


Springer Tracts in Advanced Robotics 83

Editors

Prof. Bruno Siciliano
Dipartimento di Informatica
e Sistemistica
Università di Napoli Federico II
Via Claudio 21, 80125 Napoli
Italy
E-mail: siciliano@unina.it

Prof. Oussama Khatib
Artificial Intelligence Laboratory
Department of Computer Science
Stanford University
Stanford, CA 94305-9010
USA
E-mail: khatib@cs.stanford.edu

For further volumes:
http://www.springer.com/series/5208



Editorial Advisory Board

Oliver Brock, TU Berlin, Germany
Herman Bruyninckx, KU Leuven, Belgium
Raja Chatila, LAAS, France
Henrik Christensen, Georgia Tech, USA
Peter Corke, Queensland Univ. Technology, Australia
Paolo Dario, Scuola S. Anna Pisa, Italy
Rüdiger Dillmann, Univ. Karlsruhe, Germany
Ken Goldberg, UC Berkeley, USA
John Hollerbach, Univ. Utah, USA
Makoto Kaneko, Osaka Univ., Japan
Lydia Kavraki, Rice Univ., USA
Vijay Kumar, Univ. Pennsylvania, USA
Sukhan Lee, Sungkyunkwan Univ., Korea
Frank Park, Seoul National Univ., Korea
Tim Salcudean, Univ. British Columbia, Canada
Roland Siegwart, ETH Zurich, Switzerland
Gaurav Sukhatme, Univ. Southern California, USA
Sebastian Thrun, Stanford Univ., USA
Yangsheng Xu, Chinese Univ. Hong Kong, PRC
Shin’ichi Yuta, Tsukuba Univ., Japan

STAR (Springer Tracts in Advanced Robotics) has been promoted un-
der the auspices of EURON (European Robotics Research Network)

ROBOTICS
Research

Network

European

E
U
R
O
N

* *

*
*
*

***

*
*
*

*



Alcherio Martinoli, Francesco Mondada,
Nikolaus Correll, Grégory Mermoud,
Magnus Egerstedt, M. Ani Hsieh,
Lynne E. Parker, and Kasper Støy (Eds.)

Distributed Autonomous
Robotic Systems

The 10th International Symposium

ABC



Editors
Prof. Alcherio Martinoli
EPFL ENAC IIE DISAL
Lausanne
Switzerland

Dr. Francesco Mondada
EPFL STI IMT LSRO
Lausanne
Switzerland

Prof. Nikolaus Correll
Department of Computer Science
University of Colorado at Boulder
Boulder, Colorado
USA

Dr. Grégory Mermoud
EPFL ENAC IIE DISAL
Lausanne
Switzerland

Prof. Magnus Egerstedt
Department of Electrical
and Computer Engineering
Georgia Institute of Technology
Atlanta, Georgia
USA

Prof. M. Ani Hsieh
Department of Mechanical Engineering
and Mechanics
Drexel University
Philadelphia, Pennsylvania
USA

Prof. Lynne E. Parker
Department of Electrical Engineering
and Computer Science
University of Tennessee
Knoxville, Tennessee
USA

Prof. Kasper Støy
Maersk Mc-Kinney Moller Institute
University of Southern Denmark
Odense
Denmark

ISSN 1610-7438 e-ISSN 1610-742X
ISBN 978-3-642-32722-3 e-ISBN 978-3-642-32723-0
DOI 10.1007/978-3-642-32723-0
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2012946355

c© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of pub-
lication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any
errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect
to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Foreword

Robotics is undergoing a major transformation in scope and dimension. From a
largely dominant industrial focus, robotics is rapidly expanding into human envi-
ronments and vigorously engaged in its new challenges. Interacting with, assisting,
serving, and exploring with humans, the emerging robots will increasingly touch
people and their lives.

Beyond its impact on physical robots, the body of knowledge robotics has pro-
duced is revealing a much wider range of applications reaching across diverse
research areas and scientific disciplines, such as: biomechanics, haptics, neuro-
sciences, virtual simulation, animation, surgery, and sensor networks among others.
In return, the challenges of the new emerging areas are proving an abundant source
of stimulation and insights for the field of robotics. It is indeed at the intersection of
disciplines that the most striking advances happen.

The Springer Tracts in Advanced Robotics (STAR) is devoted to bringing to the
research community the latest advances in the robotics field on the basis of their
significance and quality. Through a wide and timely dissemination of critical re-
search developments in robotics, our objective with this series is to promote more
exchanges and collaborations among the researchers in the community and con-
tribute to further advancements in this rapidly growing field.

DARS is a well-established single-track conference that gathers every two years
the main researchers in Distributed Autonomous Robotic Systems. The papers from
the last four editions have been published as edited collections by Springer. STAR
is proud to welcome the Tenth edition of DARS among the volumes resulting from
thematic symposia devoted to excellence in robotics research.

The volume edited by Alcherio Martinoli, Francesco Mondada, Nikolaus
Correll, Grégory Mermoud, Magnus Egerstedt, M. Ani Hsieh, Lynne E. Parker and
Kasper Støy offers in its forty-three chapters an interdisciplinary collection of tech-
nologies, algorithms, system architectures, and applications of advanced distributed
robotic systems. The contents are effectively grouped into four thematic parts, each
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introduced by an invited contribution by a world-renowned scholar in the field: Part
I on distributed sensing, Part II on localization, navigation, and formations, Part III
on coordination algorithms and formal methods, Part IV on modularity, distributed
manipulation, and platforms.

Rich by topics and authoritative contributors, DARS culminates with this unique
reference on the current developments and new directions in the field of distributed
autonomous robotic systems. A very fine addition to the series!

Naples, Italy Bruno Siciliano
July 2012 STAR Editor



Preface

The goal of the Symposium on Distributed Autonomous Robotic Systems (DARS)
is to exchange and stimulate research ideas to realize advanced distributed robotic
systems. Distributed robotics is a rapidly growing, interdisciplinary research area
lying at the intersection of computer science, communication and control systems,
and electrical and mechanical engineering. Technologies, algorithms, system archi-
tectures, and applications were presented and discussed during a single-track, 3-
day symposium. The 10th edition of DARS took place at the École Polytechnique
Fédérale de Lausanne (EPFL), in its idyllic location on the shores of Lake Geneva,
Switzerland. The symposium also included a great social event in the Lavaux, a
UNESCO World Heritage Site, immersed in the beautiful fall colors, just at the
end of the grape harvesting period. More details and pictures can be found on
http://dars2010.epfl.ch.

DARS 2010 has been an excellent 10th anniversary edition thanks to the high
quality of the submissions and selective reviewing process. We received a total of
75 submissions; 30 contributions were presented both orally and as a poster, while
13 uniquely as poster. Each submitted paper was reviewed by at least three reviewers
and a technical program co-chair. The editors of this book—four technical program
co-chairs (Magnus Egerstedt, M. Ani Hsieh, Lynne E. Parker, and Kasper Støy), two
publication co-chairs (Grégory Mermoud and Nikolaus Correll), and two general
co-chairs (Alcherio Martinoli and Francesco Mondada)—coordinated the review
process with the help of the 99 members of the program committee. We are very
grateful to all the reviewers and technical program co-chairs for their thoroughness
and constructivism in reviewing the papers. All the accepted papers, including those
presented only as poster, were included in the digital pre-proceedings distributed at
the event and conditionally accepted for inclusion in this STAR volume, contingent
to both presentation of the work at the symposium and proper addressing of the re-
viewers’ and technical co-chairs’ remarks. To this purpose authors were encouraged
to submit a revised version after the conference together with a cover letter explain-
ing how the reviewers’ criticism was addressed. We noticed a drastic improvement
in the quality of contributions due to the introduction of this second post-conference
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quality control checkpoint; only a few authors were encouraged to take into ac-
count final minor suggestions and eventually all the revised papers were accepted
in this volume. The overall collection consists therefore of 43 original contributions
which are organized in four different parts, each introduced by a different technical
program co-chair: distributed sensing (Part I); localization, navigation, and forma-
tions (Part II); coordination algorithms and formal methods (Part III); modularity,
distributed manipulation, and platforms (Part IV). We feel that this breakdown is
indeed representative of the current research activities in distributed robotics and is
coarse enough to remain valid over the next few years.

The program of DARS 2010 included several invited keynote talks by world-
renowned speakers representing well the four areas of distributed robotics men-
tioned above: Gaurav S. Sukhatme, University of Southern California for Part I;
Raffaello D’Andrea, ETH Zurich and Kiva Systems for Part II; Radhika Nagpal,
Harvard University for Part III; and Haruhisa Kurokawa, AIST for Part IV. We in-
clude in this volume abstracts and bio-sketches for each invited contribution and
speaker, respectively.

DARS 2010 distributed two awards, one for the best student contribution and
one for overall best contribution, co-sponsored by the DARS 2008 organizing com-
mittee, represented by Haruhisa Kurokawa at the symposium. The award panel was
chaired by Hajime Asama (Tokyo University) and included Alan Winfield (Univer-
sity of West England), Radhika Nagpal (Harvard University), Haruhisa Kurokawa
(AIST), James McLurkin (Rice University), and Magnus Egerstedt (Georgia Insti-
tute of Technology). The award selection process took into account various fac-
tors, including the reviewers’ score, the revised contribution included in the digital
pre-proceedings, the presentation, and related discussion at the symposium. The
Best Paper Award was assigned to T.W. Mather, C. Braun and M.A. Hsieh
(Drexel University) for their paper entitled “Distributed Filtering for Time-Delayed
Deployment to Multiple Sites”. The Best Student Paper Award was shared by two
contributions, namely that of D. Mellinger, M. Shomin, N. Michael and V. Kumar
(University of Pennsylvania) entitled “Cooperative Grasping and Transport using
Multiple Quadrotors” and that of Y. Chen, X. C. Ding, A. Stefanescu and C. Belta
(Boston University) entitled “A Formal Approach to Deployment of Robotic Teams
in an Urban-Like Environment”.

Last but not least, we would like to acknowledge the support of our partners in
hosting DARS 2010. The Swiss National Science Foundation, the Swiss National
Center for Competence in Research for Mobile Information and Communication
Systems, the Swiss National Center for Competence in Research for Robotics, the
Institute of Environmental Engineering at EPFL, and all of our industrial partners
(BlueBotics SA, Cyberbotics S.à.r.l, GCtronic S.à.r.l, K-Team SA, and Skybotix
S.à.r.l,) have financially co-sponsored the symposium, while the IEEE Robotics and
Automation Society has been involved as technical co-sponsor. We would also like
to thank the Editor-in-Chief of the STAR series, Bruno Siciliano, as well as Thomas
Ditzinger, responsible coordinator of the series representing Springer Verlag, for
affording us the opportunity to publish for the first time the proceedings of a DARS
symposium in such prestigious venue. Finally, the symposium would not have been
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possible without the hard work of a wonderful local organization team consisting
of enthusiastic administrative assistants, PhD students, and research collaborators
(see the DARS 2010 website for names and pictures).

We hope that this STAR volume will raise the same excitement and lively
discussions that characterized the DARS 2010 symposium!

Lausanne, Switzerland Alcherio Martinoli
June 11, 2012 Francesco Mondada

Nikolaus Correll
Grégory Mermoud



Invited Keynote Presentations

Termites, Starfish, and Robot Collectives
Radhika Nagpal Harvard University, USA

Abstract. Biological systems, from embryos to social insects, get tremendous
mileage by having vast numbers of cheap and unreliable individuals cooperate to
achieve complex goals. We are also rapidly building new kinds of distributed sys-
tems with similar characteristics, from multi-modular robots and robot swarms, to
vast sensor networks. Can we engineer collective systems to achieve the kind of
complexity and self-repair that nature seems to achieve? In this talk, I will describe
several ongoing projects from my group where we use inspiration from nature –
termites, starfish, and cells – to design collective robotic systems. For example, sim-
ple mobile robots that collectively build structures without explicit communication,
self-adaptive modular robots that respond to the environment, and low-cost swarm
robots that could self-assemble large-scale shapes. In each case, we use inspiration
from biology to design simple decentralized cooperation, and techniques from com-
puter science to analyze and generalize these algorithms to new tasks. A common
theme in all of our work is understanding self-organizing multi-agent systems: how
does robust collective behavior arise from many locally interacting agents, and how
can we systematically program simple agents to achieve the global behaviors we
want.

Biography. Radhika Nagpal is a Professor of Computer Science at Harvard
University. She received her PhD degree in Computer Science from MIT, and spent
a year as a research fellow at Harvard Medical School. She is a recipient of the
2005 Microsoft New Faculty Fellowship award, the 2007 NSF Career award and
the 2010 Borg Early Career Award. Her research interests are biologically-inspired
engineering principles for multi-agent systems and computational models multicel-
lular biology.
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Some Applications of Distributed Estimation and Control
Raffaello D’Andrea ETH Zurich, Switzerland and Kiva Systems, USA

Abstract. In this talk I will discuss several applications of distributed estimation
and control: Kiva Systems, a company that uses hundreds of mobile robots to move
inventory in distribution facilities; the Balancing Cube, a structure that can balance
on any one of its edges or corners using six rotating mechanisms on the cube’s in-
ner faces; the Distributed Flight Array, a flying platform consisting of multiple au-
tonomous single propeller vehicles that are able to drive, dock with their peers, and
fly in a coordinated fashion; the Flying Machine Arena, a research-driven airspace
where vehicles teach themselves – and each other – how to fly.

Biography. Raffaello D’Andrea is Professor of Dynamic Systems and Control at
ETH Zurich and Technical Co-Founder of Kiva Systems, a company that develops
adaptive and self-configuring warehouse automation systems using hundreds of net-
worked, mobile robots. Also a creator of dynamic sculpture, he has shown his work
at international venues including the Venice Biennale, the Luminato Festival, Ars
Electronica, and ideaCity; two of his pieces are in the permanent collection of the
National Gallery of Canada.

Survey of Modular Robotics as DARS Research
Haruhisa Kurokawa AIST, Japan

Abstract. Modular robotics has been widely researched over the past 20 years.
Modular robots, especially self-reconfigurable ones, have many research topics in
common with other research of DARS. Currently, however, most of the claimed
prospects seem unfinished dreams. For example, only simple scalability has been
obtained. Scalability and fault tolerance is far more difficult to attain by a physi-
cal system than an information system, and simple and quantitative scalability, even
if attained, will not lead to qualitative one enabling graceful degradation. Joining
forces of multiple modules is another difficult problem, though such an ability is
indispensable to most robots. Applications of modular robots, especially of lattice-
type systems, have not been clear. Endoluminal inspection and surgery will be a
good application, but centralized or manual control is better suited for such. The his-
tory of modular robotics, with achievements and problems, can anyhow contribute
to future DARS research such as in micro or nano scale, and the research, mainly
ours, is surveyed in this talk.

Biography. Haruhisa Kurokawa received M.E. in Precision Machinery Engineer-
ing in 1981, and Dr. degree in Aeronautical and Astronautical Engineering in 1997,
both from the University of Tokyo. He is currently Senior Researcher of the Field
Robotics Research Group, Intelligent Systems Institute, National Institute of Ad-
vanced Industrial Science and Technology (AIST), Japan. He served as the general
chair of DARS 2008. His main research subjects are kinematics of mechanisms,
control in space, distributed autonomous systems and nonlinear control.



Invited Keynote Presentations XIII

Monitoring the Coastal Ocean using Underwater Networked Robots:
Algorithms and Experiments
Gaurav S. Sukhatme University of Southern California, USA

Abstract. We describe recent progress in systems and algorithms for underwater
robots with applications to the monitoring of the coastal ocean. We describe a new
algorithm for area coverage with a strong theoretical guarantee and a data fusion
method for a communication-constrained underwater multi-robot system. Experi-
mental results from sea trials ( 6 weeks) will be presented. We also give a brief
overview of the underlying systems infrastructure that we have built to support the
experiments and field trials.

Biography. Gaurav S. Sukhatme is a Professor of Computer Science (joint appoint-
ment in Electrical Engineering) at the University of Southern California (USC). He
received his undergraduate education at IIT Bombay in Computer Science and En-
gineering, and M.S. and Ph.D. degrees in Computer Science from USC. He is the
co-director of the USC Robotics Research Laboratory and the director of the USC
Robotic Embedded Systems Laboratory which he founded in 2000. His research
interests are in multi-robot systems, robot networks and aquatic robots. He has pub-
lished over 200 papers in these and related areas. Sukhatme has served as PI on nu-
merous NSF, DARPA and NASA grants. He is a Co-PI on the Center for Embedded
Networked Sensing (CENS), an NSF Science and Technology Center. He is a senior
member of the IEEE, and a member of AAAI and the ACM. He is a recipient of the
NSF CAREER award and the Okawa foundation research award. He has served on
many conference program committees, and is one of the founders of the Robotics:
Science and Systems (RSS) conference. He was one of the program chairs of the
2008 IEEE International Conference on Robotics and Automation (ICRA) and is
the program chair of the 2010 IEEE/RSJ Intelligent Robots and Systems (IROS)
conference. He is the Editor-in-Chief of Autonomous Robots. He has served as As-
sociate Editor of the IEEE Transactions on Robotics and Automation, the IEEE
Transactions on Mobile Computing, and on the editorial board of IEEE Pervasive
Computing.
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Grégory Mermoud École Polytechnique Fédérale de Lausanne,

Switzerland
Mehran Mesbahi University of Washington, Seattle, USA
Nathan Michael University of Pennsylvania, Philadelphia, USA
Dejan Milutinovic University of California at Santa Cruz, USA
Nader Motee California Institute of Technology, Pasadena, USA
Radhika Nagpal Harvard University, Boston, USA
Daniele Nardi Università La Sapienza Roma, Italy
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Part I: Distributed Sensing

M. Ani Hsieh

A significant advantage of distributed autonomous robotic systems lies in their
ability to cover large regions in physical space to achieve sampling in both space
and time much more efficiently than single robot counterparts. However, the abil-
ity for distributed data collection and processing invariably presents challenges at
the intersection of communication, control, perception, and more recently energy
management.

Stirling and Floreano investigates the trade-offs between energy consumption and
deployment time for an aerial swarm of robots in unknown environments. Specif-
ically, they consider three separate deployment strategies and show that the best
approach to reduce energy consumption while maintaining a fast deployment rate
is to control the density of the aerial swarm. This is an exciting result since this
echoes recent results in the studies of starling and locust flocks where swarming be-
havior can be correlated with the density of the organisms. Cannata and Sgorbissa
presents a strategy for coordinating multi-robot teams to achieve coverage of a spe-
cific set of locations in a given workspace by controlling the frequency in which the
robots visit the locations. In essence, this work reformulates the multi-robot cov-
erage problem in the time domain and presents an approach that allows the team
to achieve uniform frequency coverage of the sites of interest. Cortez, Fierro, and
Wood presents the use of mobile communication relays collaborating with mobile
sensing agents to extend the reach of a sensor network while maintaining the overall
connectivity of sensor network. This work furthers our understanding of the impact
of non-uniform sensing and communication ranges on the team’s ability to achieve
the desired level of coverage and presents a system approach towards deriving con-
nectivity constraints in heterogeneous robot teams. Marjovi and Marques an explo-
ration and mapping strategy that enables robot teams to cooperatively seek out and
localize odor sources in unknown environments based on olfactory cues. They show
that topological maps of the environment can be generated and odor sources can be
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found in a distributed fashion by combining odor concentration measurements with
traditional mobile robot sensors.

In addition to considering the trade-offs between communication, control, per-
ception, and energy needs and the impact they have on the overall distributed sys-
tem’s performance, there is the added challenge of working in complex and dynamic
environments. Bhattacharya, Michael, and Kumar presents a generalized Voronoi
decomposition for non-convex environments based on geodesic distances. This en-
ables the design of real-time feedback control laws for sensor coverage in realis-
tic environments. This generalized Voronoi decomposition can be extended for un-
known environments when coupled with entropy-based metrics. Evans, Bahr, and
Martinoli investigates the gap between theory and the real world environmental
monitoring applications. They study the algorithm performance of constraint chain-
ing for data collection for sensor networks handling real data collected in the field
and propose modifications to improve its performance. Lochmatter, Göl, Navarro,
and Martinoli presents a cooperative plume tracking strategy for teams of robots.
The approach specifically leverages the multi-robot’s inherent ability to simultane-
ously sample the odor concentrations at different points in space to determine the
location of an odor source of interest. Umeda, Sekiyama, and Fukuda investigates
the use of an ambiguity index to classify the effectiveness of visual features in a
scene for distributed object tracking by a team of cooperating robots. The authors
show that the proposed ambiguity index can minimize the amount of cognitive shar-
ing in a team of robots and thus result in more effective cooperative object tracking
strategies.

Robust distributed coordination strategies enables more complexity in behaviors
and the chance for adaptation. Martin, de la Croix, and Egerstedt presents a software
framework for dynamic reassignment of tasks among robots. The novelty of this
work lies in the framework’s ability to change how sensors and actuators interact
and interconnect in the reassignment process achieving dynamic reconfiguration of
the networked multi-agent system based on task needs.

The use of distributed autonomous robotic systems to accomplish tasks within
a complex environment with limited resources requires strategies that can leverage
the inherent redundancies within these systems. The work presented in this section
is a nice representation of the ongoing efforts in addressing these challenges.



Energy-Time Efficiency in Aerial Swarm
Deployment

Timothy Stirling and Dario Floreano

Abstract. A major challenge in swarm robotics is efficiently deploying robots into
unknown environments, minimising energy and time costs. This is especially im-
portant with small aerial robots which have extremely limited flight autonomy. This
paper compares three deployment strategies characterised by nominal computation,
memory, communication and sensing requirements, and hence are suitable for flying
robots. Energy consumption is decreased by reducing unnecessary flight following
two premises: 1) exploiting environmental information gathered by the robots; 2)
avoiding diminishing returns and reducing interference between robots. Using a 3-
D dynamics simulator we examine energy and time metrics, and also scalability ef-
fects. Results indicate that a novel strategy that controls the density of flying robots
is most promising in reducing swarm energy costs while maintaining rapid search
times. Furthermore, we highlight the energy-time tradeoff and the importance of
measuring both metrics, and also the significance of electronics power in calculat-
ing total energy consumption, even if it is small relative to locomotion power.

1 Introduction

Autonomous systems must manage their own energy resources to complete mis-
sions successfully [15]. This is notably evident with small aerial robots, which have
severely limited flight autonomy (typically 10–15 minutes [19, 23]). Although en-
ergy efficient algorithms are paramount in creating truly autonomous aerial robots,
prior research is sparse [23]. Previously we developed an algorithm for indoor aerial
swarm search [22] that exploited the ability of our robots to attach to ceilings, sav-
ing energy [19]. This paper expands this work and compares methods to deploy
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a swarm of aerial robots into unknown environments, aiming to reduce the total
swarm energy cost with rapid operation for a search task.

A complex problem in swarm robotics is controlling deployment into unknown
environments. If robots deploy to unnecessary locations, energy is wasted. Further-
more, they may interfere with other robots, e.g. by increasing collision risk [20].
Conversely, if an area receives insufficient robots the task may be unachievable or
performance reduced. Rapid deployment is desired to expedite tasks such as disaster
mitigation. However, time and energy are not independent, and often there is a trade-
off [13, 6, 10]. Previous research considered only ground robots. However, aerial
robots have significantly different energy dynamics, require substantially more en-
ergy to locomote [19], and the small payload entails reduced sensing and processing
capabilities. Time and energy were previously either examined independently, or
only with multi-objective functions that mask trends in the individual metrics. Prior
work also usually neglected the energy consumption of sensors and processors [12].

This paper compares three strategies suitable for aerial swarms, characterised
by minimal computation, communication and sensing requirements. They are suit-
able for microcontrollers rather than powerful CPUs and are simple to implement
to avoid further complicating autonomous flight control. Total swarm energy and
search time are examined in 3-D simulation using a complete energy model vali-
dated on real robots [19]. Finally, scalability performance is examined by increasing
the robot group size.

2 Related Work

In work by Rybski et al. [21], increasing the number of deployed robots led to
the phenomenon of diminishing returns, as proposed by economists [1]. Additional
robots increased performance by decreasing amounts until a peak was reached, after
which additional robots no longer improved performance. Moreover, Rosenfeld et
al. [20] examined scalability in foraging tasks and noted that after a peak in per-
formance, additional robots usually decreased performance (negative returns) due
to spatial constraints and interference. Spatial constraints are stronger in confined
areas, such as narrow corridors, causing congestion and increased collision risk.
Therefore, it is important to control deployment to minimise time and energy costs.

The tradeoff between group size and efficiency was examined by Hayes [6] in a
search task. A multi-objective performance function was used incorporating search
time, energy and robot initialisation costs. This analysis allowed the prediction of
the optimal number of robots to complete the search. However, Hayes’ analysis
assumed an obstacle-free square arena and ignored spatial constraints and interfer-
ence. Similarly, Mei et al. [11] researched methods to determine the optimal group
size under constraints of energy, time and environment area. It was shown that en-
ergy limitations significantly affected the required group size. However, the envi-
ronment size was known a priori and a centralised planner used.
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For operation in unknown environments, Howard et al. [7] developed an
algorithm that deployed robots one at a time, thereby avoiding interference. Each
subsequent deployed robot exploited environment information acquired from previ-
ously deployed robots and was guided to optimal environment locations.
However, Howard’s approach is slow [7]. Alternatively, Zlot et al. [25] present a
market economy-based architecture [5] for efficient multi-robot exploration. This
maximises search area while minimising total travel distance. However, high band-
width communication is required. Both Howard’s and Zlot’s approaches are com-
putationally expensive with centralised processing, usually undesirable in swarm
robotics. Unfortunately, neither authors provide quantitative results for energy or
time costs.

For simple robots with decentralised control, Chang et al. [2] deployed robots
based on perceived local environment size, reducing unnecessary locomotion. When
larger areas are discovered, additional robots are requested to aid exploration, reduc-
ing search time. However, this was assessed with ground robots in a simple discrete
2-D simulator with basic environments that reduced spatial constraints and inter-
ference. Additionally, the deposition of artificial pheromones was used to control
deployment, but no such sensor currently exists for real flying robots.

Alternatively, researchers have developed mechanisms to improve efficiency by
controlling robot activation. For example, Liu et al. [9] examined energy efficient
task allocation in foraging robots. The ratio of active foragers to resting robots was
adjusted based on simple adaptation rules. These rules included internal cues of
successful foraging, environmental cues from collisions, and social cues of suc-
cessful foraging by other robots. However, foraging differs from search because
(un)successful foraging over time indicates the robot’s utility, which can be used
to control activity. Furthermore, foraging often involves retrieval to a communal
nest, facilitating global coordination through local communication. Finally, a basic
energy model was used and time costs were not examined.

In summary, previous research focused only on ground robots, but aerial robots
have considerably different energy characteristics [19]. We compare three strategies
that are scalable, decentralised, require no a priori environment information, and
are suitable for aerial robots with nominal computation, sensing and communication
requirements.

3 Aerial Swarm Search without Global Information

The aerial swarm search algorithm considered here [22] is based on principles of
sensor networks, which perform distributed processing of local information through
wireless communication [7]. This work is based on the quadrotor robots we are de-
veloping for indoor swarming [17]. The robots are equipped with infrared distance
sensors for obstacle detection [17]. A 3-D relative-positioning sensor gives the range
and bearing to nearby robots and low-bandwidth short range communication, facil-
itating coordination [18]. Wireless LAN provides longer range communication. To
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prolong missions the robots can attach to ferromagnetic ceilings [19]. Alternatively,
Gecko inspired dry adhesives [14] or mechanical perching could be utilised [8, 4],
or simply robots could land (merely loosing their elevated perception capabilities).

Robots operate in two control states: “Beacons” or “Explorers”. Beacons are
static robots passively attached to the ceiling to conserve energy and form a robotic
sensor network [19]. Explorers are flying robots, deploying into the environment
guided by Beacons. Beacons sense their local environment and communicate with
neighbouring Beacons to guide nearby Explorers. Explorers start clustered on the
ground below a pre-deployed Beacon. When deployed, Explorers take off and fol-
low the guidance signal of the nearest Beacon, flying from Beacon to Beacon across
the network. Beacons next to unexplored space indicate adjacent locations where a
new Beacon is required. Explorers that arrive at these locations attach to the ceiling
and become Beacons. Beacons can revert back to Explorers once an area has been
searched and redeploy to unexplored areas. We utilise depth-first search [3] which
exhaustively explores a subarea of the environment before searching other unex-
plored areas. This avoids search duplication and unnecessary locomotion compared
with stochastic methods, thus reducing the total swarm flight time [22]. Navigation
in unknown environments is afforded by the hop-counts of local communication
signals propagated across the network [22]. By exploiting the ceiling attachment
capability, the swarm energy cost is reduced by 3–400% [22]. A video demonstrat-
ing the search behaviour in simulation is available online1. A second video demon-
strating the current progress in developing this search strategy on real robots is also
available2, which shows entirely autonomous flight.

4 Deployment Strategies

To reduce energy costs and search time, the initial deployment of robots from the
ground and the redeployment of Beacons from the ceiling once an area is searched
are controlled. Three strategies are compared that are scalable, decentralised, and
require low computational and communication resources. The strategies exploit en-
vironment information as it is acquired by the robots to reduce unnecessary locomo-
tion [7, 2], and reduce diminishing returns and interference between robots [20, 9].
A video showing the three deployment strategies is available online3.

4.1 Linear-Temporal Incremental Deployment (LTID)

The simplest strategy, labelled LTID, deploys robots one at a time with a fixed time
interval between consecutive launches. This was used in our prior work [22] and is

1 http://lis.epfl.ch/˜stirling/videos/Swarm_Search.avi
2 http://lis.epfl.ch/˜stirling/videos/
Eyebot Autonomous Flight.mp4

3 http://lis.epfl.ch/˜stirling/videos/
Deployment Strategies.mp4

http://lis.epfl.ch/~stirling/videos/Swarm_Search.avi
http://lis.epfl.ch/~stirling/videos/
http://lis.epfl.ch/~stirling/videos/
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similar to the linear dispatching presented by Chang et al. [2]. Longer inter-launch
intervals (λ ) slow deployment, but decrease the number of concurrent flying robots.
This reduces spatial interference and unnecessary flight by exploiting environmental
information acquired from the expanding Beacon network. Once a subarea of the
environment has been searched, Beacons redeploy as Explorers to new unexplored
areas. Before this redeployment commences, there may be multiple Explorers flying
into this subarea where they are not required, which is reduced with longer inter-
launch intervals. Thus, LTID reduces energy consumption by reducing interference
and unnecessary locomotion.

To implement LTID, robots are assigned a unique ID {1, ...,N} and initially
launch after λ×ID seconds. Redeploying beacons also wait λ before detaching.
LTID does not adapt online, but λ could be optimised a priori if the type of environ-
ment is known [22]. The advantages of LTID are its simplicity and no requirements
for sensing, communication or significant processing. Therefore, LTID serves as a
baseline strategy from which the other two strategies can be compared.

4.2 Single Incremental Deployment (SID)

SID is similar to LTID and deploys one robot at a time, but waits for the previous
robot to become a Beacon before launching the next. This is similar to Howard et
al.’s [7] approach in that the swarm waits for the previous robot to examine the
newly discovered environment, but no centralised processing or map is required.
SID reduces unnecessary flight time because the next robot will only (re)deploy
once the Beacon network has sensed the environment and perceived if and where
a new Beacon is required. Thereby, Explorers always fly directly to the desired de-
ployment location. To implement SID, the swarm communicates if an Explorer is
flying. This can be achieved by propagating local messages across the Beacon net-
work. However, here we employ a simplified mechanism using long-range wireless
communication. Beacons signal to the whole swarm if they perceive a flying Ex-
plorer and robots only (re)deploy if no signal is received. To ensure only a single
robot deploys at a time, random timeouts are used. When no flying Explorer sig-
nal is present, robots wait a short random time period (typically 1–2s). If after this
period there is no flying Explorer signal, the robot can deploy.

Robots usually deploy more slowly than with LTID, increasing search times.
Therefore, although SID may reduce flight energy consumption compared with
LTID, the energy consumption of sensors and processors may be elevated due to
the increased runtime. Additionally, there may be a robot that is closer to the de-
sired destination due to the redeployment of Beacons, but since the launch selection
is based on random timeouts, the closest robot is not guaranteed to deploy. Vari-
ous strategies exist that would ensure the closest robot is selected [24]. SID is a
fixed deployment scheme without adjustable parameters. SID requires no additional
sensing or computation, but very low bandwidth communication is required for
coordination.
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4.3 Adaptive Group Size (AGS)

AGS is a novel strategy that adapts the density of flying robots, inspired by Liu et
al.’s [9] rules to control robot foraging activity. However, we consider a search task
rather than a foraging task (see Sect. 2), and we aim to explicitly avoid collisions.
AGS initially rapidly deploys robots, every 2–3 seconds. Flying Explorers measure
the density of neighbouring flying robots using their relative-positioning sensor [18]
and will probabilistically land if the density is higher than a predefined threshold.
This decreases the ratio of flying robots, reducing diminishing returns and interfer-
ence. Robots which have landed launch again when there are no robots flying in
the vicinity. The density of flying robots ρ is given by: ρ = ∑N

i=1
4
di

, where di is the
distance to neighbouring robot i. The constant 4 is a normalisation factor such that
a single flying robot 4.0m away (considered a safe flight separation) gives ρ the
unit value 1. If ρ is greater than a threshold τ (typically 3.0–8.0) the robot will try
to land. To prevent multiple robots landing simultaneously, robots wait a random
timeout period (typically 1–2s) while they signal their intention to land. After this
timeout robots can land if no signal of a neighbouring robot’s intention to land is
received. Otherwise, the robot with the highest ID has priority in landing. Robots
could attach to the ceiling [19] instead of landing, but this could interfere with the
Beacon network.

AGS uses the perceived density of flying robots to avoid diminishing returns.
For example, if robots land in high density areas where collision risk is consider-
able, interference is reduced. Furthermore, the perceived density implicitly encodes
local environment information. If many robots are flying in a confined space the
density will be high. Avoiding high densities reduces the deployment of robots to
locations where they may not be required. Therefore, energy consumption is re-
duced by decreasing unnecessary flight time and interference. AGS can be optimised
by varying the threshold τ . No significant processing or high bandwidth commu-
nication is required. However, a sensor is required to measure the density, which
could be simple Time of Flight sensors or local communication instead of relative-
positioning [18].

5 Experimental Method

Comparing strategies requires extensive simulation analysis since it is infeasible
to gather sufficient data for statistical analysis with real flight tests given the large
parameter space and the challenging logistics of conducting numerous flight experi-
ments. Therefore, a realistic 3-D dynamics simulator was utilised [16], as discussed
below in Sect. 5.1

Performance was measured over 100 trials with robots clustered in random start-
ing locations in randomly generated maze-like corridor environments. Environments
were constructed from 40 connected 3×3m cells (see [22] for details). Fig. 1 shows
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Fig. 1 Left: Typical randomly generated maze environment. Right: The swarm deploying
with robots on the ground, a flying Explorer and Beacons on the ceiling.

a typical environment and the swarm deploying with Beacons and a flying Explorer.
For the first experiments 20 robots were available to deploy. Subsequent experiments
assessed the scalability performance, so the number of robots was increased from
20 to 30. We measured search time, coverage area and swarm energy consumption,
calculated with an energy model of the rotor thrust-power curve of a real quadrotor
helicopter [19], shown in Fig. 2. This model facilitated the accurate prediction of
flight endurance within a 1% error. The model was extended to include the energy
used by sensors and processors, detailed in Table 1. This creates three electronics
power consumption rates: when the robot was flying (high power); when a Beacon
on the ceiling (medium power); and when resting on the ground (low power). This
equates to a power consumption of 120W for flying Explorers, 5W for Beacons,
and 0.5W for robots resting on the ground. These rates were validated on real flying
robots [19] and are similar to other rotorcraft, e.g. [23]. Moreover, the performance
trends are robust to changes in model parameters since the power rates are differen-
tiated by an order of magnitude.

Table 1 Power consumption of components used to develop the energy model for aerial
robots

Component Power (W ) Comment
Total rotor power 100–120 Depends on payload [19]
Flight computer 2.44 Sensors & microprocessor [19]
Microprocessor 0.125 Microchip PIC32 40MHz
802.11a WiFi 1.5, 1.22, 0.01 Send, receive & sleep power [15]
Infrared distance sensor 0.165 Sharp GP2Y0A02YK
Ultrasonic altitude 0.015 MaxBotics LV-MaxSonar-EZ4
3-D Relative positioning ∼ 7 For 20 robots [18]
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Fig. 2 Thrust-power curve of the quadrotor propulsion system validated in [19]

5.1 Simulation and Flight Dynamics

A custom 3-D dynamics simulation was developed using the Open Dynamics En-
gine4 (ODE). An input force vector Ftot is applied to a rigid body with mass m
giving accelerations: V̇ = 1

m Ftot . Angular accelerations and torque were neglected
since they are stabilised by the flight controller [17]. Gaussian noise was added to
simulate turbulence and imprecise control, with standard deviations (s.d.) set em-
pirically (2.5×10−2 N) as the platform has not yet been characterised. However, the
altitude fluctuation was modelled from previous work in [17]. Ftot is given by:

Ftot = Fg +Fc +Fd + εN , (1)

where εN is a Gaussian noise vector for roll, pitch and thrust standard deviations:
εN ∼ N (0, σ̂). Fg denotes the platform weight with Fg = [0,0,m ·g]T . Fc is the
control force vector formed from desired pitch fp and roll fp forces, combined with
the altitude control fa from a PID controller [17]: Fc = [ fp, fr, fa]

T . Drag force is
calculated with:

Fd =−1
2

ρV 2ACd , (2)

where ρ is the specific air-density, V is air-speed, A is the frontal reference area and
Cd is the estimated drag coefficient.

Sensor noise was Gaussian with s.d. measured from characterisation experi-
ments: 2.5cm for the ultrasound altitude sensor and 5cm for infrared distance
sensors used for obstacle avoidance. The relative-positioning sensor has been char-
acterised in [18]: the range s.d. is 17cm and bearing s.d. is 6.1◦.

4 www.ode.org

www.ode.org
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6 Results

To compare performances both the total swarm energy consumption and search time
metrics are examined separately. Subsequently, a multi-objective function is used
that linearly combines energy and time into a simple single parameter-free met-
ric, the Energy-Time-Product (ETP), measured in Joule-Seconds (Js) [2]. The ETP
is inspired by the Power-Delay Product frequently used in electronics engineer-
ing. Both energy and time metrics are taken to have equal unit weighting, which
assumes the equal importance of these factors and also avoids arbitrary parame-
terisation. Alternative weighting of parameters is discussed in Sect. 7. With AGS
and LTID we varied the inter-launch interval with λ = 6, 8, 10, 12, 18 and 24
seconds, and the density-threshold τ from 3.0 to 8.0, respectively. Finally, scala-
bility performance is examined by increasing the robot group size. Shapiro-Wilk
tests indicated small deviations from normal-distributions, so Kruskal-Wallace χ2

and Spearman’s Rho rs non-parametric tests were used to examine the statisti-
cal significance of any effects. Medians are shown with standard deviations in
parenthesis.

6.1 Overall Comparisons

Importantly, there was no significant difference in median coverage area (99.4%)
across all strategies (χ2 = 18.42, df = 12, p = 0.1), permitting fair comparisons.
The mean coverage area was 95.7%. Comparing all strategies over all parameters,
the fastest was AGS with τ = 6.0 with a median search time of 307.9s (57.6) (Fig.
3(a)). The most energy efficient was AGS with τ = 4.0, with a median of 178.5kJ
(33.8) (Fig. 3(b)). The slowest strategy was SID taking 1013.9s (118.6), 229.3%
slower than AGS with τ = 6.0. The least energy efficient was LTID with λ = 6 with
a median of 253.4kJ (59.2), requiring 42.0% more energy than AGS with τ = 4.0.
Comparing ETP performances (Fig. 3(c)), LTID suffers from a tradeoff between
search time and energy-efficiency achieving its lowest ETP of 800.5× 105 Js (26.5)
with λ = 10 s. Since AGS showed low energy consumption with fast search times
it produced the lowest overall ETP of 579.7× 105 Js (183.1), with τ = 6.0. Finally,
because SID suffers from slow deployment the median ETP was high, 1866.3×
105 Js (459.8).

With LTID, increasing the time between consecutive robot launches (λ ) signif-
icantly decreased the median swarm energy consumption (rs = −0.47, df = 598,
p < 0.001) and increased median search time (rs = 0.80, df = 598, p < 0.001).
Increasing λ from 6s to 24s reduces the median energy consumption by 27.6%
and increases median search time by 95.6%. Energy consumption is deceased by
reducing robot deployment to unnecessary locations and decreasing interference,
decreasing flight energy. Although energy consumption decreased as λ increased,
the search time increased more strongly, so the median ETP increased.
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SID has no tunable parameters. SID had the slowest search time since only a sin-
gle robot flies at a time. Robots deployed only when and where necessary, which
minimised unnecessary flight energy over all deployment strategies, confirmed with
multiple comparisons at the p < 0.001 level (using Wilcoxon ranksum tests). How-
ever, SID did not achieve the lowest energy consumption because of the energy
consumption of the Beacons’ sensors and processors over the long search duration.
Therefore, even although the power consumption of electronics is small compared
with the rotor power it is important to consider within a complete energy model.
The median ETP was high due to the slow search time.

With AGS, varying the threshold τ significantly affected the median search time
(χ2 = 116.3, df = 5, p< 0.001) and median swarm energy consumption (χ2 = 102.1,
df = 5, p < 0.001). Both energy and time metrics form a ∪-shape. This is because at
low thresholds flying robots have a higher probability of landing when encountering
neighbours, which incurs a time and energy cost. Conversely, increasing τ reduces
the effect of controlling the group size and so increases interference and unnecessary
flight, thereby increasing energy consumption and search time. Therefore, there is
an optimal threshold (τ = 6.0) that minimises the ETP.

6.2 Scalability Performance

To assess scalability performance the median ETP was compared when the num-
ber of robots was increased from 20 to 30. For LTID and AGS the parameters that
minimised the ETP for 20 robots (λ = 10s and τ = 6.0, respectively) were the same
for 26 and 30 robots, so were used for all group sizes. Since increasing the swarm
size can increase the expected coverage area [22] and associated search time and
flight energy, we restricted results to trials that achieved 100% coverage, ensuring
fair comparisons. Results are shown in Fig. 3(d). Increasing the robot group size sig-
nificantly increases the median ETP for both AGS (rs = 0.28, df = 598, p < 0.001)
and LTID (rs = 0.41, df = 598, p < 0.001), but not for SID (rs = 0.007, df = 598,
p > 0.86). LTID increases at a higher rate compared to AGS. AGS minimises the
median ETP over all tested group sizes. The median ETP of SID is approximately
constant because only a single robot flies at a time, so there is no unnecessary flight
time. However, SID never becomes competitive even for large group sizes. The ETP
trends for both AGS and LTID mask a decrease in median search time (9.6% and
9.1%, respectively) and an increase in median energy cost (15.6% and 29.4%, re-
spectively). This is due to the increased parallelisation afforded by additional robots
accelerating the search and consequently increasing flight energy. Importantly, for
all strategies the median ETP (and energy consumption) per robot decreases as the
group size increases, indicating good scalability performance.
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(a) Median Search Time (b) Median Energy

(c) Median ETP (d) ETP Scalability

Fig. 3 Median a) search time, b) swarm energy cost and c) Energy-Time-Product (ETP)
tested with 20 robots over 100 trials. Standard error bars (standard deviation divide by square
root of sample size) are shown. The energy results show the constituent ground, beacon and
flight costs. The inter-launch interval λ of LTID and the flying robot density-threshold τ of
AGS were varied. d) Median ETP performance as the group size increases. AGS has the low-
est energy consumption, fastest search time, lowest ETP and good scalability performance.
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7 Conclusion and Future Work

In this paper we compared three strategies to deploy flying robots for a search task
in unknown environments using a complete energy model for electronics and mo-
tors validated on real flying robots. All strategies were characterised by nominal
computation, memory and communication requirements, and were necessarily sim-
ple to facilitate implementation on aerial systems without further complexifying
autonomous flight control. To summarise:

• LTID demonstrated that slowing deployment facilitates a significant reduction
in energy consumption up to 27.6%, but this increased search time by 95.6%.
This tradeoff can be optimised by adjusting the inter-launch interval. No com-
munication or additional sensing is required and the implementation is simple.
Therefore, LTID serves as a useful benchmark strategy.

• SID ensures only one robot flies at a time and leads to low energy consumption,
but a very high search time. This indicates that mitigating deployment of robots to
unnecessary locations by exploiting acquired environmental information signifi-
cantly reduces flight energy. However, the increased energy consumption of sen-
sors and processors prevents SID achieving the best overall energy-efficiency. No
additional sensing is required, but very low-bandwidth communication is used
for coordination.

• The AGS strategy results showed that, by controlling the density of flying robots,
the swarm energy consumption can be reduced while also achieving rapid search.
AGS require a sensor to measure the local robot density.

With optimal parameters, AGS (τ = 6.0) has an ETP 27.6% better than LTID
(λ = 10s) and 69.3% better than SID. All strategies showed good scalability per-
formance, with a decreased median ETP per robot as group sizes increased; SID
displayed constant performance, but AGS consistently achieved the best ETP.

When comparing algorithm performance, the choice of metrics is crucial. Pre-
vious researchers often examined either the time cost [20] or energy consumption
[9, 7] independently. Alternatively, multi-objective functions are used, combining
multiple weighted metrics, e.g. Hayes [6]. However, this is not straightforward due
to the choice of metrics, weighting and formulation. Additionally, although compar-
isons are simplified, individual metric trends are obfuscated. To clearly understand
the underlying trends, we have shown both energy and time costs independently as
well as the ETP to allow selection of the best energy-time efficient strategy. The ETP
has equal weighting of time and energy costs providing a simple metric. However,
relative weightings could be easily applied to the provided energy and time results,
depending on their relative importance in different applications. The ETP facilitated
comparisons between different robot group sizes during the scalability tests.

This work was confined to one type of corridor environment of a fixed size.
Properties such as size and complexity or the existence of open areas may af-
fect the performance of the three strategies and response to parameters (λ and
τ). These effects were examined with LTID previously in [22]. Summarising, the
gains in energy efficiency with LTID are more pronounced in higher complexity



Energy-Time Efficiency in Aerial Swarm Deployment 17

environments with more corridor junctions. This is because robots will redeploy
to new areas more frequently and experience greater interference. Therefore, it is
expected that these characteristics will generalise to SID and AGS. Such complex
environments are common in buildings such as offices, especially in disaster situ-
ations. It would also be feasible to autonomously optimise the control parameters
based on perceived environmental conditions, a subject of future work. Finally, the
effects of small obstructions (e.g., lights) on the relative-positioning sensor was ne-
glected. Current testing indicates the sensor is robust to small obstructions and ex-
periences only slight attenuation, while large obstacles are handled algorithmically
[22].

Currently we have developed the autonomous flight behaviours of the underlying
swarm search behaviour, validating the feasibility of the approach. In the future we
aim to verify the presented results with real flying robots. We are also investigating
methods to extend these strategies to further reduce flight energy, e.g. by selection
of the closest robot to the desired destination with strategies amenable to swarm
robotics [24]. Additionally we will test all strategies in more varied environments
aiming to draw more general performance predictions.

In conclusion, aerial swarms are gaining interest due to their suitability for many
applications such as search or disaster mitigation because they can rapidly cover
obstacle-rich terrain [22]. The work presented here facilitates the future deployment
of flying robots with limited autonomy to successfully cover larger environments,
while understanding the impact on time costs. The three presented strategies provide
different performances with different sensing and communication requirements, fa-
cilitating selection according to robot capabilities and application requirements.
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Technologies (FET IST-022888) project funded by the European Commission. The au-
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a Swarm of Foraging Robots. In: Şahin, E., Spears, W.M., Winfield, A.F.T. (eds.) SAB
2006 Ws 2007. LNCS, vol. 4433, pp. 14–26. Springer, Heidelberg (2007)

10. Mei, Y., Lu, Y.H., Hu, Y., Lee, C.: Deployment of mobile robots with energy and timing
constraints. IEEE Transactions on Robotics 22(3), 507–522 (2006)

11. Mei, Y., Lu, Y.H., Hu, Y.C., Lee, C.S.G.: Determining the fleet size of mobile robots
with energy constraints. In: International Conference on Intelligent Robots and Systems,
IROS 2004, vol. 2, pp. 1420–1425. IEEE Press, Piscataway (2004)

12. Mei, Y., Lu, Y.H., Hu, Y.C., Lee, C.S.G.: A case study of mobile robot’s energy consump-
tion and conservation techniques. In: Proceedings of the 12th International Conference
on Advanced Robotics, ICAR 2005, pp. 492–497. IEEE, Piscataway (2005)

13. Moscibroda, T., von Rickenbach, P., Wattenhofer, R.: Analyzing the energy-latency
trade-off during the deployment of sensor networks. In: Proceedings of the 25th Inter-
national Conference on Computer Communications, pp. 1–13. IEEE Press, Piscataway
(2006)

14. Murphy, M., Aksak, B., Sitti, M.: Gecko-inspired directional and controllable adhesion.
Small 5(2), 170–175 (2009)

15. O’Hara, K.J., Nathuji, R., Raj, H., Schwan, K., Balch, T.: AutoPower: toward energy-
aware software systems for distributed mobile robots. In: International Conference on
Robotics and Automation, ICRA 2006, pp. 2757–2762. IEEE, Piscataway (2006)

16. Pinciroli, C.: The swarmanoid simulator. Tech. Rep. TR/IRIDIA/2007-025, IRIDIA,
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A Distributed, Real–Time Approach to Multi
Robot Uniform Frequency Coverage

Giorgio Cannata and Antonio Sgorbissa

Abstract. The article proposes a novel distributed solution to the problem of Multi–
Robot Uniform Frequency Coverage (MRUFC in short), in which a team of robots
are requested to repeatedly visit a set of pre–defined locations of the environment
with uniform frequency. With respect to other algorithms in literature, the approach
proposed has extremely low requirements in terms of computational power, does not
require inter–robot communication, and can even be implemented on memoryless
robots, thus being easily implementable on real, marketable robot swarms.

1 Introduction

The article proposes a novel distributed solution to the problem of Multi–Robot Uni-
form Frequency Coverage (MRUFC in short) introduced in [4, 8], in which a team of
robots are requested to repeatedly visit a set of pre–defined locations of the environ-
ment with uniform frequency. The problem has a fundamental importance in many
applications, e.g., surveillance and patrolling, continuous cleaning of crowded areas
(malls, convention centers, restaurants, etc.), serving food or beverages (in hospitals
or in a banquet). However, differently from other problems related to multi–robot
coverage and exploration, it has received only a limited attention. MRUFC shares
some similarities with the Dynamic Vehicle Routing problem, see for example [3]
and the references therein. However the objective of DVR is different, since it aims
at minimizing the expected time between the appearance of a target and the time it
is visited by one of the vehicles.

Almost all traditional approaches to coverage, either single or multi–robot, are
based on space decomposition, i.e, they rely on the idea that the work–area is
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decomposed into subregions and that each robot is assigned a subregion (or set of
subregions) to cover [26, 2, 9, 18, 16, 1]. An exception is spanning tree–based cov-
erage, which envisions a situation in which all robots periodically cover the whole
environment [13, 14, 11]. Spanning tree–based coverage owes its importance also to
the fact that, to the authors’ best knowledge, it is the only approach dealing explicitly
with the problem of guaranteeing that all areas are visited with uniform frequency.

All these approaches have the major drawbacks that they require the robots to
have a complete map of the environment a priori or to build it in run–time, with
obvious consequences on the computational power required on–board for sensor fu-
sion and planning. On the opposite, in order to find solutions that are technologically
feasible at the present state–of–the–art, this work makes the assumption that robots
have low computational power and memory storage, and are able to operate even
when wireless communication is not available or it is severely degraded.

These technological constraints naturally lead to the choice of algorithms be-
longing to the class of the so–called real–time search and ant–like algorithms
[23, 10, 22, 28]. Algorithms of this class usually assume that robots navigate in
a graph–like world which is only locally known, i.e., every robot has only access to
information related to the closer vertex (and, in some cases, to adjacent vertices).
Starting from these assumptions, different algorithms implement different strategies
to find a path to the goal state. The simpler of these methods is perhaps Random
Walk. Assume that the environment is modeled as an oriented graph: when the robot
is in a vertex, it selects a departing edge randomly with uniform probability, which
guarantees complete coverage in a statistical sense as the exploration time tends to
infinite. Edge Counting is a deterministic variant of this idea [21], in which the robot
chooses different edges in circular order in subsequent visits, therefore guaranteeing
that the relative frequency of choices tends to the uniform distribution. Node Count
[23] exhibits an improved behaviour by relying on the idea of associating a value
with each vertex of the graph, which counts how often each vertex has been already
visited so far. When a robot enters a vertex, it increases the value of the vertex by
one: next, it moves to the adjacent vertex which has received less visits up to present
time. Many variants of this simple idea exist (e.g., [27, 5, 23, 22]).

Real–time search and ant–like algorithms are particularly interesting in that they
move most of the burden of computing and memorizing from the searching agent
to the vertices of the graph: the graph itself is not only a model of the topology of
the environment, but it becomes a real physical entity which can be built by leaving
chemical trails on the floor [28], by dropping pebbles [10], and so on. Towards this
end, some works adopt Radio Frequency IDentification (RFID) tags as a reference
technology (e.g., [29, 20, 12]): RFID tags are low–cost, short–range, energetically
self–sustained transponders that can be distributed in the environment and can store
a limited amount of information. Smart–nodes (either implemented as RFID tags or
with a similar technology) can be placed and distributed in the environment prior to
robot operations, and used to build the navigation graph: each smart node contains
navigation directions to neighboring smart nodes, thus allowing robots with local
communication capability to safely execute paths from and to different locations.
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Unfortunately, real–time search and ant–like algorithms in the literature have
two major drawbacks: i) they do not deal explicitly with the problem of guaran-
teeing that all areas of the environment are visited with uniform frequency, which
is the main objective of this work, and ii) in some cases, they make assumptions
which are in contrast with the constraints that has been put, i.e., the absence of
global representations and long–range communication capability. This is definitely
the case of Node Count and its variants: they unrealistically require that a robot in a
given vertex knows how many times neighboring vertices have been visited, which
either requires an internal representation shared between all robots, or long–range
communication capabilities.

The main contribution of this work is the introduction of the novel PatrolGRAPHA

algorithm, which is able to solve MRUFC under all constraints. The approach pro-
posed shares some similarities with [17, 6], which investigate optimized stochas-
tic policies for distributing robots among the vertices of a graph according to a
prescribed distribution. These works are different in that they allow self–loops,
i.e., edges departing from/arriving to the same vertex: under these conditions, the
MRUFC problem can be demonstrated to have always a solution, which is not al-
ways the case when self–loops are not allowed. An additional difference, both with
[17, 6] and with our previous work [4, 8] is the following: in PatrolGRAPHA neither
a centralized controller nor an off–line phase are required to computer transition
rates between vertices or to alter the graph, since adaptation is performed on–line
and fully decentralized during robot operation.

The paper is organized as follows. Section 2 describes the MRUFC problem in
details, and it introduces the novel PatrolGRAPHA algorithm. Section 3 shows ex-
perimental results. Conclusions follow.

2 Multi–Robot Uniform Frequency Coverage

The Multi–Robot Uniform Frequency Coverage (MRUFC) problem consists in a
decision procedure which allows a team of robot to navigate in a workspace mod-
elled as a navigation graph, ensuring that all vertices of the graph are visited with
uniform frequency. Given that:

• GN is a planar, non–oriented graph of arbitrary order, possibly containing cycles,
which represents the topology of the free space, referred to as the navigation
graph. As usual, the navigation graph is better represented through a strongly
connected, oriented graph ĜN , derived from GN by simply doubling all its edges
and assigning them opposite directions (Figure 1).

• S = {si} denotes the finite set of N vertices in ĜN . Each vertex si is associated
with a location in the workspace.

• Ai = {ai j} �= 0 is the finite, nonempty set of directed edges that leave vertex si ∈ S.
Each edge ai j is defined through a couple of indices (i, j), which respectively
identify the corresponding start and end vertices. |Ai| is the dimension of the set,
i.e., the number of edges departing from si.
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• R = {ri} is a set of M robots. Robots are allowed to move in the workspace from
si to s j in ĜN only if ai j ∈ Ai, i.e., if the two vertices are adjacent.

• λλλ = [λ1, · · · ,λN ]
T is a vector which describes the average robot arrival rate to

each vertex si ∈ S, expressed as number of visits divided by time (λi ∈ℜ).

The following objective must be achieved: the M robots must guarantee uniform
coverage of ĜN , i.e., they must move in such a way that, for all si, λi = λ̄ , so that
λ̄ = ∑N

i=1 λi/N. This basically means that all vertices in ĜN must be visited with the
same frequency as time passes.

s1 

s2 

s3 

s1 

s2 

s3 
NG

NĜ

Fig. 1 The oriented graph ĜN built from GN

For a real–world implementation, it is assumed that robots are equipped with
proper algorithms for vertex–to–vertex navigation, as well as for obstacle avoidance
and localization. In particular, it is assumed that vertex si is linked to an adjacent
vertex s j through ai j whenever it is possible to reach s j starting from si through a
“simple motion”, e.g., moving along a straight line1.

Additional implementation constraints are taken into account, which are not nec-
essarily related to the MRUFC problem, but can play an important role to allow im-
plementation on affordable and dependable commercial robots with minimal com-
putational, memory, and communication capabilities.

• Low computational cost. The algorithm which solves MRUFC should be exe-
cutable in parallel on very simple robots with limited computational power.

• Local memory. The graph ĜN should possibly never be stored in robots memory.
Instead, all the information concerning a generic vertex, as well as the edges
departing from it, should be stored into a smart node opportunely located in
the environment2. To help robots to physically navigate in the workspace, every
smart node can store navigation directions to reach neighboring smart nodes.

• Local communication. Robots should be able to communicate only with smart
nodes within a very short communication range, and to indirectly communicate
with other robots by writing to/reading from smart nodes. It is assumed that:
a robot cannot directly communicate with another robot; a smart node cannot
directly communicate with another smart node; a robot cannot communicate with
two smart nodes at the same time.

1 The intuitive notion of “simple motion” can vary depending on the robot kinematics, lo-
calization skills, etc.

2 Smart nodes can be implemented, for example, as active or passive RFID tags, or similar
devices with local communication capabilities and a very limited memory storage.
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2.1 The Basic Navigation Algorithm

In this work, the PatrolGRAPHA algorithm is introduced, which assumes that M
robots execute in parallel a particular instance of Algorithm 1 to move between
adjacent vertices within ĜN .

Algorithm 1. Navigation Algorithm - PatrolGRAPHA

1: sc := sstart
2: while TRUE do
3: acl := choose(sc,PatrolGRAPHA)
4: Move along edge acl
5: sl := succ(sc,acl)
6: update(plc)
7: sc := sl
8: end while

Algorithm 1 itself is straighforward. Line 1 chooses an arbitrary start vertex sstart ,
that can be different for different robots. When the robot is in vertex sc, the operator
choose(sc,Alg) in Line 3 returns one of the directed edges acl ∈ Ac, according to
a strategy that depends on the Algorithm Alg which identifies a specific navigation
strategy. In particular, by temporarily ignoring Line 6, Algorithm 1 constitutes a
basis to describe also the well–known Random Walk and Edge Counting algorithms,
whose behaviour in solving the MRUFC problem has been described in [4], as well
as the PatrolGRAPH∗ algorithm, introduced in [8].

In a real–world implementation, the operator choose(sc,Alg) requires the robot
to communicate with the smart node which stores information about vertex sc, and
to retrieve navigation directions that provide guidance to move towards the next ver-
tex. Line 4 summarizes all procedures that are requested for the robot to move to the
next vertex (including motion control, obstacle avoidance, localization, etc.). As dis-
cussed in the previous Section, it is assumed that each robot is capable to move along
edge acl and to reach the next smart node correctly, i.e., it is equipped with proper
hardware and software subsystems for achieving this. The operator succ(sc,acl) in
Line 5 returns the successor vertex that results from the traversal of edge acl ∈ Ac

starting from vertex sc ∈ ĜN . In practice the output of this operator is the effect of
the actual robot motion.

2.2 PatrolGRAPHA: Policy to Choose the Next Edge

In order to describe the implementation of the operator choose(sc,PatrolGRAPHA),
shown in Algorithm 2, it is necessary to define:

• vi as an integer variable initialized to 0 which counts the overall number of visits
to vertex si;
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• ki j as an integer variable initialized to 0 which counts the number of times that
robots have chosen to proceed to s j after leaving si;

• pi j as a real variable which describes the desired ratio of robots that, after visiting
si, must head towards s j.

In practice, the set of all pi j, (i, j = 1 . . .N), describes a transition matrix P associ-
ated to the graph ĜN . P is necessarily a stochastic matrix [15], i.e., it is subject to
the following constraints:

N

∑
j=1

pi j = 1, (i = 1, . . . ,N) (1)

0≤ pi j ≤ 1, (i, j = 1, . . . ,N). (2)

Algorithm 2. Operator choose(sc,PatrolGRAPHA)

1: vc := vc +1
2: for all j such that ac j ∈ Ac do
3: Δ pc j := kc j/vc− pc j
4: end for
5: l := argmin j(Δ pc j)
6: kcl := kcl +1
7: return acl

The operator choose(sc,PatrolGRAPHA) is shown in Algorithm 2: Line 1 up-
dates the number of visits vc received by sc; Line 3 computes, for every adjacent
vertex, the error Δ pc j between the ratio kc j/vc and the desired relative frequency
pc j; Line 5 picks the edge acl for which Δ pc j is minimum; Line 6 updates kcl . It has
been demonstrated [8] that Algorithm 2 guarantees that the value ki j/vi− pi j → 0 as
the number of visits vi →∞, (i, j = 1, . . . ,N). That is, for every edge ai j, the relative
frequency of the choice ki j/vi tends to the desired transition probability pi j.

In order to analyse the behaviour of PatrolGRAPHA with M robots executing Al-
gorithm 1 in parallel, it is convenient to model the system as a Closed Queueing
Network (CQN), a dynamical model usually found in application domains like pro-
cess automation, communication networks, etc.[7], with the purpose of describing
and analyzing how service centers are allocated to customers in time. In particular,
CQNs are specified by:

• the number N of service centers si (corresponding to vertices of ĜN);
• the number M of customers (corresponding to robots);
• the average arrival/departure rate λi to/from node si (i.e., expressed as number of

arriving customers divided by time). The arrival and departure rate in si are the
same in a CQN (and obviously correspond to the visiting rate), since customers
cannot exit or enter the network from outside;

• the number of servers mi running in parallel at si (i.e., how many robots can
perform the assigned task in si at the same time), the time ti requested to complete
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a task in si and the maximum service rate μi = 1/ti at node si (expressed as
number of robots which can complete the task per time unit);

• a routing policy, expressed through a N×N transition matrix P.

In a CQN, the average arrival rate at steady state equals the average departure rate
for every vertex. Then, it is possible to write flow balance equations:

λi =
N

∑
j=1

p jiλ j, (i = 1, . . . ,N). (3)

By referring to the transition matrix P, (3) can be re–written in matrix form as:

(PT − I)λλλ = 0. (4)

In our case, in addition to being stochastic, P is irreducible, since ĜN is strongly con-
nected by definition (i.e., it is possible to reach every vertex from every other vertex
in a finite number of transitions). According to the Perron–Frobenius Theorem [15],
the eigenvector problem above has ∞1 solutions associated with the eigenvalue 1 as
long as P is a stochastic irreducible matrix. Then, the N components of the eigen-
vector can be expressed as a function of one arbitrary parameter λ̄ .

Equations (3) and (4) are very important since they state that, in order to achieve
a uniform distribution of average arrival rates λλλ at steady state, the only control-
lable variables are the elements of the transition matrix P. As a corollary, it follows
that the parameters mi (the number of robots mi allowed to perform the assigned
task is si at the same time), ti (the time requested to complete a task in si) and ti j

(the navigation time from si to s j) do not play any role in determining the mutual
relationships between the components of λλλ at steady state. Obviously, mi, ti, and
ti j play a role in determining the actual value of the arrival rate: for example, if the
navigation time ti j between vertices increases, the average arrival rate to each vertex
necessarily decreases. However, the fact that, for example, λ3 = 2λ2 (i.e., the arrival
rate at s3 is doubled with respect to s2) depends exclusively on P.

2.3 PatrolGRAPHA: Policy to Set the Elements of P

In [4, 8] it has been shown that Random Walk and Edge Counting cannot provide
a general solution to the MRUFC problem. This also follows from known result
in Markov Chains theory [24]: when using of these algorithms, the average rate
of visits λi that each vertex si of ĜN receives as time passes is proportional to the
number of incident edges |Ai| of si.

More specifically, it is a known result that λλλ has a uniform distribution if and
only if the transition matrix P is a doubly stochastic (bistochastic) matrix [15], i.e.,
its rows as well as its columns sum up to 1. This requires P to be subject to the
following additional constraints:
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N

∑
j=1

p ji = 1, (i = 1, . . . ,N). (5)

In principle, for a fully connected graph, a matrix P subject to all the constraints in
(1), (2), and (5) can be easily found, e.g.:

pi j =
1
N
, (i, j = 1, . . . ,N). (6)

In practice, since the MRUFC problem assumes that the topology of the navigation
graph ĜN is given a priori, it is not possible to arbitrary assign all entries of P. In
particular, pi j can be assigned a non–zero value only if the couple of vertices si, s j

in ĜN are adjacent; when an edge from si to s j does not exist, the corresponding
entry in matrix P is constrained to be zero, and the MRUFC problem might have
no solutions. This happens, for example, in the very simple case in Figure 1 on the
right, where only p12, p21, p23, and p32 can be arbitrarily assigned, whereas all the
remaining elements are constrained to be zero. It is easy to verify that s2 receives
more visits than s1 and s3, since every path between the latter vertices necessarily
passes through the former, which is in the middle between them. Notice also that,
if one is allowed to modify the topology of the graph, a doubly stochastic transition
matrix can be obtained through the so–called Metropolis rule [24], which basically
consists in adding self–loops, i.e., edges which depart from / arrive to the same
vertex. However, self–loops are an obvious waste of time, and therefore they should
be avoided.

Since an exact solution to the MRUFC problem is not guaranteed to exist when
the topology of ĜN is unmodifiable, one could be tempted to search for a solution in
the sense of the least squares. This is the solution adopted by the PatrolGRAPH∗ al-
gorithm proposed in [8], which tries to find an approximate solution to the so–called
inverse problem [19] under topological constraints, i.e., it searches for a matrix P
whose stationary distribution approximately corresponds to the uniform distribution.

By writing λλλ = λλλ (P) to stress the dependency between λλλ and P, the Patrol-
GRAPH* algorithm searches for a matrix P which minimizes the following:

E =
N

∑
i=1

(
λi(P)− λ̄

)2
, (7)

subject to a set of constraints which guarantee that, during the minimization process,
the topology of ĜN is preserved and P is always an irreducible stochastic matrix. It
can be observed that (7) equals zero if and only if λi(P) = λ̄ , (i = 1 . . .N).

Unfortunately, in order to compute all elements of the transition matrix P and
to store them into the smart nodes, PatrolGRAPH∗ requires an off–line centralized
phase prior to robot operation, thus partially conflicting with the constraints that
have been put at the beginning of this Section: the absence of global representations
and long–range communication capabilities.

In order to avoid the off–line computation of the transition matrix P, which is
aimed at guaranteeing a uniform steady state distribution, PatrolGRAPHA allows
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the robots themselves to modify the entries of the transition matrix P as they move
along the graph. Consider Line 6 in Algorithm 1. Whenever a robot reaches a new
vertex sl in Line 6, it is now allowed to update the element plc of the transition
matrix P, i.e., the transition probability from sl to the previously visited vertex sc.
Notice that, since plc is stored in the smart node corresponding to the current vertex
sl , only local communication is required to perform this update.

Specifically, by recalling that |Ai| is the number of edges departing from si, ele-
ments pi j are initialized as follows: if si and s j are adjacent pi j = 1/|Ai|; whereas, if
si and s j are not adjacent, pi j = 0. During operations, if and only if a robot is in ver-
tex sl coming from sc, it is allowed to update plc through the operator updateP(plc)
shown in Algorithm 3.

Algorithm 3. Operator updateP(plc)

1: K1,K2 := constant
2: Δvlc := (vl−vc)/vl
3: if Δvlc > 0 then
4: plc := min(1− ε, plc +K1 Δvlce−K2 vl )
5: else
6: plc := max(ε, plc +K1 Δvlce−K2 vl )
7: end if
8: for all j = 1 to N do
9: pl j := pl j/∑N

j=1 pl j

10: end for

Line 1 chooses a constant value for K1 and K2 (to be experimentally tuned).
Line 2 computes the difference Δvlc between the number of visits received by the
current vertex sl and those received by sc (i.e., the last vertex visisted by the robot
before heading to sl). Next, if Δvlc > 0, Line 4 increases the value of plc, up to
the maximum value plc = 1− ε , with ε > 0. Otherwise, Line 6 decreases the value
of plc, down to the minimum value plc = ε . Notice that the correction made to plc

exponentially decreases (in absolute value) as robots visit sl in subsequent times,
i.e., as vl increases. The upper and lower bounds in Lines 4 and 6 are motivated by
the fact that the topology of the graph should never be altered, which would happen
by setting pi j = 0 for some edge. If, at some time, pi j is decreased to 0, the graph
could be disconnected forever: in fact, if the only path to s j passes through si (i.e.,
s j is not connected to any other vertex), it is possible that s j will never be visited
in the following, thus loosing forever the possibility to re–establish the deleted link.
Finally, Line 8 normalizes the sum of all probabilities pl j to 1 in order to re–establish
the constraints in (1).

The behaviour of PatrolGRAPHA is not formally demonstrated here, and only
a brief explanation of the underlying ideas is given. These ideas will be validated
through experiments in Section 3. Basically, Algorithm 3 searches for a distributed
solution to the minimization problem in (7). The rationale for achieveing this is
the following: when a robot is in sl , it increases or decreases the average flow of
robots λlc(P) = plcλc(P) between sl and sc of a quantity which depends on the
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difference between λl(P) and λc(P), towards the end of achieving λl(P) ≈ λc(P).
In addition, in order to make P converge, similarly to Simulated Annealing [25], the
quantity added to / subtracted from λlc(P) decreases exponentially as the number of
iterations increases, i.e., as sl receives more visits.

It should be noticed that, by recalling that λ̄ = ∑N
i=1 λi/N and by writing sums in

expanded form, the function to be minimized in (7) can be re–written as:

E = (λ1(P)−λ1(P)+...+λ1(P)−λN(P))
2

N2 + . . .+

+(λl(P)−λ1(P)+...+λl(P)−λc(P)+...+λl(P)−λN(P))
2

N2 + . . .+

+(λN(P)−λ1(P)+...+λN(P)−λN(P))
2

N2 ,

(8)

which clearly shows that, by decreasing the difference (in absolute value) of λl(P)−
λc(P) in the second line of (8), one is not guaranteed that the overall value decreases.
In fact, when locally operating on plc, this has a global effect on the eigenvectors of
P, and it is possible that another term of the sum increases (in absoulte value). The
working hypothesis is that, when locally operating on plc according to Algorithm
3, the overall value in (8) decreases more (on average) than it increases. This can
can be said also as follows: the probability that the overall value in (8) decreases is
higher than the probability that it increases. If this hypothesis is true, Algorithm 3
is expected to behave similarly to Simulated Annealing with an energy function E
corresponding to (7), thus guaranteeing convergence to the global minimum as time
tends to infinite.

3 Simulated Experiments

In this Section an assessment of the properties of PatrolGRAPHA is presented. Since
the focus of this article is on the theoretical properties, simulated experiments have
been considered.

Specifically, PatrolGRAPHA is compared with the following algorithms: Ran-
dom Walk, which does not solve MRUFC and therefore is used as a reference;
PatrolGRAPH∗ [8], which yields an optimal solution to the minimization problem in
(7), but requires an off–line phase; Node Count [23], which has more requirements
than all previous algorithms since it needs to know in advance the number of visits
received by all neighbouring vertices. Specifically, PatrolGRAPH∗ requires to know
only the number of visits received by the present vertex, whereas PatrolGRAPHA

requires to remember this information also for the last visited vertex (Line 2 of Al-
gorithm 3).

Algorithms are compared by running them on a set of 50 randomly generated
graphs. Two types of graphs have been considered:

1. graphs with a grid–like topology, built by deleting randomly chosen vertices and
edges from a grid (Figure 2 on the left);

2. graphs with a grid–like topology and no local cut nodes, i.e., nodes whose re-
moval disconnects the graph (Figure 2 on the right).
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Graphs of type 2 deserve a particular attention, since the absence of local cut nodes
is a requirement for spanning tree–based coverage [13, 14, 11]. This is the only
other approach in the literature, to the best of our knowledge, dealing explicitly
with the MRUFC problem.
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Fig. 2 Randomly generated non–oriented graphs used in experiments. Left: grid–like topol-
ogy, right: grid–like topology with no local cut nodes.

Experiments are performed in the following way:

• starting positions are randomly chosen for all robots;
• the navigation time between vertices depends on the travelled distance; a random

delay possibly due to traffic or navigation errors is added;
• the time required to perform a task in a vertex is assumed to be constant; a delay

is randomly computed and added to the task execution time;
• the same experiment is executed with a varying number M of robots (M =

5,10,20).

The typical result of a MRUFC simulation run is shown in Figure 3, which illustrates
experiments with the randomly generated graphs in Figure 2. Figure 3 shows, for
every algorithm, the plot of vi(t) versus t; every curve corresponds to a different
vertex si, and therefore the ideal situation is when all curves are “almost straight”
lines with the same slope.

To compare algorithms, the following quantities are recorded every time step t :

• the number of visits vi(t) received by every vertex si up to time t;
• the visiting rate λ Δ t

i (t) to every vertex si, averaged over the last Δ t time steps as
follows:

λ Δ t
i (t) =

vi(t)− vi(t−Δ t)
Δ t

. (9)

Every t, the mean value λ Δ t
m (t) of λ Δ t

i (t) is computed, averaged over all vertices si,
as well the corresponding standard deviation σλ Δt (t). The ideal situation is when
the coefficient of variation σλ Δt (t)/λ Δ t

m (t) is almost null every t, i.e., the average
visiting rate is almost the same for all vertices. The interval Δ t is chosen in such a
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Fig. 3 Number of visits v1(t), . . . ,vN(t) received by vertices in GN (vertical axis) versus time
(horizontal axis) with the graphs shown in Figure 2. Every curve corresponds to a vertex si.
Left: grid–like topology, right: grid–like topology with no local cut nodes.

Table 1 MRUFC – Summary of Simulated Results

Graph of Type 1 Graph of Type 2
N. of robots

Random Walk
PatrolGRAPH∗
PatrolGRAPHA

Node Count

5 10 20
1.11 0.94 0.80
0.30 0.26 0.22
0.42 0.31 0.23
0.49 0.54 0.44

5 10 20
1.01 0.86 0.74
0.28 0.23 0.21
0.40 0.28 0.21
0.31 0.30 0.29

way that, on average, every vertex is visited 5 times in Δ t. Informally speaking, if
a test returns a coefficient of variation ≈ 1/5, this means that the number of visits
received by a vertex in Δ t time steps is included in the range 5±1 most of the time.

Table 1 summarizes results: all algorithms are executed on 50 randomly gener-
ated graphs of each type in Figure 2, and every test is repeated with 5, 10, and 20
robots. Each cell contains aggregate information about a set of 50 tests executed
with a given algorithm/graph topology/number of robot. In particular, the values
written in the cells correspond to the 90th percentile of the coefficient of variation
σλ Δt (t)/λ Δ t

m (t), i.e., meaning that the coefficient of variation has been below that
value 90% of the time.

It can be observed that, in almost all experiments, Random Walk has significantly
worse performance than all other algorithms. The performance of PatrolGRAPHA

gets closer to PatrolGRAPH∗ as the number of robots increases: in fact, with a higher
number of robots, the convergence to the minimum of (7) is faster. By executing
experiments with a higher number of time steps � 6000, PatrolGRAPHA always
converges to PatrolGRAPH∗, with a transient behaviour which depends on the val-
ues of K1 and K2 in Algorithm 3. Node Count is usually worse than PatrolGRAPHA

and PatrolGRAPH∗. Before PatrolGRAPHA has converged, Node Count sometimes
behaves better, thanks to the fact that a robot in si irrealistically knows how many
times neighbouring vertices have been visited.
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4 Conclusions

This article introduces PatrolGRAPHA, a distributed real–time algorithm which
solves the Multi–Robot Uniform Frequency Coverage problem. PatrolGRAPHA can
be implemented by distributing smart nodes with proper characteristics, such as
passive (energetically self–sustaining) RFID tags with reduced memory storage ca-
pabilities and communication range. This technology allows one to meet all the
additional constraints of Low computational cost, Local memory, Local communi-
cation, which can play an important role in real world implementations.

With respect to the Node Count and the PatrolGRAPH∗ algorithms (whose ability
to solve MRUFC has been discussed in [4, 8]), PatrolGRAPHA offers many advan-
tages: specifically, it does not assume the look ahead capabilities of Node Count,
which requires to know in advance the number of visits received by neighbouring
vertices, and it does not require an off–line phase to properly compute the elements
of the transition matrix P. To the best of our knowledge, PatrolGRAPHA is the sim-
plest algorithm in the literature guaranteeing a uniform distribution of visits over the
vertices of a graph.

The properties of PatrolGRAPHA have been validated through simulated experi-
ments, showing a suboptimal behaviour which is however very close to the optimal
behaviour achieved by PatrolGRAPH∗.
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Connectivity Maintenance of a Heterogeneous
Sensor Network

Randy Andres Cortez, Rafael Fierro, and John Wood

Abstract. In this paper we derive connectivity constraints for a heterogeneous sen-
sor network made up of sensing agents and mobile communication relays. With
these constraints we develop feasible motion sets that can guarantee network con-
nectivity. We also show how to reduce the number of communication constraints to
allow the sensing agents to maximize their feasible motion sets and thus allow for
a larger search area while maintaining network connectivity. A technique for shap-
ing the network configuration is also presented that allows for biasing particular
communication links within the network. Numerical simulations and preliminary
experimental results verify the validity of the proposed approach.

1 Introduction

Recently in the literature, connectivity maintenance has been considered as a
constraint on the reconfigurable sensor network. The constraint of maintaining con-
nectivity between sensor nodes is a relaxation to the typically assumed fixed com-
munication topology. The connectivity constraint complicates the motion planning
problem for the sensor network in the sense that sensors should only move to areas
in the search space where communication can be guaranteed. Typically the connec-
tivity constraint is directly imposed on the sensor network, which may greatly limit
its ability to investigate the search space. To overcome this constraint on the recon-
figurable sensor network, we propose to add mobile communication “relay” agents
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to the communication topology. This allows for the sensor network to have a “longer
reach” to investigate the search space, with the added difficulty of having to control
a heterogeneous team of robots (sensors and relays).

Research in multi-robot coordination typically assumes that the underlying com-
munication topology is fixed and connected, [1], [2]. Recently however, research has
begun to focus on a relaxation of this assumption, namely considering the connec-
tivity of the multi-robot group as being a dynamic topology which should maintain
some connectivity properties. In [3], Dimarogonas and Johansson present a dis-
tributed control law that guarantees connectivity maintenance in a network of mul-
tiple mobile agents. The control law is achieved through a potential field approach
with guaranteed boundedness on the agents input. Michael et.al., [4] implement a
control algorithm that is based on a consensus approach and market-based auctions
on a group of mobile robots. The local connectivity of the group is estimated by
computing the second smallest eigenvalue of the graph Laplacian, similar to the
work in Kim and Mesbahi [5]. In [6], Ji and Egerstedt address maintaining connec-
tivity in rendezvous and formation control problems. Fink and Kumar [7] explore
methods for online mapping of Received Signal Strength Indicator (RSSI) with mo-
bile robots where the RSSI map can then be used for control algorithms requiring
inter-robot communications. Tekdas et. al., [8] study the problem of computing the
minimum number of robotic routers in order to maintain connectivity of a single
user to a base station. In [9] the authors derive a flocking controller to regulate the
distance between vehicles that address coverage and vehicles that address coordina-
tion. The distance requirements for the flocking controller are the communication
range of the vehicle types. In [10] the authors develop a distributed controller to po-
sition a team of UAVs in a configuration that optimizes communication-link quality
to support a team of UGVs performing a collaborative task, however they must as-
sume the UGVs have zero dynamics to guarantee the connectivity of the combined
UAV, UGV network. Stachura and Frew [11] use a fixed planning hierarchy for a
finite horizon optimization that addresses cooperative target localization with com-
munication considerations.

In our approach to multi-robot connectivity maintenance we propose adding spe-
cialized agents that are better equipped (hardware) to relay information over longer
distances to the sensor network. This allows the sensor network to have a longer
“reach” in the search space. It also allows the sensing agents to be built in a way
that the communication hardware can be minimized.

2 Problem Formulation

We begin by considering a heterogeneous team of agents consisting of n sensing
agents and m relay agents in two and three dimensions. Assume the n sensing agents
are equipped with sensors capable of sensing the environment within a finite radius
Rs and communicating within a finite radius Rc(q) ≤ Rcmax . Here we assume that
the communication radius will change based on the positions of the robots. This
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relaxation in the communication range allows us to model, to some degree, the
path loss in the communication channel [12]. Incorporating communication channel
characteristics, which has been largely ignored in the literature to date, allows for
a better system model. Also let us assume that the m relay agents are capable of
communicating over a finite radius Rrc such that Rrc > Rcmax i.e., the relay robots
are better equipped for communication than the sensing agents and the relay robots
communication range is not dependent on location. Consider the area of interest Q,
assumed to be a simple convex polygon with boundary ∂Q, including its interior.
For our mathematical formulation we consider each agent xi to have the following
dynamics:

ẋi = Axi +Bui, (1)

where A is the system matrix, B is the input matrix, ui is the input, and i =
1, · · · ,n+m. We are assuming a linear controllable system under the premise that
the dynamics from both ground vehicles as well as aerial vehicles with an autopi-
lot system can be conservatively estimated in such a way. Here we are considering
our sensor network to be heterogeneous not only because relay and sensing agents
have different communication ranges but also because they play different roles in
the sensor network.

3 Communication Constraints

In our scenario there exist three particular communication link possibilities. The
first being, relay/sensor communication, where a sensor communicates directly to
a relay agent. The second, relay/relay communication, where a relay shares a com-
munication link with another relay agent. The last communication link possibility is
sensor/sensor communication where sensors communicate directly with each other.
For the following formulation let us consider the case where the communication ra-
dius of the sensing robots is not location dependent, i.e., Rc(q) = Rc. Also, let each
agent’s communication range denote the range over which the agent can both send
and receive information.

Similar to the work on homogeneous networks of Bullo et al., [13], we now for-
mulate the connectivity constraint set for each particular communication link pos-
sibility of our heterogeneous network based on the geometry of the communication
radii. For the following definitions we will use B̄(p,r) to denote a closed ball of
radius r centered at p in R2.

Definition 1. (Relay/Sensor connectivity constraint set) Consider two agents, one
relay agent i located at position pi and one sensing agent j located at position p j

such that ||pi − p j||2 ≤ Rrc. Then the connectivity constraint set of agent i with
respect to agent j is

ϒdrs(pi, p j) = B̄(
pi + p j

2
,

Rrc

2
). (2)
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Definition 2. (Relay/Relay connectivity constraint set) Consider two relay agents,
one agent i located at position pi and one agent j located at position p j such that∥∥pi− p j

∥∥
2 ≤ Rrc. Then the connectivity constraint set of agent i with respect to

agent j is

ϒdrr(pi, p j) = B̄(
pi + p j

2
,

Rrc

2
). (3)

Definition 3. (Sensor/Sensor connectivity constraint set) Consider two sensing
agents, one agent i located at position pi and one agent j located at position p j such
that

∥∥pi− p j
∥∥

2 ≤ Rc. Then the connectivity constraint set of agent i with respect to
agent j is

ϒdss(pi, p j) = B̄(
pi + p j

2
,

Rc

2
). (4)

Definition 4. (Connectivity constraint set for relay agent w.r.t. heterogeneous net-
work) Consider a group of agents containing both sensing and relay agents located
at P = {p1, p2, . . . , pn+m}. Then the connectivity constraint set of relay agent i with
respect to all other agents in the group is

ϒdhr(pi,P) = {x ∈ϒdrr(pi, p j)|q ∈P\{pi} s.t. ‖q− pi‖2 ≤ Rrc}. (5)

Before we can state the definition of the connectivity constraint set for a sensing
agent with respect to the heterogeneous network we need some preliminaries. Let
pi be a sensing agent, then

Λss = ∩n
j=1ϒss(pi, p j), where p j ∈ sensors, (6)

Λsr = ∩m
k=1ϒsr(pi, pk), where pk ∈ relays. (7)

Definition 5. (Connectivity constraint set for sensor agent w.r.t. heterogeneous net-
work) Consider a group of agents containing both sensing and relay agents located
at P = {p1, p2, . . . , pn+m}. Then the connectivity constraint set of a sensor agent i
with respect to all other agents in the group is

ϒdhs(pi,P) = Λss∩Λsr. (8)

Figure 1 shows an example of a sensors connectivity constraint set w.r.t. the het-
erogeneous network. The connectivity constraint sets defined in (2) - (8) define the
set of allowable positions that each robot may take such that the communication
network will remain connected. Thus, the connectivity constraint sets define the
feasible motion for each individual robot to remain connected with the network.

3.1 Heterogeneous Proximity Graph

Due to the heterogeneity of our sensor network, we must define an appropriate prox-
imity graph. As a reminder, a proximity graph describes connections between a set
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Fig. 1 Motion constraint set for a sensor
agent (pi) w.r.t. the network, ϒdhs

(pi,P).
p j is a relay agent and pk is a sens-
ing agent. The green area represents the
connectivity constraint set that guarantees
connectivity for sensor agent pi w.r.t. the
heterogeneous network.

Fig. 2 Example of the Gdisk(r(p)) with five
relay nodes and eight sensing nodes. No-
tice that there are many redundant connec-
tions between agents.

of vertexes based on their relative distances. Let us now define the proximity graph
for our heterogeneous network.

Definition 6. (Heterogeneous r(p)-disk graph, Gdisk(r(p))(P)) Two agents pi and p j

are neighbors if they are located within a distance r(p) = Rc if both pi and p j are
sensing agents or r(p) = Rrc if one of the agents is a relay agent, i.e.,

(pi, p j)∈ EGdisk(r(p))
(P) if

⎧⎨⎩
∥∥pi− p j

∥∥≤ Rc and pi, p j both sensing agents∥∥pi− p j
∥∥≤ Rrc and pi or p j is a relay agent.

(9)

An example of the Gdisk(r(p))(P) graph is shown in Figure 2. In the Gdisk(r(p))(P)
graph, edges depend on the agent distances as well as agent connection
combinations.

The heterogeneous r(p)-disk proximity graph, Gdisk(r(p))(P), allows us to rep-
resent the communication links for each agent in the network. It can be seen, that
depending on the configuration of the network there may exist heavy redundancy in
the connections (Figure 2). This redundancy comes at the cost of more constraints
on each agent (equations (5) and (8)), therefore reducing the size of the set of pos-
sible inputs (positions) that guarantee connectivity of the heterogeneous network.
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4 Minimizing Motion Constraints

With a formal way of representing the network communication for each agent with
respect to the heterogeneous group, we now are left with trying to minimize the con-
nectivity constraints in such a way that we maximize the feasible motion sets (areas)
the agents can choose from that still guarantees connectivity at the next time step.
One solution is to take Gdisk(r(p))(P) and run a minimum spanning tree algorithm to
determine a subgraph of the r(p)-disk proximity graph that has the minimum num-
ber of connections needed to remain connected. A key result from modern graph
theory is assuming Gdisk(r(p))(P) is connected there always exist a minimal span-
ning tree (MST) [14]. The usefulness of the minimum spanning tree approach is that
it allows us to weigh connections between agents. This may be useful in enforcing
relay/sensor connections over sensor/sensor connections since relay/sensor connec-
tions offer a greater motion set for the agents as opposed to the sensor/sensor con-
nections because of the larger communication radius. Another reason to bias certain
network connections when possible is because relay nodes may be better equipped
to handle communication data, i.e., higher bandwidth.

4.1 Shaping the Network Configuration

To help bias relay/sensor connections over sensor/sensor connections with respect
to the Minimum Spanning Tree (MST) we now formulate a weighting factor for
sensor/sensor connections. From definitions (2) and (4) we see that the motion
constraint set for relay/sensor connections is larger than sensor/sensor connections
due to a larger communication radius. With the help of Figure 3 we look at the
scenario of one relay and two sensing agents. In terms of the MST, all connections
that have a possibility of being biased can be broken down in this way. For ease of
notation we will refer to the MSTGdisk(r(p))

as just the MST.

Fig. 3 Figure of one relay agent (blue square) and two sensing agents (black circle) used to
formulate weighting factor for sensor/sensor connections
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Let
∥∥pi− p j

∥∥
2 = l, ‖pi− pk‖2 = l1 and

∥∥p j− pk

∥∥
2 = l2. Let us assume that

l < l1 ≤ Rrc and l2 ≤ Rc. From construction of the MST, the red solid edges between
pi, p j, and pk in Figure 3 will be chosen since

l+ l2 < l1 + l2,

l + l2 < l + l1.

To bias the relay/sensor connection (red dotted line) a weighting factor ξ1, must

be constructed such that when l2 = Rc, ξ1l2 ≥ Rrc. Defining ξ1 =
(

Rrc
Rc

+ δ1

)
with

δ1 ≥ 0 we get the following,

ξ1l2 =

(
Rrc

Rc
+ δ1

)
l2,

ξ1l2 = Rrc + δ1Rc,

ξ1l2 ≥ Rrc. (10)

Therefore, with the connection weighting factor ξ1 we now have the following,

l + l1 ≤ l + ξ1l2,

l+ l1 ≤ l1 + ξ1l2.

Weighting the sensor/sensor connection (edge) by a factor of ξ1 allows us to bias the
MST to chose the relay/sensor connections. Figure 2 shows a connected Gdisk(r(p))
graph with many redundant connections. Figure 4 and Figure 5 show the differ-
ence in network connections between the MST and the connection weighted MST
(MSTCW ) respectively, where sensor/sensor connections are weighted by the factor
ξ1. Notice that in the MSTCW graph, the relay/sensor connections are chosen over
sensor/sensor connections.

Fig. 4 Example of the MST for thirteen
agents

Fig. 5 The MSTCW graph for the thir-
teen agents. Notice how the relay/sensor
connections are chosen over sensor/sensor
connections.
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We sum the total areas of the feasible motion sets for each graph representation of
the network in Figure 4 and Figure 5, and see that the Gdisk(r(p)) totalled 167 units2,

the MST totalled 337 units2, and the MSTCW totalled 462 units2. This gives us a
good indication that the MSTCW graph “frees” up more area for the sensing agents
to investigate than the other network graph representations.

Fig. 6 Figure showing the total area covered by the motion constraint sets by the three dif-
ferent graph representations

In a similar fashion we can bias relay/relay connections. This may be advanta-
geous for certain mission objectives or when large amounts of data may need to be
transferred directly to a relay node. It may not be efficient or even possible to send
large amounts of data through a sensing node to reach another relay node.

Using Figure 7, let us assume the minimum distance between any two agents
is ε > 0. ε can be thought of the agent’s physical footprint, i.e., two agents can’t

Fig. 7 Figure of two relay agents (blue
squares) and one sensing agent (black cir-
cle) used to formulate weighting factor for
relay/relay connections

Fig. 8 Example MSTCW for fourteen
agents with both sensor/sensor and re-
lay/relay connection weights



Connectivity Maintenance of a Heterogeneous Sensor Network 41

occupy the same position. Let us also assume that from Figure 7 that l, l1, l2 < Rrc

and for convenience assume l1 < l2 < l. From the point of view of the MST the red
edges between pi, p j, and pk in Figure 7 will be chosen since

l1 + l2 < l1 + l,

l1 + l2 < l + l2.

To bias direct relay/relay connections (Figure 7 red dotted line), we use a weighting
factor ξ2 =

ε
l . Choosing ξ2 in this way insures that a direct relay/relay connection

will be chosen over the multi-hop connection by the MST algorithm in Figure 7,
i.e., relay→ sensor→ relay. This is seen from the fact that,

ξ2l =
ε
l

l,

ξ2l = ε.

Therefore, now the distance between pi and pk is ε from the point of view of the
MST algorithm. Since the minimum distance of any two agents is ε the MST will
choose the direct relay/relay link. Figure 8 shows the network configuration using
both ξ1 and ξ2 as connection weights.

4.2 Properties of the Heterogeneous Motion Constraints

Theorem 1. Given a relay agent, pi, with dynamics described in (1), such that (1) is
at least stabilizable and having a motion constraint set as defined in (5). If pi takes
a goal point gpi ∈ϒdhr(pi,P) at time t1, then pi will be connected with all agents at
time t2 that it was connected with at t1 when it reaches gpi .

Proof. Given the fact that the dynamics of pi are at least stabilizable implies that
there exists a static control law u(t) = −Kx(t) such that the closed loop system is
asymptotically stable, i.e., limt→∞ x(t) = gpi .

By definition gpi ∈ϒdhr(pi,P) which implies that

∀q ∈P\{pi} s.t.
∥∥q− gpi

∥∥
2 < Rrc,

hence pi at position gpi at time time t2 is connected with all p j ∈P that it was con-
nected to at time t1. ��
Theorem 2. Given a sensing agent, pi, with dynamics described in (1), such that
(1) is at least stabilizable and having a motion constraint set as defined in (8). If
pi takes a goal point gpi ∈ϒdhs(pi,P) at time t1, then pi will be connected with all
agents at time t2 that it was connected with at t1 when it reaches gpi .

Proof. Given the fact that the dynamics of pi are at least stabilizable implies that
there exists a static control law u(t) = −Kx(t) such that the closed loop system is
asymptotically stable, i.e., limt→∞ x(t) = gpi .
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By definition gpi ∈ϒdhs(pi,P) which implies that

∀q ∈P\{pi} s.t.
∥∥q− gpi

∥∥
2 < Rrc,

if q is a relay agent and

∀q ∈P\{pi} s.t.
∥∥q− gpi

∥∥
2 < Rc,

if q is a sensing agent. Hence pi at position gpi at time time t2 is connected with all
p j ∈P that it was connected to at time t1. ��

Note that Theorem 1 and Theorem 2 guarantee that the exact network topology will
be preserved when each agent reaches its respective goal point. This implies that if
one minimizes the number of constraints (links) before computing the communica-
tion constraint sets, the “minimized” network topology will be preserved.

5 Case Study: Centroidal Heterogeneous Motion Constraint Set
Configurations

This section looks at the particular situation when the heterogeneous team moves
towards their respective centroid of their feasible motion set. This centroidal config-
uration is a straightforward way to test the claims of Theorem 1 and Theorem 2.

By construction, the centroid C ∗
i of each agents motion constraint set (MSCi)

lives in the interior of its motion constraint set. Therefore by setting C ∗
i as the goal

point for each agent i,∀i = 1, . . . ,n+m, then the heterogeneous team should remain
connected when each goal point is reached by the respective agents. Figure 9 depicts
the centroidal heterogeneous motion constrain set configuration for two relay agents
and one sensing agent. The stars denote the centroid of each agents constraint set.

Algorithm 5.1. Centroidal Behavior (gpi = C ∗
i )

while t < tfinal do
for xi = 1, . . . ,n+m do

Calculate C ∗i from MCSi (Equations (2)- (8))
gpi ⇐ C ∗

i
while Δ t < Ts do

ui(t) =−Kxi(t)
end while

end for
end while

For this simulation, we set Rc = 3 m, and Rrc = 10 m. We use m = 4 relay agents
and n = 6 sensing agents initially in a random configuration but in such a way that
the heterogeneous team is initially connected. Each agent i,∀i = 1, . . . ,n+m, then
uses its neighbors of the GMSTCW ,G graph to calculate the centroid of their respective
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Fig. 9 Figure showing the centroidal het-
erogeneous motion constraint set config-
urations. Each respective agent calculates
its own centroid w.r.t. its constraint set and
then moves towards it.

Fig. 10 Centroidal configuration for a het-
erogeneous team that moves towards goal
points that are the centroid of their respec-
tive motion constraint set.

motion constraint set. Each agent is modeled as a double integrator (1), and a state
feedback control law is used to drive the agents from their current position to their
respective goal points (C ∗

i ). Every Ts = 0.05 s, position information is exchanged
among the team members and an updated GMSTCW ,G graph is calculated. Based on
the new information, new centroids are updated and used as the goal point. The
simulation lasts for a total of five seconds.

Fig. 11 The second smallest eigenvalue of
the Gdisk(r(p)) graph during simulation of
the centroidal behavior

Fig. 12 The second smallest eigenvalue of
the GMSTCW ,G graph during simulation
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Figure 10 shows the final configuration of the heterogeneous team after five sec-
onds of the centroid seeking behavior. The final configuration is reasonable since by
design the algorithm tries to keep each agent “equidistant” from agents it shares a
communication link with. Since only sensor/sensor connections were weighted for
this simulation and due to the networks initial configuration we end up with this
uniform mix of relay/sensor links. However this is not always the case. Figure 11
and Figure 12 show the connectivity with respect to the second smallest eigenvalue
criteria (i.e., λ2 (G ) > 0 ⇒ G is connected) for the Gdisk(r(p)) and GMSTCW ,G graph
respectively. We see that both graphs stay connected at all times (λ2 (G ) > 0) how-
ever, only the GMSTCW ,G graph is used to calculate the constraint sets. Note that the
larger λ2 (G ), the more connections exist in the graph. Figure 11 shows that in the
Gdisk(r(p)) graph there exist redundant links that allows for some robustness to node
failures, however it is unclear at this point to what extent this is true.

5.1 Hardware Experiments

For the hardware implementation of the communication constraints, we chose to
implement Algorithm 5.1 on a single relay robot due to the lack of a larger ex-
perimental space. Two sensing robots were given predefined trajectories and were
tasked with taking light intensity measurements along these trajectories. The sens-
ing data is then exchanged between the agents at a rate of 5 Hz. The relay robot
calculates its feasible motion set based on the positions of the sensing agents and
then moves towards its centroid. Position information of the sensing agents were
updated every Ts = 0.5 s. For this experiment we used Rrc = 3.2 m and Rc = 1.0
m for the communication radius of the relay and sensing agents respectively.
The ad-hoc network consisting of three XBee wireless RF modules were used to

Fig. 13 Diagram of hardware experiments
using the centroidal heterogeneous motion
constraint set configurations

Fig. 14 Experimental snapshot showing
the two sensing agents taking light inten-
sity measurements over the search space
and a single relay agent maneuvering to
keep the network connected
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communicate sensing data between robots. This allowed for the light intensity map
to be built in a distributed fashion. A wireless local area network (WLAN) was used
to send a real-time light intensity map from the relay robot to an end user using a
laptop outside the experimental area. Figure 15 shows the evolution of the second
smallest eigenvalue of the Gdisk(r(p)) graph. Notice that the heterogeneous network
stays connected for the entire experiment.

Figure 13 shows a diagram of how the experiment was implemented and
Figure 14 shows a snapshot of the hardware setup.

Fig. 15 The second smallest eigenvalue (λ2) of the Gdisk(r(p)) graph during experiments of the
centroidal behavior. The network remains connected since λ2 > 0 throughout the experiment.

6 Conclusion and Future Work

In this paper we presented a framework for deriving motion constraints for a het-
erogeneous group of sensing and mobile communication relay agents such that net-
work connectivity can be maintained. We also showed how these constraints can
be minimized to allow for a larger motion area for the sensing agents while still
maintaining network connectivity. Lastly, weighting factors were derived that allow
for biasing particular communication links. This framework leads to the possibil-
ity of using heterogeneous sensor networks for prioritized search and surveillance
problems where network connectivity is an underlying constraint. Through experi-
mentation we showed that our framework can be implemented in real hardware.

Future work entails incorporating the derived motion constraints with our recent
work on prioritized sensing [15]. This integration will allow for a prioritized search
of an area while taking into account communication constraints of the network.
Robustness of our approach to node failure is also an area of future research.
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Multi-robot Topological Exploration Using
Olfactory Cues

Ali Marjovi and Lino Marques

Abstract. This paper presents a distributed multi-robot system to search for odor
sources inside unknown environments. The robots cooperatively explore the whole
environment and generate its topological map. The exploration method is a decen-
tralized frontier based algorithm that is enhanced by considering odor concentration
at each frontier inside its cost/gain function. The robots independently generate local
topological maps and by transferring them to each other, they are able to integrate
these maps and generate a whole global map. The proposed method was tested and
validated in real reduced scale scenarios.

1 Introduction

Search and rescue operations inside buildings, caves, tunnels and mines can be ex-
tremely dangerous tasks. An example of an extremely risky situation is the human
operation inside an industrial warehouse during a fire. In these cases the human
senses can become severely impaired: the visibility will be reduced by the smoke,
the noise caused by the fire will make it impossible to communicate, and addition-
ally dangerous vapors and toxins may be released. The use of autonomous robots
to assist such tasks in complex environments reduces the risk of these operations.
Robots can search for toxic chemicals and other targets while they explore the en-
vironment, providing real-time data about the discovered map and the status of the
facility. It is well known that multi-robot systems can be faster and more robust
doing a given task than single robot systems, but the reverse side of such benefits
are the difficulties of efficiently coordinating those multiple robots, and accurately
merging all the data gathered individually by each of them.
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Fig. 1 Robots searching inside a warehouse composed by multiple straight corridors

The problem of search and exploration with multiple robots in an unknown envi-
ronment can be stated as following; Consider a group of N mobile robots, moving
in R2 that are labeled as R1,R2, ...,RN . Each robot Ri(i = 1, ...,N) is able to com-
municate with the other robots localized at a short distance range Δ . The robots
are equipped with sensors for measuring the odor intensity and air flow direction.
There are unknown number of odor sources in the environment which emit odor gas
into the area. There is no central base-station for the system. The robots should act
separately and independently from the others. There is no global positioning system
and the odometry of the robots is not very accurate. There is no knowledge about
the environment before the mission except that it is similar to a structural building
containing corridors, corners, branches, crosses, etc. similar to a warehouse (Fig.
1). The problem is to localize all the odor sources in the environment, explore the
whole area, and generate a topological map of the environment.

The authors have been working on the problem of finding odor and fire sources
with robots in previous studies [1, 2, 3, 4, 5]. This current project tries to address
the problem of odor source searching in unknown environments by complementing
it with the environment exploration and mapping.

The cooperation, communication, and management of the robots in a multi-agent
system can be done either in centralized way by using a base station as the server,
or decentralized way by having a distributed behavioral based algorithm (like in
[6, 7]). Lacking a central station makes it difficult to distribute the tasks between
the robots. Since the environment is unknown, the robots are not aware of the tasks
before exploring the area, i.e. there can not be any kind of task allocation before
the mission. Task allocation must be done during the mission automatically by the
robots which are participating in the search and exploration mission.

Singh and Fujimura [8] presented a decentralized online approach for hetero-
geneous robots. In their method, most of the time the robots work independently.
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Fig. 2 Multi-robot frontier-based search and exploration

When a robot finds a situation that is difficult to solve by itself, it sends the problem
to another robot which may be able to solve the situation. Yamauchi [9] proposed a
distributed method for multi-robot exploration, yielding a robust solution even with
the loss of one or more vehicles. A key aspect of this approach involves sharing
map information among the robotic agents so they execute their own exploration
strategy, independently of all other agents. While this technique effectively decen-
tralizes control, exchange of map information is not enough to prevent inefficient
cooperative behaviors. As a simple conclusion, “task sharing” is tightly related to
two other issues; “cooperative technique” and “map merging”.

If the robots know their relative locations and share a map of the area that they
have explored so far, then effective coordination can be achieved by guiding the
robots into different, non-overlapping areas of the environment [6]. In other words,
effective coordination can be achieved by extracting exploration frontiers from the
partial maps and assigning robots to frontiers based on a global measure of per-
formance [6, 7]. Frontier based exploration is a simple approach for decentralized
multiple robot task allocation (Fig. 2). Frontiers are the borders of the partial map,
between explored free space and unexplored area. These borders, thus, represent
locations that are reachable from within the partial map and provide opportunities
for exploring unknown terrain, thereby allowing the robots to greedily maximize
information gain [10]. However, methodologies should have a strategy to not send
two robots toward the same frontier.

While multiple robots cooperatively explore an environment, information from
individual robots must be integrated to produce a single globally consistent map.
This is a difficult problem when the robots do not have a common reference frame
or global positioning system [11]. Topological maps provide a brief characteriza-
tion of the navigability of an environment, and, with measurements easily collected
during exploration, the vertices of the map can be embedded in a metric space [11].
These maps use a graph to represent possibilities for navigation through an environ-
ment.The current proposed approach employs a topological mapping technique, so
the robots only exchange a few environmental features.

Most of the existing approaches to coordinate multi-robot mapping assume that
all agents know their locations in a shared (partial) map of the environment [2, 5, 6,
7]. Having a general positioning system is a constraint in unknown areas where there
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is no knowledge about the environment. This paper deals with two issues in this
aspect, the first dealing with uncertainty in localization of each robot by correcting
it by the information of the partial maps, and the second presenting an approach for
map merging in the case that the robots do not know their relative locations and their
coordinate systems are different with each other.

Using topological maps, the problem of “map merging” is reduced to the “graph
merging” problem that is already addressed in several ways [11, 12, 13]. Whereas
most approaches to topological map merging and related problems have focused on
using either map structure [14] or map geometry [15], our algorithm takes advan-
tage of both. Similar to [11], the use of map structure allows quick identification
of potential vertex matches in the maps (and rejection of mismatches), while the
use of map geometry enables the algorithm to directly merge maps with multiple
(disconnected) overlapping regions. In another words, the algorithm in [11] uses
both the structure and the geometry of topological maps to determine the best cor-
respondence between maps with single or multiple overlapping regions. However,
if the geometric data of the local maps are not obtained through a unique coordinate
system this method (in [11]) will not be functional.

As already stated, the exploration must be done in a way that the group of robots
automatically intends to look for the odor sources in the environment. Over the past
years, odor localization has become recognized as a valuable area of robotics with
practical applications. Most of related works to the problem have focused on mo-
bile robots at a scale of the order of tens of centimeters, operating in open areas
free of obstacles with a background fluid flow. Fluid flow in these environments is
dominated by turbulence. The odor is carried downwind from the source forming
a plume. Due to turbulence, the plume meanders, and the chemical concentration
within the plume is patchy [16]. The researchers have developed methods that em-
ploy combinations and variations of plume acquisition and plume upwind following
using reactive control algorithms. However, most of the significant projects have ad-
dressed the problem with a single robot [1, 17, 18, 19] and/or in open, free obstacle
spaces [19, 20]. However, this paper attends to fulfill the goals using multiple robots
in a structural environment (similar to a real building of a warehouse).

2 The Proposed Method

This section explains the concept of the proposed multi-robot cooperation tech-
nique. This method is illustrated in the schematic diagram of Fig. 3. As shown in
the diagram, Some of the tasks of the diagram are briefly described below.

2.1 Olfactory Search and Exploration Algorithm

It is desired to find odor sources and cover the whole environment as fast as possible.
Therefore, it is essential that the robots share their tasks and individually achieve
the objectives through optimal paths towards the odor sources. In an unknown
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Fig. 3 Software architecture

environment, the immediate goals are the frontiers. Most of the time, when the
robots are exploring an area, there are several unexplored regions, which poses a
problem of how to assign specific frontiers to the individual robots without existence
of a specific task allocator. In the proposed approach, the robots firstly decide to ex-
plore the frontiers which indicate higher odor concentration. The robots must avoid
selecting the same frontier, this may result in collision concerns. Another problem
is the lack of base station, so the robots should be able to explore autonomously
and also avoid collisions between themselves. To address these problems, the pro-
posed method is based on a behavioral exploration algorithm that is presented in
algorithm 1.

Algorithm.1 describes the core of the decision making technique of the proposed
method. To briefly describe this algorithm; the robots start exploring the environ-
ment independently. Each robot looks forward to get into new features in the en-
vironment. It generates its own local topological map out of the extracted features
of the environment and also transmits this local map to the other robots which are
working on the same environment. Once the robot is in the situations that has to
make a decision to select its future path (e.g. in the branches), it first measures the
odor concentration in that place. If the odor concentration is more than a certain
threshold, it means that the robot is in the zone of an odor source and it must go
to the direction of up-wind in order to localize that. In this case the robot takes an
action to go towards up-wind.
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Algorithm 1: Odor source searching and map exploration algorithm

while there is at least one unexplored frontier in the map do1
repeat2

Go forward and follow the potential field algorithm();3
until getting a different feature in the environment;4
if the new node exists in the map then5

Update map’s data();6
Correct the odometry error based on the feature data();7

else8
Add new node to map();9

Send the new local map to the other robots();10
if the current node has any unexplored link then11

M = Measure the odor concentration();12
D = Detect the wind direction by anemometer();13
if (M >odor threshold) and (D is not explored) then14

Set the new Objective to go(D);15

else16
F=Find unassigned unexplored frontier with highest Utility-Cost();17
D = Calculate the best path to take based on the A* algorithm();18
Set the new Objective to go(D);19

if M >Odor Source Threshold then20
Report this place as an odor source to all other robots();21

End of algorithm22

However if a robot is travelling inside the explored area and wants to select a fron-
tier to explore; the frontier is selected based on the cost of reaching it and the utility
it can provide to the exploration. The cost is calculated through the A* method,
where it simultaneously determines the optimal path to reach the frontier and its
distance. Therefore, the cost is proportional to the distance that the robot has to pass
to reach the frontier.

cost = dist(A∗i=0,n[(XR,YR),(Xfi ,Yfi)])
where (XR,YR) is “position of the robot”,
(Xfi ,Yfi) is “position of the frontier i”
and n is “number of frontiers”.

The utility depends on the level of odor concentration in that frontier, which
means that if there are several frontiers at similar distances, the robot will go to the
one that has higher utility, i.e. higher odor concentration;

utility(i) = Odor Concentration(i) ∀i ∈ {1..n}.
This procedure will make the robots disperse and explore the environment in an

efficient way towards odor sources.
The robots generate the topological map of the environment during their search

and exploration mission. Within the topological map, besides having information
regarding the kind of nodes, their position and the odor concentration in that feature,
it also has data describing the location of the robots and their frontier target. Through
this data, a robot can see which frontiers are unexplored, their position and if any
robot has targeted them as its objective. Therefore, the robots will not attend to
explore the same frontiers. Each robot is aware of the frontier that the other robots
have aimed to explore, so it will choose another frontier that is unexplored and
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unassigned to any other robot. As a result, the robots will autonomously pick up the
tasks in a way that not any frontier will be assigned to more than one robot.

2.2 Feature Extraction

With the type of environment considered in this paper, there are five types of fea-
tures that can be extracted from structured environments; corridors, corners, crosses,
branches (3-way junctions) and dead-ends. The robots should recognize environ-
mental features based on the distances from left, right and front measured by range
sensors. Fig. 4 is an example that shows how robots detect corridors and branches
by their sensors. Since “feature extraction” is not the main theme of this work, this
paper does not go to its details.

Fig. 4 Feature extraction, left: corridor, right: branch

2.3 Map Merging

Consider several robots exploring a single environment while each one has its own
coordinate system. Their axes of X and Y do not match with each other and more-
over they do not know where the reference point of the other’s localization system is.
Each one of them is generating the topological map of its visited local area. They are
simultaneously sending these local self-generated topological maps to each other.
The problem is “how each one of them can integrate the data coming form the oth-
ers to its local map and generate a bigger map?”. Fig. 5 shows an example of this
problem. There is no central station unit for attuning the robots; moreover, there is
not any specific landmark in the environment. Therefore, the robots should solve the
problem in a distributed way.

Similar to [11], in this method, the generated map represents more than just the
structure of the environment. Additional information, such as the degree of vertices,
the orientation of edges at vertices, and other attributes, is recorded and stored in
annotations of the graph. Fig. 7 shows an example of the topological map’s data
with brief descriptions.

The next step is to match the topological maps and generate a merged global map
out of them. Since the topological map includes geometric data of each node, we
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Fig. 5 An environment being explored by two robots with different coordinate systems

Fig. 6 Matching the generated maps of two robots exploring the environment in Fig. 5

Fig. 7 An example of topological map data

can consider the maps as several subgraphs that belong to a unique graph. Now the
problem of map merging is converted to the standard well-known subgraph isomor-
phism problem.

We considered the problem of “map merging” as a “graph matching” problem
(see Fig. 5 and Fig. 6). One of the problems in graph matching is error-tolerant
subgraph isomorphism. The robots should identify a common subgraph when there
may be missing vertices and edges. Solutions to this problem are generally evaluated
in terms of the “edit distance”, the smallest sequence of elementary graph operations
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(i.e., substitution, deletion, insertion) that transforms one subgraph into the other.
When a robot cannot reliably detect “places” or when the environment is dynamic,
the resulting topological map may have missing vertices and edges.

Common subgraphs H1 = [V,E,k] (where V is the set of vertices, E is the set of
edges and k is the graph size) and H2 = [W,F,k] of two given graphs G1 and G2

are those, of equal size k, that are isomorphic to each other. This means that there
should be such numeration of subgraphs’ vertices x(i) and y(i), that :
∀i, j ∈ {1...k}

Equivalence vertex f unction(vx(i),wy(i)) = true (1)
Equivalence edge f unction(v(e(x(i),x( j)), f(y(i),y( j))) = true

“Equivalence vertex f unction” : Two vertices are equivalent if and only if their
environmental features match with each other.

“Equivalence edge f unction” : Two edges are equivalent if their lengths are ap-
proximately equal and their connecting vertices are equivalent.

In other words, all pairs of matching vertices in the subgraphs are connected by
matching edges (including the virtual null edges). Now we just look for numbered
sets X = {x(i)}k

i=1 and Y = {y(i)}k
i=1, satisfying conditions (1). The major issue here

is to define the “Equivalence vertex function” and “Equivalence edge function”
functions. Two vertices are equivalent if and only if their environmental features
matches with each other and two edges are equivalent if their length is almost equal
and their connecting vertices are equivalent. By that, the subgraphs match with each
other regardless to the positions of the vertices but based on the topology of them.

The project has stated that the robots start from the same point (usually an en-
trance of the building) at the beginning of the mission. By this assumption it is
guaranteed that the first vertex of all the local maps is from the same point, there-
fore the graphs always have at least one common subgraph and the robots are able
to merge their maps in any case, while coordinate systems are not matched.

The value of k (common subgraph size) is a critical issue, Based on the experi-
ments that we had in simulations and also in the real world, we figured out that it is
good enough to set k to five. This means that if two robots find a common subgraph
with five vertices, they can surly merge their local maps together.

Here is a description of the map merging method. Whenever a robot finds a new
feature in the environment, it adds this feature as a new node to its local map and
sends a message to all the other robots and reports the new map. In the other hand,
each robot has a running memory-resident program that always is listening to the
network and receives all the messages that are sent by the other robots. When a
robot receives a message that shows another robot has found a new feature in the
environment, it starts the hypothesis building process by creating the list of all ver-
tices in the local topological map that are structurally compatible with the new map.
Vertexes are tested for compatibility by examining their attributes: exactly known
attributes (e.g., vertex type) must match perfectly; inexactly known attributes (i.e.,
due to measurement error) must be compared with a similarity test. Finally, this
robot can find a common isomorphic subgraph and will modify its own local map.
Therefore all the robots are able to merge their local maps with each other without
having a base station.
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Once the robot finds the subgraph in another map that is isomorphic to a subgraph
of its own map, it will merge these maps with each other after finding the geometric
transform function that converts the positions of the vertices of the second map to
its current map. Since we have used a position correction method (described in the
next section) that corrects the odometry of the robots, a linear transform function is
good enough to convert the coordinates of two maps to each other. The transform
function is found by a simple geometric calculation. Finally, the robot is able to add
all the nodes of the other map to its own map after transforming their positioning
data to its coordinate system.

Robots localization is a key issue in multi-robot mapping and exploration. There
is no global or local positioning system or any kind of landmark or beacon for lo-
calization in this project. The only tool that the robots have for determining their
position is their odometry. However, the odometry is unreliable because of uneven
floors and wheel slippage. It is therefore necessary to augment the localization ac-
curacy by measuring position of robot relative to known objects in the environment.

Normally odometry errors accumulate incrementally as while as the robot is trav-
elling, therefore, the robot’s odometry is more accurate at the beginning of an exper-
iment and it loses its accuracy during the test. If the robot enters to an environmental
feature that has been already explored, it can look at the map and find the start po-
sition of that feature, then correct its (x,y) based on the data that has been already
stored inside the map. It does not matter if this feature was added to the map by the
current robot or by another robot in the team, since the feature has been added to the
map in the past; it means that the location that was saved in the map is more reliable
than the odometry of the robot. This method is only used when the robot is passing
an area that had been already explored.

Some other issues in multi-robot search and exploration, namely “feature extrac-
tion”, “olfactory sensing”, “communication” and “motion control” are out of scope
of this paper and mostly were already addressed in [1, 2, 5] by the authors.

3 Experiments

The proposed algorithm has been tested and validated both in real reduced scale
scenario using iRobot1 Roomba robots and in simulation using the Payer/Stage en-
vironment [21]. The Roomba vacuum cleaning robot is an attractive research plat-
form since it is inexpensive, readily available, and can be fully monitored and com-
manded through a serial port interface. In the current work, a set of Roombas were
upgraded with small laptop computers (ASUS Eee PC 901) running a Linux based
operating system and the Player environment. The computers interface through a
micro-controller board with a set of five sonars, 2D anemometer and a gas sensing
board (see Fig. 8). The gas concentration was measured with a custom sensing board
based on metal oxide gas sensors (Figaro2 TGS2620). The directional anemometer

1 http://www.irobot.com
2 http://www.figarosensor.com

http://www.irobot.com
http://www.figarosensor.com
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Fig. 8 iRobot Roomba robot equipped with a laptop, a sonar array, gas sensors, and 2D
anemometer

was based on self heated NTC3 sensors placed around a triangular prism and pro-
cessing the raw measurements with a method similar to the one previously described
in order to estimate the wind direction [22]. The Player/Stage driver for Roomba
robots makes it possible to run the same code either in simulation or on the real
Roomba robots. The sonars range was approximately 1.5 m while the biggest width
of reduced scale testing environments is about 40 cm.

During exploration and navigation, the robots are simultaneously acquiring in-
formation from the environment. Given the structure of the considered environment,
mainly corridors, if a robot is travelling in the upwind direction and the gas concen-
tration decreases suddenly, that means that the robot has just passed through an odor
source. On the other hand, if the robot is travelling in the downwind direction and it
starts detecting a high concentration of odor, it means that there is an odor source in
this location.

The proposed method was tested in different small scale maze-like environments,
like the one shown in Fig. 9. The shown testing arena, with 3× 4m2 area by 0.5
meters height, has controlled ventilation through a manifold that extracts air from
the testing environment through a honeycomb mesh integrated into one of the walls.
The opposite surface of the environment contains a similar mesh that allows the
entrance of clean air that flows through the environment. Controlled gas sources
are simulated with ethanol vapor, generated using bubblers and pumped to different
localizations of the environment through a set of PVC tubes.

In order to evaluate the method in terms of odor source searching, the algorithm
was experimented in the real world once without any odor source and another time
with existence of an odor source. By comparing the results and analyzing the be-
havior of the robots, the functionality of the method was validated.

3 Negative Temperature Coefficient.
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Fig. 9 Three robots exploring a gas free en-
vironment

Fig. 10 Three robots exploring the environ-
ment and finding the odor sources

Fig. 11 The generated map for the environment in the Fig. 10

Fig. 9 shows three robots exploring a small maze and finding an odor source. In
this experiment there were no odor sources. All robots started from the same point
but not at the same time. We intentionally ran the robots a few seconds after each
other. The red footprint shows the first robot’s path, the blue footprint is related
to the second robot and the green shows the footprint of the third robot. Fig. 11
shows the topological man of testing environment generated by the robots. The full
algorithm is functional and it works in different maze structures and with different
number of robots. For an example of the coordination between the robots, in Fig. 9
when the second robot reached the junction it figured out that the path in the front
was already explored so it chose the left path.

The same maze structure was tested with the same robots with adding an ethanol
odor source in the left side of the environment. The results show the effect of odor
concentration on the behavior of the robots. Fig. 10 shows the path that robots took
during exploring the environment. The first robot in the first branch made decision
to go to the left-way because of a high clue of the odor and wind speed in that
direction (red footprints).

The most important parameter for evaluation of the method is the exploration
time. The environment shown in Fig. 9 was tested by one, two and three Roomba
robots separately, once without having any odor or gas source, and once with having
an odor source releasing gas in the environment. Fig. 12 shows that the exploration
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Fig. 12 Exploration time Fig. 13 Reaching the target (the odor source)

time is a bit more, with having gas cues, however it is not a big difference and
they are still comparable. Fig. 13 shows the time to reach the target (the location of
the odor source) in these two scenarios. The chart shows that the robots reach the
target much faster with having gas cues rather that without having it, which proves
the functionality of the algorithm. Each result is the average of five similar tests.
Different tests with constant conditions had similar results with about eight percent
variance. The maximum speeds of the robots were kept constant in all the tests.

4 Conclusions

A proposed method for multi-robot odor source search and exploration in unknown
structural environment has been implemented and experimented in realistic reduced
scale scenarios. The exploration algorithm is modified by integrating odor sensing
cues in the frontiers selection and has been tested in the real world. The robots
navigate towards the odor sources and are able to localize them while cooperating
with each other by sharing information in their local maps.

In terms of mapping, the robots generate the topological map of environment dur-
ing exploration. Map sharing is the main tool for automatic distributed task sharing
and cooperation in our method. We showed that the robots can merge their topologi-
cal maps based on common subgraph isomorphism even if they do not have common
coordinate systems. After merging the maps, each robot will know the unexplored
frontiers and assigns one of the frontiers to itself as a target to explore, so the other
robots will not aim to that frontier anymore.

The algorithm was tested in the real world with different configuration and differ-
ent number of robots and the results show the effect of gas cues on the behavior of
the robots and it proves that based on the proposed algorithm, robots firstly explore
the area with higher probability of existence of odor sources.

Acknowledgements. This work was partially supported by European project GUARDIANS
contract FP6-IST-045269 as well as by the Portuguese Foundation for Science and Technol-
ogy contract SFRH/BD/45740/2008.
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Distributed Coverage and Exploration
in Unknown Non-convex Environments

Subhrajit Bhattacharya, Nathan Michael, and Vijay Kumar

Abstract. We consider the problem of multi-robot exploration and coverage in
unknown non-convex environments. The contributions of the work include (1) the
presentation of a distributed algorithm that computes the generalized Voronoi tes-
sellation of non-convex environments (using a discrete representation) in real-time
for use in feedback control laws; and (2) the extension of this method to entropy-
based metrics that allow for cooperative coverage control in unknown non-convex
environments. Simulation results demonstrate the application of the control method-
ology for cooperative exploration and coverage in an office environment.

1 Introduction

We are interested in considering the following scenario: a team of robots enter an
unknown and non-convex environment. The robots must control to explore the envi-
ronment for map construction and converge to a formation in the map that disperses
the robots to locations that permit them to continue to engage in activities such as
persistent surveillance. This description lends itself to a broad class of robotics ap-
plications. In this work, we focus on an essential component toward this scenario:
the development of decentralized individual robot control laws based on uncertain
estimates of the environment that drive the team of robots to explore and cover the
environment. The contributions of this work are:

1. the presentation of a distributed algorithm that computes the generalized Voronoi
tessellation of non-convex environments (using a discrete representation) in real-
time for use in feedback control laws; and
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2. the extension of this method to entropy-based metrics that allow for cooperative
coverage control in unknown non-convex environments.

Therefore, to limit the scope of the presentation, we assume the robots are able to
(A) localize and build maps in a common frame; and (B) communicate.

The presentation begins by motivating the development of a geodesic Voronoi
tessellation in non-convex environments. We detail a search-based algorithm for
computing an equivalent tessellation in discrete environments (Sect. 4). We propose
a method for computing the centroid of the Voronoi cells given a tessellation of
a discrete environment, permitting the application of centroid-based robot control
laws for cooperative coverage. In Sect. 5, uncertainty in the environment descrip-
tion is introduced through the development of an entropy-based metric; enabling the
computation of the instantaneous geodesic Voronoi tessellation given an uncertain
environment. We comment on the coverage and convergence guarantees resulting
from this approach and present results that demonstrate through simulation its ap-
plication in an office environment.

2 Related Literature

This work is most closely related to methods proposed in the cooperative exploration
literature and coverage control literature. A common approach toward exploration
is frontier-based exploration where control directions seek to minimize entropy or
uncertainty in the robot pose or map [16]. Coordination for multi-robot exploration
is generally accomplished through explicit coordination designed to reduce redun-
dant exploration or implicit coordination that occurs when robots communicate and
coordinate (e.g. share maps) when in close proximity but without considering other
robots’ history or future plans.

In [15], the authors propose an exploration strategy with feedback control laws
that maximize information gain by considering uncertainty in both the robot pose
and map. A key contribution of this work (and similar recent works) is the relaxation
of the assumption of robot localization. It is for this reason that we believe the first
assumption in the prior section is reasonable. A multi-robot exploration strategy is
presented in [2, 14], where the robots coordinate to determine targets best served by
each robot that maximize the information gain for the team of robots. The authors
quantify the performance gain due to explicit coordination and increasing numbers
of robots. In [7], experimental results are presented that demonstrate the use of a
team of robots to address a scenario similar to the one described at the beginning of
this work. The authors do not consider explicit coordination between robots and note
that this results in redundant exploration. A similar multi-robot exploration study is
presented in [6], where robots explore an indoor office environment while simul-
taneously localizing and mapping. Coordination is implicit as the robots exchange
and merge maps when in close proximity.

A common coverage control approach is through the definition of feedback con-
trol laws defined with respect to the centroids of Voronoi cells resulting from the
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Voronoi tessellation of an environment. In [4], the authors propose gradient descent-
based individual robot control laws that guarantee optimal coverage of a convex en-
vironment given a density function which represents the desired coverage distribu-
tion. The authors of [12] build upon this idea and develop decentralized control laws
that position a mobile sensor network optimally with respect to a known probability
distribution. In [13], this approach is extended to consider near-optimal controllers
that do not require prior knowledge of a desired coverage distribution. To address
the limitation of requiring a convex environment, the authors of [10] propose the
use of geodesic Voronoi tessellations determined by the geodesic distance rather
than the Euclidean distance. An approach that considers both exploration and cov-
erage using Voronoi tessellations is presented in [17]. However, this method differs
greatly from ours and assumes that the boundary of the environment is known. The
Voronoi tessellation is computed based on this assumed convex polygon and the
robots control to the centroids of this tessellation and explore en route.

The primary point of differentiation between our work and existing methods is
due to the fact that we are able to rapidly compute the Voronoi tessellation of non-
convex environments in a distributed manner. The consequence of this result is that
we can use the instantaneous tessellation to compute decentralized robot control
laws. By considering exploration and coverage simultaneously, we enforce explicit
coordination between the robots and yield optimal solutions.

3 Background

Let Ω ⊂ RN be a simply connected (in general non-convex) subset of RN that
represents the environment. There are n mobile robots in the environment with on-
board range sensors, and in particular the position of the ith robot is represented
by pi ∈ Ω and the tessellation associated with it by Wi, ∀i = 1, 2, . . . , n. By
definition, the tessellations are such that I(Wi) ∩ I(Wj) = ∅, ∀i �= j, where I(·)
denotes the interior of a set, and ∪n

i=1Wi = Ω. For a given set of robot positions
P = {p1, p2, . . . , pn} and tessellations W = {W1, W2, . . . , Wn} such that pi ∈
Wi, ∀i = 1, 2, . . . , n, the coverage functional is defined as:

H(P,W ) =

n∑
i=1

H(pi,Wi) =

n∑
i=1

∫
Wi

f(d(q,pi))φ(q)dq,

where d(·, ·) is a distance function defined on Ω, f : R→ R is a smooth and strictly
increasing function in the range of d, φ : Ω → R is a weight or density function,
and dq represents an infinitesimal area or volume element. Throughout this paper
we choose f(x) = x2.

Lloyd’s algorithm [8] and its continuous-time asynchronous implementations [4]
are distributed algorithms for minimizing H(P,W ) with guarantees on complete-
ness and asymptotic convergence to a local optimum when Ω is convex and in an
Euclidean distance setting (i.e. d(p,q) = ‖p− q‖2).
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Fig. 1 An 8-connected grid graph created from a uniformly discretized environment

4 Coverage without Uncertainty

4.1 Geodesic Voronoi Tessellation

An extension of the continuous-time Lloyd’s Algorithm algorithm to non-convex
environments is presented in [10], where the distance function is defined as the
geodesic distance in Ω. Consequently, the Voronoi tessellations under consideration
are the geodesic Voronoi tessellations. That is, for a given P ,

V (P ) = argmin
W

H(P,W ) ⇐⇒ Vi(P ) = {q ∈ Ω | d(q,pi) ≤ d(q,pj), ∀j �= i} .
(1)

Geometric methods for computing such geodesic Voronoi tessellations in non-
convex polygonal environments are detailed in [10, 1]. These methods suffer from
the inherent drawback of high complexity in modeling cluttered real environments
with noise and small obstacles. Moreover, in this work we wish to modify the metric
such that it is non-uniform in Ω, and hence d(q,p) is no longer the Euclidean length
of the shortest path between q and p lying in Ω.

4.2 A Search-Based Algorithm for Finding Geodesic Voronoi
Tessellations

We propose a search-based algorithm for finding the geodesic Voronoi tessellations.
We begin by uniformly discretizing Ω and creating a graph such that each node or
vertex of the graph corresponds to a cell of the discretization with connections to
admissible neighbors (see Fig. 1). This graph, GΩ, consists of a vertex set, V(GΩ),
and edge set, E(GΩ). For a vertex q ∈ V(GΩ), we use the same notation q to denote
the coordinate of the vertex in the configuration space of the agents.N (q) := {s ∈
V(GΩ) | sq ∈ E(GΩ)} denotes the set of neighboring vertices of q. The vertices
joined by an edge ε ∈ E(GΩ) are denoted by vs(ε) and vt(ε). We associate a
cost, c(ε), with every edge ε = vs(ε)vt(ε) ∈ E(GΩ). In particular, for elementary
geodesic Voronoi tessellations, the cost of an edge is its Euclidean length (i.e. c(ε) =
‖vs(ε)− vt(ε)‖2).
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(a) 3 robots in a simple en-
vironment (200 × 200 dis-
cretized).

