
A. Martinoli et al. (Eds.): Distributed Autonomous Robotic Systems, STAR 83, pp. 505–516.
springerlink.com © Springer-Verlag Berlin Heidelberg 2013

A New Graph Signature Calculation Method
Based on Power Centrality for Modular Robots

Keyvan Golestan, Masoud Asadpour, and Hadi Moradi

Abstract. Graph signature is a fast isomorphism test that is used in self-
reconfiguration planning of modular robots. In case of dealing with homomorphic
modules, the required time to calculate the signature grows exponentially with the
number of symmetry lines. We tackle this problem by introducing an isomor-
phism-invariant signature calculation method, which is based on the power cen-
trality of nodes. We also introduce a new sample-based search method. Simulation
results show the new method finds better solutions in a significantly shorter time.*

1 Introduction

Modular robots are composed of some relatively simplified and usually small-
sized robotic parts called modules. The modularity comes with properties such as
versatility, robustness and low cost. The modules can be connected in different
ways (either manually or automatically) thus creating different configurations.

Based on the connection structure and the movement of modules, they are clas-
sified into two main categories. Lattice-type modules use cluster-flow to move and
reconfigure. Crystalline [1], ATRON [2], Telecube [3] and Molecule [4] are ex-
amples of this kind. Chain-type modules form chain structures and have joints that
help them move without necessarily doing reconfiguration. M-TRAN [5],
CONRO [6], Roombot [7], PolyBot [8], YaMoR [9] and SuperBot [10] are exam-
ples of this type. Our work is based on chain-type modular robots.

Self-Reconfiguration Planning (SRP) is a task in which an optimal or sub-
optimal solution is found for reshaping a modular robot from an initial configura-
tion to a final one. Solution to this task is hard to achieve as the time complexity
of planning problem grows exponentially when the number of modules or their
degrees of freedom (DOF) increases. In this paper we propose a general frame-
work for SRP to reduce the time complexity specially when dealing with modules

Keyvan Golestan . Masoud Asadpour . Hadi Moradi
Faculty of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
e-mail: {kgolestan,asadpour,moradih}@ut.ac.ir

506 K. Golestan, M. Asadpour, and H. Moradi

with high DOF. This method uses the idea of graph signature introduced by Asad-
pour et al. [11][12] and improves it by using the concept of power centrality in
social networks [13] and establishing a hierarchical graph signature calculation al-
gorithm. A sample-based method for investigating feasible “attach” actions, has
also been incorporated with our previous general search to make it faster.

The rest of this paper is organized as follows: In the next section, some
previous works on SRP are explained. The third section explains our proposed
method. The paper is then finalized by simulation results and conclusions.

2 Background

SRP is one of the most challenging tasks in modular robots. The task is even more
difficult in chain-type robots where mechanical limitations come into play. SRP
becomes practically intractable when dealing with large number of modules, or
modules with high DOF.

Reconfiguration planners are usually based on a guided search strategy and a
distance function. Casal and Yim [14], [15] introduced a divide-and-conquer strat-
egy to solve SRP for chain-type robots. The configuration was decomposed into a
hierarchy of small sub-structures belonging to a finite set. These sub-structures
were non-homomorphic and reconfiguration between them was simple. So the re-
configuration steps could be specified and stored in a look-up table in advance.
The reconfiguration was then consisted of an ordered set of pre-defined actions
among sub-structures which happen locally.

Hou & Shen [16] presented a distributed reconfiguration method on the unla-
beled graph representation of configurations. They did the reconfiguration by first
utilizing a distributed comparison to detect substructures in two configurations.
Then the reconfiguration was limited only to the modules that indicated difference
in topology. Reconfiguration took place by first converting the initial configura-
tion to an intermediate structure and then transforming it to final configuration.

Asadpour et al. [11] proposed a method based on graph theory. They encoded
the 3D structure of a configuration by an isomorphism-invariant code, called sig-
nature, and used edit distance based similarity metric as an upper-bound for iso-
morphism test. The time complexity of their algorithm grows exponentially as the
number of modules increases. They improved the method in [12] in order to deal
with modules with symmetry. Again the time complexity grows exponentially as
the number of modules increased. Another disadvantage of their method is where
they are looking for feasible attach actions; they had to search all possible permu-
tations of joint angles of each module in a configuration. Here, an increase in the
DOF of the modules would cause the time complexity of finding feasible attach
actions grow exponentially.

