
Any-Com Multi-robot Path-Planning:
Maximizing Collaboration for Variable
Bandwidth

Michael Otte and Nikolaus Correll

Abstract. We identify a new class of algorithms for multi-robot problems called
“Any-Com” and present the first algorithm belonging to that class: “Any-Com
intermediate solution sharing” (or Any-Com ISS) for multi-robot path planning.
Any-Com algorithms find a suboptimal solution quickly and then refine that so-
lution subject to communication constraints. This is analogous to the “Any-Time”
framework, in which a suboptimal solution is found quickly, and refined as time per-
mits. The current paper focuses on the task of finding a coordinated set of collision-
free paths for all robots in a common area. The computational load of calculating
a solution is distributed among all robots, such that the robotic team becomes a
distributed computer. Any-Com ISS is probabilistically/resolution complete and a
particular robot contributes to the global solution as much as communication relia-
bility permits. Any-Com ISS is “Centralized” in the planning-algorithmic sense that
all robots are viewed as pieces of a composite robot; however, there is no dedicated
leader and all robots have the same priority. Previous centralized multi-robot navi-
gation algorithms make assumptions about communication topology and bandwidth
that are often invalid in the real world. Any-Com allows for collaborative problem
solving with graceful performance declines as communication deteriorates. Results
are validated experimentally with a team of 5 robots.

1 Introduction

Autonomous navigation is a key capability for enabling both industrial and con-
sumer robotics to perform their work effectively. In fact, many of today’s state-of-
the-art systems are being commercialized, and will become increasingly
deployed into mainstream settings in the near future. As robot traffic becomes more

Michael Otte · Nikolaus Correll
University of Colorado at Boulder, Colorado, USA
e-mail: {michael.otte,nikolaus.correll}@colorado.edu

A. Martinoli et al. (Eds.): Distributed Autonomous Robotic Systems, STAR 83, pp. 161–173.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2013

{michael.otte,nikolaus.correll}@colorado.edu

162 M. Otte and N. Correll

congested, tomorrow’s systems must be capable of coordinated interaction within
a multi-robot society. This imposes a need for multi-robot navigation solutions that
can plan efficient, coordinated, and collision-free paths for a collection of robots.

Complete solutions to multi-robot problems can be computationally complex. Al-
though less expensive methods can enable practical performance in many real-world
situations, these are incomplete and can fail in the most challenging circumstances
(see Section 2.1). Often, each robot in a team is equipped with its own computer and
the ability to communicate. Given these resources, it makes sense to divide compu-
tational effort among all robots a solution will benefit. That is, a networked team of
robots can be re-cast as a distributed computer to solve the problems encountered by
its composite robots. This is particularly useful for complex communal tasks such
as centralized multi-robot path-planning.

In practice, wireless bandwidth is environment dependent and often beyond the
control of the user or a system. Yet, algorithms for coordinating networked robot
systems usually rely on a minimum quality of service and fail otherwise. We are
therefore interested in distributed algorithms able to utilize unreliable communica-
tion, and coin the term “Any-Com” to describe them. The idea is to find a suboptimal
solution quickly, and then refine toward optimality as communication permits. This
is analogous to the “Any-Time” paradigm, in which algorithms adapt to the available
computation time (Boddy and Dean, 1989). In this paper we present an algorithm
called Any-Com Intermediate Solution Sharing (or Any-Com ISS) for performing
centralized multi-robot path-planning within the Any-Com framework. In previous
work, centralized solutions have either been calculated on a single robot and then
disseminated, or solved by each robot individually (see Section 2.2).

In general, Any-Com algorithms exploit perfect communication and have grace-
fully performance declines otherwise. However, just as Any-Time algorithms cannot
calculate a solution in 0 time, Any-Com ISS may not find a solution when commu-
nication totally fails. Worst-case scenarios aside, Any-Com ISS is robust to a high
degree of communication disruption.

A brief survey of related work is presented in Section 2. Algorithmic details are
provided in Section 3. In Section 4 we conduct a series of experiments both in
simulation and on real robots. In Section 5 we discuss our results, and conclusions
are given in Section 6.

