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Abstract. We consider a weighted communication graph in a network of mobile
robots, and its associated Laplacian whose entries depend on the pairwise distance
between the robots. We propose a heuristic distributed solution for the maximization
of the algebraic connectivity of the graph by moving the robots to appropriate po-
sitions. Our approach is optimization-based and can be extended to handle various
constraints, such as the robots’ dynamics. Our proposed distributed solution uses
local algorithms that utilize information only from nearby neighboring robots. Nu-
merical simulations show the applicability and effectiveness of the algorithm and
indicate that in certain cases the proposed distributed solution can perform better
than the centralized version.

1 Introduction

Groups of autonomous mobile robots that communicate with one another to achieve
a common goal are considered as a key enabling technology in several applications
ranging from underwater and space exploration [1, 2], to search and rescue [3], fire
monitoring [4] and other surveillance applications [5]. These robotic teams are envi-
sioned to possess on-board processing capability, but the common task can only be
achieved through information exchange among the members and possibly a base sta-
tion. Such multi-vehicle teams are thus often referred to as robotic networks. Among
the several engineering and research questions these applications pose, maintain-
ing connectivity between the individual robots and increasing the communication
quality given the environmental constraints and objectives, have fundamental im-
portance. Many different types of coordination and control frameworks that have
been proposed recently for cooperating robotic teams rely on some type of agree-
ment protocol or consensus process that leads to coordinated team actions [6, 7, 8].
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Since these protocols typically assume only local communication among “neigh-
boring” units, the interconnection topology of the underlying communication graph
influences their effectiveness profoundly. Motivated by the significant role it plays
in the performance of many distributed control methods, we study distributed solu-
tions for maximizing the algebraic connectivity of the communication graph (often
denoted as λ2) in mobile robotic networks. This parameter is the second small-
est eigenvalue of the communication graph’s Laplacian matrix, and it dictates the
convergence properties of consensus protocols [9, 10]. We focus on distance-based
connectivity maximization with minimum separation constraints, as opposed to en-
suring line-of-sight connectivity in an obstacle-rich environment [11]. Maximiza-
tion of λ2 is also important for collaborative target tracking [12], where a network
of mobile robots strive for increased accuracy of the joint position estimate of one
or more moving objects [13, 14, 15, 16]. Besides an increase in accuracy, a positive
λ2 also ensures that the network stays connected during the collective motion.

A few examples of decentralized λ2 maximization have appeared in the litera-
ture so far. These are typically either limited to only specific scenarios, or imply
heavy communication requirements. Often the proposed approaches are not derived
from a centralized solution, in other words the formulated local problems are not
directly related to the solution of the centralized one. Without such a consistency,
there are typically no guarantees that the algebraic connectivity is maximized. The
approach in [17] uses a two-step distributed solution, which relies on supergradients
and potential functions. The required communication load scales with the square of
the graph diameter. Other approaches proposed in [18] and [19] make use of auc-
tions and game theory, respectively, and consider maintaining connectedness of the
graph as the main priority. Although the communication requirement is limited in
these algorithms, they are designed via a bottom-up approach, i.e., starting from lo-
cal problems, and a potential increase of λ2 is usually a simple by-product of their
solution without analytical guarantees.

In this paper, we present a heuristic distributed approach for the λ2 maximization
problem as formulated by [20, 21, 12] in a centralized framework. Our perspective
is model-based optimization, which allows additional constraints (e.g., the dynam-
ics of the robots) to be included explicitly in the problem formulation. Moreover,
we believe that this approach can eventually lead to a certain type of consistency
with regards to the centralized solution. The proposed solution can also be extended
to incorporate other interesting scenarios, such as collaborative target tracking. The
proposed distributed approach relies on local problems that are solved by each robot
using information only from nearby neighbors. Specifically, two communication
policies are introduced to respect the potentially limited communication and com-
putation capabilities of the robots. Simulation results support the efficacy of the
approach and show interesting properties of the algorithms. For instance, given the
nonlinear/nonconvex nature of the problem, in certain scenarios the distributed so-
lutions converge to a higher λ2 value than the centralized ones.

The paper is organized as follows. Section 2 formulates the centralized problem
as suggested by [20, 21, 12]. The proposed distributed approach and communication
policies are described in Section 3. Numerical simulations are shown in Section 4
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to assess the performance of the distributed solutions with respect to centralized
schemes. Conclusions and open issues are discussed in Section 5.

