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An Improved Particle Swarm Optimization 
Method for Motion Planning of Multiple Robots 

Ellips Masehian and Davoud Sedighizadeh 

Abstract. Multi robot motion planning is a challenging problem in the robotics 
field due to its complexity and high computational costs induced by the number of 
robots. In this paper a new heuristic method is presented for solving this problem 
through a decentralized approach with global coordination. The method is based 
on a new improved variant of the Particle Swarm Optimization (PSO) metaheuris-
tic, which serves as a global planner. Alternatively, for local planning and avoid-
ing obstacles in narrow passages, the Probabilistic Roadmap Method (PRM) is 
employed. The global and local planners act sequentially until all robots reach 
their goals. The algorithm iteratively and simultaneously minimizes two main  
objectives, shortness and smoothness of the paths. The proposed algorithm is si-
mulated and compared with the standard (basic) PSO, as well as the standard 
Probabilistic Roadmap methods. The experimental results show a meaningful ad-
vantage of the new method regarding computational time and path quality.* 

1   Introduction 

The robot motion planning discipline experienced a boost specifically after the 
advent of the Configuration Space (C-space) notion by Lozano-Pérez and Wesley 
in the mid 70’s [1]. While early motion planning algorithms were mainly devel-
oped for single robots, the multi robot motion planning problem remained un-
tackled until a decade later, when the prioritization and coordination concepts 
were developed, as in [2]. 

The general single robot motion planning problem is defined as the problem of 
finding a collision-free path for a robot navigating among various obstacles, and is 
classified as a PSPACE-hard and NP-hard problem [3]. This complexity is further 
increased for multi-robot motion planning as the larger number of robots creates 
difficult problems regarding their coordination, cooperation and obstacle avoid-
ance. Thus, as a challenging problem, the multi robot motion planning problem 
increasingly attracts the attention of roboticists and researchers. 

                                                           
Ellips Masehian . Davoud Sedighizadeh 
Faculty of Engineering, Tarbiat Modares University, Tehran, Iran 



176 E. Masehian and D. Sedighizadeh
 

The primary approaches for path planning of single and multiple robots were 
generally based on computational geometry and handled deterministic low-
dimensional problems. These methods, also known as classic methods, are varia-
tions of a few general techniques: Roadmaps (including Visibility Graph, Voronoi 
diagrams, and Silhouette), Cell Decomposition, Potential Fields, and Mathemati-
cal programming (including operations research and game theory models) [4]. 

Due to the complexities of the motion planning problem and its progressive in-
crease for the multi-robot case, many heuristic and metaheuristic methods have been 
developed or applied extensively over the recent years, generally showing better per-
formance than the classic methods in terms of computational burden. However, it 
should be noticed that heuristic methods do not guarantee to find a solution, but if a 
solution is found, it is done in much shorter time than exact methods. 

1.1   Multi Robot Motion Planning 

The Multi Robot Motion Planning (MRMP) problem has been solved through two 
main approaches: centralized and decentralized (or decoupled) [5]. 

The centralized planning considers all of the robots concurrently; that is, paths for 
all robots are planned simultaneously by searching the C-space of a hypothetical 
multi-arm robot consisted of all the robots, in which collisions between robots are 
considered as self-collisions of the multi-arm robot. The degrees of freedom (dof) of 
this hypothetical robot equals to the sum of the dof’s of all individual robots. The 
main advantage of the centralized planning is that it is complete; i.e., it is guaranteed 
to find a solution if one exists. However, it is potentially expensive and typically re-
quires searching high-dimensional spaces and the knowledge of goals and states of 
all robots, meaning that it hardly can be applied for online situations. 

The decoupled planning performs the motion planning of each robot indepen-
dently and sequentially, and has two phases: first a collision-free path τ1 is gener-
ated for each robot considering only obstacles (ignoring other robots) in its space, 
and then, in order to prevent collisions between the robots, the robots’ motions 
along their pre-generated paths are coordinated via two main techniques, namely 
prioritization, and velocity tuning. Each robot is restricted to move along its pre-
viously-generated path, although it may stop, retreat or change velocity to allow 
coordination with other robots [5]. 