2 Related Work

Here we briefly discuss a few multi-robot algorithms located along the communi-
cation, computation, and completeness spectra. Recall that a complete algorithm is
guaranteed to find a solution when one exists and will also report failure in finite
time if a solution does not exist. A resolution complete algorithm is an algorithm
that is complete to within a predefined granularity of the world representation. A
probabilistically complete algorithm is an algorithm that will find a solution, if one
exists, in finite time with probability approaching 1.

Any-Com Multi-robot Path-Planning 163

2.1 Incomplete Methods

In the cocktail party model each agent maintain its own world-view, goals, and
navigation function, while remaining ignorant of other robots and their intentions
(Lumelsky and Harinarayan, 1997; van den Berg et al, 2009). Each agent alter-
nates sensing, planning, and movement, and there is no direct coordination between
robots. While this algorithm is incomplete, it is popular due to simplicity, scalability,
and minimal communication requirements.

In prioritized planning each robot’s path is calculated separately, subject to the
movement constraints imposed by the paths of higher-priority robots (Erdmann and
Lozano-Perez, 1987; Warren, 1990; Hada and Takasa, 2001; Clark and Rock, 2001).
Higher priority robots follow optimal to near-optimal trajectories while lower pri-
ority robots may be unable to find a solution. Prioritized planning has also been
used to periodically create a line-of-sight communication chain while performing
the somewhat related coverage task (Hollinger and Singh, 2010).

Decoupled planning breaks planning into two phases. In phase-1 each robot cal-
culates its own path to the goal. In phase-2 the space-time positions of the robots
along these paths are calculated such that no collisions occur (Kant and Zuker, 1986;
Aronov et al, 1998; Leroy et al, 1999; Guo and Parker, 2002). Although decoupled
planning can be distance-optimal, it is incomplete because each robot’s path is com-
pletely determined after phase-1 (and they may pathologically conflict) (Sanchez
and Latombe, 2002).

2.2 Complete Methods: Centralized Planning

In Centralized planning all robots are considered individual pieces of a single com-
posite robot. Solutions are calculated in the resulting high dimensional configuration
space. Robot paths are found by projecting the high-dimensional solution down into
the relevant subspace per each robot. (Xidias and Aspragathos, 2008; Bonert, 1999;
Schwartz and Sharir, 1985; Clark et al, 2003; Sanchez and Latombe, 2002). Previ-
ously, the high-dimensional solution has either been calculated by a single agent or
at the same time on each robot (thus robots must communicate with this agent or
each other, respectively). Centralized planning is theoretically complete but practi-
cal algorithms are usually probabilistically or resolution complete; nonetheless, it
provides the best completeness guarantees of any multi-robot planning method.

2.3 Relevance to Our Work

Our Any-Com ISS algorithm (presented in Section 3) is centralized, and there-
fore shares many similarities to the work described above. One major differ-
ence is that previous work has not considered what happens when communication
deteriorates—this is a main contribution of our work. Another important difference
is that our algorithm leverages the distributed-computing power of the robotic team

164 M. Otte and N. Correll

to help find better solutions more quickly. In contrast, previous work has required
each agent to calculate an entire solution completely on its own.

Distributed versions of both prioritized planning and decoupled planning exist.
For instance, in prioritized planning each robot can calculate its own path (assuming
it respects robots of higher priority), and in decoupled planning each robot can indi-
vidually calculate its own phase-1 solution (although these must be assembled by a
single agent in phase-2). However, both prioritized planning and decoupled planning
are incomplete, while Any-Com ISS is probabilistically/resolution complete.

We believe Any-Com ISS is most applicable to the complicated planning situa-
tions in which the incomplete planning methods fail, and advocate using the (less
computationally complex) incomplete ideas under most circumstances. For this rea-
son we only compare Any-Com ISS to state-of-the-art centralized planning tech-
niques in Section 4—as these are the only other algorithms available when incom-
plete methods fail.

