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Abstract. Mining frequent itemsets can often generate a large number of fre-
quent itemsets. Recent studies proposed mining itemset with the different types 
of constraint. The paper is to mine frequent itemsets, where a one: does not con-
tain any item of C0  or contains at least one item of C0. The set of all those ones 
is partitioned into equivalence classes. Without loss of generality, we only in-
vestigate each class independently. One class is represented by a frequent 
closed set L and splits into two disjoint sub-classes. The first contains frequent 
itemsets that do not contain any item of C0. It is generated from the correspond-
ing generators. The second includes in two subsets of the frequent itemsets 
coming from the generators containing in C0, and the ones obtained by connect-
ing each non-empty subset of L∩C0 with each element of the first. 
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1 Introduction 

First introduced and researched by Agrawal et al. [1] in 1993, mining frequent itemsets 
has been become one of the important problems in data mining. As usual, users are only 
interested in frequent itemsets that satisfy given constraints. The problem has been re-
ceiving attentions of many researchers [3, 4, 5, 7]. Let us consider searching documents 
in the Internet. The databases for obtaining them are usually saved into the tables. Each 
row in a table contains keywords appeared in a document. Assume that, a new user U 
wants to touch in the document D. Thus, U needs to know some keywords according to 
D. It is difficult to U, in the meaning that, U can get the set C of all keywords related to 
the subject that D belongs to, but he can not to know the keywords containing in D. 
Hence, the important task is to determine keyword sets containing in C. Those sets help 
the users to touch in documents quickly. For a transaction database T included in the set 
A of all items, let AF be the set of all frequent ones. The paper focuses on the following 
problem: Given a constraint C (C⊆AF), mine frequent itemsets (keyword sets) whose 

items are in C (Cons1) ?”. They do not contain any item of the complement set C0 of C 
(C0 := A \C). On the extension, we consider its dualistic problem: Generate frequent 

itemsets L’ such that L’ contains at least one item of C0 (Cons2). For example, users 
need to know frequent keyword sets based on a few given keywords. They can lead 
users quickly to the desired documents. 
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Solving these two problems by the algorithms of mining directly frequent itemsets 
such as Eclat [10], Apriori [1], etc is not suitable because minimum support and con-
straint often change (see [2] for details). Recently, in [2], we proposed the suitable 
model for mining frequent itemsets restricted on constraint. It can be applied to mine 
frequent itemsets with above dualistic constraints. Let us consider the class 
represented by frequent closed itemset L. For mining itemsets with Cons2, we split it 
into two parts. The first contains the ones generated from the generators that each of 
them contains at least one item of C0. The other includes in the ones created by con-
necting each frequent itemset that does not contain any item of C0 and each non-
empty subset of L∩C0. The paper is organized as follows. Section 2 recalls some 
concepts of frequent itemset mining. Section 3 proposes the ways to generate non-
repeatedly all frequent itemsets with dualistic constraints. Experimental results and 
the conclusion are shown in Sections 4 and 5. 

2 Preliminaries 

Given non-empty set O containing transactions. Let A be the set of items that are in 
transactions and R a binary relation on OxA. Consider two functions: λ: 2O→2A, ρ: 
2A→2O defined as follows: ∀A⊆A, O⊆O: λ(O) = {a ∈ A | (o ,a) ∈ R, ∀ o ∈ O}, ρ(A) 

= {o ∈ O | (o, a) ∈ R, ∀ a ∈ A}. Assign that h = λ o ρ, h(A) are called the closure of 
A. A is called a closed set [12] if h(A) = A. A set of items containing at least one 
transaction is called an itemset. For itemset S, supp(S):=|ρ(S)| / |O| is called the sup-
port of S. Let s0 ∈ (0; 1] be minimum support, S is frequent iff supp(S) ≥ s0 [1]. Let 
FS and FCS be respectively the classes of all frequent itemsets and all frequent closed 
itemsets. For G, A: ∅≠G⊆A⊆A, G is called a generator [6] of A if h(G)=h(A) and 
(∀G’: ∅≠G’⊂G  h(G’)⊂ h(G)). Since the cardinality of the class of all generators 
of A is finite, they can be numbered as follows: G(A) = {Ai, i∈{1, 2, …, |G(A)|}}. 