(b) 5 robots in an office en-
vironment (170 × 200 dis-
cretized).

Fig. 2 The geodesic Voronoi tessellation of non-convex workspaces created using a uni-
formly discretized 8-connected grid-world. The robot locations are marked by enlarged ma-
genta pixels.

For each of the robots we perform a Dijkstra’s search [5, 3] in GΩ starting from
the vertex where the robot itself is located, pi, and expand all the vertices in GΩ.
Thus, at the end of the expansions, for each vertex q ∈ V(GΩ) we obtain the values
of gi(q), ∀i = 1, 2, . . . , n, such that gi(q) gives the cost of the shortest path be-
tween pi and q in GΩ. The geodesic Voronoi tessellation is created by assigning the
cells or vertices to the robot which has the least g-value at that node. That is, Vi =
{q ∈ V(GΩ) | gi(q) ≤ gj(q), ∀j �= i} and q ∈ Vi ⇐⇒ gi(q) ≤ gj(q), ∀j �= i.
We use the same notation Vi to denote the sub-set of vertices in V(GΩ) that belong
to the Voronoi tessellation Vi.

For the distributed architecture, each robot maintains its own copy of GΩ, up-
dating it (for probability of occupancy) using its own sensor readings as well as
information acquired from its neighboring robots about parts of their copies of GΩ
(described later).

Note that the least cost path between two points and hence the Voronoi tessella-
tion, depends on the discretization of the environment and the definition of connec-
tivity between neighboring vertices.

Figure 2 depicts geodesic Voronoi tessellations created using this algorithm. The
boundary between two adjacent tessellations is such that the costs of the least cost
paths from any cell on the boundary to either of the two robots that share the bound-
ary are equal.

4.3 Continuous-Time Lloyd’s Algorithm for Discrete Non-Convex
Environments

The continuous-time Lloyd’s algorithm for non-convex environments requires that
each mobile robot follows the gradient of H(P ) := H(P, V (P )) given by the
formula [10]:
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∂H
∂pi

=

∫
Vi(P )

∂

∂pi
f(d(q,pi))φ(q)dq. (2)

In a discretized environment, finding the gradient in (2) approximately reduces to
searching among the neighboring vertices of the robot’s current location such that
H(P ) is minimized for the new robot position in the next time-step. That is, we seek
to find

pt+1
i = argmin

p∈N (pt
i)

∫
Vi(P t)

f(d(q,p))φ(q)dq

� argmin
p∈N (pt

i)

∑
q∈Vi(P t)

f(d(q,p))φ(q)Δq,
(3)

where the superscripts denote the time-step, the summation is over all of the nodes
in V(GΩ) that are inside Vi(P

t), and Δq is the area of the discretization cell
at q. Thus, the control law for each mobile robot reduces to driving from the
current positions pt

i to pt+1
i as prescribed by (3). In order to find pt+1

i from (3)
for the ith robot, at time instant t we perform Dijkstra’s search and expand the
states in Vi(P

t) starting for each of the states in N (pt
i). This gives us the values

for d(q,p), ∀p ∈ N (pt
i),q ∈ Vi(P

t); with pt+1
i computed directly from (3) by

computing and comparing the summations for each p ∈ N (pt
i).

Figures 3(a)-3(d) show the evolution of the geodesic Voronoi tessellations and the
trajectories followed by the mobile robots upon following the above control algo-
rithm. In this example, we set φ(q) = 1. The environment is a 170× 200 uniformly
discretized 8-connected grid-world. Starting from the shown configuration conver-
gence is achieved in less than 150 iterations. Running on a single Pentium processor
(2.1GHz, 4GB RAM), each iteration takes on average 0.1 s (including computation
of the current tessellations and the desired positions for the next time-step for all
robots).

4.3.1 Projection of Centroid Method

In the previous section we do not discuss how to find the centroid, CVi , of the
geodesic Voronoi tessellation, Vi. In general, the direct computation of the general-
ized centroid,

Cgen
Vi

= argmin
pi∈Vi

∫
Vi

f(d(q,pi))φ(q)dq (4)

in a non-convex environment is difficult [10]. However, a coverage control law over
Voronoi tessellations such as that proposed in [4]:

ui = k(CVi − pi), (5)

requires knowledge of a centroid for the tessellations. Moreover, for exploration, we
desire to implement the standard Lloyd’s Algorithm or a semi-continuous version of
it, which invariably require the computation of a centroid. In order to find an analog
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of a centroid for a non-convex tessellation, we project the geometric centroid inside
the tessellation. We compute

CVi =

∫
Vi
qφ(q)dq∫

Vi
φ(q)dq

, (6)

and if CVi lies outside Vi, find the point in Vi closest to it:

CVi
= argmin

q∈Vi

‖q−CVi‖. (7)

This is an approximate method. In order to account for the non-uniformity of φ
inside Vi, we may compensate by projecting the centroid in a high φ region in Vi.
We modify (7) as,

CVi =

⎧⎨⎩
argmin

q∈Vi,φ(q)≥τ

‖q−CVi‖ if it exists

argmin
q∈Vi

‖q−CVi‖ otherwise.
(8)

for some threshold τ , and use this projection.
The control law for the ith robot given a discrete formulation reduces to taking

one step towards CVi(P t) along the shortest path joining pt
i and CVi(P t) (found

via a single Dijkstra’s search in Vi). This approach requires less computation than
the gradient search method of (3). Further, simulation results suggest that the pro-
jection of centroid control method always converges and in cluttered environments
differs little from the results obtained by the gradient search method. From these
observations, we formulate the following conjecture.

Conjecture 1 (Convergence of Projection of Centroid Method). If φ(q) = k < τ is
uniform (constant) for all q, then there exists robot positions P ∗ = {p∗

1, . . . ,p
∗
n}

such that CVi(P∗) = p∗
i , i.e. an equilibrium point, and the Projection of Centroid

control method drives the robots to such a configuration.

Proof for a special case. We present a partial proof for a certain type of Vi. For
Euclidean metric, if the CVi = Cgen

Vi
, this conjecture becomes a theorem and

the control law described above is guaranteed to converge [10]. We thus inves-
tigate the cases where CVi indeed is the generalized centroid. Clearly, CVi =
Cgen

Vi
⇒ CVi = Cgen

Vi
(since Cgen

Vi
always lies inside Vi). The condition under

which CVi = Cgen
Vi

is that d(q,CVi) = ‖q − CVi‖ ∀q ∈ Vi. This condition is
equivalent to saying that Vi be star-shaped [11] with respect to CVi . A trivial case
of this condition is when Vi is convex, when the algorithm becomes equivalent to
the continuous-time Lloyd’s Algorithm [4].

For comparison, Figs. 3(e)–3(h) show the evolution of the geodesic Voronoi
tessellations and the trajectories followed by the mobile robots using this control
method. Once again, we use φ(q) = 1, and convergence takes place in less than 150
iterations. However in this case the computation time per iteration is on an average
0.03 s.
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(a) t = 0 (b) t = 10 (c) t = 50 (d) t = 150 (con-
verged)

(e) t = 0 (f) t = 10 (g) t = 50 (h) t = 150 (con-
verged)

Fig. 3 Continuous-time Lloyd’s algorithm in a discretized setting for optimal coverage. Fig-
ures 3(a)-3(d) use the gradient search method while Figures 3(e)-3(h) use the projection of
centroid method.

5 Simultaneous Exploration and Coverage of Unknown or
Partially-Known Environments

In this section, we consider the problem of deploying n mobile robots in an un-
known or partially known environment, which upon collaborative exploration of the
environment, will converge to an optimal or near-optimal coverage.

5.1 Entropy as Density Function

In order to address this problem each mobile robot maintains and communicates a
probability map for the discretized environment such that p(q) is the probability
that the vertex q is inaccessible (i.e. occupied or represents an obstacle), for all
q ∈ V(GΩ). A threshold on the value of probability determines whether a particular
node in V(GΩ) is occupied/inaccessible for computation of the Geodesic Voronoi
tessellations as well as control. Moreover the Shannon entropy for each cell can be
computed as follows,

e(q) = p(q) ln(p(q)) + (1− p(q)) ln(1 − p(q)). (9)
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Fig. 4 Entropy-weighted Voronoi tessellation

This gives us an Entropy map, i.e. a value of entropy associated with each vertex
q - a map that represents uncertainty or the need to gather information within the
environment. The Shannon entropy is such that it assumes high values for vertices
for which the uncertainty is high (i.e. probability is close to 0.5), whereas it is low
for known or visited vertices. Thus, we identify the weight or density function φ(·)
with the entropy e(·). This, by the construction of the control laws described before,
will drive the mobile robots towards regions of high entropy within the robot’s own
tessellation, hence resulting in exploration of the environment.

For exploration of an unknown environment it is desired that we follow an analog
of the traditional Lloyd’s algorithm, where each robot visits completely a computed
projected centroid of a tessellation at an earlier time-step (we call it a target), hence
exploring the region, and subsequently recompute the next target, which is the pro-
jected centroid of the current tessellation.

5.2 Entropy-Based Metric

The geodesic Voronoi tessellation performed according to (1) ensures that the
boundaries of the tessellations “bisect” the area lying between the robots. While the
metric d for this can be the geodesic distance in the case of the coverage problem, for
exploration and for environments with uncertainty the tessellation boundaries need
to be such that they “bisect” the uncertainty (or entropy) among the adjacent robots
for cooperative exploration. This notion is illustrated in Fig. 4, where a high entropy
region is placed asymmetrically between two robots in a convex environment with-
out obstacles. The dashed line shows the boundary of a Voronoi tessellation created
using the standard distance metric. However, one mobile robot has a larger unex-
plored region than the other. An alternate division is depicted with a solid line that
splits the unexplored region equally.
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We now redefine d(·, ·) to accommodate uncertainty in the tessellation. Let
Γ(p,q) represent the set of all paths in Ω connecting p and q. Then the original
definition of the geodesic distance is written as d(p,q) = minγ∈Γ(p,q)

∫
γ
dl, where

dl represents an elemental length along γ. We modify the definition as follows:

d(p,q) = min
γ∈Γ(p,q)

∫
γ

e(r)dl,

where r is a point on γ.
In terms of finding the Voronoi Tessellations by performing Dijkstra’s searches

in GΩ as described earlier, the only required change is to weigh the edges of the
graph GΩ by entropy in those regions instead of the Euclidean length of the edges.
In particular, we now define the cost of an edge ε as

c(ε) =
e (vs(ε)) + e(vt(ε))

2
+ η‖vs(ε)− vt(ε)‖2

where we add the second therm with a very small value of η in order to compensate
for noise in near-zero values of entropy and to make sure that the cost of an edge
doesn’t vanish. Performing Dijkstra searches in this weighted graph and creating
tessellations using the same procedure as before will split the unexplored regions
between two neighboring robots equally.

5.3 Time Dependence of Entropy, Coverage, and Convergence

We now detail how the probability map is updated based on the sensor readings. For
the discussion that follows, pt(q) represents the estimated probability of occupancy
of q at the tth iteration based on all measurements.

5.3.1 Inter-robot Communication

As discussed earlier, for the distributed architecture, each robot maintains its own
copy of probability and entropy maps. Each updates its own maps based on readings
from its own on-board sensor as well as information acquired from its neighboring
robots about parts of their copies of their probability maps. A sensor fusion model
(described in next section) is used to aggregate the data. For communicating its own
probability map to other robots, each robot broadcasts the new information acquired
by its own sensor over a time window or phase. Essentially the broadcasting of prob-
ability maps by each robot is done in phases. During a phase, a robot broadcasts a
constant message (part of its own probability map) with a fixed timestamp over and
over (repeatedly). This is to make sure that other robots receive this message. The
robot also broadcasts its unique identity along with the message. Also, instead of
broadcasting the whole probability map in each phase, each robot broadcasts only
whatever new it has sensed during the previous broadcast phase. Thus the broad-
casted information actually comprises of a small window in the whole probability



Distributed Coverage and Exploration in Unknown Non-convex Environments 71

Fig. 5 The sensor model

map as well as in time, inside which the probability readings have changed. This
makes each broadcast messages rather small. Essentially each robot maintains two
buffers: The current sensing buffer, and the broadcast buffer. New readings from a
robot’s own laser sensor are added to the current sensing buffer, while things in the
broadcast buffer are broadcasted. At the end of a broadcast phase the content of the
broadcast buffer is pushed into the main probability map maintained by the robot,
the content of the current sensing buffer is copied into the broadcast buffer, and the
current sensing buffer is cleared for new sensor data. The information received from
other robots about their map are directly added to the main probability map. This
differential approach of communication significantly reduces the communication
overhead required for sharing map data.

5.3.2 Sensor Model

We use a sensor model for each robot, si(r), which gives the probability that the
ith robot’s sensor measures the state of a grid cell located at a distance r from it
correctly. In particular, in our simulations we use,

si(r) =

{
si,n + r2

R2
i
(si,f − si,n) if r ≤ Ri

0 otherwise,

where Ri is the sensor range, and 0 ≤ si,f ≤ si,n ≤ 1 gives the far and near values
of the confidence of the sensor.

Thus, if at time-step t the sensor of the ith robot receives a measurement zti(q)
(which is 1 for occupied, and 0 for unoccupied) for the cell q, the probability that the
cell is occupied based only on this measurement is given by ut

i(q) = zti(q) si(‖q−
pt
i‖) + (1 − zti(q))(1 − si(‖q − pt

i‖)). We use a sensor fusion model to compute
the net probability of occupancy for the cells based on the individual measured

probabilities. In particular, one can compute pt(q) = g−1

(∑
i,t′ g(u

t′
i (q))

∑
i,t′ 1

)
, where

g is a strictly increasing function in [0, 1], and the summations are taken over all
the measurements by all sensors over all time instants [16]. For our experiments we
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choose g(x) = xm, m > 0. We note that by choosing m → ∞, the value of pt(q)
essentially becomes the supremum of all the measurements for q. Alternatively,
choosing g(·) = log(·) gives the geometric mean of the measurements, which has
also been used in [16].

In order to compensate for the sensor noise the entropy map is smoothed by
passing it through a min-filter. The smoothed entropy map is consequently used for
computing the density function.

5.3.3 Time-Varying Density Function

A consequence of updating the probability map is that the entropies, and hence the
weight function, φ, becomes a function of time:

φ(q, t) = e(q, t) = pt(q) ln(pt(q)) + (1 − pt(q)) ln(1− pt(q)).

Conjecture 2 (Exploration and Convergence Guarantee). Assuming Conjecture 1 is
true and the individual robot motion at each time step is determined by the Pro-
jection of Centroid Method (8), there exists a τ ′, 0 < τ ′ ≤ τ such that choosing
φ(q, t) = max(τ ′, e(q, t)) ensures complete exploration of the environment and
convergence of the algorithm.

Proof. We assume there exists an ε radius around each mobile robot such that it is
able to sense the occupancy and reduce the entropy of the cells within this radius
below the value of τ ′ in a permanent manner. Due to the choice of our control
method, each mobile robot drives closer to CVi at every time-step. However, as
long as there exists at least one cell q ∈ V(GΩ) such that e(q, t) ≥ τ , a robot
will drive to that cell where φ(q, t) = max(τ ′, e(q, t)) ≥ τ (due to equation (8)
and since τ ′ ≤ τ ), and subsequently reduce the entropy of the region around q
below τ ′. This process continues until the entropy of all the cells in the map goes
below τ such that φ(q, tcovered) = max(τ ′, e(q, tcovered)) ∈ [τ ′, τ) for all q. This
guarantees exploration of the environment with all cells having final entropy less
than τ . Note that while τ ′ is sensor specific, τ is a design variable. Thus, if we
choose τ = τ ′, the density function becomes φ(q, tcovered) = τ ′ = τ , which
is constant and independent of time throughout the environment. Consequently by
Conjecture 1 convergence is achieved at some tconverged ≥ tcovered.

5.3.4 The Overall Algorithm

So far we have described the various components of the algorithm. To put those
in perspective, the steps below are what goes on at a higher level on each robot in
sequence while exploring and covering an unknown or partially known environment
in a distributed fashion.
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(a) t = 0 (b) t = 500 (c) t = 1000

(d) t = 1600 (e) t = 2600 (complete map
built)

(f) t = 2750 (convergence)

Fig. 6 Exploration and coverage of a large unknown environment. Green indicates uncer-
tainty.

i. Each robot maintains its own probability, entropy and obstacle maps.
ii. Each robot use sensor data as well as communicate with its neighbors to update

the maps. They also communicate their locations.
iii. Each robot computes its own entropy-weighted Voronoi tesellation and the cor-

responding weighted projected centroid, and take a step towards that along the
shortest path.

5.4 Results

Figure 6 shows the screenshots from a simulation of four robots exploring a large
(1000 × 783 uniformly discretized) cluttered environment. The boundaries of the
tessellations are shown by the bold blue lines. The robot positions are encircled by
cyan circles. The dark lines show the robot trajectories. The intensity of the pixels
in the environment represent the entropy, and the unreachable regions are colored
in black. The mobile robots begin at the room in the lower left with no prior knowl-
edge about the environment, hence the highest value of entropy, ln(0.5), is assigned
to each cell. Besides collaboratively exploring the environment the robots distribute
themselves in such a way that they maintain proper coverage of the explored envi-
ronment both during exploration and after completely building the map. The mobile
robots attain full exploration, coverage, and convergence within t = 2750 itera-
tions. Each iteration, which involves computing the voronoi tessellations as well
as the control commands for all the robots, takes about 1.7s running on a single
processor as described in earlier results.
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Fig. 7 The Scarab mobile robot platform

6 Conclusion and Future Work

We presented a search-based algorithm for computing a geodesic Voronoi tessella-
tion in discrete environments. We propose a method for computing the centroid of
the Voronoi cells given a tessellation of a discrete environment, permitting the appli-
cation of centroid-based robot control laws for cooperative coverage. Uncertainty in
the environment description is introduced through the development of an entropy-
based metric; enabling the computation of the instantaneous geodesic Voronoi
tessellation given an uncertain environment. We comment on the coverage and con-
vergence guarantees resulting from this approach and present results that demon-
strate through simulation its application in an office environment.

There are a few limitations in this paper that we are currently working on. First,
as we move to experimentation with real robots, we must address real world issues
surround localization and state estimation for the robots as well as inter-robot com-
munication. To this end, we have already integrated our simulation model within
the ROS (Robot Operating System) framework, and have started extending the
implementation for running preliminary experiments on multiple Scarab robots [9]
(see Fig. 7) which allow for on-board computation and localization using laser range
sensors and monocular cameras. We are incorporating the anisotropy and finite field-
of-view constraints that are characteristics of these sensors within our sensor model
and the uncertainty associated with localization in our entropic measure. In addi-
tion, we are exploring models for inter-robot communication to relax the current
assumption of a complete communication graph in the paper. Finally, we are also
addressing algorithmic improvements to allow distributed computation and to en-
hance efficiency.
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Evaluating Efficient Data Collection Algorithms
for Environmental Sensor Networks

William C. Evans, Alexander Bahr, and Alcherio Martinoli

Abstract. Although there exists a large body of work on efficient data collection
in sensor networks, the vast majority of proposed techniques have not been imple-
mented on real networks or thoroughly studied on real data. As algorithm perfor-
mance is highly dependent on the characteristics of the data being reported, it is
very difficult to make suggestions as to the relative performance of any particu-
lar method. In this work we seek to compare and evaluate existing approaches to
efficient data gathering in the specific context of environmental monitoring. We ex-
amine a choice algorithm that has not, to the best of our knowledge, been thoroughly
studied on real data. We detail a number of algorithmic modifications necessary to
bring it from theory to reality, and study the algorithm’s performance in simulation
using extensive traces from real world sensor network deployments.

1 Introduction

Low-cost sensor networks are becoming ubiquitous, as they have a broad range of
applications from target tracking [2, 7] to health monitoring [10, 11], and our spe-
cific focus in this paper, environmental monitoring. This paper is part of an ongoing
effort to deploy distributed intelligent algorithms into sensor networks consisting
of resource-constrained nodes. The overall idea is that data collected by a network
should be not only be used by the end user but should also at the same time allow
more intelligent control of the activities of its nodes, possibly achieving the same
level of data accuracy with less power consumption. Ultimately, our goal is to vali-
date and subsequently deploy such algorithms in real world scenarios.

We base our study on typical configurations used in environmental campaigns in
our local Alpine region, where 10-20 sensor nodes are placed such that they are able
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to communicate via short range wireless transceivers. These networks always in-
clude at least one sink that uses long range communication (e.g., GPRS) to forward
the data to a central location.

Currently there is a significant gap between theory and real world usage. While
many algorithms for efficient data collection from sensor networks have been
proposed, many existing systems simply take the naive ”always broadcast“ ap-
proach [4]. Indeed, the mention of efficient monitoring techniques in data-oriented
sensor network deployments is rare, in general authors do not discuss the possi-
bility of an intelligent data collection approach. The naive approach is proven and
reliable, as uniform sampling with high relative frequency (e.g., one sample per
minute) provides environmental engineers with easily manipulated data that have
built-in redundancy due to the fact that many environmental fields change slowly
the majority of the time (i.e. on the order of tens of minutes to days). However,
there is much to gain by reducing energy consumption; doing so allows developers
to lengthen sensor network autonomy, increase sampling frequency, lower reliance
on expensive power sources, and so on.

(a) (b)

Fig. 1 SensorScope has seen several deployments under diverse conditions, including (a) a
two-month deployment on Le Génépi comprised of 16 stations, and (b) a three-month de-
ployment in the Wannengrat using 18 stations

Fig. 2 Three weeks of sen-
sor data were collected on
the rooftop of EPFL’s GR
building
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This gap is in part to due to a lack of comprehensive analysis of existing algo-
rithms. Authors tend to test their algorithms on small datasets that may not be rep-
resentative for more general applications, and hardware implementations are rare.
We seek to perform an exhaustive comparison of a large number of such algorithms
as they apply to environmental monitoring in terms of vulnerability to node failure
and message loss, communication overhead, and data accuracy.

2 Related Work

In temporal suppression schemes, each node uses its own history of measurements
to determine if a new value can be inferred by the network sink (i.e., it does not
need to be transmitted). A simple example would be transmitting measurements
only when they differ from the previous value. Typically these approaches make use
of much more complex models, often providing bounded error.

The Probabilistic Adaptable Query (PAQ) system is one notable such scheme
based on time series forecasting [21]. It uses autoregressive models maintained lo-
cally per sensor in order to keep from sending data directly to the sink. Instead,
nodes communicate model parameters as necessary in order to keep the sink’s pre-
dictions within some defined error bound. Tulone and Madden extend this work with
their Similarity-based Adaptive Framework (SAF) [20], adding robustness to quick
changes in data trends as well as a location-independent clustering technique that
allows the detection of redundant nodes.

On the other hand, spatial suppression exploits spatial correlations between
nearby sensor nodes in order to reduce communication load.

Many spatial suppression algorithms attempt to detect and deactivate sets of re-
dundant nodes. Prorok et al. study hierarchical network topologies based on spatial
clustering [13]. In this approach, cluster heads may choose to prune their children if
the part of the monitored field they represent is highly isotropic as defined by some
statistically computed threshold. Arici and Altunbasak propose using a first-order
model to determine the predictability of particular nodes [1]. They define some of
the nodes in the network as macronodes which attempt to fit a plane over their
neighbors’ positions and data, commanding easily predictable nodes to stop report-
ing measurements for some period of time. Similarly, Willett et al. define the idea
of a fusion center that is responsible for estimating a field based on received sensor
measurements and then directly deactivating redundant nodes [22].

Chu et al. propose the use of replicated dynamic probabilistic models between
the sink and disjoint cliques of data sources [6]. The sink then uses these models to
predict future sensor data. If the root of a clique observes data inconsistent with the
sink’s current prediction model, a subset of the clique’s recent observations are sent
and the sink’s model is updated as necessary.

A third and wholly separate approach, compressed sensing, draws on recent ad-
vances in signal processing that have interesting implications in sensor networks.
This technique allows the accurate reconstruction of a signal while sampling at
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a rate that does not satisfy the Nyquist sampling theorem. Note that unlike other
approaches, compressed sensing reduces the number of measurements needed, an
obvious advantage when using active sensors, i.e., sensors that require considerable
power just to sample. However compressed sensing also imposes strict requirements
on the properties of measured data and makes in-network processing very difficult.

Haupt and Nowak develop the idea of compressed sensing in a multi-sensor sce-
nario [8]. They envision using a uniform array of sensors to measure some phe-
nomenon, each transmitting its processed results to a common destination, using
inter-signal correlations to reduce power usage. Baron et al. generalize this idea,
allowing the use of irregular spatial sampling and additionally taking advantage of
sensors’ recent history [3].

Outside of continuous monitoring, many approaches to efficient data collec-
tion seek to reduce overall message volume by eliminating uninteresting data in-
network. TinyDB [9] provides such functionality, returning sensor data to the sink
in response to simple aggregation queries such as SUM or MAX. Other techniques
use in-network triggers to decide when data should be sent to the sink. Yang et
al. present a Two-Phase Self-Join scheme that accepts complex monitoring queries
from the user and informs the sink should an appropriate event be detected [23].

In [14], Sadagopan et al. compare their query resolution algorithm for sensor net-
works, ACQUIRE, with other more basic approaches. They conduct a theoretical
analysis using mathematical models, using the results to tune algorithm parameters
and draw performance estimates. While this approach allows theoretical insight into
algorithmic performance, the authors make a number of assumptions that make their
conclusions unlikely to extend to the uncontrolled conditions considered in this pa-
per (e.g., uniform deployment and communication range). Our work seeks to com-
pare algorithms experimentally, specifically evaluating algorithmic performance in
a real-world context.

3 Materials and Methods

SensorScope stations [4] are a replacement for traditional large, centralized weather
stations that may be time-consuming and expensive to deploy (see Figure 2). In-
stead they are a distributed array of smaller, cheaper stations that leverage greater
coverage area and ease of deployment to provide more valuable data. SensorScopes
guiding principle is to provide environmental scientists with real-time, total access
to the data collected by their stations. This is best reflected by their online data
browser, Climaps [17], which serves as an interface for both retrieving a particular
dataset (from a specific time period, collection of sensors and/or set of stations), as
well as monitoring the battery levels and communication links of users’ stations.

The stations themselves are built around 2-3m metal poles. Up to seven sensors
may be attached along with the main controller, protected by a hermetically sealed
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container. Each station is attached to an energy source, in our case consisting of a
large NiMH battery that is recharged by a small solar panel. Network sinks have an
attached GPRS module for sending data from the network to off site SensorScope
servers for viewing and archival. In this paper we use data collected by an attached
SHT75 air humidity/temperature sensor and Zytemp TN901 infrared thermometer
for sensing surface temperature.

The station itself is controlled by a ShockFish TinyNode 584 [18] running
TinyOS 2.x. Local communication is performed on the 868MHz band using a
Semtech XE1205 radio transceiver, with a range of one kilometer given strong line
of sight.

SensorScope stations are an ideal platform for deploying efficient monitoring al-
gorithms. The hardware platform has already proved itself successful in many pre-
vious deployments in various locales (see Figure 1), with many further deployments
in planning by environmental scientists around Switzerland. Currently SensorScope
stations take the naive approach to data collection, i.e., stations simply broadcast
every sensor measurement made at regular time intervals. By implementing a data
collection algorithm that takes advantage of the strong spatial and temporal corre-
lations often present in environmental fields, we can reduce SensorScope stations’
reliance on expensive power systems, driving down per-station cost.

SensorScope was specifically developed for the purpose of monitoring envi-
ronmental phenomena. Environmental fields tend to lend themselves well to the
suppression-based approaches discussed in the previous section. Strong temporal
patterns are often present in environmental data, which may be described as having
trend and seasonal components [21]. One clear example of a seasonal pattern is the
typical day/night cycle, which has a clearly visible effect on ambient temperature as
seen in Figure 3. Environmental data is also prone to high degrees of spatial correla-
tion (see Figure 4); it is clear that spatio-temporal suppression is highly appropriate
in this domain.

4 Constraint Chaining

In this section we explain constraint chaining (CONCH) [19], a technique that mon-
itors constraints between adjacent nodes rather than the absolute values of nodes
themselves. Like other recent work in efficient monitoring, CONCH uses a combi-
nation of spatial and temporal suppression to reduce network traffic. The in-network
computational cost of this approach is minimal, making it a strong candidate for real
world usage on the SensorScope platform. The algorithm provides real-time, accu-
rate monitoring at a potentially greatly reduced communication cost while being
flexible enough to tailor to specific data collection scenarios.
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Fig. 3 Temperature data
over a four-day period from
a SensorScope deployment
in the Génépi. This plot
illustrates the seasonal
component often present in
environmental data.
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4.1 Basic Algorithm

This approach revolves around a subset of the network’s communication edges that
we will refer to as the monitored edges. The nodes adjacent to each monitored edge
are given different responsibilities for that edge. One node is assigned the role of re-
porter, responsible for sending a message to the sink every time the relative value of
the two nodes along that edge changes. The opposite node is called the updater, and
sends a message to the aforementioned reporter whenever its own value changes.
Note that messages are not sent to the sink if both nodes change by the same amount
simultaneously or if neither node changes at all. Nodes determined to be outliers, i.e.
those that do not change in a pattern similar to any of their neighbors, are monitored
directly and thus report their measured values to the sink whenever they change- we
refer to these as monitored nodes.

A particular set of monitored edges, monitored nodes and updater/reporter as-
signments is called a Conch plan (see Figure 5 for an example). Ideally, we would
like our plan to be configured such that the values along monitored edges change as
infrequently as possible. Note that in order for a plan to be valid, each monitored
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Fig. 5 Example CONCH

plan from simulation over
data from a real world
SensorScope deployment
in the Génépi. The sink is
filled in black. Monitored
edges are shown in black,
and communication edges
are shown in light gray.

edge must be connected to a tree that includes at least one directly monitored node
(or the sink). In this way the sink is able to infer the values of all members of the
network by chaining relative values along monitored edges, starting from this subset
of nodes where absolute values are known.

Our search for a near-optimal CONCH plan is carried out in three steps. First, an
arbitrary plan is chosen and used for a given period of time. In this phase network
performance will be suboptimal, however note that as long as the plan is valid, no
data will be lost. During this period we build up a data history that we will use to
create a plan better suited to the observed environmental patterns. Once a hopefully
representative dataset has been gathered (discussed further in Section 4.2), we assign
a cost to all communication edges in the network. The cost of monitoring edge e is
f req(e)× dist(e), where f req(e) is the number of times the relative value along
edge e changes throughout the dataset, and dist(e) is the edge’s distance from the
sink. We also add an imaginary edge from every station s directly to the sink with
cost f req(s)× dist(s). The minimum spanning tree over this graph represents the
set of monitored edges and monitored nodes.

All that remains is our choice of updaters and reporters. The authors of this algo-
rithm propose a mixed integer program that seeks to minimize network traffic given
the data observed thus far. Their program accounts for the per-message and per-byte
sending and receiving costs for the radios used as well as the number of messages
required given a particular configuration. Again, the details of this formulation are
left to [19].

4.2 Modifications

In this section we explain two algorithmic modifications necessary before CONCH

can operate in the kind of network configuration described previously.
The first change deals with CONCH plan optimization. The linear program origi-

nally proposed contains in its objective function a number of variables that increases
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exponentially with the number of time steps and stations. As previously stated, it is
important to optimize over a length of time that is representative for the phenomenon
being measured, e.g., one day/night cycle. In many deployments, SensorScope
stations are configured to take a sensor reading once per minute. For a modestly
sized network of 10 nodes over one day of measurements at the aforementioned rate,
the objective function contains over 25,000 variables, with an even larger number of
constraints. The result is an intractable linear program that is simply not solvable in
a time frame appropriate for this problem.

Consider that only reporters are responsible for communicating data to the sink,
and an optimal CONCH plan will be likely to place reporters closer to the sink than
their corresponding updaters. Bearing this in mind, we simply iterate through all
edges in the plan, marking the adjacent node closest to the sink as its reporter, and
the other as its updater. This simplication may be cause excessive energy usage if
the node chosen as updater changes value significantly more often than its reporter,
however we do not observe such scenarios in our experiments.

Second, we introduce a strategy for repeatedly updating the CONCH plan. In
evaluating their algorithm, the authors of CONCH build a CONCH plan using data
collected over an initial training period. This plan is then used for the remainder
of the test. In other words, they assume that relationships between nodes will never
change. In a real environment it may be beneficial to explore more complicated tech-
niques for building and maintaining an optimal CONCH plan; outdoor environments
can be extremely dynamic, with unpredictable local and regional weather patterns
playing a significant role on the spatial relationships present.

As creating and disseminating a new CONCH plan is a cheap operation compared
to sensor reporting, we examine the performance of a scheme that builds an optimal
plan using the previous N hours of network data, repeating this process after another
N hours have passed.1 One could imagine more dynamic schemes in which CONCH

plan generation is triggered by some condition detected at the sink; however for the
sake of brevity we leave such approaches to further study.

5 Simulation

5.1 Existing Datasets

We have collected a number of datasets from previous SensorScope deployments
throughout Switzerland. We specifically selected deployments of about 10 or more
nodes where the network was dense enough to be connected, yet sparse enough to
require multi-hop communication. The results in this paper are found using datasets
from three such deployments (see Table 1), downloaded with geographical metadata
from Climaps [17], a data visualization and archiving system for environmental
data.

1 During the first N hours of operation we have no available data from which to guess stable
relationships between nodes, so we simply use the routing tree as a temporary measure.
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Table 1 Past SensorScope deployments provide over five years of individual station data
appropriate for our algorithm evaluation framework

Location Nodes Duration (days)

Génépi 15 65
Great St. Bernard Pass 16 43
GR Rooftop 8 17

It is the focus of this paper to examine algorithm performance via realistic sim-
ulation. Unfortunately, it is rare for data-oriented sensor network deployments to
record the data necessary to accurately do so. In particular, we note a lack of use-
ful topology and link quality information. We evaluated a number of approaches
for generating simulated topology information, however we found such techniques
to be inappropriate due to the nature of these deployments (i.e., in outdoor, uncon-
trolled environments, some times even including manual, undocumented redeploy-
ment over the experiment period). Indeed, as one may observe in Figure 5, wireless
communication is highly unpredictable under our circumstances.

Incorporating datasets from new sources into our framework is a straightforward
process. There are many publicly available environmental datasets that would be
useful in our simulations, and we suggest where such datasets may be found in
Section 6.

5.2 Results

We have developed a modeling framework sufficient for simulating a wide variety
of algorithms over datasets from any external source. While we currently only make
use of three datasets and three algorithms, we have established a common evaluation
platform for performing deeper studies in the future. For further discussion, see
Section 6.

All algorithms use error bounds according to individual sensor accuracy as listed
on the relevant datasheet. Thus, for the Sensiron SHT75, we report ambient temper-
ature to an accuracy of±0.3◦C and relative humidity to ±1.8% [16]. We report sur-
face temperature as measured by the Zytemp TN901 to an accuracy of±0.6◦C [24].
We speak about algorithmic efficiency in terms of the overall reduction in transmit-
ter power used, as calculated using the TinyNode datasheet [18]. Note that we do not
talk about algorithmic overhead as it is negligible for all algorithms, especially when
compared to the sampling frequency. However, it is accounted for in our results.

Our first significant result is that while CONCH may at first appear to yield signif-
icant power savings (see Table 2), in fact its built-in temporal sampling behavior is
doing almost all of the work. It is likely that SensorScope stations simply sample so
frequently that the probability of two nodes simultaneously perceiving a change in
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Table 2 Algorithm performance by average power savings over all previously listed datasets.
Here we set the training duration to N = 4 hours, and the sampling interval to 6 minutes.
Temporal suppression yields tremendous savings (i.e., power consumed in transmitting sensor
values is 43% of the original), while CONCH yields a small additional savings.

Algorithm Tx power reduction Standard deviation

Naive (SensorScope) 0.0% 0.0%
Temporal suppression 57.3% 6.8%
CONCH 62.2% 11.5%

Fig. 6 As we decrease
the sampling frequency,
CONCH gains a greater
advantage over temporal
sampling. However, as
subsequent measurements
become less temporally
correlated, the performance
of both approaches drops
significantly.
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the environment is small. Indeed, as we increase the time between samples, CONCH

gains a greater advantage over temporal sampling (see Figure 6).
The duration and frequency of CONCH plan optimization have a clear effect on

the algorithm’s ability to suppress messages. As previously described, we generate
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a new plan using the previous N hours of network data every N hours. In general, we
observe that long training intervals are best suited to low sampling frequencies (see
Figure 7). When sampling with high frequency, the unstable edge constraints make
CONCH less performant than temporal suppression. However, as before, CONCH

shows an increasing advantage over temporal suppression as we lower the sampling
frequency.

6 Conclusion and Future Work

In this paper we presented our approach to evaluating data collection algorithms
specific to environmental monitoring. We selected an algorithm likely suited to com-
mon patterns observed in environmental fields, CONCH, adapted it for deployment
on real hardware, and studied its performance using simulations over a number of
datasets collected from real world sensor network deployments. While temporal
suppression yields large power savings (see Table 2), CONCH fails to bring a sig-
nificant amount of additional performance at high sampling frequencies. However,
CONCH was originally presented as simply a modeling framework. The models used
in this paper could be replaced by something more complex that may even be specif-
ically suited to different types of sensors. For example, in the case of CONCH, it may
be beneficial for nodes to maintain edge constraints based on the parameters of the
autoregressive models proposed in [21], rather than directly comparing sensor mea-
surements. We plan to explore integrating such orthogonal approaches to efficient
monitoring in the future.

Many research groups release data from internal sensor network deployments
to the community. While we currently use datasets from long term SensorScope
deployments, UCLA makes sensor network data available via SensorBase [5], Per-
maSense releases data to the public on their online repository [12], and often an
individual researchers’ datasets are made available upon request. We also plan to
incorporate classic datasets such as indoor monitoring data from the Intel/Berkeley
laboratory [15]. Such data can be used to obtain a more thorough understanding of
algorithm performance.

Our laboratory has a number of SensorScope stations ready for use in imple-
menting and testing algorithms under real-world conditions (one such deployment
took place on the EPFL campus in Spring 2010, see Figure 2). We are currently
implementing CONCH on real stations in order carry out further campaigns that in-
vestigate energy savings as a function of the spatial distribution of the stations and
anisotropy of the monitored field.
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A Plume Tracking Algorithm Based
on Crosswind Formations

Thomas Lochmatter, Ebru Aydın Göl, Iñaki Navarro, and Alcherio Martinoli

Abstract. We introduce a plume tracking algorithm based on robot formations. The
algorithm is inherently designed for multi-robot systems, and requires at least two
robots to collaborate. The robots try to keep themselves centered around the plume
while moving upwind towards the source, and share their odor concentration and
wind direction measurements with each other. In addition, robots know the rela-
tive poses of other team members. Systematic experiments with up to 5 real robots
in a wind tunnel show that the robots achieve close-to-optimal performance in our
scenario, and by far outperform previous approaches. The performance gain is at-
tributed to the fact that robots continuously share information about the plume (odor
concentration, wind direction) without spatially competing for acquiring it.

1 Introduction

With the advances in robotics and chemical sensor research in the last decade, odor
sniffing robots have become an active research area. Notably the localization of odor
sources would allow for very interesting robotic applications, such as search and
rescue operations, safety and control operations on airports or industrial plants, and
humanitarian demining [15][12][3]. Many of these applications are time-critical,
i. e. odor sources should be found as fast as possible. Moreover, as the structure of
plumes in the air is intermittent in both time and space [17], tracking plumes is a
challenging problem.
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In previous work [9], we analyzed three bio-inspired plume tracking algorithms
based on upwind surge, casting, and spiraling, and carried out experiments with
real robots and in simulation. Experiments with the multi-robot versions of these
algorithms [8] thereby revealed that robots are competing for space even when they
are communicating and collaborating, a limitation which is especially important in
narrow plumes. When robots avoid each other (to prevent collisions), they often
lose the plume and switch to plume reacquisition, which obviously results in perfor-
mance degradation. Reasons for this are the state-machine nature of the bio-inspired
algorithms on one hand, but also the fact that robots do not plan their path with re-
spect to the positions of the other robots. The low-level controller (obstacle avoid-
ance) interferes with the high-level controller (bio-inspired odor source localization
algorithm).

In this paper, we present a novel algorithm to tackle exactly this problem. The
algorithm is based on a loose robot formation which collaboratively moves through
the plume towards the source. Robots thereby communicate with each other, and
share all observations (wind and odor concentration) as well as their relative po-
sitions. A simple reactive control scheme keeps the robot formation centered (in
crosswind direction) around the plume while the robots are moving upwind towards
the source.

This algorithm is not an extension of some existing single-robot algorithm, but
inherently designed for multi-robot system. (At least 2 robots are necessary for the
algorithm to work.) By design, robots do not compete for space, and no low-level
avoidance algorithm is necessary to prevent robots from bumping into each other1.
In addition, robots truly and continuously collaborate: every single observation is
shared, and the control algorithm uses the observations of all robots in the formation
as input.

The remainder of this paper is structured as follows. In Section 2, we present
existing approaches for multi-robot odor source localization. Section 3 formally in-
troduces the crosswind formation algorithm. After depicting the experimental setup
in Section 4, we show real-robot experiments with a static source (Section 5) and a
moving source (Section 6). Finally, we conclude in Section 7.

2 Related Work

Most odor source localization algorithms found in the scientific literature are in-
tended for single-robot systems. To our knowledge, there only exist four multi-robot
approaches to date.

Hayes et al. applied a bio-inspired algorithm based on spiraling and upwind
surge to multiple robots [2] [1], and studied the effect of a primitive broadcasting
communication scheme. In particular, they studied a communication scheme called
KILL in which all robots stop as soon as one perceives an above-threshold odor

1 An obstacle avoidance algorithm may still be necessary to prevent robots from bumping
into obstacles, of course.
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concentration, and a scheme called ATTRACT whereby robots that do not perceive
any odor join others that have found plume information. Experiments were carried
out with real robots and in an embodied simulation, and the performance metric was
a linear combination of time and group energy, the latter being proportional to the
sum of the distances the robots traveled. The KILL strategy was found to save sig-
nificant power, whereas the ATTRACT strategy did not reveal any advantage in their
setup. The multi-robot experiments we carried out in simulation [8] are conceptually
similar.

Second, all algorithms based on PSO [13] [5] [6] [4] are intended for use in multi-
robot systems. PSO requires robots to communicate at least locally, and robots must
be aware of each other’s position. In the standard PSO algorithm, collaboration is
however limited. The only variable they share is the (locally or globally) highest
concentration, and the position where it was measured. As a result, robots will have
a tendency to move towards the same local optimum if communication is global, and
may bump into each other. Jatmiko et al. therefore introduced an extension called
CPSO [6] in which robots share their positions and use a repulsive force to avoid
collisions and make sure robots remain spread over some area. Robots however do
not directly take concentration measurements of other robots into account.

Another algorithm inherently designed for multi-robot systems is the fluxotaxis
algorithm [16]. As its name suggests, it is based on the chemical mass flux, which
is a product of the chemical density and the flow velocity. Fluxotaxis is therefore
a hybrid between chemotaxis and anemotaxis. As positive divergence of mass flux
indicates a source, this algorithm basically climbs up the mass flux gradient. This
is done with a flock of robots that share their observations (concentration and air-
flow) with a central controller. Fluxotaxis has been shown to perform well even in
complex scenarios with obstacles.

Finally, the infotaxis algorithm has been extended to multiple robots [14]. Robots
thereby share all their observations (concentrations and positions) to collaboratively
infer the location of the source. All information from all robots is integrated into a
single model, which is the maximum amount of information robots can share. The
authors reported that in some scenarios, super-linear performance increase can be
achieved by using multiple robots.

3 The Crosswind Formation Algorithm

The underlying idea of the algorithm presented in this paper is to keep some robots
on the left side of the plume, and some robots on the right side of the plume. While
they are going upwind, they try to stay centered in the plume, i. e. keep the (aver-
age) concentrations on the left and on the right approximately equal. The formation
chosen here is a line formation in crosswind direction.

Each robot can measure the odor concentration and the wind direction (relative to
its pose) at its current location, and shares this information with all members of the
formation. In addition, robots can measure the relative poses of each other. A global
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Fig. 1 Sketch of the formation algorithm from the perspective of robot 3. Calculation of
the forces fu and fc is carried out in a reference system defined by the wind direction. The
resulting force vector is then rotated into the robot’s reference system. All robots carry out
the exact same calculation, but from their own perspective.

reference system is not required, but the wind measurement actually provides the
robots with an estimate of a global direction.

In a reference system defined by the wind direction, each robot calculates a (vir-
tual) crosswind and a (virtual) upwind force, as depicted in Figure 1. The upwind
force, fu is

fu = u+
1
N ∑

i

yi (1)

where N denotes the number of robots and u the constant upwind drag, a parameter
of the algorithm. fu keeps the robot aligned with the other robots, such that they
all have approximately the same downwind distance from the odor source. If, for
instance, one robot is behind, the yi tend to be more positive in the coordinate system
of this robot and the resulting force is stronger.

The crosswind force, fc, is a weighted difference (with weights a and r) between
an attractive and a repulsive force. Formally,

fc = a fa− r fr (2)

fa =
∑i xici

∑i ci
(3)

fr =
1
N ∑

i,i�=me

1
xi

(4)

The attractive force, fa, takes into account the odor concentrations, ci, measured by
all other robots and is responsible for keeping the formation centered in the plume.



Crosswind Formation Plume Tracking Algorithm 95

−1.5 −1 −0.5 0 0.5 1 1.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1 3

Wind direction

crosswind [m]

u
p
w

in
d
 [
m

]

Force field for robot 2

Fig. 2 Crosswind and upwind forces (scaled) for different positions of robot 2 in a formation
with 3 robots. Robot 1 is currently measuring a 4 times higher concentration as compared to
robot 3. The gray shading stands for the odor concentration, which attains its maximum at
x =−0.5 m.

Robots measuring a high concentration contribute more weight, and therefore pull
the other robots towards them. The repulsive force, fr, keeps the robot at a certain
distance from all other robots.

The vector ( fu, fc) is then rotated into the reference system defined by the robots
heading,

fv = fu cos(−α)− fc sin(−α) (5)

fh = fu sin(−α)+ fc cos(−α) (6)

where α denotes the wind angle relative to the robots heading. The resulting vector
( fv, fh) is finally transformed into differential drive wheel speeds as follows:

sl = s(kv fv + kh fh) (7)

sr = s(kv fv− kh fh) (8)

kv and kh are thereby factors to scale the forward and differential speed appropri-
ately, and s denotes the mean forward speed.

All robots keep executing these steps continuously in a loop. The loop speed is
approximately the same on all robots, but robots are not tightly synchronized. In
each iteration of the loop, a robot takes one measurement with the wind direction
sensor and one with the odor sensor, and broadcasts the latter to all other robots. To
calculate the forces, it uses the last received odor concentration and relative position
values of each robot.
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Fig. 3 Schematic drawing of the arena (not to scale) with the approximate location of the
plume

4 Experimental Setup

The experiments were carried out in a 16 m long and 4 m wide wind tunnel. The
setup was the same as described in [10], except that the arena inside the tunnel was
enlarged to approximately 15 m by 3.5 m. The same setup was also used to analyze
three bio-inspired algorithms [7]. In the following paragraphs, we briefly repeat the
most important figures.

The wind field in the wind tunnel was laminar at roughly 1 m/s speed. The ethanol
odor plume was therefore a straight line (see Figure 3), and the concentration peaks
were slightly decreasing as the plume moved downwind. A constant amount of
ethanol vapor was released by means of a pump. To reduce the turbulence created
by the odor source, the pump was placed outside of the arena and connected with
a tube to the source outlet. Nevertheless, the outlet created some turbulence right
downwind the source, which sometimes disturbed the laminar wind flow in that
area. The starting area was 14 meters downwind from the outlet, as depicted in Fig-
ure 3.

4.1 Robotic Platform

The robot used in the experiments was a Khepera III robot (K-Team SA, Switzer-
land) equipped with an odor sensor and a wind sensor board, as depicted in Figure 4
(a).

The odor sensor was a MiCS-5521 volatile organic compound (VOC) sensor,
which has a very fast response time (≈ 0.1 s). This sensor reacts to a wide range of
organic compounds in the air, with an sensitivity to ethanol comparable to that of a
human nose (≈ 10 ppm). To take advantage of the sensor’s low response time, air
was taken in and released with a small pump.
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(a) (b)

Fig. 4 (a) The Khepera III robot with the wind sensor and the odor sensor board. (b) Picture of
the wind sensor board. The two LEDs on top were used for tracking the robots with overhead
cameras.

A new version of the wind sensor board with 6 thermistors was used on the
robots. The board reports the wind direction at a rate of ≈ 10 Hz with a standard
error of 4o in our flow.

4.2 Relative Positioning

Relative positions were emulated using a camera system and sent to the robots via
wireless LAN at a 10 Hz update rate. The camera system consisted of 6 overhead
cameras, which recorded the whole arena. Each robot was equipped with two LEDs,
and SwisTrack [11] was used to detect these markers on the recorded images. The
global accuracy after calibration was about 8 cm, while the precision was around
4 cm.

5 Experiments with a Static Source

We tested the crosswind formation algorithm with the following settings:

Algorithm Robots Start position Runs

A Crosswind Formation OSL 3 left 10
B Crosswind Formation OSL 3 middle 10
C Crosswind Formation OSL 3 right 10
D Crosswind Formation OSL 5 middle 5

With the start position left (resp. right), the robots started slightly at the left
(resp. right) of the plume, and only the rightmost (resp. leftmost) robot was measur-
ing an above-baseline odor concentration. With the start position middle, one robot
was placed in the plume center at the beginning of the experiment, while an equal
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number of robots started on the left and on the right of the plume. The mean forward
speed of the robots was s = 7.1 cm/s, and the parameters of the force model were
set as follows:

u a r kv kh

Experiments with 3 robots (A, B, C) 1 1 0.1225 1 1
Experiments with 5 robots (D) 1 1 0.4225 1 1

Note that no attempt was made to systematically optimize these parameters, as
the main objective is to demonstrate odor source localization using formations, and
not formation control itself.

Before each run, the odor concentration baseline was determined individually for
each robot by taking a few measurement samples in fresh air. The sensitivities of the
odor sensors were not systematically calibrated, but believed to be approximately
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Fig. 5 Real-robot trajectories produced by crosswind formation algorithm. The gray rectan-
gle represents the target area with the odor source while the black circles denote the starting
positions of the robots. The robots go almost straight upwind towards the source, yielding
very low distance overheads and high success rates.
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the same. Slight sensitivity differences would result in a little drift of the formation
in crosswind direction, but hardly affect the performance.

Two metrics were calculated for each run:

	 The success rate of the team is the number of successful runs (where robots keep
the formation and reach the source) divided by the total number of runs.

	 The distance overhead of a robot is its traveled distance divided by the distance
of the shortest path to the source (straight line). The distance overhead of the
team is the average over the distance overheads of all team members.

Figure 5 shows one run of each setting. No matter where the robots started, the
robots found the center of the plume within the first 2 m upwind distance and then
continued going straight upwind. The distance overheads are therefore extremely
low, as shown in Figure 6. The success rate was 100 % in all settings.

In our setup, this algorithm clearly outperforms all bio-inspired algorithms [7]
[9] in terms of distance overhead and success rate. The distance overhead for most
runs was below 2 %, and for some runs even below 1 %. Included in this overhead
is the initial phase in which robots get into the predefined formation shape. Without
this, the results would be even closer to the optimal performance.

This is not surprising: with sensors on the left and on the right of the plume, the
formation obtains direct feedback about its position with respect to the plume, and
can correct for that long before leaving the plume completely. A plume reacquisition
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Fig. 6 Distance overheads (by starting position) of the experiments with three robots. The
dots stand for the distance overhead of the robots in individual runs, and are classified by the
robot’s position within the formation. The bars indicate the mean distance overhead over all
runs and all robots.
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phase, as it is used with the bio-inspired algorithms is not necessary any more. The
robots keep going upwind without ever losing the plume.

Using 5 instead of 3 robots did not improve the performance in our experiments.
There is no a priori reason for which 5 robots should yield worse results. After
all, 5 robots collect even more information about the plume than 3 robots, and
should therefore do at least an equally good job. However, the information gain
when switching from 3 to 5 robots might be tiny, and therefore irrelevant in our
setup. Main reason for the performance drop here are presumable the outermost
robots, which started at a suboptimal position quite far away from the plume center,
and first had to move closer to the center. We believe, however, that increasing the
number of robots would be advantageous in settings with a sparser plume.

6 Experiments with a Moving Source

Since this algorithm measures the odor concentration at several points at the same
time, it is particularly well suited for scenarios with moving sources. With a single
sensor, an algorithm is unable to tell with a single measurement in which direction
the source moved. Such information can only be deduced from multiple (sequential
or parallel) measurements at different locations.

Multi-robot algorithms provide just this: taking several measurements at the same
time. This allows the formation to know immediately whether the source moved to-
wards the left or towards the right. The force model takes advantage of that infor-
mation in that it tries to keep the robots centered around the plume.

We carried out 5 runs with the same algorithm tracking a moving source. The
source was thereby moved back and forth by 92 cm in crosswind direction at
constant speed. All other parameters of the setup and the algorithm were kept the
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Fig. 7 Real-robot trajectories produced by the crosswind formation algorithm tracking a
source moving in crosswind direction. The gray rectangle represents the target area with
the odor source while the black circles denote the starting positions of the robots. The robots
nicely follow the movement of the plume.
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same. Two of these runs are drawn in Figure 7. While all runs were successful, it is
not possible to calculate the distance overhead (as defined above) in this case. The
trajectories however reveal that the algorithm works fine.

7 Conclusion

In this paper, we presented the crosswind formation algorithm, an odor source lo-
calization algorithm which is inherently designed for multi-robot systems. In its
present form, the algorithm requires at least 2 robots to collaborate. Experiments
were carried out with 3 and 5 real robots in a scenario with laminar flow and no
obstacles, and showed that this algorithm achieves close-to-optimal performance in
terms of distance overhead and success rate. We also demonstrated the algorithm’s
robustness in a scenario with a moving source.

The algorithm performs substantially better than previous attempts with bio-
inspired algorithms that were extended to multi-robot algorithms. With the
formation-based approach used here, a single controller takes care of avoiding col-
lisions among robots and tracking a plume at the same time. Hence, robots do not
compete for space, and do not block each other’s way. Instead, robots take advan-
tage of their relative positions, as well as their wind direction and concentration
measurements, and strive for a common goal: finding the source. Nevertheless, the
algorithm is simple and has — except for relative localization — low requirements.

Future work could address different formations or failing robots. In addition, the
positioning requirements may be reduced to direct-neighbor-only information. The
algorithm should also be tested in more complex scenarios, such as scenarios with
obstacles, turbulence, more complex source motions models, or multiple sources.
Also of interest is a comparison with single-robot algorithms based on multiple odor
sensors, which could be regarded as multi-robot algorithms with perfect formations.
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Cooperative Distributed Object Tracking
by Multiple Robots Based on Feature Selection

Takayuki Umeda, Kosuke Sekiyama, and Toshio Fukuda

Abstract. This paper proposes a cooperative visual object tracking by multi-robot
system, where robust cognitive sharing is essential between the robots. However,
one of the main issues in vision-based distributed observation is the significant dif-
ferences in the background image for the interested object. According to the ob-
serving point of the robot, effective invariant feature to identify the interested object
is different. In this paper, we propose an ambiguity index to select better feature
algorithm for object tracking. Experimental result shows promising result for the
effective multi-robot cognitive sharing.

1 Introduction

In conventional research on cooperative behaviors of distributed autonomous robots,
it has been premised that robots engaged in the same mission are capable of sharing
recognition of the observation target. Such information is often set up to be available
by using a landmark [1] or an RFID [2] tag attached to the object. However, this is
not the case in more general situations in which the cooperation is more dynamic
and a priori cognitive sharing cannot be taken for granted. Hence, more challenging
cognitive issues have to be considered.

To achieve cooperative work, the following basic technology elements are nec-
essary: a self-deployment algorithm for robots to arrange themselves in a formation
suitable to the task at hand [3], a recognition algorithm using vision sensors, a method
of sharing common perceptions between robots [4], and a cooperative decision-
making algorithm for task allocation. In this paper, we focus on the third element
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and propose a cooperative visual object-tracking method for a multi-robot system
in which robust cognitive sharing between the robots is essential. Visual cognitive
sharing in multi-robot cooperation is a particularly important issue since each robot
is assumed to be in a different position, hence their views of even the same ob-
ject would be significantly different. There is very little research literature which
deals with this problem. In the research on vision-based object recognition, various
techniques and efficient features have been proposed [5, 6, 7], but whether a par-
ticular feature is effective depends on the robot’s viewpoint, which is a significant
problem.

In this paper, we attempt to explore the issues of cognitive sharing by consid-
ering the visual tracking of a moving object using multi-robot cooperation. In this
situation, the effectiveness of a visual feature will highly depend on the background
pattern relative to the observation target, meaning that effectiveness will dynami-
cally change as the robot moves.

In order to realize more robust cognitive sharing, we propose a framework that
we call the Hierarchical Invariant Perception Model in which we regard mutual un-
derstanding as the sharing of an appropriate invariant between robots. The invariant
may be shape, color, name, or relation, which each have a different level of abstract-
ness.

In order to evaluate the appropriateness of a feature selection, we define an indi-
cator called “ambiguity”. Ambiguity is dynamically evaluated to select better fea-
tures for recognition according to the current situation.

Experimental results demonstrate the effectiveness of the feature selection method
for robust object tracking in a visually confusing environment.

2 Approach to the Cognitive Sharing

2.1 Hierarchical Invariants Perception Model

To achieve cognitive sharing between robots, robots need to evaluate autonomously
which feature is effective within an environment. For example, suppose a robot
wants to recognize a blue target but the robot is surrounded by many blue objects.
In this situation, the robot cannot recognize the target using color information only,
and the robot understands that the color information is not effective.

There are many invariants that robots can extract from an image, including the
target’s color, shape, name, function, and the geometric or semantic relation be-
tween target and other objects. We can build a model with these invariants allocated
hierarchically (Fig. 1). We define ambiguity with respect to these features, and if
the ambiguity is low, then a robot can evaluate the feature effectively. Therefore,
a robot can evaluate its surroundings using ambiguity and if it knows the ambigu-
ities of other robots, then it can relate their environments to its own. In this paper, we
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Fig. 1 Hierarchical Invariants Perception
Model

Fig. 2 Definition of the distance between
objects

focus on information on color and contour. We use the mean-shift tracker for color
information and pattern matching for contour information.

2.2 Ambiguity of the Color Feature

2.2.1 Definition of Ambiguity

First of all, we evaluate how objects of the same color as the target are distributed
within the input image by using color histograms. Normalizing the target color his-
togram Htarget and the whole image color histogram Himage, we calculate histogram
intersection C from both histograms using eq. (1), obtaining a value for C of be-
tween 0 and 1. Here, i is the histogram bin number. The more objects of the same
color are in the input image as the target, the larger the value of C.

C =
∑

i

min(Htarget(i),Himage(i)) (1)

The mean-shift tracker calculates the distribution of the histogram in a window and
the center of gravity of the distribution. Then, the tracker shifts the window’s center
of gravity to that of the calculated distribution. Because the tracker searches for
objects within the window, if there are objects of the same color as the target in
the window, the tracker will make a false recognition. Therefore, it is necessary to
evaluate the distance between the target and objects of the same color. To evaluate
distance, we use the Poisson distribution. The Poisson distribution, shown in eq.
(2), gives a probability distribution based only on expected number of occurrences
λ. Here, k is the number of occurrences of an event.

P(k) =
e−λλk

k!
(2)

First, we define the distance between the target and other objects by following the
procedure below, applied to Fig. 2.
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• Area of the target: Atarget

• Radius of the target when approximated by a circle: R =
√

Atarget/π
• Area of an object of the same color: Aob ject

• Radius of an object when approximated by a circle: r =
√

Aob ject/π
• Distance between the center of the target and the object when both are approxi-

mated by circles: L
• Distance: d = L− r−R

Next, we interpret the distance as k.

d < 5 :k = 1

5 · (n−1)≤ d < 10 ·n :k = n (2 ≤ n ≤ 19)

95 ≤ d :k = 20

If k is small, the distance is short and there is a high probability of a false recognition.
We can evaluate distance by calculating the cumulative probability in k < 6 showed
in eq. (3).

P =
∫ 5

0
P(k)dk (3)

Finally we define the ambiguity of color feature Acolor by calculating the weighted
geometric mean of C and P because whether a false recognition occurs greatly de-
pends on the distance between objects.

Acolor =C
n

n+m ·P m
n+m , n : m = 1 : 3 (4)

2.2.2 Evaluation of Ambiguity

In this section, we examine the correlation between our ambiguity and the actual
recognition rate. We evaluated the recognition performance of designated targets
for 50 scenes in total: 5 each of ideal and real scenes for each ambiguity value
range, which are 0 to 19, 20 to 39, 40 to 59, 60 to 79, and 80 or more.

Figures 3 to 5 show example scenes. The target to be recognized is a blue ball,
the red circle indicates object recognized by the robot, and the gray circles indicate
the approximating circle of other objects of the same color. In Figs. 3 and 4, the
histogram intersection C is low, and P is low because all the distances between
the objects, d, are high Thus, Acolor is low and the robot can recognize the target.
However, in Fig.5, although C is similar to in Figs. 3 and 4, P is high because there
are blue objects near the target, and all distances d are low. Thus, Acolor is high and
the robot fails to recognize target.

We conducted an experiment as above for each ambiguity range; results are
shown in Figs. 6 and 7. Here, the horizontal axis is ambiguity and the vertical axis
is the success probability of recognition, max value is 5. From these results, it is
obvious that false recognition occurs when ambiguity exceeds 60 and robots cannot
recognize a target using a color feature when ambiguity exceeds 80.
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Fig. 3 Success in an ideal
scene

Fig. 4 Success in a real scene Fig. 5 Failure in a real scene

Fig. 6 Success probability in an ideal scene Fig. 7 Success probability in a Real Scene.

2.3 Ambiguity in the Contour Feature

2.3.1 Definition of Ambiguity

We use a pattern-matching algorithm for recognition of a target based on the contour
feature. The similarity S i of each contour is defined as in eq. (4) using Hu moment
hk [8]. Additional character t indicates the target and i is a contour.

mt
k = sign(ht

k) · log | ht
k |

mi
k = sign(hi

k) · log | hi
k |

S i =

7∑

k=1

| mt
k −mi

k | (5)

If S i = 0, then both contours are perfectly matched, and if S i is large, then they
are not well matched. Therefore, transforming S i to S ′i by the sigmoid function
as eq. (6), S ′i = 1 corresponds to perfect matching, making it suitable for defining
ambiguity.

S ′i =
1

1+ exp−α(S−β) (6)

α = −15 , β = 0.3
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Calculating S ′i for all contours obtained from an input image and numbering them
from 1 to N, we define ambiguity of contour Acontour as eq. (7). The ambiguity
ranges from 0 to 1.

Acontour =

N∑

i=1

S ′i

N
(7)

However, if there are no contours similar to those of the target, which is to say no
contour has an S ′ over a threshold value or the robot is unable obtain any contours
from the input image, then the robot cannot recognize the target at all using the
contour feature and the robot sets Acontour = 1.

2.3.2 Evaluation of Ambiguity

In this section, we examine the correlation between our proposed ambiguity and the
actual recognition rate in the same way as for the color feature. Figures 8 to 10 show
example experiments. In Figs. 8 and 9, Acontour is low and the robot successfully
recognizes the target. However, in Fig. 10, because Acontour is high, the robot fails
to recognize the target.

We conduct experiments using the above definitions for each ambiguity range;
the results are shown in Figs. 6 and 7. Although false recognitions occurs when
ambiguity exceeds 60 for the color feature, in this case false recognition occurs
when ambiguity exceeds 40 and the robot cannot recognize the target using the
contour feature when ambiguity exceeds 60.

Fig. 8 Success in an ideal
scene

..

Fig. 9 Success in a real
scene

Fig. 10 Failure in a real
scene

2.4 Selecting a Feature Algorithm

This section deals with selecting a feature algorithm according to the environment.
In short, robots select one feature with low ambiguity by comparing ambiguities.
However, from the experiments described in the above sections dealing evaluation of
ambiguity, it is obvious that the ambiguity value at which a robot fails to recognize
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Fig. 11 Success Probability in an ideal scene Fig. 12 Success Probability in a real scene

a target varies between features. Therefore, using a heuristic offset for Acontour , the
new ambiguity is Acontour ·1.2 is used.

The robots calculate ambiguity for each image frame and select a feature. Be-
cause of the robots are moving, ambiguity and the selected feature change rapidly.
This can lead to recognition failure even though, for a given feature, the robot could
successfully recognize the target in this environment. In addition, when the two am-
biguities have almost the same value, this also causes the selected feature to change
rapidly. To avoid these problems, two processes are added to feature selection, as
follows.

(1) Robots save the ambiguities of the last 10 frames and calculate the means for
each feature. Robots select the feature by comparing the mean at the next frame.

(2) If the difference between the two ambiguities is less than 0.1, the robots do not
change the feature.

3 Experiment of Cognitive Sharing through Object Tracking

3.1 Cognitive Sharing on Robots Communication

3.1.1 Sharing Target Infomation

This section discusses cognitive sharing through object tracking based on ambiguity.
When a robot cannot maintain the tracking of a mobile target, it needs to make

a tracking request to peripheral robots. Because the environment surrounding each
robot is different, it is not obvious whether the effective feature for one robot is
appropriate for another robot. Therefore, robots need to modify differences in the
effective feature caused different environments by communicating. For example,
when robot A tracking a target makes a tracking request to robot B, the robots mod-
ify their differences as follows.

(1) Robot A sends a packet including information on which feature has low ambi-
guity. The packet on a color/contour feature is named a Color/Contour Packet.
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(2) Robot B start to track the target on the basis of the received feature. If its am-
biguity is low, the robot maintains tracking. But if its ambiguity is high, robot
B may fail to recognize the target and request another feature from Robot A by
sending a Request Packet.

(3) When robot A receives a Request Packet from robot B, robot A sends a packet
not sent at step (1).

(4) When robot B gets the new feature, robot B restarts tracking on the basis of both
features. If both ambiguities are high, robot B maintains tracking, but without
confidence in successfully recognizing the target.

Additionally, when robots receive any packet, they send an Answer Packet. After
receiving an Answer Packet, the original sending robot stops sending its packet.

3.1.2 Identifying a Target between Robots

Identifying a target when multiple robots track a target cooperatively is more com-
plicated. If only one robot tracks a target, whether the robot has successfully recog-
nized the target or not, it must keep tracking. However, when multiple robots try to
recognize a target at the same time, there are three cases: both robots successfully
recognize the target, both robots fail to recognize the target, and exactly one robot
successfully recognizes the target. This problem can be solved by using the context
information shown in Fig. 1. In this paper, we approach this problem by using the
position relation between the target and a landmark as the basic context.

When a robot recognizes the target, it sends a Recognition Packet, which includes
three pieces of information: the type of selected feature, its ambiguity, and the po-
sition relation between the target and a landmark. The position relation is classified
into whether the landmark is near the target or on which side of the landmark the
target can be found.

For example, robot A sends a Recognition Packet and also receives one from
other robot. Robots identify the target as follows.

CASE1. There is a contradiction in the position information for the target relative
to the landmark.

(1) If robot A’s ambiguity is less than the other robot’s, robot A maintains track-
ing.

(2) If robot A’s ambiguity is higher than the other robot’s, robot A starts to search
its surroundings.

(3) If the two robot’s ambiguities are almost the same, the robots cannot evaluate
which robot has successfully recognized the target and both robots maintain
tracking.

CASE2. There is no contradiction in the position information for the target rela-
tive to the landmark.
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(1) If both robot’s ambiguities are low, the robots conclude that they are recog-
nizing the same object and maintain tracking.

(2) If one or both robot’s ambiguity is high, the robots conclude they may be
recognizing same object and maintain tracking.

3.2 Experimental Conditions

The experimental environment is shown in Fig. 13. The target is the blue ball placed
on the mobile robot operated manually, and the landmark is the red block. Because
of the dummy, which is the same color as target, the ambiguity of color is high on
the left side of robots B and C’s area.

Fig. 13 Experimental Environment

The experimental procedure is as follows, where step (1) is carried out manually
but the robots run autonomously starting from step (2).

(1) Robot A gets color and contour features of the target by selecting the target
from an input image.

(2) Robot A tracks target as long as the target is in robot A’s area.
(3) When the target leaves robot A’s area, robot A sends a tracking request to robots

B and C.
(4) Robots share target information and identify the target by the methods shown in

previous sections.

3.3 Experimental Results

Scenes of the Experiment are shown in Figs. 14 to 16. In addition, ambiguity and
the selected feature as a function of frame are shown in Figs. 17 to 19, and the
communication log between robots is shown in Fig. 20.
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In Fig.14, the target leaves robot A’s area, and thus robot A sends a tracking
request to the other robots by sending a Color Packet. In Fig. 15, although robot B
tries to track the target, it requests another feature from robot A because Acolor is
high. However, from robot B’s viewpoint, there is no contour similar to that of the
target; therefore, robot B starts to track using the color feature and reports that the
landmark is to the right of the target. In contrast, robot C can track the target by using
the color feature because its ambiguity is low; therefore, robot C does not request
another feature and reports that the landmark is to the right of the target. Robots
B and C both send a Recognition Packet and try to identify the target, but there is
a contradiction in the position information for the target relative to the landmark.
Thus, robot B, which has high ambiguity, stops tracking and starts searching its
surroundings. In Fig.16, robot B recognizes an object again and the landmark is to
the left of the object. Because this time there is no contradiction and both robot’s
ambiguities are low, the robots report that they have identified the target.

Fig. 14 Experimentarl Result: Frame = 218. The target leaves robot A’s area, and robot A
sends a tracking request to the other robots.

Fig. 15 Frame = 269. Robots B and C try to identify the target. Robot B, which has high
ambiguity, fails to recognize the target, and robot C successfully recognizes the target.
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Fig. 16 Frame = 308. Robot B searches its surroundings and successfully recognizes the
target again. This time, there is no contradiction, and thus both robots successfully recognize
the target.

Fig. 17 Transitions: robot A Fig. 18 Transitions: robot B

Fig. 19 Transitions: robot C Fig. 20 Communication log

4 Conclusion

In this paper, we proposed ambiguity for evaluating effectiveness of each feature
in various environments to enable cognitive sharing and identify a target, which
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are the main problems in multi-robot cooperative tasks. We developed an algorithm
selecting the best feature according to the environment, based on the ambiguity.
Furthermore, through the experiment of cooperative distributed object tracking by
multiple robots, we show that communication between robots based on ambiguity
corrected differences in the effective feature caused by differences in environment
and position relation between target and landmark, which allows the target to be
identified.
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Pancakes: A Software Framework
for Distributed Robot and Sensor Network
Applications

Patrick Martin, Jean-Pierre de la Croix, and Magnus Egerstedt

Abstract. The development of control applications for multi-agent robot and sen-
sor networks is complicated by the heterogeneous nature of the systems involved, as
well as their physical capabilities (or limitations). We propose a software framework
that unifies these networked systems, thus facilitating the development of multi-
agent control across multiple platforms and application domains. This framework
addresses the need for these systems to dynamically adjust their actuating, sens-
ing, and networking capabilities based on physical constraints, such as power lev-
els. Furthermore, it allows for sensing and control algorithms to migrate to different
platforms, which gives multi-agent control application designers the ability to adjust
sensing and control as the network evolves. This paper describes the design and im-
plementation of our software system and demonstrates its successful application on
robots and sensor nodes, which dynamically modify their operational components.

1 Introduction

The increasing use of wireless sensor networks in distributed control applications,
such as unmanned surveillance or building automation, results in the deployment of
heterogenous, mobile computing platforms into new environments. These systems
are usually connected with wired or wireless interfaces, such as Ethernet, Wi-Fi, or
ZigBee, to enable the sharing of local information among the devices comprising the
network. One important development for utilizing these distributed control networks
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is the incorporation of mobile robots, as noted by LaMarca et al. [14] and Saffioti et
al. [17]. Allowing robots to interact with sensor networks provides new functionality
in military, industrial, and consumer applications. In [14], the authors deployed a
robot to maintain an office garden and its wireless sensors. The authors developed
a software framework that couples their robot with the sensor nodes embedded into
the office garden. The robot successfully maintained energy resources of the sensors
as well as detected failures. Furthermore, the authors of [17] developed a software
framework that connects robots to distributed sensor networks so that mobile robots
may assist humans in a residential environment.

To make multi-agent robotics applications, such as the prior examples, work
across different types of robots and wireless sensors, developers need software
frameworks that help manage the complexity introduced by the heterogeneity of
computational platforms and communication interfaces. Furthermore, the robotic
and sensing devices on the network need to respond dynamically to physical
changes (i.e. battery power). Providing the ability to dynamically adjust the frame-
work at runtime opens up the possibility of extending operational lifetime, as well
as adapting the system to reflect changes in the environment.

In this paper, we propose and demonstrate a software framework that unifies
robotic and sensor networks in a seamless way, much like the prior efforts in
[14, 17]. This framework, called Pancakes, gives developers several key features that
facilitate the design of multi-agent control applications. First, Pancakes abstracts
sensing, actuation, and networking capabilities such that high-level controllers can
be implemented without worrying about low-level hardware management. Further-
more, this framework provides a structured way to dynamically adjust the runtime
behavior of the sensor and robotic platforms according changes on the local system,
as well as the operational environment. Complementary to this dynamic adjustment
feature, Pancakes allows for the migration of executable components (i.e. sensing
and control algorithms) from one platform to another. This software framework was
inspired by the current literature in distributed and software control middleware,
e.g. [7, 10, 18], robotics control software, e.g. [9, 11, 13, 16, 6], and actor-oriented
design principles, e.g. [8, 12, 15].

In [7], Abdelzaher et al. developed a software framework that enabled the dy-
namic adjustment of a web server using feedback control. Their middleware ex-
posed software “knobs” that could be adjusted to get better quality of service. Mov-
ing beyond this idea of modifying parameters of software components is the idea
of reflective middleware [18]. This work describes a system where the pieces of the
middleware dynamically adapt their capabilities as changes occur within the soft-
ware. The work in [10] proposed a larger distributed embedded system framework
that enables the development of software across many different types of comput-
ing platforms, from embedded controllers to desktop systems. In a similar manner,
Pancakes gives robot and sensor network application designers the ability to dynam-
ically change how their system operates at runtime. Furthermore, it allows for the
migration of system components across deployed platforms.

The work in robotics software architectures made the control of heterogeneous
systems easier by abstracting the sensors and actuators. For example, [11] created
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a common interface to the sensors and actuators of the robots so that users could
write control software that works on different types of robots without having to
know every detail of the robot’s implementation. The authors of [9] took this idea a
step further by separating the capabilities of a robot into discrete, re-usable compo-
nents that can be assembled into a larger robot control application. Additionally, the
work in [13] applied multi-agent software design to create a platform for developing
distributed robotics applications. The newer software package, ROS [6], provides
an operating system-like framework in an attempt to standardize robotics software
development for many robotics platforms. Pancakes provides the same sensor, ac-
tuator, and network abstraction that are commonplace in recent robotics software
frameworks, which allow it to unify distributed robots with sensor networks.

To the best of the authors’ knowledge, the combination of dynamic adjustment
and migration of system components with hardware abstraction is a novel contri-
bution to the distributed robotics community. These features allow us to create dy-
namic applications that leverage the capabilities of these heterogeneous robot and
sensor networks. The structure of this paper is as follows: in Section 2 we pro-
vide a high-level description of how Pancakes works using an example application.
Following this overview, we discuss the architecture design and implementation in
Section 3. In Section 4 we deploy the Pancakes architecture onto mobile robots that
must encircle a region monitored by a sensor node. We conclude with some final
remarks in Section 5.

2 Pancakes Overview

Each system deployed with Pancakes is treated at its highest level as a software
agent. However, Pancakes is not a general purpose agent-based software frame-
work, such as CybelePro [2] or JADE [4]. Instead, Pancakes focuses on providing
an infrastructure for the distributed control of robots and sensor networks. The re-
sult is a Java-based system that can be deployed on embedded computers, such as
ARM-based platforms, as well as full desktop environments.

Pancakes provides the necessary hardware and network abstractions that have
become a common practice in current robotics software frameworks. These abstrac-
tions let users utilize the system devices that interact with the environment, such as
actuators and sensors. Also, the networking services let each agent share local in-
formation by passing messages over the network interface without having to micro-
manage the low-level communication protocols.

Internally, each Pancakes agent is composed of the Pancakes kernel and a col-
lection of actor-like software components that communicate with each other using
input and output channels provided by the Pancakes kernel. The two types of com-
ponents in Pancakes are tasks and services. Tasks carry out a particular function for
the Pancakes agent, such as reading sensor data or performing agent discovery. They
publish their results onto their output channels for other tasks or services to use.



118 P. Martin, J.-P. de la Croix, and M. Egerstedt

Services spawn and manage tasks that the agent requires for execution. Services
submit periodic tasks to the kernel’s scheduler for execution. Additionally, event-
driven tasks are configured to listen to their input channels for new messages, use
these messages to carry out their computation, and eventually send results to an out-
put channel. The services also enable the dynamic reconfiguration of the middleware
by starting new tasks, adjusting task schedules, stopping current tasks, migrating
tasks across platforms, or shutting down an entire service. Dynamic reconfigura-
tion is especially important when we construct power- and communication-aware
applications.

Consider the mobile robots and wireless motion sensor shown in Figure 1, which
are deployed in a building for security monitoring. The two mobile robots, Agents
1 and 2, need to communicate between themselves and the sensor node in order to
share information necessary for completing the desired monitoring mission. Some
important questions an application designer needs to consider are: what happens
when a mobile robot is low on power? and how can robot tasks be transferred from
one agent to another?

Intruder

Message

Agent 1

Agent 2

(a)

Agent 1

Agent 2

(b)

Migrate

Task
Agent 2

Agent 1

(c)

Fig. 1 An illustrative example of our desired control application for mobile robots (white
circles) working with a sensor node (grey diamond) to isolate an intruding agent (grey circle)

Using Pancakes, we can create a control application that allows us to address
these questions in the following way. When the sensor node (grey diamond) detects
motion from an intruder, it sends a message to Agent 1. This robot initiates a task
that encircles the region where the intruder was detected, as illustrated in Figure
1(b). While executing this task, Agent 1 can use Pancakes to monitor its power con-
sumption and actively adjust its speed or communication rates to conserve power.
If Agent 1 consumes too much energy, it needs to ensure that the region is still
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monitored by migrating its currently running task to Agent 2 (Figure 1(c)). This
capability would effectively lengthen the operational time of the network by let-
ting Agent 2 wait until absolutely necessary before executing a task. The details on
how Pancakes is designed to facilitate the implementation of this application is the
subject of the next section.

3 The Pancakes Architecture

In this section, we describe the architecture of the Pancakes software framework and
how they work together to facilitate the development of multi-agent robotics appli-
cations. Each Pancakes agent is composed of a collection of executable components,
or tasks, which are the “workhorses” of Pancakes. These tasks are associated with a
service that maintains a collection of related tasks. Since we adopt the actor-oriented
model of programming [8, 12, 15], tasks and services communicate with each other
through a collection of channels, the information stream. Combining these pieces
with a scheduler allows for the construction of parallel and dynamic control appli-
cations for multi-agent systems.

3.1 Information Stream

The information stream sets up the communication channels that services and tasks
use to publish new information or subscribe to receive information from other Pan-
cakes components. This stream contains five core channels: system, sysctrl,
ctrl, network, and log. Additionally, services can create specialized channels
at runtime that are used to pass service specific information among tasks within the
service.

The system channel provides a channel for services and tasks to publish sys-
tem information to user-made and other system tasks. For example, a mobile robot’s
sonar sensor task would publish its most recent data points to the system channel,
which is subscribed to by a control task. The sysctrl channel serves as a control
messaging channel among the services and tasks. Messages sent over this channel
facilitate the dynamic rescheduling, shut-down, or migration of tasks. To issue con-
trol commands to actuators, tasks send messages over the ctrl channel. A task
or service that requires network communication publishes its network messages to
the network channel. Finally, the log channel allows any Pancakes component
to perform error, debug, or data logging, which helps in the post-run analysis and
debugging of complex distributed applications.

It is important to note that the existence of the five core channels stems from
our preference to semantically organize the flow of information within Pancakes.
Information is communicated with Packets that indicate the destination and type of
information. This approach is analogous to networking over TCP/IP, where pack-
ets can be transmitted to a destination independent of the information contained in
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each packet. When using TCP/IP, one can choose to transmit http over port 80 or
ssh over port 22 in order to organize such information flow over the network. Sim-
ilarly, the information stream in Pancakes can be organized by adding or removing
channels as needed.

3.2 Tasks

Task components are the main “actors” in Pancakes: they produce and consume
information in order to affect a change in the deployed system. Tasks can execute in
time-driven, event-driven, or a combination of both modes depending on the desired
functionality set by the designer. At startup, a time-driven task is submitted to the
scheduler and is executed at its specified frequency. The event-driven tasks wait for
a message to arrive on one of its incoming channels. Since tasks communicate via
the Pancakes stream channels, there is no need to synchronize on shared variables.
Instead, the data necessary for execution is transmitted through the channels and
delivered to subscribing Pancakes components.

Tasks are a natural way to abstract how different pieces in the system should inter-
act. For instance, as shown in Figure 2, a robot can have several sensing tasks, such
as sonar, IR, or local pose, and a control task that takes the output from these sensors
and computes a control input for the actuation system. Furthermore, there can be a
supervisor task that executes in parallel, monitors the output of all of the other tasks,
and makes higher level decisions. In this example, the Supervisor Task examines the
sensor input and the output from the control task in order to adjust sampling rates
of different sensor managed by the Device Service. The advantage of this approach
is that the application designer can focus on developing the input/output behavior of
each individual task, rather than deal with complicated thread management.

Control
Task

Supervisor
Task

IR
Task

Sonar
Task

Local Pose
Task

Actuator
Task

system

ctrl

sysctrl

Device
Service

Fig. 2 In this example Pancakes application, a robot is deployed with sonar, IR, and lo-
cal pose sensors. This sensor information is communicated to the system via the system
channel, which is subscribed to by the Control Task and Supervisor Task. The Control Task
computes a command for the actuators and sends it over the ctrl channel. Additionally, the
Supervisor Task sends commands over sysctrl to the Device Service to adjust runtime
components (e.g. the sampling rate of the IR task).



A Software Framework for Distributed Robot and Sensor Network Applications 121

3.3 Services

The duties of services are 1) to maintain a registry of its tasks that are currently
running, 2) to manage the startup, shutdown, or migration of tasks, and 3) to manage
the shutdown or restart of the service itself. Pancakes has four default services that
are loaded at startup: the Device Service, the Network Service, the Log Service, and
the Client Service. Furthermore, developers can create new services that can supply
additional functionality for their system.

The Device Service creates the system device tasks, which are the hardware ab-
stractions for sensors and actuators, and schedules any that require timed execution.
The Network Service enables communication with other Pancakes agents on the net-
work. This service creates a network client task that listens to the network channel
for any outgoing network messages and transmits them to the intended target. The
Log Service listens to the log channel and displays error and debug messages to the
console; additionally, it can record messages to a file for later analysis. Finally, the
Client Service spawns user tasks and channels for inter-task communication. Users
implement tasks to carry out communication and control algorithms, which are then
loaded into the Client Service at system startup.

3.4 Dynamic Adjustment and Migration of Components

One of the key features of Pancakes is the ability to adjust services and tasks as an
application executes on a deployed system. This feature lets the application adjust
the capabilities within the architecture according to dynamic effects from software
(i.e. logic statements, software controllers) or the physical environment (i.e. power
consumption, sensing data). For example, a task can request that network discov-
ery be slowed down to reduce the number of network transmissions; therefore, it
can reduce the rate of power consumption of the application. Also, a more drastic
power savings could be achieved by requesting the Network Service to shut down
temporarily.

We enable this feature by establishing a messaging protocol for tasks and ser-
vices to request a change the runtime behavior of other tasks and services. The
currently supported control operations are stop, restart, start, or reschedule. For a
task or service to initiate one of these controls, it must send a control message over
the sysctrl channel within Pancakes. All services subscribe to this channel and
inspect the message to determine if it has to change its behavior or that of one of
its tasks. Once the message is received at the target service, the service calls on
the scheduler to stop, start, or reschedule the task. Additionally, if the service is re-
quested to stop or restart, it shuts down all of its currently running tasks and requests
the scheduler to stop or restart itself.

A complementary feature to dynamic adjustment is the ability to migrate tasks
among deployed Pancakes systems. As illustrated in the example of Section 2, mo-
bile robots and sensor networks can use this capability to achieve a longer mis-
sion lifetime. Task migration is managed by the Task Migrator task in the Network
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Service, since it must communicate with neighboring agents to find a suitable candi-
date for migration. The migration protocol involves sending the task and its depen-
dencies for execution (i.e. required sensors and/or actuators) to all neighbors of the
current agent. Once candidate agents are found, the migrating agent chooses the one
that has the lowest execution “cost.” In its current implementation, our cost metric
is based on the system load of the candidate agent, for example, the number of tasks
running on the deployed system.

3.5 Implementation

To enable the concurrent operation of multiple hardware and networking devices,
Pancakes makes use of the actor-oriented programming model as described in
[8, 12, 15]. This model creates software components that focus on concurrency and
communication rather than interface methods, such as remote method invocation:
a common technique in object oriented software [15]. By using an actor-oriented
approach, Pancakes avoids the common issues of thread blocking in concurrent ap-
plications, since information is shared via message passing among the components,
rather than through direct function calls.

We implemented Pancakes in Java to ensure its operation on several types of
computational platforms and operating systems. In particular, the robots and sen-
sors nodes in our lab use low-power ARM processors and an embedded Linux/GNU
OS. We use the open source virtual machine JamVM [3], which can be compiled
for several processor architectures. Another reason we use Java as our implementa-
tion language is the existence of robust Java libraries that enable concurrency and
message passing. The Java SE 6 standard library has new concurrency tools that
efficiently handle multiple threads using specialized thread pools. Complementary
to this library, we make use of the Jetlang [5] library, which provides messaging
services for multi-threaded applications.

Our choice to implement Pancakes in Java currently restricts us to JVM capable
platforms, such as ARM- and PC-compatible systems. While most robotic systems
are capable of supporting a JVM, the smaller processors of sensors are unlikely to
support a JVM as well. However, since sensor networks commonly interface to a
larger computational unit, we can incorporate these smaller sensor nodes as virtual
(networked) devices into a larger unit, like the BUG [1], which can communicate
via a low-power radio, such as ZigBee.

4 Experimental Results

In this section, we use Pancakes to implement the example application described in
Section 2. The platforms used in our experiment are shown in Figure 3. Pancakes is
deployed on two Khepera III robots, which perform the target encirclement behavior
with a BUG sensor node as described in the example scenario of Section 2. To
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Fig. 3 This figure shows the hardware devices used in our experiment. The figure shows one
of the two K-Team robots circling a BUGLabs BUGBase, which is our sensor node to detect
intruders. These systems were provided with indoor localization data from the motion capture
systems shown.

determine the local pose of each system we use a Vicon motion capture system.
Since this local pose data is produced off-board by the motion capture system, it is a
“virtual” local sensor on each robot. The Vicon system tracks the reflective points on
each robot and transmits the local pose data to each robot, where the data is received
and handled by a Local Pose task in Pancakes.

The following experiment uses two robots to perform surveillance, and a BUG
sensor node for motion monitoring. The robots have two tasks available: 1) a
ScanTarget task, which implements the boundary tracking algorithm of [19] and
2) a GoHome task, which drives the robot back to its home station. The BUG sen-
sor has a task, MotionDetection, that monitors its motion detection sensor and
transmits its location to its neighbors when motion is detected. Initially, the BUG
is set near the center of the monitored area and both robots are initialized. Agent 1
starts with its ScanTarget task initialized and agent 2 is held idle for reserve.

Figure 4 shows how the systems execute during the initial phase of the experi-
ment. Agent 1, the � symbol, starts from its initial position in the top right of the
area. It converges to a circle around the BUG sensor, denoted by the � near the ori-
gin. Agent 2, denoted by the ◦, waits in the bottom right of the region to be assigned
a task. Once agent 1’s battery level drops below a particular threshold, it begins its
task migration, such that agent 2 can take over the ScanTarget task.

Agent 1 sends a migration message to all of its neighbors, which includes the
task itself and a list of dependencies the task needs to execute. For now, these
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Agent 1
Start

Agent 2
Start

BUG
Migration
Messages

Fig. 4 This figure shows the agent 1, denoted by�with trajectory, encircling the BUG sensor
(� near the origin). Agent 2, denoted by the ◦, is idle to the bottom right.

dependencies are the types of devices the platform supports (i.e. sonar, local pose,
motors). When a neighbor receives the message, it checks for dependencies and, if
compatible, returns a positive reply with a “cost” value. This cost is currently calcu-
lated by counting the number of active tasks running on the platform; however, the
framework is flexible enough that a more complicated cost could be calculated from
power levels, communication rates, or other important properties of the platform.
Agent 1 inspects all of its valid replies, chooses the agent with the lowest cost, and
migrates the task to that agent.

Figure 5 shows the trajectories of the systems after migration has taken place.
Agent 1 has started its GoHome task and agent 2 is encircling the BUG sensor node
using the migrated ScanTarget task. Agent 2 continues to circle the sensor node,
as shown in Figure 6, and agent 1 has returned to its home position for the duration
of the mission. This experiment shows how the Pancakes framework enabled the
creation of a dynamic control application for a small team comprised of mobile
robots and a sensor node.
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BUG

Agent 1
Executes GoHome

Agent  2
Executes ScanTarget

Fig. 5 Once the first agent (�) runs low on its battery level, it sends out a migration message
to the other two agents. Since Agent 2 (◦) has the necessary devices needed to execute, it
accepts the task and starts the same encirclement algorithm. At the same time, Agent 1 begins
its GoHome behavior.

5 Conclusion

In this paper we designed and demonstrated a new software infrastructure for de-
veloping control applications for mobile robots and sensor networks. The benefits
of this system are its ability to abstract the sensors, actuators, and network devices
as well as the ability to dynamically change how these components operate. Fur-
thermore, the systems allows for the migration of tasks to other agents that have
the necessary capabilities to execute them. Our experimental results show that this
framework facilitates the development of dynamic control and sensing applications
that can incorporate heterogeneous distributed systems.
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BUG

Agent 1
Home

Agent  2

Fig. 6 At this point, agent 1 has finished its GoHome behavior. Agent 2 continues to encircle
the BUG sensor.
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Part II: Localization, Navigation,
and Formations

Magnus Egerstedt

Mobility algorithms for multi-robot systems must inevitably be tailored to the in-
formation available to the individual robots. This information is typically limited,
which in turn has implications on the mobility algorithms themselves. In other
words, they must use only locally available information and, as such, be distributed.
At the same time, they should still achieve the desired global properties and this part
of the book focuses on this interplay between local sensing, mobility, communica-
tions, and cooperation algorithms.

Before one can even start designing algorithms that make teams of mobile robots
act in an effective manner, the individual robots must have access to sufficiently rich
and reliable information. The localization problem deals with a manifestation of this
problem, where a team of robots must try to infer their localization from a distributed
set of sensors. In Cristofaro, Renzaglia, and Martinelli, the localization problem is
studied for a team of micro aerial vehicles. A new information filter is introduced
that can be distributed across the individual aerial vehicles, and that allows for the
team to localize itself based on noisy GPS signals and inertial data. The SLAM
(simultaneous localization and mapping) problem constitutes a generalization of
the localization problem in that one needs to simultaneously build up a map of the
environment in which the robots are deployed and to localize the robots in this map.
The multi-robot SLAM problem is investigated in Abrate, Bona, Indri, Rosa, and
Tibaldi, where map updates are managed in a novel way in order to ensure that the
inter-agent computational burden remains light.

The navigation problem is concerned with the design of algorithms that ensure
that a team of mobile robots achieves some goal while avoiding collisions. Otte and
Correll investigate how one can structure the computation of collision-free paths
in a distributed manner. What is proposed is a separation of time-scales, where a
rough, suboptimal path is produced, and this path is then refined over time, subject
to communication constraints. In Masehian and Sedighizadeh, a related problem
is tackled using distributed particle swarm optimization, whereby global and local
planners operate sequentially. An alternative view of the navigation problem – not
in terms of path planning but in terms of control laws – is presented in Roussos and
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Kyriakopoulos, where the robots move according to a potential field-based feed-
back law. These potential fields are obtained through decentralized navigation func-
tions and they ensure that collisions between robots as well as with obstacles
are avoided. In Alonso-Mora, Breitenmoser, Rufli, Beardsley, and Siegwart, the
collision-avoidance problem is further investigated for teams of non-holonomic mo-
bile robots. And, based on the concept of optimal reciprocity, smooth and collision-
free paths can be guaranteed.

In Nebot and Cervera, sensing and mobility is combined, and a visual-aided guid-
ance strategy is proposed for driving teams of robots into desired, geometric forma-
tions. Key to this strategy is the explicit heterogeneity among the robots, whereby
one robot acts as a “conductor” in that it drives the formation while the remaining
robots ensure that the formation is maintained based on the available visual infor-
mation. Formation control is also the topic in Mullen, Monekosso, Barman, and
Remagnino, where a decentralized formation control strategy is coupled with reac-
tive coordination and control laws. The resulting set of algorithms achieve so-called
lattice cohesion in the team in a robust manner. Formations are also considered in
Mikkelsen, Jespersen, and Ngo, where potential forces are used to establish the for-
mations in a distributed manner, based on probabilistic inter-robot communication
models. A specialized application scenario is considered in Aro, Hu, Vainio, and
Halme, where a collection of floating robots have to coordinate in shallow seas.
These types of environments are very hard to manage due both to the inherently
limited control authority that the individual robots have over their motions, and to
the severe bandwidth limitation that under-water communications imply.

Multi-robot systems can abstractly be viewed as a network of agents, where the
edges in the network encode the information flow in-between agents. As a conse-
quence, it is important to not only focus on the primary mission objectives, such
as geometric formation-based objectives, but also on secondary objectives pertain-
ing to the underlying network itself. Simonetto, Keviczky, and Babuška investigate
how one key such objective can be achieved, namely the so-called algebraic connec-
tivity of the network, which essentially measures how well-connected the network
is. The proposed approach is optimization-based and it operates solely on locally
available information. Another network-level objective is synchronization, where
the team of robots must coordinate some state in the sense that the individual in-
stantiations of that state should be synchronized, rather than reach particular goal
points or inter-agent distances. In Hauert, Leven, Zufferey, and Floreano, the syn-
chronization problem is tackled for a team of fixed-wing flying robots. The key idea
is to use beat-based synchronization, whereby the robots’ headings align over time,
which corresponds to all the robots flying in the same direction.

What makes control, coordination, and sensing across networks of mobile robots
so challenging is the tight interplay between the limitations on the sensing and com-
munication capabilities and the mobility algorithms. This part of the book highlights
some of these challenges and presents some novel and effective solutions across
the entire spectra of problem domains, including navigation, localization, formation
control, and network-level coordination and synchronization.



Distributed Information Filters for MAV
Cooperative Localization

Andrea Cristofaro, Alessandro Renzaglia, and Agostino Martinelli

Abstract. This paper introduces a new approach to the problem of simultaneously
localizing a team of micro aerial vehicles (MAV) equipped with inertial sensors able
to monitor their motion and with exteroceptive sensors. The method estimates a de-
layed state containing the trajectories of all the MAVs. The estimation is based on
an Extended Information Filter whose implementation is distributed over the team
members. The paper introduces two contributions. The former is a trick which al-
lows exploiting the information contained in the inertial sensor data in a distributed
manner. The latter is the use of a projection filter which allows exploiting the infor-
mation contained in the geometrical constraints which arise as soon as the MAV ori-
entations are characterized by unitary quaternions. The performance of the proposed
strategy is evaluated with synthetic data. In particular, the benefit of the previous two
contributions is pointed out.

1 Introduction

In recent years, flying robotics has received significant attention from the robotics
community. The ability to fly allows easily avoiding obstacles and quickly having
an excellent birds eye view. These navigation facilities make flying robots the ideal
platform to solve many tasks like exploration, mapping, reconnaissance for search
and rescue, environment monitoring, security surveillance, inspection etc. In the
framework of flying robotics, micro aerial vehicles (MAV) have a further advantage.
Due to the small size they can also be used in narrow out- and indoor environment
and they represent only a limited risk for the environment and people living in it.
One of the main prerequisite for the successful accomplishment of many tasks is
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a precise vehicle localization. Since micro aerial vehicles are equipped with low
computational capabilities an efficient solution must be able to distribute the com-
putation among all the agents in order to exploit the computational resources of the
entire team. Distributing the computation has also another key advantage. It allows
us to make the solution robust with respect to failures. On the other hand, distribut-
ing the computation must also account for the limited communication capabilities.

The cooperative localization problem was formulated in [11] and it has been
faced by many authors so far. Fox and collaborators [3] introduced a probabilistic
approach based on Markov localization. Their approach has been validated through
real experiments showing a drastic improvement in localization speed and accuracy
when compared to conventional single robot localization. Other approaches take
advantage of relative observations for multi-robot localization [4, 5, 9, 16, 17, 20].
In [5] a method based on a combination of maximum likelihood estimation and
numerical optimization was introduced. This method allows to reduce the error in
the robot localization by using the information coming from relative observations
among the robots in the team. In [17], a distributed multi robot localization strategy
was introduced. This strategy is based on an Extended Kalman Filter to fuse propri-
oceptive and exteroceptive sensor data. In [13], the same approach was adapted in
order to deal with any kind of relative observations among the robots. In [17], it was
shown that the equations can be written in a decentralized form, allowing the decom-
position into a number of smaller communicating filters. However, the distributed
structure of the filter only regards the integration of the proprioceptive data (i.e. the
so called prediction phase). As soon as an observation between two robots occurs,
communication between each member of the team and a single processor (which
could be embedded in a member of the team) is required. The same communication
skill is required when even an exteroceptive measurements which only regards a sin-
gle robot occurs (e.g. a GPS measurement). Furthermore, the computation required
to integrate the information coming from this observation is entirely performed by
a single processor with a computational complexity which scales quadratically with
the number of robots. Obviously, the centralized structure of the solution in dealing
with exteroceptive observations becomes a serious inconvenience when the com-
munication and processing capabilities do not allow to integrate the information
contained in the exteroceptive data in real time. In particular, this happens as soon
as the number of robots is large, even if each robot performs very few exteroceptive
observations. In [14] this problem was considered. However, the structure of the
filter was maintained the same as in [17] (namely centralized in dealing with extero-
ceptive data). Each robot was supposed to be equipped with several sensors and the
optimal sensing frequencies were analytically derived by maximizing the final local-
ization accuracy. The limit of this approach is that as the number of robots increases,
the sensing frequencies reduce. In other words, by performing the estimation pro-
cess in a centralized fashion it is necessary to reduce the number of observations
to be processed as the number of robots increases. Hence, distributing the entire
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estimation process can provide a great improvement. Very recently a decentralized
cooperative localization approach has been presented in [12].

The information filter is very appealing in this framework since the integration
of the exteroceptive data is very simple and could be easily distributed. On the other
hand, the equations which characterize the prediction step are much more complex
and their distributed implementation seems to be forbidden. This is a serious incon-
venience since the proprioceptive data run at a very high frequency.

Eustice et al. [2] and Caballero et al. [1] have recently shown that by using a
delayed state also the prediction step has some nice properties. In particular, in [2]
a solution to the SLAM problem by using an Extended Information Filter (EIF) to
estimate a delayed state has been proposed. In [1] the tracking problem has been
considered.

In this paper we consider the problem of cooperative localization in 3D when
the MAVs are equipped with inertial sensors and exteroceptive sensors (e.g. range
sensors and GPS). We adopt a delayed state and we perform its estimation by us-
ing an Extended Information Filter. We introduce a simple trick which allows us
to mathematically express the quantities measured by the IMU (Inertial Measure-
ment Unit) as a function of the delayed state (i.e. the state to be estimated). In other
words, by using this trick, the link between sensor-state for the IMU (which are
typically proprioceptive sensors) has the same mathematical expression of the one
which characterizes an exteroceptive observation. This allows us to use the equa-
tions of the integration of the exteroceptive data also to integrate the IMU data. In
this way the equations of the EIF prediction step are never used and the overall
estimation process can be easily distributed.

The second contribution of this paper is related to another important issue which
arises when dealing with a 3D environment. The orientation of a MAV which moves
in 3D is provided by 3 parameters. On the other hand, the MAV dynamics become
very easy by adopting quaternions. However, this parameterization is redundant.
This means that part of the information is frozen in a geometrical constraint. Without
using this constraint part of the information is not exploited and the overall precision
gets worse. To the best of our knowledge, this issue has never been considered in
the framework of flying robotics. On the other hand, the problem of exploiting the
information contained in geometrical constraints is not new in the mobile robotics
literature. In particular, it has been considered in SLAM when using a relative map.
To this regard a new filter, the projection filter, has been introduced [15]. In this
paper we will adopt the same approach. In particular, we consider the geometrical
constraint (expressing that the quaternion must be unitary) as an ideal observation.

The paper is structured as follows. In Section 2 it is given a detailed description
of the dynamics, the measurement model and the estimation process with the EIF
for a single MAV. Section 3 is dedicated to the extension of the previous results to
multi robot systems; in particular a distributed EIF algorithm is presented, taking
into account relative observations between the robots. In Section 4 we present some
simulation results to illustrate the efficiency of the estimation algorithm.
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2 The Case of One Single MAV

For the sake of clarity, we begin our analysis by the description of the model for a
single MAV. The extension of the presented dynamics and measurement model to
multi robot systems is straightforward.

2.1 The System

We provide here a mathematical description of our system. We introduce a global
frame, whose z-axis is the vertical one. Let us consider a MAV equipped with IMU
proprioceptive sensors (one tri-axial accelerometer and one tri-axial gyroscope) as
well as some suitable exteroceptive sensors (GPS, range sensors). In this paper
we assume that the IMU data are unbiased. From a practical point of view, unbi-
ased data can be obtained by continuously calibrating the IMU sensors (see for in-
stance [6]). The configuration of the MAV is described by a vector (r,v,θ ) ∈ R9

where r = (rx,ry,rz) ∈ R3 is the position, v = (vx,vy,vz) ∈ R3 is the speed and
θ = (θr,θp,θy) ∈ R3 assigns the MAV orientation: θr is the roll angle, θp is the
pitch angle and θy is the yaw angle. We will adopt lower case letters to express a
quantity in the global frame, while capital letters for the same quantity expressed
in the local frame (i.e. the one attached to the MAV).The system description can be
simplified adopting a quaternions framework. We recall that the quaternions space
H is the non-commutative set of elements

H =
{

qt + qxi+ qy j+ qzk : qt ,qx,qy,qz ∈ R, i2 = j2 = k2 = i jk =−1
}
.

For an arbitrary quaternion q = qt +qxi+qy j+qzk, we define the conjugate element

q∗ = qt−qxi−qy j−qzk and the norm ||q||=√qq∗ =
√

q∗q =
√

q2
t + q2

x + q2
y + q2

z .

Let us denote by ag the gravity acceleration (i.e. ag =−(0,0,g) with g� 9.81m/s2)
and by A,Ω the acceleration and the angular speed provided by the IMU; regarding
the acceleration, the one perceived by the accelerometer (A) is not simply the MAV
acceleration (A): it also contains the gravity acceleration (Ag). In particular, we have
A=A−Ag since, when the camera does not accelerate (i.e. A= 0) the accelerometer
perceives an acceleration which is the same of an object accelerated upward in the
absence of gravity.

The continuous-time dynamics of the MAV is given by the following system of
ordinary differential equations

ṙ = v (1)

v̇ = q ·A ·q∗ = q ·A ·q∗+ ag (2)
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q̇ =
1
2

q ·Ω (3)

where r,v,Ω,A are purely imaginary quaternions, while q is a unitary quaternion.
The following relations for roll, pitch and yaw angles θr,θp,θy hold

θr =
qtqx + qyqz

1− 2(q2
x + q2

y)

θp = qtqy− qxqz

θy =
qtqz + qyqx

1− 2(q2
y + q2

z )
.

During the exploration, the MAV performs measurements thanks to its exteroceptive
sensors equipment; such measurements can be individual (i.e. GPS-based measure-
ments) as well as relative to other MAVs poses or to the position of fixed landmarks.
The general single MAV observation equation is given by

z = h(r,v,q) (4)

where h(·, ·, ·) is a known function.
In the case the exteroceptive sensor is a GPS, the observation equation is very

simple as it is linear
zGPS = r. (5)

2.2 Estimation with the EIF: The Integration of the Exteroceptive
Data

Let us denote with Σ and ξ the information matrix and the information vector re-
spectively; in addition let R be the covariance matrix characterizing the measure-
ment error for an exteroceptive sensors. The update equations at the time step i are
(see [21]):

Σi = Σ i +Σobs, Σobs = HT
i R−1Hi, (6)

ξi = ξ i + ξobs, ξobs = HT
i R−1 [zi− h(μ i)+Hiμ i] , (7)

where Σ i,ξ i are the predicted information matrix and information vector, μ i =

Σ−1
i ξ i is the predicted mean value and Hi is the Jacobian of the observation func-

tion h evaluated at μ i. The structure of such equation is very simple as the update
consists only in summing the new information from the exteroceptive sensors to the
predicted values.
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The case of GPS observations is even easier to treat; since the function h is linear
we have h(μ i) = Hiμ i = μ i and hence the update equation for the information filter
is

ξi = ξ i +HT
i R−1zi.

In particular the explicit computation of the mean value is not performed and this
is a key advantage since the information matrix inversion requires in general a high
computational burden.

2.3 Estimation with the EIF: The Integration of the
Proprioceptive Data

Denoting by Q a noise term affecting the system dynamics, the prediction steps are
given by

Σ i =
[
FiΣ−1

i−1FT
i +Q

]−1
, (8)

ξ i = Σ iFiΣ−1
i−1ξi−1, (9)

where Fi is the Jacobian of the dynamics evaluated at the estimated mean value

μi−1 = Σ (−1)
i−1 ξi−1.

Remark 1. In a multi robot scenario, where Σ and ξ characterize the probability dis-
tribution of all the MAVs, a distributed algorithm for the implementation of update
equations (6)-(7) can be designed (see Section 3 and [1]). On the other hand, the
prediction equations (8)-(9) are more complicated and they cannot be easily dis-
tributed. Nevertheless we will show that, once a delayed-state is considered, data
obtained from proprioceptive sensors can be integrated using only the update equa-
tions (6)-(7).

Let us introduce the delayed-state

Xi = (r0,q0,r1, ...,ri,qi)

containing all MAV poses until the i-th time step. The discretization of the dynamics
equations over a Δ t time-step interval gives

ri+1 = ri + viΔ t (10)

vi+1 = vi + qi ·
∫ i+Δ t

i
Adt ·q∗i + agΔ t (11)

qi+1 = qi +
1
2

qi ·
∫ i+Δ t

i
Ωdt (12)
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From Equation (10) we can get

vi = (ri+1− ri)/Δ t

and hence the following recursive formula holds

ri+1 = 2ri− ri−1 +Δ t

(
qi ·

∫ i+Δ t

i
Adt ·q∗i + agΔ t

)
, (13)

corresponding to a second order continuous-time evolution. Setting

Ãi =

∫ i+Δ t

i
Adt (14)

and

Ω̃i =

∫ i+Δ t

i
Ωdt, (15)

the proprioceptive measurements can be regarded as delayed-state dependent func-
tions:

Ãi = hA(ri−2,ri−1,ri,qi) =
q∗i (−agΔ t2 + ri− 2ri−1 + ri−2)qi

Δ t

Ω̃i = hΩ (qi−1,qi) = 2q∗i−1(qi− qi−1).

In other words, Ãi and Ω̃i are functions of the state Xi to be estimated; moreover,
since we are considering the discrete dynamics given by (12)-(13), there is no need
to include the MAV speed v into the state vector Xi.

Due to these considerations, we are allowed to integrate proprioceptive data using
(6)-(7) instead of (8)-(9), with a consequent reduction of computational cost in the
estimation algorithm.

For nonlinear measurements equation (7) involves the mean value and hence in-
formation matrix inversion is required; nevertheless in many situation, due to the
sparsity of such matrix, a partial state recovery is sufficient in order to guarantee a
good estimate (see [2]). Whole state recovering can be obtained using for example
the Conjugate Gradients algorithm (see [19]) or the Givens rotations factorization
(see [8]). We point out that at any update step, i.e. when a true exteroceptive mea-
surement is performed, the size of the delayed-state vector X increases by 3+4 = 7.

2.4 Projection Filter: Integration of Ideal Constraints

As mentioned in the introduction, the quaternion structure is redundant for the prob-
lem we are considering and this may lead to a loss of information. To avoid this
problem we have assumed that the quaternion q is unitary. On the other hand, if the
discrete dynamics (12) is considered, such property is no longer preserved. Anyway,
we can take into account the norm invariance of qi imposing an ideal constraint with
a fake observation given by the function
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h0(q) = 1− q2
t + q2

x + q2
y + q2

z ;

in other words, we can regard the norm constraint as the measurement

zi = h0(qi) = 0.

Integration of such fake measurement can be performed with the projection filter
(see [15]).

3 The Cooperative Case

3.1 The System

We consider now a fleet of N > 1 MAVs, each one having the characteristics de-
scribed in Section 2. Let us denote by (r(k),q(k)) the coordinates of the k-th MAV;
the discrete dynamics is given by

r(k)i+1 = 2r(k)i − r(k)i−1 +Δ t

(
q(k)i ·

∫ i+Δ t

i
A(k)dt · (q(k)i )∗+ agΔ t

)
(16)

q(k)i+1 = q(k)i +
1
2

q(k)i ·
∫ i+Δ t

i
Ω(k)dt. (17)

Each MAV, in addition to the measurement model (4), may perform relative obser-
vation; the general multi robot observation equation can be written as

z(k)i = h(k)(r(1)i ,q(1)i , ...,r(k)i ,q(k)i , ...,r(N)
i ,q(N)

i ). (18)

Simple and common examples of relative observations are distance measures. If the
k-th MAV measures its own distance from the j-th MAV, the observation is given by

z(k)i = (r(k)i,x − r( j)
i,x )

2 +(r(k)i,y − r( j)
i,y )

2 +(r(k)i,z − r( j)
i,z )

2.

3.2 The Distributed EIF

In [1] it is shown that delayed-states allow to distribute the estimation process over
the entire MAVs network. In particular the authors explain how to recover the global
belief from the local belief of each network node and remark that the same operation
with standard (non delayed) states is not possible at all. We will follow a similar
approach, with a slightly different communication and data fusion algorithm.

When the exploration starts, each MAV begins to integrate the information pro-
vided by its own sensors by equation (6)-(7) as described before. In particular for
any measurement, the incoming data are stored in the bottom-right block of the in-
formation matrix and, as a consequence, in the last entries of the information vector:
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Σi−1 → Σi =

⎛⎝ Σi−1 07(i−1)×7

07×7(i−1) 07×7

⎞⎠+

⎛⎝07(i−3)×7(i−3) 07(i−3)×21

021×7(i−3) Σobs

⎞⎠

ξi−1 → ξi =

⎛⎝ ξi−1

07×1

⎞⎠+

⎛⎝07(i−3)×1

ξobs

⎞⎠ .

Suppose that after i1 updating time-steps for the j1-th MAV and i2 steps for the j2-
th MAV a relative measurement occurs and for sake of simplicity suppose that j1 <
j2. Each MAV has to increase the size of the information matrix and information
vector in order to store the new data. The process is carried out following the steps
described below:

1. State augmentation. The states of the two MAVs are increased in order to have
the same size 7(i1 + i2); this can be done adding a suitable number of zeros in
the information matrix and information vector.

Σ( j1),i1 →
⎛⎝ Σ( j1),i1 07i1×7i2

07i2×7i1 07i2×7i2

⎞⎠ , ξ( j1),i1 →
⎛⎝ ξ( j1),i1

07i2×1

⎞⎠

Σ( j2),i2 →
⎛⎝07i1×7i1 07i1×7i2

07i2×7i1 Σ( j2),i2

⎞⎠ , ξ( j2),i2 →
⎛⎝ 07i1×1

ξ( j2),i2

⎞⎠

2. Relative estimation. The information from relative observations are integrated
using the standard update equations (6)-(7). Correlation between the estimates
on the last poses of the MAVs may appear, so that the updated matrices may be
not block-diagonal.

Σ( j1),i1 →
⎛⎝Σ( j1),i1 ∗

∗ ∗

⎞⎠ , ξ( j1),i1 →
⎛⎝ ξ( j1),i1

∗

⎞⎠

Σ( j2),i2 →
⎛⎝∗ ∗

∗ Σ( j2),i2

⎞⎠ , ξ( j2),i2 →
⎛⎝ ∗

ξ( j2),i2

⎞⎠
3. Data fusion. A communication is established between the MAVs and they ex-

change their stored data. The data fusion scheme is a non negligible theoretical
issue: as a matter of fact, if the process is carried out taking simply the sum of the
contributions from each MAV, estimation errors may arise due to adding several
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times the same information. Following [1], we have adopted a fusion algorithm
based on a convex combination of the data:

Σ( j1),i1 → ωΣ( j1),i1 +(1−ω)Σ( j2),i2 , ξ( j1),i1 → ωξ( j1),i1 +(1−ω)ξ( j2),i2

Σ( j2),i2 → (1−ω)Σ( j1),i1 +ωΣ( j2),i2 , ξ( j2),i2 → (1−ω)ξ( j1),i1 +ωξ( j2),i2

As proved in [7], for any 0<ω < 1, the above convex combinations lead to unbiased
and consistent estimates, i.e. no overconfident estimate is performed and there is no
overlapping of information. This allows us to limit communication. In particular,
two robots must communicate only when a relative measurements between them
occurs.

4 Performance Evaluation

In order to validate our approach we perform simulations that are described in the
following sections.

4.1 The Simulated Environment

The trajectories of the MAVs are generated randomly and independently one from
each other. In particular, for every MAV, the motion is generated by generating ran-
domly the linear and angular acceleration at 100Hz. Specifically, at each time step,
the three components of the linear and the angular acceleration are generated as
Gaussian independent variables with mean values μa and μΩ̇ and with covariance
matrices Pa and PΩ̇ . By performing many simulations we remarked that the preci-
sion of the proposed strategy is almost independent of all these parameters. The sim-
ulations provided in this section are obtained with the following settings: μa = μΩ̇ =

[000]T , Pa =

⎡⎣ (5ms−2)2 0 0
0 0 0
0 0 0

⎤⎦ and PΩ̇ =

⎡⎣ (10deg s−2)2 0 0
0 (10deg s−2)2 0
0 0 (10deg s−2)2

⎤⎦
We adopt many different values for the initial MAV positions orientations and

speeds. We also consider different scenarios corresponding to a different number of
MAVs.

Starting from the accomplished trajectories, the true angular speed and the lin-
ear acceleration are computed at each time step of 0.01s (respectively, at the
time step i, we denote them with Ω true

i and Atrue
i ). Starting from them, the IMU

sensors are simulated by generating randomly the angular speed and the linear
acceleration at each step according to the following: Ωi = N

(
Ω true

i ,PΩi

)
and

Ai = N (Atrue
i −Ag i,PAi) where N indicates the Normal distribution whose first
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entry is the mean value and the second one its covariance matrix and PΩi and
PAi are the covariance matrices characterizing the accuracy of the IMU ; finally,
Ag is the gravity acceleration expressed in the local frame. In all the simula-
tions we set both PAi and PΩi diagonal matrices. In the results here provided

they are set as follows: PAi =

⎡⎣ (0.1ms−2)2 0 0
0 (0.1ms−2)2 0
0 0 (0.1ms−2)2

⎤⎦ and PΩi =⎡⎣ (10deg s−1)2 0 0
0 (10deg s−1)2 0
0 0 (10deg s−1)2

⎤⎦ for every step i.

The MAVs are also equipped with GPS and range sensors. The GPS provides
the position of the MAV with a Gaussian error whose covariance is a diagonal ma-
trix and whose components are equal to 25m2. The GPS data are delivered at 5Hz.
Finally, the range sensors provide the distances among the MAVs at 2Hz and the
measurement errors are normally distributed with variance (0.01m)2.

All the previous parameters were set in order to be close to a real scenario [10].

4.2 Results

We provide some of the results obtained with the previous settings and by simulating
N MAVs. In particular, we consider the case of N = 3 and N = 5. Furthermore, we
consider separately the cases when the estimation is performed by only integrating
the IMU data, by combining the IMU data with the GPS data and by combining all
the sensor data. Finally, in order to evaluate the benefit of using the projection filter
discussed in Section 2.4, we consider separately the cases when this filter is adopted
and when it is not adopted.

Fig. 1a-b show the results obtained with three MAVs. The blue dots represent the
ground truth. In fig. 1-a the magenta dots represent the GPS data and the black cir-
cles the trajectories estimated by only integrating the IMU data. It is clear that both
IMU and GPS are very noisy and cannot be used separately to estimate the MAV
trajectories. In fig. 1-b the green dots represent the trajectories estimated by fusing
the IMU data and the GPS data with our proposed approach (EIF and projection
filter). Finally, the red dots represent the result obtained by also fusing the range
measurements. We remarked that the use of the range measurements further reduce
the error. In particular, for the simulation in fig. 1a-b the position error averaged
on all the three MAV and on all the time steps is equal to 0.6m without the range
measurements and 0.45m with them. As expected, this improvement is still larger
by increasing the number of MAVs (see for instance [18]). In fig. 1c-d the results
obtained by using 5 MAVs is shown. The position error obtained by also fusing the
range measurements reduces to 0.2m.

Fig. 2 shows the benefit of using the Projection filter discussed in Section 2.4. In
particular, in fig. 2a the red circles represent the trajectories estimated by fusing all
the sensor data and by running the Projection Filter at 5Hz while in fig. 2b the red
circles represent the trajectories estimated without the use of the Projection Filter.
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Fig. 1 Blue points represent true MAVs trajectories, black circles are the trajectories with only
odometric estimates, magenta stars are the GPS data, green stars are the trajectory estimates
without taking into account relative observations and red circles are the estimates with the
complete distributed EIF. Figures (1a)-(1b) are the simulation of 3-MAV scenario, while in
Figures (1c)-(1d) is plotted the evolution of a 5-MAV system.
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Fig. 2 Blue points represent true MAVs trajectories, black circles are the estimated trajectories
via odometry and red circles are the estimated trajectories with the EIF. Figure (2a) represents
the simulation of a 3-MAV system; Figure (2b) represents the same scenario without taking
into account the information provided by the projection filter.
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As in the previous figures, the ground truth is represented with blue dots and the
black dots represent the trajectories obtained by a simple integration of the IMU
data.

5 Conclusions

In this paper we have discussed an approach to perform cooperative localization of a
team of micro aerial vehicles equipped with inertial sensors (one accelerometer and
one gyroscope) and exteroceptive sensors (GPS and range sensors). The approach is
based on an Extended Information Filter whose implementation is distributed over
the team members.

Two original contributions have been introduced. The former consists of a sim-
ple trick which allowed us to avoid the equations which characterize the prediction
phase of the extended information filter. In particular, the information contained in
the data provided by the inertial sensors is exploited by using the equations which
characterize the perception step of the EIF. This allowed us to easily distributing
the entire estimation process over all the team members. The latter contribution is
the use of a projection filter which allowed exploiting the information contained in
the geometrical constraints which arise as soon as the MAV orientations are charac-
terized by unitary quaternions.

The performance of the proposed approach was evaluated by using synthetic data.
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European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agree-
ment n. 231855 (sFly).
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Multi-robot Map Updating in Dynamic
Environments

Fabrizio Abrate, Basilio Bona, Marina Indri, Stefano Rosa, and Federico Tibaldi∗

Abstract. Multi-robot systems play an important role in many robotic applications.
A prerequisite for a team of robots is the capability of building and maintaining
updated maps of the environment. The simultaneous estimation of the trajectory
and the map of the environment (known as SLAM) requires many computational
resources. Moreover, SLAM is generally performed in environments that do not
vary over time (called static environments), whereas real applications commonly
require navigation services in dynamic environments. This paper focuses on long-
term mapping operativity in presence of variations in the map, as in the case of
robotic applications in logistic spaces, where rovers have to track the presence of
goods in given areas. In this context classical SLAM approaches are generally not
directly applicable, since they usually apply in static environments or in dynamic
environments where it is possible to model the environment dynamics. This paper
proposes a methodology that allows the robots to detect variations in the environ-
ment, generate maps containing only the persistent variations, propagate thiem to
the team and finally merge the received information in a consistent way. The team
of robots is also exploited to assure the coverage of areas not visited for long time,
thus improving the knowledge on the present status of the map. The map updating
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process is demonstrated to be computationally light, in order to be performed in
parallel with other tasks (e.g., team coordination and planning, surveillance).

1 Introduction

Mobile robot systems have been involved in many successful applications including
museum guide robots, surveillance, planetary exploration, search and rescue [13].
To successfully accomplish these tasks, the robots shall be able to build maps of
unknown environments and to localize therein. The joint estimation of both the po-
sition and the map model is referred to as Simultaneous Localization And Mapping
(SLAM). While the maturity of SLAM in single robot scenarios is recognized in
many recent works, many issues arise when trying to extend these approaches to
multi-robot scenarios. One of the first multi-robot approaches is given in [8], where
a cooperative SLAM algorithm is proposed to merge sensor and navigation informa-
tion from multiple autonomous vehicles, on the basis of stochastic estimation and
feature-based landmark extraction from the environment. In [16] the Constrained
Local Submap Filter (CLSF) is exploited to create a local submap of the features in
the immediate vicinity of the vehicle, periodically fused into the global map of the
environment. This representation reduces the computational complexity of main-
taining the global map estimates as well as it improves the data association process.
Some approaches, as [5] and [9], are based on Rao-Blackwellized particle filters
(RBPF), while others [17] are based on Kalman filtering. The approach proposed in
[10] is based on manifold representation of maps. This approach has been mainly
designed to overcome limitations of existing SLAM methods, especially the sen-
sitivity to false data associations. Other approaches like [4] speed up mapping by
using multiple robots exploring different parts of the environment. In general, the
problems in multi-robot systems are still related to the need for team coordination
strategies and to the high computational and memory requirements depending on
the number of robots and the map size. Moreover service robotic applications have
to cope with intrinsically dynamic environments. Realistic applications require up-
dated maps of the environments that vary over time, starting from a given initial
condition. This is for instance the case of robotic applications in logistic spaces,
where robots have to track the presence of goods in certain areas. The goods are
stored in appropriate places, but during the day they can be removed and substituted
by other items many times. In these scenarios classical SLAM approaches are not
suitable, as it could be at least difficult or even impossible to model the dynamics
of the environment. Furthermore when dealing with very large environments the
memory requirements for multi-robot SLAM could become too high. The problem
of keeping an updated map of the environment in order to preserve the robots local-
ization, without investigating any specific goods tracking procedure, has been faced
in [3] for the single-robot case.

In this paper this solution is extended to a multi-robot scenario. The concept of
time-map is introduced to assign to each cell in the map a value representing its
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reliability. This time-map is used to merge in an appropriate way the changes de-
tected locally by a robot and the updated maps received from the other team mem-
bers. The effectiveness of the approach is improved by a simple team coordination
strategy, which we propose to actively search for modifications in the map. Finally
experimental results of simulated and real tests are carried out to evaluate the effec-
tiveness of the algorithm and its computational load.

2 Problem Formulation

A team of mobile robots, each endowed with a laser rangefinder and wireless con-
nectivity, is supposed to be correctly localized with respect to the available environ-
ment map. Each robot is assumed to be in the position tracking state, as defined in
[1] and [2].

Each robot uses an occupancy grid map of the environment in the localization
algorithm to track its position over time. Such a map could have been manually
created or previously built by a SLAM algorithm.

At discrete time instants k the environment changes, and the robots have to mod-
ify their map to take into account the variation. This phase is called Δ -mapping
step.

The set of new maps collected up to time k is defined as

M (k) = {Mk}, k = 0, . . . ,K.

M0 is the initial map, obtained by the SLAM procedure. The goal of the developed
algorithm is to provide for each robot an estimate M̂k of the map at each time step
k. In order to take advantage of the multi-robot scenario these updated maps must
be shared with the other robots, and this information has to be merged in order to
create a map that is a good estimate of the current state of the environment.

Correct map merging is not sufficient; a coordination strategy of the team of
robots it also needed to maximize the number of detected variations, balancing at
the same the number of Δ -mapping processes among the robots.

3 The Approach

The guidelines of the proposed approach are described hereafter, whereas details
about the specific processes of variations awareness, local Δ -mapping and map
merging are given in Subsection 3.1.

In the proposed Δ -mapping approach the concept of time-map is introduced to
merge properly the changes detected locally by a robot and the updated maps re-
ceived from the other team members.

In a grid map each cell represents the belief on the occupation value of the corre-
sponding area. Since the environment changes over time, the reliability of the stored
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value for the cells decreases over time. Therefore to each cell in the map a value
in the range [0− 1] is assigned, related to the time passed since the cell has been
visited for the last time. The set of these values at each time step is called time-map
and defined as Tt .

The outline of the Δ -mapping algorithm, which runs on board of each rover, is
described in Algorithm 1.

Input: M̂k−1, Tt−1, p, l, P, L
Output: M̂k , Tt
Tt = updateTimeMap(Tt−1, p, l);1

if received map M̂′ T ′ then2

[M̂′
k−1, Tt ] = mergeMap(M̂k−1, Tt , M̂′, T ′);3

M̂k−1 = M̂′
k−1;4

end5
if Δ −awareness then6

P = P+ p ;7
L = L+ l;8

else9
if P! = /0 then10

[M̂k] = updateMap(M̂k−1, P, L);11
P = /0;12
L = /0;13

dispatchUpdatedMap(M̂k, Tt );14

end15

end16

Algorithm 1. The Δ -mapping algorithm

The algorithm takes as inputs the previous map M̂k−1 and the time-map Tt−1. p
and l are the current robot pose and the current laser range reading respectively, P
and L are two matrices collecting the values of p and l

P =

⎡⎢⎣ x̂1, ŷ1, θ̂ 1

...
x̂n, ŷn, θ̂ n

⎤⎥⎦ (1)

L =

⎡⎢⎣ l1

...
ln

⎤⎥⎦ (2)

where the n-th entry is the last element stored. These matrices are used to create a
local Δ -map containing the changes in the environment detected by the robot.

The time-map Tt is updated every time a laser scan is available to the robot; a ray
tracing procedure is applied for each angle of the scan, assigning a maximum value
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equal to 1 to every cell crossed by a ray. At each time step all the values in Tt are
updated according to

Tt(i, j) = Tt−1(i, j) ·
(

1− Δ t
Ct

)
(3)

where Δ t is the time elapsed from the last update of Tt , and Ct is a time constant
which defines the forgetting speed.

The time-map update depends only on Δ t, therefore a common timebase among
the team members is not required, avoiding the need of synchronization techniques
over the net.

The algorithm is divided in two parts. The first part (lines 2-4) is performed only
when the robot receives a map from another robot member of the team, while the
second part (lines 6-15) is performed only if a variation in the environment has been
detected.

If a robot receives a new map M̂′ and the relative time-map T ′, it updates the state
of its map and its time-map by merging them with M̂k−1 and Tt respectively (line
3). At this point the resulting map contains the modifications perceived by the other
robots (line 4).

If a modification is detected by the Δ -awareness block, recalled in Section 3.1,
the algorithm stores the current robot pose and the relative laser range reading (lines
7-8).

If the Δ -awareness block does not detect any modification and P and L are not
empty, a local Δ -mapping is performed, following the approach recalled in subsec-
tion 3.1 (line 10). The content of these vectors is used to create a local Δ -map ΔM̂,
then ΔM̂ is aligned and merged with the old map M̂k−1, to obtain an updated map
M̂k.

Finally the resulting map M̂k and the current time-map Tt are dispatched to the
other team members.

3.1 Δ -Awareness, Local Δ -Mapping and Map Merging

In [3] the authors presented a single-robot approach that maintains an updated grid
map of a dynamic environment, assuming an initial occupancy grid map available.
The algorithm detects persistent variations in the environment and merges them with
the previous map by using limited computational resources. It is composed by four
blocks as shown in Figure 1.

The Δ -awareness block detects persistent variations in the environment, using
a technique called weighted recency averaging, normally applied in tracking non-
stationary processes.

In this setting, the weighted recency averaging recognizes changes in the environ-
ment, under the hypothesis that the robot is correctly localized and never kidnapped.

The purpose of the Store Scan block is to select the laser scan readings suitable
for building the local updated sub maps. These readings are stored in L with the
corresponding robot poses stored in P.
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Fig. 1 The local Δ -mapping architecture

The Scan Alignment block produces a Δ -map performing a consistent registration
of the collection of scan readings contained in L. The approach maintains all the
local frames of data as well as the relative spatial relationships between local frames,
modeled as random variables and derived from matching pairwise scans or from
rover poses stored in P.

The Map Merge block merges the output of the Scan Alignment block with the
map M̂k−1. The goal of this block is to find a rigid transformation that overlaps Δ -
map and M̂k−1, to create the current environment occupancy map M̂k. We adopted
the algorithm proposed in [6], based on Discretized Hough transform and bidimen-
sional correlation. The Discretized Hough transform finds the rotation that aligns
Δ -map with M̂k−1, then the bidimensional correlation is applied to compute the
translation that overlaps the two maps.

Local Δ -mapping in this work is the application of the Scan Alignment and Map
Merge blocks.

In the updateTimeMap function in line 3 of Algorithm 1 the current maps M̂k−1
and Tt are updated according to M′ and T ′ received from the other robots. For all
the couples i, j every cell M̂k−1(i, j) is updated if its value is older than the corre-
sponding cell M̂′(i, j), so that the most recent (hence reliable) value is used. The
information about the reliability is given by the time-maps Tt and T ′.

When a robot receives a new map M̂′ and a time-map T ′ from another robot, it
merges the received time map with the previous map M̂k−1 and the local time-map
Tt in order to produce M̂′

k−1. Tt is also updated. For all the couples i, j the value
of the cell M̂′

k−1(i, j) is set equal to the cell M̂′(i, j) if T ′(i, j) > Tt(i, j), otherwise
it is set equal to M̂k−1(i, j). The value of the cell Tt(i, j) is set equal to T ′(i, j) if
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(a) Environment state and robots pose

(b) M̂k−1 (c) M′ (d) M̂′
k−1

(e) Tt (f) T ′ (g) Tt

Fig. 2 Figures show the map merging in a typical case: 2(a) shows the pose of the robots,
Robot 1 receives a map from Robot 2 and it uses it to update its map; 2(b) is the current map,
2(e) is the current time-map, 2(c) is the received map, 2(f) is the received time-map, 2(d) and
2(g) are the resulting map and time-map after the merging process.