3 Methodology

Let the robot workspace W exist in R
2. To guarantee probabilistic/resolution com-

pleteness, the entire team is considered a single composite robot. Each individual
robot contributes 2 dimensions to the combined configuration space C, in the form
of position (x,y), and search occurs in a R2n configuration space where n is the num-
ber of robots. We assume resolution accuracy δ is defined for the configuration state
vector. δ is the minimum distance allowable between any two configurations per di-
mension and thus defines the resolution of the search. In a pragmatic sense, δ keeps
the search-tree from being populated with essentially duplicate configurations, and
focuses effort on finding (significantly) better solutions. We assume circular robots
that can pivot in place, but note our algorithms can be generalized to arbitrary robots.

We use a heavily modified version of an any-time rapidly expanding random tree
(RRT) inspired by Ferguson and Stentz (2006). Our underlying RRT differs from
previous work (LaValle and Keffner, 2001) in two significant ways. First, instead
of connecting a new node to the tree using the shortest possible edge, we use the
edge that gives the new node the shortest possible distance-to-root. Second, instead
of restarting each subsequent tree from scratch (i.e. while time remains to find a
better solution), we prune the existing tree such that it only contains nodes that can
possibly lead to better solutions—then continue growing the same tree subject to
the constraint that new nodes must be able to lead to better solutions.

In general, we seek to utilize the distributed computational power of a team of
mobile robots. We want algorithms that function in environments where communi-
cation is unreliable, but take advantage of reliable communication when it exists. To
these ends, each agent maintains its own randomly created tree. Assuming n robots,
the union of all trees is a O(n) times larger tree maintained collectively by the en-
tire team. Any-com is achieved by having robots share their individual intermediate
solutions during path-planning so that all agents can prune globally sub-optimal

Any-Com Multi-robot Path-Planning 165

branches from their local trees. This enables each robot to focus effort on finding
only better solutions than those currently known to any robot. It also gives all robots
a chance to directly refine the best intermediate solution. We call this idea Any-Com
Intermediate Solution Sharing (Any-Com ISS).

Theoretically, allowing more agents to work on a random-tree problem will in-
crease the chances a good solution is found quickly, regardless of whether or not
the sharing of intermediate solutions has any affect. Therefore, to determine how
much (if any) advantage Any-Com ISS provides, we compare Intermediate Solu-
tion Sharing to having each agent individually find a unique solution to the com-
plete problem, then broadcasting them so the team can use the best one. We refer
to the latter method as Voting, and note that similar ideas have been explored in the
past (Clark et al, 2003). Finally, to give context to the relative performance of Any-
Com ISS vs. Voting, we compare both of them to a client-server framework. In the
client-server system, which we call Baseline, the server is charged with calculating
a complete solution using a single random tree, and then sharing it with the other
robots. Any-Com ISS, Voting, and Baseline use the same underlying random tree
algorithm (Figure 1-Left). To demonstrate that it performs well vs. previous work,
we additionally compare results to Any-Time RRT (Ferguson and Stentz (2006)).

We assume the existence of an admissible heuristic function h(p1, p2) that returns
the distance between configurations p1 and p2 ignoring any collisions. The value
bstln stores the length of the shortest path known at any particular time. On line 4 we
pick a new configuration p1 to add to the tree—chosen as the goal with probability
ρ and uniformly at random otherwise. On line 5, we check both if p1 exists in C f ree,
the collision free portion of the configuration space, and also if using p1 can possibly
lead to a better solution based on the start and goal configurations and bstln. Note
that C f ree is calculated with respect to both robot-robot collisions and robot-obstacle
collisions. On line 7 we find the best node p2 in the tree to use as a parent of p1.
We record Sdist(p1), the actual distance-to-start of p1 through p2, and then add p1

to the tree on lines 10 and 11. If p1 is the goal (and p2 �= null on line 8) then the
new path-to-goal is the best intermediate solution found so far, so we update bstln
on line 13. On line 14 we use the function findShortcuts() to see if other nodes in
the tree can reach the start more quickly via p1 instead of their current parent. If so,
we change the tree to reflect this, and update Sdist values of the descendants.

Lines 16-20 are only executed when Any-Com ISS is used. On line 16 we check
for incoming messages from other agents that may contain better paths. If a better
path is received, then it is added to the search-tree and bstln is updated (lines 18 and
19). Finally, we send messages to other agents on line 20.

