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Abstract. Feature selection (FS) has two main objectives of minimising the
number of features and maximising the classification performance. Based on
binary particle swarm optimisation (BPSO), we develop a multi-objective FS
framework for classification, which is NSBPSO based on multi-objective BPSO
using the idea of non-dominated sorting. Two multi-objective FS algorithms are
then developed by applying mutual information and entropy as two different filter
evaluation criteria in the proposed framework. The two proposed multi-objective
algorithms are examined and compared with two single objective FS methods on
six benchmark datasets. A decision tree is employed to evaluate the classification
accuracy. Experimental results show that the proposed multi-objective algorithms
can automatically evolve a set of non-dominated solutions to reduce the number
of features and improve the classification performance. Regardless of the evalua-
tion criteria, NSBPSO achieves higher classification performance than the single
objective algorithms. NSBPSO with entropy achieves better results than all other
methods. This work represents the first study on multi-objective BPSO for filter
FS in classification problems.

Keywords: Feature Selection, Particle Swarm Optimisation, Multi-Objective
Optimisation, Filter Approaches.

1 Introduction

Feature selection (FS) is an important pre-processing technique for effective data analy-
sis in many areas such as classification. In classification, without prior knowledge, rele-
vant features are usually difficult to determine. Therefore, a large number of features are
often involved, but irrelevant and redundant features may even reduce the classification
performance due to the unnecessarily large search space. FS can address this problem
by selecting only relevant features for classification. By eliminating/reducing irrelevant
and redundant features, FS could reduce the number of features, shorten the training
time, simplify the learned classifiers, and/or improve the classification performance [[1]].

FS algorithms explore the search space of different feature combinations to reduce
the number of features and optimise the classification performance. They have two key
factors: the evaluation criterion and the search strategy. Based on the evaluation cri-
terion, existing FS approaches can be broadly classified into two categories: wrapper
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approaches and filter approaches. In wrapper approaches, a learning/classification algo-
rithm is used as part of the evaluation function to determine the goodness of the selected
feature subset. Wrappers can usually achieve better results than filters approaches, but
the main drawbacks are their computational deficiency and loss of generality [2]]. Filter
approaches use statistical characteristics of the data for evaluation and the FS search
process is independent of a learning/classification algorithm. Compared with wrappers,
filter approaches are computationally less expensive and more general [1]].

The search strategy is a key factor in FS because of the large search space (2" for n
features). In most situations, it is impractical to conduct an exhaustive search [2]]. A vari-
ety of search strategies have been applied to FS. However, existing FS methods still suf-
fer from different problems such as stagnation in local optima and high computational
cost [3} 4]]. Therefore, an efficient global search technique is needed to better address FS
problems. Particle swarm optimisation (PSO) [5,16] is one of the relatively recent evo-
lutionary computation techniques, which are well-known for their global search ability.
Compared with genetic algorithms (GAs) and genetic programming (GP), PSO is com-
putationally less expensive and can converge more quickly. Therefore, PSO has been
used as an effective technique in many fields, including FS in recent years [3} 4} [7]].

Generally, FS has two main objectives of minimising both the classification error
rate and the number of features. These two objectives are usually conflicting and the
optimal decision needs to be made in the presence of a trade-off between them. How-
ever, most existing FS approaches are single objective algorithms and belong to wrapper
approaches, which are less general and computationally more expensive than filter ap-
proaches. There has been no work conducted to use PSO to develop a multi-objective
filter FS approach to date.

The overall goal of this paper is to develop a new PSO based multi-objective filter
approach to FS for classification for finding a set of non-dominated solutions, which
contain a small number of features and achieve similar or even better classification per-
formance than using all features. To achieve this goal, we will develop a multi-objective
binary PSO framework, NSBPSO, and apply two information measurements (mutual in-
formation and entropy) to the proposed framework. These proposed FS algorithms will
be examined on six benchmark tasks/problems of varying difficulty. Specifically, we
will investigate

— whether using single objective BPSO and the two information measurements can
select a small number of features and improve classification performance over using
all features;

— whether NSBPSO with mutual information can evolve a set of non-dominated solu-
tions, which can outperform all features and the single objective BPSO with mutual
information; and

— whether NSBPSO with entropy can outperform all other methods above.

