
Detailed Damage Assessment After
the Haiti Earthquake

Danielle Hoja, Thomas Krauss and Peter Reinartz

Abstract In the post crisis phase a much more detailed analysis can be done with
higher accuracy and less pressure of time compared to the general situation
assessment of the rapid mapping process directly after the crisis. In this investi-
gation the analysis is concentrated on the urban area of the capital town of Port-au-
Prince. In order to develop a service for detailed damage assessment, methods of
(semi-)automatic change detection are used and compared, since up to now,
damage information was mainly derived by visual interpretation. Any improve-
ment in terms of accuracy and speed of analysis is of relevance to users in this
context. The results of the different change detection algorithms achieved using the
Haiti datasets are compared to each other and also to the database of the Haiti
Action Plan for Reconstruction and Development (PDNA). The results are very
promising although further improvements have to be made.

1 Introduction

Directly after a crisis or catastrophe an important part of information generation
for the response and relief effort is the production of crisis maps (rapid mapping)
for humanitarian relief organisations. For immediate aid and the general situation
assessment fast information is needed about damages to infrastructure and affected
areas. This analysis is expected as fast as possible and even important if not exact
in all details.
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A more detailed analysis of the damage situation can be done in the post crisis
phase with much higher accuracy, but with less pressure of time. Users are
interested in a detailed damage assessment to support the estimation of losses and
funds needed for reconstruction. The information may be used during post-conflict
needs assessments, in donor conferences or in bilateral/multilateral negotiations.
Some time after a crisis in the rehabilitation and reconstruction phase, the
development of the infrastructure rebuilding can be monitored by the same
methodology. Especially a supervision of an appropriate utilisation of the allocated
funds is of interest to the donators.

All these services, i.e. rapid mapping directly following a crisis or catastrophic
event, long-term damage assessment and reconstruction monitoring, are developed
in the EU project GMES Services for Management of Operations, Situation
Awareness and Intelligence for Regional Crisis (G-MOSAIC) and applied to
datasets acquired after crisis situations as the Haiti earthquake. They are all
implemented in so-called ‘‘Service Chains’’ describing the data flow and pro-
cessing done by several partners in the project.

On January 12, 2010 a severe earthquake took place at the coast of Haiti with a
magnitude of 7.0 causing major damage. The epicentre was registred about 10 km
deep and 16 km southwest of the capital city Port-au-Prince. In the city a large
number of buildings such as the palace, government and UN buildings, embassies
and hospitals were affected or destroyed. Telecommunication as well as electricity
and water supply failed.

In this chapter we show first results of the long-term damage assessment service
chain in the context of the Haiti earthquake. Section 2 provides an overview of the
available datasets and the preprocessing applied. Section 3 presents three change
detection methods and their application to the data. This is followed by conclu-
sions and an outlook in Sect. 4.

2 Datasets and Preprocessing

The analysis is concentrated on the urban area of the capital town of Port-au-
Prince. Different datasets are available for the analysis, mainly scenes of the very
high resolution (VHR) GeoEye-1 satellite providing data with 50 cm ground
sampling distance (GSD) and stereo capabilities. Three scenes were acquired:
October 2009 (before crisis, no stereo), January 2010 (four days after the earth-
quake, stereo) and August 2010 (after crisis, stereo). The rapid mapping results
collected in the database Post Disaster Needs Assessment and Recovery Frame-
work (PDNA) are used for comparison. Also the airborne data used to receive
these PDNA database are available for the study. Additionally, manual change
detection was applied directly with the datasets for a first evaluation of the
algorithms taking into account the state of change directly at the time of acqui-
sition of the satellite images. The challenges of validating image-based results to
each other and to ground truth data for damage assessment products is described in
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(Kerle 2010), e.g. rapid mapping results typically not evaluated due to lack of time
and the contrast between the vertical perspective of the image data (rubble piles,
disintegrated roofs) versus the field perspective (collapsed walls).