2 Problem Formulation

We consider a network of N agents. The agents represent mobile robots and the
network encodes undirected communication links, meaning that if two agents are
connected, they can communicate with each other. As a general notation ai(k) repre-
sents the value of the variable a for agent i at time k. Let x(k)∈R

2N be the collection
of the agents’ positions on a 2-D plane, i.e., x(k) = (x�1 (k), . . . ,x�N (k))�. Although
our scheme can be extended to more complicated robot dynamics, for simplicity of
exposition we consider agents with the following discrete-time dynamics

xi(k) = xi(k−1)+vi(k−1)Δ t (1)

where vi(k) is the velocity control input and Δ t the sampling time. We use graph-
theoretical tools to model the network. The set S contains the indices of the mobile
agents (nodes), with cardinality N = |S |. We use E to indicate the set of com-
munication links, i.e., the edges {(i, j)|i, j ∈ S }. The graph G is then expressed
as G = (S ,E ). Let the graph be connected initially, the agent clocks synchro-
nized, and assume perfect communication (no delays or packet losses). The agents
with which agent i communicates are called neighbors and are contained in the set
Ni. Note that node i is not included in the set Ni. We define Ji = Ni ∪ {i} and
Ni = |Ji|.

We define a set of Laplacian matrices L associated with G as

L = {L ∈ R
N×N |L = L�, �i j = 0 iff (i, j) /∈ E ,L1 = 0}

The entries of a Laplacian matrix L are defined as

�i j :=

⎧
⎨

⎩

0 (i, j) /∈ E
−wi j (i, j) ∈ E , i �= j

∑l �=i wil i = j
(2)

where the positive weights wi j represent the “connection strength” between agents i
and j. The weights themselves depend on the physical distance between the agents.
For this purpose we introduce the square distance matrix D, whose entries di j are
defined as

di j = ||xi(k)−x j(k)||2. (3)

The value of the normalized weights will be 1 representing a “strong connection”
if di j is less than a certain threshold, i.e., di j ≤ ρ1, with ρ1 > 0. On the other hand,
agents will not be connected at all (wi j = 0) for di j > ρ2, with ρ2 > ρ1. For ρ1 <
di j ≤ ρ2 the agents are connected with a connection strength that decreases smoothly
with their distance. Typically, spatially decaying functions are used for the weights
wi j [22], and a few of them are shown in Table 1. Case (1) is a linear representation
which is continuous but not differentiable, case (2) is the exponential function of
[12], which is not differentiable and also discontinuous at ρ2, while case (3) is a
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Table 1 Possible choices of weighting functions. Case (1) is a linear representation, case (2)
is the exponential function of [12], while case (3) is a 5-th order polynomial description.

Case Function Figure

(1) wi j :=

⎧
⎨

⎩

1 di j < ρ1
1

ρ2−ρ1
(ρ2 −di j) ρ1 ≤ di j < ρ2

0 di j ≥ ρ2

  
0

 

1

ρ1 ρ2
di j

wi j

(2) wi j :=

⎧
⎪⎨

⎪⎩

1 di j < ρ1

exp
(
− 5(di j−ρ1)

ρ2−ρ1

)
ρ1 ≤ di j < ρ2

0 di j ≥ ρ2

  
0

 

1

ρ1 ρ2
di j

wi j

(3) wi j :=

⎧
⎨

⎩

1 di j < ρ1

∑5
p=0 αpdp

i j ρ1 ≤ di j < ρ2
0 di j ≥ ρ2

  
0

 

1

ρ1 ρ2
di j

wi j

polynomial description, which for a suitable choice of the coefficients αp is both
continuous and twice-differentiable.

As a direct consequence of the above definitions, the entries of the Laplacian
matrix (2) will depend on the pairwise distance and therefore the position states
of the robots, making it state-dependent, which we will denote by L(x). We are
interested in the maximization of the algebraic connectivity of the weighted graph
by moving the robots to appropriate positions. This goal can be formulated as the
following optimization problem [21]:

P(L(x)) : max
x,γ

γ (4a)

s.t. γ > 0 (4b)

L(x)+11T � γI (4c)

where the decision variables are γ and the robot locations x. The optimal value of γ
will be the maximum λ2 for L(x).

