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Abstract. Markov random fields (MRFs) have found widespread use as mod-
els of natural image and scene statistics. Despite progress in modeling image
properties beyond gradient statistics with high-order cliques, and learning im-
age models from example data, existing MRFs only exhibit a limited ability of
actually capturing natural image statistics. In this paper we investigate this limita-
tion of previous filter-based MRF models, which appears in contradiction to their
maximum entropy interpretation. We argue that this is due to inadequacies in the
leaning procedure and suggest various modifications to address them. We demon-
strate that the proposed learning scheme allows training more suitable potential
functions, whose shape approaches that of a Dirac-delta function, as well as mod-
els with larger and more filters. Our experiments not only indicate a substantial
improvement of the models’ ability to capture relevant statistical properties of
natural images, but also demonstrate a significant performance increase in a de-
noising application to levels previously unattained by generative approaches.

1 Introduction and Related Work

Both analysis and modeling of the statistics of natural images and scenes have a long
history. Statistical analyses have been carried out for natural images, image categories,
range images, optical flow, etc. [4,13,15]. They have revealed many characteristic
properties of natural images and scenes, including power-law frequency spectra, non-
Gaussian highly kurtotic marginals, scale-invariant statistics, and non-Gaussian joint
statistics of nearby image features [11,15]. These properties have been exploited in var-
ious statistical models, local ones that attempt to capture the statistics of one or a few
features [11], as well as global models that aim to represent the properties of entire
images. Latter often take the form of Markov random fields (MRFs).

MRFs based on linear filter responses, here termed filter-based MRFs, are perhaps
the most popular form for modeling natural image priors [2,14,19,21]. The design of
such models involves various choices, including the size and shape of the cliques,
the selection of the image filters, and the shape of the potential functions. Pairwise
MRFs are most widely used, for which the filters are simple image derivatives. The
FRAME model [21] is an early instance of filter-based, high-order MRFs, in which dis-
cretized potentials are learned from data, and the filters are automatically chosen from
a hand-designed set of candidates. The more recent Fields of Experts (FoEs) [14] use
continuous potential functions and additionally learn the filters from training data to
achieve better results in practice. Despite success in various applications [9,19], recent
work [16] based on drawing samples from FoE priors [14,19] found that they represent
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(a) CD-trained FoE; parameters from
the public implementation of [16].

10
−5

10
−3

10
−1 KLD < 0.01 KLD = −−

10
−5

10
−3

10
−1 KLD < 0.01 KLD < 0.01

10
−5

10
−3

10
−1 KLD < 0.01 KLD < 0.01

−100 −50 0 50 100

10
−5

10
−3

10
−1 KLD = −−

−100 −50 0 50 100

KLD = −−

(b) FoE with filters from (a), but
potentials re-trained with PCD.
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(c) FoE trained with proposed learning
procedure.

Fig. 1. Filter-based MRFs and image statistics: Image filter (3× 3, top right) with corresponding
learned potential function (solid, green), marginal histograms of natural images (dash-dotted,
red), and model marginals obtained by sampling (dashed, blue). The proposed learning scheme
leads to a better match to natural image statistics (top left – marginal KL-divergence).

relevant statistical properties of natural images only quite crudely. This appears in con-
tradiction to the maximum entropy interpretation of filter-based MRFs [21], which sug-
gests that the model should capture the statistics of the in-built features, at least if the
potential functions are chosen and learned appropriately. [16] attributed this to previ-
ously used potentials not being heavy-tailed enough and suggested learning the shape
of a more flexible potential, taken to be a Gaussian scale mixture (GSM) [11]. While
this allowed to learn pairwise MRFs that capture derivative statistics correctly, the high-
order case was more problematic: Marginal statistics of model samples were found not
to be as heavy-tailed as those of natural images (Fig. 1a). Moreover, their study was
limited to moderate clique sizes and a comparatively small number of filters.

