
Distributed Information Filters for MAV
Cooperative Localization

Andrea Cristofaro, Alessandro Renzaglia, and Agostino Martinelli

Abstract. This paper introduces a new approach to the problem of simultaneously
localizing a team of micro aerial vehicles (MAV) equipped with inertial sensors able
to monitor their motion and with exteroceptive sensors. The method estimates a de-
layed state containing the trajectories of all the MAVs. The estimation is based on
an Extended Information Filter whose implementation is distributed over the team
members. The paper introduces two contributions. The former is a trick which al-
lows exploiting the information contained in the inertial sensor data in a distributed
manner. The latter is the use of a projection filter which allows exploiting the infor-
mation contained in the geometrical constraints which arise as soon as the MAV ori-
entations are characterized by unitary quaternions. The performance of the proposed
strategy is evaluated with synthetic data. In particular, the benefit of the previous two
contributions is pointed out.

1 Introduction

In recent years, flying robotics has received significant attention from the robotics
community. The ability to fly allows easily avoiding obstacles and quickly having
an excellent birds eye view. These navigation facilities make flying robots the ideal
platform to solve many tasks like exploration, mapping, reconnaissance for search
and rescue, environment monitoring, security surveillance, inspection etc. In the
framework of flying robotics, micro aerial vehicles (MAV) have a further advantage.
Due to the small size they can also be used in narrow out- and indoor environment
and they represent only a limited risk for the environment and people living in it.
One of the main prerequisite for the successful accomplishment of many tasks is
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a precise vehicle localization. Since micro aerial vehicles are equipped with low
computational capabilities an efficient solution must be able to distribute the com-
putation among all the agents in order to exploit the computational resources of the
entire team. Distributing the computation has also another key advantage. It allows
us to make the solution robust with respect to failures. On the other hand, distribut-
ing the computation must also account for the limited communication capabilities.

The cooperative localization problem was formulated in [11] and it has been
faced by many authors so far. Fox and collaborators [3] introduced a probabilistic
approach based on Markov localization. Their approach has been validated through
real experiments showing a drastic improvement in localization speed and accuracy
when compared to conventional single robot localization. Other approaches take
advantage of relative observations for multi-robot localization [4, 5, 9, 16, 17, 20].
In [5] a method based on a combination of maximum likelihood estimation and
numerical optimization was introduced. This method allows to reduce the error in
the robot localization by using the information coming from relative observations
among the robots in the team. In [17], a distributed multi robot localization strategy
was introduced. This strategy is based on an Extended Kalman Filter to fuse propri-
oceptive and exteroceptive sensor data. In [13], the same approach was adapted in
order to deal with any kind of relative observations among the robots. In [17], it was
shown that the equations can be written in a decentralized form, allowing the decom-
position into a number of smaller communicating filters. However, the distributed
structure of the filter only regards the integration of the proprioceptive data (i.e. the
so called prediction phase). As soon as an observation between two robots occurs,
communication between each member of the team and a single processor (which
could be embedded in a member of the team) is required. The same communication
skill is required when even an exteroceptive measurements which only regards a sin-
gle robot occurs (e.g. a GPS measurement). Furthermore, the computation required
to integrate the information coming from this observation is entirely performed by
a single processor with a computational complexity which scales quadratically with
the number of robots. Obviously, the centralized structure of the solution in dealing
with exteroceptive observations becomes a serious inconvenience when the com-
munication and processing capabilities do not allow to integrate the information
contained in the exteroceptive data in real time. In particular, this happens as soon
as the number of robots is large, even if each robot performs very few exteroceptive
observations. In [14] this problem was considered. However, the structure of the
filter was maintained the same as in [17] (namely centralized in dealing with extero-
ceptive data). Each robot was supposed to be equipped with several sensors and the
optimal sensing frequencies were analytically derived by maximizing the final local-
ization accuracy. The limit of this approach is that as the number of robots increases,
the sensing frequencies reduce. In other words, by performing the estimation pro-
cess in a centralized fashion it is necessary to reduce the number of observations
to be processed as the number of robots increases. Hence, distributing the entire
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estimation process can provide a great improvement. Very recently a decentralized
cooperative localization approach has been presented in [12].