The two main coordination approaches are pairwise and global coordination. In 
the pairwise coordination, the paths τ1 and τ2 of the first two robots are coordinated 
in their 2-dimensional coordination space. The process is repeated for paths τ1, 2 
and τ3 resulting in a coordinated path τ1, 2, 3. Eventually, a collision-free coordinate 
path τ1, 2, …, m is generated that defines a valid coordination of all m robots. In glob-
al coordination, the paths of all m robots are coordinated in an m-dimensional 
coordination space, resulting in a collision-free path τ1, 2, …, m. 

The decoupled planning is generally less computationally expensive than the 
centralized planning since lower dimensional spaces are searched [6]. However, it 
is not complete, and failures usually occur in the second phase as it might not be 
possible to coordinate the paths generated in the first phase without collision  
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between robots [7]. Nevertheless, some attempts have been made to combine the 
centralized and decoupled approaches [8]. 

A trend of applying metaheuristic algorithms such as simulated annealing (SA), 
genetic algorithms (GA), and ant colony optimization (ACO) to the MRMP problem 
is noticeable especially among more recent contributions, as in [9], [10], and [11], 
respectively. Also, the particle swarm optimization (PSO) algorithm has found some 
applications MRMP. The first work in this regard is due to [12] in which the PSO is 
used for single and multiple target tracing applications for multiple robots. In [13] 
obstacle avoidance is done for a single robot in dynamic environments, in [14]  
bio-inspired group behaviors for deployment of a swarm of robots to multiple desti-
nations are proposed. Other fresh works in this regard are [15], [16], and [17]. In 
[18] a PSO-inspired algorithm is proposed as a framework for robots to work  
together to find their targets. In [19] an asynchronous mechanism is proposed for in-
formation exchange and position update of small robots with limited sensing capa-
bilities. In [20] a PSO-based method is developed for searching operations by a large 
number of mobile robots, with small inter-robot communications. 

In this paper, a new PSO-based algorithm is developed for MRMP. The reason 
of employing the PSO is that as a population-based metaheuristic, it is very con-
sistent with the distributed nature of multi robot systems. Moreover, although both 
the PSO and GA are population-based metaheuristics, the PSO proved to be more 
efficient and faster than the GA algorithm as reported in [21], after they were ana-
lyzed and compared statistically from both efficiency (speed) and effectiveness 
(quality) perspectives for eight optimization functions. The advantage of PSO over 
GA is also mentioned in [22]. 

A distinctive feature of the presented work, as compared to the previous works, 
is that the PSO is combined with a well-known and fast motion planning tech-
nique, called Probabilistic Road Map method (PRM), to produce obstacle-free 
paths in shorter times. Also, in order to enhance the quality of the produced paths, 
a multi-objective fitness function has been developed to minimize the path length 
while discouraging the robot to make sharp and abrupt turns, thus maintaining its 
smoothness. 

2   Overview of the New Method 

After analyzing many PSO-based algorithms and examining their components, it 
was found out that PSO is more successful in diversification rather than intensifi-
cation due to high distribution of the particles in the space [23]. Intensification 
forces the algorithm to search a specific area with more depth and within a local 
scope, while diversification forces exploration of completely new regions, acting 
in a global scope. Therefore, the PSO component of the proposed algorithm was 
considered as a global planner, with the responsibility of searching and exploring 
new areas. This idea was first used in our previous work for a single robot [24]. 

Our analysis also showed that the PSO is not sufficiently efficient in obstacle 
avoiding, especially when a large number of obstacles populate the workspace 
densely, or there are narrow passageways in the workspace. Although thanks to the 
probabilistic nature of the PSO it can eventually find a collision-free path from the 
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robot’s start to goal, this usually happens after so many unsuccessful attempts and 
thus takes considerable time. To remedy this drawback, we took advantage of a fast 
planner, namely, the Probabilistic Road Map (PRM) method, which is based on 
searching a graph with randomly-generated nodes and edges and is more powerful 
in local search (i.e. intensification). This component is described in section 4. 