3 Our Proposed Method

We represent a configuration by a graph with modules as nodes and connection
between modules as edges (directed for male/female connectors and undirected for
genderless ones). Reconfiguration takes place by performing feasible edit actions,

A New Graph Signature Calculation Method Based on Power Centrality 507

i.e. attach or detach, on initial configuration hoping to make it closer to the final
configuration. Among the new unexplored configurations, the closest configura-
tion (based on a distance function) to the final one is chosen for further explora-
tion. This process continues until a path of transitions from the initial graph to the
final graph is found. The network of transitions between configurations in which,
nodes are configurations and edges are edit actions, is called a transition graph.

The isomorphism checking of graphs is not yet proved to be NP-Complete or
not [17] except some special cases like graphs with bounded degrees [18] or or-
dered graphs [19]. Asadpour et al. [11] compute a unique identifier, called graph
signature, for a configuration using properties of ordered graphs. An ordered
graph is a graph whose edges have a specific order. So they adopted an edge labe-
ling method to assign a unique identifier to each edge. The labeled graph is trivial-
ly transformable to an ordered graph by sorting the out-edges of the vertices in
lexicographic order. It is shown in [19] that Isomorphism test on such a graph
takes quadratic time in worst-case in terms of the number of nodes.

3.1 Labeling the Graph

Edge labels include information about how modules are connected to each other.
A labeling strategy may be as follows: First, the connectors of a module are in-
dexed. The indexing order is arbitrary, but should be the same for all modules.
Fig.1.A and B show an indexing order for SuperBot modules.

Relative rotation of two modules around their connection point should also be
encoded. This is done by assigning an index to each relative rotation. For instance,
if only multiples of 90 is allowed, the 90° angle between the modules in Fig.1-C
would have index 1 (index 0 for 0°, index 1 for 90°, … , index 3 for 270°).

Fig. 1 Connector indexing of a SuberBot module. (A) Top view (B) Bottom view (C) Rela-
tive rotation at the connection point is 90°, so rotation index is 1.

Putting connector and relative rotation indices together, connection of two
modules can be labeled as [11]:

| || | | |
ij ij ji ij

l C R c R c r= + +

(1)

where cij is the index of the connector of module i which is connected to module j,
|C| is the total number of connectors, |R| is the number of possible relative rota-
tions, and rij is the relative rotation of module i with respect to module j. For
SuperBot, |C| is 6 and |R| is 4. This way, each connection gets a unique label and
an ordering can be imposed on the edges. Fig. 2 shows two different configura-
tions and their graph representations.

508 K. Golestan, M. Asadpour, and H. Moradi

Fig. 2 SuperBots configured as (A) 4-Module quadruped (B) 6-Module climber. (C) and
(D) Their corresponding labeled graphs. Red indices belong to the used connectors.

3.2 Graph Signature

The term Graph Signature proposed by Asadpour et al. [11] is an isomorphism in-
variant property of the configuration graph that encodes the 3D structure of a
modular robot. It is inspired by the way we help somebody who is searching for an
address (e.g. go straight, turn left at the junction). A configuration is like a city
whose entire map should be encoded in a string. The code specifies for a tourist
(here a planner), what would he/she see when walking along the streets? A big
problem is to specify (in an isomorphism invariant way) the place he should start
walking. That is why Asadpour et al. [11] had to try all possible start places (i.e.
all nodes) and select in some way a unique code among them (e.g. by sorting).

The graph signature is created by performing a modified DFS on an ordered
graph and recording what is seen meanwhile, in this way: 1) start from a node (i.e.
a module) and record its index; start indexing from one, and increment it upon vi-
siting new unvisited node; 2) If possible traverse the out-edges in the lexicograph-
ic order of their labels and record their labels, after that 3) traverse the in-edges
(i.e. opposed to their direction) and record the negation of their labels; and finally
4) if no move is possible, back track to the previous node(s). In case of dealing
with undirected (i.e. hermaphrodite) edges, the traversal direction is decided once
it is first encountered, from the current node towards an unvisited node.