The information filter is very appealing in this framework since the integration
of the exteroceptive data is very simple and could be easily distributed. On the other
hand, the equations which characterize the prediction step are much more complex
and their distributed implementation seems to be forbidden. This is a serious incon-
venience since the proprioceptive data run at a very high frequency.

Eustice et al. [2] and Caballero et al. [1] have recently shown that by using a
delayed state also the prediction step has some nice properties. In particular, in [2]
a solution to the SLAM problem by using an Extended Information Filter (EIF) to
estimate a delayed state has been proposed. In [1] the tracking problem has been
considered.

In this paper we consider the problem of cooperative localization in 3D when
the MAVs are equipped with inertial sensors and exteroceptive sensors (e.g. range
sensors and GPS). We adopt a delayed state and we perform its estimation by us-
ing an Extended Information Filter. We introduce a simple trick which allows us
to mathematically express the quantities measured by the IMU (Inertial Measure-
ment Unit) as a function of the delayed state (i.e. the state to be estimated). In other
words, by using this trick, the link between sensor-state for the IMU (which are
typically proprioceptive sensors) has the same mathematical expression of the one
which characterizes an exteroceptive observation. This allows us to use the equa-
tions of the integration of the exteroceptive data also to integrate the IMU data. In
this way the equations of the EIF prediction step are never used and the overall
estimation process can be easily distributed.

The second contribution of this paper is related to another important issue which
arises when dealing with a 3D environment. The orientation of a MAV which moves
in 3D is provided by 3 parameters. On the other hand, the MAV dynamics become
very easy by adopting quaternions. However, this parameterization is redundant.
This means that part of the information is frozen in a geometrical constraint. Without
using this constraint part of the information is not exploited and the overall precision
gets worse. To the best of our knowledge, this issue has never been considered in
the framework of flying robotics. On the other hand, the problem of exploiting the
information contained in geometrical constraints is not new in the mobile robotics
literature. In particular, it has been considered in SLAM when using a relative map.
To this regard a new filter, the projection filter, has been introduced [15]. In this
paper we will adopt the same approach. In particular, we consider the geometrical
constraint (expressing that the quaternion must be unitary) as an ideal observation.

The paper is structured as follows. In Section 2 it is given a detailed description
of the dynamics, the measurement model and the estimation process with the EIF
for a single MAV. Section 3 is dedicated to the extension of the previous results to
multi robot systems; in particular a distributed EIF algorithm is presented, taking
into account relative observations between the robots. In Section 4 we present some
simulation results to illustrate the efficiency of the estimation algorithm.
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2 The Case of One Single MAV

For the sake of clarity, we begin our analysis by the description of the model for a
single MAV. The extension of the presented dynamics and measurement model to
multi robot systems is straightforward.

2.1 The System

We provide here a mathematical description of our system. We introduce a global
frame, whose z-axis is the vertical one. Let us consider a MAV equipped with IMU
proprioceptive sensors (one tri-axial accelerometer and one tri-axial gyroscope) as
well as some suitable exteroceptive sensors (GPS, range sensors). In this paper
we assume that the IMU data are unbiased. From a practical point of view, unbi-
ased data can be obtained by continuously calibrating the IMU sensors (see for in-
stance [6]). The configuration of the MAV is described by a vector (r,v,θ ) ∈ R9

where r = (rx,ry,rz) ∈ R3 is the position, v = (vx,vy,vz) ∈ R3 is the speed and
θ = (θr,θp,θy) ∈ R3 assigns the MAV orientation: θr is the roll angle, θp is the
pitch angle and θy is the yaw angle. We will adopt lower case letters to express a
quantity in the global frame, while capital letters for the same quantity expressed
in the local frame (i.e. the one attached to the MAV).The system description can be
simplified adopting a quaternions framework. We recall that the quaternions space
H is the non-commutative set of elements

H =
{

qt + qxi+ qy j+ qzk : qt ,qx,qy,qz ∈ R, i2 = j2 = k2 = i jk =−1
}
.

For an arbitrary quaternion q = qt +qxi+qy j+qzk, we define the conjugate element

q∗ = qt −qxi−qy j−qzk and the norm ||q||=√
qq∗ =

√
q∗q =

√
q2

t + q2
x + q2

y + q2
z .