In this paper we aim to address these issues and explore the limits of how well filter-
based MRFs can capture natural image statistics. Motivated by the observation that
larger support sizes lead to clearly improved performance bounds for image denoising
[6], we also aim to learn models with larger cliques. We propose an improved learning
procedure that (1) reduces training bias by replacing contrastive divergence (CD) [3]
with persistent CD [17] as the learning objective; (2) improves robustness by imposing
filter normalization and using initializations that allow the model to learn more var-
ied filters; and (3) uses a new boundary handling method for sampling, which reduces
sampling bias and thus increases both accuracy and efficiency. Our approach has vari-
ous benefits: It makes learning more robust and consequently enables training models
with larger and more filters that exhibit a more structured appearance (Fig. 5). More-
over, it enables learning improved potential functions that are extremely heavy-tailed,
almost Dirac-delta like (Fig. 1c), which allow the model to capture the statistics of the
model features correctly; the trained models are thus real maximum entropy models.
More importantly and in contrast to previous approaches, the trained models also rep-
resent multi-scale derivative statistics, random filter statistics, as well as joint feature
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statistics of natural images quite accurately. Image denoising experiments show that
this improvement in modeling accuracy also translates into sizable performance gains
of approximately 0.3dB to the level of state-of-the-art denoising techniques, such as
non-local sparse coding [8] or BM3D [1]. To the best of our knowledge this is the first
time this has been achieved with a purely generative, global model of natural images.

Other Related Work. There is an extensive literature on learning methods for MRF
models, including those of natural images. Difficulties arise from the intractability of
inference and from the likelihood being generally multimodal. Besides MCMC-based
approaches [21] and approximations including contrastive divergence [3] or persistent
CD [17], deterministic methods including basis rotation [19] and score matching [5]
have been used. These approaches have relied on particular potential functions, either
fitted off-line or with limited expressiveness, which constrains their applicability. We
instead learn potentials based on Gaussian scale mixtures (GSMs), which have found
widespread use in local image models [11] and as potentials in global MRF models
[16,19]. One of our contributions is to show that GSMs are sufficiently flexible to allow
even high-order MRFs to model image statistics to a high degree of accuracy.

2 Basic Model and Learning Procedure

In this paper we explore the capabilities of filter-based, high-order MRFs (e.g. [2]). For
ease of comparison to previous analyses, we use the particular form of [16]. The prior
probability density of a natural image x under such a model is written as

p(x;Ω) =
Nε(x)

Z(Ω)

∏
c∈C

∏F

i=1
φ
(
fT
i x(c);ωi

)
. (1)

The fi are the linear filters, and φ(·;ωi) is the respective potential function (or factor/
expert) with parameter ωi. Further, c ∈ C denote the model cliques, and Z(Ω) is the
partition function that depends on the model parameters Ω = {fi,ωi|i = 1 . . . F}. A
broad (unnormalized) Gaussian Nε(x) = e−ε‖x‖2/2 ensures normalizability (cf . [19]).

Due to their flexibility for representing a wide variety of heavy-tailed, highly kur-
totic distributions, we follow previous work [7,16,19] and use Gaussian scale mixtures
(GSMs) [11] to represent the potentials. In their finite form they can be written as

φ
(
fT
i x(c);ωi

)
=

∑K

k=1
ωik · N (

fT
i x(c); 0, zik · σ2

i

)
, (2)

where ωik ≥ 0,
∑

k ωik = 1 are the mixture weights of the scales zik. Note that here
we use fixed variances zik · σ2

i of the Gaussian components.

Basic Learning Strategy. Learning the model parameters Ω from data involves esti-
mating the weights ωik of the GSM, and in case of Fields of Experts also the filters
fi. The classical learning objective for training models of natural images is maximum
likelihood (ML, see Sec. 1 for alternatives). A gradient ascent on the log-likelihood for
a parameter Ωi leads to the update

Ω
(t+1)
i = Ω

(t)
i + η

[〈
∂E
∂Ωi

〉
p
− 〈

∂E
∂Ωi

〉
X0

]
, (3)
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(a) (left) Potentials; (right) marginal statistics. (b) Evolution of filter coefficients during learning.

