imation Z N
βn

of the normalizing constants Zβn is given by

Z N
βn

:= ∏
0≤p<n

ηN
p (Gp)−→N→∞ Zβn
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1.5.4.3 Combinatorial Counting and Sampling

Suppose we want to compute the cardinality of a given subset A of some finite state
space E equipped with the counting measure λ (x) := 1

Card(E) . Once again, from a

probabilistic point of view, this problem is equivalent to computing the normalizing
constant of the following Boltzmann-Gibbs distribution

μA(x) :=
1

ZA
�A(x) λ (x) with ZA :=∑

x
�A(x) λ (x)

To sample from μA and compute ZA, the idea consists of selecting a judicious se-
quence of decreasing subsets An in such a way that it is easy to sample states in An

starting from the set An−1. We suppose that A0 = E so that μA0 coincides with the
uniform counting measure on the set E . The algorithm is thus very similar to the
one described previously for optimization. For any set An, we introduce an MCMC
transition matrix MAn = (MAn(x,y))x,y∈E with left eigenvector μAn associated with
the eigenvalue 1, that is

∑
x
μAn(x)MAn(x,y) = μAn(y)

A simple Metropolis-Hasting type transition associated with a symmetric transition
matrix K(x,y) = K(y,x) is given by

MAn(x,y) = K(x,y) �An(y)+

(
1−∑

z
K(x,z) �An(z)

)
�x(y)

The N-particle stochastic algorithm is defined as follows. We start with N inde-
pendent random individuals ξ0 :=

(
ξ i

0

)
1≤i≤N randomly chosen in E with μA0 . We

perform a selection transition ξ0 � ξ̂0 :=
(
ξ̂ i

0

)
1≤i≤N

using the fitness functions

G0 = �A1 . In other words, every individual in the set A1 stays in the same place

ξ̂ i
0 = ξ i

0, otherwise we replace ξ i
0 by a fresh new individual ξ̂ i

0 = ξ j
0 randomly cho-

sen among the individuals ξ j
0 ∈ A1. When no individuals ξ j

0 are in the set A1, the
algorithm stops and we set τN = 0. Assuming that τN > 0, during the mutation step
ξ̂0 � ξ1 :=

(
ξ i

1

)
1≤i≤N , every selected individual ξ̂ i

0 performs a local random move

ξ̂ i
0 � ξ i

1 (independently of one another) in the set A1 according to the Markov tran-

sition MA1 . Then, we perform another selection transition ξ1 � ξ̂1 :=
(
ξ̂ i

1

)
1≤i≤N

using the fitness functions G1 = �A2 . When no individuals ξ j
1 are in the set A2, the

algorithm stops and we set τN = 1. After this selection stage we mutate each se-
lected individual using the Markov transition MA2 , and so on. For any function f on
E and any time horizon n, we have
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lim
N→∞

1
N ∑

1≤i≤N

f (ξ i
n)�τN>n =∑

x
μAn(x) f (x)

In addition, if we set ηN
n (Gn) := 1

N ∑1≤i≤N Gn(ξ i
n), the proportion of individuals

in An+1 after the n-th mutation, the unbiased N-particle approximation Z N
An

of the
normalizing constants ZAn is given by

Z N
An

:= ∏
0≤p<n

ηN
p (Gp)−→N→∞ ZAn = Card(An)/Card(E)

1.5.4.4 Genetic Search Algorithms

We consider an energy function or a cost criteria V : x∈E �→ (x) on some finite state
space E where we assume infx V (x) = 0 without loss of generality. The objective is
to find the global minima points x� ∈ E s.t. V (x�) = infx∈E V (x). Let V � denote the
set of these points. We describe in Section 1.5.4.2 an interacting particle algorithm
to solve this problem which relies on interacting simulated annealing type chains.
We present here the more standard genetic algorithm with mutation and proportional
selection.

To construct this algorithm, we introduce a collection of Markov transitions
Mn(x,y) from E into itself. This collection of transition matrices represents the
probability Mn(x,y) that a individual at site x evolves to a new state x during the
n-th mutation transition.

The genetic algorithm with N individuals is defined as follows. We start with
N independent random individuals ξ0 :=

(
ξ i

0

)
1≤i≤N randomly chosen in E with

some distribution η0. We perform a proportional type selection transition ξ0 � ξ̂0 :=(
ξ̂ i

0

)
1≤i≤N

using the potential functions G0
(
ξ i

0

)
= exp(−β0V

(
ξ i

0

)
), where β0 ≥ 0

is an inverse temperature parameter. In other words, with probability G0(ξ i
0) ev-

ery individual stays in the same place ξ̂ i
0 = ξ i

0; otherwise, we replace ξ i
0 by a new

individual ξ̂ i
0 = ξ j

0 randomly chosen among the individuals ξ j
0 with a probability

proportional to its weight G0(ξ i
0). Formally, we set

ξ̂ i
0 = ε i

0 ξ
i
0 +

(
1− ε i

0

)
ξ̃ i

0

where ε i
0 stands for a sequence of independent {0,1}-valued Bernoulli random vari-

ables with distributions

G0(ξ i
0) := Proba

(
ε i

0 = 1 | ξ0
)
= 1−Proba

(
ε i

0 = 0 | ξ0
)

and ξ̃0 :=
(
ξ̃ i

0

)
1≤i≤N

are independent, identically distributed and
{
ξ j

0 , 1≤ j ≤ N
}

-

valued random variables with common distributions given for any index 1 ≤ i≤ N
by
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∀1≤ j ≤ N Proba
(
ξ̃ i

0 = ξ j
0 | ξ0

)
= G0(ξ j

0 )/ ∑
1≤ j≤N

G0(ξ j
0 )

During the mutation step ξ̂0 � ξ1 :=
(
ξ i

1

)
1≤i≤N , every selected individual ξ̂ i

0 per-

forms a local random move ξ̂ i
0 � ξ i

1 (independently of one another) according
to the Markov transition M1. Then, we perform another proportional type se-

lection transition ξ1 � ξ̂1 :=
(
ξ̂ i

1

)
1≤i≤N

using the potential functions G1
(
ξ i

1

)
=

exp(−β1V
(
ξ i

1

)
), where β1 ≥ 0 is another inverse temperature parameter, and so

on. We define in this way a sequence of genetic type populations ξn, ξ̂n, as in (1.28)
and the corresponding genealogical tree model (1.30) associated with the ancestral
lines

(
ξ i

p,n

)
0≤p≤n

of every i-th individuals after the n-th mutation. In the same way,
running back in time we have the whole ancestral line

ξ̂ i
0,n ←− ξ̂ i

1,n ←− . . .←− ξ̂ i
n−1,n ←− ξ̂ i

n,n = ξ̂ i
n (1.55)

of every i-th individual after the n-th selection.
For any function f on En and any time horizon n, we can prove that

lim
N→∞

1
N

N

∑
i=1

f (ξ̂ i
0,n, ξ̂

i
1,n, . . . , ξ̂

i
n,n) =

E
(

fn(X0, . . . ,Xn) exp
(−∑0≤p≤nβp V (Xp)

))

E
(
exp

(−∑0≤p≤nβp V (Xp)
))

In other words, the proportion of paths (ξ̂ i
0,n, ξ̂

i
1,n, . . . , ξ̂

i
n,n) taking some value

(x0, . . . ,xn) is given by

lim
N→∞

1
N

N

∑
i=1
�(x0,...,xn)(ξ̂

i
0,n, ξ̂

i
1,n, . . . , ξ̂

i
n,n) =

1
Zn+1

exp

(
− ∑

0≤p≤n
βp V (xp)

)
Pn(x0, . . . ,xn)

with the probability of a free evolution path involving only mutation transitions

Pn(x0, . . . ,xn) = η0(x0)M1(x0,x1) . . .Mn(xn−1,xn)

where Zn+1 is a normalizing constant.
Suppose that every free evolution path has the same chance to be sampled, in the

sense that
Pn(x0, . . . ,xn) = Pn(y0, . . . ,yn)

for any admissible pair of paths (x0, . . . ,xn) and (y0, . . . ,yn). This condition is satis-
fied if η0 is the uniform counting measure on E and the mutation transitions Mn(x,y)
correspond to local random choices of the same number of neighbors, starting from
any state x. In this case, for any admissible path (x0, . . . ,xn) we have that

lim
N→∞

1
N

N

∑
i=1
�(x0,...,xn)(ξ̂

i
0,n, ξ̂

i
1,n, . . . , ξ̂

i
n,n) =

1
Z ′

n
exp

(
− ∑

0≤p≤n

βp V (xp)

)



1 On the Foundations and the Applications of Evolutionary Computing 53

for some normalizing constant Z ′
n . When the inverse temperature parameter βp in-

creases the r.h.s. probability mass quantity only charges admissible paths (x0, . . . ,xn)
that minimize the path potential function

Vn(x0, . . . ,xn) = inf
(y0,...,yn)

∑
0≤p≤n

V (yp)

In other words at low temperatures, the ancestral lines of the simple genetic model
described above converge to the uniform measure on all the paths (x0, . . . ,xn) of
length n that minimize the energy function Vn. For time homogenous mutation tran-
sitions associated with stochastic matrices Mn(x,y) = M(x,y) satisfying the follow-
ing condition for some integer m≥ 1 and any pair (x,y) ∈ E2

M(x,x) > 0 and Mm(x,y)≥ εMm(x,z)

we also have the convergence result

lim
n→∞

lim
N→∞

1
N

N

∑
i=1

�V�(ξ̂ i
n) = 1

as soon as βn = C log(n+ 1) for some constant C that depends on m and on the
oscillations of the function V . This convergence result is also true for βn = C (n+
1)α , with any α ∈]0,1[, as soon as the above condition is met for m = 1.

Further details on these concentration properties can be found in [55]. Related
convergence results for fixed population sizes can be found in [24]. To give a flavor
of these results, let us suppose that the mutation transitions Mn(x,y) also depend on
the inverse temperature parameter and

Mn(x,y)→n→∞ �x(y) as βn ↑ ∞

Intuitively speaking, the genetic mutations become rare transitions at low tempera-
tures. In this situation, we can prove that there exists a “critical population size” N�

that depends on the energy function as well as on the free evolution model such that

∀N ≥ N� lim
n→∞

Proba
(
∀1≤ i≤ N ξ̂ i

n ∈V �
)
= 1

1.5.5 Analysis of Convergence under Uncertain Behavior

The following analysis focuses on a particular class of genetic type algorithms for
which it is assumed that operators have a nonzero probability of erroneous or un-
certain behavior. A direct example may be found in practice for distributed environ-
ments where remote nodes carry part of the steps of the algorithm and where nodes
are prone to processing or communication errors and malicious behavior. Different
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questions arise in this context on the influence of erroneous (or abnormal) operation
on the convergence of the algorithm.

In this work we do not concentrate on proving that we have a probability one in
reaching the optimal solution when time goes to infinity, given a fixed population
size, as these results are already present in the literature [145, 146], but rather on
bounding the probability that the obtained results are within a certain error thresh-
old. Another line of research is concerned with results using Feynman-Kac repre-
sentations, focusing on the asymptotic stability and uniform convergence of genetic
algorithms [47]. Note that in the following we will address convergence in finite
spaces.

Finally, connections to dynamic optimization or in the presence of uncertainties
could be made by considering noise or time dependent external factors as being an
integrated part of how the operators function.

Let (Xn)n≥0, Xn ∈ E , be a Markov chain, with E being an arbitrary space, for
which a transition kernel is given as

M(x,dy) = P(Xn ∈ dy|Xn−1 = x).

Assumption A1: There exists ν , a probability measure over E , λ > 0, m≥ 1 s. t.

P(Xm ∈ dx|X0 = x0)≥ λν(dx)

Example 1.5.1. Let E = {x1,x2, . . . ,xd} be a finite space and M(x,y) ≥ δ > 0 a
Markov transition

(
M(x,y) ≥ δd× 1

d

)
. Having ν(y) = 1

d a uniform measure over
E and by denoting with λ = δd, we obtain that

M(x,y) = P(X1 = y|X0 = x)≥ λν(y).

Example 1.5.2. Let E = {x1,x2, . . . ,xd} be a finite space and Mm(x,y) a Markov
transition involving the application of the M kernel m times, with Mm(x,y) ≥ δ >
0⇔Mm(x,y)≥ δd× 1

d . By denoting as previously λ = δd, we obtain thus

Mm(x,y) = P(Xm = y|X0 = x)≥ λ ν(y).

Under Assumption (A1), it is well known that there exists an unique probability
measure π s.t. πM = π . This measure π is said to be an invariant measure.

Remark 1.5.3. We further assume that E is finite and Assumption (A1) is met for
m= 1, and some measure ν s.t. ν(x)> 0 for any x∈E. We also let π be the invariant
measure for the Markov chain of transition M. In this case, for any x ∈ E we clearly
have that:

π(x) =∑
y
π(y)M(y,x) > 0,∀x

The same goes for the case involving m successive transition steps (see Example
1.5.2.):
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π(x) =∑
y
π(x)Mm(x,y)> 0,∀x, as Mm(x,y)> 0,∀x.

For more general state spaces E, for any measurable subset A⊂ E we have

π(A) =
∫

A
π(dx) =

∫
π(dx)Mm(x,A)> 0,∀x, as Mm(x,A)> 0,∀x.

Notation: We let πn = 1
n ∑

0≤p<n

δXp be the occupation measure of the Markov chain

(Xp)p≥0 at time n, starting at some initial state, say X0 = x0. For any bounded mea-
surable function f on E , we set

πn( f ) =
∫

f (x) πn(dx) =
1
n ∑

0≤p<n

f (Xp) and π( f ) =
∫

f (x) π(dx)

In order to obtain stronger bounds we will base our further investigations on the
result presented in [86], adjusted to our context, i.e. ‖ f‖ = 1 and using the afore-
mentioned notation.

Theorem 1.5.4. (Glynn and Ormoneit [86]) Under the conditions of Assumption
(A1), for any bounded measurable function f s.t. ‖ f‖= 1, and for any n> 2m/(λε)
and ε > 0, we have that

P(πn( f )−E(πn( f ))≥ ε)≤ e
− λ2(nε−2m/λ)2

2nm2

When considering the absolute value, it is implied moreover that

P(|πn( f )−E(πn( f ))| ≥ ε)≤ 2× e
− λ2

2m2 (ε− 2m
λn )

2

(1.56)

Example 1.5.5. As a direct application of this result, for m = 1 and ∀n > 2/(λε),
we have that

P(πn( f )−E(πn( f ))≥ ε)≤ e−
λ2
2n (nε− 2

λ )
2

= e−
λ2n

2 (ε− 2
λn )

2

We further assume that Assumption (A1) is met for some parameters λ > 0 and
m≥ 1, and some probability measure ν on E . We notice that

E

(
1
n ∑

0≤p<n

f (Xp)

)
=

1
n ∑

0≤p<n

E( f (Xp)) =
1
n ∑

0≤p<n

Mp( f )(x0).

On the other hand, under our assumptions it is well known that

sup
x0,y0

|Mp( f )(x0)−Mp( f )(y0)| ≤ c1(m) e−c2(m) p
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for any p≥ 0, and any measurable function f on E s.t. ‖ f‖= 1, for some nonnegative
and finite constants c1(m) and c2(m) whose values only depend on the parameters
λ and m. For a detailed proof of these inequalities we refer the reader to [38].

Thus, recalling that π = πMp, for any p ≥ 0, the following relations can be
derived:

�(πn( f ))−π( f ) =
1
n ∑

0≤p<n

[Mp( f )(x0)−π( f )] =
1
n ∑

0≤p<n

[Mp( f )(x0)−πMp( f )]

so that

|�(πn( f ))−π( f )| = 1
n

∣∣∣∣∣ ∑0≤p<n

[Mp( f )(x0)−πMp( f )]

∣∣∣∣∣

≤ c1(m)× 1
n ∑

0≤p<n

e−c2(m) p ≤ c3(m)/n

for some constant
c3(m)≤ c1(m)/(1− e−c2(m))

Considering these results with Theorem 1.5.4. one can conclude that

P(|πn( f )−π( f )| ≥ ε)≤ P(|πn( f )−E(πn( f ))|+ |E(πn( f ))−π( f )| ≥ ε)
≤ P(|πn( f )−E(πn( f ))| ≥ ε− c3(m)/n)

≤ 2e−
λ2n

2 (ε−[c3(m)+2/λ ]/n)2

(1.57)

for any n ≥ 1 and any ε > 0 such that ε > [c3(m)+ 2/λ ]/n. We summarize the
above discussion with the following corollary:

Corollary 1.5.6. Under the conditions of Assumption (A1), for any bounded mea-
surable function f s.t. ‖ f‖ = 1, any ε > 0 and any n > [c3(m)+ 2/λ ]/ε , we have
the exponential concentration inequality

P(|πn( f )−π( f )| ≥ ε)≤ 2e−
λ2n

2 (ε−[c3(m)+2/λ ]/n)2

with some finite constant c3(m)≤ c1(m)/(1− e−c2(m)).

1.5.5.1 Application in Optimization and Archive Models

As already mentioned, the existing results are mainly intended on the study of
the behavior in an optimization environment, focusing on the limiting behavior
[145, 146] as well as the limit probability distribution over populations as depicted
in [147]. Further results, see for instance [130], deduce properties of the stationary
distribution of the Markov chain associated with the evolutionary process by con-
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structing a quotient chain associated with the original chain. The advantage offered
by the herein depicted new result resides in the fact that it is based on an assump-
tion that concerns the overall transitions, without being bounded to specific types
of operators (mutation, selection) and without requiring any additional stronger as-
sumptions. In fact, it provides the means of building specific transition operators
that need only to satisfy the conditions from assumption (A1).

In order to apply the results presented in the previous section, in an optimiza-
tion context, we consider a finite state space E for which |E| = d and an objective
function V having the set of optimal solutions defined as V ∗ = {x|V(x) = inf(V )}=
{x∗1,x∗2, . . . ,x∗d∗}.

The aforementioned existing convergence results from [145, 146] were applied
in an optimization context and considered the study of the behavior of the algorithm
in limit, when time tends ot infinity. In the current case we consider the probability
of deviation from the invariant measure to be bounded by a positive vlaue ε and
establish bounds on these probability.

Let us also assume π an invariant measure such that ∀i= {1,2, . . . ,d∗}, π(x∗i )> 0

and π(V ∗) =
d∗

∑
i=1

π(x∗i ). Let us further consider the optimization context modeled as

{
X∗n = Argmin{V(X0),V (X1), . . . ,V (Xn)},
V (X∗n ) = min

(
V (X∗n−1),V (Xn)

)
,

(1.58)

where X∗n−1 ∈V ∗ is the equivalent of having
1
n

n−1

∑
i=0
�V ∗(Xi)> 0.

When applying the previously obtained results from equation (1.57), for f = �V ∗
and by considering the measure π on V ∗, the following holds:

P

(∣∣∣∣∣
1
n

n−1

∑
i=0
�V∗(Xi)−π(V ∗)

∣∣∣∣∣≥ ε

)
≤ 2e−

λ2n
2 (ε−[c3(m)+2/λ ]/n)2

(1.59)

for any n > [c3(m)+ 2/λ ]/ε . Adopting an opposite perspective, i.e. for the proba-
bility of having a deviation smaller than a given threshold, the following expression
is derived:

P

(∣∣∣∣∣
1
n

n−1

∑
i=0
�V ∗(Xi)−π(V∗)

∣∣∣∣∣< ε

)
≥ 1− 2e−

λ2n
2 (ε−[c3(m)+2/λ ]/n)2 (1.60)

for any n > [c3(m)+ 2/λ ]/ε . At the same time, without any loss of generality, we
consider ε = ε ′π(V ∗), with ε ′ ∈ [0,1[, which leads to

P

(∣∣∣∣∣
1
n

n−1

∑
i=0
�V ∗(Xi)−π(V∗)

∣∣∣∣∣< ε

)
≤ P

(
1
n

n−1

∑
i=0
�V∗(Xi)≥ π(V ∗)− ε

)
(1.61)



58 P. Del Moral, A.-A. Tantar, and E. Tantar

where the right part of the expression can be rewritten as follows:

P

(
1
n

n−1

∑
i=0

�V∗(Xi)≥ π(V ∗)(1− ε ′)
)
≥ 1− 2× e−

λ2n
2 (ε ′π(V∗)−[c3(m)+2/λ ]/n)

2

(1.62)

for any n > [c3(m)+ 2/λ ]/ε ′π(V ∗). Nonetheless, given that the following stands,
in relation with the above result, we conclude the following

P

(
1
n

n−1

∑
i=0
�V∗(Xi)≥ π(V ∗)(1− ε ′)

)
≤ P(X∗n ∈V ∗) (1.63)

and

P(X∗n ∈V ∗)≥ 1− 2× e−
λ2n

2 (ε ′π(V∗)−[c3(m)+2/λ ]/n)
2

for any 0 < ε ′ < 1 and any n > [c3(m)+ 2/λ ]/ε ′π(V ∗). For instance, taking ε ′ =
1/2 we find that

n > 4(c3(m)+ 2/λ )/π(V ∗)⇒ π(V ∗)/2− [c3(m)+ 2/λ ]/n > π(V ∗)/4

From these observations, we obtain the following theorem:

Theorem 1.5.7. Under the conditions of Assumption (A1), we have that

∀n > 4
c3(m)+ 2/λ

π(V ∗)
, P(X∗n ∈V ∗)≥ 1− 2e−n (λπ(V∗))2/32

The above result clearly shows that convergence is attained exponentially fast as
n→∞. As a consideration for application in practice, if π(V ∗) or λ are close to zero,
a large value is required for n, i.e. the algorithm needs a large number of iterations in
order to converge. The current result reaches generality as it provides clear bounds
on the probability that the evolutionary algorithm modeled as a Markov process,
approaches the actual global optima of the optimization problem, without focusing
on limit properties when time goes to infinity and without considering the absence
of mutation/selection [129].

1.5.5.2 Bounds on Perturbed Processes

The current section aims at quantifying the error that a given stochastic perturba-
tion has on the behavior of a genetic algorithm. Perturbations are considered to be
induced, for example, as a result of external stochastic factors affecting the tran-
sition kernel and/or the selection kernel based on the use of a potential function.
While the semantics of what exactly perturbed behavior means are widely open,
e.g. some functional error, malicious behavior, etc., we will only consider that, with
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some known probability, the operators behave in some different manner than what is
expected. In order to model this behavior we consider a genetic algorithm for which
the transition kernel and the potential function are given by Mn, respectively Gn. A
perturbed version of the algorithm, in the limits of the previous terms, is considered
to be defined on Mε

n and Gε
n , where, with some fixed probability ε , the behavior of

the transition kernel, for example, is different than what the Mn kernel models, while
with probability 1− ε , the Mn kernel applies. An analogous definition is considered
for Gε

n, i.e. with probability ε the potential of a solution is given by Gε
n, otherwise,

with probability 1− ε , being given by Gn. Examples may be found in practice, e.g.
algorithms executed across volatile resources or with the support of external, unreli-
able participants that offer or share computational power, and where, due to failures
or malicious behavior, the way different operators act can not be ensured – a brief
outline and discussion is offered by the end of this section.

A question that one may ask is, knowing that Mn and Mε
n are comparable up

to some constant, what impact on convergence does the Mε
n transition kernel have,

i.e. is there a significant difference between ηε,Nn ( f ) and ηN
n ( f ), do the algorithms

converge to similar or comparable results? A similar remark can be raised by ob-
serving the effect Gε

n has on convergence. An analysis of both cases is presented in
the following, within some assumptions on the relative difference of Mε

n and Mn,
respectively of Gε

n and Gn.
We recall that the total variance distance is defined by

Definition 1.5.8. (Total variance distance)

‖μ−ν‖tv = sup
f :ω( f )≤1

|μ( f )−ν( f )|

Given a positive and bounded potential function Gn on E , we start by introducing the
mappings (φn)n≥1, (ψGn)n≥0, respectively (φn)

ε
n≥1 and (ψGn)

ε
n≥0 from P(E) into it-

self, with Mn being some Markov transition;ψGn can be, for example, a Boltzmann-
Gibbs mapping.

{
φεn+1(η) =ΨGε

n
(η)Mε

n+1

φn+1(η) =ΨGn(η)Mn+1
(1.64)

In order to quantify the difference in behavior of the two different variants, we would
like to estimate φεn+1(η)−φn+1(η), which can be further decomposed as

φεn+1(η)−φn+1(η) =ΨGε
n
(η)Mε

n+1−ΨGn(η)Mn+1

=ΨGε
n
(Mε

n+1−Mn+1)+ [ΨGε
n
(η)−ΨGn(η)]Mn+1

(1.65)

By denoting with ν =ΨGn(η), we notice that

ΨGε
n
(η)−ΨGn(η) = [ΨGε

n/ Gn(ν)−ν]( f )

=
1

ν (Gε
n/ Gn)

ν
((

Gε
n

Gn

)
[ f −ν( f )]

)
(1.66)
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Next, we denote the oscillation of a function f by ω( f ) and use it to define two
working hypothesis, as described in the following:

Hypothesis H 1. The Markovian transition kernels Mε
n and Mn differ up to some

constant c1, the ε probability of having some alternative behavior than what is ex-
pected, and the oscillation of f

‖Mε
n ( f )−Mn( f )‖ ≤ c1εω( f ) (1.67)

Example 1.5.9. A simple example can be constructed by defining Mε
n as Mε

n =
εnKn +(1− εn)Mn, with ε = sup

n
(εn) and Kn(x,dy) = δn(dy), Mn Markov transi-

tions. Following this rationale, the following relation can be inferred:

Mε
n ( f )(x) = εnKn( f )(x)+ (1− εn)Mn( f )(x)

Mε
n ( f )(x)−Mn( f )(x) = εn(Kn( f )(x)−Mn( f )(x))

|Mε
n ( f )(x)−Mn( f )(x)| ≤ εn

∣∣∣∣
∫∫

Kn(x,dy)Mn(x,dz)( f (y)− f (z))

∣∣∣∣

Nonetheless, as f (y)− f (z)≤ω( f ), it directly follows that |Mε
n ( f )(x)−Mn( f )(x)| ≤

εnω( f ) which, when taking ε = sup
n
εn, leads to the following relation:

sup
n
|Mε

n ( f )(x)−Mn( f )(x)| = ‖Mε
n ( f )−Mn( f )‖ ≤ εω( f ).

Hypothesis H 2. The difference between the potential functions is bounded,
meaning:

‖Gε
n/Gn‖ ≤ c2 ε (1.68)

which is equivalent to
1− c2 ε ≤ Gε

n/Gn ≤ 1+ c2 ε (1.69)

Example 1.5.10. As a direct example we can take Gε
n = e−V ε

n and Gn = e−Vn, lead-
ing to Gε

n/Gn = e−(V ε
n −Vn ). The expression can be rewritten to read |Gε

n/Gn− 1|=
|eVn −V ε

n − e0| where the following stands:

|e(Vn −V ε
n )(x)− e0| ≤ |(Vn −V ε

n )(x)|× e‖Vn ‖+‖V ε
n ‖

Further, knowing that ‖Vn ‖< ∞ and that supε ‖V ε
n ‖< ∞, there exists a constant v1

such that ‖V −V ε‖ ≤ εv1. Next, given that e‖Vn ‖+‖V ε
n ‖ ≤ e2max(‖Vn ‖, supε ‖V ε

n ‖), the
following relation holds:

‖Gε
n/Gn− 1‖ ≤ ε c2, where c2 ≤ v1 e2max(‖Vn ‖, supε ‖V ε

n ‖).
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Example 1.5.11. We adopt a different perspective, considering that V ε
n = (1−

ε)Vn + εWn , or in a different form, that V ε
n −Vn = ε(Wn −Vn ). Knowing that

supn ‖Wn ‖ < ∞ and that supn ‖Vn ‖ < ∞, we obtain ‖V ε
n −Vn ‖ ≤ εc2, with c2 =

supn ‖Vn ‖+ supn ‖Wn ‖. In analogous manner we have the following:

‖V ε
n ‖ ≤ (1− ε)sup

n
‖Vn ‖+ ε sup

n
‖Wn ‖ ≤max(sup

n
‖Vn ‖, sup

n
‖Wn ‖).

From the second hypothesis (H2), for any ε < 1
2c2

we obtain that

[ΨGε
n/ Gn(ν)( f )−ν]( f ) ≤ c2ε

1− c2ε
ν(| f −ν( f )|)≤ c2ε

1− c2ε
,

‖ΨGε
n
(η)−ΨGn(η)‖tv = sup

f : ω( f )≤1
|ΨGε

n
(η)( f )−ΨGn(η)( f )| ≤ c2ε

1− c2ε
,

(1.70)

Furthermore, equation (1.65), defining the difference between two mappings, can
be rewritten as:

‖φεn+1(η)−φn+1(η)‖tv = c1εω( f )+
c2ε

1− c2ε
ω(Mn( f ))

≤ c1ε+
c2ε

1− c2ε
as soon as ω( f ) ≤ 1

≤ (c1 + 2c2)ε for any ε < 1/(2c2).

(1.71)

In summary, we have proved the following technical lemma.

Lemma 1.5.12. In the conditions defined by hypotheses (H1) and (H2), for any
ε < 1/(2c2) and any probability measure η we obtain that

‖φεn+1(η)−φn+1(η)‖tv ≤ (c1 + 2c2)ε

Let (γn,ηn) be the Feynman-Kac model associated with the potential function Gn

and the transition kernel Mn, representing the normalized, respectively unnormal-
ized Feynman-Kac measures. At first we consider defining the sequential update of
the flow of distributions (ηn)n≥0 (standard case) and (ηεn )n≥0 (perturbed variant):

ηεn = φεn (η
ε
n−1), (1.72)

where ηn is the measure associated with N independent samples of common law
φn(ηn−1). We will adopt the convention that for p = 0, η0 = φ0(ηεn−1).

An additional mapping notation is further considered φp,n = φn ◦ . . . ◦ φp+1. For
p = n we consider that φp,n = φn,n = Id, the identity mapping, and

φp,n(ηp) = ηn. (1.73)

For the normalized Feynman-Kac measure, we consider it as defined by
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γpQp,n = γn (1.74)

with Qp,n having the following functional representation

Qp,n( f )(xp) =�

(
f (Xn)

n−1

∏
k=p

Gk(Xn)|Xp = xp

)
. (1.75)

The rationale behind introducing the additional mapping notation is to ease the de-
scription of the difference between the empirical measures in the presence of exter-
nal stochastic factors and in the classical case, defined as follows:

ηεn −ηn =
n

∑
p=0

[φp,n(ηεp)−φp,n(φp(ηεp−1))] (1.76)

The proof of the above has been obtained using a telescoping sum decomposition.
Let us now consider the following regularity properties.

Hypothesis H. There exists some integer m≥ 1 and some parameter ε > 0 such that
for any p≥ 1, any (x,y) ∈ E2 and any measurable subset A we have that

Mp+1, . . . ,Mp+m(x,A)≥ ε×Mp+1, . . . ,Mp+m(y,A)

g = sup
p

sup
x,y

Gp(x)

Gp(y)
< ∞

(1.77)

The following contraction inequalities are proved in [38, 42, 43, 49], see also [58]
for a more recent development on these stability properties.

Theorem 1.5.13. We assume (H) is met for some parameters (m,ε). In this situa-
tion, there exists some δ ∈]0,1[ such that for any probability measures (η ,ν), and
for any p≤ n, we have

‖φp,n(η)−φp,n(ν)‖tv ≤c (1− δ )(n−p)/m‖η−ν‖tv. (1.78)

for some finite constant c<∞whose values do not depend the parameters (p,n,η ,ν).

Replacing η with ηεn and ν with ηn, we find that

‖ηεn −ηn‖tv ≤
n

∑
p=0

c(1− δ ) n−p
m ‖φεp(ηεp−1)−φp(ηεp−1)‖tv

≤ c (c1 + 2c2)ε ×∑
p≥0

(1− δ ) p
m

(1.79)

for any ε < 1/(2c2). The second implication comes from Lemma 1.5.12., under the
conditions (H1) and (H2). We conclude that

sup
n≥0
‖ηεn −ηn‖tv ≤ c(δ )ε with c(δ )≤ c (c1 + 2c2)/(1− (1− δ )1/m) (1.80)
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We recall that we consider a population of N individuals and the occupation mea-
sures of the population for the two variants (standard and perturbed) are approxi-
mated as follows:

ηε,Nn =
1
N

N

∑
i=1

δξε,in
, with

{
Mε

n mutation

Gε
n selection

ηN
n =

1
N

N

∑
i=1

δξ i
n
, with

{
Mn mutation

Gn selection

(1.81)

Hypothesis Hε There exists some integer m ≥ 1 and some parameter ε ′ > 0 such
that for any p≥ 1, any (x,y) ∈ E2, and ε > 0, and any measurable subset A we have
that

sup
ε≥0

sup
p

sup
x,y

Gε
p(x)

Gε
p(y)

< ∞

Mε
p+1, . . . ,M

ε
p+m(x,A)≥ ε ′ Mε

p+1, . . . ,M
ε
p+m(y,A)

(1.82)

Under the assumptions (H) and (Hε), based on the Proposition 2.9 from [52] (see
also [43, 58]) it can be deduced that (∀p≥ 1) and (∀ f : ω( f )≤ 1)

sup
n≥0
�
(|ηN

n ( f )−ηn( f )|p) 1
p ≤ c(p)/

√
N

sup
n≥0
�
(|ηN,ε

n ( f )−ηεn ( f )|p) 1
p ≤ c(p)/

√
N

(1.83)

for some finite constant c(p). This implies that

�
(|ηN

n ( f )−ηε,Nn ( f )|p) 1
p ≤ 2c(p)√

N
+ c(δ )ε ≤ c(p,δ )

(
1√
N
+ ε

)
(1.84)

for some finite constant c(p,δ )≤max(2c(p),c(δ )).
Some exponential estimates can also be deduced using Bernstein-type martin-

gales inequalities or alternatively by employing the Hoeffding’s inequality [58, 57].
Under the assumptions (H1) and (H2) for any measurable function f , s.t. ‖ f‖ ≤ 1,
for any x > 0 and any N ≥ 1, when considering c1 as being a finite constant related
to the bias of the particle model and c2 a constant related to the variance of the
method, we have
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P

(
(ηN

n −ηn)( f ) ≤ c1

N
(1+ x+

√
x)+

c2√
N

√
x)

)
≥ 1− e−x (1.85)

P

(∣∣ηN
n ( f )−ηn( f )

∣∣≤ c1

N
(1+ x+

√
x)+

c2√
N

√
x)

)
≥ 1− 2e−x. (1.86)

Next, by taking

(ηN,ε
n −ηN

n )( f ) = (ηN,ε
n −ηεn )( f )+ (ηεn −ηn)( f )+ (ηn−ηN

n )( f )

where the middle term is bounded with respect to ε up to some constant b1, i.e.
(ηεn −ηn)( f )≤ b1ε , and the relation in Equation (1.86) (with respect to the first and
third terms), we obtain the following concentration inequalities

P

(
(ηN,ε

n −ηN
n )( f ) ≤ 2

(
c1

N
(1+ x+

√
x)+

c2√
N

√
x

)
+ b1ε

)
≥ 1− 2e−x

P

(∣∣(ηN,ε
n −ηN

n )( f )
∣∣ ≤ 2

(
c1

N
(1+ x+

√
x)+

c2√
N

√
x

)
+ b1ε

)
≥ 1− 4e−x.

Direct applications of this result could find a way into, for example, distributed
desktop computing. For a few notorious examples, one can refer to the Seti@Home
(Search for Extraterrestrial Intelligence) [4], Leiden Classical (desktop computer
grid dedicated to general classical dynamics) [158], Rosetta@Home (protein fold-
ing, design, and docking) [156] or MilkyWay@Home (highly accurate model of our
galaxy) [32]. A common part all those projects have is the use of desktop resources
offered by (anonymous) users all over the world. As underlying principles of how
the workload is managed, the aspects hereafter need to be considered, within the
limits of the herein results, i.e. genetic algorithms like structure:

• a high complexity of the problem to deal with, e.g. sampling a large confor-
mational space or running a computationally intensive analysis over enormous
amounts of data, surpassing the power provided by classical resources like clus-
ters or even grids; a second important element is the use of spare computational
cycles (or specified amount), allowing to give a meaning to otherwise wasted en-
ergy and computing power while simultaneously contributing to an advance of
our knowledge on important scientific problems;

• the problem allows a decomposition into independent sub-tasks that can be in-
dependently processed – each of the participating users only needs to deal with
such sub-tasks (locally installed clients) and does not see the complete picture the
problem draws; as a straightforward example, this may be the equivalent of re-
ceiving a set of instances from a server (input data), processing and last, sending
back the results.

While this (simplified) design has several advantages, it is not difficult to understand
that it is also subject to several issues that direct to security or data integrity aspects.
Errors, as a result of network or processing faults, may lead to data loss or corrup-
tion. At the same time, malicious behavior, while unlikely, can not be excluded – if
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reasons exist for malware and viruses, why would this particular context be any dif-
ferent? A question one may raise is how errors can be controlled or how results can
be legitimated. While different approaches exist, the result presented in this section
implies that an exponential decrease of the probability of having a difference above
a given threshold can be obtained.

1.5.5.3 Weak Bounds for Behavior under Perturbation

We are modeling in the following a stochastic behavior that can occur for evolution-

ary algorithms. Let a candidate solution be modeled as a Markov chain Xn =

(
εn

Yn

)

taking values in the product space ({0,1}× E). The parameter εn represents the
stochastic factor, modeling the presence or absence of an uncertain behavior. We
further assume that εn is a sequence of independent Bernoulli random variables
with common law

P(εn = 0) = (1−P(εn = 1)) = p

Let us now consider that the behavior involving no external stochastic factor and the
absence of uncertainty is modeled through a value of zero attributed to the stochastic
marker as (ε0, . . . ,εn) = (0, . . . ,0). Given a realization (εp)0≤p≤n = (up)0≤p≤n, the
second component Yn forms a Markov chain with transitions Mn+1,un that depends
on the parameter un, the initial random variable Y0 is also distributed w.r.t. some
probability measure η0,u0 that depends on u0.

We consider the space of possible values for the stochastic marker as Ωn and let

Ω 0
n = {∀0≤ p≤ n ,εp = 0}, (1.87)

and (Ω 0
n )

C the complementary set. For a given function f , we use the following
notation

f (0)n (y) = fn

(
0
y

)
and f (1)n (y) = fn

(
1
y

)

We also set Gn

(
0
y

)
= G(0)

n (y) and consider the uniform norm be given by ‖ f‖ =

sup
u∈{0,1},y∈E

∣∣∣∣ f

(
u
y

)∣∣∣∣.
Given the number of transitions that the algorithm is subject to, given by n, the

normalized Feynman-Kac measure associated with the perturbed process behavior
is given by

γn( f ) = E

(
f (Xn)

n−1

∏
k=0

Gk(Xk)

)
(1.88)

We let γ(0)n be the Feynman-Kac measure defined by
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γ(0)n

(
f (0)n

)
= E

(
f (0)n (Y (0)

n )
n−1

∏
k=0

G(0)
n (Y (0)

k )

)
(1.89)

where Y (0)
n stands for the Markov chain with transitions Mn+1,0 and initial

distribution η0,0.
The relation defined in equation (1.88) can be further decomposed in two cases

according to the complete absence of external stochastic factors and the presence of
perturbations.

γn( f ) =E

(
f (Xn)

n−1

∏
k=0

Gk(Xk)�Ω0
n

)
+E

(
f (Xn)

n−1

∏
k=0

Gk(Xk)�(Ω0
n )

C

)

=γ(0)n

(
f (0)n

)
�(Ω 0

n )+E

(
f (Xn)

n−1

∏
k=0

Gk(Xk)�(Ω0
n )

C

)
.

(1.90)

From equation 1.90 we can further derive

|γn( f )− γ(0)n

(
f (0)n

)
| ≤|γ(0)n

(
f (0)n

)
|
(

1− (1− p)n+1
)
+

∣∣∣∣∣E
(

f (Xn)
n−1

∏
k=0

Gk(Xk)�(Ω 0
n )

C

)∣∣∣∣∣

≤|γ(0)n

(
f (0)n

)
||(1− p)n+1−1|+‖ f ‖

n−1

∏
k=0
‖Gk‖(1−P(Ω0

n ))

≤(1− (1− p)n+1)

(
|γ(0)n

(
f (0)n

)
|+‖ f ‖

n−1

∏
k=0
‖Gk‖

)

(1.91)
This implies that

|γn( f )− γ(0)n

(
f (0)n

)
| ≤ (1− (1− p)n+1) c(n)

for some constant c(n)≤ 2‖ f‖∏n−1
k=0 ‖Gk‖.

In practice, when subject to a corrupted computing environment (e.g. involving
malicious/cheating behavior or faults of the hardware material) this result provides
a quantitative measure of the fault-tolerance accepted by the system. This can be
useful in assesing the level of accuracy of the results.

1.5.6 Rare Events Stochastic Models

1.5.6.1 Calibration and Uncertainty Propagation

Modern computers are capable of simulating complex physical and engineering sys-
tems. Nevertheless, formalized mathematical models are rarely certain and error-
free. For instance, the physical environment is often too complex to formalize



1 On the Foundations and the Applications of Evolutionary Computing 67

perfectly, and all the different physical scales are difficult to capture with high pre-
cision. In addition, the reliability and the accuracy of computational approximation
models often relies on complex calibration processes combined with the dispersion
analysis of inputs and other sources of randomness.

Given some reference physical observation we would like to calibrate the model
parameters so that the outputs simulated by some numerical code coincide with this
reference data, or at least behave as much as possible as these physical observations.

In another context, with a successfully calibrated model one may be also inter-
ested in computing the probability that simulation outputs belong to some critical
event; that is, to find the law of the input parameters and the sources of randomness
leading to such events.

This couple of important issues can be formulated in terms of a classical input-
output transformation

Inputs = I︸ ︷︷ ︸
sources of randomness
uncertainty representations
tuning parameters
unknown kinetic parameters

−→ [Black-box simulation model] −→ Outputs O =C(I)︸ ︷︷ ︸
physical, biological or forecasting predictions
partial differential equation profiles
mechanical forces
hydrodynamic profiles

The prototype of question arising in practice is the following. We are given a
desired domain, say O , in the space of the outputs, and we want to estimate both
the probability that the outputs fails into this set and the distribution of the inputs
leading to these outputs; that is, we want to compute the following quantities

Proba(O ∈ O) and Law(I | O ∈ O)

• The set O represents some critical event with a very small occurrence probability,
say 10−9. In this context, we are interested in computing rare event probabilities
as well as the distribution of the random sources leading to this critical regime.
The conditional distribution provides all the statistical information on the differ-
ent contributions of the input parameters and the random sources on ”the desired”
critical rare event.

• The domain O is related to some distance-like criteria that measure the adequacy
of some output profile with some reference data or some observations delivered
by some sensors. In this context, we are interested in computing the chance that
some collection of models may reach a given precision w.r.t. the physical data.
Furthermore, we are also often interested in calibrating the numerical code with
the selection of the most accurate input parameters that achieve a given precision
w.r.t. the data.

• The couple of situations discussed above can be combined. For instance, we may
be interested in computing the probability of a critical rare event given some
observations, or reversely the law of some input parameters given some observa-
tions as well as some critical event.

Of course, the choice of the stochastic particle algorithm that solves these three
questions is far from being unique. The design of an appropriate Monte Carlo simu-
lation model strongly depends on the physical problem at hand, including the nature
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of the numerical code, the quantification of the sources of randomness, the specifi-
cation of the inputs and the outputs profiles.

In the following we consider the case where some fixed critical level exists, given
by a value h and the rare event of interest is the fact that the output value passes the
maximal value h

The inputs are represented by a function like d-dimensional vector I =(I1, . . . , Id)
and the set O represents a failure region. The outputs of the numerical code are
represented by a function like d′-dimensional vector O = (O1, . . . ,Od′). In this sit-
uation, we are given some critical threshold value h and a random event of interest
is the fact that the forces acting on the provided structure get above this maximal
value; the corresponding probabilistic quantities of interest are given below

Proba

(
sup

1≤t≤d′
|Oi| ≥ h

)
and Law

(
(I1, . . . , Id) | sup

1≤t≤d′
|Oi| ≥ h

)

Our next objective is to relate these questions to the probabilistic model of combina-
torial counting and sampling presented in section 1.5.4.3. To this end, let us assume
that the random input parameters I are distributed according to some probability
measure λ on some finite or countable state space; that is we have that

Proba(I = x) = λ (x)

We also suppose that the input-output function is given by some mapping C : x �→
C(x), and we set

A := {x : C(x) ∈O}
In this notation, the uncertainty propagation models presented above coincide with
the ones discussed in section 1.5.4.3; that is, we have that

Proba(O ∈ O) = Proba(I ∈ A)λ (A) := ∑
x∈A

λ (x)

and

Proba(I = x | O ∈O) = μA(x) :=
1

ZA
�A(x) λ (x)

with the normalizing constant ZA = λ (A).
In engineering literature, the multilevel genetic type splitting particle algorithms

presented in section 1.5.4.3 are also called subset-simulation models. The central
idea is to express a rather small failure probability as the product of not so small
conditional probabilities:

Proba(I ∈ A) =
m

∏
p=0

Proba(I ∈ Ap+1|I ∈ Ap) (1.92)

The intermediate levels Ap are judiciously chosen failure regions s.t.

A0 ⊃ A1 ⊃ ...⊃ Am = A
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In this interpretation, the computation of the small failure probability Proba(I ∈ A)
is now reduced to the computation of larger conditional probabilities Proba(I ∈
Ap+1|I ∈ Ap). In the marine engineering problem discussed above, these failure re-
gions are characterized by the choice of an increasing sequence of critical threshold
values hp; that is, if we set

I =(I1, . . . , Id)=(x1, . . . ,xd) �→O=C(I)=(C1(I), . . . ,Cd′(I))=(C1(x), . . . ,Cd′(x))

then we have that

hp ↑ ⇒ Ap :=

{
x = (x1, . . . ,xd) | sup

1≤t≤d′
|Ct(x)| ≥ hp

}
↓

1.5.6.2 An Universal Particle Algorithm Based on Multilevel Splitting

In this section we introduce a generic particle simulation algorithm based on a
multilevel splitting mechanism. A simple stochastic particle algorithm consists in
propagating a population of N individuals representing potential solutions at each
iteration. Hereafter we start by providing the main structure and pseudo-code of a
generic multilevel splitting particle algorithm, depicted in Algorithm 1.2.

The algorithm is initialized with N random configurations chosen according to
some distribution law ν0 (in this case we consider it as uniform i.i.d. sampling) in
the A0 set. The algorithm considers a critical level to be reached, in order for the
rare event to take place, denoted in the pseudo-code by cn.

In the following pN
1 stands for the proportion of individuals that succeed to reach

the level A1, these individuals in A1 being further selected for the next step of the
algorithm. As we consider N as a fixed value, the notation will be simplified to p1

instead of pN
1 . The rejected configurations are then randomly redistributed among

the ones that passed into A1 such that the number of individuals in the population
remains constant, N. The following step consists on diversifying and enriching the
population of solutions selected in A1 during the first step. This is performed by
applying the transition or perturbation operator F , leading to new candidate samples,
while leaving the measure μ1

A invariant. In its most simple variants the transition
operator can be seen as a mutation operator.

Each individual independently explores the space defined by A1 following a local
Markovian transition that leaves the measure μA1 invariant. As for the previous step,
we denote by p2 the proportion of individuals having succeeded to pass to the level
A2. We select afterwards the configurations having succeeded to pass at the second
level A2. The rejected configurations are again redistributed randomly among the
previously selected ones. Each individual explores afterwards, in an independent
manner, the space A2 following a local Markovian transition that leaves the measure
μA2 invariant. The process is reiterated until the last level n is reached.

1 Note: h is the equivalent of hm when A = Am.
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Algorithm 1.2. Multilevel splitting particle algorithm
A0 := E , hi := threshold levels, j := 0
Sample N particles, (ξ i

0)1≤i≤N from a given distribution μ0 in A0

{Ai =

{
x = (x1, . . . ,xd ) | sup

1≤t≤d′
|Ct (x)| ≥ hi

}
, i ≤ m+1 s.t. hm+1 = h the fixed critical level.1}

while
1
N

N

∑
i=1

�Am+1 (ξ
i
j) = 0 do

p̂ j+1(A j+1 | A j) :=
1
N

N

∑
i=1

�Aj+1 (ξ
i
j)

ξ j(A j+1) := {ξ l
j | 1≤ l ≤ N s. t. ξ l

j ∈ A j+1}

Selection
for i = 1 to N do

ξ̂ i
j :=

{
ξ i

j , i f ξ i
j ∈ A j+1

sample randomly in the set ξ j(A j+1), otherwise.
end for

Transition
for i = 1 to N do

ξ i
j+1 :=

{
F(ξ̂ i

j), i f F(ξ̂ i
j) ∈ A j+1

ξ̂ i
j, otherwise.

end for

j := j+1
end while

For the multilevel splitting, the result of this simulation can be explained as fol-
lows. When N is increased, the population of solutions obtained at each kth iteration
is distributed according to the law of the variable X restricted to the set Ak. This is

equivalent to saying, that at each iteration k, the variables I(i,N)
k , 1 ≤ i ≤ N, simu-

lated on the Ak set are distributed approximately as a sequence of random variables

I
(i,N)
k , 1≤ i≤ N, independent and having the same law μAk . This approximation can

be further detailed in several forms. For example, we can have:
∥∥∥Law

(
I(1,N)
k , . . . , I(q,N)

k

)
−Law

(
I
(1,N)
k , . . . , I

(q,N)
k

)∥∥∥
tv
≤ q

N
c(k)

for all q≤ N and for a finite constant c(k)< ∞ which can be specified according to
the parameters of the model. In the preceding equation, ‖P−Q‖tv denotes the total
variation distance between two probability measures P and Q. For any bounded
function f and for any ε > 0, the following exponential error probabilities are
verified:

P

(∣∣∣∣∣
1
N

N

∑
i=1

f
(

I(i,N)
k

)
−E( f (I) | I ∈ Ak)

∣∣∣∣∣≥ ε

)
≤ c1(k) e

− Nε2
c2(k)



1 On the Foundations and the Applications of Evolutionary Computing 71

Algorithm 1.3. Particle algorithm using acceptance-rejection
A0 := E
Â := {A1, A2, . . . , An} {Constants specifying the fixed levels (Ak)1≤k≤n }
Initialization
ξ0:= sample N particles, (ξ i

0)1≤i≤N randomly of law η0.
for k = 1 to n do

{For each of the intermediate levels (Ak)1≤k≤n }

Selection
for i = 1 to N do

{For each particle}

ξ̂ i
k−1:=

⎧⎪⎨
⎪⎩

ξ i
k−1, i f ξ i

k−1 ∈ Ak

ξ̃ i
k−1, random variable o f law

N

∑
i=1

�Ak (ξ
i
k−1)

∑N
j=1�Ak (ξ

j
k−1)

δξ i
k−1

otherwise.

end for

Transition
for i = 1 to N do

{For each particle}
ξ i

k:=

{
F(ξ̂ i

k−1), i f F(ξ̂ i
k−1) ∈ Ak

ξ̂ i
k−1, otherwise

{F designates the perturbation operator generating new candidate solutions and ξ i
k of law

Mk(ξ̂ i
k−1, · ) with a Markovian transition Mk leaving the measure μAk invariant.}

end for
end for

for a couple of finite constants c1(k),c2(k)<∞ they may be specified depending on
the model parameters.

Furthermore, the product of the proportions of success
k

∏
l=1

pN
l is an unbiased esti-

mator of the probability that the variable I is in Ak. Under certain regularity assump-
tions ([27]), the following convergence result can be proved (holds):

E

(
k

∏
l=1

pN
l

)
= P(I ∈ Ak) and E

⎛
⎝
[

k

∏
l=1

pN
l −P(I ∈ Ak)

]2
⎞
⎠≤ c

N
k P(I ∈ Ak)

2,

for a finite universal constant c <∞. Other convergence results, including estimates
of error probability exponentially small are described in the book [38] and also in
the articles [52, 41, 57].
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1.5.6.3 Variants of Multilevel Splitting Simulation

In the description of the preceding algorithm, it is worth mentioning that the param-
eters (N,An) must be chosen judiciously so that at least one solution among the N
ones is in An, otherwise the algorithm stops at the nth iteration. For this to be ful-
filled we propose choosing a first level disparity (An−An−1) sufficiently low. Either
case, when the number of proposed solutions N′ increases, we can prove that all the
levels are reachable and that the algorithm converges towards the desired solutions.
It is also possible to chose the levels An adaptively online according to the proposed
candidate samples. For example, one option consists in choosing the first level A1

such that a given proportion of the current solutions (e.g. 80 percent) of the solu-
tions proposed in A0 reach the next level. These adaptive splitting algorithms can
be recast in terms of sequential Monte Carlo models with adaptive resampling pro-
cedures. For a detailed discussion on these models with precise reference pointers
we refer the reader to [41]. To our knowledge these adaptive resampling techniques
were first introduced as an heuristic scheme in [36] (remark 1, section 2.1), see also
[37]. These adaptive criteria for the choice of the levels were also discussed in three
recent studies [26, 28, 27]. For a detailed theoretical analysis of these models, in-
cluding central limit theorems and exponential cumulative ratios, we refer the reader
to [41].

There are also other variants allowing the exploration of the search space accord-
ing to these new data and solving this stopping problem. These techniques are more
complex to describe and they will be detailed in the follow up. The main idea behind
this is to create new candidate solutions until configurations in A1 are reached. This
step can also be catastrophic if the level A1 is badly chosen.

We start by differentiating the two types of multilevel splitting considered in the
following, according to the mechanism used in establishing the different splitting
levels. The levels can be either fixed a priori or established adaptively at each iter-
ation step by the threshold passed by a percentage of the sampled solutions. Also,
two types of selection mechanisms are considered: the uniform selection and the
acceptance-rejection selection.

1.5.6.4 Case Study

We illustrate these rather abstract models with a marine engineering problem we
recently analyzed with Z. Guede from the French marine research institute (IFRE-
MER). In this situation, we want to assess the reliability of an offshore structure,
both at the design stage, as to validate the design choice, and in service for main-
tenance and inspection planning. The goal is to check whether the structure is able
to withstand the loads from its environment for its entire planned lifetime, defined
according to a physical criterion with respect to the structural response. The struc-
tural response is computed by a hydrodynamic numerical code with strong physical
and geometrical non-linearity that lead to a complex failure region geometry. In this
context, the input parameters are of different natures, some of them representing
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Algorithm 1.4. Fixed levels particle algorithm
A0 := E , hi := threshold levels, j := 0
Sample N particles, (ξ i

0)1≤i≤N uniformly i.i.d. in A0

{Ai =

{
x = (x1, . . . ,xd ) | sup

1≤t≤d′
|Ct (x)| ≥ hi

}
, i ≤ m+1 s.t. hm+1 = h the fixed critical level}

while
1
N

N

∑
i=1

�Am+1 (ξ
i
j) = 0 do

p̂ j+1(A j+1 | A j) :=
1
N

N

∑
i=1

�Aj+1 (ξ
i
j)

ξ j(A j+1) := {ξ l
j | 1≤ l ≤ N s. t. ξ l

j ∈ A j+1}

for i = 1 to N do

ξ̂ i
j :=

{
ξ i

j , i f ξ i
j ∈ A j+1

ξ̃ i
j a randomly chosen particle in the set A j+1, otherwise.

end for

for i = 1 to N do

ξ i
j+1 :=

{
F(ξ̂ i

j), i f F(ξ̂ i
j) ∈ A j+1

ξ̂ i
j, otherwise.

end for

j := j+1
end while

the spectral properties of wave mixtures, while the other ones represent temperature
variations, waves periods and their direction. The outputs of the numerical code are
represented by a function like d prime-dimensional vector O = (O1, . . . ,Od′) denot-
ing the forces that act on the offshore structure surface at different time periods. In
this situation, we are given some critical threshold value h for which a random event
of interest is given by the fact that the forces acting on the offshore structure get
above this maximal value.

In order to test the performance and the validity of the approaches in a general
context, we employ as testbed the estimation of the evolution of a variable that
follows a known law. The choice for χ2 is due, among others, to its resemblance with
the quadratic nature appearing in the real-life experiment proposed by IFREMER.

Let U1,U2, ...,Uk be k independent random variables following the same standard
normal law, then the U variable is defined such that

P(max
1≤i≤n

X2
i ≥ c) (1.93)

P( max
1≤i≤n

X2
i ≥ c) = 1− (Fn

X2
1
(c)) (1.94)
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Algorithm 1.5. Adaptive particle algorithm
A0 := E , h := constant {Critical level}, k0 := 0, p := 1
ξ0 := (ξ i

0)1≤i≤N {N independent particles of law η0}

while kp−1 ≤ c do

kp := inf

{
k > kp−1 : ηp−1(�Ak ) =

1
N

N

∑
i=1

�Ak (ξ
i
p−1)≤ αp,αp ∈ ]0,1[

}

p̂p(Akp |Akp−1 ) =
1
N

N

∑
i=1
�Akp

(ξ i
p−1)

Selection
Select N particles (ξ̂ i

p−1)1≤i≤N
from the Akp set

{by using either an accept/reject technique or an uniform sampling}

Transition
for i = 1 to N do

ξ i
p constructed by successively applying np+1 Markovian elementary transitions Mkp (of

invariant measure ηkp ).
end for

p := p+1
end while

U = max
1≤i≤k

U2
i (1.95)

follows a law χ2 with one degree of freedom. For experimental purposes, we con-
sider a number of k = 2048 random variables, as this number of degrees of freedom
is considered also relevant for the practical IFREMER application.

P

(
max
1≤i≤k

U2
i ≥ c

)
= 1−P(max

1≤i≤k
U2

i < c)

= 1−FU2
1
(c)n = 1− (

1− 2P
(
U1 ≥

√
c
))n (1.96)

From this we obtain in fact the value of the distribution function of the variable Un,
which is denoted in the follow up by FU2

1
(c), where c represents a real value corre-

sponding to a given critical level. Furthermore, the computation of the distribution
function for a given level c and a variable X =U2

i , 1≤ i≤ k can be done by using:

FX(c) =

(
γ
(

c
2 ,

1
2

)

Γ ( 1
2 )

)n

=

[
1√
π

∫ c
2

0

e−t
√

t
dt

]n

(1.97)

where γ is the lower incomplete gamma function. We can also use the following
estimations in the formula (1.96)
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Fig. 1.1 Histogram depicting the number of levels for the adaptive algorithm withα set to 0.1

1√
2π

1
c+ 1/c

e−
c2
2 ≤ P(U1 ≥ c)≤ 1√

2π
1
c

e−
c2
2

A proof of these analytic estimations can be found in the book [56].
In order to prepare the calibration for the practical problem and prepare the test-

ing environment we first studied the distribution of the number of levels employed
for the adaptive method, as depicted in Figure 1.1. In concordance with the results,
the number of chosen levels for the adaptive method was set to 15, this being given
by the central tendency of the number of levels for the two adaptive cases.

The next step considered the analysis of the algorithms’ evolution according to
the theoretical estimate, obtained as described in Equation 1.96. Figure 1.2 depicts
on the ordinate axis the distribution of the values obtained for the probability of pass-
ing the intermediate levels, while the abscissa represents the values of the system’s
response, i.e. from 15.0 to 52.2513 (critical level). The evolution of the adaptive
algorithms (where the intermediate levels vary among two different executions) is
approximated by a least squares method applied on the entire set of obtained values
(cloud of points). The approximation in this latter case is done by estimating the av-
erage and standard deviation for a normal density. A comparison of the algorithms’
evolution is illustrated in Figure 1.2 successively focusing closer to the critical level
region. It is thus possible to evaluate the stalling of the algorithm using fixed levels
as compared with the curve of the theoretical
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Fig. 1.3 The difference between the final probability attained by the four algorithm variants
(averaged over 500 tests) and the theoretical estimate

estimate. Finally, one should note that adaptive variant whose averaged values fol-
low the best the curve of the values estimated by Equation 1.96 is the one using the
uniform selection. By considering the simulation of the normal variable described
above, for comparative purposes, the adaptive method was compared with the fixed
levels variant, by employing two types of selection. The comparison is done by
considering the distance between the average of the final probability (obtained on
500 tests per algorithm) and the theoretical estimate of the final probability. As
illustrated in Figure 1.3, the best results were obtained with the adaptive variant
employing the uniform selection.

1.5.6.5 Multilevel Splitting Simulation

The analysis of rare events arise in various scientific areas including physics, biol-
ogy, engineering science and financial mathematics. For instance in nuclear physics
to study of the performance of a radiation source containment we are interested in
computing the probability that a neutron particle emitted by the radiation source
escapes from the containment before being absorbed and desintegrated by some ob-
stacle. In biology they may represent an extinction probability of a given population
evolution model. In engineering science these rare events are sometimes related to a
catastrophic failure such as a buffer excedence in communication networks. Finally
in financial mathematics they may represent a ruin process.
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The random excursion model is defined in terms of some Markov chain (X ′n)n≥0

taking values in some finite state space E ′. We assume that the chain X ′n starts in
some given subset X0 ∈ A⊂ E ′ with a given distribution ν0. We also let (B,C) be a
pair of subsets (B,C) such that A∩C = /0 = B∩C. We also assume that the triplet
(A,B,C) is chosen so that for any initial state x ∈ A the chain X ′n hits one of the sets
B or C in finite time.

We let TA be the entrance time of X ′ into a given subset A; that is, we have

TA = inf{n≥ 0 : X ′n ∈ A}

One would like to estimate the probability that the chain hits B before C

P(TB∪C < TC) = P(X ′TB∪C
∈ B) = E(�B(X

′
TB∪C

))

and the law of the random excursion given the fact that it reached B before C

Law(X ′t ; 0≤ t ≤ TB∪C | TB∪C < TC) = Law(X ′t ; 0≤ t ≤ TB∪C | X ′TB∪C
∈ B)

Of course we have implicitly assumed that P(TB∪C < TC)> 0 so that the conditional
distributions are well defined.

In connection with the previous examples discussed in the early part of this sec-
tion the rare level set B may represent the outside of the radiation containment,
an undesired critical population size or buffer excedance as well as ruin level of a
given company. The level set C is usually far from being rare but it corresponds to
an almost sure event. For instance in the radiation containment model the set C rep-
resents the set of physical obstacles which hopefully absorb the radiation and avoid
the particle to come out of the containment. In communication networks models the
set C represents a recurrent and well behave buffer size level. In population models
C is related to a natural fluctuation size level of the population evolution and in ruin
processes it corresponds to a predicted gain or a desired equilibrium level.

During its excursion from A to (B∪C) the process passes through a decreasing
sequence of level sets B = (Bn)n=0,...,m with

A = B0 ⊃ B1 ⊃ . . .⊃ Bm = B

Here again the splitting parameter m and the choice of the level sets B depends on
the problem at hand.

This decomposition reflects the successive levels the stochastic process needs to
cross before to enter into the relevant rare event. In other words the increasing levels
behave as gateways from which the rare event is more and more likely to happen.

To clarify the presentation we shall slight abuse the notation and we write Tn

instead of TBn∪C the entrance time of X into Bn ∪C. To capture the behavior of X
between the different levels we introduce the excursion-valued Markov chain
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Xn = (Tn,(X
′
t ; Tn−1 ≤ t ≤ Tn)) ∈ E = ∪p≤q({q}× (E ′)(q−p+1)) (1.98)

By a direct inspection we see that the random sequence of level-crossing times
(Tn)0≤n≤m is increasing and whenever Tn < TC the second component of Xn rep-
resents the excursion of the process X ′ between the successive levels Bn−1 and Bn

so that Tn can be alternatively be defined by the inductive formulae

Tn = inf{Tn−1 ≤ t : X ′t ∈ Bn∪C}

Under our assumptions we also observe that these entrance times are finite and

(TB∪C < TC) = (Tm < TC) = (T1 < TC, . . . ,Tm < TC)

One simple way to check whether or not a random path has succeeded to reach the
desired n-th level is to consider the potential functions Gn on E defined for each
n ∈ {0, . . . ,m} and x = (xq)p≤q≤r ∈ (E ′)(r−p+1) by

Gn(t,x) = �Bn(xr) (1.99)

In this notation we have for each n≤ m

(Tn < TC) = (T1 < TC, . . . ,Tn < TC) = (G1(X1) = 1 . . . ,Gn(Xn) = 1)

and
(X0, . . . ,Xn)

= ((0,X ′0),(T1,(X ′t ; 0≤ t ≤ T1)), . . . ,(Tn,(X ′t ; Tn−1 ≤ t ≤ Tn)))

In we write [X ′t ; 0 ≤ t ≤ Tn] instead of (X0, . . . ,Xn) the sequence of excursions of
X ′ between the levels, then for any n≤ m and any function fn on the product space
En we have

Eν0

(
fn(X0, . . . ,Xn)

n

∏
p=1

Gp(Xp)

)
= Eν0

(
fn([X ′t ; 0≤ t ≤ Tn]) �Tn<TC

)

We denote by Pn the law of the excursion-valued Markov chain from the origin
p = 0, up to the time p = n

Pn(x0, . . . ,xn) = P(X0 = x0, . . . ,Xn = xn)

If we set

Qn(x0, . . . ,xn) =
1

Zn

{
∏

0≤p<n

Gp(xp)

}
Pn(x0, . . . ,xn)

with the unit potential function G0 = 1 then we have
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Qn = Law
([

X ′t ; 0≤ t ≤ Tn
] | Tn−1 < TC

)
and Zn = P(Tn−1 < TC)

Once again, these measures have exactly the same form as the one presented in
(1.33). The corresponding particle approximations are often referred as multilevel
splitting particle methods or sequential Monte Carlo samplers in the literature on
rare event simulation (see for instance [25, 26, 50, 114], and references therein).
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120. Künsch, H.R.: State-space and hidden Markov models. In: Barndorff-Nielsen, O.E.,
Cox, D.R., Kluppelberg, C. (eds.) Complex Stochastic Systems, pp. 109–173. CRC
Press (2001)

121. Lagarias, J., Reeds, J., Wright, M., Wright, P.: Convergence properties of the Nelder-
Mead simplex algorithm in low dimensions. SIAM J. Optimiz. 9, 112–147 (1998)

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=592270
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=592270
http://doi.acm.org/10.1145/321062.321069
citeseer.ist.psu.edu/kirkpatrick83optimization.html


1 On the Foundations and the Applications of Evolutionary Computing 87

122. Langdon, W., Poli, R.: Foundations of Genetic Programming, vol. 5. Springer (2002),
http://discovery.ucl.ac.uk/124583/

123. Liu, J.S.: Monte Carlo Strategies in Scientific Computing. Springer, New York (2001)
124. Martin, O., Otto, S.W., Felten, E.W.: Large-step markov chains for the traveling sales-

man problem. Complex Systems 5, 299–326 (1991)
125. Melik-Alaverdian, V., Nightingale, M.P.: Quantum Monte Carlo methods in statistical

mechanics. Internat. J. of Modern Phys. C. 10, 1409–1418 (1999)
126. Metropolis, N., Ulam, S.: The Monte Carlo Method. Journal of the American Statistical

Association 44(247), 335–341 (1949)
127. Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., Teller, E.: Equation of state

calculations by fast computing machines. J. Chem. Phys. 21(6), 1087–1092 (1953),
http://link.aip.org/link/?JCP/21/1087/1, doi:10.1063/1.1699114

128. Michalewicz, Z.: Genetic algorithms + data structures = evolution programs, 2nd, ex-
tended edn. Springer-Verlag New York, Inc., New York (1994)

129. Mitavskiy, B., Rowe, J.: An Extension of Geiringer’s Theorem for a Wide Class of
Evolutionary Search Algorithms. Evolutionary Computation 14(1), 87–118 (2006)

130. Mitavskiy, B., Rowe, J., Wright, A., Schmitt, L.: Quotients of Markov chains and
asymptotic properties of the stationary distribution of the Markov chain associated to an
evolutionary algorithm. Genetic Programming and Evolvable Machines 9(2), 109–123
(2008)
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Chapter 2
Incorporating Regular Vines in Estimation
of Distribution Algorithms

Rogelio Salinas-Gutiérrez, Arturo Hernández-Aguirre, and
Enrique R. Villa-Diharce

Abstract. This chapter presents the incorporation and use of regular vines into Es-
timation of Distribution Algorithms for solving numerical optimization problems.
Several kinds of statistical dependencies among continuous variables can be taken
into account by using regular vines. This work presents a procedure for selecting the
most important dependencies in EDAs by truncating regular vines. Moreover, this
chapter also shows how the use of mutual information in the learning of graphical
models implies a natural way of employing copula functions.

2.1 Introduction

Nowadays, optimization methods have been recognized as important tools for find-
ing optimal solutions in several fields, such as Computer Science, Statistics, Artifi-
cial Intelligence, Operations Research, among others. Optimization problems have
been studied and solved with different proposals. Some of these proposals, named
metaheuristics, have been designed for solving hard optimization problems. Al-
though this kind of algorithms does not guarantee global optimal, in practice, they
usually find good solutions in a reasonable period of time. The Evolutionary Com-
putation (EC) is a field of artificial intelligence that consists of metaheuristic tech-
niques for solving optimization problems. These metaheuristics use principles of
Darwin’s theory and they are also known as Evolutionary Algorithms (EAs). Each
iteration in an EA involves a competitive selection that chooses the best solutions.
The solutions with highest fitness are crossed over for creating new solutions. Some
individuals of the new population can be mutated in order to preserve diversity in
the solutions. In this way, the genetic operators crossover and mutation are used for
giving variation to the set of solutions.
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Estimation of Distribution Algorithms (EDAs) are a class of evolutionary opti-
mization techniques that employ probabilistic models as a representation of the rela-
tionships between variables in the population. This recent paradigm in EC does not
use genetic operators such as crossover and mutation. The goal in EDAs is to model
the dependencies in the best individuals and transfer them into the next population.
EDAs generate the new population by sampling from the probabilistic model of
promissory individuals. These evolutionary optimization techniques have used sev-
eral probabilistic models. For this reason, there are a number of EDAs for discrete
and continuous domains. Some of these probabilistic models are based on Bayesian
and Markov networks. Other EDAs have used Gaussian assumptions, such as Gaus-
sian kernels, Gaussian mixture models and the multivariate Gaussian distribution.

On the other hand, in different areas such as finance, climate, oceanography, hy-
drology, geodesy, and reliability, researchers have used probabilistic models that
separate marginal distributions from the dependence structure. This has allowed
more flexibility for modeling multivariate data, without the need of restricting the
marginal distributions. The way in which this can be done is by means of the copula
functions. In the last years, copula functions have became an important option for
modeling multivariate data.

One motivation for this research is the fact that EDAs have the capacity of ex-
plicitly taking into account dependencies among variables in optimization problems.
This characteristic, along with the possibility of transferring dependencies into the
next generation of new solutions, have received much attention from the EC com-
munity. An important goal of modeling dependencies among variables in an EDA
is to learn the structure of the optimization problem [9, 25]. The learning of the
problem structure by means of a probabilistic model can help ensure an efficient
optimization behavior.

Although EDAs have been investigated for discrete and continuous domains, the
works and contributions for continuous domains are mainly based on the multi-
variate Gaussian distribution. The assumption of modeling dependencies under this
probabilistic model can not be realistic for some optimization problems. This obser-
vation gives an opportunity, and a motivation, for proposing new continuous EDAs.
Another motivation is related to the growing use of copula functions for getting
flexible multivariate distributions. This is because of the important contributions
that copula theory has had in many research and application works.

The goal of this chapter is to present regular vines and show how they can be in-
corporated into continuous EDAs. Regular vines are graphical models that represent
multivariate distributions using bivariate and conditional bivariate copula functions.
In particular, two subset of regular vines known as Canonical vines and D-vines are
adapted for optimizing several benchmark functions.

2.2 Estimation of Distribution Algorithms

The use of probabilistic models for searching and generating promising solutions
is a recent paradigm in EC. Algorithms based on this principle have been called
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Estimation of Distribution Algorithms (EDAs) [38], Probabilistic Model Building
Genetic Algorithms (PMBGAs) [45], and also as Iterated Density Estimation Al-
gorithms (IDEAs) [37]. In this chapter, the class of EAs that employs probabilis-
tic models as a representation of the relationships among variables is identified as
EDAs.

Similar to Genetic Algorithms (GAs), EDAs are population based. However, this
new class of EAs does not use genetic operators such as crossover and mutation for
generating new individuals. Instead, in EDAs, the new individuals are sampled from
a probability distribution. Therefore, the goal in EDAs is to take into account the de-
pendencies of the best solutions and using them for generating the next population.
A pseudocode for EDAs is shown in Algorithm 3.1. The use of the estimated model
in step 4 allows one to explicitly take into account the dependencies between deci-
sion variables and their structure. Step 5 shows the possibility of incorporating the
dependencies among the variables into the new population, which greatly modifies
the performance of an EDA.

Algorithm 2.1. Pseudocode for EDAs
1: Initialize the generation counter t ←− 0

Generate the initial population P0 with N individuals at random.
2: Evaluate population Pt using the cost function.
3: Select a subset St from Pt according to the selection method.
4: Estimate a probabilistic model Mt from St .
5: Generate the new population Pt+1 by sampling from the model Mt

Assign t ←− t +1.
6: If stopping criteria are not reached go to step 2.

The main advantage of using probabilistic distributions in evolutionary algo-
rithms is that the interrelations among the variables of a population are explicitly
modeled. Thus, according to step 4 of Algorithm 3.1, the estimation of a proba-
bilistic model is an important procedure in EDAs. Therefore, ever since EDAs were
introduced in the field of EC, many researchers have been interested in proposing
and enhancing new probabilistic models. A number of EDAs have been proposed
for optimization problems in discrete and continuous domains. EDAs can be clas-
sified according to the complexity of their probabilistic model used to learn the
interactions between the variables.

It is known that EDAs models explicitly the dependencies among variables for
solving optimization problems. This capacity is not presented in other EAs such
as the GA. Some representative works in this direction are the papers presented by
Heinz Mühlenbein [41, 42, 43]. These studies make an important contribution for
considering a new and promissory class of EAs within the EC community.
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The research in EDAs has been motivated by their capacity of taking into account
the interactions between variables. This source of knowledge has been called linkage
information and was investigated by different authors for extending simple GAs to
process interrelations, i.e., building blocks [37]. Furthermore, it is possible to make
theoretical analysis of the evolutive proccess in EDAs [24].

EDAs have become a growing field into the EC community. Nowadays the works
in EDAs are presented in the three most important conferences of EC: Genetic and
Evolutionary Computation Conference (GECCO), Congress on Evolutionary Com-
putation (CEC) and Parallel Problem Solving from Nature (PPSN). According to
[28], the EDA track for the GECCO and CEC appeared in 2005. The publication
of papers in several journals and the publication of books such as [38, 48], the pre-
sentation of works in many other conferences, along with other academic activities
like seminars and workshops, give evidence that the research on EDAs is an active
research area in EC.

EDAs can be classified as univariate, bivariate or multivariate according to
the complexity of their probabilistic model used to learn the interactions among
the variables. The univariate EDAs consider all the variables as independent, for
instance, the Univariate Marginal Distribution Algorithm (UMDA) [41, 36], the
Population Based Incremental Learning (PBIL) [4], and the compact Genetic Al-
gorithm (cGA)[27]. The bivariate EDAs take into account dependencies between
pairs of variables and a few examples are the Bivariate Marginal Distribution Al-
gorithm (BMDA) [47], Mutual Information Maximizing Input Clustering (MIMIC)
[15, 36], and Dependency-Trees [5]. Many univariate and bivariate discrete EDAs
have been extended to continuous domains by using Gaussian probabilistic models.

For multiple dependencies in discrete domain the EDAs have used probabilistic
models such as the Polytree Approximation of Distribution Algorithm (PADA) [57],
Estimation of Bayesian Network Algorithm (EBNA) [18, 35] and Bayesian Opti-
mization Algorithm (BOA) [46]. For real-valued (continuous) multivariate variables
the EDAs have used mostly multivariate Gaussian distributions and some examples
are the Estimation of Multivariate Normal Algorithm (EMNA) and Estimation of
Gaussian Network Algorithm (EGNA) [36]. The EDA AMaLGaM [10] and the al-
gorithm CMA-ES [29] are also based on the multivariate Gaussian distribution. Both
algorithms modify the estimated covariance matrix in order to improve the conver-
gence rate towards the optimum. Currently they are the state of the art in real-valued
optimization.

Although there have been many applications and studies related to discrete EDAs,
it is interesting to design new EDAs for continuous domains. More specifically, it
is important to design multivariate distributions that represent satisfactorily depen-
dencies among continuous variables and that are relatively easy to estimate and to
sample.

To the best of our knowledge the theses presented by [6] and [2] are the first at-
tempts to incorporate a multivariate Gaussian copula function in EDAs. Since then,
other related works have been published. These papers present EDAs based on (1)
the Gaussian copula function [64], and (2) Archimedean copula functions with a
fixed dependence parameter [61, 63, 13, 62]. Unlike the previous papers that use
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Archimedean copula functions, the works of [20] and [22] present a way of es-
timating the copula parameter. All these works, with exception of [20], only use
multivariate copula functions to model the dependence structure among decision
variables and do not employ graphical models. On the other hand, in [52, 53, 54],
we have proposed the use of the maximum likelihood method and copula entropies
in order to (1) estimate the copula parameters, and (2) build a graphical model which
establishes the most important dependencies between variables. One recent contri-
bution of our research work [54], has been the incorporation of a procedure for
selecting the most adequate copula function.

2.3 Copula Functions

Copula functions are suitable tools in statistics for modeling dependencies, not nec-
essary linear, in several random variables. Copula theory was introduced by [28] to
separate the effect of dependence from the effect of marginal distributions in a joint
distribution. Although copula functions can model linear and nonlinear dependen-
cies, they have been barely used in computer science applications where nonlinear
dependencies are common and need to be represented. In this section, we provide
an introduction to the copula theory and present several copula functions.

Copula functions have been widely used in economics and finance [5, 17, 21, 29,
60]. More recently copula functions have been used in other fields such as climate
[26], oceanography [10], hydrology [12], geodesy [2], reliability [18], evolutionary
computation [52, 53, 54] and engineering [26]. By using copula theory, a joint dis-
tribution can be built with a copula function and, possibly, several different marginal
distributions. Copula theory has been used also for modeling multivariate distribu-
tions in unsupervised learning problems such as image segmentation [11, 19] and
retrieval tasks [39, 49, 58]. In [30], the bivariate Archimedean copula functions Ali-
Mikhail-Haq, Clayton, Frank and Gumbel are used for unsupervised classification.
These copulas are well defined for two variables but when extended to three or
more variables several complications arise, preventing their generalization and ap-
plicability. Some of these complications are (1) the copula parameter is the same
for all pairs, and (2) it is not possible to model separately the dependence among all
pairs of variables. For the Gaussian copula however, there exist a simple “general
formula” for any number of variables. The research works by [50, 51] introduce the
use of Gaussian copula in supervised classification, and compares an independent
probabilistic classifier with a copula-based probabilistic classifier.

Definition 2.1. A copula function is a joint distribution function of standard uniform
random variables. That is,

C(u1, . . . ,ud) = P[U1 ≤ u1, . . . ,Ud ≤ ud ] ,

where Ui ∼U(0,1) for i = 1, . . . ,d.
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As a consequence of Definition 2.1, the copula density for continuous random vari-
ables can be calculated as:

c(u1, . . . ,ud) =
∂ dC(u1, . . . ,ud)

∂u1 · · ·∂ud
. (2.1)

The interested reader is referred to [14, 20, 29] for a more formal definition of copula
function. The following result, known as Sklar’s theorem, gives the relevance and
practical utility to copula functions.

Theorem 2.1 (Sklar). Let F be a d-dimensional distribution function with marginals

F1,F2, . . . ,Fd, then there exists a copula C such that for all x in R
d
,

F(x1,x2, . . . ,xd) =C(F1(x1),F2(x2), . . . ,Fd(xd)) ,

where R denotes the extended real line [−∞,∞]. If F1(x1), F2(x2), . . . ,Fd(xd) are all
continuous, then C is unique. Otherwise, C is uniquely determined on Ran(F1)×
Ran(F2)×·· ·×Ran(Fd), where Ran stands for the range.

According to Theorem 3.1 and using the chain rule for differentiating composite
functions along with (2.1), any d-dimensional density f can be represented as

f (x1, . . . ,xd) =
d

∏
i=1

fi(xi) · c(F1(x1), . . . ,Fd(xd)) , (2.2)

where c is the density of the copula C, and fi(xi) is the marginal density of variable
xi. Equation (2.2) shows that the dependence structure is modeled by the copula
function. This expression separates any joint density function into the product of
copula density and marginal densities. This contrasts with the usual way to model
multivariate distributions, which suffers from the restriction that the marginal dis-
tributions are usually of the same type. The separation between marginal distribu-
tions and a dependence structure explains the modeling flexibility given by copula
functions.