While searching for p1 in findBestAndPruneTree() (Figure 1-Right-Top) we
simultaneously prune any nodes that cannot possibly lead to solutions shorter than
bstln, and also check if p1 is more than δ away from configurations already in the
tree. Keeping the tree as small as possible focuses effort on finding better solutions.

Search continues until time μ , after which the most recent (and therefore best)
intermediate solution is recorded as an agent’s final solution. In Baseline, this is
when the server distributes its final solution to the client robots, and also when
individual solutions are compared in Voting.

166 M. Otte and N. Correll

RandomTree()
1: bstln = ∞
2: add start as root of search-tree
3: while time < μ do
4: pick a point p1 ∈ C, where

p1 = goal with probability ρ
5: if p1 /∈ C f ree

or h(start, p1)+h(p1,goal)≥ bstln
then

6: continue
7: p2 = findBestAndPruneTree(p1)
8: if p2 = null then
9: continue

10: Sdist(p1) = Sdist(p2)+h(p1, p2)
11: add p1 to search-tree as a child of p2

12: if p1 = goal then
13: bstln = Sdist(p1)
14: FindShortcuts(p1)
15: if using Any-Com ISS then
16: check for messages at rate ω
17: if received better path then
18: add that path to search-tree
19: update bstln
20: send message with best-path

p2 = findBestAndPruneTree(p1)

1: p2 = null
2: gp2 = bstln
3: for each node pi ∈ Tree do
4: if Sdist(pi) + h(pi,goal) > bstln

then
5: remove pi
6: else if p1 is within δ of p2 then
7: return null
8: if Sdist(Pi)+h(pi, p1)< gp2 then
9: if edge (pi,p1) ∈ C f ree then

10: p2 = pi
11: gp2 = Sdist(Pi)+h(pi, p1)
12: return p2

FindShortcuts(p1)

1: for each node pi ∈ Tree do
2: if Sdist(pi)+h(pi, p1)< Sdist(p1)

and edge (pi,p1) ∈ C f ree then
3: Sdist(p1) = Sdist(pi)+h(pi, p1)
4: reroute pi through p1
5: for descendants of p1 do
6: update Sdist()

Fig. 1 Random tree algorithm with flags indicating functionality native to Any-Com ISS
(Left). Subroutine for finding p2 (the best neighbor of p1 already in the tree) and pruning the
tree (Top-Right). Subroutine for checking if old nodes would do better by using p2 as their
parent (Bottom-Right).

We hypothesize Intermediate Solution Sharing will produce better solutions than
the other two methods because it allows the entire team to have tighter search-tree
pruning—focusing search toward new and improved solutions. Additionally, Any-
Com ISS gives each agent the opportunity to improve the best solution found so far.
Any-Com ISS is robust to packet loss because dropped messages do not affect an
agent’s ability to eventually find a solution. On the other hand, successful commu-
nication focuses search in beneficial ways and helps the team find better solutions
more quickly. Even out-of-date messages have the potential to be beneficial, as long
as the solution they contain is better than the receiving agent’s current best.

Each search-tree is generated randomly and each solution is drawn from a dis-
tribution over all possible solutions. Theoretically, both Any-Com ISS and Voting
should increase the team’s collective chances of finding a desirable solution, vs.
Baseline, because n random samples are drawn from this distribution instead of 1.

Both Any-Com ISS and Voting use the same underlying message-passing pro-
tocol to disseminate information within the group. The idea is simple: each robot
broadcasts information to every other robot at a predefined rate ω using the User

Any-Com Multi-robot Path-Planning 167

Datagram Protocol (UDP). UDP drops unsuccessful messages, which keeps the
information flowing through the network up-to-date. Each message contains the
following information about the state of the global solution, based on the sending
robot’s current knowledge:

• Best solution (currently known to the sender)
• Best solution’s length
• ID of the robot that generated the best solution
• List of robots that have submitted a final solution
• Movement flag
• List of robots that support best solution.

