
P. Anthony, M. Ishizuka, and D. Lukose (Eds.): PRICAI 2012, LNAI 7458, pp. 807–813, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Mining Frequent Itemsets with Dualistic Constraints

Anh Tran1, Hai Duong1, Tin Truong1, and Bac Le2

1 Department of Mathematics and Computer Science, University of Dalat, Dalat, Vietnam
{anhtn,haidc,tintc}@dlu.edu.vn

2 University of Natural Science Ho Chi Minh, Ho Chi Minh, Vietnam
lhbac@fit.hcmus.edu.vn

Abstract. Mining frequent itemsets can often generate a large number of fre-
quent itemsets. Recent studies proposed mining itemset with the different types
of constraint. The paper is to mine frequent itemsets, where a one: does not con-
tain any item of C0 or contains at least one item of C0. The set of all those ones
is partitioned into equivalence classes. Without loss of generality, we only in-
vestigate each class independently. One class is represented by a frequent
closed set L and splits into two disjoint sub-classes. The first contains frequent
itemsets that do not contain any item of C0. It is generated from the correspond-
ing generators. The second includes in two subsets of the frequent itemsets
coming from the generators containing in C0, and the ones obtained by connect-
ing each non-empty subset of L∩C0 with each element of the first.

Keywords: Closed itemsets, frequent itemsets, dualistic, constraints, generators.

1 Introduction

First introduced and researched by Agrawal et al. [1] in 1993, mining frequent itemsets
has been become one of the important problems in data mining. As usual, users are only
interested in frequent itemsets that satisfy given constraints. The problem has been re-
ceiving attentions of many researchers [3, 4, 5, 7]. Let us consider searching documents
in the Internet. The databases for obtaining them are usually saved into the tables. Each
row in a table contains keywords appeared in a document. Assume that, a new user U
wants to touch in the document D. Thus, U needs to know some keywords according to
D. It is difficult to U, in the meaning that, U can get the set C of all keywords related to
the subject that D belongs to, but he can not to know the keywords containing in D.
Hence, the important task is to determine keyword sets containing in C. Those sets help
the users to touch in documents quickly. For a transaction database T included in the set
A of all items, let AF be the set of all frequent ones. The paper focuses on the following
problem: Given a constraint C (C⊆AF), mine frequent itemsets (keyword sets) whose

items are in C (Cons1) ?”. They do not contain any item of the complement set C0 of C
(C0 := A \C). On the extension, we consider its dualistic problem: Generate frequent

itemsets L’ such that L’ contains at least one item of C0 (Cons2). For example, users
need to know frequent keyword sets based on a few given keywords. They can lead
users quickly to the desired documents.

808 A. Tran et al.

Solving these two problems by the algorithms of mining directly frequent itemsets
such as Eclat [10], Apriori [1], etc is not suitable because minimum support and con-
straint often change (see [2] for details). Recently, in [2], we proposed the suitable
model for mining frequent itemsets restricted on constraint. It can be applied to mine
frequent itemsets with above dualistic constraints. Let us consider the class
represented by frequent closed itemset L. For mining itemsets with Cons2, we split it
into two parts. The first contains the ones generated from the generators that each of
them contains at least one item of C0. The other includes in the ones created by con-
necting each frequent itemset that does not contain any item of C0 and each non-
empty subset of L∩C0. The paper is organized as follows. Section 2 recalls some
concepts of frequent itemset mining. Section 3 proposes the ways to generate non-
repeatedly all frequent itemsets with dualistic constraints. Experimental results and
the conclusion are shown in Sections 4 and 5.