2.3.1 The Gaussian Copula

An important parametric family is the multivariate Gaussian copula. This copula
function along with the multivariate Student’s copula are members of the elliptical
copulas.

Definition 2.2. The copula associated to the multivariate standard normal distribu-
tion is called Gaussian copula.
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According to Definition 2.2 and Theorem 3.1, if the d-dimensional distribution of a
random vector (Z1, . . . ,Zd) is a joint standard normal distribution, then the associ-
ated Gaussian copula has the following expression:

C(Φ(z1), . . . ,Φ(zd);Σ) =
∫ z1

−∞
· · ·

∫ zd

−∞
e−

1
2 t′Σ−1t

(2π)(n/2)|Σ |1/2
dtd · · ·dt1 , (2.3)

or equivalently,

C(u1, . . . ,ud;Σ) =
∫ Φ−1(u1)

−∞
· · ·

∫ Φ−1(ud)

−∞
e−

1
2 t′Σ−1t

(2π)(n/2)|Σ |1/2
dtd · · ·dt1 , (2.4)

where Φ is the cumulative distribution function of the marginal standard normal
distribution and Σ is a symmetric matrix with main diagonal of ones. The elements
outside the main diagonal of matrix Σ are the pairwise correlations ρi j between
variables Zi and Zj, for i, j = 1, . . . ,d and i �= j. It can be noticed that a d-dimensional
standard normal distribution has mean vector zero and a correlation matrix Σ with
d(d− 1)/2 parameters.

The dependence parameters ρi j of a d-dimensional Gaussian copula can be esti-
mated using the maximum likelihood method. To do so, the steps of Algorithm 2.2
can be followed. Algorithm 2.2 is based on reference [5].

Algorithm 2.2. Pseudocode for estimating Gaussian copula parameters
1: Transform values of each variable uj by calculating z j =Φ−1(uj), for j = 1, . . . ,d, where Φ

is the cumulative standard normal distribution function.
2: Build the sample data matrix z = {(z1i,z2i, . . . ,zdi)}n

i=1.

3: Estimate the correlation matrix Σ̂ using pseudo observations zi = (z1i,z2i, . . . ,zdi) and the
formula

Σ̂ =
1
n

n

∑
i=1

z′izi .

Due to Equation (2.2), the d-dimensional Gaussian copula density can be calculated
as:

c(Φ(z1), . . . ,Φ(zd);Σ) =
1

(2π)(d/2)|Σ |1/2 e−
1
2 z′Σ−1z

∏d
i=1

1
(2π)1/2 e−

1
2 z2

i

=
1

|Σ |1/2
e−

1
2 z′(Σ−1−I)z . (2.5)

Given that a Gaussian copula is also a distribution function, it is possible to simulate
data from it. The main steps are the following: once a correlation matrix Σ is speci-
fied, a data set can be generated from a joint standard normal distribution. The next
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step consists of transforming this data set using the cumulative distribution func-
tion Φ . Algorithm 2.3 and Fig. 2.1 illustrate the sampling procedure for different
correlations.

Algorithm 2.3. Pseudocode for generating data from a Gaussian copula
1: Simulate observations (z1, . . . ,zd) from a joint standard normal distribution with correlation

matrix Σ .
2: Calculate ui =Φ(zi) where Φ is the cumulative standard normal distribution function, for

i = 1, . . . ,d.
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(c) ρ =−0.70 (d) ρ = 0.90

Fig. 2.1 A sample of 500 points from a standard normal distribution (top) and the corre-
sponding sample for a Gaussian copula (bottom) with (a) a negative dependence, and (b) a
positive dependence. Histograms show the marginal distribution for each variable.

Figure 2.1 (a) shows a sample drawn from a bivariate standard normal distri-
bution with correlation ρ = −0.70 (step 1, Algorithm 2.3). The histogram on the
vertical axis and the histogram on the horizontal axis illustrate that both marginals
are univariate standard normal distributions. This data set is used to obtain a sample
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from a Gaussian copula, as shown in Fig. 2.1 (c) (step 2, Algorithm 2.3). Both his-
tograms illustrate that marginals are uniform, according to Definition 2.1. In order
to appreciate how the correlation parameter modifies the dependence structure, Fig.
2.1 (b) and Fig. 2.1 (d) show the corresponding information with ρ = 0.90.

An important result for parametric bivariate copulas is explained through the
following theorem, which relates the dependence parameter θ of a copula and
Kendall’s τ .

Theorem 2.2. Let X and Y be continuous random variables whose copula is C. Then
the population version of Kendall’s tau for X and Y is given by

τ(X ,Y ) = 4
∫ 1

0

∫ 1

0
C(u,v;θ )dC(u,v;θ )− 1 , (2.6)

where u = FX(x) and v = FY (y).

For a bivariate Gaussian copula, Equation (2.6) can be written as

τ =
2
π

arcsin(ρ) , (2.7)

where ρ = θ . As a consequence, the data sets in Fig. 2.1 (a)-(top,bottom) have the
same concordance value, measured in Kendall’s τ . A similar statement can be said
for Fig. 2.1 (b)-(top,bottom).

In order to appreciate Gaussian dependence between non Gaussian marginals,
Fig. 2.2 shows a scatter plot with data drawn from a joint distribution with marginals
Beta and dependence structure modeled by a bivariate Gaussian copula.
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Fig. 2.2 A sample of 500 points that has been generated with a Gaussian copula with pa-
rameter θ = −0.9 and marginal distributions Beta with parameters (1,2) (histogram on the
horizontal axis) and (0.5,0.5) (histogram on the vertical axis).

Given that is well established how to estimate correlation matrices, evaluate
densities, and calculate integrals for the multidimensional normal distribution, the
Gaussian copula function is relatively easy to implement.
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2.4 Regular Vines

Vines is a class of undirected graphs for representing high dimensional probability
distributions. These kind of graphs use bivariate and conditional bivariate copula
functions.

According to [33], a vine on d variables is a set of nested trees, where the edges
of the tree j are the nodes of the tree j + 1, for j = 1, . . . ,d− 2, and each tree has
the maximum number of edges. We illustrate the concept of a vine in the following
example.

Example 2.1. Let (X1,X2,X3) be a three dimensional random vector with a joint
density function f (x1,x2,x3). A well known factorization for the trivariate density
is given by the expression

f (x1,x2,x3) = f (x1) · f (x2|x1) · f (x3|x1,x2) . (2.8)

From the copula theory and (2.2), the joint density can also be factorized as

f (x1,x2,x3) = f (x1) · f (x2) · f (x3) · c(u1,u2,u3) . (2.9)

However, once again by means of (2.2), we can decompose the conditional distribu-
tions into bivariate copulas and marginal densities

f (x2|x1) =
f (x1,x2)

f (x1)
= c(u1,u2) · f (x2) , (2.10)

f (x3|x1,x2) =
f (x1,x3|x2) · f (x2)

f (x1|x2) · f (x2)

=
c(u1,u3|u2) · f (x1|x2) · f (x3|x2)

f (x1|x2)

= c(u1,u3|u2) · c(u2,u3) · f (x3) . (2.11)

Inserting expressions (2.10) and (2.11) into (2.8) gives

f (x) = c(u1,u2) · c(u2,u3) · c(u1,u3|u2) ·
3

∏
k=1

f (xk) . (2.12)

The pair copula decomposition in (2.12) can be represented by a graphical structure.
Figure 2.3 (a) shows a graph with 6 nodes and 6 edges. Figure 2.3 (b) shows a vine
with 5 nodes, 2 trees and 3 edges. The contents of each node in the vine represents
the indexes of the random variables. For example, the node with number two is re-
lated to random variables (X2,U2). Two edges in the vine are associated to marginal
bivariate copulas, whereas one edge is associated to a conditional bivariate copula.

By comparing (2.9) and (2.12), we see that a trivariate copula density can be built
using only bivariate copulas as building blocks:
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U1 U2 U3

X1 X2 X3

c(u1,u2) c(u2,u3)

c(u1,u3|u2)

1 2 3 T1

1,2 2,3 T2

1,2 2,3

1,3|2

(a) (b)

Fig. 2.3 (a) An undirected graphical model. (b) A typical vine representation. Both graphs
refer to the trivariate density function (2.12).

c(u1,u2,u3) = c(u1,u2) · c(u2,u3)︸ ︷︷ ︸
marginals

·c(u1,u3|u2)︸ ︷︷ ︸
conditional

. (2.13)

From Fig. 2.3 (b), it can be noticed that the edges of the first tree T1 are the nodes
of the second tree T2 and each tree has the maximum number of edges, i.e., two
and one edges respectively. Moreover, from (2.13), it can be seen that the tree T1

is related to the marginal bivariate copulas and the nested tree T2 is related to the
conditional bivariate copula. �

Several comments can be said from the exposition of Example 2.1. For example,
the vine representation for the joint density function is not unique. There are six
different permutations for the indexes of the variables, but only three permutations
give different factorizations.

Vines give a way of extending bivariate copula functions to higher dimensions.
By selecting an adequate set of bivariate copula functions, it is possible to de-
sign new d-dimensional copulas. Moreover, vines can be easily adapted to higher
dimensions.

Finally, besides vines are graphical representations of pair copula decomposi-
tions, they can provide a more flexible representation of the joint distribution.

In this work, we are interested in using a special subset of vines as probabilistic
models in EDAs. We refer to regular vines and present its formal definition [34].

Definition 2.3 (Regular vine). V is a regular vine on d elements if

1. V = (T1, . . . ,Td−1), where Ti is a tree1 for all i = 1, . . . ,d− 1.
2. T1 is a connected tree with nodes N1 = {1, . . . ,d} and edges E1. For i =

2, . . . ,d− 1, Ti = (Ni,Ei) is a connected tree with nodes Ni = Ei−1.

1 A tree, as defined in [34], can be considered as a forest of trees. A tree in which all nodes
are connected is termed as a connected tree.
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3. For i = 2, . . . ,d− 1, if {a,b} ∈ Ei, then #a�b = 2, where � denotes the sym-
metric difference. In other words, if a and b are nodes of Ti connected by an edge
in Ti, where a = {a1,a2} and b = {b1,b2}, then exactly one of the ai equals one
of the bi. This condition is called the proximity condition.

The first and second properties in Definition 2.3 refer to vines. Third property [7, 8]
refers to the proximity condition in a regular vine, since it expresses the fact that
two edges in tree j are joined by an edge in tree j + 1 only if these edges share a
common node, j = 1, . . . ,d− 2.

Two families of regular vines are the D-vine and the canonical vine (C-vine)2.
These special cases of regular vines impose additional restrictions and are charac-
terized by minimal and maximal degrees of nodes in the trees.

Definition 2.4 (C-vine, D-vine). A regular vine is called a

1. Canonical or C-vine if each tree Ti has a unique node of degree d− i. The node
with maximal degree in T1 is the root.

2. D-vine if each node in T1 has a degree of at most 2.

Examples of C-vines and D-vines on 4 nodes are shown in Figures 2.4 and 2.5
respectively.

Figure 2.5 shows a D-vine on four variables. The tree T1 is built on marginal pair-
wise variables, whereas the tree T2 takes into account conditional pairwise variables.
Observe how tree T2 is built on tree T1. The last tree, T3, involves variables U1 and
U4 conditioned on variables U2, and U3. Every tree, except tree T1, has associated
conditional bivariate distributions. References [1, 34] provide formal definitions of
regular vines and illustrative information.

From a theoretical point of view, it is possible to model any d-dimensional de-
pendence structure by means of regular vines and bivariate copulas. However, for
practical purposes, it is not necessary to build the complete C-vine or the complete
D-vine. For example, a truncated regular vine can be adequate for modeling a d-
dimensional distribution if it preserves as much information as possible.

Before presenting the implementation of regular vines into an EDA, we provide
some theoretical relationships between multivariate distributions and their associ-
ated copula functions.

2.4.1 Copula Entropy and Mutual Information

In the EDA literature [38], the Kullback-Leibler divergence has been used as a mea-
sure of the difference between two probability distributions. This divergence is an
information measure between two distributions. It is always non-negative for any
two distributions, and is zero if and only if the distributions are identical. Hence, the

2 D-vines were originally called drawable vines, while canonical vines owe their name to
the fact that they are the most natural for sampling [34].
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f (x) = c(u1,u2) · c(u1,u3) · c(u1,u4)︸ ︷︷ ︸
T1

·c(u2,u3|u1) · c(u2,u4|u1)︸ ︷︷ ︸
T2

· c(u3,u4|u1,u2)︸ ︷︷ ︸
T3

· f (x1) · f (x2) · f (x3) · f (x4)

Fig. 2.4 Example of a four-dimensional C-vine

Kullback-Leibler divergence can be interpreted as a measure of the dissimilarity of
two distributions. Below, we prove an important relationship between the Kullback-
Leibler divergence and copula functions.

Proposition 2.1. Let f and g be two d-dimensional density functions with marginal
densities fi and gi, respectively for i = 1, . . . ,d. Then, the Kullback-Leibler diver-
gence between multivariate densities f and g is given by the expression,

DKL ( f ||g) =
d

∑
i=1

DKL ( fi||gi)+DKL
(
c f ||cg

)
,

where c f and cg are the associated copula functions for multivariate densities f
and g.

Proof. We start the proof by using the definition of the Kullback-Leibler divergence
and (2.2)
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1 2 3 4 T1

1,2 2,3 3,4 T2

1,3|2 2,4|3 T3

1,2 2,3 3,4

1,3|2 2,4|3

1,4|2,3

f (x) = c(u1,u2) · c(u2,u3) · c(u3,u4)︸ ︷︷ ︸
T1

·c(u1,u3|u2) · c(u2,u4|u3)︸ ︷︷ ︸
T2

· c(u1,u4|u2,u3)︸ ︷︷ ︸
T3

· f (x1) · f (x2) · f (x3) · f (x4)

Fig. 2.5 Example of a four-dimensional D-vine

DKL ( f ||g) = E f (x)

[
log

f (x)
g(x)

]

= E f (x)

[
log

∏d
i=1 fi · c f

∏d
i=1 gi · cg

]

=
d

∑
i=1

E f (x)

[
log

fi

gi

]
+E f (x)

[
log

c f

cg

]

=
d

∑
i=1

DKL ( fi||gi)+E f (x)

[
log

c f

cg

]
.

It is known that ui = Fi(xi) for i = 1, . . . ,d. By using a change of variables we have

E f (x)

[
log

c f

cg

]
=

∫
f (x) log

(
c f

cg

)
dx

=

∫ d

∏
i=1

fi · c f log

(
c f

cg

)
1

∏d
i=1 fi

du

= DKL
(
c f ||cg

)
.

Therefore,

DKL ( f ||g) =
d

∑
i=1

DKL ( fi||gi)+DKL
(
c f ||cg

)
. ��

Proposition 2.1 gives an encouragement for using copula functions. When a prob-
abilistic model is proposed for a multivariate data set, the Kullback-Leibler diver-
gence between the unknown density of the data set and the proposed density model
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depends on the selection of marginal densities and the copula function. Under the as-
sumption that marginal densities are well selected, the proposed density differs only
from the unknown density in the term related to the dependence among variables.

Proposition 2.2. Let f be a d-dimensional density function with marginal densities
fi for i = 1, . . . ,d. Then, the Kullback-Leibler divergence between the multivariate
density f and the product of marginal densities ∏d

i=1 fi is given by the expression,

DKL

(
f ||

d

∏
i=1

fi

)
=−H (U1, . . . ,Ud) ,

where H (U1, . . . ,Ud) is the entropy of the associated copula function for the multi-
variate density f .

Proof. Using Proposition 2.1

DKL

(
f ||

d

∏
i=1

fi

)
=

d

∑
i=1

DKL ( fi|| fi)+DKL
(
c f ||1

)

= DKL
(
c f ||1

)
.

But,

DKL
(
c f ||1

)
=

∫
c f log

(c f

1

)
du

= −H (U1, . . . ,Ud) .

Thus,

DKL

(
f ||

d

∏
i=1

fi

)
=−H (U1, . . . ,Ud) . ��

For the particular case of a two-dimensional random vector (X1,X2), it is known that
the Kullback-Leibler divergence between the bivariate density f and the product of
marginal densities f1 · f2 is equal to the mutual information between variables X1

and X2. In this sense, Proposition 2.2 gives a theoretical support for the connection
between mutual information and the entropy of a bivariate copula function presented
in [14].

The following result was presented in [31] and shows the relationship among
the entropies of marginal densities, the entropy of the original distribution, and the
entropy of the associated copula function.

Proposition 2.3. Let f be a d-dimensional density function with marginal densities
fi for i = 1, . . . ,d. Then, the entropy of the associated copula function is given by,
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H (U1, . . . ,Ud) = H (X1, . . . ,Xd)−
d

∑
i=1

H(Xi) .

Proof. We first calculate the Kullback-Leibler divergence

DKL

(
f ||

d

∏
i=1

fi

)
= E f (x)

[
log

f (x)

∏d
i=1 fi

]

= E f (x) [log f (x)]−E f (x)

[
log

d

∏
i=1

fi

]

= −H (X1, . . . ,Xd)+
d

∑
i=1

H(Xi) .

By using the result of Proposition 2.2, we complete the proof. ��
From information theory, it is known that the sum of marginal entropies is greater
or equal than the joint entropy. As a consequence, Proposition 2.3 states that the
entropy of a copula function is non positive. Moreover, all the information about
dependencies between variables can be measured by the copula entropy.

We present in the next proposition, two results for bivariate and trivariate depen-
dence structures.

Proposition 2.4. Let X1, X2 and X3 be continuous random variables with joint and
marginal densities. The following expressions hold for the mutual information and
the conditional mutual information,

I (X1,X2) = I (U1,U2) , (2.14)

I (X1,X2|X3) = I (U1,U2|U3) , (2.15)

where U1, U2 and U3 are the variables of the corresponding copula function.

Proof. By using Proposition 2.2 and the fact that marginal densities are uniform for
copula functions,

I (X1,X2) = DKL ( f || f1 · f2)

= DKL
(
c f ||1

)

=
∫

c f log
(
c f
)

du

= I (U1,U2) .

Similarly,
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I (X1,X2|X3) = DKL
(

f || f1|3 · f2|3 · f3
)

= DKL
(
c f ||c(u1,u3) · c(u2,u3)

)

=
∫

c f log

(
c f

c(u1,u3) · c(u2,u3)

)
du

= I (U1,U2|U3) . ��

Thus, by (2.14) and (2.15), the information about marginal and conditional depen-
dencies between any two variables, can be measured by the marginal and conditional
mutual information of the corresponding copula functions. It is not difficult to prove
that, for calculating the marginal and conditional mutual information, we can use
copula entropies:

I (X1,X2) =−H(U1,U2) , (2.16)

I (X1,X2|X3) =−H(U1,U2,U3)+H(U1,U3)+H(U2,U3) . (2.17)

The results in Proposition 2.4 show that, under the assumption that marginal dis-
tributions are well fitted, the source of information about the dependence between
variables can be calculated by using only copula functions. These results along with
(2.16) and (2.17) will be used for constructing the graphical structure of regular
vines in EDAs.

The relationship between the entropy of a bivariate copula function and the
marginal mutual information of two variables, (2.16), has both theoretical and prac-
tical importance: 1) the mutual information is given by the copula function regard-
less of the marginal distributions, and 2) the estimation of the copula entropy can be
more accurate than the estimation of mutual information because the copula domain
is always bounded and standardized.

An important consequence for bivariate Gaussian copulas is that, by definition,
its entropy is equal to the negative of mutual information of two variables with
standard joint Gaussian distribution

H(U1,U2) =
1
2

log(1−ρ2) , (2.18)

where ρ is the correlation parameter.
The result in Proposition 2.2 implies that the entropy of a trivariate Gaussian

copula is given by:

H(U1,U2,U3) =
1
2

log(1+ 2ρ12ρ13ρ23−ρ2
12−ρ2

13−ρ2
23) . (2.19)

We illustrate how the selection of the first two trees in a C-vine and a D-vine can
modify the amount of information for the corresponding truncated regular vine.

Example 2.2 (Truncated C-vine). Consider a four-dimensional distribution f (x)
with an associated copula function. A full C-vine for the four-dimensional distri-
bution is given by
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f (x) = c(u1,u2) · c(u1,u3) · c(u1,u4)︸ ︷︷ ︸
T1

·c(u2,u3|u1) · c(u2,u4|u1)︸ ︷︷ ︸
T2

· c(u3,u4|u1,u2)︸ ︷︷ ︸
T3

· f (x1) · f (x2) · f (x3) · f (x4) . (2.20)

A graphical representation of (2.20) can be seen in Fig. 2.4. If we employ only the
first two trees of the C-vine, the truncated model is given by

fT1 ,T2(x) = c(u1,u2) · c(u1,u3) · c(u1,u4)︸ ︷︷ ︸
T1

·c(u2,u3|u1) · c(u2,u4|u1)︸ ︷︷ ︸
T2

· f (x1) · f (x2) · f (x3) · f (x4) . (2.21)

The loss of information given by the truncated model can be measured through the
Kullback-Leibler divergence between (2.20) and (2.21):

DKL ( f || fT1 ,T2) = −
4

∑
i=2

I (X1,Xi)

︸ ︷︷ ︸
T1

−
4

∑
j=3

I (X2,Xj|X1)

︸ ︷︷ ︸
T2

+
4

∑
k=1

H(Xk)−H (X1,X2,X3,X4) . (2.22)

The terms in (2.22) related to marginal and conditional mutual information can be
calculated by using (2.16) and (2.17). Moreover, according to the result in Proposi-
tion 2.3, the last two terms of the Kullback-Leibler divergence (2.22) can be substi-
tuted by the joint copula entropy.

If the Gaussian copula is assumed as the associated copula function, then, by
using(2.18) and (2.19), the Kullback-Leibler divergence (2.22) can be written as

DKL ( f || fT1 ,T2) =
1
2

4

∑
i=2

log
(
1−ρ2

1i

)

︸ ︷︷ ︸
T1

+
1
2

4

∑
j=3

log
(

1−ρ2
2 j|1

)

︸ ︷︷ ︸
T2

− 1
2

log(|Σ |) . (2.23)

where ρ1i and ρ2 j|1 are the parameters of the marginal and conditional Gaussian
copulas c(u1,ui) and c(u2,u j|u1), respectively. Details of the Gaussian copula and
its correlation matrix Σ can be seen in Sec. 2.3.1.

For a particular Gaussian copula with correlation matrix given by
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Σ =

⎡
⎢⎢⎣

1 0.61 0.62 0.39
0.61 1 0.47 0.50
0.62 0.47 1 0.49
0.39 0.50 0.49 1

⎤
⎥⎥⎦ , (2.24)

the Kullback-Leibler divergence (2.23) is

DKL ( f || fT1 ,T2) = (−0.557762)︸ ︷︷ ︸
T1 with X1 as root

+(−0.080097)︸ ︷︷ ︸
T2 with X2 as root

−(−0.6900143)

= 0.052155 . (2.25)

The loss of information can be modified if we considered other variables as roots.
For example, if variables X2 and X3 are the roots for the first tree T1 and the second
tree T2, respectively, then the corresponding Kullback-Leibler divergence is

DKL ( f || fT1 ,T2) = (−0.501336)︸ ︷︷ ︸
T1 with X2 as root

+ (−0.18778)︸ ︷︷ ︸
T2 with X3 as root

−(−0.6900143)

= 0.000898 . (2.26)

For minimizing the loss of information, the above results suggest that an adequate
truncated C-vine must select the tree T1 with the greatest sum of marginal mutual
information and then, conditioned to the root of tree T1, select the tree T2 with the
greatest sum of conditional mutual information. With this idea, the minimum of the
Kullback-Leibler divergence is gotten when variables X1 and X4 are the roots of the
first tree T1 and the second tree T2, respectively:

DKL ( f || fT1 ,T2) = (−0.557762)︸ ︷︷ ︸
T1 with X1 as root

+(−0.131869)︸ ︷︷ ︸
T2 with X4 as root

−(−0.6900143)

= 0.000383 . (2.27)

�

Example 2.3 (Truncated D-vine). Similar to the Example 2.2, we consider a four-
dimensional distribution f (x) with an associated copula function. A full D-vine for
the four-dimensional distribution is given by

f (x) = c(u1,u2) · c(u2,u3) · c(u3,u4)︸ ︷︷ ︸
T1

·c(u1,u3|u2) · c(u2,u4|u3)︸ ︷︷ ︸
T2

· c(u1,u4|u2,u3)︸ ︷︷ ︸
T3

· f (x1) · f (x2) · f (x3) · f (x4) . (2.28)

A graphical representation of (2.28) can be seen in Fig. 2.5. If we employ only the
first two trees of the D-vine, the truncated model is given by
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fT1 ,T2(x) = c(u1,u2) · c(u2,u3) · c(u3,u4)︸ ︷︷ ︸
T1

·c(u1,u3|u2) · c(u2,u4|u3)︸ ︷︷ ︸
T2

· f (x1) · f (x2) · f (x3) · f (x4) . (2.29)

The loss of information given by the truncated model can be measured through the
Kullback-Leibler divergence between (2.28) and (2.29):

DKL ( f || fT1 ,T2) = −
3

∑
i=1

I (Xi,Xi+1)

︸ ︷︷ ︸
T1

−
2

∑
j=1

I
(
Xj,Xj+2|Xj+1

)

︸ ︷︷ ︸
T2

− H (U1,U2,U3,U4) . (2.30)

For the permutation of variables (X1,X2,X3,X4) in the first tree T1, and the partic-
ular Gaussian copula with correlation matrix given by (2.24), the Kullback-Leibler
divergence (2.30) is

DKL ( f || fT1 ,T2) = (−0.494779)︸ ︷︷ ︸
T1 based on (X1,X2,X3,X4)

+(−0.194337)︸ ︷︷ ︸
T2

−(−0.6900143)

= 0.000898 . (2.31)

The loss of information can be modified if we considered other permutation of vari-
ables for the first tree T1. For example, if variables X1, X2, X4 and X3 are a per-
mutation of variables for the first tree T1, then the corresponding Kullback-Leibler
divergence is

DKL ( f || fT1 ,T2) = (−0.513812)︸ ︷︷ ︸
T1 based on (X1,X2,X4,X3)

+(−0.054242)︸ ︷︷ ︸
T2

−(−0.6900143)

= 0.12196 . (2.32)

In order to minimize the loss of information, it is necessary to consider all possible
permutations of variables for the first tree. By doing so, an optimal permutation is
given by variables X2, X1, X4 and X3:

DKL ( f || fT1 ,T2) = (−0.452468)︸ ︷︷ ︸
T1 based on (X1,X2,X4,X3)

+(−0.237164)︸ ︷︷ ︸
T2

−(−0.6900143)

= 0.000383 . (2.33)

�

As can be seen, for minimizing the loss of information with a truncated D-vine,
there is no a straightforward procedure as the C-vine case. However, for practical
purposes, it is enough to select an adequate permutation of variables in order to
define the tree T1 with the greatest information as possible.
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In general, by truncating the C-vine or the D-vine some piece of information
can be lost. A motivation for truncating the C-vine or the D-vine is to reduce the
complexity of the model and reduce the number of conditional bivariate copulas.
However, it is convenient a procedure for choosing an adequate permutation without
a huge loss of information.

2.5 EDAs Based on Regular Vines

In order to show how a multivariate probabilistic model based on regular vines can
be used in EDAs, we propose the use of truncated C-vine and D-vine models.

2.5.1 Description of the C-Vine EDA

As shown in Example 2.2, there is a direct way of proposing a C-vine model with
only two trees. We define a class of density functions based on a truncated C-vine
with only two trees, T1 and T2:

fC-vine(x) =
d

∏
i=2

c
(
uβ1

,uβi

) d

∏
j=3

c
(

uβ2
,uβ j

|uβ1

) d

∏
k=1

f (xk) , (2.34)

where βββ = (β1, . . . ,βd) is a permutation of the integers between 1 and d. There-
fore, the d-dimensional density fC-vine(x) defined in (2.34) is an approximation to
a multivariate density based on a full C-vine. Then, the goal is to choose the first
two elements of the permutation βββ that minimizes the Kullback-Leibler divergence
between the true density function f (x) and the proposed density function fC-vine(x):

DKL ( f || fC-vine) = −
d

∑
i=2

I(Xβ1
,Xβi

)−
d

∑
j=3

I(Xβ2
,Xβ j

|Xβ1
)

− H(U) . (2.35)

The last term in the divergence (2.35) does not depend on βββ . Therefore, minimizing
the Kullback-Leibler is equivalent to maximizing

JC-vine(X) =
d

∑
i=2

I(Xβ1
,Xβi

)+
d

∑
j=3

I(Xβ2
,Xβ j

|Xβ1
) . (2.36)

The optimal permutation βββ is the one that produces the highest value for (2.36). A
straightforward procedure, based on copula entropies (2.16) and (2.17), is given by
Algorithm 2.4, which shows how to find the first two elements of the permutation βββ .
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Algorithm 2.4. Algorithm to pick the roots of the first two trees of a C-vine

1: Find β1 = argmini∑d
j=2 Ĥ(Ui,Uj), where Ĥ() is an estimation of the bivariate copula entropy

among variables ui = FXi (xi), and uj = FXj (x j).

2: Find β2 = argmini∑d
j=3 Ĥ(Uβ1

,Ui,Uj)− Ĥ(Uβ1
,Ui)− Ĥ(Uβ1

,Uj), where Ĥ() is an
estimation of the corresponding bivariate and trivariate copula entropies.

If Gaussian copula is used for modeling depencies among variables, the trivariate
and bivariate copula entropies of Algorithm 2.4 can be calculated by using (2.18)
and (2.19).

2.5.2 Description of the D-Vine EDA

We define a class of density functions based on a truncated D-vine with only two
trees, T1 and T2:

fD-vine(x) =
d−1

∏
i=1

c
(
uγi ,uγi+1

)d−2

∏
j=1

c
(

uγ j ,uγ j+2 |uγ j+1

) d

∏
k=1

f (xk) , (2.37)

where γγγ = (γ1, . . . ,γd) is a permutation of the integers between 1 and d. Therefore,
the d-dimensional density fD-vine(x) defined in (2.37) is composed by the product of
marginal densities and a copula density given by a D-vine with only two trees. Then,
the goal is to choose a permutation γγγ = (γ1, . . . ,γd) that minimizes the Kullback-
Leibler divergence between the true density function f (x) and the proposed density
function fD-vine(x):

DKL ( f || fD-vine) = −
d−1

∑
i=1

I(Xγi ,Xγi+1)−
d−2

∑
j=1

I(Xγ j ,Xγ j+2 |Xγ j+1)

− H(U) . (2.38)

The last term in the divergence (2.38) does not depend on γγγ . Therefore, minimizing
the Kullback-Leibler is equivalent to maximizing

JD-vine(X) =
d−1

∑
i=1

I(Xγi ,Xγi+1)+
d−2

∑
j=1

I(Xγ j ,Xγ j+2 |Xγ j+1) . (2.39)

The optimal permutation γγγ is the one that produces the highest marginal and con-
ditional pairwise mutual information with respect to the true distribution. But due
to computational efficiency reasons we propose a greedy algorithm based on (2.16)
and (2.17). We first select the three variables with the smallest trivariate copula en-
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tropy and choose a random order to make a chain. The following variables of the
permutation γγγ are chosen according to their bivariate copula entropy with respect to
any of the variables in the ends of the chain. Algorithm 2.5 shows a straightforward
greedy algorithm to find a permutation γγγ .

Algorithm 2.5. Greedy algorithm to pick a permutation γγγ in a D-vine

1: Find (γm−1,γm,γm+1) = argmin j �=k �=l Ĥ(Uj ,Uk ,Ul), where Ĥ() is an estimation of the
trivariate copula entropy among variables uj = FXj (x j), uk = FXk (xk), and ul = FXl (xl).

2: Choose variables with the smallest bivariate copula entropy with respect to any of the ends of
the chain. The constraint is to avoid a circular chain.

3: The order of the chain defines permutation γγγ.

If Gaussian copula is used for modeling depencies among variables, the trivariate
and bivariate copula entropies of Algorithm 2.5 can be calculated by using (2.18)
and (2.19).

2.5.3 Incorporating the Gaussian Copula

In [53], a regular vine is considered for the first time as a graphical model for de-
signing a new EDA. This EDA is based on a D-vine and Gaussian copulas.

The probabilistic models C-vine and D-vine have been previously presented in
Sec. 2.4. We summarize the proposed approach in Algorithm 2.6.

Algorithm 2.6. Pseudocode for estimating the C-vine (D-vine) model and gen-
erating a new population

1: for i = 1→ d do
2: For each variable Xi, estimate its marginal distribution function F̂i.
3: Determine Ui = F̂i(Xi).
4: end for
5: Estimate the parameters of the Gaussian copula Σ using Algorithm 2.2.
6: Calculate all bivariate and trivariate copula entropies, (2.18) and (2.19).
7: Pick a permutation βββ (γγγ) for the graphical model using Algorithm 2.4 (Algorithm 2.5).
8: Simulate Uβ1

(Uγ1 ) from an uniform distribution U(0,1).
9: Simulate Uβ2

(Uγ2 ) from the conditional Gaussian copula C(Uβ2
|Uβ1

) (C(Uγ2 |Uγ1 )).
10: for i = 3→ d do
11: Simulate Uβi

(Uγi ) from the conditional Gaussian copula C(Uβi
|Uβ1

,Uβ2
)

(C(Uγi |Uγi−2 ,Uγi−1 )).
12: end for
13: for i = 1→ d do
14: Generate new data Xi by using the quasi-inverse F̂−1

i (Ui).
15: end for
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2.5.3.1 Experiments

We use three algorithms in order to optimize five test problems. One of these al-
gorithms is the Estimation on Multivariate Normal Algorithm (EMNA), the other
two algorithms are the EDAs based on regular vines. They are represented by the
following notation:

• C-vine Gaussian
Kernel : A truncated C-vine model with Gaussian copula functions and

Gaussian kernels as marginal distributions.
• D-vine Gaussian

Kernel : A truncated D-vine model with Gaussian copula functions and
Gaussian kernels as marginal distributions.

The test problems used in the experiments are the Ackley, Griewangk, Rastrigin,
Rosenbrock, and Sphere functions. These test functions are described in Fig. 2.6.
The benchmark test suite includes separable functions and non-separable functions,
from which there are unimodal and multimodal functions. In addition, the search
domains are symmetric and asymmetric. All test functions are scalable. We use test
problems in 10 dimensions and different search domains. Each algorithm is run
20 times for each problem. The population size is 200. The maximum number of
evaluations is 50,000. However, when convergence to a local minimum is detected
the run is stopped. Any improvement less than 1×10−6 in 25 iterations is considered
as convergence. The goal is to reach the optimum with an error less than 1× 10−4.

2.5.3.2 Numerical Results

In Table 2.1 we report the descriptive statistics for the fitness values reached in
all the runs. For each algorithm, the minimum, median, mean, maximum, standard
deviation and success rate are shown. The minimum (maximum) value reached is la-
belled best (worst). The success rate is the proportion of runs in which an algorithm
found the global optimum.

2.5.3.3 Discussion

According to Table 2.1, all the algorithms have a better performance in symmetric
domains. The asymmetric domains represent a serious difficult for the EDAs. An
asymmetric domain does not include the global optimum, so the algorithms must
move their populations in each iteration in order to get good solutions. However,
according to the success rate indicator, the algorithm with a better performance in
asymmetric domains is the C-vine EDA. The success rate for the Ackley function
and the Sphere function is non zero for the C-vine. Moreover, at least in a descriptive
comparison, the average fitness for the C-vine EDA in all the test functions is always
less than the average fitness of the D-vine EDA and the EMNA.

On the other hand, the best value gotten by the EMNA in asymmetric domains
for all the test functions is not better than the best ones of the EDAs based on regular
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Description

Ackley

−20 · exp

(
−0.2

√
1
d
·∑d

i=1 x2
i

)
−exp

(
1
d
·∑d

i=1 cos(2πxi)

)
+20+exp(1)

Symmetric domain: x ∈ [−10,10]d Asymmetric domain: x ∈ [5,10]d

Properties: Multimodal, Non-separable Global Minimum: f (0) = 0

Griewangk

1+∑d
i=1

x2
i

4000
−∏d

i=1 cos

(
xi√

i

)

Symmetric domain: x ∈ [−600,600]d Asymmetric domain: x ∈ [300,600]d

Properties: Multimodal, Non-separable Global Minimum: f (0) = 0

Rastrigin

∑d
i=1(x

2
i −10cos(2πxi)+10)

Symmetric domain: x ∈ [−5.12,5.12]d Asymmetric domain: x ∈ [2.56,5.12]d

Properties: Multimodal, Separable Global Minimum: f (0) = 0

Rosenbrock

∑d−1
i=1 [100 · (xi+1−x2

i )
2 +(1−xi)

2]

Symmetric domain: x ∈ [−10,10]d Asymmetric domain: x ∈ [5,10]d

Properties: Unimodal, Non-separable Global Minimum: f (1) = 0

Sphere Model

∑d
i=1 x2

i

Symmetric domain: x ∈ [−100,100]d Asymmetric domain: x ∈ [50,100]d

Properties: Unimodal, Separable Global Minimum: f (0) = 0

Fig. 2.6 Names, mathematical definition, search domains, global minimum and properties of
the test functions

vines. In general, although the fitness results for asymmetric domains are not good
enough, this would mean that the EDAs based on regular have more capacity for
moving their population than the EMNA.

For symmetric domains, the performance of the algorithms is very similar for
all the test functions. It is well known that solving multimodal and non-separable
functions is more difficult than solving unimodal and separable functions. However,
according to the success rate, the three algorithms have a very good performance in
the Ackley, Griewangk and Sphere functions. None of the three algorithms can find
the global optimum for the Rastrigin and Rosenbrock functions. It is worth saying
that symmetric domains with a global optimum at the center provide a favorable
condition for search distributions such as a multivariate normal distribution. This is
the case for all the test functions used in the experiments, except the Rosenbrock
function. Even so, the performance for the EDAs based on regular vines is very
similar to the EMNA in symmetric domains.



116 R. Salinas-Gutiérrez, A. Hernández-Aguirre, and E. R. Villa-Diharce

Table 2.1 Descriptive fitness results for all test functions

Algorithm Best Median Mean Worst Std. deviation Success rate

Ackley, asymmetric domain

C-Vine Gaussian
Kernel 4.93E-005 5.16E-001 1.24E+000 5.56E+000 1.67E+000 0.50

D-Vine Gaussian
Kernel 2.82E+000 7.04E+000 6.88E+000 1.01E+001 1.52E+000 0.00

EMNA 9.55E+000 1.04E+001 1.06E+001 1.22E+001 6.80E-001 0.00

Ackley, symmetric domain

C-Vine Gaussian
Kernel 5.96E-005 8.15E-005 8.20E-005 9.88E-005 1.15E-005 1.00

D-Vine Gaussian
Kernel 6.76E-005 8.82E-005 8.39E-005 9.87E-005 9.48E-006 1.00

EMNA 5.39E-005 9.01E-005 8.83E-005 1.53E-004 2.03E-005 0.95

Griewangk, asymmetric domain

C-Vine Gaussian
Kernel 1.97E-002 2.35E+000 5.84E+000 3.71E+001 9.11E+000 0.00

D-Vine Gaussian
Kernel 2.26E+001 4.45E+001 4.58E+001 9.94E+001 1.84E+001 0.00

EMNA 3.31E+002 3.52E+002 3.55E+002 3.81E+002 1.30E+001 0.00

Griewangk, symmetric domain

C-Vine Gaussian
Kernel 2.57E-005 7.42E-005 5.65E-004 9.86E-003 2.19E-003 0.90

D-Vine Gaussian
Kernel 3.01E-005 7.17E-005 3.83E-002 4.72E-001 1.21E-001 0.90

EMNA 5.90E-005 8.04E-005 9.64E-002 4.18E-001 1.58E-001 0.70

Rastrigin, asymmetric domain

C-Vine Gaussian
Kernel 5.07E+000 2.64E+001 2.85E+001 7.79E+001 1.51E+001 0.00

D-Vine Gaussian
Kernel 1.49E+001 2.90E+001 3.02E+001 5.77E+001 1.22E+001 0.00

EMNA 3.18E+001 5.67E+001 5.78E+001 8.91E+001 1.57E+001 0.00

Rastrigin, symmetric domain

C-Vine Gaussian
Kernel 2.16E+001 3.06E+001 3.22E+001 4.29E+001 5.79E+000 0.00

D-Vine Gaussian
Kernel 1.84E+001 2.86E+001 2.90E+001 3.73E+001 5.23E+000 0.00

EMNA 1.68E+001 2.82E+001 2.91E+001 3.73E+001 4.67E+000 0.00

Rosenbrock, asymmetric domain

C-Vine Gaussian
Kernel 1.04E+001 2.06E+003 8.27E+003 5.07E+004 1.42E+004 0.00

D-Vine Gaussian
Kernel 1.43E+004 4.75E+004 5.77E+004 1.53E+005 3.53E+004 0.00

EMNA 6.53E+005 9.29E+005 9.20E+005 1.05E+006 8.76E+004 0.00

Rosenbrock, symmetric domain

C-Vine Gaussian
Kernel 6.59E+000 7.82E+000 7.68E+000 8.65E+000 5.49E-001 0.00

D-Vine Gaussian
Kernel 6.84E+000 7.72E+000 8.12E+000 1.38E+001 1.51E+000 0.00

EMNA 6.83E+000 8.02E+000 8.13E+000 9.28E+000 6.00E-001 0.00

Sphere, asymmetric domain

C-Vine Gaussian
Kernel 3.13E-005 3.13E+002 4.99E+002 2.51E+003 6.70E+002 0.15

D-Vine Gaussian
Kernel 2.26E+003 3.94E+003 4.38E+003 7.30E+003 1.50E+003 0.00

EMNA 3.54E+004 3.86E+004 3.84E+004 4.08E+004 1.66E+003 0.00

Sphere, symmetric domain

C-Vine Gaussian
Kernel 2.79E-005 6.11E-005 6.50E-005 9.70E-005 2.19E-005 1.00

D-Vine Gaussian
Kernel 4.67E-005 7.24E-005 7.38E-005 9.65E-005 1.47E-005 1.00

EMNA 4.34E-005 7.50E-005 7.43E-005 9.88E-005 1.68E-005 1.00

2.6 Conclusions

This chapter has presented elements and methods from information theory, graphi-
cal models, and copula theory for designing multivariate distributions and applying
them into optimization problems. Our approach has been to model the most im-
portant dependencies in the selected population and to estimate their corresponding
multivariate distribution. Theoretical results concerning measures such as entropy
and mutual information along with copula functions have been provided for design-
ing truncated C-vine and D-vine.

The incorporation of copula functions into continuous EDAs has been shown in
this work. Besides, it has also shown how the structure of a probabilistic model can
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be learnt by taking into account the dependence among variables, regardless of the
behavior of marginal distributions. The EDAs presented in this chapter use the cop-
ula entropy as a measure of dependence and integrate copula functions into graphi-
cal models. From a theoretical point of view, this provides the following advantages:
(1) the most important dependencies are represented by the graphical model, (2) de-
pendencies can be linear or nonlinear, (3) any joint distribution can be factorized
by copula functions of lower order, and (4) marginal distributions can be selected
separately.

According to our experiments, the performance of the copula based EDA strongly
depends on the selected marginal distributions, copula functions and the graphical
model. This suggests that dependencies between decision variables must be modeled
adequately in order to get good solutions.

Finally, the presented methods for learning probabilistic models and using cop-
ula functions can be applied to other problems not necessarily related to optimiza-
tion. For example, in [51, 50] Gaussian copulas have been applied to classification
problems.

Acknowledgements. The first author acknowledges support from the National Council of
Science and Technology of México (CONACyT) through a scholarship to pursue graduate
studies in the Department of Computer Science at the Center for Research in Mathematics.
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3. T. Bacigál and M. Komornı́ková. Fitting Archimedean copulas to bivariate geodetic data.
In A. Rizzi and M. Vichi, editors, Compstat 2006 Proceedings in Computational Statis-
tics, pages 649–656, Heidelberg, Germany, 2006. Physica-Verlag HD.

4. Baluja, S.: Population-Based Incremental Learning: A Method for Integrating Genetic
Search Based Function Optimization and Competitive Learning. Technical Report CMU-
CS-94-163. Carnegie Mellon University, Pittsburgh, PA, USA (June 1994)

5. Baluja, S., Davies, S.: Using Optimal Dependency-Trees for Combinatorial Optimiza-
tion: Learning the Structure of the Search Space. In: Fisher, D.H. (ed.) Proceedings
of the Fourteenth International Conference on Machine Learning, pp. 30–38. Morgan
Kaufmann (1997)

6. Barba-Moreno, S.E.: Una propuesta para EDAs no paramétricos. Master’s thesis, Centro
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57. Soto, M., Ochoa, A., Acid, S., de Campos, L.M.: Introducing the polytree approximation
of distribution algorithm. In: Ochoa, A., Soto, M., Santana, R. (eds.) Second International
Symposium on Artificial Intelligence. Adaptive Systems, CIMAF 1999, pp. 360–367.
Academia, La Habana (1999)

58. Stitou, Y., Lasmar, N., Berthoumieu, Y.: Copulas based multivariate gamma modeling
for texture classification. In: ICASSP 2009: Proceedings of the 2009 IEEE International
Conference on Acoustics, Speech and Signal Processing, pp. 1045–1048. IEEE Com-
puter Society, Washington, DC (2009)

59. Trivedi, P.K., Zimmer, D.M.: Copula Modeling: An Introduction for Practitioners. Foun-
dations and Trends R© in Econometrics. Now Publishers (2007)

60. Venter, G., Barnett, J., Kreps, R., Major, J.: Multivariate Copulas for Financial Modeling.
Variance 1(1), 103–119 (2007)



2 Incorporating Regular Vines in Estimation of Distribution Algorithms 121

61. Wang, L., Guo, X., Zeng, J., Hong, Y.: Using Gumbel Copula and Empirical Marginal
Distribution in Estimation of Distribution Algorithm. In: Third International Workshop
on Advanced Computational Intelligence, IWACI 2010, pp. 583–587. IEEE (August
2010)

62. Wang, L., Zeng, J., Hong, Y., Guo, X.: Copula Estimation of Distribution Algorithm
Sampling from Clayton Copula. Journal of Computational Information Systems 6(7),
2431–2440 (2010)

63. Wang, L.F., Wang, Y.C., Zeng, J.C., Hong, Y.: An Estimation of Distribution Algorithm
Based on Clayton Copula and Empirical Margins. In: Li, K., Li, X., Ma, S., Irwin, G.W.
(eds.) LSMS 2010. CCIS, vol. 98, pp. 82–88. Springer, Heidelberg (2010)

64. Wang, L.F., Zeng, J.C.: Estimation of Distribution Algorithm Based on Copula Theory.
In: Chen, Y.P. (ed.) Exploitation of Linkage Learning in Evolutionary Algorithms. Adap-
tation, Learning, and Optimization, vol. 3, pp. 139–162. Springer (2010)



Chapter 3
The Gaussian Polytree EDA with Copula
Functions and Mutations

Ignacio Segovia Domı́nguez, Arturo Hernández Aguirre,
and Enrique Villa Diharce

Abstract. This chapter introduces the Gaussian Poly-Tree Estimation Distribution
Algorithm, and two extensions: i) with Gaussian copula functions, and ii) with local
optimizers. The new construction and simulation algorithms, and its application to
estimation of distribution algorithms with continuous Gaussian variables are also
introduced. The algorithm for the construction of the structure and for edge orien-
tation is based on information theoretic concepts such as mutual information and
conditional mutual information. The three models are tested on a benchmark of 20
unimodal and multimodal functions. The version with copula function and muta-
tions excels in most problems achieving near optimal success rate.

3.1 Introduction

The performance of function optimizers based on Estimation of Distribution Algo-
rithms (EDA) relies on the model used to represent the structure and the dependen-
cies of the data. Such model, simple or complex, is the joint probability distribution
(JPD) of the population; its construction takes place in step 4 of the algorithm 3.1.
An example of such model, frequently used in EDAs, is the multivariate normal
distribution. Other suitable models are graph based models, such as the chain or the
tree, depicted in Figure 3.1. Graph based models encode a JPD as the product of
conditional distributions.

How well does a graph based model approximate the true distribution of the
population ? That depends on a number of reasons, however, the approximation im-
proves with the number of condition variables (parents) allowed to the nodes. For
instance, in the dependence tree all relations are bivariate (see Figure 3.1-a). In a
poly-tree (PT) the nodes may have more than one parent, Figure 3.1-b, with no link
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Algorithm 3.1. Pseudocode for EDAs
1: assign t ←− 0
2: generate the initial population P0 with N individuals at random
3: select a collection of M individuals St , with M < N, from Pt

4: estimate a probabilistic model Mt from St

5: generate the new population by sampling from the distribution of St .
6: assign t ←− t +1
7: if stopping criterion is not reached go to step 2

between the parents. However, a Bayesian network, Figure 3.1-d, allows links be-
tween parents, and also several parents to the nodes. In general, the approximation
can be improved up to some extent if more parents are permitted, and if there are
edges between the parents. The models in Figure 3.1 can be ranked by their ap-
proximation capacity, as follows: chain < dependencetree < polytree < BayesNet
. Indeed, it seems natural to apply very rich models to our problems. The trade-
off here is the computational complexity of the construction algorithm, which for a
Bayesian network is NP-complete [6]. There is, however, one graph based model,
with relatively high approximation capacity and acceptable construction complexity
(Ø(N3)): the poly-tree (PT). A typical PT is shown in Figure 3.1-b.

This chapter seeks several goals: to introduce the Gaussian Poly-tree (GPT), that
is, a poly-tree graphical model with Gaussian variables; to explain the construction
algorithm; and to show the application of EDAs to function optimization problems.
Notice again that the proposed GPT uses real variables. In short, the main algorithm
and two variations are studied in this chapter:

1. The Gaussian Poly-Tree (GPT). Explains the construction of the graphical
model, implementation details, and experiments. An edge is a conditional dis-
tribution modeled with conditional normal variables.

2. The Gaussian Poly-tree with Gaussian copula. The poly-tree adopts a Gaus-
sian copula as a way to improve the dependency model between the variables.
An edge is a conditional distribution modeled with a Gaussian copula function.

3. The Gaussian Poly-tree with Gaussian copula + mutations. EDAs with
graphical models tend to stagnate. This variation shows how to generate in-
dividuals as mutations of the population and preserve the diversity for longer
generations and improve the performance of the algorithm.

The construction algorithm of a graphical model needs two steps: 1) determination
of the structure or “skeleton”, and 2) determination of the parameters.

There are two main approaches to determine the structure:

1. Complexity measure. The process starts with a fully connected directed graph,
or with a fully disconnected directed graph. While edges are added or removed
an estimator of the likelihood of the graph assess the current quality at every
iteration.

2. Dependence test. A dependency measure, such as the Persons chi-square, or
an entropy based measure such as mutual information, is used to grow a tree
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Fig. 3.1 Graphical models: (a) Dependence tree, (b) Poly-tree, (c) Chain, (d) Bayesian
network

starting with the pair of nodes with the highest dependency value. Next node
to be linked is chosen as that node with the highest dependency with the nodes
already in the tree. The construction of GPTs is commonly made in two phases:
1) Create a dependence tree (undirected graph) which will serve as the basic
skeleton, and 2) orient the edges according to the conditional dependencies of
the data.

The parameters are computed once the structure is determined. For instance,
marginal probabilities and conditional probabilities are computed from the data but
according to the explicit dependencies denoted by the graph.

The proposed approach builds a GPT using a dependence test strategy with two
phases. In phase one, a Chow and Liu algorithm (which uses mutual information as
dependence measure) returns a dependence tree (which is an undirected graph). In
phase two, the edges of that tree are then oriented (addition of arrow-heads) to create
a GPT. The new orientation algorithm described in this chapter is based on mutual
information (MI) and conditional mutual information (CMI). In order to compute
the parameters the poly-tree is traversed from all the roots, level by level, downward
to the lief, checking if a node has zero, one, or more parents. Depending on the node
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type, either the marginal mean and variance, or conditional mean and variance of a
Normal distribution are calculated and stored.

This chapter is organized as follows: Section 3.2 reviews some works related
to poly-trees. The next three sections describe the algorithms proposed. In Section
3.3 the Gaussian Poly-tree, the construction algorithm, and the simulation procedure
are introduced. Then, the Poly-tree with Gaussian copula function, together with the
construction and simulation algorithms are presented in Section 3.4. The last vari-
ation, the Poly-tree with Gaussian copula + mutations, is presented in Section 3.5.
Section 3.6 presents all experimental results. Conclusions are given in Section 10.6.

3.2 Related Work

A poly-tree is a Directed Acyclic Graph (DAG) with only one undirected path be-
tween any two nodes [11],[16]. For discrete variables the poly-tree is well known
for its applications to belief networks because inference algorithms run in linear
time over them [23]. Acid and de Campos investigated the application of poly-trees
to causal networks [1], [24]. More recently, Soto investigated the use of poly-tree
models to approximate the population distribution, and designed the poly-tree ap-
proximation distribution algorithm, known as PADA [21]. The construction algo-
rithm of PADA uses a dependency measure strategy that grows a poly-tree from a
fully unconnected directed graph. For over-fitting control two threshold variables
ε1,ε2 are used to filter out the (weak) dependencies. However, no recommendation
about how to set those parameters is given in the PADA literature. Discrete poly-
trees have been applied to classification problems.

A Gaussian Poly-Tree (GPT) represents a joint probability density function
(JPDF) as the product of conditional normal distributions. The encoded JPDF is
a multivariate normal distribution, as follows:

JPDF(X1,X2, . . . ,Xn) = ∏
∀i∈R

P(Xi) ∏
∀ j/∈R

P(Xj|pa(Xj)), (3.1)

where (R) represents one or more root nodes of the poly-tree [19],[8]. The literature
about poly-trees with continuous variables is small. Ouerd studied the properties of
poly-tree based models and the construction of the poly-tree structure by measuring
dependencies using the Chi2 distribution [22]. Later, Ouerd proposed an approach
for edge orientation [17]. Based on the previous work of Rebane and Pearl [25],[23],
Ouerd at al. start with a dependence tree computed with the Chow & Liu algorithm
[17]. Then they propose to orient the edges by traversing the dependence tree in a
depth first search order. Articulation points and causal basins must be detected first.
Their approach addresses four issues not completely solved by Rebane and Pearl.
Two of them are: how to traverse the tree, and what to do with edges that are already
oriented but need to be traversed again and may end up with another orientation.
For edge orientation, their algorithm performs a marginal independence test on the



3 The Gaussian Polytree EDA with Copula Functions and Mutations 127

parents X and Y of a node Z. If X and Y are independent then the node Z becomes a
common child, with arrows pointing to Z, therefore Z is called a head to head node.

Another related model is the Gaussian network which has been widely studied.
A few very relevant works are [19], Lauritzen [16], Whittaker [30], Castillo [4], and
Joe [14].

3.3 The Gaussian Poly-Tree

The proposed approach starts with a dependence tree created with the Chow and Liu
algorithm. Then the edges are oriented accordingly to the mutual information and
conditional mutual information criteria. Mutual information (MI), measures bivari-
ate dependencies between any pair of variables Xi and Xj, but conditional mutual
information (CMI) can tell us if a third variable Xk may increase the mutual infor-
mation of Xi and Xj. If CMI(Xi,Xj|Xk)> MI(Xi,Xj)) the node Xk gets Xi and Xj as
parents. Otherwise Xi is the sole parent of Xj

3.3.1 Construction of the GPT

1. The Gaussian dependence tree. The first step to construct a Gaussian poly-tree
is to construct a Gaussian dependence tree. The procedure is the same as that
of the discrete Chow and Liu algorithm [7], but now we use Gaussian mutual
information to estimate the dependencies. For Gaussian variables the mutual
information is defined as:

MI(X ,Y ) =−1
2

log
(
1− r2

x,y

)
. (3.2)

The term rx,y is the Pearson’s correlation coefficient which for Gaussian vari-
ables is defined as:

rx,y =
cov(x,y)
σxσy

(3.3)

This Gaussian dependence tree shares some properties with its discrete version:
a) mutual information is the maximum likelihood estimator; and b) when the
data comes from a tree-like distribution the Gaussian dependence tree is the
best approximation.

2. Edge orientation. The goal of the edge orientation algorithm is to achieve the
orientation principle [25]: if in a triplet X − Z−Y the variables X and Y are
independent, then Z is a head to head node, with X and Y as parents, as fol-
lows: X → Z←Y . Similarly, if in a triplet X → Z−Y , the variables X and Y are
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independent, then Z is a head to head node with X and Y as parents: X → Z←Y ;
otherwise Z is the parent of Y : X → Z → Y .

Proposed orientation based on information measures: for any triplet X−Z−
Y , if CMI(X ,Y |Z) > MI(X ,Y ) then Z is a head to head node with X and Y as
parents, as follows: X → Z← Y . The equation of CMI for Gaussian variables is
the following.

CMI(X ,Y |Z) = 1
2

log

[
σ2

x σ2
y σ2

z

(
1− r2

xz

)(
1− r2

yz

)

|Σxyz|

]
(3.4)

We shall prove that the proposed approach based on MI and CMI finds the
correct orientation.

Proof. Assume three variables X ,Y and Z. They can be connected in the four
possible ways shown in the Figure 3.2. We wish to prove that the model M4,
head to head (a node with two parents), is the correct choice for CMI(X ,Y |Z)>
MI(X ,Y ).

X Z Y

(a)

X Z Y

(b)

X

Z

Y

(c)

X

Z

Y

(d)

Fig. 3.2 The causal models that can be obtained with three variables X , Y y Z. (a) Model M1.
(b) Model M2. (c) Model M3. (d) Model M4.

The quality of the causal models shown in the Figure 3.2 can be expressed by
its log-likelihood. If the parents of any node Xi is the set of nodes pa(Xi), the
negative of the log-likelihood of a model M is [9]:

−ll(M) =
n

∑
i=1

H(Xi|pa(Xi)) (3.5)

where H(Xi|pa(Xi)) is the conditional entropy of Xi given its parents pa(Xi). It
is well known that the causal models M1, M2 and M3 are equivalent, or indis-
tinguishable in probability [25]. The negative log-likelihood are the Equations
3.6, 3.7 and 3.8, respectively.



3 The Gaussian Polytree EDA with Copula Functions and Mutations 129

−ll(M1) = H(X)+H(Z|X)+H(Y |Z)
= H(X ,Z)+H(Y,Z)−H(Z)
−H(X ,Y,Z)+H(X ,Y,Z)

= H(X ,Y,Z)+CMI(X ,Y |Z)
(3.6)

−ll(M2) = H(Z)+H(X |Z)+H(Y |Z)
= H(X ,Z)+H(Y,Z)−H(Z)

+H(X ,Y,Z)−H(X ,Y,Z)
= H(X ,Y,Z)+CMI(X ,Y |Z)

(3.7)

−ll(M3) = H(Y )+H(Z|Y )+H(X |Z)
= H(X ,Z)+H(Y,Z)−H(Z)
−H(X ,Y,Z)+H(X ,Y,Z)

= H(X ,Y,Z)+CMI(X ,Y |Z)
(3.8)

For the head to head model (M4), the negative of the log-likelihood is Equation
3.9.

−ll(M4) = H(X)+H(Y)+H(Z|X ,Y )
= H(X)+H(Y)+H(X ,Y,Z)−H(X ,Y)
= H(X ,Y,Z)+MI(X ,Y )

(3.9)

The best model is that one with the smallest negative log-likelihood or small-
est summation of conditional entropy. When is the negative log-likelihood of
Model M4 smaller than the log-likelihood of model M1 or M2 or M3 ?

H(X ,Y,Z)+MI(X ,Y)< H(X ,Y,Z)+CMI(X ,Y |Z) (3.10)

The answer is in Equation 3.10. When the conditional mutual information
CMI(X ,Y |Z) is larger than MI(X ,Y ) the model M4 has smaller negative log-
likelihood value, therefore, M4 is the correct choice. �

The edge orientation principle runs on the depth first search algorithm [17], as
follows: assume node A has nodes B, C, and D as candidate parents. There are 3
triplets to test: B−A−C, B−A−D and C−A−D. For each triplet MI and CMI
are calculated in the order they are found while traversing the tree. For instance,
if CMI(B,C|A)>MI(B,C) then the node A gets nodes B and C as parents. Then,
for the next triplet, say B−A−D, the dependence measures are tested, and if it
is the case then node A gets node D as parent, shown as another arrow.

3. Over-fitting control. The inequality MI(X ,Y ) < CMI(X ,Y |Z) could be made
true due to the small biases of the data and thus creating false positive parents.
As a rule, the larger the allowed number of parents the better the approxima-
tion. However, the PT gets over-fitted when such noisy nodes appear as vi-
cious parents destroying the quality of the model. A computational inexpensive
approach to filter the vicious nodes is based on a threshold value, but which
value? We wish to know: how many times the CMI must be larger than the
MI as to represent true parents? Which is a good threshold value?. Empirically
we solve this question by randomly creating a huge database of triplet-vectors
X , Y and Z (from random gaussian distributions) that made true the inequality
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CMI(X ,Y |Z) > MI(X ,Y ). Within this large set there are two subsets: triplets
that satisfy the condition, and the rest. A hypothesis test based on a non para-
metric bootstrap test was performed using the proposed data set. We found out
that false parents are created in 95% of the cases when CMI(X ,Y |Z)

MI(X ,Y )
< 3. Therefore

the sought threshold value is 3. Thus, a head to head node is created whenever
CMI(X ,Y |Z)

MI(X ,Y ) ≥ 3.
4. Selection. Truncation selection is commonly used in EDAs as a strategy to pick

the best individuals from which the probability model is created. The Gaussian
poly-tree EDA, however, uses a μ+λ approach. The whole population is used
to create the poly-tree, then as many as λ = 0.5μ individuals are simulated
from the GPT and stored along with the current parents. The new population is
chosen by applying truncation selection to the new set.

3.3.2 Simulating Data from a Poly-Tree

The generation or simulation of new data from the PT is a somewhat cumbersome
process which we describe for completeness purposes [19]. Assume we have sorted
the nodes in an ancestral order, that is, if Xj → Xi then i > j. The conditional density
function of a variable Xi given its parents can be expressed as:

f (Xi|pa(Xi)) = N

⎛
⎝μi + ∑

Xj∈pa(Xi)

βi, j (Xj− μ j) ,σ2
i

⎞
⎠ (3.11)

where μi is the unconditional mean of Xi,
(
μi +∑Xj∈pa(Xi)βi, j (Xj− μ j)

)
is the con-

ditional mean of Xi, σ2
i is the conditional variance of Xi given the values of parent

nodes, and βi, j is the linear regression coefficient of Xj when Xi is regressed on
all Xj such that Xj is a parent of Xi. Figure 3.3 shows the regression coefficients.
When there is no edge between two variables, for instance X1 and X2, the regression
coefficient β2,1 = 0.

The Equation 3.11 suggests to calculate the regression coefficients and simulate
new data in the order they are found while traversing the tree. The GPT uniquely
determines a non-singular multivariate normal distribution and vice versa, there-
fore, we can simulate samples from a Gaussian poly-tree using the distribution
N (μG,ΣG). The unconditional mean vector is μG, and the covariance matrix ΣG

can be obtained from the precision matrix. Shachter and Kenley [27] described the
general transformation from σ2

i and (βi, j| j < i) to the precision matrix T = Σ−1
G .

Algorithm 3.2 constructs the desired matrix.
Where:

ti =
1

σ2
i

(3.12)
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Fig. 3.3 Regression coefficients between variables in the Poly-tree

Algorithm 3.2. Building the precision matrix

Function: getPrecisionMatrix ( σ2
1 , . . . ,σ

2
n , β1, . . . ,βn )

Results: Precision matrix T
T1 = t1
for i = 2; i≤ n; i++ do

Ti =

(
Ti−1 + tiβiβ t

i −tiβi

−tiβ t
i ti

)

T = Tn

and

βi =

⎛
⎜⎝

βi,1
...

βi,i−1

⎞
⎟⎠ (3.13)

The covariance matrix is calculated from ΣG = T−1.
Ordinary least square (OLS) method can be used to find the regression coeffi-

cients. OLS has several important statistical properties. It is unbiased with expected
value β . If the errors are independent, identically and normally distributed, the least
square estimate is also the maximum likelihood estimate.

With the Algorithm 3.2 there is no need to traverse the tree but only read data
from it. The ancestral order of the tree allows to run the algorithm, determine ΣG =
T−1, and then sample new data from a multivariate Normal distribution.

3.4 The Gaussian Poly-Tree with Gaussian Copula Function

In this section the GPT adopts the Gaussian copula function and it is called the Gaus-
sian Copula Poly-Tree (GCPT), and the EDA using GCPT is called the Gaussian
Copula Poly-Tree Estimation of Distribution Algorithm (GCPT-EDA). The goal is
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to assess the impact of Gaussian copulas in optimization problems. The new con-
struction algorithm and the simulation procedure are introduced. So far, the GPT
represents pairs or triplets or quartets of variables where one node has one, two or
three parents (larger tuples are possibly created depending on the data dependen-
cies). Let us isolate any triplet from the PT, say one node Z with two parents X and
Y , which are modeled with Gaussian distributions. This triplet has a joint density
function factorized as P(X)×P(Y)×P(Z|X ,Y), which is also Gaussian. Since the
conditional Gaussian distribution is still Gaussian, the variable Z is unimodal [14].
However, when the marginals of Z are not Gaussians the use of another joint density
function, such as log-normal, exponential, etc., will not solve the problem because
all of them have marginals of the same type. The solution is to use copula functions!.
With the proper dependency parameter, the Gaussian copula function captures the
data dependencies which need to be transfer to the new simulated data, however,
the marginals need not be of Gaussian type. In this work, marginal distributions are
approximated with Gaussian kernels.

3.4.1 Gaussian Copula Functions

A copula is an important tool in statistics for modeling multiple dependence in sev-
eral variables. For this reason, copula functions have been widely used in some
research and application areas such as finance [5, 29], climate [26], oceanography
[10], hydrology [12], geodesy [2], and reliability [18].

The copula concept was introduced by Sklar [28] to separate the effect of depen-
dence from the effect of marginal distributions in a joint distribution.

Definition 3.1. A copula is a joint distribution function of standard uniform random
variables. That is,

C(u1, . . . ,un) = Pr[U1 ≤ u1, . . . ,Un ≤ un] ,

where Ui ∼U(0,1) for i = 1, . . . ,n.

For a more formal definition of copula functions, the reader is referred to [14, 20].
The following result, known as Sklar’s theorem, states how a copula function is
related to a joint distribution function.

Theorem 3.1 (Sklar). Let F be a n-dimensional distribution function with marginals
F1,F2, . . . ,Fn, then there exists a copula C such that for all x in R

n
,

F(x1,x2, . . . ,xn) =C(F1(x1),F2(x2), . . . ,Fn(xn)) ,

where R denotes the extended real line [−∞,∞]. If F1(x1), F2(x2), . . . ,Fn(xn) are all
continuous, then C is unique. Otherwise, C is uniquely determined on Ran(F1)×
Ran(F2)×·· ·×Ran(Fn), where Ran stands for the range.
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According to Theorem 3.1, a n-dimensional density f can be represented as

f (x1,x2, . . . ,xn) = c(F1(x1),F2(x2), . . . ,Fn(xn)) ·
n

∏
i=1

fi(xi) ,

where c is the density of the copula C and fi(xi) is the marginal density of the vari-
able xi. The equation shows that the marginals fi can belong to other and possibly
different distributions. The dependence structure is given by the copula, and their
product builds a multivariate distribution. This contrasts with the usual way to con-
struct multivariate distributions, which suffers from the restriction that the margins
are usually of the same type. The separation between marginal distributions and a
dependence structure explains the modeling flexibility given by copulas.

Definition 3.2. The copula associated to the standard joint Gaussian distribution is
called Gaussian copula.

Table 3.1 Gaussian copulas for 2 and 3 variables

2-dimensional Gaussian copula

Distribution: C(u1,u2;θ ) =ΦG
(
Φ−1(u1),Φ−1(u2)

)
,

where ΦG is the standard bivariate normal distribution
with correlation θ

Parameter: θ ∈ (−1,1)

3-dimensional Gaussian copula

C(u1,u2,u3;θ ) =ΦG
(
Φ−1(u1),Φ−1(u2),Φ−1(u3)

)
,

where ΦG is the standard trivariate normal distribution

with correlation matrix θ =

⎡
⎣

1 θ12 θ13
θ12 1 θ23
θ13 θ23 1

⎤
⎦

Parameters: θi j ∈ (−1,1), 1≤ i < j ≤ 3

Table 3.1 shows the defining equations of the bivariate and trivariate Gaussian
copula.

For parametric bivariate copulas, the dependence parameter is related to Kendall’s
τ through the equation (see [20])

τ(X1,X2) = 4
∫ 1

0

∫ 1

0
C(u1,u2;θ )dC(u1,u2;θ )− 1 . (3.14)



134 I.S. Domı́nguez, A.H. Aguirre, and E.V. Diharce

For a bivariate Gaussian copula, Equation (3.14) can be written as

τ =
2
π

arcsin(θ ) . (3.15)

Since Kendalls τ is easily estimated from the population using its well know for-
mula, the nonparametric estimation of θ is known by solving Equation (3.15). No-
tice the parameter θ is all is needed to simulate data from the copulas shown in
Table 3.1. (In fact, θ is the parameter required at step 5 of the Algorithm 3.4). For 2
or 3 variables there are several choices of copula functions, however only the Gaus-
sian copula scales up without difficulty with the number of variables. Hence, to the
best of our knowledge, only the Gaussian copula can be used to model multivariate
distributions with any number of variables without any particular modification of
the sampling algorithm.

Figure 3.4 shows some examples of random samples using a Gaussian copula
and multimodal marginal distributions. In this, the Pearson correlation coefficient
θ12 modify the dependence among X1 and X2.

3.4.2 Building the Gaussian Copula Poly-Tree and Data
Simulation

The overall algorithm of the GCPT-EDA is listed in Algorithm 3.4, which includes
our proposal to sample from the PT with Gaussian copula functions associated to
the edges. The procedure to construct the skeleton of the Gaussian Poly-tree is the
same described in Subsection 3.3.1, only a few steps are necessary. The marginal
distribution of each variable Xi is approximated with Gaussian kernels in step 2, and
the cumulative distribution function Ui of each Xi in step 3. In step 4 all variables
Xi are mapped to Zi using the inverse of the cumulative distribution Ui. In step 5
the correlation matrix between the variables in the domain of the variables Zi is
computed. The GPT is constructed also in the domain of Zi at step 6.

Algorithm 3.4. The Gaussian Polytree EDA with Gaussian Copula
1: Pobt = Population in the domain X1, X2 ... Xd

2: KXi = Gaussian kernel of each marginal in Pobt

3: Ui = Cumulative Distribution Function of Xi using KXi ; so Ui ∈ [0,1]
4: Zi = Inverse Cumulative Distribution Function of Ui ∈ [0,1] using N (0,1); so Zi ∼N (0,1)
5: Calculate the copula parameters θi, j = ρi, j ; where ρi, j is the Pearson correlation
6: Learn a Gaussian polytree, Polygauss, over Zi variables
7: Simulate Si ∼ Polygauss

8: Vi = Cumulative Distribution Function of Si using N (0,1); so Vi ∈ [0,1]
9: Yi = Inverse Cumulative Distribution Function of Vi using KXi ;

10: Pobt+1 = Best individuals in X1, X2 ... Xd ∪ Y1, Y2 ... Yd
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(a) (b)

(c)

(d) (e)

(f)

Fig. 3.4 Examples of dependence with Gaussian copula using multimodal marginal distribu-
tions. Each figure shows random samples on the (X1,X2) plane. (a) θ12 = 0. (b) θ12 =−1. (c)
θ12 = 1. (d) θ12 = 0.8. (e) θ12 =−0.99. (f) θ12 =−0.5.

Once new data is simulated at step 7, each variable is evaluated in the Normal cu-
mulative distribution function in step 8. Since each variable is Normal the evaluation
maps the data to [0,1]. Then, in step 9 it is ready to be send back to the marginals
via the inverse cumulative distribution (previously generated using kernels).
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3.5 Gaussian Poly-Trees with Gaussian Copula Functions +
Mutations

In this section the Gaussian Poly-Tree with Copula function is extended with local
mutations. The issue is the maintenance of population diversity which is necessary
to keep exploration. A simple approach would be to use a new population and keep-
ing the best individual, or to grow the population variance by some artificial method.
In the proposed approach local mutations are used to create new individuals for the
next population. The process is shown in the Figure 3.5. Assume the dimension of
the problem is D.

In order to create a new individual do the following. Pick one individual at ran-
dom from the population, call this the base element B. Find D closer individuals
to the base element. Compute the centroid of the D∪B individuals and call it C .
From the set of D individuals select the element which have best fitness value and
call it K . The new individual is W = K +

(
K −C

)
.

For a population with size S, as many as 15% of S are mutated individuals, and
35% is generated from the Gaussian poly-tree with Gaussian copulas. Then trunca-
tion selection is applied as the normal μ+λ approach.

•

•

•

•

•

•

•

×

 

CB

CloserK

Closer

W

vs

vs

Fig. 3.5 Example of 2D local mutation. A new individual is created using the vector vs =
K −C . The new individual, W , improves the fitness according to level set.
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3.6 Experiments

The Gaussian poly-tree EDA is an EDA as described in Algorithm 3.1 which uses
a Gaussian Poly-tree to approximate the distribution of the selected set. It is tested
with a total of 20 functions, 12 unimodal and 8 multimodal, which are described in
Appendix A. The following parameters are used in all experiments except for the
Experiment 1 below which is designed for a particular comparison. 30 independent
runs are performed with the following initialization:

Number of runs: 30 .
Initialization. Asymmetric initialization for all problems, using the search space
shown in Table 3.24 .
Population size. For a problem in D dimensions, the population is 2× (10(D0.7)+
10) [3].
Stopping conditions. Maximum number of fitness function evaluations is reached:
3× 105; or target error smaller than 1× 10−10 for unimodal functions, and target
error smaller than 1× 10−6 for multimodal functions ; or no improving larger than
1× 10−13 is detected after 30 generations when the mean of D standard deviations,
one for each dimension, is less than 1× 10−13.

3.6.1 Experiment 1: Contrasting the Gaussian Poly-Tree with
the Dependence Tree

The following experiment is designed to show how a richer graph based model may
improve the performance of an EDA. In some ways, a poly-tree is a dependence tree
with oriented edges. In Figure 3.1 is shown a poly-tree and a dependence tree with
the same structure, the only difference is made by the nodes with several parents.
This kind of edges provides the poly-tree with a richer representation capacity since
they capture the conditional dependencies of the data. The problem to optimize is a
Gaussian density function in ten dimensions. The optimum is shifted by 5 in every
dimension, X∗= 510×1. The covariance matrix ΣG of the Poly-tree in Figure 3.6 was
created using the algorithm 3.2. The minimization problem is stated as follows:

Minimize f (X) =−N (X;μG,ΣG)+N (μG;μG,ΣG) (3.16)

where X is the vector of decision variables, and μG = 510×1. So, the term
N (μG;μG,ΣG) is a constant offset that makes f (X∗) = 0.0

The conditional variances are:

(
σ2

1 , · · · ,σ2
n

)t
= (4,14,4,6,26,9,8,4,2,12)t (3.17)
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X1 X2

X3 X4 X5

X6 X7 X8

X9 X10

β4,1 = 5.3

β4,2 =−3.2

β7,3 = 3.5
β7,4 =−2.7 β7,5 = 6.1

β9,6 =−5.1

β9,7 = 3.7

β10,7 = 2.5

β10,8 =−3.7

Fig. 3.6 The covariance matrix of experiment 1 is derived from this Gaussian Poly-tree

We performed an EDA using the proposed Gaussian Poly-tree vs the EDA with de-
pendency tree. Table 3.2 reports the statistics of the best value found in 100 runs,
and Table 3.3 shows the number of iterations required to reach the goal. The pop-
ulation size with l = 10 is 2× (10(l0.7)+ 10) [3], symmetric initialization is used
for all the variables: Xi ∈ [−5,15]. The stopping conditions is: maximum number of
fitness function evaluations: 3× 105; or target error smaller than 1× 10−11; or no
improving larger than 1× 10−13 is detected after 30 generations when the mean of
the standard deviation of all the decision variables is less than 1× 10−13.

Table 3.2 Experiment 1: statistics for fitness value from 100 runs

Model Best Worst Mean Median SD Success ( % )
Dependency tree 4.62E-12 2.65E-10 5.24E-11 3.58E-11 5.14E-11 22.0

Polytree 5.37E-12 2.82E-10 1.91E-11 9.08E-12 3.94E-11 72.0

Table 3.3 Experiment 1: statistics for number of function evaluations from 100 runs

Model Best Worst Mean Median SD Success ( % )
Dependency tree 3.56E+04 1.69E+05 1.04E+05 1.16E+05 3.41E+04 22.0

Polytree 3.77E+04 2.62E+05 1.27E+05 1.27E+05 4.07E+04 72.0

The success rate using our poly-tree approach is definitely better than the EDA
with dependency tree model. The number of evaluations shows a premature conver-
gence in the EDA with dependency tree approach.
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3.6.2 Experiment 2: Solving Unimodal Functions with the
GPT-EDA

The success rate of the GPT-EDA out of 30 runs over 12 functions is shown in Table
3.10. The mean and standard deviation of the optimum values reached is shown in
Table 3.5, the best value is reported between parenthesis. The mean and standard
deviation of the number of fitness function evaluations is reported in Table 3.6, the
best value is reported between parenthesis.