In addition to the abovementioned speed issue, the quality of the paths is also of 
great importance. Considering that the two major attributes of a high-quality path 
are its shortness and smoothness, we tried to incorporate these dual objectives in 
the fitness function, and concurrently minimize the length and maximize the 
smoothness of the path. This issue is addressed in section 3. 

As the speed and efficiency are of specific importance in this work, the decen-
tralized approach was employed: in fact, for m robots, m PSO algorithms are per-
formed sequentially but independently in each iteration to determine the positions 
of the robots. This process is iterated until all robots reach their goals. 

The combination and interaction of the PSO and PRM methods is a new con-
cept in the field of multi-robot motion planning. As computational results have 
shown, PSO and PRM act very coherently since both have probabilistic elements 
and parameters. More specifically, the notions of particles in the PSO and random 
nodes generated in the PRM complement each other and unify these methods. The 
algorithm iteratively shifts from PSO to PRM until all robots' goals are reached. 

For each robot, the following steps are executed: 

1. A preset number of particles are generated around the robot’s initial position 
and within its sensing range. 

2. Each particle takes a new velocity and position based on the constantly updated 
improved PSO equations. A candidate for the robot’s next position is deter-
mined by the position of the best particle (i.e. the one nearest to the goal). 

3. If the robot’s current position can be directly connected to the candidate best 
particle obtained in Step 2, then set it as the robot’s next position and go to Step 
2, otherwise continue with Step 4. 

4. If the candidate best particle is located beyond an obstacle (i.e. the line con-
necting the best position to the robot’s current position intersects an obstacle), a 
probabilistic roadmap is formed and searched for the shortest path. As a result, 
the current position of the robot is connected to a node of the PRM which is 
nearest to the goal through their shortest path. 

5. Steps 2 to 4 are executed until the goal is within the robot’s sensing range and 
can be accessed via a straight collision-free line. 

The above steps are executed for every robot separately and concurrently until the 
last robot reaches its goal.  

As mentioned earlier, the decentralized planning consists of two phases: the 
first phase specifies a collision-free start-to-goal path for each robot without con-
sidering other robots, and the second phase deals with velocity tuning, in which 
the robots’ velocities along their generated paths are coordinated in order to avoid 
collision among the robots. In the proposed algorithm the global coordination ap-
proach is implemented for the velocity tuning, in which the paths of all m robots 
are coordinated in an m-dimensional space. Each robot is limited to move along its 
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previously generated path although it may stop and vary its speed for coordination 
with other robots. More precisely, whenever two robots get closer than a limit to 
each other, moving priorities are assigned to them at random, after which the robot 
with lower priority reduces speed to let the robot with higher priority pass. 

Depending on the robot’s start and goal positions, each robot reaches its goal at 
different times and after different number of iterations, and since the algorithm 
runs for each robot in parallel with others, at a specific moment, the planning 
phases underway for each robot might be different from other robots. Therefore, 
another factor called action mode was introduced to precisely describe the situa-
tion of each robot at a given time. This concept facilitates the robots’ coordination 
and increases the algorithm’s speed and efficiency. 

There are five modes for each robot as explained below, in which gbest i is the 
position of the robot at the i-th iteration: 

Mode 1 is for when a robot can move from gbest i to gbest i+1 via a straight line 
without colliding with any obstacle. In other words, the robot's motion is planned 
by the global algorithm (PSO). 
Mode 2 is for when Mode 1 does not hold due to collision with obstacles. As a re-
sult, the robot moves from gbest i to the nearest node in the PRM network. 
Mode 3 is for when robot moves between two nodes of the PRM network. In other 
words, the robot's motion is totally planned by the local algorithm (PRM). 
Mode 4 is for when the robot abandons the PRM network and moves to gbest i+1 
straightforwardly. 
Mode 5 is for when the robot's goal is within its line of sight and can be reached 
directly without collision with obstacles. 