This problem would be convex if L was the decision variable, but it is non-convex
given that we are optimizing over the positions x and the entries of L are nonlinear
functions of x. However, we can obtain an iterative convex approximation following
the steps of [20]. First we differentiate (3) with respect to time as

2(ẋi(k−1)− ẋ j(k−1))�(xi(k−1)−x j(k−1)) = ḋi j(k−1)

and then we employ Euler’s first-order discretization method to rewrite (3) as

di j(k) = −di j(k−1)+2(xi(k)−x j(k))�(xi(k−1)−x j(k−1))
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In the same way, the weights of the state-dependent Laplacian L(x) are discretized
as

wi j(k) = wi j(k−1)+
∂wi j

∂di j

∣
∣
∣
∣
di j(k−1)

(di j(k)−di j(k−1))

= wi j(k−1)+2
∂wi j

∂di j

∣
∣
∣
∣
di j(k−1)

(xi(k)−x j(k)−xi(k−1)+x j(k−1))�(xi(k−1)−x j(k−1))

This allows us to consider the maximization of the algebraic connectivity of L as the
following iterative convex semi-definite programming (SDP) problem:

Pk (L(x),x(k−1),D(k−1),vmax) :

max
x(k),D(k),γ(k)

γ(k) (5a)

s.t. Q1 :

{
γ(k) > 0

L(x(k))+11T � γ(k)I (5b)

Q2 :

⎧
⎨

⎩

Q2.1 : di j(k)+di j(k−1)−2(xi(k)−x j(k))�(xi(k−1)−x j(k−1)) = 0
Q2.2 : di j(k) > ρ1, ∀(i, j)∈ E
Q2.3 : ||xi(k)−xi(k−1)|| ≤ vmaxΔ t i = 1, . . . ,N

(5c)

where the constraint Q2.2 is used both to avoid agents getting too close to each
other and to restrict the distances to be positive. This is not automatically ensured
by Q2.1 if the agents could move arbitrarily fast. The constraint Q2.3 on the velocity
represents the physical limitations of the agents.

The problem Pk(L(x),x(k−1),D(k−1),vmax) in (5) is solved iteratively in each
sampling time step and its decision variables are x(k), D(k), and γ(k). The problem
formulation depends on the values x(k − 1) and D(k − 1) from the previous time
step k − 1. Here k stands both for the iteration counter and for the discrete time
index since in this problem the two concepts are equivalent. Since x(k) and D(k)
are considered independent, there could be a possible inconsistency between the
distances and the actual position of the agents. This effect can be diminished if in
addition to constraint Q2.1, D(k− 1) is recomputed based on x(k− 1) before each
optimization step. Although the original problem (5) can be proven to converge to a
local maximum [20], this property may be lost when recomputing D(k−1). This is
due to the fact that the λ2 of L(x(k−1)), based on the recomputed D(k−1), may be
smaller than γ(k−1). However, in the simulated scenarios we consider in Section 4,
the algorithm using recomputed D(k−1) has always converged.

Remark 1. We note that in [20] the requirement that the distances di j(k) form the
entries of a square Euclidean Distance Matrix is considered as an additional convex
constraint. This would help in reducing the inconsistency effect between D(k) and
x(k). However, our experience indicates that this introduces extra rotational rigidity
to the graph in the numerical simulations and as a result it has not been included in
our problem setup.

The optimization problem that has been described in this section attempts to solve
the connectivity maximization problem in a centralized manner using linearization,
discretization and an iterative solution approach. In realistic application scenarios
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however, computing the desired positions and the corresponding motion commands
for the robots cannot be performed in a single centralized location due to compu-
tational and communication constraints. In the next section, we describe a solution
approach that allows the problem to be solved in a distributed fashion, using local
computations and limited communication resources, which increases the flexibility
of the robotic network and is thus appealing in practice.

3 The Proposed Distributed Approach

In this section we present a distributed approach to solve (5). First, we introduce
necessary notation and definitions, then describe our heuristic method and argue
why solving local problems leads to a non-decreasing sequence of algebraic con-
nectivity, when considering the linearized Laplacian of the overall network.