Let us denote by ag the gravity acceleration (i.e. ag =−(0,0,g) with g � 9.81m/s2)
and by A,Ω the acceleration and the angular speed provided by the IMU; regarding
the acceleration, the one perceived by the accelerometer (A) is not simply the MAV
acceleration (A): it also contains the gravity acceleration (Ag). In particular, we have
A=A−Ag since, when the camera does not accelerate (i.e. A= 0) the accelerometer
perceives an acceleration which is the same of an object accelerated upward in the
absence of gravity.

The continuous-time dynamics of the MAV is given by the following system of
ordinary differential equations

ṙ = v (1)

v̇ = q ·A ·q∗ = q ·A ·q∗+ ag (2)
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q̇ =
1
2

q ·Ω (3)

where r,v,Ω,A are purely imaginary quaternions, while q is a unitary quaternion.
The following relations for roll, pitch and yaw angles θr,θp,θy hold

θr =
qtqx + qyqz

1− 2(q2
x + q2

y)

θp = qtqy − qxqz

θy =
qtqz + qyqx

1− 2(q2
y + q2

z )
.

During the exploration, the MAV performs measurements thanks to its exteroceptive
sensors equipment; such measurements can be individual (i.e. GPS-based measure-
ments) as well as relative to other MAVs poses or to the position of fixed landmarks.
The general single MAV observation equation is given by

z = h(r,v,q) (4)

where h(·, ·, ·) is a known function.
In the case the exteroceptive sensor is a GPS, the observation equation is very

simple as it is linear
zGPS = r. (5)

2.2 Estimation with the EIF: The Integration of the Exteroceptive
Data

Let us denote with Σ and ξ the information matrix and the information vector re-
spectively; in addition let R be the covariance matrix characterizing the measure-
ment error for an exteroceptive sensors. The update equations at the time step i are
(see [21]):

Σi = Σ i +Σobs, Σobs = HT
i R−1Hi, (6)

ξi = ξ i + ξobs, ξobs = HT
i R−1 [zi − h(μ i)+Hiμ i] , (7)

where Σ i,ξ i are the predicted information matrix and information vector, μ i =

Σ−1
i ξ i is the predicted mean value and Hi is the Jacobian of the observation func-

tion h evaluated at μ i. The structure of such equation is very simple as the update
consists only in summing the new information from the exteroceptive sensors to the
predicted values.
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The case of GPS observations is even easier to treat; since the function h is linear
we have h(μ i) = Hiμ i = μ i and hence the update equation for the information filter
is

ξi = ξ i +HT
i R−1zi.

In particular the explicit computation of the mean value is not performed and this
is a key advantage since the information matrix inversion requires in general a high
computational burden.

2.3 Estimation with the EIF: The Integration of the
Proprioceptive Data

Denoting by Q a noise term affecting the system dynamics, the prediction steps are
given by

Σ i =
[
FiΣ−1

i−1FT
i +Q

]−1
, (8)

ξ i = Σ iFiΣ−1
i−1ξi−1, (9)

where Fi is the Jacobian of the dynamics evaluated at the estimated mean value

μi−1 = Σ (−1)
i−1 ξi−1.

Remark 1. In a multi robot scenario, where Σ and ξ characterize the probability dis-
tribution of all the MAVs, a distributed algorithm for the implementation of update
equations (6)-(7) can be designed (see Section 3 and [1]). On the other hand, the
prediction equations (8)-(9) are more complicated and they cannot be easily dis-
tributed. Nevertheless we will show that, once a delayed-state is considered, data
obtained from proprioceptive sensors can be integrated using only the update equa-
tions (6)-(7).

Let us introduce the delayed-state

Xi = (r0,q0,r1, ...,ri,qi)

containing all MAV poses until the i-th time step. The discretization of the dynamics
equations over a Δ t time-step interval gives

ri+1 = ri + viΔ t (10)

vi+1 = vi + qi ·
∫ i+Δ t

i
Adt ·q∗i + agΔ t (11)

qi+1 = qi +
1
2

qi ·
∫ i+Δ t

i
Ωdt (12)
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From Equation (10) we can get

vi = (ri+1 − ri)/Δ t

and hence the following recursive formula holds

ri+1 = 2ri − ri−1 +Δ t

(
qi ·

∫ i+Δ t

i
Adt ·q∗i + agΔ t

)
, (13)

corresponding to a second order continuous-time evolution. Setting

Ãi =

∫ i+Δ t

i
Adt (14)

and

Ω̃i =

∫ i+Δ t

i
Ωdt, (15)

the proprioceptive measurements can be regarded as delayed-state dependent func-
tions:

Ãi = hA(ri−2,ri−1,ri,qi) =
q∗i (−agΔ t2 + ri − 2ri−1 + ri−2)qi

Δ t

Ω̃i = hΩ (qi−1,qi) = 2q∗i−1(qi − qi−1).