2 Background

2.1 Particle Swarm Optimisation (PSO)

PSO is an evolutionary computation technique proposed by Kennedy and Eberhart in
1995 [5 16]. Candidate solutions in PSO are encoded as particles. Particles move in
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the search space to search for the best solution by updating their positions according
to the experience of a particle itself and its neighbours. x; = (x;1, %2, ..., z;p) and
v; = (vi1, V2, ..., v;p) Tepresent the position and velocity of particle ¢, where D is
the dimensionality of the search space. pbest represents the best previous position of a
particle and gbest represents the best position obtained by the swarm so far. PSO starts
with random initialisations of a population of particles and searches for the optimal
solution by updating the velocity and the position of each particle according to the
following equations:

t+1 t+1
zig' = mia+vjg )]
t+1 t t t
Vit = w vjg + c1 * T x (pia — Tha) + 2 % 720 * (Dga — Tia) 2

where ¢ denotes the tth iteration. d denotes the dth dimension. w is inertia weight. ¢;
and c, are acceleration constants. r1; and ro; are random values uniformly distributed
in [0, 1]. p;q and pyq represent the elements of pbest and gbest. v!, is limited by a
predefined maximum velocity, vy,q, and v, € [—Vmazs Vmaz)-

PSO was originally proposed to address continuous problems [5]. Later, Kennedy
and Eberhart [8] developed a binary PSO (BPSO) to solve discrete problems. In BPSO,
Zid, Piqd and pgyq are restricted to 1 or 0. vfd in BPSO indicates the probability of the
corresponding element in the position vector taking value 1. A sigmoid function is used
to transform v;4 to the range of (0, 1). BPSO updates the position of each particle
according to the following formula:

1, if rand() < -
id = 1+e Yid 3
id { 0, otherwise )

where rand() is a random number chosen from a uniform distribution in [0,1].

2.2 Entropy and Mutual Information

Information theory developed by Shannon [9] provides a way to measure the informa-
tion of random variables with entropy and mutual information. The entropy is a measure
of the uncertainty of random variables. Let X be a random variable with discrete values,
its uncertainty can be measured by entropy H (X):

==Y p(x)log, p(x ©)

zeX
where p(z) = Pr(X = z) is the probability density function of X.
For two discrete random variables X and Y with their probability density function
p(z,y), the joint entropy H (X,Y) is defined as

HX,Y)=- Y plx,y)log, p(x,y) )
TeX ,yey
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When a variable is known and others are unknown, the remaining uncertainty is mea-
sured by the conditional entropy. Given Y, the conditional entropy H (X |Y") of X with
respectto Y is

HX|Y)=—= Y p(,y)log, p(z|y) 6)

zEX ,YeY

where p(x|y) is the posterior probabilities of X given Y. If X completely depends
on Y, then H(X|Y) is zero, which means that no more other information is required
to describe X when Y is known. On the other hand, H(X|Y) = H(X) denotes that
knowing Y will do nothing to observe X.

The information shared between two random variables is defined as mutual informa-
tion. Given variable X, mutual information I(X;Y") is how much information one can
gain about variable Y.

I(X;Y) =H(X)— H(X|Y)

=— > pla.y)log, pff’y) )

cev ey )p(y)

According to Equation[7] the mutual information I(X;Y") will be large if X and Y are
closely related. I(X;Y) = 0if X and Y are totally unrelated.

2.3 Multi-objective Optimisation

Multi-objective optimisation involves minimising or maximising multiple conflicting
objective functions. The formulae of a k-objective minimisation problem with multiple
objective functions can be written as follows:

minimise F(z) = [f1(z), f2(x), ..., fu(2)] ®)
subject to:
gi(z) <0, (1=1,2, ..m) and  hi(x)=0,(i=1,2,..10) ()

where z is the vector of decision variables, f;(x) is a function of z, g;(x) and h;(z) are
the constraint functions of the problem.

In multi-objective optimisation, the quality of a solution is explained in terms of
trade-offs between the conflicting objectives. Let y and 2z be two solutions of the above
k-objective minimisation problem. If the following conditions are met, one can say y
dominates z:

Vi: fiy) < fi(z) and 3Fj: f;(y) < f;(2) (10)

where 4, j € {1,2, ..., k}. When y is not dominated by any other solutions, y is referred
as a Pareto-optimal solution. The set of all Pareto-optimal solutions forms the trade-off
surface in the search space, the Pareto front. A multi-objective algorithm is designed to
search for a set of non-dominated solutions.
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2.4 Related Work on FS

A number of FS algorithms have been recently proposed [lL] and typical FS algorithms
are reviewed in this section.