2 Preliminaries

Given non-empty set O containing transactions. Let A be the set of items that are in
transactions and R a binary relation on OxA. Consider two functions: λ: 2O→2A, ρ:
2A→2O defined as follows: ∀A⊆A, O⊆O: λ(O) = {a ∈ A | (o ,a) ∈ R, ∀ o ∈ O}, ρ(A)

= {o ∈ O | (o, a) ∈ R, ∀ a ∈ A}. Assign that h = λ o ρ, h(A) are called the closure of
A. A is called a closed set [12] if h(A) = A. A set of items containing at least one
transaction is called an itemset. For itemset S, supp(S):=|ρ(S)| / |O| is called the sup-
port of S. Let s0 ∈ (0; 1] be minimum support, S is frequent iff supp(S) ≥ s0 [1]. Let
FS and FCS be respectively the classes of all frequent itemsets and all frequent closed
itemsets. For G, A: ∅≠G⊆A⊆A, G is called a generator [6] of A if h(G)=h(A) and
(∀G’: ∅≠G’⊂G h(G’)⊂ h(G)). Since the cardinality of the class of all generators
of A is finite, they can be numbered as follows: G(A) = {Ai, i∈{1, 2, …, |G(A)|}}.

3 Mining Frequent Itemsets with Dualistic Constraints

Theorem 1 [8] (A partition of FS). []
∈

=
L FCS

LFS .

Each class contains frequent itemsets of the same closure L. Without loss of generali-
ty, it only needs to exploit independently mining frequent itemsets with the dualistic
constraints in each class. Afterwards, we write L ∈ FCS simply L.

Definition 1. The set of the elements in [L] “containing in C” (Cons1) and the set of
the ones “involved with C0” (Cons2) are defined as follows:

FSC(L) = {L’ ∈ [L] | L’ ∩ C0 = ∅}, FS∩C0(L) = {L’ ∈ [L] | L’ ∩ C0 ≠ ∅}.

 Mining Frequent Itemsets with Dualistic Constraints 809

Theorem 2 (Structure of Each Equivalence Class). Let us denote “+” as the union
of two disjoint sets, we have:

[L] = FSC(L) + FS∩C0(L).

Definition 2. The set of generators Li containing in C and its complement on G(L)
containing the generators involved with C0 are defined in the following:

GC(L) = {G ∈ G (L) | G ∩ C0 = ∅}, G¬C(L) = {G ∈ G (L) | G ∩ C0 ≠ ∅}.

Let N be the cardinality of G(L). All n generators of L in GC(L) are numbered as L1,
L2, .., Ln. The ones in G¬C(L) are Ln+1, Ln+2, .., LN.

3.1 Generating Non-repeatedly Frequent Itemsets Containing in C

Using GEN-ITEMSETS [2], we derive the class [L]. For each L’∈[L], we test
“L’∩C0 = ∅ ?”. The ones passed are in FSC(L). This way is simple (MFS-CC-
SIMPLE is the corresponding algorithm). However, when the cardinality of [L] is big,
and the one of FSC(L) is small, it runs slowly. How to generate directly the elements
of FSC(L)? Based on propositions 2 and 3 in [2], we can do it quickly.

Fig. 1. The algorithm MFS-CC for mining frequent itemsets containing in C

Table 1. Database T

Trans Items Trans Items
1 aceg 5 aceg
2 acfh 6 bceg
3 adfh 7 acfh
4 bceg

MFS-CC (L, G(L)):
1. NewGL = CLASSIFY-GENERATORS (L, G(L), out n, out N)
2. return Sub-MFS-CC (L, NewGL, n) // FS C (L)

Sub-MFS-CC (L, NewGL, n):

3. FSC(L) = ∅ and U
i

i
L (L)

LX
C

∈
=

G
and X_ = (L∩C)\XU

4. for (i=1; i <= n; i++) do
5. XU,i = XU\Li; // Li∈G

C
(L)

6. for all X’i ⊆ XU,i do
7. IsDuplicate = false
8. for (k=1; k<i; k++) do
9. if Xk ⊂ Xi+X’i then IsDuplicate = true and break
10. if not(IsDuplicate) then
11. for all X~ ⊆ X_ do FS

C
(L).add(Xi+X’i+X~)

