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Abstract. In order to improve the generalization performance of sup-
port vector regression (SVR), we propose a novel model combination
method for SVR on regularization path. First, we construct the ini-
tial candidate model set using the regularization path, whose inherent
piecewise linearity makes the construction easy and effective. Then, we
elaborately select the models for combination from the initial model set
through the improved Occam’s Window method and the input-dependent
strategy. Finally, we carry out the combination on the selected models
using the Bayesian model averaging. Experimental results on benchmark
data sets show that our combination method has significant advantage
over the model selection methods based on generalized cross validation
(GCV) and Bayesian information criterion (BIC). The results also verify
that the improved Occam’s Window method and the input-dependent
strategy can enhance the predictive performance of the combination
model.

Keywords: Model combination, Support vector regression, Regulariza-
tion path, Occam’s Window.

1 Introduction

Support vector regression (SVR) [1] is an extension of the support vector method
to regression problem, which maintains all the main characteristics of the maxi-
mal margin algorithm. The generalization performance of SVM depends on the
parameters of regularization and kernels. Various algorithms [2,3] have been
developed for choosing the best parameters. Regularization path algorithm is
another important algorithm to address the SVR model selection problem [4,5],
which can fit the entire path of SVR solutions for every value of the regular-
ization parameter. Gunter and Zhu [4] proposed an unbiased estimate for the
degrees of freedom of the SVR model, then applied the generalized cross vali-
dation (GCV) criterion [6] to select the optimal model. However, single model
only has limited information and usually exists uncertainty [7,8]. Model com-
bination is an alternative way to overcome the limitations of model selection,
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which can integrate all useful information from the candidate models into the
final hypothesis to improve generalization performance. There are a lot of experi-
mental works showing that combining learning machines often leads to improved
generalization performance [9,10,11,12,13].

In this paper, we study the model combination for SVR on regularization
path. First, the initial candidate model set is obtained according to the regular-
ization path, whose inherent piecewise linearity makes the construction easy and
effective. All possible models are involved in the initial model set, including good
performance ones and bad performance ones. Then, a subset from all available
individual SVR models is selected by the improved Occam’s Window method
and the input-dependent strategy. The improved Occam’s Window method can
eliminate the model with poor performance and select the sparse model. The
input-dependent strategy can determine the combination model set according
to the estimation of the generalization error of the input. Finally, The combina-
tion on the selected models is carried out using the Bayesian model averaging,
in which the model posterior probability is estimated by Bayesian information
criterion (BIC) approximation.

2 ε-SVR Regularization Path

In this section, we briefly introduce the ε-SVR regularization path algorithm and
refer readers to [4] for a detailed tutorial. The training data set has been taken
as T = {(x1, y1), ..., (xn, yn)} ⊂ R

p × R, where the input xi is a vector with p
predictor variables, and the output yi denotes the response. In ε-SVR, our goal
is to find a function

f(x) = β0 + 〈β,x〉, with β ∈ R
p, β0 ∈ R,

that has at most ε deviation from the actually obtained targets y for all the
training data, and at the same time is as flat as possible. In practice, one often
maps x onto a high dimensional reproducing kernel Hilbert space (RKHS), and
fits a nonlinear kernel SVR model. Using the following ε-insensitive loss function

|y − f(x)|ε =
{
0, if |y − f(x)| < ε,

|y − f(x)| − ε, otherwise,

the standard loss + penalty criterion of the ε-SVR model may be written as

min
f∈HK

n∑
i=1

|yi − f(xi)|ε + λ

2
‖f‖2HK

, (1)

where λ is the regularization parameter, andHK is a structured RKHS generated
by a positive definite kernel K(x,x′). Using the representer theorem [14], the
solution to equation (1) has a finite form

f(x) = β0 +
1

λ

n∑
i=1

θiK(x,xi), with θi ∈ [−1,+1], i = 1, . . . , n. (2)
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In this paper, we use θ to denote the coefficient vector θ = (θ1, . . . , θn)
�.

According to the piecewise of the ε-insensitive loss function and the Karush-
Kuhn-Tucker conditions, the training data set is partitioned into the following
five disjoint sets:

R = {i : yi − f(xi) > ε, θi = 1},
ER = {i : yi − f(xi) = ε, 0 ≤ θi ≤ 1},
C = {i : −ε < yi − f(xi) < ε, θi = 0},
EL = {i : yi − f(xi) = −ε,−1 ≤ θi ≤ 0},
L = {i : yi − f(xi) < −ε, θi = −1}.