In order to describe the local problems each agent will be solving, we define
subgraphs that correspond to the agents and their neighborhood. Let Mi denote the
enlarged neighborhood for each agent i defined as

Mi =
⋃

l∈Ji

Jl , i = 1, . . . ,N (6)

whose cardinality will be Mi. We denote the vector containing all the positions of
the agents in the set with xMi , while we call the set of agents belonging to ∂Mi, the
bordering agents of Mi defined as

∂Mi = {l|l ∈ Mi, l /∈ Ji}, i = 1, . . . ,N (7)

Figure 1 provides a graphical illustration of this notation. In some situations we
will consider a randomly selected connected subset of Mi that includes agent i.
This set will be denoted by R(Mi) with cardinality RMi. Following suit, we also
define random versions of the border set R(∂Mi) and neighborhood set R(Ji) with
cardinality RNi as

R(∂Mi) = {l|l ∈ R(Mi), l /∈ Ji}, i = 1, . . . ,N (8)

R(Ji) = {l|l ∈ R(Mi), l /∈ R(∂Mi)}, i = 1, . . . ,N (9)

Ji
Agent i

Mi
∂Mi

R(∂M j)

Agent j

R(J j)

R(M j)

Fig. 1 Notation for the distributed solution
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Graphical examples of these definitions are also shown in Figure 1. Finally, we will
denote the graph Laplacian associated with subgraph Mi as Li with correspond-
ing distance matrix Di, while the one associated with R(Mi) as R(Li) and R(Di),
respectively. We also introduce a scaled maximum velocity ṽmax,i defined as

ṽmax,i =

(

∑
j∈Mi

1
Nj

)−1

vmax, i = 1, . . . ,N (10)

whose value varies from agent to agent. The use of this quantity will be explained
later in this section. We consider two possible strategies:

1. Full neighborhood (FN) strategy: the agents are allowed to communicate within
the whole enlarged neighborhood Mi. In this case the proposed distributed so-
lution will lead to monotonically increasing connectivity and more importantly,
it will respect the constraints on D, meaning that di j > ρ1 for all i and j. How-
ever, the communication requirements and local problem size will increase as the
agents get closer to each other and increase their connectivity.

2. Random neighborhood (RN) strategy: the agents are allowed to communicate
only with a randomly selected subset of their extended neighborhood R(Mi).
In this case, the overall connectivity may no longer increase monotonically and
constraints on D may not always be fulfilled. However, the communication and
local problem size can be significantly reduced.

Our algorithms consist of two steps. First, each agent solves the problem PFN
k,i de-

fined as
Pk(Li(xMi

),xMi
(k−1),Di(k−1), ṽmax,i) (11a)

s.t. Q3 : x j(k) = x j(k−1), for j ∈ ∂Mi (11b)

computing the solution x̂Mi(k), which is composed of x̂i j(k) for each j ∈ Mi. Thus,
we will call x̂i j(k) the position of agent j as computed by agent i. Note the impor-
tance of the extra constraint Q3 that guarantees monotonically increasing connec-
tivity as will be explained later in this section.

As the second step, the solutions x̂Mi(k) are shared within the enlarged neighbor-
hood Mi and averaged according to

xi(k) = xi(k−1)+ ∑
j∈Mi

1
Nj

(
x̂ ji(k)−xi(k−1)

)
, i = 1, . . . ,N (12)

Algorithm 3 summarizes the method for the FN strategy as described above. For
the RN strategy, the algorithm follows the same scheme with the following substitu-
tions: PFN

k,i → PRN
k,i , Mi → R(Mi), ∂Mi → R(∂Mi), x̂Mi → x̂R(Mi), Li(·)→ R(Li(·)),

Di → R(Di), Mi → RMi, and Nj → RNj.
The heuristics presented in the above algorithm lead to a solution with monotoni-

cally increasing connectivity, i.e., if we consider the resulting global position vector
x(k) = (x�1 (k), . . . ,x�N (k))�, the algebraic connectivity of the corresponding global
linearized Laplacian L(x(k)) would be monotonically increasing in each iteration.
In order to justify our algorithm and ensure this property, the extra constraint Q3

on the border set is necessary. It allows us to show that L(x(k))−L(x(k − 1)) � 0
where x(k) is the collection of the locally averaged xi(k) solutions. This property
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Algorithm 1. Distributed Algebraic Connectivity Maximization for FN strategy
1: Input: xi(k−1), x j(k−1), j ∈ Mi
2: Compute: di j(k−1) from input based on (3)
3: Solve: PFN

k,i computing x̂i j(k), j ∈ Mi

4: Communicate: x̂i j(k) among members of Mi

5: Average: xi(k) = xi(k−1)+ ∑
j∈Mi

1
Nj

(
x̂ ji(k)−xi(k−1)