Table 3.4 Experiment 2. The GPT-EDA: success rate ( % ) on the unimodal problems in
dimensions 4, 8, 10, 20, and 40. Target error= 1×10−10

Alias / D 4 8 10 20 40
F1 100.0 100.0 100.0 100.0 100.0

F2 96.7 100.0 93.3 100.0 100.0

F3 90.0 93.3 83.3 100.0 96.7

F4 93.3 100.0 100.0 100.0 100.0

F5 90.0 100.0 93.3 96.7 100.0

F6 96.7 93.3 90.0 76.7 93.3

F7 96.7 100.0 93.3 86.7 60.0

F8 53.3 80.0 73.3 100.0 86.7

F9 56.7 100.0 96.7 100.0 100.0

F10 90.0 13.3 3.3 0.0 0.0

F11 100.0 0.0 0.0 0.0 0.0

F12 96.7 80.0 86.7 96.7 0.0

3.6.3 Experiment 3: Solving Multimodal Functions with the
GPT-EDA

The success rate of the GPT-EDA out of 30 runs over 12 functions is shown in Table
3.7. The mean and standard deviation of the optimum values reached is shown in
Table 3.8, the best value is reported between parenthesis. The mean and standard
deviation of the number of fitness function evaluations is reported in Table 3.9, the
best value is reported between parenthesis.
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Table 3.5 Experiment 2. The GPT-EDA:optimum reached on the unimodal problems in di-
mensions 4, 8, 10, 20 and 40. In parenthesis the best value. Target error= 1×10−10

Alias / D 4 8 10 20 40

F1
( 1.4236E−11 ) ( 2.5384E−11 ) ( 3.7539E−11 ) ( 5.1387E−11 ) ( 7.3703E−11 )

6.3E−11±2.3E −11 6.9E−11±2.1E −11 7.7E−11±1.6E −11 8.2E−11±1.3E −11 9E−11±6.7E−12

F2
( 1.8246E−11 ) ( 3.7246E−11 ) ( 2.1298E−11 ) ( 4.59E−11 ) ( 5.9804E−11 )

5.5±30 7.8E−11±1.6E −11 8.1E−05±0.00031 8.5E−11±1.2E −11 8.8E−11±1.2E−11

F3
( 1.1589E−11 ) ( 3.6939E−11 ) ( 3.7055E−11 ) ( 5.3446E−11 ) ( 7.2089E−11 )

0.019±0.084 0.011±0.046 0.075±0.27 8.4E−11±1.2E −11 0.0022±0.012

F4
( 6.2397E−12 ) ( 3.4999E−11 ) ( 4.0271E−11 ) ( 5.1968E−11 ) ( 5.7077E−11 )

0.00031±0.0015 7.6E−11±1.9E −11 7.1E−11±1.5E −11 8.6E−11±1.2E −11 8.6E−11±1E−11

F5
( 1.1234E−11 ) ( 3.9127E−11 ) ( 1.259E−11 ) ( 6.4969E−11 ) ( 6.483E−11 )

0.0049±0.021 7.7E−11±1.8E −11 0.043±0.17 0.0022±0.012 9E−11±8.7E−12

F6
( 1.0682E−11 ) ( 2.5852E−11 ) ( 4.2515E−11 ) ( 5.8942E−11 ) ( 6.9313E−11 )

0.0013±0.007 0.0016±0.0087 0.0033±0.013 0.043±0.16 0.028±0.16

F7
( 4.4846E−13 ) ( 1.91E−12 ) ( 3.646E−12 ) ( 2.2199E−11 ) ( 4.1786E−11 )

5.9E−11±9.6E −11 4.5E−11±2.8E −11 5.3E−07±2.9E −06 2.5E−05±0.00013 0.00071±0.0028

F8
( −5 ) ( −5 ) ( −5 ) ( −5 ) ( −5 )

−4.5±1.1 −4.8±0.47 −4.5±1.4 −5±1.2E−11 −4.9±0.23

F9
( −5 ) ( −5 ) ( −5 ) ( −5 ) ( −5 )

−4.8±0.73 −5±1.3E−11 −5±0.071 −5±8.3E−12 −5±4.8E−12

F10
( 1.3677E−11 ) ( 6.147E−11 ) ( 9.7902E−11 ) ( 9.2597E−05 ) ( 0.15183 )

6E−09±3.2E −08 0.00013±0.00039 0.00023±0.00048 0.01±0.01 0.25±0.048

F11
( −16 ) ( −112 ) ( −208.8 ) ( −807.94 ) ( −2262 )

−16±2.1E−11 −1.1E +02±4 −1.7E +02±25 −3.2E +02±3.2E +02 1.2E +03±2.2E +03

F12
( 8.5561E−12 ) ( 3.9845E−11 ) ( 2.7323E−11 ) ( 5.8239E−11 ) ( 0.25303 )

1.8E−07±1E −06 9.5E−06±4.6E −05 1.8E−07±9.2E −07 7.8E−10±3.8E −09 0.51±0.16

3.6.4 Experiment 4: Solving Unimodal Functions with the
GCPT-EDA

The success rate of the GCPT-EDA out of 30 runs over 12 functions is shown in Ta-
ble 3.10. The mean and standard deviation of the optimum values reached is shown
in Table 3.11, the best value is reported between parenthesis. The mean and standard
deviation of the number of fitness function evaluations is reported in Table 3.12, the
best value is reported between parenthesis.
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Table 3.6 Experiment 2. GPT-EDA number of function evaluations on the unimodal prob-
lems in dimensions 4, 8, 10, 20 and 40. In parenthesis the best value. Target error= 1×10−10

Alias / D 4 8 10 20 40

F1
( 2404 ) ( 5936 ) ( 7860 ) ( 19043 ) ( 45044 )

2.6E +03±90 6.3E +03±1.4E +02 8.2E +03±1.2E +02 1.9E +04±1.7E +02 4.6E +04±3.1E +02

F2
( 3329 ) ( 7897 ) ( 10500 ) ( 24471 ) ( 57628 )

4.4E +03±4.8E +03 8.2E +03±1.2E +02 1.1E +04±2.5E +03 2.5E +04±2.7E +02 5.9E +04±5E +02

F3
( 3662 ) ( 8904 ) ( 11700 ) ( 27967 ) ( 66208 )

4.9E +03±3.7E +03 9.9E +03±2.5E +03 1.4E +04±4E +03 2.9E +04±1.9E +02 6.8E +04±5.8E +03

F4
( 2811 ) ( 6678 ) ( 8760 ) ( 19963 ) ( 46760 )

3.7E +03±2.3E +03 6.9E +03±1.4E +02 9E +03±1.4E +02 2E +04±2.5E +02 4.7E +04±3.6E +02

F5
( 3366 ) ( 8480 ) ( 11040 ) ( 25667 ) ( 60345 )

5.3E +03±5.4E +03 8.7E +03±1.7E +02 1.2E +04±2.7E +03 2.7E +04±3.3E +03 6.1E +04±3E +02

F6
( 3292 ) ( 7897 ) ( 10500 ) ( 25115 ) ( 59201 )

4.2E +03±3.6E +03 8.9E +03±2.2E +03 1.2E +04±2.9E +03 3E +04±7.4E +03 6.2E +04±7.5E +03

F7
( 1331 ) ( 3180 ) ( 4080 ) ( 10671 ) ( 26454 )

2.2E +03±4.4E +03 3.4E +03±1.2E +02 2E +04±5.9E +04 5E +04±1E +05 1.4E +05±1.4E +05

F8
( 3255 ) ( 7791 ) ( 10200 ) ( 23735 ) ( 54482 )

1.1E +04±8.9E +03 1E +04±3.6E +03 1.3E +04±4.7E +03 2.4E +04±2.6E +02 5.9E +04±1.1E +04

F9
( 5882 ) ( 13727 ) ( 17940 ) ( 41307 ) ( 95666 )

1E +04±7.3E +03 1.4E +04±1.2E +02 1.9E +04±2.3E +03 4.2E +04±2.6E +02 9.7E +04±5.2E +02

F10
( 2663 ) ( 14840 ) ( 24300 ) ( 2.4711E +05 ) ( 3.0001E +05 )

3.7E +03±2.8E +03 4.2E +04±1.4E +04 7.1E +04±1.2E +04 2.8E +05±1.1E +04 3E +05±0

F11
( 2774 ) ( 68529 ) ( 1.242E +05 ) ( 3.0001E +05 ) ( 3.0001E +05 )

2.9E +03±92 1.2E +05±4.2E +04 2.2E +05±6.6E +04 3E +05±0 3E +05±0

F12
( 2885 ) ( 14204 ) ( 24300 ) ( 1.4196E +05 ) ( 3.0001E +05 )

3.5E +03±1.6E +03 1.9E +04±9.3E +03 2.8E +04±5E +03 1.5E +05±1E +04 3E +05±0

3.6.5 Experiment 5: Solving Multimodal Functions with the
GCPT-EDA

The success rate of the GCPT-EDA out of 30 runs over 12 functions is shown in Ta-
ble 3.13. The mean and standard deviation of the optimum values reached is shown
in Table 3.14, the best value is reported between parenthesis. The mean and standard
deviation of the number of fitness function evaluations is reported in Table 3.15, the
best value is reported between parenthesis.

3.6.6 Experiment 6: Solving Unimodal Functions with the
GCPT-EDA + Mutations

The success rate of the GCPT-EDA out of 30 runs over 12 functions is shown in Ta-
ble 3.16. The mean and standard deviation of the optimum values reached is shown
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Table 3.7 Experiment 3. GPT-EDA: success rate ( % ) on the Multimodal problems in di-
mensions 5, 10, 20, 30, and 50. Target error = 1×10−6

Alias / D 5 10 20 30 50
F13 100.0 100.0 100.0 100.0 100.0

F14 0.0 100.0 100.0 100.0 100.0

F15 100.0 3.3 0.0 0.0 0.0

F16 0.0 0.0 0.0 0.0 0.0

F17 100.0 100.0 100.0 100.0 100.0

F18 100.0 100.0 100.0 100.0 100.0

F19 100.0 100.0 100.0 100.0 100.0

F20 100.0 100.0 100.0 100.0 100.0

Table 3.8 Experiment 3. GPT-EDA: optimum reached on the multimodal problems in di-
mensions 5, 10, 20, 30 and 50. In parenthesis the best value. Target error = 1×10−6

Alias / D 5 10 20 30 50

F13
( 2.7715E−07 ) ( 5.5217E−07 ) ( 8.092E−07 ) ( 7.9579E−07 ) ( 8.9916E−07 )

8E−07±1.9E −07 8.6E−07±1.2E −07 9.2E−07±4.9E−08 9.3E−07±4.9E−08 9.6E−07±3E−08

F14
( 0.013266 ) ( 3.5618E−07 ) ( 5.0282E−07 ) ( 6.4314E−07 ) ( 6.3561E−07 )

0.036±0.011 7.9E−07±1.8E −07 8.4E−07±1.1E−07 8.6E−07±9.5E−08 9E−07±8.4E −08

F15
( 3.6526E−07 ) ( 8.8942E−07 ) ( 60.737 ) ( 134.79 ) ( 276.41 )

6.6E−07±1.6E −07 14±4.5 76±5.5 1.5E +02±7.3 3.2E +02±13

F16
( 1.796 ) ( 7.4973 ) ( 17.736 ) ( 27.76 ) ( 47.637 )

2.6±0.34 7.9±0.17 18±0.12 28±0.066 48±0.06

F17
( −0.5 ) ( −1 ) ( −2 ) ( −3 ) ( −5 )

−0.5±2.1E−07 −1±1.7E−07 −2±1.2E−07 −3±8.1E−08 −5±7.1E−08

F18
( 2.7767E−07 ) ( 3.882E−07 ) ( 6.4845E−07 ) ( 5.7604E−07 ) ( 7.5193E−07 )

6.2E−07±2.2E −07 7.9E−07±1.7E −07 8.6E−07±9.7E−08 8.5E−07±9.1E−08 9E−07±6.3E −08

F19
( 3.3012E−07 ) ( 3.0066E−07 ) ( 5.1432E−07 ) ( 5.8572E−07 ) ( 6.7507E−07 )

7E−07±1.8E −07 7.7E−07±1.9E −07 8.6E−07±1.3E−07 8.8E−07±9.6E−08 9E−07±9E −08

F20
( 1.6374E−07 ) ( 3.0329E−07 ) ( 4.8189E−07 ) ( 6.1397E−07 ) ( 7.359E−07 )

6.5E−07±2.3E −07 6.9E−07±1.9E −07 8.1E−07±1.4E−07 8.8E−07±9.2E−08 9.1E−07±7E−08

in Table 3.17, the best value is reported between parenthesis. The mean and standard
deviation of the number of fitness function evaluations is reported in Table 3.18, the
best value is reported between parenthesis.
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Table 3.9 Experiment 3. GPT-EDA: number of function evaluations on the multimodal prob-
lems in dimensions 5, 10, 20, 30 and 50. In parenthesis the best value. Target error=1×10−6

Alias / D 5 10 20 30 50

F13
( 4141 ) ( 9600 ) ( 22355 ) ( 36226 ) ( 67319 )

4.4E +03±1.1E +02 9.9E +03±1.4E +02 2.3E +04±1.7E +02 3.7E +04±2.6E +02 6.8E +04±4.1E +02

F14
( 3.0004E +05 ) ( 10740 ) ( 16743 ) ( 27376 ) ( 50159 )

3E +05±0 7.3E +04±8.6E +04 1.7E +04±3E +02 2.8E +04±3.1E +02 5.1E +04±3.4E +02

F15
( 53218 ) ( 2.7174E +05 ) ( 3.0001E +05 ) ( 3.0007E +05 ) ( 3.0013E +05 )

9.9E +04±3.7E +04 3E +05±5.2E +03 3E +05±0 3E +05±0 3E +05±0

F16
( 19639 ) ( 28560 ) ( 55659 ) ( 78942 ) ( 1.3018E +05 )

4.3E +04±1.2E +04 3.9E +04±6.1E +03 5.8E +04±2.8E +03 8.2E +04±1.3E +03 1.3E +05±1.4E +03

F17
( 2091 ) ( 5220 ) ( 12511 ) ( 20886 ) ( 39764 )

2.2E +03±80 5.4E +03±1.3E +02 1.3E +04±1.8E +02 2.1E +04±2.4E +02 4.1E +04±3.5E +02

F18
( 2009 ) ( 4500 ) ( 10487 ) ( 17464 ) ( 31844 )

2.3E +03±1.1E +02 4.9E +03±1.8E +02 1.1E +04±2.5E +02 1.8E +04±2E +02 3.2E +04±3.5E +02

F19
( 2214 ) ( 4860 ) ( 11959 ) ( 20414 ) ( 38609 )

2.6E +03±1.2E +02 5.6E +03±2.3E +02 1.3E +04±3.1E +02 2.1E +04±2.8E +02 3.9E +04±3.7E +02

F20
( 1886 ) ( 4860 ) ( 11591 ) ( 19706 ) ( 36794 )

2.1E +03±1E +02 5.1E +03±1.3E +02 1.2E +04±2.1E +02 2E +04±1.8E +02 3.8E +04±4E +02

Table 3.10 Experiment 4. GCPT-EDA: success rate ( % ) on the unimodal problems in di-
mensions 4, 8, 10, 20, and 40. Target error=1×10−10

Alias / D 4 8 10 20 40
F1 100.0 100.0 100.0 100.0 100.0

F2 80.0 90.0 96.7 93.3 90.0

F3 83.3 86.7 86.7 70.0 86.7

F4 96.7 100.0 96.7 100.0 100.0

F5 80.0 86.7 83.3 93.3 100.0

F6 76.7 70.0 66.7 60.0 43.3

F7 100.0 100.0 96.7 53.3 23.3

F8 43.3 83.3 73.3 86.7 93.3

F9 40.0 90.0 76.7 100.0 100.0

F10 46.7 0.0 0.0 0.0 0.0

F11 80.0 0.0 0.0 0.0 0.0

F12 40.0 20.0 16.7 53.3 0.0
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Table 3.11 Experiment 4. GCPT-EDA: optimum reached on the unimodal problems in di-
mensions 4, 8, 10, 20 and 40. In parenthesis the best value. Target error=1×10−10

Alias / D 4 8 10 20 40

F1
( 1.2394E−11 ) ( 3.4025E−11 ) ( 4.9352E−11 ) ( 4.5243E−11 ) ( 6.8435E−11 )

5.6E−11±2.4E −11 7.7E−11±1.5E −11 8.1E−11±1.4E −11 8.6E−11±1.4E −11 8.9E−11±8.7E−12

F2
( 1.1674E−11 ) ( 2.0639E−11 ) ( 2.7653E−11 ) ( 6.5835E−11 ) ( 6.372E−11 )

0.14±0.54 0.079±0.3 0.00055±0.003 0.33±1.6 0.18±0.72

F3
( 1.1345E−11 ) ( 4.6005E−11 ) ( 4.3376E−11 ) ( 4.6178E−11 ) ( 6.2041E−11 )

0.03±0.14 0.15±0.67 0.24±0.89 0.19±0.59 0.054±0.27

F4
( 1.097E−11 ) ( 1.8962E−11 ) ( 3.4219E−11 ) ( 3.6763E−11 ) ( 5.8411E−11 )

4.1E−05±0.00022 7.4E−11±2E −11 0.073±0.4 8.4E−11±1.5E −11 8.8E−11±9.4E−12

F5
( 1.7992E−11 ) ( 2.7048E−11 ) ( 2.1638E−11 ) ( 6.2959E−11 ) ( 7.1218E−11 )

0.12±0.38 0.13±0.45 0.096±0.32 0.055±0.21 9E−11±8E−12

F6
( 1.4345E−11 ) ( 3.1124E−11 ) ( 4.4043E−11 ) ( 5.6644E−11 ) ( 6.4075E−11 )

0.21±0.68 0.068±0.21 0.57±1.4 0.34±1.2 0.5±1.3

F7
( 4.6723E−13 ) ( 2.5019E−12 ) ( 9.757E−12 ) ( 2.7094E−11 ) ( 7.1496E−11 )

4.7E−11±2.8E −11 5.6E−11±2.5E −11 1E−10±2.2E −10 1.4E−06±7.6E −06 4E−05±0.00014

F8
( −5 ) ( −5 ) ( −5 ) ( −5 ) ( −5 )

−4.9±0.26 −4.8±0.56 −4.6±0.78 −4.8±0.69 −5±0.24

F9
( −5 ) ( −5 ) ( −5 ) ( −5 ) ( −5 )

−4.4±0.89 −4.8±0.82 −4.3±1.6 −5±8.1E−12 −5±5.3E−12

F10
( 2.7409E−11 ) ( 3.8446E−10 ) ( 1.9151E−05 ) ( 0.010311 ) ( 0.12983 )

0.00018±0.00058 0.02±0.063 0.018±0.064 0.078±0.1 0.33±0.14

F11
( −16 ) ( −111.97 ) ( −209.12 ) ( −1155.9 ) ( −2638.7 )

−16±0.00039 −1E +02±13 −1.6E +02±31 −2.5E +02±4.4E +02 1.1E +03±2.3E +03

F12
( 1.6444E−11 ) ( 3.1813E−11 ) ( 6.5982E−11 ) ( 4.3488E−11 ) ( 0.23668 )

0.0023±0.0083 0.0022±0.0063 0.0029±0.014 0.00012±0.00047 0.45±0.12

3.6.7 Experiment 7: Solving Multimodal Functions with the
GCPT-EDA + Mutations

The success rate of the GCPT-EDA + mutations out of 30 runs over 12 functions
is shown in Table 3.19. The mean and standard deviation of the optimum values
reached is shown in Table 3.20, the best value is reported between parenthesis.
The mean and standard deviation of the number of fitness function evaluations is
reported in Table 3.21, the best value is reported between parenthesis.
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Table 3.12 Experiment 4. GCPT-EDA: number of function evaluations on the unimodal
problems in dimensions 4, 8, 10, 20 and 40. In parenthesis the best value. Target error=1×
10−10

Alias / D 4 8 10 20 40

F1
( 2663 ) ( 6148 ) ( 8100 ) ( 18859 ) ( 43471 )

2.9E +03±1E +02 6.6E +03±1.5E +02 8.5E +03±2.1E +02 1.9E +04±2.2E +02 4.5E +04±4.1E +02

F2
( 3551 ) ( 8109 ) ( 10320 ) ( 24931 ) ( 57199 )

8.2E +03±9.3E +03 9.6E +03±3.3E +03 1.1E +04±1.8E +03 2.7E +04±4.4E +03 6.1E +04±1E +04

F3
( 3847 ) ( 9222 ) ( 11880 ) ( 28151 ) ( 64635 )

7.6E +03±7.8E +03 1.1E +04±3.8E +03 1.4E +04±4.1E +03 3.3E +04±7.5E +03 6.9E +04±9.4E +03

F4
( 3033 ) ( 6943 ) ( 8700 ) ( 20331 ) ( 46045 )

4.1E +03±4.1E +03 7.3E +03±2.3E +02 9.6E +03±1.9E +03 2.1E +04±2.3E +02 4.7E +04±3.2E +02

F5
( 3810 ) ( 8586 ) ( 11160 ) ( 25759 ) ( 59058 )

8.4E +03±9.3E +03 1E +04±3.6E +03 1.3E +04±4E +03 2.7E +04±4.2E +03 6E +04±3.6E +02

F6
( 3662 ) ( 8427 ) ( 10860 ) ( 25299 ) ( 59487 )

8.9E +03±9.5E +03 1.2E +04±4.4E +03 1.5E +04±6.5E +03 3.4E +04±1.1E +04 7.7E +04±1.5E +04

F7
( 1405 ) ( 3445 ) ( 4620 ) ( 12143 ) ( 29600 )

1.7E +03±1.2E +02 4.7E +03±4.7E +03 6.3E +03±6.4E +03 1.2E +05±1.3E +05 2.4E +05±1.2E +05

F8
( 3440 ) ( 7897 ) ( 9960 ) ( 22723 ) ( 52480 )

1.5E +04±1.1E +04 1E +04±4E +03 1.3E +04±4.4E +03 2.6E +04±5.5E +03 5.5E +04±6.9E +03

F9
( 5956 ) ( 13674 ) ( 17760 ) ( 40755 ) ( 92949 )

1.8E +04±1E +04 1.5E +04±2.7E +03 2.1E +04±4.7E +03 4.1E +04±3.5E +02 9.4E +04±4E +02

F10
( 2959 ) ( 23850 ) ( 50880 ) ( 1.6606E +05 ) ( 3.0001E +05 )

1.1E +04±7.7E +03 4.1E +04±4.5E +03 5.7E +04±3.2E +03 1.7E +05±3.2E +03 3E +05±0

F11
( 2811 ) ( 43460 ) ( 61860 ) ( 1.472E +05 ) ( 3.0001E +05 )

5.7E +03±5.8E +03 4.9E +04±3.6E +03 6.8E +04±3.2E +03 1.7E +05±1.1E +04 3E +05±0

F12
( 3144 ) ( 14628 ) ( 24840 ) ( 1.3726E +05 ) ( 3.0001E +05 )

1.3E +04±9.1E +03 3.1E +04±8.9E +03 4.4E +04±9.6E +03 1.7E +05±2.2E +04 3E +05±0

Table 3.13 Experiment 5. GCPT-EDA: success rate ( % ) on the multimodal problems in
dimensions 5, 10, 20, 30, and 50. Target error=1×10−6

Alias / D 5 10 20 30 50
F13 100.0 100.0 100.0 100.0 100.0

F14 80.0 96.7 100.0 100.0 100.0

F15 100.0 100.0 93.3 100.0 86.7

F16 0.0 0.0 0.0 0.0 0.0

F17 100.0 100.0 100.0 100.0 100.0

F18 100.0 100.0 100.0 100.0 100.0

F19 100.0 100.0 100.0 100.0 100.0

F20 100.0 100.0 100.0 100.0 100.0
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Table 3.14 Experiment 5. GCPT-EDA: optimum reached on the multimodal problems in
dimensions 5, 10, 20, 30 and 50. In parenthesis the best value.Target error=1×10−6

Alias / D 5 10 20 30 50

F13
( 4.5832E−07 ) ( 6.5954E−07 ) ( 7.7004E−07 ) ( 7.97E−07 ) ( 8.4945E−07 )

8.1E−07±1.6E −07 8.4E−07±8.8E −08 9.1E−07±6.7E −08 9.4E−07±4.7E−08 9.5E−07±3.8E−08

F14
( 1.6288E−07 ) ( 2.7181E−07 ) ( 5.9879E−07 ) ( 6.6933E−07 ) ( 7.4417E−07 )

0.0021±0.0047 0.00025±0.0014 8.5E−07±1E−07 8.7E−07±8.6E−08 9.2E−07±6.9E−08

F15
( 9.249E−08 ) ( 4.4719E−07 ) ( 5.1973E−07 ) ( 6.6918E−07 ) ( 6.7196E−07 )

7E−07±2.1E −07 7.5E−07±1.5E −07 0.066±0.25 8.8E−07±9.7E−08 0.13±0.34

F16
( 0.44688 ) ( 7.0943 ) ( 16.916 ) ( 27.272 ) ( 47.019 )

2.5±0.7 7.7±0.34 18±2.8 28±0.44 48±0.34

F17
( −0.5 ) ( −1 ) ( −2 ) ( −3 ) ( −5 )

−0.5±2.2E−07 −1±1.5E−07 −2±1.1E−07 −3±1.2E−07 −5±7.7E−08

F18
( 3.9585E−07 ) ( 2.9783E−07 ) ( 6.601E−07 ) ( 6.312E−07 ) ( 7.4252E−07 )

7E−07±2E −07 7.5E−07±1.9E −07 8.4E−07±9.9E −08 8.7E−07±9.9E−08 9.2E−07±6.4E−08

F19
( 9.1323E−08 ) ( 4.2477E−07 ) ( 5.1582E−07 ) ( 5.9602E−07 ) ( 6.6655E−07 )

5.9E−07±2.3E −07 7.5E−07±1.5E −07 8.3E−07±1.3E −07 8.8E−07±1E−07 9.1E−07±9.1E−08

F20
( 1.2002E−07 ) ( 3.8777E−07 ) ( 3.6962E−07 ) ( 6.1903E−07 ) ( 8.2308E−07 )

6.5E−07±2.4E −07 7.5E−07±1.6E −07 8.2E−07±1.5E −07 8.8E−07±1.1E−07 9.3E−07±5.3E−08

Table 3.15 Experiment 5. GCPT-EDA: number of function evaluations on the multimodal
problems in dimensions 5, 10, 20, 30 and 50. In parenthesis the best value. Target error=1×
10−6

Alias / D 5 10 20 30 50

F13
( 4305 ) ( 9480 ) ( 21711 ) ( 34810 ) ( 64514 )

4.5E +03±1.2E +02 9.9E +03±1.7E +02 2.2E +04±2.5E +02 3.6E +04±3.4E +02 6.5E +04±3.2E +02

F14
( 19147 ) ( 7800 ) ( 16651 ) ( 27022 ) ( 49334 )

5.6E +04±2.9E +04 9.6E +03±1.9E +03 1.7E +04±2.4E +02 2.7E +04±2.3E +02 5E +04±3.7E +02

F15
( 4469 ) ( 11940 ) ( 31647 ) ( 58882 ) ( 1.188E +05 )

6.3E +03±1E +03 1.6E +04±2.5E +03 4.1E +04±6.1E +03 7.2E +04±9.8E +03 1.5E +05±1.8E +04

F16
( 23698 ) ( 22080 ) ( 39927 ) ( 61714 ) ( 1.0461E +05 )

4.7E +04±6.9E +04 3.4E +04±5.3E +03 5.4E +04±1E +04 7.2E +04±4.7E +03 1.2E +05±4.8E +03

F17
( 1927 ) ( 4680 ) ( 11039 ) ( 18644 ) ( 35474 )

2.1E +03±98 5E +03±1.4E +02 1.2E +04±1.8E +02 1.9E +04±2.1E +02 3.6E +04±3.6E +02

F18
( 1804 ) ( 4320 ) ( 9935 ) ( 16284 ) ( 29534 )

2.1E +03±1.2E +02 4.7E +03±1.5E +02 1E +04±2.6E +02 1.7E +04±3.1E +02 3E +04±3.8E +02

F19
( 2050 ) ( 5040 ) ( 11959 ) ( 19470 ) ( 36464 )

2.3E +03±1.3E +02 5.3E +03±1.4E +02 1.2E +04±1.5E +02 2E +04±2.2E +02 3.7E +04±2.6E +02

F20
( 1927 ) ( 4620 ) ( 11223 ) ( 18290 ) ( 35309 )

2.1E +03±1.1E +02 4.9E +03±1.4E +02 1.2E +04±1.9E +02 1.9E +04±3.5E +02 3.6E +04±3.5E +02
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Table 3.16 Experiment 6. GCPT-EDA + mutations: success rate ( % ) on the unimodal prob-
lems in dimensions 4, 8, 10, 20, and 40. Target error=1×10−10

Alias / D 4 8 10 20 40
F1 100.0 100.0 100.0 100.0 100.0

F2 100.0 100.0 100.0 100.0 100.0

F3 100.0 100.0 100.0 100.0 100.0

F4 100.0 100.0 100.0 100.0 100.0

F5 100.0 100.0 100.0 100.0 100.0

F6 100.0 100.0 100.0 100.0 100.0

F7 100.0 100.0 100.0 100.0 100.0

F8 100.0 100.0 100.0 100.0 100.0

F9 100.0 100.0 100.0 100.0 100.0

F10 100.0 100.0 100.0 100.0 0.0

F11 100.0 100.0 100.0 0.0 0.0

F12 100.0 100.0 100.0 100.0 0.0

Table 3.17 Experiment 6. GCPT-EDA + mutations: optimum reached on the unimodal prob-
lems in dimensions 4, 8, 10, 20 and 40. In parenthesis the best value. Target error=1×10−10

Alias / D 4 8 10 20 40

F1
( 1.7911E−11 ) ( 2.2897E−11 ) ( 5.7751E−11 ) ( 4.5888E−11 ) ( 6.1861E−11 )

6.4E−11±2.3E −11 7.2E−11±2E −11 8.1E−11±1.4E −11 8.3E−11±1.3E −11 9.1E−11±9.7E −12

F2
( 8.9081E−12 ) ( 1.4722E−11 ) ( 2.6123E−11 ) ( 6.525E−11 ) ( 7.1892E−11 )

6.2E−11±2.6E −11 7.5E−11±2.3E −11 8.4E−11±1.5E −11 8.4E−11±9.4E −12 9.1E−11±8E−12

F3
( 8.3119E−12 ) ( 3.4398E−11 ) ( 4.8211E−11 ) ( 5.478E−11 ) ( 6.0675E−11 )

6.2E−11±2.4E −11 7.6E−11±1.8E −11 8.3E−11±1.2E −11 8.5E−11±1.3E −11 8.8E−11±9.5E −12

F4
( 2.7635E−11 ) ( 3.2351E−11 ) ( 4.7385E−11 ) ( 4.3649E−11 ) ( 7.2538E−11 )

6.4E−11±2.3E −11 7.5E−11±1.8E −11 7.9E−11±1.2E −11 8.6E−11±1.3E −11 9.1E−11±7.3E −12

F5
( 2.4112E−11 ) ( 3.4796E−11 ) ( 3.892E−11 ) ( 6.6926E−11 ) ( 7.053E−11 )

7.4E−11±2.2E −11 7.8E−11±1.7E −11 8E−11±1.6E −11 8.6E−11±8.8E −12 9.3E−11±5.8E −12

F6
( 4.7301E−12 ) ( 1.8631E−11 ) ( 4.5646E−11 ) ( 5.3733E−11 ) ( 6.9544E−11 )

5.4E−11±2.7E −11 7E−11±2.2E −11 7.6E−11±1.4E −11 8.5E−11±1.2E −11 9.1E−11±7.1E −12

F7
( 2.2497E−13 ) ( 1.0451E−11 ) ( 1.4424E−11 ) ( 5.8304E−11 ) ( 6.7912E−11 )

3.9E−11±3.4E −11 5.2E−11±2.5E −11 6.1E−11±2.4E −11 8.3E−11±1.1E −11 9.1E−11±7.4E −12

F8
( −5 ) ( −5 ) ( −5 ) ( −5 ) ( −5 )

−5±2.3E−11 −5±1.7E−11 −5±2.1E−11 −5±1.2E−11 −5±8E−12

F9
( −5 ) ( −5 ) ( −5 ) ( −5 ) ( −5 )

−5±2E−11 −5±1E−11 −5±8.9E−12 −5±7.2E−12 −5±3.5E−12

F10
( 2.3161E−11 ) ( 6.694E−11 ) ( 4.0397E−11 ) ( 7.4611E−11 ) ( 2.4768 )

6.6E−11±2.3E −11 8.7E−11±9.5E −12 8.5E−11±1.4E −11 9.4E−11±5.8E −12 18±16

F11
( −16 ) ( −112 ) ( −210 ) ( −1513.4 ) ( −8842.7 )

−16±2E −11 −1.1E +02±1.5E −11 −2.1E +02±2.4E −12 −1.5E +03±8.7 −2.8E +03±2.4E +03

F12
( 1.715E−11 ) ( 3.7743E−11 ) ( 3.2669E−11 ) ( 4.4259E−11 ) ( 1.1488 )

6.5E−11±1.8E −11 8E−11±1.9E −11 7.8E−11±1.6E −11 8.9E−11±1.1E −11 67±54
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Table 3.18 Experiment 6. GCPT-EDA + mutations: number of function evaluations on the
unimodal problems in dimensions 4, 8, 10, 20 and 40. In parenthesis the best value. Target
error=1×10−10

Alias / D 4 8 10 20 40

F1
( 2811 ) ( 7882 ) ( 10140 ) ( 25107 ) ( 58629 )

3.1E +03±1.1E +02 8.1E +03±1.7E +02 1.1E +04±2E +02 2.6E +04±2.6E +02 6E +04±4.4E +02

F2
( 3477 ) ( 9988 ) ( 13560 ) ( 33012 ) ( 75789 )

3.8E +03±1.4E +02 1.1E +04±2.7E +02 1.4E +04±2.9E +02 3.4E +04±7E +02 8.1E +04±7.1E +03

F3
( 3958 ) ( 11392 ) ( 15600 ) ( 37197 ) ( 86657 )

4.3E +03±1.5E +02 1.2E +04±3.3E +02 1.6E +04±2.5E +02 3.8E +04±7.9E +02 8.9E +04±4.7E +03

F4
( 3181 ) ( 8476 ) ( 10860 ) ( 26316 ) ( 61060 )

3.6E +03±1.6E +02 8.9E +03±2.4E +02 1.2E +04±3E +02 2.7E +04±3.1E +02 6.2E +04±4.4E +02

F5
( 3773 ) ( 10420 ) ( 14220 ) ( 34314 ) ( 78220 )

4.1E +03±2E +02 1.1E +04±3E +02 1.5E +04±3.1E +02 3.5E +04±4.7E +02 8E +04±1.9E +03

F6
( 3625 ) ( 10204 ) ( 13680 ) ( 33477 ) ( 79221 )

3.9E +03±2.1E +02 1.1E +04±5.3E +02 1.4E +04±3.6E +02 3.5E +04±1.1E +03 9.2E +04±1.8E +04

F7
( 1294 ) ( 4372 ) ( 6000 ) ( 15342 ) ( 40754 )

1.7E +03±1.5E +02 4.8E +03±2.1E +02 6.6E +03±4.4E +02 2E +04±4.3E +03 6.7E +04±2.7E +04

F8
( 2774 ) ( 8854 ) ( 12000 ) ( 30501 ) ( 69640 )

3.1E +03±1.6E +02 9.4E +03±2.6E +02 1.3E +04±3.7E +02 3.1E +04±4.8E +02 7.4E +04±6.9E +03

F9
( 4994 ) ( 15928 ) ( 21420 ) ( 54309 ) ( 1.2455E +05 )

5.4E +03±1.7E +02 1.6E +04±3E +02 2.2E +04±4.4E +02 5.5E +04±4.3E +02 1.3E +05±5.3E +02

F10
( 2996 ) ( 16144 ) ( 30960 ) ( 2.2692E +05 ) ( 3.0001E +05 )

3.3E +03±1.5E +02 1.8E +04±1.3E +03 3.4E +04±2.1E +03 2.6E +05±1.5E +04 3E +05±0

F11
( 3033 ) ( 12850 ) ( 63660 ) ( 3.0002E +05 ) ( 3.0001E +05 )

3.3E +03±1.5E +02 2.4E +04±5.9E +03 9.7E +04±1.3E +04 3E +05±0 3E +05±0

F12
( 3218 ) ( 15334 ) ( 26760 ) ( 1.4694E +05 ) ( 3.0001E +05 )

3.6E +03±2E +02 1.7E +04±8.7E +02 2.9E +04±1.3E +03 1.7E +05±1.1E +04 3E +05±0

Table 3.19 Experiment 7. GCPT-EDA + mutations: success rate ( % ) on the multimodal
problems in dimensions 5, 10, 20, 30, and 50. Target error=1×10−6

Alias / D 5 10 20 30 50
F13 100.0 100.0 100.0 100.0 100.0

F14 6.7 80.0 100.0 100.0 100.0

F15 83.3 93.3 93.3 96.7 86.7

F16 96.7 100.0 0.0 0.0 0.0

F17 100.0 100.0 100.0 100.0 100.0

F18 100.0 100.0 100.0 100.0 100.0

F19 100.0 100.0 100.0 100.0 100.0

F20 100.0 100.0 100.0 100.0 100.0
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Table 3.20 Experiment 7. GCPT-EDA + mutations: optimum reached on the multimodal
problems in dimensions 5, 10, 20, 30 and 50. In parenthesis the best value. Target error=1×
10−6

Alias / D 5 10 20 30 50

F13
( 4.5007E−07 ) ( 6.7356E−07 ) ( 7.8418E−07 ) ( 8.4756E−07 ) ( 8.9817E−07 )

8.1E−07±1.6E −07 9.1E−07±8.2E −08 9.3E−07±5.4E −08 9.6E−07±3.3E−08 9.6E−07±2.9E−08

F14
( 6.9561E−07 ) ( 3.4956E−07 ) ( 5.4599E−07 ) ( 6.0876E−07 ) ( 7.2706E−07 )

0.016±0.0098 0.0016±0.0032 8.4E−07±1.2E −07 8.8E−07±1E−07 9.1E−07±7.3E−08

F15
( 2.938E−07 ) ( 5.0189E−07 ) ( 5.7057E−07 ) ( 6.5462E−07 ) ( 7.71E−07 )

0.2±0.48 0.099±0.4 0.066±0.25 0.033±0.18 0.13±0.34

F16
( 2.2295E−07 ) ( 6.508E−07 ) ( 10.758 ) ( 23.693 ) ( 45.175 )

0.01±0.055 9.4E−07±8.7E −08 12±0.27 24±0.14 45±0.18

F17
( −0.5 ) ( −1 ) ( −2 ) ( −3 ) ( −5 )

−0.5±2.2E−07 −1±2E−07 −2±8.7E−08 −3±6.4E−08 −5±6E−08

F18
( 2.6329E−07 ) ( 4.0355E−07 ) ( 5.4575E−07 ) ( 6.7551E−07 ) ( 6.7427E−07 )

6.9E−07±2.1E −07 7.6E−07±1.7E −07 8.5E−07±1.2E −07 9E−07±8.2E−08 9.1E−07±8.3E−08

F19
( 3.8271E−08 ) ( 2.808E−07 ) ( 5.6814E−07 ) ( 6.6527E−07 ) ( 6.7601E−07 )

6.8E−07±2.3E −07 7.8E−07±1.7E −07 8.8E−07±9.2E −08 8.9E−07±9E−08 9.1E−07±7.6E−08

F20
( 1.9525E−07 ) ( 3.5566E−07 ) ( 5.5169E−07 ) ( 6.3609E−07 ) ( 7.6725E−07 )

6.6E−07±2.3E −07 7.8E−07±1.8E −07 8.3E−07±1.3E −07 8.8E−07±9.8E−08 9.1E−07±6.8E−08

Table 3.21 Experiment 7. GCPT-EDA + mutations: number of function evaluations on the
multimodal problems in dimensions 5, 10, 20, 30 and 50. In parenthesis the best value. Target
error=1×10−6

Alias / D 5 10 20 30 50

F13
( 4744 ) ( 12360 ) ( 28827 ) ( 46765 ) ( 85985 )

5.2E +03±1.6E +02 1.3E +04±1.9E +02 3E +04±3.4E +02 4.8E +04±4.3E +02 8.7E +04±6.6E +02

F14
( 10708 ) ( 9600 ) ( 22038 ) ( 35936 ) ( 65733 )

3.9E +04±3E +04 1.4E +04±3.8E +03 2.3E +04±3.4E +02 3.7E +04±3.8E +02 6.7E +04±4.7E +02

F15
( 4744 ) ( 15480 ) ( 41568 ) ( 77943 ) ( 1.6367E +05 )

7.2E +03±1.6E +03 2.2E +04±3.4E +03 5.6E +04±7.8E +03 9.6E +04±1E +04 2E +05±2.2E +04

F16
( 5626 ) ( 89520 ) ( 3.0002E +05 ) ( 3.0012E +05 ) ( 3.0012E +05 )

1.7E +04±5.3E +04 1.4E +05±2.5E +04 3E +05±0 3E +05±0 3E +05±0

F17
( 1930 ) ( 6000 ) ( 14877 ) ( 24869 ) ( 47473 )

2.4E +03±1.8E +02 6.3E +03±1.8E +02 1.5E +04±3.1E +02 2.6E +04±3.7E +02 4.9E +04±4.7E +02

F18
( 2266 ) ( 5700 ) ( 13296 ) ( 21656 ) ( 40003 )

2.5E +03±1.1E +02 6E +03±1.8E +02 1.4E +04±2.8E +02 2.2E +04±3.5E +02 4.1E +04±4.2E +02

F19
( 2392 ) ( 6240 ) ( 15249 ) ( 25464 ) ( 48635 )

2.7E +03±1.8E +02 6.6E +03±2.3E +02 1.6E +04±2.7E +02 2.6E +04±3.4E +02 4.9E +04±4.1E +02

F20
( 2182 ) ( 5940 ) ( 14877 ) ( 24750 ) ( 46975 )

2.4E +03±1.2E +02 6.2E +03±1.8E +02 1.5E +04±2.8E +02 2.6E +04±3.3E +02 4.8E +04±5.2E +02
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Table 3.22 Set A: convex problems

Name Alias Definition
Sphere F1 ∑d

i=1 x2
i

Ellipsoid F2 ∑d
i=1 106 i−1

d−1 x2
i

Cigar F3 x2
1 +∑d

i=2 106x2
i

Tablet F4 106x2
1 +∑d

i=2 x2
i

Cigar Tablet F5 x2
1 +∑d−1

i=2 104x2
i +108x2

d

Two Axes F6 ∑[d/2]
i=1 106x2

i +∑d
i=[d/2] x

2
i

Different Powers F7 ∑d
i=1 |xi|2+10 i−1

d−i

Parabolic Ridge F8 −x1 +100∑d
i=2 x2

i

Sharp Ridge F9 −x1 +100
√
∑d

i=2 x2
i

Schwefel 1.2 F10 ∑d
i=1

(
∑i

j=1 x j

)2

Trid F11 ∑d
i=1 (xi−1)2−∑d

i=2 xixi−1

Zakharov F12 ∑d
i=1 x2

i +
(
∑d

i=1 0.5ixi
)2

+
(
∑d

i=1 0.5ixi
)4

Table 3.23 Set B: multimodal problems

Name Alias Definition

Ackley F13 −20exp

(
−0.2

√
1
d ∑

d
i=1 x2

i

)

−exp
( 1

d ∑
d
i=1 cos (2πxi)

)
+20+e

Griewangk F14 ∑d
i=1

x2
i

4000 −∏d
i=1 cos

(
xi√

i

)
+1

Rastrigin F15 10d +∑d
i=1

[
x2

i −10cos (2πxi)
]

Rosenbrock F16 ∑d−1
i=1

[
(1−xi)

2 +100
(
xi+1−x2

i

)2
]

Negative Cosine Mixture F17 ∑d
i=1 x2

i −0.1∑d
i=1 cos (5πxi)

Levy-Montalvo 1 F18
( π

d

)(
10sin2 (πy1)+(yd −1)2

)

with yi = 1+ 1
4 (xi +1) + π

d ∑
d−1
i=1 (yi−1)2 [1+10sin2 (πyi+1)

]

Levy-Montalvo 2 F19 0.1
(

sin2 (3πx1)+(xd −1)2 [1+ sin2 (2πxd)
])

+0.1∑d−1
i=1 (xi−1)2 [1+ sin2 (3πxi+1)

]

Levy 8 F20 ∑d−1
i=1 (yi−1)2 [1+10sin2 (πyi+1)

]

with yi = 1+ 1
4 (xi +1) sin2 (πy1)+(yd −1)2
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Table 3.24 Search domain, global minimum and properties of test problems

Alias Modes Separability Global Minimum Domain
F1 Unimodal Separable f (x∗) = 0 : xi = 0 xi ∈ [−10,5]d

F2 Unimodal Separable f (x∗) = 0 : xi = 0 xi ∈ [−10,5]d

F3 Unimodal Separable f (x∗) = 0 : xi = 0 xi ∈ [−10,5]d

F4 Unimodal Separable f (x∗) = 0 : xi = 0 xi ∈ [−10,5]d

F5 Unimodal Separable f (x∗) = 0 : xi = 0 xi ∈ [−10,5]d

F6 Unimodal Separable f (x∗) = 0 : xi = 0 xi ∈ [−10,5]d

F7 Unimodal Separable f (x∗) = 0 : xi = 0 xi ∈ [−10,5]d

F8 Unimodal Separable f (x∗) =−5 : x1 = 5,xi>1 = 0 xi ∈ [−10,5]d

F9 Unimodal Non-separable f (x∗) =−5 : x1 = 5,xi>1 = 0 xi ∈ [−10,5]d

F10 Unimodal Non-separable f (x∗) = 0 : xi = 0 xi ∈ [−10,5]d

F11 Unimodal Non-separable f (x∗) =− d(d+4)(d−1)
6 : xi = i(d +1− i) xi ∈

[−d2,d2
]d

F12 Unimodal Non-separable f (x∗) = 0 : xi = 0 xi ∈ [−10,5]d

F13 Multimodal Non-Separable f (x∗) = 0 : xi = 0 xi ∈ [−10,5]d

F14 Multimodal Non-separable f (x∗) = 0 : xi = 0 xi ∈ [−600,300]d

F15 Multimodal Separable f (x∗) = 0 : xi = 0 xi ∈ [−10,5]d

F16 Multimodal Non-separable f (x∗) = 0 : xi = 1 xi ∈ [−10,5]d

F17 Multimodal Separable f (x∗) =−0.1d : xi = 0 xi ∈ [−1,0.5]d

F18 Multimodal Non-separable f (x∗) = 0 : xi =−1 xi ∈ [−10,5]d

F19 Multimodal Non-separable f (x∗) = 0 : xi = 1 xi ∈ [−10,5]d

F20 Multimodal Non-separable f (x∗) = 0 : xi =−1 xi ∈ [−10,5]d

3.7 Conclusions

In this paper we described a new EDA based on Gaussian polytrees, then we
studied polytrees with copula functions, and poly-trees with copula functions plus
mutations. A polytree is a rich modeling structure that can be built with moder-
ate computing costs. At the same time the Gaussian polytree is found to have a
good performance on the tested functions, mainly on the convex functions which
are solved without any assistance as other EDA algorithms which had convergence
problems [13] [3]. Comparing Tables 4, 10 and 16 which are the results on uni-
modal problems using the proposed approaches, the best results are obtained using
the poly-tree with gaussian copula + mutations. Also, the comparison of Tables 7,
13 and 19 for multimodal functions using the three approaches, the winner is again
the poly-tree with gaussian copula + mutations. For the multivariate problems, the
use of copula functions (Table 13) seems to slightly improve Table 7, however note
that the Rastrigin function (F15) could be solved up to the dimension 50 (which
is the largest value tested).Table 19 shows clearly that mutations mean a great ad-
vantage to the algorithm. In fact Tables 16 and 19 show almost perfect score of the
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success rate for unimodal and multimodal functions solved with GCPT + mutations.
The proposed sampling method favors diversity of the population since it is based
on the covariance matrix of the parent nodes and the children nodes. Also the pro-
posed selection strategy applies low selection pressure (recall the whole population
is used to create the model) to the individuals because it is based on a μ +λ tech-
nique, therefore improving diversity and delaying convergence. In this comparison
the three approaches had good results but note this is the first time the multimodal
functions are solved with a graph based EDA and certainly mean a great improve-
ment over the first results reported for some of these problems [15].
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Appendix A
Test Function Definitions

Two sets of functions are used in the experiments: Set A of 12 convex functions are
shown in Table 3.22, and Set B of 8 multimodal functions is shown in Table 3.23.
Relevant information about the functions, such as the optimum vector, value of the
function at that vector, and search domain is provided in Table 3.24.
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Chapter 4
On Quality Indicators for Black-Box Level Set
Approximation

Michael T.M. Emmerich, André H. Deutz, and Johannes W. Kruisselbrink

Abstract. This chapter reviews indicators that can be used to compute the quality
of approximations to level sets for black-box functions. Such problems occur, for
instance, when finding sets of solutions to optimization problems or in solving non-
linear equation systems. After defining and motivating level set problems from a
decision theoretic perspective, we discuss quality indicators that could be used to
measure how well a set of points approximates a level set. We review simple indi-
cators based on distance, indicators from biodiversity, and propose novel indicators
based on the concept of Hausdorff distance. We study properties of these indicators
with respect to continuity, spread, and monotonicity and also discuss computational
complexity. Moreover, we study the use of these indicators in a simple indicator-
based evolutionary algorithm for level set approximation.

4.1 Introduction

In many problem settings one may ask for a diverse set of solutions that have a
certain property fulfilled (not necessarily optimality) that can be verified by means
of the evaluation of a black-box function. In this chapter we consider such problems.
More precisely, we study the following class of problems:

Definition 4.1 (Black-box Level Set Problem). Given a black-box function f :
X → R and a target space T ⊆ R, find all solutions in L = {x ∈ X | f (x) ∈ T}. Solu-
tions in L will be termed feasible solutions.

For instance, T could be a singleton, in which case L is a level set. Other examples
are superlevel sets (or sublevel sets), where T is the set of values above (below) a
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certain threshold. For simplicity, we refer to all these problems as level set problems.
We restrict our attention to problems where for all possible inputs x the condition
f (x) ∈ T can be evaluated efficiently.

Examples for such level set problems are listed in the following:

1: Geometrical Modeling. Determine all points of an n-dimensional geometrical
shape that is implicitly defined by an (in)equality.
2: System Identification. Find all inputs (possible causes, or parameters) x of
a system (model) f such that the output (effect) is in T (measurement). These
problems also arise in inverse design and fault diagnosis.
3: Constraint Based Design. Find all solutions of an inverse design optimization
problem that score above a certain threshold τ (see also [18]); here the target set
would be T = [τ,∞).

As L might be infinite, instead of computing L we may compute a finite set A that
represents L. The problem to find such a finite approximation set A will be termed
level set approximation problem.

The assessment of (and search for) a finite approximation set should possibly be
based on a preference relation on approximation sets. In many cases it is convenient
to have a scalar quality indicator. By a quality indicator (QI) we mean a function that
assigns to an approximation set a scalar value that can be interpreted as the fitness
or quality of the approximation set.

Approximation sets for level sets should be as good as possible with respect to
the following two properties (see below, P1 and P2) and the QIs must distinguish
the better approximations from the worse. That is, the QIs must be able to measure
these properties or at least one of the two. In the latter case, ideally two indicators
should be used one for each of the two properties.

P1: Representativeness. Distances of elements of the level set L to the approxi-
mation set A should be as small as possible.
P2: Feasibility. Symmetrically: Distances of elements of the approximation set
A to the level set L should be as small as possible.

Quality indicators should be able to indicate when an approximation set A is better
than an approximation set B with respect to P1 and/or P2. In this paper we discuss
different QIs that could be used for designing and studying approximation methods
for level sets. In particular we are interested in unary QIs. That is, QIs that pro-
vide a quality value for each level set approximation. Moreover, the attention will
be focused on QIs that do not require a priori knowledge of L, because they can
be used for the design of indicator-based search heuristics (as in indicator-based
multiobjective optimization) and for monitoring the progress of algorithms.

Example 4.1 (Starfish Level Set). Figure 4.1 shows, as a motivating example, a fifty
point approximation set (the red dots) of an interesting geometric set; the fattened,
Gielis starfish shape. The result is generated with the indicator-based evolutionary
level set approximation algorithm (ELSA) using an ADI indicator with reference
set R = [−3,3]2, as it will be discussed later in this chapter. In order to define the
starfish shape we introduce an auxiliary function α(x1,x2) which assigns to a point
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Fig. 4.1 A fifty point approximation of the fattened starfish level set

in the plane the angle between the positive direction of the X-axis and the halfline
determined by (0,0)T and (x1,x2)

T . The fattened starfish level set L is defined as

L = {(x1,x2) ∈ [−3,3]2 | f (x1,x2)≤ 0.2},

where
f (x1,x2) = g(x1,x2)

2− x2
1− x2

2

and

g(x1,x2) =

(∣∣∣∣
1
a
· cos

(
m ·α(x1,x2)

4

)∣∣∣∣
n2

+

∣∣∣∣
1
b
· sin

(
m ·α(x1,x2)

4

)∣∣∣∣
n3
)− 1

n1
.

This level set is obtained from the level set {(x1,x2) | f (x1,x2) ∈ T}, where T = {0}
by means of a 0.2-fattening (see Remark 4.1) and the superformula of Gielis [7]
with instantiation m = 5,n1 = 2,n2 = 7,n3 = 7,a = 1,b = 1 (which gives the level
set a starfish shape).

This chapter starts with a discussion of related work in Section 4.2, followed by a
study of design principles for quality indicators from a decision theoretic point of
view in Section 4.3. In Section 4.4, different designs for QIs will be studied, includ-
ing the discussion of computational aspects. Section 4.5, illustrates properties of the
indicators in an empirical case study for approximating level sets. For this, a simple
indicator-based evolutionary algorithm is introduced. Finally, the main findings and
directions for future research are summarized in Section 4.6.
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4.2 Related Work

For the numerical solution of level set approximation, continuation or homotopy
methods are commonly used [1]. These methods start with a feasible solution on
the optimal set and extend the set of feasible solutions by constructing new solu-
tions in the neighborhood of given solutions using, for instance, predictor-corrector
schemes. Continuation methods require the solution set to be connected and f to be
differentiable.

Evolutionary methods and stochastic search techniques have hardly been applied
for level set search, although they are quite popular in global optimization and for
the approximation of Pareto fronts in multiobjective optimization. In fact, Pareto
front approximation can be recasted as level set problem, given certain differentia-
bility and convexity conditions [8, 11]. In the context of Pareto optimization pro-
moting solution diversity in the search space can have an important role [15, 17].

Level set approximation problems and Pareto-front approximation problems have
in common that in both cases finite approximation sets are searched for that should
represent an a priori unknown solution set as good as possible. This is why it is in-
teresting to look for analogous ways to solve these problems, in particular in settings
that forbid the use of continuation methods (e.g., problems with disconnected level
sets, discontinuities, etc.). The problems with non-connectedness of the Pareto front
approximation by continuation methods have been addressed in [5, 12]. As opposed
to hybridization in this chapter we mainly focus on indicator-based approaches. A
first approach in the direction of evolutionary indicator-based level set approxima-
tion has been recently proposed with the NOAH algorithm [18]. NOAH has been
designed for finding diverse sets of solutions that perform above a certain threshold.
It is an indicator-based approach. That is, it selects populations based on a quality
indicator that allows to compare different sets on the basis of diversity. NOAH uses
the Solow Polasky diversity indicator [16], which will, among other indicators, be
reviewed later in this chapter in the context of level set approximation.

Although closely related to diversity-oriented search as defined by Ulrich [18],
in this chapter we argue that aiming for a maximally diverse set is not exactly the
same as aiming for a good representation of a level set, which to a certain extent are
complementary goals.

4.3 Decision Theoretic Motivation of Quality Indicators

This section considers the design of quality indicators for finite set approximations
A to level sets L from the perspective of multiobjective decision theory. The guiding
question in this discussion will be how the desirable properties P1 (representative-
ness) and P2 (feasibility) can be translated into preference relations, and eventu-
ally into scalar quality indicators that comply with these preference relations. For
the sake of technical simplicity our discussion will be restricted to the following
regular level set approximation problems:
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Definition 4.2 (Regularity). A regular level set problem is a level set problem with
the following properties: X ⊆ R

n, n > 0. Thus the set X is equipped with a distance
function d : X ×X → R

+
0 (inherited from R

n), where R
+
0 denotes the non-negative

reals. Furthermore:

1. L = {x ∈ X | f (x) ∈ T} is compact,
2. dim(X) = dim (L),
3. for all x ∈ X , the local dimension of x is equal to dim(X),
4. for all l ∈ L, the local dimension of l is equal to dim(L).

Remark 4.1. In many cases, especially when T is a singleton (classical level set
problems), L will not satisfy the condition dim(L)=dim(X). In this case we often
can take the ε-fattening of T (where the ε-fattening of a set S ⊂ R

n with ε > 0 is
the set

⋃
s∈S{x ∈ R

n |d(x,s) ≤ ε}). Ideally we would like to take the ε-fattening of
L, but in our approach we do not assume explicit a priori knowledge of L.

In the following we often refer to the notion of the distance of a point to a set:

Definition 4.3 (Distance of a Point to a Set). Let S ⊆ R
n and let p ∈ R

n. The dis-
tance of the point p to the subset S is defined as d(x,S) = inf{d(x,y) |y ∈ S}.
Note that most of our definitions are applicable in a more general context such as
metric spaces or topological spaces, but for the sake of clarity and brevity we restrict
our discussion to subsets of Rn.

From a decision theoretic point of view, we may translate P1 and P2 into multi-
objective optimization problems and state a preference relation which establishes a
set-preference relation with respect of P1, and, respectively, P2. Set indicators can
be discussed in the context of this preference relation. We will first introduce and
discuss a preference relation for P1, then do the same for P2, and proceed with a
discussion on the combination of these.

4.3.1 Pareto Order for Representativeness

In a level set problem we may view the representation of each � ∈ L as an objective.
That is, for each �∈L, the distance to the nearest neighbor in A should be minimized.
This gives rise to a multiobjective optimization problem with an infinite number
of objectives, on which we could establish an Edgeworth-Pareto order (or simply
Pareto order) as follows:

Definition 4.4 (Pareto Order for Representativeness≺R). Given a level set prob-
lem with solution L, then an approximation set A Pareto dominates A′ with respect
to representativeness (in symbols A≺R A′), if and only if:

∀� ∈ L : d(�,A)≤ d(�,A′) and

∃� ∈ L : d(�,A)< d(�,A′).

We write A ||R A′, iff A �= A′ and ¬(A≺R A′) and ¬(A′ ≺R A).
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Note, that we do not demand solutions in A to be feasible. Two simple propositions
on the feasible parts of approximation sets can be stated:

Proposition 4.1. Let A,B, and L be subsets of Rn (or of a metric space) such that
A⊂ B⊆ L. Furthermore let A be closed. Then, B≺R A.

Proof. It is clear that d(l,B) ≤ d(l,A) for each l in L. Next we want to show that
∃l0 ∈ L such that d(l0,B)< d(l0,A). Since A⊂ B, it holds that ∃b0 ∈ B\A. For this
b0 it holds that d(b0,B)< d(b0,A) (as d(b0,B) = 0 and because A is a closed subset
of L it holds 0 < d(b0,A)). �

Proposition 4.2. Let A ⊆ L,B ⊆ L, A \B �= /0, B \A �= /0, A and B are closed in L,
and L⊆ R

n (or L is a metric space). Then, A ||R B.

Proof. Since A \B �= /0 we have ∃a0 ∈ A \B. For this a0 it holds that d(a0,A) = 0
and because B is a closed set we have 0 < d(a0,B) (in other words, ∃l0 ∈ L such that
d(l0,A) < d(l0,B)). By symmetry we can also find an l̃0 ∈ L such that d(l̃0,A) >
d(l̃0,B). Thus A ||R B. �

Remark 4.2. Proposition 4.1 basically tells us that if we restrict ourselves solely to
feasible solution sets A and B, the set that includes the other should be preferred.
This property was stated in the literature as monotonicity in species (cf. [19] and
[18]).

Remark 4.3. Recall that a finite subset of a metric space is necessarily closed. Thus,
Proposition 4.1 holds in case the set A is finite. Secondly, it is easy to construct
counterexamples to the statement of Proposition 4.1 when the closedness condition
for A does not hold: Let A = {1/n |n∈N},B = A∪{0},L = [0,1], then B$R A, but
B≺R A does not hold (where B$R A means ∀l ∈ L,d(l,B) ≤ d(l,A)).

Remark 4.4. Proposition 4.2 tells us that it is probably insufficient from a practical
point of view to consider only≺R as a preference relation, as it will be too coarse to
establish a ranking between solutions, particularly in cases where sets of equal size
need to be compared and all of these points belong to L.

Remark 4.5. The conditions of Proposition 4.2 are satisfied in case A and B are non-
empty finite sets, A �⊆ B, B �⊆ A, and L⊆ R

n (or L metric). If you drop either condi-
tion: A closed, B closed, then the Proposition 4.2 does not hold. For instance, take
C = {1/n |n∈N}∪{1−1/n |n∈N}, L = [0,1], A =C∪{0}, and B =C∪{1}, then
we have ∀l ∈ L,d(l,A) = d(l,B).

4.3.2 Lorenz Order for Representativeness

As said, the relation ≺R provides us little guidance on how to distribute sets A⊂ L.
For instance, a strongly clustered set A⊂ L is incomparable to an evenly spread set
A′ ⊂ L even if both sets are finite and of the same size.
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Let us thus propose an extension to the order ≺R. Instead of stating the problem
as a Pareto optimization problem with each � ∈ L giving rise to an individualized
objective, d(�,A)→ min, we consider these objectives as interchangeable. For in-
stance, we consider an approximation set as equally good compared to a set for
which some of the points the distances are incremented while compensated by a
decrease by the same amount for some other points. In other words, we can take a
set A and obtain a set B by moving one of the points of A further away from L and
move another point by the same amount closer to L; in this case A and B are consid-
ered equally good (while in the Pareto order A ||B). However, if the increase is not
compensated for, the new solution will be defined as being inferior to the original
one (while in the Pareto order we may still A ||B). To put things into more concrete
terms, let us introduce the following dominance relation:

Definition 4.5 (Lorenz Order on Representativeness≺C). Let L⊆ X be the level
set we search for and let L be measurable1 and of non-zero measure. For A⊆ X , let

C(A,x) =
1

λ (L)
λ{� ∈ L |d(�,A)≤ x},

where λ denotes the Lebesgue measure and x∈R. Then, we say A Lorenz dominates
A′ with respect to the distance distribution (in symbols A$C A′), if and only if

∀x ∈R : C(A,x)≥C(A′,x).

Moreover, we define strict Lorenz dominance: A ≺C A′, if and only if A $C A′ and
C(A, ) �=C(A′, ).

Remark 4.6. The function C(A, ) can be interpreted as a cumulative probability dis-
tribution function indexed by A. In this interpretation, C(A,x) measures the proba-
bility that a randomly chosen point in L has a distance to its nearest neighbor in A
that is smaller or equal than x.

Remark 4.7. The term Lorenz dominance refers to a concept introduced by Atkinson
[2], who used it in economics to compare wealth distributions or Lorenz curves,
named after W.O. Lorenz.

Example 4.2. In Figure 4.2, an example for a comparison with ≺C is displayed. The
level set is L= [0,3]. Three approximations to this level set Ab = {1,2}, Ar = { 1

4 ,
3
4},

and Ag = {0,3} are compared with each other. The picture on the left hand side
displays the curves C(Ab, ), C(Ag, ) and C(Ar, ). The curve dominance reveals that
Ab ≺C Ar, Ab ≺C Ag. As C(Ag, ) and C(Ar, ) intersect, Ag and Ar are incomparable
with respect to ≺C.

Remark 4.8. An interesting aspect of this example is that the most diverse set, which
is Ag = {0,3}, is not the set that best represents L according to ≺C. This shows
a subtle difference between the concept of representativeness and diversity. This
contrast will be elaborated in more detail later in this section.

1 In this context the Lebesgue measure on R
n would be the natural choice.
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Fig. 4.2 Example for the order on cumulative distance distributions ≺C

Proposition 4.3 (Compatibility≺C with ≺R). Given a measurable level set L with
dimension dim(L) > 0 such the local dimension in each l ∈ L is equal to dim(L),
then for all subsets A,A′ of L it holds that: A ≺R A′ ⇒ A ≺C A′, but in general not
the converse.

Proof. A≺R A′ ⇒ A$C A′ holds, since by definition of ≺R for all � ∈ L, d(�,A)≤
d(�,A′) we get that the Lebesgue measure λ{� ∈ L |d(�,A) ≤ x} will be bigger or
equal for any given x compared to λ{� ∈ L |d(�,A′)≤ x}.

For the strictness proof we can argue as follows. The fact that A ≺R A′ implies
that ∃l0 ∈ L such that d(l0,A) < d(l0,A′). Define p := d(l0,A′)− d(l0,A). Let x :=
1
2 p+d(l0,A). Since d(,A) and d(,A′) are continuous, we can find a δ1 > 0 such that
∀l ∈ Bδ1

(l0), d(l,A) < x and a δ2 > 0 such that ∀l ∈ Bδ2
(l0), d(l,A′) > x. Taking

δ = min{δ1,δ2} we get ∀l ∈ Bδ , d(l,A)< x < d(l,A′). By our assumption that the
local dimension is equal to the global dimension, we get λ{� ∈ L |d(�,A) ≤ x} is
strictly bigger than λ{� ∈ L |d(�,A′)≤ x}.

As a simple counterexample we refer to Ab and Ar in Example 4.2. In this case
Ab is incomparable to Ar with respect to ≺R and Ab ≺C Ar. �

In the context of orders this means that ≺C is an extension of ≺R.

4.3.3 Unary Indicators for Representativeness

To extend ≺R and ≺C to a total order we could introduce unary indicators for mea-
suring representativeness, for instance the average distance (ADI):

ADI(L,A) :=
∫

�∈L
d(�,A)d�,

or the maximum distance of L to A

MDI(L,A) := max
�∈L
{d(�,A)}.
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Let us discuss next the compliance of these aggregates with ≺R.

Proposition 4.4 (Compatibility of ADI). If L is of dimension dim(X) in each � ∈ L
then A≺R A′ ⇒ ADI(A,L)< ADI(A′,L).

Proof. As d( ,A) and d( ,A′) are continuous2, also d( ,A)− d( ,A′) is continuous.
From A≺R A it follows that ∃�0: 0 < d(�0,A′)− d(�0,A). All of the above implies
∃ε > 0 such that ∀� ∈ Bε(�0) : 0 < p ≤ d(�,A′)− d(�,A) for some positive number
p. Thus

∫
�∈Bε (d(�,A

′)− d(�,A))d� ≥ θ for some θ > 0. Moreover, because of the
non-negativity of d( ,A′)− d( ,A) on L \ Bε(�0), it holds that

∫
�∈L\Bε (d(�,A

′)−
d(�,A))d�≥ 0. Hence ADI(A′,L)−ADI(A,L) =

∫
�∈Bε (d(�,A

′)−d(�,A))d�≥ θ >
0. �

Remark 4.9. If the dimension of points in L is less than the dimension of L the
inclusion of these points will not have an effect on ADI. For an illustration of the
problem see Figure 4.3 (left). Thus, A ≺R A′ ⇒ ADI(L,A) < ADI(L,A′) does not
hold for general L.

Also MDI is a problematic aggregate with respect to ≺R, as the following proposi-
tion shows.

Proposition 4.5 (Non-compatibility of MDI with≺R). In general it is not the case
that A≺R A′ ⇒MDI(L,A)< MDI(L,A′).

Proof. It is easy to find a counterexample. We may, for instance, add feasible points
on the right hand side of the unit disc in example in Figure 4.3 (right) which will lead
to a dominating solution with respect to ≺R, but not improve the maximal distance
indicator (MDI). �

Proposition 4.6. A≺R A′ ⇒ (MDI(L,A)≤MDI(L,A′))

Proof. By A ≺R A′ we know that ∀� ∈ L,d(l,A) ≤ d(l,A′). Thus be definition of
MDI(L,A′) we get ∀� ∈ L,d(l,A) ≤ d(l,A′) ≤ MDI(L,A′) and therefore
MDI(L,A) ≤MDI(L,A′). �

These two propositions show that even if A is strictly better than A′ the indicator
MDI might indicate equal quality of A and A′, though it will not indicate that A′ is
better than A.

Next we summarize the compatibility of ADI and MDI with ≺C with the follow-
ing propositions.

Proposition 4.7. For level sets that are of dimension dim(L) it holds that: A ≺C

A′ ⇒ ADI(L,A)< ADI(L,A′).

Proof. Let us first state a lemma from probability theory:

2 A proof will be given later, see Lemma 4.3.
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Fig. 4.3 Measuring representativeness: When the average distance (ADI) of a point in the
level set L = L1 ∪L2 is taken, the small isolated region L1 (because of its small area) con-
tributes little to the average and thus might be neglected. When using the maximal distance
indicator (MDI) in the example on the right hand side, as long as we do not cover L1 it does
not improve the maximal distance when moving some points from the right hand side to the
left hand side of L2.

Lemma 4.1. For a probability distribution F(x) of a random variable ξ it is the
case that

E(ξ ) =
∫ ∞

x=0
(1−F(x))dx−

∫ 0

−∞
F(x)dx.

Proof. For a derivation see, e.g., [10]. �

As said before we can interpret C(A,x) and C(A′,x) as a probability distribution of
the distance distribution, say ξd , over L. Moreover ADI(L,A) is the mean value of
this distribution and due to Lemma 4.1 it can be written as

ADI(L,A) =
∫ ∞

0
(1−C(A,x))dx ·λ (L).

If A≺C A′, that is, C(A,x) dominates C(A′,x), then ADI(L,A)< ADI(L,A′) follows
immediately. �

Proposition 4.8 (Relationship between C(A, ) and MDI). For level sets that are
of dimension dim(L) in every point � ∈ L, it holds that:

MDI(L,A) = inf{x ∈ R |C(A,x) = 1}.

Proof. Let V = {x ∈ R |C(A,x) = 1}. We will show that inf(V ) ≤ MDI(L,A) and
MDI(L,A) ≤ inf(V ). First we show that inf(V ) ≤ MDI(L,A): From the conti-
nuity of d( ,A) and the compactness of L we know that d( ,A) attains a max-
imum. More precisely ∃lmax ∈ L such that ∀� ∈ L,d(�,A) ≤ d(lmax,A). Clearly
C(A,d(lmax,A)) = 1 (and MDI(L,A) = d(lmax,A)). Thus, d(lmax,A) ∈V and there-
fore inf(V ) ≤ d(lmax,A). Next we show that MDI(L,A) ≤ inf(V ). In other words,
we will show that d(lmax,A)≤ inf(V ). We will assume to the contrary that inf(V )<
d(lmax,A) and derive a contradiction. The assumption inf(V )< d(lmax,A) entails the
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Fig. 4.4 Computation of ADI(L,A) and MDI(L,A) based on the cumulated distances curve
C(A, )

existence of x0 ∈ V such that inf(V ) < x0 < d(lmax,A). Since x0 ∈ V , we can con-
clude that {� ∈ L |d(l,A) = x0} is measurable and of measure λ (L)> 0. Therefore,
it is non-empty. This entails that ∃l0 ∈ L such that d(l0,A) = x0. Since d( ,A) is con-
tinuous, there exists an ε-ball with center lmax (Bε(lmax)) such that ∀� ∈ Bε(lmax):

d(l0,A) <
d(l0,A)+d(lmax,A)

2 < d(l,A). This entails that L contains two measurable,
disjoint subsets S = {l ∈ L |d(l,A) = x0} and B = Bε(lmax). The first has measure
λ (L) and the second has a strict positive measure. Therefore, λ (L)< λ (S)+λ (B).
On the other hand, λ (L) ≥ λ (S)+λ (B), because λ is a measure. This is a contra-
diction. In other words, MDI(L,A) ≤ inf(V ). �

Example 4.3. Figure 4.4 shows an example for the computation of the ADI and MDI
indicators based on a known cumulative distance distribution curve. The level set is
L = [0,3] and the approximation set Ab = {1,2}. The ADI is given by the area of the
shaded area (ADI(L,Ab) = 5/6) and the MDI by the point where the curve reaches
1, that is MDI(L,Ab) = 2.

Proposition 4.9. In general it does not hold that A ≺C A′ implies MDI(L,A) <
MDI(L,A′), but for level sets with dimension dim(L) in every point � ∈ L it holds
that

A≺C A′ ⇒ ¬(MDI(A′)< MDI(A)).

In summary, neither MDI nor ADI is fully compatible with ≺R. While MDI is also
capable to capture improvements in zero measure points it often will not indicate
improvements. On the contrary, ADI is not sensitive to adding points in regions of
L with zero measure.

4.3.4 A Preference Order for Feasibility

Next let us consider also the feasibility property or P2. For the sake of simplicity the
discussion will be restricted to approximation sets of equal size.
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Definition 4.6 (Lorenz Order for Feasibility ≺F ). Let |A| = |A′| = n and n > 0.
Then, let d1:n, i = 1, . . . ,n denote the distances d(a,L),a ∈ A sorted in ascending
order. Likewise, let d′1:n, i = 1, . . . ,n denote the distances d(a,L),a ∈ A′ sorted in
ascending order. Then, A≺F A′, if and only if

∀i ∈ {1, . . . ,n} : di:n ≤ d′i:n and

∃ j ∈ {1, . . . ,n} : d j:n < d′j:n.

This order rewards if some infeasible points get closer to the feasible set and all
other points remain unchanged. Like for the representativeness goal, we may also
construct aggregate objective functions for the feasibility goal and then investigate
to what extent they comply with ≺F or are refinements of it.

Definition 4.7 (Feasibility Indicators). For the comparison of finite sets of equal
size, the average feasibility indicator (AFI) and the minimal feasibility indicator
(MFI) are defined as follows:

AFI(L,A) =
1
|A| ∑a∈A

d(a,L),

and
MFI(L,A) = maxa∈A{d(a,L)}.

We observe some simple properties of these in relation to ≺F :

Proposition 4.10 (Properties of AFI and MFI in Relation to ≺F ). Let A and
A′ denote two approximation sets with |A| = |A′|, then A ≺F A′ ⇒ AFI(L,A) <
AFI(L,A′), but ¬(A ≺F A′ ⇒ MFI(L,A) < MFI(L,A′)), and yet
(A≺F A′ ⇒MFI(L,A)≤MFI(L,A′)). Moreover, AFI(L,A)<AFI(L,A′)⇒¬(A′ ≺F

A), and MFI(L,A)< MFI(L,A′)⇒¬(A′ ≺F A).

Again only the average distance is compatible with the order, while the maximum
distance is not. As opposed to the previously discussed ADI, the problem with iso-
lated points does not occur, as we compute the average by a sum over a finite number
of points and every point will have equal weight in this sum.

It could be debated whether ≺F is the only meaningful choice of an expedient
ordering. For instance, it does not always give preference to sets that have more
feasible solutions. However, as Proposition 4.10 shows, the set which has more fea-
sible solutions is at most incomparable (if it has higher distance values in some
components) but never strictly inferior.

4.3.5 Combining Representativeness and Feasibility

A question that remains is how to combine ≺F and ≺R and design indicators that
comply with such combined orders. In this context, it is interesting to observe that,
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to a certain extent, solutions that are preferred with respect to≺R are also preferable
with respect to ≺F .

In fact, if we restrict ourselves to sets of size μ , the non-dominated solu-
tions of ≺F are sets that are completely contained in L and thus are also non-
dominated solutions of ≺R. The converse, however, does not hold in general. For
instance if we consider the set of all singletons of X = {(x,y) |x2 + y2 ≤ 1} and
L = {(x,y) |x2 + y2 = 1} (unit circle), then the center of the circle (0,0) is non-
dominated with respect to ≺R but not with respect to ≺F .

Moreover, we may observe conflicting pairs, i.e., sets A and A′ with A≺F A′ and
A′ ≺R A, or vice versa. For instance, let L= {(x,y)∈R

2 |x2+y2≤ 1∨(x−4)2+y2≤
1} and consider A = {(2,0),(1,0)} and A’={( 3

2 ,0),(1,0)}. In this case A≺R A′ and
A′ ≺F A.

As we would like both, feasibility and representativeness, to be improved we can
introduce an order that combines these two goals:

Definition 4.8 (Combined Order for Feasibility and Representativeness). Given
two approximation sets A and A′ with |A|= |A′| and a level set L we define
A≺RF A′, if and only if A≺R A′ and A′ $F A or A$R A′ and A′ ≺F A, and
A≺CF A′, if and only if A≺C A′ and A′ $F A or A$C A′ and A′ ≺F A.

Remark 4.10. Among all approximation sets of size μ , the set of non-dominated sets
with respect to≺RF is given by Mμ = {A⊆ L | |A|= μ}. If, instead, the refined order
≺CF is used, then this is not the case, because sets in Mμ can become comparable.

Again we would like to find indicators that are compatible with ≺CF or at least with
≺RF . Let us first study indicators based on averaging or taking the maximum by
defining

MHD(L,A) = max{MDI,MFI} (4.1)

and

AHD(L,A) =
1
2
(ADI+AFI). (4.2)

Remark 4.11. The definition of MHD(A,L) corresponds with the standard Haus-
dorff distance between the sets A and L. Moreover, AHD(A,L) corresponds to the
averaged Hausdorff distance for p = 1 as defined by Schütze et al. [13, 14] in the
context of Pareto front approximation.

The compatibility of MHD and AHD with ≺RF and ≺CF is summarized in the fol-
lowing two propositions.

Proposition 4.11. For finite sets A and A′ with |A|= |A′| it holds that A ≺RF A′ ⇒
¬(MHD(A′,L)< MHD(A,L)), but ¬(A≺RF A′ ⇒MHD(A,L)< MHD(A′,L)).

Proposition 4.12. Assume all � ∈ L have dimension dim(L). Then, for finite sets A
and A′ with |A|= |A′|, it holds that A≺CF A′ ⇒ ¬(MHD(A′,L)< MHD(A,L)), but
¬(A≺CF A′ ⇒MHD(A,L) < MHD(A′,L)).
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Proposition 4.13. Assume all � ∈ L have dimension dim(L). Then, A ≺RF A′ ⇒
AHD(A,L)< AHD(A′,L) and A≺CF A′ ⇒ AHD(A,L) < AHD(A′,L).

Proof. The proposition follows directly from the earlier propositions (Proposition
4.4, Proposition 4.7, and Proposition 4.10) on the compatibility of ADI and AFI
with ≺RF , ≺CF and, respectively≺F . �
In conclusion, it turns out that the averaged Hausdorff distance is an indicator that
complies well with the combined preference relations, while the Hausdorff distance,
when used as a quality indicator is often not sensitive to improvements in terms
of ≺RF or ≺CF . Note that also in the context of Pareto front approximation the
averaged Hausdorff distance was favored over the standard Hausdorff distance as it
better complies with the Pareto dominance order.

4.3.6 Diversity versus Representativeness

Diversity-oriented search for solutions in level sets, as aimed for in [18], is not in
the first place guided by the aim to represent L but rather by the dictum: Find a set
A⊂ L of bounded size that has maximal diversity.

To a certain extent this goal is complementary to the representativeness goal.
However, there are subtle differences that will be highlighted in this section. A nat-
ural way to define diversity would be to see it as an indicator of dissimilarity be-
tween points in A. In that respect, we may consider a set that has higher inter-point
distances (or gaps between points) as being more diverse. For sets of the same size,
this could be defined as the monotonicity in diversity property [19, 18] or by the
following order:

Definition 4.9 (Preference Based on Diversity). Let |A| = |A′| ≥ 2. We say that
A≺D A′, if and only if there is a one-to-one function φ of A onto A′ such that

∀x ∈ A,∀y ∈ A,x �= y : d(x,y)≥ d(φ(x),φ(y)) and

∃x ∈ A,∃y ∈ A,x �= y : d(x,y)> d(φ(x),φ(y)).

Remark 4.12. Diversity and representativeness can be in conflict with each other as
the following example of a conflicting pair shows: Consider the sets Ag = {0,3} and
Ab = {1,2} for L = [0,3] (as in Example 4.2), then Ag ≺D Ab and Ab ≺C Ag.

Another example, would be to find a maximally diverse set on a unit ball. Diversity
oriented search would tend to place points on the boundary in order to maximize the
inter-point distances, while for representativeness one would like to place points for
instance near the center to decrease distances of points in the ball to the approxima-
tion set.

It depends on the application domain whether diversity or representativeness
should be aimed for. For instance, when searching for alternative designs in en-
gineering, diversity is likely a better guideline. When the goal is to understand the
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geometry of an implicitly defined shape it would seem more natural to aim for a
representative set. As diversity indicators are often more efficiently computed and
to a certain extent also promote good representativeness, we will in the following
discussion of quality indicators also consider indicators for diversity.

4.4 Selected Quality Indicators and Their Properties

Often the quality of a level set needs to be measured in absence of knowledge of the
resulting level set, which forbids the direct application of indicators such as MHD
and AHD. In particular, this is the case if the quality indicator is used for guiding a
search algorithm.

In this section we will review different types of quality indicators that could be
used in the context of level set approximation without a priori knowledge of the
level set L. Simple and more advanced diversity indicators will be surveyed first.
Then, an indicator that is directly motivated by representativeness and feasibility is
proposed and studied.

4.4.1 Simple Spread Indicators

A simple way to maximize diversity is to maximize the minimal, or average gap of
a point and the remaining points of a set. That is, we maximize one of the following
sparsity indicators. We consider here, again, indicators for sets of feasible points
and assume that L is a possibly non-countable set that needs to be approximated by
a finite set A of feasible points.

• ISN(A) = minx∈A d(x,A\ {x}) (Minimal gap),

• ISΣ(A) =
1
|A| ∑x∈A d(x,A\ {x}) (Arithmetic mean gap),

• ISΠ (A) = (∏x∈A d(x,A\ {x})) 1
|A| (Geometric mean gap) .

The ISN indicator is computable in O(n logn) time and updated in O(n) time [20].
All these indicators can be computed at most in O(n2) and updated at most in time
O(n). The minimal gap is known to be efficiently computable, but has the disad-
vantage that it only senses improvements in the critical pair(s). The geometric mean
has been introduced next to the arithmetic mean, as it is expected to better promote
solution sets with evenly sized gaps. Moreover, if multisets would be considered,
then it would yield the worst indicator score (that is zero) for solution sets with
duplicates. Despite their fast computation time, these indicators do not reward (or
not well enough) adding points to a set. Thus they are mainly useful for comparing
approximation sets of the same size.
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4.4.2 Diversity Indicators

In this section we study indicators that reward the inclusion of additional points,
while at the same time promote spreading points if sets are of the same size.