Fig. 2. (a) Difference between potentials (for one filter from Fig. 1(a), 2nd row & 2nd column)
trained with 1-step CD (dashed, blue) and PCD (dash-dotted, red), as well as resulting model
marginals (magnified for display). The marginal KL-divergence is given w.r.t. natural images
(solid, black). (b) Filter coefficients may decay or disperse without filter normalization.

where E is the unnormalized Gibbs energy according to p(x;Ω) = e−E(x;Ω)/Z(Ω),
η is the learning rate, 〈·〉X0 denotes the average over the training data X0, and 〈·〉p
denotes the expectation value w.r.t. the model distribution p(x;Ω(t)).

One conceptual advantage is that this minimizes the Kullback-Leibler (KL) diver-
gence between the model and the data distribution and, in principle, makes the model
statistics as close to those of natural images as possible. Various difficulties, however,
arise in practice. First, there is no closed form expression for the model expectation,
and an exact computation is intractable. Approximate inference, e.g. using sampling,
must thus be used. Markov chain Monte Carlo (MCMC) approximations are histori-
cally most common (e.g. [21]), but very inefficient. Consequently, ML estimation it-
self was frequently approximated by contrastive divergence (CD) [3], which avoids
costly equilibrium samples: Samplers are initialized at the training data X0 and only
run for n (usually a small number) MCMC iterations to yield the sample set Xn. Then
〈∂E/∂Ωi〉Xn is used to replace 〈∂E/∂Ωi〉p in Eq. (3). We here use CD as the basis. A
second challenge is the speed of mixing, which is usually addressed with efficient sam-
pling methods, such as hybrid Monte Carlo [20] or auxiliary-variable Gibbs samplers
[16]. We employ the latter and use the publicly available implementation of [16].

3 Improved Learning Scheme

The basic learning procedure from Sec. 2 involves a series of approximations. More-
over, the data likelihood is generally multimodal, leading to locally optimal parameters.
Since previous filter-based, high-order MRFs failed to capture image statistics accu-
rately (cf . Fig. 1a), the shortcomings in learning are a possible cause. We here inves-
tigate this issue, show that such a standard learning procedure is insufficient to learn
accurate models of natural images, and propose an improved learning scheme.

3.1 PCD vs. CD

Although contrastive divergence is a reasonably good and formally justified approxi-
mation of maximum likelihood [3], it may still incur a training bias. While using n-step
CD (with large n) may reduce the bias, learning becomes much less efficient. Thus pre-
vious work typically relied on 1-step CD [20], particularly for high-order models [16].
We instead use persistent contrastive divergence (PCD) [17], in which the samplers
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are not reinitialized each time the parameters are updated. Instead, the samples from
the previous iteration are retained and used for initializing the next iteration. Combined
with a small learning rate, the samplers are thus held close to the stationary distribution:

〈
∂E
∂Ωi

〉
XPCD ≈ 〈

∂E
∂Ωi

〉
X∞ ≈ 〈

∂E
∂Ωi

〉
p
. (4)

Thus each parameter update closely approximates a true ML update step as in Eq. (3).
Note that even with a small learning rate, PCD has an efficiency comparable to that
of 1-step CD, but substantially reduces bias as the experiments below show. Note that
while PCD has been used to train Restricted Boltzmann Machines [17] and filter-based
MRFs with Student-t potentials [12], this is the first time it has been investigated in
conjunction with more flexible GSM potentials.

Replacing CD with PCD not only reduces training bias, but more importantly im-
proves the models’ properties significantly. To demonstrate this, we use the 3 × 3 FoE
from the public implementation of [16] as a basis and retrain the potentials with PCD,
while keeping the filters fixed. The resulting marginal statistics of the in-built model
features (Fig. 1b) match those of natural images well; all marginal KL-divergences are
below 0.01. Fig. 2(a) shows in detail the parts where PCD affects the potential shape
the most and most improves the resulting model marginal. Another notable benefit of
using PCD is that it enables the following improved boundary handling scheme.