12. return FSC(L)

810 A. Tran et al.

Example 1. Consider database T in Table 1. Fix now s0 = 2/7, using Charm-L [11]
and MinimalGenerators [9], we have the frequent closed itemset L=aceg together

G(L) = {ae, ag}. With C0 = cfh. Then, C = AF \ C0 = abcefgh \ cfh = abeg. From

definition 2, GC(L) = {GC,1=ae, GC,2=ag}. Using MFS-CC, XU = aeg, XU,1 = g, XU,2 =
e, X_ = (L∩abeg)\ XU = ∅. For GC,1, we have: ae+∅, ae+g ∈ FSC(aceg). For GC,2:
ag+∅ ∈ FSC(aceg) (ag+e does not appear again). Thus, FSC(aceg) = {ae, aeg, ag}.

3.2 Mining Frequent Itemsets Involved with C0

Based on directly definition 1, we can obtain the algorithm MFS-IC-SIMPLE (by
replacing “L’∩C0 = ∅” in MFS-CC-SIMPLE by “L’∩C0 ≠ ∅”) for mining the class
of frequent itemsets involved with C0. However, it works slowly. So, how to generate
quickly elements of FS∩C0(L)? We could assume that L∩C0 ≠ ∅ (conversely,

FS∩C0(L) = ∅). We split FS∩C0(L) into two parts. The first one FS+
C(L) contains fre-

quent itemsets created by adding each non-empty subset of L∩C0 into each frequent
itemset containing in C. We have:

FS+
C(L) = FSC(L) ⊕ (2L∩Co\{∅}),

where: the “sum” operator ⊕ of X and Y (X, Y ⊆ 2A\{∅}) is defined: X⊕Y = {A+B:

∅ ≠ A ∈ X, ∅ ≠ B ∈ Y}. Using the generators involved with C0, we generate the fre-

quent itemsets involved with it. For L ∈ FCS, LU

i
i

L (L)
L

G∈
= , Lk ∈ G¬C(L), LU,k =

LU \ Lk, L_ = L \ LU, let assign

FS¬C(L) = {Lk+ L’k+ L~: Lk ∈ G¬C(L), L’k ⊆ LU,k, L~ ⊆ L_

and (Lj ⊄ Lk+ L’k , Lj ∈ G (L), ∀j: 1≤j<k)}.

Theorem 3 (Structure of the Set of Frequent Itemsets Involved with C0). For L ∈

FCS: FS∩C0(L) = FS+
C (L) + FS¬C(L).

Proof: It is easy to see that FS+
C (L) and FS¬C(L) are two disjoint subsets of

FS∩C0(L). Then, let us prove that: FS∩C0(L) ⊆ FS+
C (L) + FS¬C(L). Denoted that LU

i
i

L (L)
L

C
∈

=
G , LU,C,i := LU,C\Li, L_,C := (L∩C)\LU,C. ∀L’= Lk+ L’k+ L~ ∈FS∩Co(L),

Lk∈G(L), L’k⊆LU,k, L~⊆L_ and L’∩C0≠∅, consider two cases: [Case 1] If
Lk∈GC(L), then (L’k+L~)∩C0≠∅. Let us call L’’k = L’k∩LU, T ⊆ LU,C,k, L’’’k =
(L’k\LU,C)∩T ⊆ L_,C, L’’’’k = (L’k\LU,C)\T ⊆ L\T, L~T=L~∩T ⊆ L_,C, L~¬T=L~\T ⊆
L\T, so (L’’’k+L~T) ⊆ L_,C and ∅≠(L’’’’k+L~¬T)⊆L\T. Indeed, if (L’’’’k+L~¬T)=∅,
L’’’’k = L~¬T = ∅. Then, L~⊆C0, L’k\LU,C⊆C0 and ∅≠(L’k+ L~)∩C0= L’k+L~ =
L’’’’k+L~¬T = ∅: contradiction! Hence, L’=[Lk+L’’k+(L’’’k+L~T)]+(L’’’’k+L~¬T) ∈
FS+

C(L). [Case 2] If Lk∈G¬C(L), L’∈ FS¬C(L).