In other words, Ãi and Ω̃i are functions of the state Xi to be estimated; moreover,
since we are considering the discrete dynamics given by (12)-(13), there is no need
to include the MAV speed v into the state vector Xi.

Due to these considerations, we are allowed to integrate proprioceptive data using
(6)-(7) instead of (8)-(9), with a consequent reduction of computational cost in the
estimation algorithm.

For nonlinear measurements equation (7) involves the mean value and hence in-
formation matrix inversion is required; nevertheless in many situation, due to the
sparsity of such matrix, a partial state recovery is sufficient in order to guarantee a
good estimate (see [2]). Whole state recovering can be obtained using for example
the Conjugate Gradients algorithm (see [19]) or the Givens rotations factorization
(see [8]). We point out that at any update step, i.e. when a true exteroceptive mea-
surement is performed, the size of the delayed-state vector X increases by 3+4 = 7.

2.4 Projection Filter: Integration of Ideal Constraints

As mentioned in the introduction, the quaternion structure is redundant for the prob-
lem we are considering and this may lead to a loss of information. To avoid this
problem we have assumed that the quaternion q is unitary. On the other hand, if the
discrete dynamics (12) is considered, such property is no longer preserved. Anyway,
we can take into account the norm invariance of qi imposing an ideal constraint with
a fake observation given by the function
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h0(q) = 1− q2
t + q2

x + q2
y + q2

z ;

in other words, we can regard the norm constraint as the measurement

zi = h0(qi) = 0.

Integration of such fake measurement can be performed with the projection filter
(see [15]).

3 The Cooperative Case

3.1 The System

We consider now a fleet of N > 1 MAVs, each one having the characteristics de-
scribed in Section 2. Let us denote by (r(k),q(k)) the coordinates of the k-th MAV;
the discrete dynamics is given by

r(k)i+1 = 2r(k)i − r(k)i−1 +Δ t

(
q(k)i ·

∫ i+Δ t

i
A(k)dt · (q(k)i )∗+ agΔ t

)
(16)

q(k)i+1 = q(k)i +
1
2

q(k)i ·
∫ i+Δ t

i
Ω(k)dt. (17)

Each MAV, in addition to the measurement model (4), may perform relative obser-
vation; the general multi robot observation equation can be written as

z(k)i = h(k)(r(1)i ,q(1)i , ...,r(k)i ,q(k)i , ...,r(N)
i ,q(N)

i ). (18)

Simple and common examples of relative observations are distance measures. If the
k-th MAV measures its own distance from the j-th MAV, the observation is given by

z(k)i = (r(k)i,x − r( j)
i,x )

2 +(r(k)i,y − r( j)
i,y )

2 +(r(k)i,z − r( j)
i,z )

2.

3.2 The Distributed EIF

In [1] it is shown that delayed-states allow to distribute the estimation process over
the entire MAVs network. In particular the authors explain how to recover the global
belief from the local belief of each network node and remark that the same operation
with standard (non delayed) states is not possible at all. We will follow a similar
approach, with a slightly different communication and data fusion algorithm.

When the exploration starts, each MAV begins to integrate the information pro-
vided by its own sensors by equation (6)-(7) as described before. In particular for
any measurement, the incoming data are stored in the bottom-right block of the in-
formation matrix and, as a consequence, in the last entries of the information vector:
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Σi−1 → Σi =

⎛

⎝
Σi−1 07(i−1)×7

07×7(i−1) 07×7

⎞

⎠+

⎛

⎝
07(i−3)×7(i−3) 07(i−3)×21

021×7(i−3) Σobs

⎞

⎠

ξi−1 → ξi =

⎛

⎝
ξi−1

07×1

⎞

⎠+

⎛

⎝
07(i−3)×1

ξobs

⎞

⎠ .