It should be noted that the robots traverse the lines between two successive points 
with regard to their own speed and step size, and sequentially move to the inter-
mediate points obtained from interpolating the line. For any robot, if after taking a 
step towards its desired point, it is estimated that a collision with another robot is 
imminent, the robot will automatically reduce its step size such that the collision is 
avoided. Therefore, a global coordination is performed at each iteration. 

Also, at the end of each action mode an attempt is made to connect the robot's 
current position to its goal via a straight line. If it fails, the robot will continue 
moving to the gbest i+1 directly or through a PRM network. If the attempt is suc-
cessful, then the robot reaches its goal and the algorithm terminates unconditional-
ly for that robot. However, since the robots do not essentially reach their goal at 
the same time, the termination criterion of the algorithm is satisfied whenever the 
last robot gets to its goal. 

In the following two sections the details of the PSO and PRM components are 
described in detail. 

3   PSO: The Global Planner 

In the proposed MRMP method, the Particle Swarm Optimization method is em-
ployed as the global motion planner; that is, it is used for planning the large-scale, 
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‘gross’ motions of the robots. In this section, an overview of the basic (standard) 
PSO algorithm is presented. 

The basic Particle Swarm Optimization algorithm was proposed by Kennedy 
and Eberhart in 1995 [25], inspired by the collective behavior of swarms of fish, 
birds, etc. Each member of the swarm is denoted by a particle, which shows a so-
lution candidate. The particles start their fly from random positions in a search 
area, and in each iteration, they update their positions and velocities according to 
equations (1) and (2) below, and move to another position. Flying is affected by a 
fitness function that assesses the quality of each solution. 
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in which: 
prtpos i

j = the position of the j-th particle in j-th iteration, 
prtvel i

j = the velocity of the j-th particle in j-th iteration, 
pbest i−1

j = the best position of the j-th particle at the end of (i−1)-th iteration, 
gbest i−1 = the best position in the swarm at the end of (i−1)-th iteration, 

22 / 2 4 ,  4.| |χ ϕ ϕ ϕ ϕ− − − >=  

The PSO has some dependent parameters: c1 is a constant called cognitive accele-
ration coefficient, and c2 is another constant named collective acceleration coeffi-
cient. These factors balance the effect of self-knowledge and social knowledge 
when particles move towards the target, and are usually set to a value of 2, al-
though good results have been also produced with c1 = c2 = 4 [26]. r1 and r2 are 
random numbers between 0 and 1, different at each iteration, and χ is the constric-
tion factor, which limits the velocity. w is a weight that regulates the global search 
behavior, set to an upper bound wmax in the beginning of the searching process and 
dynamically reduced during the optimization to a lower bound wmin, (which emu-
lates a deeper local search behavior). Its range is suggested to be [0.2, 0.4]. 

The first term of equation (2), i.e. (prtvel i−1
j), considers the velocity of the par-

ticle in the previous iteration, which produces a momentum needed for particles to 
fly all over the search space. The second term, (pbest i−1

j − prtpos i−1
j), which is 

known as the cognitive part, simulates the ‘personal memory’ of a particle: it en-
courages the particles to fly towards the best position they have found till now (i.e. 
pbest). Finally the third term, (gbest i−1 − prtpos i−1

j), called the collective part, 
presents the effect of the particles’ cooperation in finding the global optimum: it 
always directs the particles towards the best position ever found among all the 
members of the swarm. 

The overall procedure of the PSO method has a main nested loop terminated 
when the total number of iterations exceeds a certain limit or a minimum error 



An Improved PSO Method for Motion Planning of Multiple Robots 181
 

threshold is achieved. In each iteration, particles are generated and best fitness 
values for each particle (pbest) and for the whole swarm (gbest) are calculated. 
Particles’ positions and velocities are then updated based on (1) and (2). 