An important requirement for automatic change detection is a very good co-
registration of pre- and post-disaster scenes. One of the scenes to be analysed is
defined as reference scene and all other images are co-registered onto this scene.
The automatic processing chain developed at DLR combines the orthorectification
with the co-registration, so only one resampling step is necessary (Müller et al.
2010). After an automatic image matching with respect to the reference scene, the
information for the direct georeferencing (attitude data or RPC) is adjusted using
these matched points. With this information and a digital surface model (DSM) the
scene is orthorectified providing co-registered results with better than � a pixel
accuracy. Additionally a pansharpening is applied to the datasets taking into
account the high spatial resolution of the panchromatic image as well as the
radiometric information of the multispectral data. Figure 1 shows a subset of
the co-registered and pansharpend images of the Haiti dataset.

As two of the scenes were available as stereo scenes, a new approach was tested
to orthorectify the images using the digital surface model generated by the stero
pairs. This leads to more accurate results compared to the orthorectification using
other DSM (e.g. SRTM) not only due to the better resolution but also due to the
better co-registration of images and DSM (d’Angelo et al. 2010). Therefore, at first
digital surface models are derived by dense stereo matching and forward inter-
section and sub-sequent interpolation into a regular grid. Orthorectified images are
produced in the second step using the affine RPC correction and the generated DSM.

The resulting DSM contains a small amount of blunders, e.g. due to matching
errors in regions with sparse texture. These blunders cause some distortions in the
resulting orthoimage that are responsible for some errors in the change detection.
In future, these blunders have to be removed and data gaps in areas where the
matching failed or outliers were removed have to be filled, e.g. with SRTM data
using the delta surface fill method (Grohman et al. 2006).

3 Change Detection Methods: Application and Results

Both service chains of long-term damage assessment and reconstruction moni-
toring use the methods of change detection (CD). Up to now, damage information
was mainly derived by visual interpretation of pre- and post-disaster satellite data.
Any improvement in terms of accuracy and speed of analysis using the methods
developed within the G-MOSAIC project is of relevance to users in this context.

Singh (1989) provided a first overview of change detection methods. The funda-
mental conclusion was that various procedures of change detection produce different
maps of change even in the same environment. Methods are classified into different
categories, e.g. pixel- vs. object-based, analysis of image data vs. classification results,
etc. Lu et al. (2004) grouped the change detection methods into seven categories
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including algebra, transformation, classification, advanced models, Geographic
Information System (GIS) approaches, visual analysis and other not so frequently
used approaches. Different comparisons of methods revealed that simple methods
may perform better than complex methods (e.g. Coppin and Bauer 1996; Liu et al.
2004). Since segmentation and object definition introduce new challenges into the
image processing, work in this project was concentrated on pixel-based algorithms.

After the co-registration, the simple algebraic change detection method of
differencing is applied to the datasets. It is relatively easy to implement and
provides fast results. In a second step a more complex method from the trans-
formation category, namely multivariate alteration detection (MAD) is applied.
Finally 3D change detection as advanced method of the algebra category is tested.

Fig. 1 Subset (500 9 500 m) of Port-au-Prince, Haiti showing the development of a refugee
camp after the earthquake on 2010/01/12. (Top left) GeoEye, 2009/10/01—PRE; (Top right)
GeoEye, 2010/01/16—PO1; (Bottom left) GeoEye 2010/08/18—PO2; (Bottom right) manual
measured changes between PRE ? PO1 (in red) and between PO1 ? PO2 (in green) (areas
changed in both time frames are yellow)
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The results gained automatically are investigated manually for the high accuracy
requested by the user. However, such a semiautomatic service chain is still faster
than a complete manual analysis.