The procedure is repeated for all nodes as start position. Each time a signature
is created whom we call a node signature. Among all node signatures, the one
with maximum lexicographical order is selected as the graph signature. The worst

Table 1 Signature of nodes of the graphs in Fig.2. Graph signature is shown in bold face.

4-Module Quadruped Configuration 6-Module Climber Configuration

Node Node Signature Node Node Signature

0 (0 26 1) (1 26 2) (2 26 3) (3 26 0) 0 (0 46 1)(1 106 2)(2 46 3)(3 106 4)(4 46 5)

1 (0 26 1) (1 26 2) (2 26 3) (3 26 0) 1 (0 106 1)(1 46 2)(2 106 3)(3 46 4)(0 -46 5)

2 (0 26 1) (1 26 2) (2 26 3) (3 26 0) 2 (0 46 1)(1 106 2)(2 46 3)(0 -106 4)(4 -46 5)

3 (0 26 1) (1 26 2) (2 26 3) (3 26 0) 3 (0 106 1)(1 46 2)(0 -46 3)(3 -106 4)(4 -46 5)

 4 (0 46 1)(1 -106 2)(2 -46 3)(3 -106 4)(4 -46 5)

 5 (0 -46 1)(1 -106 2)(2 -46 3)(3 -106 4)(4 -46 5)

A New Graph Signature Calculation Method Based on Power Centrality 509

time complexity of signature calculation is O(|V||E|) for |V| and |E| as the number
of nodes and edges, respectively [11]. Table 1 shows all possible graph signatures
for the configurations of Fig.2.

3.2.1 Symmetric Modules

A module is called homomorphic or symmetric if there exist at least one symmetry
line that rotating the module around it produces the same (matchable) 3D shape.
Fig. 3 shows some SuperBots that have the same 3D shapes. The number of mat-
chable shapes, whom we call, symmetry factor, can be calculated once for each
module type through exhaustive search. For instance, M-TRAN modules, if all
connectors are genderless, have 3 symmetry lines, and their symmetry factor is 4.
The symmetry factor is 8 for SuperBots [10] and 36 for Roombots [7]. This is like
re-indexing the connectors and acquiring the same shape. Thus, a mapping be-
tween connector indices of symmetric shapes could be achieved and saved in a
lookup table. Since re-indexing the connectors changes the edge labels, a new
graph signature might be achieved.

Fig. 3 (A)-(F) Examples of SuperBots with identical 3D shapes. In B, E and, F, the middle
servo rotates 180° (G) Two isomorphic configurations with a module rotated around a
symmetry line.

The case of symmetric modules is tackled in [12] by putting some order on the
connections. They compute the node signatures by testing all permutations of
symmetric positions of each module and choose the one with maximum lexico-
graphical order. The time complexity of signature calculation is O(|V|2 + |V| ×
S|V|) for S being the symmetry factor.

3.2.2 The Improved Signature Calculation Algorithm

The inefficiency of signature calculation in symmetric modules returns back to the
calculation of multiple node signatures. If we find an isomorphism invariant way
to fix the starting node, we could calculate the signature in one run. Here we use a
centrality measure from social networks domain called, power centrality [13]
based on which the most powerful node is selected as the starting node for signa-
ture calculation. This measure can also specify the priority of visit for nodes in
case of tallies. Following, the steps of the proposed method are explained:

Step 1: Isomorphism-invariant node prioritization based on power centrality

Based on the power centrality [13], (social) power of a node recursively depends
on the sum of the power of its friends with attenuation factor 0 ≤ β ≤ 1:

510 K. Golestan, M. Asadpour, and H. Moradi

() (. ())
p i ij p j

j

C n a C nβ= 

(2)

where Cp(nk) is the power of node k and axy is 1 if x and y are friends (or neigh-
bors) and 0 otherwise. If we start from a positive initial value for Cp(nk), k=1…n
and recursively calculate (2) for all nodes, power centralities finally converge if
|β|<1/λmax where λmax is the highest eigenvector of the adjacency matrix of the
graph[13]. The number of required iterations can go up to the diameter of the
graph that is at most |V|-1.