T ′(i, j) > Tt(i, j), otherwise it is not modified. Figure 2 shows the map merging
process in a typical case. It can be noticed that changes received from another robot
and local changes detected by the local Δ -mapping are merged in a consistent way.
Cells belonging to areas that have been recently mapped have high corresponding
time-map values (close to 1), so recent changes in the map resulting from a local
Δ -mapping process are not discarded.
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4 Coverage Strategy

A team coordination strategy that actively searches modifications in the map has
been developed. Without any coordination strategy all the robots could follow the
same path or leave some areas not visited for a long time. This problem can be
treated in partial similarity with the problem of multi-robot exploration. In the ex-
ploration approaches the aim is to discover a map starting from a completely un-
known environment. In the case considered, the initial map is known, as well as
the robot pose, but since the environment is persistently changing (pallets are added
and removed), the reliability of the initial map decreases over time on the basis of
the number of changes in the environment. For this reason, areas that have not been
recently visited may become completely unknown, as the reliability of the map in
those areas is very low.

Areas that need to be covered are the ones for which the corresponding value of
the time-map is below a given threshold. For each robot, a set of points is extracted
to feed the path planning algorithms from a topological map, which is constructed
from the grid-map representing the areas to be visited.

Many approaches obtain a topological representation from a grid-map, such as
Voronoi diagrams [15] or topological operations [7]. The skeleton of an image is
a good representation of the geometrical and topological properties of its shape,
hence a morphological skeleton representation of the map is extracted using the al-
gorithm described in [12], which is proven to be fast. Aset of points belonging to
the skeleton is identified, with the constraint that each point has to be at a mini-
mum distance from every other point. Each point becomes one goal point for the
wavefront algorithm [11]. These goal points are then allocated to the team members
by a distributed market-based task allocation algorithm described in the following
subsection. Figure 3 shows how the goal points are obtained. In the time-map the
black cells have the highest reliability and the white ones have the lowest reliability.
In Figure 3(a) red points belong to the skeleton of the areas with reliability below
a given threshold. In this case the team is composed by three robots, so three goal
points are obtained as indicated in Figure 3(b).

(a) (b)

Fig. 3 Time-map and skeleton of areas to cover (a) and final goal points for three robots (b)
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4.1 Distributed Auction-Based Task Allocation

Each goal point generated by the coverage strategy must be efficiently assigned to
one of the robots in order to minimize travel time.

The Hungarian method performs a combinatorial optimization to solve the as-
signment problem in polynomial time. It guarantees the optimal solution, but it is a
centralized algorithm, that requires a supervisor node and a matrix containing a row
for each robot and a column for each task. Each cell contains the cost for the relative
task. Moreover this approach requires the ability for all the robots to communicate,
but this condition is not assured due to unreliable WiFi communication.

The used approach is then based on auctions, and it has been developed starting
from the one proposed in [14]. Every goal point is assigned to an auction over a
multicast network channel; the robots that receive the auction compute and send
back a bid. The auctioneer assigns the task to the robot with the best bid. The bid is
computed according both to the robot’s current position and to its queue of pending
tasks. This approach does not guarantee the optimal solution, but it is robust to
communication failures. The auctioneer is always a different robot, thus avoiding
the problem of single point of failure.

5 Simulation Tests

The simulated environment of a logistic area already used in [3] and shown in Figure
4 is considered. The occupied green areas can be thought as containers or similar
items stored before distribution. The environment is 35×35 m, the green areas in
the center are 10×10 m and the corridors are 5 m wide.

n = 3 rovers are endowed with wheel encoders, a laser range finder and a WiFi
board, and are able to localize themselves in the given environment. It is assumed
that, once the rovers are correctly localized, a virtual fork-lift adds or removes one
container every minute.

Fig. 4 The simulation environment



156 F. Abrate et al.

The rovers start moving with a simple obstacle avoidance policy. When the Δ -
mapping process starts, the rovers move according to the coverage strategy de-
scribed in Section 4. The quality of the map over time and the localization error
are measured. The error on the estimate of the robot pose is strictly related to the
quality of the map. Every Δ -mapping process induces some degradation of the map,
due to the localization error which cannot be fully compensated by the Map Merge
block.

Even after a consistent number of changes in the environment the rovers keep
a map that is consistent with the environment and therefore the localization error
remains low.

5.1 Simulation Test 1

To demonstrate the effectiveness of the proposed approach first results related to
r = 10 averaged runs are provided, where the Δ -mapping updating process lasts for
approximately two hours each run.
The localization error of the i-th robot is defined as the distance between the ground-
truth Cartesian position (xgt

i (t),y
gt
i (t)) and its Cartesian position estimation as

eρ
i (t) =

√
(xgt

i (t)− x̂i(t))2 +(ygt
i (t)− ŷi(t))2. (4)

We then define the average localization error for n robots over r runs as

eρ
n,r(t) =

1
r

r

∑
j=1

n

∑
i=1

eρ
i (t)

n
(5)

The localization error is reported in Figure 5(a). It can be noticed that the mean lo-
calization error remains lower than 0.6 m after approximately 2.5 hours. The quality
of the map for the duration of the test is also inspected. Visual inspection is often

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t [s]

eρ n,
r(t

) 
[m

]

 

 

(a)

0 20 40 60 80 100 120 140
0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

number of map variations

ac
ce

pt
an

ce
 in

de
x

(b)

Fig. 5 Localization error and acceptance index for test 1
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used, and numerical results by using the acceptance index described in [6] are also
provided. They can be used as a measure of similarity between the real map and the
estimated map.

Figure 5(b) shows the acceptance index mediate over the n = 3 robots and over
r = 10 runs. After 140 variations the value obtained is 0.97, which is comparable
with the one obtained with a typical grid-based SLAM algorithm (0.98).

5.2 Simulation Test 2

Here the performances of the Δ -mapping process in long term operativity are tested.
The simulation scenario is the same as for the previous test, but the virtual fork-lift
adds and removes containers every two minutes. In this test the map updating pro-
cess lasts for approximately 9.5 hours, for a total number of 328 variations. Figure
6(a) shows the localization error for a single run, while Figure 6(b) shows the ac-
ceptance index over 328 variations. The sudden increase of the localization error
after approximately 6 hours is due to one of the robots losing its localization for
a short period of time. However as the robot receives an updated map it is able to
recover itself. After 328 variations the acceptance index is still comparable with the
one obtained in the previous test (see figure 5.1). Moreover, this acceptance index
decreases to 0.97 after 9.5 hours, while in [3] the same error occurs after only 6
hours.
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Fig. 6 Localization error and acceptance index for test 2

5.3 Simulation Test 3

In this test the n = 3 robots perform different actions. The first robot performs Δ -
mapping and sends map variations to the others team members; the second one
only receives map variations but does not perform Δ -mapping; the last one neither
perform Δ -mapping nor receives changes from the other team members. This test
demonstrates the advantage in receiving map updates from other robots.
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Figure 7 shows the localization error eρ(t) for the three robots during a single
run. Robot 1 remains well localized, while for robot 3 the error increases after ap-
proximately 3800 seconds; localization error for robot 2 starts to increase after 4720
seconds. This is due to the fact that robot 2 is able to merge the map updates received
from robot 1, but this is still not sufficient in order to maintain a consistent map of
the environment.
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Fig. 7 Localization error for test 3

5.4 Computational Load

In Figure 8 the CPU usage and memory occupation for each robot are reported.
The algorithm runs on an Intel Core 2 Duo 2.4 Ghz with 2 GB of RAM. After
approximately one minute the simulated fork lift starts to remove and add pallets,
and the Δ -mapping process starts. The peaks in CPU usage and memory occupation
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Fig. 8 CPU usage (upper plot) and memory usage (lower plot) in a simulated experiment
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refer to the end of each local Δ -mapping, while the peaks in CPU usage only refer
to the computation and assignment of the points to be visited. It can be noticed that
after the beginning of the Δ -mapping process the memory usage steadily increases
by only 12 MB, with peaks corresponding to the last phase of each local Δ -mapping
process.

6 Experimental Tests

An experiment in a real environment using two Pioneer P3DX robots has been car-
ried out. Each robot is endowed with a SICK LMS200 laser rangefinder and a WiFi
board. A 1× 1 m box has been placed in a 30× 3 m corridor, and a classical Rao-
Blackwellized SLAM process is first performed to obtain the map of the environ-
ment, as shown in Figure 9 (a). Then, the box is removed, R1 detects the absence
of the box while travelling in the corridor, performs a Δ -mapping process and dis-
patches the map to R2, which updates its map (see Figure 9 (b)). Finally, the box
is placed again in the previous place and R2 detects the presence of the box while
travelling in the corridor, performs a Δ -mapping process and dispatches the map to
R1, which updates its map (see Figure 9 (c)). It is worth noting that maps in Figure
9 (a),(b),(c) are the same for R1 and R2, even if they have not all perceived the same
variations at the same time.

This preliminary test demonstrates the effectiveness of the proposed methodol-
ogy in a simple but real scenario, since robots are able to merge the received maps
from team members in a consistent way.

(a) Initial map (b) Dispatched map after the
first change

(c) Dispatched map after the
second change

Fig. 9 The maps obtained during the experimental test

7 Conclusions

In this work a methodology which is able to perform map updating in multi-robot
applications dealing with dynamic environments is proposed. This methodology
enables robots to detect variations in an environment, to generate an updated map
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containing only the persistent variations, to send this map to the other team members
and to merge received maps in a consistent way. The approach is suitable for appli-
cations such as logistic applications, where a long-term operativity is required and
the algorithm has to be computationally light and to use limited memory, in order
to allow concurrent execution of other higher level services. Future works will be
devoted to extensive experimental tests in real environments and to improvements
of the coordination strategy.
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Any-Com Multi-robot Path-Planning:
Maximizing Collaboration for Variable
Bandwidth

Michael Otte and Nikolaus Correll

Abstract. We identify a new class of algorithms for multi-robot problems called
“Any-Com” and present the first algorithm belonging to that class: “Any-Com
intermediate solution sharing” (or Any-Com ISS) for multi-robot path planning.
Any-Com algorithms find a suboptimal solution quickly and then refine that so-
lution subject to communication constraints. This is analogous to the “Any-Time”
framework, in which a suboptimal solution is found quickly, and refined as time per-
mits. The current paper focuses on the task of finding a coordinated set of collision-
free paths for all robots in a common area. The computational load of calculating
a solution is distributed among all robots, such that the robotic team becomes a
distributed computer. Any-Com ISS is probabilistically/resolution complete and a
particular robot contributes to the global solution as much as communication relia-
bility permits. Any-Com ISS is “Centralized” in the planning-algorithmic sense that
all robots are viewed as pieces of a composite robot; however, there is no dedicated
leader and all robots have the same priority. Previous centralized multi-robot navi-
gation algorithms make assumptions about communication topology and bandwidth
that are often invalid in the real world. Any-Com allows for collaborative problem
solving with graceful performance declines as communication deteriorates. Results
are validated experimentally with a team of 5 robots.

1 Introduction

Autonomous navigation is a key capability for enabling both industrial and con-
sumer robotics to perform their work effectively. In fact, many of today’s state-of-
the-art systems are being commercialized, and will become increasingly
deployed into mainstream settings in the near future. As robot traffic becomes more
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congested, tomorrow’s systems must be capable of coordinated interaction within
a multi-robot society. This imposes a need for multi-robot navigation solutions that
can plan efficient, coordinated, and collision-free paths for a collection of robots.

Complete solutions to multi-robot problems can be computationally complex. Al-
though less expensive methods can enable practical performance in many real-world
situations, these are incomplete and can fail in the most challenging circumstances
(see Section 2.1). Often, each robot in a team is equipped with its own computer and
the ability to communicate. Given these resources, it makes sense to divide compu-
tational effort among all robots a solution will benefit. That is, a networked team of
robots can be re-cast as a distributed computer to solve the problems encountered by
its composite robots. This is particularly useful for complex communal tasks such
as centralized multi-robot path-planning.

In practice, wireless bandwidth is environment dependent and often beyond the
control of the user or a system. Yet, algorithms for coordinating networked robot
systems usually rely on a minimum quality of service and fail otherwise. We are
therefore interested in distributed algorithms able to utilize unreliable communica-
tion, and coin the term “Any-Com” to describe them. The idea is to find a suboptimal
solution quickly, and then refine toward optimality as communication permits. This
is analogous to the “Any-Time” paradigm, in which algorithms adapt to the available
computation time (Boddy and Dean, 1989). In this paper we present an algorithm
called Any-Com Intermediate Solution Sharing (or Any-Com ISS) for performing
centralized multi-robot path-planning within the Any-Com framework. In previous
work, centralized solutions have either been calculated on a single robot and then
disseminated, or solved by each robot individually (see Section 2.2).

In general, Any-Com algorithms exploit perfect communication and have grace-
fully performance declines otherwise. However, just as Any-Time algorithms cannot
calculate a solution in 0 time, Any-Com ISS may not find a solution when commu-
nication totally fails. Worst-case scenarios aside, Any-Com ISS is robust to a high
degree of communication disruption.

A brief survey of related work is presented in Section 2. Algorithmic details are
provided in Section 3. In Section 4 we conduct a series of experiments both in
simulation and on real robots. In Section 5 we discuss our results, and conclusions
are given in Section 6.

2 Related Work

Here we briefly discuss a few multi-robot algorithms located along the communi-
cation, computation, and completeness spectra. Recall that a complete algorithm is
guaranteed to find a solution when one exists and will also report failure in finite
time if a solution does not exist. A resolution complete algorithm is an algorithm
that is complete to within a predefined granularity of the world representation. A
probabilistically complete algorithm is an algorithm that will find a solution, if one
exists, in finite time with probability approaching 1.
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2.1 Incomplete Methods

In the cocktail party model each agent maintain its own world-view, goals, and
navigation function, while remaining ignorant of other robots and their intentions
(Lumelsky and Harinarayan, 1997; van den Berg et al, 2009). Each agent alter-
nates sensing, planning, and movement, and there is no direct coordination between
robots. While this algorithm is incomplete, it is popular due to simplicity, scalability,
and minimal communication requirements.

In prioritized planning each robot’s path is calculated separately, subject to the
movement constraints imposed by the paths of higher-priority robots (Erdmann and
Lozano-Perez, 1987; Warren, 1990; Hada and Takasa, 2001; Clark and Rock, 2001).
Higher priority robots follow optimal to near-optimal trajectories while lower pri-
ority robots may be unable to find a solution. Prioritized planning has also been
used to periodically create a line-of-sight communication chain while performing
the somewhat related coverage task (Hollinger and Singh, 2010).

Decoupled planning breaks planning into two phases. In phase-1 each robot cal-
culates its own path to the goal. In phase-2 the space-time positions of the robots
along these paths are calculated such that no collisions occur (Kant and Zuker, 1986;
Aronov et al, 1998; Leroy et al, 1999; Guo and Parker, 2002). Although decoupled
planning can be distance-optimal, it is incomplete because each robot’s path is com-
pletely determined after phase-1 (and they may pathologically conflict) (Sanchez
and Latombe, 2002).

2.2 Complete Methods: Centralized Planning

In Centralized planning all robots are considered individual pieces of a single com-
posite robot. Solutions are calculated in the resulting high dimensional configuration
space. Robot paths are found by projecting the high-dimensional solution down into
the relevant subspace per each robot. (Xidias and Aspragathos, 2008; Bonert, 1999;
Schwartz and Sharir, 1985; Clark et al, 2003; Sanchez and Latombe, 2002). Previ-
ously, the high-dimensional solution has either been calculated by a single agent or
at the same time on each robot (thus robots must communicate with this agent or
each other, respectively). Centralized planning is theoretically complete but practi-
cal algorithms are usually probabilistically or resolution complete; nonetheless, it
provides the best completeness guarantees of any multi-robot planning method.

2.3 Relevance to Our Work

Our Any-Com ISS algorithm (presented in Section 3) is centralized, and there-
fore shares many similarities to the work described above. One major differ-
ence is that previous work has not considered what happens when communication
deteriorates—this is a main contribution of our work. Another important difference
is that our algorithm leverages the distributed-computing power of the robotic team
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to help find better solutions more quickly. In contrast, previous work has required
each agent to calculate an entire solution completely on its own.

Distributed versions of both prioritized planning and decoupled planning exist.
For instance, in prioritized planning each robot can calculate its own path (assuming
it respects robots of higher priority), and in decoupled planning each robot can indi-
vidually calculate its own phase-1 solution (although these must be assembled by a
single agent in phase-2). However, both prioritized planning and decoupled planning
are incomplete, while Any-Com ISS is probabilistically/resolution complete.

We believe Any-Com ISS is most applicable to the complicated planning situa-
tions in which the incomplete planning methods fail, and advocate using the (less
computationally complex) incomplete ideas under most circumstances. For this rea-
son we only compare Any-Com ISS to state-of-the-art centralized planning tech-
niques in Section 4—as these are the only other algorithms available when incom-
plete methods fail.

3 Methodology

Let the robot workspace W exist in R2. To guarantee probabilistic/resolution com-
pleteness, the entire team is considered a single composite robot. Each individual
robot contributes 2 dimensions to the combined configuration space C, in the form
of position (x,y), and search occurs in a R2n configuration space where n is the num-
ber of robots. We assume resolution accuracy δ is defined for the configuration state
vector. δ is the minimum distance allowable between any two configurations per di-
mension and thus defines the resolution of the search. In a pragmatic sense, δ keeps
the search-tree from being populated with essentially duplicate configurations, and
focuses effort on finding (significantly) better solutions. We assume circular robots
that can pivot in place, but note our algorithms can be generalized to arbitrary robots.

We use a heavily modified version of an any-time rapidly expanding random tree
(RRT) inspired by Ferguson and Stentz (2006). Our underlying RRT differs from
previous work (LaValle and Keffner, 2001) in two significant ways. First, instead
of connecting a new node to the tree using the shortest possible edge, we use the
edge that gives the new node the shortest possible distance-to-root. Second, instead
of restarting each subsequent tree from scratch (i.e. while time remains to find a
better solution), we prune the existing tree such that it only contains nodes that can
possibly lead to better solutions—then continue growing the same tree subject to
the constraint that new nodes must be able to lead to better solutions.

In general, we seek to utilize the distributed computational power of a team of
mobile robots. We want algorithms that function in environments where communi-
cation is unreliable, but take advantage of reliable communication when it exists. To
these ends, each agent maintains its own randomly created tree. Assuming n robots,
the union of all trees is a O(n) times larger tree maintained collectively by the en-
tire team. Any-com is achieved by having robots share their individual intermediate
solutions during path-planning so that all agents can prune globally sub-optimal
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branches from their local trees. This enables each robot to focus effort on finding
only better solutions than those currently known to any robot. It also gives all robots
a chance to directly refine the best intermediate solution. We call this idea Any-Com
Intermediate Solution Sharing (Any-Com ISS).

Theoretically, allowing more agents to work on a random-tree problem will in-
crease the chances a good solution is found quickly, regardless of whether or not
the sharing of intermediate solutions has any affect. Therefore, to determine how
much (if any) advantage Any-Com ISS provides, we compare Intermediate Solu-
tion Sharing to having each agent individually find a unique solution to the com-
plete problem, then broadcasting them so the team can use the best one. We refer
to the latter method as Voting, and note that similar ideas have been explored in the
past (Clark et al, 2003). Finally, to give context to the relative performance of Any-
Com ISS vs. Voting, we compare both of them to a client-server framework. In the
client-server system, which we call Baseline, the server is charged with calculating
a complete solution using a single random tree, and then sharing it with the other
robots. Any-Com ISS, Voting, and Baseline use the same underlying random tree
algorithm (Figure 1-Left). To demonstrate that it performs well vs. previous work,
we additionally compare results to Any-Time RRT (Ferguson and Stentz (2006)).

We assume the existence of an admissible heuristic function h(p1, p2) that returns
the distance between configurations p1 and p2 ignoring any collisions. The value
bstln stores the length of the shortest path known at any particular time. On line 4 we
pick a new configuration p1 to add to the tree—chosen as the goal with probability
ρ and uniformly at random otherwise. On line 5, we check both if p1 exists in C f ree,
the collision free portion of the configuration space, and also if using p1 can possibly
lead to a better solution based on the start and goal configurations and bstln. Note
that C f ree is calculated with respect to both robot-robot collisions and robot-obstacle
collisions. On line 7 we find the best node p2 in the tree to use as a parent of p1.
We record Sdist(p1), the actual distance-to-start of p1 through p2, and then add p1

to the tree on lines 10 and 11. If p1 is the goal (and p2 �= null on line 8) then the
new path-to-goal is the best intermediate solution found so far, so we update bstln
on line 13. On line 14 we use the function findShortcuts() to see if other nodes in
the tree can reach the start more quickly via p1 instead of their current parent. If so,
we change the tree to reflect this, and update Sdist values of the descendants.

Lines 16-20 are only executed when Any-Com ISS is used. On line 16 we check
for incoming messages from other agents that may contain better paths. If a better
path is received, then it is added to the search-tree and bstln is updated (lines 18 and
19). Finally, we send messages to other agents on line 20.

While searching for p1 in findBestAndPruneTree() (Figure 1-Right-Top) we
simultaneously prune any nodes that cannot possibly lead to solutions shorter than
bstln, and also check if p1 is more than δ away from configurations already in the
tree. Keeping the tree as small as possible focuses effort on finding better solutions.

Search continues until time μ , after which the most recent (and therefore best)
intermediate solution is recorded as an agent’s final solution. In Baseline, this is
when the server distributes its final solution to the client robots, and also when
individual solutions are compared in Voting.
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RandomTree()
1: bstln = ∞
2: add start as root of search-tree
3: while time < μ do
4: pick a point p1 ∈ C, where

p1 = goal with probability ρ
5: if p1 /∈ C f ree

or h(start, p1)+h(p1,goal)≥ bstln
then

6: continue
7: p2 = findBestAndPruneTree(p1)
8: if p2 = null then
9: continue

10: Sdist(p1) = Sdist(p2)+h(p1, p2)
11: add p1 to search-tree as a child of p2

12: if p1 = goal then
13: bstln = Sdist(p1)
14: FindShortcuts(p1)
15: if using Any-Com ISS then
16: check for messages at rate ω
17: if received better path then
18: add that path to search-tree
19: update bstln
20: send message with best-path

p2 = findBestAndPruneTree(p1)

1: p2 = null
2: gp2 = bstln
3: for each node pi ∈ Tree do
4: if Sdist(pi) + h(pi,goal) > bstln

then
5: remove pi
6: else if p1 is within δ of p2 then
7: return null
8: if Sdist(Pi)+h(pi, p1)< gp2 then
9: if edge (pi,p1) ∈ C f ree then

10: p2 = pi
11: gp2 = Sdist(Pi)+h(pi, p1)
12: return p2

FindShortcuts(p1)

1: for each node pi ∈ Tree do
2: if Sdist(pi)+h(pi, p1)< Sdist(p1)

and edge (pi,p1) ∈ C f ree then
3: Sdist(p1) = Sdist(pi)+h(pi, p1)
4: reroute pi through p1
5: for descendants of p1 do
6: update Sdist()

Fig. 1 Random tree algorithm with flags indicating functionality native to Any-Com ISS
(Left). Subroutine for finding p2 (the best neighbor of p1 already in the tree) and pruning the
tree (Top-Right). Subroutine for checking if old nodes would do better by using p2 as their
parent (Bottom-Right).

We hypothesize Intermediate Solution Sharing will produce better solutions than
the other two methods because it allows the entire team to have tighter search-tree
pruning—focusing search toward new and improved solutions. Additionally, Any-
Com ISS gives each agent the opportunity to improve the best solution found so far.
Any-Com ISS is robust to packet loss because dropped messages do not affect an
agent’s ability to eventually find a solution. On the other hand, successful commu-
nication focuses search in beneficial ways and helps the team find better solutions
more quickly. Even out-of-date messages have the potential to be beneficial, as long
as the solution they contain is better than the receiving agent’s current best.

Each search-tree is generated randomly and each solution is drawn from a dis-
tribution over all possible solutions. Theoretically, both Any-Com ISS and Voting
should increase the team’s collective chances of finding a desirable solution, vs.
Baseline, because n random samples are drawn from this distribution instead of 1.

Both Any-Com ISS and Voting use the same underlying message-passing pro-
tocol to disseminate information within the group. The idea is simple: each robot
broadcasts information to every other robot at a predefined rate ω using the User
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Datagram Protocol (UDP). UDP drops unsuccessful messages, which keeps the
information flowing through the network up-to-date. Each message contains the
following information about the state of the global solution, based on the sending
robot’s current knowledge:

• Best solution (currently known to the sender)
• Best solution’s length
• ID of the robot that generated the best solution
• List of robots that have submitted a final solution
• Movement flag
• List of robots that support best solution.

Each robot keeps a copy of what it believes to be the best solution found by any
robot. Each robot is responsible for adding itself to the appropriate lists. In order
to keep the network up-to-date, messages are dropped if they contain paths that are
worse than the best path known to the receiving agent. Planning halts after time μ , at
which point robots begin adding themselves to the list of robots that have submitted
a final solution. Any robot can correctly deduce which agreement has occurred if it
knows all robots have submitted a final solution (regardless of algorithm). This is
because better solutions are no longer being generated and the best solution known
to the sending robot is always sent in every message—the actual best solution must
have been passed along with the knowledge that the robot who generated it has
submitted a final solution. In the unlikely event of a tie, the solution found by the
robot with the lower ID is used. Once a robot knows an agreement has been reached,
it sets the moving flag to TRUE, begins moving along its path per the best solution,
and rebroadcasts the best solution at ω . If a robot receives a message with a TRUE
movement flag, it also starts moving and rebroadcasts that solution at ω .

Baseline modifies the method described above by setting the movement flag to
TRUE as soon as time μ occurs. Therefore, each robot begins moving as soon as
the solution is received from the server. In order to keep Baseline as naive as pos-
sible, the client robots do not rebroadcast the solution to each other, but the server
continues to rebroadcast at ω .

Any-Com ISS also has an additional method of reaching an agreement. By care-
fully tracking which partial solutions the other robots most recently support (during
the planning phase), it is possible to approximately forecast the final vote at time μ .
After time μ , if a particular robot believes all robots currently support its most recent
solution, then it starts moving on that solution and rebroadcasts it at ω (along with
the moving flag set to TRUE). This information is propagated through the network
as usual (with disagreements broken toward solutions from robots with lower IDs).
Although this protocol may allow a suboptimal solution to be chosen, it is unlikely.
Further, if an agent erroneously believes all robots currently support its solution,
then it must have had the best solution in the past, so the cost of erroneously picking
a suboptimal solution is mitigated. A scenario where different robots move along
different incompatible solutions is impossible because two or more robots cannot
simultaneously believe all robots support their most recent solution. This is due to
the fact that only the robot that generated a solution can initiate movement along it.
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If two different robots generate competing solutions, neither will initiate movement
until one robot advertises support for the other’s solution—and they cannot both
support the other’s solution because one solution is guaranteed to be better than the
other (or, in the case of ties, come from the robot with lower ID).

4 Experiments

We perform two experiments with 5 robots in an office environment. Experiment 1
is conducted in simulation to evaluate theoretical performance over a wide range of
parameters. Experiment 2 uses real robots to validate that the algorithms function
in practice. Our robotic platform is the iRobot create, and we use the ROS operat-
ing system by Willow Garage. Robots are equipped with the Stargazer Indoor Lo-
calization System. Our Computational Units are System 76 Netbooks with built-in
wireless networking capabilities.

Fig. 2 A solution from Experiment 1 (Left). The Prairiedog Robotic Platform (Right).
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Fig. 3 Average Solution Lengths from Experiment 1. Sub-plots show different planning
times μ .
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Fig. 4 Average agreement time from Experiment 1. Sub-plots show different planning
times μ .
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Fig. 5 Average Solution Lengths (Left) and average agreement time (Right) from Experi-
ment 2

Experiment 1 evaluates the relative performance of Any-Com ISS, Voting, Base-
line, and Any-Time RRT (Figure 2). Note that Any-Time RRT is run on a single
robot. We evaluate performance of all four algorithms vs. message success proba-
bility τ vs. planning time μ . We use τ = {1,1/4,1/16,1/64} probability of success
and μ = {5,10,25,50} seconds. We perform 100 runs per each combination of pa-
rameters to facilitate statistical analysis of results. Mean and standard deviations of
the resulting solution lengths are displayed in Figure 3 and agreement times in Fig-
ure 4 (agreement time is the time after μ and before movement). Note that agreement
times are not presented for Any-Time RRT, since no message passing is required.

Experiment 2 is conducted on 5 actual robots and is similar to Experiment 1.
Robot speed is 0.2 meters per second. During planning ω = 4, and during the agree-
ment phase ω = 32. The change is due to the preliminary results in Experiment 1,
where it is clear that the agreement phase can become lengthy in terms of messages
sent. Also, path-planning is computationally intensive while the agreement phase
is not, and robots are able to spare additional resources to increase ω . The same μ
are used as in Experiment 1. Each data-point represents 20 runs. We plot solution
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quality and agreement time vs. planning time in Figure 5 Left and Right, respec-
tively. Signal quality was relatively good in this experiment, the observed packet
loss rate was less than 50%. We forgo comparison vs. Any-Time RRT due to the
positive performance of the other methods in Experiment 1.

5 Discussion of Results

With regard to solution quality, both Any-Com ISS and Voting out-perform Base-
line, and Any-Com ISS outperforms Voting. All three methods outperform Any-
Time RRT. Using a two-sample Kolmogorov-Smirnov test, we compare algorithms
based on solution lengths, and find statistically significant (p < .05) differences be-
tween any two algorithms for all but one method-parameter combinations in Exper-
iment 1 (i.e. for one method vs. another with μ and τ held constant), and all but one
parameter combination in Experiment 2 (Voting vs. Any-Com ISS at μ = 5 sec).
In fact, p < 0.001 for most data-points in either experiment. When the results from
all experiments are considered together, p becomes vanishingly small. These results
validate our original hypothesis.

Examining the solution quality vs. planning time for the various methods in Fig-
ures 3 and 5-Left illustrate just how well Any-Com ISS performs. Voting finds sim-
ilar quality solutions using less than half the planning time as Baseline, on average,
while Any-Com ISS finds similar quality solutions in ≤ 1/n of the time! This is
strong evidence the robotic team is functioning as an effective distributed computer.
Given we are using n times as much computational power, the expected ratio of re-
quired planning time is 1/n. Therefore, the super-efficient observed value of < 1/n
in Experiment 2 is impressive, especially given the minimal data shared between
agents. Whether or not this trend will continue for larger groups of robots is a ques-
tion we hope to answer in future work.

It often takes longer than 5 seconds (or even 10) for an agent to find a solution.
That is, μ = 5 is not enough time to guarantee that all robots have found a solution.
In such a case, after 5 seconds has passed, Any-Com ISS uses the best solution found
by any robot so far, while Baseline must wait until the server finds its first solution,
and Voting must wait until all robots have found a solution. This has two interesting
affects. First, the agreement times of Baseline and Voting are greater than Any-Com
ISS because all robots must wait until the server or all robots have found a solution,
respectively, before an agreement can be reached. Second, by waiting extra time
until n solutions exits, Voting has an increased chance of finding a “good” solution
vs. Any-Com ISS. While this may initially seem desirable, we note that Any-Com
ISS is able to start movement at the expected time, while the other algorithms suffer
unexpected delays. We believe this is why the results for Voting and Any-Com ISS
are similar for μ = 5 sec in Experiment 2 (i.e. p > .05), and also why the agreement
times for Voting are inflated for μ = 5 and μ = 10 in Experiment 1.

Another interesting trend is that Any-Com ISS solution quality does not get much
worse as communication becomes unreliable. Theoretically, as τ → 0 the results of
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Any-Com ISS will approach those of Voting. There is a hint of this in Experiment
1, where τ is controlled, especially for longer planning times. However, it appears
communication must drastically deteriorate before Any-Com ISS begins to suffer.
In fact, packet loss rates as high as 98% have little affect on solution quality.

The most noticeable effect of poor communication is an increase in the time it
takes the robots to agree on a single solution. Assuming that communication failure
is strictly Poisson-distributed, increasing the messaging rate ω during the agreement
phase can mitigate the effects of communication deterioration (as we did in Exper-
iment 2). In any case, the bandwidth will eventually become saturated, and further
diminishing τ will eventually prevent an agreement from taking place within a use-
ful time. Therefore, Any-Com ISS should not be used when τ ≈ 0. That said, it
is impossible for any complete algorithm to function when τ ≈ 0. As a practical
measure, the τ ≈ 0 case could be handled using a time-out. After which, robots start
moving based on the best solutions known to them individually. Assuming on-board
sensors exist, conflicts could then be resolved using the cocktail-party model. Al-
though this ‘worst-case-scenario’ forces the algorithm to become incomplete until
communication is resumed, it is arguably better than letting the team remain mo-
tionless forever. Further discussion on this idea is beyond the scope of this paper.

The simulated experiments predict Baseline should have similar agreement times
to Any-Com ISS, while the real experiments show Any-Com ISS as the clear winner.
The fact that these benefits do not extend to the Voting method (even for μ > 10)
suggests some other mechanism is responsible for the relatively quick agreement
time of Any-Com ISS. We credit this improvement to the auxiliary vote-forecasting
agreement method available to Any-Com ISS.

6 Conclusions

We coin the term “Any-Com” to describe algorithms that use multiple agents to
collaboratively refine a solution toward optimality as communication permits. The
motivation behind the general Any-Com idea is that distributed robots should adapt
to use as much collaborative problem solving as communication quality permits.
This is useful for solving computationally intensive problems, and especially well
suited to problems with solutions of value to multiple agents. The problem domain
of centralized multi-robot rover navigation has both of these qualities.

We present a practical Any-Com multi-robot path-planning algorithm called
Any-Com Intermediate Solution Sharing (Any-Com ISS) in which agents share in-
termediate solutions so that the entire team can focus remaining effort on finding
even better solutions. This works because it allows all robots to prune globally sub-
optimal branches from their local search trees based on the best solution known
to any member of the team. It also gives each robot an opportunity to directly im-
prove the best solution. Intermediate Solution Sharing is Any-Com because dropped
messages do not prohibit a solution from eventually being found, while successful
messages improve solution quality (both in overall path quality, and the time it takes
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to reach an agreement). We envision Any-Com ISS as one tool among many in the
multi-robot planning arsenal—useful in the specific case when a complete algorithm
must be used (i.e. when a group of robots finds itself confronted with a difficult
problem that cannot be solved by less expensive incomplete planning methods).

We perform 2 experiments using a team of n = 5 robots, and compare results to a
basic server-client model as well as a voting method (in the server-client framework
one agent plans and then distributes the solution to the other robots, while in voting
each agent is allowed to plan separately and then the team uses the best solution
found by any single agent). We find Any-Com ISS requires less then 1/n of the time
required by the client-server framework to find a solution of similar quality, and less
than 1/2 the time required by the voting method, on average.

As bandwidth approaches 0 the solution quality of Any-Com ISS theoretically
declines gracefully to that of the voting method, while both remain better than the
server-client model. In fact, we find that communication loss as high as 98% has
little affect on solution quality. Unfortunately, the time it takes to reach consen-
sus approaches infinity as communication approach 0. This is not unexpected, as
all complete algorithms are inherently vulnerable to total communication failure.
Ignoring this worst-case-scenario, we find that Any-Com ISS is robust to a high
degree of communication interference.

While this paper is a focused case-study on Any-Com applied to multi-robot nav-
igation, we stress that the Any-Com idea is not limited to this particular domain. In
particular, Any-Com ISS is applicable to any random-tree search through a met-
ric space. We hope that the Any-Com concept will spread to other problems, and
envision a world in which mobile robots dynamically take advantage all available
computational resources to solve complex problems.
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An Improved Particle Swarm Optimization 
Method for Motion Planning of Multiple Robots 

Ellips Masehian and Davoud Sedighizadeh 

Abstract. Multi robot motion planning is a challenging problem in the robotics 
field due to its complexity and high computational costs induced by the number of 
robots. In this paper a new heuristic method is presented for solving this problem 
through a decentralized approach with global coordination. The method is based 
on a new improved variant of the Particle Swarm Optimization (PSO) metaheuris-
tic, which serves as a global planner. Alternatively, for local planning and avoid-
ing obstacles in narrow passages, the Probabilistic Roadmap Method (PRM) is 
employed. The global and local planners act sequentially until all robots reach 
their goals. The algorithm iteratively and simultaneously minimizes two main  
objectives, shortness and smoothness of the paths. The proposed algorithm is si-
mulated and compared with the standard (basic) PSO, as well as the standard 
Probabilistic Roadmap methods. The experimental results show a meaningful ad-
vantage of the new method regarding computational time and path quality.* 

1   Introduction 

The robot motion planning discipline experienced a boost specifically after the 
advent of the Configuration Space (C-space) notion by Lozano-Pérez and Wesley 
in the mid 70’s [1]. While early motion planning algorithms were mainly devel-
oped for single robots, the multi robot motion planning problem remained un-
tackled until a decade later, when the prioritization and coordination concepts 
were developed, as in [2]. 

The general single robot motion planning problem is defined as the problem of 
finding a collision-free path for a robot navigating among various obstacles, and is 
classified as a PSPACE-hard and NP-hard problem [3]. This complexity is further 
increased for multi-robot motion planning as the larger number of robots creates 
difficult problems regarding their coordination, cooperation and obstacle avoid-
ance. Thus, as a challenging problem, the multi robot motion planning problem 
increasingly attracts the attention of roboticists and researchers. 

                                                           
Ellips Masehian . Davoud Sedighizadeh 
Faculty of Engineering, Tarbiat Modares University, Tehran, Iran 
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The primary approaches for path planning of single and multiple robots were 
generally based on computational geometry and handled deterministic low-
dimensional problems. These methods, also known as classic methods, are varia-
tions of a few general techniques: Roadmaps (including Visibility Graph, Voronoi 
diagrams, and Silhouette), Cell Decomposition, Potential Fields, and Mathemati-
cal programming (including operations research and game theory models) [4]. 

Due to the complexities of the motion planning problem and its progressive in-
crease for the multi-robot case, many heuristic and metaheuristic methods have been 
developed or applied extensively over the recent years, generally showing better per-
formance than the classic methods in terms of computational burden. However, it 
should be noticed that heuristic methods do not guarantee to find a solution, but if a 
solution is found, it is done in much shorter time than exact methods. 

1.1   Multi Robot Motion Planning 

The Multi Robot Motion Planning (MRMP) problem has been solved through two 
main approaches: centralized and decentralized (or decoupled) [5]. 

The centralized planning considers all of the robots concurrently; that is, paths for 
all robots are planned simultaneously by searching the C-space of a hypothetical 
multi-arm robot consisted of all the robots, in which collisions between robots are 
considered as self-collisions of the multi-arm robot. The degrees of freedom (dof) of 
this hypothetical robot equals to the sum of the dof’s of all individual robots. The 
main advantage of the centralized planning is that it is complete; i.e., it is guaranteed 
to find a solution if one exists. However, it is potentially expensive and typically re-
quires searching high-dimensional spaces and the knowledge of goals and states of 
all robots, meaning that it hardly can be applied for online situations. 

The decoupled planning performs the motion planning of each robot indepen-
dently and sequentially, and has two phases: first a collision-free path τ1 is gener-
ated for each robot considering only obstacles (ignoring other robots) in its space, 
and then, in order to prevent collisions between the robots, the robots’ motions 
along their pre-generated paths are coordinated via two main techniques, namely 
prioritization, and velocity tuning. Each robot is restricted to move along its pre-
viously-generated path, although it may stop, retreat or change velocity to allow 
coordination with other robots [5]. 

The two main coordination approaches are pairwise and global coordination. In 
the pairwise coordination, the paths τ1 and τ2 of the first two robots are coordinated 
in their 2-dimensional coordination space. The process is repeated for paths τ1, 2 
and τ3 resulting in a coordinated path τ1, 2, 3. Eventually, a collision-free coordinate 
path τ1, 2, …, m is generated that defines a valid coordination of all m robots. In glob-
al coordination, the paths of all m robots are coordinated in an m-dimensional 
coordination space, resulting in a collision-free path τ1, 2, …, m. 

The decoupled planning is generally less computationally expensive than the 
centralized planning since lower dimensional spaces are searched [6]. However, it 
is not complete, and failures usually occur in the second phase as it might not be 
possible to coordinate the paths generated in the first phase without collision  
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between robots [7]. Nevertheless, some attempts have been made to combine the 
centralized and decoupled approaches [8]. 

A trend of applying metaheuristic algorithms such as simulated annealing (SA), 
genetic algorithms (GA), and ant colony optimization (ACO) to the MRMP problem 
is noticeable especially among more recent contributions, as in [9], [10], and [11], 
respectively. Also, the particle swarm optimization (PSO) algorithm has found some 
applications MRMP. The first work in this regard is due to [12] in which the PSO is 
used for single and multiple target tracing applications for multiple robots. In [13] 
obstacle avoidance is done for a single robot in dynamic environments, in [14]  
bio-inspired group behaviors for deployment of a swarm of robots to multiple desti-
nations are proposed. Other fresh works in this regard are [15], [16], and [17]. In 
[18] a PSO-inspired algorithm is proposed as a framework for robots to work  
together to find their targets. In [19] an asynchronous mechanism is proposed for in-
formation exchange and position update of small robots with limited sensing capa-
bilities. In [20] a PSO-based method is developed for searching operations by a large 
number of mobile robots, with small inter-robot communications. 

In this paper, a new PSO-based algorithm is developed for MRMP. The reason 
of employing the PSO is that as a population-based metaheuristic, it is very con-
sistent with the distributed nature of multi robot systems. Moreover, although both 
the PSO and GA are population-based metaheuristics, the PSO proved to be more 
efficient and faster than the GA algorithm as reported in [21], after they were ana-
lyzed and compared statistically from both efficiency (speed) and effectiveness 
(quality) perspectives for eight optimization functions. The advantage of PSO over 
GA is also mentioned in [22]. 

A distinctive feature of the presented work, as compared to the previous works, 
is that the PSO is combined with a well-known and fast motion planning tech-
nique, called Probabilistic Road Map method (PRM), to produce obstacle-free 
paths in shorter times. Also, in order to enhance the quality of the produced paths, 
a multi-objective fitness function has been developed to minimize the path length 
while discouraging the robot to make sharp and abrupt turns, thus maintaining its 
smoothness. 

2   Overview of the New Method 

After analyzing many PSO-based algorithms and examining their components, it 
was found out that PSO is more successful in diversification rather than intensifi-
cation due to high distribution of the particles in the space [23]. Intensification 
forces the algorithm to search a specific area with more depth and within a local 
scope, while diversification forces exploration of completely new regions, acting 
in a global scope. Therefore, the PSO component of the proposed algorithm was 
considered as a global planner, with the responsibility of searching and exploring 
new areas. This idea was first used in our previous work for a single robot [24]. 

Our analysis also showed that the PSO is not sufficiently efficient in obstacle 
avoiding, especially when a large number of obstacles populate the workspace 
densely, or there are narrow passageways in the workspace. Although thanks to the 
probabilistic nature of the PSO it can eventually find a collision-free path from the 
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robot’s start to goal, this usually happens after so many unsuccessful attempts and 
thus takes considerable time. To remedy this drawback, we took advantage of a fast 
planner, namely, the Probabilistic Road Map (PRM) method, which is based on 
searching a graph with randomly-generated nodes and edges and is more powerful 
in local search (i.e. intensification). This component is described in section 4. 

In addition to the abovementioned speed issue, the quality of the paths is also of 
great importance. Considering that the two major attributes of a high-quality path 
are its shortness and smoothness, we tried to incorporate these dual objectives in 
the fitness function, and concurrently minimize the length and maximize the 
smoothness of the path. This issue is addressed in section 3. 

As the speed and efficiency are of specific importance in this work, the decen-
tralized approach was employed: in fact, for m robots, m PSO algorithms are per-
formed sequentially but independently in each iteration to determine the positions 
of the robots. This process is iterated until all robots reach their goals. 

The combination and interaction of the PSO and PRM methods is a new con-
cept in the field of multi-robot motion planning. As computational results have 
shown, PSO and PRM act very coherently since both have probabilistic elements 
and parameters. More specifically, the notions of particles in the PSO and random 
nodes generated in the PRM complement each other and unify these methods. The 
algorithm iteratively shifts from PSO to PRM until all robots' goals are reached. 

For each robot, the following steps are executed: 

1. A preset number of particles are generated around the robot’s initial position 
and within its sensing range. 

2. Each particle takes a new velocity and position based on the constantly updated 
improved PSO equations. A candidate for the robot’s next position is deter-
mined by the position of the best particle (i.e. the one nearest to the goal). 

3. If the robot’s current position can be directly connected to the candidate best 
particle obtained in Step 2, then set it as the robot’s next position and go to Step 
2, otherwise continue with Step 4. 

4. If the candidate best particle is located beyond an obstacle (i.e. the line con-
necting the best position to the robot’s current position intersects an obstacle), a 
probabilistic roadmap is formed and searched for the shortest path. As a result, 
the current position of the robot is connected to a node of the PRM which is 
nearest to the goal through their shortest path. 

5. Steps 2 to 4 are executed until the goal is within the robot’s sensing range and 
can be accessed via a straight collision-free line. 

The above steps are executed for every robot separately and concurrently until the 
last robot reaches its goal.  

As mentioned earlier, the decentralized planning consists of two phases: the 
first phase specifies a collision-free start-to-goal path for each robot without con-
sidering other robots, and the second phase deals with velocity tuning, in which 
the robots’ velocities along their generated paths are coordinated in order to avoid 
collision among the robots. In the proposed algorithm the global coordination ap-
proach is implemented for the velocity tuning, in which the paths of all m robots 
are coordinated in an m-dimensional space. Each robot is limited to move along its 
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previously generated path although it may stop and vary its speed for coordination 
with other robots. More precisely, whenever two robots get closer than a limit to 
each other, moving priorities are assigned to them at random, after which the robot 
with lower priority reduces speed to let the robot with higher priority pass. 

Depending on the robot’s start and goal positions, each robot reaches its goal at 
different times and after different number of iterations, and since the algorithm 
runs for each robot in parallel with others, at a specific moment, the planning 
phases underway for each robot might be different from other robots. Therefore, 
another factor called action mode was introduced to precisely describe the situa-
tion of each robot at a given time. This concept facilitates the robots’ coordination 
and increases the algorithm’s speed and efficiency. 

There are five modes for each robot as explained below, in which gbest i is the 
position of the robot at the i-th iteration: 

Mode 1 is for when a robot can move from gbest i to gbest i+1 via a straight line 
without colliding with any obstacle. In other words, the robot's motion is planned 
by the global algorithm (PSO). 
Mode 2 is for when Mode 1 does not hold due to collision with obstacles. As a re-
sult, the robot moves from gbest i to the nearest node in the PRM network. 
Mode 3 is for when robot moves between two nodes of the PRM network. In other 
words, the robot's motion is totally planned by the local algorithm (PRM). 
Mode 4 is for when the robot abandons the PRM network and moves to gbest i+1 
straightforwardly. 
Mode 5 is for when the robot's goal is within its line of sight and can be reached 
directly without collision with obstacles. 

It should be noted that the robots traverse the lines between two successive points 
with regard to their own speed and step size, and sequentially move to the inter-
mediate points obtained from interpolating the line. For any robot, if after taking a 
step towards its desired point, it is estimated that a collision with another robot is 
imminent, the robot will automatically reduce its step size such that the collision is 
avoided. Therefore, a global coordination is performed at each iteration. 

Also, at the end of each action mode an attempt is made to connect the robot's 
current position to its goal via a straight line. If it fails, the robot will continue 
moving to the gbest i+1 directly or through a PRM network. If the attempt is suc-
cessful, then the robot reaches its goal and the algorithm terminates unconditional-
ly for that robot. However, since the robots do not essentially reach their goal at 
the same time, the termination criterion of the algorithm is satisfied whenever the 
last robot gets to its goal. 

In the following two sections the details of the PSO and PRM components are 
described in detail. 

3   PSO: The Global Planner 

In the proposed MRMP method, the Particle Swarm Optimization method is em-
ployed as the global motion planner; that is, it is used for planning the large-scale, 
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‘gross’ motions of the robots. In this section, an overview of the basic (standard) 
PSO algorithm is presented. 

The basic Particle Swarm Optimization algorithm was proposed by Kennedy 
and Eberhart in 1995 [25], inspired by the collective behavior of swarms of fish, 
birds, etc. Each member of the swarm is denoted by a particle, which shows a so-
lution candidate. The particles start their fly from random positions in a search 
area, and in each iteration, they update their positions and velocities according to 
equations (1) and (2) below, and move to another position. Flying is affected by a 
fitness function that assesses the quality of each solution. 
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in which: 
prtpos i

j = the position of the j-th particle in j-th iteration, 
prtvel i

j = the velocity of the j-th particle in j-th iteration, 
pbest i−1

j = the best position of the j-th particle at the end of (i−1)-th iteration, 
gbest i−1 = the best position in the swarm at the end of (i−1)-th iteration, 
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The PSO has some dependent parameters: c1 is a constant called cognitive accele-
ration coefficient, and c2 is another constant named collective acceleration coeffi-
cient. These factors balance the effect of self-knowledge and social knowledge 
when particles move towards the target, and are usually set to a value of 2, al-
though good results have been also produced with c1 = c2 = 4 [26]. r1 and r2 are 
random numbers between 0 and 1, different at each iteration, and χ is the constric-
tion factor, which limits the velocity. w is a weight that regulates the global search 
behavior, set to an upper bound wmax in the beginning of the searching process and 
dynamically reduced during the optimization to a lower bound wmin, (which emu-
lates a deeper local search behavior). Its range is suggested to be [0.2, 0.4]. 

The first term of equation (2), i.e. (prtvel i−1
j), considers the velocity of the par-

ticle in the previous iteration, which produces a momentum needed for particles to 
fly all over the search space. The second term, (pbest i−1

j − prtpos i−1
j), which is 

known as the cognitive part, simulates the ‘personal memory’ of a particle: it en-
courages the particles to fly towards the best position they have found till now (i.e. 
pbest). Finally the third term, (gbest i−1 − prtpos i−1

j), called the collective part, 
presents the effect of the particles’ cooperation in finding the global optimum: it 
always directs the particles towards the best position ever found among all the 
members of the swarm. 

The overall procedure of the PSO method has a main nested loop terminated 
when the total number of iterations exceeds a certain limit or a minimum error 
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threshold is achieved. In each iteration, particles are generated and best fitness 
values for each particle (pbest) and for the whole swarm (gbest) are calculated. 
Particles’ positions and velocities are then updated based on (1) and (2). 

To improve the performance of the basic PSO and increase its efficiency, we 
propose a modified, improved variant of the PSO algorithm. The new variant in-
corporates two new criteria for the particles’ velocity updating equation, as shown 
by equation (3). The particles’ positions are still updated by equation (1). 
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 (3) 

In this equation, pbest i
rand is the best position of a randomly selected particle in 

the i-th iteration, prtvelrand is a random velocity vector with a size between Vmin 
and Vmax, w1 is the inertia weight, w2–w5 are control weights within [0.4, 0.9], c1–
c4 are acceleration constants within [1.5, 4], r1–r4 are random numbers different at 
each iteration and in the range of [0, 1], and α1–α3 are respectively the influence 
factors of gbest, pbest, and prtvelrand, in the ranges of [0, 10], [0, 20], and [0, 1]. 

We added two new terms based on the following logic: the fourth term of the 
velocity update equation, which we call the ‘random self-cognition part’, sends 
the particles towards one of the best positions found randomly by particles 
(pbest i−1

rand). This scheme gives an opportunity for reasonably good local posi-
tions of other randomly selected particles in the swarm to influence the velocities 
of other particles. The fifth term, which is enforced through the random velocity 
parameter prtvelrand, increases the variety in the swarm and leads to a better and 
more effective movement of the swarm in narrow and complicated search areas. 

All but the first term of equation (3) contribute to the overall velocity updating 
process in random proportions at each iteration. Consequently, the particles’ posi-
tions spread all over the search space and the goal is reached quickly. If a particle 
lies inside an obstacle, it is simply deleted from the swarm and replaced by ran-
dom particles in the free space.   

In the basic PSO algorithm a number of particles are required to be created and 
positioned randomly in the search space. In our proposed method, a set of particles 
are generated for each robot with respect to its initial position and regarding its 
sensing range. The initial population is generated such that along each sensing di-
rection, a particle is created at a certain distance from the robot, determined by the 
range of the used sensor. If any obstacle point is within the sensing range at that 
direction, a point near the obstacle’s border is selected as the particle at that direc-
tion. Thus, the number of created particles depends on the number of sensors (or 
in a virtual space, on the number of divisions of the circumferential circle). Fig. 1 
illustrates the creation of 36 particles around the robot’s starting point. The larger 
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the number of divisions on the circle is, the larger the number of particles would 
be, and therefore the planning accuracy would be higher. 

This innovative procedure has the advantage that the initial particles are generat-
ed around the robot’s start point such that the movement from the start position to 
the next best position can be made through a fast, straightforward and safe connec-
tion within the sensing range. In existing PSO-based approaches, the initial positions 
are generated randomly, whereas in our method, while maintaining the centralization 
of the robot’s start point, the obstacles’ distribution around it is also considered. 

3.1   Multiple-Objective Fitness Function 

Most path planners aim to generate an optimal path considering a single criterion 
like path travel time or path length. However, in practice, a path is feasible if it 
meets several conditions, such as safety, estimated needed time for navigation, 
energy consumption, etc. 

For robots needing to reach their destination as early as possible, a minimum-
time path might seem desirable, but it may require a lot of time to be traversed due 
to uneasy terrain. Categorically, there exist various feasible paths between start and 
goal points being neither short nor fast but providing reasonable tradeoffs between 
shortness and fastness. These are generally desirable paths, while a path optimal for 
a single criterion without considering other equally important criteria is not desirable 
[27]. This is just one type of problems for which our multi-objective approach has 
been designed. In the developed method, the Simple Additive Weighting (SAW) 
technique is employed, in which a weighted sum of multiple objectives is ex-
pressed as a conventional single-objective function. 

 

 

 

Fig. 1 The particles’ initial population is generated based on the borders of the robot’s sensed 
area 

In our proposed method, the criterion for path shortness is defined as the Eucli-
dean distance between each particle and the goal point in each iteration, and the 
criterion for path smoothness is defined as the angle between two hypothetical 
lines connecting the goal point to the robot’s positions in two successive itera-
tions, i.e. gbest i and gbest i−1, in which i is the iteration number. The definition of 
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path smoothness in this way is a novel idea. The first objective function, i.e. the 
shortest path for the k-th robot, and the second objective function, the smoothest 
path for the k-th robot, are mathematically expressed in equations (4) and (5), 
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in which (4) shows the distance of the particles’ position to the goal point, and 
k = 1, …, m is the number of robot. The overall fitness (or objective) function is 
obtained by the weighted sum of the above shortest and smoothest objectives: 

                         
1 short 2 smooth

i i i
j j jFitness λ F λ F= ⋅ + ⋅    (6) 

By minimizing the overall fitness function with the assigned weights of each crite-
rion, a shortest path with the least oscillations is obtained. The weights of the 
shortest and smoothest fitness functions, λ1 and λ2, are tuned through extensive 
simulation and try and errors, with best found values of λ1 = 0.7 and λ2 = 0.3. 

4   PRM: The Local Planner 

Due to its ease of implementation and ability to plan in high dimensional configu-
ration spaces, the Probabilistic Roadmap method (PRM) has drawn considerable 
attention in recent motion planning works. Initial PRMs succeeded in solving a 
number of complex problems with high-dimensional configuration spaces which 
had not been solved efficiently until that time [28]. The PRM was enhanced later 
into some variant forms like Medial Axis PRM (MAPRM), Obstacle-Based PRM 
(OBPRM), and Visibility-based PRM, which improved the process of random 
node generation and made it more effective [29]. The PRM has also been applied 
in the multi robot systems [30]. 

The PRM has three phases: (1) generating random nodes in free configuration 
space, (2) connecting the nodes via some edges such that the edges lie in the free 
space and the nodes are connected through a single graph, and (3) searching the 
graph to find the shortest path between the start and goal nodes. 

In the second phase, an edge is generated between two nodes by first trying to 
connect them via a straight line, and if this fails, a simple local planner is em-
ployed to connect them through a few intermediate newly generated nodes. The 
path planning is done by searching this graph.  

In our version of PRM, four groups of nodes lying in free space are considered 
as the set of PRM nodes: 
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(i) a number of randomly generated nodes, 
(ii) the robot’s current position, 
(iii) the best particles generated in the PSO, 
(iv) two points around each corner of the obstructing obstacle. 

The above combination of nodes is proposed for the first time in the literature, and 
provides a subtle intertwining of the PSO and PRM methods. In addition to the ran-
domly generated nodes (group (i)) which are typical in the PRM method, about 30% 
– 40% of PSO particles with highest fitness values (pbests) are also integrated in the 
PRM graph. The group (iv) helps in circumnavigating obstacle vertices naturally and 
easily by creating nodes at safe clearances from both sides of a vertex. 

After creating the necessary nodes, new edges are generated in the second 
phase of the PRM by connecting nodes to each other and deleting invalid edges 
(i.e., those intersecting with obstacles). 

The shortest path between the robot’s current position and the point gbest (cal-
culated based on the best position among particles) is then found using the 
Dijkstra’s search algorithm. As a result, the robot can move from gbest i to gbest 

i+1 and get closer to the goal, while avoiding the obstacles that locally intercept its 
path to the goal. Once the robot is located on its new position, the PSO particles’ 
velocities and positions are updated again, as described in equations (1) and (2). 

5   Experimental Results 

In order to analyze the function of the proposed new algorithm, numerous simula-
tions were run for 2-, 3-, 4-, and 5-robot problems through which the algorithm’s 
parameters were tuned to their best values. A few simulations for problems with 
simple to complex obstacles are illustrated in Fig. 2. 

For comparing the algorithm’s performance with other efficient and well-
known algorithms, the standard PRM method was selected. Ten sample problems 
with 20 to 414 vertices were designed and solved for 2, 3, 4, and 5 robots using 
the proposed Improved PSO+PRM, Standard PSO+PRM, and standard PRM me-
thods. Regarding that all these algorithms are heuristic and incorporate random pa-
rameters, we solved each problem set 5 times and calculated the mean value of 
runtimes. Note that the runtime is calculated based on the time needed for the last 
robot to reach its goal. In total, (10 problems) × (4 sets of robots) × (3 methods) × 
(5 times each) = 600 instances were run on an Intel 3.0 GHz processor. 

The standard PSO against which we tested our algorithm was coded based on the 
basic PSO algorithm proposed in [25], combined with the PRM method. Also, the 
standard PRM was coded according to the explanations in section 4. In the above 
three methods, whenever a probabilistic roadmap was constructed (either in combi-
nation or stand-alone), it was searched by the Dijkstra’s method to yield a shortest 
path on the roadmap. The results of solving the test problems are shown in Fig. 3 for 
2, 3, 4, and 5 robots (from left to right, up to dawn), summarized in Table 1. 
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Fig. 2 Some simulations for 2-, 3-, 4-, and 5-robot motion planning. Si and Gi indicate the 
start and goal of the i-th robot, respectively. 

Table 1 Comparison of the average runtimes of the three methods and their standard  
deviations 

 
2 robots 3 robots 4 robots 5 robots Total 

Avg. Avg. SD Avg. SD Avg. SD Avg. SD 

Improved PSO + PRM 22.28 30.76 28.95 36.59 34.65 41.58 38.77 43.69 31.16 

Standard PSO + PRM 31.27 41.35 34.36 43.26 40.23 47.53 43.71 47.54 37.39 

Standard PRM 40.86 49.77 44.16 54.43 49.17 56.33 53.71 56.75 46.98 
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Fig. 3 Average runtime (s) vs. number of obstacle vertices for 2-, 3-, 4-, and 5-robot problems 

The results of 600 solutions show that the proposed Improved PSO+PRM 
compound method was averagely about 17% and 34% faster than the Standard 
PSO+PRM and PRM methods, respectively, with considerably smaller standard 
deviation. Furthermore, the PSO+PRM method satisfied a bi-objective fitness 
function while in the PRM such a possibility is absent. Also, it is observed that 
runtime differences in the three methods increase as the number of vertices 
grows, showing the success of the new method in this type of problems. 

6   Conclusions 

In this paper, a new Improved PSO-based heuristic method is presented for multi-
robot motion planning, which satisfies shortest and smoothest path objectives. The 
algorithm consists of a global planner (PSO) as well as a local planner (PRM). 
The multi robot motion planning problem is solved by this algorithm through de-
centralized planning with a global coordination model. For each robot, the pro-
posed algorithm is run separately and then their motion coordination is performed 
all together and online. Also, five action modes were defined to describe the accu-
rate situation of each robot at a given time. As a result, each robot moves one step 
toward its goal in each iteration. 

The algorithm provides a novel and unique method to combine and coordinate 
the PSO and PRM algorithms by incorporating four groups of nodes within a sin-
gle population. These nodes include: the best particles of the PSO, random nodes 
generated by PRM, current and next positions of the robot, and a pair of particles 
around each obstacle vertex. The set of these nodes form a network by being con-
nected through straight edges. The shortest path between two consecutive robot 
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positions is then searched using a graph searching algorithm like the Dijkstra’s 
method. As a result the free spaces around the obstacles can be searched in much 
less time than in the classic PRM algorithm. 

After running and simulating 600 problem instances, the results showed that the 
proposed algorithm runs about 17% and 34% faster than the standard PSO+PRM 
and PRM methods, respectively, while two objectives are also optimized. 

Considering the possibility of extending the PSO algorithm to high-dimensional 
spaces, we believe that the proposed method can be used for motion planning in 
high dimensional spaces provided that a proper distance metric is used. 
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Decentralized and Prioritized Navigation and
Collision Avoidance for Multiple Mobile Robots

Giannis Roussos and Kostas J. Kyriakopoulos

Abstract. We present an algorithm for the decentralised navigation of multiple
mobile robots. Completely decentralised Navigation Functions are constructed, cre-
ating a potential field for each robot that gives rise to a feedback control law. The
construction of the potential field incorporates limited sensing and explicit prioriti-
sation in the form of priority classes. A non-circular sensing area creates asymmet-
rical sensing by reducing the influence of robots and obstacles behind each robot,
introducing implicit priorities resembling “rules of the road”. Static and moving
obstacles are also taken into account, as well as malfunctioning robots that are un-
able to maneuver. A decentralised feedback control law based on the gradient of
the potential field ensures convergence and collision avoidance for all robots, while
respecting a lower speed bound. Simulation results demonstrate the efficacy of the
proposed algorithm.

1 Introduction

Decentralised navigation has become popular in the field of robotics, as it is a pre-
requisite for a wide variety of applications involving multiple mobile robots. This
problem is also being investigated from the point of view of multi-agent systems.
In most multi-robot applications an increased level of decentralisation is desired to
allow for greater performance, flexibility and computational efficiency. Moreover, a
properly decentralised approach can offer some level of robustness with respect to
single robot failures, limiting their effect on the rest of the robots.

A wide variety of methods for robot navigation has emerged, employing various
techniques. One class of methods handles the problem in a two step approach [8]:
the workspace is initially divided into cells, which are then used to formulate the
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navigation problem as a graph search problem. Artificial potential or vector fields
are then employed to guide the robots between cells, following the sequence pro-
vided by the graph search. An extension to multi-robot navigation is presented in
[2]. Although this class of solutions is based on an intuitive line of thought, it re-
quires considerable pre-calculations and thus a-priori knowledge. Moreover, per-
forming the cell decomposition in the combined state space of all robots and solving
the graph search problem can become very challenging computationally for large
groups of robots.

A different class of methods uses artificial potential fields [6] to directly de-
rive feedback controllers steering the robots over the entire workspace. A com-
mon weakness of these methods is the appearance of local minima away from the
goal that can prevent convergence. A special class of potential fields, Navigation
Functions (NFs) [7], can ensure the existence of a single, global minimum. The
NF methodology has been developed for a wide class problems. The main advan-
tages of this class of methods are the formal performance guarantees they can pro-
vide, computational efficiency and their real-time feedback nature, that can com-
pensate for measuring and modeling errors. Navigation Functions have been so far
applied to multi-agent problems ranging from robotic navigation [3] to Air Traffic
Control (ATC) applications [11].

In this paper we further refine the concept of limited sensing in the proven NF
methodology, which combined with a feedback control law designed on the prin-
ciples of [11] yields a completely decentralised solution for multi-robot navigation
and collision avoidance in a workspace with obstacles. Our approach requires no a-
priori computation or knowledge and does not rely at all on centralised controllers.
The only information that each robot needs is its position within the workspace and
knowledge about other robots and obstacles within a sensing area around it. Thus,
our algorithm is completely distributed and its computational cost does not depend
on the total number of robots.

The construction of the potential fields incorporates priorities, both in explicit and
implicit form. The former is achieved by assigning priority classes to the robots and
allowing high priority robots to maintain right of way versus the lower priority ones.
Moving and static obstacles are assigned the highest priority. Moving obstacles have
been also considered in [1], but their motion is assumed to be known a-priori, as
the algorithm pre-calculates the complete trajectories of the robots. Malfunctioning
robots can also be treated as moving obstacles, thus offering some fault tolerance.
Implicit priorities resembling “rules of the road” are introduced by using a non-
circular sensing area, so that the potential of each robot is mostly influenced by
robots and obstacles in front of it.

The rest of this paper is organised as follows: Section 2 formally defines the prob-
lem considered here, followed by Section 3 where the construction of the proposed
potential field is described. In Section 4 the feedback control scheme is presented
and discussed, while simulation results are given in Section 5. Finally, the conclu-
sions of the paper are summarized in Section 6.
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2 Problem Statement

We assume a scenario involving N mobile robots modeled as kinematic unicycles:

q̇i =

[
ẋi

ẏi

]
= Ji ·ui,

φ̇i = ωi,

where qi =
[

xi yi
]�

is the position vector of robot i with respect to a global frame
E , φi its heading angle, i.e. the angle between the robot’s longitudinal axis and the

global x axis, and Ji =
[

cos(φi) sin(φi)
]�. Each circular robot i of radius ri is driven

via the linear velocity ui and the angular velocity ωi. For the linear motion a desired
speed udi is assumed, acting as a lower bound for the absolute linear velocity. All
robots are operating inside a common workspace around the origin of E with radius
Rw

1, while the information available to each of them is restricted to other robots
and/or obstacles within its sensing area Ai.

The control objective here is to drive each robot i to its destination qdi while
avoiding all collisions with other robots and obstacles. While doing so, we want to
enforce some form of prioritization, so that robots with high priority can maintain
right of way versus lower priority ones. Our aim is to derive a completely decen-
tralised solution that will also consider static and moving obstacles.

3 Completely Decentralised Navigation Functions

Decentralisation in the Navigation Functions (NFs) methodology has been intro-
duced by allowing each robot to ignore the targets of other robots and navigate inde-
pendently using its own NF-generated potential field. Limited sensing is a key factor
for decentralisation: it takes into account the finite range of real sensors and greatly
limits the information that each robot needs to acquire and process, significantly
improving the applicability and scalability of the algorithm in large scenarios. A
number of approaches to introduce limited sensing in the NF framework have been
been presented. In [3] the authors implement limited sensing range in a C0 fashion,
but assume a priori knowledge of the total number of agents. This requirement has
been eliminated in [4], where a switching sensing graph is used, resulting in a hybrid
system. However, this approach does not ensure global stability, as blocking situa-
tions may be reached. Thus, convergence occurs only if the switching of the sensing
graph eventually stops. A completely locally computable NF has been presented in
[9], but only for single-agent problems and with the assumption that at each time
instant there is at maximum one visible obstacle. This effectively means that the

1 In the case of a non-circular workspace the algorithm presented here can still be applied
by employing an appropriate transformation to a spherical workspace, as shown in [12].
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algorithm solves the collision with one obstacle at a time, which is not optimal in a
multi-agent scenario.

A completely decentralised scheme for a NF has been presented by the authors in
[10], incorporating limited sensing range and explicit priorities in an absolutely lo-
cally computable potential field that can take into account multiple robots according
to their priorities, as well as static and moving obstacles. The work presented here
further develops this concept, by using non-circular sensing areas for each robot
(see Figure 1a). By doing so, we allow each robot to use its full sensor range in
the forward direction in order to exploit as much information as possible to plan its
trajectory, while the effective sensing range is reduced in the rear direction. Such
a sensing scheme introduces implicit prioritisation, as it can create situations with
“asymmetrical” sensing between robots (see Figure 1b). In graph theory terms, this
means that the communication graph is no longer undirected. Moreover, the shape
of the sensing area improves the computational efficiency of the algorithm, as it al-
lows a finer selection of the neighboring obstacles and robots that contribute to the
potential field and influence the motion of each robot.

The potential field presented here can be combined with a control scheme similar
to the one presented in [11] to provide decentralised, non-cooperative navigation for
multiple robots. In fact, any controller that can ensure a decreasing rate for the po-
tential’s value over time is applicable. Thus, the use of the potential field presented
here is not limited to unicycle-like robots, but can also be applied to other types
of kinematics (holonomic or non-holonomic), when combined with an appropriate
control scheme.

The decentralised Navigation Function (NF) we use is of the form [5]:

Φi =
γi + fi

((γi + fi)k +Gi ·βi)
1/k

, (1)

where γi is the target function, fi the cooperation function, Gi the obstacle function
and finally βi is the workspace boundary function. Functions Gi and βi fade on the
boundary of collisions with other agents or the workspace boundary respectively
and take positive values otherwise, while function γi is 0 on the destination and
positive away from it. Finally, fi is always non-negative. The potential Φi attains its
maximum value of 1 on the boundary of collisions and has a single minimum of 0 at
the destination. Our contribution focuses in the construction of the obstacle function
Gi, where we incorporate the non-circular sensing scheme presented in section 3.2,
which combined with the priority classes described in section 3.1 allows the use of
both explicit and implicit prioritisation between the robots.

3.1 Priority Classes

Explicit prioritisation is introduced in the Navigation Functions (NFs) algorithm by
assigning each robot i, i ∈ {1, . . . ,N} a priority class ci ∈N. Lower values of ci rep-
resent higher priority robots, with ci = 0 denoting either uncontrolled or otherwise
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unable to maneuver robots, or obstacles (stationary or moving). The assignment
of priorities can be performed independently of the navigation algorithm presented
here. Thus, aspects like the importance of each robot’s task, the robot’s capabilities,
etc can be taken into account for the classification. We define the threat set Ti of
each robot i with ci > 0 as the set of all obstacles and robots of the same or higher
priority class, i.e. with the same or lower ci:

Ti �
{

j ∈ {1, .,N} \ {i} ∣∣c j ≤ ci
}
. (2)

For the robots belonging to the highest priority class, i.e. with ci = 0, the respec-
tive threat set is empty, Ti = 0. Priorities are used to define the sensing relations
between neighboring robots: each robot i ignores any other robots that belong to
lower priority classes, i.e. any robot j with c j > ci, and only considers robots and
obstacles belonging to its threat set Ti. Thus, robots performing high priority tasks
can maintain right of way, while lower priority robots steer around them.

Moving and static obstacles are handled like uncontrolled robots; they are as-
signed the maximum priority class, ci = 0 and are avoided by all normally operating
robots. Moreover, if a robot i is known to suffer a degradation of its navigation and
collision avoidance capabilities it is assigned the highest priority class ci = 0 and is
treated as an obstacle by other robots2. This classification scheme means that two
robots i and j have mutual sensing between them, i.e. they both take each other into
account to navigate, i∈ Tj and j ∈ Ti, if and only if ci = c j �= 0, i.e. they belong to the
same priority class, other than the highest one. Otherwise, if one of the robots, say
i, belongs to a higher priority class (even the highest one), 0 ≤ ci < c j, then i ∈ Tj

but j /∈ Ti. Thus, at all combinations of ci, c j where at least one of them is nonzero,
i.e. max(ci,c j) > 0, there is at least one-way sensing between robots i and j. This
ensures that all collisions are avoided, at least by one of the two involved robots.
Of course, in the unfortunate case that 2 robots i and j malfunction simultaneously,
i.e. ci = c j = 0, any collisions between them can not be avoided, though all other
normally operating robots will still manoeuvre around both of them.

3.2 Limited Sensing

The effective sensing area used by each robot consists of a semicircle of radius Rsr

in the rear semi-plane and a semi-ellipse with semimajor and semiminor axes Rs f ,
Rsr (with Rs f > Rsr ) respectively in the forward semiplane, as shown in Figure 1a.
Range Rs f should be less or equal to the maximum range allowed by the robot’s
sensors to exploit as much information as possible, while Rsr should be enough to
allow effective collision avoidance in all directions. The boundary of the sensing
area around the robot is then given by:

2 Online priority reassignment is outside the scope of this work, as it is assumed that it will
be handled by an independent fault detection system.
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Rs(θ ) =

⎧⎨⎩
RsrRs f√

(Rsr cos(θ))2+(Rs f sin(θ))
2
, θ ∈ (− π

2 ,
π
2 )

Rsr, otherwise
(3)

The angle θ ∈ (−π ,π ] is measured from the forward direction of the robot, as shown
in Figure 1a. Similarly, for each neighbor j of robot i we define the bearing angle
θi j between the relative position vector qi j = q j− qi and the forward direction of
robot i, as shown in Figure 1b. The effective sensing range of robot i in the direction
of qi j is given by Rs(θi j), using (3). In the special case that Rs f = Rsr the sensing
zone becomes a circle, as in [10]. The elliptical shape offers a simple way for an
adjustable forward sensing range in a C1 fashion, though other C1 curves may be
used if required by specific applications.

Rs(θ)

Rsr

θ

u

Rs f

(a)

u22

θ12

u1

1

Rs(θ12)

q12

(b)

Fig. 1 (a): The non-circular sensing area used for each robot, consisting of a semicircle in
the rear and a semi-ellipse in the front of the robot.
(b): Implicit prioritisation of robot 2 wrt robot 1: Robot 1 is outside robot’s 2 sensing area,
while robot 2 is insides robot’s 1 sensing area. Thus, only robot 1 senses robot 2 (but not vice
versa) and only robot 1 will manoeuvre.

The contribution of robot j to the potential field of robot i is based on the basic
obstacle function ĝ ji, which is defined as in previous NF approaches:

ĝi j =
∣∣∣∣qi j

∣∣∣∣2− r2
i j (4)

where ri j � ri + r j. By the above definition, ĝi j is zero when robot j touches robot
i, i.e. when

∣∣∣∣qi j
∣∣∣∣= ri j , and increases as the robots move away from each other.

Each robot can sense other robots or obstacles that are inside the above sensing
area, i.e. whenever

∣∣∣∣qi j
∣∣∣∣≤ Rs(θi j). The effective sensing range Rs(θi j) is used, as

presented in [10], to derive the normalised obstacle function ḡi j:
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ḡi j =
ĝi j

Rs(θi j)2− r2
i j

(5)

Finally, the contribution gi j of robot (or obstacle) j to robot i’s potential is derived:

gi j =

{
L(ḡi j) ,

∣∣∣∣qi j
∣∣∣∣ ≤ Rs(θi j)

1,
∣∣∣∣qi j

∣∣∣∣ > Rs(θi j)
(6)

where the shaping function L(x) is L(x) = x3− 3x2 + 3x, chosen to satisfy:

L(0) = 0 L(1) = 1

L′(x)> 0 ∀x ∈ [0,1) L′(1) = L′′(1) = 0

By the above definition, gi j is zero when robots i and j collide, i.e.
∣∣∣∣qi j

∣∣∣∣= ri j and
increases up to 1 at the boundary of the sensing area, i.e. when

∣∣∣∣qi j
∣∣∣∣ = Rs(θi j).

Outside the sensing area of robot i, gi j is constantly 1. Using the above properties of
L(x) it can be verified that gi j is by construction C2 in the interior of the free space,
i.e. away from collisions, where ĝi j ∈ [0,+∞). This allows the potential Φi to be C2,
as it is required for it to be a Navigation Function [7]. Function gi j = gi j

(∣∣∣∣qi j
∣∣∣∣)

is plotted in Figure 2a. Since gi j is constantly 1 when
∣∣∣∣qi j

∣∣∣∣ ≥ Rs(θi j), each robot
i is only affected by other robots j ∈ Ti inside its sensing area. It should be noted
here that although ĝi j = ĝ ji, the nondimensional functions gi j and g ji are not equal in
general, since θi j and θ ji are different. This difference between gi j and g ji introduces
the asymmetrical sensing in the construction of the potential fields of robots i and j.

The complete obstacle function Gi is then constructed:

Gi = ∏
j∈Ti

gi j. (7)

The priority classes defined in 3.1 are used here to allow robot i to ignore j when
ci < c j, forcing robot j to manoeuver around i. Essentially, this Gi construction
means that only knowledge about those robots in Ti that are within the sensing area
of i is required:

Gi = ∏
j∈T̃i

gi j, (8)

where T̃i is the “close threat” set that comprises threats in the sensing area of i:

T̃i =
{

j ∈ Ti
∣∣ ∣∣∣∣qi j

∣∣∣∣< Rs(θi j)
}⊂ Ti. (9)

Similarly to gi j, βi is designed to contain the influence of the workspace boundary
in a zone of width Rs f . The dimensional workspace boundary function β̂i is:

β̂i = (Rw− ri)
2−||qi||2
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ri j Rs(θi j)
0

1

||qi j||

g i
j

(a)

||qi||

β i

Rw−Rs f Rw− ri
0

1

(b)

Fig. 2 (a): Obstacle function gi j wrt distance
∣∣∣∣qi j

∣∣∣∣ between robots i and j
(b): Workspace boundary function βi wrt ||qi||

The corresponding normalised boundary funtion β̄i is:

β̄i =
β̂i

(Rw− ri)
2− (

Rw−Rs f
)2 (10)

The effective boundary function βi used in Φi is then defined similarly to gi j:

βi =

{
L
(
β̄i
) ||qi|| ≥ Rw−Rs f

1, ||qi||< Rw−Rs f
(11)

Thus, βi becomes zero when robot i touches the workspace boundary, i.e. when
||qi||= Rw− ri, and varies in a C2 fashion to exactly 1 when robot i is at a distance
equal to or higher than Rs f away from the boundary, i.e. when ||qi|| ≤ Rw−Rs f , see
Figure 2b.

3.3 Potential Construction

For the target function γi we use the following nondimensional form:

γi =
||qi−qdi||2

R2
w

(12)

Since the largest distance between any two positions qi, qdi inside the spherical
workspace of radius Rw is 2Rw, γi is equal to or lower than 4 for any combination of
qi, qdi.
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The cooperation function fi is used here as in [3]:

fi (Gi) =

{
a0 +∑3

l=1 alGl
i , Gi ≤ X

0, Gi > X
(13)

where a0 = Y , a1 = 0, a2 =
−3Y
X2 , a3 =

2Y
X3 and X , Y are positive parameters. X sets

a threshold for Gi, so that the cooperation function fi is activated when Gi < X .
Parameter Y defines the maximum value of fi, attained when Gi = 0.

The final result of using the above defined Gi, βi and γi in (1) for a setup with 3
obstacles is shown in Figure 3. The target qdi is set in the center of the workspace
and 3 obstacles are included. Figure 3b presents the potential field in the workspace,
while Figure 3a shows the values of Gi, βi, γi and Φi along the positive x axis, that
crosses through the center of one of the obstacles that is placed between the target
and the workspace boundary. In this example we have assumed that the coopera-
tion function fi is not activated, i.e. fi = 0 everywhere. Moreover, since we cannot
plot the potential for all possible robot orientations, we have used Rs(θi j) = Rs f ev-
erywhere for simplicity in the figure. As figure 3a demonstrates, Gi and βi become
less than 1 only within the sensing range Rs f of the obstacle and workspace bound-
ary, respectively. The dotted blue line represents the value of Φi for Gi = βi = 1
everywhere, i.e. without the effect of any obstacles or the workspace boundary. As
expected, this coincides with the actual Φi outside the sensing area of obstacles and
the workspace boundary.
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Fig. 3 Left: Obstacle function Gi, workspace boundary function βi, target function γi and the
resulting Navigation Function Φi on the line yi = 0, xi ∈ [0,Rw].
Right: Navigation Function potential field in a workspace with 3 obstacles and local sensing.

The invariance of the properties of Navigation Functions (NFs) under diffeomor-
phisms has been used in [10] to show that the construction of the potential field
described here results in a proper Navigation Function. Therefore, it can provide al-
most global navigation and collision avoidance for all values of k higher than a finite
lower bound k0. Moreover, since in the construction presented here only robots and
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obstacles inside the non-circular sensing area Ai affect the potential Φi, the num-
ber of gi j that contribute to Φi at any given time is significantly reduced wrt [10]
and previous approaches with global sensing. This significantly boosts the compu-
tational efficiency of the algorithm, especially in scenarios involving many robots.
Simulation experience with NFs indicates that the minimum value of the exponent
k required to eliminate local minima and render (1) a NF increases with the number
of contributing robots and obstacles. Thus, the exponent k needed for the potential
presented here is in most cases lower than the one required in [4].

4 Completely Decentralised Navigation

The proven navigation properties of the potential field Φi described above can be
used to drive each robot to its destination while avoiding collisions. In fact, any
controller that can maintain a decreasing rate for each potential field Φi, i.e. Φ̇i < 0
can be employed in combination with the potential field presented previously to
stabilise each robot to its target, while also avoiding collisions. Such a controller has
been presented in [11] for unicycle-like vehicles moving in 3D space . We can derive
a similar controller for planar unicycles by neglecting the vertical velocity input. The

resulting control scheme employs the projection of the gradient ∇iΦi =
[

Φix Φiy
]�

on robot’s i longitudinal (heading) direction:

Pi = J�i ·∇iΦi (14)

where Ji =
[

cos(φi) sin(φi)
]�

. Moreover, we use the partial derivative ∂Φi
∂ t , which

sums the effect of all but the ith robots’ motion on Φi:

∂Φi

∂ t
= ∑

j �=i

∇ jΦ�
i ·J ju j

where ∇ jΦi =
∂Φi
∂q j

is the gradient of Φi with respect to q j.

The proposed control law for the linear velocity ui is:

ui =

⎧⎨⎩−sgn(Pi)Ui,
∂Φi
∂ t ≤Ui (|Pi|− ε)

−sgn(Pi)
Uiε+

∂ Φi
∂ t

|Pi| , ∂Φi
∂ t >Ui (|Pi|− ε)

, (15)

where Ui is the nominal velocity:

Ui =

{
udi, ||qi−qdi||> di
||qi−qdi||

di
·udi, ||qi−qdi|| ≤ di

,
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while sgn(x) is a modified sign function:

sgn(x)�
{

1, if x≥ 0

−1, if x < 0

and ε is a small positive constant used to ensure a decreasing rate of Φi. The nominal
speed Ui matches identically the desired value udi away from the target qdi and
reduces continuously to 0 inside a ball of radius di around qdi. The angular velocity
used is:

ωi =

⎧⎪⎪⎨⎪⎪⎩
0, Mi ≥ εφ

Ωi ·
(

1− Mi
εφ

)
, 0 < Mi < εφ

Ωi, Mi ≤ 0,

, (16)

where: Mi � φ̇nhi (φi−φnhi) ,

Ωi �−kφ (φi−φnhi)+ φ̇nhi .

The nonholonomic heading angle φnhi represents the heading of sgn(pi)∇iΦi:

φnhi � atan2(sgn(pi)Φiy,sgn(pi)Φix) , (17)

where: atan2(y,x) � arg(x,y) , (x,y) ∈ C and pi = J�di · (ni1−ni1d) is the posi-
tion vector with respect to the destination, projected on the longitudinal axis of the
desired orientation. Consequently, sgn(pi) is equal to 1 in front of the target config-
uration and −1 behind it. Finally, εφ is a small positive constant and kφ a positive
gain.

4.1 Stability and Convergence Analysis

The principles of this control scheme can be found in detail in [11]. Since the stabil-
ity analysis presented there does not rely on the specific Navigation Function used,
one can follow the same line of thought to prove that the above control scheme
ensures a decreasing rate for all Φi over time:

Φ̇i ≤−udiε (18)

Thus convergence and collision avoidance are guaranteed. It should be noted though
that here we have not included in the Navigation Function (1) a nonholonomic ob-
stacle Hnh to render it Dipolar [12]. Thus, the integral lines of the resulting potential
field approach the destination with arbitrary orientation and consequently the final
orientation of each unicycle is not predefined, i.e. only its position is stabilised.

The use of the priority scheme described in 3.1 means that collisions between
any two robots i, j are avoided when at least one of them has non-zero priority,
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max(ci,c j) > 0, i.e. one of them is able to manoeuvre. This holds because by con-
struction a NF is transverse on the boundary of collisions with other robots or ob-
stacles. One can easily show similarly to [11] that the above control scheme ensures
that ∇iΦiui ≤ 0 holds always, i.e. all robots steer to align with the gradient’s head-
ing and move towards the direction that decreases their potential. Thus, when there
is at least one-way sensing between any two neighboring robots, at least one of
the robots moves away from the other and collisions between them are avoided. Of
course, when both robots are uncontrolled, ci = c j = 0, no collision avoidance can
be performed between them. Thus, the proposed control scheme combined with the
priority rules in section 3.1 ensures that all collisions between two controlled robots,
or a controlled and an uncontrolled one or an obstacle are avoided.

5 Simulation Results

In order to demonstrate the effect of the noncircular sensing area to the performance
of the algorithm we present simulation results below. The first simulation scenario
is a simple example with a robot navigating around one static obstacle. Although
this is not a challenging scenario, it is useful to give a clear view of the performance
and efficiency improvements that our algorithm achieves compared to the circular
sensing scheme in [10]. A maximum sensing range of 0.5 length unit is assumed,
so for the new sensing we have used Rsr = 0.15, Rs f = 0.5, i.e. the full sensor range
is exploited in the forward direction, but only 30% of it in the rear. Results from
the same example using circular sensing are included, using two different sensing
ranges, Rs = 0.5 and Rs = 0.15. The resulting paths are shown in Figures 4a-4c,
along with some statistical information in Table 4d. Compared to the full sensor
range in 4a, the new sensing scheme path in 4b is significantly less conservative. In
both 4a and 4b cases the robot starts turning at around the same position, near x =
−0.3, as the forward sensing range is the same. However, the significantly shorter
sensing range to the sides and rear of the robot with the new sensing scheme results
in a much smaller deviation from the straight line path. Using a reduced circular
sensing of radius 0.15 in 4c results in a more aggressive turn as the robot starts
maneuvering later, and eventually covers longer distance to reach the target. The
improvements of the algorithm presented here are reflected in the total length of the
paths shown in table 4d, as well as the computation time, because of the reduced
interaction between the robot and the obstacle. Finally the total absolute turning

angle A =

∫
|ω |dt is reduced, as less maneuvering is used with the new algorithm.

The second simulation example is a multirobot scenario similar to the one used
in [10]: 4 low priority robots are moving in parallel, while a high priority one is
crossing their paths. Results are presented in Figure 5a for a circular sensing Rs =
0.5 and in 5b for the noncircular sensing scheme with Rsr = 0.15 and Rs f = 0.5. As
noted on the figures, the new algorithm results in much smaller deviations, allowing
the robots to reach their targets quicker.
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Fig. 4 Simulation results: Obstacle avoidance using various sensing schemes
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6 Conclusions

We have presented an algorithm for multi-robot navigation and collision avoidance
using the Navigation Functions framework. A novel sensing scheme is implemented
in the method, allowing implicit prioritisation in a rules-of-the-road fashion. Explicit
prioritisation is also taken into account, as well static or moving obstacles and un-
controllable robots. Simulation results show this new algorithm to offer significant
performance and efficiency improvements with respect to previous work utilising
the NF methodology. Future work in this area is directed towards the extension of
the algorithm to 3D navigation and further verification against complex scenarios.

Acknowledgements. The authors of this paper want to acknowledge the contribution of the
European Commission through project iFLY.
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Optimal Reciprocal Collision Avoidance
for Multiple Non-Holonomic Robots

Javier Alonso-Mora, Andreas Breitenmoser, Martin Rufli,
Paul Beardsley, and Roland Siegwart

Abstract. In this paper an optimal method for distributed collision avoidance among
multiple non-holonomic robots is presented in theory and experiments. Non-holo-
nomic optimal reciprocal collision avoidance (NH-ORCA) builds on the concepts
introduced in [2], but further guarantees smooth and collision-free motions under
non-holonomic constraints. Optimal control inputs and constraints in velocity space
are formally derived for the non-holonomic robots. The theoretical results are va-
lidated in several collision avoidance experiments with up to fourteen e-puck robots
set on collision course. Even in scenarios with very crowded situations, NH-ORCA
showed to be collision-free for all times.

1 Introduction

Multi-robot systems are designed to achieve tasks by collaboration. A key require-
ment for their efficient operation is good coordination and reciprocal collision avoi-
dance. Moving a vehicle on a collision-free path is a well-studied problem in robot
navigation. The work in [4], [6] and [8] presents representative examples of colli-
sion avoidance methods for single mobile robots. Basically, similar approaches as
in the single robot cases can be applied in the context of collision avoidance for
multiple robots. However, the increase in robot density and collaborative interaction
needs methods that scale well with the number of robots. The collision avoidance
approaches are extended in [11] among others for multiple robots by decoupling
path planning and coordination. Other work investigated potential fields [5] and
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cooperative control laws [14] to direct a group of robots to their objectives while
avoiding collisions. Decentralized control helps lowering computational cost and
introduces additional robustness and flexibility to the multi-robot system.

In this paper, we develop and formally analyze a new collision avoidance strategy
for a group of non-holonomic robots. Mobile robots we see being deployed nowa-
days in research or industry are mostly non-holonomic. Therefore installations with
multiple robots in real world scenarios, such as multiple vacuum cleaners or colla-
borative monitoring and maintenance vehicles, require collision avoidance methods
that take the non-holonomic constraints of the robots into account.

Our approach builds on Optimal Reciprocal Collision Avoidance (ORCA) [2]
and extends it toward non-holonomic reciprocal collision avoidance. The robots are
controlled to stay within a maximum tracking error E of an ideal holonomic trajec-
tory. Control inputs for optimal tracking are derived from mapping holonomic onto
non-holonomic velocities. We focus on differential-drive robots in the following
work, even though our approach applies more generally for the class of feedback-
linearizable vehicles with non-holonomic kinematics, such as car-like robots or
differentially-driven robots with trailer.

Reciprocal Collision Avoidance (RVO) [3], a collaborative collision avoidance
method based on velocity obstacles, was reformulated as ORCA [2] and shown to
be solved efficiently through a low-dimensional linear program, which results in
completeness and a speed-up of the algorithm. Each robot makes a similar collision
avoidance reasoning and collision-free motion is guaranteed all time, but holonomic
robots are assumed and oscillations in the form of reciprocal dances can occur. The
extension in [12] combines both the concepts of basic velocity obstacles and RVO
to reduce the amount of oscillations. In addition, robot kinematics and sensor un-
certainty are included by enlarging the velocity cones, even though a formal proof
of collision-free motion is not given. The work in [15] generalizes RVO for robots
with non-holonomic constraints by testing sampled controls for their optimality.
As the method requires extensive numeric computation and relies on probabilistic
sampling, it may fail to find an existing feasible solution. The latest extension [13]
introduces a solution for differential-drive robots by applying ORCA on the robot’s
virtual center. This is in contrast to our approach of extending the robot’s radius,
which allows to decrease its extension to zero in crowded scenarios. [13] also relies
on the mapping between desired holonomic and non-holonomic velocities, but is
different from ours in how it is derived; moreover it further constrains the motion
of the robots. Another reactive collision avoidance method for unicycles based on
velocity obstacles was presented in [9], where inputs are obtained by a weighted
combination of the closest collision in normal and tangential directions.

The paper is organized as follows. We start with the problem formulation in Sec-
tion 2 and review the main concepts of ORCA. Then the proposed algorithm for
collision avoidance in a group of non-holonomic robots is presented in Section 3.
In Section 4, we give a formal analysis of the non-holonomic controls that lead to
optimal tracking of holonomic velocities and prove collision-free motion. Section 5
demonstrates the method in experiments with up to fourteen robots and shows suc-
cessful collision avoidance and smooth trajectories.
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Fig. 1 Non-holonomic tracking error. The holonomic trajectory is tracked by the differential-
drive robot moving along the non-holonomic trajectory within tracking error εH .

2 Problem Formulation

2.1 Kinematic Model of Differential-Drive Robot

First the kinematic model for the differential-drive robot is introduced. The basic
trajectories of the non-holonomic robots considered in this work are defined by
two sections, an arc of circumference covered with constant speed v, followed by
a straight line path with constant speed v1, as illustrated in Fig. 1. The basic non-
holonomic controls (v(t),ω(t)) consist of the linear and angular velocities

v(t) =

{
v = ω R , for 0≤ t ≤ t1
v1 , for t > t1

, ω(t) =

{
ω , for 0≤ t ≤ t1
0 , for t > t1

. (1)

Note that in our formulation the robots have no constraints in acceleration, neverthe-
less, these could be easily included by adding to the complexity of the formulation.
Although the planned trajectory is a circular sector followed by a straight line seg-
ment, the robots perform only a part of the circular segment and then recompute,
which results in final trajectories that are much more complex.

The kinematic constraints are given by |v(t)| ≤ vmax,ω = vmax−|ω(t)| lw2 , |ω(t)| ≤
ωmax =

2vmax
s

lwKvs
and vmax =

vmax
s
Kvs

, where the wheel speed is bounded by−vmax
s ≤ vs(t) =(

v(t)± lw
2 ω(t)

)
Kvs ≤ vmax

s , with vs(t) the angular velocity of the right and the left

wheel respectively, lw is the distance between the wheels and Kvs a conversion
factor. The system parameters that are relevant for the locomotion of the e-puck
robot (refer to Section 5) are given by: lw = 0.0525 m, vmax

s = 1000 steps/s, Kvs =
7674.6 steps/m, vmax = 0.13 m/s and ωmax = 4.96 rad/s.

The set of non-holonomic controls SNHC = {(v(t),ω(t)) |Eq. (1) and kinematic
constraints} is defined as the feasible subset of the controls (v(t),ω(t)) given by
Eq. (1), i.e. the controls satisfying the kinematic constraints.
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2.2 Set of Allowed Holonomic Velocities

The underlying idea of the approach here presented is that a particular non-holo-
nomic robot is able to track a certain set of holonomic motions within a given ma-
ximum tracking error E . Therefore, increasing the radius of each robot by its fixed
value E guarantees collision-free trajectories, even in the case of non-holonomic
robots. The tracking error εH is quantified by consideration of the robot’s kinema-
tics and can be bounded by a certain value E through limiting the set of holonomic
trajectories to be tracked.

In Fig. 1 the trajectories for both holonomic and non-holonomic robots are pre-
sented. If the velocity v1 of the non-holonomic robot in Eq. (1) is fixed to the speed
of the holonomic robot VH , the maximum error in tracking a holonomic trajectory
at constant velocity vH = VH(cos(θH),sin(θH)) is given at time t1, and represented
by εH . Note that the tracking error might as well be decreased with a more com-
plex control scheme. However, it never increases under the non-holonomic controls
according to Eq. (1). Let us fix v1 =VH in the following.

Thus, for a given holonomic velocity vHi = vH and control inputs (v,ω) at time
t = kΔ t, where k ∈ N is the iteration index and Δ t the time step, the value of the
tracking error εH is given by simple geometry

ε2
H(v,w,VH ,θH) = (VHt1−Rsin(θH))

2 +(R(1− cos(θH)))
2

= V 2
Ht2

1 −
2VHt1 sin(θH)

ω
v+

2(1− cos(θH))

ω2 v2. (2)

For non-holonomic robots and fixed a maximum tracking error E , the set of allowed
holonomic velocities SAHV is given by the velocities vH for which there exists a con-
trol input within the set of non-holonomic controls SNHC that guarantees a tracking
error lower or equal than the given maximum tracking error E at all times. The set
of allowed holonomic velocities is defined as

SAHV = {vH ∈ R2 | ∃(v(τ),ω(τ)) ∈ SNHC , ||p+ τ ·vH − p̂k(τ)|| ≤ E ∀τ ≥ 0},
(3)

where p̂k(τ) is the expected robot position at time kΔ t + τ if controls (v(τ), ω(τ))
are applied at time kΔ t.

In order to obtain smooth trajectories, the time t1 to achieve the correct orientation
θH can be fixed to a minimum value T . Note that this value must be at least equal to
the time step Δ t of the controller. t1 is kept fixed for the following sections.

In Section 4 the closed form of SAHV and the mapping between the sets SAHV and
SNHC, as well as the proof of collision-free motion, are derived.

2.3 Optimal Reciprocal Collision Avoidance

ORCA [2] is a velocity-based approach to collision avoidance that provides a suf-
ficient condition for guaranteeing collision-free motion among multiple holonomic
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Fig. 2 Left: configuration with two non-holonomic robots. Center: VOτ
i| j and ORCAτ

i| j for

a holonomic robot at pi with ri + ε and vcurrent
Hi

, generated by a holonomic robot at p j with
r j + ε and vcurrent

Hj
. Right: constraints in velocity generated by ORCAτ

i| j from multiple robots,
together with the set PAHVi taking into account the kinematics of the robot. The region of
collision-free velocities ORCAτ

i is highlighted and v∗Hi
is displayed.

robots. Given a group of n disk-shaped robots with radius ri and velocity vi ∈ R2

at position pi in the plane R2, each robot tries to reach an assigned goal point gi by
selecting a preferred velocity vpre f

i ∈ R2. The objective is to choose an optimal vi,

which lies as close as possible to vpre f
i , such that collisions among the robots are

avoided for at least a time horizon τ .
In the case of holonomic robots with velocities vH ∈R2, the velocity obstacle for

robot i ∈ [1,n]⊂ N with ri at pi induced by any robot j ∈ [1,n], j �= i, with r j at p j
is defined as the set of relative velocities v̄ = vHi − vHj between robots i and j

VOτ
i| j =

{
v̄ |∃t ∈ [0,τ] , t · v̄ ∈ D(p j−pi, ri + r j)

}
, (4)

with D(p,r) = {q |‖q−p‖< r} the open ball of radius r. The set of collision-free
velocities ORCAτ

i| j for robot i with respect to robot j can geometrically be cons-
tructed from VOτ

i| j (see Fig. 2 left and center). First, the minimum change

u = (argmin
v̄∈∂VOτ

i| j
‖v̄− (vopt

i − vopt
j )‖)− (vopt

i − vopt
j ) , (5)

which needs to be added to v̄ to avoid a collision, is computed. vopt
i is the opti-

mization velocity, set to the current velocity vcurrent
Hi

of the robot. This gives good

results as shown in [2]. Then ORCAτ
i| j = {vHi |(vHi − (vopt

i + cu)) · n ≥ 0} follows
as described in [2]. n denotes the outward normal of the boundary of VOτ

i| j at

(vopt
i −vopt

j )+u, and c defines how much each robot gets involved in avoiding a col-

lision. c = 1
2 means both robots i and j help to equal amounts to avoid colliding with

each other; c = 1 means robot i fully avoids collisions with a dynamic obstacle j.
Likewise, the velocity obstacle can be computed for static obstacles following [2].
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The set of collision-free velocities for robot i, ORCAτ
i , is given by

ORCAτ
i = SAHVi ∩

⋂
j �=i

ORCAτ
i| j , (6)

with SAHVi the set of allowed holonomic velocities under the kinematic constraints
of robot i. For holonomic robots, SAHVi = D(0,V max

Hi
). Fig. 2 on the right shows the

set ORCAτ
i for a configuration with multiple robots, where SAHVi is approximated

by the convex polygon PAHVi for a differential-drive robot.
The optimal holonomic velocity for robot i is to be found as

v∗Hi
= argmin

vHi∈ORCAτ
i

‖vHi − vpre f
i ‖. (7)

3 NH-ORCA: Optimal Reciprocal Collision Avoidance under
Non-Holonomic Constraints

In each time-step NH-ORCA consists of the following three main steps: first, VOτ
i| j

and ORCAτ
i| j are computed for holonomic robots of radius ri + Ei, r j + E j at pi,

p j with velocity vcurrent
Hi

, vcurrent
Hj

. Second, SAHVi is computed for fixed Ei and Ti

and approximated by a convex polygon PAHVi . Moreover, ORCAτ
i is generated with

respect to the neighboring robots and an optimal holonomic velocity is selected
from the set of collision-free velocities defined by Eq. (6); thereby, the preferred
velocities of the robots are taken into account. This is represented in Fig. 2 where
E = Ei = E j. Finally, the selected holonomic velocity is mapped to the correspond-
ing non-holonomic control inputs, which guarantee collision-free motion. A detailed
description of the algorithm is provided in Algorithm 1.

The closed-form expression from Eq. (13) (in Section 4) is evaluated to compute
the maximum allowed holonomic velocities, this is the set SAHVi . In general, SAHVi

is not convex for a given Ti. In our implementation of NH-ORCA, the area of SAHVi

is approximated by a convex polygon PAHVi that lies inside SAHVi . This simplifies
the optimization problem. Note that PAHVi can be precomputed due to rotational in-
variance and at each iteration be aligned with the current orientation of the robot.
As ORCAτ

i is a convex region formed by linear constraints, a quadratic optimization
problem with linear constraints is formulated. Eq. (7), where SAHVi is substituted
by PAHVi , can efficiently be solved by methods from computational geometry. The
optimization velocity vopt

i that is used in the optimization is set to the current holo-
nomic velocity vcurrent

Hi
of the agent, but other choices are possible. The mapping to

non-holonomic optimal control inputs follows from Eq. (9) (in Section 4).
NH-ORCA can be applied to heterogeneous groups of robots with different kine-

matic constraints, sizes, maximum tracking errors Ei and lower bounds Ti.
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Algorithm 1. Non-Holonomic Reciprocal Collision Avoidance.
Require: Fixed Ei and Ti. Group of differential-drive robots i ∈ [1,n] provided with:

- internal parameters: pi, vcurrent
Hi

, θi, vpre f
i , ri, Ei, Ti.

- external parameters (obtained from sensing or communication): p j, vcurrent
Hj

, r j +E j with
j �= i.

1: Compute PAHVi,0 from closed-form expression of SAHVi,0 and zero orientation, Eq. (13).
2: loop
3: for i ∈ {1, ...,n} do
4: Compute PAHVi by rotating PAHVi,0 to match orientation θi.
5: for j ∈ {1, ...,n}, j �= i do
6: Compute VOτ

i| j for holonomic robots of radius ri +Ei and r j +E j at pi and p j

with vcurrent
Hi

and vcurrent
Hj

.

7: Compute ORCAτ
i| j.

8: end for
9: Construct ORCAτ

i = PAHVi ∩
⋂

i�= j ORCAτ
i| j.

10: Compute optimal collision-free holonomic velocity v∗Hi
following Eq. (7).

11: Map v∗Hi
to (vi,ωi) following Eq. (9).

12: Apply controls.
13: end for
14: end loop

4 Formal Analysis

In our analysis the symmetry of the tracking with respect to both axis and its rota-
tional invariance is exploited. Therefore, the considerations are limited to the case
of tracking holonomic velocities in R2

+ and zero orientation of the agent. It is clear
that the analysis extends likewise to entire R2 and general orientation of the robot.

4.1 Selection of Non-Holonomic Controls

In this section, the control inputs (v,ω) for optimal tracking of a given holonomic
velocity vH are found. The controls for the non-holonomic robot are chosen as those
that minimize the tracking error εH , while achieving the correct orientation in the
fixed given time T . If this is impossible due to the robot’s constraints, the robot
performs a turn in place by rotating at maximum speed until the correct orientation

is reached, i.e. ω =min
(

θH
T , ωmax

)
. In general, t1, θH and ω are related by ω = θH

t1
.

With everything else fixed, the linear velocity that minimizes Eq. (2) is given by

v∗ =
VHt1 sin(θH)ω
2(1− cos(θH))

=VH
θH sin(θH)

2(1− cos(θH))
. (8)

The optimal linear velocity might not be feasible due to the limits on the linear and
angular velocities. Therefore, the optimal controls are
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RA1 : ω =
θH

T
≤ ωmax and v = v∗ ≤ vmax,ω

RA2 : ω =
θH

T
≤ ωmax and v = vmax,ω

RB : ω = ωmax and v = 0. (9)

If the optimal controls are chosen, the maximum tracking error ε2
H(vH) committed

in each of the regions are derived from Eq. (2) and Eq. (8) and given by

RA1 : ε2
H =

(
2(1− cos(θH))− sin2(θH)

2(1− cos(θH)

)
T 2V 2

H (10)

RA2 : ε2
H =V 2

HT 2− 2VHT 2 sin(θH)

θH
vmax,ω +

2T 2(1− cos(θH))

θ 2
H

v2
max,ω (11)

RB : εH =VHt1 =VH
θH

ωmax
. (12)

4.2 Construction of SAHV

The closed form of the set of allowed holonomic velocities SAHV is derived for fixed
E and T in this section. For a given orientation θH of the holonomic velocity, the
maximum holonomic speed VH that can be successfully tracked with εH ≤ E is
computed (see Fig. 3). Note that for feasibility, the maximum holonomic speed is
limited by the robot’s maximum linear velocity VH ≤ vmax. Otherwise the tracking
error would increase after time t1.

Theorem 1. Both the optimal linear velocity v(VH) and the tracking error εH(VH)
are monotonically increasing with respect to the holonomic speed VH for fixed θH.

Proof. From Eq. (8)-(9) it directly follows that, with everything else fixed, the op-
timal linear velocity v is monotonically increasing with respect to the holonomic
speed VH . The monotonicity of εH(VH) is derived from Eq. (10)-(12). Due to li-
mited space, the proof is omitted. ��
Theorem 2. The maximum holonomic speed V max

H that can be tracked with εH ≤ E
for a fixed θH is given by

V max
H =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
min

(
E
T

√
2(1−cos(θH))

2(1−cos(θH))−sin2(θH )
, vmax

)
if

{ θH
T ≤ ωmax

v∗E ≤ vmax,ω

min

(
−β+

√
β 2−4αγ

2γ , vmax

)
if

{ θH
T ≤ ωmax

v∗E ≥ vmax,ω

min
(

E ωmax
θH

, vmax

)
if θH

T ≥ ωmax,

(13)
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where v∗E , α, β , γ are given by

v∗E =
E

T
θH sin(θH)

2(1− cos(θH))

√
2(1− cos(θH))

2(1− cos(θH))− sin2(θH)
, (14)

α = T 2 , β =−2T 2 sin(θH)

θH
vmax,ω , γ =

2T 2(1− cos(θH))

θ 2
H

v2
max,ω −E 2. (15)

Proof. Denote vvmax
H

and ωvmax
H

the linear and angular velocities for optimal tracking
of the maximum holonomic velocity vmax

H , given by V max
H and θH .

The proof is divided for regions RA1, RA2 and RB. Recall from Theorem 1 that,
v(VH) and εH(VH) are monotonically increasing with respect to VH . This is impli-
citly used in the proof. In all cases the value of the maximum holonomic speed V max

H
must be limited to vmax following VH ≤ vmax.

- Region RA1: Assume ωvmax
H

= θH
T <ωmax. Consider the case where vvmax

H
< vmax,ω .

The holonomic speed which gives a tracking error equal to the maximum εH = E
is found by solving Eq. (10), which gives the top value V max

H of Eq. (13). The li-
near velocity for optimal tracking of vmax

H is then given by Eq. (14), obtained by
substituting V max

H into Eq. (8), which is feasible if v∗E ≤ vmax,ω = vmax− θH lW
2T . If

this holds, vvmax
H

= v∗E . Otherwise, the solution is found in region RA2.

- Region RA2: Assume ωvmax
H

= θH
T <ωmax. Consider the case where vvmax

H
= vmax,ω .

The tracking error is given by Eq. (11) and from Theorem 1, the maximum
holonomic speed V max

H satisfies εH = E . The solution is given by solving,

0=α(V max
H )2+βV max

H +γ , where from Eq. (11), α = T 2, β =− 2T2 sin(θH)
θH

vmax,ω

and γ = 2T 2(1−cos(θH))

θ 2
H

v2
max,ω −E 2. From Theorem 1, the maximum holonomic

speed is given by the solution of largest value, hence the middle value V max
H

of Eq. (13). The associated linear velocity for optimal tracking is given by
vvmax

H
= vmax,ω = vmax− θH lW

2T . Finally, the value of the maximum holonomic speed
V max

H must be limited to vmax following VH ≤ vmax.

- Region RB: Assume ωvmax
H

= ωmax. In this case, a rotation in place is performed.
Therefore vvmax

H
= 0. Recalling Eq. (12) and Theorem 1, the maximum holonomic

speed V max
H from Eq. (13) bottom is obtained. ��

Similar results are derived for the case where the angular velocity ω is limited by
ω̂ < ωmax. This leads to smoother trajectories and, independently of the chosen T ,
in place rotations are avoided.

Theorem 3. Consider ω ≤ ω̂ < ωmax. The maximum holonomic speed V max
H that

can be tracked with εH ≤ E for a fixed θH is given by
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V max
H =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min

(
E
T

√
2(1−cos(θH ))

2(1−cos(θH ))−sin2(θH)
, vmax

)
if

{ θH
T ≤ ω̂

v∗E ≤ vmax,ω

min

(
−β+

√
β 2−4αγ

2γ , vmax

)
if

{ θH
T ≤ ω̂

v∗E ≥ vmax,ω

min

(
E ω̂
θH

√
2(1−cos(θH ))

2(1−cos(θH ))−sin2(θH)
, vmax

)
if

{ θH
T ≥ ω̂

v∗E ≤ vmax,ω

min

(
−β̂+

√
β̂ 2−4α̂γ̂

2γ̂ , vmax

)
if

{ θH
T ≥ ω̂

v∗E ≥ vmax,ω

(16)

where v∗E , α, β , γ are given by Eq. (14) and (15). α̂, β̂ , γ̂ are given by

α̂ =
θ 2

H

ω̂2 , β̂ =−2θH sin(θH)

ω̂2 vmax,ω , γ̂ =
2(1− cos(θH))

ω̂2 v2
max,ω −E 2. (17)

Proof. The proof is analogous to that of Theorem 2, where the optimal controls are
given by ω = min( θH

T , ω̂) and v = min(v∗, vmax,ω). ��
Remark 1 Maximal SAHV . The maximal set of allowed holonomic velocities Smax

AHV
is given by a maximization of the maximal holonomic speed V max

H over T for a fixed
orientation θH , Smax

AHV =
⋃

T∈[Δ t,∞) SAHV . In this case the time T is not constant, but
varies as a function of the orientation θH .

Remark 2 Polygonal approximation PAHV . Due to the particular non-convex shape
of the SAHV two options are described. First, the best approximation is obtained by
dividing SAHV in two complementary regions, one for forward and one for back-
ward driving. Then, the problem is solved for one region (the one pointing towards
the desired goal) and if unfeasible, for the opposite region in a second step. This
region is represented by PAHV,A in Fig. 3. Alternatively, a faster but more restrictive
implementation is obtained by using the biggest rectangle contained inside SAHV .
This region is represented by PAHV,B in Fig. 3 on the right.

Remark 3 Behavior in the limits. Two limit cases might be considered:

- Limit T → 0. For θH = 0 trajectories are straight lines; in fact, ω = 0 holds
independent of T and therefore perfect tracking is achieved for VH ≤ vmax.
For θH ∈ (0, π

2 ] and fixed θH , θH
T → ∞ is obtained; therefore, rotation in place

with ω = ωmax and v = 0 is always the chosen trajectory. This reduces to time
optimal trajectories, each composed of straight line segments alternating with
turns in place as seen in [1].

- Limit E → 0. For θH = 0 trajectories are straight lines; again, ω = 0 holds in-
dependent of T and therefore perfect tracking is achieved for VH ≤ vmax. For
θH ∈ (0, π

2 ], it can be seen from Theorem 2 that trajectories are reduced to turn-

ing in place at angular velocity ω = min
(

θH
T ,ωmax

)
and v = 0.

Remark 4 Variable maximum tracking error E . NH-ORCA guarantees collision-
free trajectories for non-holonomic robots, that is ri + r j ≤ d(pi,p j). To guarantee
feasibility of the computation of the VOτ

i| j, ri + r j + Ei + E j ≤ d(pi,p j) must be
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Fig. 3 Left: SAHV for fixed E and varying T . Tmax(θH) denotes the variable T that results in
the maximal set Smax

AHV . Right: SAHV for fixed T and varying E . Two polygonal approximations
PAHV,A and PAHV,B are shown for E = 0.01 m and T = 0.35 s.

satisfied, i.e. the extended radii of the robots must not be in collision. This might
happen for fixed Ei and ωi �= 0 but is assuredly avoided by having Ei and E j stepwise
decreasing when robots are close to each other.

4.3 Collision-Free Motion

Finally, the proof that NH-ORCA guarantees collision-free motions among multiple
non-holonomic robots is presented.

Theorem 4. The trajectories of all robots are guaranteed to be collision-free.

Proof. First, planned trajectories for the holonomic robots of radius ri + Ei are
collision-free, if solutions of ORCA exist, as proven in [2]. Otherwise the cons-
traints given by ORCAτ

i| j must be relaxed by decreasing τ until the problem be-
comes feasible, thus becoming a 3D optimization [2]. Second, planned trajectories
for non-holonomic robots stay within distance Ei of the planned trajectories for ex-
tended holonomic robots, if Ti ≥ Δ t. Note that this only guarantees that the distance
between two non-holonomic agents is greater than the sum of their radii. To gua-
rantee feasibility of the velocity obstacles computation, and thus completion of the
method, Remark 4 must hold in addition.

Trajectories planned for the non-holonomic robot are collision-free. Due to the
time-discrete implementation, after each time-step a new collision-free trajectory is
computed. Therefore, the trajectories of all agents, given as concatenation of seg-
ments, are collision-free. ��
Remark 5 Deadlocks. NH-ORCA guarantees collision-free trajectories for non-
holonomic robots but convergence to a goal destination is not fully guaranteed.
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While robots are in movement, deadlocks will not appear (as seen in our experi-
ments in Section 5. Nevertheless, when robots reach their goal, their behavior is
close to that of static obstacles. If they are approached by another robot, a deadlock
situation may result as the robot’s velocity that is closest to its preferred velocity
might become zero in order to avoid collisions. This is inherited from the original
method for holonomic agents [2] and can be resolved by waypoint navigation [7].

5 Experimental Results

We have evaluated the proposed collision avoidance method and the theoretical re-
sults by experiments with real robots. A group of fourteen e-puck robots [10] is used
in the experiments. The e-puck is a small disk-shaped differential-drive robot. To en-
able reliable communication and tracking of the e-pucks, the robots were enhanced
with a generic radio receiver and eight infrared LEDs. Red-colored disks were fur-
ther added on top of each robot for better visual appearance. The following parame-
ters for the NH-ORCA computation are selected: E = 0.01 m, T = 0.35 s, τ = 7 s,
V pre f = 0.1 m/s and r = 0.05 m the radius of the modified e-puck.

The test setup consists of a central workstation with radio transmitter and an
overhead camera mounted on a frame above a flat floor plate of 1.2 m x 1.4 m. The
robots’ positions and orientations are detected and read into the workstation, where
the NH-ORCA is computed for each robot in a decentralized way. The resulting
velocities are then broadcasted to the e-pucks in each iteration. The e-puck robots
and the workstation form a closed control loop running at a frequency of 10 Hz.

The results of two experiments are presented, which confirm the theoretical fin-
dings from Section 4. In the first experiment four e-puck robots are placed in square
shape and consecutively exchange positions with each other. Fig. 4 on the left il-
lustrates a subsequence of the robots exchanging positions in diagonal directions.
On the right, the trajectories for two out of the four robots are shown when moving
along the square’s vertical edge to swap positions. As can be seen from the trajec-
tories of the first experiment, not only collision-free but also smooth and visually
appealing motions are obtained for the differential-drive robots with the NH-ORCA
algorithm.

In cases of symmetry and in order to avoid reciprocal dances [12], the closest
point on the velocity obstacle VOτ

i| j is selected clockwise for Eq. (5). This gives
preference to right-side avoidance in cases of full symmetry.

In the second experiment, fourteen e-pucks are lined up on a circle and move
all together to their antipodal positions on the circle’s boundary. This experiment
demonstrates that the distributed NH-ORCA algorithm scales with the number of
robots, and that it can moreover be applied without any change in the set of param-
eters for scenarios with many robots (the same parameters as in the first experiment
with only four robots are used). The robots successfully solve a very crowded sce-
nario while avoiding collisions at all times. In such scenarios with many robots, a
slow-down of the robots can be noticed in areas of increased robot density. This
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Fig. 4 Experiment 1 with four e-puck robots. Left: e-pucks exchanging positions in diagonal
direction. Right: e-pucks exchanging positions vertically. Both sequences and trajectories are
smooth and collision-free.

Fig. 5 Experiment 2 with fourteen e-puck robots. The sequence shows collision-free transi-
tion of the e-pucks through the circle center to the antipodal position on the circle’s boundary.

results from the stronger constraints on the feasible set of velocities, and is in
correspondence with Theorem 2 and Remarks 3 and 4 (tendency of increasingly
turning in place).

In cases where the optimization becomes unfeasible, zero inputs can be selected
for the robots. Alternatively, implementation of Remark 4 and of the 3D optimiza-
tion guarantee feasibility while leading to a decrease in the time of collision τ . As a
result, faster motions are achieved for the robots in Experiment 2. The robots can get
infinitely close from the fact that no safety area is added, but collisions are avoided.
Further experiments studied different scenarios, including scenarios with dynamic
obstacles. A video showing the conducted experiments in full length accompanies
the paper.

6 Conclusion and Outlook

In this work, a fast and distributed method for local collision avoidance among
non-holonomic robots, so-called NH-ORCA, is presented on the basis of multiple
differential-drive robots. Formal proofs of collision-free motion (valid both for con-
tinuous and discrete control) are derived and several experiments are performed
verifying the results. NH-ORCA achieves smooth and visually appealing trajecto-
ries for non-holonomic robots, as demonstrated in the first experiment. Furthermore,
the method successfully deals with very crowded situations, as shown in the second
experiment with a larger group of fourteen robots.
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In future work, it would be interesting to extend the method here presented to
other non-holonomic vehicle dynamics. We believe this can be achieved by modi-
fying the set of allowed holonomic velocities SAHV . In accordance with [2], another
line of research is to combine NH-ORCA with global path planning and to look
closer at the avoidance of deadlock situations. For less controlled environments, or
full integration of sensing and actuation, the method should be extended to com-
pensate for uncertainties. Eventually, the method could be generalized for higher
dimension and applied to underwater or aerial robots in R3.
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Visual-Aided Guidance for the Maintenance
of Multirobot Formations

Patricio Nebot and Enric Cervera

Abstract. Among other multirobot formation topics, one of the most important is
the maintenance of the initial formation while the robots are moving through the
environment. This paper presents a new approach based on the cooperation among
a team of heterogeneous robots for the maintenance of multirobot formations. In this
case, one of the robots, the conductor, drives the formation and the rest of robots
must follow it maintaining the formation. To do that, the use of ”virtual points” and
Bezier curves are introduced. Moreover, in order to solve the odometry problem of
the robots, visual information is introduced, which allows one robot, the leader, to
monitor the positions of the ”blind” robots and help them to maintain the formation.
In this way, a new method based on visual-aided guidance for the maintenance of
formations have been developed. The results prove that this new approach is suitable
for the maintenance of formations of multiple robots.

1 Introduction

Coordination among a group of robots can be very useful for many applications.
One of the most important task is, in motion coordination, how to move a team of
robots in an ordered way, such as maintaining a predefined formation.

One of the first approximations to multirobot formations is the leader-follower
approach [3, 4, 7, 8] where one robot is selected as the leader and must be followed
by the rest of robots. This task is usually implemented as only a single robot fol-
lowing some other autonomous agent. The follower must attempt to track the leader
even though the leader undergoes possibly rapid random motion changes [5].
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In this field, two works [2, 11] were developed at the Robotic Intelligence Lab of
the Jaume I University. These works were useful as the basis for the work developed
in this paper.

Chiem [2] presented a simple method for the development of leader-follower
formations of multiple autonomous robots. Each follower robot estimates the posi-
tion and orientation of its leader with a color-tracking vision system, and builds a
Bezier curve that describes the trajectory between its current position, and the po-
sition of the leader robot. This approach can be extended to more follower robots,
while keeping a line formation. Also, Chiem stated that by the introduction of virtual
points formations of different shapes can be generated, but it was not implemented.

Renaud [11] worked on robot formation control strategies based on a vision-
based follow-the-leader scenario, but he concentrated on the reliability of the sys-
tem. In that way, perception is enhanced by the control of a pan-tilt-zoom camera,
which gives the follower robot a large field of view and improvement of the leader
detection.

The application described in this paper is based on the previous ones but extended
to multiple types of formations and groups of heterogeneous robots by using virtual
points as suggested in [2]. The main idea is to make it feasible for a heterogeneous
team of four robots to navigate through an environment in such a way that the robots
with sensory power help the robots without it.

Before continuing, it is necessary to define some specific terms. As explained in
[1, 6], after analyzing different types of geometric formations that multirobots can
create, they agree that a geometric formation consists of three main parts: conductor,
leader and followers. Conductor is the robot at the head of a group in a formation,
and is the responsible of leading the group and all the other robots will follow it.
Leader is the robot who takes the decisions about the formation. Finally Follower is
any robot in a formation except the conductor, including the leader.

In order to get the robots moving in a coordinated way, a conductor-referenced
system is used, but applying displacements of the conductor’s position, in the form
of ”virtual points”, to create the desired formation. That is, each robot will follow a
virtual point, which is determined by the position of the conductor at any time. To
determine the relative location of the robots, the leader uses the visual information
obtained from the pan-tilt-zoom on-board camera. Camera images are used to de-
tect other robots and to determine the relative position of the detected robot and its
orientation with respect to the leader. Each robot carries a colored target, as it can
be seen in [10], that helps the leader to recognize it and calculate their position and
orientation. Moreover, the zoom is used to enhance the perception and get a higher
accuracy and a larger field of view.

The control of the maintenance of the formation while the robots are moving is
performed using a decentralized process, where each follower decides which move-
ments must be performed in order to follow the movements of the conductor. The
conductor is specialized in navigation because it is using a laser range-finder to build
maps and achieve the localization and navigation tasks. The actual position of the
conductor while it is moving is sent to every follower. When receiving the position,
each follower calculates the virtual point that it must follow. Once the virtual point
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is calculated, the follower computes the trajectory it must follow in order to arrive
from the current position to the estimated conductor relative position. For the calcu-
lation of this trajectory, Bezier curves are considered. Moreover, as it will be seen
next, when the robots have problems due to the odometry errors, the leader uses the
visual information to place the robots in the formation again.

2 Design of the Application

The main objective in this paper is to develop a system able to maintain a formation
while the robots are moving. It is important to remark that the available team for the
development of the application is composed of robots with different capabilities.
All the robots of the team are Pioneers-2, but each one with different capabilities.
Thus, there is one robot with the camera, which also plays the role of leader. There
is one robot which has a laser range-finder and plays the role of conductor, that is,
it is in charge of driving the team by a previously defined path. Finally, there are
also two plain robots, which are the followers, and their only mission is to follow
the conductor and obey the orders of the leader. In this case, the leader also acts as
follower, because it must maintain the formation in order to get the information for
the plain robots, so it must follow the conductor as well. Moreover, all the robots
have the capacity to communicate by means of a wireless network.

The formation control is developed in Acromovi [9], a framework specifically de-
signed for the development of distributed applications for teams of heterogeneous
mobile robots. The software architecture gives us the ease of development of coop-
erative tasks among robots, using an agent-based platform. In particular, communi-
cation between robots can be easily integrated to the control scheme.

In the application, the conductor indicates the movements to be followed by the
rest of robots in the formation and each follower decides which movements it must
perform in order to follow the movements of the conductor. At each step, the actual
position of the conductor is sent to every follower. The follower computes the tra-
jectory to follow in order to get from its current position to the virtual point derived
from the conductor position.

With this approach the robots are able to move in formation, in simulation en-
vironments, where the odometry error is controlled. When this approach is used in
physical robots, the odometry errors make it useless. To improve the performance of
the approach, a new agent is introduced in the system, the camera that is carried by
the leader is used to reduce the odometry errors of the robots while they are follow-
ing the conductor. The leader can detect the position of the conductor and the rest of
robots and at the same time that the formation is moving, it monitors the position of
each robot and indicates to them the possible variations that each one must perform
in its movement in order to maintain the formation. This is repeated until the robots
arrive at the desired position.
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3 Odometry-Based Formation Control

In this section it is described how a formation can be maintained while the robots
are moving in the environment. The formation is composed of a maximum of four
robots, where one of them, the conductor, is equipped with a laser range-finder that
allows it to navigate in buildings and follow a path determined from the map of the
building, the goal point, and the obstacles.

In the formation, the position of the robot followers can be controlled by the posi-
tion of the conductor if all the robots are arranged in a line formation. In other cases,
when the followers are positioned to the right or left of the conductor, virtual points
are added to the system, as pointed in [2]. These ”virtual points” are calculated by
applying a displacement in the conductor position to the left or to the right, depend-
ing on the desired formation. The followers, in this case, instead of following the
conductor must follow these virtual points. This arrangement is shown in figure 1.

Fig. 1 Formation using virtual points as reference for followers

Following this approach, it is desired that robots perform the task using only
the odometry in conjunction with communication to estimate the position of the
conductor with respect to each follower.

The conductor, by means of a localization agent is always correctly localized in
the map, and it is assumed that it will follow a predefined trajectory, with a constant,
known linear velocity. In order for another robot to follow the conductor, the linear
and angular velocities need to be computed at each time step. It must be noted that
the linear velocity of the follower robots is not constant, due to the different radius of
their respective trajectories or because their position may be relatively further back
or further forward in the formation. Thus, the linear velocity can be computed by
simply adding a gain factor proportional to the distance to the conductor robot. The
angular velocity can be computed by means of the curvature of the Bezier trajectory
in the origin position (P0). These velocities are updated at each time step, when the
new position of the conductor is sent to all the followers.

In order to calculate the linear and angular velocities that allow the followers to
move following the movement of the conductor and maintaining the formation, it is
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Fig. 2 Calculation of the local position of the conductor

necessary to construct the corresponding Bezier curve that defines the trajectory to
be followed by the robot. To compute the Bezier curve two positions are needed, the
current position of the follower and the current position of the conductor in relation
to the follower.

The conductor, at each step sends its own position to the followers. The con-
ductor is always localized in the map by means of a localization agent, so, when it
requires information about its position, this is done with the coordinates of the map.
The followers are not localized on the map, so the only information they have avail-
able is their position on their own local system which is determined by the origin
that is fixed by their initial position. So, the conductor must transform their global
position into a position in its local system. In figure 2, the necessary relationships to
transform the global position into a local position can be seen.

From the figure 2, it can be deducted that to calculate the position in the local
system it is necessary to know the origin of the trajectory in the global system and
the actual position of the robot in the global system.

OcTC =
(OTOc

)−1 ·O TC (1)

where OcTC is the translation matrix representing the actual position of the conduc-
tor in the local system, OTOc is the translation matrix representing the origin of the
trajectory in the global system, and OTC is the translation matrix representing the
actual position of the conductor in the global system. This last position is updated
continuously by the Localization task so that the robot have always its current posi-
tion on the map.

The conductor sends its current position calculated in this way to each follower.
When the followers receive the position of the conductor, they need to calculate the
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position of the conductor in relation to themselves in order to use that information
to generate the Bezier curve necessary to calculate the velocities which allow them
to move maintaining the formation.

Each follower knows its original displacement in the formation. This information
in conjunction with the current position of the follower and the current position of
the conductor allows the robots to calculate the relative position of the conductor
in relation with the follower. In figure 3, the necessary relationships to compute the
conductor position are shown.

Fig. 3 Calculation of the conductor’s position in relation to the followers

In this case, from the figure, the following equation to calculate the conductor
position in relation with the follower FTC can be obtained,

F TC =
(O f TF

)−1 ·O f TOc ·Oc TC (2)

where O f TF is the translation matrix representing the position of the follower in its
local system, O f TOc is the translation matrix representing the position of the origin
of the conductor’s trajectory in relation to the origin of the follower’s trajectory. This
value is indicated by the displacements assigned to the position of each robot in the
creation of the formation. And finally, OcTC is the translation matrix representing the
position of the conductor in its local system. This is the position that the conductor
sends every step to the followers.

Once this position is calculated, it is possible to compute the Bezier curve be-
tween the current position of the follower and the position calculated for the con-
ductor. It is at this moment when the virtual points are calculated, if applicable,
applying the following formulas,
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x = x− sin(δ ) ·dy
y = y + cos(δ ) ·dy

(3)

where (x,y,δ ) is the position of the conductor in relation to the follower, and dy is
the displacement in the y axis to be applied. This generates a new point, the virtual
point, which will be used to compute the Bezier curve that drives the movement of
the follower.

From the Bezier curve computed, the linear and angular velocities can be ob-
tained. The angular velocity can be computed from the curvature of the curve, and
the linear velocity is computed in order to maintain the distance from the conductor,
applying a gain factor proportional to the current distance from the conductor robot.

This approach has been tested in simulation and in real robots with different re-
sults. In figure 4, some examples executed using the simulator are presented together
with the formation in which the robots are organized.

Fig. 4 Examples of executions of the application in the simulator with formations with dif-
ferent number of robots

As it can be seen, the odometry-based approach explained in this section is suit-
able for the development of applications using multirobot formations. From the dif-
ferent examples, it can be infered that the behaviour of the robots is as desired,
and all the follower robots can follow the movements of the conductor robot by the
utilization of virtual points. Moreover, it can be noticed that the robots follow the
predefined path imposed by the conductor while maintaining the formation at all
times.

After testing in the simulator with different formation shapes and verifying that
the approach produces the desired behaviour, it was the turn of testing that approach
in real robots. The change from the simulation to the real robots is automatic, be-
cause no modification in the system or in the code is needed.
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However, after several tests, it was noticed that something was wrong in the exe-
cution in real robots. In the simplest case of formation, where one robot must follow
the conductor, the follower was not able to follow the conductor as desired. The
problem was due to the odometry errors of the robots. In simulation, no odometry
errors were presented, but when the application was executed in real robots, these
errors meant that it was not suitable for the execution in real robots. These odome-
try errors influence in the behaviour of the follower, making it impossible for it to
follow the conductor maintaining the formation.

4 Visual-Based Formation Control

To solve the odometry problem, the decision was to use the camera of the leader
robot to improve the navigation of the robots and reduce the odometry errors. Mon-
itoring the position of the followers while the formation is moving, it is possible to
indicate to them when they have lost the position in the formation and what is their
current position. The followers, in that case, must perform a modification of their
trajectory in order to put themselves in the correct position in the formation again.