Traditional FS Approaches. The Relief algorithm [10] is a classical filter FS algo-
rithm. Relief assigns a weight to each feature to denote the relevance of the feature to
the target concept. However, Relief does not deal with redundant features, because it
attempts to find all relevant features regardless of the redundancy between them. The
FOCUS algorithm [[11]] exhaustively examines all possible feature subsets, then selects
the smallest feature subset. However, it is computationally inefficient because of the
exhaustive search.

Two commonly used wrapper FS methods are sequential forward selection (SFS)
[12]] and sequential backward selection (SBS) [[13]. SFS (SBS) starts with no features
(all features), then candidate features are sequentially added to (removed from) the ini-
tial feature subset until the further addition (removal) does not increase the classification
performance. The limitation of SFS and SBS is that once a feature is selected (elimi-
nated) it cannot be eliminated (selected) later, which is so-called nesting effect. Stearns
addressed this limitation by proposing the “plus-I/-take away-r"" to perform [ times for-
ward selection followed by r times backward elimination [14]. However, the optimal
values of (I, r) are difficult to determine.

Evolutionary Computation Algorithms (Non-PSO) for FS. Recently, evolutionary
computation techniques have been applied to FS problems. Based on GAs, Chakraborty
[[L5] proposes a FS algorithm using a fuzzy-set based fitness function. However, BPSO
with the same fitness function achieves better performance than this GA based algo-
rithm. Hamdani et al. [[16] develop a multi-objective FS algorithm using non-dominated
sorting based multi-objective genetic algorithm II (NSGAII), but its performance has
not been compared with any other FS algorithm.

Muni et al. [17]] develop a multi-tree GP algorithm for FS (GPmitfs) to simultane-
ously select a feature subset and design a classifier using the selected features. For a
c-class problem, each classifier in GPmtfs has c trees. Comparisons suggest GPmtfs
achieves better results than SFS, SBS and other methods. However, the number of fea-
tures selected increases when there are noisy features. Kourosh and Zhang [[18]] propose
a GP relevance measure (GPRM) to evaluate and rank subsets of features in binary
classification tasks, and GPRM is also efficient in terms of FS.

PSO Based FS Approaches. PSO has recently gained more attention for solving FS
problems. Wang et al. [19] propose a filter FS algorithm based on an improved binary
PSO and rough sets. Each particle is evaluated by the dependency degree between class
labels and selected features, which is measured by rough sets. This work also shows
that the computation of the rough sets consumes most of the running time, which is a
drawback of using rough sets in FS problems.

Azevedo et al. [20] propose a FS algorithm using PSO and support vector machines
(SVM) for personal identification in a keystroke dynamic system. However, the pro-
posed algorithm obtains a relatively high false acceptance rate, which should be low in
most identification systems. Mohemmed et al. [[7]] propose a FS method (PSOAdaBoost)
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based on PSO and an AdaBoost framework. PSOAdaBoost simultaneously searches for
the best feature subset and determines the decision thresholds of AdaBoost. Liu et al.
[4] introduce multi-swarm PSO to search for the optimal feature subset and optimise the
parameters of SVM simultaneously. The proposed FS method achieved better classifi-
cation accuracy than grid search, standard PSO and GA. However, it is computationally
more expensive than the other three methods because of the large population size and
complicated communication rules between different subswarms.

A variety of FS approaches have been proposed, but most of them treat FS as a sin-
gle objective problem. Although Hamdani et al. [[16] develop a NSGAII based multi-
objective algorithm, there is no comparison to test its performance. Studies have shown
that PSO is an efficient technique for FS, but the use of PSO for multi-objective FS has
never been investigated. Moreover, most existing approaches are wrappers, which are
computationally expensive and less general than filter approaches. Therefore, investi-
gation of a PSO based multi-objective filter FS approach is still an open issue and we
make an effort in this paper.

3 Proposed Multi-objective F'S Algorithms

Two filter measurements based on mutual information and entropy [21]] are firstly de-
scribed. Then we propose a new multi-objective BPSO framework, which forms two
new algorithms to address FS problems.