To improve the performance of the basic PSO and increase its efficiency, we 
propose a modified, improved variant of the PSO algorithm. The new variant in-
corporates two new criteria for the particles’ velocity updating equation, as shown 
by equation (3). The particles’ positions are still updated by equation (1). 
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In this equation, pbest i
rand is the best position of a randomly selected particle in 

the i-th iteration, prtvelrand is a random velocity vector with a size between Vmin 
and Vmax, w1 is the inertia weight, w2–w5 are control weights within [0.4, 0.9], c1–
c4 are acceleration constants within [1.5, 4], r1–r4 are random numbers different at 
each iteration and in the range of [0, 1], and α1–α3 are respectively the influence 
factors of gbest, pbest, and prtvelrand, in the ranges of [0, 10], [0, 20], and [0, 1]. 

We added two new terms based on the following logic: the fourth term of the 
velocity update equation, which we call the ‘random self-cognition part’, sends 
the particles towards one of the best positions found randomly by particles 
(pbest i−1

rand). This scheme gives an opportunity for reasonably good local posi-
tions of other randomly selected particles in the swarm to influence the velocities 
of other particles. The fifth term, which is enforced through the random velocity 
parameter prtvelrand, increases the variety in the swarm and leads to a better and 
more effective movement of the swarm in narrow and complicated search areas. 

All but the first term of equation (3) contribute to the overall velocity updating 
process in random proportions at each iteration. Consequently, the particles’ posi-
tions spread all over the search space and the goal is reached quickly. If a particle 
lies inside an obstacle, it is simply deleted from the swarm and replaced by ran-
dom particles in the free space.   

In the basic PSO algorithm a number of particles are required to be created and 
positioned randomly in the search space. In our proposed method, a set of particles 
are generated for each robot with respect to its initial position and regarding its 
sensing range. The initial population is generated such that along each sensing di-
rection, a particle is created at a certain distance from the robot, determined by the 
range of the used sensor. If any obstacle point is within the sensing range at that 
direction, a point near the obstacle’s border is selected as the particle at that direc-
tion. Thus, the number of created particles depends on the number of sensors (or 
in a virtual space, on the number of divisions of the circumferential circle). Fig. 1 
illustrates the creation of 36 particles around the robot’s starting point. The larger 
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the number of divisions on the circle is, the larger the number of particles would 
be, and therefore the planning accuracy would be higher. 

This innovative procedure has the advantage that the initial particles are generat-
ed around the robot’s start point such that the movement from the start position to 
the next best position can be made through a fast, straightforward and safe connec-
tion within the sensing range. In existing PSO-based approaches, the initial positions 
are generated randomly, whereas in our method, while maintaining the centralization 
of the robot’s start point, the obstacles’ distribution around it is also considered. 

3.1   Multiple-Objective Fitness Function 

Most path planners aim to generate an optimal path considering a single criterion 
like path travel time or path length. However, in practice, a path is feasible if it 
meets several conditions, such as safety, estimated needed time for navigation, 
energy consumption, etc. 

For robots needing to reach their destination as early as possible, a minimum-
time path might seem desirable, but it may require a lot of time to be traversed due 
to uneasy terrain. Categorically, there exist various feasible paths between start and 
goal points being neither short nor fast but providing reasonable tradeoffs between 
shortness and fastness. These are generally desirable paths, while a path optimal for 
a single criterion without considering other equally important criteria is not desirable 
[27]. This is just one type of problems for which our multi-objective approach has 
been designed. In the developed method, the Simple Additive Weighting (SAW) 
technique is employed, in which a weighted sum of multiple objectives is ex-
pressed as a conventional single-objective function. 