)

6: Output: xi(k)

follows from the following line of arguments. Consider the local problem PFN
k,i and

its solution comprised of x̂i j(k) for all j ∈ Mi. Construct a global vector as

x̂(i)(k) = (x�1 (k−1), . . . , x̂�i j (k), . . . ,x
�
N (k−1))� (13)

where we keep those agent positions that have not been optimized fixed, and we
update the rest from the solution of the local problem. It is relatively straightforward
to see that due to constraint Q3, L(x̂(i)(k))−L(x(k−1)) � 0, meaning that the new
positions x̂(i)(k) do not decrease the algebraic connectivity of the Laplacian matrix.
This trivially implies (L(x̂(i)(k))−L(x(k−1)))/Ni � 0 for all i. Thus summing over
all agents leads to

N

∑
i=1

1
Ni

(L(x̂(i)(k))−L(x(k−1))) � 0 (14)

Considering the weighted sum xi(k) in (12), and the associated global vector x(k),
it can be shown that

L(x(k)) =
N

∑
i=1

1
Ni

L(x̂(i)(k)) (15)

which leads to the desired monotonicity property

L(x(k)) �
N

∑
i=1

1
Ni

L(x(k−1)) � L(x(k−1)) (16)

given that ∑N
i=1

1
Ni
≥ 1. With similar arguments, it is possible to argue that feasibility

of the local problem constraints imply feasibility of the centralized problem. The
above discussion also elucidates the reason for scaling the maximum velocity in the
local problems by (∑ j∈Mi

1
Nj

)−1.

Remark 2. In our numerical experiments we have not encountered any infeasibil-
ity when using the FN strategy and the original Q2.2 constraint in the local prob-
lems (mainly due to the particular choice of the weighting functions and only a
few neighbors for each robot). However, in principle, the constraint Q2.2 should be
tightened as well by introducing local ρ̃1i j ≤ ρ1. We are currently investigating the
most suitable way of incorporating these tightened constraints in the local problem
formulations.

Finally, we present a justification for the choice of the enlarged neighborhood set
Mi using the following example. Consider the interconnection shown in Figure 2
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and assume that instead of the enlarged neighborhood Mi, the smaller neighborhood
Ji is used. In that case the consistency constraint in PFN

k,i requires agents i+ 1 and
i−1 to be fixed. It is easy to see that if the distance between the agents is already at
the lower limit

√ρ1, all the agents will remain stationary. However, if we considered
the enlarged neighborhood Mi in the local problem instead, the situation would be
different. The bordering agents 1 and N would rotate towards the center of the string,
to connect with 3 and N −2, respectively.

Fig. 2 Illustrative example
for justifying the choice of
the extended neighborhood
set i

Ji

N1

4 Simulation Results

In this section, we present numerical simulation results to illustrate how the differ-
ent algorithms perform with respect to the centralized scheme. In particular, we will
analyze first the FN strategy and observe that, in some cases, it converges to a higher
λ2 value than the centralized solution. Then we proceed to investigate RN strategies,
which lead to reduced communication load for the price of losing the monotonically
increasing connectivity property and persistent feasibility of the minimum distance
constraint Q2.2. We use the benchmark problem of [20] to relate our results to the lit-
erature. This scenario starts with N = 6 agents on a line forming a connected graph.
The initial position vector is xi(0) = [1 + 1.05(i−1), yi]�, with yi ∼ (0,σ), meaning
that yi is drawn from a Gaussian distribution (0,σ), with mean 0 and standard de-
viation σ = 0.1. Randomness is added to test the algorithms’ sensitivity to slightly
different initial conditions. The other simulation parameters include a weight func-
tion of type (3) in Table 1, ρ1 = 0.5, ρ2 = 2, velocity bound of 0.2, and final time
T = 100. We collected 50 simulation runs for 4 different cases: (1) FN strategy,
(2,3,4) RN strategy with the ratio RMi/Mi set to 0.75,0.50, and 0.25, respectively.
We call rλ2

the ratio between the converged λ2 of the distributed solution and the
one from the centralized solution. Therefore, if rλ2

> 1 the distributed solution has
better performance than the centralized one. In Figure 3 an example of the trajecto-
ries of the centralized and the distributed solutions for the FN strategy is depicted.
The initial positions are marked with squares. The final positions are marked with
circles. The bold lines represent the final communication graph and the thin lines
the agent trajectories. The values of

√ρ1 and
√ρ2 are also depicted for comparison.