Each robot keeps a copy of what it believes to be the best solution found by any
robot. Each robot is responsible for adding itself to the appropriate lists. In order
to keep the network up-to-date, messages are dropped if they contain paths that are
worse than the best path known to the receiving agent. Planning halts after time μ , at
which point robots begin adding themselves to the list of robots that have submitted
a final solution. Any robot can correctly deduce which agreement has occurred if it
knows all robots have submitted a final solution (regardless of algorithm). This is
because better solutions are no longer being generated and the best solution known
to the sending robot is always sent in every message—the actual best solution must
have been passed along with the knowledge that the robot who generated it has
submitted a final solution. In the unlikely event of a tie, the solution found by the
robot with the lower ID is used. Once a robot knows an agreement has been reached,
it sets the moving flag to TRUE, begins moving along its path per the best solution,
and rebroadcasts the best solution at ω . If a robot receives a message with a TRUE
movement flag, it also starts moving and rebroadcasts that solution at ω .

Baseline modifies the method described above by setting the movement flag to
TRUE as soon as time μ occurs. Therefore, each robot begins moving as soon as
the solution is received from the server. In order to keep Baseline as naive as pos-
sible, the client robots do not rebroadcast the solution to each other, but the server
continues to rebroadcast at ω .

Any-Com ISS also has an additional method of reaching an agreement. By care-
fully tracking which partial solutions the other robots most recently support (during
the planning phase), it is possible to approximately forecast the final vote at time μ .
After time μ , if a particular robot believes all robots currently support its most recent
solution, then it starts moving on that solution and rebroadcasts it at ω (along with
the moving flag set to TRUE). This information is propagated through the network
as usual (with disagreements broken toward solutions from robots with lower IDs).
Although this protocol may allow a suboptimal solution to be chosen, it is unlikely.
Further, if an agent erroneously believes all robots currently support its solution,
then it must have had the best solution in the past, so the cost of erroneously picking
a suboptimal solution is mitigated. A scenario where different robots move along
different incompatible solutions is impossible because two or more robots cannot
simultaneously believe all robots support their most recent solution. This is due to
the fact that only the robot that generated a solution can initiate movement along it.

168 M. Otte and N. Correll

If two different robots generate competing solutions, neither will initiate movement
until one robot advertises support for the other’s solution—and they cannot both
support the other’s solution because one solution is guaranteed to be better than the
other (or, in the case of ties, come from the robot with lower ID).

4 Experiments

We perform two experiments with 5 robots in an office environment. Experiment 1
is conducted in simulation to evaluate theoretical performance over a wide range of
parameters. Experiment 2 uses real robots to validate that the algorithms function
in practice. Our robotic platform is the iRobot create, and we use the ROS operat-
ing system by Willow Garage. Robots are equipped with the Stargazer Indoor Lo-
calization System. Our Computational Units are System 76 Netbooks with built-in
wireless networking capabilities.

Fig. 2 A solution from Experiment 1 (Left). The Prairiedog Robotic Platform (Right).

0 0.5 1
0

50

100

150

200

250

5 sec

S
ol

ut
io

n
le

ng
th

 (
m

ax
 ti

m
e

to
 g

oa
l)

0 0.5 1

10 sec

 Probability of successful message send
0 0.5 1

25 sec

0 0.5 1

50 sec

Baseline
Voting
Any−Com ISS
Any−Time RRT

Fig. 3 Average Solution Lengths from Experiment 1. Sub-plots show different planning
times μ .

Any-Com Multi-robot Path-Planning 169

0 0.5 1
0

5

10

15

20
5 sec

A
gr

ee
m

en
t t

im
e

(s
ec

)

0 0.5 1

10 sec

 Probability of successful message send
0 0.5 1

25 sec

0 0.5 1

50 sec

Baseline
Voting
Any−Com ISS

Fig. 4 Average agreement time from Experiment 1. Sub-plots show different planning
times μ .

