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Abstract. Graph signature is a fast isomorphism test that is used in self-
reconfiguration planning of modular robots. In case of dealing with homomorphic 
modules, the required time to calculate the signature grows exponentially with the 
number of symmetry lines. We tackle this problem by introducing an isomor-
phism-invariant signature calculation method, which is based on the power cen-
trality of nodes. We also introduce a new sample-based search method. Simulation 
results show the new method finds better solutions in a significantly shorter time.* 

1   Introduction 

Modular robots are composed of some relatively simplified and usually small-
sized robotic parts called modules. The modularity comes with properties such as 
versatility, robustness and low cost. The modules can be connected in different 
ways (either manually or automatically) thus creating different configurations.  

Based on the connection structure and the movement of modules, they are clas-
sified into two main categories. Lattice-type modules use cluster-flow to move and 
reconfigure. Crystalline [1], ATRON [2], Telecube [3] and Molecule [4] are ex-
amples of this kind. Chain-type modules form chain structures and have joints that 
help them move without necessarily doing reconfiguration. M-TRAN [5], 
CONRO [6], Roombot [7], PolyBot [8], YaMoR [9] and SuperBot [10] are exam-
ples of this type. Our work is based on chain-type modular robots. 

Self-Reconfiguration Planning (SRP) is a task in which an optimal or sub-
optimal solution is found for reshaping a modular robot from an initial configura-
tion to a final one. Solution to this task is hard to achieve as the time complexity 
of planning problem grows exponentially when the number of modules or their 
degrees of freedom (DOF) increases. In this paper we propose a general frame-
work for SRP to reduce the time complexity specially when dealing with modules 
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with high DOF. This method uses the idea of graph signature introduced by Asad-
pour et al. [11][12] and improves it by using the concept of power centrality in  
social networks [13] and establishing a hierarchical graph signature calculation al-
gorithm. A sample-based method for investigating feasible “attach” actions, has 
also been incorporated with our previous general search to make it faster.  

The rest of this paper is organized as follows: In the next section, some  
previous works on SRP are explained. The third section explains our proposed 
method. The paper is then finalized by simulation results and conclusions. 

2   Background 

SRP is one of the most challenging tasks in modular robots. The task is even more 
difficult in chain-type robots where mechanical limitations come into play. SRP 
becomes practically intractable when dealing with large number of modules, or 
modules with high DOF. 

Reconfiguration planners are usually based on a guided search strategy and a 
distance function. Casal and Yim [14], [15] introduced a divide-and-conquer strat-
egy to solve SRP for chain-type robots. The configuration was decomposed into a 
hierarchy of small sub-structures belonging to a finite set. These sub-structures 
were non-homomorphic and reconfiguration between them was simple. So the re-
configuration steps could be specified and stored in a look-up table in advance. 
The reconfiguration was then consisted of an ordered set of pre-defined actions 
among sub-structures which happen locally. 

Hou & Shen [16] presented a distributed reconfiguration method on the unla-
beled graph representation of configurations. They did the reconfiguration by first 
utilizing a distributed comparison to detect substructures in two configurations. 
Then the reconfiguration was limited only to the modules that indicated difference 
in topology. Reconfiguration took place by first converting the initial configura-
tion to an intermediate structure and then transforming it to final configuration. 

Asadpour et al. [11] proposed a method based on graph theory. They encoded 
the 3D structure of a configuration by an isomorphism-invariant code, called sig-
nature, and used edit distance based similarity metric as an upper-bound for iso-
morphism test. The time complexity of their algorithm grows exponentially as the 
number of modules increases. They improved the method in [12] in order to deal 
with modules with symmetry. Again the time complexity grows exponentially as 
the number of modules increased. Another disadvantage of their method is where 
they are looking for feasible attach actions; they had to search all possible permu-
tations of joint angles of each module in a configuration. Here, an increase in the 
DOF of the modules would cause the time complexity of finding feasible attach 
actions grow exponentially. 

3   Our Proposed Method 

We represent a configuration by a graph with modules as nodes and connection 
between modules as edges (directed for male/female connectors and undirected for 
genderless ones). Reconfiguration takes place by performing feasible edit actions, 
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i.e. attach or detach, on initial configuration hoping to make it closer to the final 
configuration. Among the new unexplored configurations, the closest configura-
tion (based on a distance function) to the final one is chosen for further explora-
tion. This process continues until a path of transitions from the initial graph to the 
final graph is found. The network of transitions between configurations in which, 
nodes are configurations and edges are edit actions, is called a transition graph. 