3.1 Basic Change Detection: Image Differencing

For image differencing, an additional pre-processing step is necessary. Due to some
acquisition parameters such as different acquisition dates and view angles of the
sensor, there are changes that are not of interest to the user (virtual changes). The
radiometric correction step aims at reducing these differences of the two temporal
images caused by the variation in light and atmospheric conditions at the two
acquisition dates (Bovolo and Bruzzone 2007). Here histogram normalization is
used for image differencing. The histogram of the pre-event image (October 2009) is
taken as reference and the histograms of the two post-event images are adjusted to it.

Next, the two co-registered images are simply subtracted pixel by pixel. Image
differencing is mathematically the easiest and the most widely used automatic
change detection approach that has been applied in various geographical envi-
ronments (Singh 1989). Ideally, the value zero represents areas of no change while
positive or negative values stand for changed areas in the difference image. Since
many factors such as inaccurate co-registration can lead to virtual changes, pixels
in no change areas do not necessarily have zero values. The critical step of image
differencing is deciding where to place the threshold boundaries between change
and no-change (Singh 1989).

The selection of the correct threshold is often done using some in situ infor-
mation or the result of a manual analysis. Since the algorithm is planned as
completely automatic, the threshold selection is based on statistical values. Pixels
in the range of ‘‘mean ± standard deviation’’ are considered ‘‘no change’’, pixels
outside this range are considered ‘‘change’’. These values were received in a
similar study (Liang 2010; Liang et al. 2011). For multispectral images, different
ways exist to deal with the single bands. In our approach, all steps are carried out
for each band separately. Only after the thresholding of the image differencing
result, the results obtained by single bands are combined. Best results were
received taking into account only pixels indicating a change in at least three bands.

Figure 2 shows the examplary result for the changes between the two post-
disaster images (four days and seven months after the earthquake). The upper left
image shows the difference for band 3. The histogram (top right) shows the result
for all 4 bands. The values are changed into 8bit (by adding 256 and dividing
by 2). Mean value for band 3 is 127.8 (similar for all bands), the standard deviation
is 17.3 (smallest value, up to 27.9 for band 2). The lower left image shows the
resulting change detection map (binary image). After the removal of pixels indi-
cating change only in one or two bands, some morphological operators were also
applied (opening, closing) to remove spurious pixels. In the lower right corner the
image is overlayed with the manual measurement.
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The colours in this overlay image indicate the correctness of the automatic
algorithm in comparison to the manual measurement. Green areas indicate changes
in both the automatic derived binary map as well as in the manual measurement,
whereas black indicates ‘‘no change’’ in both change maps. Blue colour indicates
areas, which have changed according to the manual measurement but were not
detected by the automatic algorithm. As can easily be seen, there are no solely blue
areas, they occur only in combination with green areas. So there are at least some
changes nearby, and a manual verification of the automatic measurements will
finish with the correct result. Additionally, it can be seen, that the manual mea-
surement marked large areas of change (green and blue together), e.g. the complete
refugee camp as one changed area. As can be seen in Fig. 1, there are still some
trees inside this area, which of course do not appear as change in the automatic
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Fig. 2 Same detail as Fig. 1. (Top left) difference image; (Top right) histogram of difference;
(Bottom left) resulting binary change detection map, White = change; (Bottom right) overlay of
difference binary map (‘‘Autom.’’) and manual measurement (‘‘man.’’; C = Change)
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algorithm. Finally, red colour indicates areas defined by image differencing as
change, but not in the manual measurement. These areas are mostly changes not of
interest (i.e. vegetation changes) and have to be removed in a following verification
step. However, the areas to be analysed (red and green) are significantly smaller
than the complete image, which has been analysed manually so far.

3.2 Multivariate Alteration Detection

To avoid radiometric correction as well as band selection, another promising
difference-based change detection method is iteratively reweighted multivariate
alteration detection (IR-MAD). MAD analyses multispectral data by utilizing all
the bands simultaneously. The method is based on an established multivariate
statistical technique: canonical correlation analysis (CCA). As CCA finds a linear
combination of the original multispectral data ordered by decreasing correlation
between pairs, MAD transformation determines the difference between linear
combinations of the original multispectral bands ordered by variance. A detailed
analysis can be found in Nielsen (2007).