3 Mining Frequent Itemsets with Dualistic Constraints 

Theorem 1 [8] (A partition of FS).        [ ]
∈

= 
L FCS

LFS . 

Each class contains frequent itemsets of the same closure L. Without loss of generali-
ty, it only needs to exploit independently mining frequent itemsets with the dualistic 
constraints in each class. Afterwards, we write L ∈ FCS simply L. 

Definition 1. The set of the elements in [L] “containing in C” (Cons1) and the set of 
the ones “involved with C0” (Cons2) are defined as follows: 

FSC(L) = {L’ ∈ [L] | L’ ∩ C0  = ∅},   FS∩C0(L) = {L’ ∈ [L] | L’ ∩ C0 ≠ ∅}. 
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Theorem 2 (Structure of Each Equivalence Class). Let us denote “+” as the union 
of two disjoint sets, we have:  

[L] = FSC(L) + FS∩C0(L). 

Definition 2. The set of generators Li containing in C and its complement on G(L) 
containing the generators involved with C0 are defined in the following:  

GC(L) = {G ∈ G (L) | G ∩ C0 = ∅},   G¬C(L) = {G ∈ G (L) | G ∩ C0  ≠ ∅}. 

Let N be the cardinality of G(L). All n generators of L in GC(L) are numbered as L1, 
L2, .., Ln. The ones in G¬C(L) are Ln+1, Ln+2, .., LN. 

3.1 Generating Non-repeatedly Frequent Itemsets Containing in C 

Using GEN-ITEMSETS [2], we derive the class [L]. For each L’∈[L], we test 
“L’∩C0  = ∅ ?”. The ones passed are in FSC(L). This way is simple (MFS-CC-
SIMPLE is the corresponding algorithm). However, when the cardinality of [L] is big, 
and the one of FSC(L) is small, it runs slowly. How to generate directly the elements 
of FSC(L)? Based on propositions 2 and 3 in [2], we can do it quickly. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 1. The algorithm MFS-CC for mining frequent itemsets containing in C 

Table 1. Database T 

Trans Items Trans Items 
1 aceg 5 aceg 
2 acfh 6 bceg 
3 adfh 7 acfh 
4 bceg   

MFS-CC (L, G(L)): 
1.    NewGL = CLASSIFY-GENERATORS (L, G(L), out  n, out  N) 
2.    return  Sub-MFS-CC (L, NewGL, n)   // FS C (L) 

 
Sub-MFS-CC (L, NewGL, n): 

3.   FSC(L) = ∅  and U
i

i
L (L)

LX
C

∈
= 

G
and  X_ = (L∩C)\XU 

4.   for (i=1; i <= n; i++) do 
5.          XU,i = XU\Li;  // Li∈G

C
(L) 

6.          for all  X’i ⊆ XU,i  do  
7.                 IsDuplicate = false 
8.                 for (k=1; k<i; k++) do 
9.                        if  Xk ⊂ Xi+X’i  then   IsDuplicate = true and break 
10.               if  not(IsDuplicate) then 
11.                    for all  X~ ⊆ X_  do   FS

C
(L).add(Xi+X’i+X~) 

12.  return  FSC(L) 
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Example 1. Consider database T in Table 1. Fix now s0 = 2/7, using Charm-L [11] 
and MinimalGenerators [9], we have the frequent closed itemset L=aceg together 

G(L) = {ae, ag}. With C0 = cfh. Then, C = AF \ C0 = abcefgh \ cfh = abeg. From  

definition 2, GC(L) = {GC,1=ae, GC,2=ag}. Using MFS-CC, XU = aeg, XU,1 = g, XU,2 = 
e, X_ = (L∩abeg)\ XU = ∅. For GC,1, we have: ae+∅, ae+g ∈ FSC(aceg). For GC,2: 
ag+∅ ∈ FSC(aceg) (ag+e does not appear again). Thus, FSC(aceg) = {ae, aeg, ag}. 