The isomorphism checking of graphs is not yet proved to be NP-Complete or 
not [17] except some special cases like graphs with bounded degrees [18] or or-
dered graphs [19]. Asadpour et al. [11] compute a unique identifier, called graph 
signature, for a configuration using properties of ordered graphs. An ordered 
graph is a graph whose edges have a specific order. So they adopted an edge labe-
ling method to assign a unique identifier to each edge. The labeled graph is trivial-
ly transformable to an ordered graph by sorting the out-edges of the vertices in 
lexicographic order. It is shown in [19] that Isomorphism test on such a graph 
takes quadratic time in worst-case in terms of the number of nodes. 

3.1   Labeling the Graph 

Edge labels include information about how modules are connected to each other. 
A labeling strategy may be as follows: First, the connectors of a module are in-
dexed. The indexing order is arbitrary, but should be the same for all modules. 
Fig.1.A and B show an indexing order for SuperBot modules.  

Relative rotation of two modules around their connection point should also be 
encoded. This is done by assigning an index to each relative rotation. For instance, 
if only multiples of 90 is allowed, the 90° angle between the modules in Fig.1-C 
would have index 1 (index 0 for 0°, index 1 for 90°, … , index 3 for 270°).  

 

 

Fig. 1 Connector indexing of a SuberBot module. (A) Top view (B) Bottom view (C) Rela-
tive rotation at the connection point is 90°, so rotation index is 1. 

Putting connector and relative rotation indices together, connection of two 
modules can be labeled as [11]: 

| || | | |
ij ij ji ij

l C R c R c r= + +
                                         

(1) 

where cij is the index of the connector of module i which is connected to module j, 
|C| is the total number of connectors, |R| is the number of possible relative rota-
tions, and rij is the relative rotation of module i with respect to module j. For  
SuperBot, |C| is 6 and |R| is 4. This way, each connection gets a unique label and 
an ordering can be imposed on the edges. Fig. 2 shows two different configura-
tions and their graph representations. 
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Fig. 2 SuperBots configured as (A) 4-Module quadruped (B) 6-Module climber. (C) and 
(D) Their corresponding labeled graphs. Red indices belong to the used connectors. 

3.2   Graph Signature 

The term Graph Signature proposed by Asadpour et al. [11] is an isomorphism in-
variant property of the configuration graph that encodes the 3D structure of a 
modular robot. It is inspired by the way we help somebody who is searching for an 
address (e.g. go straight, turn left at the junction). A configuration is like a city 
whose entire map should be encoded in a string. The code specifies for a tourist 
(here a planner), what would he/she see when walking along the streets? A big 
problem is to specify (in an isomorphism invariant way) the place he should start 
walking. That is why Asadpour et al. [11] had to try all possible start places (i.e. 
all nodes) and select in some way a unique code among them (e.g. by sorting). 

The graph signature is created by performing a modified DFS on an ordered 
graph and recording what is seen meanwhile, in this way: 1) start from a node (i.e. 
a module) and record its index; start indexing from one, and increment it upon vi-
siting new unvisited node; 2) If possible traverse the out-edges in the lexicograph-
ic order of their labels and record their labels, after that 3) traverse the in-edges 
(i.e. opposed to their direction) and record the negation of their labels; and finally 
4) if no move is possible, back track to the previous node(s). In case of dealing 
with undirected (i.e. hermaphrodite) edges, the traversal direction is decided once 
it is first encountered, from the current node towards an unvisited node.  

The procedure is repeated for all nodes as start position. Each time a signature 
is created whom we call a node signature. Among all node signatures, the one 
with maximum lexicographical order is selected as the graph signature. The worst 
 

Table 1 Signature of nodes of the graphs in Fig.2. Graph signature is shown in bold face. 

4-Module Quadruped Configuration 6-Module Climber Configuration 

Node Node Signature Node Node Signature 

0 (0 26 1) (1 26 2) (2 26 3) (3 26 0) 0 (0 46 1)(1 106 2)(2 46 3)(3 106 4)(4 46 5) 

1 (0 26 1) (1 26 2) (2 26 3) (3 26 0) 1 (0 106 1)(1 46 2)(2 106 3)(3 46 4)(0 -46 5) 

2 (0 26 1) (1 26 2) (2 26 3) (3 26 0) 2 (0 46 1)(1 106 2)(2 46 3)(0 -106 4)(4 -46 5) 

3 (0 26 1) (1 26 2) (2 26 3) (3 26 0) 3 (0 106 1)(1 46 2)(0 -46 3)(3 -106 4)(4 -46 5) 

  4 (0 46 1)(1 -106 2)(2 -46 3)(3 -106 4)(4 -46 5) 

  5 (0 -46 1)(1 -106 2)(2 -46 3)(3 -106 4)(4 -46 5) 
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time complexity of signature calculation is O(|V||E|) for |V| and |E| as the number 
of nodes and edges, respectively [11]. Table 1 shows all possible graph signatures 
for the configurations of Fig.2.  