4.4.2.1 Weitzman Diversity

An attempt to formulate a diversity indicator on a more extensive set of desirable
properties was made by Weitzman [19]. He introduced the following recursive defi-
nition for a diversity indicator of a set of points:

Definition 4.10 (Weitzman Diversity). Let A denote a set, for instance an approx-
imation of a level set. Furthermore, let d denote a dissimilarity measure. Then the
Weitzman diversity Dw is defined as

Dw(A) = max
x∈A
{Dw(A\ {x})+ d(x,A\ {x})}. (4.3)

It is interesting because it has several properties that make it a nice indicator for
diversity. Some of these are also interesting when approximating level sets. Others
are more interesting for applications such as biodiversity assessment. The following
list of properties was devised by Weitzman – we revert to writing D referring to a
diversity indicator which is not necessarily the Weitzman diversity indicator. The
Weitzman indicator is denoted by Dw.

Definition 4.11 (Monotonicity in Species Property). If x is added to collection A,
then

D(A∪{x})≥ D(A)+ d(x,A).

This property is essential also when designing algorithms that fill a set. It complies
with property P1 stated in Section 11.1.

Definition 4.12 (Link Property). For all A, |A| ≥ 2, there exists at least one species
x ∈ A, called the link species, that satisfies D(A) = D(A\ {x})+ d(x,A\ {x}).
The link property is essential in taxonomy where genetic links are considered.

Definition 4.13 (Twin Property). Suppose that some species y outside of A is iden-
tical to some species x belonging to A, such that d(x,y) = 0, and ∀z ∈ A,d(x,z) =
d(y,z). Then, if y is added to A, there is no change in diversity: D(A∪ y) = D(A).

If a metric space is considered, the twin property is redundant, because of the iden-
tity in zero axiom of a metric, that is, ∀x ∈ A,y∈ A : d(x,y) = 0⇔ x = y. Recall that
for dissimilarity functions only ∀x ∈ A,y ∈ A : x = y⇒ d(x,y) = 0 is required.

Definition 4.14 (Continuity in Distances Property). Let A be an approximation
set, then D is continuous at A if ∀ε > 0, ∃δ > 0 such that for all approximation sets A′
and all bijections φ from A onto A′ with the following property: ∑x∈A,y∈A |d(x,y)−
d(φ(x),φ(y))| < δ , it holds that |D(A)−D(A′)|< ε .
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This property is reasonable, because sets which have a similar distance structure
should have also a similar diversity.

Definition 4.15 (Monotonicity in Distances Property). Let |A|= |A′| ≥ 2. Let φ :
A→ A′ be a one-to-one function A onto A′. Suppose that

d(φ(x),φ(y)) ≥ d(x,y),∀x ∈ A,∀y ∈ A,x �= y,

then D(A′)≥ D(A).

According to this definition, if two sets have equal size, then the wider spread set
should have a bigger diversity.

Definition 4.16 (Maximum Diversity that Can Be Added by a Species Prop-
erty). If species y is added to collection A, then

D(A∪ y)≤ D(A)+max
x∈A
{d(x,y)}.

This property relates the distance quantitatively to the diversity.
The computational effort of a straightforward implementation of this indicator

has a time complexity of O(|X |!). Weitzman proposed a faster algorithm with time
complexity O(2|X |) and applied it to data with up to 35 points. For a more detailed
discussion of Weitzman’s diversity and its properties we refer to the original paper
[19].

4.4.2.2 Solow and Polasky Indicator

Another interesting indicator is the Solow Polasky indicator (SPI) [16]. This indica-
tor has most of the desirable properties.

Definition 4.17. Let us for a given approximation set A = {x1, . . . ,xμ} define the
matrix M with mi, j = exp(−θdxi,x j ),∀i = 1, . . . ,n,∀ j = 1, . . . ,n for some positive
parameter θ . Furthermore, in case M is non-singular, define C = M−1 and denote
the entries of C by ci j, then the Solow Polasky indicator, denoted by DSP, is defined
as follows:

DSP(A) =
n

∑
i=1

n

∑
j=1

ci, j.

The SPI results in a value between 1 and μ . This makes it interesting for measuring
bio-diversity, as its value can be interpreted as the number of species. The extremal
value of 1 is the limit with respect to the elements of the approximation set A tending
to the same element. The other extreme is be obtained if pairwise distances between
solutions tend to infinity. Of course, these properties need to be formulated as limit
properties, but for the sake of simplicity we omit formal definitions here. The com-
putational complexity of computing the SPI is O(n3). This makes it more attractive
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than the Weitzman’s diversity indicator as an indicator for large sets. Incremental
updates of this indicator have a cheaper cost (see [18] for details). Due to its favor-
able properties it has been proposed for diversity-oriented search in [18, 17].

4.4.3 Indicators Based on Distances between Sets

Let us recall the Hausdorff distance ([6], page 293) as a classical indicator for com-
puting the distance between two sets:

Definition 4.18 (Hausdorff Distance). The Hausdorff distance between a set A and
a set B is defined as

dH(A,B) = max{sup
a∈A
{d(a,B)},sup

b∈B
{d(b,A)}.

In an earlier work by Pompeiu [9], instead of the maximum the sum of the two
components was used. We may replace the supremum operator by an averaging
operator as in Schütze et al. [13], yielding the:

Definition 4.19 (Averaged Hausdorff Distance). The average Hausdorff distance
between a set A and a set B is defined as

davg(A,B) = avg{avga∈A{d(a,B)},avgb∈B{d(b,A)}}.

As opposed to dH , the triangle inequality does not hold for davg, see [14].
Finding an approximation set A∗ that minimizes the Hausdorff or average dis-

tance to L is an interesting design principle for a quality indicator, and in Section
4.3.5 it was seen that the average Hausdorff Distance has many desirable properties
when it comes to the representation of level sets. Recall, that the MHD and AHD
as defined in Section 4.3.5 correspond to these definitions in the context of level set
approximation.

4.4.3.1 Average Distance to a Reference Set

Although we can not use knowledge about L in the more general setting of black-
box level set approximation, we may know a compact set R that contains L, which,
for instance, could be the search space X itself or a subset of it. For this case we
propose the average distance to a reference set (ADIR), defined as follows:

Definition 4.20 (Average Distance Indicator ADIR).
Define ADIR(A) = 1/vol(R)

∫
x∈R d(x,A)dx. The normalization can be omitted for

constant R.

For an illustration of ADIR, see Figure 4.6. In the context of the averaged Hausdorff
distance, the strategy in the absence of a complete knowledge of L is to minimize the
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averaged Hausdorff distance to a reference set by restricting ourselves to solutions
contained in L only. As L is contained by R this will also yield a good representation
of L. Here we exploit the fact that we can decide whether or not a point is in L using
the function f .

In order to study the properties of the minima of the ADI, we state first some
useful lemmas.

Lemma 4.2. Let S be a metric space with distance function d( , ) and let A⊆ S be
such that A �= /0. Then, ∀s0,s ∈ S, |d(s0,A)− d(s,A)| ≤ d(s0,s).

Proof. Clearly, d(s,A) is defined for any s ∈ S and any A⊆ S. We want to show two
inequalities: ∀s,s0 ∈ S : d(s0,A)−d(s0,s)≤ d(s,A) and d(s,A)≤ d(s0,A)+d(s0,s).
The first inequality can be rewritten as d(s0,A) ≤ d(s0,s) + d(s,A). We now pro-
ceed to exhibit the rewritten first inequality: ∀a ∈ A : d(s0,a) ≤ d(s0,s) + d(s,a)
(the triangle inequality). From this we get ∀a ∈ A : infa∈A{d(s0,a)} ≤ d(s0,a) ≤
d(s0,s) + d(s,a) and subsequently: infa∈A{d(s0,a)} ≤ d(s0,s) + infa∈A{d(s,a)}.
The second inequality we get by interchanging the roles of s0 and s. �
We now can easily show that the function d( ,A) : S → R is a continuous function
(S is a metric space and A⊆ S).

Lemma 4.3 (Continuity of d( ,A)). Let S be a metric space and A a non-empty
subset of S. Then, d( ,A) : S→R is a continuous function.

Proof. Let s0 ∈ S be arbitrary. We will show that d( ,A) is continuous in s0. Let ε >
0. We choose δ = ε . Clearly, d(Bδ (s0),A)⊂Bε(d(s0,A)) for by the previous lemma,
if s ∈ S and d(s0,s)< δ (i.e., s ∈ Bδ (s0)), then |d(s0,A)−d(s,A)| ≤ d(s0,s)< δ . In
other words, |d(s0,A)− d(s,A)|< ε and the lemma obtains. �
We proceed to study subsets of L for which the ADIR is minimal. That is, we try
to see what the relationship is of such minima to the set L. We first impose rather
stringent conditions on the sets R and L and in turn on the set of minima M and the
reference set R. We assume that R is a metric space (possibly having the first kind
of countability: any open cover has a countable subcover):

1. R is a metric space of first countability or R is compact.
2. A is compact.
3. L⊆ R and L is closed in R (in case R is a compact metric space this is equivalent

to saying that L is compact).
4. Let clL(A) denote the closure of A in L. As d(x,A) = d(x, clL(A)), we may

assume for the computation of the ADIR that A is closed in L.

Likewise, we can state the following result:

Lemma 4.4. Assume L is a set of dimension n or lower, and R denotes a set which
has dimension n in each point. Moreover, assume L is contained in R. Then,

M ∈M = argmin
A⊆L

∫

x∈R
d(x,A)dx⇔ clR(M) = clR(L)(= L),

where clR(S) denotes the closure of a set S in R.
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Fig. 4.5 Sets M, L and R. M is a minimizer of ADIR, but its Hausdorff distance to L is not
zero

Proof. The direction ‘⇐’ rests on the facts that (1) L belongs to M and (2) the
distance of a point to a set is equal to the distance of the same point to the closure
of the set, in symbols: A ⊂ R, d(x,A) = d(x,clR(A)). We will concentrate next on
the direction ’⇒’ and proof by contradiction: Given a set M ∈ argM such that
clR(M) ⊂ clR(L), then there exists a point x0 in clR(L)\ clR(M). The distance of x0

to L is equal to 0. Moreover, the distance of x0 to M is not equal to zero, because
if the distance x0 to M is equal to zero, then either x0 would be an accumulation
point of M or a point of M which is both not possible (as the clR(M) is by definition
M plus its accumulation points). Let d(x0,M) = α . Now, for x0, an ε-ball B0 exists
such that x0 ∈ Bε , ε > 0 and in ∀x∈ Bε : d(x,M)−d(x,L)> α− 1

2α > 0, because of
continuity of d( ,A) (for any subset A of R) and we assume that R is locally R

n. This
entails that in the computation of the ADIR of M and L on a whole neighborhood
of x0, the ADIR-integration is strictly bigger for M compared to L. Outside of this
neighborhood, the ADIR-integration is bigger or equal for M compared to L, for
∀x ∈ R,d(x,L)≤ d(x,M). Hence, for the whole of R the ADIR-integration is strictly
bigger for M as compared to L. This is a contradiction. Hence, clR(M) = clR(L). �

From Lemma 4.4 follows a corollary on an important property on the relation be-
tween the Hausdorff distance and the ADI:

Lemma 4.5. Assume L is a set of dimension n or lower and R denotes a set which
has dimension n in each point. Moreover, assume L is contained in R. Then,

M ∈ argmin
A⊆L

∫

x∈R
d(x,A)dx⇒ dH(L,M) = 0.

Remark 4.13. To drop the condition that R has to be of dimension n in each point
is problematic as the following example illustrates: In Figure 4.5 the set M is a
maximizer of ADIR and R⊃ L. However, the Hausdorff distance between L and M
is non-zero.

Lemma 4.5 leaves the question open whether or not there are other sets than L
in argminA⊆L

∫
x∈R d(x,A)dx. The following lemma makes it more precise how the

other sets are related to L:
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Fig. 4.6 ADIR for R ⊂ R, T = {y ∈ R|y >
�}

Fig. 4.7 The integrand d(x,A) for ADIR as
described in the 2-D example

Lemma 4.6. Let us define for an arbitrary x ∈ L and ε > 0 the ε-ball in L: Bε(x) =
{y ∈ L|d(x,y)< ε}. Then, ADIR(L)< ADIR(L\Bε(y)) for any y ∈ L.

Loosely speaking, it is not allowed to remove an ε-Ball from a minimal approxi-
mating set without deteriorating its optimality.

4.4.3.2 Computation of ADI

The size of the ADI integral for the uniform gap solution on the interval [a,b] can be
measured by elementary geometry, as it is composed of similar right triangles (see
Figure 4.6).

In 1-D the integration of ADIR(A) for R being an interval [a,b]⊃ A can be com-
puted in O(n logn) time with

ADIR(A) =
1

b− a
(0.5((x1:n− a)2 +(b− xn:n)

2)+
n−1

∑
i=1

((xi+1:n− xi:n)/2)2),

where xi:n denotes the i-th smallest point in A and n = |A|.
For higher dimensional X , Voronoi cells need to be used as integration areas. In

Figure 4.7, an example for f (x) =−x2
1−x2

2 +2
√

x2
1 + x2

2, T = {2} is plotted, where

A = {(0,0), (−1,1), (0,
√

2), (1,1), (
√

2,0), (1,−1), (0,−√2), (−1,−1)} , and
R = [−2,2]2.

Next an O(n log(n)) algorithm for the computation of the average distance in the
2-D plane will be derived.

Assume a 2-D box R = [(l1, l2)′,(u1,u2)
′] and a set of points within this box

A = {x(1), . . . ,x(μ)} ⊂ R. The aim is to compute ADIR(A), that is the average dis-
tance of points in R to their nearest neighbor. One way to do this is to partition R
into triangles such that all interior points of a given triangle share the same nearest
neighbor. This nearest neighbor will be one of the corners of the triangles. For each
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triangle, the contribution to ADIR(A) can be computed easily and the summation
over the contributions of all these triangles yields ADIR(A). Hence, there are two
technical difficulties to be solved: 1) the partitioning into triangles and 2) the inte-
gration over a single triangle.

The Voronoi diagram is a cell complex that assigns to each point xi ∈ R the set of
points Ci for which it is the nearest Euclidean neighbor. The sets Ci form the cells of
the Voronoi diagram. They can be infinite in size, though we are here only interested
in C′i = Ci ∩R. The cells C′i are connected regions in R. Moreover, the boundaries
of cells with non-zero measure are convex polygons. One important practical de-
tail is that for the scenario considered here, it is required to include the bounds of
the search space R as edges of the Voronoi diagram. This is to ensure that the con-
tributions of the triangles are computed over R. In order to achieve this, one can
mirror the set of points A along the boundaries of R. In 2-D, this produces four
mirror sets Aleft,Aright,Atop,Abottom and the Voronoi diagram of the combined sets
{A∪Aleft∪Aright ∪Atop∪Abottom} contains the boundaries R. For the inner cells of
this Voronoi diagram (i.e., the cells that lie within R) a triangulation can be com-
puted. See Figure 4.8 for an example.

To triangulate R, each inner Voronoi cell can be decomposed into triangular sub-
cells. To compute the triangles, we take the endpoints of each edge of the Voronoi
cell, say a, b, and the center point of that cell, say c, to form the triangle Δa,b,c.
For each such triangle we compute the contribution to the average distance. That is,
given the triangle Δ(a,b,c), the average distance of an interior point of this triangle
to c can be obtained by integration as

ADIΔ (a,b,c)({c}) =

d(a,b)
6

(
u(1+ v2)+ (1/2) · (1− u2) · (1− v2) · log

(u− 1)
(u+ 1)

)
,

where u = (d(a,c)+ d(b,c))/d(a,b) and v = (d(a,c)− d(b,c))/d(a,b) 3.
Finally, to obtain the average distance the area-weighted sum over all contribu-

tions to the average distance are computed and divided by the area of the box this
yields ADIR(A). Let VT denote the triangulation of the area R based on the Voronoi
diagram of A, then

ADIR(A) =
1

Area(R) ∑
Δ (a,b,c)∈VT

Area(Δ(a,b,c))ADIΔ (a,b,c)({c}),

where Area(Δ(a,b,c)) = 0.5det(a− c,b− c) and Area =∏2
i=1(ui− li).

In 2-D, the mirroring increases the number of points linearly by a factor of 22. The
complexity of computing the Voronoi diagram is O(n logn) [4, p. 160]. Finding the
midpoints for all edges of the Voronoi diagram can also be done in O(n logn) (note

3 A derivation of this formula can be found at:
http://www.mathpages.com/home/kmath283/kmath283.htm
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Fig. 4.8 Voronoi diagram of the reference set [−2,2]2 using mirroring (left). Triangulation
of the Voronoi Cells (right).

that the number of edges of the Voronoi diagram scales linearly with the number of
nodes ≤ 3n− 6 [4, p. 150]). Hence, the total complexity for computing ADIR for a
rectangular reference set in 2-D is O(n logn).

4.4.3.3 Augmented Average Distance

Next we consider a quality indicator that also takes into account feasibility.

Definition 4.21 (Augmented Average Distance). Consider a level set problem with
target set T and reference set R. For a set A ⊆ R the Augmented Average Distance
is defined as

ADI+R (A) = ADIR(A∩L)+ ∑
x∈A\L

d( f (x),T ).

Remark 4.14. We observe three simple properties:

E1: Sets that contain only feasible solution can be strictly worse than sets that
contain also infeasible solutions.

E2: Let A ⊆ R, A′ ⊆ L, and ADI+R (A) ≤ ADI+R (A
′). Then, ADIR(A ∩ L) ≤

ADIR(A′).

E3: Whenever an infeasible solution in an approximation set A is replaced by a
feasible solution (or a feasible point is added to A without removing elements
from A), then the augmented indicator is improved. More formally: ∀x ∈ L and
∀y ∈ (X \L)⇒ ADI+R ((A\ {y})∪{x})< ADI+R (A).
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From this we can conclude that by improving the augmented average distance, we
do not at the same time improve the feasible subset of it. However, if we proceed
by single replacements of points this is indeed the case. This makes the augmented
average distance an interesting quality indicator for archivers that update by adding
one point at a time. In general, optimizing the augmented average distance will
obtain sets that are also optimal in the average distance, as the following lemma
states:

Lemma 4.7. Assume L �= /0 and T is a closed set. Then arg minA⊆RADI+R (A) =
arg minA⊆R∩LADIR(A).

Proof. If A⊆ L, then ADIR(A) =ADI+R (A). Thus, if we restrict ourselves to feasible
sets, the minimum is the same. Now, we show that any set that contains infeasible
points is dominated (in the ADI+R ) by a set that has feasible points, and thus is also
not a candidate for a minimum. For this, we can show A � L ⇒ ADI+R (A∩ L) <
ADI+R (A). This is the case, because the penalty term (RHS in Definition 4.21) is
strictly positive. �

4.5 Numerical Results

Next we propose the evolutionary level set approximation algorithm (ELSA) that
uses a ranking of solutions based on the following contribution:

Algorithm 4.1. Indicator-based Evolutionary Level Set Approximation
(ELSA).

1: P0 ← init()
2: t ← 0
3: while not terminate do
4: q← generate(Pt)
5: P′t ← Pt ∪{q}
6: r← argmaxp∈P′t {ΔQI(p,P′t )}
7: (In case of SPI, ISN , ISΠ , and ISΣ replace argmax by argmin)
8: Pt+1 ← P′t \{r}
9: t ← t +1

10: end while
11: return Pt

Definition 4.22 (Quality Indicator Contribution). Given a set of solutions P, we
define the individual quality indicator contribution ΔQI(p,P) of a solution p ∈ P
with respect to P as

ΔQI(p,P)← QI(P)−QI(P\ {p}). (4.4)
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The ELSA algorithm is given in Algorithm 4.1. It can be considered as a simple
method for approximating level sets. In the main loop, one offspring q is generated
from the population Pt and added to the population P′t . With a probability p = 0.5,
the offspring is uniform randomly drawn from the search space or the offspring
is a mutated copy of the parent. Thereafter, for each individual of the population
p ∈ P′t , the contribution ΔQI(p,P) with respect to the quality indicator is computed
using the quality indicator contribution. The individual with the worst contribution is
deleted from the population. Note that Definition 4.22 assumes minimization of the
quality indicator. Quality indicators that require maximization should be converted
to minimization. The evolution loop is continued until some termination criterion is
met, after which the final population Pt is returned as the level set approximation.
The algorithm uses a steady-state selection scheme, as it is common in indicator-
based (multiobjective) optimization. As opposed to NOAH [18] it strictly prioritizes
feasibility to spread. The design of ELSA is preferable when points that are not in
L should not be used to represent L.

4.5.1 Experimental Study

We perform one run of the ELSA algorithm using various augmented indicators,
namely: IS+

N , IS
+
Π , IS

+
Σ , Solow Polasky (SP+) for θ = 1, θ = 10, θ = 1000, ADI+R

with small (S), medium (M), and large (L) reference set. Here the small reference
set is [−1,1]2, the medium reference set is [−2,2]2 and the large reference set is
[−8,8]2. For each ELSA instance an evaluation budget of 10,000 function evalua-
tions is used. Each ELSA instance uses a population size of μ = 30 and for mutation
a Gaussian random perturbation σN (0,1), with σ = 0.2 is added to a copied off-
spring. Reflection is used for handling the box-constraints.

The simple spread indicators of Section 4.4.1 are transformed for minimization
using multiplication by −1. Furthermore, for augmentation, the number of infeasi-
ble solutions is multiplied with the diameter of the search space and the cumulated
distances of infeasible points to T are added to it. The SPI is also transformed for
minimization using multiplication by −1 and for augmentation, the cumulated dis-
tances of infeasible points to T are added to it. For the comparisons based on average
distances infeasible solution are taken care of by using the augmented average dis-
tance ADI+. For the SPI we use the same augmentation approach as for the average
distance. As for the average distance indicator, an exchange of an infeasible solution
by a feasible solution always improves the indicator. The reason for this is that the
SPI has the monotonicity in species properties, that is, it is always rewarded if a new
point x ∈ L is added to a given level set approximation. Obviously, the sum of dis-
tances of infeasible points to the target set T will also decrease, when an infeasible
point is removed.

The test problems are the sphere function, with L = {(x1,x2)
T ∈ [−2,2]2 |x2

1 +
x2

2 ≤ 1} and a problem based on a multimodal function, with L = {(x1,x2)
T ∈

[−2,2]2 | fB(x1,x2)≤ 0.6} and fB is the Branke’s multipeak function [3], defined as
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Fig. 4.9 Level set approximations of the ELSA algorithm after 10,000 function evaluations
using the different set indicators on the sphere problem. Top row: IS+

N , IS
+
Π , IS

+
Σ . Middle row:

Solow Polasky (SP+) with θ = 1, θ = 10, θ = 1000. Bottom row: ADI+R with small (S),
medium (M), and large (L) reference sets.

fB(x1,x2) =
1
2
((1.3− g(x1))+ (1.3− g(x2))), (4.5)

g(xi) =

⎧⎪⎨
⎪⎩

−(xi + 1)2 + 1 if − 2≤ xi < 0

1.3 ·2−8|xi−1| if 0≤ xi ≤ 2

0 otherwise

. (4.6)

Results are shown in Figure 4.9 and Figure 4.10. Some observations:

• The simple spread indicators are useful indicators to distribute points over the
level set. It seems that PΠ promotes an evenly spaced approximation set, while
PΣ has a tendency to cluster solutions in the middle.
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Fig. 4.10 Level set approximations of the ELSA algorithm after 10,000 function evaluations
using the different set indicators on Branke’s multipeak problem. Top row: IS+

N , IS
+
Π , IS

+
Σ .

Middle row: Solow Polasky (SP+) with θ = 1, θ = 10, θ = 1000. Bottom row: ADI+R with
small (S), medium (M), and large (L) reference sets.

• The SPI finds evenly spaced distributions when the parameter θ is set appro-
priately. However, when it is too low, it pushes solutions to the boundary while
when it is too high it tends to cluster.

• For the ADI indicator with an appropriate reference set, the results look good.
Clearly, a too small choice of the reference set yields approximations that over-
look parts of the search space, for obvious reasons. The effect of setting the
reference set too large is marginal, but it introduces a tendency for the points to
be placed at the boundary.

An additional result on the approximation of a thin shape using the ADIR is given
in Example 4.1. Here, 10,000 function evaluations were used and R = [−3,3]2.
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4.6 Summary and Outlook

The generalized level set approximation problem is reformulated as a multiobjec-
tive problem with respect to representativeness P1 and feasibility P2. It is discovered
that properties P1 and P2 each gives rise to a domination structure among finite ap-
proximation sets which are Lorenz orders. Aggregations of distance objectives are
obtained which respect these Lorenz orders. Interestingly, P1 and P2, mathemati-
cally give rise to the two components which already Pompeiu [9] and Hausdorff [6]
used to define the notion of distance between two sets, and more recently the varia-
tions of this notion by Schütze et al. [14]. It is pointed out that P1 is only to a certain
extent complementary to finding maximally diverse sets of solutions. The averaged
Hausdorff distance (AHD) turns out to be a favorable choice in cases where L is
of the same dimension in all of its points. For cases where knowledge of the level
set is absent, the ADIR for a reference set R ⊇ L is proposed. We show that in two
dimensions it is computable in O(n logn) time using Voronoi tessellation, though
its computation will be inefficient for high-dimensional problems. In this case fast
computable diversity indicators, such as ISΠ and the SPI, can be used instead. In
our experiments, SPI produces slightly better results than the ISΠ indicator. How-
ever, the SPI might fail for a too large or too low choice of θ and carries a higher
computational effort.

In the future, fast computation schemes for ADI in more than two dimensions
need to be developed. A major area of research will be the design and analysis of
(indicator-based) level set approximation algorithms. Most of the discussion can
probably be generalized to metric spaces. Finally, note that support material is
available at: http://natcomp.liacs.nl/code.
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Chapter 5
Set Oriented Methods for the Numerical
Treatment of Multiobjective Optimization
Problems

Oliver Schütze, Katrin Witting, Sina Ober-Blöbaum, and Michael Dellnitz

Abstract. In many applications, it is required to optimize several conflicting ob-
jectives concurrently leading to a multobjective optimization problem (MOP). The
solution set of a MOP, the Pareto set, typically forms a (k− 1)-dimensional object,
where k is the number of objectives involved in the optimization problem. The pur-
pose of this chapter is to give an overview of recently developed set oriented tech-
niques – subdivision and continuation methods – for the computation of Pareto sets
P of a given MOP. All these methods have in common that they create sequences of
box collections which aim for a tight covering of P . Further, we present a class of
multiobjective optimal control problems which can be efficiently handled by the set
oriented continuation methods using a transformation into high-dimensional MOPs.
We illustrate all the methods on both academic and real world examples.

Keywords: multiobjective optimization, multiobjective optimal control, set ori-
ented methods, subdivision, continuation

5.1 Introduction

In a variety of applications one is faced with the problem that several objectives
have to be optimized concurrently leading to a multiobjective optimization problem
(MOP). Typically, the solution set of a MOP – the Pareto set – is not given by a
single point as in scalar optimization but forms a (k− 1)-dimensional object, where
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k is the number of objectives involved in the MOP. In case k is low (i. e., two to four),
it makes sense to compute the entire solution set since this is the set of ‘optimal
compromises’ and hence of particular interest for the decision making process.

In the literature, a huge variety of different methods for the computation of the
Pareto set can be found. There exist, for instance, many scalarization methods which
transform the MOP into a ‘classical’ scalar optimization problem (SOP). By choos-
ing a clever sequence of SOPs a suitable finite size approximation of the entire
Pareto set can be obtained (see [7, 40, 18, 32, 17, 16] and references therein). Fur-
ther, there exist continuation methods that, starting from one or several solutions,
perform a search along the Pareto set which is possible due to the geometry of the
solution set (e. g., [26, 52, 23, 54]). Another way – and probably the most promi-
nent one – is to use metaheuristics such as evolutionary algorithms (see [8, 20, 6]
and references therein). The underlying idea is to evolve an entire set of solutions
(population) during the optimization process. By this, an approximation of the entire
Pareto set can be obtained by one single run of the algorithm.

The methods we consider here differ in the sense that in each iteration step a set
of boxes is created with the aim to tightly cover P . This can be done by subdivision
techniques or by using certain continuation methods (so-called recover techniques).
In the former, a sequence of nested box collections is generated that converges (ide-
ally) to P , and in the latter a given collection C is extended by a local search which
is performed around promising elements (boxes) of C . Subdivision techniques are
due to their global approach highly competitive in particular if the dimension of
the parameter space is moderate (say, n < 50), and the number of objectives is low
(k < 5). Continuation methods are of local nature (i. e., restricted to the connected
component of the solution set in which the given solution is contained), but in turn
applicable to higher dimensional problems (n' 1000). Set oriented methods have
been successfully applied to, for example, space mission design problems ([60, 13]),
the design of electromagnetic shielding materials ([59]), the optimization of several
subsystems of a rail-bound vehicle ([51, 37, 21, 22, 62, 56, 34]), an energy manage-
ment problem of a tram ([33]), and the design of electrical circuits ([4]).

Next to the computation of the Pareto set of a given MOP we address the rel-
atively young field of the numerical treatment of multiobjective optimal control
problems. Whereas in multiobjective optimization one searches for Pareto optimal
parameters, in optimal control one searches for optimal trajectories, which are solu-
tions of a dynamical system given by a differential equation. Common approaches,
such as direct methods (for an overview of different methods we refer to [3]), are
based on a discretization of the trajectories and the differential equation such that
in the end one is faced with a high-dimensional constrained (multiobjective) opti-
mization problem. One of first works combining methods of direct optimal control
and multiobjective optimization is e. g. [38]. In this contribution it is described how
the set oriented continuation methods are combined with the recently developed di-
rect optimal control method DMOC (Discrete Mechanics and Optimal Control [48])
which is in particular suitable for Lagrangian systems, e. g. systems in space mis-
sion design ([30, 42]), or constrained multi-body dynamics ([36, 49]). Additionally,
the special case of differentially flat systems is addressed. We demonstrate on two
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examples that the resulting high-dimensional MOPs can be handled by the set ori-
ented continuation methods.

The remainder of this chapter is organized as follows: In Section 5.2, we present
the required background in multobjective optimization. In Section 5.3, we describe
a subdivision technique for the computation of relative global attractors of a given
dynamical system. In Section 5.4, we present four basic algorithms for the compu-
tation of Pareto sets, two subdivision algorithms and two continuation methods. In
Section 5.5, we present two particular approaches for the treatment of multiobjective
optimal control problems. And finally, in Section 10.6, we state some concluding re-
marks.

5.2 Multiobjective Optimization

In the following we consider MOPs which can be stated as follows:

min
x∈Q
{F(x)}, Q = {x ∈�n : h(x) = 0, g(x)≤ 0}, (5.1)

where F is defined as the vector of the objective functions, i. e.

F : Q→�
k, F(x) = ( f1(x), . . . fk(x)), (5.2)

with f1, . . . , fk : Q→�, h : Q→�
m, m≤ n, and g : Q→�

q. Though the methods
presented in the following are in principle applicable to general restriction sets Q,
we will primarily consider unconstrained problems (i. e., Q =�n) or domains that
result from box constraints, i. e.,

Q := {x ∈�n : li ≤ xi ≤ ui, i = 1, . . . ,n}, (5.3)

where l ∈�n and u ∈�n define the lower and upper bounds, respectively.
In the next definition we state the classical concept of optimality for MOPs.

Definition 5.1. (a) Let v,w ∈ �k. Then the vector v is less than w (v <p w), if
vi < wi for all i ∈ {1, . . . ,k}. The relation ≤p is defined analogously.

(b) A vector y ∈�n is dominated by a vector x ∈�n (in short: x≺ y) with respect
to (9.1) if F(x)≤p F(y) and F(x) �= F(y).

(c) A point x ∈ Q is called Pareto optimal or a Pareto point if there is no y ∈ Q
which dominates x.

In the following, we denote by PQ the set of Pareto points (or Pareto set). The image
F(PQ) of the Pareto set is called the Pareto front.

In case all the objectives are differentiable, the theorem of Kuhn and Tucker
([35]) states a necessary condition for optimality. We state the result in the following
for the unconstrained case. For a more general formulation of the theorem we refer
e. g. to [40].
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Theorem 5.1 ([35]). Let x∗ be a Pareto point of (9.1). Then there exist vectors α ∈
�

k with αi ≥ 0, i = 1, . . . ,k, and ∑k
i=1αi = 1 such that

k

∑
i=1

αi∇ fi(x
∗) = 0. (5.4)

Points x∗ that satisfy Equation (5.4) are called Karush-Kuhn Tucker1 (KKT) points
or substationary points. The above theorem can be used to give a qualitative descrip-
tion of PQ (which has first been observed in [26]). Denote by F̃ :�n+m+k→�

n+m+1

the following map:

F̃(x,α) =

⎛
⎜⎜⎜⎝

k
∑

i=1
αi∇ fi(x)

k
∑

i=1
αi− 1

⎞
⎟⎟⎟⎠ . (5.5)

By Theorem 5.1 it follows that for every KKT point x∗ ∈ �n there exists a vector
α∗ ∈�k such that

F̃(x∗,α∗) = 0. (5.6)

Hence, one expects – as a result of the Implicit Function Theorem – that the set of
KKT-points defines a (k− 1)-dimensional manifold. This is indeed the case under
certain smoothness assumptions, see [26] for a thorough discussion of this topic.

5.3 A Subdivision Algorithm for the Computation of Relative
Global Attractors

The relative global attractor of a dynamical system contains all invariant sets and is
hence (among other examples, see [11, 12]) interesting for the detection of substa-
tionary points of a given MOP. In the following we present the object of interest,
the framework of a subdivision technique for the computation of such objects, and
describe further on a numerical realization.

5.3.1 The Relative Global Attractor

Here we define the object of interest, the relative global attractor of a dynamical
system. For a more detailled discussion we refer e. g. to [11, 12].

We consider discrete dynamical systems

δ
∫ t f

0
L(q(t), q̇(t)) dt +

∫ t f

0
f (q(t), q̇(t),u(t)))δq dt = 0 (5.7)

1 Named after the works of Karush [31] and Kuhn & Tucker [35] for scalar–valued opti-
mization problems.
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where f : �n → �
n. A subset A ⊂ �n is called invariant if f (A) = A. We say an

invariant set A is an attracting set if there exist a neighborhood U of A such that for
every open set V ⊃ A there is a N ∈� such that f j(U)⊂V for all j ≥ N. Note that
for every invariant set also its closure is invariant. Hence, we can restrict ourselves
to closed invariant sets A, and in this case we obtain

A =
⋂
j∈�

f j(U). (5.8)

Hence, we can say that all the points in U are attracted by A (under iteration of
f ), and U is called the basin of attraction of A. If U = �n, then A is called the
global attractor. The knowledge of the global attractor is in general beneficial since it
contains all the potential interesting dynamics ([12]). For numerical aproximations,
however, we have to restrict ourselves to a compact subset of the �n as domain
which leads directly to the notion of the relative global attractor.

Definition 5.2. Let Q ⊂ �n be a compact set. The global attractor relative to Q is
defined by

AQ :=
⋂
j≥0

f j(Q). (5.9)

Example 5.1. Consider the one-dimensional dynamical system

f (x) = αx, (5.10)

where α ∈� is a constant, and let Q = [a,b], where a < 0 and b > 0.

(a) Let α ∈ (−1,1). Since |x j+1| = |α||x j| the relative global attractor is given by
AQ = {0}.

(b) Let |α| ≥ 1. Since for all j ∈� it is f j(Q)⊃ Q and f 0(Q) = Q, it is AQ = Q.

As an example related to optimization consider the application of the steepest de-
scent method ([45]) to a scalar optimization problem

min
x

g(x), (5.11)

where g :�n →� is a smooth function. This leads to the dynamical system

x j+1 = f (x j) = x j− t∇g(x j), j = 0,1,2, . . . , (5.12)

where t ∈ �+ is a (fixed) step size. It is important to note that the relative global
attractor contains all invariant sets A ⊂ Q and is hence interesting in the present
context:

Let x∗ ∈�n be a substationary point (i. e., ∇g(x∗) = 0), then it is

x∗ = f (x∗) (5.13)
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i. e., x∗ is a fixed point of f (and in particular invariant). Note that this statement
holds regardless of the choice of the step size t.

5.3.2 The Algorithm

Here we describe a subdivision technique that creates in each iteration step j a
collection of sets Q j such that each Q j is an outer approximation of AQ and that
the sequence of Q j’s converges to AQ in the Hausdorff sense.

Let B0 be an initial collection of finitely many subsets of the compact set Q such
that ∪B∈B0B = Q. Then B j is inductively obtained from B j−1 in two steps:

(i) Subdivision Construct from B j−1 a new system B̂ j of subsets such that

⋃

B∈B̂ j

B =
⋃

B∈B j−1

B (5.14)

and
diam(B̂ j) = θ j diam(B j−1), (5.15)

where 0 < θmin ≤ θ j ≤ θmax < 1.
(ii) Selection Define the new collection B j by

B j =
{

B ∈ B̂ j : there exists B̂ ∈ B̂ j such that f−1(B)∩ B̂ �= /0
}
. (5.16)

Denote by Q j the collection of compact subsets obtained after j subdivision steps,
i. e.,

Q j :=
⋃

B∈B j

B (5.17)

One can show that the limit of the Q j’s converges to the relative global attractor.

Proposition 5.1 ([12]). Let AQ be a global attractor relative to the compact set Q,
f be a diffeomorphism, and let B0 be a finite collection of closed subsets with
Q0 := ∪B∈B0B = Q. Then

AQ =
∞⋂

j=0

Q j. (5.18)

The above result can alternatively be stated as

lim
j→∞

dH(AQ,Q j) = 0, (5.19)

where dH(·, ·) denotes the Hausdorff distance between two sets.
Note that the above result holds for the usage of one dynamical system through-

out the entire iteration process. In the context of optimization, however, this might
be too restrictive. As a general example, consider the dynamical system (5.12).
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Instead of using a fixed step size t, one is typically interested in using several step
sizes which formally leads to an entire family of dynamical systems. In the case of
steepest descent this would be

x j+1 = fi(x j) = x j + ti∇g(x j), i ∈I (5.20)

For an adaption of the subdivision technique to that context we refer to [15].

5.3.3 Realization of the Algorithm

Here we describe a possible realization of the subdivision technique.

Subdivision

For the representation of the collections B j we use boxes: Let us assume that every
parameter is restricted to a certain range, i. e., ai ≤ xi ≤ bi, i = 1, . . . ,n. The search
space thus is given by

Q = [a1,b1]× . . .× [an,bn]⊂�n. (5.21)

Every box B⊂�n can be represented by a center c ∈�n and a radius r ∈�n
+ such

that
B = B(c,r) = {x ∈�n : |xi− ci| ≤ ri ∀i = 1, . . . ,n}. (5.22)

The box B can be subdivided with respect to the j-th coordinate. This division leads

to two boxes B(c−,r̂)
− and B(c+,r̂)

+ , where

r̂i =

{
ri for i �= j

ri/2 for i = j
, c±i =

{
ci for i �= j

ci± ri/2 for i = j
.

Let P(Q,0) := Q, that is, P(Q,0) = B(c0,r0), where

c0
i =

ai + bi

2
, r0

i =
bi− ai

2
, i = 1, . . . ,n.

Denote by P(Q,d),d ∈�, the set of boxes obtained after d subdivision steps start-
ing with B(c0,r0), where in each step i = 1, . . . ,d the boxes are subdivided with re-
spect to the ji-th coordinate, where ji is varied cyclically. That is, ji = ((i− 1)
mod n)+ 1. Note that for every point y ∈ Q\∂Q and every subdivision step d there
exists exactly one box B = B(y,d) ∈P(Q,d) with center c and radius r such that
ci− ri ≤ yi < ci + ri, ∀i = 1, . . . ,n. Thus, every set of solutions SB leads to a set
of box collections Bd . These collections can easily be stored in a binary tree with
depth d. In Figure 5.1 a representation of five boxes with subdivision step three and
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three dimensions (i. e., n = 3) together with the corresponding set B3 is shown.
Note that each Bd is completely determined by the tree structure and the initial box
B(c0,r0). Using this scheme, the memory requirements grow only linearly in the di-
mension n of the problem.

Fig. 5.1 The data structure used for the representation of the solution set

Selection

A box B is removed from the collection in the above algorithm if

∀B̂ ∈ B̂k : f−1(B)∩ B̂ = 0 (5.23)

Apparently, this is hard to decide apart for trivial problems. As a remedy, the follow-
ing heuristic can be chosen which has shown its efficiency in numerous examples:
One can discretize each box of the collection by selecting a finite set of test points
(e. g. , grid points in low dimensions n of the parameter space or Monte Carlo
points in higher dimensions). Then, one can replace removal strategy (5.23) by the
following one:

f (x) �∈ B for all test points x ∈ B̂k. (5.24)

Similar strategies can be found in cell-mapping techniques (e. g., [28, 29]).

5.4 Basic Algorithms for Multiobjective Optimization

In the following, we present four different algorithms for the numerical treatment of
MOPs, two subdivision algorithms and two continuation strategies. In all cases, we
emphasize on the general idea, for details or comparisons to other methods we refer
to the original works.
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5.4.1 Subdivision Techniques

5.4.1.1 DS-Subdivision

The first algorithm we present here is in principle constructed as the one presented in
(5.12), albeit tailored to the context of multiobjective optimization ([14]). Assume
the MOP is unconstrained and all objectives are continuously differentiable. The
following result gives a way to compute a descent direction – i. e., a direction ν ∈�n

where all objectives can be improved simultaneously – at every non-optimal point
x ∈�n.

Theorem 5.2 ([55]). Let (MOP) be given and q :�n →�
n be defined by

q(x) =
k

∑
i=1

α̂i∇ fi(x), (5.25)

where α̂ is a solution of

min
α∈�k

⎧⎨
⎩

∥∥∥∥∥
k

∑
i=1

αi∇ fi(x)

∥∥∥∥∥
2

2

;αi ≥ 0, i = 1, . . . ,k,
k

∑
i=1

αi = 1

⎫⎬
⎭ . (5.26)

Then either q(x) = 0 or −q(x) is a descent direction for all objective functions
f1, . . . , fk in x.

Note that since each x with q(x) = 0 is a substationary point, the computation of the
descent direction includes a test for Pareto optimality.

Having the descent direction q, a possible dynamical system that ‘pushes’ the
iterates toward the set of interest, the Pareto set, is now at hand: Analog to the line
search method in (5.12) we can define

x j+1 = f (x j) = x j− tq(x j), j = 0,1,2, . . . , (5.27)

where t ∈ �+ is a chosen step size. DS-Subdivision is the subdivision technique
described in Section 5.3.2 using (5.27) as dynamical system.

Example 5.2. Consider the following bi-objective problem

f1, f2 :�2 →�

f1(x) = (x1− 1)4 +(x2− 1)2,

f2(x) = (x1 + 1)2 +(x2 + 1)2

(5.28)
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The Pareto set of MOP (5.28) is a curve connecting the points (−1,−1)T and
(1,1)T . Figure 5.2 shows the result of an application of the subdivision scheme
where (5.27) has been used as dynamical system. After several iteration steps a
tight covering of the Pareto set can be obtained. For the evaluation of a box we have
chosen the four corners as test points.

(a) Iteration 10 (b) Iteration 15 (c) Iteration 20

Fig. 5.2 Box collections generated by DS-Subdivision applied on MOP (5.28) after 10, 15,
and 20 iteration steps. Here, we have chosen Q = [−5,5]2 as domain.

Indeed one can show convergence to the set of interest if it is connected.

Proposition 5.2 ([14]). Suppose that the set S of substationary points is bounded
and connected. Let Q be a compact neighborhood of S . Then, an application of
the subdivision algorithm to Q with respect to the iteration scheme (5.27) leads to a
sequence of coverings which converges to the entire set S ; that is,

dH(S ,Q j)→ 0, for j→ ∞. (5.29)

If e. g. the problem is convex, then it is known that S is equal to PQ which is fur-
thermore connected. Unfortunately, analog results cannot be obtained for the case
where the set S is disconnected. The reason for this is that the relative global at-
tractor is always connected. The following example demonstrates this in the present
context.

Example 5.3. Consider the bi-objective problem as shown in Figure 5.3. This prob-
lem is constructed such that S = [0,1]∪ [1.5,2], where the interval [0,1] contains
only locally optimal solutions and the interval [1.5,2] is equal to the Pareto set. An
application of DS-Subdivision to Q = [−1,3] will converge to the relative global
attractor AQ = [0,2]. To see this, one has to consider the neighborhood around the
number 1: a box B that contains 1 as well as points that are bigger than one has al-
ways a nonzero intersection with its image under iteration (5.27). Further, the image
of this box has also a nonzero intersection with its right neighbor Br. Proceeding
with Br, we see that all the boxes between 1 and 1.5 have preimages in other boxes
in each step of the subdivision process. Hence, the interval (1,1.5) is never removed
in the selection step.
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However, it has to be noted that this holds for an ideal application of the algo-
rithm. In case the removal strategy (5.24) is used in the selection strategy, it is most
likely to observe convergence toward S .

Fig. 5.3 Example of a bi-objective optimization problem where the set S of locally optimal
solutions is disconnected

Remark 5.1. We have utilized in our studies the descent method presented in [55].
However, we have to note that there are other ways to compute descent directions
(e. g., [18, 5]) which might lead to similar results.

5.4.1.2 Sampling Algorithm

Note that the algorithm described above suffers several potential drawbacks, namely:

(a) The objectives’ gradients have to be at hand or have to be approximated.
(b) The set S of substationary points is typically a strict superset of the Pareto set,

and points that are only locally optimal are typically not of interest (compare to
Example 5.3).

(c) The algorithm is in principle capable of finding local Pareto points on the
boundary of the domain Q. However, empirical tests have shown that in many
cases a significant fraction of the boundary ∂Q is locally but not globally opti-
mal wrt the given MOP.

The following algorithm, the Sampling Algorithm, tries to avoid all these potential
problems. This is done by merely considering the objective values of the set of
test points in each iteration. To be more precise, given a box collection B j−1, the
collecion B j is obtained as follows:

(i) Subdivision This is as in Section 5.3.2.
(ii) Selection For all B ∈ B̂ j , choose a set of test points XB ⊂ B.

Nj := nondominated points of
⋃

B∈B̂ j
XB

B j := {B ∈ B̂ j : ∃y ∈ XB∩Nj}
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Note that this approach has some analogies to branch and bound strategies used for
scalar optimization problems (e. g., [27]), but omits any bounding strategy. This is
due to the fact that the larger the number k of objectives is, the more robust the
selection strategy gets (note that for k = 1, Nj will typically consist of one element,
which is normally not the case for k > 1).

Example 5.4. Consider the following bi-objective problem taken from [55]:

f1, f2 :�n →�,

f1(x) =
n

∑
j=1

x j,

f2(x) = 1−
n

∏
j=1

(1−wj(x j)),

(5.30)

where

wj(z) =

{
0.01 · exp(−( z

20)
2.5) for j = 1,2

0.01 · exp(− z
15) for 3≤ j ≤ n

Figure 5.4 shows a numerical result obtained by the Sampling Algorithm. Here, we
have taken 10 randomly chosen test points per box. When choosing Q = [0,40]3 the
set S contains the two faces of Q with xi = 0, i = 1,2. Hence, an application of
DS-Subdivision leads to a tremendous effort since both faces will be kept in the box
collections (see also [57]). This is avoided by the sampling approach.

5.4.2 Recover Techniques in Parameter Space

In the course of the two algorithms described above it can happen that boxes are
lost that contain a part of the set of interest (e. g., due to a discretization error in
the removal strategy (5.24)). The following algorithms are intended to ‘heal’ (or
recover) the box collection. The underlying idea is that the set of interest (Pareto set
or front) forms locally a manifold. That is, in the neighborhood of a ‘good’ box (i. e.,
a box with nonzero intersection with the set of interest) it is likely that there are other
‘good’ boxes due to the geometry of the problem. Hence, given a box collection B j,
it makes sense to perform a local search around each box of the collection (once),
and to see if neighboring boxes should be added to B j. It has to be noted that this
approach is restricted to the connected components of the set of interest that have
nonzero intersection with the given collection B j . On the other hand, it has turned
out that the usage of the data structure is well suited to maintain a ‘global’ view on
the part of the solution set which is already computed, and is in particular interesting
for the efficient treatment of high-dimensional problems.

The idea of the recover techniques in parameter space is to recover the box col-
lection in order to maintain a perfect covering of the Pareto set ([14]). The following
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(a) Iteration 10 (b) Iteration 20

(c) Iteration 30 (d) Pareto front

Fig. 5.4 Numerical results for MOP (5.30) using the Sampling Algorithm.

pseudo-code gives the framework of the Recover Algorithm to extend an existing
collection B j (see also Figure 5.5).

(i) Step 1 Mark all boxes B ∈B j

(ii) Step 2 (i) For all marked B ∈Bk: unmark the box and choose starting points
(si)i=1,...,l near B
(ii) For each si, i = 1, . . . , l, compute a substationary point pi starting from si.
(iii) For all pi, i = 1, . . . , l, if B(y, j) �∈Bk, add B(y, j) to the collection Bk and
mark the box.
(iv) Repeat Step 2 while new boxes are added to Bk or until a prescribed number
of steps is reached.

Note that the Recover Algorithm is similar in spirit to predictor corrector (PC) meth-
ods used for numerical (multiobjective) continuation ([53, 1, 26, 24, 52, 23]). Cru-
cial are certainly the proper choices of the starting points si and the performance
of the local searcher. In low dimensions it might be sufficient to choose the starting
points in coordinate directions from the center of a box (as seen in Figure 5.5) to-
gether with an application of the map (5.27), i. e., to take pi = f p(si), for a power
p ∈�. In higher dimensions, however, this is not advisable. Instead, it makes sense
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to lean elements from existing PC methods applied on the map (9.11). This has
been done in [58]. For an application of the recover techniques for high-dimensional
problems (n' 1000) we refer to [54].

Fig. 5.5 Recover algorithm: uncomplete covering of the Pareto set (left) and possible choice
of test points for a given box B (right)

Example 5.5. We consider the following MOP ([58]):

minF(x) :=

⎛
⎝

(x1− 1)4 +(x2− 1)2 +(x3− 1)2

(x1 + 1)2 +(x2 + 1)4 +(x3 + 1)2

(x1− 1)2 +(x2 + 1)2 +(x3− 1)4

⎞
⎠

s.t. h(x) = 1− x2
3− (

√
x2

1 + x2
2− 4)2 = 0

(5.31)

The MOP is given by three convex objectives which are constrained to a torus.
Figure 5.6 shows a numerical result of the Recover Algorithm where the initial box
collection consists of one single solution of the MOP.

We stress that the Recover Algorithm can more generally be used as a particular
continuation method for the numerical solution of

H(x) = 0, (5.32)

where H :�N+K →�
N is a map (see [57, 58]). One interesting application in the

present context is the numerical treatment of parameter dependent MOPs which can
be expressed as follows:

min
x

Fλ :�n →�
k, λ ∈�d (5.33)
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(a) Box collection

(b) Pareto front

Fig. 5.6 Numerical result of the Recover Algorithm for MOP (5.31) starting with one known
Pareto optimal solution of the problem
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This particular kind of problem e. g. occurs when λ is given data for the underlying
system which is modelled by F and can change during the optimization process (see
e. g. [51]). In case λ changes quickly it is not advisable to compute the entire Pareto
set for every value of λ but it may be more efficient to approximate the set F̃−1(0),
where

F̃ :�n+d+k →�
n+1

F̃(x,λ ,α) :=

⎛
⎜⎜⎝

k
∑

i=1
αi

∂ fi
∂x (x,λ )

k
∑

i=1
αi− 1

⎞
⎟⎟⎠ .

(5.34)

When the auxiliary system is computed, the set of substationary points for every
value λ̄ is given by the projection F̃−1(0)|λ=λ̄ , which can easily be identified in the
corresponding box collection.

Example 5.6. We consider the following parameter dependent MOP:

Fλ (x) := (1−λ )F1(x)+λF2(x), (5.35)

where

F1,F2 :�2 →�
2

F1(x1,x2) =

(
(x1− 1)4 +(x2− 1)2

(x1 + 1)2 +(x2 + 1)2

)
,

F2(x1,x2) =

(
(x1− 1)2 +(x2− 1)2

(x1 + 1)2 +(x2 + 1)2

)
.

(5.36)

Figure 5.7 shows the set F̃−1(0) for problem (5.35). Two ‘classical’ Pareto sets
for particular values of λ – using the according parts of the box collection for the
auxiliary system – can be seen in Figure 5.8.

5.4.3 Image-Set Oriented Recover Techniques

In case the dimension of the parameter space is high and only a few objectives are
beeing considered (i. e., two or three), one can alternatively generate box collec-
tions in image space ([9, 10]): For a given initial Pareto optimal solution a box on
the Pareto front is generated around the image of this solution. Step by step, all
neighboring boxes are inserted that contain points on the Pareto front. The insertion
of boxes is based on the idea to create vectors of desired values for the objectives,
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Fig. 5.7 Family of Pareto sets, see (5.35)

(a) λ = 0 (b) λ = 1

Fig. 5.8 Pareto sets for two values of λ of MOP (5.35)

so-called targets T , in the neighborhood of the given boxes. Then the following
distance minimization problem is solved:

min
x
‖F(x)−T‖2. (5.37)

Using this procedure, the entire Pareto set can be covered for unconstrained multi-
objective optimization problems with convex objective functions. In the nonconvex
case the connected components of the Pareto front that correspond to the initial
boxes can be approximated.

More precisely, the image-set oriented recover algorithm works as follows: As-
sume that we would like to compute Pareto optimal points within the region

QI = [ f min
1 , f max

1 ]× . . .× [ f min
k , f max

k ]⊂�k,
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where f min
i , f max

i ∈R, i= 1, . . . ,k, are given restrictions for the objective values. The
box QI is subdivided a set of boxes of depth d, P(QI,d), as described in Section
5.3. Then, each point y ∈ QI can be assigned to a box B(y,d).

The image-set oriented recover algorithm starts with a box collection B0 ⊂
P(QI ,d). Let xB denote a corresponding Pareto optimal solution to the box B,
i. e. F(xB) ∈ B for B ∈B0.

Step 1:
Mark all B ∈B0

Step 2:
for j = 0, . . . , maximum number of steps:

set B̂ j = B j

for all B ∈B j with B marked
choose target vectors {Ti}i=1,...,l near B

with Ti ≤p F(xB)
compute x�i = argminx∈Rn ‖F(x)−Ti‖2 for i = 1, . . . , l,
set F�

i = F(x�i ), i = 1, . . . , l,
unmark box B
for all i = 1, . . . , l:

if B(F�
i ,d) /∈B j

set B̃ = B(F�
i ,d), xB̃ = x�i , FB̃ = F�

i
mark B̃
B̂ j = B̂ j ∪ B̃

if B̂ j == B j STOP
B j+1 = B̂ j

So far, it has not been explained how suitable targets Ti can be generated. Efficient
strategies for the computation of target vectors can be defined by making use of local
information on the Pareto set. There are different possibilities how to generate good
targets. One idea presented in [10] is to generate targets along the shifted tangent
space on the image of a known Pareto optimal solution. More precisely, we have
to assume that x� is Pareto optimal, F(x�) = y� and T � is the target which leads to
the computation of x�. Additionally, it is required that the image of the Pareto set is
smooth and forms a (k− 1)-dimensional manifold in a neighborhood of y�. Then,
new targets can be generated in two steps:

(i) Compute the normal vector to the Pareto front in the point y�. As x� is a solution
of the distance minimization problem (5.37) this normal vector is given by n =

T �−x�

‖T�−x�‖ . Construct a ((k-1)-dimensional) orthonormal basis V = {b1, . . . ,bk−1}
of the tangent space at the point y� which is orthogonal to n e. g. by computing a
QR factorization of n.

(ii)Specify l targets

ti = y�i +
k−1

∑
j=1

αi, jb j +λin, i = 1, . . . , l.
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The coefficients αi, j are chosen in such a way that the points pi = ∑k−1
j=1αi, jb j

are located inside neighboring boxes of the box containing y�. The value of λi

is determined by an adaptive concept which guarantees that the targets lie below
the Pareto front (but also are not too far away).

The distance minimization problem (5.37) is solved using standard optimization
algorithms such as SQP which is implemented in the NAG library [46]. In Figure
5.9, a schematic representation of the image set-oriented recover algorithm is given.

f1f1 f1 f1

f2f2f2 f2

Fig. 5.9 Principal functioning of the image set-oriented recover algorithm (the black curve is
the unknown Pareto front and the grey dots are the targets).

Example 5.7. Consider the bi-objective problem

f1, f2 : R100 →R,

f1(x) =
100

∑
i=1

(xi− 1)2

f2(x) =
100

∑
i=1

(xi + 1)2.

(5.38)

We restrict the optimization to a box with center (0,0)T and radius 2 in each spatial
direction in image space. To demonstrate the application of the image set oriented
recover algorithm this box is subdivided into boxes of depth 12 in a first study, and
depth 18 in a second study. As a start, we consider the box of depth 12 or 18, respec-
tively, containing the point (0.25,0.25)T which lies on the Pareto front (this point
can for example be computed by minimizing the weighted sum 1

2 f1(x)+
1
2 f2(x)).

In Figure 5.10 the results from the application of the image-set oriented recover al-
gorithm to this example is given for the two different box depths mentioned above.
One can observe that the entire Pareto front is covered by boxes of the respective
depth.

Example 5.8. The image-set oriented recover algorithm has been applied to an en-
ergy management problem of a tram which is supplied by an overhead line (cf.
[9, 33]). This tram posesses an additional onboard storage system with an energy
storage of high capacity which is able to store energy generated from breaking, for
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Fig. 5.10 Results of the image-set oriented recover algorithm applied to the objective func-
tions given in Example 5.7: Box covering of the Pareto front for depth d = 12 (left) and
d = 18 (right)

example. The aim is to reduce both overhead line peak power and energy consump-
tion simultaneously during a realistic drive cycle of the tram. To compute reasonable
solutions the drive cycle under consideration is divided into 1241 track sections.
The energy management system has to assign a reference value to each of these
sections. Thus, a multiobjective optimization problem with two objectives and 1241
optimization parameters has to be solved. Figure 5.11 shows the results. Here, both
objectives are normed in such a way that they each equal one if no energy storage
system would be used. Note that in the figure not the resulting boxes in image space
but the solutions within these boxes are plotted.

Fig. 5.11 Approximation of the Pareto front for the energy management problem of a tram
described in Example 5.8
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5.5 Multiobjective Optimal Control Problems

In this section we consider multiobjective optimal control problems of the form

min
x,u

J(x,u) (5.39)

s. t. ẋ(t) = g(x(t),u(t)),

where x : [0, t f ]→ R
n is the state trajectory, ẋ : [0, t f ]→ R

n its derivative w. r. t. the
time parameter t ∈ [0, t f ], and u : [0, t f ]→ R

m the control trajectory. J is a vector of
objective functionals,

J(x,u) = (J1(x,u), . . . ,Jk(x,u))
T

with Ji(x,u) =
∫ t f

0 Ci(x(t),u(t))dt, i = 1, . . . ,k. In contrast to the problems we con-
sidered before, the objective function depends on functions x(t) and u(t) rather
than on single parameters. Our principal approach to solve such a trajectory op-
timization problem is to transform it into a nonlinear multiobjective optimization
problem and solve this problem numerically using the image-set oriented recover
algorithm. Such a transformation typically bases on a discretization in time such
that the time-dependent functions are represented by a sequence of discrete state and
control parameters that are approximations to the trajectories. (For an overview of
different discretization techniques for single objective optimal control methods we
refer e. g. to [2].) Thus, the mulitiobjective optimal control problem is transformed
into a multiobjective optimization problem with many parameters, which consist of
all time-discrete states and controls. To handle such high-dimensional multiobjec-
tive optimization problems, the presented image-set oriented recover algorithm is
appropriate since it works in the low-dimensional image space rather than in the
high-dimensional parameter space.

There are different possibilities how to transform the multiobjective optimal con-
trol problem into the multiobjective optimization problem, which highly depend on
the system under consideration. In the following we will focus on differentially flat
systems on the one hand and Lagrangian systems in general on the other hand. We
will describe how the multiobjective optimal control problem can be transformed
and show how these procedures can be applied to special mechatronical and me-
chanical systems.

5.5.1 Differentially Flat Systems

Differentially flat systems have the property that the inputs and states can be repre-
sented as a function of the flat outputs and a finite number of their derivatives wrt
time (cf. [19]):
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Definition 5.3 (Differential flatness [19, 43]). A system

ẋ(t) = g(x(t),u(t))

with states x(t)∈R
n and controls u(t)∈R

m is called differentially flat if there exists
a fictitious output y(t) ∈ R

m with

y = h(x,u, u̇, ü, . . . ,u(p)) such that

x = α(y, ẏ, ÿ, . . . ,y(q)) and u = β (y, ẏ, ÿ, . . . ,y(q)).
(5.40)

Here, h,α and β denote real-analytic functions and p,q∈N. y is called a flat output.

Differentially flat system can especially be utilized in trajectory optimization (cf.
[61]). The big advantage is that in this case the trajectories can be optimized in the
space of the outputs y and afterwards, the corresponding inputs and states can be
computed.

Thus, a single objective optimal control problem of the form

min
x,u

j(x,u) (5.41)

s. t. ẋ(t) = g(x(t),u(t))

with a differentially flat system ẋ(t) = g(x(t),u(t)) with x(t) ∈ R
n and u(t) ∈ R

m

can be transformed into an optimization problem of the form

min
y

f (y), (5.42)

where y(t) ∈ R
m denotes the flat output (cf. e. g. [61, 50] and [41]).

This concept can be easily extended to the case of a vector-valued objective func-
tional. In this case, the optimal control problem is transformed into a conventional
multiobjective optimization problem of the form

min
y

F(y), (5.43)

where F maps from R
m to R

k and y(t) ∈ R
m denotes the flat output.

Example 5.9 (Multiobjective optimization of the guidance of a rail-bound vehicle).
In the following we consider the trajectory optimization of the guidance module of a
rail-bound vehicle (cf. [21, 22]). More precisely, this guidance module is contained
in the RailCab vehicle, which is a linear-motor driven railway system developed
by the project RailCab (“Neue Bahntechnik Paderborn”, [44]) at the University of
Paderborn, Germany. Figure 5.12 displays the test vehicle. It belongs to a test facility
with a track length of about 530 m. The track includes a novel passive switch which
allows the processing of closely following vehicles. The vehicle itself consists of
a superstructure that carries the load and two undercarriages. Among many other
modules the RailCab is equipped with a guidance module which is based on one
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Fig. 5.12 Photograph of the RailCab test vehicle

single wheel set. It enables a driving with low attrition and allows to use the novel
concept for a passive switch (cf. [25]). The guidance module allows to actively
control the lateral displacement of the RailCab vehicle in the rails. Within a given
clearance, the RailCab can be moved freely. This is very important, because track
laying does not result in ideally straight rails and flange strikes, i. e. bumpings of
the rail-heads against the flanges, have to be avoided because they cause noise and
wear on the wheels and rails. Figure 5.13 shows a typical rail and a sketch of the
clearance, which is the maximum distance between the flanges and the rail-heads.
We assume that the measured position of the rails (the track centerline) is known a
priori.

Fig. 5.13 Photograph of a rail (on the left) and sketch of the clearance (on the right) [21]

Within the clearance, the RailCab can be steered along arbitrary reference trajec-
tories. The challenge was to compute Pareto optimal trajectories that meet several
aims:

1. minimize the deviation of the vehicle from the track centerline, i. e. maximize
“safety”,

2. maximize the passenger comfort,
3. minimize the average energy consumption of the hydraulic actuators.
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Based on a linear model of fourth order for the lateral dynamics of the RailCab ve-
hicle (see [21] for more details), a multiobjective optimal control problem is formu-
lated. In this model, the controlled outputs are flat. The desired reference trajectories
of length sh for both the front and the rear axle are approximated by cubic splines.
For the computation of Pareto optimal trajectories, the image set-oriented recover
algorithm has been used. The fact that the RailCab has to stay within the clearance
is included as a constraint. Figure 5.14 shows an approximation of the Pareto front
for an exemplary track section with a length of 8 m computed by the image-set ori-
ented recover algorithm. To each point within this Pareto front corresponds a Pareto
optimal trajectory on which the RailCab vehicle can be steered.

Fig. 5.14 Approximation of the Pareto front for the guidance module [21]

Two points within the Pareto front have been chosen (marked by a circle and a
square) to demonstrate the results. The circle is an example for a more safe trajec-
tory and the square for a more comfortable one. In Figure 5.15 the corresponding
trajectories and the trajectories which stem from single objective optimizations for
each of the three objectives are given. (Here, only the optimized interpolation val-
ues at the knot points, connected with lines, are plotted.) The black line is the track
centerline and the gray lines describe the clearance around it.

One can observe that the trajectory which is more safe (line with circles) stays
close to the centerline whereas the more comfortable trajectory (line with squares)
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Fig. 5.15 Examples of Pareto optimal trajectories for the RailCab vehicle [21]

“cuts the corners” and is smoother. As expected, the energy optimal (dashed) and
comfort optimal (dash-dot) trajectories lie close together.

5.5.2 Lagrangian Systems

We consider special kinds of dynamical systems ẋ(t) = g(x(t),u(t)), namely those
systems that can be derived from a variational principle. In particular, we are in-
terested in Lagrangian systems which comprise e. g. mechanical, but also electrical
or mechatronical systems. In order to solve optimal control problems for those sys-
tems, we use DMOC (Discrete Mechanics and Optimal Control [48]), a technique
that relies on a direct discretization of the variational formulation of the dynam-
ics of the system. Based on the discretization the problem is transformed into a
finite dimensional constrained optimization problem. The principal approach can
be extended to the case of optimal control problems with multiple objectives. For
convenience, we briefly summarize the basic idea.

Let M be an n-dimensional configuration manifold with tangent bundle TM
and cotangent bundle T ∗M. Consider a mechanical system with time-dependent
configuration vector q(t) ∈ M and velocity vector q̇(t) ∈ Tq(t)M, t ∈ [0, t f ], whose
dynamical behavior is described by the Lagrangian L : T M → R. Typically, the La-
grangian L consists of the difference of the kinetic and potential energy. In addi-
tion, a force f : TM×U → T ∗M depending on a time-dependent control parameter
u(t) ∈U ⊆ R

m influences the system’s motion. The aim is to move the mechanical
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system on a curve q(t) ∈M, t ∈ [0, t f ], from an initial state (q0, q̇0) to a final state
(qt f , q̇t f ) under the influence of f (q, q̇,u) such that the curves q and u minimize a
given objective functional

J(q, q̇,u) =
∫ t f

0
C(q(t), q̇(t),u(t)) dt (5.44)

with C : TM×U →R
k. Note, that the objective functional J involves k single objec-

tive functionals given as J(q, q̇,u) = (J1(q, q̇,u), . . . ,Jk(q, q̇,u))T according to (5.39)
with

Ji(q, q̇,u) =
∫ t f

0
Ci(q(t), q̇(t),u(t)) dt, i = 1, . . . ,k,

and C(q, q̇,u) = (C1(q, q̇,u), . . . ,Ck(q, q̇,u))T . At the same time, the motion q(t) has
to satisfy the Lagrange-d’Alembert principle, which requires that

δ
∫ t f

0
L(q(t), q̇(t)) dt +

∫ t f

0
f (q(t), q̇(t),u(t)))δq dt = 0 (5.45)

for all variations δq with δq(0) = δq(t f ) = 0. The principle (5.45) is equivalent to
the forced Euler-Lagrange equations

d
dt

∂
∂ q̇

L(q, q̇)− ∂
∂q

L(q, q̇) = f (q, q̇,u), (5.46)

which provide as system of differential equations the equations of motion that can
be summarized in the general form ẋ = g(x,u) with x = (q, q̇).

The optimal control problem consisting of minimizing (5.44) subject to (5.46)
is numerically solved using a direct discretization approach [39, 48]. The state
space T M is replaced by M ×M and a path q : [0, t f ] → M by a discrete path
qd : {0,h,2h, . . . ,Nh = t f }→M, with time step h and N a positive integer such that
qk = qd(kh) is an approximation to q(kh). Similar, the control function u : [0, t f ]→U
is replaced by a discrete control function ud : {0,h,2h, . . . ,Nh = t f } →U , approx-
imating the control on each interval [kh,(k+ 1)h] by a discrete control uk (writing
uk = ud((k+

1
2 )h)).

Via an approximation of the action integral in (5.45) by a discrete Lagrangian
Ld : M×M→ R,

Ld(qk,qk+1)≈
∫ (k+1)h

kh
L(q(t), q̇(t))dt, (5.47)

and discrete forces

f−k ·δqk + f+k ·δqk−1 ≈
∫ (k+1)h

kh
f (q(t), q̇(t),u(t)) ·δq(t)dt, (5.48)

where the left and discrete forces f±k now depend on (qk,qk+1,uk) we obtain the
discrete Lagrange-d’Alembert principle (5.49). This requires to find discrete paths
{qk}N

k=0 such that for all variations {δqk}N
k=0 with δq0 = δqN = 0, one has



5 Set Oriented Methods for the Numerical Treatment of MOPs 213

δ
N−1

∑
k=0

Ld(qk,qk+1)+
N−1

∑
k=0

f−k ·δqk + f+k ·δqk+1 = 0, (5.49)

which is equivalent to the forced discrete Euler-Lagrange equations

D2Ld(qk−1,qk)+D1Ld(qk,qk+1)+ f+k−1 + f−k = 0, k = 1, . . . ,N− 1, (5.50)

where Di denotes the derivative w. r. t. the i-th argument. In the same manner we
obtain via an approximation of the objective functional (5.44) the discrete objective
function Jd(qd ,ud), such that we can formulate the Discrete Constrained Multiob-
jective Optimization Problem as

min
qd ,ud

Jd(qd ,ud) =
N−1

∑
k=0

Cd(qk,qk+1,uk) (5.51)

subject to the discretized boundary constraints and the forced discrete Euler-
Lagrange equations (5.50). Here, it holds again Jd = (Jd,1, . . . ,Jd,k)

T and Cd =
(Cd,1, . . . ,Cd,k)

T , where Jd,i and Cd,i are approximations to Ji and Ci, respectively,
with i = 1, . . . ,k. The number of the optimization parameters qd = (q0, . . . ,qN) and
ud = (u0, . . . ,uN−1) as well as the number of the equality constraints (the forced dis-
crete Euler-Lagrange equations) of this nonlinear multiobjective optimization prob-
lem depend on the discrete grid that is used for the approximation. To meet accuracy
requirements of the approximated trajectories (for a detailed convergence analysis
dependent on the quadrature rules used in (5.47) and (5.48) we refer to [48]), typ-
ically a fine grid which corresponds to a small time step h is chosen, which leads
to a high number of optimization parameters and equality constraints, whereas the
number of objective functions Jd is independent of the time step. Thus, the image-
set oriented methods described before are suitable to numerically solve this high-
dimensional multiobjective optimization problem.

Example 5.10 (Underwater glider). As an application for multiobjective optimal
control we consider a class of Autonomous Underwater Vehicles (AUVs) known
as gliders. In order to keep the gliders autonomously operational for the greatest
amount of time, it is important to minimize the amount of energy the gliders use
for transport and - at the same time - minimize the time of operation when spe-
cific maneuvers are performed. The problem considered here is to find an opti-
mal trajectory of a glider that needs to move from one location to another within
a prescribed current (cf. [47]). The glider is assumed to be actuated by a gyro-
scopic force which implies that the relative forward speed of the glider is con-
stant. However, the orientation of the glider cannot change instantly and the control
force induces the change in the orientation of the glider. In addition to the min-
imization of the amount of control effort, the goal is to identify trajectories that
are also time-optimal, such that the glider needs as little time as possible to reach
the final destination. Thus, we have to consider a multiobjective optimization prob-
lem with the two objectives minimize control effort and minimize duration time of
the maneuver. As in [63] the glider is modeled as a pointmass (with normalized
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mass equal to 1) in R
2 and actuated by a gyroscopic force acting orthogonal to

the relative velocity between fluid and body. Let q(t) = (x(t),y(t)) be the glider
position, q̇(t) = (ẋ(t), ẏ(t)) the absolute glider velocity, V (t) = (Vx(t),Vy(t)) the
current velocity field, and u(t) ∈ R the control input representing the change in
the orientation. By introducing q̇rel(t) = (q̇(t)−V(t)) as relative velocity, the La-
grangian L(qrel(t), q̇rel(t)) =

1
2‖q̇rel(t)‖2 in the body fixed frame is the kinetic en-

ergy of the relative motion of the glider. The gyroscopic force acting on the system
is given by f (qrel(t), q̇rel(t),u(t)) =

(−u(t) q̇rel,y(t),u(t) q̇rel,x(t)
)T . The resulting

Euler-Lagrange equations read as

ẍ(t) =−u(t)(ẏ(t)−Vy(t))+ V̇x(t),

ÿ(t) = u(t)(ẋ(t)−Vx(t))+ V̇y(t).

The glider has to be steered within the time span [0, t f ] with free final time t f from
an initial configuration q(0) = q0 to a final one q(t f ) = qt f , optimally with respect
to the vector-valued objective functional

J =

(∫ t f
0 ‖ f (qrel(t), q̇rel(t),u(t))‖2 dt∫ t f

0 1dt

)
.

In the discrete setting we model the free final time by a variable step size h that
acts as an additional optimization variable bounded as 0 < h ≤ hmax to ensure posi-
tive step size and solutions of desired accuracy. For a fixed number of discretization
points the final time is then given by t f = (N−1)h. As initial constraint we assume
a prescribed initial configuration qrel(0) = (10,0) and an initial relative velocity as
q̇rel(0) = (−10,−10). The final configuration is given by qrel(t f ) = (15,2), while
the final relative velocity is free with same magnitude as the initial one, as the control
force only influences the orientation, rather than the magnitude of the relative ve-
locity. The current velocity is assumed to be configuration-dependent in x- and zero
in y-direction given as V = (x,0). The discretization of the glider model leads to a
constrained nonlinear multiobjective optimization problem. It is solved making use
of the image-set oriented recover algorithm. Here, the distance of the objective val-
ues to the targets is optimized subject to the constraints stemming from the system
dynamics. Figure 5.16 shows the results: the approximated Pareto front (left) and
some corresponding trajectories (right). As expected, the control effort increases for
decreasing maneuver time. Comparing different trajectories corresponding to differ-
ent Pareto points, all trajectories show the same qualitative behavior: As the initial
velocity is directed away from the destination, the gyroscopic control force enforces
the glider performing a circular motion starting in direction of the initial velocity.
Due to the fluid velocity in x-direction, the glider moves along a loop to reach the
desired final location as depicted on the right in Figure 5.16. For trajectories with
shorter time duration the loop becomes smaller and the corresponding control effort
becomes higher since a big change of orientation in short time requires a high force
applied to the system.
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Fig. 5.16 Pareto front for the underwater glider computed with the image-set oriented recover
algorithm (left), and the corresponding trajectories in configuration space (right)

5.6 Concluding Remarks

In this chapter, we have given an overview of recently developed set oriented meth-
ods for the numerical treatment of MOPs. The characteristic of these methods is that
they generate box collections that aim for tight coverings of the Pareto set (or front)
of a given MOP. The methods are divided into subdivision techniques and a par-
ticular kind of continuation methods (recover techniques). Subdivision techniques
generate a sequence of nested box collections that converges (ideally) to the Pareto
set, and the idea of the recover techniques is to extend a given collection C by a lo-
cal search which is performed around promising elements (boxes) of C . Subdivision
techniques are of global nature and highly competitive to other state-of-the-art meth-
ods in particular if the dimension of the parameter space is moderate (say, n < 50),
and the number of objectives is low (k < 5). Continuation methods are of local na-
ture, but in turn applicable to higher dimensional problems (n' 1000). The latter
has been demonstrated on several multiobjective optimal control problems which
were transformed into high-dimensional MOPs.
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21. Geisler, J., Witting, K., Trächtler, A., Dellnitz, M.: Multiobjective optimization of control
trajectories for the guidance of a rail-bound vehicle. In: 17th IFAC World Congress,
Seoul, Korea, July 6-11 (2008)
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Chapter 6
A Complex-Networks View of Hard
Combinatorial Search Spaces

Marco Tomassini and Fabio Daolio

6.1 Hard Problems, Search Spaces, and Fitness Landscapes

According to worst-case complexity analysis, difficult combinatorial problems are
those for which no polynomial-time algorithms are known (see, for instance, [15]).
Thus, according to this point of view, large enough instances of these problems
cannot be solved in reasonable time. The mathematical analysis is primarily based
on decision problems, i.e. those that require a yes/no answer [7, 15], but the theory
can readily be extended to optimization problems [16], roughly speaking, those in
which we seek a solution with an associated minimum or maximum cost, which are
the ones that will be dealt with here.

In spite of the above apparently negative results, there exist several approaches
that all tend to provide alternative views with the purpose of approximatively solv-
ing hard problems in reasonable time. Approximation algorithms and linear pro-
gramming relaxation, among others, are of this type [16]. However, if we are ready
to accept to reduce our expectations even further about the quality of the solutions
found, trading some rigor against more flexibility, we can include heuristics in our
toolbox. Heuristics are approximation algorithms that seek good solutions at reason-
able cost, without any guarantee about optimality or even approximability, but they
usually work well in practice. Many heuristics are based on stochastic local search
which, in turn, benefits from a knowledge of the structure of the given problem’s
solution space. Thus, the study of the structure of the search spaces of hard combi-
natorial problems is very relevant to understand and to improve the performance of
optimization heuristics. In what follows we shall assume a discrete and finite search
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space, and a black-box optimization scenario that is, no information on the problem
will be required except that we know, or can compute, the cost for any admissible
solution of the problem.

6.1.1 Fitness Landscapes

In order to characterize finite-size combinatorial search spaces, let us begin with a
few definitions. First, let S be the set of admissible solutions of the problem. One
can then define a set N which gives the neighborhood of any given solution x, i.e.
the solutions that can be reached from x by applying a simple move operator op():

N (x) = {y ∈ S | y = op(x)}.
This is a generalization of the neighborhood structure that would be induced by a
distance function in a metric space, nonetheless one can also write:

N (x) = {y ∈ S | dist(y,x) = 1},
which means that the neighbors y of x are those solutions that are at distance one
from x, i.e. one move operation apart. We shall assume that the move operator op()
is a local one in the sense that it only modifies slightly the configuration x to which
it is applied. Some common non-unary operators such as crossover in evolutionary
algorithms are not smooth in this sense, but we shall not deal with them here.

The couple (S,N ) defines the configuration space. The third element is a func-
tion f variously called a fitness, cost, or objective function, which provides a real-
valued fitness for any valid configuration in the search space:

f : S→ R,

In an optimization problem function f must be maximized (or minimized), i.e. one
must find x∗ ∈ S such that:

f (x∗)≥ f (x), ∀x �= x∗

The tripleΛ = (S,N , f ) defines a search space, also called a fitness landscape [18].
Actually, Λ defines the set of search spaces of all the instances of a given problem
P, or a generic finite search space. Thus, the particular fitness landscape of a given
instance π ∈ P should be written as (Sπ ,Nπ , fπ ) but we shall omit the indices for
the sake of simplicity as the meaning should be obvious from the context.

For continuous problems S is a real multi-dimensional space Rn, and the function
f to be optimized is f : Rn →R . In this case a suitable neighborhood of x would be
a hyper-sphere (a “ball”) of radius ε centered at x. However, as stated above, in this
chapter we shall restrict ourselves to discrete optimization problems only.

As an example fitness landscape one could consider S to be the binary hypercube
of dimension k. N (x) could then be, for instance, the set of binary strings y of length
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k that can be generated from a given string x by flipping a single bit uniformly at
random:

N (x) = {y ∈ S | distH(y,x) = 1},
where distH is the Hamming distance. Different configurations can be evaluated ac-

cording to a given fitness function f (.) for the problem. For instance, the “maxone”
problem calls for maximizing the number of 1s in the string and thus f (x) is simply
the number of ones in x in this case.

Another example comes from combinatorial problems such as the TSP in which S
is the set of Hamiltonian cycles of a graph G. Using the 2-opt move, the neighbors of
a given tour x are the tours y that can be obtained from x by removing two edges and
inserting two new edges such that the result is still a tour. The fitness f (x) of a tour x
is its length. Many other examples can be found in the specialized literature [16, 20].

Since every solution x ∈ S must be reachable from any other solution y, it is
obvious that the fitness landscape can be viewed as a connected graph G(V,E) in
which the set of vertices V is identical to the elements of S, and the set of edges
E represents all possible transitions between solutions according to a given move
operator. In fact, the whole Λ can be viewed as a connected labeled graph in which
the label of a vertex (a solution) is the solution’s fitness. We assume for simplicity
that the graph is undirected, i.e. if solution si can be reached from solution s j, then
the opposite is also true, which is very often the case. However, for some definitions
of move operators the graph might be a directed one instead.