In order to calculate those real positions, the leader uses the targets that each
follower carries and the target that the conductor also carries, as explained in [10].
In this approach, the leader must be at the back of the formation and all of the
followers and the conductor being visible, and uses the camera to localize the rest
of robots.

Determination of the position and orientation of any robot can be achieved by
estimating its distance and relative orientation with regard to the leader robot. The
position of the observed robot can be obtained from its estimated distance and the
pan angle of the camera. The relative orientation of the robot can be obtained by
means of the observation of the target, this calculation is explained in [10].

Because the leader is also a follower, its position must be calculated, and for
this, it uses the target of the conductor. Localizing the position of the conductor it
is possible to establish the real position of the leader. So, two possibilities in the
calculation of the position of the followers are implemented.

In the case of the calculation of the position of the leader, it simply localizes the
position of the conductor, and by means of this position, its real position can be
calculated. Thus, to calculate its position, the leader needs to know three values, the
position of the conductor in relation to itself, represented by the translation matrix
LTC, the current position of the conductor in its local system, represented by the
translation matrix OcTC, and the position of itself in relation with the conductor in
the creation of the formation, represented by the translation matrix OcTOl . Knowing
that the current position of the conductor in its local system can be calculated as

OcTC = (OTOc)−1 ·O TC (4)
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the actual position of the leader is calculated as

OlTL = (OcTOl)−1 ·Oc TC · (LTC)−1 (5)

In figure 5, this calculation can be seen graphically.

Fig. 5 Calculation of the conductor’s position in relation to the followers

In order to calculate the position of any of the rest of followers, it is also necessary
to know the position of this robot in relation to the leader, which is calculated by
the leader using the camera. Thus, to calculate its position, the follower needs to
know four values, the position of the follower in relation to the leader, represented
by the translation matrix LTF , the position of the conductor in relation to the leader,
also calculated with the cam, represented by the translation matrix LTC, the current
position of the conductor in its local system, represented by the translation matrix
OcTC, and the position of the follower in relation to the conductor in the creation of
the formation, represented by the translation matrix OcTO f . Knowing that the current
position of the conductor in its local system can be calculated using equation 4, the
actual position of the follower is calculates as

O f TF = (OcTO f )−1 ·Oc TC · (LTC)−1 ·L TF (6)

In figure 6, it can be graphically seen.
Once one follower has calculated its real position, it changes the value of its ac-

tual position, that is, its belief about the position where it thinks it is in that moment.
In this way, in the following step, when the follower calculates the Bezier trajec-
tory to follow the conductor, it will use the real position in those calculations, and
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Fig. 6 Calculation of the conductor’s position in relation to the followers

automatically, following the trajectory of that Bezier curve, it will go to its correct
position in the formation while it moves following the conductor.

5 Testing and Results

Some experiments have been performed in order to validate the new approach.
Based on these experiments, it can be concluded that the maintenance of the for-
mation has been improved considerably, and now the robots are able to maintain
their positions in the formation while following the conductor in any path.

In figures 7 and 8, two experiments using different numbers of robots are de-
picted. In the case of figure 7, only two robots are used in a classical leader-follower
configuration, with a distance of 2 meters between the two robots. Figure 8 depicts
a new experiment with four robots in a diamond formation. In this case, there’s a
distance of 2 meters between the two robots in the X-axis, and 2 meters between the
robots in the Y-axis. In the tow cases, the velocity of the conductor is 0,1m/s. This
velocity guarantees that the leader can monitor the robots in real time. As it can be
seen, the robots behave as expected, solving in this way the odometry errors seen
in the case of the odometric guidance of the formation. In the case of the odometric
maintenance, in the simplest case where one robot follows another one, the errors
can arrive to 50 cm in the Y-axis in the middle of the trajectory. With the introduc-
tion of the visual information, these errors are drastically reduced due to the robots
are continuously coming back to their correct position in the formation. The devia-
tion in this case depends on the time that the leader localizes the follower again, but
it is not more than a few centimeters (10 - 20 cm), which are automatically reduced
by the follower by the new calculation of the trajectory to follow.
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Fig. 7 Test with two-robot leader-following formation using visual repositioning

Fig. 8 Test with four-robot diamond formation using visual repositioning

6 Conclusions

The paper describes a new method for a team of heterogeneous robots to navigate
maintaining any type of predefined geometric formation. In this application, the
robots without sensory power get support for the navigation from the robot with nav-
igation and localization facilities. Moreover, in the case that any robot, due to the
odometry errors, lose the original path, the robot with the camera helps it to come
back to the good trajectory. In this way, all the robots are able to follow a predefined
path getting help from others if necessary, that is, cooperating among them.

In this paper, it is presented a new design of formation navigation based on a ”fol-
low the conductor” approach, with a series of virtual points with a displacement of
the leader for constructing the formation, and Bezier curves for the movement of each
robot. Moreover, it has been implemented a cooperative method in the formation task
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in order to eliminate the odometry errors of the robots and exploit the resources of
each robot for the benefit of the whole team. The cooperation is carried out in such
a way that the robots without sensors get help from the resources of the others to
navigate and maintain the formation. For this reason, the robot with the laser sensor
indicates the path to be followed and the one with the camera produces information
about the errors of odometry to the robots so that they can correct these errors.

The results have demonstrated that the approach is suitable for getting the main-
tenance of formations, from 2 to 4 robots. It has been impossible to test with more
robots, but the definition of the method can be applied to any number of robots.
However, due to the restriction of the visual field of the leader, this only can be ap-
plied to a number of robots which cannot produce occlusions among them to be in
the vision of the leader.
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Reactive Coordination and Adaptive Lattice
Formation in Mobile Robotic Surveillance
Swarms

Robert J. Mullen, Dorothy Monekosso, Sarah Barman, and Paolo Remagnino

Abstract. We present here a set of decentralised control laws to facilitate lattice
formation and reactive coordination and control of a swarm of mobile ground based
robots. The control laws rely on local, indirect communication, which we imple-
ment in the form of virtual forces governed by physics based laws, computed from
range and bearing measurements relative to the individual robots. Furthermore, we
introduce the Virtual Robot Node (VRN) architecture to extend the capabilities of
the cooperative formation control in terms of lattice cohesion and reactive dynamic
abilities. The characteristics of the control laws are analysed through a number of
3D physics-based simulation experiments. We show that the basic proposed meth-
ods exhibit robustness to simulated sensor noise. We further show a number of im-
provements made by employing the VRN architecture, in terms of reducing errors
in specified formation constraints, and additional dynamic capabilities.

1 Introduction

Swarm robotics is a relatively new area of research and development that has
emerged from the swarm intelligence paradigm [4]. Much of the inspiration behind
swarm intelligence based systems comes from observations of biological swarms in
nature, and in particular the self-organising, emergent properties they exhibit, for
example the foraging behaviours of a colony of ants [6][9].

Swarm robotics largely considers systems of multiple, relatively simple, homo-
geneous robots, with local and limited sensing and communication abilities, that
work collectively to achieve some unified goal [7]. The use of multiple robots
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necessitates the system to be scalable in nature, and the local and limited sensing
and communication abilities provide a focus on a decentralised approach.

Research in the area of swarm robotics, and indeed multi-robot systems in gen-
eral, remains very active. Many different methods are being developed to achieve
autonomous multi-robot control, for a wide range of applications and robotic plat-
forms. We present here a brief overview of a selection of related methods.

From the swarm intelligence paradigm, the concept of stigmergy [9] has been
used, for example in [20][8], to achieve multi-robot coordination and control by
using artificial pheromones to guide the robots. Similarly, the well established po-
tential fields method [10] is still widely used for robot control/coordination. Both of
these methods involve computing virtual force vector-fields which guide the robots
movement. Another similar method uses physics based laws to compute local arti-
ficial forces [21][16] to guide the robots movements. The latter method does not
require the computation of a global vector field of artificial forces, rather each
robot computes the forces it experiences locally, thus offering a more distributed
approach.

The well established nature inspired technique of flocking [19] has been used
in many variations to achieve multi-robot coordination and control (for example
[12][22][13]), and often use virtual forces to achieve the desired behaviours. One
of the potential limitations of the typical flocking approach is that it required inter-
robot communication, for example to share heading information [22] or velocity
[13] between the robots.

A more engineering based method is reported in [2], which uses a kinematics
control approach and merges a number of elementary behaviours into one final be-
haviour to facilitate the entrapment and escorting of a target by multiple robots.

The latter mentioned approach, along with the methods using physics based laws
to compute virtual forces, tend more towards a deterministic nature, as opposed to
the stochastic nature of the ant-algorithm approaches of [20][8]. The stochastic na-
ture of many swarm intelligence methods makes them particularly good at solv-
ing unpredictable and dynamic problems (in [11] stochasticity is introduced in a
Lyapunov-based flocking controller and shown to improve performance). This can
also however make it difficult to fully predict the behaviour of the solution itself [23],
which, in particular safety critical applications, might be an undesirable feature.

In this paper, we employ a variation of the swarm intelligence technique of stig-
mergy to facilitate self-organisation, but implement this in a deterministic way, to
maintain a predictable system as much as possible. We develop multi-robot coor-
dination and control laws based on physics-based virtual forces, similar to those
presented in [21][16]. Other similar approaches include [18], where multi holo-
nomic agent formation shape and orientation is studied in the setting of tensegre-
ity structures, and [5] which presents a discrete-time optimisation framework for
target tracking with multi-agent systems (which uses inter-robot communication, in
contrast to our proposed approach). We introduce a new control architecture that
uses Virtual Robot Nodes (VRNs) to better define and maintain specific formation
constraints. We develop the control laws to facilitate formation control and main-
tenance and extend the capabilities to allow for dynamic formation control with
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changing geometric environment constraints, similar to the work presented in [13].
We however maintain robot anonymity by designing our controllers to not require
inter-robot communication, and place emphasis on making the dynamic control el-
ements sensor driven.

2 System Overview

The proposed method uses indirect observatory communication to create a number
of control laws that facilitate reactive self-organising behaviour within a swarm of
multiple robots. The indirect communication is implemented as virtual forces which
are calculated based on range and bearing measurements relative to the individual
robot. The Lennard-Jones potential is used to govern the virtual forces, with addi-
tional constraints introduced to induce specific behavioural characteristics.

2.1 Formation Control

The basic control law yields the self-organisation of the swarm into a quasi regular
spaced repeating lattice formation, based on the Physicomimetics framework rep-
resented in [21]. This is achieved by each individual robot measuring the range, r,
and bearing, θ , to any neighbouring robots n ∈ N, within a given ‘visible range’,
rvis. The visible range is user-set, however there may also be physical constraints
imposed depending on the sensor method used to determine the range to neighbour-
ing robots. The inter-robot force, FR, experienced due to neighbouring robot, n, is
given by:

FRn = 4ε
[(

R
r

)σ
−
(

R
r

)τ]
, (1)

where ε is the maximum allowed attractive force, R is the desired separation distance
between neighbouring robots, and σ and τ are control parameters. We also apply an
additional constraint to limit the allowed overall force, such that FRn = ε if FRn > ε
and FRn =−ε if FRn <−ε . The x and y components are given by: FRnx = FRncos(θn)
and FRny = FRnsin(θn). The total x and y components of the force experienced are
then given by: FRtotal x = ∑N

n=1 FRnx and FRtotal y = ∑N
n=1 FRny. We employ a discrete-

time approximation and calculate the resultant x and y components of the velocity as:
vx = FRtotal xΔ t and vy = FRtotal yΔ t. From vx and vy we calculate the new displace-
ment vectors as: Δx = vxΔ t and Δy = vyΔ t. The calculated Δx and Δy values give
the desired robot displacement at time t, due to the virtual forces acting upon it.

2.2 Virtual Robot Nodes

The basic control law described in Section 2.1 is limited in being only capable
of creating certain lattice formations, which are based on a repeating lattice of



232 R.J. Mullen et al.

equilateral triangles. The desired result is however not always achieved, due to, for
example the ‘clustering’ problem [21][17], and the formation topology can be un-
predictable. This also makes formation maintenance problematic, especially when
dealing with dynamic environments.

We aim to remove this limitation by introducing a novel method of adaptive for-
mation control, which we achieve by extending the notion of virtual forces to in-
clude VRNs. VRNs can be used not only to create specific user defined formations,
but can also be used to facilitate self-adapting formation control, as well as sensor
directed collective movement.

Any robot can place a VRN within its neighbourhood at a given r and θ , which
will then result in the same virtual force being calculated as if there had been a
real robot detected at that range and bearing. VRNs are only visible to the robot that
placed them; maintaining the distributed property of the system. The idea is to allow
individual robots to manage their own spatial requirements in a reactive, dynamic
manner.

By setting particular conditions and constraints on when and where an individ-
ual robot places a VRN it is possible to achieve a range of different formations, for
example line, column and wedge. Additionally this approach can be used to induce
self-organised flocking behaviours. Due to space limitations however, we concen-
trate here on the application of the VRN architecture to the control law detailed in
Section 2.1, in order to create and maintain a double wedge formation, and alleviate
some of the limitations of the original control law.

The robots neighbourhood is divided into J segments, Ψj ∈ J, with each segment
defined by a radius of rseg and two bounding bearings ψa and ψb (See Fig. 1, left).
When the robot obtains the information regarding the range, r, and bearing, θ , of
any neighbouring robots, the robot checks which segments contain neighbouring
robots. Those segments which do not contain any neighbouring robots receive a
VRN at range rVRN and bearing θVRN = (ψa + ψb)/2, such that:

VRN( j) =
{

FALSE if any θn∈N ∈Ψj

TRUE otherwise
(2)

For the double-wedge formation we have J = 6 segments, with θVRN j = jπ/6,
ψa j = ( jπ/3−4π/9) and ψb j = ( jπ/3−π/18).

Robots on the periphery of the lattice thus create a VRN boundary around the
outer region of the current formation, which effects the overall shape of the forma-
tion, in this case, with 8 robots, resulting in a double wedge formation as depicted
in Fig. 1, right.

2.3 Dynamic Directed Movement Behaviour

This behaviour extends the basic control law to enable sensor driven dynamic, col-
lective movement through a given environment. To facilitate this behaviour we mod-
ify the e-puck robots in 3D simulation by providing each robot with 16 additional
range finding sensors (equivalent to long-range IR, or laser), with approximate
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equal spacing around the circumference of the robots outer body, to provide 360
degree sensing of a walled environment. The sensors are placed above the height
of the robots to avoid the main body of neighbouring robots being detected as the
environment.

Any robot that does not detect any real robots ahead of its current position (with
respect to the forwards direction through the environment), considers itself a lead-
ing robot. This means that instead of attempting to maintain formation the robot
attempts to move through the centre of the environment, guided by measurements
taken from the on-board distance sensors. The robot will place a VRN with a for-
wards/left/right bias with respect to its current heading, to induce an attractive force
in the desired direction. Any given robot will not know whether or not a neigh-
bouring robot is a leading robot or not, maintaining the anonymous property of the
system.

Any robot not leading will dynamically adjust its desired inter-robot distance R
with respect to measurements taken from the on-board range finders.

In the most basic set-up, using only the formation control law given in Section
2.1, we set ξ (t) = rangemin(t), where ξ (t) represents the robots perceived range to
the wall at time t, and rangemin(t) is the minimum range measured from the on-
board distance sensors at time t.

We then set the following conditions to adapt the robot’s R value:

R(t) =
{

R(t −1)−1 if ξ (t) < (R(t −1)− (R(t−1)/χ))
R(t −1)+ 1 if ξ (t) > (R(t −1)+ (R(t−1)/χ)) (3)

where χ is a sensitivity weighting parameter.
Changing the R value in this way allows the swarm to dynamically expand and

contract with changing geometric environment characteristics as observed by on-
board sensors. The resultant movement is however somewhat non-cohesive, with no
specific formation being maintained (as shown in Section 3.2).

In order to achieve a more cohesive swarm movement, with the ability to achieve
and maintain a specific formation, we implement the VRN architecture described in
Section 2.2 and add additional constraints on calculating the dynamic R value. From

Fig. 1 Left: A schematic diagram of the VRN positions and segments; right: a schematic
diagram of the real robot and VRN positions for a double wedge formation
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the VRN segment scanning, each robot estimates its current position with respect to
the desired double wedge formation, and adjusts ξ accordingly, in order to maintain
formation within the constraints of the environment. This is implemented as follows:

ξ (t) =

⎧⎪⎪⎨⎪⎪⎩
rangemin(t) if VRN(1,2,3) = T RUE
rangemin(t) if VRN(4,5,6) = T RUE
rangemin(t)−R(t) if VRN(1,2,3,4,5,6) = FALSE
rangemin(t)− (R(t)/2) otherwise

(4)

where VRN(n) = T RUE if a VRN is placed in segment n, and is FALSE otherwise.
These constraints allow for the offset of rangemin, depending on where the robot

is in the ideal formation.
The VRN range is then set as rV RN = R +(R− rmin), where rmin is the minimum

range to a neighbouring robot.
To further improve the swarm cohesion we take inspiration from the well estab-

lished flocking phenomena. In recent years it has been shown [3] that when birds
in the wild exhibit flocking behaviours, each bird interacts on average with a fixed
number of neighbours (six of seven), rather than with all neighbours within a fixed
radius. We implement a similar behavioural characteristic by imposing each robot
to choose the nearest 6 robots and/or VRNs to compute as neighbouring robots for
inclusion in the control law.

The resultant behaviour allows the swarm lattice to self-organise into and main-
tain the double wedge formation and dynamically expand and contract with the
changing geometric characteristics of the environment, while collectively moving
along the passageway. The movement(s) of the leading robot(s) cause(s) a chain re-
action through the rest of the swarm as neighbouring robots are attracted to those
moving away, along the passageway, with the VRNs maintaining the desired double
wedge formation.

2.4 Experimental Set-Up

Experiments are carried out in a 3D physics-based simulation environment, using
the Webots professional mobile robot simulation package [14]. We use the e-puck
[15] as our robotic platform, which is a small-scale differential drive laboratory
robot approximately 7cm in diameter.

Each time-step in the experiment is equivalent to approximately 0.1s real-time.
During each time-step, each robot calculates the range and bearing to all neighbour-
ing robots. Each robot then executes one of the control laws, which will in turn
output a displacement vector based on the virtual forces acting upon the robot. The
displacement vector then needs to be converted into left and right wheel velocities
in order to drive the e-puck robot towards the desired location. We have developed
a motor control law derived from the one reported in [1] for this purpose, which
provides smooth closed-loop steering for a differential-drive robot towards the de-
sired location.



Adaptive Lattice Formation in Mobile Robotic Surveillance Swarms 235

For all experiments reported in this paper, unless stated otherwise, the control
parameters for the basic control law are set with: σ = 0.1 and τ = 0.05.

3 Results

We present a number of experiments designed to show the effectiveness of the pro-
posed control laws for a number of multi-robot cooperative coordination and control
scenarios. In particular we aim to show a number of advancements to the existing
method of utilising artificial forces to govern robot formation control.

3.1 VRN Formation Control

To demonstrate this functionality we consider a limitation of the basic control law
described in Section 2.1. Given 7 robots the resultant formation would be a well
formed hexagon with a robot at the centre, maintaining the repeating lattice of equi-
lateral triangles. If however we had 8 robots, the resultant formation would be less
cohesive, with one robot ‘trapped,’ resulting in a less uniform lattice, not resem-
bling a repeating lattice of equilateral triangles. This clustering phenomena has been
previously reported (in for example [21][17]), and is known to be caused by local
minima of the inter-robot forces.

We carry out an experiment in 3D simulation with 8 robots starting in a pseudo-
random cluster (Fig. 2, bottom-left), running the basic formation control law of Sec-
tion 2.1, with R = 50cm, ε = 20.0 and rvis = 3R/2 . The resultant lattice formation
can be seen in Fig. 2, bottom-centre. Although the robots have manoeuvred from
their initial positions into a formation, there is one robot ‘trapped’ in the centre of
the formation, preventing the swarm from achieving the desired repeating equilat-
eral triangle lattice.

By using the VRN architecture we enable each of the robots on the periphery of
the lattice to behave as if there were another layer of robots beyond them, causing
the formation to expand into the desired repeating equilateral triangle lattice, making
a double wedge formation. Repeating the same experiment with the VRN enabled
control laws with rVRN = 60cm, we observe a final lattice formation with greater
geometric cohesion, showing near uniform inter-robot separation (Fig. 2 bottom-
right). The VRN architecture is shown here to overcome the clustering problem in a
single merged behaviour.

In Fig. 2, top, we show a plot of the error in average minimum inter-robot distance
(calculated against the desired inter-robot distance of 50cm) for both the formation
experiments. As expected, we indeed see the VRN control law yielding a smaller
error as the formation converges, in comparison to the basic control law.

The smaller, positive error observed when the swarm has converged using the
VRN control law can be attributed to the constant attractive force from the VRN
robots on the periphery of the formation. To reduce this error further still, we might
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Fig. 2 Results for the VRN formation comparison experiment. Top: A typical plot of the
error of the average minimum inter-robot distance versus time-steps, for both the basic and
VRN enabled control laws in 3D simulation. The error is calculated against the desired inter-
robot distance of 50cm. Bottom-left: A Plot showing the positions (green circles) of the robot
starting positions in 3D simulation; bottom-centre: the final positions from running the basic
formation control law; bottom-right: the final positions from running the basic formation
control law with the addition of the VRN architecture.

introduce a dynamic rV RN that changes according to the robots perceived formation
accuracy. This could reduce the force experienced due to the VRNs in a dynamic
fashion, as the formation becomes complete. This is however beyond the scope of
this paper and will feature in future work.

Fig. 3 gives a comparison between the VRN and basic control laws for formation
control with varying numbers of robots, showing the average Standard Deviation
(SD) of minimum inter-robot distance (left) and the average error in minimum inter-
robot separation distance (right). The experiments are run with R = 50cm, for N =
4,8 and 16 robots. For each method and for each set number of robots, we run the
experiments 10 times, changing the pseudo-random starting positions each time.

For each N value we see that the VRN method has yielded lower errors in com-
parison to the basic method. Again the errors present in the basic method are mainly
due to the ‘clustering’ problem, as mentioned previously, with the VRN method
overcoming this problem. Fig. 3 also shows the positive error present with the VRN
method to be less than the error due to the clustering problem, over the range of N.

We also note that the difference in error for increasing N with the VRN method
is relatively small, showing a level of scalability for small groups of robots (future
work will investigate scalability for larger group sizes of N = 1000+). The basic
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Fig. 3 A comparison between the VRN and basic control laws for formation control with
varying numbers of robots. Right; showing the average error in minimum inter-robot separa-
tion distance, and left; showing the S.D. of inter-robot separation distance.

method however shows a significant increase in error with increasing N (approx-
imately +10.7cm between N = 4 and N = 8 and approximately +6.1cm between
N = 8 and N = 16).

The SD for the VRN method shows a small (and relatively uniform) increase
with increasing N. For the basic method there is minor increase in SD from N = 4
to N = 8 and then a significant increase in SD (to a gap of approximately 9.3cm at
t = 5000) from N = 8 to N = 16.

The distributed nature of our proposed system, in particular the non-use of inter-
robot communication, means that each individual robot is reliant entirely on its own
sensors to gather the required information to execute the desired behaviours. It is
therefore important that we assess the robustness of the proposed system to the
effects of sensor noise.

We carry out another Webots simulation-based formation experiment, with N = 8
robots, R = 30 and rvirtual = 40. We carry out the experiment for increasing lev-
els of simulated sensor noise effecting the robots’ θ and r measurements, for
0%,1%,10%,30% and 50% levels of noise with respect to the measured value. For
each level of noise we repeat the experiment 10 times and average the results.

Fig. 4, left, shows plots of the average SD of minimum inter-robot distance, and
right, the average error in minimum inter-robot separation distance. For noise levels
upto 10% we observe the levels of cohesion to remain relatively unchanged (char-
acterised by a low SD). For noise levels upto 30% the overall formation remains
connected despite the observed increase in SD of inter-robot separation distance.
This increase is due to the robots ‘vibrating’ about thier equilibrium positions. For
the average error (Fig. 4, right) we observe an increases in error of approximately
0.8cm, 5.8cm and 8.5cm, for 1%, 10% and 30% noise levels respectively.

Given that in these experiments the levels of cohesion remain relatively un-
changed for levels of sensor noise upto 10%, and the overall formation manage-
ment remains stable with levels of noise upto 30%, this provides example evidence
of robustness of the system with respect to coping with noisy sensor data. Prelimi-
nary work carried out on real e-puck robots (results not included here due to space
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Fig. 4 Plots showing the effects of sensor noise on the VRN-based formation management.
Right; showing the average error in minimum inter-robot separation distance, and left; show-
ing the S.D. of inter-robot separation distance, for increasing levels of noise.

limitations) have shown very similar trends when compared to identical experiments
carried out in ‘ideal’ simulation settings, again providing evidence of robustness to
noisy sensor data, as well as robustness to actuator noise such as wheel-slip.

3.2 Dynamic Directed Movement

To test the dynamic directed movement extension to the proposed control law, along
with the VRN architecture, we consider an experiment where the challenge is for
the robot swarm to collectively move though a walled passageway, distributing dy-
namically with regards to the changing width of the passageway (with a coverage
based sweep search scenario in mind), while maintaining maximum cohesion within
the formation. The 3D environment in this experiment consists of a narrow walled
passageway which opens into a wider passageway. The robots start in a pseudo-
random cluster in the narrow section, and move into the wider section. The relevant
parameters for this experiment are set with ε = 20.0, rvis = 3R/2 and χ = 3.

Fig. 5 shows example results from a typical experiment run for both the basic
control law and VRN enabled dynamic directed movement algorithm. In Fig. 5,
bottom-left, we see the robot positions and trajectories throughout the experiment
with just the basic control law. We see that the robot swarm does effectively adapt
to the increasing width of the environment, however the swarm does not appear to
maintain any specific formation throughout. Fig. 5, bottom-right, shows results of
the same experiment with the VRN enabled control law. Again we see the swarm
effectively adapting to the changing width of the environment, and we also see in
this case that the swarm maintains the desired double wedge formation after forming
this lattice from the initial pseudo-random starting positions and adapting to the
increase in environment width.

Fig. 5, top left, shows a plot of the SD of the minimum inter-robot separation
distance measured by each robot, versus time-steps, comparing the basic and VRN
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Fig. 5 Results of the dynamic directed movement experiment. Top left: A plot of the standard
deviation of the minimum inter-robot separation distance versus time-steps, comparing the
basic and VRN-enables control laws. Top-right: A plot of the mean of the minimum inter-
robot separation distance versus time-steps, comparing the basic and VRN-enabled control
laws. Bottom-left: A plot of robot positions (coloured circles) and past trajectories (orange
lines) at different stages in the experiment using the basic control law. Green circles show
the starting positions, blue circles show intermediate positions and red circles show the final
positions. Solid black lines denote the environment walls. Bottom-right: the same using the
VRN-enabled control law.

enabled control laws. We would expect the SD to be small when the robots are in
a cohesive formation, with similar inter-robot separation distances (with an ideal
formation having equal inter-robot distances and thus a SD of zero).

Firstly we observe that the VRN experiment exhibits a lower SD for the majority
of the experiment. The area of relatively large peaks seen for both curves between
approximately 6000 and 13000 time-steps is the region where the swarm is adapting
to the increase in environment width. The experiment shows the basic control law
to yield a larger increase in SD during this self-adapting process, suggesting a less
cohesive collective behaviour.

Fig. 5, top right, shows a plot of the mean of the minimum inter-robot separation
distance measured by each robot, versus time-steps, comparing the basic and VRN
control laws. For the VRN curve, the plateau between approximately 1500 and 6000
time-steps corresponds to where the swarm has self-organised into the double wedge
formation (as can be seen in Fig. 5, bottom-right, blue circles), and is moving along
the narrow section of the environment before the wider section. This correlates to
the maintained low SD throughout this section as seen in Fig. 5, top left.

For the basic control law, the mean of the minimum inter-robot separation dis-
tance continues to increase from 0 to approximately 13000 times-steps, during
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which period the SD is seen the fluctuate to comparatively high values. This can
be attributed to the observation that for the basic control law, the swarm does not
achieve a cohesive formation from the initial starting positions. As can be seen
in Fig. 5, bottom-left, the blue circles show a non-cohesive formation expanding
lengthways along the narrow section of the environment.

As the curves reach a plateau at 14000 and 18000 time-steps for the VRN and
basic control laws, respectively, this corresponds to the final formations reached as
the swarms have expanded into the larger section of the environment (Fig. 5, bottom
row, red circles). We observe that the VRN control law has maintained the double
wedge formation after the adaptive process, and achieved a final SD of approxi-
mately 0.69cm. The swarm under the basic control law successfully manages to ex-
pand with the changing environment, but the final formation appears less cohesive
from visual inspection, with a final SD of approximately 7.1cm.

4 Discussion and Conclusion

We have presented a swarm robotics system that utilises relative range/bearing
sensing capabilities to facilitate indirect communication, using artificial force laws
to induce self-organising behaviour to guide the robots collectively into lattice
formations.

Furthermore, we have introduced an architecture called VRNs, which can be used
to overcome the ‘clustering’ problem inherent in the artificial force laws method,
and moreover, can be used to create specifically structured formations without re-
quiring explicit communication.

We have also extended the proposed control laws to achieve adaptive formation
control for reactive collective movement through simple changing environments,
while maintaining a fully distributed approach. These reactive behaviours, while
not requiring inter-robot communication, do rely heavily on sensor readings. We
have shown the proposed method to be relatively robust to simulated sensor noise.
Further work will involve extensive testing on real robots to assess the effects of real
hardware sensor and actuator noise.

Additional ongoing and future work includes further assessment of the use of
VRNs to create different types of formations with varying numbers of robots and
with varying geometric environment constraints, as well as carrying out a quanti-
tative comparisons to related methods. We are also further investigating the use of
VRNs for emergent flocking behaviours and will compare this approach to other
flocking methods in future work. Preliminary work suggests our proposed system
scales well with increasing numbers of robots. We are also addressing the robustness
of the proposed system to robot failure.

Ultimately we are interested in applying a learning strategy to allow the robots
to learn when and where best to position VRNs given specific sensory input about
the local environment, in order to evolve a number of cooperative movement strate-
gies for behaviours such as searching, obstacle avoidance and environment/structure
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inspection. Although the presented framework is not specific to any given applica-
tion, as the title of the paper suggests, we are interested in surveillance scenarios. In
a wider context, we aim to develop the proposed VRN architecture to control teams
of mobile robots equipped with video cameras, and to optimise cooperative search-
ing formations and movements in order to maximise visual information retrieval of
a given environment in minimum time.

References

1. Aicardi, M., Casalino, G., Bicchi, A., Balestrino, A.: Closed loop steering of unicycle-
like vehicles via Lyapunov techniques. IEEE Robotics and Automation Magazine 2(1),
27–35 (1995)

2. Antonelli, G., Arrichiello, F., Chiaverini, S.: The entrapment/escorting mission - an ex-
perimental study using a multirobot system. IEEE Robotics and Automation Magazine,
22–29 (2008)

3. Ballerini, M., Cabibbo, N., Candelier, R., Cavagna, A., Cisbani, E., Giardina, I.,
Lecomte, V., Orlandi, A., Parisi, G., Procaccini, A., Viale, M., Zdravkovic, V.: Interaction
ruling animal collective behaviour depends on topological rather than metric distance:
Evidence from a field study. Proc. Natl. Acad. Sci. USA (PNAS) 105(4), 1232–1237
(2008)

4. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial
Systems. Oxford University Press, New York (1999)

5. Derenick, J., Spletzer, J., Hsieh, A.: An optimal approach to collaborative target tracking
with performance guarantees. J. Intell. Robot. Syst. 56, 47–67 (2009)

6. Dorigo, M., Gambardella, L.M.: Ant Colony System: A cooperating learning approach to
the travelling salesman problem. IEEE Transactions on Evolutionary Computation 1(1),
53–66 (1997)

7. Dorigo, M., Sahin, E.: Swarm robotics - special edition editorial. Autonomous
Robots 17(2-3), 111–113 (2004)

8. Garnier, S., Tache, F., Combe, M., Grimal, A., Theraulaz, G.: Alice in pheromone land:
An experimental setup for the study of ant-like robots. In: Proceedings of the 2007 IEEE
Swarm Intelligence Symposium (SIS 2007), pp. 37–44 (2007)

9. Grasse, P.P.: La reconstruction du nid et les coordinations interindividuelles chez belli-
cositermes natalensis et cubitermes sp. la theorie de la stigmergie: Essai dinterpretation
du comportement des termites constructeurs. Insectes Sociaux 6, 41–81 (1959)

10. Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. The Inter-
national Journal of Robotics Research 5(1), 90–98 (1986)

11. Kumar, M., Milutinovic, D., Garg, D.P.: Role of stochasticity in self-organisation of
robotic swarms. In: Proceedings of the 2008 American Control Conference (2008)

12. Labonte, G.: Canadian Arctic Sovereignty: Local Intervention by Flocking UAVs. In:
Proceedings of the 2009 IEEE Symposium on Computational Intelligence for Security
and Defence Applications (CISDA 2009) (2009)

13. Manh, H., Sheng, W.: Adaptive flocking control for dynamic target tracking in mobile
sensor networks. In: Proceedings of the 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS 2009), pp. 4843–4848 (2009)

14. Michel, O.: Webots: Professional mobile robot simulation. Journal of Advanced Robotics
Systems (2004)

15. Mondada, F., Bobani, M., Raemy, X., Pugh, J., Cianci, C., Klaptocz, A., Magnenat, S.,
Zufferey, J.-C.: The e-puck, a robot designed for education in engineering. In: Proceed-
ings of the 9th Conference on Autonomous Robot Systems and Competitions, pp. 59–65
(2009)



242 R.J. Mullen et al.

16. Morgan, D.S., Schwartz, I.B.: Dynamic coordinated control laws in multiple agent mod-
els. Physics Letters A 340, 121–131 (2005)

17. Navarro, I., Pugh, J., Martinoli, A., Matia, F.: A distributed scalable approach to forma-
tion control in multi-robot systems. In: Proceedings of the International Symposium on
Distributed Autonomous Robotic Systems, DARS 2008 (2008)

18. Pais, D., Cao, M., Leonard, N.E.: Formation shape and orientation control using pro-
jected collinear tensegrity structures. In: Proceedings of the 2009 American Control
Conference (2009)

19. Reynolds, C.: Flocks, herds and schools: A distributed behavioral model. In: Proceed-
ings of the 14th Annual Conference on Computer Graphics and Interactive Techniques
(SIGGRAPH 1987), pp. 25–34 (1987)

20. Sauter, J.A., Matthews, R., Parunak, H., Brueckner, S.A.: Performance of digital
pheromones for swarming vehicle control. In: Proceedings of the Fourth International
Joint Conference on Autonomous Agents and Multiagent Systems, pp. 903–910 (2005)

21. Spears, W.M., Spears, D.F., Hamann, J.C., Heil, R.: Distributed, physics-based control
of swarms of vehicles. Autonomous Robots 17, 137–162 (2004)

22. Turgut, A.E., Celikkanat, H., Gokce, F., Sahin, E.: Self-organized flocking in mobile
robot swarms. Swarm Intelligence 2, 97–120 (2008)

23. Winfield, A.F.T., Liu, W., Nembrini, J., Mertinoli, A.: Modelling a wireless connected
swarm of mobile robots. Swarm Intelligence 2, 241–266 (2008)



Probabilistic Communication Based Potential
Force for Robot Formations: A Practical
Approach

Simon Bjerg Mikkelsen, René Jespersen, and Trung Dung Ngo

Abstract. We introduce a new method of artificial potential forces based on proba-
bilistic communication, called ‘Probabilistic Communication based Potential
Forces’- PCPF. The potential forces provides a locally distributed control for a for-
mation of a large volume of self-regulated mobile robots. While models of sens-
ing and communication so fare mostly have been with simple assumptions that are
far away from the physical properties of sensors and communication mechanisms,
the method here is realistic because both attractive and repulsive forces are only
based on probability of communication which are empirically measured and approx-
imately estimated between robots. The method is demonstrated through non-trivial
examples of robot formation and formation transformation. Analysis is provided to
facilitate understanding of the elements of the probabilistic method.

1 Introduction

Robot formations has recently been investigated as an idea for deploying multi-
robot systems in dynamical environments for various applications, e.g., exploration,
victim searching, environmental patrol and monitoring, and surveillance and re-
connaissance. The advantage of using robot formations is that the system is ro-
bust as they can assist each other through inter-sensing and inter-communication,
flexible as they can adapt to changes of the environment by transforming their for-
mation shapes, and scalable as their formation is not depending on the number of
participants.

In a distributed scheme, to maintain the position in the formation, a robot needs to
estimate the relative distance and orientation to the neighbors using its sensor and/or
communication mechanism. While simulating robot formations, it mostly works
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very well because assumptions of highly accurate sensing and communication are
used to generate their relative distance and bearing. However, when transitioning
the controller from simulation to the physical robots, the difference between the
simulated and the real-world sensing-models, lead to the simulated controller not
performing as good. At least not without further tuning.

This research focuses on a new method for developing potential forces that is very
realistic to implement in real robot systems. The method is based on the probability
of communication between robots for both attractive and repulsive forces.

In the perspective of real-world robot formation applications, we propose a gen-
eral method, including obstacle avoidance and goal targeting. We can separately
develop a potential function for obstacle avoidance based on capability of obstacle
detection, and an external potential function as global force that may be applied
to guide the robots to target a goal. However, this paper restricts in the method
of Probabilistic Communication based Potential Forces (PCPF) to the distributed
controllers of robot formations without considering obstacle avoidance or goal
targeting.

The remainder of this paper is organized as follows: First, we catalogize and
charatertize the artificial potential field of robot formation into centralized and dis-
tributed schemes, based on previous work. Then, we briefly present our general
principle for a probabilistic potential force. A case study of robot formations using
our custom-made robots show how the probabilistic method has been generated and
applied to make realistic controllers. A sequence of examples shows how the robots
can self-organize and self-regulate their formation. Theoretical analysis is carried
out to facilitate deeper understanding of the method. We conclude with summation
of contribution and future work.

2 Related Work

The Artificial Potential Field [1] was originally found for single robot navigation.
The method represents interactions of the robot with environmental obstacles as
a vector field. The vector field is made up by attractive and repulsive forces. The
attractive forces may include constraint forces that create geometric shapes of robot
formations or attaches the robots to the target location, while the repulsive forces
may embrace environmental force to pull the robot away from obstacles. The sum
of attractive and repulsive vector fields is used to decide the robot behavior.

The Artificial Potential Field has been extended in to various dimensions in multi-
robot systems. However, it can be sorted out in two catalogues; centralized potential
field and distributed potential field.

In the centralized paradigm the whole environment is globally assigned poten-
tial forces where obstacles are given repulsive forces, and the goal is attributed an
attractive force. The robot is lead to follow the path resulting as the minimum of sub-
traction of attractive and repulsive forces. Examples of centralized potential fields
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can be found in [1, 2, 5, 4, 3]. The drawback of the centralized method is that it is not
robust and flexible because the path is not changeable after being initialized by the
global force field of the environment, therefore it is hard to apply for a multi-robot
system where dynamics must be considered in real-time.

In the distributed paradigm the potential force is locally represented in the robot’s
vicinity, usually based on the robots’ perception of their surroundings. The advan-
tage of this method is that since the potential force is calculated individually for
each agent it can be updated in real-time. Because of this, the distributed potential
field is popularly used to generate controllers for robot formation which requires
high robustness, flexibility and scalability. For examples, the social potential fields
[7] creates force-laws to allow for different forces between agents. Similarly, dif-
ferent social potential forces inspired by molecular form crystals is used to enable
formations of scalable multi-robot systems [6]. The light weight methodology [8]
used the springs law to create the potential forces with constraints of virtual leader
to maintain the robot formation. All were under the assumption of perfect percep-
tion among the robots and the results were only demonstrated in simulation. On
the other hand, the heading alignment and proximity control [11] and the artificial
physics [9] are a few examples demonstrating usability of potential forces for forma-
tion of the physical robots. The former combines heading alignment which is based
on digital compass and wireless communication and IR proximity measurements, to
generate virtual forces for robot controllers. The later is inspired by natural law of
gravitational forces in generating the potential forces to each robots. The method is
analyzed deeply in terms of robustness, flexibily and scalability, and demonstrated
in simulation and with 7 real robots as well.

In general, the above mentioned methods calculate potential forces based on
sensing of relative positioning between robots (the wireless communication used
in [11] is apart from the estimation of relative positioning). Also, it is assumed that
robots have perfect sensing systems being able to estimate accurate distance to all
neighbors.

3 General Principle of Probabilistic Potential Force

In this section, we describe our general method of probabilistic potential forces
that we propose for building robot controllers in a swarm. This is illustrated in the
Equation (1) which is based on each robots inter-communication with neighbors,
observation of environmental obstacles, and goal targeting. Because the controller
is based on the probability of communication and perception of individual robots, it
allows designing a fully distributed control for swarm formations. A robot r calcu-
lates its distributed potential force as.

→
F r=

n

∑
i=1

→
F att (i)+

n

∑
i=1

→
F rep (i)+

m

∑
o=1

→
Fobst (o)+ ∑

g∈G

→
Fswarm (g) (1)
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where n is the number of communication channels on the robot, m is number of
obstacles appearing in the robot’s perceptual vicinity and g is sub goal of G the
swarm goal.

The two first items,
→
F att and

→
F rep, are a robot’s probabilistic potential forces

based on directional communication with its neighbors in the local vicinity. The
combination of attractive force and repulsive forces induces coherence in the swarm
in accordance to relative distance and orientation.

The third item,
→
F obst , is a probabilistic repulsive force between the robot and

environmental obstacles based on perceptual capability of the robots. This repulsion
ensures all robots to avoid obstacles when swarming.

The fourth item ,
→
Fswarm, is a potential force to control all robots of the swarm

towards the desired goal.

4 The Approach to Robot Formation

This study is based on the physical design of our custom-made robots illustrated in
Figure 1.

Fig. 1 Developed robots to test the theory in practice

Equipped with 8 pairs of infrared emitting and receiving diodes located symmet-
rically at 45 ◦, the robots can communicate and sense around at 8 different direc-
tions. Infrared sensing and communication is not reliable and far from free of bit
errors. Furthermore, there is no sensing and communication within the blind spots
of two nearby infrared beams as illustrated in Figure 2.

4.1 Communication Model

To achieve a realistic model of the communication between two robots a set of
experiments has been carried out. The bit error rate depends on the strength of the
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(a) (b) (c)

Fig. 2 Interrelation of sensor beams and communication possibilities between two robots.
In this figure, each robot has 8 “flower petals” representing the angular view of both infrared
transmitters and receivers. The two robots can establish line of sight communication based on
their relative position: (a) no robot can communicate each other, (b) only left robot receives
the signal, (c) they can mutually communicate.

signal received, which depends on relative angle and distance between the robots.
Based on the experiment data a function was approximated to model the voltage in
the receiver as a function of distance and angle. This model is shown in Equation 2
to 5

Ur(a,d) =

{
U(a,d) if U(a,d)< 4.7
4.7 if U(a,d)≥ 4.7

(2)

U(a,d) = Mr
K(a)

dn(a)
(3)

K(a) =
cK√

2π ·σK
e
−a2

2·σ2
K (4)

n(a) =
cN√

2π ·σN
e
−a2

2·σ2
N (5)

Where the following values where determined. Mr = 0.5271, cK = 518.71 · 103,
σK = 6.336, cN = 163.106 and σN = 25.768.

U is the voltage level on the receiving diode as a function of angle a and distance
d. Ur is that same voltage with maximum limit of 4.7 Volt.

Some simplifications were made to the model. We assume the petal of transmitter
and receiver are identically shaped. This allows the simplification of the model to
only take, the sum of the absolute values of the robots’ angles to the direct line
between them into account. Hence Ur is a function of only two parameters. All
influences from the physical surroundings of the robots are ignored. The tolerance
of the components is also an unknown factor, and the model was therefore based on
a set of measurements from all 8 different infrared transmitters on the robots.

The voltage is used as an input to determine the probability of a bit error. P0 in
equation (6) is the probability of a bit error when sending a ”0”, P1 in in equation
(7) the probability of bit error when sending a ”1”. The bit error is changed into a
byte error using 50% ones and 50% zeros in byte. The model only provides a value
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for the probability and does not distinguish between the robot being either far away
or the relative angle very large.

P0(Ur) =

{
0 if Ur < 1.3640
α0 ·Ur +β0 if Ur ≥ 1.3640

(6)

P1(Ur) =

{ 1 if Ur < 0.0549
α1 ·Ur +β1 if 0.0549≤Ur < 0.2976
0 if Ur ≥ 0.2976

(7)

Where:
α0 = 6.9 ·10−3, β0 =−9.4 ·10−3, α1 =−4.1202, β1 = 1.226,

Figure 3 is an illustration of the signal spectrum relative to the probabilistic char-
acteristic of the communication model, showing the error rate when sending a ran-
dom bit.
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Fig. 3 Bit error probability of random bits [10]

4.2 Potential Force

To limit this study,
→
F obst is not implemented meaning no obstacles is introduced

in the simulation and the common goal
→
F swarm of the swarm is simply set to zero.

Because we have 8 directional communication channels on each robots, the sum
of potential forces established on 8 communication channels of a robot is stated in
Equation (8).

→
Fr=

8

∑
i=1

→
Fatt (i)+

8

∑
i=1

→
Frep (i) (8)

Taking an example of gathered empirical data, the sum in Equation (8) is depicted
in Figure 4.
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Fig. 4 Summation of directional forces on a robot

Attractive Force

Whenever a robot receives a transmission from another robot, a virtual force of
constant magnitude atf is set in the direction the receiving sensor points.

The attractive force on each communication channel can be stated as Equation
(9).

→
Fat f=

{
atf if byte received
0 if byte not received

(9)

where the attractive force atf is set to 3.

Repulsive Force

To maintain a constant distance between robots a repulsive force is needed. The
wanted distance between robots will be maintained when the repulsive force and the
attractive force completely subtract each other. Robots will be repelled by measuring
the strength of infrared light received on each sensor and calculating a repulsive
force as linear proportional to this using Equation 10.

→
F rep=Ur · re f +L0 (10)

where Ur is calculated using Equation 2, rep is negative in the order of −40 and L0

is 50.

4.3 Simulator

The simulator is constructed in Matlab Simulink(TM) using a kinematic model of
the robots and the probabilistic potential field. The probabilistic communication
model developed in Section 4.1 is used to determine when a transmission is suc-
cesfull by comparing the probability to a random generator. Since Simulink is a
graphically based each robot is implemented as a separate block. As the robot block
contains the kinematic model and probabilistic controllers, inputs to the robot blocks
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are sensor values and output are the robot acting coordinator (x,y,θ ). The kinematic
model of differentially driven robots used in the simulation is described as follows

Ẋi = v̂ix ≡ vi · cos(θi) (11)

Ẏi = v̂iy ≡ vi · sin(θi) (12)

where v̂iy and v̂ix are the velocity of vi along the X and Y axises. The angle θ is the
derivative of the angular velocity of the robot ωi: θ̇ = ωi

The linear velocity v can be calculated as the mean of the forces applied on the
wheels. The environmental influence is implicitly modeled in a separate block on
each robot. This block takes all other robots output and compare them to make sure
robots will not transmit through each other.

5 Experiments and Results

Two different initial scenarios have been tested using potential function control to
determine if the PCPF can obtain and maintain a hexagonal lattice structure. Sce-
nario 1 where the robots initially are very close together, and scenario 2 with larger
distances. 5 simulations was run for each scenario with different starting positions
and each simulation was run for 20 minutes. In Figure 5 there is one example plot
from each scenario. Each plot is of one simulation and illustrate positions over time
where the + marks the initial position, the line marks the path traveled and the robot
marks the final position after 20 minutes.

Figure 6 shows a box plot of inter robot distances for all five simulations in
scenario 1. One plot for every 30th second. The robots very quickly move away
from each other and after just one minute the upper and lower quartile are stable at
approximately 75 cm and 40 cm, with a mean of approximately 65. The mean does

(a) (b)

Fig. 5 PCPF run for 20 minutes example positions plotted with path starting in the +’s and
ending in robots:(a) Scenario 1, Robots initially close (b) Scenario 2, Robots initially spaced
further apart
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Fig. 6 All inter robot distances (in cm) from all 5 simulations of scenario 1 are plotted in a
box plot once every 30th sec.

Fig. 7 All inter robot distances (in cm) from all 5 simulations of scenario 2 are plotted in a
box plot once every 30th sec.

vary over time as would be expected given the randomness introduced but not much.
The equivalent plot for scenario 2 is depicted in Figure 7. The settling takes longer,
but the quartiles and mean settle on approximately the same values as in scenario 1
supporting the claim that it is stable.
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6 Analysis

The study of this paper, that lies beyond the current state of the art is about a realis-
tic potential field for robot formation. Because the potential field is a sensor-based
method [1], the sensor model is therefore extremely important in representing the
world in the robot mind. However, most of nowadays sensors do not provide ab-
solutely realistic measurement, especially in a dynamically changing environment.
Hence, a probabilistic sensor model that is realistic and adaptable to the empiri-
cal world is needed to overcome many other presumed models. In our approach,
the sensing and communication models are absolutely based on empirical experi-
ments of our sensor board without any presumption. The robot controller is gener-
ated based on those probabilistic models.

It is clear from the results of the simulations that the probabilistic potential func-
tion based controller is capable of achieving hexagonal lattice formations within a
couple of hundreds seconds. Both scenarios shows hexagonal lattice formations. In
scenario 1 the robots starts close together and spreads out, and in scenario 2 the
robots are placed further apart and move closer to each other to obtain the forma-
tion. It supports the statement that, it does not matter whether the formation needs
to extract or expand.

For videos go to the webpage.1

7 Conclusion

The paper presents a new approach to robot formation based on Probabilistic Com-
munication based Potential Forces. A number of novelties presented in this paper
are: 1) The potential force is based on the communication model and signal inten-
sity only, instead of a sensor-based model as tradition; 2) The probabilistic model is
based on the approximation of the empirically data from experiments on the physical
robots. And these have only flower shaped communication capabilities, as illustrated
in Figure 3. Hence 360◦communication or perception is not available as many other
assume; 3) The robot controller is naturally synthesized based on the probability of
those communication without any modification.

The results demonstrated that the approach is sufficient to form and maintain the
robot formation. We examined that phase synchronization might not be needed to
maintain the formation as the PCPF can do it very well. We still believe it is nec-
essary if we want to reduce the randomness when controlling the movement of a
whole swarm. A compatible integration between the PCPF and phase synchroniza-
tion needs to be further investigated. We do not, nor do we intend to prove that
assuming perfect communication is wrong in all cases. We merely suggest that to
bridge the gap, that often occurs between simulation and real world, a simulator
with more nuance is a very good idea. To back this up, in the near future, the good
simulation results the algorithm is going to be implemented and verified on the

1 http://vnbotics.blogspot.com/2010/07/probabilistic-potential-field-for-robot.html
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physical robots. On the other hand, even though robot model and communication
models are quite accurate with respect to the physical robot platform, the simulator
can then be made more accurate by tuning the models further. Obstacles should then
be introduced into the simulation to achieve a proper model of the environment. Ul-
timately, comparison between simulation and real experiments should be carried out
to support the final statement of the novel approach.
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Coordinating a Group of Autonomous Robotic
Floats in Shallow Seas

Eemeli Aro, Zhongliang Hu, Mika Vainio, and Aarne Halme

Abstract. Shallow seas are extremely difficult environments for autonomous under-
water profiling floats. These robots possess no thrusters and only one actuator for
their buoyancy control, and are thus entirely dependent on sea currents for lateral
motion. As a further restriction, underwater acoustic communication is very limited.
Taking into account these challenges, a novel co-operative underwater multi-robot
system has been designed and implemented for use in shallow waters. A coordi-
nation strategy and a localization method have been developed and tested using a
detailed simulation of the Baltic Sea. These methods allow the system to operate
safely and to map underwater currents and other environmental variables with rela-
tively high accuracy.

1 Introduction

A profiling float is a freely drifting oceanographic measurement platform with buoy-
ancy control [6]. In slightly different terms, it is an autonomous robot moving in a
three dimensional fluid with only one actuator that lets it control its depth. Most
floats are designed for and deployed in deep water, providing near-real-time infor-
mation from depths of 1000–2000m [1]. The environmental variability of the deep
oceans is such that the depths and distances at which these floats operate allows for
sufficient precision to be achieved by single floats that surface every ten days. On
the other hand, operation closer to shore and in shallow seas is significantly more
difficult for profiling floats: the spatial scale of environmental features is reduced
from hundreds or thousands of meters to tens or hundreds of meters, and changes in
the environment occur on the order of hours instead of days.
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The Autonomous Underwater Multi-probe System for Coastal Area/Shallow Wa-
ter Monitoring (SWARM) was an EU-funded (FP5, 2003–2005) project aiming to
design, implement and test a multi-robot system that could measure local and tran-
sient biological and physical variability in the Baltic Sea and similar areas, at the
scale relevant for single events [20]. The system consists of multiple homogeneous,
robust and easy to use co-operative intelligent profiling floats (See Fig. 1). These
floats and their operating environment are described in more detail in [3].

The SWARM floats communicate with a control station via Iridium satellite com-
munication and use inter-robot acoustic ranging and communication for localization
and data exchange while underwater. In addition to measuring the standard variables
(conductivity, temperature, and pressure; commonly abbreviated as CTD), the sys-
tem can track and observe sea currents due to deformations of the group as a whole.
While on the surface, each float may track its position using GPS, but underwater
its only direct position information comes from its pressure sensor, from which its
depth may be determined.

This paper first gives an overview of the environment and the hardware, and de-
velops from these the necessary parameters of a co-operative system of underwater
floats. The specific implementation chosen in this project is explained, including
the developed localization method. These methods are then tested using a detailed
simulation of the Gulf of Finland.

Fig. 1 Two third generation SWARM floats. The foremost unit shows the inside structure
including diving engine, computer board, acoustic and Iridium modems but is lacking the
battery pack. The unit behind has the outer shell and Iridium antenna in place. Weighing
less than 40 kg the units are easy to transport and deploy. In water they float in a vertical
orientation.

2 The Vertical Movement of Floats

A float moves by changing its own volume, and thereby changing its density. This
allows it to move vertically in the water, as the water density increases with depth.
This indirect form of position control is used due to its high energy efficiency, a
requirement for a system that needs to function autonomously underwater for ex-
tended periods.
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The relationship between depth and density is rather complex, depending also on
water temperature and salinity [8]. Given that the water density varies rather little
(less than 5 kg/m3 from the surface to the bottom of the Gulf of Finland at 100 m),
even small changes in temperature or salinity may result in a significant change in
the depth corresponding to a set density. Due to these environmental factors, the
SWARM floats use a mechanical piston for very accurate float volume control. Ad-
ditionally, an algorithm [3] has been developed that allows the floats to consistently
reach most depths with a precision of ±1 m with a probability of over 98% that
after the initial piston movement, at most one adjustment will be required to reach
the goal depth. As the algorithm has not been tuned for speed but energy efficiency,
moving for example from the surface to a depth of 50 m may take 20 minutes or
longer, if multiple piston adjustments are required. Vertical movement is limited by
the sea bottom, which the floats detect and avoid using an echosounder.

3 A Group of Floats

Given the task of gathering data from a 3D environment that changes with time,
and the limitation of the available sensors only having local reach, a multi-platform
approach is essential: A conventional float profiling operation can only result in
measurements from a single water column, as well as being unable to accurately
estimate sub-surface sea currents. In order for such a system to work, the units need
to form a cohesive whole that is able to communicate between units, as well as
determine where they are, both in absolute terms as well as in relation to other units.
Further, the particular environment in which the system needs to function imposes
limitations that strongly shape the system structure.

One method for the estimation of sea currents using the measured flock distor-
tion of a descending group of vertically spaced floats was presented in [13], but that
approach is limited to mapping a single profile of current estimates. A similar ap-
proach is taken in [7], where floats dive from the surface to a set depth and rise while
broadcasting signals that are received by surrounding floats; the received signals are
post-processed to estimate the diving floats’ path while underwater. The approach
used in this paper, on the other hand, aims to map sea currents across a significant
volume of water rather than just at one location. Other distributed anchor-free un-
derwater methods for the localization of a group of floats have been developed [5],
but these do not take into account the unpredictable changes in environmental con-
ditions experienced during an extended mission, as well as resulting in inadequate
localization accuracy, with average error 40% or more of the signal range [9].

Alternatively, specialized instruments may be used to directly measure the veloc-
ity difference between the float and the water as in [17], but the precision of such
measurements is not sufficient for the relatively slow currents of the Baltic Sea.
The localization of underwater floats is also possible using fixed buoys that transmit
regular acoustic pulses, but this requires external, anchored hardware that is more
difficult to deploy than a group of freely drifting floats.
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3.1 The Requirement for Cyclical Operations

Practical underwater communication for distances greater than tens or hundreds of
meters is only possible using acoustic communication, which is dependent on the
speed of sound. The speed of sound is not uniform in water, influencing the path
of acoustical signals. In some seas, such as the Baltic and the Mediterranean [19],
the sound speed profile may be such that a depth exists near the surface at which
acoustic signals will reflect internally due to a minimum in the speed of sound. In the
Baltic, this channel is present mostly during the summer, and varies in depth from
20 m to 80 m [10]. Using this sound channel and the available hardware, floats may
theoretically achieve communications and ranging over distances of up to 10 km.
Communication outside the sound channel is unlikely to succeed beyond hundreds
of meters.

Due to communication requiring a float’s presence at a specific depth, communi-
cation needs to be scheduled. As noise and other factors make communication un-
certain and low-bandwidth, continuous operation of such a system naturally leads to
having a communication cycle with a preset period. More specifically, the range of
current velocities, the maximum range of acoustic communication, and the vertical
speed of a float combine to limit the length of a communication cycle to a few hours
at most. Such a time frame limits a float to only one or a few actions during a cycle.

The operational cycle (120 min) of each float will therefore consist of a brief pe-
riod (15 min) of communication and planning at the sound channel depth, followed
by a longer period of performing a set of actions: moving to a set depth, waiting
there, and possibly communicating with a base station while on the surface, as well
as getting a GPS position fix (See Fig. 3.1). The actions of a float are for the most
part dependent on the actions of other floats and its relation to them, meaning that
changes to a set plan should be considered exceptional. This also allows for the
floats to estimate each other’s actions in a reliable manner.

3.2 Group Cohesion

Operating a group of floats as a swarm requires balancing two competing forces:
the floats need to stay together in order to communicate and by ranging, localize
themselves, but the floats also need to stay separated from each other to cover the
greatest volume of water. As a float can’t move laterally by its own power, it needs
to map and make use of the sea currents—which map is in fact an integral part of
the system’s scientific output.

In general, the variability and the magnitude of sea currents are at their greatest
near the surface. In the Baltic Sea, the magnitude of the surface currents may easily
be many times greater than those just a few tens of meters below. Therefore, in
order to measure these deeper currents with sufficient accuracy the floats will need
to minimize the time spent on the surface. This leads to requiring the maintenance
of a baseline current estimate at a deeper depth against which other depths’ currents
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Fig. 2 Illustrative diagram of the actions of three floats during an operational cycle

may be compared using acoustic ranging information. The absolute current at that
depth will need to be measured by occasional GPS fixes at the surface.

The simplest way to both maintain a current estimate at a depth and to keep the
swarm together would be to keep all of the floats at the same depth, but this is
obviously unsatisfactory for mapping the whole of the water column. Instead, some
sufficient number of floats will need to form a core group that maintains the baseline
for estimates of both current velocities and float positions; the rest of the floats will
need to act as scouts, mapping the environment at different depths. The depth of
the baseline will need to be adjusted during the mission, as the current velocity at
that depth won’t necessarily match the requirements of the mission as a whole, e.g.
mapping a specific volume of water. The methods and algorithms for coordinating
the swarm as a whole are beyond the scope of this paper, but the relative and absolute
localization of the floats will be considered.

3.3 Float Cycle Implementation

SWARM floats operate with a cycle of set length that always starts and ends with all
the floats at the sound channel depth (determined from measurements [3]). At the
beginning of each cycle, each float has a communication slot during which it first
attempts to establish a range estimate by sending a “ping” message to which other
floats will automatically respond. After this ranging, the float may broadcast data.
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The only localization information that is sent includes the rangings to other units
and any recent GPS position information.

In total, acoustic ranging and communications will take at most ten minutes, the
exact length depending on the number of floats and the length of each communica-
tion slot. At its end, each float will have the most up-to-date information, and may
decide what actions to take until the end of the cycle. For now, these actions are lim-
ited to diving to and drifting at a specified depth, optionally followed by a profiling
ascent from the bottom of the sea to the surface at the end of the cycle. While at the
surface, the float will communicate with the controller via satellite after establish-
ing a new GPS position fix. At the end of a cycle, the float will return to the sound
channel depth for the next communication slot.

The normal operation of a float may of course be interrupted by exceptional cir-
cumstances, such as problems with satellite communication, avoidance of the sea
bottom, detection of entrapment to a fishing net, beaching on shallow island waters,
being picked up by somebody, etc.

4 Float Localization

The localization of a group of floats, as described above, can be split into three parts.
The core group here refers to the floats that have each performed the same actions
during the previous cycle, and therefore their relative motion is likely to be small.

1. Determine the relative positions of the core group
2. Localize other floats with respect to the core group
3. Estimate the absolute position, orientation, and velocity of the swarm

The approach presented here to solving these related problems makes use of two
particular techniques: mass–spring optimization for self–localization by the core
group of floats and multilateration for localization with respect to the core group.

As a part of the localization process, estimates of sea current velocities at the
various depths visited by the swarm may be generated and maintained. For an alter-
native approach combining all aspects of localization and mapping, a method based
on an extended Kalman filter has also been implemented [12].

4.1 Relative Self-localization

The problem of determining the relative positions of a group of underwater floats
based on incomplete measurements of inter-float distances is remarkably similar
to the problem of self-localization in ad-hoc wireless sensor networks, with the
relaxation that each unit is occasionally able to get an absolute GPS position fix.
The approach chosen here is based on mass–spring optimization (MSO)—a type of
mesh relaxation—that has previously been used in such networks [16], along with a
number of other approaches (e.g. [4], [14], and [15]). The primary reason for choos-
ing MSO is its support for using previous position information in building a new
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estimate. MSO has previously been used for robot localization in [11], where laser
range-finder scans of reflective beacons from multiple poses were combined to a
single map. The implementation presented here differs from previous work as the
localization is repeated each cycle, as well as integrating information with different
modalities: relative distances from acoustic ranging and GPS position data.

As all floats need to be at the same depth for communication and ranging, the
localization is done in two dimensions rather than three. Additionally, the orientation
of the floats may be ignored due to their rotational symmetry around the vertical
axis.

It should be noted that as MSO is a type of gradient descent method, it may reach
a local minimum rather than a global minimum, i.e. the localization may produce
an incorrect topology. To decrease this possibility, the quality of the initial estimate
needs to be improved. In practice, MSO will first be applied only to the core group
of floats that have followed the same set of actions during the previous cycle; the
relative positions of these floats are unlikely to vary significantly from the previous
estimate.

Determining the relative positions of the core group is possible when ranging in-
formation between the floats is available, i.e. just after the communication period at
the beginning of the float cycle. Each distance measurement presents a constraint to
the possible positions of the floats, all of which need to be satisfied by the localiza-
tion method. In the context of MSO, each such measurement is seen as a spring, with
energy inversely proportional to how well the constraint is satisfied; if a constraint
is satisfied, its energy reaches zero.

The specific implementation of MSO used by the floats starts with an initial esti-
mate of the relative positions of other floats in the core group, centered on the float
itself. This initial estimate is based on previous estimates of the floats’ positions,
at start from GPS data and later from the previous cycle’s estimates. Next, the esti-
mate is iteratively improved to minimize the differences between the estimated and
measured distances between floats.

To update the estimate of float positions, we iterate over all distance measure-
ments di, j between pairs of floats i and j. First, we take si, j as the estimated separa-
tion vector of the floats with (x,y) positions posi and pos j,

si, j = pos j −posi . (1)

Then, using a spring constant of 1, the total virtual force fi acting on each float may
be defined as the sum of the forces fi, j (in the direction of si, j) between that float and
its neighbours due to the differences between the measured and estimated distances
between them:

fi = ∑
j

fi, j = ∑
j

si, j

|si, j| (|si, j|−di, j) . (2)

Following [16], the estimated position of each float is then updated by

posi �→ posi +
fi

2ni
(3)

where ni is the number of distance measurements between float i to its neighbours.
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The iteration is ended when the global energy of the springs, i.e. the sum of
squared errors

E = ∑
i, j
|fi, j|2 = ∑

i, j
(|si, j|−di, j)

2 , (4)

has reached a plateau and ceases to improve.

4.2 From Relative to Absolute Coordinates

Once the relative positions of the core group of floats have been estimated, other
floats may be localized with respect to the core using multilateration [2]. This in-
cludes scouts—floats that have drifted at other depths than the core group—as well
as floats from the core group that have visited the surface. Once these initial position
estimates have been included, a second MSO round is performed, incorporating all
of the floats.

As each float’s local map of the float positions is centred on itself, the relationship
between the relative and absolute positions may be expressed via an estimate of the
absolute position of the float itself, together with a rotation for the swarm as a whole.
The float’s absolute position may be corrected from a single GPS fix (either by the
float itself, or by another float for which the relative position is known).

The rotation of the swarm is corrected when recent GPS positions of at least
two floats are available. This is done by determining the difference between the
estimated and measured bearings of each pair of floats for which GPS positions are
known, and correcting the swarm rotation factor by the average of these angles.

5 The Sea Simulator

The algorithms and procedures described above have been developed and verified
with a simulation of the Gulf of Finland, using a simulator platform developed for
this project. The simulator is a platform for testing and developing autonomous
floats. It uses a server-client architecture, with each float provided with the same
interfaces as the actual float has to its sensors and actuators—including realistic
instrument errors. After a float is initialized, its movement in the water is controlled
by the simulator according to a model taking into account its buoyancy and drag
forces, as well as the three-dimensional current flow vectors. Horizontal and vertical
positions and velocities are not discretized. The movement of the float’s piston is
modelled by limiting the rate of change of the float’s volume.

The simulator is based on data from the Finnish Marine Research Institute’s
BalEco ecosystem model [18], which has a variable depth resolution ranging from 3
meters near the surface to 30 meters at a depth of 150 meters. Horizontal resolution
for sea currents, salinity and temperature is roughly 11 km×11 km, and temporal
resolution is 6 hours. The sea depth data has a resolution of about 1.8 km×1.8 km.
The simulator uses a linear interpolation for continuous values.
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The simulator is in no way limited to modelling the Baltic Sea, as long as the req-
uisite environmental data is available. The development of this novel simulator (see
Fig. 3) was necessary as no other platform was found with the required capabilities
of realistically modelled fluid dynamics and support for simultaneous modelling of
multiple floats (tens or even hundreds at a time) as well as hardware-in-the-loop
testing. The simulator and its experimental verification with tests at sea will be pre-
sented in a later paper.

Acoustic communication is modelled in the simulator by using separate models
for the maximum travel distance of a message depending on whether both the sender
and recipient are in the sound channel. In the sound channel, the probability of
message transmission reaches zero at 7 km, while outside the channel the maximum
range is 500 m. The message travel time has an added error of up to 5%. These
values are slightly pessimistic approximations, based on at-sea tests done with the
acoustic modem used in the SWARM floats.

Fig. 3 3D view of the track of a simulated float over seven days, with vertical depth exagger-
ated by a factor of 20. Dots indicate the positions of other floats. Each surfacing is separated
by twelve hours. The shape of the sea bottom is shown in the background, with a horizontal
resolution of 1.8 km. The total distance traveled by the float during the time shown is roughly
20 km.

6 Test Setup

The operational cycle and the presented localization method have been tested using
the sea simulator described above and a data set from August 2008. At that time of
year, the Baltic sound channel is present in the Gulf of Finland at a depth of 55 m to
65 m, which precludes testing in the immediate vicinity of the coast.

For this test, the operational cycle of each float has been set to a length of two
hours. At the beginning of the cycle, each float dives to the sound channel for com-
munication and ranging, followed by a dive up to a waiting depth of 10 m. Every six
cycles, near the end of the cycle, each float will descend until it detects the sea bot-
tom using its echosounder and then rise to the surface. The surfacings are staggered
by assigning each float a variable length for its first dive, with equal distribution
across the group from one to six cycles. While at the surface, each float will try
to get a GPS fix and communicate that via satellite to the simulated human opera-
tor. This setup allows the operator to get a confirmation of each float’s continuing
operation twice a day as well as an update on the group as a whole every two hours.
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The floats are started from a random position near 22.35◦E 59.35◦N, chosen due
to the sea bottom depth in that vicinity keeping at about 100 m; deep enough to have
little influence on the sound channel. The starting time of each simulation run is
randomly chosen from the available month of data.

Five different scenarios were tested, with variable numbers of floats and variable
starting separations: groups of 6, 12, and 18 floats were each set to start within 3 km
of each other, and groups of 12 floats were additionally started within 300 m and
1 km of each other. The number of floats surfacing during each cycle is always one
sixth of the group size. Roughly 90 week-long deployments of each scenario were
simulated, with the simulation runs taking in total about 5 days to complete using a
single desktop computer.

7 Results and Discussion

During a mission of one week, each float will drift a distance of 12–25 km, almost
always changing its drifting direction by 180◦ at least once. The average distance
between floats will only increase by a factor of 1.5–2.5, as each float will experience
roughly the same set of currents. One float’s movement during such a deployment
is shown in Fig. 3.

Overall, the localization filter is able to consistently localize each float within a
few hundred meters of its actual position while drifting 1–2 kilometers underwater
from its previous GPS position fix. The median position error ranges from 70 m to
200 m, depending on the number of floats and the range of deployment. The relative
positions of other floats are accurate most of the time, as indicated by the low errors
in the bearing and range estimates of other floats. These and other error figures are
shown in Table 1.

The increased accuracy in a setup using twelve floats instead of six floats is due
to the occasional availability of two simultaneous GPS measurements, which allows
for the rotation of the local frame of reference to be corrected. This may be seen in
the radical decrease of the bearing error (see Table 1) when moving from six to
twelve floats.

The decrease in accuracy when the group size is increased to 18 was unexpected,
and appears to be due to the increased complexity of the network of floats. With more
floats, there are more opportunities for the imperfect distance estimates to cause an
error in the estimated topology of the floats. This may also be seen in the increase
of the bearing error as the separation between the units decreases: shorter distances
between floats allow for more changes in the topology, resulting in more mistakes.

The accuracy of each float’s self-localization may also be gauged by comparing
the position estimate error to the distance traveled from the latest GPS position fix.
Effectively, we may compare the results of the MSO localization to the assump-
tion of always being exactly where the last GPS fix was made. Depending on the
magnitude and variability of the currents, this may in fact be a reasonable estimate
to make. For estimates made when the float has traveled at least 500 m from the
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Table 1 MSO localization errors

Group size 6 12 12 12 18
Separation at start (km) 3.0 0.3 1.0 3.0 3.0

Sample size 45 344 85 727 80 406 79 585 135 900

Position
error (m) a

mean 478.8 119.9 141.5 216.2 410.6
median 222.2 66.7 69.8 107.3 136.1

P90 1184.0 255.4 256.4 342.4 1032.2

Bearing
error (rad)
b

mean 0.287 0.363 0.214 0.115 0.315
median 0.179 0.087 0.045 0.032 0.067

P90 0.637 1.177 0.674 0.193 1.068

Range
error (m)
c

mean 131.0 16.7 33.3 108.6 123.4
median 98.3 14.3 29.7 94.8 101.8

P90 204.0 27.4 50.0 160.6 191.8

P90 indicates the 90th percentile.
a Distance from each float’s estimate of its position to its actual position
b Average absolute error in the estimated bearings from each float to all other floats
c Average absolute error in the estimated ranges from each float to all other floats

previous GPS position (true for roughly half of the samples), the position estimate
is closer to the float’s true position in 80–98% of the cases1.

8 Conclusions and Future Work

The operational environment of SWARM floats is challenging, especially when
combined with the requirements of an extended mission. In particular, the lim-
ited energy available to each float forces the operational cycle to such a length that
the water currents and other environmental variables may change radically between
measurements. Despite this, float localization may be achieved at a sufficiently high
accuracy for the applications in question.

In order to develop and test the operation of the swarm as a whole, a simulator
platform and autonomous float software have been developed. These tools will be
used for further research, including future work on even more accurate localization
methods. The accuracy of these tools will also need to be tested, with deployments
of the actual hardware at sea.
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Distributed Algebraic Connectivity
Maximization for Robotic Networks:
A Heuristic Approach

Andrea Simonetto, Tamás Keviczky, and Robert Babuška

Abstract. We consider a weighted communication graph in a network of mobile
robots, and its associated Laplacian whose entries depend on the pairwise distance
between the robots. We propose a heuristic distributed solution for the maximization
of the algebraic connectivity of the graph by moving the robots to appropriate po-
sitions. Our approach is optimization-based and can be extended to handle various
constraints, such as the robots’ dynamics. Our proposed distributed solution uses
local algorithms that utilize information only from nearby neighboring robots. Nu-
merical simulations show the applicability and effectiveness of the algorithm and
indicate that in certain cases the proposed distributed solution can perform better
than the centralized version.

1 Introduction

Groups of autonomous mobile robots that communicate with one another to achieve
a common goal are considered as a key enabling technology in several applications
ranging from underwater and space exploration [1, 2], to search and rescue [3], fire
monitoring [4] and other surveillance applications [5]. These robotic teams are envi-
sioned to possess on-board processing capability, but the common task can only be
achieved through information exchange among the members and possibly a base sta-
tion. Such multi-vehicle teams are thus often referred to as robotic networks. Among
the several engineering and research questions these applications pose, maintain-
ing connectivity between the individual robots and increasing the communication
quality given the environmental constraints and objectives, have fundamental im-
portance. Many different types of coordination and control frameworks that have
been proposed recently for cooperating robotic teams rely on some type of agree-
ment protocol or consensus process that leads to coordinated team actions [6, 7, 8].
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Since these protocols typically assume only local communication among “neigh-
boring” units, the interconnection topology of the underlying communication graph
influences their effectiveness profoundly. Motivated by the significant role it plays
in the performance of many distributed control methods, we study distributed solu-
tions for maximizing the algebraic connectivity of the communication graph (often
denoted as λ2) in mobile robotic networks. This parameter is the second small-
est eigenvalue of the communication graph’s Laplacian matrix, and it dictates the
convergence properties of consensus protocols [9, 10]. We focus on distance-based
connectivity maximization with minimum separation constraints, as opposed to en-
suring line-of-sight connectivity in an obstacle-rich environment [11]. Maximiza-
tion of λ2 is also important for collaborative target tracking [12], where a network
of mobile robots strive for increased accuracy of the joint position estimate of one
or more moving objects [13, 14, 15, 16]. Besides an increase in accuracy, a positive
λ2 also ensures that the network stays connected during the collective motion.

A few examples of decentralized λ2 maximization have appeared in the litera-
ture so far. These are typically either limited to only specific scenarios, or imply
heavy communication requirements. Often the proposed approaches are not derived
from a centralized solution, in other words the formulated local problems are not
directly related to the solution of the centralized one. Without such a consistency,
there are typically no guarantees that the algebraic connectivity is maximized. The
approach in [17] uses a two-step distributed solution, which relies on supergradients
and potential functions. The required communication load scales with the square of
the graph diameter. Other approaches proposed in [18] and [19] make use of auc-
tions and game theory, respectively, and consider maintaining connectedness of the
graph as the main priority. Although the communication requirement is limited in
these algorithms, they are designed via a bottom-up approach, i.e., starting from lo-
cal problems, and a potential increase of λ2 is usually a simple by-product of their
solution without analytical guarantees.

In this paper, we present a heuristic distributed approach for the λ2 maximization
problem as formulated by [20, 21, 12] in a centralized framework. Our perspective
is model-based optimization, which allows additional constraints (e.g., the dynam-
ics of the robots) to be included explicitly in the problem formulation. Moreover,
we believe that this approach can eventually lead to a certain type of consistency
with regards to the centralized solution. The proposed solution can also be extended
to incorporate other interesting scenarios, such as collaborative target tracking. The
proposed distributed approach relies on local problems that are solved by each robot
using information only from nearby neighbors. Specifically, two communication
policies are introduced to respect the potentially limited communication and com-
putation capabilities of the robots. Simulation results support the efficacy of the
approach and show interesting properties of the algorithms. For instance, given the
nonlinear/nonconvex nature of the problem, in certain scenarios the distributed so-
lutions converge to a higher λ2 value than the centralized ones.

The paper is organized as follows. Section 2 formulates the centralized problem
as suggested by [20, 21, 12]. The proposed distributed approach and communication
policies are described in Section 3. Numerical simulations are shown in Section 4
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to assess the performance of the distributed solutions with respect to centralized
schemes. Conclusions and open issues are discussed in Section 5.

2 Problem Formulation

We consider a network of N agents. The agents represent mobile robots and the
network encodes undirected communication links, meaning that if two agents are
connected, they can communicate with each other. As a general notation ai(k) repre-
sents the value of the variable a for agent i at time k. Let x(k)∈R2N be the collection
of the agents’ positions on a 2-D plane, i.e., x(k) = (x�1 (k), . . . ,x�N (k))�. Although
our scheme can be extended to more complicated robot dynamics, for simplicity of
exposition we consider agents with the following discrete-time dynamics

xi(k) = xi(k−1)+vi(k−1)Δ t (1)

where vi(k) is the velocity control input and Δ t the sampling time. We use graph-
theoretical tools to model the network. The set S contains the indices of the mobile
agents (nodes), with cardinality N = |S |. We use E to indicate the set of com-
munication links, i.e., the edges {(i, j)|i, j ∈ S }. The graph G is then expressed
as G = (S ,E ). Let the graph be connected initially, the agent clocks synchro-
nized, and assume perfect communication (no delays or packet losses). The agents
with which agent i communicates are called neighbors and are contained in the set
Ni. Note that node i is not included in the set Ni. We define Ji = Ni ∪ {i} and
Ni = |Ji|.

We define a set of Laplacian matrices L associated with G as

L = {L ∈ R
N×N |L = L�, �i j = 0 iff (i, j) /∈ E ,L1 = 0}

The entries of a Laplacian matrix L are defined as

�i j :=

⎧⎨
⎩

0 (i, j) /∈ E
−wi j (i, j) ∈ E , i �= j

∑l �=i wil i = j
(2)

where the positive weights wi j represent the “connection strength” between agents i
and j. The weights themselves depend on the physical distance between the agents.
For this purpose we introduce the square distance matrix D, whose entries di j are
defined as

di j = ||xi(k)−x j(k)||2. (3)

The value of the normalized weights will be 1 representing a “strong connection”
if di j is less than a certain threshold, i.e., di j ≤ ρ1, with ρ1 > 0. On the other hand,
agents will not be connected at all (wi j = 0) for di j > ρ2, with ρ2 > ρ1. For ρ1 <
di j ≤ ρ2 the agents are connected with a connection strength that decreases smoothly
with their distance. Typically, spatially decaying functions are used for the weights
wi j [22], and a few of them are shown in Table 1. Case (1) is a linear representation
which is continuous but not differentiable, case (2) is the exponential function of
[12], which is not differentiable and also discontinuous at ρ2, while case (3) is a



270 A. Simonetto, T. Keviczky, and R. Babuška

Table 1 Possible choices of weighting functions. Case (1) is a linear representation, case (2)
is the exponential function of [12], while case (3) is a 5-th order polynomial description.

Case Function Figure

(1) wi j :=

⎧⎨
⎩

1 di j < ρ1
1

ρ2−ρ1
(ρ2 −di j) ρ1 ≤ di j < ρ2

0 di j ≥ ρ2

  
0

 

1

ρ1 ρ2
di j

wi j

(2) wi j :=

⎧⎪⎨⎪⎩
1 di j < ρ1

exp
(
− 5(di j−ρ1)

ρ2−ρ1

)
ρ1 ≤ di j < ρ2

0 di j ≥ ρ2

  
0

 

1

ρ1 ρ2
di j

wi j

(3) wi j :=

⎧⎨
⎩

1 di j < ρ1

∑5
p=0 αpdp

i j ρ1 ≤ di j < ρ2
0 di j ≥ ρ2

  
0

 

1

ρ1 ρ2
di j

wi j

polynomial description, which for a suitable choice of the coefficients αp is both
continuous and twice-differentiable.

As a direct consequence of the above definitions, the entries of the Laplacian
matrix (2) will depend on the pairwise distance and therefore the position states
of the robots, making it state-dependent, which we will denote by L(x). We are
interested in the maximization of the algebraic connectivity of the weighted graph
by moving the robots to appropriate positions. This goal can be formulated as the
following optimization problem [21]:

P(L(x)) : max
x,γ

γ (4a)

s.t. γ > 0 (4b)

L(x)+11T � γI (4c)

where the decision variables are γ and the robot locations x. The optimal value of γ
will be the maximum λ2 for L(x).

This problem would be convex if L was the decision variable, but it is non-convex
given that we are optimizing over the positions x and the entries of L are nonlinear
functions of x. However, we can obtain an iterative convex approximation following
the steps of [20]. First we differentiate (3) with respect to time as

2(ẋi(k−1)− ẋ j(k−1))�(xi(k−1)−x j(k−1)) = ḋi j(k−1)

and then we employ Euler’s first-order discretization method to rewrite (3) as

di j(k) = −di j(k−1)+2(xi(k)−x j(k))
�(xi(k−1)−x j(k−1))
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In the same way, the weights of the state-dependent Laplacian L(x) are discretized
as

wi j(k) = wi j(k−1)+
∂wi j

∂di j

∣∣∣∣
di j(k−1)

(di j(k)−di j(k−1))

= wi j(k−1)+2
∂wi j

∂di j

∣∣∣∣
di j(k−1)

(xi(k)−x j(k)−xi(k−1)+x j(k−1))�(xi(k−1)−x j(k−1))

This allows us to consider the maximization of the algebraic connectivity of L as the
following iterative convex semi-definite programming (SDP) problem:

Pk (L(x),x(k−1),D(k−1),vmax) :

max
x(k),D(k),γ(k)

γ(k) (5a)

s.t. Q1 :

{
γ(k) > 0

L(x(k))+11T � γ(k)I
(5b)

Q2 :

⎧⎨
⎩

Q2.1 : di j(k)+di j(k−1)−2(xi(k)−x j(k))�(xi(k−1)−x j(k−1)) = 0
Q2.2 : di j(k) > ρ1, ∀(i, j)∈ E
Q2.3 : ||xi(k)−xi(k−1)|| ≤ vmaxΔ t i = 1, . . . ,N

(5c)

where the constraint Q2.2 is used both to avoid agents getting too close to each
other and to restrict the distances to be positive. This is not automatically ensured
by Q2.1 if the agents could move arbitrarily fast. The constraint Q2.3 on the velocity
represents the physical limitations of the agents.

The problem Pk(L(x),x(k−1),D(k−1),vmax) in (5) is solved iteratively in each
sampling time step and its decision variables are x(k), D(k), and γ(k). The problem
formulation depends on the values x(k − 1) and D(k − 1) from the previous time
step k − 1. Here k stands both for the iteration counter and for the discrete time
index since in this problem the two concepts are equivalent. Since x(k) and D(k)
are considered independent, there could be a possible inconsistency between the
distances and the actual position of the agents. This effect can be diminished if in
addition to constraint Q2.1, D(k− 1) is recomputed based on x(k− 1) before each
optimization step. Although the original problem (5) can be proven to converge to a
local maximum [20], this property may be lost when recomputing D(k−1). This is
due to the fact that the λ2 of L(x(k−1)), based on the recomputed D(k−1), may be
smaller than γ(k−1). However, in the simulated scenarios we consider in Section 4,
the algorithm using recomputed D(k−1) has always converged.

Remark 1. We note that in [20] the requirement that the distances di j(k) form the
entries of a square Euclidean Distance Matrix is considered as an additional convex
constraint. This would help in reducing the inconsistency effect between D(k) and
x(k). However, our experience indicates that this introduces extra rotational rigidity
to the graph in the numerical simulations and as a result it has not been included in
our problem setup.

The optimization problem that has been described in this section attempts to solve
the connectivity maximization problem in a centralized manner using linearization,
discretization and an iterative solution approach. In realistic application scenarios
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however, computing the desired positions and the corresponding motion commands
for the robots cannot be performed in a single centralized location due to compu-
tational and communication constraints. In the next section, we describe a solution
approach that allows the problem to be solved in a distributed fashion, using local
computations and limited communication resources, which increases the flexibility
of the robotic network and is thus appealing in practice.

3 The Proposed Distributed Approach

In this section we present a distributed approach to solve (5). First, we introduce
necessary notation and definitions, then describe our heuristic method and argue
why solving local problems leads to a non-decreasing sequence of algebraic con-
nectivity, when considering the linearized Laplacian of the overall network.

In order to describe the local problems each agent will be solving, we define
subgraphs that correspond to the agents and their neighborhood. Let Mi denote the
enlarged neighborhood for each agent i defined as

Mi =
⋃

l∈Ji

Jl , i = 1, . . . ,N (6)

whose cardinality will be Mi. We denote the vector containing all the positions of
the agents in the set with xMi , while we call the set of agents belonging to ∂Mi, the
bordering agents of Mi defined as

∂Mi = {l|l ∈ Mi, l /∈ Ji}, i = 1, . . . ,N (7)

Figure 1 provides a graphical illustration of this notation. In some situations we
will consider a randomly selected connected subset of Mi that includes agent i.
This set will be denoted by R(Mi) with cardinality RMi. Following suit, we also
define random versions of the border set R(∂Mi) and neighborhood set R(Ji) with
cardinality RNi as

R(∂Mi) = {l|l ∈ R(Mi), l /∈ Ji}, i = 1, . . . ,N (8)

R(Ji) = {l|l ∈ R(Mi), l /∈ R(∂Mi)}, i = 1, . . . ,N (9)

Ji
Agent i

Mi
∂Mi

R(∂M j)

Agent j

R(J j)

R(M j)

Fig. 1 Notation for the distributed solution
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Graphical examples of these definitions are also shown in Figure 1. Finally, we will
denote the graph Laplacian associated with subgraph Mi as Li with correspond-
ing distance matrix Di, while the one associated with R(Mi) as R(Li) and R(Di),
respectively. We also introduce a scaled maximum velocity ṽmax,i defined as

ṽmax,i =

(
∑

j∈Mi

1
Nj

)−1

vmax, i = 1, . . . ,N (10)

whose value varies from agent to agent. The use of this quantity will be explained
later in this section. We consider two possible strategies:

1. Full neighborhood (FN) strategy: the agents are allowed to communicate within
the whole enlarged neighborhood Mi. In this case the proposed distributed so-
lution will lead to monotonically increasing connectivity and more importantly,
it will respect the constraints on D, meaning that di j > ρ1 for all i and j. How-
ever, the communication requirements and local problem size will increase as the
agents get closer to each other and increase their connectivity.

2. Random neighborhood (RN) strategy: the agents are allowed to communicate
only with a randomly selected subset of their extended neighborhood R(Mi).
In this case, the overall connectivity may no longer increase monotonically and
constraints on D may not always be fulfilled. However, the communication and
local problem size can be significantly reduced.

Our algorithms consist of two steps. First, each agent solves the problem PFN
k,i de-

fined as
Pk(Li(xMi

),xMi
(k−1),Di(k−1), ṽmax,i) (11a)

s.t. Q3 : x j(k) = x j(k−1), for j ∈ ∂Mi (11b)

computing the solution x̂Mi(k), which is composed of x̂i j(k) for each j ∈ Mi. Thus,
we will call x̂i j(k) the position of agent j as computed by agent i. Note the impor-
tance of the extra constraint Q3 that guarantees monotonically increasing connec-
tivity as will be explained later in this section.

As the second step, the solutions x̂Mi(k) are shared within the enlarged neighbor-
hood Mi and averaged according to

xi(k) = xi(k−1)+ ∑
j∈Mi

1
Nj

(
x̂ ji(k)−xi(k−1)

)
, i = 1, . . . ,N (12)

Algorithm 3 summarizes the method for the FN strategy as described above. For
the RN strategy, the algorithm follows the same scheme with the following substitu-
tions: PFN

k,i → PRN
k,i , Mi → R(Mi), ∂Mi → R(∂Mi), x̂Mi → x̂R(Mi)

, Li(·)→ R(Li(·)),
Di → R(Di), Mi → RMi, and Nj → RNj.

The heuristics presented in the above algorithm lead to a solution with monotoni-
cally increasing connectivity, i.e., if we consider the resulting global position vector
x(k) = (x�1 (k), . . . ,x�N (k))�, the algebraic connectivity of the corresponding global
linearized Laplacian L(x(k)) would be monotonically increasing in each iteration.
In order to justify our algorithm and ensure this property, the extra constraint Q3

on the border set is necessary. It allows us to show that L(x(k))−L(x(k − 1))  0
where x(k) is the collection of the locally averaged xi(k) solutions. This property
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Algorithm 1. Distributed Algebraic Connectivity Maximization for FN strategy
1: Input: xi(k−1), x j(k−1), j ∈ Mi
2: Compute: di j(k−1) from input based on (3)
3: Solve: PFN

k,i computing x̂i j(k), j ∈ Mi

4: Communicate: x̂i j(k) among members of Mi

5: Average: xi(k) = xi(k−1)+ ∑
j∈Mi

1
Nj

(
x̂ ji(k)−xi(k−1)

)
6: Output: xi(k)

follows from the following line of arguments. Consider the local problem PFN
k,i and

its solution comprised of x̂i j(k) for all j ∈ Mi. Construct a global vector as

x̂(i)(k) = (x�1 (k−1), . . . , x̂�i j (k), . . . ,x
�
N (k−1))� (13)

where we keep those agent positions that have not been optimized fixed, and we
update the rest from the solution of the local problem. It is relatively straightforward
to see that due to constraint Q3, L(x̂(i)(k))−L(x(k−1))  0, meaning that the new
positions x̂(i)(k) do not decrease the algebraic connectivity of the Laplacian matrix.
This trivially implies (L(x̂(i)(k))−L(x(k−1)))/Ni  0 for all i. Thus summing over
all agents leads to

N

∑
i=1

1
Ni

(L(x̂(i)(k))−L(x(k−1)))  0 (14)

Considering the weighted sum xi(k) in (12), and the associated global vector x(k),
it can be shown that

L(x(k)) =
N

∑
i=1

1
Ni

L(x̂(i)(k)) (15)

which leads to the desired monotonicity property

L(x(k)) 
N

∑
i=1

1
Ni

L(x(k−1))  L(x(k−1)) (16)

given that ∑N
i=1

1
Ni
≥ 1. With similar arguments, it is possible to argue that feasibility

of the local problem constraints imply feasibility of the centralized problem. The
above discussion also elucidates the reason for scaling the maximum velocity in the
local problems by (∑ j∈Mi

1
Nj

)−1.

Remark 2. In our numerical experiments we have not encountered any infeasibil-
ity when using the FN strategy and the original Q2.2 constraint in the local prob-
lems (mainly due to the particular choice of the weighting functions and only a
few neighbors for each robot). However, in principle, the constraint Q2.2 should be
tightened as well by introducing local ρ̃1i j ≤ ρ1. We are currently investigating the
most suitable way of incorporating these tightened constraints in the local problem
formulations.

Finally, we present a justification for the choice of the enlarged neighborhood set
Mi using the following example. Consider the interconnection shown in Figure 2
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and assume that instead of the enlarged neighborhood Mi, the smaller neighborhood
Ji is used. In that case the consistency constraint in PFN

k,i requires agents i+ 1 and
i−1 to be fixed. It is easy to see that if the distance between the agents is already at
the lower limit

√ρ1, all the agents will remain stationary. However, if we considered
the enlarged neighborhood Mi in the local problem instead, the situation would be
different. The bordering agents 1 and N would rotate towards the center of the string,
to connect with 3 and N −2, respectively.

Fig. 2 Illustrative example
for justifying the choice of
the extended neighborhood
set i

Ji

N1

4 Simulation Results

In this section, we present numerical simulation results to illustrate how the differ-
ent algorithms perform with respect to the centralized scheme. In particular, we will
analyze first the FN strategy and observe that, in some cases, it converges to a higher
λ2 value than the centralized solution. Then we proceed to investigate RN strategies,
which lead to reduced communication load for the price of losing the monotonically
increasing connectivity property and persistent feasibility of the minimum distance
constraint Q2.2. We use the benchmark problem of [20] to relate our results to the lit-
erature. This scenario starts with N = 6 agents on a line forming a connected graph.
The initial position vector is xi(0) = [1 + 1.05(i−1), yi]

�, with yi ∼ (0,σ), meaning
that yi is drawn from a Gaussian distribution (0,σ), with mean 0 and standard de-
viation σ = 0.1. Randomness is added to test the algorithms’ sensitivity to slightly
different initial conditions. The other simulation parameters include a weight func-
tion of type (3) in Table 1, ρ1 = 0.5, ρ2 = 2, velocity bound of 0.2, and final time
T = 100. We collected 50 simulation runs for 4 different cases: (1) FN strategy,
(2,3,4) RN strategy with the ratio RMi/Mi set to 0.75,0.50, and 0.25, respectively.
We call rλ2

the ratio between the converged λ2 of the distributed solution and the
one from the centralized solution. Therefore, if rλ2

> 1 the distributed solution has
better performance than the centralized one. In Figure 3 an example of the trajecto-
ries of the centralized and the distributed solutions for the FN strategy is depicted.
The initial positions are marked with squares. The final positions are marked with
circles. The bold lines represent the final communication graph and the thin lines
the agent trajectories. The values of

√ρ1 and
√ρ2 are also depicted for comparison.

Figure 4 shows, in the same simulation, the evolution of the algebraic connectivity
as a function of the sampling time k. We can observe that although in this case the
centralized solution converges faster to the final configuration, the distributed ap-
proach eventually converges to a higher final algebraic connectivity value. We can
also notice “plateaus” during the convergence of the algebraic connectivity, where
the agents are rotating and λ2 is not changing significantly.

Figure 5 represents the ratio between the final distributed and centralized solu-
tions, i.e., rλ2

in all four cases. The disconnected label refers to situations in which
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Fig. 3 Trajectories for the
centralized solution (a) and
for the distributed approach
using the FN strategy (b).
The initial positions are
marked with squares. The
final positions are marked
with circles. The bold lines
represent the final commu-
nication graph and the thin
lines the agent trajectories.
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the RN strategies lead to a disconnected graph. From the simulation results, we can
observe that the FN strategy has performance comparable to the centralized solu-
tion in most cases. It may even converge to a higher λ2 value in some instances,
and it could get stuck in local minima in certain cases, which are not present in
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the centralized algorithm. Investigation of these local minima is a topic of ongoing
research. The behavior of the RN strategies differs from the FN strategy for two
reasons: one is the absence of a monotonically increasing connectivity property and
the other is a possible infeasibility of the local problems. One consequence of this
is that decreasing the ratio RMi/Mi is more likely to lead to an increasing number of
disconnected final graphs. We can also observe a clear increase in performance for
RMi/Mi = 0.50 and 0.25. This can be expected since the minimum distance con-
straints are no longer enforced in a consistent manner, and some agents are allowed
to be arbitrarily close to each other if they are excluded from the local problem
formulation. This also means that, in some cases, local problems can become in-
feasible. Infeasible local problems were handled in the simulations by keeping the
previous positions, i.e., xi(k) = xi(k − 1). For small RMi/Mi ratios this led to all
local problems eventually becoming infeasible and all pairwise distances becoming
smaller than

√ρ1. The ratio RMi/Mi can be considered as a tuning parameter to ob-
tain a reduction of communication. On one hand, for RMi/Mi = 1 we have possibly
high communication load, on the other hand for RMi/Mi → 0, we have limited com-
munication for the price of sacrificing the monotonically increasing connectivity
property. This loss however does not necessarily lead to either disconnected graphs
or distances smaller than

√ρ1. The choice of 0.75 serves as an example for this
phenomenon.

5 Future Developments and Open Questions

We have presented a heuristic distributed solution for the maximization of algebraic
connectivity in a network of mobile robots. The method is optimization-based and
can be further extended by including other types of constraints. Our approach may
be used to obtain a monotonically increasing connectivity property and it can be
easily understood based on the existing centralized solution. We presented simula-
tion results for different communication strategies to assess the performance of the
method, and we highlighted cases in which the distributed solution converges to a
higher λ2 value than the centralized scheme, along with cases in which it converges
to local minima. Several open issues still remain and will be the focus of our fu-
ture research. In particular, a study of the inconsistency between real and linearized
distance D(k), a more realistic dynamical model for the agents, and an investiga-
tion of the theoretical properties of both the FN and RN strategies will be consid-
ered along with experimental validations. Furthermore, we will investigate possible
dual decomposition methods to distribute (5) among the robots, while expecting
that the resulting iterative solutions could compromise real-time applicability. Such
a dual decomposition approach would typically provide primal feasible solutions
only asymptotically, and would require investigating various issues, such as the du-
ality gap. On a longer time scale, other interesting topics of research are how to
extend the problem formulation to handle more realistic scenarios, such as obstacle
avoidance and environment-dependent connectivity.
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Beat-Based Synchronization and Steering for
Groups of Fixed-Wing Flying Robots

Sabine Hauert, Severin Leven, Jean-Christophe Zufferey, and Dario Floreano

Abstract. Groups of fixed-wing robots can benefit from moving in synchrony to
share sensing and communication capabilities, avoid collisions or produce visually
pleasing choreographies. Synchronous motion is especially challenging when using
fixed-wing robots that require continuous forward motion to fly. For such platforms,
performing trajectories with forward speed lower than the minimum speed of the
robot can only be achieved by acting on its heading turn rate. Synchronizing such
highly dynamical systems would typically require position information and entail
frequent sensing and communication among robots within the group. Instead here
we propose a simple controller that reacts to regular beats received through wire-
less transmissions. Thanks to these beats, robot headings synchronize over time.
Furthermore, these controllers can easily be parameterized to steer and regulate the
global progression speed of groups of robots. Experiments are performed both in
simulation and using up to five fixed-wing flying robots.

1 Introduction

Flying robots are often required to follow trajectories that can be easily steered
and speed-regulated for real-world applications such as teleoperation, visiting areas
of interest, exploration and tracking [14]. In the case of fixed-wing platforms, this
means setting the turn rate of the robot such that it will perform loitering trajectories
with a given global speed and direction. Indeed, unlike ground robots or rotorcrafts,
fixed-wing robots need to maintain their flight velocity within a certain limit to avoid
stalling. Loitering allows robots to slow down their global progression speed.

Moreover, some applications can benefit from deploying several robots rather
than a single one to increase the number of sensors in the air, produce different
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points of view and for increased mission robustness [14]. Synchronizing the heading
of the robots within a group can further allow them to move coherently in a given
direction, which can help them avoid collisions, maintain relative distance among
robots for sensor fusion and favor communication [1].

Synchronizing loitering trajectories in real-time across robots while respecting
commands in terms of global motion direction and speed is challenging. Work on
formation path following for unicycle-type vehicles has so far concentrated on math-
ematical models and simulations built upon the assumption that robots know the pre-
cise relative position of neighbors (range and bearing) and sometimes their heading
and speed [2, 3, 8, 10]. Using this knowledge, robots continuously align their posi-
tion to that of their neighbors and to the trajectory they need to follow. However, so
far no results have been demonstrated with real flying robots and simulations only
depict scenarios without sensor noise or low forward speeds and limited turning
rates unrealistic for flying robots. Furthermore, inferring position in a robust and
dependable manner is one of the main challenges in aerial robotics [5, 6].

Instead, here we present a positionless strategy to synchronize and steer groups
of robots that does not require memory, computation or high-bandwidth commu-
nication. This work is inspired from the idea of emergent synchronization studied
in nature [11] and the discovery of synchronized controllers for flying robots using
artificial evolution [6]. We consider robots that fly at constant speed and rely on a
heading sensor and a low-level autopilot that is able to regulate turn rate with some
precision [7]. Based on these assumptions, we propose a minimal controller for fly-
ing robots where synchronization emerges from interactions between each robot and
rhythmic beats sent using a radio-emitter from a base station on the ground or one
of the robots. Each beat is a step function composed of an “on” and “off” phase of
fixed duration. Notice that in the most economical mode, only “on” and “off” sig-
nals need to be sent. Based on this beat and their heading, robots will change their
turn rate to achieve adequate loitering trajectories that display two essential features
seen in Fig. 1. First robots, regardless of their initial heading, converge to identical
headings over time (synchronization). Second, the direction and speed of the loiter-
ing trajectories can be changed to a desired value by mathematically determining
the parameters of the controller. These two features are presented in this order in
the paper because the steering of the robots has as a prerequisite their synchroniza-
tion. Finally, results in this paper are shown both in simulation and with up to five
physical fixed-wing flying platforms that are fully autonomous.

2 Heading Synchronization

Synchronization is essential to make robots move coherently in groups. To achieve
this we developed a controller that reacts to beat signals and heading information.
In particular we define a simple controller where robots receiving the “on” phase of
a beat of duration t1 perform a fixed turn rate of ω1. The “off” phase is then initiated
for a duration t2. During this phase, robots perform a turn rate of ω1 or ω2 depending
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Fig. 1 Example of syn-
chronized steering. Robots
launched from (0,0) in oppo-
site directions receive a beat
composed of an “on” phase
of duration t1 (grey) and an
“off” phase of duration t2
(black). Over time, the robot
headings synchronize. This
can be seen by the fact that
at each start of a beat, the
headings of the two robots
are identical. Furthermore,
the trajectories converge to a
fixed global velocity (speed
and direction). −200 0 200 400 600
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on whether the angle ĥlimh between a predefined heading limit hlim and their current
heading h is positive or negative. ω1 and ω2 are assumed to be of same sign. The
resulting controller is described below and a possible trajectory is shown in Fig. 2.

ω =

⎧⎪⎨⎪⎩
ω1, if beat on

ω1, if beat off and ĥlimh < 0

ω2, if beat off and ĥlimh > 0

(1)

This controller has the property of converging to identical headings at the beginning
of each beat. This can be explained by the fact that the amount of time tlim spent
between the moment the beat is turned off and the robot reaches the heading limit
hlim depends on the initial heading of the robot. If the robot starts at a heading as
shown in Fig. 3 (left), it will perform more than 2π within one beat (t1 + t2), thereby
changing its starting heading for the next beat. However, if the robot starts at the

Fig. 2 Example of a robot
trajectory implementing
the controller described in
equation 1. Here a robot
receives a beat composed of
an “on” phase of duration
t1 (grey) and an “off” phase
of duration t2 (black). Using
this, the robot controller
sets the turn rate to ω1 or
ω2 depending on the beat
and the heading of the robot
with respect to a predefined
heading hlim (see dashed
lines).
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t2-tlim

hlim

ω1
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Fig. 3 Robot trajectories synchronize over time by converging to a state where at the begin-
ning of each beat of duration t1 (grey) + t2 (black), the robot returns to the same heading.
Synchronization is achieve independently of the initial heading of the robot as shown in these
two examples with opposite initial headings. Notice that at the end of the trajectory, robot
headings are identical.

heading shown in Fig. 3 (right), it will perform less than 2π within one beat. Instead,
once synchronized, the robot will perform 2π during one beat, meaning that it will
start the next beat with the same heading.

The overall effect is that robots listening to identical beats and using the same
controller parameters will synchronize over time. In the particular case shown in
Fig. 4, robots synchronize after 2 beats.

Assuming ω1 > ω2, suitable parameters (t1, t2, ω1 and ω2) that lead to trajec-
tories that perform 2π during one beat must be such that the minimum value for
tlim named tlim min produces trajectories that perform less than 2π during one beat
while the maximum value tlim max produces trajectories that perform more than a
full revolution during one beat. These conditions can be mathematically described
as:

|ω1| · t1 + |ω1| · tlim min + |ω2| · (t2 − tlim min) <2π (2)

|ω1| · t1 + |ω1| · tlim max + |ω2| · (t2 − tlim max) >2π (3)

where

tlim min =t2 −min(t2,
π

|ω2| ) (4)

tlim max =min(t2,
π

|ω1| ) (5)

Notice that setting ω2 > ω1 would simply result in reverting the inequalities.
As an advantage, this controller is able to compensate for perturbations and

resynchronize. This is shown in Fig. 5 where we introduce 8 large perturbations
to the system by increasing or decreasing the turn rate ω1 and ω2 by 0.05 rad/s and
0.1 rad/s during an entire beat.
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Fig. 4 Headings (left) of 5 simulated robots initialized at headings 0, 2π
5 , 4π

5 , 6π
5 , 8π

5 . Notice
that over time, the standard deviation (right) across robot headings goes down to 0, meaning
the robot are synchronized.

Fig. 5 Capacity of the robot
controller to synchronize
after 8 large perturbations to
its turn rate
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3 Global Motion

For real-world applications, such as target tracking or exploration, robots will be
required to change their global direction and speed. Here we derive equations to
identify how parameters can act on the direction α and global speed vavg of robots
implementing the controller presented in Eq. 1. In particular, using symbols in Fig.
6 and knowing that robots with forward speed v will perform 2π during one beat,
we can calculate

α = hlim + tan−1 a
b
−β +

3π
2

(6)

and

vavg =

√
a2 + b2

t1 + t2
(7)
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where

a =
v

ω1
· sin(β )+

v
ω2

· sin(γ) (8)

b =
v

ω2
− v

ω2
cos(γ)− (

v
ω1

− v
ω1

cos(β )) (9)

β =ω1 · (t1 + tlim) (10)

γ =ω2 · (t2 − tlim) (11)

tlim =
2π −|ω1| · t1 −|ω2| · t2

|ω1|− |ω2| (12)

Fig. 6 Symbols used to
determine the average ad-
vancement speed and direc-
tion of the robot trajectories.

hlim

α

γ

β

a

b

t1

t2-tlim
tlim

While these equations allow to predict in what direction and at what speed each
robot will move, it is challenging to set the parameters in order to achieve a desired
command because the parameters (ω1, ω2, t1 and t2) can not be isolated analytically.
The problem can however be simplified by only considering trajectories where

β =
3
2

π (13)

γ =
π
2

(14)

which can be achieved if

t1 =
π

|ω1| (15)

t2 =
π

2|ω1| +
π

2|ω2| (16)

leading to trajectories where

α =hlim +
π
4

(17)

vavg =

√
2( v

|ω2| −
v

|ω1|)

t1 + t2
(18)
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Thanks to Eq. 17 and 18, the parameters can easily be modified to modulate the
global motion direction and speed of robot trajectories. In particular, the direction
can be changed by modifying hlim. Furthermore, increasing or decreasing the global
speed of each robot can be done by increasing or decreasing the difference between
ω2 and ω1 respectively within the boundaries set by Eq. 2. For negative turn rates
we can use β = − 3

2 π , γ = − π
2 and α = hlim + π − π

4 .

4 Experimental Setup

For the purpose of this experiment, we use up to five fixed-wing platforms that
are light-weight (420 g, 80 cm) and safe (Fig. 7). Each robot is equipped with an
autopilot for the control of altitude, airspeed and turn rate that provides an interface
for receiving commands from a navigation controller. Embedded in the autopilot is
a micro-controller that runs a minimalist control strategy based on input from only
3 sensors: one gyroscope and two pressure sensors [7].

Fig. 7 Safe flying wing
(450g, 80 cm) for outdoor
experiments made out of
soft material and with a
back-mounted propeller.
The robot is equipped with
an autopilot, embedded
Linux, WiFi dongle and
GPS (only for logging pur-
poses). 80 cm

The controller presented in this paper is implemented on a Toradex Colibri
PXA270 CPU board running Linux, connected to an off-the-shelf USB WiFi don-
gle. The output of this high-level computer, namely a desired turn rate, is sent as
control command to the autopilot. Altitude is set to a different constant value for
each robot between 50 m and 90 m and separated by 10 m. The airspeed is also
constant at 12 m/s. In order to log flight trajectories, the robot is further equipped
with a u-blox1 LEA-5H GPS module.

For emitting and receiving the beat, robots use a Netgear2 WNDA3100 dongle
implementing the 802.11n standard and transmitting in the 5 GHz band. This is in-
teresting with respect to transmissions in the 2.4 GHz band because it allows for less
interference with the considerable number of devices currently used in this band.
Dongles are configured for ad-hoc mode and have a communication range of nearly
500 m line-of-sight.

1 http://www.u-blox.com
2 http://netgear.com



288 S. Hauert et al.

5 Results

To validate the synchronization and steering of groups of robots we perform a set of
in-flight experiments with up to five physical fixed-wing robots described in section
4. During these experiments, one of the robots sends beats by emitting heartbeat
messages at an interval of 5 ms during the “on” phase and no messages during the
“off” phase. This was done to increase the robustness of beat signals to communi-
cation failure.
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Fig. 8 Demonstration of synchronization on board two real flying robots in an outdoor ex-
periment. Left: trajectories of the robots. Right: standard deviation on the robot headings.

The first experiment shown in Fig. 10 is aimed at demonstrating that two robots
that start with different initial headings will synchronize over time. Parameters for
this experiment are based on Eq. 1 with hlim = 5.4 rad ω1 = −0.7 rad/s and ω2 =
−0.1 rad/s with t1 and t2 set following Eq. 15 and 16 respectively. Notice how
the standard deviation of robot headings rapidly goes down to nearly zero, thereby
indicating synchronization.

Beyond synchronization, we aim at showing that a group of two robots can be
steered and speed regulated. In particular, we propose three mission goals. In the
first, robots are directed to go towards the North. hlim is then changed, thereafter
directing the group to the South (phase II). In the third phase the turn rate ω2 is
changed to slow down the global progression speed of the group. As a result, Fig.
9 shows how the speed and direction of the robots can be changed while remain-
ing synchronized. Parameters for this experiment are given in Table 1. Notice that
because of wind to the South of around 3.5m/s, the desired speed and direction of
the group in not exact with respect to theoretical calculations. Good synchronization
and group steering is however achieved.

Finally, in Fig. 10 we show that this method scales to five flying robots. For
this experiment, we propose two mission goals. In the first, robots are directed to go
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Table 1 Controller parameters used to achieve trajectories shown in Fig. 9

hlim [rad] ω1 [rad/s] ω2 [rad/s]
phase I 5.8 -0.7 -0.1
phase II 2.7 -0.7 -0.1
phase III 2.7 -0.7 -0.3
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Fig. 9 Demonstration of synchronization and steering of two real flying robots in an out-
door experiment. Left: trajectories of the robots. Right: standard deviation on the robot head-
ings. Three phases are shown here, in the phase I, the robot group is directed to the North
against the wind. In phase II, robots are directed to turn around and proceed South. Phase III
then shows how the robots can be slowed down. Notice that the robots remain synchronized
throughout the experiment.

Fig. 10 Demonstration of synchronization and steering of five real flying robots in an out-
door experiment. Left: mean trajectory of the robots. Right: standard deviation on the robot
headings. Two phases are shown here, in phase I, the robot swarm is directed to the West. In
phase II, robots are directed to turn around and proceed East. Parameters represent hlim, ω1
and ω2. Notice that the robots remain synchronized throughout the experiment which is why
it is possible to plot such a mean trajectory.
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towards the West. hlim is then changed, thereafter directing the swarm to the East
(phase II). Fig. 10 (right) shows the standard deviation on the heading of the robots
which rapidly decreases over time as robots synchronize. The five robot trajectories
are summarized by their mean which highly resembles the individual trajectories
because all robots are synchronized. In this experiment wind of around 1 m/s to the
North-East was present. Overall, robots are able to achieve good synchronization
and steering. Because of wind and the dynamics of the robots, which prevent them
from rapidly changing their turn rate, the actual direction performed by the swarm is
slightly shifted with respect to the initial goal. A video showing the synchronization
of five robots can be seen on our project webpage (http://lis.epfl.ch/smavs).

6 Discussion

While group steering with synchronization is a first step towards deploying flying
robots in real-world applications, two main challenges persist, namely the difference
in flight dynamics across platforms and the question of what application-oriented
outer-loop control could be used to determine where to steer the robots.

Indeed, two robots implementing identical turn rate commands and speed com-
mands will generally not perform identical trajectories due to sensor noise and hard-
ware differences. The effect of turn rate bias on the synchronization and steering of
the robots can be seen in Fig. 11 where we show the simulated trajectories resulting
from turn rates of value ω1 = [0.6,0.65,0.7] rad/s and ω2 = 0.1 for t1 = 4.488 s and
t2 = 17.9520 s. However, robots that display different turn rates will still perform
one revolution during one beat if they meet requirements described in Eq. 2 and 3.
Therefore, the shift in heading among the robots is stable over time.

To achieve robot behaviors as similar as possible, some feedback would be re-
quired to calibrate the robot turn rates over time. This feedback could be based on
comparing the robot headings at each beat with the desired heading and modifying
the turn rate accordingly.

Finally, in scenarios with wind and without any position information, it becomes
challenging to know where to steer the group of robots. For this purpose, one can
implement an outer-loop responsible for issuing commands for the steering and
speed regulation of the robots. This outer-loop can reactively increase or decrease
the speed of the swarm and make it turn more or less based on sensory input from the
robots. Reactive controllers that do not use position have been developed in the past
to allow flying robots to remain leashed or track a base station on the ground [4] or
avoid obstacles [13]. As an example, we consider in simulation a scenario where the
swarm must remain within the communication range of a base station on the ground.
Each time a robot loses its connection to the base station, it records its heading and
broadcasts a new set of controller parameters to all robots that make them pursue a
global direction opposite from its disconnection heading. In that manner it becomes
the “leader” of the swarm. Results in Fig. 12 show that robots starting from different
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Fig. 11 Effect of turn rate bias in simulation on the robot trajectories (left) and heading (right)
of robots with turn rates equal to ω1 = [0.6,0.65,0.7] rad/s and ω2 = 0.1 for t1 = 4.488 s and
t2 = 17.9520 s. Notice that while the robots implement different controllers, their headings
still synchronize with a constant shift. The direction and advancement speed of the group is
also slightly modified across robots.
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Fig. 12 Simulated swarms synchronize and move in groups while remaining connected to
a base station on the ground. The grey area represents the communication range of the base
station in (0,0). The figure to the left shows the starting position and heading of the robots,
the center image shows all trajectories over a 30 min trial and the figure to the right shows
the end of the trial and the synchronized heading of the robots.

headings are able to synchronize and move in groups while remaining connected to
the base station.

7 Conclusion

Steering groups of robots while keeping them synchronized is an essential building
block for the deployment of flying robots in real-world applications. However, chal-
lenges arise when controlling robots with tightly constrained motion dynamics, such
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as fixed-wing platforms whose speed must remain within a certain limit. Rather than
relying on complex controllers based on position, frequent sensing and communi-
cation, or memory, we proposed a minimal controller that modulates the turn rate
of robots based on their current heading and a beat signal sent from a radio emitter
on a ground station or a robot. This controller has the property of synchronizing the
robot headings to the beats, regardless of their starting heading. Furthermore, it can
easily be parametrized to steer a group of robots and change its global speed. Fi-
nally, we demonstrated synchronization and steering in reality using up to five fully
autonomous fixed-wing flying robots.

To improve results in reality, two directions were suggested. The first consists in
using feedback on heading to improve the accuracy of turn rate commands across
robots. The second includes applying such mechanisms to real-world applications
by adding an outer-loop responsible for emitting the higher-level steering com-
mands. In the future, efforts should also be made to describe controllers in terms of
synchronized oscillators [9, 12]. Such an endeavor would allow for stability proofs,
more formal mathematical models and a large range of extensions based on different
forms of synchronization states found in the literature.
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Technology for the Swiss Federal Department of Defense, Civil Protection and Sports. Sin-
cere thanks to Steffen Wischmann for contributing his expertise in dynamical systems.
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Part III: Coordination Algorithms and Formal
Methods

Lynne E. Parker

In distributed robot systems, coordination algorithms are used to control the motions
and/or actions of the individual robots, such that the team as a whole achieves a
globally coherent behavior. Typically, these coordination algorithms are themselves
distributed, requiring each robot to act based only on a partial knowledge of the
global system state. The key research challenge is designing the distributed control
approach such that optimal, or near-optimal, overall system behavior is achieved. In
the early days of distributed robot systems research, system developers would typi-
cally select an application, explore various local control strategies, and compare and
contrast them to illustrate control techniques that work well in practice. However,
many of these early techniques were ad hoc and empirical, and not based on formal
methods.

More recent research has recognized this shortcoming, and now focuses on the
development of analytical techniques that can synthesize distributed controllers that
achieve the desired macro-level system behaviors. Mather, Braun, and Hsieh address
this challenge by proposing a technique that first identifies robot-robot interactions
at the macroscopic level; they then use this analysis to improve local robot control
policies by filtering out spurious robot-robot interactions. Another top-down design
approach is presented by Chen, Ding, Stefanescu, and Belta, who show how to auto-
matically synthesize control and communication strategies for a robot team based on
global specifications of the desired system-level behavior, stated using regular ex-
pressions. The resulting control strategies are formally proven to correctly achieve
the desired global behavior. The work of Melo and Veloso takes a different ap-
proach to the synthesis of local decision policies by making use of the decentralized
sparse-interaction Markov decision process. This technique allows agents to recog-
nize states when interactions with other robots might occur, thus enabling them to
choose better motions based on possible future inter-robot actions. Tsiotras and Cas-
tro synthesize local controllers by generalizing the standard consensus algorithm,
applied to geometric pattern formation. Finally, Milutinović presents a centralized,
rather than a distributed, approach to defining local robot motion control, in which
each robot’s motion is specified by a stochastic hybrid automaton model.

A common theme in most of the works cited above is that they first make use of
formal methods to describe the desired macro-level behavior, and then show how to
use this macro-level goal to synthesize individual robot controllers. Another use of
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formal methods is to show how the individual goals of robot team members can be
considered collectively, with the objective of maximizing the system’s achievement
of individual goals. Toward this end, game-theoretic techniques have been shown
useful in a variety of distributed robot formulations. Dasgupta and Cheng make
use of the game-theoretic technique called Weighted Voting Games to address the
problem of multi-robot team formation control amidst obstacles. Taheri, Afshar,
and Asadpour also make use of game-theoretic principles, building upon the Local
Interaction Game diffusion model to investigate how a small number of agents can
influence the global society’s behavior through local interactions.

An interesting question in the design of distributed robot coordination mecha-
nisms is the extent to which identical controllers can lead to diversity, specialization,
or changes in robot behavior. Halász, Liang, Hsieh, and Lai study the emergence of
specialization in robot swarms by making use of a distributed adaptation algorithm.
They present a top-down analytical approach that defines the system equilibrium us-
ing waiting time parameters, and then present adaptive optimization strategies that
converge to the optimal configurations that achieve system equilibrium. Temporal
changes in system-level swarm behavior are addressed by Hoff, Wood, and Nagpal,
who show how a swarm can change and improve its foraging behavior by switching
between algorithms based on the environment in which the swarm finds itself.

Once the distributed controller is synthesized, most of the works cited thus far
presume that individual robots execute their controller successfully. The typical
presumption is that large swarms of interchangeable robots automatically result in
robust and scalable swarm behavior. However, this presumption is challenged by
Bjerknes and Winfield, who illustrate that overall swarm reliability quickly falls in
the presence of worst-case, partially failed robots. They conclude that future large
scale swarm systems must develop new approaches for achieving high levels of fault
tolerance.

A complicating issue when designing distributed coordination algorithms is deal-
ing with robot heterogeneity. In many distributed robot teams, robots are intention-
ally designed to be heterogeneous. Such robots have overlapping abilities to address
the team’s tasks, but will typically vary in the quality with which they are able to
accomplish tasks. The coordination challenge is then one of task allocation, de-
termining which tasks each robot should address in order to maximize the overall
system utility. This task allocation issue has been studied since the early days of
distributed robot systems research. Recent work addresses more complex allocation
scenarios, such as the need to form multi-robot coalitions to address the same task.
Hawley and Butler present a hierarchical market-based approach to task allocation
that allows robots to form coalitions; this approach is illustrated in an exploration
task. In other heterogeneous robot task allocation work, Walker and Wilson present
an endocrine-based system that makes use of adaptive robot task sensitivity param-
eters to enable dynamic task reallocation.

Together, the research works in this part represent important new contributions
to the challenge of coordination algorithms and formal method in distributed robot
systems.



Distributed Filtering for Time-Delayed
Deployment to Multiple Sites

T. William Mather, Christopher Braun, and M. Ani Hsieh

Abstract. We address the synthesis of distributed control policies for a homoge-
neous robot ensemble assigned to monitor multiple locations. Our approach uses
an appropriate macroscopic description of the ensemble dynamics to first identify
spurious behaviors exhibited by the ensemble as a result of robot-robot interactions
that arise from operating within a shared environment. This macroscopic analysis
is then used to design and improve the agent-level control policies and enhance the
overall team performance. In particular, we consider the time-delayed task assign-
ment problem where deterministic (or near deterministic) task execution times re-
sult in extraneous robot-robot interactions which degrades the ensemble efficiency.
The main contribution is a novel approach towards synthesizing distributed filters to
smooth out spurious interactions. We validate our distributed filter both in simula-
tion and in actual robotic experiments.

1 Introduction

We address the dynamic allocation of a homogeneous ensemble of robots to a set
of spatially distributed tasks, which is relevant for large scale environmental mon-
itoring, surveillance, and automated warehouse distribution systems. In these ap-
plications, the ensemble must have the ability to autonomously distribute among
the variouslocales/tasks and redistribute to ensure task completion and/or coverage
that may be affected by robot failures or changes in the environment. Furthermore,
we are interested in the design of distributed allocation strategies that can be im-
plemented with little to no inter-agent wireless communication. This approach is
relevant in situations where communication may be unreliable or non-existent, e.g.,
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underwater or underground environments, or when bandwidth must be preserved to
enable transmission of critical data.

This is similar to the multi-task (MT) robots, single-robots (SR), time-extended
assignment (TA) problem (Gerkey and Mataric, 2004). In the multi-robot domain,
market-based approaches (Gerkey and Mataric, 2002; Vail and Veloso, 2003; Guer-
rero and Oliver, 2003; Dias, 2004; Lin and Zheng, 2005; Jones et al, 2006, 2007)
have been successful and can be further improved when learning is incorporated
(Dahl et al, 2006). Another approach is the formulation of the allocation strategy
as a distributed constraint satisfaction problem, which requires the explicit model-
ing of the task requirements (Shen and Salemi, 2002). The main disadvantage of
these methods is that they often scale poorly in terms of team size and number of
tasks (Dias et al, 2006; Golfarelli et al, 1997). Additionally, in applications where
inter-agent wireless communication may be unreliable or non-existent, it is often
difficult to devise reliable strategies to ensure timely communication of the various
local costs and utilities required by existing allocation approaches.

Recently, there has been increasing interest in the use of macroscopic continu-
ous models to describe the ensemble dynamics of a robot swarm (Martinoli et al,
2004; Lerman et al, 2006; Hsieh et al, 2009). These continuous ensemble mod-
els are derived by representing the individual robot controllers as probabilistic fi-
nite state machines and approximating the dynamics of an ensemble of discrete
Markov processes as a continuous-time Markov process (Martinoli et al, 2004; Ler-
man et al, 2006; Hsieh et al, 2008). These macroscopic models are used to analyze
the effects of microscopic, or agent-level, transition probabilities on ensemble per-
formance. Martinoli et al (2004) studied the impact of individual robot wait times
on collaborative stick-pulling. The distribution of a swarm of robots without the
use of inter-agent wireless communication was achieved by Lerman et al (2006)
for a multi-robot foraging task by specifying the spatial distribution of the tasks
within the workspace. Halasz et al (2007); Hsieh et al (2008) used the macroscopic
models to synthesize stochastic agent-level control policies to enable the dynamic
allocation of a team of robots to multiple locales in predefined proportions without
explicit inter-agent wireless communication. Different from Lerman et al (2006),
the desired allocation was achieved through appropriate selection of the individual
robot transition rates. These results where then extended to account for navigation
delays by Berman et al (2008).

In this work, we consider the multi-site allocation problem, first presented by
Halasz et al (2007), subject to deterministic task execution times. Different from
previous work, we present an approach to reduce the spurious behaviors exhib-
ited by an ensemble of interacting agents. In other words, we identify and filter
the “noise” generated from the intended or unintended interactions of the existing
coordination strategy. This is achieved by employing an appropriate macroscopic
model to analyze the ensemble dynamics and to determine the appropriate filtering
technique. From this analysis, we develop a set of agent-level filters to remove the
spurious behaviors that degrade the ensemble performance. Different from Gold-
berg and Matarić (1997); Rosenfeld et al (2004), we provide an analytical approach
towards the analysis of the impact of inter-robot interference on team performance.
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We consider the coordination problem from an estimation point-of-view and present
a novel approach to characterize and control the sources of noise within an ensemble
of interacting agents.

This paper is organized as follows: Section 2 presents the development of the
macroscopic model for an ensemble of robots executing a collection of tasks with
deterministic task execution times. Section 3 describes our analysis and distributed
filter synthesis methodology. We present our simulation and experimental results in
Section 4. We conclude with a brief discussion of our results in Section 5, and some
thoughts for future work in Section 6.

2 Problem Formulation

Consider the assignment of N robots to M distinct locales where robots must exe-
cute similar tasks at each locale. Let τi denote the amount of time it takes a robot to
execute the task at site i. We consider the surveillance scenario where the ensemble
is tasked to equally distribute across the M sites. This can be achieved by choosing
τi = τ for all i along a single cycle path. At each site, robots are programmed to
spend τ amount of time monitoring the location. Once the task is completed, robots
randomly choose the next adjacent site to visit based on a uniform distribution. Fig.
1(a) shows a finite state automaton representation of the individual robot controller
for M = 2. Robots transition from one controller state to another based on the com-
pleted guard condition.

Given a set of M distinct locales, we model the interconnection topology of the
sites using a directed graph, G = (V ,E ). The set of vertices, V , represent sites
1, . . . ,M and the set of directed edges, E , represent the set of precedence constraints
between sites. Two nodes i, j ∈ V are adjacent if an edge exists between sites i
and j, and we represent this relation by the ordered pair, (i, j) ∈ V ×V with the
set E = {(i, j) ∈ V ×V |(i, j)}. We assume G is a strongly connected graph, i.e., a
directed path exists for any u,v ∈ V .

Let Xi(t) and Yi(t) denote the number of robots at site i ∈ {1, . . . ,M} executing
task i and the number of robots that have met the guard condition at site i respec-
tively. We define the system state as y(t) = [y1(t), . . . ,yM(t)]T where yi(t) = ni(t)/N
denotes the fraction of the N robots that have met the guard condition at site i. Sim-
ilarly, xi(t) denotes the fraction of the population at site i. The specification in terms
of fractions rather than absolute numbers is to provide a team size invariant formu-
lation and is practical for both scaling purposes and in situations where losses of
robots to attrition and breakdown are common.

To model the variability in navigation times between sites, we assign a set of
constant transition rates, ki j > 0, to each edge in G where ki j defines the transition
probability per unit time for one robot that left site i to arrive at site j. Fig. 1(b)
shows the graphical representation of the ensemble model where deterministic state
transitions are modeled by guard conditions and stochastic transitions are modeled
by the probabilistic rates ki j for M = 2.
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X1 Y2

X2Y1

Arrived at Site 1 Arrived at Site 2

Completed Task at Site 2

Completed Task at Site 1

(a) Robot Controller

x1 y2

x2y1

k21 k12

Δ t ≥ τ2

Δ t ≥ τ1

(b) Ensemble Model

Fig. 1 (a) The robot controller. The robot changes controller states dependent on guard con-
ditions. (b) The ensemble model.

In this formulation, the steady-state distribution of the population across the M
sites is specified through the selection of the task execution times τi for i = 1, . . . ,M.
Furthermore, all task controllers are equivalent, and a transition from one site to
another implies the execution of the navigation controller by the individual robot.
As such, we assume each robot has complete knowledge of G , the ability to localize
within the workspace, and is capable of navigating from one site to another and
execute the local task. Finally, we leverage on classical frequency-domain analysis
of linear systems to model the ensemble dynamics and to synthesize the individual
robot controllers. As such, given a real-valued function f (t) for all real numbers
t ≥ 0, we denote the Laplace transform of f (t) as F(s) = L [ f (t)].

2.1 Time-Delayed Ensemble Model

Hsieh et al (2008) and Berman et al (2008) have shown that the time evolution of the
population fraction executing task i can be modeled as a continuous-time Markov
process in the absence of task execution times, i.e.,

d
dt

yi(t) = ∑
( j,i)∈E

k jiy j(t)− ∑
(i, j)∈E

ki jyi(t). (1)

To account for the task execution times, we reformulate the above linear model as a
delayed differential equation given by

d
dt

yi(t) = ∑
( j,i)∈E

k jiy j(t− τ j)− ∑
(i, j)∈E

ki jyi(t). (2)

We note that the ensemble state variables do not contain the xi(t) terms since the
deterministic delays are accounted for by the τ j’s in (2).

Both (1) and (2) are macroscopic models of the ensemble activity. In Hsieh
et al (2008); Berman et al (2009), the desired distribution across the M sites was
achieved by using (1) to optimize the ki j terms to meet certain ensemble perfor-
mance metrics. In this work, we use (2) to model the dynamics of an ensemble of
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non-communicating robots executing a multi-site surveillance task subject to un-
certainty. In other words, we use (2) to characterize the “uncertainty model” for the
ensemble of interacting, non-communicating robots and develop distributed filtering
techniques to filter out the noise.

3 Methodology

3.1 Characterizing the Ensemble Noise Model

In situations where the task execution times are stochastic, Berman et al (2008)
showed that the ensemble dynamics given by (2) can be approximated using an
equivalent expanded linear system, which we refer to as the Multi-Pole approxi-
mation. The expanded linear system is obtained by introducing additional dummy
transitions between states to approximate the effects of the stochastic delay times,
i.e., adding additional vertices and edges for every edge in E to account for the de-
lay. When delay times are deterministic or near deterministic, the number of addi-
tional dummy transitions required to appropriately capture the macroscopic effects
of these delays can be significant.

For deterministic time delays, a more appropriate approximation technique is
the use of Padé approximants to approximate the delay Mather and Hsieh (2010).
Consider the Laplace Transform of (2) given by

sYi =− ∑
( j,i)∈E

ki jYi + ∑
( j,i)∈E

k jie
−sτ jYj for i = 1, . . . ,M. (3)

In general, the Laplace transform converts a differential equation in the time domain
into an algebraic equation in the frequency domain where the resulting equations are
purely sums of polynomials of s, thus simplifying the analysis. However, the time
delay introduces an exponential term which makes the rate equations transcendental.
To retain the algebraic structure, a Padé approximation of the form

R(s) =
1−α1s+ . . .+(−1)qαqsq

1+α1s+ . . .+αqsq =
q

∏
i=1

1− pis
1+ pis

(4)

is employed for the exponential term in the frequency domain (Silva et al, 2004).
Here q denotes the order of the approximation.