3.2.1   Symmetric Modules 

A module is called homomorphic or symmetric if there exist at least one symmetry 
line that rotating the module around it produces the same (matchable) 3D shape. 
Fig. 3 shows some SuperBots that have the same 3D shapes. The number of mat-
chable shapes, whom we call, symmetry factor, can be calculated once for each 
module type through exhaustive search. For instance, M-TRAN modules, if all 
connectors are genderless, have 3 symmetry lines, and their symmetry factor is 4. 
The symmetry factor is 8 for SuperBots [10] and 36 for Roombots [7]. This is like 
re-indexing the connectors and acquiring the same shape. Thus, a mapping be-
tween connector indices of symmetric shapes could be achieved and saved in a 
lookup table. Since re-indexing the connectors changes the edge labels, a new 
graph signature might be achieved.  
 

 

Fig. 3 (A)-(F) Examples of SuperBots with identical 3D shapes. In B, E and, F, the middle 
servo rotates 180° (G) Two isomorphic configurations with a module rotated around a 
symmetry line. 

The case of symmetric modules is tackled in [12] by putting some order on the 
connections. They compute the node signatures by testing all permutations of 
symmetric positions of each module and choose the one with maximum lexico-
graphical order. The time complexity of signature calculation is O(|V|2 + |V| × 
S|V|) for S being the symmetry factor. 

3.2.2   The Improved Signature Calculation Algorithm 

The inefficiency of signature calculation in symmetric modules returns back to the 
calculation of multiple node signatures. If we find an isomorphism invariant way 
to fix the starting node, we could calculate the signature in one run. Here we use a 
centrality measure from social networks domain called, power centrality [13] 
based on which the most powerful node is selected as the starting node for signa-
ture calculation. This measure can also specify the priority of visit for nodes in 
case of tallies. Following, the steps of the proposed method are explained:  

Step 1: Isomorphism-invariant node prioritization based on power centrality  

Based on the power centrality [13], (social) power of a node recursively depends 
on the sum of the power of its friends with attenuation factor 0 ≤ β ≤ 1: 
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( ) ( . ( ))
p i ij p j

j

C n a C nβ= 
                                              

(2) 

where Cp(nk) is the power of node k and axy is 1 if x and y are friends (or neigh-
bors) and 0 otherwise. If we start from a positive initial value for Cp(nk), k=1…n 
and recursively calculate (2) for all nodes, power centralities finally converge if 
|β|<1/λmax where λmax is the highest eigenvector of the adjacency matrix of the 
graph[13]. The number of required iterations can go up to the diameter of the 
graph that is at most |V|-1. 

It is evident that for isomorphic configurations the same power centralities are 
gained for corresponding nodes. In case of generating different power centralities 
for some nodes, we can surely say the configurations are different. However, the 
reverse is not always true i.e. if power centralities are the same we cannot surely 
say the configurations are isomorphic.  

We hope the most powerful node is unique such that it could be selected as the 
starting node, otherwise we have to run the signature calculation once for each of 
the most powerful nodes. Table 2 shows the converged power centralities of 
graphs presented in Fig. 2.  

Table 2 Normalized initial and converged node power centralities of the graphs in  
Fig. 2C-D 

4-Module quadruped configuration 6-Module climber configuration 

Node Initial power Converged power Node Initial power Converged power 

0 0.25 0.25 0 0.1073 0.1038 

1 0.25 0.25 1 0.1964 0.1804 

2 0.25 0.25 2 0.1964 0.2157 

3 0.25 0.25 3 0.1964 0.2157 

   4 0.1964 0.1804 

   5 0.1073 0.1038 

 
 
Choosing the initial values for power centralities is very important. A popular 

initial value is the nodal degree [13], which is not appropriate here because the 
degree keeps only the information about the number of neighbors, but not how 
they are connected. Instead, we assign a value to each node that is calculated by 
summing the labels of the edges connected to a specific node. We call it the Vicin-
ity Value. The maximum possible vicinity values of nodes are used as their initial 
powers. If we assume the modules are genderless, the vicinity value of node i is: 