3.1 Mutual Information and Entropy for FS

Mutual information can be used in FS to evaluate the relevance between a feature and
the class labels and the redundancy between two features. In [21], we proposed a BPSO
based filter FS algorithm (PSOfsMI) using mutual information to evaluate the relevance
and redundancy in the fitness function (Equation[IT)). The objectives are to maximise the
relevance between features and class labels to improve the classification performance,
and to minimise the redundancy among features to reduce the number of features.

Fitnessy = D1 — Ry (11)
where
D, :Z I(z;c), and Ry = Z I(xs,zj).
rzeX :ni,:cjeX

where X is the set of selected features and c is the class labels. Each selected feature
and the class labels are treated as discrete random variables. D; calculates the mutual
information between each feature and the class labels, which determine the relevance
of the selected feature subset to the class labels. R; evaluates the mutual information
shared by each pair of selected features, which indicates the redundancy contained in
the selected feature subset.

Mutual information can find the two-way relevance and redundancy in FS, but could
not handle multi-way complex feature interaction, which is one of the challenges in FS.
Therefore, a group evaluation using entropy was proposed in [21] to discover multi-
way relevance and redundancy among features. A single objective filter FS algorithm
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(PSOfsE) [21] was then developed based on the group evaluation and BPSO, where
Equation[12] was used as the fitness function.

Fitnessa = Dy — Ry (12)
where

D> = IG(c|X) and R, = |)1<| S 1G({X/z})
rzeX

where X and c have the same meaning as in Equation[T1l D5 evaluates the information
gain in ¢ given information of the features in X, which show the relevance between
the selected feature subset and the class labels. Ry evaluates the joint entropy of all the
features in X, which indicates the redundancy in the selected feature subset. Detailed
calculation of Dy and R, is given in [21]].

The representation of a particle in PSOfsMI and PSOfSE is a n-bit binary string,
where n is the number of available features in the dataset and also the dimensionality
of the search space. In the binary string, “1” represents that the feature is selected and
“0” otherwise.

3.2 New Algorithms: NSfsMI and NSfsE

PSOfsMI and PSOfsE [21]] have shown that mutual information or entropy can be an
effective measurement for filter FS. Therefore, we develop a multi-objective filter FS
approach based on BPSO and mutual information (or entropy) with the objectives of
minimising the number of features and maximising the relevance between features and
class labels. Standard PSO could not be directly used to address multi-objective prob-
lems because it was originally proposed for single objective optimisation. In order to
use PSO to develop a multi-objective FS algorithm, one of the most important tasks is to
determine a good leader (gbest) for each particle from a set of potential non-dominated
solutions. NSGAII is one of the most popular evolutionary multi-objective techniques
[22]. Li [23]] introduces the idea of NSGAII into PSO to develop a multi-objective PSO
algorithm and achieves promising results on several benchmark functions.

In this study, we develop a binary multi-objective PSO framework (NSBPSO) for
filter FS based on the idea of non-dominated sorting. Two filter multi-objective FS algo-
rithms are then developed based on NSBPSO, which are NSfsMI using D; to evaluate
the relevance between features and class labels, and NSfsE using D» to measure the
relevance. Algorithm[I]shows the pseudo-code of NSfsMI and NSfsE. The main idea is
to use non-dominated sorting to select a gbest for each particle and update the swarm
in the evolutionary process. As shown in Algorithm[l] in each iteration, the algorithm
firstly identifies the non-dominated solutions in the swarm and calculates the crowd-
ing distance, then all the non-dominated solutions are sorted according to the crowding
distance. For each particle, a gbest is randomly selected from the highest ranked part
of the sorted non-dominated solutions, which are the least crowded solutions. After de-
termining the gbest and pbest for each particle, the new velocity and the new position
of each particle are calculated according to the equations. The old positions (solutions)
and the new positions of all particles are combined into one union. The non-dominated
solutions in the union are called the first non-dominated front, which are excluded from
the union. Then the non-dominated solutions in the new union are called the second
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Algorithm 1. Pseudo-Code of NSfsMI and NSfsE
begin
divide Dataset into a Training set and a Test set, initialise the swarm (Swarm);
while M aximum Iterations is not met do
evaluate two objective values of each particle; /+ number of features
and the relevance (D; in NSfsMI and D; in NSfsE) on
the Training set =*/
identify the particles (nonDom.S) (non-dominated solutions in Swarm,);
calculate crowding distance particles in nonDom.S and then sort them;
for i=1 to Population Size (P) do
update the pbest of particle i;
randomly select a gbest for particle ¢ from the highest ranked solutions in
nonDomS;
update the velocity and the position of particle ¢;
add the original particles Swarm and the updated particles to Union;
identify different levels of non-dominated fronts F' = (Fi, F», F3, ...) in
Union;
empty the Swarm for the next iteration;
i =1;
while |Swarm/| < P do
if (|Swarm| + |F;| < P) then
calculate crowding distance of each particle in F3;
add F; to Swarm;
i=141;
if (|Swarm| + | F;| > P) then
calculate crowding distance of each particle in F3;
sort particles in F};
add the (P — |Swarm]|) least crowded particles to Swarm;