It is evident that for isomorphic configurations the same power centralities are
gained for corresponding nodes. In case of generating different power centralities
for some nodes, we can surely say the configurations are different. However, the
reverse is not always true i.e. if power centralities are the same we cannot surely
say the configurations are isomorphic.

We hope the most powerful node is unique such that it could be selected as the
starting node, otherwise we have to run the signature calculation once for each of
the most powerful nodes. Table 2 shows the converged power centralities of
graphs presented in Fig. 2.

Table 2 Normalized initial and converged node power centralities of the graphs in
Fig. 2C-D

4-Module quadruped configuration 6-Module climber configuration

Node Initial power Converged power Node Initial power Converged power

0 0.25 0.25 0 0.1073 0.1038

1 0.25 0.25 1 0.1964 0.1804

2 0.25 0.25 2 0.1964 0.2157

3 0.25 0.25 3 0.1964 0.2157

 4 0.1964 0.1804

 5 0.1073 0.1038

Choosing the initial values for power centralities is very important. A popular

initial value is the nodal degree [13], which is not appropriate here because the
degree keeps only the information about the number of neighbors, but not how
they are connected. Instead, we assign a value to each node that is calculated by
summing the labels of the edges connected to a specific node. We call it the Vicin-
ity Value. The maximum possible vicinity values of nodes are used as their initial
powers. If we assume the modules are genderless, the vicinity value of node i is:

()
ij ij

j V

v i a l
∈

= 

(3)

where lij is the label of the edge between nodes i and j. Based on (1) and (3) the
maximum vicinity value is:

A New Graph Signature Calculation Method Based on Power Centrality 511

* * ** () (| || | | |)
ij ij ij ij ji ij

j V j V

v i a l a C R c R c r
∈ ∈

= = + +  (1)

where cij
* and cji

* are the connector indices that maximizes the vicinity value, and
are obtained by re-indexing the modules i and then j; and rij

* is the maximum rota-
tion index between i and j. Equation (4) can be written as:

* * ** () (| || |) | | ()
ij ij ij ij ji

j V j V

v i a C R c r R a c
∈ ∈

= + +  (2)

Maximizing both terms would maximize the whole expression. The first term,
which we call Node Value, only depends on the module i and can be maximized
using the equation below:

* () max{ (| || | () ())}
ij ij ij

s S
j V

n i a C R s c s r
∈

∈

= + (3)

where S is the set of possible connector mappings (|S| being the symmetry factor),
and s(cij) and s(rij) are the connector and rotation indices, respectively, provided
by the mapping s. We call this process, Node Value Maximization Procedure
(NVMP). The neighboring nodes can independently run NVMP and maximize the
second term of (5) and finally the sum of two terms. The whole process is called
Vicinity Value Maximization Procedure (VVMP). Fig.4 shows an example of how
NVMP and VVMP are performed using equations 3, 5 and 6. If two nodes are
connected in more than one way, VVMP selects the mapping that leads to maxi-
mum vicinity value.

Fig. 4 Finding the maximum vicinity value of node 1 for 4-Module quadruped graph shown
in Fig. 2C. (#1 & #2) NVMP is done by node 1 using the Eq. 6 for each symmetric position
S1-S8. (#2 & #3) VVMP is done independently by each neighbor using Eq. 6 for each
symmetric position S1-S8 concerning the rule that common edges with node 1 can only get
increased.

512 K. Golestan, M. Asadpour, and H. Moradi

Step 2: Hierarchical graph re-indexing

This procedure is done once for the node with maximum power centrality, which
we call the master node. The master node performs VVMP followed by re-
indexing according to the mapping provided by VVMP. Then, the edges incident
to the master node with their new labels are frozen so that no other node could
modify their labels. This process is repeated for a neighbor of the master node and
each time some edges are frozen. Neighbors are prioritized according to their vi-
cinity value. When all edges are frozen, the re-indexed graph is ready for signature
calculation. Fig. 5 shows an example of re-indexing.