 

( )
ij ij

j V

v i a l
∈

= 
                                                        

(3) 

where lij is the label of the edge between nodes i and j. Based on (1) and (3) the 
maximum vicinity value is: 
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* * ** ( ) (| || | | | )
ij ij ij ij ji ij

j V j V

v i a l a C R c R c r
∈ ∈

= = + +   (1) 

where cij
* and cji

* are the connector indices that maximizes the vicinity value, and 
are obtained by re-indexing the modules i and then j; and rij

* is the maximum rota-
tion index between i and j. Equation (4) can be written as: 

* * ** ( ) (| || | ) | | ( )
ij ij ij ij ji

j V j V

v i a C R c r R a c
∈ ∈

= + +   (2) 

Maximizing both terms would maximize the whole expression. The first term, 
which we call Node Value, only depends on the module i and can be maximized 
using the equation below: 

* ( ) max{ (| || | ( ) ( ))}
ij ij ij

s S
j V

n i a C R s c s r
∈

∈

= +  (3) 

where S is the set of possible connector mappings (|S| being the symmetry factor), 
and s(cij) and s(rij) are the connector and rotation indices, respectively, provided 
by the mapping s. We call this process, Node Value Maximization Procedure 
(NVMP). The neighboring nodes can independently run NVMP and maximize the 
second term of (5) and finally the sum of two terms. The whole process is called 
Vicinity Value Maximization Procedure (VVMP). Fig.4 shows an example of how 
NVMP and VVMP are performed using equations 3, 5 and 6. If two nodes are 
connected in more than one way, VVMP selects the mapping that leads to maxi-
mum vicinity value. 

 

 

Fig. 4 Finding the maximum vicinity value of node 1 for 4-Module quadruped graph shown 
in Fig. 2C. (#1 & #2) NVMP is done by node 1 using the Eq. 6 for each symmetric position 
S1-S8. (#2 & #3) VVMP is done independently by each neighbor using Eq. 6 for each 
symmetric position S1-S8 concerning the rule that common edges with node 1 can only get 
increased. 
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Step 2: Hierarchical graph re-indexing 

This procedure is done once for the node with maximum power centrality, which 
we call the master node. The master node performs VVMP followed by re-
indexing according to the mapping provided by VVMP. Then, the edges incident 
to the master node with their new labels are frozen so that no other node could 
modify their labels. This process is repeated for a neighbor of the master node and 
each time some edges are frozen. Neighbors are prioritized according to their vi-
cinity value. When all edges are frozen, the re-indexed graph is ready for signature 
calculation. Fig. 5 shows an example of re-indexing. 

It should also be noted that during NVMP some cases happen where for two 
different symmetric positions, calculated node values of a specific module are 
equal and it cannot decide which symmetric position s to choose for re-indexing. 
In such cases we simply look at the power centralities of the nodes that the  
connector tends to connect, and choose the symmetric position in which the con-
nectors with higher indices are going to connect to nodes with higher power cen-
tralities. We think in cases of equal power centralities choosing either one of the 
nodes would not change the overall outcome (not proved yet, left for future work). 

 

 

Fig. 5 Hierarchical re-indexing of 6-Module climber configuration graph. Module 3, the 
master starts VVMP and freezes its edges, the process is continued by 2, 4, 1, 5, and 0. 

Step 3: Graph signature calculation 

The graph signature is generated by performing a DFS starting from the master 
node on the frozen graph of step two. If more than one master node (and conse-
quently more than one re-indexed graph exists), graph signature is generated for 
each case by starting from the corresponding nodes and the one with maximum 
lexicographical order is chosen. It is easy to verify that the worst time complexity 
of this new method is O(S × |V|2) which is much better than [12]. 

3.2.3   Improvement of Searching for Feasible Attach Actions 

As mentioned earlier, reconfiguration takes place by performing feasible edit ac-
tions, i.e. attach/detach, on initial configuration hoping to make it closer to final 
one. Finding feasible detach actions is easy; it can be done by searching for mod-
ules that form loop (so they can be disconnected from either side). This can at 
worst be done in O(|E|2|V|). However, computing all possible attach actions, espe-
cially in case of modules with high DOF, is very difficult. Asadpour et al. [11] 
[12] used a brute force approach and checked all permutations of discretized servo 
movements for possible attach action i.e. O(p|V|×|M|), for p being the number of dis-
cretized servo movements and |M| being the DOF of modules (so the dimension of 
the joint state space is  |V|×|M|).  
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We tackle this problem by applying a sample based method called Rapidly-
exploring Random Trees (RRT) [20]. The main property of RRT is its tendency to 
search unexplored regions of the space, while insuring that the whole space will be 
explored if sampling runs for a long time. Here, instead of finding all feasible at-
tach actions which takes a lot of time, the sampling is continued until either 
“enough” attach actions are found or no part of space remains unexplored. 