Suppose that after i1 updating time-steps for the j1-th MAV and i2 steps for the j2-
th MAV a relative measurement occurs and for sake of simplicity suppose that j1 <
j2. Each MAV has to increase the size of the information matrix and information
vector in order to store the new data. The process is carried out following the steps
described below:

1. State augmentation. The states of the two MAVs are increased in order to have
the same size 7(i1 + i2); this can be done adding a suitable number of zeros in
the information matrix and information vector.

Σ( j1),i1 →
⎛

⎝
Σ( j1),i1 07i1×7i2

07i2×7i1 07i2×7i2

⎞

⎠ , ξ( j1),i1 →
⎛

⎝
ξ( j1),i1

07i2×1

⎞

⎠

Σ( j2),i2 →
⎛

⎝
07i1×7i1 07i1×7i2

07i2×7i1 Σ( j2),i2

⎞

⎠ , ξ( j2),i2 →
⎛

⎝
07i1×1

ξ( j2),i2

⎞

⎠

2. Relative estimation. The information from relative observations are integrated
using the standard update equations (6)-(7). Correlation between the estimates
on the last poses of the MAVs may appear, so that the updated matrices may be
not block-diagonal.

Σ( j1),i1 →
⎛

⎝
Σ( j1),i1 ∗

∗ ∗

⎞

⎠ , ξ( j1),i1 →
⎛

⎝
ξ( j1),i1

∗

⎞

⎠

Σ( j2),i2 →
⎛

⎝
∗ ∗

∗ Σ( j2),i2

⎞

⎠ , ξ( j2),i2 →
⎛

⎝
∗

ξ( j2),i2

⎞

⎠

3. Data fusion. A communication is established between the MAVs and they ex-
change their stored data. The data fusion scheme is a non negligible theoretical
issue: as a matter of fact, if the process is carried out taking simply the sum of the
contributions from each MAV, estimation errors may arise due to adding several
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times the same information. Following [1], we have adopted a fusion algorithm
based on a convex combination of the data:

Σ( j1),i1 → ωΣ( j1),i1 +(1−ω)Σ( j2),i2 , ξ( j1),i1 → ωξ( j1),i1 +(1−ω)ξ( j2),i2

Σ( j2),i2 → (1−ω)Σ( j1),i1 +ωΣ( j2),i2 , ξ( j2),i2 → (1−ω)ξ( j1),i1 +ωξ( j2),i2

As proved in [7], for any 0<ω < 1, the above convex combinations lead to unbiased
and consistent estimates, i.e. no overconfident estimate is performed and there is no
overlapping of information. This allows us to limit communication. In particular,
two robots must communicate only when a relative measurements between them
occurs.

4 Performance Evaluation

In order to validate our approach we perform simulations that are described in the
following sections.

4.1 The Simulated Environment

The trajectories of the MAVs are generated randomly and independently one from
each other. In particular, for every MAV, the motion is generated by generating ran-
domly the linear and angular acceleration at 100Hz. Specifically, at each time step,
the three components of the linear and the angular acceleration are generated as
Gaussian independent variables with mean values μa and μΩ̇ and with covariance
matrices Pa and PΩ̇ . By performing many simulations we remarked that the preci-
sion of the proposed strategy is almost independent of all these parameters. The sim-
ulations provided in this section are obtained with the following settings: μa = μΩ̇ =

[000]T , Pa =

⎡

⎣
(5ms−2)2 0 0

0 0 0
0 0 0

⎤

⎦ and PΩ̇ =

⎡

⎣
(10deg s−2)2 0 0

0 (10deg s−2)2 0
0 0 (10deg s−2)2

⎤

⎦

We adopt many different values for the initial MAV positions orientations and
speeds. We also consider different scenarios corresponding to a different number of
MAVs.

Starting from the accomplished trajectories, the true angular speed and the lin-
ear acceleration are computed at each time step of 0.01s (respectively, at the
time step i, we denote them with Ω true

i and Atrue
i ). Starting from them, the IMU

sensors are simulated by generating randomly the angular speed and the linear
acceleration at each step according to the following: Ωi = N

(
Ω true

i ,PΩi

)
and

Ai = N (Atrue
i −Ag i,PAi) where N indicates the Normal distribution whose first
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entry is the mean value and the second one its covariance matrix and PΩi and
PAi are the covariance matrices characterizing the accuracy of the IMU ; finally,
Ag is the gravity acceleration expressed in the local frame. In all the simula-
tions we set both PAi and PΩi diagonal matrices. In the results here provided

they are set as follows: PAi =

⎡

⎣
(0.1ms−2)2 0 0

0 (0.1ms−2)2 0
0 0 (0.1ms−2)2

⎤

⎦ and PΩi =

⎡

⎣
(10deg s−1)2 0 0

0 (10deg s−1)2 0
0 0 (10deg s−1)2

⎤

⎦ for every step i.