3.2 Boundary Handling for Sampling

Boundary pixels are a common source of problems in MRFs, since they are overlapped
by fewer cliques, making them less constrained than those in the image interior. When
sampling the model, boundary pixels of the samples tend to take extreme values, which
affects both learning and analysis of the model through sampling. Norouzi et al. [10]
proposed to use conditional sampling, i.e. keeping a small number of pixels around the
boundary fixed and conditionally sampling the interior. The drawback of this scheme
is that the boundary pixels will significantly diffuse into the interior during sampling,
which can be seen from the example in Fig. 3(a,b). To reduce bias in learning and
evaluation of the model, a thick boundary from the samples thus has to be discarded.
The disadvantage is that this lowers the accuracy and the efficiency of learning.

To address this, we instead use toroidal sampling, in which the cliques are extended
to also cover the boundary pixels in a wrap-around fashion. The toroidal topology used

(a) (b) (c) (d)

Fig. 3. Effect of boundary handling on samples: (a) Initialization of the sampler; (b) typical
sample generated by conditional sampling. Note how the boundaries affect the interior of the
sample; (c, d) typical sample and its topology generated by the proposed toroidal sampling.
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during sampling is shown in Fig. 3(d). The obvious benefit of using this topology is
the absence of any boundary pixels; all pixels are overlapped by the same number of
cliques, and there are as many cliques as pixels. Since all pixels are constrained equally,
boundary artifacts are avoided, and bias from the boundaries during learning is avoided.

Fig. 3(c) shows how toroidal sampling is less affected by its initialization and can
quickly explore a large space. The generated samples will in turn make learning more
accurate, while not requiring boundary pixels to be discarded. This increases the learn-
ing efficiency, because fewer parallel samplers suffice to estimate the likelihood gradi-
ent accurately. It is important to note that while PCD allows using toroidal sampling,
the more common CD does not. This is because CD repeatedly initializes the samplers
from the training images, which usually do not satisfy periodic boundary conditions.

3.3 Filter Normalization

Some researchers (e.g. [5,20]) have suggested to impose constraints on the norms of fil-
ters, because filters may otherwise become “inactive”, i.e. decay to zero during training.
As zero filters and the corresponding potentials do not contribute to the model at all, this
is an issue, especially when a large number of filters are trained [5,20]. But even with
fewer filters as are used here (the flexibility of the GSM potentials imposes limits on the
attainable number of filters), we observe that filter coefficients may decay or disperse
during learning (Fig. 2b). To address this, we normalize the coefficients of each filter to
unit �2 norm after each parameter update. This incurs no loss of generality due to the
redundancy between the GSM scales and the filter coefficient norm: GSM potentials
with an infinitely large range of scales can in principle adapt to filters with arbitrary co-
efficient norm. The necessarily limited range of GSM scales in practice, however, does
not allow to properly model the potentials if the filters take extreme values. Moreover,
removing the parameter redundancy increases robustness, and in turn enables learning
more filters. Fig. 1(c) shows an example in which all 8 filters are “active” and contribute
to the model. This is in contrast to the learning approach of [16], for which 3 out of 8
learned filters are effectively inactive (Fig. 1a). Unlike previous uses [5,20], combin-
ing filter normalization with more flexible potentials enables learning different, heavy
tailed potentials. These notably improve the ability to capture the marginal statistics of
the in-built features (Fig. 1c). This also suggests that the learning procedure rather than
the representational capabilities of GSMs had been the limiting factor in previous work.

3.4 Initialization of Parameters

The final aspect we address is that of initialization, which is crucial due to the non-
convexity of the data likelihood. Specifically, we found that the initialization of the
potential shape (GSM weights) can significantly affect learning, including the filters. A
uniform initialization of the GSM weights (Fig. 4, red curve) as used, e.g., by [16] is
problematic. This overly constrains the pixel values and makes model samples spatially
flat. The filter responses on the samples thus fall into a much smaller range than those
on training images. The learning algorithm aims to reduce this difference by changing
the filters toward patterns that reduce the filter-response range on natural images. The
effect is that filters, particularly a Laplacian (Fig. 4, middle), are redundantly learned.
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Fig. 4. Typical uniform initialization of GSM weights (dashed, red) leads to filters with fewer
patterns (middle). Broad (δ-like) initialization (solid, green) leads to more varied filters (right).