0 10 20 30 40 50

60

80

100

120

140

Planning Time (sec)

S
ol

ut
io

n
le

ng
th

 (
m

ax
 ti

m
e

to
 g

oa
l)

Baseline
Voting
Any−Com

0 10 20 30 40 50
0

2

4

6

8

10

12

Planning Time (sec)

A
gr

ee
m

en
t t

im
e

(s
ec

)

Baseline
Voting
Any−Com

Fig. 5 Average Solution Lengths (Left) and average agreement time (Right) from Experi-
ment 2

Experiment 1 evaluates the relative performance of Any-Com ISS, Voting, Base-
line, and Any-Time RRT (Figure 2). Note that Any-Time RRT is run on a single
robot. We evaluate performance of all four algorithms vs. message success proba-
bility τ vs. planning time μ . We use τ = {1,1/4,1/16,1/64} probability of success
and μ = {5,10,25,50} seconds. We perform 100 runs per each combination of pa-
rameters to facilitate statistical analysis of results. Mean and standard deviations of
the resulting solution lengths are displayed in Figure 3 and agreement times in Fig-
ure 4 (agreement time is the time after μ and before movement). Note that agreement
times are not presented for Any-Time RRT, since no message passing is required.

Experiment 2 is conducted on 5 actual robots and is similar to Experiment 1.
Robot speed is 0.2 meters per second. During planning ω = 4, and during the agree-
ment phase ω = 32. The change is due to the preliminary results in Experiment 1,
where it is clear that the agreement phase can become lengthy in terms of messages
sent. Also, path-planning is computationally intensive while the agreement phase
is not, and robots are able to spare additional resources to increase ω . The same μ
are used as in Experiment 1. Each data-point represents 20 runs. We plot solution

170 M. Otte and N. Correll

quality and agreement time vs. planning time in Figure 5 Left and Right, respec-
tively. Signal quality was relatively good in this experiment, the observed packet
loss rate was less than 50%. We forgo comparison vs. Any-Time RRT due to the
positive performance of the other methods in Experiment 1.

5 Discussion of Results

With regard to solution quality, both Any-Com ISS and Voting out-perform Base-
line, and Any-Com ISS outperforms Voting. All three methods outperform Any-
Time RRT. Using a two-sample Kolmogorov-Smirnov test, we compare algorithms
based on solution lengths, and find statistically significant (p < .05) differences be-
tween any two algorithms for all but one method-parameter combinations in Exper-
iment 1 (i.e. for one method vs. another with μ and τ held constant), and all but one
parameter combination in Experiment 2 (Voting vs. Any-Com ISS at μ = 5 sec).
In fact, p < 0.001 for most data-points in either experiment. When the results from
all experiments are considered together, p becomes vanishingly small. These results
validate our original hypothesis.

Examining the solution quality vs. planning time for the various methods in Fig-
ures 3 and 5-Left illustrate just how well Any-Com ISS performs. Voting finds sim-
ilar quality solutions using less than half the planning time as Baseline, on average,
while Any-Com ISS finds similar quality solutions in ≤ 1/n of the time! This is
strong evidence the robotic team is functioning as an effective distributed computer.
Given we are using n times as much computational power, the expected ratio of re-
quired planning time is 1/n. Therefore, the super-efficient observed value of < 1/n
in Experiment 2 is impressive, especially given the minimal data shared between
agents. Whether or not this trend will continue for larger groups of robots is a ques-
tion we hope to answer in future work.

It often takes longer than 5 seconds (or even 10) for an agent to find a solution.
That is, μ = 5 is not enough time to guarantee that all robots have found a solution.
In such a case, after 5 seconds has passed, Any-Com ISS uses the best solution found
by any robot so far, while Baseline must wait until the server finds its first solution,
and Voting must wait until all robots have found a solution. This has two interesting
affects. First, the agreement times of Baseline and Voting are greater than Any-Com
ISS because all robots must wait until the server or all robots have found a solution,
respectively, before an agreement can be reached. Second, by waiting extra time
until n solutions exits, Voting has an increased chance of finding a “good” solution
vs. Any-Com ISS. While this may initially seem desirable, we note that Any-Com
ISS is able to start movement at the expected time, while the other algorithms suffer
unexpected delays. We believe this is why the results for Voting and Any-Com ISS
are similar for μ = 5 sec in Experiment 2 (i.e. p > .05), and also why the agreement
times for Voting are inflated for μ = 5 and μ = 10 in Experiment 1.