In practice, the effect of the delay is to push the phase response of the system
without altering the magnitude, and thus the phase error becomes worse as fre-
quency increases. In the frequency domain, the time delay is modeled as an expo-
nential variable as shown in (3). This is equivalent to an exponential delay in the
phase response of the output signal. As the frequency increases, the system delays
the output signal by more and more periods.
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3.1.1 Example Problem

Consider the deployment of an ensemble of 10 robots moving in the plane to 2 dis-
tinct locations/sites. Initially, robots are randomly assigned to each of the two sites.
Once a robot reaches the targeted site, it circles the site in a clockwise direction.
The task execution time, τi = τ , is chosen to reflect the amount of time it takes the
robot to circle the site twice. After accomplishing its task, the robot moves to the
next site and performs the same task. Robots navigate from one site to another us-
ing a potential field controller. The variability in each robot’s site-to-site navigation
times depends on the amount of traffic on the road, which is affected by the num-
ber of collision avoidance maneuvers each robot must execute. Collision avoidance
is achieved through a combination of gyroscopic forces and potential functions,
(Chang et al, 2003; Hsieh et al, 2007). The transition rates and initial conditions for
the system are summarized in Table 1.

Table 1 System transition parameters obtained from running agent-based simulations

State Initial
Condition

Transition
Rate

τ
Delay Description

x1 0 - τ1 = 50 Monitoring Site 1
x2 0 - τ2 = 50 Monitoring Site 2
y1 5 k1,2 =

1
16.38 - Traveling from 2 to 1

y2 5 k2,1 =
1

20.79 - Traveling from 1 to 2

Fig. 2(a) shows the Fast Fourier Transform (FFT) of the average output of 54
agent-based simulations performed in USARSim (USARSim, 2007). The frequency
response of the agent-based simulations was obtained by logging the population
fractions at each site over time and applying the FFT to these variables for each
run. The FFT results were then averaged over all 54 runs. The agent-based system
exhibits a maximum gain at approximately 7.5 mHz and while both the Padé and
Multi-Pole macroscopic models exhibit peaks at approximately the same frequency.
However, the Padé model shows larger gain.

These spurious frequency components in the surveillance application manifest
themselves as oscillations in the ensemble distribution in the time domain. This
suggests that the robots are clustering together as they travel from one site to an-
other. Consider the extreme case of a single robot, where the robot always travels in
a “pack”. In this case, the frequency content will be large because there is no traffic
and all states will be 1 to 0 square waves. For the single robot there is no adverse
effect of this frequency peaking. However, for the team of robots traveling together,
collision avoidance becomes a significant concern because the local traffic is al-
ways high. This leads to degraded performance as the average transit time between
sites will increase due to these traffic concerns. If we only consider the steady-
state behavior of the system, one would expect the majority of the N robots to be
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(a) Ensemble Response (b) Notch Filter Response

Fig. 2 (a) Top: Average of the FFT of the population fraction at building 2 obtained from
54 micro-discrete simulations. Bottom: Magnitude portion of the Bode plots relating to the
number of Robots at building 2. For the 4th order Padé, and a 4th order Multi-Pole macro-
continuous systems. (b) Frequency response of the classical 2nd order notch filter and the
delayed notch filter given by Hτ(s) = 1

2 (1+e−sωτ ).

executing their surveillance tasks with only a small fraction of them traveling be-
tween sites. However, the presence of the unwanted frequency components can re-
sult in a significant imbalance between robots at sites and those traveling between
them. The Padé approximated macro-continuous model has the ability to better pre-
dict the spurious frequency component that is present in the agent-based simulations
and can provide insight into the synthesis of agent-level controllers to filter out these
spurious frequencies.

As a final note, it is difficult, in general, to directly compare the macroscopic
results with the microscopic results. This is because the FFT of the system states
only considers the outputs of the system. The magnitude portion of the Bode plots,
on the other hand, gives the response of the ratio of the output to input of the system
for all frequencies. In other words, the macroscopic frequency response is based
on a unity gain input at all frequencies. The difference between the two plots is
dependent on the form of the noise input to the system and is related by the shape
of the frequency spectrum of the noise input to the system.

3.2 Controller Synthesis

In general, delayed systems of the form (2) will exhibit a strong peak at a particular
frequency, ωp, which depends on both the transition rates and the task service times.
When the deterministic time delays are significantly larger than the mean stochastic
travel times, the loop time can be approximated by TLOOP = 1

k1,2
+ 1

k2,1
+ τ1 + τ2.
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The actual loop frequency of the system is given by the phase of the open loop
gain. When the open loop phase hits 2π radians, the system produces positive feed-
back. The frequency where this pure positive feedback occurs is given by,

ωp =

{
ω

∣∣∣∣∣ �
[

k1,2k2,1e− jω(τ1+τ2)

( jω + k1,2)( jω + k2,1)

]
=−2π

}
,

and corresponds to robots bunching together as they travel from one site to another.
This causes the system to oscillate as groups of robots all change state at roughly
equivalent times.

3.2.1 Ensemble Notch Filter

To smooth the response of the system, a common approach is to implement a notch
filter to get rid of the spurious behavior. A notch selectively filters out a specific
frequency while leaving other frequency components unchanged, effectively reduc-
ing the gain of the single spurious frequency component. A typical 2nd order notch
controller has the transfer function H1(s) given by

H1(s) =
s2 + 2ζ1ωN +ω2

N

s2 + 2ζ2ωN +ω2
N

where ωN , ζ1, and ζ2 set the location and magnitude of the notch.
While applying control on the model of the macro-continuous system is straight-

forward, it is not clear how such a controller can be implemented at the individual
robot level. Careful inspection of the closed-loop time domain equations suggest
implementation of the filter will require individual robots to estimate the higher
order derivatives of the populations at the various sites. In the following section,
we propose an approximate solution, where the spurious frequency response can be
removed without extra knowledge of the system states by the individual robots.

3.2.2 Agent-Level Implementation

Given the existing robot controller, there are two ways to modify the agent-level
control policy without requiring any inter-agent communication. The addition of
either a stochastic or a deterministic time delay after a task execution. By adding an
extra delay path in the robot controllers, a distributed ensemble notch filter can be
constructed without requiring explicit knowledge of the higher order derivatives of
the macroscopic states by the individual robots. This can be done by splitting the
team into two sub-teams where one team purposely enacts the additional delay at a
given site for each cycle path. This approach can eliminate a frequency by adding
a signal to a copy of itself, 180o degrees out of phase. The transfer function for the
proposed notch filter is Hτ(s) = 1

2 (1+ e−sωτ ).
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The frequency response plot for the notch filter and its 2nd order classical con-
troller are shown in Figure 2(b). This delay-constructed filter cancels every odd
harmonic of the primary notched frequency. With the added notch filter, the new
closed loop macroscopic equations of the notched system dynamics are,

ẏ1(t) =−k1,2 y1(t)+
1
2 k2,1 y2(t− τ2)+

1
2 k2,1 y2(t− τ2− τNOTCH)

ẏ2(t) =−k2,1 y2(t)+ k1,2 y1(t− τ1)
(5)

The addition of a single notch filter will suppress a single spurious population behav-
ior. If the task precedence graph has multiple cycles with spurious loops, multiple
notches are required to eliminate spurious behavior.

In general, the introduction of a delay into a system with feedback can be dan-
gerous since it can lead to enough phase lag to turn negative feedback into positive
feedback resulting in unstable oscillations. However, the models discussed here fall
into a family of systems that are stable independent of delay (Chen and Latchman,
1995). The intuition behind this inherent stability is that the loop gain of the lin-
ear system, G(s), is never greater than unity, which results in an undefined phase
margin. Thus, no amount of extra phase delay can drive the system unstable.

4 Results

4.1 Simulation Results

An agent-based simulation for an ensemble of 10 SRV-1 robots was performed in
USARSim (USARSim, 2007). The SRV-1 are differential-drive robots equipped
with an embedded processor, color camera, and 802.11 wireless capability. The en-
semble was tasked to survey two separate sites that are represented by rectangular
blocks in the workspace. We assume the robots have a map of the environment and
navigate from one site to another using potential functions. Once a robot reaches the

X1 Y2

X2Y1

Arrived at Site 1 Arrived at Site 2

Completed Task at Site 2

Completed Task at Site 1

(a) Original Controller

X1 Y2

X2Y1

Xnotch

1
2

1
2

(b) Notched Controller

Fig. 3 (a) Original robot controller. (b) Agent-level implementation of the ensemble notch
filter. Robots monitor site 1 then decide with probability 1/2 whether to travel to site 2 or
delay for τnotch.
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Fig. 4 Frequency response results for the simulated system. This plot shows the average
response of 50 simulations of the unfiltered (no notch) system and 50 simulations of the
notched system described by (5). The notched system shows a depression in the frequency
response at the active notching point.

target site, it circles the site in a clockwise direction until the task execution time,
τi, has been reached.

We implemented the distributed notch filter on the system with parameters given
in Table 1. After completing the timed surveillance at Site 1, each robot randomly
chooses with probability 1

2 to either move to the next site or stay and continue moni-
toring the site for half of the loop time, the time to complete one cycle in the system.
Based on the values in Table 1, this extra wait time, τnotch, was set to 68 seconds.

We ran 50 micro-discrete simulations for each ensemble of robots executing the
original controllers and the distributed implementation of the notched filter. The
frequency response of these results is shown in Fig. 4. Our results show that the dis-
tributed notch filter suppressed the undesired frequency component by 70%. While
there is limited frequency peaking at the lower frequencies (see Fig. 4) because of
the larger loop time introduced by the notch filter, the resulting spurious frequency
is much lower in magnitude than the original peak.

4.2 Experimental Results

We also implemented our original and notched robot controllers on our multi-robot
testbed. The testbed consisted of seven Surveyor SRV-1 robots operating within a
4.8x5.4 meter workspace. The robots were tasked to navigate towards and surround
two separate beacons, similar to our simulations. Overhead localization for the team

Table 2 Variance in the site populations compared to those predicted by the macro-discrete
simulation

Simulation Type Var(X1) Var(X2)
Macro-Discrete (unfiltered) 2.31 2.26
Micro-Discrete (unfiltered) 3.04 2.93
Macro-Discrete (notched) 2.13 2.54
Micro-Discrete (notched) 2.16 2.74
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(a) (b)

Fig. 5 (a) Frequency response of the initial experimental trials. The plots shows the frequency
content of 3 averaged response for the unfiltered and notched system. The peak, though small,
is properly located according to the transition times. The high peak at 6.1mHz in the notched
response is due to the round trip time if all agents went along the delay route that includes
the τNOTCH delay. (b) A single robot trajectory for the two site surveillance experiment.
Sources of stochasticity include collision avoidance, different exit locations, and errors in the
localization.

was provided using four cameras. Each experiment ran for roughly 45 to 50 minutes
with the robots executing 750 state transitions. The frequency response for both the
original and the notched system is shown in Fig. 5(a). The path of a single robot in
one experimental run is shown in Fig. 5(b).

5 Discussion

To verify that the spurious frequency component led to traffic congestion as robots
move from one site to another, we analyzed the inter-robot distance between the
robots traveling between sites for both the original and the notched system. Fig.
6(a) shows the distribution of the pairwise distances between traveling robots. The
average distance from a robot to its neighbor in the original system is 1.36 meters
with a standard deviation of 1.05 meters. The notch filter increased the mean and
standard deviation to 2.29 and 1.41 respectively. Fig. 6(b) shows that this leads to
significantly less congestion.

The observed congestion also manifests itself in the on site distribution statistics
because robots tend to travel in “pack”. This results in higher amplitude oscillations
in the population variables at each site which increases the variance of the popu-
lation fraction at each site. In the extreme case, when all robots travel as a single
unit, this leads to a two peak distribution. To demonstrate this, we ran 20 marco-
discrete simulations based on Gillespie’s Direct Method (Gillespie, 1976). Due to
the high level of abstraction of these simulations, inter-robot collision avoidance
is completed encapsulated within the stochastic transition rates and provides theo-
retical values for the variance at each site. These values and the variance observed
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(a) (b)

Fig. 6 Proximity distribution of the filtered and unfiltered behavior. The notched proximity
distribution has a significantly higher mean than the unfiltered system. The robots in the
unfiltered system all begin to operate in sync with each other. Thus causing them to form
lines of traveling robots which looks like oscillation in the population variables.

in our micro-discrete simulations are summarized in Table 2. We note that the site
variance of the micro-discrete simulations are much larger for the unfiltered system.
The notched system shows closer agreement in site variance to the theoretical value
as shown in Fig. 6.

6 Conclusions and Outlook

In this work, we presented a method for synthesizing distributed notch filters
through the analysis of the macroscopic ensemble models. The macroscopic analy-
sis allowed for the identification of the spurious behavior exhibited by the ensemble,
which resulted from excessive robot-robot interactions brought on by robots ran-
domly synchronizing their task transition times. The macroscopic analysis was then
used to synthesize an appropriate distributed filtering strategy that could be imple-
mented without requiring any inter-robot wireless communication nor estimation
of population variables. The effectiveness of the distributed filtering strategy was
shown in both simulations and physical robotic experiments.

An immediate direction for this work is a formal analysis of the stability prop-
erties of our filtering strategy. We are also interested in extending this framework
to allow for quantitative analysis of more complex coordination strategies, which
may lead to the synthesis of further distributed filters for ensembles. Finally, we
would like to extend the existing macroscopic models to enable the encoding of
higher fidelity spatial information for the ensemble, as to provide guarantees on
coverage.
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A Formal Approach to Deployment of Robotic
Teams in an Urban-Like Environment

Yushan Chen, Xu Chu Ding, Alin Stefanescu, and Calin Belta

Abstract. We present a computational framework for automatic synthesis of con-
trol and communication strategies for a robotic team from task specifications given
as regular expressions about servicing requests in an environment. Our approach is
based on two main ideas. First, we extend recent results from formal synthesis of
distributed systems to check for the distributability of the task specification and to
generate local specifications, while accounting for the service and communication
capabilities of the robots. Second, by using a technique inspired from LTL model
checking, we generate individual control and communication strategies. We illus-
trate the method with experimental results in our Robotic Urban-Like Environment.

1 Introduction

The goal in robot motion planning and control is to be able to specify a motion task
in a rich, high level language and have the robot(s) automatically convert this speci-
fication into a set of low level primitives, such as feedback controllers and commu-
nication protocols, to accomplish the task [13, 5, 14]. In most of the existing works,
the motion planning problem is simply specified as “go from A to B while avoiding
obstacles” [13]. However, there are situations in which this is not enough to capture
the nature of the task. Consider, for example, the miniature Robotic Urban-Like En-
vironment (RULE) shown in Fig. 1, where a robot might be required to “Visit Road
R1 or Road R2 without crossing Intersection I3, and then park in an available park-
ing space,” while at same time obeying the traffic rules. Such a “rich” specification
cannot be trivially converted to a sequence of “go from A to B” primitives.
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When several robots are available, the problem becomes even more interesting
and challenging. Assume that several service requests occur at different locations
in the city, and they need to be serviced subject to some temporal and logical con-
straints. Some of these requests can be serviced by one (possibly specific) robot,
while others require the collaboration of two or more (possibly specific) robots.
For example, assume that the task is to assemble a piece of machinery in location
P1 or P2 from two components that can be found at P3 and P4. The assembly re-
quires the cooperation of two robots, and the collection of the components needs to
be performed in parallel. Can we generate provably-correct individual control and
communication strategies from such rich, global specifications? This is the problem
that we address in this paper.

It has been advocated as far back as [1] and more recently in [15,8,24] that tem-
poral logics, such as Linear Temporal Logic (LTL) and Computation Tree Logic
(CTL) [6], can be used as “rich” specification languages in mobile robotics. All of
the above works suggest that the corresponding formal verification (model check-
ing) algorithms can be adapted for motion planning and controller synthesis from
such specifications. Some related works show that such techniques can be extended
to multi-agent systems through the use of parallel composition [18, 12] or reactive
games [9]. However, such bottom-up approaches are expensive and can lead to state-
space explosion even for relatively simple problems. As a result, one of the main
challenges in the area of motion planning and control of distributed teams based on
formal verification is to create provably-correct, top-down approaches in which a
global, “rich” specification can be decomposed into local (individual) specifications,
which can then be used to automatically synthesize robot control and communica-
tion strategies. In such a framework, the construction of the parallel composition
of the individual motions is not necessary, and therefore the state-space explosion
problem is avoided.

In this paper, we draw inspiration from the area of distributed formal synthe-
sis [17] to develop such a top-down approach. We consider a team of robots that can
move among the regions of a partitioned environment, and which have known ca-
pabilities of servicing a set of requests that can occur in the regions of the partition.
Some of these requests can be serviced by a robot individually, while some require
the cooperation of groups of robots. We present an algorithm that allows for the
fully automatic synthesis of robot control and communication strategies from a task
specification given as a regular expression over the set of requests. For simplicity
of presentation, we model the environment as a graph and the robots as agents that

Fig. 1 Robotic Urban-
Like Environment (RULE).
Khepera III car-like robots
move autonomously on
streets while staying in their
lanes, obeying traffic rules,
and avoiding collisions.
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can move between adjacent vertices and can communicate only when at particular
vertices. This framework is quite general and can be used in conjunction with cell
decomposition motion planning techniques [5]. In particular, by using feedback con-
trollers for facet reachability in polytopes [10, 2], this scenario can be extended to
robots with continuous dynamics moving in environments with polytopic partitions.

The contribution of this work is threefold. First, we develop a top-down
computational framework for automatic deployment of mobile agents from global
specifications given as regular expressions over environmental requests. This is a
significant extension of our recent work [3] by enlarging the class of specifica-
tions for which a solution exists. Second, we provide a relaxation to the standard
problem of distributed synthesis modulo synchronous products and language equiv-
alence [17]. Specifically, we show how a satisfying distributed execution can be
found when the global specification is only a traced-closed language, rather than a
product language. This extends our previous work [22], in which we provided two
heuristics for the case of asynchronous automata. Third, we implement and illustrate
the computational framework in our Khepera-based Robotic Urban-Like Environ-
ment (Fig. 1). In this experimental setup, the robots can be automatically deployed
from specifications given as regular expressions over requests occurring at regions
in the city.

2 Preliminaries

Throughout this paper, we assume that the reader is familiar with automata theory
[11,20]. In this section, we merely review some concepts and introduce the notation.

For a set Σ , we use |Σ | and 2Σ to denote its cardinality and power set, respectively.
A collection of subsets Δ = {Σi ⊆Σ , i∈ I} is called a distribution over Σ if

⋃
i∈I Σi =

Σ , where I is an index set. A word is a sequence of symbols from Σ . We denote Σ∗
as the set of all finite words over Σ . A language is a set of words.

Definition 1. A finite state automaton (FSA) is a tuple A = (Q,q0,Σ ,→A,F), where
Q is the set of states, q0 ∈ Q is the initial state, Σ is the set (alphabet) of actions,
→A∈ Q×Σ ×Q is the transition relation, and F ⊆ Q is the set of accepting states.
We also write q

σ−→A q′ to denote (q,σ ,q′) ∈→A.

We denote L (A) as the language accepted by an FSA A. The language of an FSA is
called a regular language, which can be concisely represented by a regular expres-
sion (RE). Given an RE, an FSA accepting all and only the words satisfying the RE
can be constructed by using an off-the-shelf tool, such as JFLAP [19].

Definition 2. The synchronous product of n FSAs Ai = (Qi,q0i ,Σi,→Ai ,Fi), denoted
by ‖n

i=1 Ai, is an FSA A = (Q,q0,Σ ,→A,F), where Q = Q1 ×Q2 × . . .×Qn, q0 =
(q01 ,q02 , . . . ,q0n), Σ = ∪n

i=1Σi, and F = F1 ×F2 × . . .×Fn. The transition relation

→A⊆Q×Σ ×Q is defined by q
σ−→A q′ iff ∀ i∈ Iσ : q[i] σ−→Ai q′[i] and ∀ i /∈ Iσ : q[i] =

q′[i], where q[i] denotes the ith component of q and Iσ = {i ∈ {1, . . . ,n} | σ ∈ Σi}.
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For convenience, in the particular case when Σ1 = Σ2 = Σ , we use A1×A2 to denote
‖2

i=1 Ai. Moreover, L (A×B) = L (A)∩L (B) ( [20]). An FSA ¬A is defined as an
FSA that accepts the language L (A) where L (A) := Σ∗\L (A).

For a word w ∈ Σ∗ and a subset S ⊆ Σ , we denote by w �S the projection of w
onto S, which is obtained by erasing all actions σ in w that do not belong to S. For
a language L ⊆ Σ∗ and a subset S ⊆ Σ , we denote by L �S the projection of L onto
S, which is given by L �S:= {w �S | w ∈ L}. Starting from the observation that the
projection of a regular language is a regular language, the projection of an FSA A on
a subset S ⊆ Σ is another FSA (denoted by A �S) accepting the language L (A) �S,
through ε-closure, determinization and minimization ( [21]).

Definition 3. Given a distribution Δ of Σ , the product of a set of languages Li over
Σi is denoted by ‖i∈I Li and defined as ‖i∈I Li := {w ∈ Σ∗ | w �Σi∈ Li for all i ∈ I}.
A product language over a distribution Δ of Σ is a language L such that L =‖i∈I Li,
where Li = L �Σi for all i ∈ I.

Definition 4. Given a distribution Δ of Σ and w,w′ ∈ Σ∗, we say that w is trace-
equivalent to w′ (w ∼Δ w′) iff w �Σi= w′ �Σi ,∀i ∈ I. We denote by [w]Δ the trace-
equivalence class of w ∈ Σ∗. A trace-closed language over a distribution Δ of Σ is
a language L such that for all w ∈ L, [w]Δ ⊆ L.

The class of trace-closed languages is closed under the operations of union, inter-
section and complementation. Note that a product language is trace-closed (but the
converse is not true) ( [16, 21, 23]).

3 Problem Formulation and Approach

Let
E = (V,→E ) (1)

be an environment graph, where V is the set of vertices and →E⊆V ×V is a relation
modeling the set of edges. For example, E can be the quotient graph of a partitioned
environment, where V is a set of labels for the regions in the partition, and →E is
the corresponding adjacency relation. In particular, V can be a set of labels for the
roads, intersections, and parking spaces in an urban-like environment and →E can
show how these are connected (see Fig. 2). Assume we have a team of mobile robots
Ai, i ∈ I, whose motions are restricted by E , where I is a set of robot labels.

Let Σ be a set of service requests, or actions to be performed at the vertices of
E . The locations of the service requests are defined as a function a : Σ → V (i.e.,
different requests can occur at the same vertex but vertices do not share requests).
There may be no request at some vertices of E .

We model the capacity of the robots to service requests and cooperation among
robots as a distribution Δ over Σ (i.e.∪i∈IΣi = Σ ). Σi is the set of requests that can be
serviced by the robot Ai. For a given request σ ∈ Σ , we define Iσ = {i ∈ I |σ ∈ Σi},
i.e., Iσ is the set of labels of all the agents that can service request σ . The semantics



A Formal Approach to Deployment of Robotic Teams 317

of this distribution is defined as follows. For an arbitrary request σ , if |Iσ | = 1 (i.e.,
there is only one agent that owns it), the agent can (and should) service the request
by itself, independent of the other agents. If |Iσ | > 1, all the agents Ai with i ∈ Iσ
must service the request simultaneously. An agent is said to service a request σ if
it visits the vertex a(σ). We assume that two or more robots can communicate only
when they are at vertices at which shared requests occur.

We model the motion capabilities of each agent Ai, i ∈ I on the environment
graph E as a transition system Ti, defined as follows:

Ti = (V,v0i ,→i,Π ,�i), i ∈ I, (2)

where v0i ∈ V is the initial state representing the initial location of Ai, →i⊆ V ×V
is a reflexive transition relation satisfying →i⊆→E ∪v∈V {(v,v)}, Π = Σ ∪{ε} is a
finite set of observations, ε is the empty request, and �i⊆ V ×Π is a satisfaction
relation where (v,ε) ∈�i,∀v ∈ V and (v,σ) ∈�i, σ ∈ Σi, iff a(σ) = v. A transi-
tion (v,v′) ∈→ is also denoted by v → v′. For an arbitrary state v ∈ V , we define
Πv = {π ∈ Π | (v,π) ∈�} ∈ 2Π as the set of all observations satisfied at v. A trajec-
tory of Ti is a sequence v(0)v(1) . . .v(n) with the property that v(0) = v0i , v(i) ∈V ,
and (v(i) → v(i+1)), ∀i � 0. We say a trajectory v = v(0)v(1) . . .v(n) of Ti satisfies
a word w = w(0)w(1) . . .w(n) if w(i) ∈ Πv(i), ∀i � 0. In other words, the motion
of robot Ai is restricted by the transition relation →i, which captures motion con-
straints in addition to →E . The locations of the requests in the environment are cap-
tured by relation �i. As it will become clear later, each vertex satisfying ε captures
that a robot can pass through a vertex without servicing any request.

Definition 5. A motion and service plan (or MS plan for short) for robot Ai, i ∈ I
is a word msi ∈ (V ∪Σi)∗ that satisfies the following conditions: (1) msi(1) = v0i ,
(2) if msi( j) ∈ Σi, then msi( j − 1) ∈ V and msi( j) ∈ Πmsi( j−1) (i.e. msi( j − 1) =
a(msi( j))), for all j > 1 and (3) msi �V is a trajectory of Ti. A motion plan for robot
Ai, i ∈ I, defined as mi = msi �V , can be obtained from the MS plan by deleting all
request entries msi( j) ∈ Σi. Similarly, a service plan for robot Ai, i ∈ I, is defined
as si = msi �Σi , can be obtained from the MS plan by deleting all motion entries
msi( j) ∈V .

The semantics of an MS plan is as follows. A vertex entry msi( j) ∈ V means that
the vertex msi( j) should be visited. A request entry msi( j) ∈ Σi, means that robot
Ai should service request msi( j) at vertex msi( j− 1). A request entry msi( j) ∈ Σi,
where |Imsi( j)| > 1, following a vertex entry msi( j − 1) ∈ V , triggers a wait-and-
leave protocol (i.e. synchronization across the robots that share the same request
msi( j), where |Imsi( j)| > 1): while at msi( j−1), robot Ai broadcasts request msi( j)
and listens for broadcasts of msi( j) from all agents A j, j ∈ Imsi( j) \ {i}. When they
are all received, the request msi( j) is serviced and then Ai moves to the next vertex.

Remark 1. Note that one robot only needs to synchronize (communicate) with other
robots that share a request σ with it, where |Iσ | > 1, before servicing this shared
request. The loose synchronization enables parallel executions of individual agents
(i.e. the requests that are not shared by the same robot can be serviced in parallel).
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Note that by the definition (conditions (2) and (3)) of an MS plan msi, the motion
plan mi = msi �V is a trajectory of Ti satisfying a word wi ∈ (Σi ∪ ε)∗, where its
corresponding service plan si = msi �Σi is equal to wi �Σi . We say that a word si can
be implemented by the robot Ai if there exists a MS plan msi such that msi �Σi= si.

Given a set of service plans {si, i ∈ I} for the robot team, there may exist many
possible sequences of requests serviced by the team due to parallel executions of
individual agents (we do not assume that we know the time it takes for each agent
to service requests). For a given set of MS plans msi, i ∈ I, we denote

Lteam
MS ({msi, i ∈ I}) :=‖i∈I {si}, where si = msi �Σi , (3)

(see Def. (3)) as the set of all possible sequences of requests serviced by the team
of robots Ai, i ∈ I while they follow their individual MS plans msi. For simplicity of
notations, we usually denote Lteam

MS ({msi, i ∈ I}) as Lteam
MS when there is no ambiguity.

We say that the motion of the team with MS plans {msi, i∈ I} satisfies a specification
given as an RE φ over Σ if Lteam

MS �= /0 and all words in Lteam
MS satisfy φ (i.e. Lteam

MS ⊆
L (A), where A is an FSA accepting only the words satisfying φ ). We are now ready
to formulate the main problem:

Problem 1. Given a team of agents Ai, i ∈ I with motion capabilities Ti (Eqn. (2)),
a set of service requests Σ , a task specification φ in the form of an RE over Σ , and
a distribution Δ over Σ , find a set of MS plans {msi, i ∈ I} such that the motion of
the team satisfies φ .

Remark 2. For a set of MS plans, the corresponding Lteam
MS could be an empty set by

the definition of product of languages (since there may not exist a word w ∈ Σ∗ such
that w �Σi= si,∀i ∈ I). In practice, this case corresponds to a scenario where one (or
more) agent waits indefinitely for other agents to service a request σ that is shared
among these agents. For example, if σ does not appear in the service plan of one of
the agent who owns σ but it appears in the service plans of some other agents, then
all those agents will be stuck in a “deadlock” state and wait indefinitely. When such
a deadlock scenario occurs, the motion of the team does not satisfy the specification.

Remark 3. We made some apparently restrictive assumptions in the formulation of
Prob. 1: we assumed that the vertices do not share requests and that the robots can
communicate only when they are in the same vertex. They are made for the sim-
plicity of notation. To relax the first assumption, we can use a relation instead of a
function to define the locations of requests. The second assumption can be relaxed
by introducing a communication relation on V (i.e. a communication graph).

In the case that Prob. 1 has a solution, for each MS plan msi, a robot generates a
control and communication strategy, which is a finite sequence of control primi-
tives, interrupts, and communication protocols. To guarantee the uniqueness of this
strategy, we assume that each robot is equipped with a set of motion primitives (feed-
back controllers), such that the selection of a motion primitive at a vertex uniquely
determines the next vertex, given that the robot is properly initialized and the his-
tory of visited vertices is known. In other words, we assume that Ai can follow any
trajectory of Ti (see Sec. 5).
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Our approach to solve Prob. 1 can be summarized as follows. We first generate an
“implementable” FSA for each robot, which captures all the possible service plans
that can be implemented by the robot (Sec. 4.1). Then, if the language satisfying the
global specification φ is trace-closed, we generate a solution to the problem. Other-
wise, we attempt to construct an FSA whose language is trace-closed and satisfies
the global specification. If we succeed (the language of this FSA is not empty), then
we use it to generate a solution (Sec. 4.2.) Our overall approach is summarized as a
provably-correct algorithm in Sec. 4.2.

In our previous work [3], we provided a solution to Prob. 1 by following the
“standard” approach to distributed synthesis modulo synchronous products and lan-
guage equivalence [17]. As a result, our approach was conservative, since we could
only generate a solution for the particular case when the language satisfying φ was a
product language (Def. 3). In this paper, we show that we can find a solution to Prob.
1 if the language satisfying φ is trace-closed. Since trace-closed languages are less
restrictive than product languages (i.e. product languages are trace-closed but not
vice versa), we significantly reduce the conservatism from our previous approach.
In addition, our current approach is less expensive. Indeed, checking whether a lan-
guage is trace-closed is linear in the size of the FSA accepting the language, while
checking whether a language is a product language is PSPACE-complete [21].

4 Synthesis of Local MS Plans from the Global Specification

We omit all the proofs in this section due to space limitations. They are available in
our detailed technical report [4].

4.1 Synthesis of the Local Implementable Specifications

We begin with the conversion of the specification φ over Σ to a minimal and de-
terministic FSA A = (Q,q0,Σ ,→,F), which accepts exactly the language over Σ
that satisfies φ (using JFLAP [19]). We call A the global specification. Given the
distribution Δ , we assign requests to each agent. Specifically, we construct a set
of projected FSAs Ai = (Qi,q0i ,Σi,→Ai ,Fi) whose languages are the projections of
L (A) onto the local alphabets Σi, i ∈ I (see Sec. 2). The projected FSAs are used as
a starting point to find a solution to Prob. 1 because of the following proposition.

Proposition 1. If a set of MS plans {msi, i∈ I} is a solution to Prob. 1, then its corre-
sponding service plans si = msi �Σi are accepted words of Ai (i.e. si ∈L (Ai),∀i ∈ I).

However, to provide a provably correct solution for Prob. 1, it is not sufficient to
simply choose an arbitrary accepted word from the projected FSAs Ai to be a service
plan si. We need to make sure that (1) the service plan si can be implemented by
robot Ai and (2) all possible sequences of requests serviced by the team satisfy φ .
To satisfy the first requirement, we aim to find an FSA AE

i for each i ∈ I such that
the language of AE

i equals all the accepted words of Ai that can be implemented
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by the agent Ai in the environment. We address the second requirement in the next
sub-section.

To obtain AE
i , we first construct a new FSA Âi from Ai by adding the action ε to

Σi and self-transitions (q,ε,q) to each state q ∈ Qi. For a robot, the action ε means
that no request is serviced. We denote the set of all these self transitions by →εi .
The FSA Âi, i ∈ I, can now be defined as:

Âi = (Q̂i, q̂0i , Σ̂i,→Âi
, F̂i), (4)

where Q̂i = Qi, q̂0i = q0i , Σ̂i = Σi ∪{ε}, →Âi
=→Ai ∪→εi , and F̂i = Fi.

It is important to note that these self-transitions do not affect the semantics of Ai,
since they mean that if no request is served by robot Ai, then the state of the Ai re-
mains the same. Given a word ŵ ∈L (Âi), we can obtain a word w = ŵ �Σi∈L (Ai).
Note that the input ε corresponds to the observation ε in the transition system Ti and
the set of inputs Σ̂i of Âi is a subset of the observations Π of Ti.

To restrict the trajectories of a TS Ti with a set of observations Π to the language
accepted by an FSA with a set of actions Σ̂i ⊆ Π , we define the following product
automaton, which is inspired from LTL model checking [6]:

Definition 6. (Adapted from [8]) The product automaton Pi = Ti ⊗ Âi between the
transition system Ti = (V,v0i ,→i,Π ,�i) and the FSA Âi = (Q̂i, q̂0i , Σ̂i,→Âi

, F̂i), is

an FSA Pi = (QPi ,q0Pi
,ΣPi ,→Pi ,FPi), where QPi = V × Q̂i, q0Pi

= (v0i , q̂0i) is the set

of initial states, ΣPi = Σ̂i ⊆ Π is the set of inputs and FPi = V × F̂i is the set of
accepting (final) states. The transition relation →Pi⊆ QPi ×ΣPi ×QPi is defined as

(v,q)
σPi−−→Pi (v′,q′) iff v →i v′,q

σPi−−→Âi
q′ and σPi ∈ Πv.

A transition (v,q) σ−→P (v′,q′) of Pi exists iff (v,v′) ∈→i and request σ occurs at
vertex v, i.e. a(σ) = v. Transitions with input ε mean that a robot is moving from
one vertex v to vertex v′ (v may be equal to v′) without servicing any request. rPi =
(vi(0), q̂i(0)) . . . (vi(n), q̂i(n)), where q̂i( j) ∈ Q̂i, vi( j)∈V and j ∈ {1, . . . ,n} is a run
accepted by the product automaton Pi, i ∈ I. We define the projection of rPi onto Ti

as γTi(rPi) = vi(0) . . .vi(n). The following proposition shows that we can use a run
of Pi to find a trajectory of Ti satisfying the local specification (a word of L (Âi)).

Proposition 2. Given any word wÂi
∈ L (Âi), there exist at least one trajectory of

Ti satisfying wÂi
iff wÂi

∈ L (Pi).

Finally, we obtain AE
i that captures L (Pi) by removing environment information

stored in Pi. To achieve this, we collapse the states of Pi, by taking ε-closure, de-
terminizing, and minimizing Pi. The interested readers are referred to [11] for more
details about these procedures. Thus, given a word w ∈ L (AE

i ), there exists a word
w′ ∈L (Pi) such that w′ �Σi= w. Using this fact, the following proposition shows that
AE

i captures the largest subset of L (Ai) which can be implemented by the robot Ai

in the environment.
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Proposition 3. A word wE
i ∈ L (Ai), i ∈ I, can be used to generate a MS plan msi

for Ai, such that msi �Σi= wE
i , if and only if wE

i ∈ L (AE
i ).

4.2 Synthesis of Individual MS Plans

To solve Prob. 1, we need to guarantee that all possible sequences of request ser-
viced by the team of robots following their MS plans satisfy the global specifica-
tion. More specifically, we aim to find a set of service plans {si, i ∈ I} such that
‖i∈I {si} ⊆ L (A) and ‖i∈I {si} �= /0. The following proposition shows that a trace-
closed language is sufficient to satisfy this requirement and provide a solution to
Prob. 1:

Proposition 4. Given a language L and a distribution Δ of Σ , if L is a trace-closed
language and w ∈ L, then ‖i∈I {w �Σi} ⊆ L.

Our approach aims to construct an FSA AG whose language is both trace-closed and
included in L (A). By Prop. 4, an arbitrary word accepted by AG can be used to gen-
erate a set of service plans satisfying the desired requirement by projecting this word
onto the given distribution Δ . Furthermore, we use the synchronous product (SP) of
the local implementable specifications generated in the previous sub-section to en-
sure that the obtained service plans can be implemented by individual agents. This
is achieved by taking product of automata, which produces intersection of regular
languages.

Specifically, to find AG, we first check if L (A) is trace-closed. An algorithm
that checks this property for an arbitrary FSA can be found in [4]. If L (A) is
trace-closed, then we define AG = A× ‖i∈I AE

i . Otherwise, we define AG = ¬(‖i∈I

Bi)× ‖i∈I AE
i , where Bi = B �Σi and B =‖i∈I AE

i × (¬A). In this second case, AG

is constructed specifically to remove words w ∈ L (‖i∈I AE
i ) that cannot be used

to generate desired individual service plans for the robots (i.e. ‖i∈I {si = w �Σi} �
L (A)). The following proposition shows that AG satisfies the desired requirement.

Proposition 5. L (AG) is a trace-closed language and L (AG) ⊆ L (A).

If L (AG) is not empty, then a solution to Prob. 1 can be found by picking any
accepted word of AG. In this paper, we obtain this word wg by using a backward
reachability search starting from the set of accepting states and ending at the ini-
tial state. In a particular application, any optimization criterion can be used. Once
obtained, wg is projected onto the given distribution to generate a set of MS plans.

The overall approach proposed in this section is summarized in Alg. 1. In the
following theorem, we show that the solution obtained by Alg. 1 is provably correct.

Theorem 1. If L (AG) �= /0, then Alg.1 returns a solution to Prob. 1, i.e. , a set of
MS plans {msi, i ∈ I} such that Lteam

MS ⊆ L (A) and Lteam
MS �= /0.

Remark 4 (Completeness). In the case that L (A) is trace-closed, our approach is
complete in the sense that we find a solution to Prob. 1 if one exists. This follows
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Algorithm 1. Construction of a set of MS plans from a global specification
Input: A RE φ , a distribution Δ , and a set of TS {Ti = (V,v0i ,→i,Π ,�i), i ∈ I}
1: Convert φ to a deterministic and minimal FSA A and construct {Ai, i ∈ I} (Ai = A �Σi

,∀i ∈ I)
2: Construct {Âi, i ∈ I} from {Ai, i ∈ I} (Eqn. 4) and {Pi = Âi ⊗Ti, i ∈ I} (Def. 6)
3: Take ε-closure, determinize, and minimize Pi to obtain {AE

i , i ∈ I}, where L (AE
i ) =

L (Pi)
4: Construct ‖i∈I AE

i , which is the synchronous product of AE
i

5: if L (‖i∈I AE
i ) = /0, return no solution exists

6: if L (A) is trace-closed, AG = A×‖i∈I AE
i else AG =¬(‖i∈I ((‖i∈I AE

i ×(¬A)) �Σi))×‖i∈I

AE
i

7: if L (AG) = /0, return no solution found
8: Find a word wg ∈ L (AG) and obtain a set of local words wloc

i = wg �Σi

9: Construct {Âloc
i , i ∈ I} (Eqn. 4) from {Aloc

i , i ∈ I}, where L (Aloc
i ) = wloc

i ,∀i ∈ I

10: Construct {Ploc
i = Âloc

i ⊗Ti, i ∈ I} and find the accepted runs {rPloc
i

, i ∈ I} and the corre-
sponding accepted words {wi = wi(0) . . .wi(n), i ∈ I}.

11: Obtain {rTi = γTi(rPloc
i

) = vi(0) . . .vi(n + 1), i ∈ I} and {msi =
vi(0)wi(0) . . .vi(n)wi(n) �V∪Σi , i ∈ I}

12: return a set of words {msi, i ∈ I}

directly from Prop. 3 and the definition of product of languages. If L (A) is not
trace-closed, a complete solution to Prob. 1 requires one to find a non-empty trace-
closed subset of L (A) if one exists. This problem is undecidable (the proof is in [4]).
Therefore, our overall approach to Prob. 1 is not complete.

Remark 5 (Complexity). Checking if a language of a DFA A is trace-closed is lin-
ear in the size of A (this can be readily seen from the algorithm checking language
trace-closedness in [4]). The overall complexity of Alg. 1 also depends on the con-
struction of ‖i∈I AE

i and the size of AG. Note that the construction of ‖i∈I AE
i and

the size of AG are not related to the size of the transition system Ti but only with
Ai, which depends on the global DFA A and the distribution Δ . This fact substanti-
ates the statement made in the introduction that we avoid constructing the parallel
composition of the individual motions (represented by Ti) to prevent state-space ex-
plosion, and therefore our method scales well with the number of agents in the team.
A detailed complexity analysis can be found in our technical report [4].

5 Automatic Deployment in the RULE

In our implementation, the global specification φ is first converted to the minimal
DFA A by using JFLAP [19]. The rest of Alg. 1 is implemented in MATLAB: (1)
we take a global DFA A, a distribution Δ and a set of transition systems Ti as inputs
and output a set of individual MS plans for the robotic team; (2) we use Dijkstra’s
algorithm (see [7]) to find a word or a run accepted by an FSA by assuming that each
transition of the FSA has default cost 1; if the algorithm fails to find an accepted
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run, the language of this FSA is empty; (3) we implement the standard algorithm
(see [11]) for taking ε-closure, determinizing a ε-NFA and minimizing a DFA. The
output of Alg. 1 is then mapped to control and communication strategies (described
in Sec. 3) through the use of motion primitives.

In this section, we show how our solution to Prob. 1 can be used to deploy a team
of robots using a rich specification to service requests occurring in a miniature city.
Our Robotic Urban-Like Environment (RULE) shown in Fig. 2 is a collection of
roads, intersections, and parking lots, which are connected following a simple set of
rules (e.g., a road connects two (not necessarily different) intersections, the parking
lots can only be located on the side of (each bound of) a road). Each intersection
has traffic lights that are synchronized in the usual way. A desktop computer is used
to remotely control the traffic lights through XBee wireless boards. Each parking
lot consists of several parking spaces, where each parking space can accommodate
exactly one car, and each parking lot has enough parking spaces to accommodate all
the robots at the same time. The city is easily reconfigurable through re-taping and
re-placement of the wireless traffic lights in intersections.

The robots are Khepera III miniature cars. Each car can sense when entering an
intersection from a road, when entering a road from an intersection, when passing
in front of a parking lot, when it is correctly parked in a parking space, and when
an obstacle is dangerously close. Each car can distinguish the color of a traffic light
and different parking spaces in the same parking lot. Each car is programmed with
motion and communication primitives allowing it to safely drive on a road, turn in an
intersection, park, and communicate with other cars. All the cars can communicate
through Wi-Fi with a desktop computer, which is used as an interface to the user
(i.e., to enter the global specification) and to perform all the computation necessary
to generate the individual control and communication strategies. Once computed,
these are sent to the cars, which execute the task autonomously by interacting with
the environment and by communicating with each other, if necessary. We assume
that the communication protocol is deadlock-free.

Modeling RULE using the framework described in Sec. 3 proceeds as follows.
The set of vertices V of the environment graph E is the set of labels assigned to
the roads, intersections, and parking lots (see Fig. 2). The edges in →E show how
these regions are connected. We assume that inter-robot communication is possible

Fig. 2 The topology of the
city for the case study from
Sec. 5 and the labels of the
roads, intersections, and
parking lots
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only when the robots are in the same parking lot. The motion capabilities of the
(identical) robots are captured by a transition system Ti (Eqn. (2)) which has 27
vertices and 42 transitions. Note that, in reality, each vertex of Ti has associated a
set of motion primitives, and each transition is triggered by a Boolean combination
of interrupts. For example, at vertex R5l, only one motion primitive follow road is
available, which allows the robot to drive on the road. There is only one possible
transition from R5l to I1, which is triggered by at int AND green light, where at int
is an interrupt generated when the robot reaches the end of a road at an intersection,
and green light is an interrupt generated at the green color of the traffic light.

It is important to note that, by selecting a motion primitive available at a vertex,
the robot can correctly execute a run of Ti, given that it is initialized on a road. In-
deed, only one motion primitive (follow road) is available on a road (more details
about the motion primitives can be found in [4]). In other words, MS plans defined
in Sec. 3 and derived as described in Sec. 4 can be immediately implemented by a
robot. It is easy to see that, under some reasonable liveness assumptions about envi-
ronmental events (e.g., the traffic lights will eventually turn green), such a transition
system captures the motion of each robot correctly.

In the rest of this section, we present a case study. Assume that two robots (cars),
labeled as C1 and C2, are available for deployment in the city with the topology
from Fig. 2. Assume the set of service requests is Σ = {H1,H2,L1,L2,L3,L4,L5},
where Li, i = 1,2,3,4,5 are “light” requests, which require only one robot, and
therefore should be serviced in parallel, while Hi, i = 1,2 are “heavy”, and re-
quire the cooperation of the two robots. Assume that C1 can service L1 and L4

and C2 can service L2, L3 and L5, i.e., the set of requests is distributed as Σ1 =
{L1,L4,H1,H2}, Σ2 = {L2,L3,L5,H1,H2}. between the two agents. Assume the re-
quests occur at the parking lots as given by the assignment function a(L1) = P1,
a(L2) = P2, a(L3) = P3, a(L4) = P4, a(L5) = P1, a(H1) = P4, and a(H2) = P5. Fi-
nally, assume that the global task specification is to service L4 and then L5 or first
service H1, then both L1 and L2 in an arbitrary order, then H2, and finally both L1

and L3 in an arbitrary order. Formally, this specification translates to the following
RE over Σ : L4L5 + H1 (L1L2 + L2L1) H2 (L1L3 + L3L1).

Using Alg. 1, we generate a set of FSAs AE
i . Since RULE is fully connected,

all the words accepted by Ai can be implemented. In this example, L (A) is nei-
ther a product language nor a trace-closed language (e.g., for w = L4L5, we have
[w]Δ = {L4L5,L5L4} and hence, [w]Δ � L (A)). Therefore, the FSA AG is obtained
as described in Sec. 4.2. We choose wg = H1L1L2H2L1L3 ∈ L (AG). The corre-
sponding service plans for C1 and C2 are s1 = H1L1H2L1 and s2 = H1L2H2L3, re-
spectively. The FSAs generated by Alg. 1 are shown in Fig. 3. Finally, we generate
the MS plans for C1 and C2. By assuming that C1 and C2 start in R2l and R1l respec-
tively, the two MS plans are

ms1 : R2l I2R4rI3R8rP4H1R8rI4R5l I1R6rP1L1R6rI4R8lP5H2R8l I3R8rI4R5l I1R6rP1L1

ms2 : R1l I1R3l I2R4rI3R8rP4H1R8rI4R5l I1R3l I2R3rP2L2R3rI1R5rI4R8lP5H2R8l I3R8rI4R6lP3L3
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Fig. 3 The FSAs generated by applying Alg. 1

The request entry H1 and H2 will trigger the wait-and-leave protocol (see Sec. 3)
since they are shared by both robots. The above MS plans are then mapped to control
and communication strategies through the use of motion primitives and interrupts.

To demonstrate that our method scales well with respect to the number of agents
in the team, we deploy 5 agents in a simulator for the RULE platform. Specifically,
in this case study, the global FSA A has 9 states, the transition system Ti for each
robot has 26 vertices and 41 transitions, the synchronous product ‖i∈I AE

i has 37
states and the determinized and minimized FSA AG has 9 states. The generation of
the MS plans for both case studies described in this section takes less than 2 seconds.
The movies for the actual deployment in the RULE platform and the simulator are
both available at http://hyness.bu.edu/RULE_media.html.

6 Conclusion

We presented a framework for automatic deployment of a robotic team from a spec-
ification given as a regular expression over a set of service requests occurring at
known locations of a partitioned environment. Given the robot capabilities to ser-
vice the requests, and the possible cooperation requirements for some requests, we
find local control and communication strategies such that the global behavior of
the system satisfies the given specification. We illustrate the proposed method with
experimental results in our Robotic Urban-Like Environment (RULE).

We are currently pursuing several future directions. We are expanding the set of
global specifications to formulas of temporal logics, such as Linear Temporal Logic,
to enrich the expressiveness of the global specifications. We are also working on
extensions to probabilistic frameworks. Specifically, we will use formulas of prob-
abilistic temporal logics, such as probabilistic Linear Temporal Logic (pLTL). The
satisfaction of the global specification will be guaranteed probabilistically and the
deterministic transition systems will be replaced with Markov Decision Processes.

http://hyness.bu.edu/RULE_media.html
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Heuristic Planning for Decentralized MDPs with
Sparse Interactions

Francisco S. Melo and Manuela Veloso

Abstract. In this work, we explore how local interactions can simplify the pro-
cess of decision-making in multiagent systems, particularly in multirobot problems.
We review a recent decision-theoretic model for multiagent systems, the decentral-
ized sparse-interaction Markov decision process (Dec-SIMDP), that explicitly dis-
tinguishes the situations in which the agents in the team must coordinate from those
in which they can act independently. We situate this class of problems within dif-
ferent multiagent models, such as MMDPs and transition independent Dec-MDPs.
We then contribute a new general approach that leverages the particular structure
of Dec-SIMDPs to efficiently plan in this class of problems, and propose two algo-
rithms based on this underlying approach. We pinpoint the main properties of our
approach through illustrative examples in multirobot navigation domains with par-
tial observability, and provide empirical comparisons between our algorithms and
other existing algorithms for this class of problems. We show that our approach al-
lows the robots to look ahead for possible interactions, planning to accommodate
such interactions and thus overcome some of the limitations of previous methods.

1 Introduction

Recent years have witnessed a profusion of work on multiagent models that capture
some of the fundamental features of Dec-(PO)MDPs (such as partial observability)
without incurring in the associated computational cost. In this paper, we contribute
to this extensive literature, and investigate a recent model for cooperative multiagent
decision-making in the presence of global partial observability [17]. This model is
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motivated by the observation that, in many real-world scenarios involving multiple
decision makers (e.g., robots), the tasks of the different agents/robots are not cou-
pled at every decision-step but only in relatively infrequent situations. We dub such
problems as having sparse interaction. Multi-robot systems provide our primary mo-
tivation and constitute natural examples for the class of problems considered herein.
In multi-robot systems, the interaction among the different robots is naturally lim-
ited by each robot’s physical boundaries (workspace, communication range, etc.)
and limited perception capabilities. Therefore, when dealing with multi-robot sys-
tems, one natural approach is to subdivide the overall task into smaller tasks that
each robot can then execute autonomously or as part of a smaller group [5, 15, 18].

Several previous works have exploited simplified models of interaction in multi-
agent settings. For example, a hierarchical learning algorithm can consider only the
interaction between the different agents at a higher control level, while allowing the
agents to learn lower level tasks independently [6]. Also, coordination graphs can
represent compactly the dependencies between the actions of different agents, thus
capturing the local interaction between them [8, 10]. Local interactions have also
been exploited to minimize communication during policy execution [16] and in the
game-theoretic literature to attain compact game representations [9, 20].

In this paper we consider Dec-MDPs with parse interactions (henceforth Dec-
SIMDPs). Dec-SIMDPs have been proposed in [17] under the designation of inter-
action-driven Markov games and are closely related to distributed POMDPs with
coordination locales [19] and Dec-MDPs with event-driven interactions and com-
plex rewards [14]. Dec-SIMDPs leverage the independence between agents to de-
couple the decision process in significant portions of the joint state space, allowing
the agents to base their decisions in their local perception of state and alleviating the
difficulties arising from global partial observability. On those situations in which the
agents interact, Dec-SIMDPs rely on communication to bring down the the compu-
tational complexity of the joint decision process. Dec-SIMDPs “balance” the inde-
pendence assumptions with communication: in any given state, the agents are either
independent or can communicate.1

The contributions in this paper are two-fold. On one hand, we build on [17], pro-
viding a precise formalization of Dec-SIMDPs and discussing in some detail the re-
lation with well-established decision-theoretic models such as Dec-MDPs, MMDPs
and MDPs. On the other hand, we contribute two new algorithms that exhibit signifi-
cant computational savings when compared to existing algorithms for Dec-SIMDPs.
We illustrate the application of our algorithms in several simple navigation tasks.

2 Decision Theoretic Models

We start by reviewing decentralized partially observable Markov decision processes
(Dec-POMDPs) and related decision theoretic models. A N-agent Dec-POMDP M

1 We note that both independence assumptions and communication can significantly bring
down the computational complexity in Dec-(PO)MDP related models [1, 7].
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is specified as a tuple M = (N,X ,(Ak),(Zk),P,(Ok),r,γ), where X is the joint
state-space, A = ×N

k=1Ak is the set of joint actions, with each Ak the individual
action set for agent k, each Zk represents the set of possible local observation for
agent k, P(x,a,y) represents the transition probabilities from joint state x to joint
state y when the joint action a is taken, each Ok(x,a,zk) represents the probability
of agent k making the local observation zk when the joint state is x and the last joint
action taken was a, and r(x,a) represents the expected reward received by all agents
for taking the joint action a in joint state x. The scalar γ is a discount factor.

A N-agent Decentralized Markov decision process (Dec-MDP) is a particular
class of Dec-POMDP in which the state is jointly fully observable. Formally this
can be translated into the following condition: for every joint observation z ∈ Z ,
with Z = ×N

k=1Zk, there is a state x ∈ X such that P [X(t) = x | Z(t) = z] = 1,
where X(t) is the joint state of the process at time t and Z(t) the corresponding joint
observation. Similarly, a partially observable Markov decision process (POMDP)
is a 1-agent Dec-POMDP and a Markov decision process (MDP) is a 1-agent Dec-
MDP. Finally, a N-agent multiagent MDP (MMDP) is a N-agent Dec-MDP that is
fully observable, i.e., for every individual observation zk ∈Zk there is a state x∈X
such that P [X(t) = x | Zk(t) = zk] = 1.

In the remainder of the paper paper we focus on Dec-MDPs, particularly in Dec-
MDPs for which the state-space X can be factorized as X = X1× . . .×XN . Al-
though more general Dec-MDP models exist [3], we adhere to this simplified ver-
sion, as this is sufficient for our purposes and makes the presentation both clearer
and simpler. Indeed, since multirobot navigation scenarios constitute the main mo-
tivation behind our work, the sensible approach is, in fact, to consider a factored
joint state-space, where each Xk denotes the individual state-space for robot k. For
future reference, let X−k =X0× . . .×Xk−1×Xk+1× . . .×XN and denote by x−k

a general element of X−k. We also write x = (x−k,xk) to denote the fact that the kth
component of x takes the value xk. We use a similar notation for actions.

In this partially observable multiagent setting, an individual (non-Markov) policy
for agent k is a mapping πk : Hk −→ Δ(Ak), where Δ(Ak) is the space of proba-
bility distributions over Ak and Hk is the set of all possible finite histories (finite
sequences of actions and observations) for agent k.

In a Dec-MDP, the purpose of all agents is to determine a joint policy π so as to
maximize the total sum of discounted rewards. In order to write this in terms of a
function, we consider a distinguished initial state, x0 ∈X , that is assumed common
knowledge among all agents. The purpose of the agents is then to maximize

V π = Eπ

[
∞

∑
t=0

γt r
(
X(t),A(t)

) | X(0) = x0

]
.

Transition-independent Dec-MDPs [2] constitute a particular subclass of Dec-
MDPs in which, for all (x,a) ∈X ×A ,

P [Xk(t + 1) = yk | X(t) = x,A(t) = a] = P [Xk(t + 1) = yk | Xk(t) = xk,Ak(t) = ak] .
(1)
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X1 X2 XNX3

XK

X
XK

x∗
X I

Fig. 1 Diagram representing the relation between individual state-spaces, Xk, the joint state-
space X , and the set XK for a set of agents K = {2,3}. We also represent an interaction area
X I associated with an interaction state x∗ ∈XK (see main text).

The transition probabilities can thus be factorized as

P(x,a,y) =
N

∏
k=1

Pk(xk,ak,yk), (2)

where Pk(xk,ak,yk) represents the transition probabilities from local state xk to local
state yk when the individual action ak was taken. This particular class of Dec-MDPs
has been shown to be NP-complete in finite-horizon settings, versus the NEXP-
completeness of general Dec-MDPs [7].2

Similarly, reward independent Dec-MDPs correspond to a subclass of Dec-MDPs
in which, for all (x,a)∈X ×A , r(x,a) = f (rk(xk,ak),k = 1, . . . ,N), i.e., the global
reward function r can be obtained from local reward functions rk,k = 1, . . . ,N, and
each individual reward is consistent with the global reward [7]. One typical example
is

r(x,a) =
N

∑
k=1

rk(xk,ak). (3)

Interestingly, it was recently shown that reward independent Dec-MDPs retain
NEXP-complete complexity [1]. However, when associated with transition inde-
pendence, reward independence implies that a Dec-MDP can be decomposed into
N independent MDPs, each of which can be solved separately. The complexity of
this class of problems thus reduces to that of standard MDPs (P-complete). For a
summary of complexity results for Dec-POMDP related models, we refer to [1, 7].

3 Local Interactions in Dec-MDPs

In this paper we exploit sparse interactions among the different agents in a Dec-
MDP. In particular, we are interested in Dec-MDPs in which there is some level
of both transition and reward dependency, but this dependency is limited to spe-
cific regions of the state space. We introduce decentralized sparse-interaction MDPs

2 In this paper we are interested in infinite horizon problems. Complexity results for infinite-
horizon problems with partial observability are even more discouraging—even single-
agent POMDPs have been shown undecidable in infinite-horizon settings [12].



Heuristic Planning for Dec-SIMDPs with Sparse Interactions 333

(Dec-SIMDPs). Dec-SIMDPs essentially correspond to the model previously pro-
posed in [17] under the designation of interaction-driven Markov games. However,
we revisit several aspects of this model that were not properly formalized in the
original work, and provide a more extensive discussion on the relation between this
work and the models surveyed in the previous section. We postpone to the following
section the introduction of two novel algorithms for this class of problems.

We start by introducing some auxiliary notation. Given an N-agent Dec-MDP
M = (N,X ,(Ak),P,r,γ), let K be a subset of the N agents in M . Extending the
notation in Section 2, we denote by XK =×k∈KXk the joint state-space of all agents
in K. Similarly, we write X−K to denote the joint state-space of the agents not in K.
We write xK to denote a general element of XK and x−K to denote a general element
of X−K . We write x=(x−K ,xK) to distinguish the components of x corresponding to
agents in K and those corresponding to agents not in K (see Fig. 1 for an illustration).

Also, for any given a Dec-MDP, we write the reward r(x,a) as

r(x,a) =
N

∑
k=1

rk(xk,ak)+
M

∑
i=1

rI
i (xKi ,aKi), (4)

where each rk corresponds to an individual component of the reward function that
depends only on agent k and there are M agent sets, Ki, i = 1, . . . ,M, and M reward
components, rI

i (the interaction components), each depending on all the agents in Ki

and only on these. We note that this decomposition can be performed at no loss of
generality, since any reward r can be trivially written in that form by setting M = 1,
rk ≡ 0, K1 = {1, . . . ,N}, and rI

1 = r. The scenarios that we are interested in are those
in which the support of ∑M

i=1 rI
i – the subset of X ×A in which this sum is non-zero

– is small when compared with X ×A .
We say that an agent k0 in a Dec-MDP is independent of an agent k1 in a state

x ∈X if the transition probabilities for the individual state of agent k0 at x do not
depend on the state/action of agent k1, i.e.,

P
[
Xk0 (t +1) = yk0 | X(t) = x,A(t) = a

]
= P

[
Xk0 (t +1) = yk0 | X−k1(t) = x−k1 ,A−k1(t) = a−k1

]
.

and it is possible to decompose the global reward function r(x,a) as in (4) in such a
way that no set Ki contains both k0 and k1. When any of the above does not hold, we
say that agent k0 depends on k1 at state x. This notion of dependence extends trivially
to sets of agents by interpreting the agents in each set as a single centralized agent.
Intuitively, two agents are dependent if either the rewards or the transitions of one
of the agents depend on the state or action of the other.

The agents in a set K interact at state x ∈X if the following conditions hold:

• If k0 ∈ K and agent k0 depends on agent k1 in state x, then k1 ∈ K.
• If k1 ∈ K and there is an agent k0 that depends on agent k1 in state x, then k0 ∈ K.
• There is no strict subset K′ ⊂ K such that the above conditions hold for K′.

If the agents in a set K interact in a state x, then we refer to xK as an interaction state
for the agents in K. Interactions capture all dependencies between the agents in K:
if the agents in K interact in state xK , no agent in K is independent of all others in
xK and no agent outside K depends on any agent in K.
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In a general Dec-MDP, all agents interact in all states, since generally there are
no transition or reward independences. On the other hand, transition and reward in-
dependent Dec-MDPs have no interactions at all – as expected, such problems can
be decomposed into N independent single-agent models and solved in a straight-
forward manner. An interaction occurs whenever a group of agents is coupled in
terms of either transitions or rewards and either the transition probabilities cannot
be factorized as in (2) or the reward function cannot be decomposed as in (3).

In a general N-agent Dec-MDP, we define an interaction area X I as follows:

• X I ⊂XK for some set of agents K;
• ∃x∗∈X I such that x∗ is an interaction state for the agents in K;
• The set X I is connected.3

An agent k is involved in an interaction at time t if there is one interaction area X I

involving a set of agents K such that k ∈ K and X(t) = (xK ,x−K) with xK ∈X I . We
represent the concept of interaction area in the diagram of Fig. 1.

The purpose of defining/identifying the interaction areas in a Dec-MDP is to sin-
gle out situations in which the actions of one agent depend on other agents. An agent
that is not involved in any interaction should be able to choose its individual actions
independently of the other agents and thus be unaffected by partial (global) state
observability. In contrast, we focus on those problems for which each of the agents
involved in an interaction in a particular interaction area X I ⊂XK at time t has full
access to the state XK(t). We refer to such a Dec-MDP as having observable inter-
actions. Our focus on Dec-MDPs with observable interactions, although apparently
restrictive, actually translates a property often observed in real-world scenarios. For
example, when interacting, robots are often able to observe/communicate relevant
information for coordination. In a sense, interaction areas encapsulate the need for
information sharing in a general multiagent decision problem.

We are now in position to introduce our model. A N-agent Dec-MDP M has
sparse interactions if all agents are independent except in a set of M interaction
areas,

{
X I

1 , . . . ,X
I

M

}
, with X I

i ⊂ XKi for some set of agents Ki, and such that
|X I

i |� |XKi |. We refer to a Dec-MDP with sparse observable interactions as a Dec-
SIMDP (decentralized sparse-interaction MDP). For all agents outside interaction
areas, the joint transition probabilities and reward function for a Dec-SIMDP can be
factorized as in (2) and (3), and it is possible to model these agents using “individual
MDPs”. On the other hand, the agents involved in an interaction can be modeled
using a “local” MMDP. We represent such a Dec-SIMDP as a tuple

Γ =
({Mk,k = 1, . . . ,N},{(X I

i ,M
I
i ), i = 1, . . . ,M}),

where

• Each Mk is an MDP Mk = (Xk,Ak,Pk,rk,γ) that individually models agent k
in the absense of other agents, where rk is the component of the joint reward
function associated with agent k in the decomposition in (3);

3 In this context we say that a set U ⊂X is connected if, for any pair of states x,y∈U , there
is a sequence of actions that, with positive probability, yields a trajectory {x(0), . . . ,x(T )}
such that x(t) ∈U, t = 0, . . . ,T , and either x(0) = x and x(T ) = y or vice-versa.
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• Each M I
i is an MMDP that captures a local interaction between Ki agents in the

states in X I
i and is given by M I

i = (Ki,XKi ,(Ak),P
I
i ,r

I
i ,γ), with X I

i ⊂XKi .

Each MMDP Mi describes the interaction between a subset Ki of the N agents, and
the corresponding state-space, XKi , is a superset of the respective interaction area.

A Dec-SIMDP is an alternative way of representing a Dec-MDP with observable
interactions. In the states of each interaction area in a Dec-SIMDP (and only in
these), the agents involved in the associated MMDP are able to observe their joint
state. This can be interpreted as having the agents in this area use communication
to overcome local state perception and decide jointly on their action. Outside these
areas, the agents have only a local perception of the state and should, therefore,
choose the actions independently of the other agents.

Note that, in the absence of any interaction areas, the Dec-SIMDP reduces to a
set of independent MDPs that can be solved separately. This captures the situation in
which the agents are completely independent. On the other hand, a Dec-SIMDP is a
Dec-MDP model with joint state observability in the interaction areas. In those situ-
ations in which all agents interact in all states, as assumed in the general Dec-MDP
model, the whole state-space is an interaction area and, as such, our assumption of
full state observability in the interaction areas renders our model equivalent to an
MMDP. Nevertheless, the appeal of the Dec-SIMDP model is that many practical
situations do not fall in either of the two extreme cases (i.e., independent MDPs vs.
fully observable MMDP). It is in these situations that the Dec-SIMDP model may
bring an advantage over more general (but potentially intractable) models.

4 Planning in Dec-SIMDPs

We now introduce two novel Dec-SIMDP algorithms that leverage the particular
structure of this class of problems and avoid the computational complexity of more
general Dec-MDP models. Our approach relies on a simple heuristic that provides
interesting insights into the structure of Dec-SIMDP and on how should the inter-
action areas be chosen for a particular problem. As in most planning problems, the
underlying Dec-MDP/Dec-SIMDP model is assumed known.

4.1 MPSI and LAPSI

Let us start by considering a Dec-SIMDP in which all except agent k have full state
observability. Let us further suppose that the agents with full state observability
follow some fixed known policy π−k. Then, from the perspective of agent k, the en-
vironment behaves as a POMDP, since the other agents can be collectively regarded
as part of the environment. In this particular situation, we can use any POMDP
solution method to compute the policy for agent k.

Our heuristic departs from the simplified situation just described. For each agent
k = 1, . . . ,N, we assume all other agents to follow some (hypothesized) policy π̂−k
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Algorithm 1. General outline of the proposed heuristic planning algorithms.

Require: Dec-SIMDP model M =
({Mk,k = 1, . . . ,N},{(X I

i ,M
I
i ), i = 1, . . . ,M})

1: for all k = 1, . . . ,N do
2: Build hypothetical policy π̂−k for other agents
3: From M and π̂−k build POMDP model for agent k, (X ,Ak,Zk,Pπ̂−k

,rπ̂−k
,γ)

4: Use preferred POMDP solution technique to compute πk : Δ (X )→Ak
5: end for

that depends only on the state Xt . Given this policy π̂−k, we derive the POMDP
model for agent k and use the corresponding solution as the policy πk. Algorithm 1
summarizes this approach.

This heuristic rests on the assumption that the hypothesized policy, π̂−k, will
allow agent k to approximately “track” the other agents and hence choose its actions
accordingly. The closer π̂−k is to the actual policy of the other agents, the better
agent k will be able to track them, and the better he will decide.

The two algorithms proposed in this paper, dubbed MPSI (Myopic Planning for
Sparse Interactions) and LAPSI (Look-Ahead Planning for Sparse Interactions),
share this underlying structure but consider different hypothetical policies π̂−k in
Step 2. In MPSI, agent k models the other agents as self-centered and oblivious to
the interactions. In other words, agent k acts as if each agent j, j �= k, is following the
optimal policy for the corresponding MDP M j in the Dec-SIMDP model. In envi-
ronments with almost no interaction, MPSI actually provides a good approximation
to the policy of the other agents outside the interaction areas.

In contrast, in LAPSI, agent k considers that all other agents jointly adopt the
optimal policy for the underlying MMDP. LAPSI is, in a sense, the counterpart
to MPSI, as it provides a good approximation to the policy of the other agents in
scenarios where the interactions are not so sparse.

Clearly, the idea in Algorithm 1 can be used in general Dec-POMDPs. However,
the hypothetical policy π̂−k will seldom correspond to the actual policy followed by
the other agents, and it is only natural that this method will not allow each agent
k to properly “track” the other agents and decide accordingly, this leading to poor
results in general Dec-POMDPs. The particular structure of Dec-SIMDPs, how-
ever, renders this approach more appealing for two reasons: on one hand, outside
interaction areas the policy of agent k (ideally) exhibits minimum dependence on
the state/policy of the other agents. As such, poor tracking in these areas has lit-
tle impact on the policy of agent k. In interaction areas, on the other hand, local
full observability allows agent k to perfectly track the other agents involved in the
interaction and choose its actions accordingly.

In the following subsection, we describe a specific instance of both MPSI and
LAPSI that is closely related to the QMDP heuristic for POMDPs [11] and rests on
the concept of generalized α-vectors. As will soon become apparent, even using
such a simple POMDP solver such as QMDP, LAPSI is able to attain near-optimal
performance in all test scenarios while incurring in a computational cost much lower
than alternative methods.
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4.2 Generalized α-Vectors

We now propose particular instances of both MPSI and LAPSI that is closely related
with the Q-MDP heuristic for POMDPs [11], although exploiting the structure of the
Dec-SIMDPs model.

To this purpose, we note that each agent k in a Dec-SIMDP has full local state
observability, implying that, at each time-step t, the kth component of the state,
Xk(t), is always unambiguously determined. Furthermore, given our assumption of
observable interactions, at each time step t only those state-components correspond-
ing to agents not interacting with agent k will be unobservable. By definition, these
state-components do not depend on the state/action of agent k at time t, and instead
depend only on π̂−k. We take advantage of this fact and modify the Q-MDP heuris-
tic as our POMDP solution method.4 To this purpose we introduce the concept of
generalized α-vectors for Dec-SIMDPs. Due to space limitations, we omit some of
the details involved in the derivation of these vectors as well as the analysis of its
properties. Instead, we refer to [13] for further details.

Let us denote by XI the set of all (joint) states in interaction areas, and define a
generalized α-vector for agent k, αk, recursively as follows:

αk(x) = rπ−k (x,ak)+ γ ∑
y∈XI

Pπ−k (x,ak,y)max
uk

αk(y,uk)+ γ max
uk

∑
y/∈XI

Pπ−k(x,ak,y)αk(y,uk),

(5)
where

rπ−k(x,ak) = ∑
a−k

π−k(x−k,a−k)r
(
x,(a−k,ak)

)
Pπ−k(x,ak,y) = ∑

a−k

π−k(x−k,a−k)P
(
x,(a−k,ak),y

)
.

The generalized α-vector αk is the fixed-point of the expression (5) and are well-
defined and unique. Furthermore, they can be computed iteratively using a dynamic-
programming-like approach that, essentially, iterates through the recursion in (5).
It is also possible to show that αk corresponds to the optimal Q-function of an
associated MDP whose dimension grows linearly with the dimension of the original
Dec-SIMDP. Recalling that the decision process for agent k can be modeled using a
standard POMDP, we adopt the approximation

Q∗(xk,b−k,ak)≈∑
x−k

bx−k αk(x,ak). (6)

This solution can now be used to choose the actions of agent k by maximizing the
above expression.

4 In the continuation, and to avoid unnecessarily complicating the presentation, we focus on
a 2-agent scenario. The development presented extends trivially to more than two agents
at the cost of more cumbersome expressions.
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5 Results

In this section we describe the results obtained from applying both MPSI and LAPSI
to a range of problems of different dimensions, and analyze the performance of our
methods in each of the test scenarios. We compare the performance of both MPSI
and LAPSI to that of the optimal fully observable MMDP policy and that of the
IDMG algorithm from [17]. In the IDMG algorithm, each agent k in a Dec-SIMDP({Mk,k = 1, . . . ,N},{(X I

i ,M
I
i ), i = 1, . . . ,M}) follows the optimal individual pol-

icy πk for the MDP Mk outside the interaction areas. In the interaction areas, the
agents engage in a sequence of local matrix games in which they jointly adopt the
equilibrium policy.

We used several robot navigation scenarios to test our algorithms (see Fig. 2),
since the Dec-SIMDP model is particularly appealing for modeling multi-robot
problems. Furthermore, in this class of problems, the results can be easily visu-
alized and interpreted. In each of the test scenarios, each robot in a set of two/four
robots must reach one specific state. In the smaller environments (Maps 1 through
4), the goal state is marked with a number, corresponding to the number of the robot.
The cells with a boxed number correspond to the initial states for the robots. In the
larger environments, the goal for each robot is marked with a cross,×, and the robots
each depart from the other robot’s goal state, in an attempt to increase the possibility
of interaction. Each robot has 4 possible actions that move the robot in the

21

12

(a) Map 01.

1

1

2

2

(b) Map 02.

1

1

2 2

(c) Map 03.

2

21

1

3

4

34

(d) Map 04.

(e) CIT. (f) CMU. (g) ISR.

(h) MIT. (i) PENTAGON. (j) SUNY.

Fig. 2 Environments used in the experiments. The dark gray areas correspond to interaction
states and the light gray areas to the corresponding interaction areas. We refer to the main
text for details.
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corresponding direction with probability 0.8 and fail with probability 0.2. The
shaded regions correspond to interaction areas, inside of which the darker cells cor-
respond to interaction states, in which the robots get a penalty of −20 if they stand
in the same cell simultaneously. Also, in these interaction states, the rate of action
failure is increased to 0.4.5 Upon reaching the corresponding goal, each agent re-
ceives a reward of +1 and its position is reset to the initial state. The dimension of
the state-space for the different Dec-MDPs is summarized in Table 1.

Table 1 Total discounted reward for each of the four different algorithms in each of the test-
scenarios. The results are averaged over 1,000 independent Monte-Carlo runs. Entries in
bold correspond to guaranteed optimal performance. Entries in italic in the same line are not
statistically different.

Environment # States IDMG MPSI LAPSI MMDP
Disc. Rew. Disc. Rew. Disc. Rew. Disc. Rew.

Map 1 441 12.035 11.130 11.992 12.588
Map 2 1,296 10.672 10.159 10.947 11.069
Map 3 400 13.722 13.249 13.701 14.380
Map 4 65,536 − 15.384 15.564 16.447

CIT 4,900 11.178 11.105 11.126 11.151
CMU 17,689 2.839 2.688 2.824 2.906
ISR 1,849 14.168 13.947 13.997 14.335
MIT 2,401 6.663 6.641 6.648 6.681

PENTAGON 2,704 16.031 15.162 15.976 16.312
SUNY 5,476 11.161 11.130 11.139 11.110

For each of the different scenarios in Fig. 2, we ran the four algorithms above and
then tested the computed policy for 1,000 independent trials of 100 steps each, in
the smaller environments, and 250 time-steps each, in the larger environments. The
obtained performance in terms of total discounted reward can be found in Table 1.

The LAPSI algorithm performed very close to the optimal MMDP policy in all
environments, in spite of the significant difference in terms of state information
available to both methods. Also, in most scenarios, LAPSI and IDMG performed
similarly. The only exceptions are Map 2, where LAPSI outperformed IDMG, and
ISR, where IDMG outperformed LAPSI. Interestingly, however, the difference in
terms of time-to-goal in the ISR environment is not significant. In any case, our
results agree with previous ones that showed that IDMG attained close-to-optimal
performance in most such scenarios [17]. Another interesting observation is that
MPSI typically performed worse than the other methods. As pointed out before,
since an agent in MPSI considers the other agents to be selfish and disregard mis-
coordinations (each is focused only on its individual goal), it is expected that the
agent following MPSI is more “cautious” and takes longer time to reach the goal.

Given the similar performance of IDMG and LAPSI, one may question the
advantage of adopting the latter over the former. There are at least two clear

5 Both the penalty and the increased action failure rate imply that there is both reward and
transition dependence in the interaction areas.
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Fig. 3 Computation time for the different algorithms as a function of the problem dimension

advantages. First of all, since the IDMG method requires the computation of several
equilibria both during off-line planning and during on-line execution, the compu-
tational complexity of the IDMG algorithm may quickly become prohibitive, in
scenarios with large action spaces and/or with many interaction areas. To assess
whether this is indeed so, we compared the computational effort of our methods with
that of IDMG, both in terms of the average off-line computation time and the on-
line computation time (see Fig. 3). Clearly, both MPSI and LAPSI are significantly
more efficient than the IDMG algorithm, according to any of the two performance
metrics. It is also interesting to note how the average computation times evolve with
the dimension of the problem.

The second advantage of LAPSI becomes evident by noting that the IDMG
method is, by construction, unable to consider future interactions when planning
for the action in a non-interaction area. In this sense, the IDMG algorithm is “my-
opic” to interactions and only handles these as it reaches an interaction area. This
can have a negative impact on the performance of the method, as illustrated in the fi-
nal test scenario (Fig. 4). In this environment, and ignoring the interaction, Robot 1
can reach its goal by using either of the narrow pathways, since both trajectories
have the same length. However, Robot 2 should use the upper pathway, since it is
significantly faster than using the lower pathway.

By using the IDMG algorithm, Robot 2 goes for the upper pathway while Robot 1
chooses randomly between the two. For concreteness, let’s suppose that Robot 1
chooses to go for the upper pathway. In this case, according to the IDMG algorithm,

Robot 2

Robot 1 Goal 1

Goal 2

Fig. 4 Example scenario where avoiding the interaction may
be beneficial
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both robots reach the interaction area simultaneously and Robot 1 must move out of
the way for Robot 2 to go on. This means that, in total, the two robots take a mean
time of 9 steps to reach the goal. If, instead, Robot 1 takes the lower pathway, the
two robots will reach their goal states in 8 steps. Since the IDMG algorithm chooses
between the two randomly – or, at least, has no way to differentiate between the
two – the average time to the goal is 8.5 time-steps. We ran 1,000 independent trials
using the IDMG algorithm in this scenario and, indeed, obtained an average of 8.485
steps to goal, with a standard deviation of 0.5. Clearly, it seems possible to do better
in this scenario by considering more convenient to use the lower pathway.

For comparison purposes, we also ran 1,000 independent trials using the LAPSI
algorithm in this same scenario. Out of 1,000 trials, Robot 1 always picked the
lower pathway. As expected, the group had an average time-to-goal of 8 time-steps
with a variance of 0. Notice that this difference could be made arbitrarily large by
increasing the “narrow doorway” to an arbitrary number of states, thus causing an
arbitrarily large delay. As such, in scenarios such as the one above, where inter-
actions should be considered even outside interaction areas, our methods present a
clear advantage over the IDMG algorithm.

6 Conclusion

As mentioned in Section 1, Dec-SIMDPs are particularly suited for modeling sev-
eral multi-robot problems. On one hand, unlike models such as MMDPs, Dec-
SIMDPs do not assume full joint state observability that, in a multi-robot scenario,
is tantamount to having the robots perceive the state of the other robots at every step.
In most settings, this would require the agents to flawlessly communicate in a con-
tinued manner, which is quite unrealistic. On the other hand, due to their physical
limitations, robots are generally bound to interact locally and, when doing so, they
are most likely in a position where communication is possible. Local interactions
and communication are abstracted in the Dec-SIMDPs model in the notions of in-
teraction areas – meaning that the interaction among robots is “local” and limited to
these areas – and observable interactions – meaning that, when interacting, robots
have access to joint state information, possible through communication. While a
Dec-SIMDP is a subclass of Dec-MDPs – and hence any problem modeled as a
Dec-SIMDP can be modeled as a Dec-MDP, – the form of interaction explicitly ab-
stracted in Dec-SIMDPs is particularly suited for multi-robot scenarios and allows
algorithms such as IDMG, LAPSI and MPSI to exploit them for efficient planning.

Concerning the methods, both the LAPSI and the MPSI algorithm allow each
agent to track the other agents in the environment using a belief vector that is then
used to choose the actions. The difference between the two algorithms lies in the as-
sumed policy for the other agents. In MPSI and LAPSI, these “modeling strategies”
are used to abstract the decision process of each agent into a single-agent decision
process (a POMDP). Although we proposed a solution technique based on the gen-
eralized α-vectors, the same principle can be used with any other POMDP solver.
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Also, the ability that both MPSI and LAPSI have to track the other agent allows
the planning process to take into consideration the possibility of future interaction.
This, as seen in the example in Fig. 4, is an important property of the method that
overcomes one important limitation of the IDMG algorithm.

It is also interesting to notice that the generalized α-vectors used in MPSI and
LAPSI can be interpreted in terms of an associated MDP. By comparing the optimal
policy in this MMDP and the optimal policies from the individual MDPs it should
be possible to pinpoint those joint-states in which the joint action significantly dif-
fers from the one prescribed by the individual MDPs and in which the actions for
each agent greatly depend on the state of the other agents. This provides one recipe
for choosing the interaction states as those in which individual state-information
is not sufficient to determine the best action. In [16] a similar approach is used to
implement decentralized execution of a jointly optimal policy.

Finally, several open questions remain to be explored. One is concerned with
the worst-case complexity of Dec-SIMDP. Is a Dec-SIMDP reducible to any of the
simpler Dec-MDP subclasses for which complexity results are known? Another in-
teresting question arised from the observation that, as a particular case of a Dec-
(PO)MDP, exact Dec-POMDP methods available (e.g., [4]) can be applied to solve
Dec-SIMDPs. It remains an open question whether it is possible to construct a more
specific optimal solution method that actually leverages the particular structure of
Dec-SIMDPs, or whether this structure actually brings a benefit in terms of compu-
tational complexity.
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A Note on the Consensus Protocol with Some
Applications to Agent Orbit Pattern Generation

Panagiotis Tsiotras and Luis Ignacio Reyes Castro

Abstract. We propose an extension to the standard feedback control for consensus
problems for multi-agent systems in the plane. The proposed extension allows for a
richer class of trajectories including periodic and quasi-periodic solutions, as well
as agreement to consensus states outside the convex hull of the initial positions of
the agents. We investigate in great detail the special case of three agents, which
results in non-trivial geometric patterns described by ellipsoidal, epitrochoidal and
hypotrochoidal curves.

1 A Generalized Consensus Protocol

Consensus problems have been originally used in distributed computing and man-
agement science and, most recently, have found extensive application in multi-agent,
mobile network problems [12, 16]. In this paper we propose a generalization of
the standard consensus algorithm which has been used extensively in the litera-
ture [13, 3, 11]. The proposed extension of the standard consensus protocol leads
to the following advantages: first, it can be used to achieve consensus at points that
do not necessarily belong to the convex hull of the initial conditions. This may be
beneficial in case of obstacle avoidance or as part of cooperative deception strate-
gies. Second, as shown in the second part of the paper, it can be utilized to generate
intricate geometrical patterns of the agent paths. These paths can be useful for coor-
dinated, distributed surveillance and monitoring applications.

Coordinated algorithms for network formations have appeared previously, for ex-
ample, in [14, 15, 7] as well as in the work of Leonard and Sepulchre [9, 17, 18].
Therein the authors make use of geometric information to achieve specific formation
patterns. The control laws are at the acceleration level (e.g., [7, 18]), often derived
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from potential-like functions. Typically, these works focus on a uni-directional ring
communication topology, assuming identical control laws for each agent, such as in
the case of cyclic pursuit. In [14], for instance, all-to-all communication and fixed
ring topology is assumed for the graph resulting in a cyclic pursuit. The particular
choice of the communication topology leads to a graph Laplacian which is a circu-
lant matrix and the achievable formations are lines, circles or logarithmic spirals,
similarly to the results of [9, 17, 18, 15].

The consensus control law proposed in the current paper cannot be readily de-
rived from a scalar potential and its design is at the velocity level, similarly to the
original consensus protocol. Depending on the gain matrices, the resulting paths
may lead to more intricate trochoidal paths, as opposed to just straight lines, cy-
cles and spirals. Using minimal assumptions we are thus able to generate geometric
patterns of the agent trajectories that go beyond formation-type geometric mod-
els [20, 14, 9, 10, 15].

1.1 A New Consensus Protocol

Consider N agents in the plane, whose locations are given by the state variables
xi ∈R2 for i = 1, . . . ,N, satisfying the differential equations

ẋi = ui, i = 1, . . . ,N. (1)

As usual, to this problem we associate a graph G that describes the communication
topology between the agents. That is, G has N nodes and M edges (links), with each
edge denoting knowledge of the relative position between the corresponding agents.
Two nodes are neighbors in the graph G (hence connected by an edge) if and only
if they can communicate with each other. Throughout the paper it will be assumed
that the communication topology is fixed, that is, the neighbors of each node do not
change as the agents move.

Define the incidence matrix D ∈RN×M with elements

di j =

⎧⎪⎨⎪⎩
+1, if ith node is the head of jth edge,

−1, if ith node is the tail of jth edge,

0, otherwise.

(2)

To each edge we assign the difference (error) variable

zk =
N

∑

=1

d
kx
 =

{
xi− x j, if i is the head,

x j− xi, if j is the head,
(3)

where zk ∈ R2 for k = 1, . . . ,M. If the columns of D are linearly independent,
that is, if the graph does not contain cycles, then the error variables zk are lin-
early independent vectors [1]. Note also that the graph is connected if and only
if rankD = N− 1 [13, 4]. Introducing the stack vector x =

[
xT

1 · · · xT
N

]T ∈ R2N , the
state equations (1) can be written compactly as
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ẋ = u, (4)

where u =
[
uT

1 · · · uT
N

]T ∈R2N . We propose the following control law1 for (1)

ui =−γi

M

∑
k=1

dikzk +βi

M

∑
k=1

dik pk, i = 1, . . . ,N, (5)

where pk ∈ R2 such that pT
kzk = 0, where γi > 0 and βi ∈ R. For instance, let pk

def
=

Szk, (k = 1, . . . ,M), where S is the skew symmetric matrix

S =

[
0 −1
1 0

]
. (6)

Letting the stack vector p =
[
pT

1 · · · pT
M

]T ∈ R2M yields, p = (IM⊗ S)z, where z =[
zT

1 · · · zT
M

]T ∈R2M . The composite control law (5) then takes the form

u =−(Γ D⊗ I2)z+(BD⊗ I2)p =−(Γ D⊗ I2)z+(BD⊗ S)z, (7)

where Γ = diag(γ1, . . . ,γN) and B = diag(β1, . . . ,βN). Note that the standard con-
sensus algorithm results as a special case of (7) where B = 0.

Remark 1. The basic idea behind the control law (5) is the use of additional geo-
metric information, inferred from the relative distance between the agent and its
neighbors. Specifically, the second term in (5) is proportional to the direction which
is perpendicular to the relative distance between the agent and its neighbor(s). In (7)
this information is encoded via the multiplication of the error state with the skew-
symmetric matrix S. This new skew-symmetric term provides additional flexibility
in terms of the achievable final rendezvous points, as well as in terms of the resulting
trajectories followed by the agents.

Remark 2. The proposed control law (7) has the same form as the one given in [1,
Eq. (16)]. However, since the second term is (7) is not the gradient of a scalar
function, it does not come from a potential, and hence (7) is more general than
the family of control laws of [1]. The absence of a scalar potential is owing to
the skew-symmetric term in (7) which introduces a circulation. In this sense, the
control law (7) is akin to the gyroscopic control laws proposed in the robotics
literature [6, 21, 19].

1.2 Consensus and Final Rendezvous Position

From (3) it can be easily shown that the error vector z can be written compactly as
follows

1 The alternative control law ui = −∑M
k=1 γkdikzk +∑M

k=1 βkdik pk which weights each edge
separately could have been used in lieu of (5). The results of the paper remain essentially
the same for the latter choice as well.
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z = (DT⊗ I2)x. (8)

Hence, equations (4) and (7) yield

ż = (DT⊗ I2)u =−(DT⊗ I2)(Γ D⊗ I2)z+(DT⊗ I2)(BD⊗ S)z

=−((DTΓ D)⊗ I2− (DTBD)⊗ S
)
z.

(9)

It follows that stability is determined by the spectral properties of the matrix in (9).

Lemma 1 (Fact 5.12.3 of [2]). Given two matrices A,B ∈ Rn×n, the eigenvalues of
A+B satisfy the inequality

1
2

λmin(A
T +A)+

1
2

λmin(B
T +B)≤ Reλ ≤ 1

2
λmax(A

T +A)+
1
2

λmax(B
T +B), (10)

where λ is an eigenvalue of A+B.

Note that in case A is symmetric and B is skew symmetric, inequality (10) yields
λmin(A)≤ Reλ ≤ λmax(A).

Proposition 1. Assume that G is a connected, and assume that Γ is a positive defi-
nite diagonal matrix. Then all solutions of (9) satisfy limt→∞ z(t) = 0.

Proof. We first consider the case when the graph G has no cycles, that is, D is full
column rank. It is then clear that the matrix−(DTΓ D)⊗ I2 is negative definite if Γ is
positive definite. Furthermore, it can be easily shown that the matrix (DTBD)⊗ S is
skew-symmetric2. From Lemma 1 it follows that all the eigenvalues of −(DTΓ D)⊗
I2+(DTBD)⊗S are in the open left-half of the complex plane, and the result follows.

If G has cycles, we can proceed similarly to the approach outlined in [11, pp. 78–
82]. Specifically, the incidence matrix in this case can be factored as D =

[
Dτ Dc

]
where Dτ is the incidence matrix corresponding to the acyclic subgraph (spanning
tree) of G and Dc is the incidence matrix corresponding to the remaining edges not in
the tree, i.e., the cycle edges. Furthermore, Dτ is full column rank, and the columns
of Dc are linearly dependent on the columns of Dτ , that is, there exist a matrix T such

that Dc = Dτ T . Subsequently, D = Dτ R, where R
def
=

[
I T

]
. The edge states (8) are

partitioned conformably with D as zτ = (DT
τ⊗ I2)x and zc =(DT

c⊗ I2)x=(T T⊗ I2)zτ .
Since z = (RT⊗ I2)zτ , and using (8) and (7), it can be easily shown that

żτ =−
(
(DT

τΓ Dτ RRT)⊗ I2
)
zτ +

(
(DT

τ BDτ RRT)⊗ S
)
zτ

=−((DT
τΓ Dτ)⊗ I2− (DT

τBDτ)⊗ S
)
(RRT⊗ I2)zτ .

(11)

Since RRT = I+TT T, it follows that RRT⊗I2 is positive definite. Hence,−((DT
τΓ Dτ)

⊗ I2− (DT
τ BDτ)⊗ S

)
(RRT⊗ I2) has no zero eigenvalues if and only if the matrix

−(DT
τΓ Dτ)⊗ I2 +(DT

τ BDτ)⊗ S has no zero eigenvalues. Using Lemma 1, it can be
shown that all the eigenvalues of the latter matrix are in the open left-half of the com-
plex plane (and hence are all nonzero). To complete the proof, note that all (necessar-
ily nonzero) eigenvalues of the matrix −((DT

τΓ Dτ)⊗ I2− (DT
τBDτ)⊗ S

)
(RRT⊗ I2)

2 Recall that the transpose distributes over the Kronecker product, that is, (A⊗B)T =AT⊗BT.
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are the same as the nonzero eigenvalues of the matrix3 (RT⊗ I2)
(− (DT

τΓ Dτ )⊗ I2+
(DT

τ BDτ)⊗ S
)
(R⊗ I2) = −(RTDT

τΓ Dτ R)⊗ I2 +(RTDT
τ BDτ R)⊗ S. Using the same

argument as in the acyclic case, the nonzero eigenvalues of the latter matrix are
in the open left-half of the complex plane. Thus, limt→∞ zτ(t) = 0. Furthermore,
limt→∞ zc(t) = limt→∞(T T⊗ I2)zτ(t) = 0, and the result follows. ��
In order to compute the final consensus value, first note that the differential equation
for x is given by

ẋ =−(Γ D⊗ I2)(D
T⊗ I2)x+(BD⊗ S)(DT⊗ I2)x

=−((Γ DDT)⊗ I2− (BDDT)⊗ S
)
x

=−((Γ L)⊗ I2− (BL)⊗ S
)
x, (12)

where L
def
= DDT ∈RN×N is the graph Laplacian [11]. From now on, we will assume

that L always corresponds to a connected graph. We have the following lemma.

Lemma 2. Let Γ and B be diagonal matrices as before, and assume that Γ > 0 (i.e.,
it is positive definite). Then dim

[
R⊥((Γ L)⊗ I2− (BL)⊗ S

)]
= 2.

Proof. It suffices to show4 that null [((Γ L)⊗ I2− (BL)⊗ S)T] = 2. Notice now that
null [(LΓ )⊗ I2 +(LB)⊗ S)] = null [(L⊗ I2)(Γ ⊗ I2 +B⊗ S)]. The matrix Γ ⊗ I2 +
B⊗ S is always invertible if Γ > 0. The result now follows from the fact that, for a
connected graph, the Laplacian has a single eigenvalue at the origin [4], and hence
null [L⊗ I2] = 2. ��
Let 1N

def
= (1,1, . . . ,1)T ∈ RN denote the N-dimensional column vector of ones, and

recall that L1N = 0 [11, 4]. For any ν ∈ R2 we have that(
(Γ L)⊗ I2− (BL)⊗ S

)
(1N⊗ν) = (Γ L1N)⊗ν− (BL1N)⊗ (Sν) = 0. (13)

Since null[(Γ L)⊗ I2 − (BL)⊗ S] = 2 it follows that 1N ⊗ ν spans to the null
space of the matrix in (12). It follows that the equilibrium point x̄∞ of (12) sat-

isfies the condition x̄∞
def
= limt→∞ x(t) = 1N ⊗ x∞ for some x∞ ∈ R2, equivalently,

limt→∞ x1(t) = limt→∞ x2(t) = · · ·= limt→∞ xN(t) = x∞.

Lemma 3. Let Θ = QΣ where Σ = Σ T ∈ Rn and Q ∈ Rn an invertible matrix, such
that xTQx �= 0 for all nonzero x ∈ Rn. Then N (Θ)∩R(Θ) = {0}.
Proof. Assume, on the contrary, that there exist x �= 0 such that x ∈N (Θ)∩R(Θ).
From x ∈N (Θ) it follows that Θx = QΣx = 0 and since Q is invertible, Σx = 0.
Furthermore, since x ∈R(Θ) it follows that there exist y ∈ Rn such that x =Θy =
QΣy. Hence, Σx = ΣQΣy = 0 and thus, yTΣ TQΣy = 0. It follows that Σy = 0 or that
x = QΣy = 0, a contradiction. ��

3 Recall that det(λ I−ABBT) = det(λ I−BTAB) for any two matrices A and B of compatible
dimensions.

4 Here nullA denotes the nullity of A, i.e., the dimension of the null space of the matrix A,

that is, nullA
def
= dim[N (A)].
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The coordinates of the final consensus point x∞ = [x∞ y∞]
T ∈ R2 can be explicitly

computed using the following proposition.

Proposition 2. Let v1,v2 ∈R2N be such that span{v1,v2}=R⊥((Γ L)⊗ I2−(BL)⊗
S
)
. The final rendezvous point is given by

x∞ =

[
x∞
y∞

]
=

[
vT

1(1N⊗ I2)
vT

2(1N⊗ I2)

]−1 [
vT

1x(0)
vT

2x(0)

]
. (14)

Proof. From Lemma 2 there exist linearly independent vectors v1,v2 ∈R⊥((Γ L)⊗
I2− (BL)⊗ S

)
such that vT

i ẋ = −vT
i

(
(Γ L)⊗ I2− (BL)⊗ S

)
x = 0, (i = 1,2). Con-

sequently, vT
i x(t) = vTx(0) for all t ≥ 0. In particular, we have that vT

i (1N ⊗ x∞) =
vT

i (1N ⊗ I2)x∞ = vT
i x(0) (i = 1,2). It follows that[

vT
1x(0)

vT
2x(0)

]
=

[
vT

1(1N ⊗ I2)
vT

2(1N ⊗ I2)

][
x∞
y∞

]
=

([
vT

1
vT

2

]
(1N⊗ I2)

)[
x∞
y∞

]
. (15)

Since the vectors v1 and v2 are linearly independent, rank[v1 v2] = 2. Furthermore,

rank(1N⊗ I2) = (rank1N)(rank I2) = 2. Let now Θ def
= (Γ L)⊗ I2− (BL)⊗S = (Γ ⊗

I2−B⊗S)(L⊗ I2). From the definition of v1 and v2, it follows that N
([

v1 v2
]T )

=
R(Θ). An easy calculation also shows that R(1N ⊗ I2) = N (Θ) (refer also to
equation (13)). From Lemma 3 we have that R(Θ)∩N (Θ) = {0}, equivalently,
N

([
v1 v2

]T )∩R(1N ⊗ I2) = {0}. Fact 2.10.14 in [2] yields that the 2× 2 ma-
trix in (15) has rank 2 and hence it is invertible. The result now follows directly
from (15). ��

2 Applications to Agent Orbit Design

In this section we investigate how several choices of the gain matrices Γ and B
can generate specific patterns for the agent paths. Since we are mainly interested
in periodic or quasi-periodic trajectories, we assume that Γ = 0. It follows that the
closed loop system is given by

ẋ = ((BL)⊗ S)x. (16)

It can be easily shown that the eigenvalues of BL are all real, hence the eigenvalues
of the closed-loop matrix in (16) all lie on the imaginary axis. The structure of the
corresponding state matrix in (16) (e.g., its eigenvalues and eigenvectors) can pro-
vide a great deal of information regarding the paths followed by the agents in the
Cartesian coordinate frame, as well as the relative location of the agents on these
paths (i.e., their relative phasing). For instance, one can ensure that the agent tra-
jectories either form closed paths with given phasing, or they form a dense set of



A Note on the Consensus Protocol 351

trajectories, ensuring that almost every point in a given region will be visited at least
once by one or more agents.

Remark 3. In [15] Ren introduced Cartesian coupling in the consensus control law
using a multiplication of the Laplacian matrix by a rotation matrix; this is similar to
the skew-symmetric matrix we use in (16). Nonetheless, additional constraints on
the Laplacian matrix are needed in [15] to capture the richness of trajectories we
can obtain with the approach proposed in the current paper.

2.1 Case Study: Three Agents Connected in a Path Graph

In order to keep the analysis manageable, and to be able to provide closed-form
expressions, henceforth we will restrict the discussion to three agents in the plane,
that is, we take N = 3. For simplicity, we will also assume the simplest agent inter-
connection topology, namely a path graph. The corresponding incidence matrix is
given by

D =

⎡⎣−1 0
1 −1
0 1

⎤⎦ . (17)

We are primarily interested in three types of closed curves: ellipses, epitrochoids,
and hypotrochoids. Since the ellipses (and circles) have well-known parameteriza-
tions, next we will briefly review the main facts on epitrochoids and hypotrochoids.
All these follow under the general class of trochoid curves, which includes car-
dioids, astroids, limaçons, and all polar coordinate roses [5].

An epitrochoid curve is generated by a point P attached at a radial distance d
from the center of a circle of radius r, which is rolling without slipping around a
circular track of radius R with angular velocity ω (see Fig. 1(a)). The distance d
can be smaller, equal, or greater than the radius r of the rolling circle. In terms of
Cartesian coordinates, an epitrochoid can be expressed as [8]

x(θ ) = xc +(k+ 1)r cos(θ −φA)− d cos((k+ 1)θ −φB), (18a)

y(θ ) = yc +(k+ 1)r sin(θ −φA)− d sin((k+ 1)θ −φB), (18b)

where φA and φB are constant angles, xc and yc are the coordinates of the center of the
circular track of radius R and k = R/r. The angle θ denotes the angular position of
the circle of radius r, given by θ =ωt. It can be shown that k is the number of points
at which the agent is closest to the center of the circular track. For the purposes of
this paper, we will henceforth refer to these points as crests. In the special case when
r = d, the curve becomes an epicycloid with k cusps; at these points, the curve is
not differentiable. Note that ellipsoidal paths correspond to the case when k = 0.

Another relevant curve of interest in this paper is the hypotrochoid [8], with para-
metric equations
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(a) Epitrochoid curves. The blue
curve has d < r, while the second
one has d > r. Both epitrochoids
have R = 4, r = 2 (hence k = 2).

(b) Hypotrochoid curves. The
blue curve has d > r, while the
second one has d < r. Both hy-
potrochoids have R = 6, r = 1.5
(hence k = 4).

Fig. 1 Representative examples of epitrochoids and hypotrochoid curves

x(θ ) = xc +(k− 1)r cos(θ −φA)+ d cos((k− 1)θ −φB), (19a)

y(θ ) = yc +(k− 1)r sin(θ −φA)− d sin((k− 1)θ −φB), (19b)

where k > 1 with k = R/r as before. The hypotrochoid can be reproduced by a point
P attached at a distance d from the center of a circle of radius r, which rolls inside
a circle of radius R. Again, the distance d can be smaller, equal, or greater than the
radius r of the rolling circle; this radius, however, cannot exceed that of the circle R.
Examples of hypotrochoids are shown in Fig. 1(b).

2.2 Case I: Epitrochoidal Paths

Consider the case when Γ = 0 and B = diag(β ,β ,β ), where β > 0. Following (12),
the solution of the closed loop system can be obtained easily as follows

x(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2

√
c2

1 + c2
2 cos(β t−φ12)+

1
6

√
c2

3 + c2
4 cos(3β t−φ34)+

1
3 c5

− 1
2

√
c2

1 + c2
2 sin(β t−φ12)− 1

6

√
c2

3 + c2
4 sin(3β t−φ34)+

1
3 c6

1
3

√
c2

3 + c2
4 cos(3β t−φ34)+

1
3 c5

− 1
3

√
c2

3 + c2
4 sin(3β t−φ34)+

1
3 c6

− 1
2

√
c2

1 + c2
2 cos(β t−φ12)+

1
6

√
c2

3 + c2
4 cos(3β t−φ34)+

1
3 c5

1
2

√
c2

1 + c2
2 sin(β t−φ12)− 1

6

√
c2

3 + c2
4 sin(3β t−φ34)+

1
3 c6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (20)
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where xi = [xi yi]
T ∈ R2 for i = 1,2,3 and where c1 = x1(0)− x3(0),c2 = y1(0)−

y3(0),c3 = x1(0)−2x2(0)+x3(0),c4 = y1(0)−2y2(0)+y3(0),c5 = x1(0)+x2(0)+
x3(0),c6 = y1(0)+ y2(0)+ y3(0) and φ12 = arctan(c2/c1) and φ34 = arctan(c4/c3).

Comparing the expressions for the x(θ ) and y(θ ) components of an epitrochoid
in (18) to those in (20), the following observations can be made. First, for all agents,
the center of their trajectories has coordinates (xc,yc) = ( 1

3 c5,
1
3 c6), which is the

centroid of the initial positions of the agents. For agents no. 1 and no. 3, we have
that Ri + ri =

1
2 (c

2
1 + c2

2)
1
2 and di =

1
6(c

2
3 + c2

4)
1
2 . For the same two agents, k = 2,

which implies that Ri = 2ri (i = 1,3). In other words, for any given initial posi-
tions, the ratio of the radius of the rolling circle to the radius of the track is fixed.
Moreover, from the definition of k, it becomes evident that these two agents will
describe epitrochoids with only two crests. Furthermore, it can be easily shown that
ri =

1
6 (c

2
1 + c2

2)
1
2 (i = 1,3). The times at which agent no. 1 is closest and farthest

from the center of its trajectory (its crests) can be computed from the solutions of
the equation

sin(2β t−φ12 +φ34) = 0. (21)

Also, by considering the distance of the radius of agent no. 2 from the origin, it can
be easily shown that the points of closest approach for agents no. 1 and no. 3 differ
by an angle π/2 with respect to the center of the circular track. This relationship,
along with (21), can be employed to calculate the orientation of the curves with
respect to an absolute Cartesian coordinate frame. Agent no. 2 describes a circle of
radius R2 =

1
3(c

2
3 + c2

4)
1
2 with frequency 3β .

To demonstrate these facts, consider the case B = diag(1,1,1) with initial po-
sitions x1(0) = (6,8), x2(0) = (−7,5), x3(0) = (5,−10). The center of the orbits
is located at (xc,yc) = (1.33,1). The radii of the circular tracks for agents no. 1
and no. 3 are R1 = R3 = 6.009, and the radii of the rolling circles for agents no. 1
and no. 3 are r1 = r3 = 3.005. The radius of the circle described by agent no. 2 is
R2 = 9.244. After computing the phase angles φ12 and φ34, and evaluating

δ = arctan

(
y1(τ)− yc

x1(τ)− xc

)
, (22)

where τ is the solution of (21), it is found that the angle by which the crests of the
epitrochoids are inclined with respect to the x-axis is δ = −37.907 ◦. The corre-
sponding trajectories are shown in Fig. 2.

2.3 Case II: Ellipsoidal Paths

Consider now the case of the same system as before, but this time with the gains
given as follows B = diag(β ,−β ,β ), where β > 0. The solution of the closed-loop
system in this case leads to
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Fig. 2 Three agents displaying a circle and
two epitrochoids when B = diag(1,1,1).
The trajectory of agent no. 1 is shown in
blue, the one of agent no. 2 is red, and the
one of agent no. 3 in black.

Fig. 3 Three agents displaying a circle and
two ellipses when B = diag(1,−1,1). Again
agent 1 is shown in blue, agent 2 in red, and
agent 3 in black.

x(t) =

⎡⎢⎢⎢⎢⎢⎢⎣
c2 sinβ t + c3 cosβ t + c5

−c1 sinβ t + c4 cosβ t + c6

(c2− c4)sin β t +(c3− c1)cosβ t + c5

(c3− c1)sin β t +(c4− c2)cosβ t + c6

−c4 sinβ t− c1 cosβ t + c5

c3 sinβ t− c2 cosβ t + c6

⎤⎥⎥⎥⎥⎥⎥⎦ , (23)

where as before c1, . . . ,c6 are constants depending on the initial conditions, as
follows c1 = x1(0)− x2(0),c2 = y1(0)− y2(0),c3 = x2(0)− x3(0),c4 = y2(0)−
y3(0),c5 = x1(0)− x2(0) + x3(0),c6 = y1(0)− y2(0) + y3(0). The trajectories of
agents no. 1 and no. 3 are ellipses, while that of agent no. 2 is a circle. All three
trajectories are centered around the point with coordinates (xc,yc) = (c5,c6) and all
of them have a period T = 2π/β . Furthermore, it is easy to show that the trajec-
tory of agent no. 3 is an ellipse geometrically identical to that of agent no. 1, but
rotated π/2 radians in the counterclockwise direction. The second observation is
that whenever agent no. 1 is at the tip any of its semi-major axis, agent no. 3 is at
the tip of its semi-minor axis, and vice-versa. The radius of the circle described by
agent no. 2 is R2 =

√
(c1− c3)2 +(c2− c4)2. Analytical expressions for the semi-

major and semi-minor axes of the ellipses described by agents no. 1 and no. 3 can
be computed by solving for the times at which the distance from the origin is at a
maximum and at a minimum. Note that ellipses are special cases of hypotrochoids
with R = 2r. Figure 3 shows an example for this scenario with B = diag(1,−1,1)
and initial conditions x1(0) = (−12,−3), x2(0) = (−7,9), x3(0) = (−2,12).

2.4 Case III: Hypotrochoidal Paths

Consider now the case when B = diag(β ,β ,−β ), where β > 0. The analytic cal-
culation of the solution is cumbersome and is omitted for the sake of brevity. Instead,
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insightful conclusions about the ensuing paths can be drawn by investigating directly
the eigenvalues of the state matrix. A simple calculation shows that the nonzero
eigenvalues of the matrix (BL)⊗S are λ1,2 =±β (

√
2−1)i and λ3,4 =±β (

√
2+1)i.

From the expression β (
√

2+ 1) = (k− 1)β (
√

2− 1) it follows

R− r
r

= k− 1 =
1+

√
2√

2− 1
. (24)

It follows that the number of crests is given by k = 4+2
√

2∼= 6.83, which is an irra-
tional number. A general result in analytic geometry [8] states that if k is irrational,
then the number of crests described by the hypotrochoid is infinite. The curve does
not close, and the trajectories form a dense subset of the space between the bounding
circle R and the circle of radius R−2r. In other words, as t → ∞, the hypotrochoids
described by each of the three agents fill annular areas.

The path for agent no. 1 is given by r1 = (5
√

2− 7)(c2
1 + c2

2)
1
2 and d1 = (

√
2+

1)(c2
3 + c2

4)
1
2 . For agent no. 2, we have r2 = (10− 7

√
2)(c2

1 + c2
2)

1
2 and d2 = (2+√

2)(c2
3 + c2

4)
1
2 , and for agent no. 3, we have r3 = (3− 2

√
2)(c2

1 + c2
2)

1
2 , and d3 =

(c2
3 + c2

4)
1
2 , where the constants ci i = 1, . . . ,4 can be easily computed in terms of

the initial conditions as follows

c1 =

(
−1

2
−
√

2
4

)
y1(0)+

(
−1

2
−
√

2
2

)
y2(0)+

(
1+

3
√

2
4

)
y3(0), (25a)

c2 =

(
−1

2
−
√

2
4

)
x1(0)+

(
−1

2
−
√

2
2

)
x2(0)+

(
1+

3
√

2
4

)
x3(0), (25b)

c3 =

(
−1

2
+

√
2

4

)
y1(0)+

(
−1

2
+

√
2

2

)
y2(0)+

(
1− 3

√
2

4

)
y3(0), (25c)

c4 =

(
1
2
−
√

2
4

)
x1(0)+

(
1
2
−
√

2
2

)
x2(0)+

(
−1+

3
√

2
4

)
x3(0), (25d)

c5 = x1(0)+ x2(0)− x3(0), c6 = y1(0)+ y2(0)− y3(0). (25e)

The center of the orbits of the three agents is located at (xc,yc) where xc = x1(0)+
x2(0)− x3(0) and yc = y1(0)+ y2(0)− y3(0). The radius of the circular track for
each agent is Ri = kri (i = 1,2,3).

Figure 4(a) shows an example with B = diag(1,1,−1) and initial conditions
x1(0) = (8,−7), x2(0) = (0,6), x3(0) = (12,14).

2.5 General Case

System (16) describes a rich family of geometric curves. However, the approach
is still restrictive in the sense that the curves have some fixed parameters that can-
not be altered by just changing the initial conditions. For instance, the epitrochoids
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(a) A set of three hypotrochoids described
by three agents. Although each one has a
different ri, di and Ri parameters, they all
display non-closing curves. Notice that the
value of k for this example is irrational.

(b) Same group of agents as in (a), with con-
trol redesign to describe closed hypotrochoids
with five crests. This pattern necessitates a
different graph topology of the intra-agent in-
formation exchange (i.e., a cycle graph).

Fig. 4 Examples of hypotrochoidal paths with three agents interconnected in a path graph
and a cycle graph

described in Case I can only have two crests. Moreover, the orbits of agents no. 1
and no. 3 are identical, except for the fact that they are phased apart by an angle
π/2, along with the condition that the trajectory of agent no. 2 is a circle. Similar
statements can be made for Cases II and III. Also, recall that the hypotrochoids of
Case III were not periodic. It would be of great interest to a mission designer to be
able to employ vehicles generating (in a distributed, cooperative manner) suitable
trajectories with specific geometric characteristics. For instance, it may be desirable
to be able to generate epitrochoids or hypotrochoids with a certain number of crests
in order to survey an area or perimeter of interest, or provide telecommunication
coverage over a region, etc.

Based on the discussion in the previous sections, the shape and frequencies of the
resulting paths/trajectories is determined by the eigenvalues and eigenvectors of the
matrix (BL)⊗S. Recall from the properties of the Kronecker product that the eigen-
values of the matrix (BL)⊗S are of the form λ μ where λ ∈ spec(BL) and μ ∈ specS.
Additionally, the corresponding eigenvectors are of the form v⊗u where v ∈ C3 is
the eigenvector of the matrix BL associated with λ and u ∈ C2 is the eigenvector
of the matrix S associated with μ . The task of agent trajectory design therefore re-
duces to the task of imposing the correct conditions on the spectral properties of
the matrix BL. For example, closed paths with the correct number of crests may be
ensured by selecting a suitable rational value of k, along with the eigenvalues of the
matrix BL. The type of path (epitrochoid, ellipse, hypotrochoid) may be determined
by the corresponding eigenvectors. It is clear that the path design depends both on
the feedback gain matrix B, as well as on the imposed graph topology represented
by the incident matrix D (equivalently, the graph Laplacian L).

Consider, for instance, again Case III of the hypotrochoidal paths shown in
Fig. 4(a), and let us assume that we want to keep the general, overall shape of these



A Note on the Consensus Protocol 357

paths, but we want to have closed, periodic paths instead with a given number of
crests. By keeping the same eigenvectors and by changing only the eigenvalues
(choose for instance the smallest nonzero eigenvalue to be equal to λ1,2 = 5/3) and
by imposing five crests (hence k = 5), we are led to the following control law5

u = ((B◦D)⊗ S)z= ((B◦D)⊗ S)(DT⊗ I2)x, (26)

which can be written, componentwise, as follows

ui =
M

∑
k=1

βikdik pk =
M

∑
k=1

βikdikSzk, i = 1, . . . ,N, (27)

where B =
[
0.6213 0.8431 0.1109

]⊗ [
1 1 −1

]T
and with an incidence matrix

D =

⎡⎣−1 0 1
1 −1 0
0 1 −1

⎤⎦ . (28)

The trajectories of the agents are shown in Fig. 4(b). Note that these trajectories
necessitate a different communication topology, namely, one which, for this case,
corresponds to a complete graph.

3 Conclusions

We have presented an extension of the classical consensus algorithm for multi-agent
systems. The main idea hinges on the use, by each agent, of additional directional
information that can be readily inferred from knowledge of the relative position
with respect to the other agents. The resulting control law seems to be a genuine
generalization of the classical consensus design protocol since it is not induced by
a scalar potential, and it can lead to agreement values that lie outside the convex
hull of initial conditions. A special choice of the feedback gains leads to periodic or
quasi-periodic solutions that can be used to design trajectories suitable for persistent
optimized surveillance and monitoring applications by a team of agents. The result-
ing trajectories show intricate geometric patterns generated using only relative, local
information. Future work will concentrate on developing a general theory for orbit
synthesis for an arbitrary number of agents in two and three dimensions.
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Utilizing Stochastic Processes for Computing
Distributions of Large-Size Robot Population
Optimal Centralized Control

Dejan Milutinović

Abstract. Motivated by the success of stochastic process sampling methods in solv-
ing complex estimation problems, we explore the possibility to utilize stochastic
processes for computing optimal control for a large-size robot population. We as-
sume that the individual robot state is composed of discrete and continuous com-
ponents, while the population is controlled in a probability space. The optimal
control solution is based on an infinite dimensional Pontryagin-like minimum prin-
ciple, which involves an evaluation of systems of partial differential equations. The
paper shows that these equations can be evaluated with computations involving
stochastic process samples. This is an important result because generating stochastic
process multi-dimensional trajectories is much easier than solving corresponding
multi-dimensional partial differential equations. The proposed evaluations are illus-
trated and verified by an example of the centralized optimal control for a large-size
robot population.

1 Introduction

The solution of multi-robot control problems [20] can be of enormous complex-
ity due to a large number of redundant states and robots, as well as environmental
uncertainties. It has been known for many years that optimal control and optimal
estimation problems are closely related [8, 23]. Motivated by the success of statisti-
cal sampling methods in solving complex estimation problems [21], we explore the
possibility of utilizing stochastic processes for computing the solution of a complex
optimal control problem, such as the centralized optimal control for a large-size
robot population.
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Decentralized control has been proposed as a control strategy for large-scale dy-
namical systems [24] composed of coupled dynamical systems. Therefore, having
in mind that an individual robot is a dynamical system, which can be coupled with
dynamics of other robots to form a multi-robot system, decentralized control strate-
gies appear to be a natural choice for multi-robot systems control. Some examples of
decentralized strategies applied in control of multi-robot systems and robot swarms
are provided in [3, 7, 10, 15, 16]. However, in the presence of a vantage point when
commands to robots can be broadcasted, a centralized control strategy, which is in
the focus of this paper is feasable and very appealing; specifically, in the case of
a robot swarm composed of simple miniature robots with a limited computational
capability, so that their behavior depends on the broadcasted commands. It is rea-
sonable to expect that such miniature robot systems will be a driving force in the
development of nano-robotics and that studying their control can help us in design-
ing specifications of future nano-robots [9].

In this paper, we consider a robot model from a stochastic hybrid automata class
with stochastic discrete state transitions and deterministic continuous dynamics in
each discrete state. This model was previously used in modeling a large-size robot
population and formulating the control problem that maximizes the robot presence
in a desired region of the operating space [18, 19]. The model belongs to a class of
stochastic hybrid automata [11], or, more precisely, to a class of piecewise determin-
istic systems [4]. However, the model allows an optimal control problem solution
based on a Pontryagin-like minimum principle for partial differential equations[5],
which is presented in [17, 18], and is solved numerically when the presence of robots
is maximized along one dimension (1D).

The Hamiltonian from the minimum principle, which defines the optimal control,
includes integral terms that depend on the solution of two systems of partial differ-
ential equations (PDEs). One system describes the hybrid state probability density
function evolution and the other, the corresponding co-state distribution evolution.
In general, these PDE systems are difficult to evaluate and this presents a major
difficulty in computing the solution of the control problem in more dimensions.
Therefore, we propose to utilize stochastic processes to compute necessary distri-
butions, which is the major contribution of this paper. We describe a Gillespie-like
numerical algorithm for generating trajectories of our discrete-continuous stochastic
process and derive the relation between stochastic process samples and the co-state
distribution. This relation comes in the form that is in the spirit of the so-called
Feynman-Kac formula [13] from statistical physics.

Along the idea of utilizing stochastic processes for control, Kappen et. al. [1, 12]
studied control of stochastic differential equations. They were able to relate the
stochastic Hamilton-Jacobi-Bellman partial differential equation with samples of
stochastic process trajectories and use the samples to define the stochastic optimal
control of a multi-agent system. In their framework, the state is a vector of real
numbers. However, in the case of our stochastic hybrid automaton, which is a more
general dynamical model [22], the state is defined by continuous and discrete vari-
ables, i.e, the hybrid state.
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The direction of the research we are pursuing is also different from the stochastic
optimal control work presented in [14]. There, stochastic processes have been used
as an analytical tool to map the stochastic process to be controlled into a finite state
space in which the optimization is performed. The benefit of using a solution based
on sampling, i.e, computational statistical methods, is in the opportunity to embed
stochastic process generation and necessary computations into physical systems,
which can provide an efficient solution of control problems in robotics and similar
applications.

We discuss the modeling and control framework in Section 2, which is followed
by Section 3 explaining the algorithm generating stochastic process trajectories and
the state PDF evaluation. Section 4 describes the evaluation of the co-state distribu-
tion. Section 5 provides an example and Section 6 conclusions.

2 Modeling and Control Framework

In the modeling framework we consider, the state of an individual robot at time
t is uniquely defined by the couple (x(t),q(t)), the so-called hybrid state, where
x ∈ X , X ∈ Rn, q ∈ Q,Q = {1,2, ...K}. While in the discrete state (mode) k ∈ Q,
the continuous state x of a robot obeys the differential equation ẋ = fk(x, t). We also
assume that switching among the discrete states, say from the state j ∈ Q to the
state k ∈ Q, (k �= j), is described by time-varying stochastic transition rates λ jk(t),
and that x(t) is a continuous time function. The latter means that the continuous
state x(t+c ) immediately following the time point tc of the discrete state transition
is equal to the state x(tc) before the state transition. This very general model of an
individual robot is illustrated in Fig. 1 and, in the control framework of this paper,
the stochastic transition rates λ jk(t) are functions of control variables. The modeling
and control framework we are applying here is detailed in [18] and summarized in
this section.

λ

λ λ λ

λ

λ

Fig. 1 Stochastic hybrid automaton model of a robot in a probabilistic framework: discrete
state q; continuous state x vector field fk, k ∈ Q describes the change of the continuous state;
stochastic transition rates λ jk, j,k ∈ Q describe the mode switching
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Collective Dynamics: We describe the collective dynamics of a large-size popula-
tion by the joint probability distribution evolution of the continuous variable x(t)
and the discrete variable q(t), for example, x being a robot position and q a mo-
tion mode, or a task type. This joint distribution is a hybrid-state probability den-
sity function (PDF), or shortly a state PDF. The state PDF is a vector of functions
ρ(x, t) = [ρ1(x,t),ρ2(x,t), . . .ρK(x, t)]′. Each component ρi(x, t) corresponds to the
discrete state i ∈ Q, and the symbol (′) denotes the vector transpose. Naturally, the
state PDF satisfies

∑
i∈Q

∫
X

ρi(x, t)dx = ∑
i∈Q

Pi(t) = 1 (1)

where Pi(t) =
∫

X ρi(x,t)dx is the probability of the discrete state i at a time point t.
Let us define the vector of discrete state probabilities P(t) = [P1(t),P2(t), . . .PK(t)]′,
then the evolution of the probability vector is given by [2]

Ṗ(t) = Ft(t)P(t), where [Ft ]i j = λi j(t) (2)

with matrix Ft defining the transition rates among the discrete states. In general, the
transition rates λi j can depend on the control vector u(t) = [u1(t) u2(t) . . .uM(t)]′.
Consequently, the control variables ui, i = 1,2 . . .M, define the transition rate matrix,
i.e., Ft(t) = Fu(u(t)) and the vector of the discrete state probabilities obeys

Ṗ(t) = Fu(u(t))P(t) (3)

Finally, it can be proven [18] that the state PDF obeys the following system of partial
differential equations (PDEs):

∂ρ(x,t)
∂ t

= F(u(t))ρ(x, t) = (Fu(u(t))+ F∂)ρ(x, t) (4)

where F∂ is a diagonal linear differential operator. When the operator F∂ is applied
to ρ(x,t), it results in:

[F∂ ρ(x,t)]i j =
{−∇ · ( fiρi(x,t)), i = j

0, i �= j
, i, j = 1,2 . . .K (5)

Cost Function and Optimal Control: Taking into account that the state PDF ρ(x, t)
evolution depends on the vector u(t), we can formulate the optimal control problem
in the probability space using the vector of weighting functions w(x) and the cost
function:

J =
∫

X
w′(x)ρ(x,T )dx = Eρ(T){w(x)} (6)

where Eρ(T){·} denotes the expectation with respect to the state PDF ρ at a terminal
time point T . It is convenient to define the scalar product 〈p,q〉 of the function
vectors p(x) and q(x) as

〈p,q〉 =
∫

X
p′(x)q(x)dx (7)
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Notice that in this notation we omit x inside the scalar product brackets because
x is the variable of integration. We formulate the optimal control problem as the
following optimization problem:

uopt = arg max
u∈Uad

J(u) = arg max
u∈Uad

∫
X

w′(x)ρ(x,T )dx = arg max
u∈Uad

〈w,ρ(T )〉 (8)

under the PDE system constraint (4) where Uad is the set of admissible control. Al-
ternatively, to avoid singular control problems [18], we can also consider the optimal
control based on a cost function including the term penalizing the control, such as:

uopt = arg max
u∈Uad

∫
X

w′(x)ρ(x,T )dx + ε
∫ T

0
u′(t)u(t)dt (9)

where ε is a positive constant penalizing the intensity of the control. Anyway, the
solution of the control problem is a sequence of the optimal control uopt(t) from the
set of admissible control Uad , such that the cost function is maximized. By a suitable
choice of the weighting function w(x) and a small value of ε , the cost function can
be used to find the optimal control maximizing the probability of the robot presence
in a desired region of the robots’ operating space.

Minimum Principle: The optimal control maximizing criterion (6) is a special case
of a more general optimal control problem of the evolution equation [5] in an infinite
dimensional space. Under the condition that the operator F(u(t)) is bounded, i.e.,
‖F(u(t))‖ < ∞, the minimum principle for PDEs can be applied [5]. According to
the minimum principle, the optimal control uopt(t) satisfies:

uopt(t) = arg min
u(t)∈Uad

H(ρopt(t),u(t), t) (10)

where H is a Hamiltonian defined as

H(ρ(t),u, t) = 〈π(t),F(u(t))ρ(t)〉 (11)

and the function vector π(x, t) is the so-called co-state distribution and obeys:

∂π(x, t)
∂ t

= −F ′(u(t))π(x, t) (12)

π(x,T ) = −w(x)

where F ′(u(t)) is the adjoint operator of the operator F(u(t)), which means that

〈π(t),F(u(t))ρ(t)〉 =
〈
F ′(u(t))π(t),ρ(t)

〉
(13)

The major difficulty in computing the optimal control is the evaluation of the state ρ
and co-state π distributions resulting from the PDE system solutions (4) and (12). In
the following sections, we will show that they can be evaluated utilizing stochastic
process samples.
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3 Stochastic Sampling Propagator

The evolution of the state PDF ρ(x, t) is described by the PDE system (4). One way
to obtain the evolution ρ(x, t) is to solve the PDE system forward in time starting
from the initial condition ρ(x,0) = ρ0(x). We propose an approach to computing
the evolution ρ(x,t) based on stochastic trajectories of the hybrid state (xs(t),qs(t))
resulting from the model presented in Fig. 1 where each trajectory can be associated
with a single robot.

The basis for the proposed algorithm is the Gillespie’s stochastic simulation al-
gorithm [6], in which whenever the discrete state is qs(t) ∈ Q, the evolution of the
continuous state xs obeys ẋs = fqs(t)(xs(t)). To account for the fact that the transi-
tion rates can change in time, we assume that the control u(t) is a piecewise constant
function of time discretized with the sample time ΔT .

Initialization: The discrete state probability Pi(t) of the discrete state i is:

Pi(t) =
∫

X
ρi(x, t)dx (14)

and the initial discrete state qs(0) should be generated as a random number i with
the probability Pi(0). Simbolically, we write it as:

qs(0) = i, i ∼ Pi(0) (15)

Once the initial discrete qs(0) state is defined, the continuous variable xs(0) can be
initialized as a random number from the PDF corresponding to ρqs(0)(x,0) compo-
nent of the state PDF, i.e.,

xs(0) ∼ 1
Pqs(0)(0)

ρqs(0)(x,0) (16)

where normilizing coefficient Pqs(0)(0), which is the probability of the discrete state
qs(0), provides that given qs(0) the probability density function of xs(0) is normal-
ized to one.

Transitions: Let us assume that at time t = ts, ts ∈ [(k−1)ΔT,kΔT ), the hybrid state
is (xs(ts),qs(ts)), qs(ts) = i, and k is the integer index of the time interval; having
in mind that the control vector u(t) and consequently the transition rates λi j(t),
as well as the total transition rates from the state i, λ out

i (t) = ∑ j∈Q, j �=i λi j(t) are
piecewise constants, we can generate the discrete state transition points tc based on
the following two rules:

(a) tc = ts + tt , tt ∼ Exp(λ out
i ((k−1)ΔT )), under the condition that tc < kΔT . If

the condition is not satisfied, apply rule (b).
(b) tc = kΔT + tt , tt ∼ Exp(λ out

i (kΔT )), under the condition that tc < (k+1)ΔT .
If the condition is not satisfied, increase k by 1. Apply rule (b) until the condition
is satisfied.
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where Exp(·) denotes the exponential probability density function with the rate pa-
rameter in brackets. These two rules define the time point tc at which the jump from
the discrete state qs(tc) = i happens, but do not specify the discrete state qs(t+c ) = j.
The state qs(t+c ) is defined as a random number j with the probability corresponding
to the rates λi j(tc) and the discrete state q(tc) = i , j �= i , i.e.,

q(t+c ) = j, j ∼ 1
λ out

i (tc)
λi j(tc), (17)

and the probability of q(t+c ) = i is zero. The denominator λ out
i (tc) provides that the

probability of possible discrete state realizations of q(t+c ) sums up to one.

Continuous state evolution: The rules for the initialization of the transition points
define the evolution of the discrete state qs(t). The continuous state evolution is
defined by

ẋs(t) = fqs(t)(xs(t)), and xs(t+c ) = xs(tc) (18)

The above rules define the stochastic evolution of the model shown in Fig. 1 for the
piecewise constant transition rates λi j(t) = λi j(u(t)). In the limit of a large number
of samples, the normalized density of trajectory points corresponds to the solution
of the PDE system given by (4). In this respect, the stochastic simulation is a com-
putational propagator of the evolution ρ(x, t).

4 Co-state Distribution

Under the assumption that the negative co-state −π(x, t) can be treated as the state
PDF of a time-backward stochastic process corresponding to (12), we can use the
same approach to evaluate −π(x,t) as the state PDF ρ(x, t). In general, this is not
a valid assumption (see Appendix A). Therefore, we need to consider an alternative
approach to the evaluation of π(x, t), which is provided by the following theorem.
This result is similar to the Feynman-Kac formula [13], but at the same time more
general because we consider stochastic processes involving both continuous and
discrete state variables.

Theorem. Assuming that the state probability density function ρ(x, t) evolution
obeys

∂ρ(x,t)
∂ t

= F(u(t))ρ(x, t), ρ(x,0) = ρ0(x) (19)

where ρ0(x) is a given initial condition, and there is a co-state distribution π(x, t)
satisfying

∂π(x,t)
∂ t

= −F ′(u(t))π(x, t), π(x,T ) = −w(x) (20)

where w(x) = −[w1(x),w2(x), . . .wK(x)]′ is a given terminal condition at the termi-
nal time T and F ′(u) is the adjoint operator satisfying (13). Then, the ith component
of the co-state distribution πi(x̂,t) at the point x̂ is
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πi(x̂,t) = E
{

wqs(T)(xs(T ))|qs(t) = i,xs(t) = x̂
}

(21)

which is the expected value of wqs(T )(xs(T )), where qs(T ) and xs(T ) are the final
discrete and continuous states, respectively, of the stochastic process corresponding
to ρ(t), t ∈ [0,T ] and initialized with the discrete state i and the continuous state x̂
at the time point t.