Fig. 5. 16 learned filters of size 5× 5. Note their more structured appearance compared to [14]

We alleviate this by initializing the potentials such that the pixels are initially less
constrained than they should be, rather than more. To that end, we initialize the poten-
tials with a broad δ-like shape (Fig. 4, green curve). We found that this improves the
robustness of learning and enables training a more varied set of filters that captures dif-
ferent kinds of spatial structures (Fig. 4, right). Our findings indicate that the filters, on
the other hand, are best initialized randomly. Initializing them to interpretable filters,
such as Gabors, is counterproductive as these are usually not optimal for filter-based
MRFs / FoEs, and lead to training becoming stuck in poor local optima.

4 Experiments

Due to the intractability of the partition function, it is not possible to compare models
through the likelihood of a test set. We follow [16,21] to evaluate whether other well-
known properties of natural image statistics are captured by the learned models. We
use a validation set of 1000 non-overlapping images of size 48× 48, randomly cropped
from a set of natural images. Since computing statistical properties such as marginals
exactly is intractable as well, we use model samples from Gibbs sampling.

Evaluated Models. Since the 3× 3 FoE of [16] represents image statistics more accu-
rately than pairwise MRFs and, as far as we are aware, also other filter-based, high-order
MRFs from the literature, we use it as performance baseline. We train the basic model
from Sec. 2 using the improved learning procedure described in Sec. 3 on 1000 ran-
domly cropped 48 × 48 natural image patches. To facilitate comparison, we trained a
model with 8 filters of size 3 × 3 (Fig. 1c). To showcase the benefits of the improved
learning scheme, we also trained 5× 5 models with 8 and 16 filters. All models exhibit
fully “active” filters and potentials with very broad shoulders and tight peaks. Due to
limited space, we only show the learned 16 filters of the 5× 5 model in Fig. 5.

4.1 Generative Properties

Model Features. Due to the maximum entropy interpretation of filter-based MRF priors
[21], the learned model should perfectly capture its feature statistics if the potential
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Fig. 6. Random filter, multiscale derivative and conditional statistics: (top) Average marginal
histograms of 8 random filters (mean 0, norm 1) of various sizes (3 × 3 – blue, 5 × 5 – green,
7×7 – red, 9×9 – cyan). (middle) Derivative statistics at three spatial scales (0 – blue, 1 – green,
2 – red; scales are powers of 2 with 0 being the original scale). (bottom) Conditional histograms
of neighboring derivatives. Brightness corresponds to probability. (top right – KL-divergence.)

functions were chosen and learned appropriately. As can be seen from Fig. 1(a), the
learning scheme in [16] does not lead to a particularly close match between model
marginals and natural image statistics. In contrast, Fig. 1(c) shows that our improved
learning procedure allows the identical model design to capture the marginal statistics
of the in-built features very well. GSM potentials thus prove to be sufficiently flexible
for modeling the potentials in such a filter-based MRF. This is also true for our 5 × 5
model (not shown); all marginal KL-divergences between model and image statistics
are < 0.002. The resulting priors are thus real maximum entropy models.

Other Important Statistics. Since natural images exhibit heavy-tailed statistics even
for the marginals of random linear filters [4], we evaluate our models in this regard
with random filters of 4 different sizes (8 of each size). Fig. 6 (top) shows the average
responses to these random filters for natural images, as well as all models. Moreover,
natural images have been found to exhibit scale invariant derivative statistics [15].
Hence, we check the marginal statistics of derivatives at 3 image scales (powers of
2), which are shown in Fig. 6 (middle). Natural images have also been found to have
characteristic conditional distributions of two image features, with a particular bow-
tie shape [11]. Fig. 6 (bottom) shows the conditional histograms of neighboring image
derivatives. While previous learning approaches come reasonably close regarding all
three properties (Fig. 6b), our improved learning procedure reduces the mismatch be-
tween model and image statistics by a significant factor of 10, as measured in terms
of the marginal KL-divergence (shown at the top-right corner of each plot). The 5 × 5
model improves particularly in terms of (multi-scale) derivative statistics (Fig. 6d). To
the best of our knowledge, this is the first time that such close matches between model
and natural image statistics have been reported for filter-based MRFs, or any MRF
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(a) Original image (b) Noisy image
(σ=25)