 

 

 

Fig. 1 The particles’ initial population is generated based on the borders of the robot’s sensed 
area 

In our proposed method, the criterion for path shortness is defined as the Eucli-
dean distance between each particle and the goal point in each iteration, and the 
criterion for path smoothness is defined as the angle between two hypothetical 
lines connecting the goal point to the robot’s positions in two successive itera-
tions, i.e. gbest i and gbest i−1, in which i is the iteration number. The definition of 
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path smoothness in this way is a novel idea. The first objective function, i.e. the 
shortest path for the k-th robot, and the second objective function, the smoothest 
path for the k-th robot, are mathematically expressed in equations (4) and (5), 
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in which (4) shows the distance of the particles’ position to the goal point, and 
k = 1, …, m is the number of robot. The overall fitness (or objective) function is 
obtained by the weighted sum of the above shortest and smoothest objectives: 

                         
1 short 2 smooth

i i i
j j jFitness λ F λ F= ⋅ + ⋅    (6) 

By minimizing the overall fitness function with the assigned weights of each crite-
rion, a shortest path with the least oscillations is obtained. The weights of the 
shortest and smoothest fitness functions, λ1 and λ2, are tuned through extensive 
simulation and try and errors, with best found values of λ1 = 0.7 and λ2 = 0.3. 

4   PRM: The Local Planner 

Due to its ease of implementation and ability to plan in high dimensional configu-
ration spaces, the Probabilistic Roadmap method (PRM) has drawn considerable 
attention in recent motion planning works. Initial PRMs succeeded in solving a 
number of complex problems with high-dimensional configuration spaces which 
had not been solved efficiently until that time [28]. The PRM was enhanced later 
into some variant forms like Medial Axis PRM (MAPRM), Obstacle-Based PRM 
(OBPRM), and Visibility-based PRM, which improved the process of random 
node generation and made it more effective [29]. The PRM has also been applied 
in the multi robot systems [30]. 

The PRM has three phases: (1) generating random nodes in free configuration 
space, (2) connecting the nodes via some edges such that the edges lie in the free 
space and the nodes are connected through a single graph, and (3) searching the 
graph to find the shortest path between the start and goal nodes. 

In the second phase, an edge is generated between two nodes by first trying to 
connect them via a straight line, and if this fails, a simple local planner is em-
ployed to connect them through a few intermediate newly generated nodes. The 
path planning is done by searching this graph.  

In our version of PRM, four groups of nodes lying in free space are considered 
as the set of PRM nodes: 

 



184 E. Masehian and D. Sedighizadeh
 

(i) a number of randomly generated nodes, 
(ii) the robot’s current position, 
(iii) the best particles generated in the PSO, 
(iv) two points around each corner of the obstructing obstacle. 

The above combination of nodes is proposed for the first time in the literature, and 
provides a subtle intertwining of the PSO and PRM methods. In addition to the ran-
domly generated nodes (group (i)) which are typical in the PRM method, about 30% 
– 40% of PSO particles with highest fitness values (pbests) are also integrated in the 
PRM graph. The group (iv) helps in circumnavigating obstacle vertices naturally and 
easily by creating nodes at safe clearances from both sides of a vertex. 

After creating the necessary nodes, new edges are generated in the second 
phase of the PRM by connecting nodes to each other and deleting invalid edges 
(i.e., those intersecting with obstacles). 

The shortest path between the robot’s current position and the point gbest (cal-
culated based on the best position among particles) is then found using the 
Dijkstra’s search algorithm. As a result, the robot can move from gbest i to gbest 

i+1 and get closer to the goal, while avoiding the obstacles that locally intercept its 
path to the goal. Once the robot is located on its new position, the PSO particles’ 
velocities and positions are updated again, as described in equations (1) and (2). 

5   Experimental Results 

In order to analyze the function of the proposed new algorithm, numerous simula-
tions were run for 2-, 3-, 4-, and 5-robot problems through which the algorithm’s 
parameters were tuned to their best values. A few simulations for problems with 
simple to complex obstacles are illustrated in Fig. 2. 