Another interesting trend is that Any-Com ISS solution quality does not get much
worse as communication becomes unreliable. Theoretically, as τ → 0 the results of

Any-Com Multi-robot Path-Planning 171

Any-Com ISS will approach those of Voting. There is a hint of this in Experiment
1, where τ is controlled, especially for longer planning times. However, it appears
communication must drastically deteriorate before Any-Com ISS begins to suffer.
In fact, packet loss rates as high as 98% have little affect on solution quality.

The most noticeable effect of poor communication is an increase in the time it
takes the robots to agree on a single solution. Assuming that communication failure
is strictly Poisson-distributed, increasing the messaging rate ω during the agreement
phase can mitigate the effects of communication deterioration (as we did in Exper-
iment 2). In any case, the bandwidth will eventually become saturated, and further
diminishing τ will eventually prevent an agreement from taking place within a use-
ful time. Therefore, Any-Com ISS should not be used when τ ≈ 0. That said, it
is impossible for any complete algorithm to function when τ ≈ 0. As a practical
measure, the τ ≈ 0 case could be handled using a time-out. After which, robots start
moving based on the best solutions known to them individually. Assuming on-board
sensors exist, conflicts could then be resolved using the cocktail-party model. Al-
though this ‘worst-case-scenario’ forces the algorithm to become incomplete until
communication is resumed, it is arguably better than letting the team remain mo-
tionless forever. Further discussion on this idea is beyond the scope of this paper.

The simulated experiments predict Baseline should have similar agreement times
to Any-Com ISS, while the real experiments show Any-Com ISS as the clear winner.
The fact that these benefits do not extend to the Voting method (even for μ > 10)
suggests some other mechanism is responsible for the relatively quick agreement
time of Any-Com ISS. We credit this improvement to the auxiliary vote-forecasting
agreement method available to Any-Com ISS.

6 Conclusions

We coin the term “Any-Com” to describe algorithms that use multiple agents to
collaboratively refine a solution toward optimality as communication permits. The
motivation behind the general Any-Com idea is that distributed robots should adapt
to use as much collaborative problem solving as communication quality permits.
This is useful for solving computationally intensive problems, and especially well
suited to problems with solutions of value to multiple agents. The problem domain
of centralized multi-robot rover navigation has both of these qualities.

We present a practical Any-Com multi-robot path-planning algorithm called
Any-Com Intermediate Solution Sharing (Any-Com ISS) in which agents share in-
termediate solutions so that the entire team can focus remaining effort on finding
even better solutions. This works because it allows all robots to prune globally sub-
optimal branches from their local search trees based on the best solution known
to any member of the team. It also gives each robot an opportunity to directly im-
prove the best solution. Intermediate Solution Sharing is Any-Com because dropped
messages do not prohibit a solution from eventually being found, while successful
messages improve solution quality (both in overall path quality, and the time it takes

172 M. Otte and N. Correll

to reach an agreement). We envision Any-Com ISS as one tool among many in the
multi-robot planning arsenal—useful in the specific case when a complete algorithm
must be used (i.e. when a group of robots finds itself confronted with a difficult
problem that cannot be solved by less expensive incomplete planning methods).

We perform 2 experiments using a team of n = 5 robots, and compare results to a
basic server-client model as well as a voting method (in the server-client framework
one agent plans and then distributes the solution to the other robots, while in voting
each agent is allowed to plan separately and then the team uses the best solution
found by any single agent). We find Any-Com ISS requires less then 1/n of the time
required by the client-server framework to find a solution of similar quality, and less
than 1/2 the time required by the voting method, on average.

As bandwidth approaches 0 the solution quality of Any-Com ISS theoretically
declines gracefully to that of the voting method, while both remain better than the
server-client model. In fact, we find that communication loss as high as 98% has
little affect on solution quality. Unfortunately, the time it takes to reach consen-
sus approaches infinity as communication approach 0. This is not unexpected, as
all complete algorithms are inherently vulnerable to total communication failure.
Ignoring this worst-case-scenario, we find that Any-Com ISS is robust to a high
degree of communication interference.