(c) FoE from [16],
P 26.27dB, S 0.689

(d) Our 5 × 5 model,
P 26.46dB, S 0.700

(e) BM3D [1],
P 26.23dB, S 0.674

Fig. 7. Image denoising example. P : PSNR; S : SSIM.

image prior. Importantly, this also demonstrates that filter-based MRFs are indeed ca-
pable of capturing a large number of key statistical properties of natural images.

4.2 Denoising Application

To further assess the impact of the proposed learning scheme, we evaluate the learned
models using image denoising. Following [16], we estimate the posterior mean (MMSE
estimate) using Gibbs sampling and evaluate on the same 68 test images with additive
Gaussian noise of known variance. The runtime of our Matlab implementation is on
par with [16] for the 3 × 3 model (8 filters), and approximately four times slower for
the 5 × 5 one (16 filters). Tab. 1 shows a consistent, substantial boost in denoising
performance from our improved learning procedure. Retraining the GSM potentials
using PCD yields a gain of 0.15dB; the full learning procedure improves a 3× 3 model
with 8 filters by another 0.08dB. More importantly, the proposed learning scheme also
allows training models with larger (e.g. 5 × 5) or more (e.g. 16) filters, both of which
lead to further improvements in terms of denoising performance. In total, we obtain an
improvement of 0.3dB over [16], which uses an identical model design but an inferior
learning procedure, and even 0.8dB over the 5 × 5 FoE of [14]. This is not only a
significant gain in the realm of denoising, but also makes our approach competitive
with the latest state of the art in denoising. In particular, it can compete with BM3D
(particularly in SSIM [18]) as well as NLSC [8]. As far as we are aware, this is the first
time such competitive denoising performance has been achieved with any generative,
global model of natural images. An example of denoising is shown in Fig. 7.

Table 1. Denoising results for 68 test images [14] (σ = 25)

Model/Method ∅ PSNR (dB) ∅ SSIM
5× 5 FoE [14] 27.44 0.746
3× 3 FoE [16] 27.95 0.788
8 fixed 3× 3 filters from [16], learned potentials (proposed proc.) 28.10 0.793
8 learned 3× 3 filters & learned potentials (proposed procedure) 28.18 0.796
8 learned 5× 5 filters & learned potentials (proposed procedure) 28.22 0.797
16 learned 5× 5 filters & learned potentials (proposed procedure) 28.26 0.799
BLS-GSM [11] 28.02 0.789
non-local sparse coding (NLSC) [8] 28.28 0.799
BM3D [1] 28.35 0.797
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5 Conclusions

In this paper, we explored the limits of filter-based MRFs for natural image statistics.
We identified various shortcomings in previous learning approaches, and proposed sev-
eral improvements that increase robustness and enable learning larger, more, and more
varied image filters. The learned potentials were found having an almost Dirac-delta
like shape. Moreover, the proposed learning procedure strongly improves the models’
ability of capturing the in-built feature statistics, making them real maximum-entropy
models. They also show clear improvements in capturing other important statistical
properties of natural images, outlining the capabilities of filter-based MRFs. Denoising
experiments demonstrate significant performance gains, bringing the results very close
to the state of the art.

Although our procedure allows learning more and larger filters, pushing this even
further is currently not practical. Many filters lead to slower mixing, larger ones to
less-sparse linear equation systems in sampling. Future work should aim to address
this. Nonetheless, the trained models already capture natural image statistics very well,
suggesting that further gains are likely challenging and may require new model designs.
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