calculate the classification error rate of the solutions (feature subsets) in the Fi on the
test set;
return the solutions in F; and their testing classification error rates;

non-dominated front. The following levels of non-dominated fronts are identified by
repeating this procedure. For the next iteration, solutions (particles) are selected from
the top levels of the non-dominated fronts, starting from the first front.

4 Experimental Design

Table[Tl shows the six datasets used in the experiments, which are chosen from the UCI
machine learning repository [24]]. The six datasets were selected to have different num-
bers of features, classes and instances and they are used as representative samples of the
problems that the proposed algorithms will address. In the experiments, the instances
in each dataset are randomly divided into two sets: 70% as the training set and 30% as
the test set. All FS algorithms firstly run on the training set to select feature subsets and
then the classification performance of the selected features will be calculated on the test
set by a learning algorithm. There are many learning algorithms that can be used here,
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Table 1. Datasets
Dataset Type of the Data #Features #Classes #Instances
Lymphography (Lymph) Categorical 18 4 148
Mushroom Categorical 22 2 5644
Spect Categorical 22 2 267
Leddisplay Categorical 24 10 1000
Soybean Large Categorical 35 19 307
Connect4 Categorical 42 3 44473

such as K-nearest neighbour (KNN), NB, and DT. A DT learning algorithm is selected
in this study to calculate the classification accuracy.

In all FS algorithms, the fully connected topology is used, v;,q, = 6.0, the popu-
lation size is 30 and the maximum iteration is 500. w = 0.7298, ¢; = ¢ = 1.49618.
These values are chosen based on the common settings in the literature [6]. Each algo-
rithm has been conducted for 40 independent runs on each dataset.

For each dataset, PSOfsMI and PSOfSE obtain a single solution in each of the 40
runs. NSfsMI and NSfsE obtain a set of non-dominated solutions in each run. In order
to compare these two kinds of results, 40 solutions in PSOfsMI and PSOfsE are pre-
sented in the next section. 40 sets of feature subsets achieved by each multi-objective
algorithm are firstly combined into one union set. In the union set, for the feature sub-
sets including the same number of features (e.g. m), their classification error rates are
averaged. Therefore, a set of average solutions is obtained by using the average classifi-
cation error rates and the corresponding number of features (e.g. m). The set of average
solutions is called the average Pareto front and presented in the next section. Besides
the average Pareto front, the non-dominated solutions in the union set are also presented
in the next section.

5 Results and Discussions

Figures [I] and 2] show the results of NSfsMI and PSOfsMI, NSfsE and PSOfsE. On the
top of each chart, the numbers in the brackets show the number of available features
and the classification error rate using all features. In each chart, the horizontal axis
shows the number of features selected and the vertical axis shows the classification
error rate. In the figures, “-A” stands for the average Pareto front and “-B” represents the
non-dominated solutions resulted from NSfsMI and NSfsE in the 40 independent runs.
“PSOfsMI” and “PSOfsE” show the 40 solutions achieved by PSOfsMI and PSOfsE.

In some datasets, PSOfsMI or PSOfsE may evolve the same feature subset in dif-
ferent runs and they are shown in the same point in the chart. Therefore, although 40
results are presented, there may be fewer than 40 distinct points shown in a chart. For “-
B”, each of these non-dominated solution sets may also have duplicate feature subsets,
which are shown in the same point in a chart.
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Fig. 1. Experimental Results of PSOfsMI and NSfsMI

5.1 Results of NSfsMI

According Figures[T] it can be seen that on average, PSOfsMI reduced around 75% of
the available features in most cases although the classification error rates are slightly
higher than using all features in some datasets.