Proof. Let us consider the evolution equation:

∂φ(x,t)
∂ t

= F(u(t))φ(x, t), x ∈ X (22)

which is the same as evolution (19), but φ is not equal to ρ because ρ(x,0) =
ρ0(x) �= φ(x,0). The scalar product between π(x, t) and φ(x, t) is:

S(t) = 〈π(t),φ(t)〉 =
∫

X
π ′(x, t)φ(x, t)dx (23)

and its time derivative is:

Ṡ(t) =
∫

X

[
( ∂

∂ t π(x, t))′φ(x, t)+ π ′(x, t) ∂
∂ t φ(x, t)

]
dx (24)

,i.e.,

Ṡ(t) =
∫

X
[−π(x,t)F(u)ρ(x, t)+ π(x, t)F(u)ρ(x, t)]dx

from which we can conclude Ṡ(t) = 0. In other words, the scalar product S(t) does
not depend on time and, consequently,∫

X
π ′(x,t)φ(x, t)dx =

∫
X

π ′(x,T )φ(x,T )dx (25)

Let us assume that, at a given time point t, the ith component of φ(x,t) is φi(x, t) =
δ (x− x̂), where δ (x− x̂) denotes the Dirac pulse centered at the point x̂, and that
all other components of φ(x,t) are zero, i.e., φ j(x,t) = 0, i �= j, ∀x ∈ X . Under this
condition and having in mind that π(x,T ) = −w(x), we obtain:

πi(x̂, t) = −
∫

X
w′(x)φ(x,T )dx = −E {w(x)} (26)

which is the expression derived under the condition φi(x, t) = δ (x− x̂), φ(x, t) = 0,
∀i �= j and where E {·} is the expectation operator. Introducing the hybrid state
(xs(t),qs(t)) trajectory corresponding to the evolution of φ , we conclude

πi(x̂,t) = −E
{

wqs(T )(xs(T ))|qs(t) = i,xs(t) = x̂
}

(27)


�
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In order to evaluate πi(x̂,t), we should generate N trajectories starting from the
discrete state qs(t) = i and the continuous state xs(t) = x̂. If each trajectory has
index k, k = 1,2 . . .N, then the expected value (21) can be computed as:

π̃i(x̂,t) = − 1
N ∑

k

wqk
s (T)(x

k
s(T )) (28)

where the symbol ‘ ˜ ’ denotes the fact that the value on the right hand side of
the expression is an approximate value of πi(x̂, t), xk

s(T ) is the sample of trajectory
k at the terminal time T and wqk

s (T )(x
k
s(T )) is the value of the weighting function

w(x) component corresponding to the discrete state of the kth trajectory qk
s(T ) at

the terminal time and evaluated at the point xk
s(T ). In the limit of a large number of

samples N, due to the central limit theorem, the distribution of the error π̃i(x̂, t)−
πi(x̂,t) is Gaussian, decreases with the rate proportional to 1/

√
N and for N → ∞ is

zero. But we should mention that the variance also depends on the shape of the co-
state distribution π(x,t) and it is expected that we need a large number of samples
to achieve good precision, as it is illustrated by examples in the following section.
Also, the number of samples to compute the overall distribution π(x, t) depends on
the number of points at which the distribution should be evaluated.

However, let us conclude that although we need a large number of samples to
compute the co-state distribution π(x, t), the generality of the method should not be
overlooked. The method we propose is applicable in situations when the number of
dimensions of the continuous state x, or nonlinearities of continuous state evolutions
ẋ = fi(x,t) result in PDE systems that cannot be reliably evaluated . Moreover, in
order to gain computational speed, sampling of stochastic trajectories and the com-
putation of π̃i(x̂,t) can be easily parallelized and programmed for multi-processor
computational hardware.

5 1D Example

The stochastic model presented in Fig. 2b illustrates the state PDF evolution of
a large-size robot population along one dimension (Fig. 2a), in which u1, u2 and
u3 correspond to stochastic rates of the command signals: move-left (L), move-
right (R) and stop (S). In this example, the velocities of moving left and right
are k1 = −0.5 and k2 = 0.25, respectively. The PDE systems describing the state
PDF and the co-state distribution evolutions are provided in the Appendix B. The
control u(t) = [u1(t),u2(t),u3(t)] is computed as the optimal control based on the
Minimum-principle and Hamiltonian presented in the previous section.

The cost function is:

J(u) =
∫

X
w′(x)ρ(x, t)dx + ε

∫ T

0
u2

1(t)+ u2
2(t)+ u2

3(t)dt (29)
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Fig. 2 1D example: a) A robotic population controlled by the three signal sources: L-left,
S-stop and R-right b) The stochastic hybrid automaton model [17, 18]

where ε = 10−7, the weighting w(x) = [0,0,w3(x)]′ and the initial condition ρ(x,0)
= [0,0,ρ3(x,0)]′ are defined by:

w3(x) =

{
1√
0.01

exp(− (x−1.75)2

0.01 ), 1.25 < x < 2.25

0, otherwise
(30)

ρ3(x,0) =

{
1√

0.02π exp(− (x−2.5)2

0.02 ), 2 < x < 3

0, otherwise
(31)

The optimal control sequence uopt(t) = [uopt
1 (t),uopt

2 (t),uopt
3 (t)] in the time interval

0 < t < 3 is defined by:

uopt
1 (t) =

{
2, 0.21 < t < 1.74
0,elsewhere

, uopt
2 (t) = 0, uopt

3 (t) =
{

2, 1.71 < t < 3
0,elsewhere

(32)

The evolution of the state PDF for this system under the control uopt(t) is presented
in Fig. 3. Due to the space limitation, we present only ρ3(x, t).

The evolution of the discrete state q can be observed from the trend in x. When
x decreases, the discrete state is 1, and when it remains constant, the state is q = 3.
It is worth mentioning that, among these 10 trajectories, there is one for which x(t)
is constant. The small peak near the point 2.5 in the right panel of Fig.3, at t = 3,
confirms that the probability of such trajectories is non-zero, but it is small.

To obtain the state PDF ρ(x,t), i.e., its components ρi(x,t) at a specific time
point t, we need to collect points x(t) and estimate components ρi(x, t). It is obvious
that 10 trajectories cannot provide a good estimate of ρ(x, t). For this reason, we
generated 105 trajectories and computed the histogram probability density function
estimation. That means that we discretized the x axis into intervals of the length
Δx = 0.01 and counted how many points fell into a specific region. Finally, we nor-
malized the histogram so that for the estimated ρ(x, t) we have 〈ρ(x,t),1〉 = 1. To
save space, we show the results only for ρ3(x, t) and compare the finite element
PDE solution, Fig. 3 (left panel), with the stochastic simulation solution presented
in Fig. 3 (right panel). As expected, the match between the finite element PDE sys-
tem solution and the result obtained from stochastic trajectories is almost exact.
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Fig. 3 Left panel: The finite element PDE solution for the state PDF ρ3(x,t) and the optimal
control uopt (t) [17, 18]. Right panel: The stochastic process-based solution for the state PDF
ρ3(x,t) and the optimal control uopt (t)
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Fig. 4 Left panel: The finite element PDE solution for the co-state distribution π3(x,t) and
the optimal control uopt (t). Right panel: The stochastic process-based solution for the co-state
distribution π3(x,t) and the optimal control uopt (t)

There are only negligible discrepancies due to data sampling from a finite number of
trajectories.

Figure 4 (left panel) shows the finite element PDE solution for the co-state
π3(x,t). We also evaluated the co-state utilizing stochastic processes (see Fig.
4, right panel). The co-state π3(x, t) is evaluated at 500 equally spaced points
(Δx = 0.01). For each point, we generated N = 104 trajectories and applied ex-
pression (28). We can conclude that the match between the PDE solution (Fig. 4,
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left panel) and the solution based on stochastic process samples (Fig. 4, right panel)
is almost exact, except for the intrinsic stochastic fluctuations. The intensity of the
fluctuations can be reduced with a larger number of trajectories N.

6 Conclusion and Further Work

Computing distributions defining the optimal centralized control of a large-size
robot population using finite element approximations for PDEs is difficult if the
continuous piece of the collective dynamics is multi-dimensional. Therefore, we
explored an alternative way in which the distributions can be evaluated utilizing
stochastic processes.

We established a relation between the PDE system solutions defining the optimal
control and samples of corresponding stochastic processes, and showed that all the
distributions can be computed based on stochastic process samples and expectation
evaluations. Our result is illustrated by the given example which shows an exact
match between the finite element method PDE solution and the stochastic process
based solution.

Generating multi-dimensional stochastic processes and utilizing them to evaluate
the distributions is beneficial because the method works in any number of dimen-
sions. Moreover, the trajectory generation is much easier to parallelize. Once we
have collected trajectory samples, the only necessary operation is to compute an
average which estimates expected values corresponding to distribution values.

Although the averaging involves simple operations, we believe that the best
computational efficiency can be gained if the stochastic process generation is em-
bedded into a real physical system. By embedding stochastic processes into ana-
log circuits and utilizing them in dedicated processors for computing robot control,
multi-dimensional stochastic optimal control problems can be solved efficiently.
This is highly relevant for the control of systems with many degrees of freedom,
such as multi-robot systems. Our future work will consider the design of the hard-
ware that computes the optimal control utilizing real-world stochastic processes.

Appendix A

Let us introduce the vector Pπ(t)= [Pπ
1 (t),Pπ

2 (t), ...Pπ
K (t)], with components Pπ

i (t)=∫
X −πi(x,t)dx, which due to (12) satisfies Ṗπ(t) =−F ′

u(u(t))Pπ(t). If −π(x, t) is the
state PDF of a time-backward stochastic process, then ∑i∈Q Pπ

i (T ) = 1 and we also
should have ∑i∈Q Pπ

i (t) = 1, t < T . The latter means that ∑i∈Q Ṗπ
i (t) = 0, i.e.,

∑
i∈Q

Ṗπ
i (t) = − ∑

i∈Q
∑
j∈Q

[F ′
u(u(t))] jiP

π
i = 0 (33)
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and for any vector Pπ(t), the above equation is satisfied if

∑
j∈Q

[F ′
u(u(t))] ji = 0 (34)

On the other hand, ρ(x,t) is the state PDF and the corresponding vector of discrete
state probabilities P(t) obeys (3), which means that

∑
j∈Q

[Fu(u(t))] ji = 0 (35)

Thus, we see that −π(x,t) can be considered the state PDF if both conditions (34)
and (35) are satisfied simultaneously. In general, this cannot be guaranteed and,
therefore, we cannot assume that −π(x, t) is the state PDF.

Appendix B

The state PDF evolution for the 1D example in Section 5 is⎡
⎢⎣

∂ρ1(x,t)
∂ t

∂ρ2(x,t)
∂ t

∂ρ3(x,t)
∂ t

⎤
⎥⎦

︸ ︷︷ ︸
∂ ρ(x,t)

∂ t

= (Fu(u(t))+ F∂ )︸ ︷︷ ︸
F(u(t))

⎡⎣ρ1(x,t)
ρ2(x,t)
ρ3(x,t)

⎤⎦
︸ ︷︷ ︸

ρ(x,t)

, ρ(x,0) =

⎡⎣ 0
0

ρ3(x,0)

⎤⎦ (36)

with

Fu(u(t)) =

⎡⎣−u2(t)−u3(t) u1(t) u1(t)
u2(t) −u1(t)−u3(t) u2(t)
u3(t) u3(t) −u1(t)−u2(t)

⎤⎦ (37)

F∂ = diag(−k1
∂
∂x

,−k2
∂
∂x

,0) (38)

The co-state distribution evolution is⎡
⎢⎣

∂π1(x,t)
∂ t

∂π2(x,t)
∂ t

∂π3(x,t)
∂ t

⎤
⎥⎦

︸ ︷︷ ︸
∂ π(x,t)

∂ t

= −(F ′
u(u(t))−F∂)︸ ︷︷ ︸
−F ′(u(t))

⎡⎣π1(x, t)
π2(x, t)
π3(x, t)

⎤⎦
︸ ︷︷ ︸

π(x,t)

, π(x,T ) = −w(x) = −
⎡⎣ 0

0
w3(x)

⎤⎦

(39)
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Robust Multi-robot Team Formations Using
Weighted Voting Games

Prithviraj Dasgupta and Ke Cheng

Abstract. We consider the problem of distributed multi-robot team formation in-
cluding the dynamic reconfiguration of robot teams after encountering obstacles.
We describe a distributed robot team reconfiguration algorithm, DYN-REFORM,
that uses a game-theoretic technique of team formation called weighted voting
games(WVGs) along with a flocking-based formation control mechanism. DYN-
REFORM works without explicit knowledge of global features such as the presence
of obstacles in the environment or the number and location of all other robots in the
system. It uses the locally computed metrics of each robot in the team to determine
whether a team needs to split or two teams need to merge during reconfiguration.
We have tested team reconfiguration using the DYN-REFORM algorithm exper-
imentally within the Webots simulator using teams of e-puck robots of different
sizes and with different obstacle geometries. We have also shown that using robots
coordinated with the DYN-REFORM algorithm for a distributed area-coverage ap-
plication improves the coverage performance.1

1 Introduction

Distributed formation control of multi-robot teams is an important research direc-
tion in robotics that is used in various applications such as convoying or escort-
ing robots or humans for security-related applications, area coverage or clearance
for demining, agricultural and other applications, cordoning off regions in hazard
control situations, etc. Recently, the problem of robust robotic team formation has
gained considerable research interest [6, 9, 10, 14]. Frequent occlusions during the
motion of a robot team cause it to repeatedly reconfigure by changing its direction
of movement and getting all the team members into a new pose so that it can con-
tinue its motion. Reconfiguring the robot team is a costly operation that expends
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time, consumes robots’ energy to communicate with each other and culminates in
reduced efficiency of the operation the robots are performing as a team. Therefore, it
makes sense to investigate techniques that would reduce this overhead by avoiding
inefficient team reconfigurations or by postponing reconfigurations when possible.

In this paper, we posit that robust formation maintenance can be achieved on
robot teams if their configuration is dynamically adapted to combine into larger
teams or split into smaller teams depending on different environmental and opera-
tional conditions. To achieve this, we use a technique based on coalition game theory
called a weighted voting game(WVG). This technique provides a structured way to
determine the best configuration of a robot team after encountering an obstacle by
considering the recent efficiency of the robots constituting the team in performing
their desired operation. Using the robots’ operation efficiency ensures that the size
of a reconfigured robot team after splitting or merging is proportional to the amount
of free space in the vicinity of the team, and each reconfigured team can continue
its operation or motion without being impeded by obstacles. Adapting the size of
robot teams dynamically in this manner helps to improve their efficiency of per-
forming operations, as illustrated in this paper through a distributed area coverage
application. We have tested the operation of our proposed game theoretic team re-
configuration algorithm, called DYN-REFORM, experimentally on e-puck robots
within the Webots simulator for dynamically reconfiguring teams at obstacles with
different geometries. We have also measured an improvement of 5− 10% in a dis-
tributed area coverage application, obtained by using DYN-REFORM as compared
to an algorithm where robot teams do not reconfigure dynamically.

Related Work. Much of the research on formation control with multi-robot teams
[1, 8, 10] has been based on Reynolds’ model for the mobility of flocks[12]. In [2],
the authors describe three reactive behavior-based strategies for robot teams to move
in formation, viz., unit center-referenced, neighbor-referenced, or leader-referenced.
In contrast to these approaches, Fredslund and Mataric[7] describe techniques for
robot team formation without using global knowledge such as robot locations, or
the positions/headings of other robots, while using little communication between
robots. Complementary to these approaches [6, 14] have used a combination of
graph theory and control theory-based techniques to effect multi-robot formations.
Our previous work on multi-robot formation [3] uses techniques where a team sim-
ply reverses its direction to avoid obstacles or other teams, without dynamically
reforming, merging with other teams or splitting into smaller teams, while in [4],
we have described preliminary results for team splitting only, using weighted voting
games.

2 Dynamic Team Reconfiguration and Weighted Voting Games

We have used a flocking-based, leader-referenced formation control algorithm[12],
to maintain a specific formation among the robots in a team while in motion, as
shown in Figure 1(a) and described in [3]. Each robot in a team is given a local
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Fig. 1 (a) A robot team showing the position identifiers of each robot. The angular separation
in the team is u, the separation between adjacent robots is dsep and α is the heading of the
team. (b)-(c) A scenario where a single team in formation encounters a T-shaped obstacle and
needs to split. (d)-(e) A scenario where two teams in close proximity of each other encounter
each other and need to merge.

identifier with ’0’ as the leader robot’s identifier and odd and even numbered identi-
fiers for the follower robots on either side of the leader. The shape of the team can be
controlled by varying the angle u to transform it, for example, from a wedge shape
to a line shape. Each robot has a specified separation dsep that it must maintain from
its neighbors. The leader robot has a predetermined direction α that it wants to move
the team in. At the end of each time step, the leader robot determines the position
that it should reach at the end of the next time step so that it can continue its de-
sired motion. The leader robot also calculates the positions for each of the follower
robots for the next time step relative to their current positions, so that the formation
of the team is maintained. The leader robot then communicates the desired position
information to each of the follower robots. Finally, the leader and follower robots
start moving towards their respective designated positions.

A principal problem with flocking-based formation control is that it can fail if
the leader or a follower robot encounters an obstacle that impedes its motion to the
desired position for the next time step. The problem of obstacle avoidance while
moving in formation is accentuated if robots are not be able to perceive the obsta-
cle boundary before planning their motion for the next time step. For example, in
the scenario illustrated in Figure 1(b), it might be inefficient or impossible to con-
tinue moving a robot team in formation when the motion of all or some of the team
members gets impeded. In such inefficient scenarios, it would be beneficial to re-
form the members of a team into new teams by splitting the original team (Figure
1(c)). Complimentary to the team splitting scenario, there can be scenarios when
two robots teams in close proximity of each other (e.g., Figure 1(d)) could improve
some application-specific performance metric such as the sensor diversity, compu-
tational capability, or amount of area coverage achieved by each team, if they com-
bined into a single team. In such scenarios, it would be beneficial to merge some or
all of the members of two robot teams into a single team, as shown in Figure 1(e).
We approach this problem of merging and splitting robot teams as the robot team
reconfiguration problem. Reconfiguring a robot team can be viewed as a problem



376 P. Dasgupta and K. Cheng

of finding the partition that is the best for all the participating robots. The scenarios
shown in Figures 1 (b)-(e) illustrate that a single, hard-coded splitting or merging
rule cannot be guaranteed to be the best partition in all scenarios, and, therefore, the
partitioning of the robot teams has to be done dynamically. The branch of micro-
economics dealing with cooperative or coalitional games [11] uses concepts from
utility theory and rational behavior of humans to determine rules for solving the
partition problem. Coalition games are particularly attractive for our problem for
two reasons. First, they can ensure that the solution is stable, or in other words, it
is acceptable to all the participants. Secondly, the players, or robots in our case, do
not have to be explicitly informed if a split or a merge is the best thing to do. The
rules of the coalition game calculate the set of robots that are incentivized to remain
together, based on the performance of each robot in the recent past.

The most important factor in a coalition game is determining the performance
that a robot in a team has had because this performance determines which robots
will remain together by forming a coalition. The robots participating in a coalition
game share their individual performance values with each other before the game.
The performance value reported by a robot should reflect its individual efficiency
in performing its operation or role while participating in the team. For example, in
a team formation setting, it could reflect the distance and time for which the robot
has not deviated from its designated position in the formation over some finite time
window in the recent past. Metrics from the application domains for the robots could
also be incorporated into a robot’s performance value. For example, if the robots are
performing distributed area coverage, then the performance value could include the
area of previously uncovered region that a robot has covered in the recent past. The
performance value of a robot represents its ’power’ in a coalition and is called the
robot’s weight in the game. For our problem, we have used a suitable and succinct
representation of a coalition game called a weighted voting game(WVG). The main
parameters of a WVG are the following:

R Set of players or robots interested in forming a coalition
R Set of possible partitions among the members of the set R, R = 2R. Each

member of the set R is called a coalition of robots and denoted by
Cj : j = 1.. | R |

wi weight of robot r ∈ R
Q quota or threshold of the WVG. A coalition Cj of robots becomes a winning

coalition if the sum of the weights of the players exceeds the quota,
v value function that denotes whether a a coalition C ∈ R is a winning

coalition or not, i.e., v(C) = 1 if ∑i∈C wi >= Q, and v(C) = 0, otherwise.

A few additional concepts in WVGs are useful for the formulation of our prob-
lem. A veto player is a player such that if the player is excluded from a coalition,
that coalition cannot be a winning coalition anymore. As an example. consider a
WVG with 4 players A,B,C and D with weights 4,2,1, and 1 respectively. For this
WVG, let quota Q = 5, that is any coalition must have a combined weight of at
least 5 to be a winning coalition. The set of winning coalitions for this WVG are
{A,B},{A,C},{A,D},{A,B,C},{A,B,D},{A,C,D}) and {A,B,C,D}. This makes
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function FindVetoPlayers returns set V
inputs: set R, double Q, wi ;

variables: double W , W−i;

V = { /0};
W = ∑i∈R wi;

for each i ∈ R
W−i = ∑ j∈R\{i}w j;

if (W−i < Q)

V =V ∪{i};
return V ;

function BMWCHeuristics returns Set BMWC
inputs: Set V ; ArraySet MWC;

variables:Set S; double[] ξ ;

centroid ← ∑v∈V (Location(Pv))
|V | ;

avgBearing← ∑v∈V (Angle(Pv))
|V | ;

for i = 1 to |MWC |
S = MWC[i]\V ;

for each robot r ∈MWC[i]
ξ [i] = (∑r Distance(r,centroid)+

Angle(r,avgBearing)+ ID(r))/(| S |);
j = argmin

i
ξ [1.. |MWC |];

return MWCj;

(a) (b)

Fig. 2 (a) Algorithm to find veto players in a WVG. (b) Algorithm to find the best minimum
winning coalition (BMWC) from a set of MWCs.

A a veto player because it is present in all the winning coalitions. WVGs can have
more than one veto player or no veto players. For example, if we change Q from 5
to 7 both A and B become veto players, while if we change Q from 5 to 2, none of
the players is a veto player anymore. We use the notation V to denote the set of veto
players. The minimum set of players that can get enough combined weight among
themselves to get to the quota is called the minimum winning coalition(MWC).
In the example above with Q = 5, there are three MWCs - {A,B},{A,C},{A,D}.
MWCs are important because they imply that players in a MWC will not deviate
from the coalition they are in because they cannot improve the benefit that they re-
ceive by forming a different coalition or a sub-coalition. This makes MWCs stable
coalitions which are guaranteed not to break off after the coalition is formed.

The problem solved in a WVG is to identify a set of players that form a minimum
winning coalition. This can be achieved in three steps as given below:

1. Identify all the veto players in R, because the veto players, if any, must be there
in every winning coalition. The algorithm for identifying the veto players is based on
the definition of veto players as players whose exclusion causes any coalition of the
remaining players to lose. In other words, the combined weight of players excluding
the veto player would fall below the quota. Our FindVetoPlayers algorithm shown
in Figure 2(a), uses this concept to calculate set of veto players V . It has linear time
complexity as it has to inspect each player from the set of players R for checking if
it is a veto player or not.

2. Identify all the MWCs, by adding the minimum number of non-veto players
to each set of veto players identified in step 1 above. Let wv denote the combined
weight of the veto players found in step 1. Then, Q′ = Q−wv, denotes the deficit in
combined weight that should come from the non-veto players to reach the quota and
form an MWC. Our objective then becomes to determine the set of players from
the set R\V that can together reach a combined weight of Q′. This problem is a
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Fig. 3 State transition diagram for a robot participating in the dynamic reconfiguration
algorithm

simplified version of the subset sum problem [5], with the relaxation that we need
to find the smallest subset of players that is able to reach a combined weight of at
least Q′, (instead of exactly Q′ of the subset sum problem). We have used a greedy
method to solve this problem that has a quadratic time complexity in the worst case.
The output of this algorithm is the set of MWCs.

3. The conventional solution to a coalition game outputs multiple MWCs, as cal-
culated in step 2 above. However, only a single robot team needs to be selected from
those MWCs as the new, reconfigured team to be formed. To make this selection, we
measure the eligibility of an MWC towards forming a robot team using a heuristic-
based fitness function ξ . For designing this heuristic function, we first consider the
pose of the veto players because the veto players must be included in the final win-
ning coalition. We calculate the centroid of the locations of the veto players and the
average of the bearing between them. Then, for each of the non-veto players in each
MWC, we calculate the distance and relative bearing with the centroid and average
bearing of the veto players. If there are still any ties remaining, we use a prime num-
ber calculated from the robot id to make the value of ξ unique. The minimum of the
ξ values for each MWC gives the best MWC. This algorithm is shown in Figure 2(b)
and it has polynomial running time because it takes O(| R |2) steps in the worst case
to calculate the value of ξ for each non-veto robot in each MWC. Integrating all the
three steps, the worst case time complexity of running a WVG among R robots is
O(| R |)+ O(| R |2)+ O(| R |2) = O(| R |2).
DYN-REFORM Algorithm. The DYN-REFORM algorithm realizes dynamic team
reconfiguration by integrating the WVG algorithm and the flocking-based formation
control algorithm. This integration is important and challenging because the WVG
works only with a performance value or weight for each robot while the formation
control algorithm relies on operational conditions such as presence of obstacles,
proximity of robots, etc. Before running the WVG, the DYN-REFORM algorithm
provides methods to determine the set or subset of robots from a team that will
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participate in the WVG. After a coalition has been computed by the WVG, the DYN-
REFORM algorithm provides mechanisms to handle situations where the computed
coalition might not be realizable by the formation control algorithm (e.g., because
of occlusions that prevent robots in a coalition from reaching their designated posi-
tions in the new team). It also specifies the operation of the robots that are excluded
from the winning coalition after running the WVG.

The operation of the DYN-REFORM algorithm is summarized by the state tran-
sition diagram of a robot shown in Figure 3. First, we consider the case when a team
moving in formation encounters an obstacle and could possibly have to split. When
any member of the team encounters an obstacle, it enters into a STOP AND WAIT
state for a certain time period given by the value of a timer called STOP-TIMER.
When this timer expires, the robot runs a WVG. Other team members that en-
countered an obstacle and stopped before the STOP-TIMER expires, possibly in
the vicinity of the robot that is running in the WVG, are included as participants
in the WVG. In certain scenarios, only some members of a robot team might en-
counter an obstacle while other robots in the same team do not. The team mem-
bers that do not encounter the obstacle continue their previous motion (CON-
TINUE PREVIOUS MOTION state) by moving in a straight line. Because the orig-
inal team has lost some of its members due to an obstacle, it would make sense for
the robots continuing their motion to try and reconfigure with other robots in the
system. To achieve this, these robots schedule to run a WVG at some time in the fu-
ture by starting a timer called the WVG-TIMER. When the WVG-TIMER expires
on a robot, it runs a WVG including the robots that are within its communication
range.

After the WVG has determined the robots comprising the best minimum winning
coalition (BMWC), the robot that has the highest weight in the BMWC is selected
as their leader robot. The leader robot then selects a new position and heading, usu-
ally in the direction opposite to which the obstacle that caused the reconfiguration
was sensed. It then starts running the flocking-based formation algorithm to get the
follower robots in their desired positions and start moving together as a team in
formation. In certain cases, for example, when the vicinity of the robots forming
a coalition is occupied by obstacles, the coalition of robots calculated by a WVG
might not be amenable to get into formation and move together as a team. When this
happens the robots that are not able to get into the desired position reattempt to get
into their desired positions for NUM-FORMATION-REATTEMPT iterations. At
the end of the reattempts, the robots that managed to get into their desired position
for the new team, exclude the unsuccessful robots from the team and continue their
motion. The unsuccessful robots attempt another WVG among themselves. If these
robots are unsuccessful to form a team after NUM-WVG-REATTEMPT successive
WVGs (and included formation reattempts), they continue to move individually us-
ing Braitenberg motion. Also, after running a WVG, if there are some robots that
are not included as part of the best minimum winning coalition, they continue to
move individually using Braitenberg motion until they encounter another team and
possibly get assimilated with that team after running a WVG.
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When a robot moving individually or a robot team gets within close proximity of
another robot team, they run a WVG with the combined team members as the par-
ticipating robots. Finally, to avoid identical yet repetitive calculation of the BMWC
in a WVG by all the participating robots, we have selected the robot with the lowest
local identifier to run the WVG. This robot receives the weights from all the partici-
pating robots and after running the WVG reports the outcome of the WVG to all the
participants.

3 Experimental Results

We have evaluated our multi-robot team reformation using e-puck robots on the We-
bots simulator. The e-puck robot has a diameter of 7 cm. Each wheel is 4.1 cm in
diameter and is capable of a maximum speed of about 12 cm/sec. We have used
the following sensors that are available on the e-puck robot: (1) Eight infra-red dis-
tance distance sensors to detect of obstacles in a range of 7 cm, and, (2) Bluetooth
capability for wireless communication. Each e-puck robot is also provided with a
local positioning system using a GPS and a compass node within Webots to enable
it to determine its position in the environment within a 2-D coordinate system. For
all team formations in our simulations, the robots forming the team had to get into
a wedge-shaped formation with an angular separation u = 60 degrees. The inter-
robot separation between a pair of follower robots in a team is set to 15 cm. 2 For
multi-team merging scenarios, the distance between two team leaders to run the
WVG-based team merging algorithm is set to 70 cm so that the team leaders are
well within the communication range allowed by Bluetooth, but not too close so
that the teams might collide with each other. For our experiments, one time step
is defined as the time required by a robot to cover an area equal to its own foot-
print. For a robot speed of 2.8 cm/sec, the value of the time step is calculated as
2.5 sec. The performance function used to compute the weight value for each robot
for participating in the WVG uses the mean error in the robot’s desired position
and the area of previously uncovered region covered by the robot, over the last 25
time steps. Based on this function, for the DYN-REFORM algorithm, the duration
of the WVG-TIMER is set to 25 time steps so that the robots do not continue in
inefficient configurations for long durations. The STOP-TIMER is set to 15 time
steps so that robots that do not encounter an obstacle and do not need to stop get a
sufficient time window to move away from the stopped robots and possibly form a
new team. The number of reattempts by a newly formed team to get into formation
after running a WVG (NUM-FORMATION-REATTEMPT) was set to 5 to balance
between splitting teams very frequently and inefficiently trying to form a team be-
tween robots when it is physically not possible (e.g., due to an obstacle between
two sets of robots trying to form a single team). To prevent the formation of exces-
sively large teams that have a high communication and computation overhead in the

2 The angular and inter-robot separation could be set to different values to get different shape
of a robot team.
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DYN-REFORM algorithm, we took two steps. First, we set the quota for a WVG at
0.9× (sum of the weights of participating robots). This guarantees that robots with
very poor performance, and, consequently low weights get excluded from the new
team after reconfiguration. Secondly, we limited the maximum team size in our ex-
periments to 7 robots. If the winning coalition calculated by the WVG has more than
7 robots, the excess robots that have the lowest weights in the coalition are removed
from the team and move individually without forming a team, until they merge with
another team at a later stage. For quantifying the efficacy of team formation, we
used the deviation in positions of the team members from a perfect formation. To
measure this, we calculated the mean error in the positions of the follower robots at
intervals of 10 sec. over the duration of the experiment. All results were averaged
over 10 simulation runs.

3.1 Team Reformation Experiments

For our first set of experiments, we verified the performance of the DYN-REFORM
algorithm. We considered three types of obstacles - a flat wall obstacle, a non-
uniform wall obstacle and a perpendicular, narrow wall obstacle, as shown in Fig-
ures 4(a), 5(a) and 6(a). For this set of experiments, we have traced the trail of the
robots within Webots to show their motion before, during and after reconfigura-
tion. For the flat wall obstacle, the leader robot encounters the wall first, enters into
the STOP AND WAIT state and starts the STOP-TIMER, according to the DYN-
REFORM algorithm. The follower robots successively encounter the wall and also
enter the STOP AND WAIT state and start their individual STOP-TIMERs. The
leader robot’s STOP-TIMER expires first and it runs the WVG including the other
robots that are stopped in its vicinity as the WVG’s participants. As an example of
the weight and quota values used in this WVG, one of the reported runs for this
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Fig. 4 (a) Initial configuration of a team of 5 robots moving in a wedge-shaped formation.
(b) Reformed team moving in new direction after encountering a flat wall obstacle. (c) Mean
error in the desired position of the robot team during the reconfiguration.
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experiment had weights of the five robots as 0.72,1.0,0.96,1.16 and 1.24 respec-
tively and quota Q = 0.9×∑i wi = 4.57. The leader robot of the team had the worst
performance recently because it encountered the obstacle first and stopped, giving
it a weight 0.72 in the WVG. The fringe robots that stopped last have the highest
weights of 1.16 and 1.24 respectively. The BMWC contains all the five robots in
this scenario. which means that all the robots should stay together in the new team.
The new leader robot then selects a position in a direction opposite to the direction
in which it encountered the wall, a pose or heading for the new team, and commu-
nicates the desired position of the follower robots to get in formation in the new
team. After the formation succeeds, the new team starts moving as shown in Figure
4(b). Figure 4(c) shows the mean error in the position of the robots during the entire
reconfiguration process. Initially, between 0− 50 seconds, the team is moving in
formation before encountering the obstacle, and this is shown by a low mean error
of about 3 cm in the position of the robots. When the robots successively start en-
countering the obstacle, between 50− 100 seconds, the error between their actual
positions and their desired positions to remain in formation increases. This happens
because when the robots successively stop at the obstacle they form straight line
along the boundary of the wall, while their current formation, in which they had
been before encountering the obstacle, requires them to form a wedge shape. While
the WVG runs, the robots are stopped and their mean error in position remains un-
changed, as seen between 100−125 seconds. After determining the best minimum
winning coalition, the robots get a new formation and the mean error in the position
of the robots decreases back to the low value of around 3− 4 cm over 125− 250
seconds. We notice that the mean error suddenly spikes to about 60 cm around 150
seconds when the new team calculated by the WVG attempts reformation. This hap-
pened because all the robots stopped at the flat wall forming a horizontal line and
they are in close proximity of each other. The robots themselves occlude each oth-
ers paths when they try to get into a new formation. However, within 20 seconds,
which was within NUM-FORMATION-REATTEMPT= 5 iterations, the formation
control algorithm is able to resolve this problem and the robots are able to regain
formation.

The scenario with robots encountering the non-uniform wall obstacle, shown in
Figures 5(a) and (b), is very similar to the flat wall case. The main difference is that
because of the non-uniform surface of the wall, the robots along the fringes of the
former team persist longer in the CONTINUE PREVIOUS MOTION state than in
the flat wall case. This behavior is also seen in the mean error of the robots during
reconfiguration, shown in Figure 5(c). The mean error in the position of the robots
w.r.t. their positions in the previous formation becomes larger than the flat wall case
because the robots move farther from their erstwhile desired positions in formation
into the clefts of the wall. However, in this case, we do not see any significant spikes
during after the WVG when the new team is getting into its formation because the
robots have dispersed further from each other because of the non-uniform surface
of the wall. Therefore, they do not occlude each other’s path while getting into
formation.
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Fig. 5 (a) Initial configuration of a team of 7 robots moving in a wedge-shaped formation.
(b) Reformed team moving in new direction after encountering a non-uniform wall obstacle.
(c) Mean error in the desired position of a robot team during the reconfiguration.
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Fig. 6 (a) Initial configuration of a team of 7 robots moving in wedge-shaped formation. (b)
Reformed team moving in new direction after encountering a narrow obstacle that causes the
team to split. (c) Mean error in the desired position of a robot team during the reconfiguration.

Figures 6(a) and (b) show a scenario where a robot-team encounters
a wall perpendicular to its heading that obstructs the team partially. In this
scenario, only two robots at the center of the 7 robot team encounter the
obstacle, enter into the STOP AND WAIT state and start their STOP-TIMERs.
The rest of the team members do not encounter the obstacle and enter into the
CONTINUE PREVIOUS MOTION state while starting the WVG-TIMER. We no-
tice that the obstacle forces two sets of team members to continue their motion along
the two sides - above and below the obstacle. When the STOP-TIMER expires for
the two stopped robots, they run a WVG. Since there are no other stopped robots in
their vicinity, the stopped robots form a new team among themselves and continue
moving in a new direction. When the WVG-TIMER expires for the robots that con-
tinued their motion, they run a WVG. These robots are in the vicinity of each other
and the BMWC contains all these robots. However, the BMWC contains two sets
of robots that are located on opposite sides of the obstacle and can never get into a
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Fig. 7 (a) Initial configuration of two teams of 3 and 4 robots moving in wedge-shaped
formations. (b) Reformed team moving in new direction after encountering each other and
merging into a new team. (c) Mean error in the desired position of a robot team during the
reconfiguration.

single formation. Therefore, although the WVG succeeds, the new team fails to form
within NUM-FORMATION-REATTEMPT(= 5) reattempts. The DYN-REFORM
algorithm then causes the robots that were unable to get in formation to to run an-
other WVG and form a new team. Each team gets into its desired formation and
continues its movement. The graphs in Figure 6(c) show that the mean error in the
desired position of the robots from their erstwhile team keeps increasing because
some of the robots do not encounter the obstacle and therefore, do not stop. When
the WVGs run, three teams are formed at different times based on the STOP-TIMER
expiry (first team) and WVG-TIMER expiry followed by WVG reattempt (second
and third team), as shown in Figure 6(c).

Figure 7(a)-(c) show the scenario of two robot teams moving towards each other
and merging using a WVG, and the mean error in robot positions during the recon-
figuration process for this scenario. Before encountering each other, the two teams
are moving in formation and consequently, the mean error in the desired position
of the robots is low. When the teams encounter each other (team leaders separated
by a distance of 70 cm or less) they stop and run a WVG. Examples of quota and
weight values from one experiment run show that the weights of the robots in the two
teams are {1.28,1.2,1.2,1.2,} and {1.32,1.12,1.16} respectively, while the quota
Q = 0.9×∑i wi = 7.6. The WVG outputs the combined set of all robots in both
teams as the BMWC, implying that the two teams have to merge into a new team.
As in the case of reformation with the flat wall obstacle, we notice a large spike
in the mean error of the positions of the robots around 120 seconds in Figure 7(c)
because the robots from the combined teams get in each others’ way while forming
the new team. However, finally, they manage to get into their desired position before
NUM-FORMATION-REATTEMPTS and move together as one team.

Figure 8(a) shows the mean times spent by the robots in the STOP AND WAIT
state and the CONTINUE PREVIOUS MOTION state for the three different obsta-
cle types. The time in the STOP AND WAIT state is the highest for the flat wall be-
cause all robots stop at the flat wall, while it is the lowest for the perpendicular wall
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Fig. 8 (a) Time spent by the robots in the STOP AND WAIT state and CON-
TINUE PREVIOUS MOTION state of the DYN-REFORM algorithm for the three different
types of obstacles. (b) Percentage of the environment covered by a set of 5 robots initially
configured as a team without and with DYN-REFORM algorithm. The environment is 2×2
m2 with 0%,10% or 20% of the area of the environment occupied by obstacles. Each experi-
ment was run for a period of 30 mins. Error bars were omitted for legibility.

where only two robots stop and the rest of the team continues its motion. A comple-
mentary trend happens for the time spent in the CONTINUE PREVIOUS MOTION
state with a very low value when all team members stop at the flat wall, and a higher
value in the perpendicular wall case when some team members never encounter the
wall and continue moving until their WVG-TIMER expires and they run a WVG.

Figure 8(b) shows the improvement in coverage achieved using the DYN-
REFORM algorithm by a set of 5 robots, initially configured as a team. The robots
are placed within a 2×2 m2 walled environment with 0%, 10% or 20% of the total
area of the environment occupied by obstacles. The coverage algorithm used by a
robot in a team maintains only the recent coverage information (over the last 25 time
steps) and passes it to the team leader. A leader robot exchanges this recent cover-
age history of its team with other leader robots within its communication range to
avoid covering regions that have been recently covered by other robot teams. We
observe that the robots using the DYN-REFORM, because of their capability to dy-
namically reconfigure at obstacles and avoid inefficient configurations, are able to
improve coverage by about 5% when there are no obstacles, and about 7− 10%
when there are obstacles in the environment.

4 Conclusions and Future Work

In this paper, we have described a novel dynamic reconfiguration technique based
on weighted voting games called DYN-REFORM, that allows robust and distributed
multi-robot team formations. Simulation results on Webots with e-puck robots show
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that the DYN-REFORM algorithm allows robots to gracefully split and merge into
new teams on encountering other teams or obstacles. Preliminary experiments on
physical e-puck robots have shown that our simulation results hold fairly accurately
also in hardware - area coverage using DYN-REFORM algorithm is 5−10% better
than coverage using fixed robot teams in a 2× 2 m2 arena with different types of
obstacles. The robots in our system use absolute positioning information using a
GPS and compass for the area coverage application. For a scenario that requires
team reformation only without requiring to record coordinates of covered regions,
the DYN-REFORM algorithm can work with only relative position information of
the robots participating in a WVG, enabled, for example, with IR-based range and
bearing sensors. For our experiments, the quota for forming a winning coalition in
a WVG was kept constant at a fraction of the team’s total weight to lean towards
forming teams around 5− 7 robots. A future problem we are investigating is to
dynamically adapt the value of this quota, so that the team size can be automatically
changed in cluttered or open environments perceived by the robots. Yet another
direction is to integrate more perceptual data from the environment, e.g., from laser
scans, camera, etc., into the DYN-REFORM algorithm to improve its performance.
Finally, a future direction we are investigating is to use teams of heterogeneous
robots with diverse sensor capabilities and how to integrate the robot heterogeneity
into the WVG framework.
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Influence Maximization for Informed Agents in 
Collective Behavior* 

Amir Asiaee Taheri, Mohammad Afshar, and Masoud Asadpour 

Abstract. Control of collective behavior is an active topic in biology, social, and 
computer science. In this work we investigate how a minority of informed agents 
can influence and control the whole society through local interactions. The prob-
lem we specifically target is that a minority of people with a bounded budget for 
initiating new social relations attempt to control the collective behavior of a socie-
ty and move the crowd toward a specific goal. Assuming that local interactions 
can only take place between friends, the minority has to initiate some new rela-
tions with the majority. The total cost of new relations is limited to a budget. The 
problem is then finding the optimal links in order to gain maximum impact on  
the society. We will model the problem as a diffusion process in a social network. 
The proof of NP-hardness of the problem for Local Interaction Game model of 
diffusion is presented. Simulations show that the proposed method surpasses the 
popular strategies based on degree and distance centrality in performance.  

1   Introduction 

Influencing society and changing the crowd behavior is one of the oldest ambi-
tions of social science. Social and political sciences pursue strong impact on the 
society to change the attitude of people and prevail a desired behavior in the socie-
ty. Socio-physics deals with such problems under the Opinion Formation topic [1]. 
In economical side this phenomena is known as Viral Marketing [2], [3].  

The main problem that has been investigated extensively for attaining manipu-
lation of crowd behavior is finding most influential persons of a society whom we 
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call initiators from now on. Organizational theory calls such influential persons 
key players [4] and in political science they are called opinion leaders [5].   

The idea is that influencing initiators would lead to the greatest possible diffu-
sion of a behavior in a society. In Viral Marketing initiators are influential cus-
tomers who are selected for direct marketing. Giving free samples or discounts are 
examples of marketing strategies for motivating initiators which would lead to 
stimulation of the others for buying the new product. Two-step flow theory in 
social and political sciences assumes initiators are well connected opinion leaders 
who channel media information to the masses [6].  

All solutions of “K most influential persons” (K-MIP) problem suppose that 
changing initiators’ opinions or behaviors is possible by costing a budget [7][8]. 
This simplification is not the case for real world problem, since opinion and beha-
vior of people usually cannot be influenced by paying money.  

On the other hand, studies in the field of Swarm Intelligence have more robust 
solutions to this problem. Couzin et al. [9] showed that among a group of foraging 
or migrating animals only a small fraction of them have proper information about 
the location of food source, or about the migration route. But these informed 
agents can guide the whole group through simple social interactions. The bigger 
the group is, the smaller the fraction of the required informed agents is. Halloy et 
al [10] showed in real experiments that informed robots in a mixed-society of 
animals (cockroaches) and robots can control the aggregation behavior of the 
mixed-society through microscopic interactions. 

The strategy followed in this paper is similar. The minority is regarded as in-
formed agents who want to have control on the opinion of the society. They 
should do this through social interactions that take place between local neighbors, 
i.e. agents that have direct friendship ties. So the minority has to have friendship 
relations with the majority or initiate new ties upon necessity. But in realistic situ-
ations, the total number of links that the minority can initiate is limited to a num-
ber, due to e.g. time or geographical distance. Now, the minority should choose 
which links to initiate in order to gain maximum impact on the society. 

The rest of this paper organized as follow: in Section 2 related works are dis-
cussed. Section 3 presents the selected model of diffusion. In Section 4 we convert 
our problem to an optimization and solve it in Section 5. Finally Section 6 consists 
of simulations that compare our method with well-known heuristics. 

2   Related Work 

K-MIP tries to manipulate crowd behavior by directly targeting initiators. There 
are many models that describe diffusion phenomena by using methods from  
different domains. Based on the selected diffusion model, method of finding in-
fluential persons can vary. In this section different diffusion models are described 
and K-MIP solution for each of them is presented.  

In all models, society is modeled by a directed graph ( , )G V E=  whose vertic-

es V  and edges E  are representing individuals and social relations respectively. 
In some models edges are weighted. Weights are usually interpreted as node v’s 
trust on ( )N v  which is the set of v’s neighbors. 



Influence Maximization for Informed Agents in Collective Behavior 391
 

The Linear Threshold Model (LTM) that is rooted in mathematical sociology 
[11] has been widely used in viral marketing [7]. At the beginning, every node v  
chooses a random threshold vθ ∈[0,1] that defines its general tendency to adopt a 

new belief. The link between nodes v  and u has weight ,u vb where ( )
1uvu N v

b
∈

≤ . 

The process begins with a set of active nodes who has adopted the new opinion. In 
each time step, a node is activated if the weight of its active neighbors exceeds its 
threshold. The process stops when no new activation is possible.   

The Independent Cascade Model (ICM), a well-known model in viral market-
ing [7] is originated from interacting particle systems [12]. In ICM each active 
individual has only one chance for activation of its neighbors. The probability of 
activation of a node v  by its neighbor u is equal to the weight of their social con-
nection and is independent of previous attempts of other v ’s neighbors. The 

process starts with a set of initiators and unfolds until all active nodes have used 
their chance for activation of the others.  

Kempe et al. [7] presents an algorithm for K-MIP when diffusions are LTM or 
ICM. They assume the same costs for activation of each person and showed that 
the problem is NP-hard. They exploited the submodularity of the problem struc-
ture and presented an (1 1/ )e− - approximation algorithm.  

Voter model is another popular model of social influence. In this model at each 
time step each node picks one of its neighbors at random and adopts its opinion. 
Even-Dar and Shapira [8] found the exact solution for K-MIP when the underlying 
interaction model is voter and cost of marketing each person is identical. Also they 
presented an FPTAS [8] for the case when each person has different costs.  

All mentioned methods tackle the problem of maximizing diffusion in social 
networks by persuading initiators to adopt a product or accept an opinion. But 
what if there is no way to convince an individual about changing his behavior the 
way we want? This is the case especially in changing the opinion of a crowd.  

This paper investigates the problem of influence maximization from a different 
view. The problem formulation is changed to a more realistic one. It is assumed 
that there exist a minority in the society with a different opinion from the majority 
who tries to propagate its belief by means of making new social relations. Minori-
ty has a limited budget and any new link has a cost. So, the problem is converted 
to finding the best links to be added by minority under the budget constraint.   

3   Diffusion Model 

As an underlying diffusion model, Local Interaction Game (LIG) [13] is chosen. 
LIG simultaneously benefits from rigorous game theoretic background and sim-
plicity. In this model each person is under the influence of his neighbors. The 
person is active if he adopted the minority’s opinion and inactive otherwise.  

In each relation, participants benefits only if they coordinate and choose the 
same action. Table 1 summarizes the payoffs of each player in coordination 
games. For simplicity the zero payoffs is set for incoordination. Person’s prefe-
rences and tendencies are distinguished by his name index in Table 1. 
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Table 1 Payoff table of LIG 

inactive  active  
u   

 v  

0, 0  ,
v u

a a  active  

,
v u

b b  0, 0  inactive  

 
At the beginning, the society U is inactive except a minority M . The minority 

intends to activate initiators by adding new links.  It can be shown [14] that v  
become active iff more than ( )v v v vb a bθ = +  proportion of its neighbors is active. 

Set tA  is the set of active nodes at time step t . 

4   Problem Formulation and Properties 

Minority itself can activate a set of nodes A without any cost. Suppose that the 
effect function :2 2M Ae →  finds the set A which is the union of minority and 

individuals that are activated by the minority up to the end of diffusion. Thus new 
links must be added to the members of set ( )U e M− . Suppose that adding a new 

link has the constant cost, α, and minority’s overall budget is B. Also suppose that 

for activating each node v , { }( )c v links must be created from minority to it. Then, 

activating initiator set  of nodes costs: 

( ) { }( )
, ( )v S S U e M

c S c vα
∈ ⊆ −

= 
 

In this paper, α is considered to be one. For computing c({v}) values, we take fol-
lowing steps. Each node v  has neighbors in M and U M− that are called I  and 
J  respectively. Assume that  is inactive, i.e. | | | | vI I J θ∪ < . Then set 

,X M X I⊆ ∩ = ∅ should initiate links to v  for its activation. These change the 

inequality to | |

| | v

I X

I J X
θ∪ >

∪ ∪
. Since c({v}) is the minimum size of set X for which 

the above inequality holds it can be computed as { }( ) | |
| |

1

v

v

J
c v I

θ

θ
=

−

 −  
. 

4.1   Optimization Problem 

Previous works focused only on K-MIP which is the identical cost MIP [7]. In our 
problem, each individual’s cost can differ from the others, so the problem can  
be called N-MIP (Non-identical cost Most Influential Person). We define a set  
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function that takes an initiator set S  and maps it to the number of individuals that 
are going to be activated by the end of the process. 

Let : 2  map the initiators ( )S U e M⊆ −  to the number of active 

nodes at the end of the process. Then N-MIP problem can be viewed as maximiz-
ing subject to the limited budget. Using above definitions the problem is: 

Problem: Find set  that maximize function f  subject to the cost constraint: 

*

( )
arg max ( ) . . ( )
S U e M

S f S s t c S B
⊆ −

= ≤  

First we show this problem is NP-hard for LIG model. Next we claim ( )f S  is 

submodular, so we can exploit maximization algorithms for submodular functions.  

4.2   NP Hardness of Efficient Link Addition Problem 

Kempe et al. [7] showed that finding K-MIP under LTM is NP-hard. Based on 
their proof, we show that NP-complete Vertex Cover problem is a special case of 
K-MIP for LIG model which itself is an especial case of N-MIP. For a graph 

( , )G V E=  and integer k  Vertex Cover finds a set S V⊆  that every edge of G  

has an endpoint in it. If there is a Vertex Cover S  of size k  in G  then
( ) | ( ) |f S U e M= − . On the other hand this is the only way that for all settings of 

thresholds one can deterministically activate all society. So Vertex Cover is an 
especial case of identical cost most influential person for LIG. Based on defini-
tion, K-MIP is an especial case of N-MIP. Since it is proved that Vertex Cover is 
an especial case of K-MIP, N-MIP is also NP-hard. 

4.3   Submodularity of f  

f is submodular if it satisfies a natural “diminishing returns” property: adding 

new element to a subset produce gain which is at least as high as adding that ele-
ment to a superset [15]. Formally f  is submodular iff for everyT S⊆ , 

{ } { }( ) ( ) ( ) ( )f T v f T f S v f S∪ − ≥ ∪ − holds. 

Kempe et al. [7] showed that when diffusion model is LTM,  is a submodular 
function. We show that LIG is an especial case of LTM so f for LIG is submodu-

lar too. In LTM each neighbor u of node v  can influence it according to the 

weight uvb  such that
( )

1uvu N v
b

∈
≤ . Thus v  would become active in step 1t +  if

( ) t
uv vu N v u A

b q
∈ ∧ ∈

≥ . If uvb  is set to 1 | ( ) |N v  the inequality changes to 

| | | ( ) |tA N v which is the condition of v’s activation in LIG. So LIG is a special 

case of LTM when 1 | ( ) |uvb N v= . Therefore f  is submodular for LIG.  
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5   Optimization Algorithm 

Up to this point the link addition problem has been converted to a submodular 
function optimization problem using game theoretic diffusion models. Submodu-
lar function optimization is an active field of research in machine learning. Since 
submodularity arises in many real world optimization problems many advance-
ments has been made during recent years in this old topic [16]. Nemhauser et al. 
[15] proved that a simple greedy algorithm is within 1 1⁄ 0.63% of max-
imum when ( ) | |c S S= . For general cost functions [17] showed that for the special 

case of MAX-COVER problem 1 1⁄ /2 0.31%  approximation guarantee 
is reachable and a 1 1⁄  guarantee can be achieved using partial enumeration. 
Recently [18] extended their result to general submodular functions and [19] in-
troduced an online boundary for any algorithm.  

Since our problem is reduced to maximizing a submodular function subject to a 
bounded non-identical cost function, we follow [19] and call our algorithm Effi-
cient Link Addition Strategy (ELAS). The greedy approach proposed by Leskovec 
et al.  [19], iteratively adds nodes to the selected set  by choosing a node  that 
maximizes { } { }( )( ) ( )f S v f S c v∪ − . This heuristic is an extension of [15] which 

uses { }( ) ( )f S v f S∪ −  as the selection criteria in each iteration. They showed 

[19] that choosing best results of one of the mentioned heuristic provides a con-
stant factor approximation. Formally, if NIC  be the solution of non-identical cost 

algorithm that uses { } { }( )( ) ( )f S v f S c v∪ −  and IC  be the solution of identic-

al cost algorithm which uses { }( ) ( )f S v f S∪ − , it can be proved that: 

{ }
( ), ( )

1 1
max ( ), ( ) (1 ) arg max ( ( ))

2 S U e M c S B
f NIC f IC f S

e ⊆ − ≤
≥ −  

6   Experiments and Discussion 

We have used heuristics from social science that choose individuals with highest 
degree and betweenness [21] as the initiators, and compared our method’s perfor-
mance with theirs. To show the advantages of ELAS, three different network 
models were tested (Table 2). For each of them different parameter settings were 
tested. For each setting 30 networks were built and diffusion was simulated for 30 
randomly chosen thresholds. So for each setting 900 simulations were done. 

After building a network, every node chose a random threshold. Then some 
nodes were randomly selected as the minority and were given opinions opposite to 
the others. Then different strategies for link addition were used and their impacts 
were measured. The diffusion continued until no new node could be activated. 
Society was composed of 400 individuals and minority was 10% of them. The 
budget limit was 40 (i.e. each minority member could initiate one link on aver-
age). For each simulation Social Impact of Minority that is the number of active 
nodes at the end of the simulation, was recorded. 
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6.1   Budget Impact on Diffusion and Trends of Diffusion  

Fig. 1.a illustrates the effect of budget on success of link addition for ER network 
whose structural details will be discussed later in this section. The vertical axis 
shows the number of active individuals at the final time-step of diffusion. As ex-
pected, increase in budget would increase the social impact of Minority. It is clear 
that performance of ELAS is better than degree-based and betweenness-based 
strategies. Further simulations showed this dominance exists for all mentioned 
network types and their different parameter settings. 

Fig. 1.b compares the methods in different time steps for an ER network. Data 
is gathered for budget 40. Performances of degree and betweenness heuristics’ are 
close to each other. As it is illustrated, ELAS outperform them in all time steps.  

6.2   Effect of Network Structure on Diffusion Process 

Experimental results along with analytical demonstrations show the better perfor-
mance of ELAS in comparison with other link addition strategies. In this part, a 
closer look is taken to ELAS for finding the structural factors that affects its  
performance. For this goal, different syntactical networks were built and ELAS 
performance was tested on them.  

Table 2 Network models and their parameter list 

Network Type Parameters 

Erd ss–Rényi (ER) P: edge probability 

Small World (SW) A: average degree, R: rewiring probability

Scale Free (SF) A: average degree, S: initial seed 

 

a. 
 

b. 

Fig. 1. Comparison of ELAS performance with degree and betweenness based strategy in 
an instance of ER networks a. At the final time step of simulation. b. During simulation for 
B = 40. 
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6.2.1   Erdős–Rényi Network 

Erdős–Rényi network model (ER) is the most studied random network model in 
which the probability of relation between each individual pair is p . Fig. 2 shows 

the sensitivity of presented method to p . When p is very low the graph is loosely 

connected which hinders the cascade of influence. As p increases the giant graph 

component appears and facilitates the diffusion. Since lnp n n=  is a sharp thre-

shold for the presence of giant component [20] at this point (0.01 for 400 nodes) 
the effectiveness of the method is maximized. Increasing p  creates high degree 

nodes which are harder to influence. These nodes decrease ELAS influence on the 
whole network. 

Fig 2 also illustrates the difference between ELAS and the better of the two 
other strategies. As it is clear, the dominance of ELAS decreases as the graph 
becomes more connected. It can be interpreted as when graph become denser 
every link addition strategy becomes ineffective. 

6.2.2    Scale Free Network 

It has been shown [21] that many real world networks are scale free (SF). Based 
on this, [22] proposed preferential attachment process for generating SF networks. 
This model has two parameters which are 0N  and k , initial seed of process and 

average degree of network respectively.  
The process starts with  0N  isolated nodes and at every time step a new node is 

added by making k  new links. The probability that a link connects j to node i  is 

linearly proportional to the degree of i [21]: ( ) deg 1 (deg 1)i ll
P i j→ = + +

where is the degree of node i.  
 

 

Fig. 2 Effect of network structure on the success of the method for ER network 

Fig. 3.a shows the performance of ELAS for different SF networks that have 
been constructed using different parameters. In this set of experiences 5 value for 
both 0N and k  have been used. Since for making a SF network we should have 
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0N k≥  no experience has been done for 0N k< which is shown by zero in Fig 3.a. 

This reduces the number of different settings for networks from 25 to 15. 
Fig 3.b shows the same diagram as Fig 3.a except that it emphasize on the ef-

fect of network seed. In each ribbon average degree is constant. In the region of 
experiences where 0N k≥ , ribbons are flat which shows that 0N  does not have 

significant impact on ELAS performance. On the other hand ribbons with identical 
network seed (Fig 4.c) demonstrate that average degree extremely change the 
number of active individuals at the end of diffusion with inverse relation. 

6.2.3   Small World Network 

High clustering coefficient (CC) and low average shortest path length (L) are two 
important characteristics of social relation networks [21]. Small world networks 
are networks that simultaneously exhibit high CC and low L [23]. Watts and Stro-
gatz model [23] is the most well-known model of small world networks (SW). It 
has two parameters which are average degree of the network and rewiring proba-
bility of edges. The process begins with a ring lattice with n vertices and k edges 
per vertex. Then edges are rewired with probability p. 

Fig. 4.a illustrates the effect of both parameters on ELAS. Fig. 4.b and Fig. 4.c 
are the same as Fig. 4.a diagram but they illustrate the effect of rewiring probabili-
ty and average degree respectively. According to flat ribbons of Fig. 4.b, rewiring 
probability does not have a significant impact on the final result. But it is clear 
from Fig. 4.c that like previous models, average degree has inverse relation with 
the final outcome.  

 
 

a. b. c. 

Fig. 3 Effect of network structure parameters on the success of the method for SF networks 

6.2.4   Other Structural Factors 

At the first glance, result of ELAS in all network structure has inverse relation 
with the average degree of the nodes. But Fig. 5 shows that for the same average 
degree, ELAS performs significantly better on scale free network than other net-
works. This cause to conclude that average degree is not the only structural factor 
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which has impact on ELAS. Further investigations on structural properties of stu-
died networks led to interesting results. Fig. 6.a shows average degree distribution 
of 30 networks that have been used in Fig. 5. As expected [21], ER network has 
Poisson like degree distribution with the mean around 4 (Fig. 6.a) and SF network 
presents power law distribution (Fig. 6.b). Since the process of building SW net-
work begins with lattice of degree 4 and rewiring probability is low (0.01) the SW 
network has impulse like degree distribution around 4 (Fig. 6.c). 

Fig. 7 shows the degree distribution of the sets that have been activated by the 
minority using ELAS in different network structure of Fig. 5. Degree distribution 
of activated set for ER network is like Poisson distribution with mean 4 (Fig. 
7.a).The activated set in SF network (Fig. 7.b) has high density in lower degrees in 
contrast with impulse like function of SW network (Fig. 7.c).  

 

a. b. c.

Fig. 4 Effect of network structure parameters on the success of the method for SW  
networks 

 

Fig. 5 Effect of network structure for same average degree 

From these distributions, it can be concluded that the power of ELAS in SF 
networks originates from highly available individuals that can be influenced easily 
not the power of special persons or hubs. This is confirmed by the fact that SW 
network is in last place in Fig. 5, because SW mostly consists of nodes with de-
gree of 4 which is higher than degree of available nodes in SF and ER networks.  
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 a.                         b.                      c. 

Fig. 6 Degree distribution of different network structure 

 
   a.                        b.                          c. 

Fig. 7 Degree distribution of activated set for different network structure 

7   Discussion and Future Directions 

The drastic success of ELAS over other heuristics seems suspicious at the first 
look. So it should be mentioned that this performance is gained by spending more 
time for finding the initiators in ELAS. This fact becomes critical when we want 
to run several experiments for understanding the effect of structure on ELAS per-
formance. In fact our experiments are infeasible for even 500 individuals.  

Structure of the greedy algorithm seems neat and efficient but when it comes to 
the implementation part the main question is how to find ( )f S . As we stated ear-

lier (IV.a.) ( )f S  is the expected value of the number of active individuals at the 

end of the diffusion process. So the very primitive approach to estimate ( )f S  is to 

run the diffusion process for many times starting with initiator set S  and take the 
average number of active nodes as the value of ( )f S . This was the method that  
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used by Kempe et al. [7]. However they mentioned that finding ( )f S  is the open 

problem for future research. After this first solution for ( )f S  estimation, almost 

all efforts focused to explore the other aspects of cascading and researchers pre-
ferred to suppose that ( )f S  is known by an oracle.  

Using simple averaging as the method of computing ( )f S  will takes hours on a 

modern server to select 50 seeds in a moderate sized graph (15K nodes and 31K 
edges) while it becomes infeasible for larger graphs [24]. Even these numbers are 
too large for running several experiments for exploring structural effects.  

Some recent works have developed algorithms for speeding up ( )f S  calcula-

tion with several approaches. The one that is used here is Lazy Forward Evalua-
tion which is introduced in [19] which actually avoids ( )f S computing. Leskovec 

et al. [19] has reported the 700 times speed up in experiments. Very recent me-
thods [24], [25] are developed separately for LTM and ICM. Both of these me-
thods have viewed the influence propagation locally and tried to estimate ( )f S  as 

the aggregation of these local cascades. Simulation results show that the final 
outcomes of greedy algorithm based on these methods for ( )f S estimation are 

always among best results [24], [25].  
Another important extension of the naïve influence propagation is the setting in 

which multiple minorities exist in the society and compete with each other for 
adding new links and change the crowd behavior. This domain is very novel even 
in the context of finding K-MIP which as mentioned in IV.a is simpler than link 
addition problem. They are some recent works which addressed competitive set-
ting for K-MIP problem [26], [27].  

8   Conclusion 

Changing belief of the majority of individuals by means of a minority was the 
main focus of this work. Each individual’s belief is emerged from his neighbors 
by a simple rule that has selfishness in its nature. Based on this rule belief change 
propagates through the society. Minority want to change the belief of majority by 
making new relation with them. We leave the competitive scheme in which there 
exist many minorities competing on influence maximization, for future works. 

A greedy algorithm was presented for finding the best new relation and its per-
formance was compared with different relation initiation strategies. Our method, 
ELAS, outperformed them along with its rigorous mathematical background that 
shows its performance is within the specified distance of the optimal solution.  

Also the effect of structure on ELAS was measured and it was found out that 
degree of each individual is the main parameter that impact ELAS with an inverse 
relation. In addition it was shown that in a population with the same average de-
gree, number of available easily-influenced individuals is more important than 
influencers for the success of diffusion.  
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Emergence of Specialization in a Swarm of
Robots

Ádám M. Halász, Yanting Liang, M. Ani Hsieh, and Hong-Jian Lai

Abstract. We investigate the emergence of specialized groups in a swarm of robots,
using a simplified version of the stick-pulling problem [5], where the basic task re-
quires the collaboration of two robots in asymmetric roles. We expand our analyti-
cal model [4] and identify conditions for optimal performance for a swarm with any
number of species. We then implement a distributed adaptation algorithm based on
autonomous performance evaluation and parameter adjustment of individual agents.
While this algorithm reliably reaches optimal performance, it leads to unbounded
parameter distributions. Results are improved by the introduction of a direct param-
eter exchange mechanism between selected high- and low-performing agents. The
emerging parameter distributions are bounded and fluctuate between tight unimodal
and bimodal profiles. Both the unbounded optimal and the bounded bimodal distri-
butions represent partitions of the swarm into two specialized groups.

1 Introduction

In a robotic swarm, heterogeneity may be quantified in terms of diversity, or the
variability of the properties of individual agents. Heterogeneity may also involve
the specialization of individuals for certain tasks. This collective adaptation strategy
is often seen in biology [6]. The design of heterogeneous swarms requires ways
to quantify the degrees of heterogeneity and specialization as well as their impact
on collective performance. Early work on heterogeneity and specialization in robot
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teams established methods for the composition of group level behaviors [7, 9] and
proposed a measure for heterogeneity [1].

The stick-pulling problem was originally formulated [5] to explore the swarm
intelligence paradigm [3] in a context where collaboration is realized through local
interactions, with limited or no global communication. The basic task, finding and
pulling randomly distributed sticks, requires two robots in asymmetric roles. A robot
that finds a stick must wait for another one to help pull the stick. The gripping or
waiting time parameter (WTP) [4,5] of a robot is the time it will wait for help before
releasing a stick. In the original study [5], Ijspeert et al. found that this asymmetric
task could benefit from specialization. Through experimentation and a two-level
modeling approach, they identified an optimal WTP for a homogeneous swarm. For
a heterogeneous swarm with two subgroups (castes or species) of agents, each with
a different WTP, they found a family of high-performance pairs of WTP values. This
type of heterogeneity led to better performance when the number of robots was less
than the number of sticks and did not make a significant difference otherwise.

Li, Martinoli and Mustafa [8] investigated how specialization could be learned by
the stick-pulling team. In their system, agents changed their WTP based on local or
global reinforcement signals. Learning resulted in optimal performance accompa-
nied by increases in information-theoretic measures of diversity and specialization.
This work strengthened the correlation between group performance and diversity
and provided an example of global performance improvement through individual
adaptation. However, it left open the question whether distinct groups with special-
ized behaviors could emerge through individual adaptation.

We investigated the advantages of specialization in a slightly modified version
of the stick pulling problem [4], using a methodology developed for task alloca-
tion [2]. The starting point of our modeling approach was similar to the probabilistic
model of [5]. Our higher level of abstraction resulted in a concise and transparent
analytical model and in the possibility of scaling simulations into the range of thou-
sands of agents and millions of updates. We identified a maximal performance level
that may not be exceeded for any WTP configuration, and showed that it could be
reached in many different configurations. Comparing homogeneous and two-species
configurations, we showed analytically and confirmed through simulations that the
two-species swarm performed better under non-ideal circumstances than the homo-
geneous one (in the case with more sticks than robots). Echoing the results of [5],
we found that specialization was advantageous.

In this work we expand the analysis of optimal configurations and explore collec-
tive adaptation based on individual adjustment of the agents. We investigate adap-
tation strategies from two perspectives: (1) convergence to optimal performance;
(2) emergence of subgroups with specialized behaviors. We implement a distributed
adaptation algorithm where robots randomly change their WTP with a frequency
based on their own performance. In the second algorithm we add an exchange mech-
anism where WTPs of successful agents are assigned to underperforming ones. Both
algorithms converge to configurations that ensure optimal performance. The WTP
exchange mechanism increases the cohesion of the WTP distribution, causing the
system to converge to bounded uni- or bimodal distributions.
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2 Model and Analytical Results

2.1 The Stick Pulling Problem

N are robots tasked with pulling sticks from the ground. The ST sticks are randomly
distributed in the workspace. Two robots are required to pull a stick. Robot behaviors
are sketched in Figure 1. Robots initially wander in search of sticks and can discover
sticks in their immediate vicinity. When a robot finds a stick held by another robot,
the robots pull the stick together. If a robot finds a free stick, it holds it waiting for
another robot to come along, but will release it after a certain time. We model the
discovery of sticks as a stochastic process, characterized by a discovery rate kD, the
same for all sticks, whether or not they are held by another robot. This rate accounts
for all physical and technological constraints, such as: the physical density of sticks,
the size and accessibility of the area, the movement and detection capabilities of the
robots. The numbers of sticks and robots are constant. The only element that can
be chosen by design is the behavior of the robots upon discovery of a free stick.
Release after waiting is described as a Poisson process whose characteristic time is
the waiting time parameter (WTP) τi, set individually for each agent.

Wander

Found
?

No

Free 
stick?

YesNo Hold

NoYes

No

Yes
Got    

help? 
Release

? 
Yes

Assist

Pull

Success

Fig. 1 Flow chart of robot behaviors in the stick pulling model

2.2 Equations of Motion

The N robots are subdivided into p≤ N groups; Ni is the number of agents in group
i. There are ST sticks in total. At any time, a robot may be free (wandering), or
holding a stick. We denote the number of free robots of type i with Fi, and by Hi

the number of those holding a stick. The total number of free sticks and free and
holding robots are denoted by S, F , and H. If total number robots of each type are
fixed, we have:

N =
p

∑
i=1

Ni ; H =
p

∑
i=1

Hi ; F =
p

∑
i=1

Fi

ST = S+H ; N = F +H ; Ni = Fi +Hi, ∀i ∈ {1, · · · , p} (1)

Robots in a group have the same WTP, τi, the average time a robot holds on to a
stick before releasing it. The release is controlled by a Poisson process whose rate is
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λi = 1/τi. Similarly, the process of discovery of sticks by free robots is characterized
by the discovery rate kD. Due to (1), the state of the system is defined by the number
of robots of each type holding a stick, {H1, · · · ,Hp}. We will write our equations in
terms of these variables. Since we are interested in large swarms, we will adopt a
continuum approach in describing the dynamics of the system [2].

There are three processes that contribute to the variation of Hi, capture (discov-

ery), pull, and release of sticks. The capture rate r(i)capt is proportional to the number

of free robots of type i and the number of free sticks. The pulling rate r(i, j)pull is pro-
portional to the number of free robots of type i and the number of robots of type
j holding a stick. These two processes have the same rate constant, kD. Note that
the pulling rate does not impact the number of free robots of the type of the second
participant. By contrast, the robot that was holding the stick changes its state from

holding to free. We denote by r(i)pull the total rate of successful pulls of sticks held by

robots of type i. The release rate r(i)release of sticks by robots of type i is proportional
to the number of robots of type i holding a stick, and the rate constant λi = 1/τi.

r(i)capt = kDFiS = kD(Ni−Hi)(ST −H) ; r(i, j)pull = kDFiHj = kD(Ni−Hi)Hj

r(i)release = λiHi ; r( j)
pull = kD(N−H)Hj . (2)

The net rate of change in Hi is then:

dHi

dt
= kD [(Ni−Hi)(ST −H)−Hi(N−H)]−λiHi . (3)

2.3 Steady State Analysis

We are interested in the steady-state(s) of (3). For any such configuration, the right-
hand side of the equations of motion must vanish. Setting dHi

dt = 0, we have:

kD [Ni(ST −H)−Hi(ST +N− 2H)] = λiHi . (4)

This equilibrium condition is more transparent in terms of dimensionless variables:

ST

N
≡ σ ;

H
N
≡ φ ;

Hi

Ni
≡ ϕi ;

Ni

N
≡ ρi −→ ϕi =

σ −φ
ξi +(1+σ− 2φ)

. (5)

The dimensionless time parameter ξi is the ratio between the average time between
two discoveries of the same stick by two robots, and the waiting time parameter τi:

ξi ≡ λi

NkD
=

1
NkDτi

=
1/(NkD)

τi
. (6)

The occupancy fraction φ is a weighted average of the individual occupancies ϕi.
Substituting the individual equilibrium conditions, we arrive at a global condition:
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φ ≡ H
N

= ∑
i

ρiϕi −→ φ = ∑
i

(σ −φ)ρi

ξi +(1+σ− 2φ)
= f (φ) . (7)

It can be shown that the equation φ = f (φ) has a unique solution, which corresponds
to a stable equilibrium of the equations of motion (3).

2.4 Pulling Rates and Optimality

The global pulling rate, (given N robots of which H are holding sticks) is

Rpull = kD(N−H)H . (8)

Since 0 ≤ H ≤ N, Rpull is always positive, vanishes for H = 0 and H = N, and is
maximal for H = H∗ ≡ min(N/2,ST ). The maximal pulling rate is R∗pull below:

R∗pull = kD(N−H∗)H∗ ; R∗pull(N,ST ) ≤ Rmax
pull(N) ≡ 1

4
kDN2 . (9)

Here, Rmax
pull is the maximal pulling rate for N robots; it may be achieved if there are

enough sticks (ST >N/2). If the number of robots N is larger than 2ST , the maximal
pulling rate is limited to kD(N− ST )ST . We will assume N < 2ST , so R∗pull = Rmax

pull.

2.4.1 Optimal WTP Configurations

The objective of designing our swarm is to maintain the system performance as close
to the ideal situation H = N/2 as possible. For a given configuration of groups and
WTPs, we can calculate the equlibrium state of the system and the corresponding
pulling rate, by solving the equilibrium condition (7) for the global occupancy φ ,
and use it to calculate the individual occupancies. We then specify conditions for
optimality by requiring φ = 1/2. A configuration of waiting time parameters that
results in φ = 1/2 is called optimal or ideal.

One species: If all agents have the same WTP τ , the equilibrium condition (9) reads

2φ2− (2+σ + ξ )φ +σ = 0 . (10)

Of the two solutions for φ , only one is in the [0,1] interval. The design problem
here consists of determining the waiting time parameter τ (through the dimension-
less time parameter ξ = 1/NkDτ) so that optimal performance is achieved. We can
calculate the value of the ideal ξ = 1/NkDτ by substituting φ = 1/2:

ξ ∗ = σ − 1 ↔ τ∗ =
1

kD(ST −N)
. (11)
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Two types of robots: We have to design three quantities, the two WTPs τ1,τ2, and
the ratio ρ1/ρ2 between the sizes of the groups. Given {ξ1,ξ2,ρ1,ρ2}, the equi-
librium configuration is uniquely defined. Choosing ρ1 = ρ2 = 1/2, we obtain the
following constraint for the dimensionless time parameters {ξ1,ξ2}:

1
ξ1 +σ

+
1

ξ2 +σ
=

2
2σ − 1

. (12)

Equal size groups: Consider a number of p different species, each representing 1/p
of the population. 1 The optimality condition is

p
2σ − 1

=
p

∑
i=1

1
ξi +σ

←→ 1
p

p

∑
i=1

1
ξi +σ

=
1

2σ − 1
. (13)

For p= 1 we reobtain the condition for the ideal ξ . The second version of the condi-
tion can be interpreted as a requirement that the average of the quantities 1/(ξi+σ)
match the ideal value 1/(2σ − 1).

2.4.2 Robustness Measures

The optimality requirement (13) represents a single algebraic constraint. With p
equal sized groups, all but one of the WTPs {τ1, · · · ,τp} may take any value over
a semi-infinite interval. The corresponding configurations form a p−1 dimensional
manifold in the p-dimensional space of WTP configurations. We are interested in
additional performance criteria to characterize these ideal configurations.

Performance under changing conditions: Consider the pulling rate of a system
that is optimal for a stick/robot ratio of σ0, when faced with a different σ �= σ0. In
Figure 2 we compare a one-group configuration with τ = τ∗ (11) and two config-
urations of two groups of equal size with WTP pairs {τ1,τ2} that satisfy (12), for
σ = σ0 = 10. The larger τ1, the smaller τ2 has to be. The factor K = τ1/τ∗ is a mea-
sure of how far the {τ1,τ2} pair is from the one-species case (K = 1). Theoretical
predictions for the pulling rate for K = 1,10,100 are confirmed by simulation results
as indicated. The loss of performace is the strongest for the one-group configuration
(K = 1) and becomes milder as the ratio between τ1 and τ∗ increases.

Loss of agents: As a measure of how much of the optimality would be preserved
by a subset of the agents in a given configuration, it is useful to compare the pulling
efficiency per agent for a configuration where some agents are destroyed. This mea-
sure is relevant when comparing WTP configurations that result from randomized
adaptation algorithms, where no two agents would likely have the same WTP. It
provides a mechanism to penalize configurations that are “too heterogeneous”.

1 This also applies to the situation when the robots are essentially independent, taking p=N.
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Fig. 2 Efficiency loss when conditions differ from ideal. Theoretical predictions (lines)
and simulation results (points) for the pulling rate of a one-group and several two-group
configurations that are optimal for σ = 10. The WTP pairs {τ1,τ2} of the two-group con-
figurations satisfy (12), with the stated values of the ratio K = τ1/τ∗ (10 and 100, respec-
tively). The simulations (one per data point) had N = 150 robots and numbers of sticks so
that σ = ST /N = 5,10,30,75,100.

3 Simulation Methods

3.1 Basic Simulation Algorithm

The main simulation algorithm is derived from the Gillespie algorithm used in bio-
chemistry and adapted to multi-robot systems in previous work [4]. The state of the
system is defined by that of the individual agents. Each of the N agents can be free
(F) or holding a stick (H). There are three possbile transitions, corresponding to the
three processes discussed above:

Fi + S→ Hi (CAPTURE); Hi +Fj → Fi +Fj + S (PULL); Hi → Fi + S (RELEASE)

In the CAPTURE(i) process, agent i goes from Free to Holding; the reverse is the
RELEASE(i) process. In the PULL(i, j) process, agent i goes from holding to free,
but the process requires another agent ( j), whose state is not ultimately changed.
Transitions are controlled by independent Poisson processes; the probability per
unit time (or rate) for a specific transition is given by a time constant and the number
of eligible partners, if applicable. For example, if both agents i and j are free, the
probability per unit time for capturing a stick is the same for both of them, kDS. The
release rate for agent i while holding a stick is λi = 1/τi.

In the Gillespie algorithm, simultaneous Poisson processes are simulated by gen-
erating next event times for each process, then implementing the state transition
that corresponds to the smallest one of the next event times. When there are many
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possible transitions, one may calculate the cumulative transition rate for each type of
transition, then choose a specific (pair of) agent(s) for the transition. This approach
is correct for simultaneous Poisson processes and we do this for events that involve
encounters between free robots and sticks. The additional computational cost due
to updating the states of individual agents is almost negligible. Thus, the Poisson
model for transitions allows us to have the equivalent of an agent-based simulation
for the cost of a centralized one.

3.2 Individual Adaptation

We construct a self-evaluation measure or satisfaction level χi for agent i, as follows.
Every time agent i participates in a successful pull (in either role), χi is incremented
by 1. At every update, χi decreases exponentially with a characteristic time τ f orget :
χi(t +Δ t) = χi(t)exp(−Δ t/τ f orget). Thus, agents have a memory of past successes,
but their satisfaction level decreases as they go through a dry spell.

The satisfaction level defined here does not provide an absolute measure of an
individual agent’s effectiveness. There is no reference value for it, unless the agent
knows what pulling rate it should expect. The maximal pulling rate can be computed
from the number of sticks and agents; however, we are interested in an adaptive
strategy that can find the optimum without relying on global knowledge.

In this algorithm, each agent changes their WTP randomly, at a rate proportional
to the inverse of the agent’s satisfaction level (lower satisfaction increases the rate
of change). Adaptation is implemented as a Poisson process with time constant
τlearn/χi, that runs in parallel with the other transitions (but much slower). Every
time this process fires, the respective agent changes its WTP with a small random
quantity: τ ′i = τiexp((r−1/2)Δ)) where r is a uniformly distributed random num-
ber between [0,1] and Δ is the Monte-Carlo (MC) step size (typically a small num-
ber). This algorithm results in a random walk in the space of log(τi) biased by the
satisfaction function. Our approach is simpler than the one used by Li et al., but it
also relies on a proper self-assessment of performance.

3.3 Swapping

As we discuss next, the individual adaptive strategy succeeds in optimizing the
pulling rate, but generates configurations where the individual WTPs are spread
over many orders of magnitude. In order to increase the coherence of the resulting
WTP distributions, we introduced a collective mechanism to supplement individual
adaptation. It consists of an additional WTP change, performed with a small (fixed)
probability ν , during normal WTP updates. This corresponds to an additional Pois-
son process, with propensity ν/τlearn. When this process fires, we select a pair of
agents, a donor (with a high satisfaction level), and an acceptor (with a low satisfac-
tion level), and change the WTP of the acceptor to that of the donor. This procedure
is reminiscent of biologically inspired algorithms. While it requires some degree of
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collective communication, it can be implemented in a way that ensures reasonable
scaling as the number of agents increases. The key is in that the donor and acceptor
agents can self-select and communicate using a pre-determined procedure of asyn-
chronous communication to upload or download their WTPs.

4 Results and Discussion

4.1 Model Validation - Equilibration

The standard system in our simulations consists of N = 150 robots and ST = 2000
sticks. We use time units where the discovery rate kD = 1. Thus, the maximal pulling
rate is 1

4 N2kD = 5625 pulls per unit time. The corresponding optimal waiting time is
τ∗= 1/kD(ST−N)= 5.4×10−4. The average time between two robot-stick encoun-
ters is τE = 1/(kDST N) = 3.33× 10−6. The time between two consecutive updates
in a simulation is on the order of 105 iterations per time unit. We performed simula-
tions with various WTP configurations and verified that the system converges to the
average occupancy fractions and pulling rates predicted by the continuum equations
in Sec.2 . The value of the equilibration time is comparable to the average time of
5× 10−4 units it takes for one robot to find one of the 2000 sticks. Figure 2 shows
theoretical and simulation results for the equilibrium pulling rate for configurations
with one or two WTP groups, for the same number of robots (N = 150), but different
numbers of sticks (simulations with σ ≡ ST/N = 5,10,30,75,100). All configura-
tions are ideal for σ = 10 (ST = 1500 sticks). The simulation results confirm the
analytical predictions given in Sec.2.4.1.

4.2 Individual Adaptation Algorithm

We implemented the individual adaptation algorithm described in Sec.3.2 on the
N = 150, ST = 2000 system, exploring parameter values around τlearn = 1.0×10−4,
τ f orget = 0.1 and a Monte-Carlo step size of Δ = 1.0× 10−2.

The evolution of the system with these parameter values is shown in Figure 3.
The waiting time parameters are initially set to 50% of the optimal value τ∗. As
the individual τ values change, the number of free robots evolves, reaching the opti-
mum of 75 in approximately 400 time units. This τ-convergence time is significantly
longer than the equilibration time of 5× 10−4 it takes the number of free robots to
reach the equilibrium value corresponding to a fixed WTP configuration. It is useful
to visualize the time evolution of WTPs using the distribution of the log(τ) values,
as in Figure 3. The results are qualitatively different from the one- or the two-group
configurations described previously. As the simulation starts, the log(τ) distribution
spreads out and continues to do so over time, expending into extremely large and
small (positive) values, reaching widths of 10 orders of magnitude and higher after
108 steps. The log(τ) distribution is close to a normal, whose standard deviation
increases like the square root of the simulation time.
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Fig. 3 (Left) Evolution of the distribution of WTPs in an adaptive simulation. Notice the
similarity to a diffusion process. (Right) The number of free robots in the same simulation
(expected = based on the current configuration of WTPs). Based on a single simulation with
N = 150 robots, ST = 2000 sticks, and 3×108 updates.

We performed a number of simulations to investigate the effect of changing the
adaptation parameters on convergence. The results are presented in Figure 4. We
define convergence for the purposes of these simulations as the state (after the ini-
tial equilibration) where the moving average over 10,000 iterations of the number
of free robots is within 1 of the ideal value of 75. We limited the simulations to 107

iterations, and we plot both the time to convergence and the number of held sticks
after the maximum number of iterations. For the converged simulations, the final
number of sticks is very close to 75, and the convergence time varies. For the un-
converged simulations, better adaptation corresponds to final sticks held counts that
are closer to the ideal value of 75.

The dependence on the averaging time τ f orget is relatively weak. None of the sim-
ulations using this algorithm converged (within the iteration limit), due to the values
for Δ and τlearn. However, the final state approaches 75 as τ f orget is reduced by a fac-
tor of 10, and moves further away as τ f orget is increased. Increase in the frequency
of WTP changes (decreased τlearn) leads to marginal improvement. A 10-fold in-
crease in the Monte-Carlo step size Δ improves the adaptation performance to the
point where the system converges within the 107 iteration cutoff. Further increase
of the step size leads to additional improvement in the convergence time. However,
the configurations reached in this manner are increasingly incoherent, with a very
wide WTP distribution.

4.3 Swapping Algorithm

The introduction of swapping leads to dramatically improved convergence, over all
parameter values investigated. It is remarkable that WTP swapping, performed at a
frequency corresponding to one swap per every 100 individual WTP changes, im-
proves convergence this much. The parameter sensitivity results for this algorithm
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Fig. 4 Convergence time (top, in millions of iterations) and sticks held after 107 iterations
(bottom) versus τ f orget , τlearn, and MC step size Δ , in the individual adaptive algorithm (blue)
and with swapping (red). Each point represents 5-20 simulations with N = 150 robots and
ST = 2000 sticks.

are also plotted in Figure 4. The effect of parameter changes is qualitatively similar
in the two algorithms. The swapping result converges for all but the highest val-
ues of the averaging time τ f orget . The performance of the algorithm deteriorates as
this parameter is increased, and convergence is lost as τ f orget goes from 0.1 to 1.0.
Increased τlearn also reduces the performance of the swapping algorithm.
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Fig. 5 Evolution of the distribution of waiting time parameters (left) and the number of free
robots (right) for an adaptive simulation with swapping (expected = based on the current
configuration of WTPs). Note the different time scale of convergence compared to the non-
swapping simulation shown in Figure 3; the two simulations have the same adaptation param-
eters. Based on a single simulation with N = 150 robots, ST = 2000 sticks, and 107 update
steps.
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The first algorithm was the most sensitive to the Monte-Carlo step size Δ . In-
creased Δ improved the convergence of both algorithms, and their performance be-
came similar as Δ ≈ 1. A value of Δ = 1 means that the random change of a WTP
is comparable to the value of the WTP. With such large variation steps, the newly
selected parameters have little to do with the previous ones. In this limit, the algo-
rithm tends to become purely random selection of parameters rather than a search
process (on the level of individual agents).

Swapping dramatically limits the expansion of the WTP distribution, as shown
in Figures 5 and 6. For most parameter values (except very high Δ ) the simula-
tions resulted in bounded, unimodal distributions with a spread of little more than
one order of magnitude, much less than in the individual adaptation case (com-
pare Fig.6 and 3). In the longer term, some of the simulations exhibit transitions to
bimodal distributions. The bimodal distributions we observed had narrow modes,
with maxima separated by 1-2 orders of magnitude. While the bimodal distributions
extended over almost three orders of magnitude, they remained bounded, and the
system eventually transitioned back to the unimodal regime.
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Fig. 6 Evolution of the distribution of waiting time parameters during a long simulation with
swapping. Based on a single simulation with N = 150 robots, ST = 2000 sticks, and 108

update steps.

4.4 Waiting Time Parameter Distributions

From a design and analysis perspective, configurations with one, two or a small
number of distinct waiting time parameters seem more straightforward. By contrast,
both adaptation algorithms result in configurations that can only be characterized
by a continuous distribution of waiting time parameters, rather than one or a few
distinct WTPs shared by groups of agents.

The evolution of the log(τ) in the individual adaptation algorithm (Figure 3) is
similar to pure diffusion, consistent with a random walk. This makes sense because
each individual WTP change is a small variation taken from a distribution that is
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symmetric in terms of log(τ). This random walk is influenced through the satis-
faction function and is practically confined to globally optimal configurations. The
global optimality condition (13) corresponds to a single constraint on the N wait-
ing time parameters. If the individual log(τ) are allowed to increase or decrease
indefinitely, most agents will have waiting times that are either much larger or much
smaller than the ideal value. In this case, the 1/(ξi +σ) terms in Eq.(13) would
approach 1/σ and 0, respectively. The optimality condition for a configuration with
Nhigh agents with very high WTP (τi >> 1 → ξi << 1 ) and the rest with very
small WTP is simply

Nhigh

N
=

σ
2σ − 1

=
S

2S−N
. (14)

This simple constraint on the values of the WTPs of the agents in the high and low
groups ensures optimality for the late WTP configurations obtained in the individual
adaptation algorithm. We will call these divergent-optimal or DO configurations.
Presumably, these could also be obtained more easily, by a simple random search on
the level of individual agents. A DO configuration can be interpreted as an example
of specialization (castes with τ = {0,∞}).

5 Summary and Conclusions

We have expanded our analysis [4] of the stick-pulling problem and established that
each WTP configuration corresponds to a unique equilibrium pulling rate which can
be estimated analytically. We showed that there is a maximum possible or optimal
pulling rate for a given number of sticks and robots (9). The optimality requirement
can be formulated as a single algebraic condition (13) for the N parameters.

We designed and implemented two adaptive optimization strategies and showed
that both converge to optimal configurations. The individual adaptation algorithm
relies exclusively on the agents’ own record of their performance, in the form of
a satisfaction function. Robots change their WTP based on this function (low sat-
isfaction → higher change rate). Each change is a Monte-Carlo step in a random
direction. The evolution of the WTP distribution in this algorithm is consistent with
diffusion. The distribution of log(τ) approaches a normal whose witdh increases
indefinitely, while maintaining optimal performance. The long-term limit for this
type of distribution, called divergent-optimal (DO), has WTPs that approach either
zero or infinity. Optimality can be ensured by the appropriate ratio between the two
groups (14). DO configurations can be regarded as extreme examples of emerging
specialization. The τ →∞ species specializes in discovering and holding sticks, and
the τ → 0 specializes in assisting stick holders.

In the swapping algorithm we supplement individual adaptation with a mech-
anism that assigns the WTP of well performing agents to under-performing ones.
While requiring a limited amount of global communication, this algorithm leads
to dramatic improvement of the rate of convergence. It also limits the width of the
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WTP distributions. Increased Monte-Carlo step size in the swapping algorithm leads
to faster converence but eventually results in the emergence of DO configurations.

Emergence of specialization can also be observed in the swapping algorithm,
where long-term simulations fluctuate between bounded uni- and bimodal distri-
butions with narrow modes. The bounded bimodal configurations are closer to the
idea of specialized groups, each with a narrowly defined set of features (similar to
biological phenotypes).

In conclusion, our results provide two mechanisms by which specialized groups
of agents can emerge from an agent-based adaptation strategy. The more easily ob-
tained DO configurations may not be satisfactory for a given application. Further
refinements are necessary to stabilize the bounded bimodal configurations. This will
require more sophisticated measures of performance, which can enforce our prefer-
ence for one or another type of WTP distribution. We gave two possible examples of
such measures that may be implemented in future applications. Finally, future work
in this direction should also integrate results from machine learning and information
theory.
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Distributed Colony-Level Algorithm Switching
for Robot Swarm Foraging

Nicholas Hoff, Robert Wood, and Radhika Nagpal

Abstract. Swarm robotics utilizes a large number of simple robots to accomplish
a task, instead of a single complex robot. Communications constraints often force
these systems to be distributed and leaderless, placing restrictions on the types of
algorithms which can be executed by the swarm. The performance of a swarm al-
gorithm is affected by the environment in which the swarm operates. Different en-
vironments may call for different algorithms to be chosen, but often no single robot
has enough information to make this decision. In this paper, we focus on forag-
ing as a multi-robot task and present two distributed foraging algorithms, each of
which performs best for different food locations. We then present a third adaptive
algorithm in which the swarm as a whole is able to choose the best algorithm for
the given situation by combining individual-level and distributed colony-level algo-
rithm switching. We show that this adaptive method combines the benefits of the
other methods, and yields the best overall performance.

1 Introduction

The performance of a robot swarm algorithm is affected by the environment in
which it operates. In a search task for example, the location and number of search
targets and presence or absence of obstacles could affect the efficiency of the swarm.
One algorithm may be fast but fail in the presence of obstacles, and a slower one
may be more resilient. Because the specifics of the environment are generally not
known before hand, we would like the swarm itself to be able to intelligently change
its own algorithm based on the environment. An interesting challenge is whether a
robot swarm, as a whole, can assess the success or failure of an algorithm and, as a
whole, switch algorithms to increase its success.

Nicholas Hoff · Robert Wood · Radhika Nagpal
Harvard University, Boston, MA 02163, USA
e-mail: {nhoff,rjwood,rad}@eecs.harvard.edu

A. Martinoli et al. (Eds.): Distributed Autonomous Robotic Systems, STAR 83, pp. 417–430.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2013

{nhoff,rjwood,rad}@eecs.harvard.edu


418 N. Hoff, R. Wood, and R. Nagpal

Colony-level algorithm switching is difficult for two reasons. First, the informa-
tion on which the colony will base its decision is distributed throughout the envi-
ronment and not detectable by any one robot. Therefore, the environment detection
must be distributed. Second, if a swarm algorithm relies on strong coordination,
then switches must be nearly unanimous and synchronized. Changing algorithms
will not help unless all individuals change to the same algorithm at the same time.
Both of these actions—environment sensing and algorithm switching—must truly
take place on the colony level, as opposed to the individual level.

In this work, we focus on the problem of foraging for robot swarms. Foraging
algorithms enable a collection of robots to search a space for a goal (the ‘food’),
then return it incrementally to the nest. We assume robots with simple sensing and
communication capabilities that can exchange simple messages (a few bits) direc-
tionally with other robots within a short range. Since the robots do not have global
localization or odometry, coordination within the swarm is essential for performing
the task efficiently.

We present three distributed foraging algorithms. All of the algorithms are based
on a few core “sub-algorithms” which the swarm intelligently switches between in
various combinations and at various times. The first is a gradient–based method in
which robots form a stationary beacon field around the nest to create gradients to
the nest and food. The second is an area–sweeping algorithm (called “sweeper”)
in which robots use virtual forces to coordinate and form a line which sweeps the
world. Finally, in the third algorithm (“adaptive”), the colony cooperates to detect
when one algorithms is failing and switches to another, thus increasing performance.

To evaluate the algorithms, we place food at varying distances from the nest. We
find that the gradient algorithm works fast but only in a short range, and the sweeper
algorithms is slower but has a larger range. We show that the adaptive algorithm is
capable of high-level switching, and that the swarm is able to choose the algorithm
best suited to the current food location.

1.1 Related Work

Gradient-based Foraging. Gradient-based foraging methods create a gradient lead-
ing to the goal, using the sensing capabilities of the robot, such as chemical sensing
or communication. Algorithms using many different types of sensing capabilities
have been studied. Algorithms exist for robots with global positioning and global
communication [18], robots that use physical marks to leave a trail [9, 11], robots
that use a pre-deployed sensor network [10], and robots that use deployable beacons
[6]. Our work focuses on robots with directional communication. Payton et.al. have
developed an algorithm in which each robot can receive messages in a small ra-
dius, and use this to create a virtual pheromone. Our gradient algorithm is similar to
[5], [19], [8], and [21] in that directional communication is used to transmit relative
position information to establish the gradient. Networking researchers would also
recognize the gradient algorithm as being very similar to “hop-count” routing [22].
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Area-Sweeping Foraging. In this algorithm, inter-robot virtual forces are used to
make movement decisions which cause the swarm to adapt a line shape. Spears
studied physics-based control of vehicle swarms, with attractive and repulsive forces
forming a lattice of vehicles [20]. In the field of sensor networks, Howard et.al.
have used potential fields to achieve dispersion of nodes [7]. The closest work to
our application is Balch’s notion of social potentials [3]. Social potentials involve
robots navigating to a goal while remaining in a formation, feeling virtual forces
based on the position of the goal and the relative positions of other robots. These
algorithms are focused on maintaining a formation. We use a similar concept in
which robots feel virtual forces, and we show how to use the formation to search the
region. We use this to develop a virtual forces-based foraging method.

Algorithm Switching. Multiple behaviors within a single algorithm are well-known
inside the swarm algorithm community [16]. Matarić and Arkin have worked ex-
tensively in behavior-based robotics [2, 4]. It is common for individual robots to
switch between the behaviors of food collecting, obstacle avoidance, and resting,
for example. Parker has studied distributed consensus in a swarm setting, using it
to enable the swarm to move between subtasks in an overall task [17]. We focus on
foraging, and do not use formal distributed consensus (or assume that our robots are
‘well-stirred’). McLurkin has developed a large range of robot swarm behaviors[12]
as well as dynamic task assignment methods for individual robots within a swarm
[14]. These methods focus on individuals, whereas we need a method for the swarm
as a whole to switch algorithms.

The central contribution of this work is an adaptive foraging method in which the
swarm makes colony-level decisions based on distributed information, choosing the
algorithm best suited to the given food location.

2 Robot and Task Model

For our robots, we use a simple model inspired by recent swarm robot hardware,
such as the E-Puck [15] (shown in figure 1b), the RBZ communication board (an E-
Puck extension described in [1]), McLurkin’s SwarmBots [13], and Payton’s pher-
obots [5]. We assume a simple non-holonomic robot that moves and turns in contin-
uous space. Each robot has sensors for nest, food, and obstacles in direct proximity
to the robot. The sweeper algorithm also requires two of the robots to have com-
passes. Each robot can communicate with nearby robots and measure the range and
bearing from which each transmission came. Robots do not have global position
measurement or global communication. See figure 1a.

For the foraging task, we assume a world with a nest in the middle and one un-
limited food source placed randomly. The swarm must find the food, then begin
returning food units to the nest. Robots can pick up / drop food units when in direct
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(a) (b) (c)

Fig. 1 The communication and sensing capabilities of the robots (1a), the E-Puck robot with
communication ring (1b), and a simulation snapshot with a blowup for detail (1c).

proximity to the food / nest. Because the robots have no direct position measurement
system, they must coordinate in order to maintain and share information about their
own position and the food position.

To test the algorithms, we developed a continuous-world multi-robot simulator.
The simulator models robots, food, and the nest, along with proper movement and
interactions (collisions, communication). We chose a continuous world model over
a gridded world environment so that the algorithms would face real problems such
as collisions and congestion. A snapshot of the simulator is shown in figure 1c.

3 Algorithm Description

In this section, we will describe the three algorithms and the means by which algo-
rithm switches are made at the individual- and colony-level. Figure 2 diagrams the
relationship between the algorithms and their parts.

Fig. 2 This figure describes the relationships between the gradient, sweeper, and adaptive
algorithms, and their switches. The “start” arrows indicate how each algorithm begins. Bold
arrows indicate colony-level switches and dotted arrows indicate individual-level switches.
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3.1 Gradient Algorithm

Robots need a way to navigate to the food and the nest. The gradient algorithm
provides this information using two gradients—one leading to the nest, and a second
leading to the food once it is found. To implement these gradients, some robots
decide to stop their normal food searching and become fixed beacons. These beacons
transmit two numbers (one for each gradient), which the remaining robots can use to
navigate. As the swarm expands outward from the nest, the beacon network expands
and creates the nest gradient. Once the food is found, the food gradient is developed.
At that point, robots can navigate to either location to efficiently return food.

3.1.1 Local Description

Beacon: Robots acting as beacons are stationary, and broadcast two numbers, called
nestGradient and foodGradient. They listen for all other beacons in their
communication range and record the nestGradient and foodGradient of
each one. Beacons find the minimum of all nestGradient values they have re-
ceived, increment that by one, and take that as their own nestGradient. An
analogous procedure is used to calculate foodGradient. These new values are
then broadcast by the beacon. Any beacon directly next to the nest/food broadcasts
a 1 for its nestGradient/foodGradient.

If a beacon has no information about its distance from the food (as happens early
in the run, before the food has been found), it broadcasts 0. The value of 0 is treated
specially—when a beacon hears a 0, it does not include it in its normal ‘minimum
plus one’ calculation.

Walker: Walker robots always attempt to navigate either to the food or the nest,
depending on whether they have food. In either case, a walker measures the bear-
ing to the minimum gradient value toward the target of interest, and moves in that
direction. If a walker has no information about where it should go (it can only hear
0), it does a random walk.

Beacon to Walker transition: If a beacon robot can detect more than 4 other bea-
cons, it will become a walker robot with a 20% chance. This probabilistic effect is
required to prevent several beacons, all of whom can collectively hear each other,
from becoming walkers at exactly the same time and leaving a hole in the beacon
field.

Walker to beacon transition: A walker robot will decide to become a beacon if it
can only detect 1 or 2 other beacons.

3.1.2 Global Behavior

All robots start as walkers clustered around the nest. Some of them will decide to
become beacons immediately because initially, there are no beacons. The remaining
walkers will begin searching for the food. There will be no foodGradient (it will
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Fig. 3 Example situations in the gradient algorithm (a) and the sweeper algorithm (b). Walkers
in (a) are not shown to reduce clutter. The gray contours roughly depict the gradient to the
nest.

all be 0), so they will random walk. As they wander away from the nest, some will
decide to become beacons, and the beacon field will expand away from the nest.
Eventually one of the robots could stumble across the food, and would then begin
transmitting 1 for its foodGradient, causing the food gradient to form. At this
point, any walker can listen to the beacons near it and know how far it is from the
food and how to get there. All the walkers immediately start moving directly toward
the food. As walkers pick up food, they use the gradient field to bring it to the nest.
Figure 3a illustrates an example snapshot of the gradient algorithm.

3.2 Sweeper Algorithm

A different strategy for search or foraging involves individuals forming a “search
front” and systematically sweeping an area to find an object. Here we describe an
algorithm that uses virtual forces to form a line of robots extending from the nest that
sweeps the world like the hand of a clock. When the line finds food, some fraction
of the robots remain as beacons while others act as walkers to return the food.

Fundamentally, this strategy creates a 1D structure of robots (roughly a line), as
opposed to the gradient strategy which creates a 2D structure of robots (roughly a
circle). The 1D structure is expected to be able to sweep a larger area than could be
‘filled in’ with the same number of robots

3.2.1 Local Description

Normal: In the sweeper algorithm, all robots are always transmitting. Each robot
measures the range and bearing to all the other robots in its communication range.
Based on the position of each other robot, it calculates a virtual force on itself. For
each robot detected at relative position −→r , this force is
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−→F = a
−→r
rc
− br̂

where rc is the communication range of the robot and a and b are empirically chosen
constants. In other words, the force is similar to what would be experienced if there
were a virtual spring between the robots. The robot sums the virtual forces from each
other robot in its communication range, and moves in that direction by an amount
proportional to the magnitude of the force. There is one special case: two robots
directly next to the nest never move regardless of the virtual forces on them.

While the robots are calculating forces and moving, they are simultaneously us-
ing communication to establish a gradient field similar to the one described in the
gradient algorithm. This does not require extra communication. The data content of
the signal encodes the two gradient values, and range and bearing to the transmitter
are used to calculate the virtual forces.

The robot treats the nestGradient exactly as before, updating it using the
min+1 algorithm. foodGradient is treated slightly differently. Any time a robot
sees a non-zero foodGradient, it temporarily stops executing the sweeper algo-
rithm and switches to gradient. If the foodGradient returns to zero, the robot
returns to executing the sweeper algorithm.

Puller: Two robots are pre-determined to be “puller” robots. These participate in
the virtual forces system described above, but they also feel one additional force.
These two robots must use their compasses to measure the relative bearing to north
(the unit vector N̂), then put a virtual ‘clock’ force on themselves equal to

−→
Fc = cN̂R

(
2πt
T

)
where R is simply the 2D rotation matrix,

R(θ ) =
[

cos(θ ) −sin(θ )
sin(θ ) cos(θ )

]
−→
Fc is a force which simply rotates around like the hand of a clock as time t increases.
The parameter c is an empirically chosen magnitude and T sets the period of the
rotation. T is determined by the puller, and can be changed at any time based on the
puller’s nestGradient value.

3.2.2 Global Behavior

When the sweeper algorithm begins, all robots calculate forces and begin mov-
ing appropriately. Initially, repulsive forces cause the swarm to expand into a tight
clump around the nest. The pullers will be forced to the edge of the pack and a
line of robots will form extending from the nest to the pullers. This line of robots
will rotate as the pullers pull it around, sweeping around the world like the hand
of a clock. When the line encounters food, it stops moving and the swarm returns
the food using the gradient algorithm, with walkers moving along the line of robots
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already established. When the food source is exhausted, the forces resume and the
line keeps sweeping.

One can imagine that longer lines (with more robots) would need to rotate slower
than shorter lines. Hard-coding the period T would require knowing the number
of robots in the swarm, which is not a scalable solution. Instead, the pullers set T
based on their nestGradient. A higher value for nestGradient indicates a
long line, so the puller will choose a larger T .

Figure 3b illustrates an example snapshot of the sweeper algorithm.

3.3 Adaptive Algorithm

The first two algorithms, gradient and sweeper, each have strengths and weaknesses.
Gradient operates in a short range but is fast, while sweeper has a longer range but
is much slower. (This is quantified in section 4.) The adaptive algorithm combines
the benefits of these two algorithms, along with random walk, by trying each one in
sequence and choosing the best one for a given situation. It first tries gradient, which
would work well if the food is near enough to use it. If not, it switches to sweeper
to get food further away. If it still doesn’t find the food, it switches to the last resort
– random walk. Switches between these three algorithms are made in a distributed
manner at the colony level. To accomplish this, a third gradient is included.

3.3.1 Local Description

Robots begin with an algorithm very similar to the gradient algorithm above. They
are split between walker and beacon robots as before, but they maintain three gra-
dients as opposed to two. The third one measures how far each beacon is from any
walker robot. This requires all walker robots to transmit a single bit of information
indicating their presence and identity as a walker. The beacons then transmit a 1 for
the walkerGradient if they can see a walker, and min+ 1 if they can not see
a walker. Other than this, they execute the gradient algorithm exactly as described
above.

To implement adaptive foraging, robots need to explicitly detect when to change
algorithms. If a robot does not see any (non-zero) walkerGradient for several
time steps in a row, it will completely switch algorithms from gradient to sweeper.
Thereafter, if the line of robots has swept the world twice and still has not found food
(as evaluated by the pullers), the pullers send a signal through the beacon network
causing every robot to again switch algorithms to random walk.

3.3.2 Global Behavior

The swarm will begin executing the gradient algorithm. There are many walkers at
the beginning of the execution, so the values for walkerGradient are all fairly
low. If the swarm finds the food, it returns it as usual, and the walkerGradient
remains irrelevant. If, however, the swarm expands to the point that all robots have
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(a) (b)

Fig. 4 Test setup is shown in figure 4a, drawn to scale. The parameter r ranges from 1m to
4m. Figure 4b shows the regions described in section 4.

become beacons and the swarm has still not found the food, then there will be no
walkers left. When the last walker becomes a beacon, suddenly no beacon anywhere
in the swarm has information on which to broadcast a walkerGradient, so all
walkerGradient values revert to 0. A short time later, they all decide nearly-
simultaneously to switch algorithms and begin the sweeper algorithm. From this
point on, the swarm proceeds as normal as if it had just begun the sweeper algorithm,
pulling out a line of robots and sweeping the world. Once this line has swept around
the world twice without finding food, the swarm switches to random walk, which
is the only option left. Random walk does not involve coordination, which relieves
the robots of the requirement of staying near each other. This is the only way to get
food so far away.

4 Performance

These algorithms were tested in a continuous-world multi-agent simulator (screen-
shot in figure 1c). An unlimited food source was placed at varying distances from
the nest, with a swarm of 20 robots trying to find and retrieve it (as diagrammed
in figure 4a). Since we are focusing on algorithm switching and the environmental
impact, we chose to experiment with a fixed number of robots. In the future, we will
study scalability of the individual algorithms more closely.

We assessed the performance of the algorithms using three simple metrics: (1)
whether or not the swarm found the food, (2) how quickly it found the food, and
(3) the rate at which it returned the food to the nest. Each data point represents an
average of 100 runs.

Region-Based Analysis. Based on performance (figure 5), we can see that the world
can be divided into four distinct regions, diagrammed in figure 4b.
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region description
r1 any algorithm works
r2 coordination needed, gradient works well
r3 too far for gradient, sweeper works well
r4 too far for sweeper, only random walk works

If the food is inside r1, it is so close to the nest that any algorithm will find it
(figure 5a), find it quickly (figure 5b), and return it quickly (figure 5c).

r2 is the boundary inside which the gradient method works well. It finds the food,
finds it quickly, and returns it quickly. Outside of r2, gradient works poorly. As the
robots expand and form a beacon field, eventually the swarm will expand to its
maximum size and there will be no walkers left to continue the expansion. If the
food is beyond this critical radius (r2), there is no way for the gradient method to
get it. The sweeper algorithm is also capable of finding the food inside r2, but as
seen in figure 5b, takes much more time to do it. The adaptive algorithm is able to
choose the gradient method in this region, finding food quickly with a high success
rate.

In r3, the gradient algorithm is useless, and the sweeper algorithm performs well,
forming a line and sweeping the world out to approximately r3, although this bound-
ary is less well defined. It finds the food but takes a long time to do it. In this region,
the adaptive algorithm correctly selects sweeper.

Outside r3, even the sweeper algorithm fails because the line of robots can not
reach that far. In r4, the adaptive algorithm switches to random walk. This works
poorly (∼ 20% success rate, slow to locate and return food), but beyond about 3m,
it is the only method capable of finding any food at all.

In every region, the adaptive algorithm is able to choose the most appropriate
foraging method. In r2 it runs the gradient method, in r3 it runs the sweeper method,
and in r4 it runs random walk.

Overall Assessment. As an overall assessment of each algorithm, we can place
food in an unknown random location, and measure the performance. In the table
below, “r1, r2, or r3” indicates that the food is placed randomly anywhere in those
three regions, and “whole world” indicates that the food is randomly placed any-
where. The numbers are averages over all placements. For example, if the food is
randomly placed anywhere and the sweeper algorithm is running, the swarm can
be expected to find it 32% of the time, after an average of 7300 time steps with a
standard deviation of 3500 time steps. (One time step roughly corresponds to one
second.)

Table 1 Overall performance assesment

r1, r2, or r3 whole world
algorithm success rate time food found success rate time food found
gradient 31% 69±34 20% 69±34
sweeper 82% 6500±3900 32% 7300±3500
adaptive 86% 5500±3700 46% 9200±6000
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Fig. 5 Figure 5a shows the success rate of each algorithm. Figure 5b shows the time at which
food was first found. Figure 5c shows the rate at which food is returned to the nest once it is
found. Each point represents an average of 100 runs, and the error bars indicate one standard
deviation. Note the log scales in the second two plots.
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In r1, r2, or r3, the adaptive algorithm finds the food almost as often as the
sweeper algorithm, but does so faster. This is because it is able to take advantage of
the speed of the gradient method when the food is nearby. When very distant food
locations are included (whole world), all algorithms suffer lower success, but the
adaptive algorithm is able to use random walk to at least achieve some success in a
very long time.

5 Algorithm Switching Generalizations

Algorithms other than those presented in this paper could potentially be combined
into a single adaptive algorithm using the same method. The critical requirement is
the connectedness of the communication network. This section will discuss several
generalizations we can draw about colony-level algorithm switching, beyond the
specific cases discussed in this paper.

There are two kinds of algorithm switches: individual switches and colony
switches (see figure 2), with two main differences between the types. First, indi-
vidual switches are made by a particular robot based on the information it can
perceive, whereas colony-level switches require information which is distributed
throughout the environment and not directly perceivable by every robot making the
decision. Second, colony-level switches must be nearly synchronized, whereas in-
dividual switches need not be explicitly coordinated.

To achieve a colony-level algorithm switch, information must be shared through-
out the swarm, because each robot requires global-level knowledge in order to de-
cide to switch algorithms. For example, when the adaptive algorithm switches from
gradient to sweeper, each robot must be aware that no walkers are left, but no single
robot is capable of perceiving this. This global information is detected and shared
through the beacon network. Because global information is required for colony-level
switches, maintaining the connectedness of the beacon network is critical for these
switches.

We can distinguish three types of information:

information type example from this paper
directly perceivable sense a beacon ahead

directly perceivable by another robot someone found food
only perceivable by swarm as a whole swarm has expanded to max size

Individual switches can be made solely based on information of the first type.
Colony switches require the second and third types, which requires a beacon net-
work. There is no robot in the swarm with a sensor capable of detecting the third type
of information; it can only be detected by the swarm as a whole through cooperation.
A connected network is critical for detecting and transmitting this information.
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6 Conclusion

We have presented two distributed foraging algorithms which perform best under
different food locations, and a third method in which the swarm as a whole can
choose the best algorithm for the given situation. The gradient algorithm can return
nearby food quickly, and the sweeper algorithm can find food further away but is
much slower. The adaptive algorithm uses the gradient, sweeper, and random walk
methods, detecting in a distributed manner if one has failed and switching to the
next. For food in any region of the world, the adaptive method is able to choose
the most appropriate algorithm. Colony–level algorithm switching requires com-
munication, but can combine benefits of multiple algorithms and improve overall
performance.

There are several possible improvements and expansions planed for the future,
both in hardware and software. Although these algorithms are designed to be scal-
able, scalability will be tested experimentally. Second, we will consider methods
by which swarms could switch algorithms in a more general manner, including dy-
namic environments (which could require them to switch back to previously tried
algorithms). Finally, we will conduct a hardware study on the effect of sensor /
communication capability on algorithm possibilities and performance. This study
will use the E-Puck robots and IR communication rings described earlier.
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On Fault Tolerance and Scalability
of Swarm Robotic Systems

Jan Dyre Bjerknes and Alan F.T. Winfield

Abstract. This paper challenges the common assumption that swarm robotic
systems are robust and scalable by default. We present an analysis based
on both reliability modelling and experimental trials of a case study swarm
performing team work, in which failures are deliberately induced. Our case
study has been carefully chosen to represent a swarm task in which the overall
desired system behaviour is an emergent property of the interactions between
robots, in order that we can assess the fault tolerance of a self-organising
system. Our findings show that in the presence of worst-case partially failed
robots the overall system reliability quickly falls with increasing swarm size.
We conclude that future large scale swarm systems will need a new approach
to achieving high levels of fault tolerance.

1 Introduction

Research papers in Swarm Robotics frequently assert that swarm robotic
systems are both scalable and robust. The fact that individual robots in
the swarm make decisions based only on local sensing and communication is
assumed to lead naturally to swarms that will scale to very large numbers of
robots; the high degree of parallelism in robot swarms, which typically consist
of homogeneous robots, is assumed to lead to a high level of robustness and
dependability. While it may be true that robot swarms can exhibit an unusual
level of tolerance to failure of individual robots, or external threats, when
compared with conventionally engineered distributed systems, it is not safe
to assume that scalability and robustness are automatically properties of all
(or any) swarm systems. It is surprising therefore that, in the field of swarm
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robotics, there has been relatively little systematic study of dependability and
fault tolerance. In previous papers we have argued for a systematic approach
to engineering dependable swarms [15], and started to consider fault tolerance
in robot swarms [16]. A recent paper by Christensen et al notably proposed a
swarm algorithm, inspired by synchronised flashing seen in fireflies, in which
failed robots can be detected and physically removed by operational robots
[7]. In [10], Marino et al analyse, in simulation and real robot experiments,
the tolerance to failures of a multi-robot team of border patrol robots.

In this paper we develop a reliability model for a case study swarm of
robots that exhibit emergent, or self-organised, swarm taxis. After describing
the swarm algorithm in Section 2, we outline the key failure modes for the
case study swarm, and our experimental setup. In Section 3 we show that
we can model this swarm – from a reliability perspective – as a k-out-of-N
system. We then extend the k-out-of-N reliability model to take account of
worst-case partial robot failures and swarm scaling properties in Section 4,
introducing the new concept of swarm self-repair. Section 5 concludes the
analysis with a model of reliability as a function of swarm size and hence
addresses the question of scalability.

2 Case Study: Emergent Swarm Taxis

For our experimental case study we make use of a swarm of e-puck robots
[11] with two swarm behaviours: flocking and swarm taxis toward a beacon.
The combination means that the swarm maintains itself as a single coherent
group while moving toward an infra-red (IR) beacon. The algorithm is a mod-
ified version of the wireless connected swarming algorithm (the α-algorithm)
developed by Nembrini et al [12, 14].

Our modified algorithm, which we refer to as the ω-algorithm, works as
follows. Flocking is achieved with the well-known combination of short-range
repulsion and longer-range attraction. Short-range repulsion is implemented
with obstacle avoidance behaviour using the e-puck’s IR proximity sensors.
Longer-range attraction (coherence) is achieved as follows. Each robot times
the duration since it last made an avoidance manoeuvre and if that value
exceeds a given threshold ω, the robot turns towards its estimate of the
centre of the swarm; an estimate based on readings from the ring of infrared
proximity sensors around the e-puck’s body. To increase the distance at which
robots can sense each other, and also to enable robots to distinguish between
robots and ambient infra-red, each of the robots are equipped with infra-red
emitters that flash at 80 Hz. By sampling the sensors at 400 Hz and passing
the data through a bandpass filter the 80 Hz flashing is reliably detected.
Each robot can then estimate the direction of the local centre of the swarm
based on which of its sensors detect a flashing signal from other robots. For
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the results obtained from hardware trials reported here we set ω = 2.5 s; ω
(like α) controls the overall swarm density.

For beacon-taxis, we implement an additional ‘beacon’ sensor on each
robot. The beacon sensor is deliberately minimal, in that it is unable to
detect the range and bearing of the remote beacon and has only a two-state
output: on = illuminated or off = not-illuminated. An important require-
ment of the beacon sensor is that it can be occluded by other robots, thus
those robots that have a direct line-of-sight to the beacon will have beacon
sensors illuminated, and those robots that are in the shadow of other robots
will have beacon sensors not-illuminated. This means that for a typical swarm
only the robots on or close to the leading edge of the swarm (with respect
to the beacon) will have illuminated beacon sensors. Our experimental tri-
als make use of the same IR sensors, that are used for short-range collision
avoidance and longer-range coherence, for beacon sensing.

We then introduce a simple symmetry breaking mechanism. We set the
short-range avoid sensor radius for those robots that are illuminated by the
beacon to be slightly larger than the avoid sensor radius for those robots in
the shadow of other robots. This simple mechanism results in a net swarm
movement (taxis) toward the beacon. Note that the swarm taxis is an emer-
gent property of the swarm: with a simple two-state beacon sensor a single
robot cannot sense the direction of the beacon, and even with the symmetry
breaking mechanism two or three robots are not enough to give rise to emer-
gent swarm taxis; experimentally we find that swarm taxis requires at least
five robots. This is important to our case study as we are interested in de-
termining the reliability of a swarm with emergent swarm behaviours. For a
detailed analysis of the swarm taxis behaviour see [5], and for implementation
details and code listings see [4].

2.1 Failure Modes and Effects

This paper is concerned with analysis and modelling of reliability in swarm
robotic systems and so we need to understand which faults, in individual
robots, might seriously affect the operation of the overall swarm. We can
summarise the failure modes and effects for our case study swarm as follows:

• Case 1: complete failures of individual robots. These are relatively benign,
in the sense that ‘dead’ robots simply become obstacles in the environment
to be avoided by the other robots of the swarm. Completely failed robots
(due, for instance, to a power failure) might have the effect of slowing down
the swarm taxis toward the beacon, but – as shown later in Section 4 –
this effect is marginal. The only situation in which complete failures could
be critical is if they reduce the number of working robots in the swarm
below the minimum number for the self-organising team work to function.
This eventuality is modelled by the k-out-of-N approach in Section 3.
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• Case 2: failure of a robot’s IR sensors. While highly unlikely given that
there are 8 IR sensors fitted to the e-puck, this could conceivably result
in the robot leaving the swarm and becoming lost. Such a robot would
become a moving obstacle to the rest of the swarm and might – as in
Case 1 above – reduce the number of robots required for team work. This
situation is thus also modelled by the k-out-of-N approach in Section 3.

• Case 3: failure of a robot’s motors only. Motor failure only leaving all other
functions operational, including IR sensing and signalling, will have the
potentially serious effect of causing the partially-failed robot to ‘anchor’
the swarm, impeding its taxis toward the beacon. If both motors fail the
robot will be ‘live’ but stationary; if only one motor fails the robot will
turn on the spot, which amounts to the same thing. Of the 3 cases this is
by far the most serious, and will be analysed, and modelled, in Section 4.

2.2 Experimental Trials

Experimental trials have been conducted with a swarm of 10 e-puck robots.
Fig. 1(a) shows a trial of emergent swarm taxis, with no failures, in progress.
Videos of typical experimental trials, with a speed-up of 25x, have been up-
loaded to YouTube for (a) no failures [3], (b) two simultaneous Case 1 (com-
plete) robot failures [1], and (c) 2 simultaneous Case 3 (partial) robot failures
[2]. Note that in this particular Case 3 trial (c), 2 healthy robots become
trapped by the 2 partially failed robots, and only 6 robots reach the beacon.

(a) (b)

Fig. 1 (a) Hardware trial of emergent swarm taxis using 10 e-puck robots. The
swarm is moving toward the IR beacon located on the RHS of the arena. (b) An
e-puck fitted with an opaque ‘skirt’ required to block IR light from passing through
the transparent e-puck body. Also note the yellow ‘hat’ which provides a matrix of
pins for the reflective spheres which allow the position tracking system to identify
and track each robot.
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3 The k-Out-of-N Reliability Model

The purpose of a reliability model is to enable the estimation of overall sys-
tem reliability, given the (known) reliability of individual components of the
system, see [8]. Reliability R is defined as the probability that the system
will operate without failure, thus the unreliability (probability of failure) of
the system, Pf = 1 − R. In our case the overall system is the robot swarm
and its components are the individual robots of the swarm.

From a reliability modelling perspective a swarm of robots is clearly a
parallel system of N components (robots). If the robots are independent,
with equal probability of failure p, then the system probability of failure is
clearly the product of robot probabilities of failure. Thus, for identical robots,
R = 1−pN . p can be estimated using a classical reliability block diagram ap-
proach on the individual sub-systems of the robot. Since the individual robot
does not internally employ parallelism or redundancy then its reliability will
be modelled as a series system, giving p less than the worst sub-system in the
robot, which is most likely to be its motor drive system. However, this sim-
plistic modelling approach makes a serious and incorrect assumption, which
is that the overall system remains fully operational if as few as one of its
components remains operational. This is certainly not true of our case study
swarm. The desired emergent swarm behaviours require the interaction of
multiple robots and our swarm beacon taxis behaviour is a dramatic exam-
ple: with one robot only the behaviour simply cannot emerge. It is a frequent
characteristic of swarm robotic systems that the desired overall swarm be-
haviours are not manifest with just one or a very small number of robots.
However, the question of how many (or few) robots are needed in order to
guarantee a required emergent behaviour in a particular swarm and for a
particular behaviour is often not straightforward.

Thus, from a reliability perspective, we propose that the swarm must be be
modelled as a k-out-of-N:G system. That is, a system of N parallel elements
which requires that at least k of these elements are operational (Good) for
the overall system to function correctly. In a swarm of N robots, if more
than N − k fail, the self-organised functionality of the overall swarm will be
compromised.

In a k-out-of-N:G system, the probability that at least k out of N robots
are working at a given time t is given, from [9], by:

P (k, N, t) =
N∑

i=k

(
N
i

)
(e−tλ)i(1 − e−tλ)N−i (1)

where λ = 1
MTBF . MTBF is the mean time before failure of an individual

robot.
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Fig. 2 Top: The reliability of a robot swarm modelled as a k-out-of-N system, with
k = 5, swarm size N = 10 robots and MTBF = 480 m. Bottom: Reliability of the
same swarm as a function of distance travelled, based on a measured mean swarm
velocity of 12.4 cm. per min. for a swarm of 10 robots.

Based on Eq. 1 we can now plot swarm reliability against time for our case
study swarm. Experimental trials indicate that at least five robots have to be
working in order for the emergent swarm taxis behaviour to work properly.
Thus, we can model our swarm as a 5-out-of-N system. Consider now the
individual robots’ MTBF. Carlson et al. tracked failure data for 13 robots
by three different manufacturers over a period of two years. They found the
MTBF to be eight hours [6]. Experiments with the e-pucks used in our experi-
mental trials might suggest that their failure rate might be higher (because of
the design of the e-puck battery connector). However, as no systematic data
is available, the value reported by Carlson et al. will be used here. Fig. 2 (top)
plots Eq. 1 for a swarm of ten robots, and shows that the swarm reliability
starts to decline rapidly after 100 minutes of operation.

Fig. 2 (bottom) plots the reliability of the same swarm of ten robots, with
the same values for k and MTBF, against the distance the swarm will travel
(the emergent swarm taxis behaviour) based on a measured mean swarm
velocity of 12.4 cm per minute for a swarm of 10 robots.

Although providing some insight, the reliability assessments based on the
k-out-of-N model here fail to take into account two important factors. Firstly,
each robot that fails is likely – depending on the exact nature of that failure
– to slow down the swarm; if the failed robot(s) are immobile then the swarm
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will slow down until it ‘escapes’ from the failed robots, leaving them behind.
Secondly, the swarm velocity might then change after the failed robot(s) have
been left behind, typically a smaller swarm (of at least 5 robots) will have a
higher swarm taxis velocity. We now analyse these factors in more detail in
order to improve the swarm reliability model.

4 Swarm Self-repair

We now introduce the concept of swarm self-repair. Consider the case-study
swarm and its failure modes and effects analysis outlined above in Sect. 2.1.
Our experimental trials confirm the failure modes and effects analysis of
Sect. 2.1 and demonstrate that, while all failure modes have the effect of
slowing down swarm progress toward the beacon, the swarm is tolerant to the
simultaneous (i.e. worst case) failure of more than one robot. Furthermore,
we notice two different categories of effect on the overall swarm: (i) sensor
failures (Case 2) which slow down progress of the swarm, but the whole swarm
reaches the beacon and (ii) motor failures (Cases 1 and 3) which hold back
progress of the swarm until the swarm breaks free of the failed robots; for
a detailed analysis of these results see [4]. Consider the second, and more
serious category (ii), which gives rise to the notion of swarm self-repair.
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Fig. 3 Hardware trials using 10 e-puck robots: single robot complete failure Case
1, swarm self-repair time. Two robots are tracked: the failed robot and the trailing
robot from the rest of the swarm. At about 250 s. a single robot on the leading
edge of the swarm experiences Case 1 failure; at about 580 s. the trailing robot
leaves the failed robot. In this case the failed robot is simply a static obstacle to
the swarm, to be avoided as the swarm moves toward the beacon.
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Fig. 4 Hardware trials using 10 e-puck robots: single robot partial failure Case
3, swarm self-repair time. Three robots are tracked: the failed robot, the trailing
robot from the rest of the swarm and a third healthy robot left behind with the
failed robot. At about 450 s. a single robot on the leading edge experiences Case
3 failure; at about 1150 s. the trailing robot ‘escapes’ the failed robot. Here the
partially failed robot actively holds back the swarm - as outlined in Sect. 2.1 Case
3. To escape, the ‘pull’ of the swarm taxis needs to overcome the anchoring force of
the failed robot. The healthy robot that is, by chance, left behind remains attracted
by - and in the orbit of - the partially failed robot.

Refer to Figs. 3 and 4. We define swarm self-repair time as the time between
(simultaneous) motor failure of one (or more) robots and the point at which
the trailing robot in the rest of the swarm escapes the influence of the failed
robot(s). This is a useful metric because it varies with both the type of robot
motor failure (Cases 1 or 3) and the number of robots. Table 1 lists the
measured swarm self-repair times for one and two simultaneous failures for
Cases 1 and 3. For comparison the table also shows a baseline notional self-
repair time: the time the swarm would take to leave behind a failed robot if
that robot failure did not slow down the swarm.

Table 1 Mean swarm self-repair times for the case study swarm of N = 10 e-puck
robots. Ten runs for each case. *Here the swarm reached the beacon in only 6 of 10
runs.

Case Mean (s) Std. Dev. (s)

Baseline (no penalty) 328 174
One failed robot Case 1 387 132
Two failed robots Case 1 453 172
One failed robot Case 3 879 417
Two failed robots Case 3 1279 see note*
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5 Swarm Scaling and Reliability

We have argued that in the k-out-of-N reliability model above, the minimum
value of k = 5 because the swarm taxis property is present even with as few
as 5 robots. For N = 10 robots and an MTBF of 8 hours, this reliability
model suggests that the swarm will become unreliable after approximately
100 minutes. While it is clear that we can increase the swarm reliability by
increasing the individual robots’ MTBF, can we also make the swarm more
reliable by increasing swarm size? At first it might seem plausible to suggest
that the increased redundancy in a larger swarm would maintain reliability
for a longer period. One may even be led to believe that the swarm could be
made reliable for an arbitrarily long time, given a sufficiently large number
of robots. This is not correct, and we now combine a model of swarm self-
repair with the k-out-of-N model to determine the maximum upper size for
our case-study swarm.

Consider the argument informally. When a swarm is larger it will take
longer to self-repair than a smaller swarm. There are two reasons for this.
Firstly, it is a property of our case study swarm that the swarm taxis velocity
reduces with increasing swarm size. Secondly, the swarm is physically larger
and must move a longer distance before it is fully self-repaired. Thus the
self-repair rate will remain constant with increased swarm size. However, for
a given robot MTBF, the swarm failure-rate will increase for larger swarms.
It is unavoidable that at some point the failure rate will overtake the self-
repair rate of the swarm, and the swarm will come to a complete halt - the
desired emergent swarm-taxis property will fail. In fact a swarm of sufficient
size would die under it own weight, so to speak, before it has even started to
move.

We now estimate the values of k and self-repair time ts as a function of
N . We will then use these values, together with the k-out-of-N model Eq. 1,
to estimate swarm reliability as a function of swarm size.

5.1 The Value of k

In experimental tests it is clear that, for complete failures Case 1, two out of
ten robots could fail without permanently damaging the swarm. The swarm
would always self-repair. The cases with partial failure Case 3 fared less well.
When one out of ten robots failed, the swarm did always self repair, even
though a functioning robot might occasionally become stuck with the failed
robot. But when two out of ten robots failed, the swarm would suffer a
complete breakdown in four out of ten cases, and in the remaining six cases,
as many as three healthy robots stayed behind with the failed robots.

Based on this the value of k will be conservatively estimated as 90% of N
for a k-out-of-N:G system. In other words, when the swarm has ten percent
failed robots or less it will be assumed that it can self repair. Arguably, this
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may not hold true for larger swarms - the empirical evidence is limited to
swarms with ten robots. But this is our best estimate from the evidence
available.

5.2 The Value of ts

We know from an analysis of the scaling properties of our case study swarm
[4], that swarm-taxis velocity v as a function of N follows this relationship:

v(N) = CN− 1
2 (2)

Where C is a scaling constant. Thus larger swarms move more slowly. Note,
as stated already, that the minimum value of swarm size N for the swarm to
exhibit swarm taxis is 5, thus Eqn. 2 is not valid for N < 5.

Clearly, the diameter d, of the swarm will increase with swarm size.

d(N) = D
√

N (3)

Where D is the density constant for the swarm.
Since a robot can fail anywhere within the swarm: on the leading edge, in

the middle of the swarm or at the trailing edge, the average distance that the
swarm needs to move before it has moved away from the failed robot will be
half the diameter, d

2 . Thus the self-repair time becomes ts = d
2v .

Thus,

ts(N) =
D
√

N

2C 1√
N

(4)

Which simplifies to

ts(N) =
D

2C
N (5)

Eq. 5 is important as it demonstrates that the self-repair time increases lin-
early with N . Based on this equation it is now possible to introduce a new
constant for a given swarm, namely the self-repair-time-constant. Let this
constant have the symbol S for Self-repair, where S = D

2C . Now we have
established that S is linear with N , we can determine its value experimen-
tally. For a swarm with ten robots with one partially failed robot the mean
self-repair time was found to be 879 s (see table 1). This was for a case with
ten robots, so the self-repair constant for our case study swarm, for Case 3
partial failures, then becomes S = 879

10 = 87.9.