It should also be noted that during NVMP some cases happen where for two
different symmetric positions, calculated node values of a specific module are
equal and it cannot decide which symmetric position s to choose for re-indexing.
In such cases we simply look at the power centralities of the nodes that the
connector tends to connect, and choose the symmetric position in which the con-
nectors with higher indices are going to connect to nodes with higher power cen-
tralities. We think in cases of equal power centralities choosing either one of the
nodes would not change the overall outcome (not proved yet, left for future work).

Fig. 5 Hierarchical re-indexing of 6-Module climber configuration graph. Module 3, the
master starts VVMP and freezes its edges, the process is continued by 2, 4, 1, 5, and 0.

Step 3: Graph signature calculation

The graph signature is generated by performing a DFS starting from the master
node on the frozen graph of step two. If more than one master node (and conse-
quently more than one re-indexed graph exists), graph signature is generated for
each case by starting from the corresponding nodes and the one with maximum
lexicographical order is chosen. It is easy to verify that the worst time complexity
of this new method is O(S × |V|2) which is much better than [12].

3.2.3 Improvement of Searching for Feasible Attach Actions

As mentioned earlier, reconfiguration takes place by performing feasible edit ac-
tions, i.e. attach/detach, on initial configuration hoping to make it closer to final
one. Finding feasible detach actions is easy; it can be done by searching for mod-
ules that form loop (so they can be disconnected from either side). This can at
worst be done in O(|E|2|V|). However, computing all possible attach actions, espe-
cially in case of modules with high DOF, is very difficult. Asadpour et al. [11]
[12] used a brute force approach and checked all permutations of discretized servo
movements for possible attach action i.e. O(p|V|×|M|), for p being the number of dis-
cretized servo movements and |M| being the DOF of modules (so the dimension of
the joint state space is |V|×|M|).

A New Graph Signature Calculation Method Based on Power Centrality 513

We tackle this problem by applying a sample based method called Rapidly-
exploring Random Trees (RRT) [20]. The main property of RRT is its tendency to
search unexplored regions of the space, while insuring that the whole space will be
explored if sampling runs for a long time. Here, instead of finding all feasible at-
tach actions which takes a lot of time, the sampling is continued until either
“enough” attach actions are found or no part of space remains unexplored.

4 Simulation Results

Our method is tested on simulated M-TRANs and SuperBots, each having 6 gen-
derless connectors, and 2 and 3 rotational servos respectively. Fig.2A, B and Fig.6
depict the configurations we study. The SRP tasks for MTRAN are Quadruped-to-
snake with 4 and 8 modules. Then the scalability of our method is verified on
stool-to-snake reconfiguration (with 12 M-TRAN). The SRP tasks on SuperBots
are line-to-climber configuration with 4, 6, and 8 modules. Simulations are re-
peated on 30 random seeds and are continued until 30 solutions are found.

Fig. 6 (A, B) 4 and 8-module climber (C) 8-module quadruped (D) 12-module stool (E, F,
G) 4, 6 and 8-module line (H, I, J) 4, 8 and 12-module snake

4.1 Reconfiguration with M-TRAN

Fig.7 (left) shows the number of graphs examined before finding the first and the
best solutions of 4-module quadruped-to-snake reconfiguration. In about 70% of
simulations the first solution is found before less than 500 graphs are examined, in
less than 5 seconds. Moreover the first solution is always the best solution with 9
attach/detach actions. This is much better than Asadpour et al. [12] where the first
solution was among 4,000 visited graphs and only about 17% of best solutions
were within the first 2,500 examined graphs.

Fig.7 (right) shows the results for 8-module quadruped-to-snake task. The best
solution of this task has 7 actions which is equal to results of [12]. The first solu-
tion is found by visiting 7000 or fewer graphs in 50% of simulations in less than
300 seconds. The best solution is found in 7 simulations after visiting 15000 or
fewer graphs in less than 450 seconds. This is almost similar to [12], but is gained
in significantly shorter time.