4   Simulation Results 

Our method is tested on simulated M-TRANs and SuperBots, each having 6 gen-
derless connectors, and 2 and 3 rotational servos respectively. Fig.2A, B and Fig.6 
depict the configurations we study. The SRP tasks for MTRAN are Quadruped-to-
snake with 4 and 8 modules. Then the scalability of our method is verified on 
stool-to-snake reconfiguration (with 12 M-TRAN). The SRP tasks on SuperBots 
are line-to-climber configuration with 4, 6, and 8 modules. Simulations are re-
peated on 30 random seeds and are continued until 30 solutions are found.  
 

 

Fig. 6 (A, B) 4 and 8-module climber (C) 8-module quadruped (D) 12-module stool (E, F, 
G) 4, 6 and 8-module line (H, I, J) 4, 8 and 12-module snake 

4.1   Reconfiguration with M-TRAN 

Fig.7 (left) shows the number of graphs examined before finding the first and the 
best solutions of 4-module quadruped-to-snake reconfiguration. In about 70% of 
simulations the first solution is found before less than 500 graphs are examined, in 
less than 5 seconds. Moreover the first solution is always the best solution with 9 
attach/detach actions. This is much better than Asadpour et al. [12] where the first 
solution was among 4,000 visited graphs and only about 17% of best solutions 
were within the first 2,500 examined graphs. 

Fig.7 (right) shows the results for 8-module quadruped-to-snake task. The best 
solution of this task has 7 actions which is equal to results of [12]. The first solu-
tion is found by visiting 7000 or fewer graphs in 50% of simulations in less than 
300 seconds. The best solution is found in 7 simulations after visiting 15000 or 
fewer graphs in less than 450 seconds. This is almost similar to [12], but is gained 
in significantly shorter time. 
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Fig. 7 Reconfiguration result for (Left) 4-Module quadruped to snake and (Right) 8-Module 
quadruped to snake 

To test the scalability of our framework, we solved the stool-to-snake reconfi-
guration with 12 M-TRAN modules. The best solution that has 27 actions is found 
by examining around 120000 graphs in about 85 minutes. 

4.2   Reconfiguration with SuperBot 

Fig.8 shows the number of graphs examined before finding the first and the best 
solutions of line-to-climber reconfiguration with SuperBots. Fig.8 (top-left) shows 
the result for 4-module reconfiguration. It is seen that more than 70% of the first 
solutions and about 20% of the best solutions are found after visiting 2800 or few-
er graphs. The first and best solutions are found in less than 10 seconds. 

 

 

 

Fig. 8 Result for line-to-climber reconfiguration with (top-left) 4, (top-right) 6 and (bottom) 
8 modules 
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Fig.8 (top-right) shows the results for 6-module reconfiguration. It is seen that 
more than 50% of the first solutions are found by examining 19000 or fewer 
graphs in less than 30 seconds. The best solution to this task has 12 actions and is 
found in about 23% of our simulations. 

Fig.8 (bottom) shows the results for 8-module reconfiguration. This is the hard-
est reconfiguration task in our simulations (the configuration has totally 24 DOFs). 
About 63% of the times, the first solution is found after examining 300000 or 
fewer graphs in less than 120 minutes. The best solution that has 24 actions is 
found only in 34% of simulations always before examining 300000 or fewer 
graphs in less than 200 minutes.  

5   Conclusion 

We proposed an isomorphism-invariant graph signature calculation based on pow-
er centrality. We could enhance the time complexity of signature calculation to 
polynomial time even for symmetric modules. We also tackled the problem of 
finding feasible attach actions by using the sample based RRT method. The results 
showed an impressive drop in reconfiguration time for both M-TRAN and Super-
Bot modules. 

As future works, we think finding the feasible attach action by sampling can be 
improved through parameter tuning. Physical restrictions during reconfiguration 
should be mentioned and finally the cases where power centralities or vicinity val-
ues of some nodes are equal need more investigation.  
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