The concept of a fitness landscape turns out to be extremely useful when it comes
to local search heuristics for the optimization of difficult problems. Indeed, several
statistical properties of landscapes that can be readily computed by sampling the
search space may provide information about the difficulty of the search and suggest
effective search algorithms for such spaces. For a detailed description of suitable
statistics on landscapes and how to obtain them, we refer the reader to [20] and to
the specialized literature such as [10] and references therein. However, to make the
chapter as self-contained as possible, we shall briefly present the more important
concepts.

Local Optima

A local optimum, which is taken to be a maximum here, is a solution sl such that

∃N (sl) | ∀s ∈N (sl), f (s)< f (sl).

Basins of Attraction

The basin of attraction of a local optimum sl ∈ S is defined here as the set b(sl) =
{s ∈ S | HillClimbing(s) = sl}. The size of the basin of attraction of a local opti-
mum sl is the cardinality of b(sl). Hillclimbing means that, in each time step, we
choose among all the neighbors the solution that provides the best improvement of
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the fitness function. Obviously, such a search must end at a local maximum. The
basin definition is dependent on the local search technique used. For example, with
First improvement instead of best improvement, the basins found will in general
be different. Moreover, following Jones [9], since the fitness landscape for the same
problem may appear different depending on the move operators used, the above def-
inition only makes sense once such an operator has been defined. For instance, the
TSP configuration space and its set of local optima for a given problem instance is
not the same when using a 2-opt or a 3-opt neighborhood move operator, although
the set of admissible solutions is identical.

Walking and Sampling a Fitness Landscape

Several landscapes features have been used to empirically characterize it from a sta-
tistical point of view. Some of them are: number and density of optimal solutions,
distribution of optima, and correlation measures [20]. For example, fitness-distance
correlation has the objective of establishing a relationship between the solution qual-
ity and its distance from the known global optimum using a sample of fitness values
and the corresponding distances from the optimum (when it is known). From the
absence or presence of a such a correlation one may conjecture some conclusions
about the difficulty of the corresponding landscape. However, the analysis may de-
liver wrong predictions because of sampling inaccuracies and because of particular
features of the landscape that render uniform random sampling inappropriate.

Random walks on the landscape are also useful. Consider a random walk Γ on
the fitness landscape graph Γ = {x0,x1, . . .} and the corresponding sequence of fit-
ness function values { f (x0), f (x1), . . .} seen along the walk. Autocorrelation func-
tions of the fitness values sequence are useful to estimate the “ruggedness” of the
landscape, i.e. the variability of fitness along the walk [23]. A high value of the au-
tocorrelation function means that neighbors have similar fitnesses, indicating that
the landscape tends to be smooth, whereas a low value indicates that variations in
fitness between neighboring solutions are uncorrelated, giving rise to more rugged
landscapes. Ruggedness is related to the difficulty of searching a landscape: in gen-
eral, the more rugged the landscape, the harder it is to search for the global optimum
since more rugged landscapes have more local optima in which the search may get
stuck. Moreover, in more uncorrelated landscapes, a given position carries less in-
formation about the neighboring ones, making it harder to direct the search. Note,
however, that the above sampling method only gives statistically reliable answers
for isotropic fitness landscapes and, even in this case, its conclusions depend on the
neighborhood relationship, i.e. on the move operator.

For reasons of space we end our brief description of empirical landscape analysis
here. The interested reader will find many more details in [10, 20] and references
therein.
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6.1.2 Local Optima Networks

Another, more compressed way, of defining a fitness landscape is by focusing only
on the local optima. In other words we shall assume that all the solutions that are lo-
cal optima have been found somehow, for example by running a hill-climbing search
starting from all the points of the fitness landscape. Of course, such an exhaustive
enumeration is only feasible for small problem instances, but we shall assume for
the moment that it can always be performed in principle. This approach has recently
been proposed in [14, 21].

We now define a new graph G′, the vertices of which constitute the set S∗ of the
local optima of the landscape. The edges of the graph G′ will stand for possible
transitions between the above optima. We consider that two local optima i and j
are connected when there is at least a transition between a solution belonging to the
basin bi of i and another solution belonging to basin b j. Of course there can be more
than two solutions with this property. We therefore define the weight of an edge that
connects two basins in the fitness landscape to account for this fact.
For each pair of solutions s and s

′
, p(s → s

′
) is the probability to go from s to s

′

with the given neighborhood structure. In the case of binary strings of size N, and
the neighborhood defined by the single bit-flip operation, there are N neighbors for
each solution, therefore:

p(s→ s
′
) =

{ 1
N , if s

′ ∈N (s)
0, if s

′ �∈N (s)

The probability to go from a solution s ∈ S to a solution belonging to the basin b j,
is defined as:

p(s→ b j) = ∑
s′ ∈b j

p(s→ s
′
).

Notice that p(s→ b j)≤ 1.
Thus, the total probability of going from basin bi to basin b j is the average over

all s ∈ bi of the transition probabilities to solutions s
′ ∈ b j :

p(bi → b j) =
1
|bi| ∑s∈bi

p(s→ b j),

where |bi| is the size of the basin bi.
Now we can define a weighted local optima network (LON) G′= (S∗,E) as being

the graph where the nodes are the local optima, and there is an edge ei j ∈ E with
weight wi j = p(bi → b j) between two nodes i and j if p(bi → b j) > 0. Notice that
since each maximum has its associated basin, G′ also describes the interconnection
of basins.

According to our definition of edge weights, wi j = p(bi → b j) may be different
from wji = p(b j → bi). Thus, two weights are needed in general, and we have an
oriented transition graph.
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The previous definitions for the inter-basin transition probabilities only depend
on the basin connectivity and try to convey topological information without referring
to a particular local search method. In this respect, those probabilities make sense
from a sampling point of view. In fact, for metaheuristic such as Tabu or Simulated
Annealing, fitness difference information would obviously be required.

Moreover, the above definitions hold for non-neutral landscapes, i.e. those land-
scapes in which neighbor solutions do not have the same fitness values. When many
solutions have the same fitness as their neighbors in sizable parts of the landscape,
we say that the landscape has a high degree of neutrality. The previous descrip-
tions can be extended to this important case as shown in [22] but, for the sake of
simplicity, here we shall deal with the non-neutral case only.

6.1.3 Some Definitions for Weighted Complex Networks

To make the chapter as self-contained as possible, in this section we give an account
of a number of statistics that are useful in dealing with weighted complex networks.
The treatment must necessarily be brief; readers will find a fuller exposition in the
original paper [1] and in [13].

The standard clustering coefficient [13] does not consider weighted edges. We
thus use the weighted clustering cw(i) measure proposed by [1], which combines
the topological information with the weight distribution of the network:

cw(i) =
1

si(ki− 1)∑j,h
wi j +wih

2
ai ja jhahi.

In the previous expression ai j is an element of the graph’s adjacency matrix A,
defined as ai j = 1 if wi j > 0, ai j = 0 if wi j = 0. Finally, ki = ∑ j �=i ai j is the degree
of node i, whereas si = ∑ j �=i wi j is a generalization of a node’s degree for weighted
networks called the node’s strength (see also below). For each triple formed in the
neighborhood of the vertex i, cw(i) counts the weight of the two participating edges
of the vertex i. Cw is defined as the weighted clustering coefficient averaged over all
vertices of the network.

The standard topological characterization of networks is obtained by the analysis
of the probability distribution p(k) that a randomly chosen vertex has degree k.
For our weighted networks, a characterization of weights is obtained by the weight
distributions pin(w) and pout(w) that a given edge has, respectively, incoming or
outgoing weight w.

In the case of LONs, for each node i, the sum of outgoing edge weights is
equal to 1 as they represent transition probabilities. So, an important measure is
the weight wii of self-connecting edges (i.e. the probability of remaining in the
same node). We have the relation: wii + si = 1. The vertex strength, si, is defined
as si = ∑ j∈V (i)−{i}wi j, where the sum is over the set V (i) \ {i} of neighbors of
i [1]. The strength of a node is a generalization of the node’s connectivity giving
information about the number and importance of the edges.
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Another useful weighted network measure is disparity [1] Y2(i), which measures
how heterogeneous are the contributions of the edges of node i to the total weight
(strength):

Y2(i) =∑
j �=i

(
wi j

si

)2

The disparity could be averaged over the node with the same degree k. If all weights
are nearby of si/k, the disparity for nodes of degree k is nearby 1/k.

Finally, in order to compute the average shortest path between two nodes on the
optima network of a given landscape, we consider the expected number move oper-
ations to pass from one basin to the other. This expected number can be computed
by considering the inverse of the transition probabilities between basins. In other
words, if we attach to the edges the inverse of the transition probabilities, this value
would represent the average number of random mutations to pass from one basin
to the other. More formally, the distance (e.g. expected number of bit-flip muta-
tions) between two nodes is defined as di j = 1/wi j, where wi j = p(bi → b j). Now
we can define the length of a path between two nodes as being the sum of these
distances along the edges that connect the corresponding basins. Since the graphs
are weighted and the weights are always positive, Dijkstra’s algorithm is used to
compute all the shortest paths.

6.2 Local Optima Networks of NK Landscapes

In this section we shall give an example of the construction and the properties of
LONs for a standard family of fitness landscapes, the NK landscapes. The NK fam-
ily of landscapes [11] is a model for constructing multimodal landscapes that can
gradually be tuned from smooth to rugged. The model is defined on the binary hy-
percube of dimension N, BN = {0,1}N, with N referring to the number of (binary)
genes in the genotype (i.e. the string length), whereas K is the number of genes that
influence a particular gene (the epistatic interactions). By increasing the value of K
from 0 to N− 1, the ruggedness of the NK landscapes increases.

The fitness function of a NK-landscape fNK : {0,1}N → [0,1) is defined on binary
strings with N bits. An ‘atom’ with fixed epistasis level is represented by a fitness
component fi : {0,1}K+1 → [0,1) associated to each bit i. Its value depends on the
allele at bit i and also on the alleles at the K other epistatic positions (K must fall
between 0 and N−1). The fitness fNK(s) of s ∈ {0,1}N is the average of the values
of the N fitness components fi:

fNK(s) =
1
N

N

∑
i=1

fi(si,si1 , . . . ,siK )
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where {i1, . . . , iK} ⊂ {1, . . . , i−1, i+1, . . . ,N}. Several ways have been proposed to
choose the K other bits from N bits in the bit string. Two possibilities are mainly
used: adjacent and random neighborhoods. With an adjacent neighborhood, the K
bits nearest to the bit i are chosen (the genotype is taken to have periodic bound-
aries). With a random neighborhood, the K bits are chosen randomly on the bit
string. Each fitness component fi is specified by extension, i.e. a number yi

si,si1
,...,siK

from [0,1) is associated with each element (si,si1 , . . . ,siK ) from {0,1}K+1. Those
numbers are uniformly distributed in the range [0,1).

For K = 0 all contributions can be optimized independently which makes fNK

a simple additive function with a single maximum. At the other extreme when
K = N− 1 the landscape becomes completely random, the probability of any given
configuration of being a local optimum is 1/(N + 1), and the expected number of
local optima is 2N/(N +1). Intermediate values of K interpolate between these two
cases and have a variable degree of “epistasis”, i.e. of gene interaction [11].

Table 6.1 NK landscapes network properties for N = 18. Values are averages over 30 random
instances, standard deviations are shown as subscripts. nv and ne represent the number of ver-
tices and edges (rounded to the next integer), C̄w is the mean weighted clustering coefficient.
Ȳ represents the mean disparity coefficient, d̄ the mean path length (see text for definitions).

N = 18

K n̄v n̄e C̄w Ȳ d̄

2 5025 15791854 0.950.0291 0.3070.0630 7315
4 33072 262667056 0.920.0137 0.1270.0081 1749
6 99473 14644118685 0.780.0155 0.0760.0044 2375
8 2,09370 35400918722 0.640.0097 0.0560.0012 2732
10 3,61961 62052120318 0.520.0071 0.0440.0007 2921
12 5,65759 89974214011 0.430.0037 0.0380.0003 2971
14 8,35260 116364011935 0.360.0023 0.0340.0002 2931
16 11,79763 14068706622 0.320.0012 0.0320.0001 2831
17 13,79577 15247304818 0.300.0009 0.0320.0001 2771

In Table 6.1 we report some basic network statistics for the LONs of NK land-
scapes with N = 18 and for K up to K = 17 [21]. N = 18 is still a size that allows
an exhaustive enumeration of all the maxima in the search spaces. Some of these
network statistics are related to stochastic local search difficulty on the underlying
fitness landscapes and the discussion below can be taken as an example of how
these relationships may be uncovered. For further details the reader is referred to
the original work [21].
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Clustering Coefficients

The fourth column of Table 6.1 lists the average values of the weighted cluster-
ing coefficients for N = 18 and all K. It is apparent that the clustering coefficients
decrease regularly with increasing K. For the standard unweighed clustering, this
would mean that the larger K is, the less likely that two maxima which are connected
to a third one are themselves connected. Taking weights, i.e. transition probabilities
into account, this means that either there are less transitions between neighboring
basins for high K, and/or the transitions are less likely to occur. This confirms from
a network point of view the common knowledge that search difficulty increases
with K.
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Fig. 6.1 Average distance (shortest path) between nodes (top), and average path length to the
optimum from all the other basins (bottom). Error bars are shown.
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Shortest Path to the Global Optimum

The average shortest path lengths d̄ are listed in the sixth column of Table 6.1.
Fig. 6.1 (top) is a graphical illustration of the average shortest path length between
optima for NK landscapes with N = 14,16,18. Notice that the shortest path in-
creases with N; this is to be expected since the number of optima increases expo-
nentially with N. More interestingly, for a given N the shortest path increases with
K, up to K = 10, and then it stagnates and even decreases slightly for the N = 18.
This correlates quite well with the known fact that the search difficulty in NK land-
scapes increases with K. However, some paths are more relevant from the point of
view of a stochastic local search algorithm following a trajectory over the maxima
network. In order to better illustrate the relationship of this network property with
the search difficulty by heuristic local search algorithms, Fig. 6.1 (bottom) shows
the shortest path length to the global optimum from all the other optima in the land-
scape. The trend is clear, the path lengths to the optimum increase steadily with
increasing K.
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Fig. 6.2 Cumulative probability distribution of the network weights wi j for outgoing edges
with j �= i in log-log scale, for N = 18. Averages of 30 instances for each K are reported.

Outgoing Weight Distribution

Here we report on the outgoing weight distributions pout(w) of the maxima network
edges. Fig. 6.2 shows the empirical cumulative probability distribution functions
for the N = 18 on log-log scale. One can see that the weights, i.e. the transition
probabilities to neighboring basins are small. The distributions are far from uniform
or Poissonian, empirically judging by visual inspection of the results. They are not
close to power-laws either for in this case they should appear as straight lines on



6 A Complex-Networks View of Hard Combinatorial Search Spaces 233

the plot at least before the degree cutoff. And indeed, we couldn’t find a simple fit
to the curves such as stretched exponentials or exponentially truncated power laws;
however, it is apparent that the low K have longer tails. For high K the decay is
faster. This seems to indicate that, on average, the transition probabilities are higher
for low K. A possible explanation is that basins are shrinking with increasing K (see
section 6.2.1).
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Fig. 6.3 Average disparity, Y2, of nodes with a given degree k, for N = 18. Average of 30
independent instances for each K are reported. The curve 1/k is also reported to compare to
the random case.

Disparity

Figure 6.3 depicts the disparity coefficient as defined in the previous section for
N = 18. An interesting observation is that the disparity (i.e. inhomogeneity) in the
weights of a node’s out-coming links tends to decrease steadily with increasing K.
This reflects that for high K the transitions to other basins tend to become equally
likely, which is another indication that the landscape, and thus its representative
maxima network, becomes more random and difficult to search.

When K increases, the number of edges increases and the number of edges with
a weight over a certain threshold increases too (see Fig. 6.2). Therefore, for small
K, each node is connected with a small number of nodes, through transitions with a
relative high probability. On the other hand, for large K, the weights become more
homogeneous in the neighborhood, that is, for each node, all the neighboring basins
are at similar distance.
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Fig. 6.4 Average value of the weights of incoming transitions into maxima nodes for N =
{14,16,18} and for the whole K interval.

Incoming Weights Distribution

It is also of interest to study the distribution of the weights of edges impinging into
a given node pin(w). Instead of the histograms of pin(w), which do not indicate a
clear dependence on K, we show in Fig. 6.4 the average w of incoming transitions,
evaluated over 30 independent landscapes for N = {14,16,18} as a function of K.
The general trend for all values of N is that the average weight of the incoming
transitions into a node quickly decreases with increasing K. This means that it is
more difficult to make a transition to a given local maximum or to reach a randomly
chosen one when K is large. This agrees with the fact that the basins’ size is a rapidly
decreasing function of K. In fact, there is a strong positive correlation between the
basins’ size and the weights of the transitions into the corresponding maximum, i.e.
as the basin becomes larger, the number of transitions into it increases too.

6.2.1 Basins of Attraction

As explained in Sect. 6.1.2, the methodology used to build the optima networks also
yields the associated basins of the fitness landscapes. Since the size and number of
basins play an important role in search algorithms, it is useful to study their prop-
erties. Furthermore, some characteristics of the basins can be related to the optima
network features. The following discussion highlights several interesting basins’
features.
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Fig. 6.5 Average with standard deviation of the normalized size of the basin corresponding to
the global maximum for each K over 30 independent landscapes. The normalization is done
with respect to the total size of the search space.

Basins Shape

In order to complement the previous discussion about transitions between basins, we
must shed some light on the shape of these basins and of their borders. Surprisingly,
over all the observed instances, except for those with N = 14 and K = 2, the average
size of the basin interior is always less than 1% of the size of the basin itself. In other
words, the majority of solutions sit on the basin frontier and neighboring basins are
richly interconnected [21].

Global Optimum Basin Size Versus K

In Figure 6.5 we plot the average size of the basin corresponding to the global maxi-
mum for N = 16 and N = 18, and all values of K studied. The trend is clear: the basin
shrinks very quickly with increasing K. This confirms that the higher the K value,
the more difficult for a stochastic search algorithm to locate the basin of attraction
of the global optimum.

Number of Basins of a Given Size

Figure 6.6 shows the empirical distribution of the number of basins of a given size,
cumulated over all the analyzed instances with N = 18 for some representative val-
ues of K. It turns out that the distribution decays exponentially or faster for the lower
K and it is closer to exponential for the higher K [21]. This observation is relevant
to theoretical studies that estimate the size of attraction basins (see for example [8]).
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These studies often assume that the basin sizes are uniformly distributed, which is
not the case for the NK landscapes studied here. High values of K give rise to steeper
distributions. This indicates that there are less basins of large size for large values of
K. In consequence, basins are broader for low values of K, which is consistent with
the fact that those landscapes are smoother.
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Fig. 6.6 Cumulative distribution of the number of basins of a given size. The empirical dis-
tribution is computed on 30 instances with N = 18 for each K value in the legend. The scaling
is log-log.

Fitness of Local Optima Versus Their Basin Sizes

The scatter-plot in Fig. 6.7 illustrates the correlation between the basin sizes of
local maxima (in logarithmic scale) and their fitness values. Notice that there is a
clear positive correlation between the fitness values of maxima and their basins’
sizes. An instance for N = 18 and K = 8 is shown but the trend is similar for all K:
notably, the average Spearman correlation coefficient is above 0.8 for all K. In other
words, the higher the peak the wider tends to be its basin of attraction. Therefore,
on average, with a stochastic local search algorithm using the 1-bit flip operator, the
global optimum would be easier to find than any other local optimum. This may
seem surprising. But we have to keep in mind that as the number of local optima
quickly increases with increasing K (see [11] and Table 6.1), the global optimum
basin is more difficult to reach by a stochastic local search algorithm (see Fig. 6.5).
This observation offers a mental picture of NK landscapes: we can consider the
landscape as composed of a large number of mountains (each corresponding to a
basin of attraction), and those mountains are wider the taller the hilltops. Moreover,
the size of a mountain basin grows exponentially with its hight.
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Fig. 6.7 Correlation between the fitness of local optima and their corresponding basin sizes,
for a representative instance with N = 18 and K = 8

6.3 LONs for the QAP Fitness Landscapes

The family of NK landscapes are artificial spaces that are characterized by variable
epistasis, randomness, and isotropy. But they are related to naturally-occurring prob-
lems such as spin glasses, a condensed-matter physics model, and more precisely to
p-spin models [5], where p plays a role similar to K. In spin glasses the function
analogous to fNK is the energy H and the stable states are the minima of the energy
hyper-surface. The Quadratic Assignment Problem (QAP), on the other hand, is a
member of the class of computationally hard problems [7], and directly occurs in
practice in industrial layout applications, even if we shall use here simplified prob-
lem generators to build instances, rather than real data.

The QAP deals with the relative location of units that interact with one another
in some manner. The objective is to minimize the total cost of interactions. The
problem can be stated in this way: there are n units or facilities to be assigned to n
predefined locations, where each location can accommodate any one unit; location
i and location j are separated by a distance ai j, generically representing the per unit
cost of interaction between the two locations; a flow of value bi j has to go from
unit i to unit j; the objective is to find an assignment, i.e. a bijection from the set
of facilities onto the set of locations, which minimizes the sum of products flow ×
distance.

Mathematically it can be formulated as:

min
π∈P(n)

C(π) =
n

∑
i=1

n

∑
j=1

ai jbπiπ j
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where A = {ai j} and B = {bi j} are the two n× n distance and flow matrixes, πi

gives the location of facility i in permutation π ∈ P(n), and P(n) is the set of all
permutations of {1,2, ...,n}, i.e. the QAP search space. The structure of the distance
and flow matrices characterizes the class of instances of the QAP problem.

In order to perform a statistical analysis, several problem instances of at least
two different problem classes have to be considered. To this purpose, the two in-
stance generators proposed by Knowles and Corne [12] for the multi-objective QAP
have been adapted and used here for the single-objective QAP. The first generator
produces uniformly random instances where all flows and distances are integers
sampled from uniform distributions. This leads to the kind of problem known in
literature as Tainna, nn being the problem dimension [19]. Distance matrix entries
are, in both cases, the Euclidean distances between points in the plane. The second
generator permits to obtain flow entries that are non-uniform random values. This
procedure, detailed in [12], produces random instances of type Tainnb that have
the so called “real-like” structure since they resemble to the structure of QAP prob-
lems found in practical applications. For a general network analysis, many random
uniform and random real-like instances have been generated for each problem di-
mension in {5, ...,10}. Problem size 11 is the largest one for which an exhaustive
sample of the configuration space is computationally feasible. Beyond that, sam-
pling must be used. However, here we prefer to stick with exact results in order to
give as accurate as possible answers.

6.3.1 General Network Features

The complete results of the statistical analysis of the above QAP landscapes appear
in [4], to which the reader is referred for further information. Here we shall first
comment in detail only about inter-basin transition probabilities and shortest paths
and then we attempt a brief comparison with the NK case.

Figure 6.8 (top) reports for each problem dimension the average weight wii of
self-loop edges. These values represent the one-step probability of remaining in the
same basin after a random move. The higher values observed for real-like instances
are related to their fewer optima but bigger basins of attraction. However, the trend
is generally decreasing with the problem dimension. This is another confirmation
that basins are shrinking with respect to their relative size.

A similar behavior characterizes the average weight wi j of the outgoing links
from each vertex i, as figure 6.8 (bottom) reports. Since j �= i, these weights rep-
resent the probability of reaching the basin of attraction of one of the neighboring
local optima. These probabilities decrease with the problem dimension. The differ-
ence between the two classes of QAP could be explained here by their different
LON size.

A clear difference in magnitude between wii and wi j can be observed. This means
that, after a move operation, it is more likely to remain in the same basin than to
reach another basin. Moreover, the decreasing trend with the problem dimension is
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Fig. 6.8 Average transition weights wii for self-loops (top) and wi j for out-going links (bot-
tom). For each problem dimension, 30 independent and randomly generated instances are
considered for each problem class (see legend). The mean value is estimated with a 95%
confidence level from a one-sample t-test; error bars show the corresponding confidence in-
tervals.

stronger for wi j than for wii, especially for the uniform QAP (whose LON grows
faster with the problem dimension). Therefore, even for these small instances, the
probability of reaching a particular neighboring basin becomes rapidly smaller than
the probability of staying in the same basin, by an order of magnitude.

Based on the weighted edges, the mean path length can be calculated as the aver-
age of all the shortest paths between any two nodes (see figure 6.9 (top)). Figure 6.9
(bottom), reports a related measure, namely the mean shortest distance from each
node to the global optimum. This metric can be more interesting from the point of
view of a stochastic local search heuristic trying to solve the considered QAP in-
stance. The clear trend is that this path, as any other, increases with the problem
size. Values are remarkably higher for the uniform instances, which have a larger
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number of local optima than the real-like instance for the same problem dimension.
The figures confirm that the search difficulty increases with the domain size and the
ruggedness of the fitness landscape (i.e. the number of local optima).

av
er

ag
e 

pa
th

 le
ng

th

0

10

20

30

40

50

60

problem dimension

5 6 7 8 9 10

●
●

●

●

●

●

●

real−like
uniform

av
er

ag
e 

di
st

an
ce

 to
 g

lo
ba

l o
pt

im
um

0

10

20

30

40

50

problem dimension

5 6 7 8 9 10

●
●

●

●

●

●

●

real−like
uniform

Fig. 6.9 Average path length (top) and average length of the shortest path to the global op-
timum (bottom). For each problem dimension, 30 independent and randomly generated in-
stances are considered for each problem class (see legend). The mean value is estimated with
a 95% confidence level from a one-sample t-test; error bars show the corresponding confi-
dence intervals.

Now we briefly compare the nature of the NK and QAP problem classes LONs.
Because there are no “real-like” instances of NK-landscapes, a comparison is made
with uniform instances of QAP leading to a similar problem space size. We consider
the uniform QAP with n = 9 and the NK-landscape with N = 18; in this case, the
QAP space is of size 9!≈ 218.47, whereas the NK size is 218. To have a comparable
number of local optima, we take an epistasis value of K = 3: an NK18,3 has on
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average 118.8 local optima and 118.8×9!/218≈ 164.5 is close to 137.3, the average
number of local optima for uniform QAP9.

The average sizes of the global optimum basins with respect to the total size of
the search space are, respectively, 0.0719 (standard deviation 0.0384) for NK18,3,
and 0.0725(0.0308) for QAP9. It is also worth noting that the distribution of basin
sizes with respect to the number of local optima is similar as well. Therefore, the
probabilities of reaching the global optimum from a random solution are nearly
equal for QAP9 and NK18,3, thus one may conjecture that the difficulty for searching
methods based on Hill-Climbing are similar. Indeed, even if average path lengths are
different in general, the average lengths of paths to the global optimum are similar
as well (cf. Figs 6.1 and 6.9).

The main difference lies in connectivity: whereas the LON is nearly a complete
graph for QAP9, for NK18,3 landscapes it is not. The average number of edges to the
squared number of nodes is in fact 0.91 for QAP9 and 0.66 for NK18,3. A related and
valuable statistics is the average probability of staying in the same basin, wii, which
is 0.19 and 0.37 respectively for QAP9 and NK18,3. In other words, by random
moves it is easier to explore the local optima of the QAP instances than those of
NK. Admittedly, the pair exchange operator defines a neighborhood in the QAP
permutation space that is larger than the neighborhood defined by the one bit-flip
mutation in the NK binary space. This reflects on the LON connectivity and suggests
that the most efficient local searcher (based on those moves) should be different: the
tradeoff between exploration and exploitation should not be the same.

In spite of this, given the aforementioned similarity between problem classes as
different as the NK family and the QAP ones, we might tentatively suggest that there
could be some general patterns in the structure of hard combinatorial landscapes.

6.3.2 Optima Distribution and Clustering

Optima in search spaces may be distributed uniformly, as some theoretical analyses
of fitness landscapes seem to assume for mathematical simplicity [8], or they may be
clustered in some non-homogeneous way. Due to their randomness, LONs derived
from NK landscapes have little cluster structure; in fact, they appear isotropic [23]
also from the point of view of basins interconnectivity. In QAP, on the other hand,
the situation could be different. There exist statistics that can be gathered on fitness
landscapes that give indications about the distribution of solutions and optima (see,
for instance, the book [20]). However, the purely topological approach advocated
here may offer several advantages since only information about the vertices of the
graph and their connections is needed. In complex network theory language, this
corresponds to the detection of communities in the relevant LON networks. Com-
munity detection is a difficult task, but today several good approximate algorithms
are available [6].

As remarked at the end of the previous section, the LONs of both the uni-
form and real-like instances up to size 10 are complete or almost complete since
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|E|= O(|V |2). This is inconvenient for community analysis as it is difficult for any
cluster detection algorithm to split-up the networks into separate communities when
the graphs are so dense. However, exploiting the fact that edges with small weights
represent transitions with low probability, we can filter out the network by delet-
ing all edges whose weights are below a given threshold. This seems reasonable
as most local stochastic search heuristics, such as simulated annealing, ultimately
rely on highly probable transitions, although worsening moves can be accepted at
the beginning. The details of the filtering procedure can be found in the original
work [3]. To summarize, the dense weighted directed graph is transformed into a
sparser weighted undirected one by systematically eliminating edges with small
weights.

Communities or clusters in networks can be loosely defined as being groups of
nodes that are strongly connected between them and poorly connected with the rest
of the graph. Several detection heuristics have been proposed [6]; after a preliminary
analysis, we chose two of them: Clauset et al’s. method based on greedy modularity
optimization [2], and Reichardt’s and Bornholdt’s algorithm based on a spin-glass
model and simulated annealing [17]. Both methods gave consistent results on our
networks and, in addition, work with undirected weighted networks, which was re-
quired in our case.

Fig. 6.10 Community structure of the LON of a real-like instance of size 11, i.e. from Tai11b
class. The cluster partition found is highlighted. Node sizes are proportional to the corre-
sponding basin size. Darker colors mean better fitness (lower).
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Fig. 6.11 Cluster structure of the LON of a random uniform instance of size 9, i.e. from Tai9a
class. Clusters are less well separated (see text) and cannot be clearly highlighted. Node sizes
are proportional to the corresponding basin size. Darker colors mean better fitness.

The results are interesting in that random and real-like QAP instances give rise to
very different LON structures from the point of view of minima distribution. While
real-like instances do present a statistically significant cluster structure, the class
of random uniform instances has poor community structure. This can be visually
appreciated on two particular but typical cases shown in Figs. 6.10 and 6.11.

In [4] it was found that there is a positive correlation between fitness values and
the corresponding basin size, especially for the random uniform problem instances.
This effect is qualitatively easy to spot on the figures. The results of this community
study, together with [4], shed light on an open problem in the structure of difficult
combinatorial landscapes. The basin sizes of these problems have been often taken
either constant or uniformly distributed at random for mathematical reasons of sim-
plicity [8]. However, this is far from being the case for the QAP problem [4] as well
as for the NK landscapes. While this conclusion cannot be generalized, it could also
hold for other families of difficult combinatorial problems based, as the QAP, on
permutation neighborhood such as the Traveling Salesman Problem (TSP).

6.4 Conclusions and Prospects

In this chapter we have presented a novel and potentially useful way of represent-
ing the fitness landscapes of combinatorial search problems. The representation is
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based on a graph structure in which vertices are local optima of the search space
and oriented edges represent transition probabilities between the optima. We have
shown how this information can be relevant by using two well-known discrete prob-
lems: the NK family of fitness landscapes and two classes of instances of the QAP
problem. The analysis has shown that topological features such as node degree, clus-
tering coefficient, edge weight disparity, and mean path lengths, among others, can
be qualitatively related to problem difficulty in a straightforward way and could sug-
gest structural explanations for the search difficulty. In addition, the methodology
also yields the basins associated to the local optima. An analysis of the basins has
unveiled the fact that, far from being uniformly distributed, basin size distribution
is right-skewed. Besides, optimum fitness and basin size has been found to be posi-
tively correlated in all cases. Concerning the clustering of optima, it has been found
by community detection methods that NK landscapes and random uniform instances
of the QAP problem do not possess a clear cluster structure. On the contrary, optima
of the real-like QAP instances cluster in a statistically significant manner. This con-
clusion may have interesting consequences for the design of efficient local search
heuristics for those spaces.

Nevertheless, it is worth repeating that the work presented here relies on small
instances of the problems. Indeed, only for those an exhaustive analysis of the fit-
ness landscapes is feasible. However, larger instances would be more typical of
real problems and should be studied as well. In order to cope with the computa-
tional complexity one has to resort to sampling the relevant networks. In fact, we
are designing and analyzing efficient sampling methodologies that should allow us
to tackle larger problems.

Although the mere analysis of hard combinatorial landscapes is interesting per
se, the ultimate aim of this research is to be able to exploit LON knowledge in order
to design or guide local search heuristics with the objective of making them more
efficient. This activity is part of our ongoing and future research.
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Chapter 7
Cooperative Coevolution for Agrifood Process
Modeling

Olivier Barrière, Evelyne Lutton, Pierre-Henri Wuillemin, Cédric Baudrit,
Mariette Sicard, and Nathalie Perrot

Abstract. On the contrary to classical schemes of evolutionary optimisations algo-
rithms, single population Cooperative Co-evolution techniques (CCEAs, also called
“Parisian” approaches) make it possible to represent the evolved solution as an ag-
gregation of several individuals (or even as a whole population). In other words,
each individual represents only a part of the solution. This scheme allows simulat-
ing the principles of Darwinian evolution in a more economic way, which results
in gain in robustness and efficiency. The counterpart however is a more complex
design phase. In this chapter, we detail the design of efficient CCEAs schemes on
two applications related to the modeling of an industrial agri-food process. The ex-
periments correspond to complex optimisations encountered in the modeling of a
Camembert-cheese ripening process. Two problems are considered:

• A deterministic modeling problem, phase prediction, for which a search for a
closed form tree expression is performed using genetic programming (GP).

• A Bayesian network structure estimation problem. The novelty of the proposed
approach is based on the use of a two step process based on an intermediate rep-
resentation called independence model. The search for an independence model
is formulated as a complex optimisation problem, for which the CCEA scheme
is particularly well suited. A Bayesian network is finally deduced using a de-
terministic algorithm, as a representative of the equivalence class figured by the
independence model.
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7.1 Introduction

Cooperative Co-evolution strategies rely on a formulation of the problem as a coop-
erative task, where individuals collaborate in order to build a solution.

Selection

Crossover
Mutation

PARENTS

Elitism

OFFSPRING

Extraction of the solution Initialisation

Feedback to individuals

Aggregate solutions

(global evaluation)

(local evaluation)

Fig. 7.1 A Parisian EA: a single population cooperative co-evolution

The large majority of these approaches deals with a co-evolution process that
happens between a fixed number of separated populations. The idea is to co-evolve
various species that only interact via the evaluation process. [30, 29] were the first to
propose this technique, to co-evolve job-shop schedules using a parallel distributed
algorithm. [53] then popularize the idea of cooperative co-evolution as an optimisa-
tion tool. It is applicable as soon as a decomposition of the problem into subcompo-
nents can be identified. Each component then corresponds to a subpopulation that
evolves simultaneously but in isolation to the other subpopulations. Individuals of
a subpopulation are evaluated by aggregation with individuals of other subpopula-
tions. Multi-species cooperative co-evolution has been applied to various problems
[43, 55, 54, 22, 36, 66], including learning problems [8], and some theoretical analy-
ses have been recently proposed, see [48, 10, 52], or [65] for an analysis considering
a relationship between cooperative co-evolution and evolutionary game theory.

In this work, a different implementation of cooperative co-evolution, the so-
called Parisian approach [17, 47] is used. It is derived from the classifier systems
model proposed by [28]. Shown on Figure 7.1, this approach uses cooperation mech-
anisms within a single population. On the contrary to the previous model, interac-
tions between sub-species are not limited to the evaluation step, but can also happen
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via genetic operators. An individual of a Parisian population, that represents only a
part of the solution to the problem, can be evaluated at two levels:

• locally, using an independent evaluation (the “local” fitness), if some criteria can
be designed to evaluate partial solutions (for instance, validity conditions),

• globally at each generation, via an aggregation process that builds a solution to
the problem to be solved. Individuals are then rewarded via a bonus distribution.

In this way, the co-evolution of the whole population (or a major part of it) is
favoured instead of the emergence of a single best individual, as in classical evo-
lutionary schemes. The motivation is to make a more efficient use of the genetic
search process within a population, and reduce the computational expense. Success-
ful applications of such a scheme usually rely on a lower cost evaluation of the
partial solutions (the individuals of the population), while computing the full evalu-
ation only once at each generation.

The single population approach allows more interaction between subproblems,
but in order to avoid trivial solutions (all individuals are the same), diversity preser-
vation becomes a very important mechanism, to favour the evolution of subspecies,
that progressively become independent from each other. At least in its early stage, a
Parisian approach relies more on “exploration” mechanisms than “exploitation”. Ex-
perimental tuning have proven that these two components are balanced in a different
manner in classical and Parisian approaches, and that fitness sharing is an important
component of Parisian scheme, that ensures an efficient convergence behaviour.

Additionally, we will see in the examples developed in this chapter, that Parisian
schemes necessitate a more complex design phase. We actually need to split a prob-
lem into interdependent subproblems involving components of the same nature,
which is not always possible. Questions regarding the relative efficience of different
CCEA approaches, including for instance the single versus multiple population is-
sue are very important, but still open, see for instance [62] for a first attempt in this
direction.

This chapter is focussed on the design step, and presents how Parisian approaches
have been developed on two examples provided by the agri-food community. The
chapter is organised as follows. Section 7.2 describes the industrial process under
study, cheese ripening, and the problems related to expertise modeling in this con-
text. The two examples are then developed:

• section 7.3 deals with phase estimation using Genetic Programming : for compar-
ison purpose, a classical GP approach is first developed, then a Parisian approach,

• section 7.4 addresses the problem of evolving the structure of a Bayesian net-
work, with an encoding based on independence models.

Conclusions and future work are given in section 7.5.



250 O. Barrière et al.

7.2 Modeling Agri-Food Industrial Processes

This study is part of the French INCALIN research project1. The goal of this re-
search project was to model agri-food industrial processes. In such food industries,
manufacturing processes consist of successive operations whose underlying mech-
anisms are still unknown, such as the cheese ripening process. INCALIN was con-
cerned with the understanding of the causal relationships between ingredients and
physico-chemical or microbiological characteristics and on the other hand, sensory
and nutritional properties. The intriguing question is how micro level properties
determine or influence those on the macro level. The project aimed to explain the
global behaviour of such systems.

Various macroscopic models have embedded expert knowledge, including expert
systems [32, 33, 31], neural networks [35, 46], mechanistic models [1, 56], and
dynamic Bayesian networks [6].

The major problem common to these techniques is related to the sparseness of
available data: collecting experimental data is a long and difficult process, and re-
sulting data sets are often not accurate or even erroneous. For example, a complete
cheese ripening process lasts 40 days, and some tests are destructive, that is to say
that a cheese sample is consumed during each analysis. Other measurements require
the growing of bacterias in Petri dishes and then counting the number of colonies,
which is very time consuming. Therefore the precision of the resulting model is
often limited by the small number of valid experimental data. Also, parameter esti-
mation procedures have to deal with incomplete, sparse and uncertain data.

7.2.1 The Camembert-Cheese Ripening Process

“Model cheeses” are produced in laboratories using pasteurized milk inoculated
with Kluyveromyces marxianus (Km), Geotrichum candidum (Gc), Penicillium
camemberti (Pc) and Brevibacterium auriantiacum (Ba) under aseptic conditions.

• K. marxianus is one of the key flora of Camembert cheese. One of its principal
activity is the fermentation of lactose (noted lo) [14, 15] (curd de-acidification by
lactose consumption). Three dynamics are apparent in the timeline of K. marx-
ianus growth [38, 39]. Firstly, there is an exponential growth during about five
days that corresponds to a decrease of lactose concentration. Secondly, the con-
centration of K. marxianus remains constant for about fifteen days and then de-
creases slowly.

• G. candidum plays a key role in ripening because it contributes to the devel-
opment of flavour, taste and aroma of cheeses [2, 9, 40]. One of its principal
activities is the consumption of lactate (noted la). Three dynamics are apparent

1 “Cognitive and Viability methods for food quality control” (translation from french), sup-
ported by the French ANR-PNRA fund.
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in the timeline of G. candidum growth [38, 39]. First, there is a latency period
of about three days. Second, there is an exponential growth that corresponds to a
decrease of lactate concentration and thus an increase of pH. Third, the concen-
tration of G. candidum remains constant to the end of ripening.

During ripening, soft-mould cheese behave like an ecosystem (a bio-reactor), which is
extremely complex to model as a whole. In such a process, human experts operators
have a decisive role. Relationships between microbiological and physicochemical
changes depend on environmental conditions (temperature, relative humidity ...) [39]
and influence the quality of ripened cheeses [27, 38]. A ripening expert is capable of
estimating the current state of some complex reactions at a macroscopic level through
its perceptions (for example, sight, touch, smell and taste). Control decisions are then
generally based on subjective but robust expert measurements. An important factor
of parameter regulation is the subjective estimation of the current state of the ripening
process. This process is split into four phases:

• Phase 1 is characterized by the surface humidity evolution of cheese (drying pro-
cess). At the beginning, the surface of cheese is very wet and evolves until it is
rather dry. The cheese is white with an odor of fresh cheese.

• Phase 2 begins with the apparition of a P. camemberti-coat (the white-coat at the
surface of cheese). It is characterised by a first change of color and a “mushroom”
odor development.



252 O. Barrière et al.

• Phase 3 is characterized by the thickening of the creamy under-rind. P. camem-
berti cover all the surface of cheeses and the color is light brown.

• Phase 4 is defined by strong ammoniac odor perception and the dark brown as-
pect of the rind of cheese.

These four phases are representative of cheese ripening. The expert’s knowledge
is obviously not limited to these four phases, but a correct identification of phases
helps to evaluate the dynamics of ripening and to detect drift from the standard
evolution.

7.2.2 Modeling Expertise on Cheese Ripening

A major problem, which was addressed in the INCALIN project, is the search for au-
tomatic procedures that mimic the way a human aggregates data through his senses,
to estimate and regulate the ripening of the cheese.

Stochastic optimisation techniques, like evolutionary techniques, have already
been proven successful on several agri-food problems. The interest of evolutionary
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optimisation methods for the resolution of complex problems related to agri-food
is demonstrated by various recent publications. For example, [4] used genetic algo-
rithms to identify the smallest discriminant set of variables to be used in certifica-
tion process for an Italian cheese (validation of origin labels). [21] used GP to select
the most significant wavenumbers produced by a Fourier transform infrared spec-
troscopy measurement device, in order to build a rapid detector of bacterial spoilage
of beef. A recent overview on optimisation tools in food industries [61] discusses
works based on evolutionary approaches.

We investigate here the use of cooperative co-evolution schemes (CCEAs) in the
context of cheese ripening, for the modeling of expert knowledge. The next part
(section 7.3) of this chapter deals with a first problem, which is phase estimation us-
ing Genetic Programming, under the form of a simple deterministic model (closed
formula). Experimental as well as expert analysis made evident a simple relation-
ship between four derivatives and the phase. A simple scheme they use in practice
is based on a multilinear regression model. We will see below that a classical GP
approach, that optimises a closed formula, i.e. a non-linear dependency, already im-
proves the recognition rates, and that a Parisian scheme provides similar regognition
rates with simpler structures, while keeping good recognition rates when the learn-
ing set is small.

The second part of this chapter (section 7.4) deals with a more sophisticated
stochastic model of dependencies: Bayesian Network. The difficult point is now to
address the problem of structure learning for a Bayesian Network (BN). Classical
approaches of evolutionary computation are usually blocked by the problem of find-
ing an efficient representation of a whole Bayesian Network. We will see that the
Parisian scheme allows addressing this issue in an elegant way. In order to validate
the method and compare it to the best approaches of the domain, we used classical
BN benchmarks before testing it on the cheese ripening data, for which no “ground
truth” model exist.

7.3 Phase Estimation Using GP

In previous work on cheese ripening modeling [6, 51], a dynamic Bayesian net-
work (Figure 7.2) has been built, using human expert knowledge, to represent the
macroscopic dynamic of each variable. The phase of the network at time t plays a
determinant role for the prediction of the variables at time t +1. Moreover, four rel-
evant variables have been identified by biologists, the derivative of pH, la (lactate),
Km (Kluyveromyces marxianus) and Ba (Brevibacterium auriantiacum) at time t,
allowing phase prediction at time t + 1. This relates to a way in which experts ag-
gregate information from their senses.
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Fig. 7.2 Dynamic Bayesian Network representing dynamic variables based on the observa-
tion of ripening phases. The static Bayesian network used for comparison is in the right hand
side box

7.3.1 Phase Estimation Using a Classical GP

A Genetic Programming (GP2) approach is used to search for a convenient formula
that links the four derivatives of micro-organisms proportions to the phase at each
time step t (static model), without a priori knowledge of the phase at t− 1.

When available, a functional representation of dependencies between variables
is interesting (for prediction purpose for example). This problem is a symbolic re-
gression one, however the small number of samples and their irregular distribution
makes it difficult. In such a case, probabilistic dependencies (like Bayesian net-
works) seems usually to be more adapted, but are facing the same difficulty (robust
estimation when data are sparse). A first question that could be adressed is thus to
know which type of representation is more robust when data are sparse.

Results of GP estimation are compared in the sequel with the performances of
a static Bayesian network, extracted from the DBN of [6], (the part within the box
in Figure 7.2), and with a simple learning algorithm (multilinear prediction, see
section 7.3.2.6), that was used by biologists in a first approach.

2 GP is a type of EA where each individual figures a function, represented as a tree struc-
ture. Every tree node is an operator function (+,−,/,∗, . . .) and every terminal node is an
operand (a constant or a variable).
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7.3.1.1 Overview of the Classical GP Algorithm

The classical GP algorithm consists first of an initialisation step where an initial pop-
ulation is randomly generated and then of a main loop where the reproduction (mu-
tation and crossovers) and selection mechanism (ranking) are applied. The pseudo
code of such an algorithm is given as follows:

Algorithm 7.1. Classical GP algorithm
Input: Maximum number of evaluations
Output: Single best individual
Creation of a random initial population
while Maximum number of evaluations not reached do

Create a temporary population tmppop using
selection, mutations and crossover
Compute the fitness of the new temporary
population tmppop
Select the best individuals of the current
population pop+ tmppop

end
Select the best individual of the final population

7.3.1.2 Search Space

The derivatives of four variables will be considered, namely the derivative of pH
(acidity), la (lactose proportion), Km and Ba (lactic acid bacteria proportions, see
section 7.2.1), for the estimation of the phase (static problem). The GP will search

for a phase estimator ̂Phase(t). That is, a function defined as follows (equation 7.1):

̂Phase(t) = f

(
∂ pH
∂ t

,
∂ la
∂ t

,
∂Km
∂ t

,
∂Ba
∂ t

)
(7.1)

The function set is made of arithmetic operators: {+,−,∗,/, ,̂ log}, with protected
/ and log, and logical operators {i f ,>,<,=,and,or,xor,not}.

The terminal set is made of the four partial derivatives plus real constants. The
constant’s values are not limited and randomly initialised using one of the following
laws U [0,1], −U [0,1], N (0,1), randomly chosen. (U is the uniform law, and
N the normal law).
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7.3.1.3 Fitness Function

Available data are separated in two sets: learning set and test set. Each is randomly
chosen within the available data set for each run. The 16 available experiments are
randomly split between learning and test sets. The size of the learning set varies
from 10 to 15 experiments, while the size of the corresponding test set vary from 6
to 1 experiments (see section 7.3.2.6).

The fitness function (equation 7.2), to be minimised, is made of a factor that mea-
sures the quality of the fitting on the learning set, plus a “parsimony” penalisation
factor in order to minimize the size, measured as the number of nodes (#Nodes in
equation 7.2), of the evolved structures. The aim of this factor is to avoid bloat.
It is divided by the number of variables (#Variables in equation 7.2) involved in
the evaluated tree in order to favour structures that embed all four variables of the
problem. Human experts use four classes to quantify the behaviour of the ripening
process, and industrial processes are organised accordingly. Another type of classi-
fication (i.e. more or less classes) would have a strong impact on industrial devices.
We choose to remain consistent with this expert approach. This is important in fu-
ture developments where interfaces with human experts will be built. Experiments
also show that recognition results are better with this constraint.

f itness =

∑
learning set

∣∣∣ f
(
∂ pH
∂ t , ∂ la

∂ t ,
∂Km
∂ t , ∂Ba

∂ t

)
−Phase(t)

∣∣∣+W#Nodes

#Variables+ 1
(7.2)

The parameter W has been experimentally tuned. A large number of combinations
were tested and it turned out that W = 1 is the optimal value in terms of algorith-
mic performance which favours evolution of structures with roughly 30 to 40 nodes.
Bigger structures are so penalised that they are excluded from the population during
the selection process.

7.3.1.4 Genetic Operators

A classical tree crossover (exchange of subtrees from a randomly chosen node) has
been used with probability pc (defined per tree), as a means of evolving the structure
of the tree. Two types of mutations have been used:

• Subtree mutation (mutation of the structure), that randomly rebuilds a new sub-
tree from a randomly chosen node, applied with probability psm (defined per
tree),

• Point mutation (mutation of nodes content), applied with probability pcm (also
defined per tree) that does not modify the structure, but randomly changes the
content of each node of the tree within the set of compatible functions or ter-
minals. The probabilities (defined per node) are detailed in Table I. Real values
are considered separately and undergo a real mutation with probability prm as a
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multiplicative perturbation according to a χ2 law of parameter N:

x′ = x∑
N
i=1 N (0,1)2

N prm and N vary linearly according to generations, from 0.1
(first generation) to 0.5 (last generation) for prm, and from 1 to 1000 for N. This
allows starting with rather infrequent large radius mutations and finish with more
frequent mutations with smaller radius.

Table 7.1 Probabilities of point mutation operators

From to probability
operator operator 0.1
variable variable 0.1
variable constant 0.05
constant variable 0.05
constant constant prm: 0.1 to 0.5

N: 1 to 1000

Crossover, subtree and point mutation probabilities vary along evolution according
to the adapting scheme [19] available in the GPLAB toolbox [59]. pc, psm and pcm

are initially fixed to 1
3 , and are updated according statistics of success of the various

operators computed on a tuneable window of past generations.

7.3.2 Phase Estimation Using a Parisian GP

Instead of searching for a phase estimator as a single monolithic function, phase
estimation can be split into four combined (and simpler) phase detection trees as
shown in Figure 7.3. The structures searched are binary output functions (or bina-
rised functions) that characterise one of the four phases. The individuals are split
into four classes such that individuals of class k are good at characterising phase k.
Finally, a global solution is made of the 5% best (at least one) individuals of each
class, in order to be able to classify the sample into one of the four previous phases
via a voting scheme (detailed at the end of this section).

7.3.2.1 Overview of the Parisian GP Algorithm

Unlike the classical GP algorithm, the output of Parisian GP algorithm is not a single
individual but a part of the population. The main loop of the Parisian GP algorithm
consists in first applying reproduction and selection mechanism, and then aggregat-
ing the current individuals in order to build a potential solution to the problem. The
following pseudo code illustrates the principles of a Parisian GP:
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Fig. 7.3 Phase estimation using a Parisian GP. Four classes of phase detectors are defined:
individuals of class k are good at characterising phase k.

7.3.2.2 Search Space

We now search for formulas of type: I
(
∂ pH
∂ t , ∂ la

∂ t ,
∂Km
∂ t , ∂Ba

∂ t

)
with real outputs

mapped to binary outputs, via a sign filtering: (I() > 0)→ 1 and (I() ≤ 0)→ 0.
The functions (except logical ones) and terminal sets, as well as the genetic opera-
tors, are the same as in the global approach above.

Using the available samples of the learning set, four real values can be computed,
in order to measure the capability of an individual I to characterise one phase (equa-
tion 7.3):

k ∈ {1,2,3,4} Fk(I) = 3 ∑
i,phase=k

I(sample(i))
#Samplesphase=k

− ∑
i,phase �=k

I(sample(i))
#Samplesphase �=k

(7.3)

in other words, if I is good for representing phase k, then Fk(I)> 0 and F�=k(I)< 0.

7.3.2.3 Local Fitness

The local adjusted fitness value, to be maximised, starts with a combination of three
factors (equation 7.4):

max{F1,F2,F3,F4}× #Ind
#IndPhaseMax

× NbMaxNodes
NbNodes

∣∣∣∣
if NbNodes>NbMaxNodes

(7.4)

The first factor is aimed at characterising if individual I is able to distinguish one
of the four phases. The second factor tends to balance the individuals between the
four phases. The parameter #IndPhaseMax is the number of individuals represent-
ing the phase corresponding to the argmax of the first factor. The parameter #Ind is
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Algorithm 7.2. Parisian GP algorithm
Input: Maximum number of evaluations
Output: Aggregation of individuals
Creation of a random initial population
while Maximum number of evaluations not reached do

Create a temporary population tmppop using selection,
mutations and crossover
Compute the localfitness of the new temporary
population tmppop
Compute the adjustedfitness of the current population
pop+ tmppop via sharing
Select the best individuals of the current population
pop+ tmppop
Compute the globalfitness of the selected population by
aggregating the best individuals

end

the total number of different individuals in the population. The third factor is a par-
simony factor for avoiding large structures. NbMaxNodes has been experimentally
tuned, and is currently fixed to 15, so that evolved structures got enough nodes to
characterise the problem, but not too many, to avoid bloat effect. 15 represented a
good tradeoff between accuracy and performance.

However, this is not the final formula of the local adjusted fitness. The two fol-
lowing subsection add two more factors, a penalising factor (μ) for individuals with
too many neighbours (diversity preservation via a sharing scheme) and a bonus fac-
tor bonusα for the best individuals.

7.3.2.4 Sharing Distance

The set of measurements {F1,F2,F3,F4}, that measures the ability of an individual
to characterise each phase, provides a simplified representation of the search space
in R

4. As the aim of a Parisian evolution is to evolve distinct sub-populations, each
being adapted to one of the four subtasks (to characterise one of the four phases), it
is natural to use an Euclidean distance in this four dimensional phenotype space, as
a basis of a simple fitness sharing scheme as stated in [20].

7.3.2.5 Aggregation of Partial Solutions and Global Fitness

At each generation, the population is shared in four classes corresponding to the
phase each individual characterises the best (the argmax of max{F1,F2,F3,F4} for
each individual). In other words, the population is split into four sub-populations
(one for each class) within the population. The 5% best of each class are used via a
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voting scheme to decide the phase of each tested sample (see Figure 7.3). The global
fitness measures the proportion of correctly classified samples on the learning set
(equation 7.5):

GlobalFit =

∑
learning set

CorrectEstimations

#Samples
(7.5)

The global fitness is then distributed to individuals who participated in the vote
according to the following formula: LocalFit ′ = LocalFit× (GlobalFit+ 0.5)α .

As GlobalFit ∈ [0,1], multiplying by (GlobalFit + 0.5) > 1 corresponds to a
bonus. The parameter α varies along generations, for the first generations (a third
of the total number of generations) α = 0 (no bonus), and then α linearly increases
from 0.1 to 1, in order to help the population to focus on the four peaks of the search
space.

Several fitness measures are used to rate individuals. Namely

• the raw fitness raw f itness, which is the set of four values {F1,F2,F3,F4}, that
measure the ability of the individual to characterise each phase,

• the local fitness local f itness = max(raw f itness) which represents the best char-
acterised phase,

• and the adjusted fitness ad j f itness = local f itness
μ × #IndPhaseMax

#Ind × #NodesMax
#Nodes ×

bonusα , which includes sharing, balance, parsimony and global fitness bonus
terms.

Two sets of indicators are computed at each generation (see Figure 7.5):

• The sizes of each class, that show if each phase is equally characterised by the
individuals of the population.

• The discrimination capability for each phase, computed on the 5% best individ-

uals of each class as the minimum of: Δ = maxi∈[1,2,3,4]{Fi}− ∑k �=argmax{Fi}{Fk}
3

The higher the value of Δ , the better the phase is characterised.

7.3.2.6 Experimental Analysis

Available data were collected from 16 experiments during 40 days for each exper-
iment, yielding 575 valid measurements. The data samples are relatively balanced
except for phase 3, which has a longer duration, thus a larger number of samples: we
have 57 representatives of phase 1, 78 of phase 2, 247 of phase 3 and 93 of phase
4. The derivatives of pH, la, Km and Ba were averaged and interpolated (spline
interpolation) for some “missing” days. Indeed, due to difficulty to collect experi-
mental data, a few values were missing. Finally, logarithms of these quantities are
considered.

The parameters of both GP methods are detailed in Table II. The code has been
developed in Matlab, using the GPLAB toolbox [59]. Comparative results of the
four considered methods (multilinear regression, Bayesian network, GP and Parisian
GP) are displayed in Figure 7.4, and a typical GP run is analysed in Figure 7.5.
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Table 7.2 Parameters of the GP methods

GP Parisian GP
Population size 1000 1000
Number of generations 100 50
Function set arithmetic and logical

functions
arithmetic functions only

Sharing no sharing σshare = 1 at the beginning,
then linear decrease from 1 to

0.1
αshare = 1 (constant)

The multilinear regression algorithm used for comparison works as follows: the
data are modeled as a linear combination of the four variables:

̂Phase(t) = β1 +β2
∂ pH
∂ t

+β3
∂ la
∂ t

+β4
∂Km
∂ t

+β5
∂Ba
∂ t

The 5 coefficients {β1, . . . ,β5} are estimated using a simple least square scheme.
This model was included in the comparison because it was the model previously
used by the biologists in the INCALIN project.
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Fig. 7.4 Average (left) and standard-deviation (right) of recognition percentage on 100 runs
for the 4 tested methods, the abscissa represent the size of the test-set

Experiments show that GP outperforms both multilinear regression and Bayesian
network approaches in terms of recognition rates. Additionally the analysis of a typ-
ical Parisian GP run shows that it evolves much simpler structures than the classical
GP. The average size of evolved structures is around 30 nodes for the classical GP
approach and between 10 and 15 for the Parisian GP.

It has also to be noted in Figure 7.5 that co-evolution is balanced between the four
phases. The third phase is the most difficult to characterise. This is in accordance
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(c) Recognition rates.

Fig. 7.5 A typical run of the Parisian GP:
- (a): the evolution with respect to generation number of the 5% best individuals for each
phase: the upper curve of each of the four graphs is for the best individual, the lower curve is
for the “worst of 5% best” individuals.
- (b) left: the distribution of individuals for each phase: the curves are very irregular but
numbers of representatives of each phases are balanced.
- (b) right: discrimination indicator Δ , which shows that the third phase is the most difficult
to characterise.
- (c): evolution of the recognition rates of learning and test set. The best-so-far recognition
rate on learning set is tagged with a star.
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with human experts’ judgement, for which this phase is also the most ambiguous to
characterise.

The development of a cooperative co-evolution GP scheme (Parisian evolution)
seems very attractive, as it allows the evolution of simpler structure in less genera-
tions, and yield results that are easier to interpret. Moreover, the computation time
is almost equivalent to both presented methods (100 generations for a classical GP
against 50 generations for a Parisian one), as one “Parisian” generation necessitates
more complex operations, all in all). One can expect a more favourable behaviour
for the Parisian scheme on more complex issues than the phase prediction prob-
lem, as the benefit of splitting the global solutions into smaller components may be
higher and may yield computational shortcuts (see for example [17]).

7.4 Bayesian Network Structure Learning Using CCEAs

Bayesian networks structure learning is a NP-Hard problem [13], which has appli-
cations in many domains, as soon as one tries to analyse a large set of samples in
terms of statistical dependence or causal relationship. In agri-food industries for ex-
ample, the analysis of experimental data using Bayesian networks helps to gather
technical expert knowledge and know-how on complex processes [6].

Evolutionary techniques were used to solve the Bayesian network structure learn-
ing problem, and were facing crucial problems like:

• Bayesian network representation (an individual being a whole structure like in
[37], or a sub-structures like in [45]),

• Fitness function choice like in [45].

Various strategies were used, based on evolutionary programming [3], immune al-
gorithms [34], multi-objective strategies [58], lamarkian evolution [64] or hybrid
evolution [67].

We propose here to use an alternate representation, independence models, in or-
der to solve the Bayesian network structure learning in two steps. Independence
model learning is still a combinatorial problem, but it is easier to embed within
an evolutionary algorithm. Furthermore, it is suited to a cooperative co-evolution
scheme, which allows obtaining computationally efficient algorithms.

7.4.1 Recall of Some Probability Notions

The joint distribution of X and Y is the distribution of the intersection of the random
variables X and Y , that is, of both random variables X and Y occurring together. The
joint probability of X and Y is written P(X ,Y ). The conditional probability is the
probability of some random variable X , given the occurrence of some other random
variable Y and is written P(X |Y ).
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To say that two random variables are statistically independent intuitively means
that the occurrence of one random variable makes it neither more nor less probable
that the other occurs. If two random variables X and Y are independent, then the
conditional probability of X given Y is the same as the unconditional probability of
X , that is P(X) = P(X |Y ).

Two random variables X and Y are said to be conditionally independent given a
third random variable Z if knowing Y gives no more information about X once one
knows Z. Specifically, P(X |Z) = P(X |Y,Z). In such a case we say that X and Y are
conditionally independent given Z and write it X ⊥⊥ Y | Z.

7.4.2 Bayesian Networks

A Bayesian Network (BN) is a “graph-based model of a joint multivariate proba-
bility distribution that captures properties of conditional independence between ran-
dom variables” as defined by [25]. On the one hand, it is a graphical representation
of the joint probability distribution and on the other hand, it encodes probabilistic
independences between variables. For example, a Bayesian network could repre-
sent the probabilistic relationships between diseases and symptoms. Given symp-
toms (resp. diseases), the network can be used to compute the probabilities of the
presence of various diseases (resp. symptoms). These computations are called prob-
abilistc inference.

Formally, a Bayesian network is represented by a directed acyclic graph (DAG)
whose nodes are random variables, and whose missing edges encode conditional
independences between the variables.

E A

B D

C

Fig. 7.6 Directed Acyclic Graph

The set of parent nodes of a node Xi is denoted by pa(Xi). In a Bayesian network,
the joint probability distribution of the random variables can be written using the
graph structure as the product of the conditional probability distributions of each
node given its parents:

P(X1,X2, . . . ,Xn) =
n
∏
i=1

P(Xi|pa(Xi))
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For instance, the joint distribution represented as a Bayesian network in Figure 7.6
can be written : P(A,B,C,D,E) = P(A) ·P(B|E,A) ·P(C|B) ·P(D|A) ·P(E).

The very graph is called the structure of the Bayesian network and the values of
conditional probabilities (e.g. P(A = 0)) for each node are called the parameters of
the network.

7.4.2.1 Uses of Bayesian Networks

Using a Bayesian network can save considerable amounts of memory, if the depen-
dencies in the joint distribution are sparse. For example, a naive way of storing the
conditional probabilities of 10 binary variables as a table requires storage space for
210 = 1024 values. If the local distributions of no variable depends on more than
3 parent variables, the Bayesian network representation only needs to store at most
10∗23 = 80 values. One advantage of Bayesian networks is that it is intuitively eas-
ier for a human to understand (a sparse set of) direct dependencies and local distri-
butions than complete joint distribution. The graph structure of a Bayesian network
also allows to dramatically speed up the probabilistic inference in Bayesian network
(i.e. the computation of P(Xi|Xj)).

Lastly, more than just a computing tool, Bayesian networks can be used to repre-
sent causal relationships and appear to be powerful graphical models of causality.

7.4.2.2 Parameter and Structure Learning

The Bayesian network learning problem has two branches: the parameter learning
problem (in other words, how to find the probability tables of each node) and the
structure learning problem (in other words, how to find the graph representing the
Bayesian network), following the decomposition of the two constitutive parts of a
Bayesian network: its structure and its parameters.

There already exists algorithms specially suited to the parameter learning prob-
lem, like expectation-maximisation (EM) that is used for finding maximum likeli-
hood estimates of parameters.

Learning the structure is a more challenging problem because the number of pos-
sible Bayesian network structures (NS) grows superexponentially with the number
of nodes [57]. For example, NS(5) = 29281 and NS(10) = 4.2× 1018. A direct ap-
proach is intractable for more than 7 or 8 nodes, it is thus necessary to use heuristics
in the search space.

In a comparative study by [23], authors identified some currently used structure
learning algorithms, namely PC [60] or IC/IC∗ [50] (causality search using statisti-
cal tests to evaluate conditional independence), BN Power Constructor (BNPC) [11]
(also uses conditional independence tests) and other methods based on scoring cri-
terion, such as Minimal weight spanning tree (MWST) [16] (intelligent weighting of
the edges and application of the well-known algorithms for the problem of the min-
imal weight tree), K2 [18] (maximisation of P(G|D) using Bayes and a topological
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order on the nodes), Greedy search [12] (finding the best neighbour and iterate) or
SEM [24] (extension of the EM meta-algorithm to the structure learning problem).
However that may be, the problem of learning an optimal Bayesian network from a
given dataset is NP-hard [13].

7.4.2.3 The PC Algorithm

PC, the reference causal discovery algorithm, was introduced by [60]. A similar al-
gorithm, IC, was proposed simultaneously by [50]. It is based on chi-square tests
to evaluate the conditional independence between two nodes. It is then possible to
rebuild the structure of the network from the set of discovered conditional inde-
pendences. PC algorithm starts from a fully connected network and every time a
conditional independence is detected, the corresponding edge is removed. Here are
the first detailed steps of this algorithm:

• Step 0: Start with a complete undirected graph G
• Step 1: Test all conditional independences of order 0 (i.e x⊥⊥ y | /0 where x and y

are two distinct nodes of G). If x⊥⊥ y then remove the edge x− y.
• Step 2: Test all conditional independences of order 1 (i.e x⊥⊥ y | z where x, y, and

z are three distinct nodes of G). If x⊥⊥ y | z then remove the edge x− y.
• step 3: Test all conditional independences of order 2 (i.e x⊥⊥ y | {z1,z2} where x,

y, z1 and z2 are four distinct nodes of G). If x⊥⊥ y | {z1,z2} then remove the edge
x− y.

• . . .
• Step k: Test all conditional independences of order k (i.e x ⊥⊥ y | {z1,z2, . . . ,zk}

where x,y,z1,z2, . . . ,zk are k+ 2 distinct nodes of G). If x ⊥⊥ y | {z1,z2, . . . ,zk}
then remove the edge between x− y.

• Next steps take particular care to detect some structures called V-structures (see
section 7.4.2.4) and recursively detect orientation of the remaining edges.

The first stage is learning associations between variables for constructing an undi-
rected structure. This requires a number of conditional independence test growing
exponentially with the number of nodes. This complexity is reduced to polynomial
complexity by fixing the maximal number of parents a node can have. It is of the
order of Nk, where N is the size of the network and k is the upper bound on the
fan-in. This implies that the value of k must remain small when dealing with big
networks. In practice, k is often limited to 3. This value will be used in the sequel.

7.4.2.4 Independence Models

In this work, we do not work directly on Bayesian networks but on a more general
model called Independence Model (IM), which can be seen as the underlying model
of Bayesian networks and defined as follows:
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• Let N be a non-empty set of variables, then T (N) denotes the collection of all
triplets 〈X ,Y |Z〉 of disjoint subsets of N, X �= /0 and Y �= /0. The class of elemen-
tary triplets E(N) consists of 〈x,y|Z〉 ∈ T (N), where x,y ∈ N are distinct and
Z ⊂ N\{x,y}.

• Let P be a joint probability distribution over N and 〈X ,Y |Z〉 ∈ T (N). 〈X ,Y |Z〉
is called an independence statement (IS) if X is conditionally independent of Y
given Z with respect to P (i.e., X ⊥⊥ Y | Z)

• An independence model (IM) is a subset of T (N): each probability distribution
P defines an IM, namely, the model {〈X ,Y |Z〉 ∈ T (N) ; X ⊥⊥ Y | Z}, called the
independence model3 induced by P.

As we have seen, a Bayesian network represents a factorisation of a joint probabil-
ity distribution, but there can be many possible structures that represents the same
probability distribution.

For instance, the tree structures in Figure 7.7 encode the same independence
statement A ⊥⊥ B | C. However, the structure in Figure 7.8, called V-structure (or
collider), is not Markov equivalent to the three first ones.

A B

C

A B

C

A B

C

P(A|C)P(B|C)P(C) P(A|C)P(B|C)P(C) P(A|C)P(B)P(C|B)
A ⊥⊥ B |C A ⊥⊥ B |C A ⊥⊥ B |C

Fig. 7.7 Markov equivalent structures

A B

C

P(A)P(B)P(C|A,B)
NOT(A ⊥⊥ B |C) but A ⊥⊥ B

Fig. 7.8 V-structure

Two structures are said to be Markov equivalent if they represent the same In-
dependence Model. Particularly, an algorithm to learn the structure of a Bayesian
network can not choose between two markov-equivalent structures.

3 For more details about Independence Models and their properties, see [49].
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To summarize, an independence model is the set of all the independence state-
ments, that is the set of all 〈X ,Y |Z〉 satisfied by P, and different Markov-equivalent
Bayesian networks induce the same independence model. By following the paths in
a Bayesian network, it is possible (even though it can be combinatorial) to find a
part of its independence model using algorithms based on directional separation (d-
separation) or moralization criteria. Reciprocally, an independence model is a guide
to produce the structure of a Bayesian network.

Consequently, as the problem of finding an independence model can be turned
to an optimisation problem, we investigate here the use of an evolutionary algo-
rithm. More precisely, we build an algorithm that let a population of triplets 〈X ,Y |Z〉
evolve until the whole population comes near to the independence model, which
corresponds to a cooperative co-evolution scheme.

7.4.3 Evolution of an Independence Model

As in section 7.3, our algorithm (Independence Model Parisian Evolutionary Algo-
rithm - IMPEA) is a Parisian cooperative co-evolution. However, in a pure Parisian
scheme (Figure 7.1), a multi-individuals evaluation (global fitness computation) is
done at each generation and redistributed as a bonus to the individuals who partic-
ipated in the aggregation. Here, IMPEA only computes the global evaluation at the
end of the evolution, and thus do not use any feedback mechanism. This approach,
which is an extreme case of the Parisian CCEA, has already been used with success
for example in real-time evolutionary algorithms, such as the flies algorithm [41].

IMPEA is a two steps algorithm. First, it generates a subset of the independence
model of a Bayesian network from data by evolving elementary triplets 〈x,y|Z〉,
where x and y are two distinct nodes and Z is a subset of the other ones, possibly
empty. Then, it uses the independence statements that it found at the first step to
build the structure of a representative network.

7.4.3.1 Search Space and Local Fitness

Individuals are elementary triplets 〈x,y|Z〉. Each individual is evaluated through a
chi-square test of independence which tests the null hypothesis H0: “The nodes x
and y are independent given Z”. The chi-square statistic χ2 is calculated by finding
the difference between each observed Oi and theoretical Ei frequencies for each of
the n possible outcomes, squaring them, dividing each by the theoretical frequency,

and taking the sum of the results: χ2 = ∑n
i=1

(Oi−Ei)
2

Ei
. The chi-square statistic can

then be used to calculate a p-value p by comparing the value of the statistic χ2 to a
chi-square distribution with n−1 degrees of freedom, as represented on Figure 7.9.

p represents the probability to make a mistake if the null hypothesis is not ac-
cepted. It is then compared to a significance level α (0.05 is often chosen as a cut-
off for significance) and finally the independence is rejected if p < α . The reader



7 Cooperative Coevolution for Agrifood Process Modeling 269

Fig. 7.9 Chi-square test of independence

has to keep in mind that rejecting H0 allows one to conclude that the two variable
are dependent, but not rejecting H0 means that one cannot conclude that these two
variable are dependent (which is not exactly the same as claiming that they are inde-
pendent). Given that the higher the p-value, the stronger the independence, p seems
to be a good candidate to represent the local fitness (which measures the quality of
individuals). Nevertheless, this fitness suffers from two drawbacks:

• When dealing with small datasets, individuals with long constraining set Z tends
to have good p-values only because dataset is too small to get enough samples to
test efficiently the statement x⊥⊥ y | Z.

• Due to the exponential behaviour of the chi-square distribution, its tails vanishes
so quickly that individuals with poor p-values are often rounded to 0, making
then indistinguishable.

First, p has to be adjusted in order to promote independence statements with small
Z. This is achieved by setting up a parsimony term as a positive multiplicative
malus parcim(#Z) which decrease with #Z, the number of nodes in Z. Then, when
p < α we replace the exponential tail with something that tends to zero slower. This
modification of the fitness landscape allows avoiding plateaus which would prevent
the genetic algorithm to travel all over the search space. Here is the adjusted local
fitness4:

Ad jLocalFitness =

{
p× parcim(#Z) i f p≥ α

α× parcim(#Z)× X2
α

X2 i f p < α

4 Note:This can be viewed as an “Ockham’s Razor” argument.
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7.4.3.2 Genetic Operators

The genome of an individual, being 〈x,y|Z〉 where x and y are simple nodes and Z
is a set of nodes is straightforward: It consists in an array of three cells (see Figure
7.10), the first one containing the index of the node x, the second cell containing the
index of y and the last one is the array of the indexes of the nodes in Z.

Fig. 7.10 Representation of 〈x,y|Z〉

This coding implies specific genetic operators because of the constraints resting
upon a chromosome: there must not be doubles appearing when doing mutations
or crossovers. A quick-and-dirty solution would have been to first apply classical
genetic operators and then apply a repair operator a posteriori. Instead, we propose
wise operators (which do not create doubles), namely two types of mutations and an
robust crossover.

• Genome content mutation
This mutation operator involves a probability pmG that an arbitrary node will be
changed from its original state. In order to avoid the creation of doubles, this
node can be muted into any nodes in N except the other nodes of the individual,
but including itself (see Figure 7.11).

Fig. 7.11 Genome content mutation

• Add/remove mutation
The previous mutation randomly modifies the content of the individuals, but does
not modify the length of the constraining set Z. We introduce a new mutation
operator called add/remove mutation, represented on Figure 7.12, that allows
randomly adding or removing nodes in Z. If this type of mutation is selected,
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with probability PmAR, then new random nodes are either added with a probability
PmAdd or removed with 1−PmAdd. These probabilities can vary along generations.
Moreover, the minimal and the maximal number of nodes allowed in Z can evolve
as well along generations, for tuning the growth of Z.

Fig. 7.12 Add/remove mutation

• Crossover
The crossover consists in a simple swapping mechanism between x, y and Z.
Two individuals 〈x,y|Z〉 and 〈x′,y′|Z′〉 can exchange x or y with probability pcXY

and Z with probability pcZ (see Figure 7.13). When a crossover occurs, only one
swapping among x↔ x′, y↔ y′, x↔ y′, y↔ x′ and Z↔ Z′ is selected via a wheel
mechanism which implies that 4pcXY + pcZ = 1. If the exchange is impossible,
then the problematic nodes are automatically muted in order to keep clear of
doubles.

7.4.4 Sharing

So as not to converge to a single optimum, but enable the genetic algorithm to iden-
tify multiple optima, we use a sharing mechanism that maintains diversity within
the population by creating ecological niches. The complete scheme is described in
[20] and is based on the fact that fitness is considered as a shared resource, that is
to say that individuals having too many neighbours are penalised. Thus we need a
way to compute the distance between individuals so that we can count the num-
ber of neighbours of a given individual. A simple Hamming distance was chosen:
two elementary triplets 〈x,y|Z〉 and 〈x′,y′|Z′〉 are said to be neighbours if they test
the same two nodes (i.e., {x,y} = {x′,y′}), whatever Z. Finally, dividing the fit-
ness of each individual by the number of its neighbours would result in sharing the
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Fig. 7.13 Robust crossover

population into sub-populations whose size is proportional to the height of the peak
they are colonising [26]. Instead, we take into account the relative importance of an
individual with respect to its neighbourhood, and the fitness of each individual is
divided by the sum of the fitnesses of its neighbours [42]. This scheme allows one
to equilibrate the sub-populations within peaks, whatever their height.

7.4.5 Immortal Archive and Embossing Points

Recall that the aim of IMPEA is to construct a subset of the independence model,
and thus the more independence statements we get, the better. Using a classical
Parisian Evolutionary Algorithm scheme would allow evolving a number of inde-
pendence statements equal to the population size. In order to be able to evolve larger
independence statements sets, IMPEA implements an immortal archive that gather
the best individuals found so far. An individual 〈x,y|Z〉 can become immortal if any
of the following rules applies:

• Its p-value is equal to 1 (or numerically greater than 1− ε , where ε is the preci-
sion of the computer)

• Its p-value is greater than the significance level and Z = /0
• Its p-value is greater than the significance level and 〈x,y| /0〉 is already immortal
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This archive serves two purposes: the most obvious one is that at the end of the
generations, not only we get all the individuals of the current population but also
all the immortal individuals, which can make a huge difference. But this archive
also plays a very important role as embossing points: when computing the sharing
coefficient, immortal individuals that are not in the current population are added to
the neighbours counting. Therefore a region of the search space that has already
been explored but that has disappeared from the current population is marked as
explored since immortals individuals count as neighbours and thus penalise this
region, encouraging the exploration of other zones.

7.4.5.1 Clustering and Partial Restart

Despite the sharing mechanism, we experimentally observed that some individuals
became over-represented within the population. Therefore we add a mechanism to
reduce this undesirable effect: if an individual has too many redundant representa-
tives then the surplus is eliminated and new random individuals are generated to
replace the old ones.

7.4.6 Description of the Main Parameters

The Table 7.3 describes the main parameters of IMPEA and their typical values or
range of values, in order of appearance in the text above. Some of these parameters
are scalars, like the number of individuals, and are constant along the whole evolu-
tion process. Others parameters, like the minimum or maximum number of nodes
in Z, are arrays indexed by the number of generations, allowing these parameter to
follow a profile of evolution.

7.4.7 Bayesian Network Structure Estimation

The last step of IMPEA consist in reconstructing the structure of the Bayesian net-
work. This is achieved by aggregating all the immortal individuals and only the good
ones of the final population. An individual 〈x,y|Z〉 is said to be good if its p-value
does not allow rejecting the null hypothesis x ⊥⊥ y | Z. There are two strategies in
IMPEA: a pure one, called P-IMPEA, which consists in strictly enforcing indepen-
dence statements and a constrained one, called C-IMPEA, which adds a constraint
on the number of desired edges.
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Table 7.3 Parameters of IMPEA. Values are chosen within their typical range depending on
the size of the network and the desired computation time

Name Description
Typical
value

MaxGens Number of generations 50 . . .200
Ninds Number of individuals 50 . . .500
Alpha Significance level of the χ2 test 0.01 . . .0.25

Parcim (#Z)
Array of parsimony coefficient (decreases with the

length of Z)
0.5 . . .1

PmG Probability of genome content mutation 0.1/(2+#Z)
PmAR Probability of adding or removing nodes in Z 0.2 . . .0.5

PmAdd (#Gen)
Array of probability of adding nodes in Z along

generations
0.25 . . .0.75

MinNodes
(#Gen)

Array of minimal number of nodes in Z along
generations

0 . . .2

MaxNodes
(#Gen)

Array of maximal number of nodes in Z along
generations

0 . . .6

Pc Probability of crossover 0.7
PcXY Probability of swapping x and y 1/6
PcZ Probability of swapping Z 1/3

Epsilon Numerical precision 10−5

MaxRedundant
Maximal number of redundant individuals in the

population
1 . . .5

7.4.7.1 Pure Conditional Independence

Then, as in PC, P-IMPEA starts from a fully connected graph, and for each individ-
ual of the aggregated population, applies the rule “x⊥⊥ y | Z⇒ no edge between x and y”
to remove edges whose nodes belong to an independence statement. Finally, the re-
maining edges (which have not been eliminated) constitute the undirected structure
of the network.

7.4.7.2 Constrained Edges Estimation

C-IMPEA needs an additional parameter which is the desired number of edges in the
final structure. It proceeds by accumulation: it starts from an empty adjacency matrix
and for each 〈x,y|Z〉 individual of the aggregated population, it adds its fitness to the
entry (x,y). An example of a matrix obtained this way is shown on Figure 7.14.

At the end of this process, if an entry (at the intersection of a row and a column)
is still equal to zero, then it means that there was no independence statement with
this pair of nodes in the aggregated population. Thus these entries exactly corre-
spond to the strict application of the conditional independences. If an entry has a
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Fig. 7.14 Accumulated adjacency matrix of a network with 27 nodes (from Insurance net-
work)

low sum, then it is an entry for which IMPEA found only a few independence state-
ments (and/or independence statements with low fitness) and thus there is a high
expectancy of having an edge between its nodes. Therefore to add more edges in the
final structure (up to the desired number of edges), we just have to select edges with
the lowest values and construct the corresponding network.