514 K. Golestan, M. Asadpour, and H. Moradi

Fig. 7 Reconfiguration result for (Left) 4-Module quadruped to snake and (Right) 8-Module
quadruped to snake

To test the scalability of our framework, we solved the stool-to-snake reconfi-
guration with 12 M-TRAN modules. The best solution that has 27 actions is found
by examining around 120000 graphs in about 85 minutes.

4.2 Reconfiguration with SuperBot

Fig.8 shows the number of graphs examined before finding the first and the best
solutions of line-to-climber reconfiguration with SuperBots. Fig.8 (top-left) shows
the result for 4-module reconfiguration. It is seen that more than 70% of the first
solutions and about 20% of the best solutions are found after visiting 2800 or few-
er graphs. The first and best solutions are found in less than 10 seconds.

Fig. 8 Result for line-to-climber reconfiguration with (top-left) 4, (top-right) 6 and (bottom)
8 modules

0%

20%

40%

350 400 450 500 550 More

%
 o

f S
im

ul
at

io
ns

Number of graphs

of graphs examined before finding
first and best solutions (4-Module

Quadruped to Snake)

First Solution
Best Solution

0%

20%

40%

60%

3000 7000 110001500019000 More

%
 o

f S
im

ul
at

io
ns

Number of graphs

of graphs examined before finding
first and best solutions (8-Module

Quadruped To Snake)

First Solution
Best Solution

0%

20%

40%

60%

600 1400 2800 3600 4400 More%
 o

f S
im

ul
at

io
ns

Number of graphs

of graphs examined before finding
first and best solutions (4-Module

Line to Climber)

First Solution
Best Solution

0%

50%

100%

5000 12000 19000 26000 33000 More

%
 o

f S
im

ul
at

io
ns

Number of graphs

of graphs examined before finding
first and best solutions (6-Module

Line to Climber)

First Solution
Best Solution

0%

50%

100%

100K 200K 300K 400K 500K More

%
 o

f S
im

ul
at

io
ns

Number of graphs

of graphs examined before finding
first and best solutions

(8-Module Line to Climber)

First Solution

Best Solution

A New Graph Signature Calculation Method Based on Power Centrality 515

Fig.8 (top-right) shows the results for 6-module reconfiguration. It is seen that
more than 50% of the first solutions are found by examining 19000 or fewer
graphs in less than 30 seconds. The best solution to this task has 12 actions and is
found in about 23% of our simulations.

Fig.8 (bottom) shows the results for 8-module reconfiguration. This is the hard-
est reconfiguration task in our simulations (the configuration has totally 24 DOFs).
About 63% of the times, the first solution is found after examining 300000 or
fewer graphs in less than 120 minutes. The best solution that has 24 actions is
found only in 34% of simulations always before examining 300000 or fewer
graphs in less than 200 minutes.

5 Conclusion

We proposed an isomorphism-invariant graph signature calculation based on pow-
er centrality. We could enhance the time complexity of signature calculation to
polynomial time even for symmetric modules. We also tackled the problem of
finding feasible attach actions by using the sample based RRT method. The results
showed an impressive drop in reconfiguration time for both M-TRAN and Super-
Bot modules.

As future works, we think finding the feasible attach action by sampling can be
improved through parameter tuning. Physical restrictions during reconfiguration
should be mentioned and finally the cases where power centralities or vicinity val-
ues of some nodes are equal need more investigation.

References

[1] Rus, D., Vona, M.: Crystalline robots: Self-reconfiguration with compressible unit
modules. Autonomous Robots 10, 107–124 (2001)

[2] Jørgensen, M., Østergaard, E., Lund, H.: Modular ATRON: Modules for a self-
reconfigurable robot. In: 2004 IEEE/RSJ Int. Conf. on Intelligent. Robots & Sys-
tems (IROS), pp. 2068–2073 (2004)

[3] Vassilvitskii, S., Kubica, J., Rieffel, E., Suh, J., Yim, M.: On the general reconfigu-
ration problem for expanding cube style modular robots. In: Proceedings - IEEE In-
ternational Conference on Robotics and Automation, pp. 801–808 (2002)