3.2 Mining Frequent Itemsets Involved with C0 

Based on directly definition 1, we can obtain the algorithm MFS-IC-SIMPLE (by 
replacing “L’∩C0  = ∅” in MFS-CC-SIMPLE by “L’∩C0  ≠ ∅”) for mining the class 
of frequent itemsets involved with C0. However, it works slowly. So, how to generate 
quickly elements of FS∩C0(L)? We could assume that L∩C0 ≠ ∅ (conversely, 

FS∩C0(L) = ∅). We split FS∩C0(L) into two parts. The first one FS+
C(L) contains fre-

quent itemsets created by adding each non-empty subset of L∩C0 into each frequent 
itemset containing in C. We have:  

FS+
C(L) = FSC(L) ⊕  (2L∩Co\{∅}), 

where: the “sum” operator ⊕ of X and Y (X, Y ⊆ 2A\{∅}) is defined: X⊕Y = {A+B: 

∅ ≠ A ∈ X, ∅ ≠ B ∈ Y}. Using the generators involved with C0, we generate the fre-

quent itemsets involved with it. For L ∈ FCS, LU

i
i

L (L)
L

G∈
=  , Lk ∈ G¬C(L), LU,k = 

LU \ Lk, L_ = L \ LU,  let assign  

FS¬C(L) = {Lk+ L’k+ L~: Lk ∈ G¬C(L), L’k ⊆ LU,k, L~ ⊆ L_ 

and (Lj ⊄ Lk+ L’k , Lj ∈ G (L), ∀j: 1≤j<k)}. 

Theorem 3 (Structure of the Set of Frequent Itemsets Involved with C0). For L ∈  

FCS: FS∩C0(L) = FS+
C (L) + FS¬C(L). 

Proof: It is easy to see that FS+
C (L) and FS¬C(L) are two disjoint subsets of 

FS∩C0(L). Then, let us prove that: FS∩C0(L) ⊆ FS+
C (L) + FS¬C(L). Denoted that LU

i
i

L (L)
L

C
∈

= 
G , LU,C,i := LU,C\Li, L_,C := (L∩C)\LU,C. ∀L’= Lk+ L’k+ L~ ∈FS∩Co(L), 

Lk∈G(L), L’k⊆LU,k, L~⊆L_ and L’∩C0≠∅, consider two cases: [Case 1] If 
Lk∈GC(L), then (L’k+L~)∩C0≠∅. Let us call L’’k = L’k∩LU, T ⊆ LU,C,k, L’’’k = 
(L’k\LU,C)∩T ⊆ L_,C, L’’’’k = (L’k\LU,C)\T ⊆ L\T, L~T=L~∩T ⊆ L_,C, L~¬T=L~\T ⊆ 
L\T, so (L’’’k+L~T) ⊆ L_,C and ∅≠(L’’’’k+L~¬T)⊆L\T. Indeed, if (L’’’’k+L~¬T)=∅, 
L’’’’k = L~¬T = ∅. Then, L~⊆C0, L’k\LU,C⊆C0 and ∅≠(L’k+ L~)∩C0= L’k+L~ = 
L’’’’k+L~¬T = ∅: contradiction! Hence, L’=[Lk+L’’k+(L’’’k+L~T)]+(L’’’’k+L~¬T) ∈ 
FS+

C(L). [Case 2] If Lk∈G¬C(L), L’∈ FS¬C(L).   
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Example 2. Consider L=aceg, G(L)={ae, ag} and C0=e. So C=abcfgh. Thus, 

GC(L)={ag}. Since FSC(aceg)={ag, agc}, L∩C0=e, so FS+
C(L)={ag+e, agc+e}. 

Moreover, G¬C(L) = {ae}, LU = aeg, LU,1 = g and L_= c. Thus, 2L_ = {0, c}. Then 

FS¬C(L) = {ae, ae+c}. Hence, FS∩C0(L) = FS+
C(L) + FS¬C(L) = {ag+e, agc+e, ae, 

ae+c}. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. The algorithm MFS-IC to mine frequent itemsets involved with C0 

4 Experimental Results 

The following experiments were performed on i5-2400 CPU, 3.10 GHz @ 3.09 GHz, 
3.16 GB RAM, running Windows. The algorithms were coded in C#. Four databases 
in FIMDR (http://fimi.cs.helsinki.fi/data/) are used during these experiments: Pumsb 
contains 49046 transactions, 7117 items (P, 49046, 7117); Mushroom (M), 8124, 119; 
Connect (C), 67557, 129; and Pumsb* (P*), 49046, 7117. 