IR-MAD calculates original MAD variates firstly, and then in the following
iterations, puts large weights on the observations which show little change. This is
achieved through calculating a measure of no change based on the sum of squared,
standardized MAD variates in each iteration, little change means that the sum of
squared, standardized MAD variates is small (Nielsen 2007). The iterations are
continued until the largest absolute change in the canonical correlations reaches a
predefined value, e.g. 10-3.

Additionally to the four multispectral bands, the input image to the MAD
algorithm is combined with some texture information. It is based on the idea that
damaged areas should be rich in textural features compared with the same areas
before damage or after reconstruction, which mainly consist of regular buildings
showing fewer textural features (Liang 2010; Liang et al. 2011). The widely used
texture modeling is the grey level co-occurrence matrix (Haralick 1973) due to its
simplicity and low computational complexity, which has been proved very effi-
cient in texture modeling. The textural feature inverse difference moment (indi-
cating the local homogeneity of an image) is calculated within a 5 9 5 pixel
window, which makes a good distinction between the original two images.

In this study, the resulting Chi-square image incorporating all the information
of MAD variates is used for the final thresholding. This step is carried out using
the ImageJ toolbox (Landini 2010; ImageJ Toolbox 2011) providing different
automatic thresholding methods. Here, the common global thresholding method by
Otsu (1979) is applied. The algorithm searches for the optimal threshold that
maximizes the separability of the resultant classes in grey levels assuming that the
image is composed of only two classes: object and background.

Figure 3 shows some intermediate results of applying the IR-MAD algorithm to
the dataset shown in Fig. 1. The top two images are the first two variates of the
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algorithm. The IR-MAD algorithm results in n variates when applied to two
images with n channels each. The different variates show different changes and are
in descending order (therefore only the first two are shown here). The Chi-square
image as combination of all variates is shown in the lower right corner. After the
post-processing (thresholding and morphological operators) the image is overlayed
again to the manual measurement. The distribution of green and blue areas is
similar to the result of image differencing, whereas the red areas are strongly
reduced. The manual verification will be much faster with this result.

Fig. 3 Same detail as Fig. 1. (Top) IR-MAD variate 1 and 2, White = change; (Bottom left)
result of MAD algorithm: Chi-square image, lighter = higher probability of change; (Bottom
right) overlay of resulting IR-MAD binary map and manual measurement (legend: see Fig. 2)
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3.3 3D Change Detection

A more sophisticated damage assessment analysis is applied using 3D change
detection approaches. Unfortunately for most catastrophic events no height
information like DSM or very high resolution satellite stereo image pairs is
available for the pre-disaster time. So these approaches are normally only appli-
cable in reconstruction applications. For monitoring issues VHR satellite stereo
images are acquired following the crisis. 3D change detection methods show
changes, which can hardly or even not be seen in comparing 2D imagery like
changes in heights and volume of buildings, waste dumps, and other objects.

As for both of the post-crisis Haiti datasets stereo scenes were ordered, the
DEM were already generated during the pre-processing (see above). Here, the
DEM are used for change detection. The height differences are calculated by
simple subtraction of both DEM. The resulting image can be seen in Fig. 4
(bottom). Here, another area of Port-au-Prince is choosen due to the blunders in the
DEM as described above (no blunders in this area). The difference image shows
clearly positive (white) and negative (dark) changes. Negative changes indicate a
lower height in the second image; there some object has been removed. Positive
changes indicate some increase in height. As can be clearly seen in the upper left
corner, the formerly empty space has been filled with refugee tents and even some
building as indicated in the DEM change map. Also in the lower part of the image,
the building has been extended, which cannot be seen in the 2D images.

