
P. Anthony, M. Ishizuka, and D. Lukose (Eds.): PRICAI 2012, LNAI 7458, pp. 577–588, 2012. 
© Springer-Verlag Berlin Heidelberg 2012 

A New Algorithm for Multilevel Optimization Problems 
Using Evolutionary Strategy, Inspired  

by Natural Adaptation 

Surafel Luleseged Tilahun1, Semu Mitiku Kassa2, and Hong Choon Ong1 

1 Universiti Sains Malaysia, School of Mathematical Sciences, 11800, Penang, Malaysia 
surafelaau@yahoo.com, hcong@usm.cs.my    

2 Addis Ababa University, Department of Mathematics, 1176, Science faculty, A.A., Ethiopia  
smtk@math.aau.edu.et 

Abstract. Multilevel optimization problems deals with mathematical program-
ming problems whose feasible set is implicitly determined by a sequence of 
nested optimization problems. These kind of problems are common in different 
applications where there is a hierarchy of decision makers exists. Solving such 
problems has been a challenge especially when they are non linear and non 
convex. In this paper we introduce a new algorithm, inspired by natural adapta-
tion, using (1+1)-evolutionary strategy iteratively. Suppose there are k level  
optimization problem. First, the leader’s level will be solved alone for all the 
variables under all the constraint set. Then that solution will adapt itself accord-
ing to the objective function in each level going through all the levels down. 
When a particular level’s optimization problem is solved the solution will be 
adapted the level’s variable while the other variables remain being a fixed  
parameter. This updating process of the solution continues until a stopping  
criterion is met. Bilevel and trilevel optimization problems are used to show 
how the algorithm works. From the simulation result on the two problems, it  
is shown that it is promising to uses the proposed metaheuristic algorithm in 
solving multilevel optimization problems. 

Keywords: Multilevel optimization, (1+1)-Evolutionary strategy, metaheuristic 
algorithms, Natural adaptation. 

1 Introduction 

Many resource allocation or planning problems require compromises among the  
objectives of several interacting individuals or agencies; most of the time, arranged  
in hierarchical administrative structure and can have independent even sometimes 
conflicting objectives. A planner at one level of the hierarchy may have its objective 
function determined partly by variables controlled at other levels. Assuming that  
the decision process has a preemptive nature and having k levels of hierarchy, we 
consider the decision maker at level 1 to be the leader and those at lower levels to be 
followers. These kind of problems can be modeled as a nested optimization problem, 
referred to as multilevel programming [1]. Mathematical programming models to 
solve problems of these kind has been studied since 1960s, [2]. 
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Multilevel optimization analysis becomes more and more applicable in different 
fields. Its role in agricultural economics has been studied by Candler et. al [3] . Koca-
ra and Outrata studied its use in engineering design [4]. Its application to transport 
network was also studied in [5]. Generally whenever there is a hierarchy of decision 
maker in such a way that each decision maker controls part of the decision variable, 
multilevel optimization problem model is the one suitable for the situation [6].  

Due to its many applications, multilevel programming, in particular bilevel pro-
gramming, has evolved significantly [7, 8]. In the late nineties Bahatia and Biegler pro-
posed an approach with periodic property [9]. Stochastic programming like method was 
also proposed by Acevedo and Pistikopoulos [10]. Furthermore Pistikopoulos et. al. and 
other researchers proposed a new algorithm based on parametric programming theory 
[8, 11, 12, 13, 14]. Most of the solution methods proposed are mainly for bilevel and 
trilevel optimization problems with linear or convex property. The search for solution 
methods still continues, especially methods which are not affected by behavior of the 
objective functions. Perhaps metaheuristic algorithms are suitable for such purpose. 
That is why some recent solution methods involve metaheuristic algorithms. Among 
many metaheuristic algorithms evolution algorithm [15, 16, 17] and particle swarm 
optimization [18, 19, 20] are used in many researches and application 

This paper introduces a new algorithm inspired by natural adaptation and based on 
(1+1)-evolutionary strategy. The format of the paper is as follows; in the next section 
basic concepts will be discussed followed by a discussion on the introduced algorithm 
in section 3. The algorithm will be tested using a bilevel and a trilevel optimization 
problem in section 4. At last a conclusion will be given in section 5. 