This approach seems to be more robust since it allows some “errors” in the chi-
square tests, but strictly speaking, if an independence statement is discovered, there
cannot be any edge between the two nodes.

7.4.8 Experiments and Results

Prior to a test on the the cheese-ripening data, the experimental analysis has been
first performed on simulated data, where the true BN structure is known. A first
experiment has been done on a toy-problem (section 7.4.8.1) in order to analyse
the behaviour of IMPEA on a case where the complexity of the dependencies is
controlled (i.e. where there is one independence statement that involves a long con-
ditional set Z). A second test has been made on a classical benchmark of the domain,
the insurance network (section 7.4.8.2), where input data are generated from a real-
world BN. The test on cheese ripening data is detailed in section 7.4.8.3.

7.4.8.1 Test Case: Comb Network

To evaluate the efficiency of IMPEA, we forge a test-network which looks like a
comb. A n-comb network has n+ 2 nodes: x, y, and z1,z2, . . . ,zn, as one can see on
Figure 7.15. The Conditional Probability Tables (CPT) are filled in with a uniform
law. It can be seen as a kind of classifier: given the input z1,z2, . . . ,zn, it classifies the
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output as x or y. For example, it could be a classifier that accepts a person’s salary
details, age, marital status, home address and credit history and classifies the person
as acceptable/unacceptable to receive a new credit card or loan.

x

z1 z2 . . . zn−1 zn

y

Fig. 7.15 A n-comb network

The interest of such a network is that its independence model can be generated
(using semi-graphoid rules) from the following independence statements:

∀i, j such as i �= j,zi ⊥⊥ z j

x⊥⊥ y | {z1,z2, . . . ,zn}
Thus it has only one complex independence statement and a lot of simple (short)
ones. In particular, the only way to remove the edge between x and y using statistical
chi-square tests is to test the triplet 〈x,y | {z1,z2, . . . ,zn}〉. This cannot be achieved by
the PC algorithm as soon as k < n (recall that k is limited to 3 due to combinatorial
complexity).

Typical run: We choose to test P-IMPEA with a simple 6-comb network. It has
been implemented using an open source toolbox, the Bayes Net Toolbox for Matlab
[44] available at http://bnt.sourceforge.net/. We draw our inspiration
from PC and initialise the population with individuals with an empty constraining
set and let it grow along generations up to 6 nodes, in order to find the indepen-
dence statement x⊥⊥ y | {z1, . . . ,z6}. As shown on Figure 7.16, the minimal number
of nodes allowed in Z is always 0, and the maximal number is increasing on the
first two third of the generations and is kept constant to 6 on the last ones. The aver-
age number of nodes in the current population is also slowly rising up but remains
rather small since in this example, there are a lot of small easy to find independence
statements and only a single big one.

The correct structure (Figure 7.17) is found after 40 (out of 50) generations.
The Figure 7.18 represents the evolution of the number of errors along genera-

tions. The current evolved structure is compared with the actual structure: an added
edge is an edge present in the evolved structure but not in the actual comb network,
and a deleted edge is an edge that has been wrongly removed. The total number of
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Fig. 7.16 Evolution of Minimal, Maximal and Average number of nodes in Z along
generations
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Fig. 7.17 Final evolved structure for the comb network

errors is the sum of added and deleted edges. Note that even if the number of errors
of the discovered edges is extracted at each generation, it is by no means used by
IMPEA or reinjected in the population because this information is only relevant in
that particular test-case where the Bayesian network that generated the dataset is
known.
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Fig. 7.18 Evolution of the number of erroneous edges of the structure along generations

Statistical results: The previous example gives an idea of the behaviour of P-
IMPEA, but to compare it fairly with PC we must compare them not only over
multiple runs but also with respect to the size of the dataset. So we set up the fol-
lowing experimental protocol:
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• A 4-comb network is created and we use the same Bayesian network (structure
and CPT) throughout the whole experiment.

• We chose representative sizes for the dataset:
{500,1000,2000,5000,10000}, and for each size, we generate the corresponding
number of cases from the comb network.

• We run 100 times both PC and P-IMPEA, and extract relevant information (see
Tables 7.4 and 7.5):

– How many edges were found? Among these, how many were erroneous?
(added or deleted)

– What is the percentage of runs in which the x− y edge is removed?

• PC is tuned with a fan-in k limited to 3 (a larger fan-in is not used as PC is per-
forming a full combinatorial research) and P-IMPEA is tuned with 50 generation
of 50 individuals in order to take the same computational time as PC. 50 genera-
tion are more than enough to converge to a solution due to the small size of the
problem. Both algorithms share the same significance level α .

The actual network contains 8 edges and 6 nodes. Therefore the number of possible
alternative is 26 = 64 and if we roughly want to have 30 samples per possibility,
we would need approximatively 64 ∗ 30 ≈ 2000 samples. That explains why per-
formances of the chi-square test are very poor with only 500 and 1000 cases in the
dataset. Indeed, when the size of the dataset is too small, PC removes the x−y edge
(see the last column of Table 7.4) while it does not even test 〈x,y | {z1,z2,z3,z4}〉
because it is limited by k to 3 nodes in Z.
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Fig. 7.19 Number of erroneous edges (added+deleted) for PC and P-IMPEA, depending on
the size of the dataset

Regarding the global performance, the Figure 7.19 puts up the average number of
erroneous nodes (either added or deleted) of both algorithms. As one can expect, the
number of errors decreases with the size of the dataset, and it is clear that P-IMPEA
clearly outperforms PC in every case.

Finally, if one has a look to the average number of discovered edges, it is al-
most equal to 8 (which is the actual number of edges in the 4-comb structure) for
P-IMPEA (Table 7.5) whereas it is greater than 9 for the PC algorithm since it can’t
remove the x− y edge (Table 7.4).
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Table 7.4 Averaged results of PC algorithm after 100 runs

Cases Edges Added Removed Errors x-y?
500 5.04±0.85 0.38±0.50 3.34±0.78 3.72±1.01 97%

1000 6.50±1.24 0.66±0.71 2.16±1.01 2.82±1.23 83%
2000 8.09±1.18 1.27±0.80 1.18±0.68 2.45±0.91 39%
5000 9.71±0.74 1.93±0.57 0.22±0.46 2.15±0.73 0%
10000 9.84±0.58 1.84±0.58 0±0 1.84±0.58 0%

Table 7.5 Averaged results of P-IMPEA algorithm after 100 runs

Cases Edges Added Removed Errors x-y?
500 6.64±0.79 0.05±0.21 1.73±1.90 1.78±1.94 100%

1000 7.32±0.91 0.18±0.50 0.78±1.01 0.96±1.24 100%
2000 8.87±1.04 0.24±0.51 0.29±0.60 0.53±0.82 97%
5000 8.29±0.32 0.30±0.59 0.03±0.17 0.33±0.63 90%
10000 8.27±0.31 0.27±0.54 0±0 0.27±0.54 89%

7.4.8.2 Classical Benchmark: The Insurance Bayesian Network

Insurance is a network for evaluating car insurance risks developped by [7]. The
Insurance Bayesian network contains 27 variables and 52 arcs. It is a large instance.
A database of 50000 cases generated from the network has been used for the exper-
iments below.

Once again, we start from a population with small Z and let it increase up to 4
nodes. The Figure 7.20 illustrates this growth: the average size of the number of
nodes in Z of the current population follows the orders given by the minimum and
the maximum values.
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Fig. 7.20 Evolution of Minimal, Maximal and Average number of nodes in Z along
generations

Concerning the evolution of the number of erroneous edges represented on Figure
7.21, it quickly decreases during the first half of the generation (the completely con-
nected graph has more than 700 edges) and then stagnates. At the end, P-IMPEA
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finds 39 edges out of 52 among which there is no added edge, but 13 which are
wrongly removed. It is slightly better than PC which also wrongly removes 13
edges, but which adds one superfluous one.

The best results are obtained with C-IMPEA and a desired number of edges equal
to 47. Then, only 9 errors are made (see Table 7.6). When asking for 52 edges, the
actual number of edges in the Insurance network, it makes 14 errors (7 additions
and 7 deletions).
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Fig. 7.21 Evolution of the number of erroneous edges of the structure along generations

Table 7.6 Number of detected edges for all algorithms

Algorithm Edges Added Removed Errors
PC 40 1 13 14

P-IMPEA 39 0 13 13
C-IMPEA 47 2 7 9
C-IMPEA 52 7 7 14

7.4.8.3 Real Dataset: Cheese Ripening Data from the INCALIN Project

The last step is to test our algorithm on real data. Our aim is to compare the re-
sult of IMPEA with a part of the dynamic Baysian network, already described at
section 7.3, built with human expertise in the scope of the INCALIN project. We
are interested in the part of the network that predicts the current phase knowing the
derivatives of some bacteria proportions. We used the same data as in the first part
of the report (see section 7.3.2.6), made of the derivatives of pH, la, Km and Ba and
estimation of the current phase done by an expert.

After 10 generations of 25 individuals each, P-IMPEA converges to a network
whose structure is almost the same as the one proposed by expert. As one can see
on the right of Figure 7.22, no extra edge is added, but one edge is missing, between
the derivative of la and the phase.
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(a) Dynamic Bayesian Network proposed by
cheese ripening experts.

dkm dla

dpH dBa

phase(t+1)

(b) Results of P-IMPEA.

Fig. 7.22 Comparison between the model proposed by experts and the network found by
IMPEA on a real dataset from the INCALIN project

Table 7.7 Features of the two Parisian schemes

Parisian Phase Prediction IMPEA
Individuals Phase predictors IS : Independence Statements 〈x,y|Z〉

Population/groups Classifier IM : Independence Model
Nb of cooperating 4 variable

components
Aggregation clustering + selection of the 5% best at the end of the evolution only
Local fitness capability to characterise a phase adjusted p-value

max{F1,F2,F3,F4} × pressure toward
× pressure toward simple structure small conditional parts

Global fitness voting scheme none
+ evaluation on the learning set

Sharing Euclidean distance on {F1,F2,F3,F4} Hamming distance on {x,y}
Specific features variable population size archive

inflation / deflation embossing points

7.4.9 Analysis

We compared performances on the basis of undirected graphs produced by both
algorithms. The edge directions estimation has not been yet programmed in IMPEA,
this will be done in future developments, using a low combinatorial strategy similar
to PC. Comparisons between both algorithms do not depend on this step.

The two experiments of section 7.4.8 prove that IMPEA favourably compares to
PC, actually, besides the fact that IMPEA relies on a convenient problem encoding,
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PC performs a deterministic and systematic search while IMPEA uses evolutionary
mechanisms to prune computational efforts and to concentrate on promising parts
of the search space. The limitation of PC according to problem size is obvious in the
first test (Comb network): PC is unable to capture a complex dependency, even on a
small network. Additionally it is to be noticed that IMPEA better resists to a current
problem of real life data, that is the insufficient number of available samples.

7.5 Conclusion

Parisian CCEAs and cooperative co-evolution in general, when applicable, yield ef-
ficient and robust algorithms. As we have seen in this chapter, the main concern
is the design of adequate representations for cooperative co-evolution schemes, in
other words, representations that allow a collective evolution mechanism. One has
to build an evolution mechanism that uses pieces of solutions instead of complete
solutions as individual. It is also needed to evaluate the pieces of solutions (local
fitness) before being able to select the best pieces that can be considered as compo-
nents of a global solution.

In the example of section 7.3, we first designed a classical GP, where the phase
estimator was searched as a single best “monolithic” function. Although it already
outperforms the previous other methods, we obtained additional improvements by
splitting the phase estimation into four combined (and simpler) “phase detectors”.
We actually used additional a priori informations about the problem. The structures
evolved here were binary output functions that characterised one of the four phases.
Their aggregation was made via a robust voting scheme. The resulting phase de-
tector has almost the same recognition rate as the classical GP but with a lower
variance, evolves simpler structure during less generations, and yield results that are
easier to interpret.

In section 7.4, the cooperative coevolution algorithm IMPEA has allowed over-
coming a known drawback of the classical approach, that is to find an efficient rep-
resentation of a direct acyclic graph. We have shown that the cooperative scheme
is particularly adapted to an alternate representation of Bayesian Networks: Inde-
pendence Models (IM). IM represent data dependencies via a set of Independence
Statements (IS) and IS can directly be considered as individuals of a CCEA.

The major difficulty, which is to build a Bayesian Network representative at each
generation has been overcome for the moment by a scheme that only built a global
solution at the end of the evolution (second step of IMPEA). Future work on this
topic will be focused on an improvement of the global fitness management within
IMPEA. The major improvement of IMPEA is that it only performs difficult com-
binatorial computations when local mechanisms have pushed the population toward
“interesting” area of the search space, thus avoiding to make complex global compu-
tations on obviously “bad” solutions. In this sense, CCEAs take into account a priori
information to avoid computational waste, in other words, complex computations in
unfavourable areas of the search space.
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Table 7.7 gives an overview of the features of the two CCEAs schemes presented
in this chapter. There are some major differences between the two approaches.

• With respect to the nature of the cooperation within the population: the Parisian
phase prediction is relying on components that are structured in 4 clusters (each
individual only votes for the phase it characterises the best), while IMPEA col-
lects the best individuals of its population in an archive to build the global inde-
pendence model.

• With respect to the synchonisation of the global fitness calculation: the Parisian
phase prediction computes a global fitness at each generation and use a bonus
distribution mechanism, while IMPEA only relies on local calculations at each
generation. The global calculation is made only once at the end of the evolution.

It is interesting to note that IMPEA may be considered as an incomplete Parisian
scheme, as it does not use any global calculation. Future work on this algorithm will
be aimed at evaluating if a global calculation may accelerate its convergence and ro-
bustness. Note however that for instance the fly algorithm [63, 41] does not use any
global fitness either, but is able to provide extremely rapid results: the cooperation
mechanisms may operate in some cases without global fitness.

The common characteristics of these two examples is that the cooperative scheme
has allowed representing in an indirect way some complex structures (classification
rules in the first example and Bayesian Networks in the second one). This way of
exploiting the artificial evolution scheme is versatile enough to facilitate the integra-
tion of constraints and the development of various strategies (archive and emboss-
ing points as in section 7.4, or variable population size as stated in [5] for instance).
The experiments described in this chapter join previous studies on “Parisian evolu-
tion”, that experimentally proved that very efficient algorithms can be built on this
cooperation-coevolution basis, in terms of rapidity [41], or in terms of size and com-
plexity of the problems [17, 63].
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Chapter 8
Hybridizing cGAs with PSO-like Mutation

E. Alba and A. Villagra

Abstract. Over the last years, interest in hybrid metaheuristics has risen
considerably in the field of optimization. Combinations of operators and metaheuris-
tics have provided very powerful search techniques. In this chapter we incorporate
active components of Particle Swarm Optimization (PSO) into the Cellular Genetic
Algorithm (cGA). We replace the mutation operator by a mutation based on concepts
of PSO. We present two hybrid algorithms and analyze their performance using a
set of different problems. The results obtained are quite satisfactory in efficacy and
efficiency, outperforming in most cases existing algorithms for a set of problems.

8.1 Introduction

Evolutionary Algorithms (EAs) applied to optimization problems represent a very
intense line of research during the last decade [1]. Well-accepted subclasses of EAs
are Genetic Algorithms (GA), Genetic Programming (GP), Evolutionary Program-
ming (EP), and Evolution Strategies (ES).

These EAs algorithms work over a set (population) of potential solutions (indi-
viduals) which undergoes stochastic variations in order to search for better solutions.
Most EAs work on a single population (panmictic) of individuals, applying opera-
tors to the population as a whole. However, working on a structured population in
which individuals interact in neighborhoods is also possible and successful com-
pared to panmictic techniques.
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Among the many types of structured EAs (where the population is somehow de-
centralized), distributed and cellular algorithms are the most popular optimization
tools [3], [4], [20], [24].

In a cellular Evolutionary Algorithm (cEA) the population is represented by a
two dimensional grid of individuals. Each individual in the grid has a neighbor-
hood that overlaps with the neighborhoods of its nearby individuals. The individuals
can only interact with their neighbors in the reproductive cycle where the variation
operators are applied.

This overlapping neighborhoods provide cEAs with an implicit slow diffusion
mechanism. The slow dispersion of the best solutions over the population is the
cause of a good balance between the exploitation and the exploration efficacy, some-
thing really sought when an efficient and accurate algorithm is designed. Never-
theless, this characteristic produces a slow convergence to the optimum and thus
decreases the efficiency of the algorithm. An open research line then consists in
creating new algorithmic models that try to improve the efficiency of a cEA by in-
corporating active components of other algorithms. This is not the only means to
leverage the efficiency of a cEA, but it is an structured and novel way of approach-
ing it that we are proposing in this chapter.

Over the last years, interest in hybrid metaheuristics has risen considerably in
the field of optimization [11]. Combinations of algorithms such as several meta-
heuristics in a single technique have provided very powerful search procedures. In
this work we intend to generate new functional and efficient hybrid algorithms in
a methodological and structured way. In particular our global idea is to use as the
base core technique a cGA algorithm and insert in its basic behavior some “active
principles” of other metaheuristics: movement of a particle from PSO, transition
probability from ACO, and Boltzmann probability from SA, among others. In this
case, concepts of Particle Swarm Optimization (PSO)[14] that are capital for its
good search properties are isolated and transferred to the base cGA.

PSO was originally designed and introduced by Eberhart and Kennedy [9], [14],
[16] in 1995. The PSO is a population based search algorithm inspired in the so-
cial behavior of birds, bees or a shoal of fishes. Each individual within the swarm
is represented by a vector in multidimensional search space. It has been shown that
this simple model can deal with difficult optimization problems efficiently. Many
versions and improvements to the original PSO have been proposed [5], [6], [12],
[18], [21].

This chapter is organized as follows. In Section 8.2 we show basic concepts of
cGA and PSO. In Section 8.3 we describe our hybrid algorithms. In Section 8.4 we
show the experiments and results. Finally, in Section 8.5, we describe some conclu-
sions and suggest future research lines.

8.2 Basic Concepts

In this section we briefly describe the metaheuristic techniques used in this work:
Particle Swarm Optimization and Celullar Genetic Algorithm.
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8.2.1 Particle Swarm Optimization

The Particle Swarm Optimization was developed by Kennedy and Eberhart in 1995
[14]. This is a population-based technique inspired by social behavior of the move-
ment of flocks of birds or schools of fish. In PSO the potential solutions, called
particles, “fly” or “move” through the problem space by following some simple
rules. All of the particles have fitness values based on their position and have veloc-
ities which direct the flight of the particles. PSO is initialized with a group of ran-
dom particles (solutions), and then searches for optima by updating them through
generations. In every iteration, each particle is updated by following two “best” val-
ues. The first one is the best solution (according to fitness) that particle has found
so far. This value is called pbest. Another “best” value that is tracked by the particle
swarm optimizer is the best value obtained so far by any particle in the population.
This best value is a global best and thus it is called gbest.

Every particle updates its velocity and position with the following equations:

vn+1 = ωivn +ϕ1 ∗ rand ∗ (pbestn− xn)︸ ︷︷ ︸
cognitive

+ϕ2 ∗ rand ∗ (gbestn− xn)︸ ︷︷ ︸
social

(8.1)

xn+1 = xn + vn+1 (8.2)

ωi is the inertia coefficient which avoid big fluctuations over time; vn is the particle
velocity; xn is the current particle position in the search space; pbestn and gbestn are
defined as the “personal” best and global best seen so far; rand is a random number
between (0,1); and ϕ1, ϕ2 are learning factors.

It is important to highlight in Equation 8.1 that the second term represents what
the particle itself has learned, and it is sometimes referred to as the “cognitive” term.
The cognitive component in the velocity equation represents the best performance
of the particle so far. The third term, sometimes referred as “social term” represents
the group best solution so far.

PSO was originally developed to solve real-value optimization problems. To ex-
tend the real-value version of PSO to a binary/discrete space, Kennedy and Eberhart
[15] proposed a binary PSO (BPSO) method. In their model a particle will decide
on “yes” or “no”, “true” or “false”, etc. also binary values can be a representation of
a real value in binary search space. In this binary version, the particle’s personal best
and global best is updated as in continuous version. The velocities of the particles
are defined in terms of probabilities that a bit will change to one. Using this defini-
tion, a velocity must be restricted within the range [0,1]. So a transformation is used
to map all real valued numbers of velocity to the range [0,1] [15]. The normalization
function used here is a sigmoid function s:

s(v j
n) =

1

1+ exp(−v j
n)

(8.3)
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where j represents the j− th component of the velocity.
Also, the Equation 8.1 is used to update the velocity vector of the particle. And

the new position of the particle is obtained using Equation 8.4:

x j
n+1 =

{
1 if r < s(v j

n)
0 otherwise

(8.4)

where r is a random number in the range [0,1].

8.2.2 Cellular Genetic Algorithm

A cGA is a subclass of Genetic Algorithms (GA) in which the population is
structured in a specified topology, so that individuals may only interact with their
neighbors. These overlapped small neighborhoods help in exploring the search
space because the induced slow diffusion of solutions through the population pro-
vides a kind of exploration, while exploitation takes place inside each neighborhood
by genetic operations. In Algorithm 8.1 we can see a pseudocode of the cGA [2],
[24]. We can view that after the generation and evaluation of the initial population,
genetic operators (selection, recombination, mutation, and replacement) are applied
to each individual within the environment of their neighborhoods iteratively until
the termination condition is met.

Algorithm 8.1. Pseudocode of a cGA
1: /∗ Algorithm parameters in ’cga’ ∗/
2: Steps-Up(cga)
3: for s←− 1 to MAX ST EPS do
4: for x←− 1 to WIDT H do
5: for y←− 1 to HEIGHT do
6: nList←− ComputeNeigh (cga,position(x,y));
7: parent1←− IndividualAt(cga,position(x,y));
8: parent2←− LocalSelect(nList);
9: /∗ Recombination ∗/

10: DPX1(cga.Pc,nList[parent1],nList[parent2],auxInd.chrom);
11: /∗ Mutation ∗/
12: BitFlip(cga.Pm,auxInd.chrom);
13: auxInd.fit ←− cga.Fit(Decode(auxInd.chrom));
14: InsertNewInd(position(x,y),auxInd,[if not worse],cga,auxPop);
15: end for
16: end for
17: cga.pop ←− auxPop;
18: UpdateStatistics(cga)
19: end for
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The population is structured in a two-dimensional (2-D) toroidal grid, and the
neighborhood defined on it (line 6) contains five individuals: the considered one
[position(x,y)] plus the north, east, west and south string (called NEWS or Linear5).
The considered individual itself is always selected for being one of its two parent
(line 7). The second parent is selected by Tournament Selection (line 8). Genetic
operators are applied to individuals in lines 10 and 12. We use in this chapter a
two point crossover operator (DPX1) and traditional binary mutation operator - bit-
flip. After applying these operators, the algorithm calculates the fitness value of the
new individual (line 13) and insert it on its equivalent place in the new population
(line 14) only if its value is better or equal than the old one (always adding the new
individual to the next population).

After applying the above mentioned operators to the individuals we replace the
old population by the new one (line 17), and calculate some statistics (line 18). The
resulting behavior is a synchronous elitist cGA.

8.3 Active Components of PSO into cGA

We begin this section by describing the basic ideas that have given rise to this work.
The modification of the canonical cGA is based in a global idea of capturing the
main characteristics of a different metaheuristic and incorporing them into a cGA
with the intention of improving its performance. In this chapter we used concepts
of PSO but in further works other metaheuristics will be considered like ACO (Ant
Colony Optimization), SA (Simulated Annealing), and VNS (Variable Neighbor-
hood Search), among others. Figure 8.1 graphically shows the global schema where
this work fits: in our travel in incorporating ideas of existing algorithms into a cGA
we start in this chapter with PSO, and plan to go for other techniques in the near
future.

To incorporate active components from PSO we maintain information about cog-
nitive and social factors during the execution of a regular synchronous cGA with the
intention of improving its performance.

In this work we propose two algorithms called hyCP-local and hyCP-global. In
both algorithms we will treat each individual as a particle. We maintain its velocity,
position and information about its personal (pbest), and social (gbest) knowledge
to update the information (velocity and position). Then a mutation based on PSO is
used and line 12 (mutation in the canonical cGA Algorithm 8.1) is replaced with the
following lines:

1: UpdateVelocity;
2: UpdateIndividual (cga.Pm, auxInd.chrom);

The first line updates the velocity of the particle using Equation 8.1. The second line
modifies the individual taking into account the mechanism with the sigmoid function
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Fig. 8.1 Inserting concepts of metaheuristics into a cGA

using Equation 8.4. The pseudo-code of the algorithms proposed is described in
Algorithm 8.2.

Algorithm 8.2. Pseudocode of hyCP-local and hyCP-global
1: /∗ Algorithm parameters ∗/
2: Steps-Up(cga)
3: for s←− 1 to MAX ST EPS do
4: for x←− 1 to WIDT H do
5: for y←− 1 to HEIGHT do
6: nList←− ComputeNeigh (cga,position(x,y));
7: parent1←− IndividualAt(cga,position(x,y));
8: parent2←− LocalSelect(nList);

/∗ Recombination ∗/
9: DPX1(cga.Pc,nList[parent1],nList[parent2],auxInd.chrom);

/∗Mutation based on PSO ∗/
10: UpdateVelocity;
11: UpdateIndividual (cga.Pm, auxInd.chrom);
12: auxInd.fit ←− cga.Fit(Decode(auxInd.chrom));
13: InsertNewInd(position(x,y),auxInd,[if not worse],cga,auxPop);
14: end for
15: end for
16: cga.pop ←− auxPop;
17: UpdateStatistics(cga)
18: end for

Both algorithms will apply this mutation based on PSO, with the difference that
hyCP-local uses the local neighborhood (Linear5), and then selects one neighbor
from there as gbest. For hyCP-global the global optimum of the all population is
used as gbest.
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8.4 Experiments and Analysis of Results

In this section we present the set of problems chosen for this study. Then for the
hyCP-local algorithm we determine which is the best way to select a neighbor from
the neighborhood. Finally, we present and analyze the results obtained when solving
all problems with our hybrids (hyCP-local and hyCP-global) and cGA, always with
a constant neighborhood shape (Linear5).

We have chosen a representative set of problems. The benchmarks contains many
different interesting features in optimization, such as epistasis, multimodality, and
deceptiveness. The problems used are Massively Multimodal Deceptive Problem
(MMDP) [10], Frequency Modulation Sounds (FMS) [23], Multimodal Problem
Generator (P-PEAKS) [13], COUNTSAT [8](an instance of MAXSAT [22]), Error
Correcting Code Design (ECC)[19], and Maximum Cut of a Graph (MAXCUT)
[17]. The problems selected for this benchmark are explained bellow:

Massively Multimodal Deceptive Problem (MMDP), made up of k deceptive
subproblems of 6 bits each one, whose value depends on the number of ones
(unitation) a binary string has. The global optimum has a value of k and it is
attained when every subproblem is composed of zero or six ones. We use here a
instance of k = 40 subproblems, and its maximum value is 40.

Frequency Modulation Sounds problem (FMS), is defined as determining six
real-parameters of frequency modulated sound model. The parameters are de-
fined in the range [−6.4,+6.35], and we encode each parameter into a 32 bit
substring in the individual. The optimum value for this problem is 0.0.

Multimodal Problem Generator (P-PEAKS), the idea is to generate P random
N−bit string that represent the location of P peaks in the search space. In this
chapter, we have used an instance of P = 100 peaks of length N = 100 bits each.
The maximum fitness value for this problem is 1.0.

COUNTSAT problem, is an instance of MAXSAT. In this problem the solution
value is the number of clauses that are satisfied by n−bit input string. The opti-
mum value is having all the variables set to 1. In this work, an instance of n = 20
variables has been used, with the optimum value of 6860.

Maximum Cut of a Graph (MAXCUT), for coding the problem we use a binary
string of length n. We have considered a graph of made up of 20 vertices. The
global optimal solution for this instance is 56.740064.

Error Correcting Code Design Problem (ECC), we will consider a three-tuple
(n,M,d), where n in the length of each codeword (number of bits), M is the
number of codewords, and d is the minimum Hamming distance between any
pair of codewords. We consider in the present chapter an instance where M = 24
and n = 12 which has an optimal fitness value of 0.0674.

The common parameterization used for all algorithms is described in Table 8.1,
where L is the length of the string representing the chromosome of the individuals.
One parent is always the individual itself while the other one is obtained by using
Tournament Selection (TS). The two parents are ensured to be different.
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Table 8.1 Parameterization used in our algorithms

Population Size 400 individuals
Selection of Parents itself + Tournament Selection
Recombination DPX1, pc = 1.0
Bit Mutation (Bit-flip for cGA), pm = 1/L
Replacement Replace If Not Worse
Inertia coefficient w = 1
Leaning factors ϕ1,ϕ2 = 1
Random value rand = UN(0,1)

In the recombination operator, we obtain just one offspring from two parents:
the one with the largest part of the best parent. The DPX1 recombination is applied
always (probability pc = 1.0). The bit mutation probability is set to pm = 1/L. The
exceptions are COUNTSAT, where we use pm = (L− 1)/L and the FMS problem,
for which a value of pm = 1/(2 ∗L) is used. These two values are needed because
the algorithms otherwise had a negligible solution rate with the standard pm = 1/L
probability.

We will replace a given individual on each generation only if the offspring fitness
is not worse than this given individual. The cost of solving a problem is analyzed
by measuring the number of evaluations of the objective function made during the
search. The stop condition for all algorithms is to find a solution or to achieve a max-
imum of one millon function evaluations. The last three rows represent the values
used only for the algorithms based on PSO.

To indicate the strength of the relations between different factors and performance
measures we perform here a statistical validation of results [7]. First, we should de-
cide between non-parametric and parametric tests: when the data is non-normally dis-
tributed we should use non-parametric methods, otherwise we use parametric tests.
To evaluate the normality of all results we applied a Kolmogorov-Smirnovtest. Then,
if we are comparing the results of two algorithms and the distribution of the results
is normal we will apply t-test, whereas if not normally distributed we will apply a
Wilcoxon test. When a comparison of more than two algorithms is needed and the
distribution is normal we will perform a ANOVA test, in other case the test we will
apply is Kruskal-Wallis.

First of all, for hyCP-local we implement two ways of selecting the social
knowledge (gbest) from the neighborhood of the individual. The first proposal se-
lects in a random way one neighbor from the neighborhood and uses it as social
knowledge (gbest). The second proposal selects the best neighbor from the neigh-
borhood and uses it as social knowledge (gbest).

To decide which is the best form to select this social knowledge we use both
of them to solve all problems. To test whether differences between the results of
the two proposals are statistically significantly we applied t-test (when the results
follow a normal distribution) and Wilcoxon test (when the results do not follow a
normal distribution). As regards to hyCP-global gbest is the best value found by any
particle with in the population. Throughout the paper all best values are bolded.
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Table 8.2 Results obtained using hyCP-local with Random Neighbor and hyCP-local with
the Best Neighbor for a set of problems

Random Neighbor Best Neighbor t-test/Wilcoxon
Problem Best Evals Time Evals Time Evals Time
ECC 0.07 162600 4345 141400 3369 (-) (+)
P-PEAKS 1.00 37800 3413 39600 3126 (-) (+)
MMDP 40 264800 9955 182000 5051 (+) (+)
FMS 0.00 412000 24795 462800 24269 (-) (-)
COUNTSAT 6860 224800 1491 348200 1848 (-) (-)
MAXCUT 56.74 7600 54 7600 41 (-) (-)

All algorithms are implemented in Java, and run on a 2.53 GHz Intel i5 processor
with 4 GB RAM under Windows 7.

In Table 8.2 the median results of 30 independent runs are included. The first
column (Problem) represents the name of the problem resolved, the second
column (Best) the better found value and then for each algorithm (hyCP-local with
a random neighbor select from the neighborhood and hyCP-local with best neighbor
select from the neighborhood) we show the median value for the number of evalu-
ations (columns Evals) needed to solve each problem and the time in ms consumed
(columns Time). Finally, the last column (t-test|Wilcoxon) represents the p-values
computed by performing t-test or Wilcoxon test as appropriate. We will consider a
0.05 level of significance. Statistical significant differences among the algorithms
are shown with symbols “(+)”, while nonsignificance is marked with “(-)”.

We can observe that the use of the best neighbor in hyCP-local in general pro-
duces better results than the ones got by using a random neighbor from the neighbor-
hood. In three problems addressed (P-PEAKS, FMS, and COUNTSAT) hyCP-local
with a random neighbor required less number of evaluations to obtain the optimum
than hyCP-local with the best neighbor. Regarding the time required to reach the op-
timum value in five of the six problems resolved hyCP-local with the best neighbor
requires less time to find optimal value compared to the time required by hyCP-
local with random neighbor. In addition in three of the six problems the difference
are statically significant. Taking into account this results we decide to use the best
neighbor in hyCP-local in the forthcoming study of this chapter.

In Table 8.3 we show the percentage of success in 150 independent runs for the
three algorithms. We can see that the success rate for our hybrids is higher (or equal
in some cases) than the cGA algorithm. Moreover, cGA obtained a very undesirable
(0%) hit rate for the COUNTSAT problem.

In Table 8.4 the following information is shown. The first column (Problem)
represents the name of the problem resolved, the second column (Best) the better
found value and then for each algorithm (hyCP-local, hyCP-global, and cGa) the
number of evaluations (columns Evals) needed to solve each problem and the time
in ms consumed (columns Time). Finally, the last column (ANOVA|K-W) repre-
sents the p-values computed by performing ANOVA or Kruskal-Wallis tests as
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Table 8.3 Percentage of success obtained by hyCP-local, hyCP-global, and cGA for a set of
problems out of 150 independent runs

Problem hyCP-local hyCP-global cGA
ECC 100% 100% 100%
P-PEAKS 100% 100% 100%
MMDP 58% 61% 54%
FMS 83% 81% 25%
COUNTSAT 80% 36% 0%
MAXCUT 100% 100% 100%

appropriate, on the time and evaluations results to assess the statistical significance
of them (columns Evals and Time). We will consider a 0.05 level of significance.
Statistical significant differences among the algorithms are shown with symbols
“(+)”, while non-significance is shown with “(-)”.

We can observe that our hybrid algorithms reduce the number of evaluations re-
quired to reach the optimum value and also in two problems (FMS and COUNTSAT)
these differences are statistically significant. Also, our hybrids required smaller time
to obtain the optimum for four of the six problems (P-PEAKS, FMS, COUNTSAT,
and MAXCUT). Nevertheless, the difference are statically significant only in two
cases (P-PEAKS and COUNTSAT) so we still need to investigate more on this is-
sue ofrunning time. This is an expected behavior since the mutation based on PSO
requires some additional calculations to keep individual updated and be able to use
individual and social knowledge as appropriate.

Table 8.4 Results obtained by cGA and our hybrids for a set of problems

hyCP-local hyCP-global cGA ANOVA/K-W
Problem Best Evals Time Evals Time Evals Time Evals Time
ECC 0.07 141400 3369 157600 4370 150000 2512 (-) (+)
P-PEAKS 1.00 39600 3126 38200 3376 39200 3283 (-) (+)
MMDP 40 182000 5051 211200 6457 144000 2295 (+) (+)
FMS 0.00 462800 24269 367400 22183 646800 29326 (+) (-)
COUNTSAT 6860 348200 1848 577200 3468 1000000 2342 (+) (+)
MAXCUT 56.74 7600 41 7000 51 8000 49 (-) (-)

Figure 8.2 shows the number of evaluations needed for each algorithm to reach
the optimum value in each problem. We can observe the median values and how
the results are distributed for the six problems. In Figures 8.2(a) and (b) the results
obtained for each algorithm are very similar and the difference among the results
are not statistically significant, but our hybrids seem to tend to require less number
of evaluations than cGA. In Figure 8.2(c) cGA obtained the higher median value
and the difference among the results are statistically significant. In Figure 8.2(d) we
can observe that median value was obtained by hyCP-global and also in this case
the difference among the results are statistically significant. In Figure 8.2(e) we can
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(a) ECC (b) P-PEAKS

(c) MMDP (d) FMS

(e) COUNTSAT (f) MAXCUT

Fig. 8.2 Box-plots of the number of evaluations required for the algorithms considering: (a)
ECC, (b) P-PEAKS, (c) MMDP, (d) FMS, (e) COUNTSAT, and (f) MAXCUT problems

see a marked difference in favor of hyCP-local. Recall that for this problem cGA
never found the optimal value. Finally, in Figure 8.2(f) hyCP-global obtained the
minimum value. Though clear best results are not always showing up, the trend and
the punctual over performance tells us of a comparable or better technique as to the
search effort.

Figure 8.3 shows the Time (ms) needed for each algorithm to reach the optimum
value for each problem. In Figures 8.3(b), (d), (e), and (f) we can observe that our
hybrids obtained the minimum median values in four of the six problems, and in two
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(a) ECC (b) P-PEAKS

(c) MMDP (d) FMS

(e) COUNTSAT (f) MAXCUT

Fig. 8.3 Box-plots of the Time required for the algorithms considering: (a) ECC, (b) P-
PEAKS, (c) MMDP, (d) FMS, (e) COUNTSAT, and (f)MAXCUT problems

cases the difference among the results are statistically significant. In Figures 8.3(a)
and (c) we can see how cGA obtained the minimum median values, and in both
cases the difference among the results are statistically significant.

8.5 Conclusions and Further Work

In this work we have presented the insertion of characteristics from a population-
based technique, PSO, into a cellular genetic algorithm. The motivation for this
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work was to improve the performance of cGA with the addition of components that
make efficient other metaheuristics, with the idea of getting even better results than
those already obtained by the core technique.

In this case we introduce a mutation based on local particle swarm optimization
(hyCP-local) and a mutation based on global particle swarm optimization (hyCP-
global). In nearly all the analyzed problems our hybrids obtained equal or better
results than the obtained without them. In five of the six problems analyzed the best
performance in terms of the number of evaluations was obtained by our hybrids.
Meanwhile, in three of the six problems analyzed the hybrid algorithms obtained
higher percentage of success than the obtained by cGA. As regards to the time re-
quired to reach the optimum values, only in four of the six problems discussed our
hybrids obtain the minimums values. This behavior is expected because the intro-
duction of the PSO concepts into cGA also introduces more processing time and this
affects the time required to reach the optimum values. In fact, getting faster running
times in four out of six problems is a very interesting result because of the expected
overhead in them.
These results encourage us to expand the set of problems discussed in future works
and to incorporate other active components from other metaheuristics.
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Chapter 9
On Gradient-Based Local Search
to Hybridize Multi-objective Evolutionary
Algorithms

Adriana Lara, Oliver Schütze, and Carlos A. Coello Coello

Abstract. Using evolutionary algorithms when solving multi-objective optimization
problems (MOPs) has shown remarkable results during the last decade. As a con-
solidated research area it counts with a number of guidelines and processes; even
though, their efficiency is still a big issue which lets room for improvements. In this
chapter we explore the use of gradient-based information to increase efficiency on
evolutionary methods, when dealing with smooth real-valued MOPs. We show the
main aspects to be considered when building local search operators using the objec-
tive function gradients, and when coupling them with evolutionary algorithms. We
present an overview of our current methods with discussion about their convenience
for particular kinds of problems.

9.1 Introduction

Over the last few decades, a huge development on theoretical and practical ap-
proaches on solving multi-objective optimization problems (MOPs) has been done;
either as multi-objective mathematical programming [14], or also as stochastic
heuristics like evolutionary algorithms—named in this case as multi-objective evo-
lutionary algorithms (MOEAs) [10, 9]. MOEAs are suitable to numerically approx-
imate solutions of MOPs for several reasons; we can specially mention that, by
nature, they spring an entire set of solutions on each run—instead of just one so-
lution point as the traditional methods do. Having a set-oriented procedure is very
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convenient when solving MOPs—we will clarify this idea later, using the next defi-
nitions.

Definition 9.1.1. The multi-objective problem (MOP) is defined as minimizing

F(x) := [ f1(x), f2(x), . . . , fk(x)]
T (9.1)

subject to:
gi(x)≤ 0 i = 1,2, . . . ,m (9.2)

where x = [x1,x2, . . . ,xn]
T ∈ R

n is the vector of decision variables (or decision pa-
rameters), fi : Rn → R, i = 1, ...,k, are the objective functions and gi : Rn → R,
i = 1, ...,m, are the constraint functions, which define the feasible region X of the
problem. The problem above is also known as a vector optimization problem. If
functions gi are not present, we are dealing with an unconstrained MOP.

Solving a MOP is very different than solving a single-objective optimization
problem (i.e. k = 1). Since some of the fi are normally “in conflict” with each other,1

the solution of a MOP is not given by a unique point; this is because normally no
single solution exists that provides the best possible value for all the objectives.
Consequently, solving a MOP implies finding a trade-off between all the objective
functions; this requires the generation of a set of possible solutions instead of a sin-
gle one—as in the single-objective optimization case. The notion of “optimality”
that we just informally described, was originally proposed by Francis Ysidro Edge-
worth in 1881 [13] and it was later generalized by Vilfredo Pareto, in 1896 [37].
This concept is known today as Pareto optimality and will be formally introduced
next.

Definition 9.1.2. Given two vectors x,y ∈ R
n, we say that x dominates y (denoted

by x≺ y) if fi(x)≤ fi(y) for i = 1, ...,k, and F(x) �= F(y).

Definition 9.1.3. We say that a vector of decision variables x ∈X ⊆ R
n is non-

dominated with respect to X , if there does not exist another x′ ∈ X such that
x′ ≺ x.

Definition 9.1.4. We say that a vector of decision variables x∗ ∈X ⊂Rn is Pareto
optimal if it is non-dominated with respect to X .

Definition 9.1.5. a) The Pareto set P∗ is defined by:

P∗ = {x ∈X |x is Pareto optimal}.

b) The Pareto front PF ∗ is defined by:

PF ∗ = {F(x) ∈R
k | x ∈P∗}

1 For example, one objective may refer to manufacture cost and another to quality of the
product.
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We thus wish to determine the Pareto optimal set, from the set X of all the decision
variable vectors that satisfy the constraints of the problem. Note, however, that in
practice just a finite representation of the Pareto optimal set is normally achievable.

Assuming x∗ as a Pareto point of (9.1), there exist [27] a vector α ∈ R
k, with

0≤ αi, i = 1, . . . ,k and ∑k
i=1 = 1 such that

k

∑
i
αi∇ fi(x

∗) = 0. (9.3)

A point x∗ that satisfies (9.3) is called a Karush-Kuhn-Tucker (KKT) point.

Example 9.1. Consider the following unconstrained MOP:

minimize F(x,y) :=
[
x2 + y2 , (x− 10)2 + y2]T

, (9.4)

where x,y ∈ R.
The Pareto set of this problem is the line segment [(0,0),(10,0)]⊂ R

2, and the
Pareto front is shown, as a continuous line, in Figure 9.1.
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Fig. 9.1 This figure illustrates the Pareto front for the Example 9.1, the axes represent the
value regarding each function—what we call the objective space. The points of Y are the
images of randomly taken vectors inside the domain.
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The set oriented nature of MOEAs had made them very popular among cur-
rently available methods for solving MOPs (see [8] for application examples). Even
though, efficiency is the main drawback when they are used, since the evaluation
of the objective functions is constantly made, each generation, for the whole popu-
lation. Current research about improving MOEAs includes their hybridization with
local searchers, in order to make a guided search at a particular moment of the pro-
cedure. The coupling of evolutionary algorithms with any local search procedure is
also known as a memetic algorithm [35].

Local search operators depend on the domain, since the goal is precisely to take
advantage of previous knowledge of the problem. A lot of research has been done on
local searchers, and memetic MOEAs, for discrete and combinatorial optimization
problems (see for example [25, 24, 26]). For multi-objective problems with contin-
uous domains, the local search has not been deeply studied as itself; this is probably
due to the fact that neighborhoods on continuous spaces have an infinite cardinal-
ity. The vicinity notion in continuous domain problems is related with open balls or
manifolds, so the natural choice is to study them by the differential properties of the
functions; this leads to the use of gradient information to compute better solutions.

In this chapter we focus on local searchers, for continuous MOPs, built to use
(implicitly and/or explicitly) the gradient information of the objective functions. We
focus mainly on unconstrained cases, but give some insights for the extension to
constrained search spaces.

In the rest of this chapter we develop the main ideas from particular work
[31, 28, 32, 29, 30] on local searchers for continuous memetic algorithms. We in-
troduce in the next section the basic concepts to study the gradient geometry in the
case of MOPs. In Section 9.3 we present algorithms, based on multi-objective line
search, emphasizing their particular features. The applicability of these methods,
when hybridizing MOEAs, is presented in Section 9.4 as well as some discussion
over the main hybridization aspects. Finally some conclusions and possible exten-
sions are included in Section 9.5.

9.2 Descent Cones and Directions

When solving an optimization problem with several objective functions, we have to
deal with several gradients—one for each function. Some gradient-based MOEAs
have been built to perform descent movements alternating the single gradient of
each objective function [16, 21]; this could have certain applications on prefer-
ences management. However, when designing a special local searcher for contin-
uous multi-objective problems, our focus lies on finding a suitable mechanism to
improve solutions using simultaneously every function gradient. The reason is that
such a good local searcher must have the feature that after its application, over a
single solution xi, it throws a new solution xi+1 which is better in the Pareto sense
(i.e. xi+1 dominates xi). This feature is very important when analyzing the global
convergence of the methods.
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Using gradient information to guide the simultaneous descent of several func-
tions can not be done in a straightforward way. The main reason is that, since the
objective functions are each other in conflict, their gradients typically point toward
different directions. This turns the task of finding a common improving direction
into another multi-objective problem. To understand the local behavior of gradient-
based methods in multi-objective optimization, descent cones constitute the main
tool since they were first used in the multi-objective evolutionary context by Brown
and Smith [6, 7].

We state next the main concepts and introduce the notation required for further
discussion.

Let f1, . . . , fk : Rn → R be continuous and differentiable, and 〈·, ·〉 denote the
standard inner product in R

n.
Let

∇ fi(x) =

(
∂ fi(x)
∂x1

, . . . ,
∂ fi(x)
∂xn

)

be the gradient of the function fi at x. Then, for each x ∈R
n and each i ∈ {1, . . . ,k},

with ∇ fi(x) �= 0, we define:

Hx,i =

{
v ∈ R

n :
〈
∇ fi(x),v

〉
= 0

}
,

H+
x,i =

{
v ∈R

n :
〈
∇ fi(x),v

〉≥ 0

}
,

and

H−
x,i =

{
v ∈ R

n :
〈
∇ fi(x),v

〉 ≤ 0

}
.

Since the set Hx,i is the orthogonal complement of the vector∇ fi(x), it is (if∇ fi(x) �=
0) in general a hyperplane2 of Rn; also, it divides the space in two n–dimensional
sets: H+

x,i and H−
x,i (see Figure 9.2).

Definition 9.2.1. We denote

Cx(−,−, . . . ,−) =
k⋂

i=1

H−
x,i. \ {0}.

as the descent cone pointed at x (see Figure 9.3). Similarly, the ascent cone is defined
by Cx(+,+, . . . ,+) =

⋂k
i=1 H+

x,i. \ {0}, and the diversity cones are the intersection
of hyperplanes when they are not all of the form H+

x,i and neither all of them of the
form H−

x,i.

When having k functions in a MOP, each function fi determines a gradient∇ fi and a
hyperplane Hx,i for a certain solution x. Summarizing, for each point x in the search

2 A hyperplane of an n-dimensional space is a subspace with dimension n1.
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Fig. 9.2 This figure shows the division of R2 into the two half-spaces, H+
x,i and H−x,i, induced

by the gradient of the function fi at the point x

Fig. 9.3 This figure shows the ascent cone Cx(+,+), the descent cone Cx(−,−), and the
diversity cones Cx(+,−) and Cx(−,+), for a certain point x, for a bi-objective problem
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space, the k functions determine a division of this space into one descent cone, one
ascent cone and 2k− 2 diversity cones—as they were previously named in [6]3.

Descent cones describe the dynamics of the search from a gradient-based geom-
etry point of view, and this has several important implications (see for example the
results presented in [42]) that are useful when building local search operators for
algorithms over real numbers. One primary observation [6] is that when the point
x is far away from any Pareto optimal point the descent cone is big. This happens
because the gradients are almost aligned; then, the chance of randomly generating
a direction/solution which simultaneously improves all the functions is high (nearly
50%). On the other hand, when the point x is near a Pareto optimal point, the gradi-
ents are almost linearly dependent, which means that the descent cone shrinks, and
the possibility of randomly generating a better point is low (see Figure 9.4).

Fig. 9.4 This figure shows two cases, when the point is near and when it is far from a Pareto
set; the descent cone Cx(−,−) shrinks down when the Pareto set is reached

The above analysis could explain why MOEAs have good performance at the
beginning of the search, and a slow convergence rate at latter stages—when points
are near to the Pareto front and the chance of generating randomly better points
is reduced. This observation inspires guidelines for a suitable hybridization; if it
is possible to identify when the evolutionary search is no longer producing good
results, this is then the time when the gradient-based local search can take part of
the process—in order to certainly improve solutions in a deterministic way.

3 In [6] the descent cones are defined, for illustrative purposes, by pictures of the corre-
sponding affine hyperplanes described here. We are stating the formal definitions using no
affine hyperplanes just to be consistent with our approach.
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Improving solutions implies performing movements in specific search directions.
In multi-objective optimization, as we have noticed, these directions should be able
to throw (at least locally) better solutions regarding all the functions simultaneously;
this is formally said by the next definition.

Definition 9.2.2. A vector v∈R
n is called a multi-objective descent direction of the

point x ∈ R
n if

v ∈Cx(−,−, . . . ,−).
In other words, a multi-objective descent direction is such that the directional deriva-
tives with respect to v in x are non-positive, i.e. 〈∇ fi(x),v〉 ≤ 0 for all i ∈ 1, . . . ,m
without allowing them to be all equal to zero. This means that if we perform a small
movement over v, we obtain a local improvement (decrease) simultaneously for all
the objective functions. In the next section, we present different ways to calculate
descent directions and to perform movements toward (and along) the Pareto set.
In particular, we present a result for the construction of a descent direction in the
simplest multi-objective case—two objectives.

9.3 Practical Approaches

9.3.1 Movements toward the Optimum

When running a MOEA, new points are generated by variation operators in or-
der to move (evolve) the population of solutions toward an approximation of the
Pareto set. Due to the stochastic nature of the process, a probability to generate non-
improving points does exist. On the other hand, when using gradient information
within a MOEA, the resulting hybrid algorithm is able to perform directed accurate
movements toward an improved solution. This newly computed point dominates
the original one when multi-objective descent search directions—together with a
suitable step size control—are used. As we mentioned before, computing such di-
rections is also a multi-objective problem [2]; since each objective provides its own
(gradient-based) range of movements for descent, all of these possible directions
need to be properly combined into a single one in order to efficiently guide a MOEA.

9.3.1.1 A Simple Bi-objective Descent Direction

The simplest way to combine two gradients, in order to get a common descent di-
rection, is by adding them. This fact has been already observed (e.g. [11]) but it has
not been exploited in memetic algorithms yet. The next result shows that this opera-
tion throws, in fact, a bi-objective descend direction. Unfortunately, Proposition 9.1
cannot be generalized for more than two objective functions. For that case, applying
other approaches—mentioned next—is necessary to obtain the descent direction;
even when this represents a higher computational cost.
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Proposition 9.1. Let x ∈ R
n, and let f1, f2 : Rn → R define a bi-objective MOP.

Then, the direction

∇x =−
(

∇ f1(x)
||∇ f1(x)|| +

∇ f2(x)
||∇ f2(x)||

)
, (9.5)

where || · ||= || · ||2, is a descent direction at x for the MOP.

Proof: Let us denote ∇i := ∇ fi(x)
||∇ fi(x)|| for i = {1,2}, and θ be the angle between ∇1

and ∇2. Then
Similarly, 〈∇x,∇2〉 ≤ 0; then, ∇x is a descent direction of the point x for the

defined MOP. Note that if ∇ fi(x) = 0, for i = 1 or i = 2, then x is a KKT point. ��
One of the main issues when using gradient-based tools is how to validate the

increase of the computational cost, after using the method, with the achieved im-
provements. The currently available MOEAs that use descent directions as local
search engines have two sources of computational cost. The first one is associated
to the fitness function evaluations required to estimate the gradients and to perform
the line search. The second source is related to the computation of the descent di-
rection itself. In this sense, and unlike previous approaches [15, 2, 20], this way
(Equation 9.5) of calculating a direction has the advantage of having a zero cost for
the computation of the descent direction. We claim that this procedure is the sim-
plest way to combine the gradients of two functions, but it can not be generalized
to more than two functions, since a similar arithmetic combination of them does not
produce a descent direction in general, see the following example:

Example 9.2. Assuming a three-objective problem such that, for a certain x,

∇ f1(x) = (1.000,1.000,1.000)

∇ f2(x) = (−0.944,0.970,0.374)

∇ f3(x) = (0.836,−0.177,−0.334).

Then, computing

∇x = −
(

∇ f1(x)
||∇ f1(x)|| +

∇ f2(x)
||∇ f2(x)|| +

∇ f3(x)
||∇ f3(x)||

)

= (−0.3826,−0.5262,−0.3730)

leads to
〈∇x,∇1〉=−1.2818< 0.

〈∇x,∇2〉 = 0.4423 > 0.

〈∇x,∇3〉=−0.2889< 0.

with ∇i := ∇ fi(x)
||∇ fi(x)|| for i = {1,2,3}. Then ∇x is not a common descent direction.
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9.3.1.2 General Approaches

The most commonly used proposals for computing multi-objective descent direc-
tions are the one from Fliege and Svaiter [15] and the one from Schäffler et al. [38].
Theoretical results about their efficacy and convergence are available. These meth-
ods return a common descent direction for all the objectives after solving a quadratic
optimization problem—which could be derived into a linear one. These approaches
have been already incorporated into multi-objective memetic strategies [44], [28],
[31]. Their main drawback is that, being greedy methods used to perform descents,
they can present a bias in case of unbalanced magnitudes of the gradient vectors.
However, these methods present some advantages, like having an intrinsic stopping
criterion and being quite effective in practice.

As an unbiased alternative, it is possible to use normalized gradients and to work
with the proposals developed by Bosman and DeJong [2], and, to manage con-
straints, by Harada et al. [20]. These methods look into the entire Pareto set of
descent directions and choose (randomly, at each step) one direction within it. The
cost of this approach is again related to solving a system of linear equations.

It is worth noting that other approaches [7, 31], which do not explicitly compute
the gradients, have also an acceptable performance using less resources. They are
completely based on the information extracted from the descent cones, at a partic-
ular moment during the search. One of these methods will be presented in the next
section.

9.3.2 Movements along the Pareto Set

Descent directions are not the only interesting directions to move along during
the multi-objective optimization search. Sometimes it is also beneficial to perform
movements along the Pareto set; or also, specifically directed movements toward
a particular region. Moving in a direction along the Pareto set is also possible us-
ing gradient-based continuation methods such as those described in [22, 41, 19],
or those with no estimation of the gradients required, as in [7] and [31]. We de-
scribe next an operator which is able to perform movements either toward or along
the Pareto set, making an automatic switch between these two types of movements
when a KKT point is almost4 reached.

9.3.2.1 The Hill Climber with Side-step

In [31] a novel point-wise iterative search procedure, called the Hill Climber with
Side-step (HCS) has been proposed. This procedure is designed to perform local
search over continuous domain MOPs. Based on the descent cone size and the

4 We set a tolerance parameter to consider if an approximation is ‘good enough’.
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Karush-Kuhn-Tucker conditions [27], the HCS is capable of moving both toward
or along the set of (local) Pareto points, depending on the location of the current
iterate. Since proximity and a good distribution of solutions are features for the ap-
proximations of Pareto sets, this local search operator has shown potential when
combined with MOEAs.

Two variants of the HCS have been proposed, a gradient-free version (denoted as
HCS1) and a version that exploits explicit gradient information (denoted as HCS2).
Both of them can be used as standalone algorithms to explore parts of the Pareto
set, starting with one single solution, and are able to handle constraints of the model
to some extent. In the following we will explain the two approaches as standalone
algorithms, complemented with the recommendations to be used within a memetic
algorithm.

HCS1 is based on the observation that the objective gradients are practically
aligned when the initial point is far away from the optima—and the descent cone
is almost equal to the half-spaces associated with each objective. So, the procedure
starts with an initial point x0, and the next iterate x1 is randomly chosen from a
vicinity B(x0,r) with radius r. If x1 ≺ x0 the movement direction for improvement
is set as v = x1− x0; if x0 ≺ x1, then the direction is flipped.

When a solution is near to a Pareto point, the gradients point nearly toward op-
posite directions, and the probability of generating a dominated or a dominating
point—like in the case above—is low (see Figure 9.4). So, when x̃1 is not compa-
rable against x0, the point is stored, and labeled, as a point which corresponds to a
specific diversity cone; then, a new trial point is generated. After Nnd trials obtain-
ing mutually non-dominated solutions, the proximity with the optima is assumed
and this triggers a ‘sidestep’ movement over the Pareto front.

To perform this sidestep movement, the stored points x̃1, . . . x̃Nnd are used in the
following way. If x̃1− x0 is, for example, in the cone C(+,−), then x0− x̃1 is in the
opposite cone C(−,+) (for the bi-objective MOPs, the general k-objective case is
analogue). When the limit for unsuccessful trials is reached, a search along C(−,+)
is performed; Taking advantage of the accumulated information, the following di-
rection is used:

vacc =
1

Nnd

Nnd

∑
i=1

si
x̃i− x0

‖x̃i− x0‖ , (9.6)

where

si =

{
1 if f1(x̃i)< f1(x0).

-1 else.
(9.7)

By construction, vacc is in C(−,+), and by averaging the trial search directions we
aim to obtain a direction5 which is ideally ‘perpendicular’ to the (small) descent
cone. Note that in this case vacc is indeed a ‘sidestep’ to the upward movement of
the hill climbing process as desired, but this search direction does not necessarily
have to point along the Pareto set (see next subsection for an alternative method
with better guidance properties); also, there is no guarantee that vacc indeed points

5 This direction has previously been proposed as a local guide for a multi-objective particle
swarm algorithm in [5].
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to a diversity cone, but in other case, there will be an improvement on the solution
anyway. This means that, even with these two considerations, this sidestep is still
a good option in practice, when working with few objectives or when coupling the
operator with evolutionary methods.

Algorithm 9.1. HCS1 (without Using Gradient Information)
Require: starting point x0 ∈ Q, radius r ∈�n

+, number Nnd of trials, MOP with k = 2
Ensure: sequence {xl}l∈� of candidate solutions
1: a := (0, . . . ,0) ∈�n

2: nondom := 0
3: for l = 1,2, . . . do
4: set x1

l := xb
l−1 and choose x2

l ∈ B(x1
l ,r) at random

5: choose i0 ∈ {1,2} at random
6: if x1

l ≺ x2
l then

7: vl := x2
l −x1

l
8: compute tl ∈�+ and set x̃n

l := x2
l + tlvl .

9: choose xb
l ∈ {x̃b

l ,x
1
l } such that f (xb

l ) = min( f (x̃n
l ), f (x1

l ))
10: nondom := 0, a := (0, . . . ,0)
11: else if x2

l ≺ x1
l then

12: proceed analogous to case ”x1
l ≺ x2

l ” with
13: vl := x1

l −x2
l and x̃n

l := x1
l + tlvl .

14: else
15: if fi0(x

2
l )< fi0(x

1
l ) then

16: sl := 1
17: else
18: sl :=−1
19: end if
20: a := a+ sl

Nnd

x2
l−x1

l

‖x2
l−x1

l ‖
21: nondom := nondom+1
22: if nondom = Nnd then
23: compute t̃l ∈�+ and set x̃n

l := x1
l + t̃la.

24: nondom := 0, a := (0, . . . ,0)
25: end if
26: end if
27: end for

Algorithm 9.1 shows the pseudocode of the HCS1 operator as a standalone pro-
cess. The sidestep direction is determined by the value of i0 (see line 5 and lines
15-20). For simplicity, the value of i0 is chosen at random. In order to introduce an
orientation to the search, the following modifications can be done in the bi-objective
case: in the beginning, i0 is fixed to 1 for the following iteration steps. When the
sidestep (line 23) has been performed Ns times during the run of an algorithm, this
indicates that the current iteration is already near to the (local) Pareto set, and this
vector is stored in xp. If in the following no improvements can be achieved accord-
ing to f1 within a given number Ni of sidesteps, the HCS ‘jumps’ back to xp, and a
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similar process is started but aiming for improvements according to f2. That is, i0
is set to −1 for the following steps (see Figure 9.5). A possible stopping criterion,
hence, could be to stop the process when no improvements can be achieved accord-
ing to f2 within another Ni sidesteps along C(+,−). This is in fact used as stopping
criterion. Finally, for the computation of tl more attention has to be paid (see Section
9.3.4). In the original proposal, a strategy analog to [12] was used for the presented
experiments.
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Fig. 9.5 This figure shows the performance of the HCS1 as standalone algorithm for Example
9.1; the ‘anchor’ picture shows the entire Pareto front, built using the steering mechanism
previously described.

The second version of the HCS consists of a movement toward the Pareto front,
using either a gradient-based descent direction, or a continuation-based movement
in case this descent direction does not exist. A possible realization of the HCS2 is
by using the descent direction presented in [38] (or the one in [15] as an alternative),
which is described next.

Let a MOP be given and q : Rn → R
n be defined by

q(x) =
k

∑
i=1

α̂i∇ fi(x), (9.8)

where α̂ is a solution of

min
α∈Rk

{
‖

k

∑
i=1

αi∇ fi(x)‖2
2;αi ≥ 0, i = 1, . . . ,k,

k

∑
i=1

αi = 1

}
. (9.9)
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Then either q(x) = 0 or −q(x) is a descent direction for all objective functions
f1, . . . , fk in x. This states that for every point x ∈ Q which is not a KKT–point a
descent direction (i.e., a direction where all objectives’ values can be improved) can
be found by solving the quadratic optimization problem (9.9). In case q(x) = 0 the
point x is a KKT–point. Thus, a test for optimality is automatically performed when
computing the descent direction for a given point x ∈ Q. Given such a point x, the
quadratic optimization problem (9.9) can be solved leading to the vector α̂ . In case

‖
k

∑
i=1

α̂i∇ fi(x)‖2
2 ≥ εP , (9.10)

i.e., if the square of the norm of the weighted gradients is larger than a given thresh-
old εP ∈ R+, the candidate solution x can be considered to be ‘away’ from a local
Pareto point, and thus, it makes sense to seek for a dominating solution. For this,
the descent direction (9.8) can be taken together with a suitable step size control.
If the value of the term in (9.10) is less than εP , this indicates that x is already in
the vicinity of a local Pareto point. In that case one can integrate elements from
(multi-objective) continuation [22, 1] to perform a search along the Pareto set. For
simplicity we assume that we are given a KKT–point x̂ and the respective weight α̂
obtained by (9.9). Then the point (x̂, α̂) ∈ R

n+k is contained in the zero set of the
auxiliary function F̃ : Rn+k → R

n+1 of the given MOP which is defined as follows:

F̃(x,α) =

⎛
⎜⎜⎜⎝

k
∑

i=1
αi∇ fi(x)

k
∑

i=1
αi− 1

⎞
⎟⎟⎟⎠ . (9.11)

In [22] it has been shown that the zero set F̃−1(0) can be linearized around x̂ by
using a QU-factorization of F̃ ′(x̂, α̂)T , i.e., the transposed of the Jacobian matrix of
F̃ at (x̂, α̂). To be more precise, given a factorization

F̃ ′(x̂, α̂)T = QU ∈ R
(n+k)×(n+k), (9.12)

where Q = (QN ,QK) ∈ R
(n+k)×(n+k) is orthogonal with QN ∈ R

(n+k)×(n+1) and
QK ∈ R

(n+k)×(k−1), the column vectors of QK form—under some mild regular-
ity assumptions on F̃−1(0) at (x̂, α̂), see [22]—an orthonormal basis of the tan-
gent space of F̃−1(0). Hence, it can be expected that each column vector qi ∈ QK ,
i = 1, . . . ,k− 1, points (locally) along the Pareto set and is thus well suited for a
sidestep direction. The step size control is explained in detail in [31].

Based on the above discussion, the HCS2 is presented in Algorithm 9.2. It is
worth to remark that this is one possible realization and that there exist certainly
other ways leading, however, to similar results. For instance, alternatively to the
descent direction used in Algorithm 9.2, the ones proposed in [15] and [4] can be
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taken as well. The threshold εP is used for the vicinity test of a given local Pareto
point. This value is certainly problem dependent, but can be made ‘small’ due to
convergence properties of the hill climber (e.g., [15]).

Further, the movement along the Pareto set can be realized by predictor-corrector
methods [22, 1] which consist, roughly speaking, of a repeated application of a
predictor step obtained by a linearization of F̃−1(0) and a corrector step which can
be done, e.g. via a Gauss-Newton method.

It is worth noting that although the HCS2 is proposed for the unconstrained case,
an extension to the constrained case for the hill climber is possible (see, e.g., [15]
for possible modifications); but, this is not straightforward for the movement along
the Pareto set (i.e., the sidestep). Though it is possible to extend system (9.11) using
equality constraints (e.g., by introducing slack variables to transform the inequal-
ity constraints into equality constraints); but according to [22], this could lead to
efficiency problems in the numerical treatment.

Algorithm 9.2. HCS2 (Using Gradient Information)
Require: starting point x0 ∈ Q
Ensure: sequence {xl}l∈N of candidate solutions
1: for l = 0,1,2, . . . do
2: compute the solution α̂ of (9.9) for xl .
3: if ‖∑k

i=1 α̂i∇ fi(xl)‖2
2 ≥ εP then

4: vl :=−q(xl)
5: compute tl ∈ R+ and set xl+1 := xl + tl vl
6: else
7: compute F̃ ′(x̂, α̂)T = (QN ,QK)U as in (9.12)
8: choose a column vector q̃ ∈ QK at random
9: compute t̃l ∈ R+ and set xl+1 := xl + t̃l q̃.

10: end if
11: end for

The HCS shows large potential when used within multi-objective memetic al-
gorithms; mainly because it performs an efficient local search which starts with
one point and ends not only with an improvement of this point, but also, with two
candidates for spread. Figure 9.6 ilustrates the application of the HCS as a local
searcher over a population of three individuals, when the points are far, a hill climber
movement (HC) is perfomed; and the hill climber sith side step (HCS) is applied
when the optima is ‘almost’ reached. The operator can repeat the descent step—hill
climber—several times until a sidestep is triggered. An analysis of the performance
of these two versions, and comparisons in terms of efficiency and cost, can be found
in [31].
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Fig. 9.6 This figure shows the way to use the HCS as local search operator, in order to be
coupled with a set oriented heuristic. The local search starts with a point and ends with an
improved point, or with three points, the one obtained by the gradient-based descent and the
other two obtained by sidesteps.

9.3.3 Directed Movements

It is possible, furthermore, to perform directed movements not only toward and
along the Pareto front, but also to any desired direction in the objective space; for
this, the Directed Search Method (DS) was recently proposed [40, 39]. This method
has the advantage of performing movements along determined paths in the objective
function space.

9.3.3.1 The Directed Search Method

When working with MOPs, performing local search movements toward a particular
region is sometimes desired. In this scope, a proposal [40] for the computation of
directed search movements was recently introduced. The complexity of this operator
is again linear and only first order gradient information is necessary in order to use
it. This approach calculates a gradient-based descent direction using a controlled
bias toward regions of interest determined in objective space; because of that, this
proposal has many potential applications in the context of designing hybrid MOEAs.

Under the assumption that x0 ∈ R
n is not a KKT point—in particular is also not

a Pareto optimal point—a descent direction must exist such that all the directional
derivatives must be non positive. In other words, once a vector−α ∈�k is chosen,
with α ∈ R

k, 0 ≤ α, ∑k
i=1αi = 1, representing a desired search direction in image

space. Then, a search direction ν ∈�n in parameter space is sought such that for
y0 = x0 + tν , where t ∈�+ is the step size, it holds:
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lim
t↘0

fi(y0)− fi(x0)

t
= 〈∇ fi(x0),ν〉=−αi, i = 1, . . . ,k. (9.13)

Using the Jacobian J of F,

J(x0) =

⎛
⎜⎝
∇ f1(x0)

T

...
∇ fk(x0)

T

⎞
⎟⎠ ∈�k×n, (9.14)

Equation (9.13) can be stated in matrix vector notation as

J(x0)ν =−α. (9.15)

Then, this search direction ν can be computed by solving a system of linear equa-
tions. It is important to remark that system (9.15) is typically highly underdeter-
mined—since in most cases the number of parameters is (much) higher than the
number of objectives in a given MOP—which implies that its solution is not unique.

To find a solution of this system, one option is to take the greedy choice, i.e., the
solution with the smallest norm, which is given by

ν = J(x0)
+(−α), (9.16)

where J(x0)
+ ∈�n×k denotes the pseudo inverse of J(x0). In case the rank of J :=

J(x0) is maximal (which we will assume in the following), the pseudo inverse is
given by J+ = JT (JJT )−1. Given a ‘descent direction’ −α ∈ �k, a sequence of
dominating points in ‘direction −α’ can thus be found by numerically solving the
following initial value problem:

x(0) = x0 ∈�n

ẋ(t) = J(x(t))+(−α), t > 0.
(IVP(−α))

One observation worth noting is that even if −α is a descent direction, there is no
guarantee that the solution curve c of (IVP(−α)) always leads to a Pareto optimal
solution. When the image F(�n) is bounded below, however, c leads to a bound-
ary point x∗ of the image. Since for x∗ it holds rank(J(x∗)) < k, this can be used
to trace numerically the end point of (IVP(−α)) in a certain way—the numerical in-
tegration can be stopped if the condition number κ2(J(xi)) exceeds a given (large)
threshold. In [34], more insights about efficient computation of such end points, e.g.
specialized predictor-corrector (PC) methods are presented. For the case of m active
inequality constraints, the details can be found in [40, 33].

Even when setting α looks like imposing a weights vector, this method is able
to also reach non-convex regions on the front; this is illustrated in Figure 9.7. For
several reasons, this method would be a good choice to be used as a local engine
inside a gradient-based memetic algorithm. For example, it is a good alternative to
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Fig. 9.7 Numerical result and comparison for the Directed Search method and the weighted
sum method, starting from the same point and performing the movement with direction α =
[0.55,0.45]T , toward a non-convex region

greedy approaches like [15] and [38]; it can also perform a movement similar to the
one proposed in [4], but in a user-preference controlled way. This means that, using
a reference point Z ∈ R

k we can compute α as follows

α(x0,Z) :=
F(x0)−Z
||F(x0)−Z||1 ,

having in this way a guided route for the descent (see Figure 9.8). When applying
greedy strategies, for a multi-objective gradient-based descent, for functions with
unbalanced magnitudes, it is possible to get an undesired bias. This method avoids
this potential problem. This method also gives us the best direction (nearest point)
according to the reference point Z, by applying the following continuation strategy
to perform a search along the Pareto set as follows:

Assume we are given a (local) Pareto point x and the related KKT weight α , i.e.,
such that

k

∑
i=1

αi∇ fi(x) = 0 (9.17)

and further we assume that

rank(J(x)) = k− 1 (9.18)
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Fig. 9.8 Solution paths thrown by the Directed Search method for three different starting
points, using the same target point Z

It is known (e.g., [22]) that in this case α is orthogonal to the Pareto front at y =
F(x), i.e.,

α ⊥ Ty∂F(�n), (9.19)

where ∂F(�n) denotes the border of the image F(�n). Thus, a search orthogonal to
α (again in image space) could be promising to predict a new solution near x along
the Pareto set. To use (9.15), for instance a QR-factorization of α can be computed,
i.e.,

α = QR, (9.20)

where Q = (q1, . . . ,qk) ∈�k×k is an orthogonal matrix and qi, i = 1, . . . ,k, its col-
umn vectors, and R = (r11,0 . . . ,0)T ∈�k×1 with r11 ∈�\{0} (for the computation
of such a factorization we refer e.g. to [36]). Since by Equation (9.20) α = r11q1,
i.e., α ∈ span{q1}, and Q orthogonal it follows that the column vectors q2, . . . ,qk

build an orthonormal basis of the hyperplane which is orthogonal to α . Thus, a
promising well-spread set of search directions νi may be the ones which satisfy

J(x)νi = qi, i = 2, . . . ,k. (9.21)

In a next step, the predicted points pi = x+ tiνi, where ti ∈� are step sizes, can be
corrected back to the Pareto set. For this, one can e.g. solve numerically (IVP(−α))
using pi as initial value and−α as direction in (IVP(−α)). Continuing this procedure
iteratively leads to a particular PC variant for MOPs. Note that here no Hessians of
the objectives have to be computed which is indeed the case for other existing multi-
objective PC methods.
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To conclude, we mention that when mixing local searchers with evolution-
ary algorithms, having a method to steer the search—like the Directed Search
method—has a lot of potential. We will show this in the next section.

9.3.4 Step-Length Computation

As a final remark for the section, we note that once the movement direction is set,
choosing a suitable step size is not an easy task in multi-objective optimization. In
practice, different proposals have been tested with good results [12, 43, 31]. One
possibility [15] is also to adapt the well known Armijo-Goldstein rule to the multi-
objective case, and accept any step length t that holds

F(x+ tv)≤ F(x) − ct J(x)ν,

where F : Rn → R
k is the multi-objective function and J(x) : Rn → R

n is the Jaco-
bian matrix of F at x. The value c ∈ (0,1) is a control parameter to decide how fine
grained, numerically speaking, the descent will be. A bad choice of c can highly
increase the cost related to function evaluations. With a suitable initial step length,
this method is easily applicable; however, finding an efficient approach in the gen-
eral multi-objective case is still an open problem.

9.4 Toward the Hybridization

9.4.1 Main Issues

We have shown, in the previous sections, that there are some options available
to compute directions—based on gradient information—in the context of multi-
objective optimization; but, the question of how to efficiently integrate them into
a population-based context—as in the set oriented algorithms, such as MOEAs
are—remains wide open. In this sense, it is also worth noting that the suitable choice
of the movement direction relies also on the location of the point, and on the location
of all the other population individuals (see Figure 9.9).

Once the descent direction ν, for a specific point x∈R
n, is obtained, the new line

search function is defined as

f i
ν : R−→ R

t �−→ fi(x+ tν).

Now, the difficulty turns into the computation of the step size for f i
ν at x, because

it is again a multi-objective problem (see Figure 9.10). Even when approximations
of the optimal step size for each function are easy to estimate, the question is how
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Fig. 9.9 This figure shows that, in a population context, an efficient search direction for each
individual depends on several factors

to combine this information to find a common step to maximize the improvement.
In this case an exact step size calculation is not possible; but, the use of inexact
methods, like those described at Section 9.3.4, is a good option in practice. Step
size is an important issue since it compromises the efficiency of the local search and
the memetic algorithm as well. Even when the computation of the search direction
and the step length are apparently independent of each other, a bad choice of the
second can raise the cost of the procedure by several times.

Talking about hybridization with gradient-based local searchers, another impor-
tant issue is that it is not possible to a priori determine a specific amount of re-
sources, to be specifically devoted, for the local search procedure and the global one
as well. In this sense, in order to produce efficient algorithms, an adaptive mech-
anism to control the use of local search is advised; but, this is itself a non-trivial
problem. Gradient-based local search is typically a high-cost procedure; then, such
a balance mechanism must be capable of determining when the gradient method
outperforms the pure evolutionary search, during the solution of a specific prob-
lem—which means that the procedure is cost-effective. One possible option is to
incorporate local search, as a method to refine solutions, only at the end of the
search (as suggested in [18]); but this leads to a two-stage algorithm, and the pre-
cise time to start the local search is critical. In this sense, a proposal about doing
the switch during running-time is presented in [29]. The main idea is to start the
second stage when the evolutionary procedure is not improving the solutions any-
more; for example, when all the individuals are mutually non-dominated, and the
selection mechanism of the MOEA faces troubles because of that. In this case a
refinement with a certain direction for improvements is desirable—precisely what
is done with gradient-based methods. On the other hand, using deterministic search
directions—over the stochastic technique—may accelerate the ‘convergence’ of the
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Fig. 9.10 Simultaneous line search for three functions along the direction v. Even when solv-
ing separately the m line searches getting t1, t2 and t3, it is not possible to say which is the
suitable step length for all of them together.

search when dealing with problems with very smooth fitness landscapes; then, in
this cases the use of gradient-based procedures from the beginning of the search
can be advantageous [28]. In conclusion, an adaptive switch mechanism between
the two search engines (the local and the global one) during running-time is the
desirable choice; but this is still an open research problem.

A final consideration comes with the fact that when dealing with population-
based algorithms, it is important to keep a bounded archive of improved solutions.
When using evolutionary algorithms, there are several available mechanisms to limit
the size of this archive. This turns into an issue when resources have been spent us-
ing local search, since this bounding mechanisms typically delete solutions without
notice if it has been previously improved by an expensive mechanism or not. When
using gradient information at the end of the search, solutions are accurate in propor-
tion to the amount of resources we want to spend in the line search. Finally, when
building hybrid algorithms, saving the previously refined solutions from the trun-
cation mechanism is mandatory; then, it is necessary to set special mechanisms to
archive solutions in these cases.

9.4.2 Early Hybrids

Early attempts to combine MOEAs with gradient-based information use well-
known MOEAs as their baseline algorithms, and simply replace the mutation oper-
ator by a line search procedure [44][45]. Other proposals have used gradient-based
local search as an additional operator to be applied under certain rules during the
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MOEA run [2][3]. Within this same line of thought, other mathematical program-
ming techniques such as SQP [17] or the reference point method [49] have also been
coupled with MOEAs [23][46]. It is worth noting for completeness, that in hybrid
MOEAs using separately the gradients of single objectives is also possible, only
when dealing with few-objective problems [21].

In [28] it is presented a two-stage algorithm (GBMES) which uses gradient-based
line search in a first stage, in order to quickly reach points that are close to the Pareto
set. During this stage, a MOEA with a reduced population size was combined with
the gradient-based local search. The balance of resources to apply the local search
was naturally given by the selection of the best individuals, from the small popula-
tion. After spending a certain amount of resources, the second stage attempted to re-
construct the front (see [28] for details). This proposal has the natural drawbacks of
being a two-stage procedure and has some limitations to be applied in general. Nev-
ertheless, this work showed the potential advantages of using a descent direction of
movement when dealing with problems with a high number of parameters; mostly
because when the space is highly dimensional, the evolutionary techniques—avid
to keep a uniform distribution of the population—can easily get lost, making very
profitable to count with certain search directions.

In [31] the HCS operator is coupled with two state-of-the-art MOEAs. The effec-
tiveness of this hybrid algorithm was assessed in conventional test problems for
MOEAs. In most cases, the advantages of the hybrid method over the original
MOEA were very clear. The balance of the resources for this local search opera-
tor was made through an a priori set probability function. We confirmed (previ-
ously stated in [24]) with this work that the part of the balance (local vs. global
search) is, in general, the most important issue in terms of efficiency, for this type of
algorithms.

Also, an attempt to perform a dynamic balance control (between the two opera-
tors) is presented in [29]. Here, an indicator over the improvements made by the evo-
lutionary search is combined with a probability function, which controls the number
of individuals to be modified by the local search. This approach shows promising
results on traditional benchmarks.

9.5 Conclusions and New Trends

We presented, in this chapter, different gradient-based local search operators with
diverse features. Apart from the cost of computing the gradients of the objective
functions, we described a computational zero-cost descent direction, suitable for
bi-objective problems. We also presented operators to perform movements both to-
ward and along the Pareto set. The HCS has been presented in two versions, with
and without explicit use of gradient information, and its main feature lies on the
automatic switch between the two movements (hill climbing and sidestep) which
makes it a powerful local searcher.
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The terms convergence and spread are commonly used when talking about ap-
proximations of sets in the multi-objective context (mostly the Pareto set or its im-
age, the Pareto front). Convergence is about the proximity of the solutions toward
the set of interest, while spread relates to the minimal distance of these solutions
to each other—which should be maximized in order to ’capture’ as much as pos-
sible from the set of interest. The feature of our methods, to operate between a
range of movements—toward, along and directed—is very promising when solving
MOPs, because of the importance of the balance between convergence and spread.
Even when these method are compromised, like other gradient based local searchers,
when used in problems with a high number of local Pareto points, they have been
found to be efficient in combination with MOEAs.