The ε-SVR regularization path algorithm keeps track of the five sets, and ex-
amines these sets until one or both of them change. For example, a point from
C enters ER. Once there is a change in the elements of the sets, we will say an
event has occurred and a breakpoint will appear on the regularization path. As
a data point passes through ER or EL, its respective θi must change from 1 to 0
or −1 to 0 or vice versa. The algorithm begins with λ0 = ∞ and the initial sets
ER and EL have at most one point combined. The initial solution is obtained by
solving a linear programming problem. Then the algorithm recursively computes
λl (l ∈ N). Each λl corresponds to the value of λ when an event occurs. The
λl+1 will be the largest λ less than λl such that either θi (i ∈ E l

R) reaches 0
or 1, or θj (j ∈ E l

L) reaches 0 or -1, or one of the points in R, L, or C reaches
an elbow. When λl+1 is known, the index sets R, ER, C, EL, L and θ are
updated according to the nature of the transition that had taken place to yield
Rl+1, E l+1

R , Cl+1, E l+1
L , Ll+1 and θl+1. This main phase proceeds repeatedly

in increasing value of l and decreasing value of λl starting from λ0 until termi-
nation. It is worth noting that the θis (i ∈ L ∪R) do not change in value when
no new event happens. The algorithm will be terminated either when the sets
R and L become empty or when λ has become sufficiently close to zero.

The whole solution path θ(λ) is piecewise linear. As long as the break points
can be establish, all values in between can be found by simple linear interpola-
tion. Figure 1 shows the paths of all the {θi(λ) | 0 < λ < ∞} for data set pyrim
with n = 7.

3 Model Combination for SVR

In this section, we will present how to construct the candidate model set accord-
ing to the ε-SVR regularization path and how to combine the models.

3.1 Initial Model Set Based on Regularization Path

As we have stated in the former section, the regularization path algorithm can
compute the exact entire regularization path, which can facilitate the selection
of a model. The path {θ(λ), 0 ≤ λ ≤ ∞} ranges from the least regularized model
to the most regularized model. We adopt the notation f(x; θ, λ) for a model with
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Fig. 1. The entire collection of piecewise liner paths θi(λ), i = 1, . . . , n for the data
set pyrim

parameter θ and regularization parameter λ. It should be understood that the
different models may be parameterized differently. Hence by f(x; θ, λ) we really
mean f(x; θ(λ), λ) or fλ(x; θ), and we use the notation fλ for simplicity.

The solution θ(λ) is piecewise linear as a function of λ. We let the sequence
∞ > λ1 > · · · > λk > 0 denote the corresponding break points on the path.
In the interior of any interval (λl+1, λl), 0 < l < k, the set L, EL, C, ER,R
are constant with respect to λ, such that the support vectors (i.e. the points
with θi 
= 0) remain unchanged. Therefore, all the regularization parameter in
(λl+1, λl) can lead to models with the same complexity. So we select θs and λs on
the break points to obtain the initial candidate model setMinit = {fλ1 , . . . , fλk

}.
The total number k of break points is c× n, where n is the size of the training
set and c is some small number around 1-6.

From the initial candidate ε-SVR model set, we can not directly perform the
model combination over it, because most of the models in Minit are trivial in
the sense that they predict the data far less well than the best models. So, we
perform the model combination over a subset of parsimonious, data-supported
models. In the latter subsections, we propose two simple and efficient ways of
selecting models to guarantee the good performance of model combination.

3.2 Improved Occam’s Window

All possible models are involved in the initial model setMinit, including the good
performance ones and the poor performance ones. Madigan and Raftery [15] used
the Occam’s Window method for graphical model and showed combination on
the selected models provided better inference performance than basing inference
on a single model in each of the examples they considered. In this paper, we
apply an improved Occam’s Window method to eliminate the poor performance
models. In the proposed method, posterior model probabilities are used as a
metric to guide model selection. There are two basic principles underlying this
approach.
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First, if a model predicts the data far less well than the model which provides
the best prediction, then it has been discredited and should no longer be consid-
ered. Thus the model not belonging to should be excluded from the combination
candidate model set, where posterior probability ratio W is chosen by the data
analyst and maxl{Pr(fλl

|T )} denotes the model in initial candidate model set
Minit with the highest posterior model probability.