 Mining Frequent Itemsets with Dualistic Constraints 811

Example 2. Consider L=aceg, G(L)={ae, ag} and C0=e. So C=abcfgh. Thus,

GC(L)={ag}. Since FSC(aceg)={ag, agc}, L∩C0=e, so FS+
C(L)={ag+e, agc+e}.

Moreover, G¬C(L) = {ae}, LU = aeg, LU,1 = g and L_= c. Thus, 2L_ = {0, c}. Then

FS¬C(L) = {ae, ae+c}. Hence, FS∩C0(L) = FS+
C(L) + FS¬C(L) = {ag+e, agc+e, ae,

ae+c}.

Fig. 2. The algorithm MFS-IC to mine frequent itemsets involved with C0

4 Experimental Results

The following experiments were performed on i5-2400 CPU, 3.10 GHz @ 3.09 GHz,
3.16 GB RAM, running Windows. The algorithms were coded in C#. Four databases
in FIMDR (http://fimi.cs.helsinki.fi/data/) are used during these experiments: Pumsb
contains 49046 transactions, 7117 items (P, 49046, 7117); Mushroom (M), 8124, 119;
Connect (C), 67557, 129; and Pumsb* (P*), 49046, 7117.

We compare the running times of MFS-CC-SIMPLE with MFS-CC when mining
frequent itemsets containing in C. For each pair of database (DB) and minimum sup-
port (MS), we consider the lengths of C ranging from 20% to 70% of |AF| (step 2%).
For each one, 15 constraints are considered. We test 234 cases for each algorithm.
Experiments showed that in almost cases, MINE-CC runs quickly than MFS-CC-
SIMPLE. We can save the amounts of the running time ranging from 88.7% to
95.5%.

MFS-IC (L, G(L)):
1. NewGL = CLASSIFY-GENERATORS (L, G(L), out n, out N)
2. FS+

C(L) = ∅ and LC = L∩C0

3. if LC ≠ ∅ then
4. FSC(L) = Sub-MFS-CC (L, G(L)) and LC_Class = 2LC\{∅}

6. for all L’ ∈ FSC(L) do
7. for all L’’’ ∈ FSC(L) do FS+

C(L).add (L’+L’’’)

8. FS¬C(L) = ∅ and LU

i
i

L (L)
L

G∈
= and L_ = L\LU;

9. for (k=n+1; k <= N; k++) do
10. LU,k = LU\Lk // Lk∈G¬C(L)

11. for all L’k ⊆ LU,k do
12. IsDuplicate = false
13. for (j=1; j<k; j++) do
14. if Lj ⊂ Lk+L’k then IsDuplicate = true and break
15. if not(IsDuplicate) then
16. for all L~ ⊆ L_ do FS¬C(L).add(Lk+L’k+L~)
17. return FS+

C(L) + FS¬C(L)

812 A. Tran et al.

Next, we compare the running time of MFS-IC-SIMPLE (T_ICS) with the one of
MFS-IC (T_IC) when mining frequent itemset involved with C0,. For each (DB, MS),
the lengths of C0 are ranged from 1 to at most 20% of |AF| with step 2. Table 2 shows
the comparison, where: NCons is the number of the selected constraints, NLess is the
number of constraints such that T_IC < T_ICS. The percent ratio of NLess to NCons
and the average number of the percent ratios of T_IC to T_ICS are shown in columns
RNLess and R_IC (%). In almost cases, MFS-IC runs more quickly than MFS-IC-
SIMPLE. The time can be reduced into a value of 62.3% to 19.1%.