For comparing the algorithm’s performance with other efficient and well-
known algorithms, the standard PRM method was selected. Ten sample problems 
with 20 to 414 vertices were designed and solved for 2, 3, 4, and 5 robots using 
the proposed Improved PSO+PRM, Standard PSO+PRM, and standard PRM me-
thods. Regarding that all these algorithms are heuristic and incorporate random pa-
rameters, we solved each problem set 5 times and calculated the mean value of 
runtimes. Note that the runtime is calculated based on the time needed for the last 
robot to reach its goal. In total, (10 problems) × (4 sets of robots) × (3 methods) × 
(5 times each) = 600 instances were run on an Intel 3.0 GHz processor. 

The standard PSO against which we tested our algorithm was coded based on the 
basic PSO algorithm proposed in [25], combined with the PRM method. Also, the 
standard PRM was coded according to the explanations in section 4. In the above 
three methods, whenever a probabilistic roadmap was constructed (either in combi-
nation or stand-alone), it was searched by the Dijkstra’s method to yield a shortest 
path on the roadmap. The results of solving the test problems are shown in Fig. 3 for 
2, 3, 4, and 5 robots (from left to right, up to dawn), summarized in Table 1. 
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Fig. 2 Some simulations for 2-, 3-, 4-, and 5-robot motion planning. Si and Gi indicate the 
start and goal of the i-th robot, respectively. 

Table 1 Comparison of the average runtimes of the three methods and their standard  
deviations 

 
2 robots 3 robots 4 robots 5 robots Total 

Avg. Avg. SD Avg. SD Avg. SD Avg. SD 

Improved PSO + PRM 22.28 30.76 28.95 36.59 34.65 41.58 38.77 43.69 31.16 

Standard PSO + PRM 31.27 41.35 34.36 43.26 40.23 47.53 43.71 47.54 37.39 

Standard PRM 40.86 49.77 44.16 54.43 49.17 56.33 53.71 56.75 46.98 
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Fig. 3 Average runtime (s) vs. number of obstacle vertices for 2-, 3-, 4-, and 5-robot problems 

The results of 600 solutions show that the proposed Improved PSO+PRM 
compound method was averagely about 17% and 34% faster than the Standard 
PSO+PRM and PRM methods, respectively, with considerably smaller standard 
deviation. Furthermore, the PSO+PRM method satisfied a bi-objective fitness 
function while in the PRM such a possibility is absent. Also, it is observed that 
runtime differences in the three methods increase as the number of vertices 
grows, showing the success of the new method in this type of problems. 

6   Conclusions 

In this paper, a new Improved PSO-based heuristic method is presented for multi-
robot motion planning, which satisfies shortest and smoothest path objectives. The 
algorithm consists of a global planner (PSO) as well as a local planner (PRM). 
The multi robot motion planning problem is solved by this algorithm through de-
centralized planning with a global coordination model. For each robot, the pro-
posed algorithm is run separately and then their motion coordination is performed 
all together and online. Also, five action modes were defined to describe the accu-
rate situation of each robot at a given time. As a result, each robot moves one step 
toward its goal in each iteration. 

The algorithm provides a novel and unique method to combine and coordinate 
the PSO and PRM algorithms by incorporating four groups of nodes within a sin-
gle population. These nodes include: the best particles of the PSO, random nodes 
generated by PRM, current and next positions of the robot, and a pair of particles 
around each obstacle vertex. The set of these nodes form a network by being con-
nected through straight edges. The shortest path between two consecutive robot 
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positions is then searched using a graph searching algorithm like the Dijkstra’s 
method. As a result the free spaces around the obstacles can be searched in much 
less time than in the classic PRM algorithm. 

After running and simulating 600 problem instances, the results showed that the 
proposed algorithm runs about 17% and 34% faster than the standard PSO+PRM 
and PRM methods, respectively, while two objectives are also optimized. 

Considering the possibility of extending the PSO algorithm to high-dimensional 
spaces, we believe that the proposed method can be used for motion planning in 
high dimensional spaces provided that a proper distance metric is used. 
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