Although particular descent directions, to improve the convergence of approxi-
mation sets, have been suggested for MOPs (e.g., [15, 38]), their use within memetic
strategies is not widely accepted. This is maybe due to an undesired bias of the cho-
sen descent directions. The presented DS method goes beyond and allows the search
to be steered in a particular controlled direction, which has so far not been consid-
ered. Here, the greedy direction from a given solution can be redefined according to
preferences—in order to steer the search along all the regions of the front, or those
that are difficult to explore by conventional MOEA mechanisms.

Regarding open research problems, we can state the adaptation of inexact meth-
ods for step-size control (such as Wolfe conditions, Armijo conditions, etc.) to the
multi-objective search. Ensuring convergence, and the study of speed of conver-
gence, for these methods are important issues to address when building an efficient
interleaving between MOEAs and local search. We also mention that adaptive con-
trol of the resources allowed for the local search during runtime is one of the main
issues of this hybridization. This control should automatically determine when the
evolutionary operators are not producing improvements and when the introduction
of gradient-based local search is cost effective. Another promissing possibility is to
combine several local search heuristics in a same hybrid algorithm by an adaptive
control mechanism, like in [47, 48].

Finally, a very important aspect of hybrid MOEAs is the archive management.
It is not desirable that our archiving strategy (like crowding or truncation) destroys
the refinement previously done to certain solutions. Hence, every gradient-based
algorithm should be coupled with a suitable archiving strategy. Interleaving the se-
lection process and the gradient-based improvements with the archiving strategy of
a MOEA is also a promising path for future research.
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Chapter 10
On the Integration of Theoretical
Single-Objective Scheduling Results
for Multi-objective Problems

Christian Grimme, Markus Kemmerling, and Joachim Lepping

Abstract. We present a modular and flexible algorithmic framework to enable a
fusion of scheduling theory and evolutionary multi-objective combinatorial opti-
mization. For single-objective scheduling problems, that is the optimization of task
assignments to sparse resources over time, a variety of optimal algorithms or heuris-
tic rules are available. However, in the multi-objective domain it is often impossible
to provide specific and theoretically well founded algorithmic solutions. In that situ-
ation, multi-objective evolutionary algorithms are commonly used. Although several
standard heuristics from this domain exist, most of them hardly allow the integra-
tion of available single-objective problem knowledge without complex redesign of
the algorithms structure itself. The redesign and tuned application of common evo-
lutionary multi-objective optimizers is far beyond the scope of scheduling research.
We therefore describe a framework based on a cellular and agent-based approach
which allows the straightforward construction of multi-objective optimizers by com-
positing single-objective scheduling heuristics. In a case study, we address strongly
NP-hard parallel machine scheduling problems and compose optimizers combin-
ing the known single-objective results. We eventually show that this approach can
bridge between scheduling theory and evolutionary multi-objective search.

10.1 Introduction

Since almost a century, scheduling problems are subject to theoretical research.
Many principles in the assignment of tasks to sparse resources over time are well
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understood and a variety of optimal algorithms or heuristic rules are available. For
many approaches the theoreticians can give approximation factors, which provide
worst-case guarantees for certain heuristics in comparison to the optimal case. If
there is no approximation factor, however, theoretical foundations at least provide
some deeper insights into problem properties. In the simplest case, this knowledge
might be expressed in rules of thumb to address problems heuristically. A good ex-
ample for the incorporation of such knowledge is the large amount of dispatching
rules, see Haupt [21] for a survey, that address scheduling problems in a simple yet
effective way.

However, algorithms and rules are almost exclusively available for single-objec-
tive optimization problems. In cases where multiple objectives must be optimized
simultaneously, it is seldom possible to provide algorithmic solutions. Instead, re-
search mainly focuses on the complexity of such problems. This is due to the very
specific definition of multi-objective optimality: instead of a single solution, such
problems usually comprise a whole set of optimal solutions in which each solu-
tion is incomparable to others—defining the so called Pareto-front. To solve multi-
objective problems, scheduling theoreticians resort to general purpose approaches
like the ε-Constraint or Tchebycheff method. They allow the integration of single-
objective knowledge as local search methods but do not include global mechanisms
for the solution set approximation.

Alternatively, there are nowadays various randomized search heuristics for
multi-objective problems available. Especially, the multi-objective evolutionary al-
gorithms have been constantly adapted to more and more challenging problems.
Although such approaches yield convincing results on various problem instances,
they are only accepted with reservation by theoretical scheduling researchers due to
their inherent random processes. The random manipulation of solutions by an evo-
lutionary algorithm is even sceptically considered as blind guesswork. In the single-
objective case, it is recommended to support the random search by already achieved
problem knowledge. This might be either realized by starting from a heuristically
generated solution or by integrating problem knowledge into special tailored search
operators. Consequently, one would expect to support multi-objective search by the
clever combination of corresponding single-objective problem knowledge in a sim-
ilar way. This is expected to improve an algorithm’s problem related performance.

However, for multi-objective evolutionary algorithms the integration of single-
objective problems knowledge is difficult. A problem specific adoption of these al-
gorithms usually implies a complex redesign and requires detailed insight into the
algorithm’s theoretical background as well as into its implementation. The optimizer
can be considered as monolithic black box where each algorithmic component has
its own special purpose and the sophisticated interplay between components make
the whole procedure efficiently work. A monolithic algorithm does not provide any
interfaces to enable specific modifications. As such, the tuning of common evolu-
tionary multi-objective optimizers is far beyond the scope of scheduling research.

To overcome this drawback, we provide a modular and flexible algorithmic
framework to enable a fusion of scheduling theory and evolutionary combinatorial
optimization especially for multi-objective problems. We define such a framework
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based on a cellular and agent-based approach that is motivated from the predator-
prey model proposed by Laumanns and colleagues [27] in 1998. There, predators
represent a single objective each and locally threaten prey individuals represent the
multi-objective problem’s solutions. As inherent effect of multiple predators the au-
thors expected an adaptation of the prey to all predator influences and the emergence
of trade-off solutions.

We start with a detailed analysis of single-objective scheduling heuristics and
discuss their combination and applicability in multi-objective problems considering
different scheduling problems. Then, we review the agent-based system on a spatial
population and provide a detailed review of its properties. Based on these results,
we define a general framework which allows the straightforward composition of
single-objective scheduling heuristics to build multi-objective optimizers. In a case
study, we finally show that this approach can bridge between scheduling theory and
evolutionary multi-objective search.

10.2 Scheduling Problems and Theoretical Results

Scheduling is the assignment of jobs J = {1, . . . ,n} to resources M = {1, . . . ,m}
while a set of constraints must be met. Each job j has a processing time p j and
often some further properties like a release date r j, a due date d j, and a weight wj.
The aim is to find an assignment such that one or many conflicting objectives are
optimized. Typically, scheduling problems are formulated in the α|β |γ three-field
notation [15], where α denotes the machine environment, β a set of constraints or
additional restrictions, and the γ-field contains the list of objectives. We use the pure
summation sign (∑) as abbreviation for a sum over all jobs (∑n

j=1) for the matter of
simplicity.

An example of an easy scheduling problem is the check-in counter queue prob-
lem, denoted as 1|r j|∑Uj. Here, 1 denotes a single check-in counter (single ma-
chine) where passenger j arrives at time r j. The objective is to ensure that only a
minimum number of passengers miss their flight. That is expressed by minimizing
the number of tardy jobs∑Uj. Naturally, this requires a due date d j for each passen-
ger.1 Pm||Cmax extends the environment to m counters. In this case, the objective is
to check-in all passengers in shortest possible time. Each passenger j is checked at
time Cj, the completion time of the job, while Cmax denotes the time the last passen-
ger is admitted (max j=1...n{Cj}). Assuming that all passengers already wait before
the counters in the beginning (r j = 0), our problem becomes a load balancing task.

Pm|r j ,Mj|∑wjTj is another example for the parallel machines environment and
describes a system (e.g., a compute cluster) with m identical machines in parallel.
Job j arrives at release date r j and has to leave by the due date d j. According to some
conditions (e.g., memory, operating system) job j may be processed only on one of
the machines belonging to the subset Mj. If job j is not completed in time, a penalty

1 Although d j can be regarded as restriction, we omit it from the β part as its existence is
implied by the due date related objective.
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wjTj depending on the job’s importance wj and the tardiness Tj = max{0, Cj−d j}
is incurred.

As Pinedo [35] states, practitioners have already dealt with scheduling
problems in manufacturing at the beginning of the last century. However the first
publications on this topic appeared in the early fifties. In the seventies, research fo-
cused mainly on the complexity of single-objective scheduling. The eighties then
were identified by Hoogeveen [23] as starting point for detailed investigations of
multi-objective scheduling problems. The obtained complexity results for single and
multi-objective—of which a few will be summarized in this section—took away the
hope of solving many problems optimally in polynomial time. This led to the de-
velopment of heuristics, which try to approximate optimal solutions in reasonable
time.

10.2.1 Single-Objective

In the last sixty years, a lot of research was done in the field of single-objective
scheduling. As long as not stated otherwise, the following results are taken from
Pinedo [35] who gives a good overview of the developed algorithms and complexity
results. Another good starting point is Brucker’s and Knust’s web page2. Since we
will deal with identical parallel machines, this section is focused on the results for
this environment. The single-machine environment is a special case of Pm. This
implies when a problem with one machine is NP-hard, then the general case with
multiple machines is also NP-hard.

The minimization of makespan for two parallel machines (P2||Cmax) is equivalent
to PARTITION [35] and therefore NP-hard in the ordinary sense. The general case
with m machines is NP-hard in the strong sense, which can be shown by a reduction
of 3-PARTITION. A common heuristic to solve this problem is the Longest Pro-
cessing Time First (LPT) rule that has an approximation factor Cmax(LPT )

Cmax(OPT ) ≤ 4
3 − 1

3m .
If preemptions are allowed the problem becomes easy and can be solved optimally
with the Longest Remaining Processing Time First (LRPT) rule in polynomial time.

The objective ∑Cj, referring to the total completion time of the schedule, can be
solved easily for the parallel machine environment. The Shortest Processing Time
First (SPT) rule yields an optimal schedule. This is even true when preemptions are
allowed. Unfortunately, the more general Weighted Shortest Processing Time First
(WSPT) rule is not optimal for the total weighted completion time ∑wjCj. Bruno
et al. [4] showed that the problem with two machines is NP-hard. However, WSPT

is a good heuristic with an approximation factor ∑w jCj(W SPT )
∑w jCj(OPT) < 1

2 (1 +
√

2), see

Kawaguchi and Kyan [26]. Recently Schwiegelshohn [37] provided an alternative
proof for this result. Further, Sahni [36] proposed a Fully Polynomial Time Approx-
imation Scheme (FPTAS) that requires O(n( n2

ε )
m−1) time and calculates a solution

that is not worse than (1+ ε) times the optimal value.

2 http://www.informatik.uni-osnabrueck.de/knust/class/

http://www.informatik.uni-osnabrueck.de/knust/class/
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Due date related objectives for parallel machines are usually hard. The maximum
lateness problem Pm||Lmax—which can be solved easily in the single-machine en-
vironment m = 1 by the Earliest Due Date First (EDD) rule—is NP-hard in the
ordinary sense for the general case. The special case where each job has due date
d j = 0 is equivalent to Pm||Cmax. Introducing release dates renders the problem even
for single machines (1|r j|Lmax) strongly NP-hard, which can be proved by a reduc-
tion of 3-PARTITION.

1||∑Tj is the problem of minimizing the total tardiness for single machines and
NP-hard in the ordinary sense. But a pseudo-polynomial algorithm based on dy-
namic programming exists. This approach uses the dominance result that if p j ≤ pk

and d j ≤ dk, then there is an optimal schedule in which job j is processed be-

fore job k. Further, there is a FPTAS that computes in O( n7

ε ) a solution which is
not worse than (1+ ε)∑Tj(OPT ). This approximation scheme rescales the pro-
cessing times and due dates and solves the resulting problem with the dynamic
programming approach. The problem becomes strongly NP-hard when weights
or release dates are introduced. The NP-completeness of P2||∑Tj was proven by
Lenstra et al. [30]. They reduced KNAPSACK to P2||Lmax and P2||Lmax to P2||∑Tj.
Jouglet and Savourey [25] investigated the strongly NP-hard problem Pm|r j|∑wjTj

and introduced dominance rules since most others do not hold when release dates
are considered. It may be noticed that according to Baptiste [1] the special case
Pm|p j = p,r j|∑Tj is easy.

The number of tardy jobs (∑Uj) can be solved easily for the single-machine envi-
ronment. Jobs are scheduled in increasing order of their due dates. If a job is sched-
uled and will be completed late, then the already scheduled job with the longest
processing time is marked late and will be put to the end of the schedule. This is
known as Moore’s algorithm [33]. The special problem 1|d j = d|∑wjUj with con-
stant due date and weights is already NP-hard in the ordinary sense and Pinedo [35]
shows, that WSPT is not bounded in its approximation factor on this problem. Still,
due to its equivalence to KNAPSACK there exists a pseudo-polynomial algorithm.
The problem 1|r j|∑Uj with release dates, however, is strongly NP-hard. For par-
allel machines, Garey and Johnson [14] showed that the problem Pm||∑Uj is NP-
complete. Well known heuristics based on Moore’s algorithm were proposed by Ho
and Chang [22] as well as by Süer, Báez, and Czajkiewjcz [39]. In this work, we
refer to aspects of the SBC3 heuristic to be integrated as expert knowledge.

10.2.2 Multi-objective

In real life, scheduling problems often have multiple conflicting objectives. How-
ever, research mostly focused on problems with only one objective. Not till the eight-
ies multiple objectives were usually aggregated and considered as single objective,
see Hoogeveen [23]. According to Lei [29], the investigations on multi-objective
can be divided in time before and after 1995.
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Before 1995, multi-objective scheduling was tackled with implicit enumeration
techniques like branch and bound and mathematical programming. Typical ways
to deal with multiple objectives in this domain are the application of iterative
methods like weighting (see Section 10.2.2.2), the Tchebycheff method (see Sec-
tion 10.2.2.3), and the ε-Constraint method (see Section 10.2.2.4) as meta-search
strategies. Nagar et al. [34] gives an overview about the literature on multi-objective
scheduling till the early nineties. They stated that these “techniques have not been
very successful”. They point out that techniques like Genetic Algorithms (GAs) are
promising but, due to their generic nature, “need to be complemented with problem
specific knowledge”.

Since 1995, the adoption of GAs have increased. Lei [29] gives a high-level
overview about the corresponding literature. GAs and Evolutionary Algorithms
(EAs) maintain a set of solution rather than a single solution, which is advanta-
geous when we strive for a set of Pareto-optimal solutions (see Section 10.2.2.1 for
a definition). Due to that, EAs are widely used to solve multi-objective optimization
problems, see Deb [9] or Coello Coello et al. [5] for a detailed overview. One of the
most successful multi-objective evolutionary algorithms (MOEAs) is NSGA-II (see
Section 10.2.2.5).

Fig. 10.1 Initial situation of the scheduling scientist: Although he/she has theoretical insights
into many single-objective problems and even specific rules at hand, he/she has almost no al-
gorithmic foundation to use this knowledge in multi-objective optimization (MOO) problems

Although MOEAs can be applied as black-box optimizers to arbitrary problems
without adaptation, it is possible to improve their results by integrating problem
specific knowledge. Research has provided some well performing, partially opti-
mal, heuristics for several objectives (see Section 10.2.1). Unfortunately, it is rather
complex to combine these single-objective heuristics for multi-objective problems
as symbolically illustrated in Figure 10.1. We just need to consider the problem
Pm||∑Cj ,Cmax to clarify this: our single-objective solutions suggest to order jobs
ascending regarding processing time for ∑Cj and in inverse order to get a good
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Cmax solution. The two building blocks are contradicting in such a way that an easy
combination of both approaches seems impossible.

In rare cases researchers like van Wasserhove and Gelder [41] have managed
to combine expertise and constructed an efficient algorithm, e.g., for 1||∑Cj,Lmax.
Still, also these approaches are inspired from generic methods like the ε-Constraint
approach. In the following paragraphs, we review some of these approaches
before we discuss a rather famous representative of evolutionary approaches for
multi-objective algorithms. Eventually, we will again discuss whether these standard
approaches suffice to integrate expertise.

10.2.2.1 Dominance and Pareto-Optimality

In this paper, we exclusively consider the problem of enumerating all Pareto-optima
for z objectives f1, . . . , fz, see T’kindt and Billaut [40]. To define Pareto-optimality,
we first need to define a relation between solutions regarding all objectives, the
dominance relation. We define S as the set of all possible solutions.

If a solution x dominates a solution y, we denote it as x≺ y, if and only if x is not
worse than y for each objective fi and better for at least one objective:

x≺ y⇔∀i ∈ {1, . . . ,z} : fi(x)≤ fi(y)∧∃i ∈ {1, . . . ,z} : fi(x)< fi(y). (10.1)

Regarding the dominance relation, there are usually incomparable solutions.
A solution x is (strongly) Pareto-optimal if and only if x is not dominated by any

other solution y:
¬∃y ∈ S : y≺ x. (10.2)

Note that a Pareto-optimal solution does not necessarily dominate all other possible
solutions.

A solution x is weakly Pareto-optimal if and only if there does not exist another
solution y which is better for all objectives:

¬∃y ∈ S : ∀i ∈ {1, . . . ,z} : fi(y)< fi(x). (10.3)

A strongly Pareto-optimal solution is also weakly Pareto-optimal. But a weakly
Pareto-optimal solution is not necessarily strongly Pareto-optimal.

10.2.2.2 The Weighting Method

A very simple and often used approach for finding specific multi-objective solutions
is the weighting method. It is based on reformulating a given multi-objective prob-
lem into a single-objective problem by aggregating all z objectives with respect to a
user-defined weighting. Using the weighting vector w = (w1, . . . ,wz)

T ,0 ≤ wi ∈ R

each objective is assigned a specific priority and the original problem can be trans-
fered to a single-objective problem as shown in equation (10.4).
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minimize
z

∑
i=1

wi fi(x) (10.4)

with x ∈ S and
z

∑
i=1

wi = 1

By choosing an adequate weighting vector and applying some single-objective
search strategy a Pareto-optimal solution can be determined. If we repeatedly apply
this search with different weighting vectors we might find multiple solutions and get
an approximation of the whole Pareto-front. However, in the real-valued case this
method is restricted to convex problem instances. For those problems, Das and Den-
nis [8], for instance, give an intuitive trigonometric proof showing that non-convex
parts of a Pareto-front cannot be reached by weighting.3 Still, in many real-world
optimization approaches, this method is used due to its easy applicability.

10.2.2.3 The Zenith-Point or Tchebycheff Method

In 1976, Bowman [3] used the Tchebycheff norm as optimization objective to find
multi-objective solutions. Again, this methods is based on weighting, however, the
minimization process always concentrates on minimizing the largest distance be-
tween a solution and a given reference point u∗. As this point is sometimes called
zenith point the method is also known as Zenith-Point Method. The zenith-point
represents a virtual goal in function space given by the user and represents some
preferences regarding the multi-objective solution.

minimize max
i=1,...,z

{ wi · ‖ fi(x)−u∗i ‖ } (10.5)

with x ∈ S

Equation (10.5) formulates the minimization problem using the weighted Tcheby-
cheff norm with a weigthing vector w, the zenith-point u∗ and z objectives. In con-
trast to simple weighting, this method also finds solutions in non-convex parts of the
Pareto-front. However, also weakly Pareto-optimal solutions are found which may
necessitate a costly filtering of solutions. Furthermore, the user has to provide some
information by placing a reference point in function space.

10.2.2.4 The ε-Constraint Method

As allegedly most prominent method for practical application in the scheduling
community the ε-Constraint method focuses mainly on a single objective. One ob-
jective is considered to be optimized while all remaining objectives are transformed

3 Although the standard definition of convexity is restricted to R, this also holds for sup-
ported solutions in the discrete case: only supported solutions from the linear combination
of two points can be generated.
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into constraints by defining an upper bound for each of them. Consequently, the new
problem can be formulated as shown in Equation (10.6).

minimize fc(x) (10.6)

subject to fi(x)≤ εi, ∀i = 1, . . . ,z

with i �= c,c ∈ {1, . . . ,z}, and x ∈ S

With proper chosen bounds εi, the approach always reaches a Pareto-optimal point.
A repeated application of this method therefore guarantees to find every Pareto-
optimal solution regardless of the Pareto-front’s convexity properties [32]. However,
apart from the necessity to filter weakly dominated solutions, the method’s perfor-
mance mainly depends on the suitable selection of εi for all objectives to ensure fea-
sible solutions. Further, the use of hard constraints is rarely adequate for expressing
true design objectives and for many problems it becomes even impossible to deter-
mine the constraint value a priori, see also Laumanns, Thiele, and Zitzler [28].

10.2.2.5 NSGA-II

The Non-Dominated Sorting Genetic Algorithm - II (NSGA-II), which was intro-
duced by Deb et al. (see [10] and [11]), is one of the most famous MOEAs. To deal
with incomparable solutions, it applies non-dominated ranking and sorting based
on crowding. All non-dominated solutions of a population are assigned to the first
front. All solutions, which are only dominated by solutions in the first front, are as-
signed to the second front and so on. For selection, solutions are mainly compared
based on their mutual domination. If two solutions are in the same front, they are
judged according to their crowding distance. The crowding distance of a solution
denotes the sum of normalized distances along each coordinate direction in objec-
tive space between the solution and its direct neighbors, see also Deb et al. [11]. A
higher value indicates a less crowded environment of the solution and a larger diver-
sity. Thus, selecting according to this measure as secondary criterion ensures diver-
sity. For offspring creation, standard binary tournament selection, recombination,
and mutation are used. The next generation is selected consecutively from the best
non-dominated fronts of the combined population of current generation and their
offspring. NSGA-II is widely used to solve scheduling problems. Recent research
was done by SongFa and Ying [38], who developed a MOEA based on NSGA-II
to optimize task assignment in distributed grids. Yuan and Quanfeng [42] adopted
NSGA-II to schedule jobs with machine dependent processing times and fuzzy due
dates on parallel machines considering the makespan and a fuzzy grade of satisfac-
tion depending on the tardiness. Li et al. [31] optimized the makespan and the total
tardiness of a parallel machine scheduling problem with NSGA-II.
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10.2.3 The Gap between Single-Objective Theory and
Multi-objective Approaches

Although there are several general methods to address multi-objective problems
and as such also scheduling problems, their structure seldom supports the integra-
tion of expertise. Principally, it is possible to integrate some single-objective re-
sults as local search mechanisms in the discussed iterative methods like the weight-
ing, zenith-point, or ε-Constaint method. However, all those searches can be very
time-consuming. Additionally, one may have no idea which theoretical result may
contribute to local search and which aspect hinders convergence.

In their original (single-objective) form, evolutionary algorithms provide a
simple mechanism to integrate expert knowledge: the variation operators. Here
theoretical ideas can be applied in a more or less randomized way to support conver-
gence during offspring generation: A bias in mutation or recombination operators—
based on knowledge on the search space structure or problem characteristics—can
directly contribute to an accelerated convergence. The integration of direct local
search heuristics is a more sophisticated way of expertise integration. However, in
the multi-objective case, solution quality is evaluated regarding contradicting ob-
jectives and biased variation or local search often support only single objectives.
The combination of expertise to gain a cooperative bias for all objectives is again
difficult to construct. It just shifts the problem of expertise combination from the di-
rect heuristic design shown in Figure 10.1 to the variation operator level in generic
algorithms, see Figure 10.2.

Further, MOEAs usually have a monolithic structure which makes it hard to adapt
them except from changing variation operators. Already for small adjustments, one
has to understand first the algorithm’s structure and second the chosen implementa-
tion. This alone constitutes a great barrier for a domain expert. The slightest adjust-
ment of one part of an algorithm may affect other parts and render useless or even
worsen the resulting.

A modularly composed algorithm is easier to understand because the components
can be considered separately. But the most desirable optimizer for a domain expert
is the one that allows to plug in knowledge at well-defined points without bother-
ing about the system as a whole. This is the great advantage of the here discussed
Predator Prey Model (PPM) (see Section 10.3). A domain expert can define agents
one by one without bothering about their interplay. Even more, since he can attach
arbitrary rules and objectives to each agent, he does not have to think about a com-
plex combination of single-objective heuristics. In the following, we will discuss
this approach in detail and evaluate its benefits.

10.3 The Modular Predator-Prey Model

Predator and prey interaction is a principle of natural co-evolutionary interplay be-
tween species that leads to mutual adaption and development. The here
discussed predator-prey model (PPM) is certainly nature-inspired, however, no real
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Fig. 10.2 Situation of integrating theoretical knowledge into the NSGA-II variation operator.
The scheduling expert is still not knowing how to combine his basic heuristics to a multi-
objective search operator. Here, the initial problem has just been shifted into the NSGA-II
algorithmic framework.

co-evolutionary approach. The analogy to the predator and prey relationship was
initially used by Laumanns et al. [27] as abstract point of view to describe the emer-
gence of solutions for a multi-objective optimization problems: As much as a so-
lution for a multi-objective problem has to meet all objectives as good as possible,
a prey has to resist many predators to survive as long as possible. Prey are usual
individuals of an evolutionary multi-objective algorithm representing possible solu-
tions of the optimization problem. Placed immobile at vertices of a two-dimensional
toroidal grid, they represent a spatially distributed population. The predators roam
across the spatial structure according to a random walk scheme, which is retained
as a uniformly distributed movement in the neighborhood of the position of a preda-
tor, see Figure 10.3 (a). After its movement, a predator chases prey only within its
current spanned neighborhood. In more detail, this “hunting” consists of evaluating
all prey in the direct neighborhood of the predator’s position according to a sin-
gle objective. This objective is bound to and carried by the predator. Usually, the
worst prey within this neighborhood is “eaten”. As soon as a vertex on the grid be-
comes free, a reproduction takes place that refills the empty vertex with a new prey.
The offspring prey is created out of neighboring prey using variation operators as
schematically depicted in Figure 10.3 (b).

Obviously, a central component of the PPM is the predator action. It is more for-
mally summarized in Algorithm 10.1. In our realization the predator first executes its
movement step, see line 2, and subsequently spans a von-Neumann selection neigh-
borhood SN with radius ν .4 In that neighborhood, all prey are evaluated regarding
the predator’s single objective fc resulting in the worst one marked for deletion.

4 A von-Neumann neighborhood of radius ν contains—starting from a given position—all
neighboring positions that can be reached by at most ν steps along the connecting edges.
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Fig. 10.3 Depiction of the PPM working principle, see (a). and (b). Architecture of a predator
individual constructed from a selection and variation building block (c).

Then, in line 5 an offspring is generated out of the non-marked individuals in SN
using variation operator Op. In our realization, the final replacement approach fol-
lows an elitist philosophy: the marked worst prey is only replaced, if the offspring is
better regarding the predators objective. Afterwards, the process is repeated until a
termination criterion is reached. As the described action is restricted to each preda-
tor and completely self-contained, multiple predators can act in parallel and bring
their action to the distributed population.

Algorithm 10.1. General predator behavior.
Preconditions: predator := ( fc,π,Op,ν)
1: while not terminated do
2: π = move(π)
3: span selection neighborhood SN of size ν
4: evaluate prey in SN regarding fc and mark worst prey for removal
5: offspring := Op(SN\worstPrey)
6: evaluate(offspring) regarding fc

7: if offspring better than worstPrey then
8: remove worstPrey and introduce offspring
9: end if

10: end while

A further key aspect of the PPM—in its modified version presented by Grimme
and Lepping in 2007 [17]—is the modular nature of the predators agents and
the fine-grained steering of selection and variation influences through them. As
schematically depicted in Figure 10.3 (c), a predator species is constructed from
a selection as well as a variation building block. The selection block determines
according to which objective the predator evaluates the prey. The variation block af-
fects the production of new offspring in a very restricted neighborhood. As such—
by defining different predator species—it is quite simple to bring multiple local
influences (standard mutation, recombination, or specific local search or expert
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knowledge) to the prey, and as such to the overall evolutionary process. Grimme
and Lepping showed this first for combining different mutation and recombination
influences in real-valued problems [17].

Fig. 10.4 In the PPM situation, the expert just attaches his single-objective knowledge as
building blocks to the acting agents. Eventually, via their interaction on the prey, solution
each heuristic participates in solution generation.

This modular framework provides an excellent starting point to solve the problem
of knowledge integration. In contrast to the previously described situations, where
we always lacked a strategy to combine single-objective expertise, the PPM pro-
vides a seamless way to plug in theoretical findings to predators, see Figure 10.4.
If we can represent expert knowledge as biased variation operators, we are directly
able to apply them locally to the population. From the PPM’s original motivation
we can hope that a good combination of their effects emerges from the predators
cooperation over time.

For the real valued case without expertise integration, however, earlier investiga-
tions by Grimme, Lepping, and Papaspyrou [19] have shown that the PPM generally
tends to lose diversity and thus solution quality. The expected almost magical emer-
gence of trade-off solutions cannot be achieved for this case. This effect is rooted in
the strict single-objective and locally restricted selection mechanism: over time, rel-
atively stable areas of similar solutions are generated which hinder the emergence of
intermediate solutions. Instead of breeding and conserving compromises, they are
extincted immediately. This is, because they are inferior if only compared locally
regarding a single objective. In many situations, this may lead to the development
of mere extremal solutions for each objective and a complete loss of intermediate
trade-offs.

Still, the situation is different in the case of expertise integration. While standard
mutation in the real valued case is usually unbiased [2], expertise-guided variation
operators in our case favor a certain search direction, i.e. a specific single objective
selection. As such, in our building block environment with prey consisting of selec-
tion and variation modules, we are able to construct different kinds of predators. It is
not only possible to attach a specific biased variation operator to the corresponding
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single-objective (the one it supports) but also to not favored, contradicting objec-
tives. This leads to a kind of lexicographic order of objectives in predator action.
Still, the selection is performed regarding the predator’s objective and certainly con-
serves good solutions. However simultaneously, the application of a contradicting
variation operator may lead to a downstream optimization of a secondary objective
under the initial optimality conservation. This may favor cooperative solutions and
can slow down the loss of diversity. This way, trade-off solutions may be generated
and conserved. We will discuss this effect again in the next section, when the PPM
has been adapted to scheduling problems.

10.4 Adopting the Predator-Prey Model to Scheduling
Problems

In this section, we show how the predator-prey model can be adopted to the schedul-
ing domain. We therefore describe the problem encoding scheme first and then ex-
plain a general purpose variation operator that allows to express certain problem
knowledge. The evaluation in this section demonstrate the practical application of
the concept and proves its effectiveness.

Since we solve scheduling problems with n jobs, we use a standard permutation
encoding of length n to represent the genotype of the problem. As we consider only
offline scheduling problems, an algorithm has to find the set of optimal job permu-
tations. The schedule construction from our chosen permutation representation is
quite simple for parallel machine environments: the jobs are FCFS-dispatched in
permutation order to the machines, see Figure 10.5. In this example, we assume
n = 6 jobs j = 1, . . . ,6 and m = 2 machines while release dates r j, processing times
p j, and due dates d j of jobs are given as problem instance. Each due date can be
principally met as the condition r j + p j ≤ d j holds for all jobs. The individual en-
coding in Figure 10.5 results in a schedule where each job is assigned to the next
free machine. In this case, the encoded sequence results in a schedule with unneces-
sary idle time that occurs for job 3 (shaded area). This job is released at time r3 = 5
but is sequenced after job 5 which has a earliest start time of r5 = 7. Thus, also the
start of job 3 is delayed as we strictly stick to the FCFS order. With this encoding
every possible schedule is representable. The resulting objectives can be computed
by summing up all completion times (∑Cj = 35) and all unit penalties (∑Uj = 1).

10.4.1 Variation Operator Design

Investigations by Grimme and Lepping [17] show that special variation operators,
triggered by autonomously acting predators, yield good approximation results es-
pecially for multi-objective problems. We adapt this methodology by integrating
problem specific expert knowledge into the operator design: The variation operators
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Fig. 10.5 Encoding scheme and resulting schedule obtained by FCFS-scheduling

used for the reproduction of prey apply those strategies for single-objective schedul-
ing which are explained in Section 10.2.

For many single-objective scheduling problems, expertise on solution strategies
can be expressed by optimal sorting rules. Based on the discussion in Section 10.2.1,
a general variation operator is designed which allows to bring in the effects of SPT,
LPT, EDD, or any other sorting schemes into the population. Figure 10.6 exemplar-
ily depicts the application of this operator to a given sequence with processing times
p j: a position is selected randomly in the permutation representation of the geno-
type. Then, a subsequence of 2δ+1 genes is sorted according to a certain rule. Here,
we show the application of SPT sorting: A position is randomly selected while δ el-
ements are involved upstream and downstream from this position. In this way, we
have an easy mechanism for steering the mutation operator’s strength varying the
amount changed genes in the individual. However it is reasonable to prefer slight
changes over strong perturbations as the inner structure of individuals should be
principally conserved over generations. Thus, we chose the δ -window from a nor-
mal distribution with an externally adjustable step size of σ . This value is chosen as
a constant at the beginning of the optimization and is not adjusted during the appli-
cation. Obviously, δ = 0 has no effect as only the initial gene at the current position
is selected. A larger δ leads to a higher probability of a completely ordered genome
which limits the Pareto-front regarding the respective objective. In this example, the
SPT sorting of a subsequence improves the total completion time objective from
∑Cj = 62 to ∑Cj = 59.

Due to the modular character of the considered agent-based optimization frame-
work, predator agents and variation operators can be coupled in various ways. Two
main classes of coupling can be identified: either a predator is coupled with its
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Fig. 10.6 Schematic depiction of the mutation operator concept with δ = 2 and SPT-mutation

corresponding knowledge-based variation operator or coupled with an operator that
supports another objective. In the first case, an operator that supports the predator’s
objective can be expected to favor convergence towards extremal solutions. That
is, solutions rapidly converge to the objective’s optimal solution and fully neglect
other objectives. A similar behavior was also observed by Grimme et al. [19] and
beneficially used to reach the outer perimeter of the desired Pareto-front.

In the second case, the selection/mutation coupling favors an implicit lexico-
graphical ordering which conserves good solutions of the predator’s objective. Ad-
ditionally, this configuration favors a subsequent optimization of the other objectives
because the sorting is different from the actual selection. This approach can pro-
vide means to maintain good solutions while simultaneously exploring the search
space regarding another objective. For the evaluation, we consequently configure
the PPM with all possible mutation/selection combinations to take advantage of
both described effects. An analysis of these effects and a proof of concept will be
given during the following evaluation.

10.4.2 Evaluation

For demonstrating and investigating the effects and benefits of knowledge integra-
tion according to our approach, we will refer to the evaluation done in a recent
separate research paper of the authors [20]. There, the principle of adding order-
based single-objective scheduling results was extensively tested. We repeat some of
the most important results and discuss consequences.

To get a broad understanding of the PPM’s performance on our considered
parallel machine scheduling problems, we generated a set of 100 synthetic test
problem instances. Half of the set we denote as J 50

1 . . .J 50
50 and consists of
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50 jobs each. The second half (J 100
1 . . .J 100

50 ) comprises 100 jobs in each in-
stance. We sampled all sets with characteristics p j = 
U (1,50)�, ∀ j = 1 . . .n and
d j = p j +
U (1,100)�, ∀ j = 1 . . .n. For the parallel setup, we further consider both
8 and 12 identical machines, i. e., in all Pm problems we set m = 8 and m = 12 lead-
ing to overall 200 tested configurations. The complete sets of job instances as well
as the later discussed results are available via the authors’ web page.5 Further, we
instantiated the PPM by defining four fundamental building blocks constituting the
runtime environment and the agents’ architecture.

• The spatial population structure is represented by a two-dimensional toroidal
grid with a size of 10× 10 nodes initialized with 100 random individuals.

• The movement of a predator follows a uniformly distributed random walk pattern
of stepping size 1, ensuring that each position is visited equally often.

• The number of steps for each model run is restricted to 6,000 function evalua-
tions. This value is independent of the actual number of involved predators.

• The selection and reproduction neighborhood of a predator is fixed to a radius of
1, resulting in a selection set of five prey individuals.

Starting with these basic settings, the PPM environment can be extended for ar-
bitrary objectives by just adding a new predator species. In the same way, expert
knowledge can be attached as building block to each predator individually. We de-
tail our experimental settings regarding selection and variation building blocks but
also regarding a reference algorithm in the next section.

10.4.2.1 Experimental Setup

As literature states that there is no specific solution strategy to the bi-objective prob-
lem Pm||Cmax,∑Cj , see Dutot et al. [12], we are forced to apply a standard heuristic
to generate reference results. As representative of often applied general-purpose
optimizers we apply NSGA-II. For now, we exclusively investigate the knowledge
integration into PPM and merely use NSGA-II as reference to judge the perfor-
mance of our approach. Therefor, NSGA-II is treated as given and an attempt to
modify the variation operators is delayed until section 10.5. To fine-tune NSGA-II,
we performed several simulation studies concerning various population sizes and
variation probabilities and used the recommended NSGA-II standard configuration,
see Deb [9] (mutation and recombination), miscellaneous standard recombination
operators like two-point crossover and order crossover, as well as the exclusive
application of unbiased mutation. For comparison, we consider the best solutions
achieved by NSGA-II using a population size of 100 with exclusive swap mutation.
This mutation randomly swaps eight jobs in the sequence and is applied to each in-
dividual (variation probability of 1.0). To be comparable with PPM we also restrict
the number of steps per run to 6,000 function evaluation.

The PPM, however, uses two special tailored operators derived from the general
mutation operator scheme: SPT-mutation derived from the SPT rule, which solves

5 http://tinyurl.com/3ql3hpe

http://tinyurl.com/3ql3hpe
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Pm||∑Cj optimally as well as LPT-mutation that approximates Pm||Cmax and takes
its cue from the earlier discussed LPT rule. We create a predator species for each
objective and connect them to both operators. Further, we discovered in preparatory
experiments that LPT-mutation should be emphasized over the quite efficient SPT-
mutation and choose therefore σ = 10 while SPT is applied with σ = 5. Regardless
of the number of predators, we run the PPM for overall 6,000 function evaluations
per experiment and performed 50 independent runs of each instance out of our syn-
thetically generated problem set (i.e., all 200 configurations where tested 50 times).
Figures 10.7 and 10.8 show single solutions out of all runs for later explanation
purposes only.

We analyzed the results of our algorithmic runs by applying two metrics: the hy-
pervolume metric and the ε-dominance metric. The hypervolume metric computes
the normalized volume in function space which is covered by the solution front
and bounded by a reference point. The larger this value becomes, the better is the
approximation. This metric considers convergence behavior and diversity preserva-
tion at the same time. The used reference points are R1 = [1000,5000] for problem
instances with n = 50 and R2 = [1000,20000] for the instances with n = 100.

To provide an alternative viewpoint on our solutions, we also apply the ε-
dominance metric Iε(A,B). It is a binary metric [44] which determines, whether
a solution set A dominates another solution set B completely. In detail, the metric
value denotes by how much units in function space sets A or B have to be shifted
in origin direction to completely dominate the respective other set. The metric has
to be applied two-sided to be interpreted correctly. Only if Iε(A,B) > 0 and the in-
verse comparison Iε(B,A) ≤ 0 hold, the set A dominates set B entirely. Otherwise,
intersections of the determined solution fronts do not allow a domination statement.

10.4.2.2 Results and Discussion

For hypervolume evaluation, we find that all results of PPM enclose a larger vol-
ume than the results of NSGA-II. For significance analysis we apply a Wilcoxon
rank-sum test (p = 0.05) on the determined hypervolume values for all 50 indepen-
dent experiments of our 50 synthetically generated instances. Further, we test the
variance of both algorithms to state on robustness (Fligner-Killeen test [13] as most
robust test for variance analysis according to Conover et al. [6], p = 0.05). We find
that the variance is significant smaller for the PPM than for NSGA-II and conclude
that the new approach behaves more robust on problems due to the integrated exper-
tise knowledge. Exemplary, Figure 10.7 shows both obtained Pareto-fronts (PPM
and NSGA-II) and single-objective SPT as well as LPT solutions in the objective
space. In that case, PPM clearly outperforms NSGA-II in both convergence and di-
versity although, on the first sight, one can get the impression that PPM generates
a less diverse front than NSGA-II. However, for the PPM the gray shaded “over-
all area of non-domination”, i.e., the hypervolume, is larger. As PPM converges to
∑Cj(OPT ) value, only the minimum Cmax value is at that point considered for the
Pareto-front.
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Fig. 10.7 Results for J 50
1 with m = 8. Circles: NSGA-II; crosses: PPM.

Table 10.1 Results of the ε-Indicator evaluation, which judges on complete domination be-
tween two result sets. The columns show mean and variance of (in %) how often the results
of PPM dominate the results of NSGA-II completely and vice versa over all instances and for
different machine configurations. The operator A �ε B denotes the percentaged domination
count of A over B with respect to ε-dominance.

Ref. PPM �ε NSGA-II NSGA-II �ε PPM
Job sets m

Point mean (in %) std. (in %) %

J 50
1 . . .J 50

50 8 R1 72.76 16.31 0

J 50
1 . . .J 50

50 12 R1 91.66 6.56 0

J 100
1 . . .J 100

50 8 R2 56.54 12.32 0

J 100
1 . . .J 100

50 12 R2 100 0.02 0

Looking at total domination with the ε-Indicator, we find the results shown in
Table 10.1. Usually, the PPM completely dominates the NSGA-II results, while
NSGA-II never dominates the PPM. However, there are some cases in which results
are marked as incomparable, distinctively observable in the 8-machine scenario.
Figure 10.8 shows this effect visually: a single solution of NSGA-II dominates a
solution of the PPM. Although the hypervolume is larger for the PPM solution, not
all solutions of NSGA-II are dominated. Interestingly, this effect vanishes for larger
setups with 12 machines. We hypothesize that this is due to the size of the solution
set which may become smaller for multiple machine setups. Results from the real-
valued problem domain have already proven the PPM’s tendency to converge more
in extremal regions of the Pareto-set [19].
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Fig. 10.8 Results for a specific case from J 50
15 with m = 8, where PPM and NSGA-II results

are incomparable regarding the ε-indicator. The area that hinders complete dominance of
PPM is marked by the dotted box. Circles: NSGA-II; crosses: PPM.

Although diversity as described in Section 10.3 is basically preserved due to the
lexicographic combination of influences via selection and specific variation oper-
ators, the general problem of diversity loss can also be seen in Figure 10.8. We
therefore present in the rest of the paper a possible extension to the model that pre-
serves diversity in the solution set without any external preservation mechanism.
That means, no external archive is used which retroacts into population develop-
ment. We emphasize that for the proposed diversity mechanism only genuine model
components are used.

10.5 Integrating a Self-adaptive Mechanism for Diversity
Preservation

The previous section already showed promising results for the knowledge integra-
tion mechanism of the PPM. However, the PPM reveals a disadvantage regarding the
diversity of its results. The disadvantage of extremal convergence in the PPM may
also be exploited in combination with an automatic steering mechanism to overcome
preserve diversity throughout the optimization process. A steering mechanism has
to be able to potentially target all locations on the Pareto-front to cover the whole
solution set. Instead of an archive that retroacts into population development, we use
a simple storage to remember already found good solutions. Again, we emphasize
that this storage is completely independent of the PPM and serves only for result
preservation.
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The presented modifications were proposed in a recent study by the authors [18].
There, they extend the predators to represent different species which are able to
adapt their selection behavior during the evolutionary process. In this way, they
realized a sort of niching strategy which favors specialized predators on the one
hand. On the other hand, the cooperation between predators is supported allowing
exploration of the whole search space. Eventually, this property favors the overall
coverage of the actual Pareto-front.

According to previous theoretical findings on the predator prey model’s conver-
gence behavior [19], this approach incorporates aspects of the ε-Constraint method,
see Section 10.2.2.4. The extended PPM is referred to as ε-PPM. We recapitulate
the details about the extension in the following section and evaluate the proposed
mechanism in a case study for the problem Pm|r j|∑Cj,∑Uj including release dates
for jobs.

10.5.1 Algorithmic Extension and Implementation

We combine the advantageous aspects of the PPM and compensate its drawbacks
by integrating the ε-Constraint concept: as usual, each predator selects regarding a
single objective fc. In addition, each predator respects z− 1 bounds out of the set
β = {βi | βi ∈ R, i = 1, . . . ,z} of bounds for each objective i. For objective fc we
do not consider any bound and set βc = ∞. This is analogously to the ε-Constraint
method. We can argue that the local and elitist evolutionary process is replaced by
an ε-Constraint selection-guided evolutionary process.

Algorithm 10.2. General predator behavior.
Preconditions: predator := ( fc,π0,β ,Op,ν)
1: while not terminated do
2: πi+1 = move(πi)
3: span selection neighborhood SN of size ν
4: evaluate prey in SN regarding fc and β and mark worst prey for removal
5: offspring := Op(SN\worstPrey)
6: evaluate(offspring) regarding fc and β
7: if offspring ≤ worstPrey then
8: remove worstPrey and introduce offspring
9: end if

10: end while

Algorithm 10.2 summarizes the central behavior of a predator which still selects
regarding one objective fc and starts its action at position π0 in the spatial popu-
lation. Now, the bounds from β with βc = ∞ are considered and selection as well
as reproduction using operator Op are applied to prey in a neighborhood of size
ν around the position πi. For all following considerations and analysis in this case
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study, we assume Gaussian mutation as reproduction operator. Later on, in schedul-
ing applications we will again use the new operator defined in Section 10.4.1 that
easily includes expertise in a heuristic way.

The predator moves throughout the spatial population and selects the worst prey
from its own position’s neighborhood, see Lines 2–5 in Algorithm 10.2. After breed-
ing and evaluating an offspring, the worst prey is removed if the offspring’s fitness
is better, see Algorithm 10.3. The evaluation is done for objective fc. Additionally,
violations of all z− 1 remaining objectives induce exponentially weighted penalty.
This penalty is computed during evaluation of prey by the predator regarding its spe-
cific objective. Each predator applies Algorithm 10.2 independently—respecting its
specific objective and bounds β—to the prey population. The value for penaliza-
tion is computed based on the remaining objective values which are not favored by
the predator. For each objective value fi the violation of bi is computed normal-
ized to the interval of maximum and minimum allowed bound value maxfeas and
minfeas in component i. Both values are determined during predator interaction. We
discuss their construction and emergence (based on the utopia and nadir points) in
Section 10.5.1.1.

Algorithm 10.3. ε-Constraint evaluation.
Preconditions: evaluate = (prey,Fc,β ,minfeas,maxfeas)
1: penalty = 0
2: f = prey.fitness
3: for all fi ∈ f with i �= c and βi < fi do
4: interval(i) = maxfeas(i)−minfeas(i)
5: distance(i) = ( fi−βi)/interval(i)
6: penalty = penalty+distance(i) ·maxfeas(i)
7: end for
8: return fc +exp(max(0,penalty))−1

The right hand side of Figure 10.9 shows the expected effect of predators’ actions
when two predators that select regarding objective f1 are considered. Due to the
single-objective selection, f1 is minimized until the upper bound ε2 for objective
f2 is reached. The same holds for the second predator with another specific bound
ε ′2 for the secondary objective f2. Locality of selection and penalization of bound
violations lead to the known extremal behavior. This results in a certain niching
behavior which generates different intermediate trade-offs along the Pareto-front.

10.5.1.1 Automatic Detection of the Feasible Area

Using bounds for the ε-Constraint method implicitly assumes a range for possi-
ble bound values. In Algorithm 10.3 we denoted this range by the difference of
maxfeas−minfeas. However, this range depends on each objective and thus on the
whole multi-objective problem. A simple and often used way to detect the feasible
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Fig. 10.9 Schematic depiction of the feasible area limited by utopian and nadir vector (left)
and ε-restricted search space that prevents extremal convergence (right)

area involves interaction of the decision maker: he is asked to specify lower and up-
per bounds for all objectives in advance. However, as we want to construct a rather
general method, the bound ranges should be determined automatically. Thus, we let
predators interact among each other such that they can propagate information about
already found solutions.

Generally, two special locations in the solution space can be used to define
the feasible area: the utopian point, see Section 10.2.2.3, and the nadir point.
Both define the lower and upper bounds of Pareto-optimality. The utopia point
u=(u1, . . . ,uz) is the hypothetical location in solution space where all objectives are
minimal. This point is either not part of the Pareto-optimal solution set or a unique
solution for a (more or less trivial) multi-objective problem. In our approach, the
predators cooperate to determine the utopia point: if two predators with the same
objective meet on the spatial structure6 they exchange information about their best
discovered objective value and adopt it for further propagation to other predators.
The nadir vector n = (n1, . . . ,nz) is more difficult to obtain as it defines the best
upper bound of all remaining objectives assuming optimality of the considered ob-
jective. In other words, it shows for a certain objective the minimum pay-off, when
another objective is optimal (see left side of Figure 10.9). In our algorithm, the nadir
information is generated when the current utopian value remains unchanged and it
is then propagated among predators. That means, also nadir point information is
exchanged between predators when they meet on the toroidal structure. Addition-
ally, nadir information is always forgotten by the predators, when utopian values
improve during information exchange. This supports the exploration of the decision
space and the renewal of information during predator interaction. As such, the nadir
information always emerges downstream to utopian values and adapts to further de-
cision space exploration. Exemplarily, the left hand side in Figure 10.9 shows the
feasible area together with utopia and nadir point.

6 “Meeting of predators” is both agents residing on the same position in the spacial structure.
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10.5.1.2 Predator-Induced Niching Behavior

Using the information about the detected feasible area, each predator’s individual
search bounds are dynamically updated to induce the desired niching behavior. As
depicted in Figure 10.9, dedicated areas of the Pareto-front can be reached using
specific ε-bounds. Initially, all predators start without any bounds while trying to
cooperatively achieve utopia and nadir point information, see previous paragraph. If
utopia and nadir information is available, the predator adapts its bounds respecting
the utopia point’s component ui as lower bound and the nadir point’s component ni

as upper bound for objective fi. The predator’s ε-bound is then chosen randomly
from the lower bound/upper bound interval.

During the evolutionary process, predators’ ε-bounds are continuously updated.
However, to guarantee a permanent predator influence along with an expected ex-
tremal convergence towards the boundaries, predators only update their individual
ε-bounds when they meet each other in the spatial structure. Then, a normal dis-
tributed perturbation, see Equation 10.7,

pert = N

(
0,

max(βi− ui,ni−βi)

(ni− ui)

)
(10.7)

is added to the current bound leading to a moderate change of the predators’ selec-
tion pressure. In contrast to a fully random generation of new bounds, the approach
of “minor environmental change” allows the prey population to react more rapidly
to a new situation as possibly only minor changes in solution structure are necessary
to adapt to the new bounds. Additionally, it also allows to leave the predefined area
of utopia and nadir points to still allow exploration through mutation outside the
feasible area.

Technically, the perturbation is normalized using the detected feasible area and
the component-wise maximum distance between the current value and the lower and
upper bounds. This approach neither incorporates information from the evolutionary
process nor information provided by other predators.

10.5.2 Evaluation

The extended PPM was evaluated by the authors in [18]. There, they showed that
the integrated ε-Constraint approach successfully supports the PPM in preserving
and finding a diverse Pareto-front even for non-convex problems. In this chapter,
we again focus on the exploitation of theoretical funded single-objective knowledge
and reflect on some experiments and results performed in another resent study by
the authors [16]. Beside the simplicity of expertise integration into the ε-PPM we
exemplarily show the performance gain through expertise integration by comparing
the ε-PPM with and without integrated expertise to NSGA-II. Second, we evalu-
ate whether a similar and intentionally straightforward application of expertise to a
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standard approach like NSGA-II can yield similar results. The obtained algorithm
will be called modified NSGA-II (mNSGA-II).

10.5.2.1 Experimental Setup

To evaluate the approach, we rely again on the distribution from our previous ex-
periments in Section 10.4 to generate scheduling problems. However, we increase
the problem complexity by adding release dates to the setup. For a proof of concept,
we create an exemplary instance with n = 50 jobs for Pm|r j|∑Cj,∑Uj with n = 50
by uniformly sampling processing times p j =U (1,50),∀ j = 1, . . . ,n and due dates
d j = p j +U (1,100),∀ j = 1, . . . ,n. Release dates are generated randomly based on
p j and d j as

r j =

{
U (0,d j− p j) , U (0,1)< 0.9

0 , otherwise.

For the parallel machine setup, we consider m = 8 identical machines. The modified
ε-PPM approach for addressing scheduling problems (mε-PPM) is constructed out
of 10 predator species where five species select regarding one objective. They are
equipped with specific mutation operators that reflect partial expertise. For each
objective there is a predator with EDD-biased mutation (EDDMut, δ = 2), with
SPT-biased mutation (SPTMut, δ = 2), with release-date-biased mutation (RDMut,
δ = 3), with random swap mutation (RSwap, δ = 4), and finally with a mutation
inspired by SBC3 that shifts a random number of jobs to the end of a sequence
(ShiftMut, δ = 4). The predators move on a 10× 10 torus which is populated with
100 randomly initialized individuals. In total, predators do at most 50,000 function
evaluations.

For comparison reasons, we apply standard ε-PPM with mere random mutation
as well as the standard NSGA-II implementation with a population size of 100 and
random swap mutation. Additionally, we modified NSGA-II (mNSGA-II) to con-
struct a simple enhanced version of NSGA-II by integrating the expertise-biased
mutation operators from mε-PPM into the selection mechanism of NSGA-II: dur-
ing the application of the genetic operators, the current individual is compared to the
best known fitness for each objective which leads to two different ratios. Based on
these ratios, the mutation decision is biased in favor of the worse objective: EDD-
biased mutation for objective ∑Uj and SPT-biased mutation for objective ∑Cj.
These are generally executed secondary to release date sorting. Additionally, a com-
pletely random mutation is added with a probability of p = 0.1. Again, we restrict
for both algorithms the runtime to 50,000 function evaluations.

For statistical soundness of our results, the obtained problem instance is solved 30
times with ε-PPM, mε-PPM, NSGA-II, and mNSGA-II each. To compare the four
algorithms, we apply the hypervolume indicator [43] and the derived hypervolume
ratio (HR) for pairwise comparison of the Pareto-fronts as performance measure.
The hypervolume is normalized with reference point [4000,30] and lower bound
[3500,6]. On the hypervolume results, a pairwise Wilcoxon rank-sum test with 5 %
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significance level and Bonferroni correction is adopted to ensure the significance
of our results, see Dalgaard [7] for an explanation of this test. Further, we use the
binary additive ε-Indicator to determine how often a single algorithm’s run domi-
nates another result. This indicator yields only the value 1 if a solution set dominates
another set completely. Otherwise the indicator returns the value 0.

10.5.2.2 Results

The experimental results are shown in Tables 10.2 and 10.3 as well as Figure 10.10.
In this paragraph, we briefly describe those results but their implications are detailed
afterwards in Section 10.5.2.3.

Table 10.2 Hypervolume results for 30 experiments with ε-PPM, mε-PPM, NSGA-II, and
the modified version of NSGA-II on the considered scheduling problem

Hypervolume

Method Mean Median Std.

ε-PPM 0.5628 0.5656 0.0271

mε-PPM 0.5980 0.6049 0.026

NSGA-II 0.5568 0.5615 0.038

mNSGA-II 0.4949 0.5050 0.050

Table 10.2 summarizes the results as mean and median hypervolume for 30 ex-
periments. Additionally, the standard deviation is given. According to the pairwise
Wilcoxon rank-sum test, the four algorithm perform significantly different. The p-
value obtained by the test when comparing two algorithm is at most 1.4 · 10−5.
The bold written results indicate the best performing algorithm for the tested
instance.

Table 10.3 focuses on the presentation of comparison data between the
algorithms. In each row, two algorithms are compared regarding hypervolume and
mutual domination. The first three columns give some statistical data on the pair-
wise hypervolume ratio, while the last column gives a pairwise domination count
based on the binary and additive ε-Indicator. In total, 900 pairwise comparisons
were done for each algorithm pair. Finally, Figure 10.10 exemplary shows the
Pareto-fronts computed by ε-PPM, mε-PPM, NSGA-II and mNSGA-II in a typ-
ical run. A typical run is defined by Jägersküpper and Preuss [24] as the run
which comes closest to median performance value. Since we repeat the exper-
iments 30 times, no run can directly be assigned to the median performance
value. Therefore, we choose a run with the performance nearest to the median
randomly.
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Table 10.3 Hypervolume ratio and domination results for 30 experiments with ε-PPM, mε-
PPM, NSGA-II, and the modified version of NSGA-II on the considered scheduling problem.
To determine domination the additive ε-Indicator was applied. The #Dom column shows
the domination count of the first over the second approach, while #iDom shows the inverse
domination count.

Hypervolume Ratio ε-Ind.

Method Mean Median Std. #Dom. #iDom

mε-PPM/NSGA-II 1.0794 1.0687 0.094 210 1

NSGA-II/mNSGA-II 1.1376 1.1174 0.145 312 5

mε-PPM/mNSGA-II 1.2217 1.1981 1.142 690 0

mε-PPM/ε-PPM 1.0596 1.0585 0.072 224 20

ε-PPM/NSGA-II 1.0220 1.0105 0.095 71 10

ε-PPM/mNSGA-II 1.1426 1.1141 0.137 263 4

Fig. 10.10 Typical runs of all four examined algorithms on a problem instance of
Pm|r j|∑Cj,∑Uj

10.5.2.3 Discussion

Our case study shows, that the ε-PPM and its modification for scheduling prob-
lems (mε-PPM) can preserve diversity. It has further the same properties to seam-
lessly integrate expert knowledge as the original PPM. We can also observe the
benefit of expertise integration into our approach. With this approach we can sig-
nificantly outperform both ε-PPM and NSGA-II. Although this is not surprising
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at all, the results for mNSGA-II are all the more confirming the arguments in fa-
vor of PPM as framework for expertise integration. Throughout the work we stated
that the monolithic structure of traditional approaches may hinder the seamless inte-
gration of expert knowledge. Our results show, that the straightforward application
of single-objective knowledge inside the variation operators of NSGA-II leads to
a deterioration compared to standard mutation. Certainly, we may be able to re-
structure and adapt NSGA-II such that this problem class can be approximated in
a similar quality as by the PPM. However, an engineer is probably not willing to
cope with algorithm design issues to finally reach his solution. Here, the PPM ob-
viously offers a simple way to directly integrate his expertise without algorithmic
modifications.

10.6 Conclusion

We proposed a modularly composed, easy to understand, and simple to adapt
evolutionary framework for solving multi-objective optimization problems: the
predator-prey model (PPM). The modular concept of predators composed from sin-
gle objective selection and locally operating variation is the key advantage of the
PPM over standard, often dominance-based multi-objective evolutionary algorithms
(MOEAs) for expertise integration. The latter are usually of rather monolithic struc-
ture and therefore hard to understand and difficult to adapt. Thus, for their usage in
real-life a domain expert usually has to modify the whole algorithm for his purposes.
That leaves a major gap between the framework character of the general approach
and its applicability.

In this work, we prove a considerably smaller gap for the PPM: the expert directly
applies his available knowledge to the considered single objectives by plugging it
into predators. Eventually, the common application of all these influences leads to
an implicit cooperation of strategies and to the emergence of good trade-off so-
lutions. This way, it is easy to build a problem specific, multi-objective optimizer
transparent to the algorithm’s details. To illustrate the seamless application of the
PPM framework, we addressed NP-hard multi-objective problems. We considered
two scheduling test problems: Pm||Cmax,∑Cj and Pm|r j|∑Cj,∑Uj. Further, we pro-
posed an extension of the general PPM scheme using a mechanism which is inspired
by the ε-Constraint method. That way, we acquire more diverse solutions. Comple-
menting this method with an automatic detection of the feasible area through preda-
tor cooperation, allows to apply this mechanism in the PPM model directly. Thus,
the advantages of the PPM and the ε-Constraint method are combined. The seamless
integration of expertise is preserved and no additional parameters are needed.
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Chapter 11
Analysing the Robustness of
Multiobjectivisation Approaches Applied
to Large Scale Optimisation Problems

Carlos Segura, Eduardo Segredo, and Coromoto León

Abstract. Multiobjectivisation transforms a mono-objective problem into a multi-
objective one. The main aim of multiobjectivisation is to avoid stagnation in local
optima, by changing the landscape of the original fitness function. In this contribu-
tion, an analysis of different multiobjectivisation approaches has been performed.
It has been carried out with a set of scalable mono-objective benchmark problems.
The experimental evaluation has demonstrated the advantages of multiobjectivisa-
tion, both in terms of quality and saved resources. However, it has been revealed
that it produces a negative effect in some cases. Some multiobjectivisation schemes
require the specification of additional parameters which must be adapted for dealing
with different problems. Multiobjectivisation with parameters has been proposed as
a method to improve the performance of the whole optimisation scheme. Neverthe-
less, the parameter setting of an optimisation scheme which considers multiobjec-
tivisation with parameters is usually more complex. In this work, a new model based
on the usage of hyperheuristics to facilitate the application of multiobjectivisation
with parameters has been proposed. Experimental evaluation has shown that this
model has increased the robustness of the whole optimisation scheme.

11.1 Introduction

Many real world problems require the application of Optimisation Strategies. Sev-
eral exact approaches have been designed to deal with optimisation problems. How-
ever, exact approaches are not affordable for many real world applications, so a wide
variety of Approximation Algorithms has been developed with the aim of obtain-
ing good quality solutions in a restricted time. Metaheuristics [24] are a family of
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Approximation Techniques that have become popular to solve optimisation prob-
lems. They are high-level strategies that guide a set of heuristic techniques in the
search of an optimum. Among them, Evolutionary Algorithms (EAs) [23] are one
of the most popular strategies. They are population-based algorithms inspired on
the biological evolution. EAs have shown great promise for calculating solutions to
large and difficult optimisation problems. To define a configuration of an EA several
components or parameters, as the survivor selection mechanism, and the genetic
and parent selection operators must be specified. Therefore, several flavours of EAs
are seen to exist. Usually, the quality of the obtained solutions highly depends on
such components and parameters. As a result, the process of making the parameter
setting of an EA usually takes too much user and computational effort [17].

In many problems, EAs may have a tendency to converge towards local optima.
The likelihood of this occurrence depends on the shape of the fitness landscape [11].
Several methods have been designed with the aim of dealing with local optima stag-
nation [24]. Some of the simplest techniques rely on restarting the approach when
stagnation is detected. In other cases, a component which inserts randomness or
noise in the search is used. Maintaining some memory, in order to avoid exploring
the same zones several times, is also a typical approach. Finally, population-based
strategies intrinsically try to maintain the diversity of a solution set. By recombining
such solutions, a larger area of the decision space may be explored. In the particular
case of EAs, stagnation may be alleviated by using several mechanisms, as increas-
ing the mutation rate or using selection schemes with a lower selection pressure.
Another alternative mechanism resides on the usage of multiobjectivisation.

The term multiobjectivisation was introduced in [30] to refer to the reformula-
tion of originally mono-objective problems as multi-objective ones. Multiobjectivi-
sation changes the fitness landscape, so it can be useful to avoid local optima [26],
and consequently to make easier the resolution of the considered problem. How-
ever, it can also produce a harder problem [5]. Multiobjectivisation can be carried
out following two general schemes. The first one is based on decomposing the orig-
inal objective, while the second one is based on adding new objective functions.
The addition of alternative functions can be performed by considering problem-
dependent or problem-independent information. The alternative functions can de-
pend on a single individual or on a full set of individuals [36]. The latter option has
been addressed in the current study. In order to deal with a multiobjectivised prob-
lem, a multi-objective technique must be applied. Multi-Objective Evolutionary Al-
gorithms (MOEAs) have been proposed with the aim of dealing with multi-objective
optimisation problems. Some multiobjectivisation schemes require the specification
of some additional parameters. The quality of the obtained solutions might be im-
proved by using this kind of schemes [41]. However, the parameter setting of such
schemes can be even more time-consuming. This hinders the proper usage of EAs.

Hyperheuristics are a promising approach to facilitate the application of EAs. A
hyperheuristic can be viewed as a heuristic that iteratively chooses between a set of
given low-level metaheuristics in order to solve an optimisation problem [7]. Hence,
by using several EA configurations that combine different components or parame-
ters, the drawbacks of parameter setting can be mitigated. Hyperheuristics operate
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at a higher level of abstraction than metaheuristics, because they have no knowledge
about the problem domain. The underlying principle in using a hyperheuristic ap-
proach is that different metaheuristics have different strengths and weaknesses, and
it makes sense to combine them in an intelligent manner. Hyperheuristics provide
two main benefits. First, it might detect which is the most suitable metaheuristic
for a given problem or instance. Thus, the user and computational effort associ-
ated to the parameter setting might be decreased. In addition, different values of
parameters might be optimal at different stages of the optimisation process [28].
In such cases, hyperheuristics might grant more resources to the fittest low-level
metaheuristic on each stage of the optimisation process. Therefore, the quality of
the solutions obtained by the hyperheuristic might be higher than the quality of the
solutions obtained by any of the involved low-level metaheuristics.

The aim of this contribution is twofold. First, a deep analysis of the validity of
multiobjectivisation has been performed. A comparison among mono-objective EAs
and the Non-dominated Sorting Genetic Algorithm II [19] (NSGA-II) applied to a
set of multiobjectivised problems has been carried out. Such algorithms have been
selected due to their popularity, instead of considering them because of their per-
formance with the considered problems. Therefore, the aim of the analysis has not
been to improve the best-known approaches for such problems. It has focused on
analysing how multiobjectivisation can improve single-objective algorithms. Sev-
eral promising multiobjectivisation methods proposed in previous works [40] have
been applied. The analysis has shown the different benefits of multiobjectivisation.
However, it has also shown some drawbacks in terms of its robustness. In fact, mul-
tiobjectivisation has not provided benefits in some of the tested problems. A novel
multiobjectivisation which requires the specification of parameters has also been
proposed. An analysis of this kind of techniques has been accomplished. This anal-
ysis has revealed that the fittest values of the parameters might depend on the con-
sidered optimisation problem, and on the stage of the optimisation process. Second,
a novel optimisation scheme that merges hyperheuristics and multiobjectivisation
with parameters has been proposed. The aim of this last optimisation scheme is to
avoid the requirement of specifying a particular value for the multiobjectivisation
parameters. Computational results have demonstrated that such an approach has
increased the robustness and ease of use of multiobjectivisation. The different anal-
yses have been carried out considering a set of well-known mono-objective scalable
problems [33]. The relationship between the number of considered variables and
the performance of the proposals has been analysed. Experiments with up to 5000
variables have been performed.

The rest of this Chapter is organised as follows. In Section 11.2, the applied
mono-objective and multi-objective EAs are detailed. The multiobjectivisation tech-
niques used in this work are described in Section 11.3. The notions and background
of parameter setting and hyperheuristics are given in Section 11.4. In Section 11.5,
the way in which hyperheuristics can increase the robustness of multiobjectivisation
with parameters is explained. The particular hyperheuristic used in this contribution
is also described at this point. Then, the experimental evaluation is presented in
Section 11.6. Finally, conclusions are given in Section 11.7.
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Algorithm 11.1. EA Pseudocode
1: Generate an initial population with N individuals
2: Evaluate all individuals in the population
3: while (not stopping criterion) do
4: Mating selection: select parents to generate the offsprings
5: Variation: Apply genetic operators to the mating pool to create a child population
6: Evaluate the offsprings
7: Select individuals for the next generation
8: end while

11.2 Optimisation Schemes

In order to analyse the behaviour of multiobjectivisation approaches, they must
be tested with a particular optimisation scheme. Metaheuristics are high-level ap-
proaches designed to deal with optimisation problems. They can be classified into
two groups: trajectory-based and population-based algorithms. Trajectory-based ap-
proaches maintain at any instant of the optimisation process a single solution.
In population-based algorithms, several solutions are simultaneously taken into
account. Both population-based and trajectory-based approaches have been success-
fully applied to a large amount of complex real-world applications [24]. In multi-
objective optimisation, population-based approaches are more popular because the
maintenance of diversity is particularly important, and because a single preferred
direction can not be identified for trajectory-based approaches [13]. Thus, this work
focuses on analysing multiobjectivisation with population-based metaheuristics.

Evolutionary computation [23] is a special brand of computing which draws its
inspiration from natural evolutionary processes. In this work, a subset of evolution-
ary computation techniques -EAs- has been used to test the behaviour of multiob-
jectivisation. EAs are a set of population-based approaches inspired by biological
evolution. They are based on the same generic framework (Algorithm 11.1), but in
order to obtain a particular configuration of an EA several details have to be spec-
ified. Consequently, several variants of EAs are seen to exist. Among these com-
ponents, the survivor selection mechanism, and the genetic and parent selection
operators have been widely analysed.

In mono-objective EAs the survivor selection operator chooses which individuals
will be allowed in the next generation. This decision is usually based on the fitness
value, favouring those with higher quality, although the concept of age might be
another possibility [23]. In this work, a set of mono-objective EAs has been applied.
Each one of them implements a different survivor selection mechanism:

• Steady-State (SS-EA): In each generation, one offspring is generated. If it is
better than any of the individuals of the population, the worst of them is replaced
by this new offspring.
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• Generational with Elitism (GEN-EA): In each generation, N− 1 offsprings are
generated, being N the population size. All parents, except the fittest one, are
discarded, and they are replaced by the generated offsprings.

• Replace Worst (RW-EA): In each generation, N offsprings are generated. The N
fittest individuals, between parents and offsprings, are selected to survive.

The aforementioned survivor selection schemes do not consider information about
the variables domain. However, multiobjectivisation usually considers such infor-
mation. By this way, it can be useful to avoid premature convergence. In order to
apply multiobjectivisation to a particular problem, a multi-objective approach must
be used. In this work, a MOEA has been used. Several MOEAs are seen to exist.
Among them, the NSGA-II is clearly the most popular one.

The NSGA-II (Algorithm 11.2) is a non-dominated sorting based MOEA. Two
of the most important characteristics of this algorithm are the following. First, it
uses a fast non-dominated sorting approach. Second, it applies a selection operator
which combines previous populations with new generated ones, ensuring elitism in
the approach. Both aforementioned features are guided by the crowded comparison
operator (≥n). This operator assigns two attributes to every individual i of the pop-
ulation: the non-domination rank (irank) and the local crowding distance (idistance).

The non-domination rank makes use of the Pareto Dominance concept. The pro-
cedure to calculate it is as follows. First, the set of non-dominated individuals of the
population are assigned to the first rank. Then the process is repeated considering
only the individuals that do not have a rank assigned. The rank assigned at each step
is increased by one. The process ends when all individuals in the population have
its corresponding rank established.

The local crowding distance is used to estimate the density of solutions surround-
ing a particular individual. First, the size of the largest cuboid enclosing the indi-
vidual i without including any other individual that belongs to its rank is calculated.
Then, the crowding distance is calculated as the average side-length of the cuboid.
It is worthy to mention that the local crowding distance of the boundary individuals
of every rank is assigned to an infinite value. Finally, the partial order given by ≥n

is the following:

i≥n j i f (irank < jrank) or ((irank = jrank) and (idistance > jdistance)) (11.1)

In order to complete the definition of the mono-objective and the multi-objective
EAs, other components must also be specified. A direct encoding of the candidate
solutions has been considered, i.e. they have been represented by a vector of D real
numbers, being D the number of variables of the considered optimisation problems.
The parent selection mechanism has been the well-known Binary Tournament [23].
The Uniform Mutation [23] (UM) with a probability pm = 1

D , and the Simulated
Binary Crossover [18] (SBX) with a probability pc = 1, have been applied.
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Algorithm 11.2. NSGA-II Pseudocode
1: Initialisation: Generate an initial population P0 with N individuals. Assign t = 0.
2: while (not stopping criterion) do
3: Fitness assignment: Calculate fitness values of individuals in Pt . Use only the

non-domination rank in the first generation, and the crowded comparison operator in other
generations.

4: Mating selection: Perform binary tournament selection on Pt in order to fill the mating
pool.

5: Variation: Apply genetic operators to the mating pool to create a child population CP.
6: Combine Pt and CP, selecting the best individuals using the crowded comparison operator

to constitute Pt+1.
7: t = t +1
8: end while

11.3 Multiobjectivisation

The term multiobjectivisation was introduced in [30] to refer to the reformulation
of originally mono-objective problems as multi-objective ones. There are two main
ways of multiobjectivising a problem. The first one is based on decomposing the
original objective into several sub-objectives. The Pareto Front of the new defined
problem should contain a solution with the original optimal value. The second one
is based on aggregating a new alternative function as the second objective. Such a
function is used in conjunction with the original fitness function. In this last case,
the Pareto Front always contains a solution with the original optimal value. The
main advantage of the second approach is that it can be performed by considering
solely problem-independent information. Thus, by following such a scheme, general
multiobjectivisation approaches useful for several optimisation problems might be
designed. In this work, several alternative functions have been considered.

Multiobjectivisation usually decreases the selection pressure of the original ap-
proach. Therefore, when used in combination with EAs, some low quality individ-
uals could survive in the population with a higher probability. However, if properly
configured, in the long term these individuals could help to avoid stagnation in local
optima, so higher quality solutions might be obtained.

Several options have been proposed to define the artificial objective [1, 44, 6].
Some of them are based on the Euclidean distance on the decision space [44]. It is
worthy to mention that these functions are a direct measure of the diversity:

• DCN: The distance to the closest neighbour of the population has to be max-
imised.

• ADI: The average distance to all individuals of the population has to be max-
imised.

• DBI: The distance to the best individual of the population, i.e. the one with the
lowest fitness, has to be maximised.
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Other authors propose the usage of objectives which may preserve diversity without
using a direct measure for diversity [1]. Among them, the following ones have been
defined:

• Random: A random value is assigned as the second objective to be minimised.
Smaller random values may be assigned to some low-quality individuals that
would get a chance to survive.

• Inversion: In this case, the optimisation direction of the original objective func-
tion is inverted and is used as the artificial objective. This approach highly de-
creases the selection pressure.

• Time stamp: The artificial objective is calculated as a time stamp of when an
individual is generated. Each individual in the initial population is stamped with
a different time stamp represented by a counter which gets incremented every
time a new individual is created. From the second population all new generated
individuals get the same time stamp that is set to the population size plus the
generation index. This time stamp must be minimised.

Note that among these options, DCN and ADI take more time to calculate than the
others, because they need to look at O(N2) distances. Since in real-world appli-
cations the evaluation time is usually highly related to the number of evaluations,
the time to calculate distances is assumed to be negligible compared to the time to
evaluate a candidate solution. Consequently, in this work comparisons have been
performed solely on the basis of function evaluations.

In [6], an analysis about the behaviour of the aforementioned artificial functions
in dynamic environments was performed. It revealed the superiority of the distance-
based artificial objectives. In [41], multiobjectivisation was successfully applied to
a packing problem. A strategy based on the DBI multiobjectivisation achieved the
best results. This strategy also took into account the penalty of low-quality candi-
date solutions. This work is focused on the distance-based artificial functions. In
addition, a novel alternative objective that applies some of the ideas shown in [41]
is proposed. Specifically, it is a problem-independent technique that tries to increase
the diversity of the population. It starts from the DCN alternative objective, but it in-
corporates the usage of a threshold ratio (th∈ [0,1]) which must be specified by the
user. Such a multiobjectivisation is named DCN-THR. The threshold ratio is used to
avoid the survival of individuals with a very low quality. Being bestFit the fitness
value of the best individual of the population, and shi f t a value that ensures that
bestFit− shi f t ≥ 0 in the whole execution, the threshold value (v) is defined as:

v =
(bestFit− shi f t)

th
+ shi f t (11.2)

The alternative objective of individuals whose fitness value is higher than v is as-
signed to 0. As a result, individuals that are not able to achieve the fixed threshold
are penalized. In the special case where th = 0, individuals are never penalized.
Thus, DCN-THR with th = 0 has the same behaviour than the DCN function.

Figure 11.1 shows the behaviour of the DCN function when integrated with the
NSGA-II. The maximisation of the DCN function and the minimisation of the fitness
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Fig. 11.1 Behaviour of the NSGA-II without threshold

Fig. 11.2 Behaviour of the NSGA-II with two different values of threshold

function are assumed. Each candidate solution is tagged with a label that indicates
its corresponding ranking assigned by the NSGA-II. By this way, the label Ri means
that the corresponding candidate solution belongs to the rank number i. Figure 11.2
shows the effect of incorporating the threshold to the DCN function. The broken
line represents the value of v. It is worthy to mention that the higher the threshold
ratio the lower v is. Such a Figure shows that every candidate solution which does
not fulfil the minimum quality level established by the threshold ratio is shifted in
the objective space. Specifically, a value equal to 0 is assigned to its alternative
objective. Afterwards, the NSGA-II crowded comparison operator is applied. The
effect of the shift is that the corresponding candidate solution will usually belong to
a worse rank. Thus, its survival probability will be usually decreased.

In cases where a low threshold ratio is applied, the objective function is similar
to the original DCN function. In the opposite case, i.e. when a high threshold ra-
tio is used, the algorithm behaves as if multiobjectivisation was not applied. Since
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the performance of multiobjectivisation might depend on the tackled problem, by
properly tuning the threshold ratio, the approach can be adapted to the problem or
instance to solve.

11.4 Parameter Setting

In order to successfully apply a metaheuristic, several components and parameters
must usually be specified. For instance, it has been mentioned that in order to define
a particular EA, several details must be defined. It is customary to call these details
the EA parameters. Among other parameters, in EAs [23], the mutation, crossover,
and selection operators, as well as several probabilities must be fixed. The quality of
the solutions highly depends on such components and parameterisations [2, 34, 35].
Consequently, it is very important to perform the parameterisation in a proper way.

Finding the appropriate parameter values of an EA is a source of research which
emerged several decades ago [17], and during all that time, researchers have been
trying to find answers to questions like:

• Is there a generic set of parameter values applicable to all problems?
• Is there a generic set of parameter values applicable to a particular set of prob-

lems?
• Is it better to preset the parameter values before the execution or modify the

parameter values during the execution of the algorithm?
• What parameter subset really affects the behaviour of an algorithm?

Usually, when a novel problem is tackled, there is no a priori information of which
metaheuristic is the most suitable one. Therefore, in order to obtain high-quality so-
lutions, several metaheuristics, as well as several parameterisations for each of them
must be tested. As a result, the effort required to obtain high-quality solutions, both
in terms of user-effort and computational-effort, might be very large. The selection
of the parameters can be done in several ways [4]:

• Checking in a systematic way some ranges of the parameter values and assessing
the performance of each value.

• Based on the experiences reported in the literature for similar applications.
• Performing a theoretical analysis of the behaviour of the metaheuristic to deter-

mine the optimal parameter setting.
• Using “standard” values.

In order to reduce the waste of resources of a systematic testing of the different
parameter ranges, and with the aim of minimising the user effort, several studies
have analysed the automation of EAs and other metaheuristics parameterisation [42,
32]. Parameter setting strategies are divided into two categories: parameter tuning
and parameter control. In parameter tuning [42] the objective is to identify the best
set of parameters for a given metaheuristic. Then the algorithms are executed using
the same parameterisation during all the run. By contrast, in parameter control, the
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optimisation strategies start the execution with a set of initial values, and modify
those values during the execution, depending on the behaviour of the approach in
the different stages of the optimisation process. The main advantage of parameter
control is that high-quality solutions might be found in a single run.

Parameter tuning is usually done by experimenting with different values and se-
lecting the ones that produce the best results. The most frequently used tuning strat-
egy is based on a multiple execution in which several parameter values are tested to
find the appropriate combination of them for a particular problem. This process can
be automated by the use of a top-level driver that chooses different parameter values
in a systematic way. Metaheuristic parameters usually interact in highly non-linear
ways [32]. Moreover, there is a large amount of parameterisation options, but only
little knowledge about the effect of the parameters. Thus, the problem of finding the
best set of parameters is very hard. In addition, the stochastic behaviour of meta-
heuristics also hinders the design of the tuning strategies. Several studies [22] have
concluded that the usage of a static set of parameters during a metaheuristic run
seems to be inappropriate. In fact, it has been empirically and theoretically demon-
strated that different values of parameters might be optimal at different stages of the
optimisation process [28]. Therefore, the main drawback of parameter tuning is that
there is no guarantee that a fixed set of parameters leads to optimal performance
because the demands of optimisation algorithms change during an optimisation run
from exploration in early stages to exploitation in later stages. Since different param-
eter settings are needed to emphasise either exploration or exploitation, it follows
that optimal parameter settings might vary over time.