Next step in the 3D change detection would be the automatic post-processing of
the 3D difference image as e.g. shown in (Tian et al. 2011; Chaabouni-Chouayakh
et al. 2011). To receive better results, region detection is applied to the orthoimages.
Further an object-based feature analysis is carried out, differentiating the regions into
infrastructure (of main interest) and vegetation (not of interest). Some threshold has
to be defined to finally differentiate between measurement inaccuracy and real height
changes. Additionally, some improvements of the DEM generation algorithm are
needed in densly populated areas.

4 Conclusions and Outlook

This chapter shows first results of the application of the service chains for damage
assessment and reconstruction monitoring developed in the context of G-MOSAIC.
The results of the different change detection algorithms received with the Haiti
datasets are compared to manual measurements retrieved also from these datasets.
Further analysis is necessary, e.g. a comparison to the PDNA database for inde-
pendent results. However, as it was already experienced during the rapid mapping,
only a fraction of the damages can be seen in the VHR satellite data in comparison to

Detailed Damage Assessment After the Haiti Earthquake 201



the airborne data. But it can also bestated that the main areas of change are detected
and give substantial hints for further manual evaluations. Therefore semi-automatic
evaluation will be the method of choice for satellite data analysis in this context.

Fig. 4 (Top) subset (650 9 500 m) of Port-au-Prince, Haiti showing the development of another
refugee camp after the earthquake on 2010/01/12 (upper left corner). (Left) GeoEye, 2010/01/16;
(Right) GeoEye 2010/08/18; (Bottom) difference of DEM generated from the two stereo images

Table 1 Statistical measures for two change detection algorithms (image differencing and IR-
MAD incorporating texture information) and two time frames each (PRE = 2009/10/
01 ? PO1 = 2010/01/16 and PO1 = 2010/01/16 ? PO2 = 2010/08/18)

Quality measure Formula Image differencing IR-MAD with texture

PRE ? PO1 PO1 ? PO2 PRE ? PO1 PO1 ? PO2

No of pixels C/C TP ( ) 11,091 75,072 14,352 77,517
No of pixels C/no C FP ( ) 111,921 68,487 59,021 10,104
No of pixels no C/C FN ( ) 10,975 81,032 7,714 78,587
No of pixels no C/no C TN ( ) 866,013 775,409 918,913 833,792
Completeness (%) 100�TP

TPþFN
50.3 48.1 65.0 49.7

Correctness (%) 100�TP
TPþFP

9.0 52.3 19.6 88.5

Quality percentage (%) 100�TP
TPþFPþFN

8.3 33.4 17.7 46.6

Overall accuracy (%) 100�ðTPþTNÞ
TPþFPþFNþTN

87.7 85.0 93.3 91.1
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The various methods are in different development stages with the object to get a
(semi-) automatic algorithm. Image differencing and IR-MAD incorporating tex-
ture information can already be applied completely automatically and only a
manual verification of the results is necessary afterwards. Besides the qualitative
analysis given above, Table 1 shows some quantitative statistical measures of the
results. Completeness varies around 50 %, so only half of the changes are
detected. But as can be seen in the figures above, no changed area remains
completely undetected. The correctness is very low for the changes before/after the
earthquake (9 or 19 %), whereas the changes occuring in the half year after the
earthquake can be detected better. The IR-MAD algorithm incorporating texture
information has a very promising value of 89 % correctness. All these figures also
show that the IR-MAD algorithm usually performs better (or at least similar, but
never worse) than the image differencing.

3D change detection is not yet compared to some reference data (and there are
only 2D reference data available at all), but it is shown that changes can be
detected. It results in the identification of changes, which can hardly or even not be
seen in comparing 2D imagery like changes in heights and volume of buildings or
other objects. Unfortunately for most catastrophic events no height information
like DSM or just very high resolution satellite stereo image pairs are available for
the pre-disaster time, but this might change in future. The intention of this research
of change detection methods is that the developed methods (the best one or a
combination of various) can be used in a semi-automatic way for future disaster
monitoring applications where no airborne data are available.
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