5.3 Swarm Scalability

Using the estimated values for k and ts and the k-out-of-N reliability model
we can now plot swarm reliability against swarm size N .
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Reliability for a swarm with partially failed robots

Fig. 5 Reliability of the case study swarm as a function of swarm size, based on a
k-out-of-N reliability model and assuming Case 3 partially failed robots; k = 0.9N ,
self-repair-time-constant S = 87.9 and robot MTBF 8 h
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Fig. 6 Reliability of the case study swarm as a function of swarm size, based on a
k-out-of-N reliability model and assuming Case 3 partially failed robots; k = 0.9N ,
self-repair-time-constant S = 87.9 and robot MTBF 24 h

Fig. 5 shows that with an MTBF of 8 hours, a swarm with as few as 40
robots will have a reliability of only 0.5. This reliability model is based on a
number of assumptions (including, for instance, a circular swarm morphology
that remains constant with increasing swarm size), together with experimen-
tally estimated constants. Notwithstanding these assumptions and estimates,
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the main idea that the self-repair-time increases with larger swarms is well
argued based on the experiments presented here. Even though the actual re-
liability for a given swarm size may be a somewhat higher or lower than the
k-out-of-N model suggests, it is undoubtedly true that our case study swarm
will eventually become non-functioning with increasing size, and that this
occurs at a much lower swarm size than one might intuitively expect. Clearly
we can significantly improve swarm reliability by increasing robot MTBF, as
shown in Fig. 6. A four-fold increase in MTBF from 8 h to 24 h increases the
swarm size with 0.9 reliability from 20 robots (Fig. 5) to 70 robots.

6 Concluding Discussion

The analysis of this paper raises two questions: firstly, to what extent can
our conclusions be generalised, and secondly, what measures might be needed
to improve the fault tolerance of swarm robotic systems. Addressing these
questions in turn:

(1) We would argue two general conclusions from this work. Firstly, that
our k-out-of-N approach to reliability modelling holds true for any swarm
robotic system which depends on team work, i.e. the interaction of multi-
ple robots giving rise to the desired overall swarm behaviour(s). Team work
contrasts with parallel work in which any single robot can complete the task
on its own, but multiple robots speed up task completion (subject to the
constraint of interference between robots). Secondly, it follows that scaling
to larger swarm sizes requires either more reliable individual robots, or ac-
tive measures to improve fault tolerance (or both). Our analysis of what
we call swarm self-repair and how it impacts swarm scaling and reliability
is, of course, specific to the algorithm of our case study but, we contend,
should apply to any swarm system in which swarm failure rate can overtake
the swarm self-repair rate, with increasing swarm size. But even if that con-
tention is wrong, invoking the Popperian criterion of scientific falsification, we
only need to show that the assumption of swarm robustness and scalability
is false once in order to cast its general validity into doubt.

(2) What active measures might be needed to improve fault tolerance and
hence scalability? Since a swarm is a completely decentralised system we
need to introduce new behaviours into individual robots that allow robots to
be able to detect and respond to failures in co-workers. The problem breaks
down into two parts: first, how can one robot reliably detect that another
has failed, and second, what can it do about it. [7] provides a good example
in which failed robots once detected can be physically grabbed and removed.
But if the failed robot is only partially failed, as in failure Cases 2 and 3 in
this paper, it may be that detecting that they have failed is very difficult, and
isolating them from harmfully influencing the swarm within their locale, even
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more so. We propose that an appropriate systematic approach to this problem
is that of distributed artificial immune systems, and Timmis et al have begun
initial work in this direction [13]. We believe that this is an important new
direction in swarm robotics. Indeed we would argue that the conclusions
of this paper might reflect a general truth about large-scale self-organising
systems (including swarms of robots, swarm of insects, and assemblages of
cells into multi-celled organisms), which is that such systems cannot function
without an active approach to dealing with failed or rogue units, i.e. an
immune response. What is perhaps surprising is that such an approach will
be needed in swarm systems with relatively few individuals, i.e. less than a
hundred.
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Hierarchical Distributed Task Allocation
for Multi-robot Exploration

John Hawley and Zack Butler

Abstract. In order to more effectively explore a large unknown area, multiple robots
may be employed to work cooperatively. When properly done, the group allocates
specific portions of the overall exploration task to different robots such that the entire
environment is explored with minimal excess effort. In this work, we present a new
hierarchical market-based approach to this allocation problem. Our approach builds
on standard auction approaches to provide agents with a mechanism to indepen-
dently form coalitions and to divide a coalition into smaller coalitions in response to
the progress of their cooperative exploration process. These coalitions allow a sub-
set of the team to move together efficiently, especially in constrained environments
when there are few avenues for exploration. We also present implementation and
simulated experiments which show how this natural hierarchy forms and can lead to
more efficient exploration than using a greedy allocation technique or without the
use of coalitions.

1 Introduction

Exploration of unmapped terrain is a task well-studied in robotics, and is well suited
to multi-robot systems. Teams of robots can fan out and visit locations in parallel
to make the overall discovery process more efficient, and a variety of approaches
have been proposed to coordinate this process. One common approach to coordinat-
ing multiple robots is through the use of market-based schemes for task allocation
[5, 6, 13, 16]. When a new task is given to the team (or discovered by a team mem-
ber, in the case of exploration), the robots bid on the right to take on that task. Bids
are computed based on the difficulty of the robot to accomplish the task, creating an
essentially greedy assignment of tasks. In the case of exploration, tasks will gener-
ally take the form of a location or region to be visited.
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Depending on the particular type of mission, there may be a surplus of tasks or
a surplus of robots (or both at different times during the mission). Exploration of
open terrain will generally have a surplus of tasks, but in indoor environments there
may be few tasks, such as one for each hallway currently being explored. Most
market-based systems for task allocation are designed for the former case (a surplus
of tasks), and simply try to assign each task or set of tasks to the best available robot.
When there is a surplus of robots, those without a task to accomplish simply remain
idle. In the context of exploration, this may not be the best choice, as new tasks
will be generated on the frontier of explored area. For example, when one robot is
exploring a hallway and discovers a four-way intersection, it will generate three new
tasks and we would like to have three robots close at hand if possible to make the
process more efficient.

To address these issues, we propose a method through which robots can au-
tonomously form coalitions during the exploration process via a market-based
mechanism. That is, each robot decides for itself whether it is more profitable to take
on a task for itself or join up with a group that already has one or more tasks. The
coalition formation and dissolution is performed in addition to a standard market-
based task allocation technique to handle the assignment of the exploration tasks.

1.1 Related Work

As mentioned, there have been many different approaches to multi-robot explo-
ration. In general, they consist of determining locations to visit and assigning those
locations to robots. For the locations, a common approach is to use frontiers [1, 7,
11, 15], identified as contiguous groups of map cells that represent explored open
space adjacent to unexplored space1. A goal point is created for each such group,
and is located at the arithmetic mean of all points in the group. Other approaches
to goal identification that have been implemented include random point selection,
greedy exploration, map segmentation [14] and quad-tree subdivision [16]. Once
determined, a variety of approaches exist to assign these to robots. Some rudimen-
tary but successful approaches simply direct an agent towards the nearest goal point
[15]. In the case where multiple agents are participating in the exploration, how-
ever, this task becomes far more complex. In such cases, more advanced techniques
are often employed, including greedy mechanisms [1, 11], optimal centralized ap-
proaches [14], genetic algorithms [7], Voronoi-based approaches that can implicitly
keep robots in different areas [3] and market-based mechanisms [6, 10, 16].

Among these techniques, market-based allocation strategies are quite popular. In
these strategies, agents negotiate with each other and treat goal points as a com-
modity that they exchange. Such exchanges are determined by auction mechanisms,
though the specific auction mechanism used varies between implementations. In
some implementations, single-round single-item sealed-bid auctions that closely

1 Our implementation uses frontiers to generate goal points, but the method is intended to
function equivalently for other methods of goal point generation.
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resemble greedy allocation strategies are preferred [16]. In other more distinctly
market-based implementations, multi-round auctions may be used so that bids can
account for the effects of previous allocations [4, 6], particularly in the calculation
of goal point utility. Other issues addressed include handling constraints of commu-
nication across a dispersed robot team within the context of bidding [8, 10], which is
important from a practical standpoint but is not considered in this work. Occasion-
ally, combinatorial bids are used, in which agents bid on multiple goals in batches
rather than individually [5], as it can be advantageous for an agent to pursue groups
of nearby goals rather than treat each goal independently. Our work is similar in that
an auction mechanism is used to assign goals to robots. However, we use a second
auction process in parallel that assigns robots to coalitions. In this way, the coali-
tions will form naturally and in a purely decentralized way depending on whether
the robot finds it more advantageous to pursue its own goal or join a nearby team.
The work in [2] also involves groups of robots in a market-based allocation, but
in that case leader robots can reassign tasks among ad-hoc groups for a more opti-
mal assignment, whereas we are considering longer-term coalitions with a common
goal.

Coalition formation has been addressed in different contexts as well. Often, these
works consider tasks which can or must be completed by a team of agents instead
of a single agent. A foundational work in this area is that of Shehory and Kraus [9],
which includes distributed algorithms for coalition formation with provable bounds
on task completion efficiency. In a more closely related context, the AsyMTRe-D
algorithm [12] allows robots to create small coalitions based on their capabilities
to solve complex tasks. As such, it makes decisions on a discrete basis to form
necessary groupings rather than the real-valued numeric bidding used here to form
opportunistic groups.

2 Hierarchical Exploration

Our exploration technique includes both goal assignment and formation as well as
maintenance and dissolution of coalitions through different auction mechanisms.
The first type of auction is a Goal Auction, in which agents offer and bid on goals,
similar to existing mechanisms for task allocation. The second type is an Agent
Auction, in which an agent auctions its services in the event that it does not have its
own goals to pursue, potentially forming a coalition with other agent(s). These two
auction mechanisms take place asynchronously, but care must be taken so that an
agent does not transfer a goal in a Goal Auction that it has used to make a bid in an
Agent Auction.

2.1 Goal Auctions

In order for an exploration strategy to be truly distributed, there must be a sharing
of responsibility for goals among agents. The agent initially responsible for a goal
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is trivially the agent that discovered the open space to which the frontier is adjacent.
During the course of exploration, however, the agent that generated a goal point
may become no longer the most optimal agent for exploring that goal point. In
this work, we use a market architecture as a simple and effective way for agents
to transfer responsibility for goal points. As agents traverse the environment, they
build a local map and periodically share that information with the other agents in
the team. When an agent generates new goal points, usually by reaching a current
goal point, it can hold an auction so that goal points may be transferred to more
optimal agents. Depending on the structure of the environment, a frontier may be
discovered or enlarged on the way to another goal, and will be put up for auction
if so. An agent may also periodically hold auctions even when no new goals are
discovered so that goals can still be transferred between agents during long travels
through explored regions. While many complex auction strategies exist, here we use
simple single-round highest-bidder closed auctions.

In order for agents to appropriately bid on goals, measures of cost and utility of
goals are required, as in much previous work in market-based allocation. Here, cost
is calculated as the distance an agent must travel to reach a goal point. Since the
environment is only partially known, the cost is optimistically calculated by treat-
ing unexplored space as open space within a standard A* search. Utility is defined
in a way dependent on the type of goal used, but generally describes the expected
increase in explored area from visiting that goal. The value of a goal is then calcu-
lated as value = utility−β · cost where β represents a coefficient representing the
relative values of cost and utility. To compute utility when frontiers are used as goal
locations, we estimate how much unexplored space would be revealed by that agent
(based on its sensing radius) were it to be at that particular goal point, resulting
in the expected information gain [11] of that goal point. We note however that the
general form of the hierarchical task allocation that we present does not rely on any
particular definition of utility.

2.2 Coalitions

In order to hierarchically distribute goals to agents, agents can form coalitions. Here,
we define a coalition as a set of agents simultaneously and intentionally moving to
explore the same goal point. A coalition is comprised of exactly one supervisor and
zero or more workers. While an agent is deciding what to do next, it is in a third
state, retasking. An agent is always in exactly one of these three states. See Fig. 1
for a representation of the transitions between these states.

The supervisor of a coalition is the agent responsible for that coalition’s goal.
When an agent does not have any goals that it is responsible for, it can obtain a
goal from another agent. In some cases, this entails joining another agent in a coali-
tion. Coalitions necessarily form when there are more agents than available goals,
which is often the case in highly structured environments. When a coalition has
been formed to pursue a goal and the resulting exploration of that goal reveals two
or more new goals, that coalition will divide into smaller coalitions so that the newly
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Fig. 1 State diagram describing the transitions between supervisor, worker, and retasking
states

generated goals can be effectively explored. In this way, coalitions hierarchically di-
vide and allocate tasks accordingly.

Workers are agents who have joined the supervisor because they do not have any
goals of their own to pursue. Each other agent is therefore trivially the supervisor
of a coalition of size one – the coalition containing only that agent. Agents that
are workers do not have any goals for which they are responsible and therefore
do not hold auctions to transfer goals to other agents and cannot be supervisors. In
addition, an agent will belong to exactly one coalition at any time. The supervisor of
a coalition is responsible for notifying the workers of that coalition of any changes
to the current goal of the coalition.

2.3 Coalition Formation

The mechanism used to form coalitions is similar to the market used to allocate
goals to agents. However, instead of holding a goal auction, an agent holds an agent
auction, which allows it to discover the most profitable goal for it to pursue. The
agent auction is initiated by broadcasting a Request-for-work message. See Fig. 2
for more details regarding the interaction between an auctioneer and bidders that
takes place in response to a Request-for-work message.
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Fig. 2 Request-for-work mechanism, initiated by an agent that does not have any of its own
goals to pursue

In order to compare joining a coalition to alternative courses of action, an ex-
pected profit must be calculated for a potential coalition. The profit of a coalition
can be calculated by

Profit =
maxi∈A(Utility(i,g))−β ·∑i∈A Cost(i,g)

|A|
where A is the set of agents belonging to the coalition and g is the coalition’s goal.
In the case where this results in a negative value for Profit, the formula

Profit =

(
max
i∈A

(Utility(i,g))−β ·∑
i∈A

Cost(i,g)

)
· |A|

must be used so that larger coalition sizes are penalized (i.e. given more negative
profit values) rather than rewarded. Since there is no way to know how many avenues
of exploration a goal will produce, it is assumed that smaller coalitions provide a
more even distribution of workers among available goal points and are therefore
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desirable. This is relevant as an agent may find it best to join some coalition if it has
no goal of its own, and so it is possible the smallest negative profit will be chosen.

2.4 Coalition Maintenance

In many cases, particularly in highly structured environments such as hallways, ex-
ploration of a goal point produces only a single new goal point. In these cases, it
is sensible for a coalition to continue on to the new goal. This is accomplished by
the supervisor sending a retask message to coalition workers informing them of the
new goal to pursue. A worker may leave a coalition at any time, but this retasking
provides a particularly opportune time for workers to consider alternative courses of
action based on the utility of the new goal.

The case in which a coalition explores a goal that results in multiple new goals
requires particular attention. If a worker discovers a new goal point, that worker
will quit the coalition and become its own supervisor. It will then respond to fu-
ture Request-for-work broadcasts to obtain its own workers. If the supervisor of a
coalition discovers multiple goal points, it is the supervisor’s responsibility to de-
cide which workers will pursue which goals. This can be done in different ways,
but in our implementation, we have chosen a greedy approach, as follows. First,
agents are ordered by topological distance to the supervisor, including the supervi-
sor, which trivially has a distance of zero. Each agent is then assigned to the most
profitable goal for that agent, beginning with the supervisor. The first agent assigned
to a goal will become a supervisor responsible for that goal, and any further agents
assigned to the same goal will be transferred to the new supervisor as workers. Once
an agent has become its own supervisor, it is no longer affiliated with the agent that
was previously its supervisor.

In order to accommodate all these interactions, three types of retask messages
are required. A Retask-simple message simply instructs a worker to calculate a path
to and pursue a new goal point. A Retask-become-supervisor message instructs a
worker to become a supervisor that is responsible for the included goal point. Im-
plicitly, the new supervisor is to calculate a path to and pursue the new goal. A
Retask-change-supervisor message instructs an agent to join a new supervisor’s
coalition. Upon doing so, the worker will be given a new goal point to pursue.

2.5 Coalition Dissolution

Coalitions may be dissolved for a number of reasons. A worker may choose to
quit its current coalition and reevaluate a new task at any time. This is particularly
useful when the worker is far away from the coalition’s goal, since the state of the
exploration changes over time, and it is possible, if not likely, that a better alternative
will arise for the worker. A worker may also receive its own goal, either by revealing
newly explored open territory, or by bidding in goal auctions (workers do not hold
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Fig. 3 Three maps used for experiments: sparse, dense, structured

goal auctions because they have no goals of their own to auction, but they still bid
in goal auctions held by other agents).

It is also possible for the supervisor to dissolve a coalition. If the exploration
of the coalition goal results in no new goals, the supervisor will make use of the
Request-for-work mechanism (see Fig. 2) to obtain a task. If this results in the su-
pervisor joining another coalition, it will become a worker itself and will transfer the
workers of the old coalition to its new supervisor by sending them Retask-change-
supervisor messages. It is also necessary to notify the new supervisor of the addi-
tion and the workers of the change in supervisor, by sending it a Transfer-workers
message.

3 Experiments

To evaluate the utility of the coalition-based algorithm, experiments were performed
on a variety of maps with different numbers of participating agents. A simulator
was written in Java that communicates with clients over TCP/IP. The simulator no-
tifies clients of newly explored area and provides messaging between clients in both
point-to-point and broadcast manners. Robots are assumed to have accurate local-
ization. Communication between clients and the server is asynchronous. Clients are
not provided with any means of contacting other clients directly.

In order to make comparisons in a proof-of-concept sense, we tested our algo-
rithm against two other basic techniques. One of these techniques is simply using
our algorithm without the agent auctions; this will mimic traditional auction-based
task allocation. In this case, any agent without a goal assigned will simply be idle
and remain at its present location. The other point of comparison is a greedy algo-
rithm in which each agent is responsible for the goals to which it is closer than any
other agent. An agent pursues whatever goal it has that is the closest topologically.
If an agent is not responsible for any goals, it will broadcast a request to other agents
and will pursue the goal it receives that is the closest topologically. Note that this
mechanism does not transfer responsibility for the goal, it merely provides the agent
with an interim goal to pursue until it is responsible for its own goal rather than re-
maining stationary. This algorithm should eliminate some inefficiency due to idling
but without using explicit coalitions.
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Experiments were performed on a set of four maps, the three shown in Fig. 3 as
well as an open map with no obstacles. Each map is represented as an 800 by 600
pixel bitmap, and agents have a radius of vision of 40 pixels. The first map is devoid
of obstacles, except for a boundary preventing agents from reaching the edge of the
map. The second and third maps contain increasingly many variously sized, shaped,
and positioned obstacles. The fourth map is a highly structured office-building-like
map specifically designed to test the performance of exploration methods in an in-
herently hierarchical environment. Team sizes of 2, 4, 8, 16 and 32 homogeneous
agents were tested, and in all cases, all agents started in the center of the map for all
tests, simulating a standard group deployment.

3.1 Results/Discussion

As expected, results varied between map types. In general, the greatest benefit of
coalitions was seen on the structured map, while hierarchical allocation methods
consistently outperformed the no-coalition algorithm and did not perform noticeably
worse than the greedy control algorithm in any of the tests.

Perhaps the most intuitive measure of the performance of an exploration algo-
rithm is the amount of area explored versus time. Since the simulator calculates its
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Fig. 4 Area Explored Versus Time for 16 agents exploring the (a) open, (b) sparse, (c) dense
and (d) structured environments
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Fig. 5 Ratio of Area Explored by 16 Agents in the open and structured environments —
(a) Hierarchical algorithm vs no-coalition algorithm; (b) Hierarchical algorithm vs greedy
algorithm

state in time increments, henceforth referred to as ticks, the units of time used in
the graph are arbitrary and correspond to simulator ticks rather than any wall time
unit. Area explored is simply measured in pixels, since the exploration environment
maps are loaded as bitmaps, providing pixels as a convenient measure of area. In the
simpler, more regular environments, there was little difference between the differ-
ent algorithms, whereas in the structured map, the hierarchical approach was able
to explore more quickly than either of the comparison approaches. Plots for the 16
robot case are shown in Fig. 4.

We can also look at the relative progress of the different algorithms with respect
to time across different map types. In this case, area explored and exploration time
must be expressed as percentages, since the maps vary in amount of free space and
thus time required for exploration. In particular, we compute the ratio Ah/Anc where
Ah and Anc are the area explored by the hierarchical and no-coalition methods re-
spectively at a given time. The value of this ratio over time is shown in Fig. 5a for
both the open and structured environments. From this graph, it can be seen that the
hierarchical allocation method performed better in the very early stages of explo-
ration in both environments, but that it performed much better throughout in the
structured environment. This is as expected, because the hierarchical method al-
locates agents more effectively when there are more agents than goals. Even the
greedy algorithm, which allocates the extra agents by assigning them to their re-
spective nearest goals instead of idling them, suffers in comparison during this ini-
tial phase in both environments, though it does catch up effectively by the end. This
comparison is shown in Fig. 5b.

Other team sizes showed similar trends with the benefit of coalitions generally
larger as the team size increases, as expected. However, these environments do suffer
from diminishing returns. Table 1 shows the time required to explore 80% of the free
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Table 1 Time (in simulator ticks) required to explore 80% of the free space in different
environments with different team sizes and algorithms

8 robots 16 robots
No coalition Greedy Coalitions No coalition Greedy Coalitions

Open environment 1393 1442 1478 972 943 934
Structured environment 4006 3929 3887 3753 3370 2827

space of the environment for 8 and 16 robots using the three different algorithms.2

The more open environment showed greater improvement when going to the larger
team, while the structured environment showed less improvement (presumably since
there are fewer avenues of exploration) but more effect of coalitions, especially
when the larger team is employed.

In addition to the time required for exploration, we also considered the total
distance traveled by the team. In general, since both the greedy approach and the
coalition-based approach do not allow robots to idle, we expect these methods to
produce more total travel even when the exploration time is less. As can be seen in
Fig. 6, this is borne out in the experiments. Distance traveled for these techniques
goes up almost perfectly linearly with time. When using coalitions, especially in
large teams, some robots do pause while determining their next course of action,
but this does not have a major effect on total distance traveled. Without coalitions,
the team initially has lower distance traveled since several robots will be idle at the
outset. During the bulk of the exploration, some robots may remain idle in the larger
teams, but not in the smaller teams.

Fig. 6 Total distance traveled by the robot team over time. (Left) 8 robots in the open envi-
ronment (Right) 16 robots in the structured environment.

Qualitative Observations: Qualitative observations do not provide concrete sup-
port for the validity of hierarchical task allocation, but they can help explain the
quantitative observations made and provide some insight into future ideas worth
pursuing. In particular, we can identify different stages of exploration under which
the hierarchical allocation method performs more or less effectively.

2 We use the time to explore 80% instead of 100% since the last portion of exploration,
though very important, is highly dependent on the locations of the robots near the end of
exploration and is not as directly comparable across algorithms.
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ploring the dense environment

As mentioned earlier, our motivation for using coalitions is largely to handle the
situation when agents outnumber goals. In many exploration processes, there will
eventually come a point at which there are more goals to be explored than there
are agents. Once agents are no longer forming coalitions, the hierarchical alloca-
tion method essentially becomes a standard market-based allocation algorithm. In
some environments, however, this may never occur. For example, in the structured
environment and with 16 agents exploring, there was always at least one coalition
of more than one agent. This can be seen in Fig. 7. In this figure, the area explored
and number of coalitions formed are represented as percentages. Coalitions Formed
is calculated as the number of coalitions that exist at any given time divided by the
number of agents, since the number of agents is the maximum number of coali-
tions that may form. This figure also demonstrates the decrease in rate of area being
explored as the number of coalitions drops significantly around 70% of the way
through the exploration. Even in those instances when there are more goals than
agents, there will eventually be fewer goals than agents again near the end of the
exploration. The hierarchical allocation method does not appear to perform partic-
ularly well once there are more goals than agents, even after the number of goals
decreases back below the number of agents. It is not immediately clear why this
is, but observations of the experiments indicate that building the coalitions from
physically dispersed robots seems to be unhelpful when there is little area left to
explore.

4 Conclusions / Future Work

Overall, these results indicate that hierarchical coalition-forming task allocation
techniques for robotic exploration can perform better than greedy or coalition-free
approaches. This is particularly the case in very dense or structured environments,
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but even in open space, hierarchical task allocation performed no worse than simple
traditional auctioning or greedy allocation. The improvements apply to teams of var-
ious sizes, depending somewhat on the environment. This improvement in time does
come at the cost of greater energy expenditure in terms of total distance traveled by
the team.

We have also considered several potential enhancements to the basic distributed
coalition formation technique. For example, existing allocation methods for robot
teams often use combinatorial auctions in which several nearby goals can be bid
on and assigned as a group, exploiting their collocation. With coalitions, a group of
nearby goals may be bid on by a coalition, such that the size of the goal set is equal
(or close) to the size of the coalition. More generally, the utility of a coalition to
achieve a goal (or set of goals) may be dependent on the capabilities of the mem-
bers of the coalition, especially if the system is heterogeneous. This could allow for
such systems to effectively use their varied abilities in similar fashion to other task
allocation strategies in addition to the advantages of the coalitions.

Finally, even though the environment is assumed to be unknown, the robots could
use their experiences from the initial exploration to inform future decisions. For ex-
ample, it seems from our experiments that the number of coalitions follows a pattern
of increase and decrease throughout exploration. Being able to detect this on the fly
may allow us to idle robots toward the end of the exploration process to conserve
energy with minimal loss of exploration efficiency. Also, while it is impossible to
know for sure which goals will branch into multiple new goals to explore, it may be
possible to employ pattern matching techniques to predict a likelihood that a goal
branches. The ability to predict branching with any accuracy could be conveniently
incorporated into a coalition forming exploration strategy. The coalition profit cal-
culation could be easily modified to account for the optimal coalition size for a goal,
based on estimated branching. In heterogeneous systems, even the membership of
coalitions could be informed by the expectation of the needs of the exploration pro-
cess. Together, we hope to show in the future that these improvements can lead to a
cooperative exploration system that is even more efficient and effective.
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Endocrine Control for Task
Distribution among Heterogeneous
Robots

Joanne H. Walker and Myra S. Wilson

Abstract. This paper details an endocrine based system which automatically
reassigns tasks among heterogeneous robots dependent on the ability of the
robot to do the task. This ability (or sensitivity) to a task is initialised for
each individual robot after an evolutionary training stage, then constantly
adapts as the robots perform the various tasks. The system does not require a
centralised controller, and relies on little communication between the robots.

1 Introduction

A key aim of robotics research is to design robots that can perform au-
tonomously in the real world; a world that is complex and dynamic. An
important challenge for researchers is therefore to produce robots that can
continually adapt to their surroundings and tasks, so that they can improve
their performance when the environment is stable, and adapt when the envi-
ronment changes. As with all systems, failure is possible and so adaptation
methods should include recognition and appropriate handling of failure.

This paper describes a multiple, heterogeneous robot system that is able
to operate without external assistance for an extended period of time. This
highlights the importance of adaptability, usefulness in diverse environments,
and the advantage of not having to perform complex reprogramming. The
system identifies when a robot has degraded and is unable to complete a task.
The task can then be reallocated to another robot with a similar competence.
Where the environment has changed and the robot is no longer appropriate
for the task, this is recognised and the task reassigned to another robot and
the original robot assigned elsewhere.
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This paper reports a method for autonomous task assignment within a
group of heterogeneous robots. The method should assign tasks based upon
the different robots’ abilities and continuously adapt as the robots carry out
their task.

The work described here builds on previous developments which have:

• Used evolutionary methods to continuously adapt a single robot to a dy-
namic environment as it carried out a task [11].

• Demonstrated an endocrine based system which assigns tasks between a
group of homogenous robots in simulation [13].

• Demonstrated that the endocrine based system successfully re-assigns
tasks between simulated robots when a robot breaks down [14].

The work described here expands upon previous by:

• Extending the system to a group of heterogeneous robots, distinguished
by their sensor complements.

In formulating the design, inspiration from biological systems was considered
because they represent extant methods which are proven to co-ordinate a
range of functions. More specifically, the human endocrine system was chosen
as it co-ordinates the execution of various tasks within the body by the send-
ing of signals which are received by cells, changing their behaviour. Within a
group, individual robots can be seen as representing parts of an overall phys-
iology, or body, and radio broadcasts as chemical signals between them. It
was anticipated that by the release and decay of hormone signals and in shar-
ing these signals between robots, task assignment, and re-assignment upon
change would be emergent properties of the system.

2 Background

In previous work, evolutionary methods have been used to train a robot
in simulation, followed by lifelong adaptation in the real world [10]. In this
method, a genetic algorithm (GA) was used to evolve a Khepera robot con-
troller in simulation (based on a training scheme reported in [8]). Training
was followed by lifelong adaptation using an evolution strategy (ES) which
was designed to allow the robot to continue to adapt to a dynamic environ-
ment for the lifetime of the robot. The work reported here was motivated
by a desire to expand the method to groups of heterogeneous robots, which
could autonomously assign tasks, responding to changing performance.

Endocrine systems for robot control have rarely been investigated for co-
ordination of behaviors on a single robot. Brooks [3] incorporated a hormone
control model into the subsumption architecture to switch between behavior
sets. In Arkin’s Schema Architecture [2], a ‘homeostatic’ control mechanism
was added in order to maintain the internal environment of the robot [1].
Internal sensors such as a fuel gauge and thermistor were monitored and their
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output used to alter the robots’ behavior. A hormone-inspired system has
been used in the design of adaptive communication and control for modular
self-reconfigurable robots [9]. The authors suggest endocrine-inspired systems
are ideal for distributed control of multi-robot systems.

In [6] an endocrine model was used to control ‘emotive’ behavior in a
robot. The robot’s task was to wander safely whilst hormone was released in
proportion to the proximity of perceived obstacles. The input weights of an
artificial neural network (ANN) increased in response to the hormone levels,
which increased the speed at which the robot moved away from obstacles.

The work reported in [5] is particularly relevant as it has been used as a
starting point for the multi-robot system work reported here. In [5] hormone
signals were used to coordinate target seeking and wall avoidance behaviors
on a single robot. The hormones were released in response to the proximity
of targets and walls into a pool, once the pool’s threshold was reached the
hormone was released to become ‘free hormone’ whereupon it would interact
with an ANN. The free hormone then decayed exponentially over time. Each
behavior was active to a level dependent on the amount of free hormone for
that behavior. In this way, when the robot was close to a target it would tend
to move towards it, but when near a wall it would move away. The system
reported here is made distinct from that in [5], by expanding to a group of
robots; it also does not use an ANN, and the behaviours switch completely
rather than being partially active according to hormone level.

Hormone-inspired control also bears resemblance to Maes’ Action Selection
Architecture [4] in which levels of activation control which behaviors were
active at a given time. Activation was stimulated by the environment, by the
overall system goals and from other behaviors within the system; activation
could also be suppressed. The system reported here distributes tasks based
on the robots’ performances alone.

Previous work in evolution for groups of non-cooperating robots has fo-
cussed on the robots sharing genetic information in order to improve the
group’s performance. In [15] a group of mobile robots became the popula-
tion on which a GA was implemented. Each robot’s behavior was defined
by a single chromosome, and when two robots met they could “mate” by
probabilistically replacing their own chromosome with a mutated version of
the other robot’s chromosome. Unlike some GA implementations, this can be
practically implemented on physical robots, and it is especially appropriate
for multi-agent tasks which will naturally bring the robots into contact with
each other.

In terms of emergent task assignment for groups of robots the Alliance
architecture [7] is especially relevant. Alliance switches between behavior
sets according to ‘impatience’ and ‘aquiesence’ signals. In the work reported
here, hormone signals are analogous to the impatience and aquiesence signals,
but different mechanisms are used. However, unlike in Alliance, our hormone-
inspired system does not assume the robots can autonomously monitor the
performance of other group members – a very difficult task with current
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sensor capabilities – instead they only monitor their own performance, and
the active behaviors of other robots. This is then enough to cause a single
robot to change its task, which results in behavior reallocation across the
group. In addition, the hormone inspired system has been designed to be
computationally less complex.

3 Robot Training Phase

3.1 Evolutionary Training Methodology

Three simulated ePuck robots, each with a different sensor complement, were
trained in a set of three possible tasks using a GA in the Webots1 simulator.
The aim of the training phase was to give the individual robots competence
at each task before they went on to perform the tasks post-training.

The Webots world was 1m2 with walls around the edge, walls jutting into
the centre and a number of cuboid obstacles. A Khepera robot carrying a
light, and controlled by a simple obstacle avoidance algorithm, began in the
middle of the arena and wandered randomly. This light bearing robot formed
the goal for a light-seeking task.

At the beginning of each trial, the ePuck robots were placed back to their
original corner positions, the Khepera back to the centre, and the cuboid
obstacles were randomly placed, each having a 50% chance of falling inside
the arena. In this way the robots faced a different environment for each trial,
reducing the likelihood of over-fitting to a particular world configuration.

The sensor complements of the three robots were designed so that the
three robots would have differing abilities to perform the three tasks, with
each having the potential to work well at one particular task (Figure 1). Each
of the robots was given a colour to make them easily identifiable.

(a) Blue Robot (b) Red Robot (c) Green Robot

Fig. 1 The sensor locations on each of the three robots, where a filled circle indi-
cates a reflected IR (or proximity) sensor, and an open circle indicates an ambient
IR sensor

1 From Cyberbotics, http://www.cyberbotics.com/

http://www.cyberbotics.com/
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3.1.1 Robot Behaviours

Three tasks were evolved: find-light, wall-follow, patrol-dark. Each task used
a number of individual behaviours working together based on Arkin’s Schema
Architecture [2], whereby individual behaviours, or ‘schema’, are combined
to produce an emergent behaviour.

Find Light Task. The aim of this task is to find, and remain close to, a
light source whilst avoiding obstacles; it uses three schema: Find-light, Avoid-
obstacle and Noise.

The Find-light schema simply turns the robot in the direction of the bright-
est light. One schema is instantiated for the sensor which has the brightest
ambient light reading, and the direction the wheels spin in (forwards or back-
wards) is determined by that sensor’s position.

One Avoid-obstacle schema is instantiated for each sensor which detects
an obstacle. The schema use information about the distance to an obstacle
(measured as reflected IR) to determine the speed of the wheels, and the
direction of the wheels is determined by the sensor position.

The Noise schema gives a random direction which remains the same for a
given amount of time.

Wall Follow Task. The aim of the wall-follow task is for the robot to find
a surface on its right hand side, and follow it; it uses one schema.

The Follow schema looks for a surface and then follows it on its right side.

Patrol Dark Task. The aim of this task was to wander, whilst avoiding
obstacles and areas of brightness; it uses three schema.

Find-dark schema where the robot will find the direction with the brightest
ambient light, and move away from it.

The Avoid-obstacle schema and Noise schema are identical to those for
Find Light.

3.1.2 Genetic Algorithm for Training

Evolution was used to train the robots in the tasks. The methods used here
have been described previously (and explained fully) in [11]. This section
briefly explains the details of the methods, required as a context for the rest
of the paper.

A genetic algorithm (GA) was used during the training phase. The GA had
a population size of 30, reproduction rate of 0.6, crossover rate of 0.6 and mu-
tation rate of 0.05. The selection method was the roulette wheel. The fitness
(or cost) function for Find-light was designed to maximize going forwards in
a straight line towards brightly lit are as of the arena (the goal) and away
from darker areas and obstacles. Cost for Follow-wall rewards moving quickly
and in a straight line, and away from obstacles; it also rewards keeping close
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to a surface on the left of the robot. Patrol-dark rewards moving quickly, in
a straight line, away from obstacles, and in darker areas of the environment.

In each of the three tasks, the fitness was calculated for each time step, and
accumulated over a run; each chromosome had three runs and the final score
was the sum of the three accumulated values. A run lasted 3000 timesteps.
Low ‘fitness’ was good because here fitness is analogous to the inverse of the
cost, so to avoid confusion it will be referred to as cost for the remainder of
the paper.

3.2 Task Training Results

The robots’ performance over 500 generations of training for each of the three
tasks can be seen in Figures 2, 3 and 4.

Find Light Evolution Results. In adapting for the Find Light task (Fig-
ure 2), the Blue robot most quickly reached the best measured levels of
performance. The Red robot, with its reduced number of IR sensors, had a
significantly more varied performance. The Green robot, with its much re-
duced ambient light and proximity sensors did not reach the same level of
performance as the other two (as might be expected), although it did perform
more consistently. Of course, this apparently more consistent performance
could be because its reduced number of sensors did not record as much of its
environment, and so it was unable to detect as many obstacles in its path.

The evolved controllers (i.e. the best from the 499th generation) were also
tested in simulation and compared to the best controllers from the zeroth
generation. Each chromosome was run 20 times under the same conditions as
during training (the same simulated world, and 3 trials for each chromosome).
There were big improvements in performance during training, and in testing
for significant difference between performance in generations zero and 499
(Kruskal Wallis at 95%), for each robot, there was a statistically significant
difference in each case.
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(c) Green Robot

Fig. 2 Performance at the Find Light task over 500 generations of the three robots
as their behaviours evolved
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Wall Following Evolution Results.The results were quite different during
the wall following task evolution (Figure 3). In this case the Blue robot,
with the full complement of sensors had the most varied performance during
evolution. The Green robot, with its smaller sensor number gave the best
performance as, although it was more varied than the Red robot, it did have
the best cost results. The Green robot’s sensor configuration, with only two
light sensors and distance sensors on the front and down the left side was
designed with the wall follow task in mind, and perhaps with the less input
from other sensors, it was able to record better cost values, though not as
consistently, compared to the other two robots.

Again, for each robot the best chromosomes from the zeroth and 499th
generations were tested 20 times. As for the previous tasks, a statistically
significant difference was found between the performance of the chromosomes
from the beginning and end of training.
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(c) Green Robot

Fig. 3 Performance at the Wall Follow task over 500 generations of the three robots
as their behaviours evolved

Patrol Dark Evolution Results. In adapting for the patrol dark task
(Figure 4), the Blue robot did not reach the same performance level as the
other two robots. The Red robot with its small number of sensors had the
most variable performance during evolution, but produced the best average
cost of the three robots. The Green robot also performed consistently well,
but was slightly worse than the Red robot overall.

Again, each of the best chromosomes from the zeroth and 499th generations
was run 20 times in the training environment in order to test for significant
improvement in performance during the 500 generations of training. Again,
there was a statistically significant difference (Kruskal Wallis at 95%) in each
case.

At the end of evolution each robot had a set of schema parameters and set
of cost values indicating its performance during evolution. This information
was then used to initialise task performance during the execution stage.
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(b) Red Robot
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(c) Green Robot

Fig. 4 Performance at the Patrol Dark task over 500 generations of the three
robots as their behaviours evolved

4 Lifelong Adaptation and Task Distribution

During the training phase, three robots, each with different sensor configura-
tions, and therefore differing abilities trained to perform three tasks. At the
end of training the average cost values of the final five generations of training
were calculated. Then for each task, each robot calculated a sensitivity value
which was used to determine how well that robot was proceeding with the
task. The three robots’ sensitivity values for each of the three tasks were
calculated as follows: sensitivity = 1

ā
L

where the ā is the average cost value

of the final five generations and L is the lowest average cost of the three
robots. In this way the initial sensitivity values were scaled between zero and
one, and the best (lowest cost) robot had a sensitivity of one. These values
were then used to initialise the sensitivity values for the hormone-based task
distribution system described in section 4.1.

The simulated world used during the lifelong experiments was the same as
that used during training, but without the randomly appearing obstacles. The
behaviour schema were the same as for training, with the same parameters
continuing to be adapted during lifelong evolution. An evolution strategy
(ES)-based method was used for adaptation during the lifelong phase of the
experiments. This is described in detail in [12].

The first generation of chromosomes for lifelong evolution was made up
from the best performing chromosome from the final generation of training,
and two further chromosomes which were mutations of it.

4.1 Basic Hormone-Based System

Each robot has one endocrine system which has one gland for each task.
Each gland releases ‘hormones’ at a continuous rate into a pool. Once the
amount of hormone in the pool reaches a threshold it is released as ‘free
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hormone’, and begins to decay geometrically. The free hormone with the
highest concentration controls which task is executed; during which time its
gland stops hormone release.

The robots continuously broadcast the task they are currently doing; when
a robot receives such a signal from another robot it blocks hormone release
from the gland associated with that task, and decays the amount of hormone
already in the pool. The endocrine parameters were as follows: gland release
rate: 1; pool threshold: 5000; pool decay rate: 0.75; free decay rate: 0.3.

In order to take into account changes in performance as the robots carry
out their tasks, updated “sensitivity” values for each robot were calculated
which reflect how well each robot is performing, initialised from the training
stage as detailed in section 4. Lifelong evolution already calculates a per-
formance measure (from the cost function), and it is from this value that
sensitivity is calculated: sensitivity = lastCost

thisCost × lastSensitivity
where lastCost is the cost at the previous time-step, thisCost is the new cost
value, and lastSensitivity is the sensitivity calculated at the last time-step.

The sensitivity values of each robot are used to affect the pool release
rates within the robot itself, the aim being that it can begin other tasks
when it performs badly at its current one. Each robot transmits the task it is
currently executing to the team at each time-step. Each robot then changes
the pool hormone levels for each task in one of three ways:

1. If the robot is currently doing this task, then the pool level remains at 0.
2. If there are no robots currently doing this task: the robot releases hor-

mone at a rate of releaseRate ∗ sensitivity, where releaseRate = 1, and
sensitivity is the sensitivity calculated when the robot last did this task.
This meant that robots which had previously performed better at this task
would fill their pool more quickly, and therefore be more likely to take on
the task than robots which had previously performed poorly.

3. If other robots in the group are currently performing this task: the amount
of hormone in the pool is altered by pool−(releaseRate∗(sensitivity−1))
where releaseRate = 1, and sensitivity is the sensitivity of the robot for
its current task. The effect is to reduce the amount of hormone in the pools
when the robot is doing well at its task (sensitivity > 1), and increase it
when the robot is performing poorly (sensitivity < 1), making it more
likely the robot will switch tasks.

Whenever a robot’s pool threshold is reached, the pool for that task is emp-
tied as free hormone, and the pools of the other robots for that task are also
zeroed. This prevents the robots from all starting the same task shortly after
one another.

4.2 Simulation Results during Lifelong Adaptation

Two experiments were undertaken in simulation to test the functionality of
the new endocrine system: three robots with three tasks to perform, and two
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robots with three tasks to perform. The aim of these experiments was to see
how the tasks were distributed between differently performing robots in these
two scenarios. In each case the experiments were run for 25,000 time steps
which was enough time to see how well tasks allocation was reacting to the
current situation.

4.2.1 Simulation - Three Robots: Three Tasks

The behaviours the robots undertook during the experiment are shown in
Figure 5. The robots all began doing the Find Light task until one of their
other pools reached its threshold when other tasks took over. If a robot is
not performing a task, its sensitivity to that task remains the last calculated
value.

During the training experiments detailed in section 3.2, it was seen that
the Blue robot was best at performing the Find Light task and thus had
an initial sensitivity value of 1. As can be seen from the sensitivity graph
in Figure 6(a), the Blue robot continued to have a high sensitivity to the
Find Light task, thus showing good performance, throughout the experiment.
There was no incentive for the Blue robot to change from the Find Light task
as it continued performing well. Its sensitivity for Wall Follow was initially
the lowest of the three robots (see Figure 6(b)). Its pool value increased the
slowest when the task was not being done, and thus was always beaten to
the change task threshold. Similarly with the Patrol Dark task. The Blue
robot initially had the lowest sensitivity value for the task (see Figure 6(c)),
although the Red robot’s value became lower as it performed the task and
did badly, but it was always beaten to the threshold by another robot.

The Red robot was best at the Patrol Dark task during training and thus
the sensitivity for this task was set as the highest of the three (again to
1). Thus the Red robot’s pool value for Patrol Dark filled up quickest at
the start when the task was not being performed by any of the robots (see
Figure 7(c)) and thus the Red robot took over the Patrol Dark task. The
change in behaviour of the Red robot is shown to be due to its low sensitivity
to the Patrol Dark hormone of a little less than zero, that is, the robot was
not performing very well at the task of Patrol Dark. This caused a steady
increase in the amount of both its Find Light and Wall Follow hormones. As
its sensitivity to Find Light was slightly higher than to Wall Follow the Find
Light pool filled, very shortly followed by the Wall Follow which then became
the task the robot did. Once no robots were performing the Patrol Dark task,
the Patrol Dark hormone of all three robots began to increase in the pool.
The Green robot, with its higher sensitivity approached the pool threshold
fastest although the experiment ended before the threshold was reached to
change tasks (see Figure 7(c)).

The Green robot was given an initialisation value of 1 for the Wall Follow
task at which it was best in the training stage. This allowed the Green robot
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(a) Blue Robot (b) Red Robot (c) Green Robot

Fig. 5 The behaviours executed by the simulated robots over time when there
were three robots and three tasks
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Fig. 6 Sensitivity values over time for each of the three tasks for three simulated
robots
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Fig. 7 The pool values over time for each of the three tasks for all three simulated
robots
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(a) Blue Robot (b) Green Robot

Fig. 8 The behaviours executed by the simulated robots over time when there
were two robots and three tasks
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Fig. 9 The sensitivity values over time for each of the three tasks for both simulated
robots
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Fig. 10 The pool values over time for each of the three tasks for both simulated
robots
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initially to fill up its Wall Follow pool the fastest and commence the Wall
Follow task (see Figure 7(b)).

4.2.2 Simulation - Two Robots: Three Tasks

When there were more tasks than robots it was expected that there would
be more task switching as non-executed tasks’ pools filled up quickly. The
behaviours executed can be seen in Figure 8, and the robots’ sensitivities and
pool values in Figures 9 and 10.

In this experiment (which was typical, though of course different exper-
imental runs did produce slightly differing results), the Blue robot almost
exclusively did the Find Light task, while the Green robot mostly did the
Wall Follow task, each only switching to Patrol Dark infrequently and not
for long. The reason for this is that both robots had a low (less than one)
sensitivity to the Patrol Dark hormone. At the beginning of the experiment,
when the robots are using their inherited sensitivities from the training phase,
the Green robot’s Patrol Dark pool fills first (Figure 9(c)), so it begins the
task. However, as it performs Patrol Dark, its sensitivity to it drops as its
performance drops, and so next time the Blue robot’s Patrol Dark pool fills
first and it begins the task (see Figure 10(c)). Both robots do not perform
the Patrol Dark task for long as their sensitivity to it remains very low, that
is, their ability to perform the task is very low. The task is given a chance to
be done, but neither robot is capable of performing it well, so they go back
to tasks they are good at.

5 Summary

This paper provides details of an endocrine-inspired task distribution sys-
tem which reassigns tasks among a group of heterogeneous robots with little
communication and no centralised controller. The robots were trained in sim-
ulation which provided a starting chromosome in the experimental world, and
also a sensitivity value which gave the system information about how well a
particular robot coped with a specific task. Some robots were better at partic-
ular tasks due to their sensor configuration. During lifelong adaptation (using
an ES) where the robots autonomously tackled tasks in the experimental en-
vironment, they constantly updated this sensitivity value depending on how
well they currently were performing the task. This value, through a hormonal
system, allowed task changing. Depending on the values of the hormones in
the pool and specifically the level of free hormone, the robot would continue
with a task or change. The maximum valued free hormone determined which
task the robot would choose to do. Therefore, the robot which performs best
at a task is the most likely to fill up the pool quickest due to its high sensitiv-
ity value, and therefore the task gets done. However, if there are more tasks
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than robots, the robots change between tasks, again, the sensitivity value
determining the best choice for that selection. The experiments showed the
successful distribution of tasks between heterogeneous robots ensuring that
all the tasks were attempted, with the robots which were best at particular
tasks most often chosen to continue with, or change to, that task. All the
tasks are attempted at some point giving the possibility that they will be
continued by a robot which is good at that task.

Further work will look at transferring these results to real robots.

References

1. Arkin, R.: Survivable Robotic Systems: Reactive and Homeostatic Control.
Prentice-Hall (1993)

2. Arkin, R.C.: Motor Schema–Based Mobile Robot Navigation. International
Journal of Robotics Research 8(4), 9–12 (1989)

3. Brooks, R.: Integrated systems based on behaviours. Sigart Bulletin 2, 46–50
(1991)

4. Maes, P.: The Dynamics of Action Selection. In: 11th International Joint Con-
ference on Artificial Intelligence, vol. 2, pp. 991–997 (1989)

5. Mendao, M.: Neuro-Endocrine Control Architectures applied to Mobile
Robotics. Ph.D Thesis, University of Kent, Canterbury, UK (2008)

6. Neal, M., Timmis, J.: Timidity: A Useful Emotional Mechanism for Robot
Control? Informatica 27, 197–203 (2003)

7. Parker, L.E.: ALLIANCE: An Architecture for Fault Tolerant Multi-Robot
Cooperation. IEEE Transactions on Robotics and Automation 14(2), 220–240
(1998)

8. Ram, A., Arkin, R., Boone, G., Pearce, M.: Using Genetic Algorithms to Learn
Reactive Control Parameters for Autonomous Robotic Navigation. Adaptive
Behavior 2(3), 277–304 (1994)

9. Shen, W.M., Salemi, B., Will, P.: Hormone-Inspired Adaptive Communication
and Distributed Control for CONRO Self-Reconfigurable Robots. IEEE Trans-
actions on Robotics and Automation 18(5) (2002)

10. Walker, J.: Experiments in Evolutionary Robotics: Investigating the Impor-
tance of Training and Lifelong Adaptation by Evolution. Ph.D. Thesis, De-
partment of Computer Science, University of Wales, Aberystwyth, UK (2003)

11. Walker, J., Garrett, S., Wilson, M.: The balance between initial training and
lifelong adaptation in evolving robot controllers. IEEE Transactions on Sys-
tems, Man and Cybernetics: Part B 36, 423–432 (2006)

12. Walker, J., Wilson, M.S.: Lifelong Evolution for Adaptive Robots. In: Inter-
national Conference on Intelligent Robots and Systems (IROS), pp. 984–989
(2002)

13. Walker, J., Wilson, M.S.: Hormone-Inspired Control for Group Task-
Distribution. In: Towards Autonomous Robotic Systems, TAROS (2007)

14. Walker, J., Wilson, M.S.: A Performance Sensitive Hormone-Inspired System
for Task Distribution Amongst Evolving Robots. In: IEEE/RSJ International
Conference on Intelligent Robots and Systems, IROS (2008)

15. Watson, R., Ficici, S., Pollack, J.: Embodied Evolution: Embodying an Evo-
lutionary Algorithm in a Population of Robots. In: Congress on Evolutionary
Computation (CEC), pp. 335–342 (1999)



Part IV

Modularity, Distributed Manipulation,
and Platforms



Part IV: Modularity, Distributed Manipulation,
and Platforms

Kasper Stoy

In distributed autonomous robotic systems, robots often consider other robots to be
little more than moving obstacles. This is acceptable for many areas of application
and research, however, as soon as the task or the robot system itself requires robots
to come within close proximity of each other, the physicality of the robots, their
physical interactions, and the coordination of these interactions become important.

The physicality of modular robots directly causes the self-reconfiguration plan-
ning problem, which is to find an action sequence that transforms an initial config-
uration into a desired configuration. A problem that in general is considered to be
NP-hard due in part to the complex motion constraints of modular robots. Fitch and
McAllister address this problem by using a hierarchical planning strategy where
changes in connector topology are planned at one level and the feasibility of this
plan with regards to motion constraints and collisions is checked at another level.
Kernbach considers the related self-assembly problem, but view it as a constraint
satisfaction problem. This gives a larger solution space since the problem is un-
derspecified and hence many assemblies may satisfy the given constraints. Finally,
Golestan, Asadpour, and Moradi propose a new graph signature calculation method
for collapsing isomorphic module configurations into one state in the planning space
and thereby significantly reduce the size of the planning space. Combined, these ap-
proaches to self-reconfiguration planning provide three different ways to reduce the
complexity of the self-reconfiguration problem and hence make it possible to find
useful plans despite the NP-hard nature of the problem.

The self-reconfiguration problem is, as described in the examples above, typi-
cally solved using a top-down approach where the goal is specified at the global
level and solutions are found at the local level. This is necessary because there is
little room for randomness in the self-reconfiguration process, e.g., a bad action can
lead to modules dropping from the structure. Hence there is a strict order of ac-
tions that leads to success and many more that lead to failure. However, bottom-up
approaches, where the local interactions produce a globally desired behavior, are
also often used in modular robotics in cases where there is more room for error.
An example of this is the work by Zahadat, Christensen, Katebi and Stoy where the
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Campusvej 55, 5230 Odense M, Denmark
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local actions of modules are designed to make a desired global locomotion behavior
emerge. In this particular work, evolved fractal gene regulatory networks are used to
control locomotion of the ATRON modular robot. Similarly, An, Ikemoto, Asama,
and Arai use a bottom-up perspective to find synergies between distributed muscle
actuation during a human standing-up motion.

While handling physicality is very important in modular robots, it also comes into
play in multi-robot systems when robots manipulate objects collectively. An exam-
ple of this is the work of Mellinger, Shomin, Michael, and Kumar on cooperative
grasping and transport using multiple quadrotors where great care has to be taken
to ensure precise coordination. In systems where the physical interaction is indirect,
emphasis can be put on robustness and scalability as is the case for the work of Fu-
jisawa, Imamura, and Matsuno on using pheromone communication for cooperative
transportation of many small objects. Robustness also comes into play in the work
by Ferrante, Brambilla, Birattari, and Dorigo where the coordination for the purpose
of navigation and obstacle avoidance is socially mediated. In the work by Bonani,
Rétornaz, Magnenat, Bleuler, and Mondada the physical interaction between robots
and between the assembled robot and the environment is improved by considering
a heterogeneous multi-robot system where each robot is morphologically optimized
for its role and task within the swarm.

Regarding the physical robot hardware itself, McLurkin, Lynch, Rixner, Barr,
Chou, Foster, and Bilstein open the doors to the exciting field of distributed au-
tonomous robot systems by describing a low-cost multi-robot system for research,
teaching, and outreach.

Overall, the work described here gives a nice overview of what to do when robots
of a distributed autonomous robotic system get into physical contact directly as is
the case for modular robots or indirectly through manipulated objects as is the case
for multi-robot systems.



Hierarchical Planning for Self-reconfiguring
Robots Using Module Kinematics

Robert Fitch and Rowan McAllister

Abstract. Reconfiguration allows a self-reconfiguring modular robot to adapt to its
environment. The reconfiguration planning problem is one of the key algorithmic
challenges in realizing self-reconfiguration. Many existing successful approaches
rely on grouping modules together to act as meta-modules. However, we are in-
terested in reconfiguration planning that does not impose fixed meta-module rela-
tionships but instead forms cooperative relationships between modules dynamically.
This approach avoids the need to hand-code meta-module motions and potentially
allows reconfiguration with fewer modules. In this paper we present a general two-
level reconfiguration framework. The top level plans in module-connector space
using distributed dynamic programming. The lower level accepts a transition func-
tion for the kinematic model of the chosen module type as input. As an example, we
implement such a transition function for the 3R, SuperBot-style module. Although
not explored in this paper, this general approach is naturally extended to consider
power use, clock time, or other quantities of interest.

1 Introduction

Self-reconfiguring modular robots use module disconnections and reconnections to
change their overall shape. In so doing, these robots can adapt to the environment or
task at hand. Performing such adaptation requires solving the algorithmic problem
of computing a sequence of module moves that transforms an initial shape into a
goal shape. This problem, known as the reconfiguration problem, remains one of
the key algorithmic challenges in self-reconfiguring robotics.

There are several dimensions by which to categorize specific instances of the re-
configuration problem. Algorithms have been proposed for specific module types,
such as unit-compressible modules [4, 25], and abstract cube modules with simple
motion primitives [7]. The idea in planning for an abstract module is to compile
down an abstract move into a sequence of native moves. A possible technique to
accomplish this is to simplify the problem by treating a group of modules as a
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single meta-module with fewer kinematic constraints. Two other important issues
are parallelism – how many modules can move at one time – and decentralized ver-
sus centralized control. We are interested in the question of autonomous reconfigu-
ration planning that acts directly in the native kinematic action space of the module,
and does not use meta-modules. In this paper, we study the problem of general par-
allel decentralized reconfiguration planning for given module kinematics.

There are several reasons to address this specific variation of the reconfiguration
problem. It is useful to consider pairs or small groups of modules working together,
but planning for individual modules allows these groupings to be dynamic. Avoid-
ing static meta-modules reduces the minimum number of modules required for re-
configuration. This is especially useful for hardware prototypes with few modules.
Furthermore, planning in the native kinematic space of the module opens the pos-
sibility of optimizing reconfiguration for various quantities of interest. We are in-
terested in a planner that can consider power use, time cost, and (heterogeneous)
modules with differing capabilities. A general planning framework that easily ad-
mits changes to its underlying kinematic model also opens the possibility of using
reconfiguration simulation as a tool for design optimization. The effects of simpli-
fying a given module design by removing a degree of freedom, for example, could
be readily evaluated.

The fundamental challenge in solving the reconfiguration problem is that the
number of degrees of freedom in a self-reconfiguring robot increases with the num-
ber of modules. The number of possible configurations thus increases exponentially.
These combinatorial issues have been understood for many years [18]. Searching
this huge space directly is not possible; some structure must be imposed on the
problem. The success of meta-module and cube-module planners relies on such a
structuring.

Our approach is to build on our earlier planner for abstract cube-shaped mod-
ules [9] hierarchically by adding a lower level. The low-level planner computes a
sequence of moves, in the joint space of the module, that results connection/ discon-
nection. This approach decomposes the full problem into many local subproblems.
Each subproblem is a kinematic motion planning problem small enough to be solved
quickly. Chained together, these solutions move a single module from one point in
the robot to another along a sequence of intermediate connections. Point-to-point
paths are then computed, as in our abstract cube planner, by formulating a Markov-
decision problem (MDP) and solving it using distributed dynamic programming.
The value function acts as a navigation function over all connectors that indicates
the next step towards an open goal position. Many modules share this navigation
function. As modules move, the navigation function is updated.

We present our reconfiguration algorithm as a general framework that accepts a
module’s kinematic model in the form of a transition function. We present a specific
transition function for SuperBot-style modules [21] as an example, and illustrate its
behavior with simple examples in simulation. Our intention is for this example to
provide sufficient information such that other researchers can implement this algo-
rithm on various module types.
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The paper is organized as follows. We discuss related work in Sect. 2. In Sect. 3,
we present details of our cube-style planner as background information and then
present our general reconfiguration algorithm. We define a sample transition func-
tion for SuperBot-style modules in Sect. 4 along with implementation examples in
simulation. Sect. 5 concludes the paper with discussion and future work.

2 Related Work

Reconfiguration planning is a well-studied problem. A survey of accomplishments
can be found in [26]. Another survey paper is [20]. We briefly discuss a selection of
relevant results in this section.

The root of this paper lies in cellular automata-based locomotion [3]. The MIL-
LION MODULE MARCH algorithm [9] can be viewed as a generalization of this
idea. The present paper can be viewed as a further generalization along two fronts:
goal shape representation and module kinematics.

A number of planners leverage the concept of meta-modules. Important examples
include planners for MTRAN [27], ATRON [6] and I-Cubes [19]. The key differ-
ence between this work and ours is that we are interested in the question of how to
reconfigure without meta-modules.

Complete planners have been developed for unit-compressible modules [4, 25].
Other early work in reconfiguration planning includes [5, 14]. The idea of gradient-
based planning is explored in [22] and [23]. A graph-signature method is presented
in [1].

A planner for SuperBot modules viewed in a chain-based manner is presented
in [11]. Optimal reconfiguration for chain-based robots was recently proven to be
NP-complete [12].

3 Hierarchical MDP Planning with Dynamic Programming

The reconfiguration algorithm we propose in this paper builds on our earlier MIL-
LION MODULE MARCH algorithm for scalable locomotion through reconfigura-
tion [9]. In this section we summarize MILLION MODULE MARCH for convenience,
focusing on the MDP formulation and dynamic programming solution method. We
then present a new MDP formulation that, unlike MILLION MODULE MARCH,
models native module kinematics. We define a general reconfiguration algorithm
based on this new MDP formulation. Like MILLION MODULE MARCH, this new
algorithm is fully decentralized and scalable.

3.1 Background: MDP Planning with Abstract Modules

The MILLION MODULE MARCH algorithm was originally presented as a scalable
algorithm for locomotion-through-reconfiguration for the Sliding Cube [7] module
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(a) (b) (c) (d)

Fig. 1 Reconfiguration example using Algo. 1 and the Sliding Cube module abstraction.
Simultaneously executing single module paths results in global reconfiguration. Subfigs. (a)
through (d) show four stages of a reconfiguration sequence that assembles a chair shape from
an initial cube shape. Simple assembly order heuristics are used that guide modules to the
bottom center of the goal shape as it is formed.

abstraction. The algorithm produces locomotion by first specifying a goal bound-
ing box at an offset to the current location. Modules move to fill the box, the box
is shifted in a receding-horizon fashion, and locomotion results. Providing a dif-
ferent shape for the goal results in reconfiguration into that shape, for convex goal
shapes. Non-convex goal shapes are also possible with the addition of local as-
sembly rules that prevent internal holes from forming [13]. Fig. 1 shows an exam-
ple of reconfiguration into a chair shape. The algorithm is fully decentralized and
has been implemented in simulation with million-module systems [9]. It has also
been implemented on embedded processors with wireless radio communication in
hardware-in-the-loop simulation [10, 15], and extended to control a team of nine
mobile robots [8].

The algorithm is composed of two main components: (1) planning via a global
navigation function; and (2) control of parallel module movements (connectivity
checking) via local graph search and shared locks. The essence of the second com-
ponent is that each module, in parallel, searches for a local module substructure
sufficient to guarantee that it is a non-articulation point in the module connectivity
graph. This search is performed using message-passing. If successful, modules in
the substructure are temporarily locked (prevented from moving) until the locking
module has completed its move. Locks can be shared by multiple moving modules.
Many modules can thus safely move in parallel while preserving global connectiv-
ity. This component of the algorithm is used unmodified in the present work. Full
implementation details are provided in [10].

The planning component of MILLION MODULE MARCH computes a value func-
tion that acts as a global navigation function. Modules use this function as a one-
step planner to choose the next move. By sequentially choosing such moves, each
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module is guided towards an available destination in the goal shape. As many mod-
ules move in parallel, the topology of the robot structure also changes. The value
function is updated online to reflect these topology changes (continuous replan-
ning).

The planning problem is formulated as a distributed MDP. An MDP is a sequen-
tial decision-making problem defined by a 4− tuple < S,A,T,R >, where S is the
set of states, A is the set of actions, T is the transition function that maps state-action
pairs to resulting states, and R is a one-step reward function [24]. A decision-making
agent repeatedly takes actions and earns rewards. Its objective (commonly) is to
maximize the sum of future rewards. If the transition function is known, dynamic
programming can be used to solve the MDP. A solution is a policy mapping states
to actions. This policy can be encoded as a value function over states. The transition
function can be either deterministic or stochastic.

The set of states in MILLION MODULE MARCH is the set of module faces. In the
Sliding Cube abstraction, a module is a cube that lives in a cubic lattice. Therefore
the set of allowable states can be thought of as open lattice positions adjacent to
at least one other module. The Sliding Cube model provides two motion primitives
- a sliding move and a convex transition. These primitives define the action set.
A module can either make an axis-aligned (lateral) move, or move “diagonally”
around another module. The transition function is also defined by these two motion
primitives. The reward function is -1 per move.

The value function is stored in a distributed fashion. Each module stores the value
of states corresponding to its connectors. The MDP is solved using asynchronous
distributed dynamic programming implemented with message passing. An update is
performed when a module receives a message with a value for a nearby state. Using
the transition function, the module updates its local value function and sends these
new values to its neighbors. This process is guaranteed to converge in polynomial
time in the number of states [17]. A moving module queries the value function by

(a) (b) (c)

Fig. 2 M−C space is a generalization of the Sliding Cube representation to any module type.
The Sliding Cube abstraction, (a), has a connection on every face. Other module types, such
as SuperBot-style modules, (b), and Roombot-style modules [1], (c), do not. M−C space is
simply defined as the set of all module-connector pairs.
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sending a request to its connected neighbors. After a move, changed values are again
sent to neighbors and the value function is updated.

3.2 MDP Planning with Native Module Kinematics

Building on the Sliding Cube MDP formulation, we now introduce a new MDP
formulation that replaces the Sliding Cube and instead assumes the availability of
a kinematic model for a physical module. Instead of abstract motion primitives,
motion primitives now correspond to changes in module joint angle and connector
state. Because actions are no longer unit-time, this is technically a semi-markov
decision problem (SMDP) [2]. However, for the purposes of this paper we assume
unit-time actions. The SMDP formulation allows more sophisticated optimization
(time, power, etc.) but we will leave this for future work.

To define the state space, we first define the set of module-connector pairs, or M-
C space. Fig. 2 illustrates sample M−C states for three different module types. The
entire set is not necessarily reachable. One obvious example of a non-reachable state
is a connector that is occupied (connected to another module). In general, reacha-
bility is determined by the transition function. The transition function, in turn, is
partially determined by the robot configuration topology. Therefore, connectivity of
M−C space changes with reconfiguration. A module with k connectors can poten-
tially occupy k M-C states simultaneously. Our state space S is therefore defined as
the set of all k-tuples of M−C states, including a null M−C state that models a free
connector. Fig. 3 shows an example of a single module making state transitions in
M−C space and the corresponding module movements in a sample configuration.

M

C

s0

s1

s2

s3

s0:

s1:

s2:

s3:
Fig. 3 Path of a single 3R module moving through M −C space. States si are M −C states.
A state transition in M −C space corresponds to a module attaching to a new connector in
the robot workspace. Corresponding module movements are illustrated in the right half of the
figure.
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The set of actions is defined by the kinematic model. We assume that an action
consists of a set of joint angle increments and connection/disconnection actions. An
action can involve a single module, or a module plus one or more helper modules.

Actions result in changing state. This means that the set of occupied M−C states
will change following a successful action. An action that fails or otherwise does not
result in a state change is a null action. The transition model defines this change,
mapping a state-action pair to a resulting state: T (s,a) = s′, where s ∈ S, s′ ∈ S,
and a ∈ A. The transition function must take into account surrounding modules.
The potential for collision means that not all actions are available at all times. The
transition function can be stochastic.

The reward function is -1 for every action. This attempts to minimize the total
number of actions. A more sophisticated reward function can be used to minimize
other quantities, such as time, power use, heterogeneous modules, etc. Further, the
reward function can be modified during reconfiguration to allow the robot to adapt
to changes. However, we do not consider these possibilities in this paper.

3.3 Hierarchical Reconfiguration Algorithm

Having formulated the MDP, we solve using dynamic programming. To allow mod-
ules to move in parallel, we integrate the parallel movement control approach from
MILLION MODULE MARCH. To prevent collisions, we lock all modules within the
workspace of a moving module. The algorithm is listed in pseudocode as Algo. 1.
Transition function T , goal configuration G, and start configuration c are assumed as
input. In parallel, modules follow a path to the goal by chaining together a sequence
of state transitions. Within the goal, modules are guided by local assembly order
heuristics as above. The algorithm terminates when all modules are in the goal.

The value function is recomputed as the robot configuration changes, as described
in Sect. 3.1. The MDP will converge in polynomial time [17]. Convergence of the
robot to the goal shape depends on the transition function supplied.

Algorithm 1. General framework for reconfiguration.
T : a transition function
G: a goal shape
c: the current robot configuration

Generate value function V for c given T and G using dynamic programming
repeat

Find mobile modules
Move mobile modules one step according to V
Recompute V using new configuration c′

until all modules in goal
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4 A Local Kinematic Planner for 3R Modules

In this section, we flesh out Algo. 1 by defining a transition function based on mod-
ule kinematics. There are many ways to do this in general. We have chosen to view
the problem as motion planning for an n−link kinematic chain among regular or-
thohedral obstacles. Motion planning in high-dimensional spaces is computationally
intensive. By imposing this strict structure, we can use a simple grid search method
for motion planning. We illustrate this technique with the 3R (SuperBot-style)
module.

M−C−O−Θ space is M−C space augmented by adding two extra dimensions,
O ∈ {e,s} and Θ ∈ {0,90,180,270}, that represent how a module is connected to
the M −C pair. Due to connector symmetry, we can encode which connector is
connected by specifying and end (e) or a side (s). The Θ dimension encodes rotation
represented discretely in 90-degree increments.

We consider two cases for planning. The first is single module motion. Given a
starting (m,c,o,θ ) state, lattice (workspace) position, and vector of joint angles x,
we use the forward kinematics of the 3R module to determine the position of its
connectors in the workspace. We then consider the set of actions formed by all per-
mutations of discrete 90-degree increments/decrements of joint angles. We iterate
through this set of actions. At each iteration, we add the joint angle increments to

Algorithm 2. A local kinematic planner. This planner dynamically computes the
transition function for the reconfiguration MDP.

sstart : starting configuration
N: local neighborhood of modules around sstart
M: list of moves for output, initially empty
A: set of actions (joint angle increments)
T : search tree, initially empty
S: search queue, initialized with sstart

while S not empty do
pop search node s from S
if s not in T then

add s to T
if s is a goal configuration in N then

add new move to M
end if
for all actions a ∈ A do

generate new state s′ by integrating forward from s
if path from s to s′ is collision-free then

add s′ to S
end if

end for
end if

end while

output M
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 4 Workspace reachability. Subfigs. (a) through (d) show sample configurations reach-
able with a helper module attached in an end-to-end configuration. Likewise, Subfigs. (e)
through (h) show samples reachable from an end-to-side configuration. Subfigs. (i) through
(l) correspond to a side-to-side configuration.

the initial position, resulting in a new joint angle vector x′. We again use the for-
ward kinematics to compute the new position of connectors in workspace. If no
connectors are in a position to connect to some other connector in the neighbor-
hood, this configuration is discarded. Otherwise we perform collision checking in
the workspace. We check intermediate configurations between x and x′ in small in-
crements, as described in [16]. If there is a collision, this configuration is discarded.
Else we place x′ on a queue and continue. We then pop the queue and repeat. When
the queue is empty, the algorithm terminates.

The second case involves a helper module. A helper module is a (connected)
neighbor. In this case, the joint angle vector includes joints of both modules. We
search as described above.

The algorithm is listed in pseudocode as Algo. 2. Fig. 4 shows examples of dif-
ferent O−Θ configurations. In the helper case, a module can reach positions up to
a radius of manhattan distance four from its end connector. Fig. 5 shows examples
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 5 Sample configurations generated by successive random module movements in a robot
with 108 modules

drawn from a sequence of configurations generated by successive random module
movements.

Because we search all joint angle positions, the running time of this algorithm
is exponential in the number of joint angles. For constant-length chains of helper
modules, time is constant (albeit with a potentially large constant factor). For two 3R
modules, the size of the search space is 3∗4∗3∗3∗4∗3= 1296. This is reasonable
to implement with modest embedded computational resources, even considering
that in computing the value function, each module must perform this computation
for each possible (o,θ ) pair (2 ∗ 4 = 8) and each of its open connectors.
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4.1 Implementation

We implemented the reconfiguration algorithm in the SRSim simulation environ-
ment [7], with SuperBot graphics rendered by a simulation developed at ISI. Col-
lision checking is implemented by testing for intersections between the bounding
box surrounding each module part and those surrounding modules in its neighbor-
hood. Configuration space is represented as a 6D grid corresponding to module joint
angles. The grid can represent one helper module in addition to the main module.
Fig. 6 shows an example of nine modules reconfiguring from a line shape into a box.
Fig. 7 shows an example reconfiguration between two cuboid configurations.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 6 Nine modules reconfiguring from a line shape into a box shape
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 7 Eight modules reconfiguring from an initial cuboid configuration into a goal configu-
ration specified by the wire-frame bounding box shown

5 Discussion and Future Work

We have presented a general framework for reconfiguration and an example im-
plementation for SuperBot-style modules. Because this simple implementation is
exponential in the degrees of freedom of the kinematic chain, this planner is suited
mainly to lattice-based and hybrid robot types. A planner for chain-based robots
(with short chains) could possibly be developed. We have not yet explored the po-
tential in optimizing for quantities other than number of connection/disconnection
cycles, but this should be a promising avenue. So far we have been concerned only
with finding a feasible reconfiguration plan, but another interesting problem would
be to attempt to prove an approximation to optimal reconfiguration. One idea is to
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build on the lower-bound construction for reconfiguration [18] and attempt to prove
an upper-bound on the maximum deviation from shortest path taken by any module
in travelling to the goal.

We are currently implementing our algorithm in a decentralized fashion in
hardware-in-the-loop simulation [15]. Computation and communication run on em-
bedded processors but actuation is simulated on a desktop computer. It is also our
intention to test the algorithm on real robots. One possible platform is a new mod-
ule we are currently constructing. This module has SuperBot-style kinematics com-
bined with a novel connection mechanism based on grippers or pincers. We would
also like to implement and test our algorithm on other module types.

Acknowledgements. This work is supported by the ARC Centre of Excellence programme,
funded by the Australian Research Council (ARC) and the New South Wales (NSW) State
Government. Many thanks to Surya Singh for lending expertise in robot kinematics. The
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Heterogeneous Self-assembling Based
on Constraint Satisfaction Problem

Serge Kernbach

Abstract. This paper is devoted to a self-assembling of heterogeneous robot mod-
ules into specific topological configurations with desired kinematic properties. The
approach utilizes a constrained nature of self-assembling and involves constraint
satisfaction and constraint optimization techniques for finding optimal connections
between modules. Scalability, locality and noise of sensor information as well as
environmental dependability are addressed. This approach is implemented in real
reconfigurable robots and in simulation.

1 Introduction

Reconfigurable robotics is a well-established research field, which involves such ar-
eas as evolutionary computation, bio-inspired and developmental systems as well as
topology or non-linear dynamics [3]. This field is characterized by multiple chal-
lenges related to a platform development, complex kinematic calculations, finding
optimal morphology and functionality for heterogeneous modules, distributed self-
assembling and other problems [10].

State of the art solutions for morphological problems refer to evolutionary algo-
rithms for evolving structures and functionality in the off-line and off-board mode
(i.e. in simulation on external computer) [11]. The task for on-line and on-board
mode is rather to select and to adapt one of pre-evolved (or pre-developed) solutions
instead of evolving the required topology and functionality anew. Combination of
off-line pre-development and on-line selection/adaptation of structural solutions has
several advantages, such as on-demand availability of different kinematic, control-
ling, homeostasis, energetic and other mechanisms, safe and fast adaptation in real
environments. Using on-line and off-line approaches for self-assembling has been
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already considered in [7]. This paper extends that idea and introduces the constraint-
based approach for topological problems.

The self-assembling structures are limited by multiple constraints, e.g. useful
kinematics, specific connectivities, required degrees of freedom, scalability proper-
ties and other constraints. It is natural to formulate distributed self-assembling of
reconfigurable robot modules in the form of Constraint Satisfaction Problem (CSP)
and Constraint Optimization Problem (COP). Due to connectivity and functional
constraints, this approach is very useful for modules with different geometry and
functionality, i.e. for heterogeneous reconfigurable robots. It allows addressing chal-
lenges of noisy and incompetence sensor information and optimality of topologies
based on the selected cost function. Since linear optimization is very fast, this ap-
proach can be run on-board and on-line. Moreover, optimization can be considered
as a mean of synchronization between different modules (i.e. two independent op-
timizers receive the same results when they use the same initial data). This allows
using self-organizing mechanisms for a structural regulation.

The rest of the paper is organized in the following way. Sec. 2 introduces
a connectivity-based description of topologies and integration of kinematic con-
straints into self-assembling. Sec. 3 formulates CSP/COP, cost function and scal-
ability approaches. Sec. 4 describes implementation and performed experiments,
whereas Sec. 5 concludes this work.

2 Description of Topologies for Self-assembling

Example of heterogeneous reconfigurable modules is shown in Fig. 1. All these
modules have the same docking mechanism and can dock to each other. Mod-
ules differ in a number of docking elements, in a provided functionality (degree
of freedom of individual modules) and geometries. Since assembling and disas-
sembling are performed on a 2D plane, most topologies of artificial organisms

scout

backbone

active wheel

B

B

S

S

S

A

1

2

1

2

2

Fig. 1 Example of heterogeneous robot modules (prototypes) from the SYMBRION/
REPLICATOR projects. Individual degree of freedom are shown, letters denote correspond-
ing docking elements, see Table 2.
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Fig. 2 (a) Model of a simple topology; (b) High-dimensional configuration matrix based on
the docking connections, see more in [7]; (c) Low-dimensional configuration matrix based
on the connections between modules. Type of connection is coded based on the docking
connections from (b).

generally belong to 2D grid-based reconfigurable systems. The matrix-based (and
correspondingly a graph-based) representation of such topologies is common in re-
configurable robotics, see e.g. [12] or [9]. Such a representation for the model of a
simple topology is shown in Fig. 2. Here several high- and low- dimensional repre-
sentations [7],[2] are distinguished.

The matrix-based description of topologies has several disadvantages: it requires
a large memory for on-board storage and processing; it introduces IDs of place-
holders (descriptors of robots in the configuration matrix), and it restricts topologies
only to those, which are described by this matrix. There are also several proposals
to improve this description, e.g. [4], most of them utilize symbolic, operational and
topological generators. The symbolic generators use production rules: each symbol
ai means specific connection ai : xi → x j, L-systems [1] are well-known examples.
Operational generators are based on a structural decomposition into standard topolo-
gies and operation on them (e.g. topology from Fig. 2 can be decomposed into ”T”
shape with R1−R4 and extension R5), each of them is described by its own operator,
see more in [7]. Topological generators are based on properties of symmetric and
circulant matrices [5], which allows a compact analytical generation of correspond-
ing matrices, see more in [7], [6].

As mentioned, there are multiple constraints, imposed on connectivity, kinematic
properties, heterogeneity and others. Therefore it makes sense to describe a topology
also in the form of constraints. Let us consider the Fig. 3, which shows 2x segmented
cross (2x centipede or ”dog”). It can be remarked that such a topology: (1) can be
split on a combination of several so-called ”core” elements (R1−R5 and R6−R10),
the cores have a low number of elements. Decomposition on cores enables us to
reduce the dimensionality of self-assembling and to consider large topologies as a
scalability/deviation problem; (2) all elements within/between cores are connected
to each other in a specific way, i.e. each connection has a defined DoF/functionality;
(3) core elements have a specific connectivity of all components, such as 4x cross-
like, 3x triangle-like and others.
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Fig. 3 2x-Centipede (“dog”) and its symbolic description, obtained as a combination of two
extended crosses (from [7])

Generally, the connectivity means the number of elements, connected to each of
modules. For example, the central element of the cross has the connectivity 4 (mod-
ules connected from each side). Connectivity constrains the number of connections
and can be effectively utilized in a description of topologies. When ci is the connec-
tivity of the i-element, where i goes from 1 to n (n is the number of robots in the
topology; in contrast N is a total number of robots), the topology Φ can be described
as n+1 set (c1,c2, ...,cn,ct), ct is a total number of connections in the topology with
n robots. Each of ci varies between 1 and 2 for active wheel and between 1 and 4
for scout and backbone robots from Fig. 1. In general case, max. of ci is equal to the
maximal connectivity of the platform. All ci are re-ordered from cmax to cmin so that
the first element c is always that one, which has a maximal degree of connectivity.
The topology Φ can be described as

Φ = {cmax,cmax−1...,cmin+1,cmin,ct},ci ∈ {1,2,3,4}. (1)

Several examples of Φ for n = 5− 7 are shown in Table 1.
The description, defined by (1) has different topological properties, whose anal-

ysis oversteps boundaries of this work. Generally, there are basis topologies, which
are unique, provided the topology is coherent (coherent topology = no disconnected
nodes). For example, the first row in Table 1 demonstrates disconnected topologies.
To eliminate disconnected topologies, a coherency constraint has to be integrated
into CSP/COP solver. Basic topologies can be perturbed by one or several modules,
this increases n and ct . Such perturbed topologies are not unique. One of possible
ways to deal with perturbed topologies is indicated in [7], in this work we limit
ourselves only to basic (non-perturbed) topologies.

Integration of Kinematic Constraints into Self-assembling. Topology Φ defined
by (1) creates connections, which are invariant to robot’s IDs. To integrate kine-
matics into topology, Φ should be supplemented with a functional description: it
means to involve the desired degrees of freedom ϕi for a particular connection. The
degrees of freedom between robots Rk : Rp depends on both Rk and Rp, i.e. we can
encounter the situation when both are relevant, one of them is relevant and none of
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Table 1 Examples of different topologies for n = 5,6,7, described through connectivity con-
straints, n is the number of robots, ci is the connectivity and ct is a total comber of connections

n ci ct Example n ci ct Example n ci ct Example

5 2,1,1,1,1 3 6 2,2,1,1,1,1 4 7 2,2,2,1,1,1,1 5

5 4,1,1,1,1 4 6 4,2,1,1,1,1 5 7 4,2,2,1,1,1,1 6

——- 6 3,3,1,1,1,1 5 7 3,3,2,1,1,1,1 6

——- ——- 7 4,3,1,1,1,1,1 6

5 3,2,1,1,1 4 6 3,2,2,1,1,1 5 7 3,2,2,2,1,1,1 6

——- 6 4,3,2,1,1,1 6 7 4,3,2,2,1,1,1 7

——- ——- 7 4,4,2,1,1,1,1 7

5 3,3,2,1,1 5 6 3,3,2,2,1,1 6 7 3,3,2,2,2,1,1 7

——- 6 4,4,2,2,1,1 7 7 4,4,2,2,2,1,1 8

——- ——- 7 4,4,3,2,1,1,1 8

5 4,2,2,1,1 5 6 4,2,2,2,1,1 6 7 4,2,2,2,2,1,1 7

5 3,2,2,2,1 5 6 3,2,2,2,2,1 6 7 3,2,2,2,2,2,1 7
5 2,2,2,1,1 4 6 2,2,2,2,1,1 5 7 2,2,2,2,2,1,1 6

5 2,2,2,2,2 5 6 2,2,2,2,2,2 6 7 2,2,2,2,2,2,2 7

Table 2 Combination of different types of connections between Rk : Rp, x means ”any type of
connection”, A - active wheel, S - scout, B - backbone robots, indexes point to corresponding
DoF

Number (ϕ) Type Number (ϕ) Type Number (ϕ) Type Number (ϕ) Type
0 x:x 5 B2 : x 10 A : x 15 S1 : S1
1 B1 : B1 6 B1 : S1 11 A : B1 16 S1 : S2
2 B1 : B2 7 B1 : S2 12 A : B2 17 S2 : S2
3 B2 : B2 8 B2 : S1 13 A : S1 18 S1 : x
4 B1 : x 9 B2 : S2 14 A : S2 19 S2 : x

them are relevant. For example, in the configuration shown in Fig. 4, the functional
requirement imposed on all connections is ”Ax : x”, where x means ”any”. Table 2
introduces ϕi for connections, shown in Fig. 1. Since each node has max. four con-
nections (i.e. in general case different ϕi), the functional topology should include all
of them. We use the agreement, that when only one ϕ is specified for a connectivity,
it means ϕi = ϕ . Now we can generalize Φ from (1):

Φ = ((cmax : {ϕ}max),(cmax−1 : {ϕ}max−1), ...,(cmin : {ϕ}min),ct) (2)
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Fig. 4 Simple organism, defined by
topology Φ = ((2 : 10),(1 : 0),(1 : 0),2),
see explanation in text

To give an example of this descrip-
tion, we consider the simple organism from
Fig. 4. It has three robots n = 3, the max-
imal connectivity is cmax = 2 (two mod-
ules are connected to the active wheel), all
other connectivities are 1 (one mode from
each side), the total number of connections
ct = 2, i.e. Φ = (2,1,1,2). Functionality is
described as A : x (10 from the Table 2)
for the maximal connectivity (active wheel
connected from each side to any module)
and ”x:x”, ”x:x” (i.e. 0 from the Table 2)
for other connectivities (any module can
connect to the active wheel), i.e. Φ = ((2 :
10),(1 : 0),(1 : 0),2). This description is unique for each topology and kinematics,
taking into account other constraints, mentioned in the previous section. Kinematic
constraints are involved into calculation of the cost function (4), i.e. there are penal-
ties, when a robot does not satisfy the functional requirements.

3 Formulation of CSP/COP, Cost Functions and Scalability
Issues

The constraint-based approach assumes, that basic topologies with corresponding
kinematics are evolved or designed off-board/off-line. All of them, as well as cor-
responding control procedures are stored on-board. Robots during self-assembling
decide which of these topologies is the most optimal one to the given environmental
conditions and self-assemble into scalable versions of this configuration. There are
two challenges here. Firstly, the decision process is distributed and based only on
local sensor data, i.e. it should be stable to noisy and incompetence sensor infor-
mation. Secondly, only the optimal topology and one scalability approach should
be selected (which optimizes a cost function), i.e. distributed optimization and de-
cision making processes should be integrated. As mentioned, these challenges are
approached in the CSP/COP way.

CSP is a useful way of solving combinatorial problems, when constraints can
essentially limit the search space, see e.g. [8]. There are several CSP solvers, one of
them is based on a linear programming (LP). LP is formulated to optimize the linear
objective function Θ = sT x, where s is the vector of costs and x = (x1,x2, ...xm)

T is
a vector of variables, which are bounded by 0 and 1. LP is constrained as follows

Ax = b, xi ∈ {0, ...,1}, (3)

where A is a matrix and b is a vector of numerical coefficients, which form m lin-
ear equations (in general case inequalities). In this form it is known as the integer
program. Finally, by solving (3), all variables xi take ”0” or ”1” so that to optimize
sT x.
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First of all, we need to defined the objective function Θ , which is specified by
si. When n robots are involved into some topology Φ , the variables x represent all
possible bilateral connections between there robots. The vector of variables has m
components m = n!

(n−2)!2! .There are several different Θ , in the experiments we used

si = fi(Rk : Rp) = D(Rk : Rp)+F(Rk : Rp),k, p = 1, ...,n;k �= p, i = 1, ...,m (4)

where D(Rk : Rp) is a distance between neighbor Rk and Rp, F(Rk : Rp) satisfac-
tion of functional constraints (”0” when satisfied or ”> maxD(Rk : Rp)” when not
satisfied); all of them are estimated only between locally visible robots Rk and Rp.

Now A and b in (3) have to be defined; they reflect the connectivity constraints of
the corresponding topology. As mentioned, all ci are disconnected from robots, i.e.
we have to map the set of ci to all possible combinations between these robots

(cmax,cmax−1, ...,cmin)→ Permutation(R1,R2, ...,Rn). (5)

Since the number of permutations is equal to n!, computational power of the most
of microprocessors allows computation for n below 10 closely to real time. This is
more than enough for a large diversity of cores (see Table 1), complex topologies
are created through scalability. Since the variable xi points to connections between
robots, defined by (5), the vector b is equal to the set of ci in the order from cmax to
cmin and the matrix A creates corresponding placeholders (see the example below).

To exemplify the LP solver of CSP, we assume that N = 5 robots (R1,R2...R5)
are positioned on the surface. The costs of connections between robots are written
into the vector s

s = (R1 : R2,R1 : R3,R1 : R4,R1 : R5,R2 : R3,R2 : R4,R2 : R5,R3 : R4,R3 : R5,R4 : R5)
T

where R1 : R2 means a placeholder for the corresponding function fi(Rp,Rk) defined
by (4), for n = 5,m = 10.

Fig. 5 A and b for the introduced example

In a particular example, we
set c=(35,40,80,36,41,42,31,32,55,
60). Thus, m variables xi cor-
respond to costs of connections
Rk : Rp, where k, p = 1, ...,n and
k �= p. We consider the topology,
defined by the connectivity C =
(3,2,1,1,1,4). Linear constraints
for the mentioned case are de-
fined as shown in Fig. 5. Here
cmax − cmin define the connectivity of the R1 − R5 and ct defines the total num-
ber of connections in this group. The defined A, b and c allow us to find a minimal
cost for connections between R1 − R5 only for one case, namely when the con-
nectivity vector (cmax,cmax−1, ...,cmin) is assigned to the vector of robots in this
order (R1,R2,R3,R4,R5), i.e. the first robot has a maximal connectivity. We have
to assume that all robots from R1 to R5 can have cmac and all other connectivi-
ties. In other words, the connectivity vector C should be assigned to each of the
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permutation sets R1,R2, ...,Rn (for n = 5 there are 120 permutations of R1, ...,R5).
For the mentioned example with 5 robots, the minimal cost sT x= 139 is achieved for
the connections (R2 : R3,R2 : R1,R2 : R5,R3 : R4), i.e. x = (1,0,0,0,1,0,1,1,0,0).

COP. The CSP solver delivers m solutions, which satisfy connectivity constraints
and are optimal for the cost function sT x for each set from (5). However, not all
of them satisfy the set of constraints (e.g. coherency constraints). COP solver goes
through all m solutions and eliminates those which do not satisfy the rest of con-
straints. Finally, the solution with a minimal cost is delivered as an output.

Scalability. Scalability addresses the relation between n and N (n is the number
of robots in the topology, N is a common number of robot). There are different
possibilities when N is increasing:

(1) for N = xn,x= 1,2,3, ..., the topology with n robots can be replicated x times.
Each of these new topologies is an independent structure. This is the simplest form
of scalability, which can be denoted as the behavioral scalability.

(2) x topologies from the previous case can joint into one common structure.
This is typically segmented body construction, where n robots within one segment
are repeated x times. This is the structural scalability.

(3) the robots from N mod n > 0 cannot create a new topology. These robots are
still useful for the already existing topology, as e.g. energy reserve, so these robots
can perturb the topology Φ , this is the perturbational scalability.

(4) finally, N mod n> 0 robots are not aggregating with any other structures, they
build a ”reserve” for e.g. self-repairing.

For each topology, a corresponding scalability class has to be defined. For this work
we use the scalability class (1) and (4), i.e. there are (int)N/n cores, remaining robots
are not connected. Algorithm for CSP/COP solver is shown in Fig. 6. The core of

select next mapping

finished

Recalculate Constraints,
remove non-connected
permutations

solve CSP by LP solver,
store costs and solution

COP (remove solutions, which do
not satisfy remaining constraints)

COP
(find minimal cost of       )

(C     , C       ,..., C    ) Permutation (R  , R   ,..., R  )max 1 2 nminmax-1

s xT

Fig. 6 Algorithm for CSP/COP solver

this algorithm is the LP solver, which cyclically takes one permutation from the set
and delivers optimal connections for the given connectivity. All these solutions are
stored and later used by COP solves to eliminate non-consisted solutions and to find
the minimal one.

4 Implementation and Experiments

For implementation of LP solver for CSP, we used lp solve 5.5 routine (see lp-
solve.sourceforge.net) of Mixed Integer Linear Programming solver, which is under
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the GNU lesser general public license and is available in several programming lan-
guages (C++ version is used for real robots, Java version is used for simulation).
Real robots use Blackfin double core as the main CPU (in each module) with 64 Mb
SDRAM on board. The implementation on the real platform (see Fig. 7(a)) was in-
tended to test computational properties as well as to estimate the level of distortion
in creating the objective function Θ . Since currently there are not enough robots for
testing scalability, several experiments are performed in simulation, which is done
in AnyLogic (with Java version of lp solve and the same algorithm). Tests are per-
formed with two topologies: Φ1=((3:4,5),(2:4),(1:4),(1:4),(1:4),4), which is shown
in Fig. 2 and Φ2=((2:4),(2:4),(2:4),(1:4),(1:4),4) (a snake of 5 robots).

(a) (b)

Fig. 7 (a) Prototype of the reconfigurable module used for testing the objective function Θ ;
(b) Sketch of behavioral algorithm for self-assembling (autonomy cycle)

The behavioral algorithm is sketched in Fig. 7(b). First of all, a robot collects
data about availability of other robots and their functionality. This is done through
ZigBee communication channel and allows defining N and functional constraints
ϕi. For a temporal identification of robots, ZigBee identification code is used. The
ZigBee channel does not provide distances and orientation; this is achieved through
sensor-fusion level of local IR-based proximity sensors with color sensor and vision-
based data. Collision avoidance uses 8-directional force-based model with a global
gradient, docking is performed when a robot has a corresponding position and angle
(i.e. specific routines control docking approach).
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Fig. 8 Number of different CSP/COP so-
lutions in relation to the level of sensor
noise

Synchronous and asynchronous updates.
All robots start their CSP/COP solvers in-
dependently from each other. Since the
original cost vector is the same in all
robots, all initial solutions are consistent.
Each 10 iterations of the autonomy cycle,
a robot updates the cost vector and starts
the CSP/COP solver again. This new so-
lution can deliver a new partner for dock-
ing (when such a solution is more efficient
than the original one). Fig. 8 demonstrates
the number of partner’s changes during one
self-assembling run. Since a duration of one
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autonomy cycle varies from robot to robot, all next solutions use cost vectors with
different time stamps. Such an asynchronous update CSP/COP data can lead to loss
of consistency in solutions. There are several methods to keep data consistent even
for asynchronous updates, for example, when one robot receive a new assigned part-
ner for docking, this triggers all robots in the group to update CSP/COP solutions.

Noise of sensor data. Non-accuracy of reflective IR sensors, out-of-focus images
from cameras, wrong identification of robots are sources of sensor noise. Overview
of different sensors and their properties is given in [10]; normally the level of noise
increases towards boundaries of perception range. To test a stability of this approach,
noise was added to sensor data (as ci±max.(ci/2) for 100% of noise). Fig. 8 shows
the number of different solutions delivered by CSP/COP solver at 100%, 50% and
0% of noise. Generally, noise in sensor data does not change the self-assembling
behavior, however triggers more frequent solutions by the solver.

Self-assembling with a large perception radius. The Fig. 9 plots the sum of ele-
ments in the cost vector ∑i si, when a half of the whole arena is visible to robots, i.e.
a robot in the middle of arena can perceive all other robots. The common cost func-
tion as well as particular cost functions in each group are monotonically decreased
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Fig. 9 Assembling of Φ1 at N = 30,n = 5, behavioral scalability is utilized (i.e. 6 groups of
5 robots). Shown are ∑i si, calculated for (a) all robots in the arena; (b) each group of robots.

during the self-assembling process. Fluctuation of the function can be explained by
collision avoidance behavior and by finding a final alignment during the docking.

Self-assembling with reduced perception radius and noisy sensor data. The per-
ception radius was set to 8-10 body lengths of a robot (what approximately cor-
responds to the data from camera). Robots outside the visibility radius receive a
large constant value in the cost vector and move randomly in the arena. As soon
as a robot became within the perception radius, CSP/COS solver starts anew and
recalculates the solution. Fig. 10 shows the common and particular objective func-
tions. Comparing to a large visibility radius, the self-assembling here takes almost
10 times longer. Such a long convergence time can be explained by the random
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Fig. 10 Self-assembling with the same parameters as in Fig. 9, perception radius is limited
to 10 body length of a robot. Assembling is finished within 6000 iterations of the autonomy
cycle (calculated as a sum over all robots).
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Fig. 11 The same case as in Fig. 10, simple two steps aggregation strategy is used. Assem-
bling is finished within 2700 iterations of the autonomy cycle.

motion of those robots, which are outside of the perception radius and so not in-
volved into self-assembling. When these robots increase compactness of the group,
this will essentially improve the efficiency of the approach without making it more
complex. Fig. 11 demonstrates the objective functions for the strategy, when robots
outside of the perception radius move first to the middle of robot arena. All robots
get quickly visible to each other, however this creates more stronger collision avoid-
ance in the groups and robots need more time to resolve collision problems. Despite
simplicity and drawback of this strategy, it allows improving the efficiency more
than twice.

5 Conclusions

This paper describes the constraint-based self-assembling strategy, which used
CSP/COP solver with LP core. Due to connectivity and functional constraints, this
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approach is very useful for modules with different geometry and functionality, i.e.
for heterogeneous reconfigurable robots. Since kinematic chains are directly in-
volved into self-assembled structures, self-assembled organisms immediately after
aggregation are ready for performing locomotive tasks.

There are several observations for this approach. First of all, the constraint-based
topological description is efficient for basic and symmetric topologies. To define
perturbations and scalability, additional specifications are necessary. This can be
done by using a generator-based approach [7] or by introducing compact explicit de-
scriptors. Secondly, in practical situations the CSP/COP solver can run only once,
when all components of the objective function Θ are known. Possible small non-
optimality of solutions can be ignored by the reason of saving computational power.
Moreover, very restrictive formulation of a heterogeneous topology (e.g. only with
specific modules) leads to deadlocks when such modules are not available. It is gen-
erally recommended to use ”A:x”, ”S:x” or ”B:x” kind of functional descriptions.
Finally, a combination of low-dimensional assembling cores and scalability man-
agement enables an efficient management of high-dimensional topologies; in the
demonstrated example the problem of 30 robots was efficiently solved within a few
seconds by on-board microprocessors.

Limited perception radius of robots has an essential impact on the performance
of this approach, drop of efficiency lies between 4 and 10 times. However, nether
noise nor a small perception radius stops the self-assembling. By using dedicated
algorithms for increasing compactness, the performance can be improved; this as
well as performing experiments with 30 real heterogeneous robots represents future
works.
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A New Graph Signature Calculation Method 
Based on Power Centrality for Modular Robots  
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Abstract. Graph signature is a fast isomorphism test that is used in self-
reconfiguration planning of modular robots. In case of dealing with homomorphic 
modules, the required time to calculate the signature grows exponentially with the 
number of symmetry lines. We tackle this problem by introducing an isomor-
phism-invariant signature calculation method, which is based on the power cen-
trality of nodes. We also introduce a new sample-based search method. Simulation 
results show the new method finds better solutions in a significantly shorter time.* 

1   Introduction 

Modular robots are composed of some relatively simplified and usually small-
sized robotic parts called modules. The modularity comes with properties such as 
versatility, robustness and low cost. The modules can be connected in different 
ways (either manually or automatically) thus creating different configurations.  

Based on the connection structure and the movement of modules, they are clas-
sified into two main categories. Lattice-type modules use cluster-flow to move and 
reconfigure. Crystalline [1], ATRON [2], Telecube [3] and Molecule [4] are ex-
amples of this kind. Chain-type modules form chain structures and have joints that 
help them move without necessarily doing reconfiguration. M-TRAN [5], 
CONRO [6], Roombot [7], PolyBot [8], YaMoR [9] and SuperBot [10] are exam-
ples of this type. Our work is based on chain-type modular robots. 

Self-Reconfiguration Planning (SRP) is a task in which an optimal or sub-
optimal solution is found for reshaping a modular robot from an initial configura-
tion to a final one. Solution to this task is hard to achieve as the time complexity 
of planning problem grows exponentially when the number of modules or their 
degrees of freedom (DOF) increases. In this paper we propose a general frame-
work for SRP to reduce the time complexity specially when dealing with modules 
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Faculty of Electrical and Computer Engineering, University of Tehran, Tehran, Iran 
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with high DOF. This method uses the idea of graph signature introduced by Asad-
pour et al. [11][12] and improves it by using the concept of power centrality in  
social networks [13] and establishing a hierarchical graph signature calculation al-
gorithm. A sample-based method for investigating feasible “attach” actions, has 
also been incorporated with our previous general search to make it faster.  

The rest of this paper is organized as follows: In the next section, some  
previous works on SRP are explained. The third section explains our proposed 
method. The paper is then finalized by simulation results and conclusions. 

2   Background 

SRP is one of the most challenging tasks in modular robots. The task is even more 
difficult in chain-type robots where mechanical limitations come into play. SRP 
becomes practically intractable when dealing with large number of modules, or 
modules with high DOF. 

Reconfiguration planners are usually based on a guided search strategy and a 
distance function. Casal and Yim [14], [15] introduced a divide-and-conquer strat-
egy to solve SRP for chain-type robots. The configuration was decomposed into a 
hierarchy of small sub-structures belonging to a finite set. These sub-structures 
were non-homomorphic and reconfiguration between them was simple. So the re-
configuration steps could be specified and stored in a look-up table in advance. 
The reconfiguration was then consisted of an ordered set of pre-defined actions 
among sub-structures which happen locally. 

Hou & Shen [16] presented a distributed reconfiguration method on the unla-
beled graph representation of configurations. They did the reconfiguration by first 
utilizing a distributed comparison to detect substructures in two configurations. 
Then the reconfiguration was limited only to the modules that indicated difference 
in topology. Reconfiguration took place by first converting the initial configura-
tion to an intermediate structure and then transforming it to final configuration. 

Asadpour et al. [11] proposed a method based on graph theory. They encoded 
the 3D structure of a configuration by an isomorphism-invariant code, called sig-
nature, and used edit distance based similarity metric as an upper-bound for iso-
morphism test. The time complexity of their algorithm grows exponentially as the 
number of modules increases. They improved the method in [12] in order to deal 
with modules with symmetry. Again the time complexity grows exponentially as 
the number of modules increased. Another disadvantage of their method is where 
they are looking for feasible attach actions; they had to search all possible permu-
tations of joint angles of each module in a configuration. Here, an increase in the 
DOF of the modules would cause the time complexity of finding feasible attach 
actions grow exponentially. 

3   Our Proposed Method 

We represent a configuration by a graph with modules as nodes and connection 
between modules as edges (directed for male/female connectors and undirected for 
genderless ones). Reconfiguration takes place by performing feasible edit actions, 
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i.e. attach or detach, on initial configuration hoping to make it closer to the final 
configuration. Among the new unexplored configurations, the closest configura-
tion (based on a distance function) to the final one is chosen for further explora-
tion. This process continues until a path of transitions from the initial graph to the 
final graph is found. The network of transitions between configurations in which, 
nodes are configurations and edges are edit actions, is called a transition graph. 

The isomorphism checking of graphs is not yet proved to be NP-Complete or 
not [17] except some special cases like graphs with bounded degrees [18] or or-
dered graphs [19]. Asadpour et al. [11] compute a unique identifier, called graph 
signature, for a configuration using properties of ordered graphs. An ordered 
graph is a graph whose edges have a specific order. So they adopted an edge labe-
ling method to assign a unique identifier to each edge. The labeled graph is trivial-
ly transformable to an ordered graph by sorting the out-edges of the vertices in 
lexicographic order. It is shown in [19] that Isomorphism test on such a graph 
takes quadratic time in worst-case in terms of the number of nodes. 

3.1   Labeling the Graph 

Edge labels include information about how modules are connected to each other. 
A labeling strategy may be as follows: First, the connectors of a module are in-
dexed. The indexing order is arbitrary, but should be the same for all modules. 
Fig.1.A and B show an indexing order for SuperBot modules.  

Relative rotation of two modules around their connection point should also be 
encoded. This is done by assigning an index to each relative rotation. For instance, 
if only multiples of 90 is allowed, the 90° angle between the modules in Fig.1-C 
would have index 1 (index 0 for 0°, index 1 for 90°, … , index 3 for 270°).  

 

 

Fig. 1 Connector indexing of a SuberBot module. (A) Top view (B) Bottom view (C) Rela-
tive rotation at the connection point is 90°, so rotation index is 1. 

Putting connector and relative rotation indices together, connection of two 
modules can be labeled as [11]: 

| || | | |
ij ij ji ij

l C R c R c r= + +
                                         

(1) 

where cij is the index of the connector of module i which is connected to module j, 
|C| is the total number of connectors, |R| is the number of possible relative rota-
tions, and rij is the relative rotation of module i with respect to module j. For  
SuperBot, |C| is 6 and |R| is 4. This way, each connection gets a unique label and 
an ordering can be imposed on the edges. Fig. 2 shows two different configura-
tions and their graph representations. 
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Fig. 2 SuperBots configured as (A) 4-Module quadruped (B) 6-Module climber. (C) and 
(D) Their corresponding labeled graphs. Red indices belong to the used connectors. 

3.2   Graph Signature 

The term Graph Signature proposed by Asadpour et al. [11] is an isomorphism in-
variant property of the configuration graph that encodes the 3D structure of a 
modular robot. It is inspired by the way we help somebody who is searching for an 
address (e.g. go straight, turn left at the junction). A configuration is like a city 
whose entire map should be encoded in a string. The code specifies for a tourist 
(here a planner), what would he/she see when walking along the streets? A big 
problem is to specify (in an isomorphism invariant way) the place he should start 
walking. That is why Asadpour et al. [11] had to try all possible start places (i.e. 
all nodes) and select in some way a unique code among them (e.g. by sorting). 

The graph signature is created by performing a modified DFS on an ordered 
graph and recording what is seen meanwhile, in this way: 1) start from a node (i.e. 
a module) and record its index; start indexing from one, and increment it upon vi-
siting new unvisited node; 2) If possible traverse the out-edges in the lexicograph-
ic order of their labels and record their labels, after that 3) traverse the in-edges 
(i.e. opposed to their direction) and record the negation of their labels; and finally 
4) if no move is possible, back track to the previous node(s). In case of dealing 
with undirected (i.e. hermaphrodite) edges, the traversal direction is decided once 
it is first encountered, from the current node towards an unvisited node.  

The procedure is repeated for all nodes as start position. Each time a signature 
is created whom we call a node signature. Among all node signatures, the one 
with maximum lexicographical order is selected as the graph signature. The worst 
 

Table 1 Signature of nodes of the graphs in Fig.2. Graph signature is shown in bold face. 

4-Module Quadruped Configuration 6-Module Climber Configuration 

Node Node Signature Node Node Signature 

0 (0 26 1) (1 26 2) (2 26 3) (3 26 0) 0 (0 46 1)(1 106 2)(2 46 3)(3 106 4)(4 46 5) 

1 (0 26 1) (1 26 2) (2 26 3) (3 26 0) 1 (0 106 1)(1 46 2)(2 106 3)(3 46 4)(0 -46 5) 

2 (0 26 1) (1 26 2) (2 26 3) (3 26 0) 2 (0 46 1)(1 106 2)(2 46 3)(0 -106 4)(4 -46 5) 

3 (0 26 1) (1 26 2) (2 26 3) (3 26 0) 3 (0 106 1)(1 46 2)(0 -46 3)(3 -106 4)(4 -46 5) 

  4 (0 46 1)(1 -106 2)(2 -46 3)(3 -106 4)(4 -46 5) 

  5 (0 -46 1)(1 -106 2)(2 -46 3)(3 -106 4)(4 -46 5) 
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time complexity of signature calculation is O(|V||E|) for |V| and |E| as the number 
of nodes and edges, respectively [11]. Table 1 shows all possible graph signatures 
for the configurations of Fig.2.  

3.2.1   Symmetric Modules 

A module is called homomorphic or symmetric if there exist at least one symmetry 
line that rotating the module around it produces the same (matchable) 3D shape. 
Fig. 3 shows some SuperBots that have the same 3D shapes. The number of mat-
chable shapes, whom we call, symmetry factor, can be calculated once for each 
module type through exhaustive search. For instance, M-TRAN modules, if all 
connectors are genderless, have 3 symmetry lines, and their symmetry factor is 4. 
The symmetry factor is 8 for SuperBots [10] and 36 for Roombots [7]. This is like 
re-indexing the connectors and acquiring the same shape. Thus, a mapping be-
tween connector indices of symmetric shapes could be achieved and saved in a 
lookup table. Since re-indexing the connectors changes the edge labels, a new 
graph signature might be achieved.  
 

 

Fig. 3 (A)-(F) Examples of SuperBots with identical 3D shapes. In B, E and, F, the middle 
servo rotates 180° (G) Two isomorphic configurations with a module rotated around a 
symmetry line. 

The case of symmetric modules is tackled in [12] by putting some order on the 
connections. They compute the node signatures by testing all permutations of 
symmetric positions of each module and choose the one with maximum lexico-
graphical order. The time complexity of signature calculation is O(|V|2 + |V| × 
S|V|) for S being the symmetry factor. 

3.2.2   The Improved Signature Calculation Algorithm 

The inefficiency of signature calculation in symmetric modules returns back to the 
calculation of multiple node signatures. If we find an isomorphism invariant way 
to fix the starting node, we could calculate the signature in one run. Here we use a 
centrality measure from social networks domain called, power centrality [13] 
based on which the most powerful node is selected as the starting node for signa-
ture calculation. This measure can also specify the priority of visit for nodes in 
case of tallies. Following, the steps of the proposed method are explained:  

Step 1: Isomorphism-invariant node prioritization based on power centrality  

Based on the power centrality [13], (social) power of a node recursively depends 
on the sum of the power of its friends with attenuation factor 0 ≤ β ≤ 1: 
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( ) ( . ( ))
p i ij p j

j

C n a C nβ= 
                                              

(2) 

where Cp(nk) is the power of node k and axy is 1 if x and y are friends (or neigh-
bors) and 0 otherwise. If we start from a positive initial value for Cp(nk), k=1…n 
and recursively calculate (2) for all nodes, power centralities finally converge if 
|β|<1/λmax where λmax is the highest eigenvector of the adjacency matrix of the 
graph[13]. The number of required iterations can go up to the diameter of the 
graph that is at most |V|-1. 

It is evident that for isomorphic configurations the same power centralities are 
gained for corresponding nodes. In case of generating different power centralities 
for some nodes, we can surely say the configurations are different. However, the 
reverse is not always true i.e. if power centralities are the same we cannot surely 
say the configurations are isomorphic.  

We hope the most powerful node is unique such that it could be selected as the 
starting node, otherwise we have to run the signature calculation once for each of 
the most powerful nodes. Table 2 shows the converged power centralities of 
graphs presented in Fig. 2.  

Table 2 Normalized initial and converged node power centralities of the graphs in  
Fig. 2C-D 

4-Module quadruped configuration 6-Module climber configuration 

Node Initial power Converged power Node Initial power Converged power 

0 0.25 0.25 0 0.1073 0.1038 

1 0.25 0.25 1 0.1964 0.1804 

2 0.25 0.25 2 0.1964 0.2157 

3 0.25 0.25 3 0.1964 0.2157 

   4 0.1964 0.1804 

   5 0.1073 0.1038 

 
 
Choosing the initial values for power centralities is very important. A popular 

initial value is the nodal degree [13], which is not appropriate here because the 
degree keeps only the information about the number of neighbors, but not how 
they are connected. Instead, we assign a value to each node that is calculated by 
summing the labels of the edges connected to a specific node. We call it the Vicin-
ity Value. The maximum possible vicinity values of nodes are used as their initial 
powers. If we assume the modules are genderless, the vicinity value of node i is: 

 

( )
ij ij

j V

v i a l
∈

= 
                                                        

(3) 

where lij is the label of the edge between nodes i and j. Based on (1) and (3) the 
maximum vicinity value is: 
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* * ** ( ) (| || | | | )
ij ij ij ij ji ij

j V j V

v i a l a C R c R c r
∈ ∈

= = + +   (1) 

where cij
* and cji

* are the connector indices that maximizes the vicinity value, and 
are obtained by re-indexing the modules i and then j; and rij

* is the maximum rota-
tion index between i and j. Equation (4) can be written as: 

* * ** ( ) (| || | ) | | ( )
ij ij ij ij ji

j V j V

v i a C R c r R a c
∈ ∈

= + +   (2) 

Maximizing both terms would maximize the whole expression. The first term, 
which we call Node Value, only depends on the module i and can be maximized 
using the equation below: 

* ( ) max{ (| || | ( ) ( ))}
ij ij ij

s S
j V

n i a C R s c s r
∈

∈

= +  (3) 

where S is the set of possible connector mappings (|S| being the symmetry factor), 
and s(cij) and s(rij) are the connector and rotation indices, respectively, provided 
by the mapping s. We call this process, Node Value Maximization Procedure 
(NVMP). The neighboring nodes can independently run NVMP and maximize the 
second term of (5) and finally the sum of two terms. The whole process is called 
Vicinity Value Maximization Procedure (VVMP). Fig.4 shows an example of how 
NVMP and VVMP are performed using equations 3, 5 and 6. If two nodes are 
connected in more than one way, VVMP selects the mapping that leads to maxi-
mum vicinity value. 

 

 

Fig. 4 Finding the maximum vicinity value of node 1 for 4-Module quadruped graph shown 
in Fig. 2C. (#1 & #2) NVMP is done by node 1 using the Eq. 6 for each symmetric position 
S1-S8. (#2 & #3) VVMP is done independently by each neighbor using Eq. 6 for each 
symmetric position S1-S8 concerning the rule that common edges with node 1 can only get 
increased. 
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Step 2: Hierarchical graph re-indexing 

This procedure is done once for the node with maximum power centrality, which 
we call the master node. The master node performs VVMP followed by re-
indexing according to the mapping provided by VVMP. Then, the edges incident 
to the master node with their new labels are frozen so that no other node could 
modify their labels. This process is repeated for a neighbor of the master node and 
each time some edges are frozen. Neighbors are prioritized according to their vi-
cinity value. When all edges are frozen, the re-indexed graph is ready for signature 
calculation. Fig. 5 shows an example of re-indexing. 

It should also be noted that during NVMP some cases happen where for two 
different symmetric positions, calculated node values of a specific module are 
equal and it cannot decide which symmetric position s to choose for re-indexing. 
In such cases we simply look at the power centralities of the nodes that the  
connector tends to connect, and choose the symmetric position in which the con-
nectors with higher indices are going to connect to nodes with higher power cen-
tralities. We think in cases of equal power centralities choosing either one of the 
nodes would not change the overall outcome (not proved yet, left for future work). 

 

 

Fig. 5 Hierarchical re-indexing of 6-Module climber configuration graph. Module 3, the 
master starts VVMP and freezes its edges, the process is continued by 2, 4, 1, 5, and 0. 

Step 3: Graph signature calculation 

The graph signature is generated by performing a DFS starting from the master 
node on the frozen graph of step two. If more than one master node (and conse-
quently more than one re-indexed graph exists), graph signature is generated for 
each case by starting from the corresponding nodes and the one with maximum 
lexicographical order is chosen. It is easy to verify that the worst time complexity 
of this new method is O(S × |V|2) which is much better than [12]. 

3.2.3   Improvement of Searching for Feasible Attach Actions 

As mentioned earlier, reconfiguration takes place by performing feasible edit ac-
tions, i.e. attach/detach, on initial configuration hoping to make it closer to final 
one. Finding feasible detach actions is easy; it can be done by searching for mod-
ules that form loop (so they can be disconnected from either side). This can at 
worst be done in O(|E|2|V|). However, computing all possible attach actions, espe-
cially in case of modules with high DOF, is very difficult. Asadpour et al. [11] 
[12] used a brute force approach and checked all permutations of discretized servo 
movements for possible attach action i.e. O(p|V|×|M|), for p being the number of dis-
cretized servo movements and |M| being the DOF of modules (so the dimension of 
the joint state space is  |V|×|M|).  
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We tackle this problem by applying a sample based method called Rapidly-
exploring Random Trees (RRT) [20]. The main property of RRT is its tendency to 
search unexplored regions of the space, while insuring that the whole space will be 
explored if sampling runs for a long time. Here, instead of finding all feasible at-
tach actions which takes a lot of time, the sampling is continued until either 
“enough” attach actions are found or no part of space remains unexplored. 

4   Simulation Results 

Our method is tested on simulated M-TRANs and SuperBots, each having 6 gen-
derless connectors, and 2 and 3 rotational servos respectively. Fig.2A, B and Fig.6 
depict the configurations we study. The SRP tasks for MTRAN are Quadruped-to-
snake with 4 and 8 modules. Then the scalability of our method is verified on 
stool-to-snake reconfiguration (with 12 M-TRAN). The SRP tasks on SuperBots 
are line-to-climber configuration with 4, 6, and 8 modules. Simulations are re-
peated on 30 random seeds and are continued until 30 solutions are found.  
 

 

Fig. 6 (A, B) 4 and 8-module climber (C) 8-module quadruped (D) 12-module stool (E, F, 
G) 4, 6 and 8-module line (H, I, J) 4, 8 and 12-module snake 

4.1   Reconfiguration with M-TRAN 

Fig.7 (left) shows the number of graphs examined before finding the first and the 
best solutions of 4-module quadruped-to-snake reconfiguration. In about 70% of 
simulations the first solution is found before less than 500 graphs are examined, in 
less than 5 seconds. Moreover the first solution is always the best solution with 9 
attach/detach actions. This is much better than Asadpour et al. [12] where the first 
solution was among 4,000 visited graphs and only about 17% of best solutions 
were within the first 2,500 examined graphs. 

Fig.7 (right) shows the results for 8-module quadruped-to-snake task. The best 
solution of this task has 7 actions which is equal to results of [12]. The first solu-
tion is found by visiting 7000 or fewer graphs in 50% of simulations in less than 
300 seconds. The best solution is found in 7 simulations after visiting 15000 or 
fewer graphs in less than 450 seconds. This is almost similar to [12], but is gained 
in significantly shorter time. 
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Fig. 7 Reconfiguration result for (Left) 4-Module quadruped to snake and (Right) 8-Module 
quadruped to snake 

To test the scalability of our framework, we solved the stool-to-snake reconfi-
guration with 12 M-TRAN modules. The best solution that has 27 actions is found 
by examining around 120000 graphs in about 85 minutes. 

4.2   Reconfiguration with SuperBot 

Fig.8 shows the number of graphs examined before finding the first and the best 
solutions of line-to-climber reconfiguration with SuperBots. Fig.8 (top-left) shows 
the result for 4-module reconfiguration. It is seen that more than 70% of the first 
solutions and about 20% of the best solutions are found after visiting 2800 or few-
er graphs. The first and best solutions are found in less than 10 seconds. 

 

 

 

Fig. 8 Result for line-to-climber reconfiguration with (top-left) 4, (top-right) 6 and (bottom) 
8 modules 
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Fig.8 (top-right) shows the results for 6-module reconfiguration. It is seen that 
more than 50% of the first solutions are found by examining 19000 or fewer 
graphs in less than 30 seconds. The best solution to this task has 12 actions and is 
found in about 23% of our simulations. 

Fig.8 (bottom) shows the results for 8-module reconfiguration. This is the hard-
est reconfiguration task in our simulations (the configuration has totally 24 DOFs). 
About 63% of the times, the first solution is found after examining 300000 or 
fewer graphs in less than 120 minutes. The best solution that has 24 actions is 
found only in 34% of simulations always before examining 300000 or fewer 
graphs in less than 200 minutes.  

5   Conclusion 

We proposed an isomorphism-invariant graph signature calculation based on pow-
er centrality. We could enhance the time complexity of signature calculation to 
polynomial time even for symmetric modules. We also tackled the problem of 
finding feasible attach actions by using the sample based RRT method. The results 
showed an impressive drop in reconfiguration time for both M-TRAN and Super-
Bot modules. 

As future works, we think finding the feasible attach action by sampling can be 
improved through parameter tuning. Physical restrictions during reconfiguration 
should be mentioned and finally the cases where power centralities or vicinity val-
ues of some nodes are equal need more investigation.  
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Sensor-Coupled Fractal Gene Regulatory 
Networks for Locomotion Control of a Modular 
Snake Robot  

Payam Zahadat, David Johan Christensen, Serajeddin Katebi, and Kasper Stoy 

Abstract. In this paper we study fractal gene regulatory network (FGRN) control-
lers based on sensory information. The FGRN controllers are evolved to control a 
snake robot consisting of seven simulated ATRON modules. Each module con-
tains three tilt sensors which represent the direction of gravity in the coordination 
system of the module. The modules are controlled locally and there is no explicit 
communication between them. So, they can synchronize implicitly using their sen-
sors, and coordination of their behavior takes place through the environment. In 
one of our experiments, all the three tilt sensors are available for the FGRNs and a 
simple controller is evolved. The controller is a linear mapping of one input sensor 
to the output. It is only based on one sensor input and ignores the other sensors as 
well as the regulatory part of the network. In another experiment, the controller’s 
input uses one of the other sensors that carries less information. In this case, the 
evolved controller blends sensory information with the regulatory network capa-
bilities to come up with a proper distributed controller.* 

1   Introduction and Related Work 

Modular robots are distributed robots made up from a number of mechanically 
coupled modules where each module is typically controlled by its own local con-
troller. These robots are distributed and dynamic by nature and they have limited 
inter-modular communication and processing capabilities. In this paper we evolve 
FGRNs as distributed controller for modular robots. The purpose of the paper is to 
study the FGRN controllers based on sensor information. The FGRNs are evolved 
as local controllers of modules. Each FGRN controller receives inputs provided by 
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the local sensors of the module containing it. The usefulness of the sensor infor-
mation and the FGRN capability to make proper output patterns are investigated in 
this paper. 

Gene regulatory network (GRN) is a network of genes which interact with each 
other and regulate each other’s activation behavior. Instead of direct mapping of 
genotypes to phenotypes, nature implements an indirect development of a pheno-
type using GRNs. In biological cells, genome consists of a number of genes which 
encode proteins. Proteins play different roles in a cell. They can represent input 
signals; operate as intermediate substrates to drive the interaction between genes, 
and shape structure or behavior of the cell which can change during time. Proteins 
interact with each other and with the genes and this is an ongoing process in the 
whole life time of a cell. Complex behavior of a cell is the result of this interac-
tion. Production of a protein can be initiated by signals coming from the environ-
ment of the cell. The environment might be either the outside world or even the 
neighboring cells. In this way, the local environment can influence the cell’s inner 
dynamics and changes the behavior of the cell. Differentiation of cells in a multi-
cellular creature takes place through similar processes. In a multi-cellular creature, 
all cells contain the same genome, but based on the local environment of the call 
they differentiate during development and may behave differently. 

In the field of computation systems different GRN models [2, 12, 14, 18] have 
been defined to indirectly map genotype to phenotype in order to make more 
complex phenotypes and behaviors. In some works, models of GRNs are evolved 
for making mathematical output functions [19], developing neural networks for 
controlling robots [9, 11, 16] or specifying the morphology of 3D organisms [10]. 
Also, GRN models have been used to develop the morphology of robots as well as 
their neural network controllers [6]. A special type of GRNs, which utilizes fractal 
proteins as the intermediate substrate of gene interaction, is called FGRN [3]. The 
recursive and self-similar nature of fractal proteins make the fractal genetic space 
evolvable, complex, and redundant [3, 4, 5]. In a number of previous works, 
FGRNs are evolved to do different tasks such as producing desired patterns, con-
trolling conventional robots and motion planning [4, 26]. They have also been 
used [26] as local controllers of modular robots in a simpler version than the cur-
rent paper such that each FGRN controller selects between different possible 
commands that can be executed by every module and without any dynamic influ-
ence from the outside environment. 

The main contribution of this paper is further investigation of the usefulness of 
FRGN for control of modular robots; in particular, we extend on previous work 
[26] by looking at how sensor-inputs can be integrated with FGRN. The control-
lers we develop in this paper are tied to the physics of the ATRON self-
reconfigurable robot and are thus not directly applicable to control of other  
modular robots such as M-TRAN [20], SuperBot [22], CKBot [25] due to their 
differences in weight, actuator strength, placement of sensors, etc. However, it is a 
general problem of all embodied controllers that they rely on the specific physical 
properties of the robot on which they run. For the same reason, the controllers 
cannot be directly applied to control of non-reconfigurable snake robots either (see 
[23] for an overview). However, the idea of a model-free approach relying on  
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tilt-sensors for both local control and implicit synchronization between segments 
of the snake may be transferable to other robots as well. More importantly, we ex-
pect our development method based on evolution of FGRN can be applied to these 
systems. In modular and multi-segment robotics, controllers for snake robots have 
been extensively studied based on gait control tables [24], Central Pattern Genera-
tors (CPGs) [15, 17], artificial hormones [13], and role-based control [22]. How-
ever, opposed to our controllers these controllers except [17] are open-loop and in 
the case of the latter two rely on explicit communication between modules for 
synchronization. 

The paper is organized as follows. The next section reviews the biological in-
spiration and computational implementation of FGRN. Then, the application of 
FGRN as a sensor-based controller is described. Consequently, the controllers 
which respectively are evolved with unrestricted and restricted access to sensor in-
formation are investigated and the achieved behaviors are compared. 

2   Gene Regulatory Networks 

2.1   Biological Inspiration 

Development of phenotypes can be thought of as a product of interaction between 
genes and proteins in their environment. Proteins drive development and function-
ing of a cell and are used for communication between a cell and its environment 
that might include other cells.  

A cell contains a genome and a cytoplasm which are surrounded by a mem-
brane (Fig. 1) [1]. The membrane separates the interior of a cell from the outside 
environment. Receptor proteins are embedded in the membrane and control the 
movement of environmental proteins into the cell. The cytoplasm contains a com-
pound of proteins inside the cell. The genome consists of a set of genes. Every 
gene contains a sequence that encodes a protein (coding region) and a sequence 
that determines the conditions for activation or suppression of that gene (promoter 
region) (Fig. 1). 

An active gene expresses and produces its appropriate protein as encoded in its 
coding region. For a gene to be activated, the similarity between the cytoplasm 
content and the promoter region of the gene has to reach a threshold. 

 

 

Fig. 1 An example cell (left) and a gene (right) 
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The cytoplasm content is altered by proteins produced by genes inside the  
cell or the environmental proteins which have entered the cell passing through  
receptors.  

During the development of a cell, the protein content of the cytoplasm might 
match against the promoter of some genes and get them to suppress or express 
proteins. Every produced protein will enter to the cytoplasm and alter its content. 
The new content, in turn, affects the expression of genes in the next step. In this 
way, every protein inside a cell either produced by the genes or from environment 
might influence the expression of the genes directly or indirectly. On the other 
hand, the functional behavior of a cell is determined by special proteins in the cell 
and is controlled by the cytoplasm content. 

The ongoing interaction between proteins and genes continues for the whole 
lifetime of a cell and is considered a network of genes which regulate the expres-
sion of each other and is called a Gene Regulatory Network (GRN). 

2.2   Fractals and Gene Regulatory Networks 

In a series of works reported by Bentley [3, 4, 5] a protein model called fractal 
protein is developed as an abstraction of the protein substance of gene regulatory 
networks in an evolutionary system. 

Fractal proteins are square windows on the Mandelbrot fractal set with a fixed 
resolution (Fig. 2). Each fractal protein is represented by a square matrix of integ-
er values, but it is encoded by only three values (x, y, z). (x, y) is the coordination 
of the center of the window on the fractal set and z is the length of the sides. 
Therefore, by changing these three values we can reach different locations and dif-
ferent scales of the fractal set which benefit the evolvability due to the self-
similarity found in fractals. This property makes a desirable redundancy which 
means the same potential solution can be found in indefinite number of points in 
genotype space and it facilitates the evolutionary process. Fig. 2 represents an ex-
ample fractal protein.  

In addition to a square matrix of integer values, a single integer value relates to 
each fractal protein as its concentration level. The concentration level represents 
the current amount of the protein. The value increases when more of the protein is 
produced and decreases slowly over time to resemble normal degradation that 
happens in biological cells. The value is constant for the receptor proteins. 

 
 

 

Fig. 2 An example fractal protein and the three values which specify it 
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Fractal proteins can merge together and make protein compounds. A fractal 
protein compound is represented by a square matrix of integer values in the same 
way as fractal proteins. Merging is a pixel-wise max operation between the cor-
responding matrices. See Fig. 3(a) for an example.  

 

        

 

Fig. 3 Fractal Protein Operators: a) Merge: Two proteins a1 and a2 are merged as a3. b) 
Match: The cytoplasm protein compound b1 matches against the promoter of a gene (b2) 
and b3 is resulted as the calculated absolute difference. c) Mask: Environmental protein c1 
passes through the receptor protein c2 and some portions of it (c3) which are corresponding 
to non-black pixels of c2 are allowed to enter the cytoplasm. 

The cytoplasm of an FGRN cell is a compound of all the proteins inside the 
cell. Every protein that is produced in the cell or enters the cell from outside will 
be merged into the content of the cytoplasm. 

A genome in an FGRN cell consists of a set of genes. Genes consist of a se-
quence of values representing promoter region, coding region, threshold parame-
ters, and type of the gene.  

The coding region contains the three real values which encode a fractal protein. 
In the same way as the coding region, the promoter region consists of three real 
values that encode a square matrix of fractal values as well. This matrix works as a 
window that will be put on the cytoplasm protein compound matrix and is used to 
calculate the matching degree between the promoter of the gene and cytoplasm 
content (See Fig. 3(b) for an example). The matching degree along with the total 
concentration of matched proteins on promoter region, determine the degree of ac-
tivation (or suppression) of the gene and might specify its protein production rate. 
Threshold parameters are used to calculate the matching degree and protein pro-
duction rate of each gene. To assimilate different types of genes in a cell, every 
gene belongs to one of the types represented in Table 1. Each gene contains an in-
teger value that represents its type. The lifetime of an FGRN cell consists of a 
number of developmental cycles which can be summarized as the steps 
represented in Fig. 4. For more detailed descriptions of FGRN systems and the 
corresponding formulas see [3, 4, 26]. 
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Table 1 Different gene types 

Gene Type Description 

Regulatory Includes both promoter and coding region. Its encoded protein will be produced 
and merged into cytoplasm and participate in regulation of gene expression. 

Environmental Determines the proteins which might be present in the environment of the cell. 

Cell receptor Contains a coding region and produces a receptor protein. Receptor proteins 
merge together and act as a mask to permit variable portions of environmental 
proteins to the cytoplasm (See Fig. 3(c)). 

Behavioral Comprises a promoter region and a coding region. The values in the coding re-
gion can directly participate to determine the outputs of the cell. 

 
 

 

Fig. 4 A developmental cycle of an FGRN cell 

3   Evolving FGRN Local Controllers with Tilt-Sensor Input 

In this work, FGRN controllers are evolved for the ATRON robot [21] which is a 
homogenous, lattice-based self-reconfigurable modular robot. An ATRON module 
weighs 0.850kg and has a diameter of 110mm. A module consists of two hemis-
pheres which can rotate infinitely relative to each other with a speed of 60 degrees 
per second. Each hemisphere contains two passive (bars) and two active connec-
tors (hooks), see Fig. 5.  

   

Fig. 5 From left to right: An ATRON module, a seven-segment snake robot 
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Simulation experiments are performed in an open-source simulator named Uni-
fied Simulator for Self-Reconfigurable Robots (USSR) [8]. The simulator is based 
on Open Dynamics Engine which provides simulation of collisions and rigid body 
dynamics. Physical forces like gravity and friction are implemented and the para-
meters, e.g. strength, speed, weight, etc., has been calibrated with the existing 
hardware. The physical validity of the mechanical simulation has been demon-
strated in the previous works [7] where the controllers were successfully trans-
ferred from simulation to the real modules. The implemented sensors are ideal tilt 
sensors and not still verified.  