Table 2. The reductions in the time for mining frequent itemsets involved with C0

(DB,
MS)

NCons
RNLess

(%)
R_IC
(%)

(DB,
MS)

NCons
RNLess

(%)
R_IC
(%)

M, 0.15 135 100.0 27.6 P, 0.75 135 99.3 62.3

M, 0.1 150 100.0 22.4 P, 0.7 135 98.5 49.0

M, 0.05 150 100.0 19.1 P, 0.65 135 100.0 43.3

Co, 0.65 135 100.0 26.3 P*, 0.35 150 99.3 36.9

Co, 0.6 135 100.0 23.2 P*, 0.3 150 100.0 34.3

Co, 0.55 135 100.0 26.2 P*, 0.25 150 100.0 30.2

5 Conclusions

We presented the efficient algorithms MFS-CC and MFS-IC for mining frequent
itemsets with the dualistic constraints. Those algorithms are built based on the explicit
structure of frequent itemset class. The class is split into two sub-classes. Each sub-
class is found by applied the efficient representation of itemsets to the suitable genera-
tors. The tests on four benchmark databases showed the efficiency of our approach.

References

1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proceeding of
the 20th International Conference on Very Large Data Bases, pp. 478–499 (1994)

2. Anh, T., Hai, D., Tin, T., Bac, L.: Efficient Algorithms for Mining Frequent Itemsets with
Constraint. In: Proceedings of the Third International Conference on Knowledge and Sys-
tems Engineering, pp. 19–25 (2011)

3. Bayardo, R.J., Agrawal, R., Gunopulos, D.: Constraint-Based Rule Mining in Large,
Dense Databases. Data Mining and Knowledge Discovery 4(2/3), 217–240 (2000)

4. Cong, G., Liu, B.: Speed-up Iterative Frequent Itemset Mining with Constraint Changes.
In: ICDM, pp. 107–114 (2002)

5. Nguyen, R.T., Lakshmanan, V.S., Han, J., Pang, A.: Exploratory Mining and Pruning Op-
timizations of Constrained Association Rules. In: Proceedings of the 1998 ACM-SIG-
MOD Int’l Conf. on the Management of Data, pp. 13–24 (1998)

 Mining Frequent Itemsets with Dualistic Constraints 813

6. Pasquier, N., Taouil, R., Bastide, Y., Stumme, G., Lakhal, L.: Generating a condensed re-
presentation for association rules. J. of Intelligent Information Systems 24(1), 29–60
(2005)

7. Srikant, R., Vu, Q., Agrawal, R.: Mining association rules with item constraints. In: Pro-
ceeding KDD 1997, pp. 67–73 (1997)

8. Truong, T.C., Tran, A.N.: Structure of Set of Association Rules Based on Concept Lattice.
In: Nguyen, N.T., Katarzyniak, R., Chen, S.-M. (eds.) Advances in Intelligent Information
and Database Systems. SCI, vol. 283, pp. 217–227. Springer, Heidelberg (2010)

9. Zaki, M.J.: Mining non-redundant association rules. Data Mining and Knowledge Discov-
ery (9), 223–248 (2004)

10. Zaki, M.J., Parthasarathy, S., Ogihara, M., Li, W.: New algorithms for fast discovery of
association rules. In: Proc. 3rd Int. Conf. on Knowledge Discovery and Data Mining (KDD
1997), pp. 283–296 (1997)

11. Zaki, M.J., Hsiao, C.J.: Efficient algorithms for mining closed itemsets and their lattice
structure. IEEE Trans. Knowledge and Data Engineering 17(4), 462–478 (2005)

12. Wille, R.: Concept lattices and conceptual knowledge systems. Computers and Math. with
App. 23, 493–515 (1992)

	Mining Frequent Itemsets with Dualistic Constraints
	Introduction
	Preliminaries
	Mining Frequent Itemsets with Dualistic Constraints
	Generating Non-repeatedly Frequent Itemsets Containing in
	Mining Frequent Itemsets Involved with

	Experimental Results
	Conclusions
	References