Figure Il shows that in three datasets, the average Pareto fronts of NSfsMI (NSfsMI-
A) include two or more solutions, which selected a smaller number of features and
achieved a lower classification error rate than using all features. For the same number
of features, there are a variety of combinations of features with different classification
performances. The feature subsets obtained in different runs may include the same num-
ber of features but different classification error rates. Therefore, although the solutions
obtained in each run are non-dominated, some solutions in the average Pareto front may
dominate others. This also happens in NSfsE. In almost all datasets, the non-dominated
solutions (NSfsMI-B) include one or more feature subsets, which selected less than
50% of the available features and achieved better classification performance than using
all features. For example, in the Spect dataset, one non-dominated solution selected 11
features from 22 available features and the classification error rate was decreased from
33.75% to 25.00%. The results suggests that NSfsMI as a multi-objective algorithm
can automatically evolve a set of feature subsets to reduce the number of features and
improve the classification performance.

Comparing NSfsMI with PSOfsMI, it can be seen that in most cases, NSfsMI
achieved better classification performance than PSOfsMI although the number of fea-
tures are slightly larger. Comparisons show that with mutual information as the eval-
uation criterion, the proposed multi-objective FS algorithms, NSfsMI can outperform
single objective FS algorithm (PSOfsMI).
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Fig. 2. Experimental Results of PSOfsE and NSfsE.

5.2 Results of NSfsE

Figure 2] shows that PSOfSE selected around half of the available features and achieved
similar or even better classification performance than using all features in most cases.

Figure [2l shows that in most cases, NSfsE-A contains more than one solution that
selected a smaller number of features and achieved better classification performance
than using all features. In almost all datasets, NSfsMI-B reduced the classification error
rate by only selecting around half of available features. Take the Spect dataset as an
example, NSfsE reduced the classification error rate from 33.75% to 25.00% by select-
ing only 9 features from the 22 available features. The results suggest that the proposed
NSfsE with entropy as the evaluation criterion can evolve a set of feature subsets to
simultaneously improve the classification performance and reduce the number of fea-
tures.

Comparing NSfsE with PSOfSE, it can be observed that NSfsE outperformed PSOfsE
because NSfsE achieved better classification performance than PSOfSE in all datasets
although NSfSE selected slightly more features than PSOfsE in most cases. Compar-
isons show that with entropy as the evaluation criterion, the proposed multi-objective
FS algorithms (NSfsE) can achieve better solutions than single objective FS algorithm
(PSOfSE).

5.3 Further Comparisons

Comparing mutual information and entropy, Figures[Iland2lshow that PSOfSE and NS-
fsE using entropy usually achieved better classification performance than PSOfsMI and
NSfsMI using mutual information. PSOfsMI using mutual information usually selected
a smaller number of features than PSOfSE using entropy. The proposed multi-objective
algorithms, NSfsSE usually evolved a smaller number of features and achieved better
classification performance than NSfsMI. The comparisons suggest that the algorithms
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with entropy as the evaluation criterion can discover the multiple-way relevancy and re-
dundancy among a group of features to further increase the classification performance.
Because the evaluation is based on a group of features (instead of a pair of features), the
number of features involved is usually larger in PSOfsSE than PSOfsMI. However, the
number of features in the proposed multi-objective algorithms is always small because
they can explore the search space more effectively to minimise the number of features.
Moreover, NSfsE can utilise the discovered multiple-way relevancy to simultaneously
increase the classification performance.

6 Conclusions

This paper aimed to propose a filter multi-objective FS approach based on BPSO to
search for a small number of features and achieve high classification performance. The
goal was successfully achieved by developing two multi-objective FS algorithms (NS-
fsMI and NSfsE) based on two multi-objective BPSO (NSBPSO) and two information
evaluation criteria (mutual information and entropy). The proposed algorithms were
examined and compared with two BPSO based single objective FS algorithms, namely
PSOfsMI and PSOfsE, based on mutual information and entropy on six benchmark
datasets. The experimental results show that in almost all cases, the proposed multi-
objective algorithms are able to automatically evolve a Pareto front of feature subsets,
which included a small number of features and achieved better classification perfor-
mance than using all features. NSfsMI and NSfsE achieved better classification perfor-
mance than BPSOfsMI and BPSOfsE in most cases.

The proposed multi-objective FS algorithms can achieve a set of good feature sub-
sets, but it is unknown whether the achieved Pareto fronts can be improved or not. In
the future, we will further investigate the multi-objective PSO based filter FS approach
to better address FS problems.
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