[4] Kotay, K., Rus, D., Vona, M., McGray, C.: Self-reconfiguring robotic molecule. In:
Proceedings - IEEE International Conference on Robotics and Automation, pp. 424–
431 (1998)

[5] Murata, S., Yoshida, E., Kamimura, A., Kurokawa, H., Tomita, K., Kokaji, S.: M-
TRAN: Self-reconfigurable modular robotic system. IEEE/ASME Trans. on Mecha-
tronics 7, 431–441 (2002)

[6] Castano, A., Shen, W., Will, P.: CONRO: towards deployable robots with inter-
robot metamorphic capabilities. Autonomous Robots 8, 309–324 (2000)

516 K. Golestan, M. Asadpour, and H. Moradi

[7] Sproewitz, E., Billard, A., Dillenbourg, P., Ijspeert, A.J.: Roombots—Mechanical
Design of Self-Reconfiguring Modular Robots for Adaptive Furniture. In: IEEE In-
ternational Conference on Robotics and Automation, pp. 4259–4264 (2009)

[8] Yim, M., Duff, D.G., Roufas, K.D.: PolyBot: a modular reconfigurable robot. In:
Proceedings - IEEE International Conference on Robotics and Automation, pp. 514–
520 (2000)

[9] Moeckel, R., Jaquier, C., Drapel, K., Dittrich, E., Upegui, A., Ijspeert, A.: Exploring
adaptive locomotion with YaMoR, a novel autonomous modular robot with Blu-
etooth interface. Industrial Robot 33, 285–290 (2006)

[10] Salemi, B., Moll, M., Shen, W.: Superbot: A deployable, multi-functional, and mod-
ular self-reconfigurable robotic system. In: IEEE International Conference on Intel-
ligent Robots and Systems, pp. 3636–3641 (2006)

[11] Asadpour, M., Sproewitz, A., Billard, A., Dillenbourg, P., Ijspeert, A.: Graph signa-
ture for self-reconfiguration planning. In: 2008 IEEE/RSJ International Conference
on Intelligent Robots and Systems, IROS, pp. 863–869 (2008)

[12] Asadpour, M., Ashtiani, M., Sproewitz, A., Ijspeert, A.: Graph signature for self-
reconfiguration planning of modules with symmetry. In: 2009 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, IROS, pp. 5295–5300 (2009)

[13] Bonacich, P.: Power and Centrality: A Family of Measures. The American Journal
of Sociology 92, 1170–1182 (1987)

[14] Yim, M., Goldberg, D., Casal, A.: Connectivity planning for closed-chain reconfigu-
ration. In: Proceedings of SPIE - The Int. Society for Optical Engineering, pp. 402–
412 (2000)

[15] Casal, A., Yim, M.: Self-reconfiguration planning for a class of modular robots. In:
Proceedings of SPIE - The International Society for Optical Engineering, pp. 246–
257 (1999)

[16] Hou, F., Shen, W.: Distributed, dynamic, and autonomous reconfiguration planning
for chain-type self-reconfigurable robots. In: Proceedings - IEEE International Con-
ference on Robotics and Automation, pp. 3135–3140 (2008)

[17] Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-
Completeness (Series of Books in the Mathematical Sciences). W.H. Freeman
(1979)

[18] Luks, E.: Isomorphism of graphs of bounded valence can be tested in polynomial
time. Journal of Computer and System Sciences 25, 42–65 (1982)

[19] Jiang, X., Bunke, H.: Optimal quadratic-time isomorphism of ordered graphs. Pat-
tern Recognition 32, 1273–1283 (1999)

[20] Lavalle, S.M.: Rapidly-Exploring Random Trees: A New Tool for Path Planning
(1998)

	A New Graph Signature Calculation Method Based on Power Centrality for Modular Robots
	Introduction
	Background
	Our Proposed Method
	Labeling the Graph
	Graph Signature

	Simulation Results
	Reconfiguration with M-TRAN
	Reconfiguration with SuperBot

	Conclusion
	References