Figure 4 shows, in the same simulation, the evolution of the algebraic connectivity
as a function of the sampling time k. We can observe that although in this case the
centralized solution converges faster to the final configuration, the distributed ap-
proach eventually converges to a higher final algebraic connectivity value. We can
also notice “plateaus” during the convergence of the algebraic connectivity, where
the agents are rotating and λ2 is not changing significantly.

Figure 5 represents the ratio between the final distributed and centralized solu-
tions, i.e., rλ2

in all four cases. The disconnected label refers to situations in which
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Fig. 3 Trajectories for the
centralized solution (a) and
for the distributed approach
using the FN strategy (b).
The initial positions are
marked with squares. The
final positions are marked
with circles. The bold lines
represent the final commu-
nication graph and the thin
lines the agent trajectories.
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the RN strategies lead to a disconnected graph. From the simulation results, we can
observe that the FN strategy has performance comparable to the centralized solu-
tion in most cases. It may even converge to a higher λ2 value in some instances,
and it could get stuck in local minima in certain cases, which are not present in
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the centralized algorithm. Investigation of these local minima is a topic of ongoing
research. The behavior of the RN strategies differs from the FN strategy for two
reasons: one is the absence of a monotonically increasing connectivity property and
the other is a possible infeasibility of the local problems. One consequence of this
is that decreasing the ratio RMi/Mi is more likely to lead to an increasing number of
disconnected final graphs. We can also observe a clear increase in performance for
RMi/Mi = 0.50 and 0.25. This can be expected since the minimum distance con-
straints are no longer enforced in a consistent manner, and some agents are allowed
to be arbitrarily close to each other if they are excluded from the local problem
formulation. This also means that, in some cases, local problems can become in-
feasible. Infeasible local problems were handled in the simulations by keeping the
previous positions, i.e., xi(k) = xi(k − 1). For small RMi/Mi ratios this led to all
local problems eventually becoming infeasible and all pairwise distances becoming
smaller than

√ρ1. The ratio RMi/Mi can be considered as a tuning parameter to ob-
tain a reduction of communication. On one hand, for RMi/Mi = 1 we have possibly
high communication load, on the other hand for RMi/Mi → 0, we have limited com-
munication for the price of sacrificing the monotonically increasing connectivity
property. This loss however does not necessarily lead to either disconnected graphs
or distances smaller than

√ρ1. The choice of 0.75 serves as an example for this
phenomenon.

5 Future Developments and Open Questions

We have presented a heuristic distributed solution for the maximization of algebraic
connectivity in a network of mobile robots. The method is optimization-based and
can be further extended by including other types of constraints. Our approach may
be used to obtain a monotonically increasing connectivity property and it can be
easily understood based on the existing centralized solution. We presented simula-
tion results for different communication strategies to assess the performance of the
method, and we highlighted cases in which the distributed solution converges to a
higher λ2 value than the centralized scheme, along with cases in which it converges
to local minima. Several open issues still remain and will be the focus of our fu-
ture research. In particular, a study of the inconsistency between real and linearized
distance D(k), a more realistic dynamical model for the agents, and an investiga-
tion of the theoretical properties of both the FN and RN strategies will be consid-
ered along with experimental validations. Furthermore, we will investigate possible
dual decomposition methods to distribute (5) among the robots, while expecting
that the resulting iterative solutions could compromise real-time applicability. Such
a dual decomposition approach would typically provide primal feasible solutions
only asymptotically, and would require investigating various issues, such as the du-
ality gap. On a longer time scale, other interesting topics of research are how to
extend the problem formulation to handle more realistic scenarios, such as obstacle
avoidance and environment-dependent connectivity.
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