Parameter control strategies allow changing the parameter values during the
metaheuristic runs. Thus, the aim of parameter control is to design a control strategy
that selects the parameters to use at each stage of the optimisation process. Several
metaheuristics as Simulated Annealing (SA) and Evolution Strategies (ESs) provide
self-adaptive parameters to deal with the requirements of each optimisation stage.
Since they have been of great value in several fields, it seems promising to incor-
porate these ideas into other metaheuristics. Moreover, it would be of a great value
to integrate these ideas in a general way, so that a large number of metaheuristics
can profit from it. Several strategies to adapt the parameters of the algorithms have
been designed. Most of them [46] depend on the formulation of the metaheuristic,
so they can not be applied in a straightforward manner to other metaheuristics.

Hyperheuristics are popular general methods which can be applied to perform
the parameter control. The main advantage of hyperheuristics is that they are inde-
pendent of the metaheuristics that they control. A hyperheuristic can be viewed as a
heuristic that iteratively chooses between a set of given low-level metaheuristics in
order to solve an optimisation problem [7]. Hyperheuristics operate at a higher level
of abstraction than heuristics, because they have no knowledge about the problem
domain. The motivation behind the approach is that, ideally, once a hyperheuris-
tic algorithm has been developed, several problem domains and instances could be
tackled by only replacing the low-level metaheuristics. Thus, the aim in using a hy-
perheuristic is to raise the level of generality at which most current metaheuristic
systems operate.
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Fig. 11.3 Hyperheuristic Framework

The main motivation of hyperheuristics is to design problem-independent strate-
gies. Thus, a hyperheuristic is not concerned with solving a given problem directly
as in the case of most heuristics. In fact, the search is on a metaheuristic search
space rather than a search space of potential problem solutions. The hyperheuris-
tic solves the problem indirectly by recommending which solution method to apply
at which stage of the optimisation process. Generally, the goal of raising the level
of generality is achieved at the expense of reduced - but still acceptable - solution
quality when compared to tailor-made approaches. A diagram of a general hyper-
heuristic framework [7] is shown in Figure 11.3. It shows a problem domain barrier
between the low level metaheuristics and the hyperheuristic itself. The data flow
received by the hyperheuristic could include the quality of achieved solutions (aver-
age, improvement, best, worst), the resources (time, processors, memory) invested
to achieve such solutions, etc. Based on such information, the hyperheuristic make
its decisions. The data flow coming from the hyperheuristic could include informa-
tion about which heuristic must be executed, its parameters, stopping criteria, etc.

Hyperheuristics can be classified in several ways. The adaptation level refers to
the historical knowledge that is considered by the hyperheuristic. Based on the adap-
tation level, hyperheuristics can be classified as global or local approaches [37]. In
global approaches all the historical knowledge is considered, while in local ones,
some of the information is discarded. Hyperheuristics can also be classified in terms
of the characteristics of the low-level metaheuristics into two groups [9], the ones
which operate with constructive techniques and the ones which operate with im-
provement techniques. Constructive techniques are used to build solutions from
scratch. At each step, they determine a subpart of the solution. Improvement meta-
heuristics are iterative approaches which take an initial solution, and modify it with
the aim of improving the objective value. Some hyperheuristics have been designed
to operate specifically with one kind of low-level metaheuristics, while other ones,
can use both constructive and improvement methods.

Previously to the appearance of the concept of hyperheuristic, some research
was performed analysing similar ideas. Composer [25] was one of the first pro-
posals which used a search space constituted by heuristics. In such a case, the
search was performed by using a hill-climbing strategy. Other proposals consisted in
hybridising genetic algorithms and heuristics [43]. Several ways of incorporating
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the ideas of hyperheuristics into an optimisation problem have been proposed.
The hyperheuristics which deal with mono-objective optimisation problems are
much more extensive. In [8] a tabu search based hyperheuristic was presented.
The same hyperheuristic was used inside a SA algorithm [21]. The hyperheuris-
tic was used to combine several neighbourhood definitions. Other metaheuristics
which have inspired the creation of hyperheuristics are genetic algorithms [14] and
ant colony optimisation [10, 12, 20]. The choice functions have also been used mul-
tiple times [15, 16, 29]. In such cases, a scoring function is used to assess the per-
formance of each low-level heuristic. The resources are granted to the low-level
heuristic which maximise such a function. In [45], a choice function was also used
to score each method. However, the resources were assigned using a probability
function which is based on the assigned score. Based on this idea, a parallel opti-
misation model was proposed in [31]. This model has been successfully applied to
several real-world applications [39, 38].

11.5 Increasing the Robustness of Multiobjectivisation

Multiobjectivisation changes the fitness landscape, so it can be useful to avoid local
optima [26], and consequently, to make easier the resolution of the problem. How-
ever, it can also produce a harder problem [5]. In the case of multiobjectivising a
problem with the DCN-THR function, the value of the threshold ratio might affect
the behaviour of the NSGA-II. Specifically, the operation of the parent and survivor
selection mechanisms is modified. Given that the most suitable parent and survivor
selection operators depend on the problem or instance to solve, a fixed threshold ra-
tio will not probably be the most suitable for every problem and instance. Moreover,
the fittest parameter values might also depend on the optimisation stage. Therefore,
by using fixed values for such parameters, suboptimal results might be obtained.

The combination of DCN-THR and hyperheuristics can produce two main bene-
fits. First, fixing a specific threshold ratio is not required when a hyperheuristic is
used. Instead, the practitioner might specify a set of ratios that should be tested. This
facilitates the decisions that must be taken by the practitioners, increasing the us-
ability of the scheme. Moreover, with a fixed parameterisation of the hyperheuristic
a larger amount of problems can be tackled than with a fixed parameterisation of the
low-level metaheuristics. Thus, by combining hyperheuristics and multiobjectivisa-
tion the robustness of the whole optimisation scheme is increased.

The hyperheuristic presented in [45] has been applied in this work. Such a hy-
perheuristic (HH imp) is based on using a scoring strategy and a selection strategy
for picking up the low-level configuration that must be executed. Once a strategy is
picked up, it is executed until a local stopping criterion is achieved. Then, another
low-level configuration is selected, and it is executed taking as initial population
the last population of the previous selected approach. This process continues until
a global stopping criterion is reached. The selection of the low-level strategy that
must be executed is as follows. First, the scoring strategy assigns a score to each
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low-level configuration. This score estimates the improvement that each low-level
metaheuristic or configuration can achieve when it starts from the currently obtained
solutions. In order to perform such an estimate, the previous fitness improvements
achieved by each configuration are used. The improvement (imp) is defined as the
difference, in terms of the fitness value, between the best achieved individual and
the best initial individual. Considering a configuration con f , which has been exe-
cuted j times, the score - s(con f ) - is calculated as a weighted average of its latest
k improvements (Equation 11.3). In such an Equation, imp[a][b] represents the im-
provement achieved by the configuration a in its execution number b. Depending on
the value of k, the adaptation level of the hyperheuristic can be set. The weighted
average assigns greater importance to the latest executions.

s(con f ) =

min(k, j)

∑
i=1

(min(k, j)+ 1− i) · imp[con f ][ j− i]

min(k, j)

∑
i=1

i

(11.3)

The stochastic behaviour of the involved low-level metaheuristics may lead to
variations in the results achieved by them. Therefore, it is appropriate to make some
selections based on a random scheme. The hyperheuristic can be tuned by means
of the parameter β , which represents the minimum selection probability that should
be assigned to a low-level configuration. Being nh the number of involved low-level
configurations, a random selection following a uniform distribution is performed in
β ·nh percentage of the cases. Therefore, the probability of selecting each configu-
ration con f is given by:

prob(con f ) = β +(1−β ·nh) ·

⎡
⎢⎢⎢⎣

s(con f )
nh

∑
i=1

s(i)

⎤
⎥⎥⎥⎦ (11.4)

11.6 Experimental Evaluation

This section shows the experimental evaluation performed with the optimisation
schemes described in this Chapter. The optimisation schemes have been imple-
mented using METCO [31] (Metaheuristic-based Extensible Tool for Cooperative
Optimisation). Tests have been run on a Debian GNU/Linux computer with four
AMD R© Opteron TM (model number 6164 HE) at 1.7 GHz and 64 GB RAM. The
compiler that has been used is GCC 4.4.5. Different experiments have been applied
to the F1-F11 mono-objective benchmark problems proposed in [33]. They are a
set of scalable continuous optimisation problems, which combine different proper-
ties regarding the modality, the separability, and the ease of optimisation dimension
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by dimension, i.e. whether the fitness can be optimised by independently adjusting
each variable or not.

Since experiments have involved the use of stochastic algorithms, each execution
has been repeated 30 times. Comparisons have been performed following the statis-
tical analysis applied in [3]. First, a Shapiro-Wilk test is performed in order to check
whether the values of the results follow a normal (Gaussian) distribution or not. If
so, the Levene test checks for the homogeneity of the variances. If samples have
equal variance, an ANOVA test is done. Otherwise, a Welch test is performed. For
non-Gaussian distributions, the non-parametric Kruskal-Wallis test is used to com-
pare the medians of the algorithms. A confidence level of 95% has been considered.

11.6.1 Performance of Multiobjectivisation

The first analysis has been devoted to measure the performance of multiobjectivisa-
tion. A comparison between mono-objective and multiobjectivised approaches has
been performed. The mono-objective and multi-objective EAs described in Sec-
tion 11.2 have been used. In the case of the mono-objective EAs, they have been
executed with three different survivor selection mechanisms: SS-EA, GEN-EA, and
RW-EA. In the case of the NSGA-II, it has been executed with the multiobjectivised
versions of the benchmark problems. The multiobjectivisation has been performed
with three different mechanisms: DCN, ADI, and DBI. The number of decision vari-
ables D of the optimisation problems has been fixed to 50 and 500. Each algorithm
has been executed with a population size N of 5, 10, and 20 individuals. The stop-
ping criterion has been fixed to a total number of 5000 ·D evaluations.

Table 11.1 shows, for each population size, the best mono-objective and multi-
objectivised approaches considering D = 50. Comparisons have been made in terms
of the median of the fitness achieved at the end of each execution. The same infor-
mation is shown in Table 11.3 considering D = 500. In both cases, the superiority
of the GEN-EA and the DCN strategies is clear. However, for some problems, they
are not the best-behaved schemes.

Mono-objective and multiobjectivised techniques have been compared in terms
of the achieved fitness. The median of the error achieved by the best mono-objective
and multiobjectivised approaches, for each population size, is given in Table 11.2,
considering D = 50. The error has been defined as the difference between the
achieved fitness and the optimal fitness. It has been calculated considering an ac-
curacy equal to 1 · 10−6. Moreover, a statistical analysis between the best mono-
objective approach and the best multiobjectivised one has been carried out for each
population size. For cases in which differences have been statistically significant,
data of the best of both algorithms is shown in bold. Table 11.4 shows the same
information for the case of D = 500. For both values of D, algorithms with lower
population sizes have obtained lower errors. In addition, the superiority of the mul-
tiobjectivised approaches has been clearly demonstrated. However, in some cases
the best mono-objective approach has obtained statistically better results than the
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Table 11.1 Best mono-objective and multi-objective approaches - D = 50

F1 F2 F3 F4 F5 F6
Mono 5 GEN-EA GEN-EA GEN-EA GEN-EA GEN-EA GEN-EA

Mono 10 GEN-EA GEN-EA GEN-EA GEN-EA GEN-EA GEN-EA

Mono 20 GEN-EA GEN-EA GEN-EA RW-EA GEN-EA GEN-EA

Multi 5 DCN DCN DCN DCN DCN DCN

Multi 10 DCN DCN DCN DCN DCN DCN

Multi 20 DCN DCN DCN DCN DCN DCN

F7 F8 F9 F10 F11
Mono 5 GEN-EA GEN-EA GEN-EA GEN-EA GEN-EA

Mono 10 GEN-EA GEN-EA GEN-EA GEN-EA GEN-EA

Mono 20 GEN-EA GEN-EA GEN-EA GEN-EA GEN-EA

Multi 5 DCN ADI DCN DCN DCN

Multi 10 DCN DCN DCN DCN DCN

Multi 20 DCN DCN DCN DCN DCN

Table 11.2 Median of the error for the best approaches - D = 50

F1 F2 F3 F4 F5 F6
Mono 5 < 1 ·10−6 1.76 ·100 1.55 ·102 < 1 ·10−6 2.25 ·10−2 3.00 ·10−3

Multi 5 < 1 ·10−6 5.67 ·10−1 1.55 ·102 < 1 ·10−6 1.10 ·10−2 1.00 ·10−3

Mono 10 < 1 ·10−6 1.63 ·100 3.44 ·102 < 1 ·10−6 1.50 ·10−2 2.00 ·10−3

Multi 10 5.00 ·10−4 1.05 ·100 1.52 ·102 1.00 ·10−3 1.00 ·10−2 4.00 ·10−3

Mono 20 6.00 ·10−3 2.01 ·100 3.38 ·102 8.60 ·10−2 2.10 ·10−2 1.60 ·10−2

Multi 20 3.00 ·10−3 1.64 ·100 1.97 ·102 1.00 ·10−3 1.90 ·10−2 9.00 ·10−3

F7 F8 F9 F10 F11
Mono 5 4.57 ·10−3 1.44 ·109 7.24 ·100 1.84 ·10−4 6.80 ·100

Multi 5 1.37 ·10−3 4.50 ·108 4.65 ·100 3.11 ·10−5 4.46 ·100

Mono 10 2.59 ·10−3 1.02 ·109 7.77 ·100 1.16 ·10−4 7.05 ·100

Multi 10 2.55 ·10−3 6.49 ·108 5.62 ·100 4.69 ·10−4 6.12 ·100

Mono 20 1.82 ·10−2 1.34 ·109 1.79 ·101 5.40 ·10−3 1.98 ·101

Multi 20 3.70 ·10−3 8.77 ·108 6.92 ·100 1.47 ·10−3 8.00 ·100

best multiobjectivised technique. From a total number of 66 statistical tests, in 41
of them the best multiobjectivised approach has been statistically superior. The best
mono-objective algorithm has been statistically superior in 9 tests. Finally, 16 statis-
tical tests have shown no significant differences between both strategies. In addition,
it is important to know which kinds of problems are more adequate to be solved
by multiobjectivised approaches. Multiobjectivisation has provided more benefits
when it has been applied to a unimodal problem. In fact, for a fixed population size,
the best multiobjectivised approach has been statistically better than the best mono-
objective algorithm in a 76.2% of the cases in which unimodal problems have been
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Table 11.3 Best mono-objective and multi-objective approaches - D = 500

F1 F2 F3 F4 F5 F6
Mono 5 GEN-EA RW-EA GEN-EA GEN-EA GEN-EA GEN-EA

Mono 10 GEN-EA RW-EA GEN-EA GEN-EA GEN-EA GEN-EA

Mono 20 GEN-EA RW-EA GEN-EA GEN-EA SS-EA GEN-EA

Multi 5 DCN ADI DCN DCN DCN DCN

Multi 10 DCN DCN DCN DCN DCN DCN

Multi 20 DCN DCN DCN DCN DCN DCN

F7 F8 F9 F10 F11
Mono 5 GEN-EA GEN-EA GEN-EA GEN-EA GEN-EA

Mono 10 GEN-EA GEN-EA GEN-EA GEN-EA GEN-EA

Mono 20 GEN-EA GEN-EA GEN-EA GEN-EA GEN-EA

Multi 5 DCN DCN DCN DCN DCN

Multi 10 DCN DCN DCN DCN DCN

Multi 20 DCN DCN DCN DCN DCN

Table 11.4 Median of the error for the best approaches - D = 500

F1 F2 F3 F4 F5 F6
Mono 5 3.00 ·10−3 1.67 ·101 1.32 ·103 3.00 ·10−3 8.00 ·10−3 3.00 ·10−3

Multi 5 < 1 ·10−6 1.14 ·101 1.26 ·103 3.00 ·10−3 < 1 ·10−6 1.00 ·10−3

Mono 10 2.00 ·10−3 1.41 ·101 1.47 ·103 3.95 ·10−2 < 1 ·10−6 3.00 ·10−3

Multi 10 5.00 ·10−3 1.81 ·101 1.48 ·103 1.00 ·100 1.00 ·10−3 4.00 ·10−3

Mono 20 6.50 ·10−2 1.54 ·101 1.78 ·103 9.28 ·10−1 8.00 ·10−3 1.70 ·10−2

Multi 20 3.70 ·10−2 2.23 ·101 1.87 ·103 8.95 ·10−2 4.50 ·10−3 1.30 ·10−2

F7 F8 F9 F10 F11
Mono 5 4.02 ·10−2 1.93 ·1011 7.53 ·101 1.84 ·10−3 7.40 ·101

Multi 5 1.37 ·10−2 1.41 ·1011 4.49 ·101 3.46 ·10−4 4.44 ·101

Mono 10 2.57 ·10−2 1.83 ·1011 8.42 ·101 1.32 ·10−3 8.24 ·101

Multi 10 2.99 ·10−2 1.58 ·1011 6.30 ·101 4.60 ·10−3 6.19 ·101

Mono 20 1.77 ·10−1 2.04 ·1011 2.08 ·102 6.24 ·10−2 2.08 ·102

Multi 20 3.83 ·10−2 1.73 ·1011 7.78 ·101 2.76 ·10−2 7.63 ·101

considered. This ratio has decreased to a 37.5% when multimodal problems have
been taken into account.

The previous analysis has demonstrated the validity of multiobjectivisation in
terms of the achieved quality level. However, it is important to quantify the improve-
ment that can be achieved by using multiobjectivisation, in terms of the invested
number of evaluations. Some of the notions of Run-Length Distributions (RLD) [27]
have been used. RLD show the relationship between success ratios and time. Suc-
cess ratio is defined as the probability of achieving a certain quality level by a given
metaheuristic configuration. The quality level has been fixed so that all executions
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Table 11.5 Percentage of saved evaluations by the best multiobjectivisation

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11
D = 50 26.1% 45.9% 40.0% -28.9% 33.3% 32.6% 29.2% 45.5% 31.0% 23.5% 33.3%
D = 500 26.9% -7.7% 25.0% -21.2% 29.4% 28.0% 25.9% 38.7% 29.4% 35.3% 29.4%

Table 11.6 Statistical comparison among different threshold values

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11
Best Threshold 0 0.8 0.2, 0.4 0.4, 0.6 0 0, 0.2 0.2 0, 0.2 0.8 0 0.8

have been able to achieve it. The number of evaluations required to achieve a 50%
of success ratio have been calculated for the best-behaved mono-objective and mul-
tiobjectivised approaches, regardless of the population size. Table 11.5 shows the
percentage of saved evaluations by the best multiobjectivised approach in relation to
the best mono-objective one. A negative value means that the mono-objective algo-
rithm has converged faster than the corresponding multiobjectivised strategy to the
fixed quality level. Once again, the superiority of multiobjectivisation can be noted.
The best-behaved multiobjectivised approach has provided benefits in 19 cases from
a total number of 22. Moreover, in the majority of the cases, the percentage of saved
evaluations has been large. In fact, in some cases, about a 45% of evaluations has
been saved.

11.6.2 On the Usage of Multiobjectivisation with Parameters

The second experiment has focused on analysing multiobjectivisation with parame-
ters. Specifically, the considered benchmark problems have been multiobjectivised
with the DCN-THR strategy. The aim of the analysis has been to discover the rela-
tionship between the values of the threshold ratio th, and the quality of the obtained
results. The multiobjectivised versions of the benchmark problems have been solved
with the NSGA-II. The parameterisation has been as follows. The number of deci-
sion variables D has been fixed to 500. Since lower errors have been obtained with
lower population sizes in the previous experiments, the population size has been
fixed to 5 individuals. The following values have been used for the threshold ratio
th: 0, 0.2, 0.4, 0.6, and 0.8. Finally, the stopping criterion has been fixed to a total
number of 2 ·107 evaluations.

Table 11.6 shows, for each benchmark problem, the threshold ratio of the config-
uration which has obtained the best median of the fitness in 1.25 ·106 evaluations. It
also shows the threshold ratios of those configurations which have not been statisti-
cally different than the best one. There has been no value which has been able to be
among the best ones for every problem. Thus, in order to decide the proper value to
use, a priori information of the problem to solve is required.
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Table 11.7 Number of evaluations to achieve a fixed quality level

0 0.2 0.4 0.6 0.8
F1 1.25 ·106 2.2 ·106 3.05 ·106 4.7 ·106 6.05 ·106

F2 1.35 ·106 1.35 ·106 1.4 ·106 1.4 ·106 1.25 ·106

F3 1.75 ·106 1.25 ·106 1.35 ·106 1.7 ·106 1.8 ·106

F4 2.15 ·106 1.45 ·106 1.25 ·106 1.25 ·106 1.5 ·106

F5 1.25 ·106 4 ·106 5.15 ·106 6.9 ·106 1.74 ·107

F6 1.25 ·106 1.2 ·106 1.95 ·106 2.5 ·106 3.75 ·106

F7 2.3 ·106 1.25 ·106 2 ·106 3.85 ·106 8.6 ·106

F8 1.25 ·106 1.3 ·106 1.45 ·106 1.4 ·106 1.45 ·106

F9 1.9 ·106 1.85 ·106 1.75 ·106 1.65 ·106 1.25 ·106

F10 1.25 ·106 1.8 ·106 2.4 ·106 3.25 ·106 5 ·106

F11 1.85 ·106 1.85 ·106 1.85 ·106 1.6 ·106 1.25 ·106

In order to measure the impact over the performance, RLD have been used. The
quality level has been fixed as the median of the fitness achieved by the best con-
figuration in 1.25 · 106 evaluations. Table 11.7 shows, for each threshold ratio, the
number of evaluations required to obtain a success ratio of 50%, when the afore-
mentioned quality level has been taken into account. Considering the number of
evaluations required by suboptimal approaches, the importance of correctly fixing
the parameter is clear. For instance, considering the problem F5, the number of eval-
uations required by the best configuration approximately represents a 7.18% of the
evaluations required by the worst one.

Another open research question is whether the proper value of th depends on
the optimisation stage or not. With the aim of answering this question the follow-
ing experiment has been performed. First, four different optimisation stages have
been defined. To define such stages the median of the fitness values achieved by the
best configuration in 2.5 · 105, 5 · 105, 7.5 · 105, and 1 · 106 evaluations have been
considered. Then, for each calculated value, 30 individuals with a quality similar to
such a value have been generated. In order to generate the 30 individuals, the best
configuration has been executed 30 times. For each one of these 30 executions, the
generated individual has been the first one that has achieved an original objective
value lower than the fixed value for the corresponding stage.

After it, the NSGA-II has been tested with different values of the threshold ra-
tio for each considered stage. Considering each one of the stages, each one of the
executions of the NSGA-II has included one of the 30 individuals generated by
the aforementioned method in its initial population. The remaining individuals of
the population have been randomly generated. By this way, the performance of the
NSGA-II with different threshold values can be tested when it starts from different
quality levels. The stopping criterion has been fixed to 5 ·105 evaluations. The dif-
ferent configurations of the NSGA-II have been compared in terms of the achieved
fitness. Tables 11.8, 11.9, and 11.10 show the comparison among the considered
threshold values for the problems F4, F5, and F11, respectively. For each stage,
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Table 11.8 Statistical comparison among different threshold values by stages - F4

Stage 0 Stage 1
0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

0 ↔ ↔ ↔ ↔ ↓ ↔ ↔ ↔ ↓ ↓
0.2 ↔ ↔ ↔ ↔ ↓ ↔ ↔ ↔ ↓ ↓
0.4 ↔ ↔ ↔ ↔ ↓ ↔ ↔ ↔ ↔ ↔
0.6 ↔ ↔ ↔ ↔ ↔ ↑ ↑ ↔ ↔ ↔
0.8 ↑ ↑ ↑ ↔ ↔ ↑ ↑ ↔ ↔ ↔

Stage 2 Stage 3
0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

0 ↔ ↔ ↔ ↔ ↔ ↔ ↑ ↑ ↑ ↑
0.2 ↔ ↔ ↔ ↔ ↔ ↓ ↔ ↔ ↔ ↔
0.4 ↔ ↔ ↔ ↔ ↔ ↓ ↔ ↔ ↔ ↔
0.6 ↔ ↔ ↔ ↔ ↔ ↓ ↔ ↔ ↔ ↔
0.8 ↔ ↔ ↔ ↔ ↔ ↓ ↔ ↔ ↔ ↔

Table 11.9 Statistical comparison among different threshold values by stages - F5

Stage 0 Stage 1
0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

0 ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↑ ↑ ↑
0.2 ↔ ↔ ↔ ↑ ↑ ↔ ↔ ↔ ↑ ↑
0.4 ↔ ↔ ↔ ↔ ↑ ↓ ↔ ↔ ↔ ↔
0.6 ↔ ↓ ↔ ↔ ↔ ↓ ↓ ↔ ↔ ↔
0.8 ↔ ↓ ↓ ↔ ↔ ↓ ↓ ↔ ↔ ↔

Stage 2 Stage 3
0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

0 ↔ ↑ ↑ ↑ ↑ ↔ ↑ ↑ ↑ ↑
0.2 ↓ ↔ ↔ ↔ ↔ ↓ ↔ ↔ ↔ ↔
0.4 ↓ ↔ ↔ ↔ ↔ ↓ ↔ ↔ ↔ ↔
0.6 ↓ ↔ ↔ ↔ ↔ ↓ ↔ ↔ ↔ ↔
0.8 ↓ ↔ ↔ ↔ ↔ ↓ ↔ ↔ ↔ ↔

they show if the row configuration is statistically better (↑), not different (↔), or
worse (↓), than the corresponding column configuration. For each problem, the sta-
tistical tests show that differences among configurations depend on the considered
optimisation stage. For instance, taking into account the stage number 0 of the prob-
lem F4, the configuration that uses th = 0.8 is better than the one which uses th = 0.
However, in the stage number 3 the configuration with th = 0 performs better than
the configuration with th= 0.8. In the case of the problem F5, th= 0 seems to be the
most appropriate value for the whole run because there is not a better value in any
of the analysed stages. For the same reasons, in the problem F11 the value th = 0.8
seems to be the most appropriate.
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Table 11.10 Statistical comparison among different threshold values by stages - F11

Stage 0 Stage 1
0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

0 ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔
0.2 ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔
0.4 ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔
0.6 ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔
0.8 ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔

Stage 2 Stage 3
0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

0 ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↓
0.2 ↔ ↔ ↔ ↔ ↓ ↔ ↔ ↔ ↔ ↓
0.4 ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↓
0.6 ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↓
0.8 ↔ ↑ ↔ ↔ ↔ ↑ ↑ ↑ ↑ ↔

Table 11.11 Number of evaluations to achieve a fixed quality level

F1 F2 F3 F4 F5 F6
HH imp 1.45 ·106 1.35 ·106 1.3 ·106 1.15 ·106 1.4 ·106 1.25 ·106

F7 F8 F9 F10 F11
HH imp 1.5 ·106 1.4 ·106 1.55 ·106 1.2 ·106 1.55 ·106

11.6.3 Rising the Robustness of Multiobjectivisation

An experiment focused on analysing the benefits of mixing hyperheuristics and
multiobjectivisation with parameters has also been performed. The hyperheuristic
(HH imp) has been applied to each one of the benchmark problems, considering a
global adaptation level, i.e. using the parameterisation k = ∞. The value of β has
been fixed in a way that 10% of the decisions performed by the hyperheuristic fol-
lows a uniform distribution, i.e. β ·nh = 0.1. The low-level configurations have been
the five configurations (nh = 5) defined in the previous experiment, i.e. the NSGA-
II with DCN-THR considering the following threshold ratios: 0, 0.2, 0.4, 0.6, and
0.8. The local stopping criterion has been fixed to 1 · 104 evaluations. The global
stopping criterion has been fixed to 2.5 ·106 evaluations.

Table 11.11 shows the number of evaluations required by HH imp to obtain a 50%
of success ratio. It considers the same quality level than the one fixed in Table 11.7.
The benefits of incorporating the hyperheuristic are clear. In fact, it is the only one
model that has been able to achieve the fixed quality level in less than 1.55 · 106

evaluations for all the considered problems. Moreover, in two of the problems (F4
and F10) it has been the model that has required fewer evaluations to obtain the
considered quality level. This means that the hyperheuristic has been able to grant



11 Multiobjectivisation Applied to Large Scale Problems 385

Table 11.12 Resources assignment in problems without variability in the threshold

0 0.2 0.4 0.6 0.8
F5 56.98% 15.77% 10.82% 9.79% 6.64%

F11 15.96% 16.05% 13.82% 20.89% 33.28%

Table 11.13 Statistical comparison among hyperheuristic and different threshold values

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11
↑ 4 1 2 5 4 3 4 0 4 5 4
↔ 0 3 3 0 0 2 0 3 0 0 0
↓ 1 1 0 0 1 0 1 2 1 0 1

more resources to the fittest low-level strategy in the different optimisation stages.
In addition, for the remaining problems, HH imp has been always among the best-
behaved approaches, and the impact over the performance when compared with the
best configuration has not been large. Considering that the hyperheuristic obtains the
solutions in a single run, while for the configurations with a fixed threshold value
the parameter tuning must be performed, the benefits are very clear.

The hyperheuristic requires some time to realise which configuration is the fittest
approach for each stage of the optimisation process. In addition, the hyperheuristic
ensures that each considered low-level configuration will be executed with a proba-
bility higher or equal than β ·nh. Thus, at the end of the run, every low-level config-
uration will have been executed several times. Consequently, in cases where a given
threshold value is better than the remaining ones in every stage, the hyperheuristic
has not been able to converge to high-quality values as fast as the best approach.
However, it is interesting to know the resources which have been granted to the best
approach for this kind of problems. Table 11.12 shows the percentage of resources
granted to each low-level configuration for the problems F5 and F11. Such prob-
lems have been selected because for both cases there is a configuration that behaves
properly in every analysed optimisation stage. In the case of F5, the best-behaved
configuration has used th = 0. More than a 50% of the resources have been granted
to such a configuration. In the case of F11 the best-behaved configuration has used
th= 0.8. The hyperheuristic has granted more resources to such a configuration than
to any other. However, the difference among the granted resources has not been as
large as in F5. The reason is that the statistical differences among the configurations
have not been so clear (Table 11.10). Therefore, the hyperheuristic has granted more
resources to other configurations.

Finally, in order to better analyse the benefits of HH imp, a comparison in terms of
the achieved fitness has also been performed. Table 11.13 compares HH imp with its
corresponding five low-level configurations. For each problem it shows the number
of low-level configurations that are statistically worse (↑), not different (↔) or better
(↓) than HH imp. In four problems none of the low-level configurations has been
statistically better than HH imp. In six problems only one low-level configuration
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has been statistically better than HH imp. Finally, only in F8 two configurations
have been statistically better than HH imp.

11.6.4 Analysing the Performance of Hyperheuristics with a
Large Number of Variables

The last experiment has focused on analysing the behaviour of the aforementioned
approaches when a larger number of variables are used. In this case, the F5 bench-
mark problem has been multiobjectivised by the usage of the DCN-THR objective
function. The same threshold values than in the previous experiments have been
considered. The NSGA-II configurations used in the previous experiments have been
executed. At the same time, the HH imp model has also been applied, considering
the NSGA-II configurations as low-level approaches. Experiments have been per-
formed considering the following number of variables D = 1000,2000, ..,5000. In
every case, the global stopping criterion has been fixed to 2.5 · 106 evaluations. In
the case of the hyperheuristic, the local stopping criterion has been fixed to 1 · 104

evaluations. For the analyses, the ideas of the RLD have been used. The quality level
has been fixed so that all the NSGA-II configurations have been able to achieve a
50% of success ratio. Thus, the median of the fitness achieved by the worst NSGA-II

configuration has been used as the quality level for each considered value of D.
Table 11.14 shows, for each one of the models, the number of evaluations re-

quired to achieve a 50% of success ratio. Data is shown for each value of D. It can
be observed that, independently of the value of D, the behaviour of the HH imp
model has been adequate. In fact, it has been among the best models and it has
got close to the best one, for each value of D. Also, it is worthy to mention that
the most suitable threshold value depends on the considered number of variables.
For instance, considering D = 5000, the worst-behaved configuration has applied a
threshold value equal to 0. However, this value has been the best-behaved one, when
a number of variables equal to 500 has been considered (Table 11.6).

Finally, it is also important to remark that when a higher number of variables has
been considered, the number of evaluations performed by the HH imp model has
become similar to the number of evaluations performed by the rest of the models.
The main reason is that when a higher number of variables is taken into account,
a higher number of evaluations is required in order to obtain statistical differences
among the models. Table 11.15 shows, for each value of D, the minimum number
of evaluations for which one of the considered models has been statistically better
than the rest of the models. It can be observed that, for a larger number of variables,
the number of evaluations is clearly higher. By this way, in order to profit from the
HH imp model when a higher value of D is used, a higher number of evaluations
must be performed.
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Table 11.14 Evaluations to achieve a fixed quality level by changing the number of variables
(F5)

D = 1000 D = 2000 D = 3000 D = 4000 D = 5000
HH imp 1.15 ·106 1.6 ·106 1.9 ·106 2.1 ·106 2.15 ·106

th = 0 1.2 ·106 1.9 ·106 2.35 ·106 2.5 ·106 2.5 ·106

th = 0.2 9.5 ·105 1.35 ·106 1.75 ·106 1.95 ·106 2.1 ·106

th = 0.4 1.35 ·106 1.6 ·106 1.8 ·106 2 ·106 2.1 ·106

th = 0.6 1.55 ·106 1.9 ·106 2.05 ·106 2.15 ·106 2.15 ·106

th = 0.8 2.5 ·106 2.5 ·106 2.5 ·106 2.4 ·106 2.4 ·106

Table 11.15 Number of evaluations to obtain statistical differences among configurations
(F5)

D = 1000 D = 2000 D = 3000 D = 4000 D = 5000
Evaluations 2 ·105 3 ·105 5.5 ·105 6.5 ·105 1.4 ·106

11.7 Conclusions

Metaheuristics are a family of Approximation Techniques that have become popu-
lar to solve optimisation problems. Among them, EAs are one of the most popular
techniques. They have shown great promise to calculate solutions to large and dif-
ficult optimisation problems. One of the main drawbacks of EAs is their parameter
setting. There are several components and parameters which must be specified in
order to completely define a particular configuration of an EA. Usually, the qual-
ity of the obtained solutions highly depends on such components and parameters.
Therefore, selecting the appropriate components and parameters might be an ardu-
ous task. Another disadvantage is that in some cases, EAs may have a tendency to
converge towards local optima.

In order to deal with stagnation, several mechanisms have been designed. Among
them, multiobjectivisation tries to avoid stagnation by transforming a mono-
objective problem into a multi-objective one. In order to deal with a multiobjec-
tivised problem, a multi-objective technique must be applied. In this work, the
NSGA-II has been used. Several ways of multiobjectivising a problem have been ap-
plied. A comparison among several mono-objective EAs and the NSGA-II has been
performed in this Chapter. Comparisons have been carried out with a set of scalable
benchmark problems. The experimental evaluation has demonstrated the validity of
multiobjectivisation, both in terms of quality and saved resources. In most of the
problems, multiobjectivised techniques have obtained higher quality solutions than
the mono-objective algorithms. However, in some of them, the usage of multiobjec-
tivisation has produced a negative effect.

More complex multiobjectivisation techniques have considered the usage of pa-
rameters. The addition of parameters has increased the quality of the obtained



388 C. Segura, E. Segredo, and C. León

solutions for several kinds of problems. However, the parameter setting of such
schemes can be even more time-consuming, since a larger amount of parameters
must be set. In this work, a novel multiobjectivisation which requires the specifica-
tion of a parameter (DCN-THR) has been proposed. It starts from the DCN alterna-
tive objective, but it incorporates the usage of a threshold ratio (th) which must be
specified by the user. In this Chapter a deep analysis of the threshold ratio param-
eterisation has been performed. From this analysis the following conclusions have
been drawn. First, the usage of multiobjectivisation with parameters has provided
high-quality results faster than multiobjectivisation techniques without parameters.
However, the usage of non proper values for th has slowed down the convergence
to high-quality solutions in some problems. In addition, the adequate configuration
depends on the problem or instance to solve, i.e. there is not a general value that
fits to every problem or instance. Finally, the statistical tests have shown that the
performance of different configurations depends on the optimisation process stage.
This hinders the usage of optimisation schemes in which multiobjectivisation with
parameters is used.

A novel model that tries to facilitate the application of multiobjectivisation with
parameters, and at the same time, tries to increase its robustness, has been proposed.
This new model is based on the usage of parameter control. In parameter control the
aim is to design a control strategy that automatically adapts the parameter values
along the run. By this way, optimisation strategies start the execution with a set of
initial values, and modify those values during the run, depending on the behaviour
of the approach in the different stages of the optimisation process. Hyperheuristics
are a general method that can be used to deal with the parameter control. In this
work, the hyperheuristic HH imp has been used to control the parameterisation of
the DCN-THR approach. Computational results have clearly demonstrated the advan-
tages of the new model. The robustness of multiobjectivisation with parameters has
been increased by the usage of the hyperheuristic HH imp. In some problems it has
been the fastest approach in obtaining a prefixed quality level. This means that the
hyperheuristic has been able to grant more resources to the fittest low-level strategy
in the different optimisation stages. Moreover, for the remaining problems, HH imp
has been always among the best-behaved approaches. The analysis of the resources
assignment has shown that HH imp has been able to grant more resources to the
most promising configurations. Finally, the analysis of the relationship between the
number of considered variables and the performance of the different proposals has
revealed that even for very large values of D, the behaviour of the HH imp model
has been adequate. In addition, it has shown that the number of evaluations required
to profit from the HH imp model, when a higher value of D is used, must be larger.
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45. Vinkó, T., Izzo, D.: Learning the best combination of solvers in a distributed global op-
timization environment. In: Proceedings of Advances in Global Optimization: Methods
and Applications (AGO), Mykonos, Greece, pp. 13–17 (June 2007)

46. Zielinski, K., Laur, R.: Adaptive parameter setting for a multi-objective particle swarm
optimization algorithm. In: The 2007 IEEE Congress on Evolutionary Computation,
pp. 3019–3026 (September 2007)



Chapter 12
A Comparative Study of Heuristic Conversion
Algorithms, Genetic Programming and Return
Predictability on the German Market

Esther Mohr, Günter Schmidt, and Sebastian Jansen

Abstract. This paper evaluates the predictability of the heuristic conversion
algorithms Moving Average Crossover and Trading Range Breakout in the German
stock market. Hypothesis testing and a bootstrap procedure are used to test for
predictive ability. Results show that the algorithms considered do not have predictive
ability. Further, Genetic Programming is used to adapt the buying and selling rules
of the investigated algorithms resulting in a new algorithm. Results show that a
genetic programming approach does not lead to good new algorithms. We extend
former works by using the Sortino Ratio as a measure of risk, and by applying
competitive analysis.

12.1 Introduction

Heuristic conversion algorithms are developed to achieve a preferably high
empirical-case performance, and are mainly based on data from technical analysis.
Unfortunately, these algorithms are comprised of predefined buying and selling
rules, and can not be adapted on runtime. For this reason genetic programming
approaches are used to evolve algorithms (for an introduction see [4]). Genetic
programming is basically a symbolic regression which is done by the use of
evolutionary algorithms. Evolutionary algorithms are search methods that take their
inspiration from natural selection and survival of the fittest in the biological world
[3]. The term symbolic regression represents a process in which measured data is
fitted by a suitable mathematical formula [45], and is mainly used when data of an
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unknown process is obtained. In the work related two well known methods which
can be used for symbolic regression exist: genetic programming (GP) introduced by
[19, 20], and grammatical evolution introduced by [34]. We limit to investigating
the ability of GP to solve conversion problems.

Several results from the literature have shown that heuristic conversion algorithms
and their related GP variants have predictive ability in a variety of exchange
markets: returns to be expected are considered to be ‘predictable’ in the sense that it
is possible to generate excess returns in a particular future time interval. Beginning
with [9] several authors investigated the predictive ability of heuristic conversion
algorithms, cf. [5, 17, 39, 27, 6, 18, 23, 40, 11, 35, 15, 12, 21, 33, 10, 8, 26, 28, 16,
24, 22, 44]. Applications of genetic programming to heuristic conversion algorithms
can be found in [32, 1, 7, 37, 2, 31, 38, 14, 30]. These contributions evaluate an
algorithms’ predictability through backtesting. However, this approach can often
not be applied in a reasonable way, as distributions are rarely known precisely.

This leads to assuming uncertainty about asset prices and analyzing an algorithms’
performance considering worst-case scenarios. This approach does not
demand that inputs come from some known distribution. Competitive analysis
compares the performance of an online algorithm (ON) to that of an adversary,
the optimal offline algorithm (OPT ) considering worst-case scenarios. According
to the definition of [13] also heuristic conversion algorithms are online algorithms;
they work without any knowledge of future input. We suggest analyzing heuristic
conversion algorithms using competitive analysis.

In case the input data processed by an online algorithm does not represent the
worst-case scenario, its performance is considerably better than the competitive ratio
tells (cf. [41]). For this reason we also backtest the considered algorithms.

Our aim is twofold. First, we want to evaluate the predictive ability of the
algorithms Moving Average Crossover (MA) and Trading Range Breakout (T RB)1

on the German stock market, which has not been done in previous studies. Second,
we evolve MA and TRB through genetic programming, resulting in a GP algorithm.
We 1) backtest MA, T RB and GP and compare their (excess) returns. For risk
analysis we 2) calculate the Sortino Ratio (cf. [42]) and apply competitive analysis
(cf. [13]) considering 3) empirical-cases as well as 4) worst-cases. So far, works
on MA, T RB and GP do not take into account worst-case scenarios. Classical
buy-and-hold (BH) is used as a benchmark.

The remainder of this paper is organized as follows. In the next section we give
a literature overview on heuristic conversion algorithms and genetic programming.
In Section 3 the problem is formulated and the algorithms considered are presented
in detail. Section 4 presents the experimental design assumed, and the worst-case
competitive ratio of MA, TRB and GP is given. Detailed experimental findings from
our simulation runs are presented in Section 5. We finish with some conclusions and
suggestions for future research in the last section.

1 Also known as resistance and support levels.
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In the following section we present work related to our study on MA, TRB and
GP. A survey on the profitability of technical analysis in general can be found in
[36] investigating a total of 95 modern studies.

12.2 Related Work

There are many results on experimental studies on the considered heuristic conversion
algorithms. The comparison to BH or to GP is of prime interest. Either results of
VMA, FMA and T RB are compared to BH, or GP results are compared to BH.
Unfortunately, all these works are restricted to empirical-case results and do not
take into account worst-case results from competitive analysis. In the work related,
by carrying out a t-test and/or a bootstrap procedure, the question whether the
backtested algorithms ON ∈ {VMA,FMA,T RB,GP} have predictive ability or not
is answered. It is assumed that if the null hypothesis H0 : μON ≤ μBH is rejected,
there is a good (but not certain) chance that ON performs better than benchmark
BH again in the future. The alternative hypothesis H1 : μON > μBH is confirmed
indirectly. In case results show that the (excess) returns generated by ON are not
significant, this suggests that predictability is not economically significant.

Reference [9] suggests the algorithms VMA, FMA and T RB, and conduct
experiments with a price-weighted index (Dow Jones Industrial Average (DJIA)) for
the investment horizon from 1897 to 1986. The returns on buy (sell) signals on the
DJIA are compared to returns from simulated comparison series generated by the
following models: autoregressive (AR(1)), generalized autoregressive conditional
heteroskedasticity in mean (GARCH-M), and exponential GARCH. The returns
obtained from the algorithms are not likely to be generated by these three models.
The results provide empirical support for utilizing the heuristic conversion algorithms
as they outperform not only BH but also the AR(1), the GARCH-M, and the
exponential GARCH model. [9] conclude that V MA, FMA and TRB have predictive
ability.

Reference [25] presents evidence on the profitability and statistical significance
of VMA, FMA and TRB in the foreign exchange market utilizing currency futures
contracts for the period 1976-1990. A new testing procedure based on bootstrap
methodology is implemented. Results suggest that simple technical trading rules
have very often led to profits that are highly unusual. Splitting the entire sample
period into three 5-year periods reveals that (on average) the profitability of some
trading rules declines in the latest period. Although profits remain positive (on
average) and significant in many cases.

Reference [5] tests whether VMA, FMA and T RB can predict stock price
movements in Asian markets. The result is that the algorithms are ‘quite successful’
in the emerging markets of Malaysia, Thailand and Taiwan, but have less explanatory
power in more developed markets such as Hong Kong and Japan. Transactions costs
which could eliminate gains are estimated to be 1.57%.
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Reference [17] tests whether the findings of [9] – that VMA, FMA and T RB have
predictive ability – is replicable on the FT30 (Financial Times Ordinary) index from
July 1935 to January 1994. Further, the authors test whether the algorithms generate
excess returns in a costly trading environment. [17] conclude that although VMA,
FMA and T RB do have predictive ability in terms of UK data, their use would not
generate excess returns in the presence of costs. In general, the results presented
are remarkably similar to those of [9]. Thus, one conclusion to be drawn from both
studies is that VMA, FMA and T RB have predictive ability if sufficiently long series
of stock indices are considered.

Reference [39] implements VMA, FMA and T RB to test whether they result in
excess returns on the Hang Seng Futures Index, traded at the Hong Kong Futures
Exchange. It is found that MA does not produce significant excess returns, but four
out of six T RB rules result in significant positive returns.

Reference [27] comparesVMA, FMA and TRB to BH by conducting experiments
on the FT30 index for the time intervals 1935-1954 and 1975-1994. In addition,
trading signals generated by a geometric MA are calculated. The geometric MA gave
an almost identical set of buying and selling signals as the conventional (arithmetic)
MA. Until 1980 all algorithms outperform BH. The results of [27] are consistent,
in almost every respect, with those of [9] and [17]. But from 1980 on BH clearly
dominates all other algorithms. The sample used by [9] ends in 1986; so [27]
concludes that there was not the data to analyze structural shifts that might have
taken place starting in 1982.

Reference [6] tests the same trading rules as [9] on dividend-adjusted DJIA
data for the period 19261991. In an attempt to avoid data snooping problems the
profitability and statistical significance of the returns is evaluated on 1) portfolios of
the trading rules, and 2) returns of individual trading rules. Results show that it is
unlikely that traders could have used VMA, FMA and TRB to earn net profits after
transaction costs.

Reference [18] tests the same trading rules as in [9] in Pacific-Basin equity
markets by using equilibrium asset pricing models with time-varying expected
returns. Results on the Japanese, US, Canadian, Indonesian, Mexican and Taiwanese
equity indices indicate that the technical rules have significant forecast power for all
countries, except for the US. However, the results from the bootstrap tests indicate
that some equilibrium asset pricing models (mainly, the asset pricing model under
mild segmentation) are consistent with the observed trading rule returns for Japan,
the US, the recent period of Canada and Taiwan.

Reference [23] discusses the evidence that simple rules used by traders have
some predictive value over the future movement of foreign exchange prices. The
profitability of VMA, FMA and T RB is analyzed in connection with central bank
activity using intervention data from the Federal Reserve. The objective is to find
out to what extent foreign exchange predictability can be confined to periods of
central bank activity in the foreign exchange market. The results indicate that
after removing periods in which the Federal Reserve is active, exchange rate
predictability is dramatically reduced.



12 Heuristic Conversion Algorithms, Genetic Programming 397

Reference [40] compares V MA and FMA to BH by investigating ten emerging
equity markets in Latin America and Asia from 1982 to 1995 under transaction costs
using the S&P500 and Nikkei225 indices. Results show that VMA and FMA applied
to emerging markets do not have the ability to outperform BH.

Reference [11] investigates the applicability and validity of VMA, FMA and TRB
in the Hang Seng index on the Hong Kong Stock Exchange for the period January
1985 to June 1997, and for two subsamples of equal lengths, partitioned from the
whole sample. Statistical significance of the results can be shown when the rules
are applied to data periods shorter than used in previous studies. A tendency for
potentially profitable trading rules is documented.

Reference [35] tests VMA, FMA and T RB on the Chilean stock market using
the IPSA (Indice de Precio Selectivo de Acciones) index from January 1987 to
September 1998. The results are similar to the ones of [9], providing strong support
for VMA, FMA and TRB.

Reference [15] tests V MA and FMA in four emerging South Asian capital
markets from January 1990 to March 2000, i.e. the Bombay Stock Exchange,
the Colombo Stock Exchange, the Dhaka Stock Exchange and the Karachi Stock
Exchange. The findings indicate that the algorithms have predictive ability in these
markets, and reject the null hypothesis that the returns to be expected are equal to
those achieved from BH. They conclude that VMA and FMA are able to generate
excess returns in South Asian markets.

Reference [12] re-examine the findings of [9] by adjusting the daily returns from
trading portfolios of DJIA stocks for both dividends and the interest earned on the
proceeds from short sales. Results show that previous estimates of trading profits
may be biased by the inclusion of nonsynchronous prices in the closing index levels.
Estimates of trading profits (based on the true closing levels of the index) are not
significantly different from BH returns. Further, bootstrap simulation results suggest
that significance levels for estimates of trading profits based on closing index levels
are overstated by the inclusion of nonsynchronous prices.

Reference [21] extends the work of [9] in two ways. First by investigating
the predictive ability of VMA, FMA and T RB on the New York Stock Exchange
(NYSE) index from July 1962 to December 1996, as well as on the National
Association of Security Dealers Automatic Quotations (NASDAQ) index from
January 1972 to December 1996. Second by including a further MA algorithm,
called Moving Average with Trading Volume (MAV ). The results show that the
suggested algorithms have potential to outperform BH. The results support the
results of [9] showing that the suggested algorithms outperform BH.

Reference [33] characterizes the temporal pattern of VMA, FMA and TRB
returns and official intervention for Australian, German, Swiss and US data to
investigate whether intervention generates profits. The hypothesis that intervention
generates inefficiencies from which technical rules profit is rejected. In particular,
high frequency data show that abnormally high trading rule returns precede German,
Swiss and US intervention. Australian intervention precedes high trading rule
returns, but trading/intervention patterns make it implausible that intervention
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actually generates those returns. Rather, intervention responds to exchange rate
trends from which trading rules have recently profited.

Reference [10] tests whether returns generated by VMA, FMA and TRB are
predictable in eleven emerging stock markets in the US and Japan considering data
from January 1991 to January 2004. Predictability is analyzed by means of multivariate
variance ratios using bootstrap procedures. VMA, FMA and T RB are employed and
compared to BH. Results show that there is some evidence of predictive power but no
significance. When costs are taken into account only a few variants of the algorithms
generate excess returns, and thus [10] conclude that although the algorithms show
some predictive ability this is not statistically significant.

Reference [8] investigates the predictive ability and profitability of V MA, FMA
and T RB for different company sizes considering different indices form January
1987 to July 2002. Results on different Financial Times Stock Exchange (FTSE)
indices, namely FTSE 100, FTSE 250 and FTSE Small Cap, show that the algorithms
have a progressively higher predictive ability the smaller the size of the company,
but are not profitable assuming transaction costs.

Reference [26] tests the profitability of twelve variants of VMA, FMA and TRB
on the New Zealand stock market. The nature and regulations suggest that the New
Zealand equity market may be less efficient than overseas markets. This raises the
possibility that the algorithms are profitable in New Zealand. Using a bootstrapping
procedure, results show that the returns achieved in New Zealand follow a similar
pattern than those in large offshore markets.

Reference [28] tests the profitability of V MA, FMA and T RB on nine Asian stock
market indices from January 1988 to December 2003. The results provide strong
support for VMA and FMA in China, Thailand, Taiwan, Malaysia, Singapore, Hong
Kong, Korea, and Indonesia.

Reference [16] aims to characterize the stock return dynamics of four Latin
American and four Asian emerging capital market economies and test the profitability
of VMA and T RB. Using the Morgan Stanley Capital International (MSCI) index,
the BH benchmark is outperformed in all markets before transaction costs, and in
Asian markets after transaction costs.

Reference [24] tests the profitability of different algorithms by evaluating their
ability to outperform BH. DifferentVMA, FMA, Filter rule, Bollinger Band, and TRB
variants are tested on the S&P/TSX 300 index, the DJIA, the NASDAQ composite
index, and the Canada/US spot exchange rate. A bootstrap procedure is used to
determine the statistical significance of the results. Considering transaction costs,
excess returns are generated by V MA, FMA and TRB for the S&P/TSX 300 index,
the NASDAQ composite index and the Canada/US spot exchange rate. The Filter
rules also earn excess returns when applied on the Canada/US spot exchange rate.

Reference [22] tests the Efficient Market Hypothesis (EMH), in seven emerging
Middle-Eastern North African (MENA) stock markets from January 1998 to
December 2004. The result of a random-walk test, and the returns of VMA, FMA
and T RB are aggregated into a single efficiency index. The impact of market
development, corporate governance and economic liberalization on the latter using
a multinomial ordered logistic regression is to be analyzed. The results highlight
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heterogeneous levels of efficiency in the MENA stock markets. The efficiency index
seems to be affected by market depth, although corporate governance factors also
have explanatory power. By contrast, the impact of overall economic liberalization
does not appear significant.

Reference [44] investigates the predictive power of VMA, FMA and T RB for
the Brazilian exchange rate from 2003 to 2006. A bootstrap procedure is employed
to test predictability. Furthermore, the ability of the trading algorithms to generate
significant higher returns compared to BH is tested. Results show that the excess
return generated by the algorithms is not significant, suggesting that predictability
is not economically significant. Their results are consistent with those of [10].

Table 12.1 gives a year wise summary on the above 24 works related to VMA,
FMA and TRB. A hyphen (-) in column 4 indicates that transaction costs are not
considered in the respective study.

Table 12.1 Literature Summary: V MA, FMA and T RB compared to BH

Year Reference H1 confirmed? Profitable after transaction costs?

1992 [9] yes yes
1993 [25] yes -
1995 [5] yes yes
1996 [17] yes no
1996 [39] yes yes
1997 [27] no no
1998 [6] yes no
1999 [18] yes yes
1999 [23] yes yes
1999 [40] no no
2000 [11] yes no
2000 [35] yes no
2001 [15] yes yes
2002 [12] no no
2002 [21] yes -
2002 [33] yes -
2004 [10] no no
2005 [8] yes no
2005 [26] yes no
2006 [28] yes no
2007 [16] yes no
2007 [24] yes yes
2008 [22] yes -
2009 [44] no -

Several authors use genetic programming (GP) to adapt and evolve heuristic
conversion algorithms. The comparison to BH is of prime interest.
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Reference [32] applies the GP approach to the FX market and report excess
returns for the evolved trading rules. [1] apply GP to the S&P 500 index and
conclude that the market is efficient since GP generally fails to outperform the BH
benchmark. This finding is supported by [31]. In contrast, [7] report GP excess
returns over the BH benchmark. [37] investigates the Australian stock market and
finds that excess returns from GP are marginal but have some forecasting power in
terms of market direction. [2] report excess returns compared to BH in case of high
market volatility. In contrast, predictive ability is found for long term market trends
on a risk-adjusted basis. [38] apply a GP framework to the Toronto Stock Exchange
focusing on single stocks, and report excess returns for nine out of fourteen stocks.
[14] investigate GP performance for the S&P 500, the S&P 500 Auto, and the S&P
500 Bank indices and report a GP underperformance for the S&P 500 index and the
S&P 500 Bank index. The GP on the S&P 500 Auto index outperformed BH on a
risk-adjusted basis. [30] investigate GP performance on the NYSE index and report
mixed results.

12.3 Problem Formulation

Let us consider multiple conversions, i.e. we convert an asset more than once.
We assume an online conversion algorithm ON ∈ {MA,T RB,GP,BH} consists
of buying and selling rules, and each i-th trade (i = 1, . . . , p) consists of exactly
one buying and one selling transaction. ON obtains price quotations qt ∈ [m,M]
(0 < m ≤M) at points of time t = 1, . . . ,T where T is the length of the investment
horizon. For each i-th trade, ON must first decide whether to buy at price qt on day
t or not, and second whether to sell at a later price qt+x on day t + x or not.2 Open
buy positions must be sold at the last possible price qT . We fix some notation. Let

• number of trades p, with i = 1, . . . , p,
• prices qt , with t = 1, . . . ,T ,
• data points used n, with n≤ T ,
• moving average MA(n)t on day t, calculated for n ∈ {L,S} data points, and L (S)

long (short) MA with S < L,
• percentage band b ∈ [0.00,∞],3
• global minimum of prices m,
• global maximum of prices M,
• local minimum of prices qmin(n)t on day t calculated for n data points,
• local maximum of prices qmax(n)t on day t calculated for n data points,
• upper band UB(n)t and lower band LB(n)t lagging MA(n)t , qmin(n)t , or qmax(n)t

on day t,
• fixed number of days x chosen for selling, with 1≤ x≤ T − 1.

2 Short selling is not considered since it is prohibited in Germany since May 18, 2010.
3 The band is used to reduce the amount of trading and therefore the trading costs.
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In the following the MA and T RB algorithms of [9] as well as the GP approach of
[38] are presented.

12.3.1 Moving Average Crossover (MA)

The MA algorithm consists of the following rules [9, p. 1736]:

Buy if the short MA crosses the long MA from below, and sell if the short MA
crosses the long MA from above.

Two variants of this algorithm, called Variable-length Moving Average (VMA) and
Fixed-length Moving Average (FMA) exist. The variants differ in the way their
performance is measured. From this we assume a MA algorithm comprised of the
following steps:

Algorithm 12.1. MA of [9]
1: while t ≤ T do
2: if t ≥ n then
3: MA(n)t =

∑t
i=t−n+1 qi

n {n ∈ {L,S} with S < L}
4: Calculate MA(S)t and MA(S)t−1
5: Calculate MA(L)t and MA(L)t−1
6: Calculate UB(L)t = MA(L)t × (1+b) and UB(L)t−1 = MA(L)t−1× (1+b)
7: Calculate LB(L)t = MA(L)t× (1−b) and LB(L)t−1 = MA(L)t−1× (1−b)
8: if MA(S)t >UB(L)t and MA(S)t−1 ≤UB(L)t−1 then
9: buy on day t

10: end if
11: if MA =V MA then
12: if MA(S)t < LB(L)t and MA(S)t−1 ≥ LB(L)t−1 then
13: sell on day t
14: else
15: if t +x ≤ T then
16: sell on day t +x{x ≥ 1 days}
17: else
18: sell on day T
19: end if
20: end if
21: end if
22: end if
23: t = t +1
24: end while
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12.3.2 Trading Range Breakout (T RB)

The TRB algorithm consists of the following rules [9, p. 1736]:

Buy if the price cuts the local maximum price from below, and sell if the price
cuts the local minimum price from above.

Analogously to FMA, a fixed time interval of x days for selling can be chosen. For
T RB [9] only consider this case. Instead, we assume a T RB algorithm comprised of
the following steps:

Algorithm 12.2. TRB of [9]
1: while t ≤ T do
2: if t > n then
3: Calculate qmin(n)t = minqi|i = t−n, . . . , t−1 and qmin(n)t−1
4: Calculate qmax(n)t = maxqi|i = t−n, . . . , t−1 and qmax(n)t−1{n≤ T days}
5: Calculate LB(n)t = qmin(n)t × (1−b) and LB(n)t−1 = qmin(n)t−1× (1−b)
6: Calculate UB(n)t = qmax(n)t × (1+b) and UB(n)t−1 = qmax(n)t−1× (1+b)
7: if qt >UB(n)t and qt−1 ≤UB(n)t−1 then
8: buy on day t
9: end if

10: if T RB =variable then
11: if qt < LB(n)t and qt−1 ≥ LB(n)t−1 then
12: sell on day t
13: else
14: if t +x ≤ T then
15: sell on day t +x{x ≥ 1 days}
16: else
17: sell on day T
18: end if
19: end if
20: end if
21: end if
22: t = t +1
23: end while

GP is used to evolve the rules given in Alg. 12.1 and Alg. 12.2. The GP approach
is presented in the following.
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12.3.3 Genetic Programming (GP)

GP aims to generate and adapt (buying and selling) rules using evolutionary processes
as found in nature. Similarly to [38] we consider a genetic algorithm as a randomized
search procedure on a population of individuals encoded as linear bit strings. The
population evolves over time by selection of the fittest, crossover, mutation, and
reproduction. For the evolution of heuristic conversion algorithms [38] suggested
the following approach to find rules that suit the prevailing market conditions best:
GP starts with a set of randomly generated rules within the very first generation.
This generation of rules is measured in terms of their fitness, i.e. the achieved return
compared to a benchmark. The fittest rules are subject to crossover, mutation and
reproduction, and build the next generation of rules. These new rules are evaluated
again in terms of their fitness. The fittest rules are again subject to crossover,
mutation and reproduction, and built again the basis for the next generation, etc.
In theory, this approach results in better rules in each generation. The fittest rules of
the final generation are denoted as the GP algorithm. For further details on GP the
reader is referred to [38].

We modify the GP approach given in [38, p. 1035] as follows: instead of a
rank-based selection process, the classical roulette wheel selection is used (details
can be found in [38, Sec. 2.4]). As MA and TRB are calculated using prices qt ,
moving averages MA(n)t , bands (lagged prices) b, minima of prices qmin(n)t , and
maxima of prices qmax(n)t , only these values are valid input data when creating
the GP algorithm. [38] also allow other inputs, like volumes or technical indicators
itself. Further, the function set linking the inputs is limited to the operators used by
MA and TRB.

In the following the experimental design, assumptions made, and the performance
measure used is presented.

12.4 Experimental Design

Our experiments are based on Dax-30 index data from 01-01-2002 to 12-31-2007.
All algorithms are run on this 6-year investment horizon. For GP a 11-year time
horizon from 01-01-1997 to 12-31-2001 is used to enable training data subsets to
evolve the GP algorithm: the time horizon is divided into different subsets using a
rolling time frame approach consisting of 1) training data subsets of length 5 years,
followed by 2) out-of-sample data subsets of length 1 year. The first training subset
equals the years 1997-2001 followed by the year 2002 as first out-of-sample subset.
Next, the time frame is rolled one year forward resulting in a 1998-2002 training
subset followed by the year as 2003 out-of-sample subset, etc. The last out-of-sample
subset considered is 2007. With this approach we ensure the GP algorithm is run
on the same 6-year out-of-sample time interval as all other algorithms. In contrast
to [38], we only consider index data, rather than considering stocks offered by an
individual company. The following assumptions apply for all algorithms:
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1. There is an initial amount of cash meeting the demands to execute the algorithms
in a profitable way.

2. All algorithms convert non-preemptive, i.e. either the whole amount available
is converted in one transaction, or nothing is converted. In other words ‘all or
nothing’ is invested in the Dax-30 index.

3. The algorithms OPT , VMA, FMA, TRB and GP carry out as many trades p as
possible.

4. Similarly to [9, p. 1736 and p. 1740] we assume holding periods. One holding
period ranges from a buying signal to a selling signal, further buying signals
during a holding period must be ignored by all algorithms.

5. Weekends and country-specific holidays are excluded from the 6-year time
interval considered, resulting in T = 1531 days for conversion.

6. Possible transaction prices are daily closing prices.
7. Each i-th trade (buying and selling) costs 50 basis points, i.e. 25 points equaling

0.25% for each buying (selling) transaction.
8. Interest rate on cash is assumed to be zero.

12.4.1 Algorithms Considered

In our experiments we investigate the heuristic conversion algorithms MA, T RB and
GP presented in Sect. 12.3 using the following input parameters and assumptions.
As a benchmark we compare to OPT and BH. The buying and selling rules are
Boolean, i.e. if a buy (sell) rule evaluates as true on day t, a buy (sell) position is
set up (or maintained) for day t, else the algorithm sells (buys) or stays out of the
market as no short positions are allowed.

12.4.1.1 Moving Average Crossover (VMA and FMA)

VMA and FMA each buy and sell according to the MA algorithm presented in
Sect. 12.3.1.VMA considers buying and selling signals. FMA only considers buying
signals with x = 10, i.e. a fixed 10-day holding period follows a buying signal on
day t. On day t + 10 at price qt+10 all index is sold. When calculating short moving
average MA(S)t and long moving average MA(L)t we assume S ∈ {1,2,5} days,
L ∈ {50,150,200} days and band b ∈ {0.00,0.01}. Resulting in ten MA variants
(S,L,b): (1,50,1),(1,50,0),(1,150,0),(1,150,1),(5,150,0),(5,150,1),(1,200,0)
(1,200,1),(2,200,0),(2,200,1)as suggested by [9]. Thus, overall 20 MA simulation
runs were performed, 10 for V MA and 10 for FMA.

12.4.1.2 Trading Range Breakout (TRB)

T RB buys and sells according to the TRB algorithm presented in Sect. 12.3.2. In
contrast to [9] instead of a fixed holding period TRB considers buying and selling
signals. Local minimum prices qmin(n)t , and local maximum prices qmax(n)t are
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calculated for n ∈ {50,150,200} days and band b ∈ {0.00,0.01}. Resulting in six
T RB variants (n,b): (50,0),(50,1),(150,0),(150,1),(200,0),(200,1).

12.4.1.3 Genetic Programming (GP)

To create and evolve the GP algorithm buying and selling rules prices qt , moving
averages MA(n)t , bands (lagged prices) b, and minima and maxima of prices
qmin(n)t and qmax(n)t are taken from the MA and T RB rules as possible input
parameters with n∈{3,5,6,10,20,100,150,200,250}days. The function set linking
these inputs consists of the operators [+,−,×,/, ln,√, <,>,≤,≥,AND,OR,XOR].
In addition we allow constants s enabling GP to compare an input variable to a fixed
value, for example ’Buy if MA(n)t < s’. For each training data subset the ‘best’
buying and selling rules are evolved by choosing inputs from the above data pool.
These rules are subsequently applied to each out-of-sample data subset, and the GP
algorithm is evolved in order to replace outdated rules.

12.4.1.4 Buy and Hold (BH)

BH buys the index on the first day of the considered 6-year time interval and sells it
on the last day T .

12.4.1.5 Optimum (OPT )

OPT is an offline algorithm which achieves the best possible return. It is assumed
that OPT knows all future prices. OPT buys (sells) at each local minimum m(i)≥m
(local maximum M(i) ≤ M) within T , i.e. exploits upward price movements i =
1, . . . , p times while buying on the first day of the run, and selling on the last day of
the run.

12.4.2 Performance Measurement

The performance of the above algorithms is measured by the return achieved. Let rt

be the daily log returns for each day a heuristic conversion algorithm holds an asset;
given by

rt = ln
qt

qt−1
. (12.1)

We consider transaction costs. For each buying transaction on day t− 1 Eq. (12.1)
modifies to

rt = ln
qt

qt−1× 1.0025
(12.2)
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as each buying costs 25 basis points, and thus the buying price qt−1 is 0.25% higher.
Analogously, for each selling transaction on day t Eq. (12.1) modifies to

rt = ln
qt × 0.9975

qt−1
(12.3)

as each selling costs 25 basis points, and thus the selling price qt is 0.25% smaller.
Daily log returns rt are time additive. The overall return rT after the last day T then
equals

rT =
T

∑
t=1

rt . (12.4)

From Eq. (12.4) we get the achieved annualized return R(y)

R(y) = (1+ rT )
(1/y) (12.5)

where y equals the number of years within T , i.e. for the considered 6-year investment
horizon y = 6: then R(y) tells us which empirical-case return we could achieve
within one year. Further, excess returns are calculated by subtracting the achieved
R(y) of BH from the achieved R(y) of algorithms OPT and ON ∈{VMA,FMA,T RB,
GP}.

For risk analysis we apply competitive analysis (cf. [13]) considering empirical-
cases as well as worst-cases, and we calculate the Sortino Ratio (cf. [42]).

Competitive analysis assumes each input is represented as a finite input sequence
I with t = 1, . . . ,T elements, and a feasible output is also represented as a finite
sequence with T elements. ON computes online if for each t = 1, . . . ,T − 1, it
computes an output for t before the input for t +1 is given. OPT computes offline if
it computes a feasible output given the entire input sequence I in advance. An online
algorithm ON is c-competitive if for any I [13, Eq. (1), p. 104]

ON(I) ≥ 1
c
×OPT(I) (12.6)

c ≥ OPT (I)
ON(I)

where ON ∈ {VMA,FMA,T RB,GP,BH}.
Any c-competitive algorithm is guaranteed a value of at least the fraction 1

c of
the optimal offline value OPT (I), no matter how unfortunate or uncertain the future
will be. We consider converting assets as a maximization problem, i.e. c ≥ 1. The
smaller c the more effective is ON.

Let cwc be the worst-case competitive ratio, and let cec be the empirical-case
competitive ratio. In order to derive cwc we assume each i-th trade ON achieves a
worst-case return of r(i) = m

M , resulting in a worst-case competitive ratio of cwc(i) =(
M
m

)2
(cf. Eq. (12.6)). Further, we assume ON is confronted with the worst possible

sequence of prices p times and upper and lower bounds of prices, m and M, are
constants. Assuming an identical number of i = 1, . . . , p trades for OPT and ON the
overall worst-case competitive ratio cwc of an algorithm ON then equals



12 Heuristic Conversion Algorithms, Genetic Programming 407

cwc =

(
M
m

)2p

. (12.7)

The proof of cwc given in Eq. (12.7) can be found in [29].
To compute cwc for the considered 6-year investment horizon the overall high

equals 8105.69 = M and the overall low equals 2202.93 = m. From Eq. (12.7) we
get cwc = (4.0068)2p, i.e. an an annualized basis cwc = (1.2603)2p for all ON. For
GP we assume the same cwc as for MA and TRB because GP is comprised of the
elements of the MA and TRB rules.

The empirical-case competitive ratio cec is calculated in the same manner as cwc.
But instead of the worst-case return of r(i) = m

M , the R(y) (cf. Eq. (12.4)) achieved
by ON and OPT is used to calculate cec. Note that cec ≤ cwc.

The Sortino Ratio is a variation of the Sharpe Ratio but only considers the
downside deviation σd that occurs when returns fall below the minimum acceptable
rate of return, denoted by rMAR (cf. [43]). We set rMAR to zero as we want to know
whether the risk incorporated is rewarded with respect to never losing money. The
Sortino Ratio SR is defined as follows

SR =
r̄T − rMAR

σd
(12.8)

=
r̄T

σd

with average daily return (Eq. (12.4))

r̄T =
rT

T
, (12.9)

and downside deviation

σd =

√
1
T

T

∑
t=1

(min(rt ,0))2 (12.10)

as rMAR = 0. In the following experimental results are presented.

12.5 Results

We carried out simulation runs in order to find out how the following measures
compare:

1. The empirical-case performance, measured by the annualized return R(y),
2. the empirical-case competitive ratio cec,
3. the worst-case risk, measured by the competitive ratios cwc,
4. the empirical-case risk, measured by the Sortino Ratio SR.
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Tables 12.2 to 12.5 present the computational results of the overall 28 simulation
runs. Each algorithm ON results in a different number of trades p. Clearly, ON
cannot beat OPT . Table 12.2 presents the results for OPT , BH and GP. The results
for VMA, FMA and TRB are given in Tables 12.3 to 12.5. Table 12.3 presents the
results of the different VMA variants of Alg. 12.1. Table 12.4 presents the results
of the different FMA variants of Alg. 12.1. Table 12.5 presents the results of the
different TRB variants of Alg. 12.2.

Table 12.2 Computational results for OPT , BH and GP

2002-2007 R(y) p cec cwc SR

OPT 1.4363 394 - - -
BH 1.0622 1 1.3514 1.59 0.0111
GP 1.0392 14 1.3821 650.25 0.0141

Table 12.3 Computational results for V MA

2002-2007 R(y) p cec cwc SR

V MA(1,50,0) 1.0660 39 1.3474 68617522.13 0.3664
V MA(1,50,1) 1.0620 19 1.3524 6572.80 0.0621
V MA(1,150,0) 1.0755 22 1.3354 26336.20 0.1370
V MA(1,150,1) 1.0893 9 1.3186 64.33 0.3819
V MA(5,150,0) 1.0821 12 1.3273 257.76 0.2912
V MA(5,150,1) 1.0945 6 1.3123 16.05 1.1418
V MA(1,200,0) 1.0985 11 1.3075 162.28 0.5658
V MA(1,200,1) 1.0910 7 1.3165 25.50 0.4588
V MA(2,200,0) 1.0944 9 1.3124 64.33 0.4879
V MA(2,200,1) 1.0935 6 1.3135 16.05 0.6256

Table 12.4 Computational results for FMA

2002-2007 R(y) p cec cwc SR

FMA(1,50,0) 1.0027 26 1.4324 167606.18 0.0022
FMA(1,50,1) 0.9564 32 1.5018 2690886.69 -0.0224
FMA(1,150,0) 1.0305 15 1.3938 1032.79 0.0785
FMA(1,150,1) 1.0128 19 1.4182 6572.80 0.0273
FMA(5,150,0) 0.9965 11 1.4414 162.28 -0.0153
FMA(5,150,1) 1.0047 15 1.4296 1032.79 0.0102
FMA(1,200,0) 0.9994 8 1.4371 40.50 -0.0024
FMA(1,200,1) 1.0032 11 1.4317 162.28 0.0131
FMA(2,200,0) 0.9991 8 1.4376 40.50 -0.0043
FMA(2,200,1) 1.0147 8 1.4154 40.50 0.1067
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Table 12.5 Computational results for T RB

2002-2007 R(y) p cec cwc SR

T RB(50,0) 1.0528 9 1.3642 64.33 -0,0003
T RB(50,1) 0.9558 25 1.5027 105525.10 -0.0147
T RB(150,0) 1.0966 2 1.3097 2.52 0.0009
T RB(150,1) 0.9738 18 1.4748 4138.24 -0.0248
T RB(200,0) 1.1090 1 1.2951 1.59 0.0011
T RB(200,1) 0.9784 17 1.4679 2605.45 -0,0267

Question 1: How do the annualized returns R(y) of the algorithms ON compare?
To answer Question 1 column 1 and 2 in Tables 12.2 to 12.5 are of main

interest. The overall best annualized return is achieved by TRB(200,0) (10.9%),
while conducting only one trade resulting in the lowest possible transaction costs.
But only 3 of 6 T RB variants generate positive returns, namely those without band
(b = 0.00), and 2 of these 3 variants outperform BH. All TRB variants lagged by a
band (b = 0.01) generate losses, and are outperformed by BH and GP. T RB(50,1)
generates the overall worst result (-4.42%). The second best result is achieved by
VMA(1,200,0) (9.85%), but 11 trades are conducted resulting in high transaction
costs. In general, all 10 VMA variants generate positive returns from minimum
6.20% to maximum 9.85%. These relatively high returns are ’bought’ by a large
number of trades p, e.g. VMA(1,50,0) achieves a return of 6.6% while conducting
39 trades. Overall between 6 and 39 trades were performed. All VMA variants
without band, and 2 of 3 VMA variants with band (b = 0.01) outperform BH.
Only V MA(1,50,1) is outperformed by BH. All VMA variants outperform GP. The
results of FMA worse than the results of the VMA, BH, GP and T RB without band.
We conclude that defining holding periods of fixed length does not lead to good
results. 4 of 10 FMA variants generate losses, and the 6 positive returns only range
from minimum 0.27% to maximum 3.05%. The number of trades ranges between 8
and 32.

GP is outperformed by BH. This might be due to the different length of the
training data subset (5 years) and the out-of-sample data subset (1 year). GP has
developed trading rules fitting a 5-year time interval. We conclude that training data
subsets and out-of-sample data subsets should have an equal length. In order to
clarify the above findings in addition we computed the excess returns by subtracting
the annualized BH result (6.28%) from the R(y) achieved by each other algorithm,
as suggested in [38]. Fig. 12.1 shows the excess returns of all algorithms. The
results for VMA provide evidence that the greater the number of days for calculating
MAt(L), the higher the achieved return of VMA. For FMA the results are biased. We
conclude that further experiments should be carried out. The results for TRB provide
evidence that a band of 1% corrupts the results. BH outperforms exactly 16 of the
28 variants of the algorithms including GP, i.e. 16 excess returns are negative.

To test for significance we performed a t-test, the null hypothesis to be rejected
is that BH outperforms ON in terms of the return to be expected μ, i.e. H0 := μON ≤
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Fig. 12.1 Annualized excess returns versus BH on the time interval 2002 to 2007

μBH and ON ∈ {VMA,FMA,T RB,GP} at a significance level of 0.05 (5%). All
p-values are greater than 0.05, i.e. H0 can not be rejected. Thus, we employed the
moving block bootstrap procedure to test for predictability (cf. [44]). We generated
1000 time series (bootstrap samples) of prices and evaluated the performance of
all MA and T RB variants on each sample. Compared to BH, for all variants and
samples the above null hypothesis H0 can not be rejected. Thus, we assume ON ∈
{V MA,FMA,T RB}will not perform better than BH in the future. Further, the return
to be expected μON equals the average return of ON over the 1000 samples. We can
not provide support for VMA, FMA and TRB, and conclude that these heuristic
conversion algorithms do not have predictive ability in the German market. Our
results are consistent with the results of [40, 10, 8, 44] as V MA, FMA and T RB are
not profitable under transaction costs when compared to BH (cf. Sect. 12.2). Further,
when comparing GP to BH our results are consistent with the results of [1, 31, 14]
(cf. Sect. 12.2) as GP is outperformed by BH.

Question 2: How do the empirical-case competitive ratios cec of the algorithms
ON compare?

To answer Question 2 column 1 and 4 in Tables 12.2 to 12.5 are of main
interest. When calculating cec the achieved R(y) of ON is compared to OPT , where
ON ∈ {V MA,FMA,T RB,GP,BH}. For example GP achieves a cec = OPT/GP =
1.4363/1.0392= 1.3821(cf. Eq. (12.6)). The best result is achieved by T RB(200,0),
and the worst result by T RB(50,1). Clearly, the answers to Question 1 regarding
the performance comparison of the algorithms are also true for Question 2 as the
numerator OPT when calculating cec is constant.

Question 3: How do the worst-case competitive ratios cwc which could have been
possible from the experimental data compare?

To answer Question 3 column 5 in Tables 12.2 to 12.5 is of main interest.
Answering this question we calculated cwc by Eq. (12.7). As ON is confronted with
the worst possible sequence of prices p times, the ratio cwc grows exponential with
p. Growth is shown in Fig. 12.2, with f (x) = x2p and x = 1.2603. The greater the
number of trades p, the worse (greater) cwc gets as it grows exponential with p.
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Fig. 12.2 Exponential growth of the worst-case competitive ratio cwc

Question 4: How do the Sortino Ratios SR compare?
To answer Question 4 column 6 in Tables 12.2 to 12.5 is of main interest. A

SR ≤ 0 indicates that the risk incorporated is not rewarded in terms of a higher
return achieved: the return achieved is close to rMAR. A SR > 0 indicates that
the risk incorporated is rewarded: the greater the SR the lower the risk of large
losses occurring. We calculated the SR of ON ∈ {VMA,FMA,T RB,GP,BH} by
Eq. (12.8). 4 of 6 T RB variants achieve a SR < 0, and the remaining 2 are close to
zero (rMAR = 0). Although TRB(200,0) achieves the overall best annualized return
its SR is 0.0011. All VMA variants generate a SR > 0, from minimum 0.0621 to
maximum 1.1418. VMA(5,150,0) generates the overall best SR (1.1418). 4 of 10
FMA variants achieve a SR < 0, and the remaining 6 are close to zero. Summing
up, for FMA and T RB the risk incorporated is not rewarded in terms of a higher
return achieved. We conclude that only for VMA the incorporated risk is rewarded
by never losing money as rMAR = 0.

12.6 Conclusions

In order to answer the four questions raised in this paper simulation runs with
different heuristic conversion algorithms were performed. For the algorithms FMA
and GP we can not provide support in the German market. The results for GP show
that it is not beneficial to automatically generate trading rules as GP is outperformed
by BH. Further, GP algorithms can hardly be interpreted economically. We found
support for VMA and T RB. For practical use we conclude that a VMA algorithm
should be calculated using a greater number of days for the long moving average,
this leads to a higher return and less trades. Similarly, a TRB algorithm should
be computed without band using a greater number of days for local minima and
maxima prices. Considering the Sortino Ratio, we only found support for using
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VMA, as all SR values are greater zero. The incorporated risk is rewarded by
avoiding losses. From 2002 to 2007 the Dax-30 (as well as other indices) was in
a strong trending mode. Thus, in order to generalize our results, further experiments
on a non-trending market, including statistical and worst-case analysis are necessary.
The question whether the considered algorithms generate significant positive excess
returns in the long run is to be answered. Besides a more extensive data set, more
realistic entry and exit signals with some rudimentary money management strategy
are further fields of future research.

Acknowledgements. The authors thank two anonymous reviewers and the editors for helpful
comments.
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