While this paper is a focused case-study on Any-Com applied to multi-robot nav-
igation, we stress that the Any-Com idea is not limited to this particular domain. In
particular, Any-Com ISS is applicable to any random-tree search through a met-
ric space. We hope that the Any-Com concept will spread to other problems, and
envision a world in which mobile robots dynamically take advantage all available
computational resources to solve complex problems.

References

Aronov, B., de Berg, M., van der Stappen, A.F., Svestka, P., Vleugels, J.: Motion planning for
multiple robots. In: Proceedings of the Fourteenth Annual Symposium on Computational
Geometry, Minneapolis, USA, pp. 374–382 (1998)

Boddy, M., Dean, T.L.: Solving time-dependent planning problems. In: Proc. Eleventh Inter-
national Joint Conference on Artificial Intelligence, pp. 979–984 (1989)

Bonert, M.: Motion planning for multi-robot assembly systems. MS dissertation, University
of Toronto (1999)

Clark, C.M., Rock, S.: Randomized motion planning for groups of nonholonomic robots.
In: Proc. International Symposium of Artificial Intelligence, Robotics and Automation in
Space (2001)

Clark, C.M., Rock, S.M., Latombe, J.C.: Motion planning for multiple mobile robots using
dynamic networks. In: Proc. IEEE International Conference on Robotics and Automation,
pp. 4222–4227 (2003)

Erdmann, M., Lozano-Perez, T.: On multiple moving objects. Algorithmica, 477–521 (1987)
Ferguson, D., Stentz, A.: Anytime rrts. In: Proc. IEEE/RSJ International Conference on In-

telligent Robots and Systems, pp. 5369–5375 (2006)
Guo, Y., Parker, L.D.: A distributed and optimal motion planning approach for multiple mo-

bile robots. In: Proc. IEEE International Conference on Robotics and Automation, pp.
2612–2619 (2002)

Any-Com Multi-robot Path-Planning 173

Hada, Y., Takasa, K.: Multiple mobile robot navigation using the indoor global positioning
system (igps). In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots
and Systems, Hawaii, United States, pp. 1005–1010 (2001)

Hollinger, G., Singh, S.: Multi-robot coordination with periodic connectivity. In: Proc. IEEE
International Conference on Robotics and Automation (2010)

Kant, K., Zuker, S.W.: Toward efficient trajectory planning: the path-velocity decomposition.
The International Journal of Robotics Research 5, 72–89 (1986)

LaValle, S., Keffner, J.: Rapidly-exploring random trees: Progress and prospects. In: Algo-
rithmic and Computational Robotics: New Directions, pp. 293–308 (2001)

Leroy, S., Laumond, J.P., Simeon, T.: Multiple path coordination for mobile robots: a geo-
metric algorithm. In: Proc. International Conference on Artificial Intelligence (1999)

Lumelsky, V.J., Harinarayan, K.R.: Decentralized motion planning for multiple mobile
robots: The cocktail party model. Autonomous Robots 4, 121–135 (1997)

Sanchez, G., Latombe, J.C.: Using a prm planner to compare centralized and decoupled plan-
ning for multi robot systems. In: Proc. IEEE International Conference on Robotics and
Automation (2002)

Schwartz, J.T., Sharir, M.: On the piano mover’s problem iii. coordinating the motion of
several independent bodies: the special case of circular bodies amidst polygonal barriers.
In: Proc. IEEE International Conference on Robotics and Automation, pp. 514–522 (1985)

van den Berg, J., Guy, S.J., Lin, M., Manocha, D.: Reciprocal n-body collision avoidance. In:
Proc. International Symposium on Robotics Research (2009)

Warren, C.W.: Multiple robot path coordination using artificial potential fields. In: Proc. of
IEEE International Conference on Robotics and Automation, Cincinnati, OH, pp. 500–505
(1990)

Xidias, E.K., Aspragathos, N.A.: Motion planning for multiple non-holonomic robots: a ge-
ometric approach. Robotica 26, 525–536 (2008)

	Any-Com Multi-robot Path-Planning: Maximizing Collaboration for Variable Bandwidth
	Introduction
	Related Work
	Incomplete Methods
	Complete Methods: Centralized Planning
	Relevance to Our Work

	Methodology
	Experiments
	Discussion of Results
	Conclusions
	References