We compare the running times of MFS-CC-SIMPLE with MFS-CC when mining 
frequent itemsets containing in C. For each pair of database (DB) and minimum sup-
port (MS), we consider the lengths of C ranging from 20% to 70% of |AF| (step 2%). 
For each one, 15 constraints are considered. We test 234 cases for each algorithm. 
Experiments showed that in almost cases, MINE-CC runs quickly than MFS-CC-
SIMPLE. We can save the amounts of the running time ranging from 88.7% to 
95.5%. 

MFS-IC (L, G(L)): 
1.   NewGL = CLASSIFY-GENERATORS (L, G(L), out  n, out  N) 
2.   FS+

C(L) = ∅  and  LC = L∩C0 

3.   if  LC ≠ ∅  then  
4.          FSC(L) = Sub-MFS-CC (L, G(L))  and  LC_Class = 2LC\{∅} 

6.          for all  L’ ∈ FSC(L)  do  
7.                for all  L’’’ ∈ FSC(L)  do  FS+

C(L).add (L’+L’’’) 

8.   FS¬C(L) = ∅  and  LU 

i
i

L (L)
L

G∈
=  and  L_ = L\LU; 

9.   for (k=n+1; k <= N; k++) do  
10.        LU,k = LU\Lk      // Lk∈G¬C(L) 

11.        for all  L’k  ⊆ LU,k  do 
12.                IsDuplicate = false 
13.                for  (j=1; j<k; j++)  do  
14.                       if  Lj ⊂ Lk+L’k  then   IsDuplicate = true  and  break 
15.                if  not(IsDuplicate)  then 
16.                     for all  L~ ⊆ L_  do    FS¬C(L).add(Lk+L’k+L~) 
17. return   FS+

C(L) + FS¬C(L) 
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Next, we compare the running time of MFS-IC-SIMPLE (T_ICS) with the one of 
MFS-IC (T_IC) when mining frequent itemset involved with C0,. For each (DB, MS), 
the lengths of C0 are ranged from 1 to at most 20% of |AF| with step 2. Table 2 shows 
the comparison, where: NCons is the number of the selected constraints, NLess is the 
number of constraints such that T_IC < T_ICS. The percent ratio of NLess to NCons 
and the average number of the percent ratios of T_IC to T_ICS are shown in columns 
RNLess and R_IC (%). In almost cases, MFS-IC runs more quickly than MFS-IC-
SIMPLE. The time can be reduced into a value of 62.3% to 19.1%. 

Table 2. The reductions in the time for mining frequent itemsets involved with C0 

(DB, 
MS) 

NCons 
RNLess 

(%) 
R_IC 
(%) 

 
(DB, 
MS) 

NCons 
RNLess 

(%) 
R_IC 
(%) 

M, 0.15 135 100.0 27.6  P, 0.75 135 99.3 62.3 

M, 0.1 150 100.0 22.4  P, 0.7 135 98.5 49.0 

M, 0.05 150 100.0 19.1  P, 0.65 135 100.0 43.3 

Co, 0.65 135 100.0 26.3 P*, 0.35 150 99.3 36.9 

Co, 0.6 135 100.0 23.2 P*, 0.3 150 100.0 34.3 

Co, 0.55 135 100.0 26.2 P*, 0.25 150 100.0 30.2 

5 Conclusions 

We presented the efficient algorithms MFS-CC and MFS-IC for mining frequent 
itemsets with the dualistic constraints. Those algorithms are built based on the explicit 
structure of frequent itemset class. The class is split into two sub-classes. Each sub-
class is found by applied the efficient representation of itemsets to the suitable genera-
tors. The tests on four benchmark databases showed the efficiency of our approach. 
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