M′ =
{
fλj :

maxl{Pr(fλl
|T )}

Pr(fλj |T )
≤ W

}

Secondly, appealing to Occam’s razor, we exclude models which receive less
support from the data than any of their simpler submodels. Here we give the
definition of submodel. If fλi is a submodel of fλj , we mean that all the sup-
port vectors involved in fλi are also in fλj . Thus we also exclude from models
belonging to then we obtain the model set Mao = M′\M′′ ⊆ Minit.

M′′ =
{
fλj : ∃fλl

∈ Minit, fλl
⊂ fλj ,

Pr(fλl
|T )

Pr(fλj |T )
> 1

}
,

The posterior probability ratio W is usually a constant as in [15]. However,
the statistical results show that only few of the ε-SVR models in Minit have
strongly peak posterior probabilities, as shown in Figure 2. So, we apply a query-
dependent method to determine the ratioW . Starting fromW = k/20, we double
it for every iteration and examine the number of models in set M′′. Once the
number changes dramatically, we terminate the iteration process and use the last
W value. In the experiments of the next section, this would be the case with the
model set size |M′| increasing more than 4. Here, if the model set size enlarges
dramatically, it means that many models with low posterior probabilities enter
the model set |M′|.

The improved Occam’s Window algorithm, as shown in the Algorithm 1, can
greatly reduce the number of models in the candidate model set. Typically, in our
experience, the number of the candidate model set is reduced to fewer than k/20.

3.3 Input-Dependent Strategy

Though the improved Occam’s Window method, we have obtained a credible
candidate model set on the training data. Further, in order to perform good
prediction on new input, we need a more credible input-dependent subset for
model combination.

The generalization performance of the model combination can be evaluated
by prediction error on the new input x. For regression, we apply quadratic error
(fbma(x)−y)2 to calculate the prediction error of the model combination, where
fbma denotes the combined model.

Since the probability distribution according to which the data generated is
unknown, it is impossible for us to compute the expectation of the combination
error. In this paper, we use the nearest neighbor method to estimate the combi-
nation expected error on the input x. Specifically, we adopt the search strategy
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Algorithm 1. The improved Occam’s Window algorithm.

Input:Minit = {fλ1 , . . . , fλk
}, P = {Pr(fλ1), . . . ,Pr(fλk

)}, k, s
Output: Mao

MP ← max(P);
Mao ← ∅;
Mtmp ← ∅;
W ← k/20;
whileMinit �= ∅ do

for f ∈Minit do
if MP/Pr(f) ≤W then
Mtmp ←Mtmp ∪ {f} ;
Minit ←Minit\{f}

end

end
if |Mtmp| − |Mao| ≤ s then
Mao ←Mtmp;
W ←W ∗ 2;

end
else
Mao ←Mtmp;
break

end

end
for f ∈Mao do

for f1 ∈ Mao\{f} do
if (Pr(f1) > Pr(f)) and (f1 ⊂ f) then
Mao ←Mao\{f} ;
break;

end

end

end

which computes the Euclidean distances between the input x and each point in
the training set and then selects the one with smallest distance.

Suppose the input x’s nearest neighbor we find is xe, e ∈ [1, n] and its
output is denoted by ye. For each ε-SVR model fλj ∈ Mao, we compute the
prediction error (fλj (xe)− ye)

2, and sort them by ascending order. We add the
model with current smallest error in Mao to candidate model set, denoted by
Maa, meanwhile remove it from Mao. Then we perform the model combination
over Maa, and then compute the combination error (fbma(xe) − ye)

2. Until
the combination error no longer declines, the model selection process will be
terminated.

Since the whole combination process is dynamic, once a model is added to
the model set Maa, we should update the posterior probabilities for each model.
The model selection process is shown in Algorithm 2.
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Algorithm 2. Input-dependant model selection algorithm.