The MAVs are also equipped with GPS and range sensors. The GPS provides
the position of the MAV with a Gaussian error whose covariance is a diagonal ma-
trix and whose components are equal to 25m2. The GPS data are delivered at 5Hz.
Finally, the range sensors provide the distances among the MAVs at 2Hz and the
measurement errors are normally distributed with variance (0.01m)2.

All the previous parameters were set in order to be close to a real scenario [10].

4.2 Results

We provide some of the results obtained with the previous settings and by simulating
N MAVs. In particular, we consider the case of N = 3 and N = 5. Furthermore, we
consider separately the cases when the estimation is performed by only integrating
the IMU data, by combining the IMU data with the GPS data and by combining all
the sensor data. Finally, in order to evaluate the benefit of using the projection filter
discussed in Section 2.4, we consider separately the cases when this filter is adopted
and when it is not adopted.

Fig. 1a-b show the results obtained with three MAVs. The blue dots represent the
ground truth. In fig. 1-a the magenta dots represent the GPS data and the black cir-
cles the trajectories estimated by only integrating the IMU data. It is clear that both
IMU and GPS are very noisy and cannot be used separately to estimate the MAV
trajectories. In fig. 1-b the green dots represent the trajectories estimated by fusing
the IMU data and the GPS data with our proposed approach (EIF and projection
filter). Finally, the red dots represent the result obtained by also fusing the range
measurements. We remarked that the use of the range measurements further reduce
the error. In particular, for the simulation in fig. 1a-b the position error averaged
on all the three MAV and on all the time steps is equal to 0.6m without the range
measurements and 0.45m with them. As expected, this improvement is still larger
by increasing the number of MAVs (see for instance [18]). In fig. 1c-d the results
obtained by using 5 MAVs is shown. The position error obtained by also fusing the
range measurements reduces to 0.2m.

Fig. 2 shows the benefit of using the Projection filter discussed in Section 2.4. In
particular, in fig. 2a the red circles represent the trajectories estimated by fusing all
the sensor data and by running the Projection Filter at 5Hz while in fig. 2b the red
circles represent the trajectories estimated without the use of the Projection Filter.
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Fig. 1 Blue points represent true MAVs trajectories, black circles are the trajectories with only
odometric estimates, magenta stars are the GPS data, green stars are the trajectory estimates
without taking into account relative observations and red circles are the estimates with the
complete distributed EIF. Figures (1a)-(1b) are the simulation of 3-MAV scenario, while in
Figures (1c)-(1d) is plotted the evolution of a 5-MAV system.
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Fig. 2 Blue points represent true MAVs trajectories, black circles are the estimated trajectories
via odometry and red circles are the estimated trajectories with the EIF. Figure (2a) represents
the simulation of a 3-MAV system; Figure (2b) represents the same scenario without taking
into account the information provided by the projection filter.
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As in the previous figures, the ground truth is represented with blue dots and the
black dots represent the trajectories obtained by a simple integration of the IMU
data.

5 Conclusions

In this paper we have discussed an approach to perform cooperative localization of a
team of micro aerial vehicles equipped with inertial sensors (one accelerometer and
one gyroscope) and exteroceptive sensors (GPS and range sensors). The approach is
based on an Extended Information Filter whose implementation is distributed over
the team members.

Two original contributions have been introduced. The former consists of a sim-
ple trick which allowed us to avoid the equations which characterize the prediction
phase of the extended information filter. In particular, the information contained in
the data provided by the inertial sensors is exploited by using the equations which
characterize the perception step of the EIF. This allowed us to easily distributing
the entire estimation process over all the team members. The latter contribution is
the use of a projection filter which allowed exploiting the information contained in
the geometrical constraints which arise as soon as the MAV orientations are charac-
terized by unitary quaternions.

The performance of the proposed approach was evaluated by using synthetic data.
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