FGRN local controllers with access to tilt-sensor inputs are evolved. The con-
troller is evolved for a snake-shaped robot consists of seven ATRON modules 
(See Fig. 5) and there is no explicit communication or synchronization between 
the modules. Every module contains three tilt sensors as (TiltX, TiltY, TiltZ). The 
sensors specify the direction of gravity related to the coordination system of  
the module (Fig. 5). The initial tilt sensor values of a module are different for the 
neighbor modules because of the positioning of the connectors in ATRON. The 
initial values are (0, -90, 0) for the modules in the odd positions of the snake and 
(-90, 0, 0) for the ones in the even positions. 

Evolution searches for FGRN genomes which are used in the local FGRN con-
trollers to solve a locomotion task. To evaluate a genome, an identical version of 
genome is copied to all the FGRN cells which are situated in the modules. Each 
cell receives tilt sensor values from the module’s local sensors. Initially, one input 
gene is related to each sensor. The level of protein expression of each input gene is 
determined by the value received from the related sensor. The development cycle 
in Fig. 4 is performed and the new concentration level of each protein in the cy-
toplasm is specified. In order to make an actuator command for each module in 
every step, each module independently run its own FGRN cell for one develop-
mental cycle and receives an output from the cell. The FGRN output is calculated 
on the basis of activation level of behavioral genes and the real values of the cod-
ing region [4]. The output value received from the cell is scaled and used as the 
 

 

 

Fig. 6 Each module contains an FGRN controller that specifies the actuator’s absolute  
position 
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absolute position of the module’s actuator which is between -180 to 180 degrees 
(See Fig. 6). Modules use the nearest rotation angle to reach the desired absolute 
position. Robot runs for a specific time period (50 sec.) and fitness is simply eva-
luated as the average speed of locomotion of the robot. For each evolutionary run, 
a population of 50 FGRN genomes is evolved for 250 generations using a version 
of steady-state genetic algorithm with lifespan limits [2]. Each genome is initia-
lized with randomly generated regulatory, receptor, environmental, and behavioral 
genes. Evolution is allowed to regulate the number of each type of genes (See  
[3, 26] for more details). 

4   Experimental Results and Discussion 

In order to investigate the usefulness and properties of integrating sensors with 
FGRN controllers for the snake robot, we performed two experiments. First we 
studied the FGRNs that are evolved when the input is available from all of the lo-
cal tilt sensors and observed the usefulness of the sensor-inputs. Then we ex-
amined the ability of FGRN to produce proper output patterns when the input is 
limited to a sensor with less information. 

4.1   Evolving Controllers with Unrestricted Access Sensors 

In order to study if FGRN controller can gain any benefit from the tilt sensor in-
puts, we evolved the controllers with access to all the three local sensors. Evolu-
tion was free to use all or some of the sensor inputs for the controllers. The 
evolved controllers were evaluated in the locomotion task and the speed of loco-
motion was measured as the distance between the initial position and the end posi-
tion of the center of mass of the robot and used as the fitness value. We repeated 
the experiment for 10 independent runs. The average speed of the best controllers 
from the ten runs was 0.0334 m/s (with standard deviation of 0.0032) and all the 
runs evolved controllers that generated rolling locomotion.  

In order to investigate the effects of different sensor values in producing robot 
behavior, we limited access of the evolved controller to different combinations of 
the sensors and set the others to zero. The achieved results demonstrated that for 9 
runs out of 10, there is no detectable effect for the TiltY and TiltZ sensors. In the 
only other run, output was produced based on both TiltY and TiltZ sensor values 
and no use of TiltX detected. This controller had the speed of 0.027 m/s. 

In the same way as the sensor values, we removed regulatory genes of the 
evolved FGRN controllers in order to investigate their influence on the controllers’ 
behavior. The investigation demonstrated that only in one of the evolved solutions, 
regulatory genes were participating in producing the controllers’ output. No signifi-
cant difference was observed between the speed of this controller and the rest.  

Based on the above investigations, for the eight runs out of the 10 runs, the 
evolved controllers produced output merely from TiltX sensor value. This means 
the controller directly maps one input to the output which is a simple controller for 
this robot.  
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Fig. 7 Internal dynamics of the controllers of the first experiment for the two first modules 
of the snake. Green lines represent sensor value, black lines represent the output for the ac-
tuator absolute position, and the gray lines represent the actuator’s real position. 

For a typical evolved FGRN controller, the internal dynamics of the modules 
are represented in Fig. 7. As it is demonstrated in the figure, the output values can 
be simply calculated using a linear equation. We derived the equation from the re-
lated input and output data as:  

Output = TiltX * 0.33 – 60.8 

4.2   FGRN with Restricted Sensor Information     

In the second experiment, we investigated whether the regulating dynamics of 
FGRN can make proper output patterns when the instant values of input sensors 
doesn’t carry enough information. As the results of the last experiment demon-
strated, TiltZ sensor has no detectable effect in producing the control outputs. It 
made us suspect that this sensor doesn’t have enough information for this control 
task. Therefore, we first tried to evolve a linear equation solely based on TiltZ 
sensor. We implemented a real-valued genetic algorithm to evolve a population of 
50 individuals for 250 generations. The experiment was repeated ten times and we 
observed that evolution failed to find a proper controller.  Then, we evolved 
FGRN controllers which have only access to TiltZ sensor value to investigate if 
FGRN can exploit this restricted sensor information.  

We repeated the evolutionary process for 10 independent runs and observed 
different locomotion-types for the best controllers of the different runs. The loco-
motion-types are discussed in three groups. The first group consists of the control-
lers which generate rolling-type locomotion for the robot. In order to study which 
parts of the network are involved in the control process, we disabled the sensor 
and each of the regulatory genes one by one. In all cases the controller failed to 
make proper locomotion. It demonstrates that both regulatory genes and sensor in-
put are used by the controller. The Internal dynamics of one of the best controllers 
we achieved in this group is represented in Fig. 8. In order to get an informal im-
pression of the robustness of the controllers in case a module breaks which lead to 
restarting controller, we randomly chose a module and restarted its controller to 
the initial state during the robot’s run. We repeated the experiment several times 
and observed that the robot continues its normal locomotion after a short while. 
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The second group includes the controllers that make crawling-type locomotion. 

Investigation of the internal dynamics of the controller demonstrates that these so-
lutions are mainly based on the regulatory genes and doesn’t really exploit the in-
put information. We observed that these robots are not robust against randomly 
restarting of the controllers.  

The third group consists of the controllers which make efficient locomotion 
once in a while. Benefiting from the robot’s body accidental flips over, these  
controllers sometimes make fast locomotion, and otherwise they do not produce 
locomotion. Since evolution only searches for fast controllers and there was no se-
lection pressure towards the robustness and reproducability of the locomotion, the 
large fitness that these controllers gain by the accidental success is enough to pick 
them up among the other controllers in the evolutionary process. These controllers 
are not robust even during normal locomotion. Average and standard deviation of 
speed reached by the different controller groups are shown in Table. 2.  

Table 2 Speeds reached by different types of locomotion 

 All Rolling Crawling Others 

Average speed 0.0209 0.0248 0.0168 0.0212 

Standard deviation 0.0076 0.0047 0.0015 0.0112 
 

 
The inner dynamics of a typical controller is represented in Fig. 8. The control-

ler is selected from the rolling-type group which demonstrates an efficient and ro-
bust behavior. As it is represented in the figure, the TiltZ value is zero for all the 
modules on the start of the execution. Therefore, there is no difference between 
the cells of a robot at the beginning and all of them make the same output for their 
module actuators. Rotating actuators as a result of command execution, changes 
module’s orientation. This might lead to different TiltZ sensor values for different 
 

 

 

Fig. 8 Internal dynamics of the selected controller of the second experiment for the two 
first modules. Green lines represent the sensor values, black lines represent the output for 
the actuator absolute position; and the red and brown lines represent the concentration level 
of the two regulatory proteins. 
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modules. After a short while of chaotic behaviors, modules start to synchronize 
and coordinate their behaviors through environmental feedback which is received 
in the form of the sensor values. 

4.3   Comparison of Behaviors from the Best Evolved Controllers 
of the Two Experiments 

In order to have an impression of the rolling behavior produced by the best  
controllers of each of the two experiments, we studied the actuator’s absolute po-
sitions for one typical controller evolved in the first experiment and one typical 
controller from the second one.  

 

 

 

Fig. 9 Actuators’ absolute positions of all the modules for a typical controller of the first 
and second experiments respectively 

As it is demonstrated in Fig. 9, the module actuators have oscillatory behaviors. 
For the first experiment, the average period of estimated oscillation of the actuator 
absolute positions is 6.46 sec (with standard deviation of 0.63). The estimated 
phase shifts between the actuator signals of the consecutive modules is 
represented in Table 3.  

For the second experiment, the average period of oscillation of the actuator ab-
solute positions is 7.6 sec (with standard deviation of 0.2). The estimated phase 
shifts of the consecutive modules are represented in Table 3.  
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Table 3 Phase shift (per period) between the neighbor modules for the typical controller of 
each experiment 

Module number #1 #2 #3 #4 #5 #6 #7 

first experiment - 0.21 0.52 

 

0.34 

 

0.34 

 

0.41 0.48 

second experiment - 0.56 0.37 0.41 0.40 0.36 0.38 

 
It is interesting to note that the phase difference between neighbor modules is 

not constant. We suspect this is because modules are subject to different forces 
and dynamics depending on their position in the snake.  

5   Conclusions 

In this paper we explored fractal gene regulatory network controllers for a snake-
shaped modular robot where only the tilt sensor inputs are available for the con-
trollers. First, we provided the controllers with all the three tilt sensor inputs. The 
evolved controllers were simple linear equation which exploits only one of the 
three sensor inputs and ignores the regulatory abilities. In the next step, we re-
stricted the controller’s access to one of the other sensors and tried to evolve new 
linear equation controllers based on this information. Since evolution couldn’t find 
the proper controllers, we suspect that the information provided by that sensor is 
not enough to be used by such a simple controller.  

Then we evolved FGRN controllers with access to this sensor information. The 
resulting controllers made appropriate oscillatory output patterns to control the 
modules. Investigating the different parts of the FGRN genome demonstrated that 
the system exploits both sensor values and regulatory network capabilities to make 
the proper controller commands. As it might be expected, the generated outputs of 
the controllers were oscillatory patterns shifted for each module. Furthermore, we 
performed some preliminary tests towards robustness of the controllers in both 
cases and observed that the controllers can drive the robot properly in the case of 
random restarting of the controllers during locomotion.  

All in all, as an early step to use FGRN as a modular robot controller, it is dem-
onstrated that FGRN can be evolved to both simple and relatively complex con-
trollers depending on the problem. Furthermore, when the capability of FGRN to 
make oscillatory patterns is coupled with the sensor information, the controllers 
show some degree of adaptability. In this way, the identical controllers generate 
different oscillatory outputs when situated in different modules and may provide 
some levels of robustness for the whole system. While it has not been verified we 
think that the idea of using sensor-coupled FGRN controllers for local control and 
synchronization between segments can be transferable to other modular robots as 
well.  
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Analysis of Human Standing-Up Motion Based
on Distributed Muscle Control

Qi An, Yusuke Ikemoto, Hajime Asama, and Tamio Arai

Abstract. In developed countries, an aging society has become a serious issue; many
activities of daily living (ADL) are impaired in the elderly. In order to improve this
situation, it is necessary to develop an assisting method for the human standing-
up motion because it is considered to be an important factor to ADL. It is unclear,
however, how humans coordinate their multiple distributed actuators, muscles, due
to the ill-posed problem of redundant their body system. In this paper, we analyze
the human standing-up motion based on muscle coordinations, called synergies. A
simulation method was developed to make mappings between muscle activations,
joint torque, and the human body trajectory; thus, it can be predicted how modular
muscle coordinations contribute to the motion. As a result, two primary synergies
were extracted and how they coordinate to achieve the motion was elucidated; one
synergy strongly affected joint movements and speed of the motion while bending
the back and lifting the body up, and the other synergy controls their posture after
they lift up their body. These findings could be useful for development of an assisting
robotic system for rehabilitative training based on extracted distributed synergies
from complex redundant human motion.

1 Introduction

In developed countries, a serious issue in healthcare is the aging society. As life
expectancy increases, the ratio of the elderly to younger people has been increasing
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rapidly [1]. This situation has brought problems both to the elderly people and to
caregivers. For the elderly, many activities of daily living (ADL) decline with age:
walking, transferring themselves from the bed or chairs, dressing, and using the
toilet [2]. Subsequently, many informal family caregivers suffer from physical and
mental stress [3]. Therefore, in order to solve those problems, preventive medicine
has become more and more important, with the suggestion that people should train
themselves to stay healthy to avoid the necessity of being taken care of by others. For
preventive medicine, human standing-up motion is considered to be an important
factor; it is reported that elderly people without ability to perform this basic action
have difficulty in mobility necessary for their ADL [4][5].

There have been studies to analyze human standing-up motion based on each
joint angle or joint torque. For instance, according to changes of three joint angles
(ankle, knee, and hip), Shenkman et al. divided human sit-to-stand motion into 4
phases: flexion momentum, momentum transfer, extension, and stabilization phases.
They evaluated each phase in terms of momentum and stability [6]. On the other
hand, Kotake et al. divided human sit-to-stand motion into six stages based on the
angles of the ankle, knee, and hip, and computed the minimum torque of the hip and
knee required to complete the motion [7]. It is unclear, however, how humans ac-
tually coordinate multiple distributed actuators, muscles, to achieve the standing-up
motion. For assisting human daily motions, a robot suite has been proposed [8] to
assist people using biological signals from their body, but suit-type machines need
complex methods for controlling high D.O.F. state values due to redundant body
systems. To avoid this complicated control, and to develop effective assisting ma-
chines, it is absolutely required to consider how human solves the ill-posed problem
and to discover the dominant motion component of this human behavior.

We have focused on control of distributed muscle coordinations, called synergy,
to analyze human standing-up motion [9]. Several researches suggest that training
methods corresponding to muscles coordination are effective to improve motor con-
trol [10][11]; thus, it is important to analyze human standing-up motion based on
synergies. If the standing-up motion can be divided into individual muscles move-
ments that play different roles toward the motion, it will be useful to develop train-
ing or assisting methods. Our objective is, therefore, to extract essential synergies
to control variant muscles in human standing-up motion. Moreover, a model of the
motion is developed to simulate body trajectory from muscle activations in order to
elucidate how each modular muscle synergy coordinates to achieve the motion.

2 Methods

2.1 Experimental Setup

2.1.1 Experiment Overview

In order to extract muscle coordination from human standing-up motion and to de-
velop a simulation model, we performed an experiment to obtain three types of data
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during the standing-up motion. In this experiment, one healthy 22 years old healthy
man participated and 12 trials were obtained.

• Body motion trajectory
• Floor reaction force
• Surface electromyography (sEMG)

The experiment consisted of several trials of the standing-up motion, and at the
beginning of trials, there were some initial conditions for body state of the subject:
angle of his ankle was kept at 80 deg, his arms were crossed in front of the chest,
and his back was straight. Also, the height of the chair used in the experiment was
0.425 m. Data recording of each trial continued for 7 secs and subject would start
the motion approximately 2 secs after the start of recording by receiving a prompt
from us.

2.1.2 Data Measurement

We recorded motion trajectory data at four points of the body using motion cap-
ture machines [HMK-200RT; MotionAnalysis]: ankle, knee, hip, and shoulder
(Figure 1). The sampling rate for this data was 64 Hz and three joint angles,
θi{i= f oot,knee,hip}, were obtained.

(a) (b)

Fig. 1 (a) A motion capture machine with eight cameras [HMK-200RT; MotionAnalysis]
was used in our experiment to record body position. (b) Four points were recorded during the
experiments: ankle, knee, hip, and shoulder.

Reaction forces from both feet and hip were recorded at 64 Hz by two specially
made force plates (Figure 2). There were three force sensors in each corner of the
force plates, and the three vertical forces from one plate were summed up to calcu-
late the reaction force.

Personal-EMG [Oisaka Electroni Device Ldt] was used to record sEMG from
sixteen muscles at 11200 Hz (illustrated in Figure 3-b). Two monopole electrodes
(Figure 3-a) were attached along the axis of the muscle fibers, and distance between
each electrodes were approximately 0.02 m. Muscle activation was recorded with
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Fig. 2 Two specially designed force plates placed at the positions of the feet and hip of
subjects

single differential between two electrodes. The data were filtered with a 10 Hz hi-
pass filter and 50-60 Hz hum noise filter. Moreover sEMG data were filtered by the
smoothing filter calculated by Equation 1 and downsampled to 64 Hz.

EMGi(t) =
∑24

t′=0 EMGi(t− t ′)
25

(1)

(a) (b)

Musculus
Gastrocnemius
(ankle,knee)

Musculus
Tibialis
Anterior
(ankle)

Musculus
Soleus
(ankle)

Musculus
Gluteus 
Maximus
(hip)

Musculus
Latissimus
Dorsi
(hip)

Musculus
Vastus
Lateralis
(knee,hip)Musculus

Quadriceps 
Femoris
(knee,hip)

Musculus
Biceps 
Femoris
(knee,hip)

Fig. 3 (a) Two sEMG monopolar electrode sensors were used to measure each muscle. (b)
Sixteen muscles were measured (eight muscles for the each half body). Above figure illus-
trates positions of measured muscles and joints of muscle attachement.

2.2 Synergy Analysis

2.2.1 Movement Generation

Figure 4 illustrates relationship of inputs and outputs of human body systems to
generate motion. When humans move, the brain sends motor commands into sev-
eral muscles to exert forces of flexion or extension. Next, muscles generate torques
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related to differential of paired antagonist muscles attached to joints, and finally
the human body moves according to its dynamics. In order to discover how dis-
tributed muscle coordination affects human body movement, we developed a simu-
lation method was based on the model described in Figure 4.

Brain

Motor Control

Musculoskeletal 
System

Generation of Tension

Torques

Human Body

MovementMuscle
muscle1
muscle2

muscleN

Fig. 4 The figure indicates model of human body movement. Firstly, brain sends motor con-
trol signals into muscles to exert forces by flexion or extension. Next, each muscle generates
torque to human joints and human body moves according to its dynamics.

2.2.2 Synergy Hypothesis

A synergy hypothes proposed by Bernstein suggests that human complex motion
with redundant active degrees of freedom could be controlled by a relatively smaller
number of degrees of freedom via coordinated activation of several muscles called
synergy [12]. Furthermore, d’Avella et al. developed a synergy model that regards
muscle patterns as a linear combination of several smaller patterns of muscles [13].
In this paper, we adopted this model to analyze the data. In the model, let d be the
number of measured muscles, tmax be a maximum time steps of the obtained sEMG
data and m(t)(d×tmax) be a matrix indicating activation of d muscles during the mo-
tion at time t(0 < t < tmax). This m(t) was approximated by the linear-summation
of time-varying synergies wi(t)i=1,2...N (N is the total number of extracted syner-
gies and the duration time of each synergy is not always the same as tmax) with
non-negative coefficient ci and onset time delay ti as in Equation 2. Although one
pair of specific patterns is extracted from individual person, different motion can
be achieved by changing values of ci and ti for every synergy. When changing ci,
strength of synergies activation can be controlled and the time of starting each syn-
ergy is adjusted by value of ti.

m(t) =
N

∑
i=1

ciwi(t− ti) (2)

2.2.3 Extraction of Synergies

We applied the decomposition algorithm [14] in order to extract synergies from
observed sEMG patterns. This algorithm uses the multiplicative update rule to opti-
mize elements of synergies, wi(t), non-negative amplitude, ci , and onset time delay
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ti. Squared error E2 was used to evaluate error between observed muscle patterns
and generated patterns by the model.

E2 = trace
(
(m(t)−

N

∑
i=1

ciwi(t− ti))
T (m(t)−

N

∑
i=1

ciwi(t− ti))
)

(3)

Also, the cross-validation method was used to determine the number of synergies to
be extracted. The procedure is described as below.

1. The twelve trial of data were randomly divided into four groups
(each group has three trials).

2. The number of extracted synergies was set.
3. Three groups (training group) out of four were used to extract synergies and

the remaining group (testing group) was used to calculate E2. This process was
conducted four times to compute E2 for all four data sets and to calculate R2 by
Equation 4 where S2

M is variance of observed patterns.

R2 = 1− E2

S2
M

(4)

In the procedure, we calculated R2 from obtained trials for the number of synergies,
1–5, in order to determine the minimum number of synergies to express human
standing-up motion.

2.3 Simulation of Body Movement during Standing-Up Motion

2.3.1 Link Model

The model with four links and three joints (described in Figure 5-a) was used to
indicate human body. This model focused on planar movement of body; thus, body
movements of right and left side were averaged together. From the experiment ex-
plained above, three joint angles, θi{i= f oot,knee,hip}, were obtained and every joint
torque, τi(i=ankle,knee,hip), was computed by applying inverse dynamics calculation
(Equation 5-7). In equations, m is mass of i-th link, g is gravity acceleration,
(xn,yn)n=1,2,3,4 is the position of center of gravity of each link, ( fx j , fy j) j=2,3,4 is
the horizontal force and vertical force between link i and link i− 1, I is the inertial
moment, and M is the moment from the center of gravity.

mẍn = fx j− fxi (5)

mÿn = fy j− fyi−mg (6)

Iθ̈i = M− τi− τ j (7)
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Fig. 5 (a) The link model used in our research to express human body. Each link expresses
feet (Link1), lower legs (Link2), upper legs (Link3), and upper body (Link4) and joints be-
tween links are ankle, knee, and hip. (b) indicates variables used in computation of torques.

2.3.2 Estimation of Joint Torque and Angles

In order to understand how human body motion is generated from distributed muscle
movements, neural networks were used to create mappings between sEMG patterns,
and joint torques and between joint torques and angles (Figure 6) [15]. Both neural
networks consist of three layers: input, hidden, and output. Among 7 secs recorded
data, 3 secs were used for the analysis; the time when the shoulders of the subject
reached the highest position was found in all trials, and 1 sec after that point and 2
secs before the point were used. All sEMG, torque, and angle data were normalized
between 0.0-1.0 for the inputs and outputs of the neural networks.

One neural network was used to estimate one joint torque from sEMG patterns re-
garded as motor commands send by the brain. For the inputs of each neural network,
only muscles attached to the joint were used; Figure 3-b illustrates which muscles
are attached to each joint. There are two kinds of muscles: one-articular muscles
and two-articular muscles; for example, musculus quadrcieps femoris was used for
both knee and hip estimation. In addition to the strength of motor commands, both
the length and the speed of muscle expansion and contraction are related to the ten-
sion generated by muscles [16]. Thus, in order to estimate joint torques, not only
EMG patterns but also angle and angular velocity were included as inputs to the
neural network, and a joint torque was obtained as an output signal. There were
thirty-five nodes in the hidden layer of each network, and the back-propagating rule
was adopted for the learning rule of neural networks. When learning phase of the
neural network, angle data obtained from experiments and torque data calculated
from previous session were used. In order to test the accuracy of the estimation,
R2 (Equation 4) was used, where E2 is squared error between obtained data and
estimated data and S2

M is variance of the obtained data. When testing the accuracy,
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cross-validation method was used; observed trials of data were divided into nine
sets of a training data, which were only used for teaching the network and the other
three testing data which were used for calculating accuracy of the model. This was
conducted four times to calculate R2 for all trials.

Human joint angles were also estimated by a neural network. For input signals,
three joint torques τi(t) , joint angles θi(t) , and joint angular velocity θ̇i(t) at time
t were used (where i=foot, knee, and hip). Throughout forty nodes of the hidden
layer, Δθi(t + 1) and Δθ̇i(t + 1) were obtained. For next inputs at time t+1, an-
gle θi(t + 1) and angular velocity θ̇i(t + 1) were added by outputs Δθi(t + 1) and
Δθ̇i(t + 1). Back-propagating rule was used for the learning rule, and in order to test
the accuracy of the model, the same method for torque estimation was used here.

iτ
isEMG

hipknee,ankle,=i

+

+

i

•

θ
+

iθ

+

iθΔ

i

•

Δθ

i

•

θ

iθ

Torque Estimation
Neural Network

Angle Estimation
Neural Network

Fig. 6 The simulation method that estimates human body trajectory from muscle activations.
Neural networks were used for both torque and angle estimations.

2.3.3 Detection of Synergy Contribution to Body Motion

In order to elucidate how extracted synergies affect human motion, the following
procedure was repeatedly performed to simulate how the body trajectory changes
corresponding to weakened sEMG patterns. For the simulation, both the torque and
angle estimation neural networks previously described were used.

1. Weakened sEMG patterns were computed by decreasing ci for the particular syn-
ergy in Equation 2.

2. The torque estimation neural networks output changed torques from the origi-
nally learned data.

3. The angle estimation neural network received changed torques, and it outputted
altered joint angles and angular velocities.

4. Δθi and Δθ̇i were recurrently added into inputs of both neural networks in order
to obtain θ and θ̇ at the next time step.
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3 Results

3.1 Results of Torque and Angle Estimation

Table.1 and Table.2 show the average value and standard deviation of R2 of the
proposed simulation model. Figure 7 indicates examples of both joint torque and
angle estimations from one trial; blue solid line is observed data and red dotted
line is estimated data. They indicates that neural networks can adequately construct
generation of human body movement.

Table 1 Results of Torque Estimation

Average R2 Standard Deviation

Foot Torque 0.60 0.14
Knee Torque 0.80 0.12
Hip Torque 0.73 0.11

Table 2 Results of Angle Estimation

Average R2 Standard Deviation

Foot Angle 0.76 0.32
Knee Angle 0.94 0.15
Hip Angle 0.85 0.19
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Fig. 7 Example of estimation of three joint torques and joint angles from the same trial.
Left three graphs are results of torque extimation and right three graphs are ones of angle
estimation. Blue solid line is observed data and red dotted line is estimated data.

3.2 Results of Synergy Analysis

The synergy analysis and simulation method were applied to the data measured
from one healthy 22 year old man. The number of synergies to be extracted from
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Table 3 Results of the time delay for two
extracted synergies

average time delay standard deviation

Synergy 1 2.9 4.1
Synergy 2 88.2 1.8
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Fig. 8 Results of cross-validation method
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Fig. 9 shows extracted two synergies. From the decomposition algorithm, synergy1 started
at the beginning of the motion and synergy2 started at the middle.

the observed EMG patterns is clarified by cross-validation. The relationship between
mean value of R2 and the synergy number is depicted in Figure 7. It shows that two
synergies are optimal to be extracted; before that number, the slope of the graph
increases rapidly and the slope does not change sharply after that point.

As a result, two synergies were extracted (Figure 9) and Table.3 shows that syn-
ergy1 started at the beginning of the motion, and synergy2 started in the middle
of the motion. In synergy1, all muscles except musculus gastrocnemius were acti-
vated, and in synergy2, musculus soleus, musculus gastrocnemius, musculus biceps
femoris, musculus gluteus maximus, and musculus latissimus dorsi were activated.

Changed joint angles corresponding to weakened synergies are shown in Fig-
ure 10. Each graph shows every joint angle when ci of each synergy is changed to
100%, 70%, 40% and 10%. According to the Figure 10, when synergy1 was weak-
ened, trajectory patterns of every angle were distorted and the timing of each angle
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Fig. 10 Graphs indicate how each joint angle change with weakened synergies. Left three
graphs show values when synergy1 was weakened, and right ones show values when synergy2
was weakened. X-axis represents a time step (1/64 sec) and y-axis represents angle (rad).
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changes was shifted backward; this means synergy1 works to lift the body upward.
On the other hand, when synergy2 was weakened, angle change occurred only at
the end of the motion; it means that synergy2 affected stabilization of their posture
after lifting the body.

4 Discussion and Conclusion

Integrated simulation method to estimate human body trajectory from muscle ac-
tivations was developed. This method consisted of two neural networks; one esti-
mated a joint torque from sEMG patterns, joint angle, and angular velocity, and the
other estimated changes of angle and angular velocity from joint torques, angles,
and angular velocities.

From the results of synergy analysis, it was implied that human standing-up mo-
tion was dominated by two behaviors based on different muscle coordination cor-
responding to bending the back, and lifting up the body and to controlling posture
after returning his back straight. Results of the angle change with weakened syn-
ergies show that when synergy1 was weakened, every angle changes rapidly and
the timing of lifting up was shifted backward. This implies that when synergy1 was
weakened, the subject would take more time to complete lifting up their body com-
pared to when synergy1 was at the maximum level. When examining angles with
weakened synergy2, only changes occurred at the end of the motion. Those differ-
ences show that synergy2 mainly affected keeping the posture stable.

Those findings from the analysis of the human standing-up motion can be used
for controlling an assistive training machine. Figure 11 shows an example of con-
trolling an assisting machine. Since the complex human standing-up motion can
be divided into only two dominant synergies, ”a synergy controller” can compute
necessary muscle activations from difference between desired and actual body tra-
jectories. Then, the controller sends control signals to an assistive training machine
to exert external forces to help people stand-up. However, the developed method
was applied to only one subject in this research and it will be required to test the
efficacy of the suggested method or synergy analysis although the model did not
have a particular assumption for the subject.

Efficient simulation method for human standing-up motion was developed. Joint
torques were estimated from sEMG data, joint angle, and angular velocity based
on the mechanism of torque generation from muscles. Also, he human body trajec-
tory was estimated by the output of neural network using joint torques, angles, and
angular velocities.

To analyze the human standing-up motion in terms of distributed muscle coor-
dination, two synergies were extracted. While one synergy started at the beginning
of the standing-up motion, which mainly activated seven muscles, the other syn-
ergy started at the middle of the motion and five muscles were activated. Synergy1
controls the speed of joint angles or timing of the motion when bending and lifting
up their body and, the other synergy mainly affected the posture of the body after
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lifting up the body. This finding would be helpful for development of an assistive
training machine based on human distributed muscle coordinations.
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Cooperative Grasping and Transport Using
Multiple Quadrotors

Daniel Mellinger, Michael Shomin, Nathan Michael, and Vijay Kumar

Abstract. In this paper, we consider the problem of controlling multiple quadro-
tor robots that cooperatively grasp and transport a payload in three dimensions. We
model the quadrotors both individually and as a group rigidly attached to a payload.
We propose individual robot control laws defined with respect to the payload that
stabilize the payload along three-dimensional trajectories. We detail the design of
a gripping mechanism attached to each quadrotor that permits autonomous grasp-
ing of the payload. An experimental study with teams of quadrotors cooperatively
grasping, stabilizing, and transporting payloads along desired three-dimensional tra-
jectories is presented with performance analysis over many trials for different pay-
load configurations.

1 Introduction

Autonomous grasping, manipulation, and transportation of objects is a fundamental
area of robotics research important to applications which require robots to interact
and effect change in their environment. With recent advancements in relevant tech-
nologies and commercially available micro aerial vehicles (MAVs), the problem of
autonomous grasping, manipulation, and transportation is advancing to the aerial
domain in both theory and experiments. However, individual MAVs are fundamen-
tally limited in their ability to manipulate and transport objects of any significant
size. We address this limitation in this paper and consider the problem of control-
ling multiple quadrotor robots that cooperatively grasp and transport a payload in
three dimensions.
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We approach the problem by first developing a model for a single quadrotor and
a team of quadrotors rigidly attached to a payload (Sect. 3). In Sect. 4, we pro-
pose individual robot control laws defined with respect to the payload that stabilize
the payload along three-dimensional trajectories. We detail the design of a grip-
ping mechanism attached to each quadrotor that permits autonomous grasping of
the payload (Sect. 5). An experimental study with teams of quadrotors coopera-
tively grasping, stabilizing, and transporting payloads of different configurations to
desired positions and along three-dimensional trajectories is presented in Sect. 6.

2 Related Literature

The problem of aerial manipulation using cables is analyzed in [1, 2] with the fo-
cus on finding robot configurations that ensure static equilibrium of the payload at
a desired pose while respecting constraints on the tension. We address a different
problem as the robots use “grippers” that grasp the payload via rigid connections at
multiple locations. The modeling of contact constraints is considerably simpler as
issues of form or force closure are not relevant. Additionally, contact conditions do
not change in our case (e.g., rolling to sliding, or contact to no contact). However,
the system is statically indeterminate and the coordination of multiple robots is sig-
nificantly more complex than in the case when the payload is suspended from aerial
robots. In particular, as the problem is over-constrained the robots must control to
move in directions that are consistent with kinematic constraints.

There is extensive literature on multi-fingered grasping and legged locomotion
that discusses the problem of coordinating robot actuators with kinematic con-
straints [3, 4, 5]. However, our work is different in many ways. First, unlike legs
or fingers, we have less control over the wrenches that can be exerted at each con-
tact. Each robot is capable of controlling propellers to exert wrenches of a fixed
pitch, (i.e., a thrust and a moment proportional to the thrust, both perpendicular to
the plane of the rotor). Second, the robot system can be underactuated if the planes
associated with each rotor are all parallel. In fact, this is generally the case in forma-
tion flight and it may be desirable to grasp the payload at multiple points, allowing
the quadrotors to be in parallel horizontal planes. Third, the control of quadrotors
necessitate dynamic models that reconcile the aerodynamics of flight with the me-
chanics of cooperative manipulation.

In this work we take advantage of the fact that we have access to many rotors to
generate the thrust necessary to manipulate payloads. A similar concept is presented
in [6], where the authors propose control laws that drive a distributed flight array
consisting of many rotors along a desired trajectory. However, our control meth-
ods differ considerably as we are working with quadrotor robots and must derive
feedback control laws based on the control inputs required by these robots. Similar
to the concept of using multiple rotors in a flight array is the development of an
aerial robot with more than four rotors (as in quadrotors), such as the commercially
available Falcon with eight rotors from Ascending Technologies, GmBH [7].
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A gripping mechanism is presented in this work that enables autonomous grasp-
ing of the payload by the quadrotors. Toward this design, we build upon considerable
research in the area of climbing robots which generally rely on clinging to surface
asperities via microspine arrays [8]. Similar designs with microspine arrays enable
aerial vehicles to perch on vertical walls [9]. These robots do not require penetration
to cling to the wall. However, in our work, the normal forces required to grasp ob-
jects are much higher compared to the shear forces that are exerted on the surfaces
interfacing with the spines. Using similar microspine technology, we utilize the ad-
vantages of penetration in softer material such as wood and cardboard to attach to
horizontal planar surfaces.

3 Dynamic Model

3.1 Coordinate Systems

The coordinate systems are shown in Fig. 1. The world frame, W, is defined by
axes xW , yW , and zW with zW pointing upward. We consider n quadrotors rigidly
attached to a body frame, B. It is assumed that the body frame axes are chosen
as the principal axes of the entire system. Each quadrotor has an individual body
frame, Qi, attached to its center of mass with zQi perpendicular to the plane of the
rotors and pointing vertically up. Let (xi, yi, zi) be the coordinates of the center of
mass of the ith quadrotor in B coordinates and ψi be the relative yaw angle. For
this quadrotor, rotor 1 is on the positive xQi-axis, 2 on the positive yQi-axis, 3 on
the negative xQi-axis, 4 on the negative yQi-axis. We require the zQi axes and zB
to be parallel. We use ZXY Euler angles to model the rotation of the body (and
the quadrotors) in the world frame. To get from W to B, we first rotate about zW
by the yaw angle, ψ, then rotate about the intermediate x-axis by the roll angle, φ,

1

2

3
4

Fig. 1 The coordinate systems
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and finally rotate about the yB axis by the pitch angle, θ. The rotation matrix for
transforming coordinates from B to W is given by

WRB =

⎡⎣cψcθ − sφsψsθ −cφsψ cψsθ + cθsφsψ
cθsψ + cψsφsθ cφcψ sψsθ − cψcθsφ

−cφsθ sφ cφcθ

⎤⎦ ,

where cθ and sθ denote cos θ and sin θ, respectively, and similarly for φ and ψ. The
components of angular velocity of the body in the body frame are p, q, and r. These
values are related to the derivatives of the roll, pitch, and yaw angles according to:⎡⎣pq

r

⎤⎦ =

⎡⎣cθ 0 −cφsθ
0 1 sφ
sθ 0 cφcθ

⎤⎦⎡⎣φ̇θ̇
ψ̇

⎤⎦ .

The position vector of the center of mass of the body in the world frame is denoted
by r. The rotation matrix, Euler angles, angular velocities, and position vector to the
center of mass of the ith quadrotor are denoted as WRQi, (φi, θi, ψi), (pi, qi, ri),
and ri, respectively.

3.2 Motor Model

Each rotor has an angular speed ω and produces a vertical force F according to

F = kFω
2. (1)

Experimentation with a fixed rotor at steady-state shows that kF ≈
6.11× 10−8N/rpm2. The rotors also produce a moment according to

M = kMω2.

The constant, kM , is determined to be about 1.5×10−9Nm/rpm2 by matching the
performance of the simulation to the real system.

The results of a system identification exercise suggest that the rotor speed is
related to the commanded speed by a first-order differential equation:

ω̇ = km(ωdes − ω).

This motor gain, km, is found to be about 20 s−1 by matching the performance of
the simulation to the real system. The desired angular velocities, ωdes, are limited
to a minimum and maximum value determined through experimentation to be ap-
proximately 1200 rpm and 7800 rpm.
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3.3 Equations of Motion

Each of the j rotors on each of the the i quadrotors produces a force, Fi,j , and
moment, Mi,j , in the zQi direction. These rotor forces can be rewritten as a total
force from each quadrotor Fq,i as well as moments about each of the quadrotor’s
body frame axes: ⎡⎢⎢⎣

Fq,i

Mxq,i

Myq,i

Mzq,i

⎤⎥⎥⎦ =

⎡⎢⎢⎣
1 1 1 1
0 L 0 −L
−L 0 L 0
kM

kF
−kM

kF

kM

kF
−kM

kF

⎤⎥⎥⎦
⎡⎢⎢⎣
Fi,1

Fi,2

Fi,3

Fi,4

⎤⎥⎥⎦ , (2)

where L is the distance from the axis of rotation of the rotors to the center of the
quadrotor. The total force and moments on the system from the quadrotors in the
body frame coordinates, B, are:⎡⎢⎢⎣

FB

MxB

MyB

MzB

⎤⎥⎥⎦ =
∑
i

⎡⎢⎢⎣
1 0 0 0
yi cosψi −sinψi 0
−xi sinψi cosψi 0
0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣

Fq,i

Mxq.i

Myq.i

Mzq.i

⎤⎥⎥⎦ . (3)

Note that zi is not present in (3) so this formulation allows for quadrotors in different
planes. If we let m be the mass of the entire system and ignore air drag, then the
equations governing the acceleration of the center of mass are simply:

mr̈ =

⎡⎣ 0
0

−mg

⎤⎦+ WRB

⎡⎣ 0
0
FB

⎤⎦ . (4)

The moment of inertia matrix for the entire system referenced to the center of mass
along the xB − yB− zB axes is denoted by I . We assume xB − yB− zB are chosen
such that I is diagonal. The angular accelerations determined by the Euler equations
are:

I

⎡⎣ṗq̇
ṙ

⎤⎦ =

⎡⎣MxB

MyB

MzB

⎤⎦−
⎡⎣pq
r

⎤⎦× I

⎡⎣pq
r

⎤⎦ .

4 Control

4.1 Control Basis Vectors

The linear system in (3) defines four equations with 4n unknowns and can be rewrit-
ten as: [

FB , MxB, MyB, MzB

]
T = Au,
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where A ∈ R4×4n is fixed and determined by the relative positions and orientations
of the n quadrotors. Here u ∈ R4n contains the four control inputs for each of the
quadrotors:

u = [Fq,1,Mxq,1,Myq,1,Mzq,1, ..., Fq,n,Mxq,n,Myq,n,Mzq,n]
T
.

For a system with more than one quadrotor the linear system is underdetermined so
we have a choice on how to achieve net forces and moments on the entire system.
Here we choose an optimal control input u∗ which achieves the desired net force
and moments (F des

B , Mdes
xB , Mdes

yB , and Mdes
zB ) while minimizing the cost function,

J :
u∗ = argmin

u
{J |[F des

B ,Mdes
xB ,Mdes

yB ,Mdes
zB ]T = Au} (5)

where

J =
∑
i

wFiF
2
q,i + wMxiM

2
xq,i + wMyiM

2
yq,i + wMziM

2
zq.i.

A natural way to treat the point-wise minimization of the function J is by choosing
control inputs using the Moore-Penrose inverse. First we define H ∈ R4n×4n so
that J = ‖Hu‖22:

H = diag
(√

wF1,
√
wMx1,

√
wMy1,

√
wMz1, ...,

√
wFn,

√
wMxn,

√
wMyn,

√
wMzn

)
.

After algebraic manipulation we get:

u∗ = H−1(AH−1)+[F des
B ,Mdes

x ,Mdes
y ,Mdes

z ]T

= H−2AT(AH−2AT)−1[F des
B ,Mdes

x ,Mdes
y ,Mdes

z ]T, (6)

where + denotes the Moore-Penrose inverse. It is instructive to the think of the
columns of the matrix H−1(AH−1)+ as control basis vectors uF , uMx, uMy , and
uMz . Then the optimal control input can be written as:

u∗ = [uF ,uMx,uMy ,uMz][F
des
B ,Mdes

x ,Mdes
y ,Mdes

z ]T. (7)

We now consider the special case in which all quadrotors are identical and axially
symmetric meaning roll and pitch can be treated the same way. Indeed this is the
case in our experimental testbed. In this case wFi = wF , wMxi = wMyi = wMxy ,
and wMzi = wMz . Consider the following term from (6) for this case:

AH−2AT =

⎡⎢⎢⎢⎢⎣
n
wF

∑
yi

wF
−

∑
xi

wF
0

∑
yi

wF

∑
y2
i

wF
+ n

wMxy

−∑
xiyi

wF
0

−
∑

xi

wF

−∑
xiyi

wF

∑
x2
i

wF
+ n

wMxy
0

0 0 0 n
wMz

⎤⎥⎥⎥⎥⎦ . (8)
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Here we can assume that the positions of the quadrotors dominate the mass prop-
erties of the entire structure since the quadrotors are heavier than what they can
carry. The x and y locations of the center of mass of the payload and quadrotors
together are close to that of just the quadrotors so

∑
xi =

∑
yi = 0. Additionally,∑

xiyi = 0, as the principle axes of the quadrotors are aligned with the principal
axes of the structure. Therefore, all quadrotors contribute an equal force and yaw
moment to produce a net body force or yaw moment:

uF =
1

n
[1, 0, 0, 0, ..., 1, 0, 0, 0]T

uMz =
1

n
[0, 0, 0, 1, ..., 0, 0, 0, 1]T.

The control basis vectors for moments in pitch and roll reflect the tradeoff between
the weighting factors:

uMx =
1

wMxy

wF

∑
y2
i + n

[
wMxy

wF
y1, cψ1, sψ1, 0, ...,

wMxy

wF
yn, cψn, sψn, 0

]T

uMy =
1

wMxy

wF

∑
x2
i + n

[
−wMxy

wF
x1,−sψ1, cψ1, 0, ...,−wMxy

wF
xn,−sψn, cψn, 0

]T

.

Here, an increase in the cost of individual quadrotor moments relative to the forces,
wMxy/wF , causes the individual body forces used to create a net body moment to
increase and the individual body moments from each quadrotor to decrease. This
ratio allows a user to tradeoff between the individual quadrotor force and moments
used to create body moments in pitch and roll.

4.2 Attitude Control

To control the attitude of the body we use proportional derivative control laws that
take the form:

M des
xB = kp,φ(φ

des − φ) + kd,φ(p
des − p)

M des
yB = kp,θ(θ

des − θ) + kd,θ(q
des − q)

M des
zB = kp,ψ(ψ

des − ψ) + kd,ψ(r
des − r).

(9)

4.3 Hover Controller

Here we use pitch and roll angle to control position in the xW and yW plane, M des
zB

to control yaw angle, andF des
B to control position along zW . This approach is similar

to that used for individual quadrotors in [10, 11, 12]. We let rT (t) and ψT (t) be the
trajectory and yaw angle we are trying to track. Note that ψT (t) = ψ0 for the hover
controller. The command accelerations, r̈des, are calculated from PID feedback of
the position error, e = (rT − r), as:
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(r̈T − r̈des) +Kd(ṙT − ṙ) +Kp(rT − r) +Ki

∫
(rT − r) = 0,

where ṙT = r̈T = 0 for hover. We linearize (4) to get the relationship between the
desired accelerations and roll and pitch angles:

r̈des
1 = g(θdes cosψT + φdes sinψT )

r̈des
2 = g(θdes sinψT − φdes cosψT )

r̈des
3 =

1

m
F des
B − g.

These relationships are inverted to compute the desired roll and pitch angles for the
attitude controller, from the desired accelerations, as well as F des

B :

φdes =
1

g
(r̈des

1 sinψT − r̈des
2 cosψT )

θdes =
1

g
(r̈des

1 cosψT + r̈des
2 sinψT )

F des
B = m(r̈des

3 + g).

We substitute these into (9) to yield the desired net body force and moments. From
these quantities the control inputs for individual quadrotors are computed using the
control basis vectors developed in Sec. 4.1:

u = F des
B uF +M des

xBuMx +M des
yBuMy +M des

zBuMz .

We then calculate the desired angular velocities for each of the 4n rotors from a
linearization of (1,2) about the nominal hovering operating point.

4.4 3D Trajectory Control

The trajectory controller is used to follow 3D trajectories with modest accelerations
so the near-hover assumptions hold. We use an approach similar to those described
in [13, 12]. We have a method for calculating the closest point on the trajectory, rT ,
to the the current position, r. Let the unit tangent vector of the trajectory associated
with that point be t̂ and the desired velocity vector be ṙT . We define the position
and velocity errors as:

ep = ((rT − r) · n̂)n̂+ ((rT − r) · b̂)b̂

and
ev = ṙT − ṙ.

Note that here we ignore position error in the tangent direction by only considering
position error in the normal, n̂, and binormal, b̂, directions. This is done because
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we are more concerned about reducing the cross-track error rather than error in the
tangent direction of the trajectory.

We calculate the commanded acceleration, r̈des, from PD feedback of the position
and velocity errors:

r̈des = Kpep +Kdev + r̈T .

Note that r̈T represents feedforward terms on the desired accelerations. At low ac-
celerations these terms can be ignored but at larger accelerations they can signifi-
cantly improve controller performance. Finally, we use the process described in Sec.
4.3 to compute the desired angular velocities for each rotor.

4.5 Decentralized Control Law

We assume the quadrotors are attached rigidly to the body. As long as each quadrotor
knows its fixed relative position and orientation with respect to the body and the goal
of the body controller (hover location or desired trajectory) then this controller can
be decentralized. If each quadrotor senses its own orientation and angular velocity
then the orientation and angular velocity of the body are calculated as follows:

WRB = WRQi

QiRB and [p, q, r]T = BRQi [pi, qi, ri]
T.

From the position and velocity of the ith quadrotor, the position and velocity of the
center of mass of the body are calculated as:

r = ri −WRB[xi, yi, zi]
T

ṙ = ṙi − ωB ×
(
WRB[xi, yi, zi]

T
)
.

Each quadrotor then runs a local hover or velocity controller along with the attitude
controller (9).

For completely centralized control, the state estimates of the n quadrotors are
combined to create a single estimate of the state of the entire body from which the
control inputs are computed. This averaging reduces the noise on the state estimate
of the entire body and thus results in a cleaner control signal.

For the results presented in this work, we use a combination of the decentralized
and centralized formulations. The position, velocity, and orientation estimates all
come from a single source so the terms in the control input that depend on these val-
ues are calculated in a centralized fashion. The angular velocity is measured directly
onboard each quadrotor so the terms in the control law that depend on the angular
velocity are calculated using the decentralized method.

5 Gripping Mechanism

The gripping mechanism shown in Fig. 2 enables the quadrotors to attach to
and release from the payload. The design is specialized to allow gripping of
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(a) (b)

Fig. 2 Gripping mechanism engaged in wood. The assembly consists of a compliant polymer
with embedded opposed microspines, linkages, and a servo mechanism for engaging and
releasing (Fig. 2(a)). The gripping mechanism is attached to each quadrotor (Fig. 2(b)).

horizontal planar surfaces. This design choice is motivated by the problem defini-
tion, as all quadrotors are expected to attach to parallel horizontal planes with respect
to the payload. It is also desirable for the gripper to be able to engage at any point
on suitable materials. This gripper is designed to penetrate surfaces via opposed mi-
crospines actuated by a servo motor. Opposed spines allow large shear forces, which
in turn allow a large normal force.

The gripper penetrates the surface of an object by driving four hooks into the
plane with a servo motor. The hooks are standard fishing hooks which are acces-
sible, cheap, sharp, and sufficiently strong for use in this application. Locating the
hooks precisely with respect to the quadrotor is important as the the top face of the
object must remain parallel to the quadrotor. To this end, we employ shape depo-
sition manufacturing (SDM) to manufacture the full spine. The resulting compli-
ant polymer spine introduces assistive compliance into the gripper. When the servo
opens the gripper, the polymer acts as a spring that when released, aids the servo in
penetrating the surface. After some penetration is achieved, the piece passes through
its natural state and is stretched in the opposite direction. The piece responds with a
restoring force that assists the servo on releasing the surface. We tested the gripping
mechanism with a number of materials and found it to be effective in grasping soft
to medium hardness woods, cardboard, high density foam, and carpet.

6 Results

In this section we describe results from two experimental trials designed to evaluate
the performance of the controllers described in Sect. 4.3 and demonstrate coopera-
tive grasping, manipulation, and transportation of payloads in 3D.

The hardware, software, and implementation details of the experiments follows.
The position and orientation of the quadrotor is observed using a VICON motion
capture system operating at 100Hz [14]. The position is numerically differentiated
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Fig. 3 Hover performance data for 40 seconds for four configurations. The center dot repre-
sents the mean error and the error bars represent one standard deviation. Graphical depictions
of the four configurations.

Table 1 Mass and Inertia Properties

Configuration Ixx (kg m2) Iyy (kg m2) m (kg)
Line 0.0095 0.73 3.33
El 0.079 0.50 3.33

Tee 0.082 0.43 3.33
Cross 0.11 0.19 3.23

to compute the linear velocity of the robot while the angular velocity is sensed on-
board the quadrotor with a 3-axis rate gyro. The position, linear velocity, and ori-
entation are available to MATLAB via ROS [15] and a ROS-MATLAB bridge [16].
All commands are computed in MATLAB using the latest state estimate at the rate
of the VICON. The commands in MATLAB are bridged to ROS and the most recent
command is sent to the robot via ZIGBEE at a fixed rate of 100Hz. This fixed rate
is due to the limited bandwidth of ZIGBEE (57.6 kbps). Commands sent to the robot
consist of the gains, desired attitude, and thrust values described in Sect. 4.

The first experimental trial consists of a team of four quadrotors rigidly attached
to different payload configurations (see Figures 3 and 5). For this test, we wish to
focus on cooperative manipulation and transportation and as such use a payload
structure built of wood with quadrotors attachments made via Velcro for easy rear-
ranging. The total mass and x and y principal moments of inertia for each configu-
ration (payload and quadrotors) are shown in Table 1. Note that the mass of a single
quadrotor with a battery is about 500 g, so in each of these configurations the total
payload is greater than 1.2 kg.

For each configuration, the control basis vectors are computed as described in
Sect. 4.1 with wMxy/wF = 2. We chose this ratio as our connection to the payload
is stronger in resisting a force pulling it away from a surface than a moment in
pitch or roll. Data for each configuration is shown in Fig. 3. Note that for each
configuration, control along the x axis is intentionally performed with the body
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Fig. 4 Trajectory tracking data for the Cross configuration along a 0.8, m radius circle tilted
at 45◦ from horizontal at 0.6m/s

Fig. 5 Left: Image from an experiment with the gripping mechanism enabling cooperative
grasping, manipulation, and transportation. Right: Four quadrotors carrying a payload in the
El configuration. Videos of the experiments are available at http://tinyurl.com/penndars.

angle corresponding to the larger principal moment of inertia, Iyy . The performance
along the x axis is worse than the y axis as expected. A large moment of inertia
limits the bandwidth of the control on that angle. This decrease in attitude control
performance leads to decreased position control performance along that axis. Here
we note that position control for a single quadrotor is much better than for any of
the multi-robot structures because their moments of inertia are much larger.

The trajectory tracking controller in Sect. 4.4 is implemented on the Cross con-
figuration for which data is shown in Fig. 4. We see that the system performs well
and controls to the desired trajectory in three-dimensions.

The gripping mechanism described in Sect. 5 is used on two quadrotors to pick
up and transport an 0.8m, 320 g structure as shown in Fig. 5. The quadrotors first
descend to the structure and engage the gripping mechanism. The quadrotors ascend
with the structure and fly twice along the same circular trajectory as in Fig. 4 at
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0.5m/s. Finally, the quadrotors descend to structures initial location, disengage the
gripping mechanism, and depart.

7 Conclusions and Future Work

We addressed the problem of controlling multiple quadrotor robots that coopera-
tively grasp, manipulate, and transport a payload in three dimensions. We approach
the problem by first developing a model for a single quadrotor and a team of quadro-
tors rigidly attached to a payload. We propose individual robot control laws de-
fined with respect to the payload that stabilize the payload along three-dimensional
trajectories. We detail the design of a gripping mechanism attached to each
quadrotor that permits autonomous grasping of the payload. We conclude with an
experimental study with teams of quadrotors cooperatively grasping, stabilizing,
and transporting payloads of different configurations to desired positions and along
three-dimensional trajectories.

We are currently working on autonomous system identification methods for mul-
tiple quadrotors picking up payloads with unknown masses and moments of inertia.
We also plan to modify the gripping mechanism design to enable passive engage-
ment so that a quadrotor can simply land on a surface to attach to it.

Acknowledgements. We would like to acknowledge Mark Cutkosky, Alexis Desbiens, Alan
Asbeck, and Ben Kallman for their input in the choice of gripping strategies.
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Cooperative Transportation by Swarm Robots
Using Pheromone Communication

Ryusuke Fujisawa, Hikaru Imamura, and Fumitoshi Matsuno

Abstract. Ants communicate with each other using pheromones, and their society
is highly sophisticated. When foraging, they transport cooperatively with interplay
of forces. The swarm is robust against changes in internal state, and shows flexi-
bility in dealing with external problems. In this brief paper, we focus on the robot
swarm that achieves cooperative transportation making use of ethanol as a substan-
tial artificial pheromone. We also propose a swarm system with a newly developed
algorithm that enables cooperative transportation of real robots. They will transport
food to the nest analogous to the behaviour of a swarm of ants. Emphasis will be
placed on the systematic task solution process. We present a number of experiments
demonstrating the robustness and flexibility of the system and also confirming the
effectiveness of the algorithm.

1 Introduction

1.1 Basic Characteristics of a Swarm

Generally, a swarm is a distributed autonomous system. It acts only according to
local information in the given environment without any global information. An in-
dividual acts autonomously in the swarm, according to the circumstances [1]. Global
behaviour emerges by interactions among individuals. Thus, these interactions are
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fundamental term for formation of the swarm. Living organisms that form swarms
communicate with each other to interact frequently. Therefore, swarms have robust-
ness -a property for adapting to changes in the internal state- and also flexibility -a
property for adapting to changes in the external state (e.g., the environment)[2].

1.2 Pheromone Communication in Ants

The social insects, such as ants and termites, are known to communicate with each
other and form swarms using pheromones [3]. Ants form especially complex soci-
eties [3, 4, 5].

A pheromone is any chemical or set of chemicals produced by a living organ-
ism that transmits a message to other members of the same species [6]. In this pa-
per, we focus on foraging behaviour of ants using a pheromone. When an ant finds
and brings food back to the nest, it secretes a pheromone that forms a trail. The
other ants trace the pheromone trail and reach the food. An ant stops to lay down
the pheromone trail when it cannot find the food. The pheromone trail accordingly
volatilises and/or diffuses into the environment, and thus information meaningless
to the ants disappears. This is a simple but advanced communication method.

Itou et al. reported that the merits of this method are: 1) local and decentralised in-
formation management, and 2) self-propagation effect for information exchange [7].
Thus, pheromone communication is a suitable method for a distributed autonomous
robot system. A number of individuals can converge at the food, communicating
with each other. As each individual shares the purpose of action, i.e., collecting
food, there is an interplay of forces that drive cooperative transportation. Each in-
dividual acts in accordance with a very simple corrective model, but the swarm
shows advanced behaviours. Thus, “pheromone communication in the ant colony”
and “emergence of cooperative transportation by interplay of forces” are useful to
apply to robotics. Once we provide swarm robots with functions of task solution,
the robots spontaneously find a method by interaction with each other, which is of
remarkable significance.

1.3 Related Studies and Issues

Several studies, such as those of Sugawara et al. [8] and Garnier et al. [9], have
demonstrated swarms of robots achieving foraging behaviour of ants with a vir-
tual pheromone. In these studies, however, the swarm is inevitably non-autonomous
in that it requires an external measurement system composed of a projector and a
camera. Using substantial pheromones to control the robots is required to make the
swarm autonomous.

Shimoyama et al. [10] achieved pheromone tracking behaviour using real in-
sect antenna and substantial pheromone, but biomaterials cannot be handled easily
by swarm robots. In addition, Shimoyama et al. did not pay particular attention to
the swarm behaviour. A number of problems remain to be resolved in pheromone
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communication robotics. Diffusion, an important factor for pheromone communica-
tion, is just one of these problems. To adjust the duration of the pheromone signal, it
is necessary to change the concentration of a pheromone and/or mix with some other
substance(s). In addition, only a few advantageous chemical sensors are available
at present. Purnamadjaja et al. [11] studied swarm robots that communicate using
two chemical substances, regulating a gas sensor in a sophisticated manner. How-
ever, as only one robot secretes the pheromone, this system achieves only one-sided
communication.

There have been some studies on cooperative transportation by swarm robots.
Dorigo et al. [12] developed a swarm robot system, “Swarm-bots”, in which each
robot has a grasping mechanism connecting the individual robots, which enables the
robots to run through a gap or a trench. They accomplish cooperative transportation
with the interplay of forces [13]. The robot itself and/or packages to be transported
emit light, and the robots recognise what they should transport. Kube et al. also
accomplish cooperative transportation of swarm robots [14]. The robots recognise
the target to be transported with the installed light receiving element. These studies
focused on the interplay of forces, but did not pay a great deal of attention to the
indirect communication to advance emergence.

In our previous study, we achieved pheromone communication of swarm robots
for recruitment behaviour [1]. In the present study, we propose cooperative trans-
portation using pheromone communication as seen in ants. Experiments with the
newly developed swarm robots indicated the effectiveness of pheromone communi-
cation in cooperative transportation, and suggested the robustness and flexibility of
the swarm.

2 Swarm Behavior Algorithm

2.1 Swarm Behavior as Deterministic Finite Automaton

We have also been investigating a transportation algorithm. The result of previous
studies [1, 15, 16, 17] will be applied to the new algorithm logic presented below. In
previous studies, we focused on pheromone communication. Here, we concentrate
on cooperative transportation with pheromone communication as seen in ants. The
algorithm is described by the deterministic finite automaton shown in Fig. 1. The
robots act in a completely autonomous manner by this algorithm. This algorithm
premises that swarm robots search for food in a given field, and transport the food
to the nest.

To design this algorithm, we defined 6 internal states, Si(i = 1, · · · ,6); 10 percep-
tual cues (stimuli), Pi(i = 1, · · · ,10); and 6 effector cues (actions), Ei(i = 1, · · · ,6).
We also assumed that there are many robots in the field, and that all agents can de-
tect the direction of the nest as in the case of ants. As shown in Fig. 1, the agent
whose state is Si selects the action Ei. If the agent in state Si detects the perceptual
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Fig. 1 Algorithm for cooperative transportation using pheromone communication

cue Pj, the state of the agent is transited to Sk. The details of the internal states Si of
the robot, perceptual cues Pi and effector cues Ei are as follows.

Si: S1, Search: the agent does not have any information on the food; S2, Attrac-
tion: the agent has the location information on the food; S3, Tracing: the agent has
only the direction information on the location of the food; S4, Pre-transportation:
the agent has the location relationship of the nest and the food. As each robot can
only push (not pull), it needs to run around the food so that the latter is on the line
between the former and the nest; S5, Transportation: the robot pushes the food; S6,
Pre-attraction: when the food will not move, the robot runs around it to find the way
and returns to the nest.

Pi: P1, Contact with food; P2, Nest arrival; P3, Presence of pheromone; P4, Time-
out occurrence; P5, Losing pheromone trail; P6, Completion of running around the
food; P7, Necessity of direction adjustment during transportation; P8, Impossibility
of transportation; P9, Contact with other object (a wall or other robots); P10, Com-
pletion of collision processing.

Ei: E1, Random walk; E2, Pheromone secretion; E3, Following the pheromone
path; E4, Running around the food (to get behind it and on the line between the food
and the nest); E5, Pushing the food; E6, Running around the food (to go to the nest).

2.2 Collision Processing

The robot perceives its external environment by contact with object(s), and acts in
accordance with the collision algorithm shown in Table 1. The improvement of the
previously developed collision algorithm [1] enabled us to avoid traffic jams on the
pheromone trail. In addition, as the robots always make contact with each other dur-
ing cooperative transportation, collision processing is not executed at the state S5.
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Table 1 Behaviour selection of algorithm for cooperative transportation after collision

Collision Processing Contact position Robot’s behaviour after making contact with other object

Collision Processing [1]
front rotation on-site after disengaging from contact point by reversing
back rotation on-site after disengaging from contact point by proceeding

Collision Processing [2]
front stop on-site
back disengaging from contact point by proceeding

Collision Processing [3] entire circumference disengaging from contact point by reversing

Collision Processing [4]
front disengaging from contact point by reversing
back disengaging from contact point by proceeding

Collision Processing [6]
front disengaging from contact point by reversing
back disengaging from contact point by proceeding
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Fig. 2 Construction of the robot developed here (ARGOS01)

3 Construction of Robot

Figure 2 shows our newly developed swarm robot, ARGOS01. The robot has two
active wheels and four castors. Its active wheels can be controlled independently
so that the robot can move on a flat plane. The specifications of ARGOS01 are
as follows: body diameter, 150 [mm]; height, 195 [mm]; weight, 1.26 [kg]; and
maximum speed, 0.1 [m/s]. It has a Ni-MH battery (7.2 [V], 3900 [mAh]) at its
centre. Four microcontrollers (Cypress Semiconductor) are installed in the robot. Its
master controller is connected to 2 slave controllers by I2C, and these three process
the data from the sensors and control the motors. The other microcontroller sends
the internal state to an external computer, which is used only to observe the internal
state and swarm behaviour of the robots.

To implement the algorithm described in 2.1, a robot needs sensors to detect
10 perceptual cues (Pi (i = 1, · · · ,10)), and actuators or mechanisms to carry out 6
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effector cues (Ei (i = 1, · · · ,6)). The following are the sensors and actuators installed
on the robot.

• Nest sensor: detects the direction of the nest with infrared lamps.
• Touch sensor: detects contact with other objects.
• Photoreceptor unit: detects food (the food emits light by blue LED).
• Rotary encoder: detects success/failure of transportation.
• Alcohol sensor: detects pheromone.
• Pheromone secretion mechanism: lays down a pheromone trail.

The robot detects a collision with push switches at the side of its body. The food
has blue LEDs at all around the body. With its photoreceptor unit, the robot looks
for an object with LED light, and identifies it as food at contact. Based on the re-
sults of the previous experiments, we set the perceptible distance of the robot as
around 300 [mm]. Rotary encoders at motors are used to detect the transport state.
In this study, instead of a biological pheromone, we used ethanol, which is a volatile
substance similar to the trail pheromone. The robot has alcohol sensors to detect
the pheromone trail on the experimental field. A micropump on the robot secretes
ethanol from the installed 50 [ml] tank.

The robot is composed of four layers supported by spacers. The first (bottom)
layer has DC motors with a rotary encoder, alcohol sensors and an ethanol vent.
The system substrate, the sensor substrate for the photoreceptor units and touch
sensors, and the power and wireless communication substrate are installed at the
second layer. The third layer has a micropump and a tank to secrete ethanol. The
fourth (top) layer has the nest sensor to determine the direction of the nest.

4 Experiments and Results

Applying the designed swarm behaviour algorithm to the robot system, we have ver-
ified the effectiveness of pheromone communication in cooperative transportation.
Figure 3 shows the experimental field: a 3,600 [mm]×1,800 [mm] 2D flat plane
surrounded by walls. The diameter of the food is 300 [mm] and that of the nest is
900 [mm]. Considering the perceptible distance of the robot, we set as the perceiv-
able area of the robot a circle of radius 450 [mm] with the food at its centre. If the
robot goes into the perceivable area, it can detect the direction of the food and make
contact. As this study focused on cooperative transportation by the swarm robots,
the weight of the food should be heavy enough so that one robot cannot move it
by itself; we set the weight as 3.58 [kg]. This weight requires the cooperation of at
least three robots. The transportation distance is 2,000 [mm]. We define a task solu-
tion when the robots transport the food to the nest. To trace the pheromone (100%
ethanol) trail, we set a threshold on a value detected by the alcohol sensor. We set
the signal duration time to trace the pheromone trail as 3 minutes. As a result of
these settings, the robot continues to trace the pheromone trail for 3 minutes. The
robot can lays down 5 trails in an experiment. When tank is empty, we change the
robot with reserve robots. If the robot depletes the pheromone (ethanol), we change
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the robot to continue the experiment. We also define that the robot recognises the P8

(impossibility to transport) 20 [s] after starting pushing the food.
Figure 4 shows the results of an experiment with 10 robots. A, B and C are nor-

mal camera images; and A’, B’ and C’ are thermographic images, which allow us
to distinguish the pheromone trail with its lower temperature caused by heat evap-
oration of ethanol. The robots had laid down the pheromone trail at 10 [min]. At
20 [min], they had finished transporting the food to the nest in a concerted manner.
The results of the experiment clearly showed both that the robots achieved coop-
erative transportation using the pheromone trail and that our new swarm behaviour
algorithm works effectively. In the next chapter, setting the task solution time as the
evaluation index, we will consider the robustness and flexibility of the swarm.

4.1 Effect of Pheromone Communication

We performed an experiment to determine the effectiveness of the pheromone com-
munication on cooperative transportation. Figure 5 shows the relationship between
task solution time [with or without pheromone communication] and the number
of individuals; the vertical axis represents the average task solution time of 10 tri-
als, and the horizontal axis represents the number of robots used. Error bars show
the maximum and minimum in the experiments. With four or seven robots, the
task solution time with pheromone communication was shorter than that without
pheromone. The pheromone communication was effective when the density of the
robots was low in the field. With a high density (10 robots) in the field, pheromone
communication did not strongly influence the task solution time. This indicated that
pheromone communication is not always necessary for cooperative transportation

450 mm
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2000 mm

3600 mm

900 mm

1800 mm
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Food perceptible area
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150 mm

Robot

Fig. 3 Plane view of experimental field
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Fig. 5 Experimental result comparing cases with and without pheromone communication

when a sufficient number of robots are in the field as many robots find the food and
begin cooperative transportation before laying down the pheromone trail.

Table 2 shows the average time of each event of 10 trials. When only a few robots
(4 robots) are in the field; we found a marked difference between pheromone and
non-pheromone communications. Without the pheromone communication, as the
robots depend completely on the random walk to congregate at the food, they take
a great deal of time to start pushing the food. With pheromone communication, it
attracts the robots and they can begin to transport the food quickly. However, there
were no clear effects of pheromone communication with ten robots in the field for
the same reason as described above for the case of the task solution.
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Table 2 Comparing average times of transportation starting in cases with and without
pheromone communication

number of robots
pheromone 4 robots 7 robots 10 robots
With 625 [s] 335 [s] 361 [s]
Without 1057 [s] 612 [s] 355 [s]

Fig. 6 Experimental result for robustness (percentage of disable robots : 2/7)

4.2 Robustness of the Swarm

To demonstrate the robustness of the swarm robots, we performed an experiment
similar to that described above in 4.1 with seven robots using pheromone commu-
nication. During cooperative transport, we stopped two robots (S5) in the swarm to
determine whether the robots keep functioning as a swarm even when the swarm
loses its soundness.

Figure 6 shows the typical experimental result. The vertical axis represents the
percentage of internal states of the robots in the swarm, and the horizontal axis rep-
resents the experiment time. Light grey indicates that the robot is in state S1 (search),
horizontal stripes indicate S2 (attraction) and S6 (pre-attraction), black indicates S3

(Tracing), dark grey indicates S4 (transportation) and S5 (pre-transportation). The
disabled robots are indicated by diagonal stripes.

The elapsed time until the robots begin each action is shown in Table 3. Eighty-
nine seconds after the start of the trial, a robot found the food and tried to transport it
to the nest (Fig. 6-A). Four robots were attracted at the same time by the pheromone
trail laid down by the first robot. As a result, four ¡five?¿ robots transported the
food, using pheromone communication. When the food began to move (Fig. 6-B),
we stopped two of the robots from functioning so as to impede cooperative trans-
portation. The five robots still performed repeated actions of attraction, tracing and
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Table 3 Events of robustness experiment

event detail time
A finding food 89 [s]
B starting transportation 309 [s]
C task completed 2,990 [s]

transportation. At around 2,100 [s], all of the robots took part in transportation, and
they successfully brought the food to the nest at 2,990 [s] (Fig. 6-C). Our interven-
tion did not affect the systematic function of the swarm.

The results of this experiment indicated that this swarm robot system is robust
against internal variation. However, it should be noted that this robustness is de-
rived from system redundancy, i.e., there needs to be more robots than required to
complete the task.

4.3 Flexibility of the Swarm

To determine the flexibility of the swarm, we performed an experiment with seven
swarm robots implementing cooperative transportation using pheromone communi-
cation. At 60 [s] after starting cooperative transportation, we changed the weight of
the food from 3.58 [kg] to 5.28 [kg], transportation of which requires at least four
robots. Figure 7, which has the same axis representations and colour patterns as Fig.
6, shows the experimental results. Table 4 shows the elapsed time in the same way
as in Table 3. A robot found the food and began trying to transport it at 233 [s]
(Fig. 7-A). The robots laid down pheromone trails four times before the first coop-
erative transportation by three robots at around 600 [s]; soon after this, four robots
were attracted at the same time (Fig. 7-B). Sixty seconds after smooth transporta-
tion started, we increased the weight of the food at 762 [s] (Fig. 7-C). Transportation
stopped due to a lack of sufficient number of participants. However, the robots soon
laid down the pheromone trail again at around 800 [s]. As a result of this, five robots
aggregated, and they began to move the food again at 923 [s] (Fig. 7-D). At 1,509
[s], having transported the food to the nest, they had completed the task (Fig. 7-E).

Table 4 Events of flexibility experiment

event detail time
A finding food 233 [s]
B 1st transportation start 702 [s]
C changing food mass 762 [s]
D 2nd transportation start 923 [s]
E task completed 1,509 [s]

Changes in the external state did not cause any systematic problems for the swarm
robots, and they dealt with the changes in a concerted manner. Thus, our newly
developed robots possess both robustness and flexibility as a swarm.
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Fig. 7 Experimental results of flexibility experiment

5 Conclusion

As mentioned in 4.1, pheromone communication contributes to a reduction in task
solution time, especially when the density of the robots is relatively low as shown
in Fig. 5. This suggests the effectiveness of pheromone communication. Even when
there are only a limited number of swarm robots in a given environment, they can
solve the cooperative transportation task by making use of pheromone communica-
tion. This means that the effectiveness of pheromone communication is dependent
on the density of individuals in the environment.

As shown in Fig. 6, the robustness is likely mainly due to redundancy, which also
provides the swarm with flexibility (Fig. Fig. 7). When a swarm is not redundant,
the swarm robots could solve a task, but they would still hardly shift smoothly to
a new task, such as approaching another food. Our future studies on swarm robots
will aim to clarify two crucial interrelationships: i.e., those among simultaneous
multitask processing, the swarm behaviour and its redundancy, and those among
robustness, flexibility and redundancy.
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Socially-Mediated Negotiation for Obstacle
Avoidance in Collective Transport

Eliseo Ferrante, Manuele Brambilla, Mauro Birattari, and Marco Dorigo

Abstract. In this paper, we present a novel method for performing collective trans-
port in the presence of obstacles. Three robots are physically connected to an object
to be transported from a start to a goal location. The task is particularly challenging
because the robots have a heterogeneous perception of the environment. In fact, the
goal and the obstacles can be perceived only by some of the robots. Hence, the task
requires appropriate negotiation of the direction among the robots. We developed a
novel negotiation strategy in order to tackle this challenge. We perform experiments
in simulation. In the experiments, we analyze efficiency in an environment with only
one obstacle, and robustness in an environment with several obstacles.

1 Introduction

The ability of robots to move in a coordinated fashion is of central importance for
the multi-robot research community. Research in coordinated motion can be divided
in two categories. In the first category we find works in multi-robot formation, were
no physical connection between robots is assumed. In the second category, we find
works in collective transport and coordinated motion where there is a physical con-
nection between the robots or between the robots and the object to be transported.

Works in multi-robot formation have been documented in some surveys [1, 2],
where the authors compare centralized vs. decentralized approaches. The most
studied decentralized method in this area are social potentials [3] and artificial
physics [4].

In collective transport, a group of robots has to cooperate in order to transport an
object that, because of its weight, cannot be transported by a single robot. The task
we are interested in is particularly challenging because communication between the
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robots is only local, robots have no access to global information and they coordinate
using a decentralized approach.

Several works on collective transport were developed using centralized ap-
proaches like leader-following behaviors. In these works [5, 6, 7], a group of robots
is able to collectively push/pull an object. In order to coordinate their movements,
the robots follow a leader that has the knowledge of the goal area or of the path.

Balch [8] was one of the first to study the impact of communication in multi-robot
systems. Later, Donald et al. [9] and Yamada et al. [10], studied collective transport
with limited communication. In the first work [9], robots had to transport an object
without a goal location, whereas in the second work [10] robots had to carry an
heavy object towards a common goal determined by a light emitter (photo-taxis).

Campo et al. [11] investigated the use of goal negotiation strategies for perform-
ing collective transport to a given goal location. The robots used by the authors had
only a noisy perception of the goal, or they were not able to perceive the goal at
all. Furthermore, each of the robots used LEDs and an on-board camera to perceive
the orientation of the other robots, and used this information to compute an average
direction of motion.

Groß and Dorigo [12] used artificial evolution to synthesize a neural network to
achieve collective transport. Their robots were able to cope with objects of different
size and weight as well as with groups of different size (from 4 to 16). The authors
were able to obtain three different transport strategies. In the first one, the robots
directly connect to the object and pull it. In the second one, the robots connect to
each other (self-assembly) and to the object in order to pull it. In the third strategy,
the robots create a physical loop around the object. This last strategy involves a high
number of robots and a small (but heavy) object.

Trianni et al. [13] studied a task similar to obstacle avoidance in collective trans-
port. They call it collective hole-avoidance. In their task, robots are physically con-
nected to each other, and they have to navigate in an environment with holes. The au-
thors used artificial evolution for the synthesis of robots’ neural network controllers,
and studied different communication strategies among the robots: no direct commu-
nication, handcrafted signaling and communication induced by artificial evolution.
Differently from the work described in this paper, in Trianni et al. [13] no object had
to be transported. Furthermore, the robots did not have a specific goal direction on
where to go but they were rather exploring the environment while avoiding holes.

Baldassarre et al. [14] studied a task similar to the one studied by in Trianni et
al. [13]. In their study, physically connected robots collectively navigate in an en-
vironment with obstacles, furrows and holes and a light source to be found. The
authors used artificial evolution to synthetize a behavior able to integrate these three
sub-behaviors in a coherent fashion: collective motion, collective obstacle avoid-
ance and collective light approaching. However, the synthetized behavior heavily
exploited the traction sensor, a specialized sensor that is able to detect forces exerted
by the connected robots and that might not be available on all robotics platforms.

In this paper, a group of three simulated robots have to transport an object from
a start to a goal location in an environment with obstacles. Almost all tasks studied
so far in the literature consider collective transport in an obstacle-free environment
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(a) (b)

Fig. 1 Picture of the simulated foot-bot (a) and of the hand-bot, which is the irregularly
shaped object to be carried (b)

where a goal location is given, with two notable exceptions. In Trianni et al. [13], the
environment is cluttered but a goal direction is not given. In Baldassarre et al. [14],
both elements can be present at the same time but the synthesized solution, rather
than exploiting direct local communication, uses instead indirect communication
via specialized hardware. In this paper, we propose a novel negotiation strategy
for collective transport in presence of both obstacles and of a goal. The proposed
negotiation strategy is based on local direct communication.

The remaining of the paper is organized as follows. In Section 2, we describe
the task and the simulated robots. In Section 3, we describe the method we propose
to design the controller. In Section 4, we present experimental results, whereas in
Section 5 we conclude and sketch possible future works.

2 Task Definition

A group of three identical simulated mobile robots (like the one depicted in Fig-
ure 1a) attach to an irregularly shaped object (b). The task is to collectively transport
the object from an initial to a goal location. The robots we used are modeled after
the foot-bot robot [15], developed within the Swarmanoid project1. The irregularly
shaped object is an object which cannot be grasped through its entire perimeter but
only in certain regions. In our case, it is another simulated robot of the Swarmanoid
project, the hand-bot (Figure 1b) [16]. This robot is a manipulator that does not have
locomotion capabilities and thus needs to be carried by the foot-bots. In this task,
the hand-bot is passive during the entire process.

1 http://www.swarmanoid.org

http://www.swarmanoid.org
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The environment is an arena where a number of cuboid-shaped obstacles are
present, each with an arbitrary position and orientation. Each of the three simulated
mobile robots is equipped with a number of sensors and actuators. We considered
and used only the following sensors and actuators: i) a light sensor, that is able to
perceive the intensity of the light coming from different directions around the robot;
ii) a distance scanner, that is used to obtain distance and angular values from the
robot to other objects in the environment [17]; iii) a range and bearing communica-
tion system, with which a robot can send a message to other nearby robots in line of
sight [18]; iv) a gripper, that is used to physically connect to the transported robot
considered in the experiment; v) a turret actuator which, when set to active mode,
can be used to rotate the gripper installed on a rotating ring or, when set to passive
mode, can freely rotate in accordance with the speed of the wheels when the gripper
is gripping an heavy object; vi) a wheels actuator, that is used to control indepen-
dently the speed of the left and right wheels of the robot. The light sensor and the
distance scanner sensor are not perfect but subject to a certain degree of noise. The
range and bearing communication device can perceive messages coming from up to
4 meters away, more than enough to guarantee communication between the robots
when connected. The distance scanner has a range of 1.5 meters.

In the experiments, we also place a light source in a fixed position in the envi-
ronment behind the goal area. The light source has a high intensity such that it can
be perceived by all the robots. The aim of the light source is to act as a common
environmental cue, which is used as an implicit and shared reference frame by the
robots.

For the sake of simplicity, the robots use the direction of the light source as the
goal direction, that is they perform photo-taxis. Since the proposed methodology
is not restricted to this case, in Section 3 we consider the goal direction and the
environmental cue (or light) direction as two separated concepts. In the case where
the goal direction is different from the light direction, the robot might need to be
equipped with a separate sensor to detect the goal direction.

The presence of obstacles and the need to move to a given goal location create
the need of handling conflicting individual decisions, which can be produced due to
the non uniform perception of the environment.

For each individual robot, information of the following nature can be available at
a given time:

No information: The goal is not perceived, for example because occluded by ob-
stacles, and no obstacles are perceived as well.

Goal only: Only the goal is perceived, hence the robot moves towards it.
Obstacle only: The robot does not perceive the goal. However, it perceives an

obstacle, hence it has to avoid it. At the same time, it has to inform other robots
about the obstacle avoidance direction.

Goal and obstacle: The robot perceives both the goal and an obstacle. The direc-
tion of movement, considered by the robot and communicated to the other robots,
has to take into account both these elements.



Socially-Mediated Negotiation for Obstacle Avoidance in Collective Transport 575

Table 1 Explanation of the notation used to describe the two behaviors

Notation Meaning Behavior
θP Preferred direction when in Sstubborn state Social mediation
θS Socially mediated angle θS ← � ∑k

i=0 e jθi Social mediation, collective
transport

θ0 Direction sent by social mediation behavior: θS in
Ssocial state or θP in Sstubborn state

Social mediation

θ1 . . .θk Direction received from the k neighbors Social mediation
θG Goal direction Collective transport
θCO Obstacle direction Collective transport
θOA Obstacle avoidance direction. It has to take into ac-

count also θG if the goal is perceived.
Collective transport

θF Direction of the shared environmental cue. All
other directions are always relative to this

Collective transport

θ S Weighted time average of θS Collective transport

We now have all the elements to introduce the method we propose for tackling this
task.

3 Method

In this section we first introduce the main idea behind the proposed method. Sub-
sequently, we present the collective transport behavior, which we decomposed into
three sub-behaviors: go to goal, obstacle avoidance and social mediation.

In the following, we will use a certain notation to denote directional information
used in the behaviors. This is explained and summarized in Table 1.

The low level behaviors go to goal and obstacle avoidance are used as follows.
The go to goal behavior is used to query sensors and to obtain a goal direction,
denoted as θG; the obstacle avoidance behavior is used to detect the presence of
obstacles and the angle θCO of the closest one. The social mediation and collective
transport behaviors are the core focus of the proposed method.

The social mediation behavior, explained in Section 3.1, is used to negotiate the
direction to be followed in collective transport. This is needed since, as explained in
Section 2, different robots in the group can have access to conflicting information,
for example one might perceive the goal as well as an obstacle while the others
might perceive just the goal. Furthermore, when two or more robots perceive an
obstacle, they can perceive it from different angles.

Once a collective decision has been made on the direction to be followed, this is
used by the collective transport behavior, explained more in details in Section 3.2.

3.1 Social Mediation

The social mediation behavior is responsible for the negotiation of the direction
of motion. The behavior uses the directional information given by θS and θP: θS
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represents a socially mediated heading direction and θP the robot desired heading
direction. The main idea behind the algorithm is the following. When a robot in the
group has no information (i.e., it does not have any information on the goal or on
the obstacles), it has an internal state set to Ssocial. In this state, the robot acts as a
repeater, that is, it computes θS, the average of the direction information available to
its neighbors, and it sends this value around. However, when information (such as
on the obstacle) is available to the robot, its internal state is set to Sstubborn. In this
state, it will relay its own preferred direction θP (for example the obstacle avoidance
direction) instead of θS. When all other robots are still sending θS, the opinion of the
stubborn robot will soon diffuse in the entire group, that is θS through the group will
converge to θP. The internal state of this behavior can be changed only by the overall
collective transport behavior, as explained in Section 3.2. Algorithm 1 depicts the
steps executed at every control step.

Algorithm 1. Social mediation control loop

1: Receive(θ1,θ2, . . . ,θk)

2: θS ← � ∑k
i=0 e jθi

3: if state = Ssocial then
4: θ0 = θS
5: else
6: θ0 = θP
7: end if
8: Send(θ0)

At the beginning of the control loop, the robot receives the heading direction in-
formation θ1,θ2, . . . ,θk of its neighbors, where k is the number of neighbors. Com-
munication is restricted to all neighboring robots in line of sight [18], as we are
using the range and bearing communication mechanism. Due to this restriction, the

Fig. 2 The carried robot and the carrying robots. The circular arrows show the area of the
distance scanner which is active for sensing, whereas dashed straight arrow show the line of
sight communication relationships.
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robot attached at the center has k = 2 neighbors, whereas the other two have k = 1
neighbor (see Figure 2). The socially mediated heading θS is computed by averaging
the directional information ( � means “the angle of”) received by the neighbors (line
2), with the robot’s own information θ0.

By using the mechanism depicted above, we are solving the issue of how to
diffuse a heading direction information, perceived only by one robot, through the
entire group, without the need of special signaling. This allows all robots in a group
to be aware of the avoidance direction of an obstacle, even if only one member of
the group can perceive the obstacle.

In the following section, we describe how this mechanism is used to achieve
effective collective transport with obstacle avoidance.

3.2 Collective Transport and Obstacle Avoidance

In this section we present the behavior responsible for collective transport with ob-
stacle avoidance. This behavior uses the directional information computed in the
social mediation behavior. In this behavior, θO denotes the direction of the obstacle
(if perceived), θG denotes the goal direction (if the goal is perceived) and θOA de-
notes the obstacle avoidance direction (see table 1 for a summary). This directional
information is always considered as relative to the direction of the shared environ-
mental cue, denoted with θF and represented in our case by the light source.

Algorithm 2. Collective transport control loop

1: [θG,goalPerceived]← PerceiveGoal()
2: [θCO,d,obstaclePerceived]← PerceiveObstacle()
3: if goalPerceived or obstaclePerceived then
4: SocialMediation :: state← Sstubborn
5: else
6: SocialMediation :: state← Ssocial
7: end if
8: if goalPerceived then
9: SocialMediation :: θP ← θG

10: end if
11: if obstaclePerceived then
12: if goalPerceived then
13: w←− d

min(d,dmax)
+1

14: else
15: w← 1
16: end if
17: θOA ← � w · e jθO+π +(1−w) · e jθG

18: SocialMediation :: θP ← θOA
19: end if
20: SocialMediation :: ControlStep()

21: θS ← � (1−α) · e jθ S +α · e jθS

22: MotionControl(θS)
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At the beginning of Algorithm 2, sensors are queried to detect whether the goal
and/or obstacles are perceived (lines 1-2). The corresponding directions θG, corre-
sponding to the goal direction, and θCO, corresponding to the angle of the closest
obstacle, are also queried.

According to the information available to the robot (see Section 2) the internal
state of the social mediation behavior is set (lines 3-7). If the robot perceives an
obstacle with its distance scanner its state is set to Sstubborn. The same happens when
the robot perceives the goal. In all other cases, that is when both the goal and the
obstacles are not perceived, the state is set to Ssocial.

If the goal is perceived, the robot simply informs the others about the goal by
setting its desired direction θP to the goal direction θG (line 9).

In case an obstacle is perceived two things can happen. If no goal direction θG is
available, the robot simply tries to avoid the obstacle using the angle θOA = θCO +
π and by setting w = 1 (line 15). If, however, both the obstacle and the goal are
perceived, the robot needs to compute the desired direction according to this two
pieces of information: θO and θG are thus averaged using a weighted average and
the result is assigned to θOA (lines 17). The weighted average uses a weight w ∈
[0,1] dependent on the distance between the robot and the obstacle (line 13) which
represents how urgent it is to avoid obstacles: it is 1 when the obstacle is very close
(d = 0) and 0 when it is far away (d = dmax, the maximal perception range of the
obstacle avoidance behavior). We set dmax = 0.75 meters, half of the maximal range
of the distance scanner, and we use the min operator to avoid negative values for w.
The angle θOA is then assigned to the desired direction θP of the social mediation
behavior (line 18).

Once θP is computed, the control step of the social mediation behavior is exe-
cuted (line 20). As a result, the angle θS is computed by the social mediation behav-
ior. This angle is then filtered by computing a time average (line 21) to filter out the
effect of noise.

Finally, the motion control logic uses the filtered socially mediated direction θS

as a reference direction to be followed. The robot first converts the socially mediated
direction to its local frame of reference using the common environmental cue direc-
tion θF . All robots then compute the left and right wheels speed in the following
way:

NL = u+ωb , NR = u−ωb , ω = Kpθ S,

where NL, NR are the wheels rotation speed of the left/right wheel speed respectively,
b is the distance between the center of the robot and each of the wheels, u and
ω are the forward and angular velocities respectively. The forward velocity u is
kept constant, whereas we vary the angular velocity ω proportionally to the socially
mediated direction θ S to be followed, where Kp is a proportional factor (we assume a
clockwise convention for the angles). Furthermore, the motion control rule considers
the robot attached to the left as the left wheel of the compound system and the robot
attached to the right as the right wheel. This assumes that the two robots have always
the direction of the wheels axis parallel to each other and it is ensured by the fact
that we set the turret to active mode. Hence, the robot attached to the left of the
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compound will set both wheels speed to NL, whereas the robot to the right will set
them to NR. The robot at the center can instead independently control its own left
and right wheels depending on value computed by the motion control logic. The
turret of the central robot, which is set to passive mode, freely rotates passively and
follows the dynamics of the compound and the one imposed by the wheels.

To summarize the idea, the collective transport behavior interacts with the social
mediation behavior to obtain a socially mediated direction θ S which is consistent
in the group and allows a coherent motion. The social mediation behavior needs to
be set in the appropriate state (Sstubborn or Ssocial), according to which information
is available to the robot. It also needs the direction θP to be sent to the neighbors in
case it is in Sstubborn state. θP can be the direction to the goal, the obstacle avoidance
direction or the direction which takes into account both the goal and the obstacles.
The behavior achieves coherent collective motion even in case of conflicting opin-
ions, since the motion control logic uses the socially mediated direction, that is the
direction negotiated through the entire group, as the target direction to be followed.

4 Experiments and Results

We performed three sets of experiments. The first two sets consider a simple envi-
ronment, where we position an obstacle at the center of the arena with varying angle
α (see Figure 3a). For each setting, we executed 100 runs. Our prior expectation is
that the more α tends to 0, the longer it takes to avoid the obstacle in collective
transport. We also expect that the proposed behavior is robust enough to always ac-
complish the task (move from an initial to a goal location, see Figure 3b) in this
simplified setting. We hence report the completion times as a function of α . The
difference between the first and the second set of experiments is that in the first set
we just analyze the impact of the angle α by keeping the projected size of the obsta-
cle m fixed (Figure 3a), whereas in the second set we also analyze the impact of the
varying projected size, keeping l fixed. Execution times are reported in time-steps.
Each simulated second corresponds to 10 time-steps.

In the third and last set of experiments, we generate at random some more com-
plex environments, of the type depicted in Figure 3b. We report the success rate of
the behavior. We executed a total of 1000 runs, where in each run the angle and an
offset of the position of each obstacle is generated at random.

Figure 4 shows the results for the first two sets of experiments performed in
the simple environments. As we can see, the initial hypothesis can be accepted, as
the execution times solely depends on α and not on the projected length m of the
obstacle. In fact, execution times increase with increasing values for α . The more
the obstacle is perpendicular to the direction of motion, the longer it takes for the
robots to to perform obstacle avoidance.

The case α = 0 is particularly problematic. Average times are much higher, and
many more outliers are present (not fully shown due to scale differences). This is
explained by the fact that, when the obstacle is perpendicular to the direction of
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(a) (b)

Fig. 3 (a) The controlled obstacle’s parameter in the first two sets of experiments and (b) an
example of complex environment. S denotes the starting area, G the goal area.

(a) (b)

Fig. 4 Box plot of completion time for the experiment set with fixed m (a) and for fixed l (b)

motion, i.e. α = 0, the avoidance direction θOA takes some time to converge to one
of the two possible obstacle avoidance sides. All the runs were successful and no
collision was registered.

In the third set of experiments, results showed a remarkable success rate of 96%.
In the remaining 4% of the cases, robots hit an obstacle and hence the corresponding
run was terminated. After analyzing failures cases separately, we found out that they
were all due to slow turning rate achieved by the compound robot structure in the
goal direction after avoiding an obstacle. This slow turning rate made the robot hit
the next obstacle with the blind side of the carried structure, corresponding to the
region of the object where the robots cannot attach and which is blind with respect
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to the distance scanner. A video showing one typical run for this set of experiments
can be found in a supplementary page [19].

5 Conclusion and Future Work

In this paper, we presented a novel method to tackle a task that has received lim-
ited attention in the literature: obstacle avoidance in collective transport. The task
involves collective transport of an object by a group of three robots. In this task,
robots assemble to the object and have to navigate to a given goal location while
avoiding obstacles.

The proposed method consists of two interacting behaviors. The first behavior
is called social mediation and is used to perform negotiation of an heading direc-
tion which takes into account possibly conflicting perceptions of the members of
the group. The second behavior achieves collective transport, using this mediated
heading direction.

Experiments were performed in a simple arena with one obstacle placed at differ-
ent angles and in a more complex arena with several obstacles. Results in the simple
arena show that the efficiency (inversely linked to execution times) of the behavior
solely depends on the angle at which obstacles are placed, and that the more the
obstacle is placed perpendicularly to the direction of motion the more time it takes
to avoid it. In a more complex environment, we measured the success rate of the
proposed approach, obtaining 96% of success.

This work can be extended in a number of directions. As a first step, the proposed
methodology can be validated on real robots. We speculate that the social mediation
method, being a very high level behavior, will need few adaptations for the real
robots experiments, whereas the collective transport might need some adjustments,
especially for the motion control rule that has to minimize wheel slippage. Second,
some of the assumptions made in this work could be relaxed. For example, it can be
interesting to investigate how to solve the task by assuming that the irregular shape
of the object is not known in advance. In this case, we speculate that the motion
control logic will need to be extended. Third and more ambitiously, a long term
goal would be to understand how to control a group of an arbitrary number of robots,
connected between each other and/or to an irregular object at different positions. In
this case, we speculate that the social mediation methodology can be extended to
tackle dynamic negotiation of heading direction with an arbitrary number of robots.
Finally, a theoretical model of the system can be developed and used to prove some
properties of the algorithm, such as that no cyclic situations (i.e. no “deadlocks”)
can arise.
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Physical Interactions in Swarm Robotics:
The Hand-Bot Case Study

Michael Bonani, Philippe Rétornaz, Stéphane Magnenat,
Hannes Bleuler, and Francesco Mondada

Abstract. This paper presents a case-study on the performance achieved by the me-
chanical interactions of self-assembling mobile robots. This study is based on the
hand-bot robot, designed to operate within heterogeneous swarms of robots. The
hand-bot is specialized in object manipulation and can improve its performance by
exploiting physical collaborations by self-assembling with other hand-bots or with
foot-bots (ground robots). The paper analyzes the achieved performance and demon-
strates the highly super-linear properties of the accessible volume in respect to the
number of robots. These extremely interesting performances are strongly linked to
the self-assembling mechanisms and the physical nature of the interaction, and do
not scale to a large number of robots. Finally, this study suggests that such interest-
ing properties are more accessible for heterogeneous systems or devices achieving
complex tasks.

1 Introduction

Self-assembling is a feature in collective robotics which allows us to drastically
improve the performances of single individuals by exploiting mechanical interac-
tions [10, 5]. Applications can be found in space robotics [14], all-terrain mobil-
ity [13], underwater robotics [7], and simulation of living systems [4]. The main
advantages of this approach to robotics are robustness to failure, because of the re-
dundancy provided by multiple physical units, and flexibility. This last property is
achieved by the large number of configurations these robots can form. They can, for
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instance, form structures to navigate in specific shapes [1], to pass obstacles [11], or
to pull heavy objects [12, 11]. An extended overview of the field is given in [5].

Self-assembling is widely studied in homogeneous groups of robots forming 2D
structures [6, 5]. Few studies address self-assembly in 3D and none, to our knowl-
edge, perform manipulation tasks in this space. This paper presents the case-study
of the hand-bot, a robot specialized in object manipulation and capable of self-
assembling to access 3D space. This example shows how self-assembly can en-
hance performance by mechanical interaction between assembled units. This work
is an extension into the third dimension and to heterogeneous swarms of the work
presented in [10]. While some of the conclusions are similar, the application of the
same principles into heterogeneous and 3D systems capable of complex tasks allows
a much deeper understanding of the phenomena.

2 The Hand-Bot Robot

The hand-bot is a small-size robot specialized in manipulation of small objects po-
sitioned much higher than its size (details are given in [3]). The robot is about 30 cm
high, weights 2.8 Kg, and can manipulate an object placed in a vertical structure, for
instance a shelf, between the floor and a ceiling located at 2.5 m above the floor. The
ceiling above the robot has to be ferromagnetic, which is the case in many offices at
the Ecole Polytechnique Fédérale de Lausanne. To perform this task, we equipped
the hand-bot with three main groups of actuators, presented in Fig. 1:

1. A launcher allowing to shoot to the ceiling a switchable magnet pulling a rope.
Once attached, the robot can lift itself. When the operation is finished, the robot
can detach the magnet and wind the rope, making it ready for a new launch.

2. Two fans to stabilize and control the yaw of the robot when suspended. These
actuators also allow the robot to move forward and backward.

3. Two arms equipped with grippers to allow the robot to attach to existing struc-
tures, to grasp object, and to self-assemble with other hand-bots.

Using the attachment to the ceiling, the fans and the arms, a single hand-bot can
operate following two main strategies:

1. Lift up in an empty area. This approach uses the rope for the vertical displace-
ment and the fans for stabilizing yaw and for making small forward and back-
ward movements. This leaves both grippers available for manipulation but the
positioning accuracy is poor.

2. Lift up by grabbing parts of a structure, like a shelf. In this type of operation
(see Fig. 3 and the corresponding video on YouTube1), the stabilization of the
movement is made using the grippers by attaching to the structure [3]. The hand-
bot uses the two grippers in an alternate way to keep a contact with the structure.
This improves stability, provides precise positioning, and provides access to a

1 http://www.youtube.com/watch?v=92bLgE6DO2g

http://www.youtube.com/watch?v=92bLgE6DO2g
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Fig. 1 Structure of the hand-bot and its degrees of freedom

large area because of lateral movements; but this limits the manipulation to one
free gripper. Thus, the robot cannot climb and transport an object concurrently.

In both cases, the lifting principle is to use the attachment to the ceiling to generate
most of the vertical force (Fw in Fig. 2). In addition, in strategy 1, the hand-bot can
move a little on the horizontal axis, thanks to the fans which provide an horizontal
force (Ff in Fig. 2). In strategy 2, the robot can push or pull on the structure using
its attached gripper. The resultant (Fr in Fig. 2) is aligned with the arm.

As Fig. 2 shows, the maximal attachment force Fw depends on the orientation of
the rope, given by the angle α . Indeed, as the attachment point of the rope on the
magnetic device is located at six centimeters of distance from the ceiling (see real
device on top right of Fig. 2), the force Fw generates a peeling moment which tends
to detach the magnet when the rope is not vertical (α �= 0). Because the peeling
moment is extremely hard to compute analytically, we measured the maximal value
of Fw as function of the angle α on the real device, obtaining the values illustrated
in Fig. 2.

It appears clearly that the main limitation of the first strategy (based on the fan)
is the weak propulsion force of the fans, resulting in a limited accessible volume.
When blowing at full power, we measured that the fans can only generate an angle
α of 0.026 rad.

The main limitation of the second approach is in the use of one arm and one
gripper for lateral displacement, which renders them unavailable for manipulation.
The accessible area is much larger than in the first approach and is limited by the
morphology. Moreover, near to the ceiling the angle of the rope increases and the
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Fig. 2 Top: Scheme of forces and the detail of the magnetic attachment system. Bottom:
Maximal attachment force of the magnetic system as function of the angle α of the rope; the
measurements are represented as red dots, the line shows a possible interpolation.

magnetic system cannot support anymore the robot. Fig. 3 (right) compares the ac-
cess zones of these two approaches.

3 Collective Strategies Based on Self-assembling

To overcome the limitations described in section 2, the hand-bot can self-assemble
with other hand-bots or with foot-bots, a type of robots which we designed for



Physical Interactions in Swarm Robotics: The Hand-Bot Case Study 589

ac
ce
ss
ib

le
 a
re
a 
us
in
g 
fa
n

ac
ce
ss
ib

le
 a
re
a 
us
in
g 
ar
m

 a
tt
ac
hm

en
t

Fig. 3 Sequence of climbing and grasping: positioning, climbing and grasping of a book

displacement and navigation on the ground. The goal is to increase the accessible
volume by a self-assembling collective approach.

3.1 Self-assembling with Foot-Bots

The hand-bot is strictly specialized in climbing and manipulation. This means for
instance that the hand-bot is not equipped with wheels or any other actuator to
move on the ground. The hand-bot achieves displacement on the ground by self-
assembling with another type of robot, the foot-bot.

The foot-bot is a modified version of the marXbot, a robot designed for research
in collective robotics [2, 8] (see Fig. 4, left). The foot-bot has tracks and wheels
(called together ”treels”) and can move in all-terrain conditions. For this experiment,
the foot-bot is specifically equipped with a self-assembling module allowing it to
physically connect to the hand-bot and to form a common rigid body. Details on the
marXbot robot and on the self-assembling mechanism are described in [2]. The main
characteristics of this self-assembling mechanism of the foot-bot is that it can rotate
all around the robot body. This allows a connected robot to move in any direction.
Foot-bots can attach to the sides and to the back of the hand-bot (see Fig. 4, right).

This assembly of robots can provide the hand-bot with the necessary mobility
on the ground. Its performance in displacement depends strongly on the number
of foot-bots involved. One foot-bot alone can displace a hand-bot but can hardly
position it correctly. A foot-bot connected to a hand-bot can only pull or push the
hand-bot. It cannot move in other directions than those two, because this would
make the hand-bot nearly rotate on the spot. If the foot-bot pulls the hand-bot, this
makes it very hard to position, for instance, the hand-bot facing a shelf. If the foot-
bot pushes the hand-bot, the control is highly unstable and requires very complex
maneuvers. If foot-bots are available, they can achieve a much better configuration
by attaching laterally to the hand-bot. This allows the foot-bots to move in any
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Fig. 4 Left: Foot-bot robot. Right: Possible positioning of foot-bot robots around the hand-
bot to provide movement on the ground.

direction. While this two-points system does not control all degrees of freedom,
the positioning in the horizontal plane is much more precise and easier to control.
The ideal situation occurs when the hand-bot is connected to three foot-bots, two
placed laterally and one behind the hand-bot. This configuration allows to control all
degrees of freedom. The hand-bot is therefore well stabilized and can be positioned
in the best way. Self-assembly with more than three robots does not make sense
from a stability and mobility point of view, and is difficult because of the limited
area of attachment.

3.2 Self-assembling with Hand-Bots

In the previous sections we have seen the ability of one hand-bot to move vertically
and the possibility to use self-assembly to position it on the ground. Probably the
most interesting possibility is to self-assemble several hand-bots to extend the vol-
ume accessible by the robots. The hand-bot can self-assemble with other hand-bots
using its gripper, as illustrated in Fig. 5.

The complete scenario using self-assembling of foot-bots and hand-bots is the
following: Foot-bots place the hand-bots in several locations at the limits of the
working area. In the following examples we will consider two or three hand-bots
placed at distance d to each other. When the hand-bots are placed, they attach to
the ceiling, shooting their attachment system. Then foot-bots bring all hand-bots
together in the center of the working area. This allows them to self-assemble using
their grippers. When assembled, the hand-bots can move within the 3D space by
concurrently using their attachments to the ceiling.

As illustrated in section 2, the hand-bot can use two main actuators for lateral
displacement: fans and arms. By self-assembling we can add a third actuator, which
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is the ceiling attachment system of another hand-bot. If we consider the situation
of elevating the hand-bot in the air keeping both gripper available for manipulation,
we can distinguish three main situations:

1. When the hand-bot is alone, it can control its lateral movements and yaw (three
degrees of freedom ”DOF”) using only the fans. The accessible volume is lim-
ited, as we discussed in section 2.

2. When two hand-bots are assembled, two DOF are controlled by this additional
connection and only one DOF needs to be controlled by the fans. The volume is
bigger and follows a vertical plane crossing the two attachment points.

3. When three hand-bots are assembled, all DOF are controlled by the ropes con-
nected to the ceiling. The volume becomes more important and is enclosed within
the three vertical planes crossing the attachment points.

In the second and third situations, the upper limitation of the volume is given by
the attachment force with respect to the angle as illustrated in Fig. 2. The resulting
volumes for a distance between robots d of 100 cm are illustrated in Fig. 6.

In this self-assembling collaboration, it is interesting to observe the effect of
cooperation on normalized system performances. An interesting measurement of
collective performance is the collective speedup factor [9] of a group of n robots,
given by equation 1.

Fig. 5 Three hand-bots self-
assembled and suspended
by the ropes



592 M. Bonani et al.

0 0
20

40
X [cm]

3 hand-bots

d

2 hand-bots

1 hand-bots

80
60 100

200

300

50

100

150

200

250

Z [cm]

Y [cm]

d

Fig. 6 Accessible volume for one, two and three hand-bots cooperating by self-assembly.
This situation considers a distance between robots of d = 100cm

CS(n) =
mP(n)
nP(m)

(1)

where P(n) is the performance of a group of n robots and m is the minimal num-
ber of robots needed to perform the task. We can distinguish between superlinear
performances when CS(n)> 1, linear performances when CS(n) = 1 and sublinear
performances when CS(n) < 1. A simple combination of n robots having no influ-
ence on each-other should generate a linear performance by performing the task n
times better or faster than one robot or module.

In our case we can look to the accessible volume, for a task feasible with one
robot:

CSv(n,d) =
V (n,d)
nV (1)

(2)

where V (n,d) is the volume accessed by n hand-bots with attachments placed at
a distance d to each other, and V (1) the volume accessed by one hand-bot using
the fans for lateral displacement. Fig. 7 shows on the left the plot of the accessible
volume V (n,d) as function of d for n=1,2 and 3. On the right of the same figure, the
resulting CSv(n,d) shows that the system exhibits highly superlinear performances.
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Fig. 7 Left: Volume accessible by one, two and three hand-bots exploiting self-assembling.
Right: Ratio between access volume using n hand-bots and volume using one hand-bot, nor-
malized per number of robots.

4 Discussion

The system presented in this paper shows a case study of physical collaboration
among robots based on self-assembling. The example shows clearly that physical
collaboration can generate a very strong multiplication of performance. This was
already observed in [10] but the performance factor was much smaller than the one
observed here. In the positioning task, the absolute performance is hard to define
and measure — we should measure the involved engineering work — but the im-
provement in performance is clear when moving from one to two foot-bots. Three
foot-bots can generate the best performance, even if the performance factor between
two and three could be sublinear. Indeed the gain in performance between two and
three robots appears to be minor considering that the number of robots has been in-
creased by fifty percent. Additional foot-bots can improve the robustness, the pay-
load and the speed of the system, but do not improve quality in positioning or in
control efficiency.

Our system shows superlinear performance when considering 3D access. Self-
assembling two hand-bots increases the collective-volume access by a factor of 6.8
in the best case (d =140 cm). Adding another hand-bot allows us to achieve a col-
lective factor of 26.8, which represents an additional increase of a factor four with
respect to a combination of two robots. These performances are achieved through
the geometry of the system, where adding a robot means adding dimensionality to
the system. This is very specific to physical systems. Also very specific to physical
systems is the fact that those systems do not scale. For more that three robots (both
foot-bots and hand-bots) the evolution of the volume depends on the shape of its
base, evolving from a equilateral triangle of side d, to a n-sided polygon inscribed
in a circle of diameter d, n being the number of hand-bots. This area saturates (at
d2π/4) and the corresponding volume too. Therefore the system performance stay
stable with n increasing and therefore CSv drops.

The collective-performance factors listed above do not consider the total number
of robots, which should include both the foot-bots and the hand-bots involved in
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the task. When taking into consideration both types of robots, the ratio m/n would
increase and the performance factor as well. This shows a very interesting effect of
heterogeneity. Having different robots for ground mobility and for vertical opera-
tions allows us to optimize each subsystem independently and to combine function-
alities in an orthogonal manner. For instance, in this case-study, once three foot-bots
are available, the number of hand-bots can be chosen freely, the foot-bots being ca-
pable to position each hand-bots in a sequential way. This would increase the CS.

Finally, we can make an observation about the hardware requirements for self-
assembling. Foot-bots, which are simple mobile robots that have to move around —
a trivial task — require a specific hardware module to ensure the self-assembling
capability. The added hardware is even one of the most complex hardware compo-
nent in the foot-bot. On the contrary, the hand-bot embeds grippers in its basic con-
figuration because its basic task is more complex (manipulation). Using the same
grippers for self-assembling, the hand-bot does not require additional hardware to
perform physical cooperation. This suggests that in more complex tasks, requiring
more complex robots, cooperation based on self-assembling could be more accessi-
ble and require less extra specific hardware than for simple robots.

5 Conclusion

We presented a case study of physical interactions in a heterogeneous group of
robots. This type of collaboration allows very high increase in performance, but
is not scalable. The heterogeneity improves performances and allows to optimise
different robots for different sub-tasks. The complexity of the tasks, requiring com-
plex robotic hardware, improves accessibility to self-assembling operation. These
conclusions shows very singular properties of heterogeneous self-assembling sys-
tems. Additional research work is necessary to increase the understanding and to
develop the exploitation of this particular but promising type of systems.
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A Low-Cost Multi-robot System for Research,
Teaching, and Outreach

James McLurkin∗, Andrew J. Lynch, Scott Rixner, Thomas W. Barr, Alvin Chou,
Kathleen Foster, and Siegfried Bilstein

Abstract. We describe a new low-cost robot design that enables large-scale multi-
robot research, innovative new curriculum, and multi-robotics outreach to younger
students. There are four main parts to the system: the r-one robot, a Python devel-
opment environment, a camera tracking system for ground-truth localization, and
server software to connect all the pieces together. This paper presents our prelimi-
nary work on the robot design and our experience using it to teach an introductory
engineering class. The hardware can support classes in computer science, electrical
engineering, and mechanical engineering. The low-cost and small size will enable
more research groups to perform multi-robot experiments on physical hardware. The
Python development environment greatly simplifies programming and will make
robotics more accessible to a larger group of educators, students, and researchers.

1 Introduction

Multi-robot research is enjoying a boost in popularity. However, there is a gap in
the spectrum of available solutions of feature-rich, affordable hardware platforms.
Existing platforms are too expensive, too big to test large populations (25 to 100)
indoors, or lack key sensors for multi-robot research. This paper presents our work
on building a low-cost robot with sufficient sensors and processing power for basic
multi-robot research. Our ultimate goal is to produce a small, capable, integrated
platform with a parts cost of around $100 per robot. A robotic system like this
will enable research with large populations of robots, multi-robot curricula at the
undergraduate level, and outreach into K-12 schools.
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(a) The r-one robot. (b) Exploded CAD
view.

(c) The r-one encoder.

Fig. 1 a: The r-one robot. b: Exploded CAD view of the robot assembly. The robot is com-
posed of two circuit boards bound together with a circular shell and four screws. c: The
motors and encoders mount directly to the circuit board.

Our design, the r-one robot shown in Figure 1(a), attempts to fill this gap in the
design space. It has a cost of around $220 per robot, a full sensor suite including a
gyro, accelerometer, wheel encoders, and light sensors. It includes a radio for global
control, an infrared beacon for ground-truth localization, and an infrared inter-robot
communication and localization system. The robot runs an embedded Python inter-
preter to make programming more accessible to younger, less experienced students.
We have started building a server infrastructure to support centralized command
and control and data logging. We are currently using the platform in an introductory
first-year engineering course, with good success to date.

This paper is organized as follows. Section 2 describes currently available robots,
and makes the case for our new hardware platform. Section 3 describes the details of
the robot’s hardware and software. Section 4 discusses the ground-truth global po-
sitioning system, and Section 5 describes the inter-robot communication. Section 6
mentions our preliminary work on a server infrastructure for the system. Finally,
Section 7 describes the three main applications, research, teaching, and outreach,
with our current experiences in this semester’s course.

2 Existing Robotic Platforms

Our goal is to produce a platform capable of basic research, teaching, and outreach.
Low hardware cost is a requirement for these goals; it enables large populations for
research, use in teaching labs on tight budgets, and use in outreach activities. In ten-
sion with cost is functionality. In particular, the sensor suite needs to be selected for
the intended usage of the system, but carefully limited in scope. Our effort is not the
first to address this concern, there are several existing robot platforms designed for
research and teaching. Table 1 compares the differences between these platforms.

The Pololu 3pi and Scribbler are inexpensive, but lack basic sensors, such as
wheel encoders, and do not have the communication systems required for
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Table 1 A comparison of available low-cost robots suitable for multi-robot research

multi-robot coordination. LEGO Mindstorms is the leader in educational robotics,
but there is no available sensor for detecting local network geometry, i.e., the posi-
tions of neighboring robots. The iRobot Create is a popular platform for medium-
sized robots, but the size, cost, and limited sensor suite require many add-on compo-
nents for multi-robot work. The robomote and the costbots do not have the sensors
needed to determine local network geometry. Most of these platforms need to be
programmed in C, which makes them difficult to use with younger students. The
platforms that are closest in size and sensor suite is the Khepera robot and EPFL e-
puck, but their cost makes it difficult to field large numbers for research and teach-
ing. The e-puck robot is designed to be expandable. This allows the addition of
an inter-robot communication turret, but this adds cost to the system. None of the
existing platforms are uniquely identifiable from a global localization system. The
r-one’s main contribution to the multi-robotics community is an integrated, low-cost
platform with inter-robot communications, a sensor for network geometry, a system
for ground truth position and a flexible embedded python development environment.
This integration comes with a downside, as the r-one design is not expandable like
some of the others, notably the Khepera and EPFL e-puck. This simplification to
the r-one design was a good trade-off for this initial version, but it may limit future
use of the platform and need to be revisited when other capabilities are needed.

Our current r-one robot costs $220 in quantities of 30. The component costs total
$130 and PCB fabrication is $40. The assembly of the top board cost $30. The
assembly for the bottom circuit board was completed in-house. The final mechanical
assembly of the robot was also done in-house, and takes about 15 minutes per robot.
In future revisions, we will use an assembly company for the entire process, at an
estimated rate of $50 per robot. Each robot would cost $220 assembled. We expect
this cost to decrease for larger quantities. A $20 cost reduction can also be achieved
by removing the more expensive sensors such as the 3D accelerometer and gyro.
We are not at our goal of $100 in parts and assembly, but the current price is still
low-cost.
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3 Hardware Design and Python Interpreter

The r-one hardware design tries to strike a balance between features and cost. We
have also developed a rich Python infrastructure for r-one that greatly simplifies its
use, making it accessible to younger students.

3.1 r-one Hardware

Figure 1(a) shows a fully assembled robot, and Figure 1(b) shows the exploded
diagram. The sensor suite consists of a 2-axis gyro, 3-axis accelerometer, and 3
visible-light photo resistors. The robot has two motors with quadrature encoders.
The robot includes 8 IR transmitters, 8 IR receivers, a 2.4 GHz radio with 2Mbps
data rate, and a USB port. To interact with the user, the robot has 3 push buttons
and 3 arrays of five LEDs each in red, green, and blue. Each of the 15 total LED
elements has individual brightness adjustment.

The robot is controlled by a Texas Instruments Stellaris LM3S8962 microcon-
troller. The CPU core is an ARM Cortex-M3 running at 50 MHz with 256 KB of
Flash memory and 64 KB of SRAM. Total system power is 140 mA without ac-
tivating motors or LEDs. Under stall torque with an active LED group, the robot
can peak at 650 mA. In normal movement operations with LEDs active, the robot
consumes 510 mA. With a 3.7V 2000 mAh lithium-polymer battery, the robot has
been tested to last for 4 hours. The battery is charged from the USB port.

The exploded CAD diagram is shown in Figure 1(b). The robot is a 10 cm circle
and weighs 230 grams. The robot is composed of two circuit boards bound together
with a circular shell and four screws. The shell also serves as a protective shield to
channel IR sensor measurements. The top circuit board contains the user interface
and the microcontroller. The two boards connect together with two 16 pin 2.54mm
(0.100”) headers. Standard headers are low-cost and make it easy to attach oscillo-
scope probes to demonstrate PWM and encoder signals to students.

The motors and encoders mount directly to the bottom circuit board, shown in
Figure 1(c). These low-cost quadrature encoders are a new design, and use an op-
tical interruption sensor to detect gaps in a custom encoder wheel attached to the
rear motor shaft. The wheels are made from plastic on a laser cutter, and manufac-
turing tolerances limit the design to four slots, producing a 0.0625 mm/tick linear
resolution at the wheel. The 32 mm wheels coupled with a 100:1 gearbox give the
robots a maximum speed of 300 mm/sec, while internal friction limits the minimum
controllable speed to around 40 mm/sec.

The 2.4 GHz radio on the robot can be used for inter-robot communication,
but is designed for centralized command and control. The primary means of inter-
robot communication is the local IR communication system described in Section 5.
Robots can broadcast 32 byte packets and the chipset handles packet acknowledg-
ments and retransmissions at the hardware level. Our Python API allows for packets
to be defined as strings up to 32 bytes which significantly simplifies radio mes-
saging. To test the power of our system, we constructed a simple distance-vector
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mesh network router (in 200 lines of Python) that auto-discovers nodes and prop-
erly routes packets over many hops to their destination.

3.2 Python on the r-one

The r-one runs an embedded Python virtual machine based on the open-source
Python-on-a-Chip project (http://code.google.com/p/python-on-a-chip/). We have
ported the Python interpreter to the ARM Cortex M3 and implemented a full set
of libraries providing Python programs access to all of the robot hardware. Others
have ported Python-on-a-Chip to a Lego NXT robot, but they have not yet shown
that you can effectively control a robot with Python [17]. In contrast, our Python
environment provides full control over all of the sensors and actuators of the robot
and we have shown that one can write non-trivial control programs in Python that
work effectively, such as velocity control loops, simple light sensor behaviors, and
network protocols. Our environment implements a significant fraction of the Python
language and a comprehensive set of robot control libraries using 140KB of flash.
If the interpreter is compiled with size optimizations, this shrinks to 89KB, leaving
167KB available for user programs. The running interpreter requires 1.6KB for its C
stack, and 2.3KB for BSS and C data. The remainder of SRAM (60KB) can be used
for the Python heap. We configured a 49KB Python heap to provide a margin of
safety for the C stack and have found it to be more than adequate for our purposes.

Python code is developed on a desktop which compiles it into bytecode to be
loaded onto the robot via USB. There are two methods of transferring compiled
Python bytecode onto the microcontroller. The first method compiles an entire
Python program into a single image to be executed by the robot, similar to the
C-style compile-link-load workflow used in typical embedded development. This
image can be programmed into the robot’s Flash memory or SRAM. A second,
more powerful mode of development uses the standard Python read-eval-print loop.
A desktop program establishes a connection to the virtual machine on the robot.
Python code typed into an interactive prompt running on the desktop is then com-
piled and sent to the robot where it is executed. Finally, the results of that statement
are displayed back on the desktop. This allows for interactive use of the robot, pro-
viding immediate feedback on the effects of Python commands. This greatly sim-
plifies debugging and development.

4 Global Robot Localization

Data collection on multi robot systems requires the user to know the ground truth
positions of the robots. There are many means of determining a robot’s global po-
sition: GPS [4], a Vicon-like tracking system [14], radio-acoustic ranging [9, 18],
or camera-based tracking [22, 8, 15, 12]. However, GPS is unavailable indoors, a
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Vicon system is expensive, and radio acoustic systems work well, but increase the
complexity of each robot.

Camera-based tracking systems are currently the most common low-cost method
for determining a robot’s location in an indoor environment. These systems must
have the ability to uniquely identify individual robots in the camera image. Fidu-
cial tracking can find multiple markers, and with initialization, identify unique
robots [22]. In a uniform environment, robots can be tracked by color alone as
with SwisTrack [8]. Bar code tags such as AprilTags [15] provide unique IDs with-
out initialization, and 6-DOF pose estimation. However, bar codes can large, and
initialization is time-consuming so an alternative is to track IR beacons on each
robot [14, 12]. The beacons transmit a pattern unique to each robot. One beacon
per robot and one camera allow 2-DOF position to be measured directly. Multiple
cameras or beacons can be used for full 6-DOF pose estimation [2].

Figure 2(a) shows a diagram of the complete global localization system that we
are developing for the r-one. The system will have four main components: the robots
running the experiment, a single host robot, a ceiling-mounted infrared (IR) local-
ization camera, and a server computer with data logging software. Ground truth po-
sitions of the robots are measured by a vision-based localization system. The system
uses an IR beacon LED on the top circuit board of each robot, which transmits an
encoded pattern. The vision system detects the beacon LEDs, and tracks the {x,y}
positions of all of the robots simultaneously, while decoding 10 bits of unique ID
data per second per robot. The server will collect and display all camera estimates
of individual robot positions based on unique IDs. This system has been tested with
the r-one robot, but not characterized. In our previous generation of robots, this sys-
tem had a mean position error of 15.4mm [12]. This accuracy will vary with each
setup, as it is a function of the camera placement. Our previous setup had the cam-
era mounted on an 18 foot ceiling, pointing straight down. This covered a test area

experiment robots

ceiling-mounted
positioning camera

& Newton Labs vision system

host robot

real-time gui

computer

(a) Data collection block diagram. (b) Twenty-five r-one robots.

Fig. 2 a: Diagram of the planned r-one data collection system. Each robot has a single top-
mounted infrared beacon that flashes with an unique pattern. The ceiling-mounted camera
identifies each robot with this pattern and tracks the {x, y} positions of each robot simul-
taneously, reporting the results to the computer at 1 Hz. b: A collection of 25 robots. We
demonstrated this group on the first day of class. This kind of outreach activity is only possi-
ble with an inexpensive and portable robot.
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approximately 3 meters on a side. Most labs have lower ceilings, so the camera will
need to be mounted at an angle to cover a large area, and perspective will make the
accuracy non-uniform across the workspace.

5 Inter-robot Communication and Localization

The ability of individual robots to measure relative positions to neighboring robots
is a critical feature in a multi-robot research system. Without this ability the robots
have no way to control their physical configuration. There are many approaches to
measure the geometry of a robot’s neighbors, including vision-based systems [7, 6],
and infrared light [10, 19, 5, 16]. The r-one robot uses an IR communication system
to communicate and determine the local network geometry of neighboring robots.

Each robot has a set of eight IR transmitters and eight IR receivers. The transmit-
ters transmit in unison, and were designed into the shell to provide a nearly radially
uniform energy emissions pattern. Figure 3(a) shows the predicted angular output
based on the IR emitter data sheet and the CAD model of the shell. This shows a
variation of 4%, but we have not verified this performance on physical hardware yet.
Because the communications bandwidth is very limited (see below), we selected a
maximum range of around 1.5 meters in order to limit the number of neighbors and
messages that are received by each robot.

Each robot has eight IR receivers, arranged so that their reception regions overlap
as shown in Figure 3(b). The shell is designed to limit the detection arc of each
receiver to 68°. By noting which receiver(s) detect a neighboring robot, the bearing
can be estimated to within ≈22.5°. We characterized the arc and overlap of each

(a) Predicted IR transmitter
power output.

(b) Top CAD view of IR
receiver overlap.

(c) Measured IR overlap.

Fig. 3 a: The transmitter and shell are designed to produce a radially uniform power output.
b: This is a top view of a CAD model of each IR receiver’s detection region. Each receiver
detects signals in a 68°arc. These regions overlap to form 16 distinct sectors. A message
from a neighboring robot will be received on one or two receivers, and can be processed
to determine the direction to within 2.5°. c: Experimental verification of the overlap of the
receiver regions. The plot is showing the angle each receiver can detect an incoming message.
The average width is 68°, which matches the CAD model. The corresponding arc from the
top view is highlighted in black.
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IR region by transmitting messages to a robot rotating on a turntable. Figure 3(c)
shows the measured reception arc from each receiver with color corresponding to
Figure 3(b). The reception arc varies from 63°to 74°with a mean of 68°over 10 trials.

The receivers are standard Sharp IR remote control devices, with 38khz modu-
lation and a maximum bit rate of 1250bps. Our current protocol uses Manchester
encoding to provide DC balance and has an 8-bit preamble and 8-bit CRC. We cur-
rently use 4-byte messages, which produces a 96-bit packet. We plan to use a simple
TDMA scheme: the robots to transmit at periodic intervals, but with a random offset,
similar to the ALOHA protocol [1]. This will limit our effective bandwidth before
network congestion causes saturation. We have tested a protocol similar to RS232
8N1 that reduces message size to 60 bits and should increase the number of possible
neighbors. These bandwidth constraints place a limit on robot density and algorithm
complexity, but increasing bandwidth would require using more expensive or cus-
tom receivers.

A proof-of-concept follow-the-leader implementation was used to test this sys-
tem on a prototype robot with no shell. Written in Python in less than 140 lines,
robots are divided by the user into a transmitter, a leader and a group of followers.
The user remote controls the leader via the radio. The leader constantly transmits an
IR message which the followers use to flock towards it. If a follower sees the leader
on one of the front two transmitters, it moves forwards. Otherwise, a follower ro-
tates according to the direction of the leader’s signal. Interestingly, this program
takes advantage of the lack of a shell to produce a rough estimate of range. If the
transmitter is more than a few feet from the receiver, a message is generally seen
on only one or two receivers. As the transmitter gets closer, messages are observed
on more receivers. This can be exploited to prevent robots from running into the
leader.

6 Server

The final hardware component needed is a centralized server to provide hands-free
operation, data logging, and integrate the ground-truth localization with telemetry
data logged from the robots. We are developing a system that will be similar to our
previous generation SwarmBot server [11]. The system will use a USB tethered host
robot to communicate with the active robots over radio. Data for individual robots
will be tagged with their positions from the localization system, and logged into a
single file. The user will be able to observe the positions and current state of each
robot in real time. Radio bandwidth must be shared with all the robots in the system,
limiting the amount of information that each robot can transmit. Also, our current
system uses an expensive camera running propitiatory software. The next generation
will use an inexpensive camera, and be readily available to the community.
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7 Applications

The three main applications of this system are research, teaching, and outreach. This
section discusses an example and results of the r-one system in these applications.

7.1 Research

The primary use of this system is for multi-robot research on large populations of
robots. To support this, the system will support a “hands-free” philosophy [13];
robots will be able to be programmed and administered remotely from a centralized
location. The ground truth measurements of robot positions are vital for experimen-
tal validation of performance claims [12]. The biggest drawback of the r-one robot is
the limited precision of the inter-robot localization system. To address this, we have
started two research projects; one to improve the estimates with odometry, and one
to improve the estimates by passing messages around local network neighborhoods.

7.2 Education

Current robot software stacks are challenging to use in introductory courses.
Low-level software stacks are generally very difficult to use. However, higher-level
software stacks are often too watered down to build complex systems. Computer
science departments have tackled similar problems for introductory courses on soft-
ware development and many have moved to languages such as Python that are both
easy-to-use as well as powerful [3, 20, 21]. Python combines a simple syntax with
a garbage-collected environment that prevents a programmer from having to deal
with pointers and memory management.

Additionally, the interactive prompt turns development into an exploration-based
activity. Users familiarize themselves with the environment by programming inter-
actively, one line at a time, as shown in Figure 4(b). If a statement does not ac-
complish the desired behavior, or causes an error, the user can immediately type a
different statement and observe the result. Users can explore the behavior of both
built-in functions and the ones they have defined themselves. This low turnaround
time encourages experimentation in programming. Additionally, programs running
on the desktop can send Python commands to be run on the robot. This facility was
used to easily write a GUI, shown in Figure 4(a), that allows motors and sensors to
be used interactively.

We have implemented a high-level API which allows the students to use a single
function call to adjust a motor or get an encoder value. The simplicity of Python
coupled with the API allows the students to accomplish fairly complex tasks with a
relatively small amount of code. This increases students’ ability to focus on logically
solving the problem rather than on programming complexities. The memory game
Simon uses long light patterns the player must repeat to continue playing. In our



606 J. McLurkin et al.

(a) GUI for interacting with the Robot. (b) Interpreter prompt on the robot.

Fig. 4 a: The GUI allows a new user to quickly visualize sensor readings and test different
motor settings. The GUI also allows for sending and receiving radio and IR messages to
other robots. b: The interactive prompt serves as a debugging interface. Any errors in robot
operation or programming are returned to the user here.

class at Rice, students were able to implement Simon after one week of instruction
on basic Python syntax. In less than 80 lines of code, students were able to create
a fully functioning game that runs on the robot and uses the LEDs and buttons.
This assignment enabled new students to learn how to program the robot with an
interesting program that utilized the high level robot API.

Creating robot behaviors in Python is also straight forward and simple. The sec-
ond lab activity was to create a Braitenberg vehicle that either moves toward or away
from light after practicing some basic programming. It requires even less code than
Simon to create the third vehicle, Love, in Valentino Braitenberg’s book Vehicles:
Experiments in Synthetic Psychology. This vehicle uses two sensors to drive towards
a light source. Figure 5 shows the Python code to implement this behavior. Seeking
the light first requires reading the values from the two light sensors. The robot then
needs to determine which side collected the higher value. With this information, the
robot can drive the motors in proportion to the difference between the two readings.
While not shown in the figure, in practice, the duty cycle of the PWM signals that
drive the motors need to be clamped to ensure that no values are too high or too low.

In a lab exercise , students created a velocity feedback control loop with less
than 150 lines of code, completely composed of basic Python constructs. The low
cost of the r-one robot allowed us to give a robot to each student, and the python
programming language significantly lowers the barriers to programming for young
students.

7.3 Outreach

A low-cost robot makes the cost of deploying a medium-scale (around 20) multi-
robot system within the reach of many middle and high schools. This is a novel
and unique way to motivate the next generation of engineers and computer scien-
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def seek(k):
## seeks the light using front sensors (fl, fr) and
## adjusts motor PWM values based off of the readings
while True:

# get light sensor values
fr = rone.light_sensor_get_value(’fr’)
fl = rone.light_sensor_get_value(’fl’)

# calculate duty cycles
difference = fr - fl
duty_cycle_r = 60 - (difference * k)
duty_cycle_l = 60 + (difference * k)

# run motors
rone.motor_set_pwm(’r’,int(duty_cycle_r))
rone.motor_set_pwm(’l’,int(duty_cycle_l))

Fig. 5 Source listing for Braitenberg vehicle “love”

tists. This type of system allows robot demonstrations to become more engaging to
students and spectators.

Equipped with a box of 20 robots, the visiting educator can give each student their
own robot, pre-loaded with software for the day’s activity. As a group, the class can
use the entire population of robots to develop and test basic multi-robot algorithms,
like ad-hoc network formation, communications relaying, navigation, and leader
election. The Python programming language makes it possible for younger students
to participate in programming while simultaneously allowing advanced students to
experiment at their pace without significant documentation or training.

8 Conclusions and Future Work

Using a robot platform in an introductory classroom setting creates a unique chal-
lenge. To be interesting for college students, the available sensor suite must be
sufficient to build complex behaviors. However, to be accessible to first year stu-
dents, the software stack must be easy to program. Finally, to allow each student
access to their own robot, the entire system must be cheap. These constraints elimi-
nated existing systems, so we have built a novel hardware/software robot platform,
the r-one. Our robot combines an advanced sensor suite that allows multi-robot sys-
tem behavior with an embedded Python interpreter, easily allowing rapid develop-
ment of interesting systems. We have deployed a robot to each of the twenty-three
people in our freshman class, all of whom have been able to program interesting
behaviors in a few weeks.

In the future, we expect the r-one to be a powerful platform for more advanced
multi-robot system research. The small size and low cost of our robot will allow
experimentation of much larger swarms than was previously possible, uncovering
new challenges in the field. The simplicity of programming will help this research,
since new algorithms can be developed and explored more easily. Finally, the r-one
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robot can be used in settings where traditional robot platforms are impractically
expensive or complex, such as in elementary and high-school settings.

For future versions of the hardware, we are planing a full-coverage bump skirt,
an audio circuit and speaker, and line trackers/cliff detectors.
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