Input:Mao, T = {(x1, y1), . . . , (xn, yn)}, x
Output: Maa

Find the nearest neighbor point xe of x from T ;
Compute the prediction error for each model on xe;
for Mao �= ∅ do

fm ← f ∈ Mao with lowest prediction error;
Maa ←Maa ∪ {fm};
Mao ←Mao \ {fm};
Update posterior probabilities of models inMaa;
Compute fbma(xe);
if (fbma(xe)− ye)

2 is greater than last time then
break;

end

end

3.4 Bayesian Model Averaging

For ε-SVR, we apply the model combination method—Bayesian model averaging.
Suppose we have a ε-SVR candidate model set M = {f1, . . . , fm}. The Bayesian
model averaging over M has the form

fbma(x) =

m∑
j=1

fj(x) Pr(fj |T ), (3)

where Pr(fj |T ) is the posterior probability of model fj, j = 1, . . . ,m. Then
this is the process of estimating the prediction under each model fj and then
averaging the estimates according to how likely each model is.

We can perform Bayesian model averaging over any ε-SVR model set, such
as Minit, Mao and Maa, while for new input we should use the selected model
set Maa.

In general, the posterior probability of model fj in equation (3) is given by

Pr(fj |T ) ∝ Pr(T | fj)Pr(fj), (4)

where Pr(T | fj) is the marginal likelihood of model fj and Pr(fj) is the prior
probability that fj is the true model. In this paper, we will propose a simple and
efficient method to estimate the model posterior probability for fixed regulariza-
tion parameter λ, which depends on the ε-SVR regularization path algorithm.
We estimate the posterior probability of each model fj as [16]

P̂r(fj |T ) = e−
1
2 ·BICj∑

fm∈M e−
1
2 ·BICm

, (5)

and for each model fj in model set M, its BIC value can be calculated as

BIC(fj) =
‖y − fj‖2

nσ2
+

log(n)

n
df(fj), (6)

where y = (y1, . . . , yn)
�, fj = (fj(x1), . . . , fj(xn))

�, j = 1, . . . , k.
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3.5 Computational Complexity

The main computational burden of the model combination for ε-SVR centers on
building the ε-SVR regularization path, proceeding improved Occam’s Window
procedure to exclude models to obtain the model set Mao, and selecting models
using the input-dependant strategy to obtain the model set Maa.

The approximate computational complexity of the ε-SVR regularization path
algorithm is O(cn2m+nm2) [4], where n is the size of the training data and m is
the average size of ER∪EL, and c is some small number as previously mentioned.

The search strategy in the improved Occam’s Window method is to identify
the models in Mao. First part of the method involves O(dk) operations, includ-
ing finding the largest posterior probability and excluding the models with low
posterior probability. Here, k = c × n is the size of the initial candidate model
set, and d is the iteration for adjusting W , our experience so far suggests that d
is around 3− 8. Second part of the method involves O(k2m) operations, includ-
ing determining subset relationship and comparing the posterior probabilities
between each pair of the models, and the m is the average size of ER ∪ EL. So
the approximate computational complexity of the improved Occam’s Window is
O(cn2m).

The approximate computational complexity of the input-dependant strategy
is O(cn), including finding the nearest neighbor data point from the training
data and determining the final candidate model set for combination.

So, the total computational complexity of the model combination for ε-SVR
on regularization path is O(cn2m+ nm2).

4 Experiments

In this section, we investigate the performance of our model combination with
GCV-based and BIC-based model selection on seven benchmark data sets used in
[2] (available online at http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/),
and we consider Gaussian radial basis kernelK(x,x′) = exp(−γ‖x−x′‖2),where
γ is the prespecified kernel parameter.We use the same values for γ and ε as speci-
fied in [2] shown in Table 1, where n denotes the size of the data set, and p denotes
the dimension of the input x.

For data set abalone we randomly sample 1000 examples from the 4177 exam-
ples; for cpusmall we randomly sample 1000 examples from the 8292 examples;
for spacega we randomly sample 1000 examples from the 3107 examples.

Since the usual goal of regression analysis is to minimize the predicted squared-
error loss, the prediction error is defined as

PredE =
1

m

m∑
i=1

(yi − f(xi))
2,

where m is the number of the test data.
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Table 1. Summary of the Seven Benchmark Data Sets

DataSet n p γ ε DataSet n p γ ε

pyrim 74 27 0.0167 0.00136 cpusmall 1000 12 0.0913 0.12246

triazines 186 60 0.0092 0.00910 spacega 1000 6 0.1664 0.01005

mpg 392 7 0.3352 0.18268 abalone 1000 8 0.1506 0.12246

housing 566 13 0.1233 0.18268
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Fig. 2. The posterior probability distribution of the models according to the regular-
ization path

4.1 Model Posterior Probability Distribution

First, we verify the model posterior probabilities according to the regularization
path. We randomly sample on data set pyrim, and then build each regulariza-
tion path using the algorithm proposed in [4]. We compute the model posterior
probability as described in Section 3. The posterior probability of models from
most regularized to least regularized is shown in Figure 2.

From the figure we find that only few models have higher posterior probabili-
ties and most of the other models have very small posterior probabilities around
zero. Therefore, applying the improved Occam’s Window method we can discard
most of the models in the initial candidate model set. We record an example of
adjusting procedure on posterior probability ratio W in Table 2, where the ATs
is the iteration on the W . We observe that once the ratio is large enough, many
models enter the candidate model set. From the last line of the table, we can
conclude that poor performance models can decrease the performance of model
combination.

4.2 Performance Comparison

In this subsection, we first compare the prediction performance of the model
combination over Maa with the model selection methods based GCV [4] and
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Table 2. Adjusting procedure on posterior probability ratio W with data set pyrim

Ats W |M′| PredE

1 6 2 0.00593

2 12 5 0.00601

3 24 7 0.00596

4 48 9 0.00570

5 96 22 0.00713

BIC. We randomly split the data into training and test sets, with the training
set comprising 80% of the data. We repeat this process 30 times and compute
the average prediction errors and their corresponding standard errors. We cal-
culate the prediction error with each test data for each method. The results are
summarized in Table 3. From the tables we find that the model combination has
the lowest prediction error and standard error. In a sense, this experiment shows
that model combination has the property of “many can be better than one”.

Table 3. Comparisons of the prediction error on real data for model selection and
model combination

GCV BIC BMC

pyrim 0.0055 (0.0026) 0.0052 (0.0027) 0.0049 (0.0023)

triazines 0.0242 (0.0081) 0.0239 (0.0080) 0.0237 (0.0078)

mpg 7.32 (2.35) 7.25 (2.32) 7.13 (2.12)

housing 10.82 (3.65) 10.77 (3.60) 10.04 (3.49)

cpusmall 27.48 (10.25) 27.32 (10.25) 27.10 (10.23)

spacega 0.0125 (0.0015) 0.0122 (0.0015) 0.0120 (0.0015)

abalone 4.31 (1.05) 4.29 (1.05) 4.27 (1.04)

In the second part of the experiment, we compare the prediction performance
of model combination over the model set Minit, Mao and Maa. We compute
the prediction error for the model combination with and without the model
selection strategy. The results are summarized in Table 4, where BMCi denotes
the model combination over the initial candidate model setMinit; BMCo denotes
combination over the model set Mao, and BMCp denotes combination over the
final model set Maa. From the tables we find that the model combination over
the selected candidate model set has lower prediction error than over the initial
model set. In a sense, this experiment shows that the model combination has
the property of “many can be better than all”.
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Table 4. Comparisons of the prediction error on real data for model combination with
and without model selection strategy

BMCi BMCo BMCp

pyrim 0.0067 (0.0037) 0.0051 (0.0027) 0.0049 (0.0023)

triazines 0.0317 (0.0092) 0.0277 (0.0083) 0.0237 (0.0078)

mpg 7.98 (2.68) 7.28 (2.32) 7.13 (2.12)

housing 11.73 (3.98) 10.73 (3.56) 10.04 (3.49)

cpusmall 29.49 (11.08) 28.01 (10.78) 27.10 (10.23)

abalone 4.83 (1.27) 4.36 (1.09) 4.27 (1.04)

spacega 0.0204 (0.0019) 0.0128 (0.0015) 0.0120 (0.0015)

5 Conclusion

In this paper, we propose a new model combination framework for ε-SVR. We
can obtain all possible models according to the regularization path. Applying
the improved Occam’s Window method and the input-dependant strategy, we
greatly reduce the number of candidate models and improve the model combi-
nation prediction performance on test data. The model combination on regu-
larization path can reduce the risk of single model selection, and improve the
prediction performance. The experimental results on real data show that with
some pre-processing of model set the combination prediction accuracy signifi-
cantly exceeds that of a single model.

Our model combination for ε-SVR on regularization path provide a common
framework for model combination, which can be extended to support vector
machines (SVMs)[17] and other regularized models.
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