2 Preliminaries 

2.1 Multilevel Optimization Problem (MLOP) 

Optimization problems of the following form, as in equation 1, are called k-level op-
timization problems.  
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where },...,2,1{  kix in
i ∈∀ℜ∈ , 
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 and “Optimize” can be either maxim-

ize or minimize. 
Generally, multilevel optimization problems (MLOP) are optimization problems 

which have a subset of their variables constrained to be optimal solutions of other 
optimization problems parameterized by the remaining variables. Depending on the 
number of optimization problems in the constraint set a level will be assigned. k-level 
optimization problem is an optimization problem which has k-1 optimization prob-
lems in the constraints.  

The first optimization problem, f1, is called leader’s or level one problem and the 
others are followers’ with level number increasing when going down. The decision 
maker at level j controls only xj, whereas the other parts of the variables are controlled 
by the decision makers in other levels. 

A point *)*,...,*,(* 21 kxxxx = is said to be an optimal solution for the multilevel 

optimization problem if x* is an optimal solution for the leader’s problem, satisfying 
lower level problems as a constraint set. Since we have different levels and different 
optimization problems in each level there usually will be a conflict of objectives, 
hence the concept of compromise optimality needs to be defined. A compromise op-
timal solution is a member of the feasible set for which there doesn’t exist another 
feasible point which does the same in all objectives and better at least in one objective 
function. For a given multilevel optimization problems it is possible to have many 
solutions depending on the decision power of the decision maker in each level. Fur-
thermore, unlike single level optimization problems, convexity doesn’t guarantee the 
existence of an optimal solution, and generally it is a non convex problem even when 
the involved functions are linear. These behaviors make multilevel optimization prob-
lems challenging compared to single level optimization problems. 

2.2 Evolutionary Strategy 

Evolutionary strategy is a metaheuristic algorithm which is inspired by natural evolu-
tion. It has an operator which corresponds to the mutation operator in genetic algo-
rithm. Depending on the number of children each solution member gives, we have 
many kind of evolutionary strategy. In this paper we consider a (1+1)-evolutionary 
strategy. (1+1)-evolutionary strategy is an evolutionary strategy in which a parent 
gives a birth to one child [21]. (1+1)-evolutionary strategy has the following main 
steps: 

1. Generate a random set of solutions, {x1, x2, . . ., xm} 
2. Move each solution member xi, in a randomly generated direction d, 

xi’=xi+d. d is from a normal distribution ),0( δN , where δ is algorithm pa-

rameter.  
3. Compare the performance of xi and xi’ according to the objective function; 

and take the one which does better. 
4. If termination criterion is not met go to step (2). 
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3 Metaheuristic Algorithm for MLOP 

A metaheuristic algorithm is an algorithm with randomness property which tries to 
find a solution for optimization problems by improving the solution set iteratively. 
Most of these algorithms are inspired by a certain natural phenomenon. Perhaps, it is 
a good idea to face the challenge of multilevel optimization using metaheuristic solu-
tion methods. In this paper we introduce a new metaheuristic algorithm. The algo-
rithm proposed in this paper uses the concept of evolutionary strategy and is inspired 
by natural adaptation. The leader’s problem is solved for all the variables satisfying 
all constraint sets, as if it controls all the variables. Then that solution will adapt itself 
according to the objective functions in each level while going through all the levels. 

Consider a k-level optimization problem shown below: 
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In the algorithm the leader’s problem will be solved for ),...,,( 00
2

0
1 kxxx with all the 

constraints in all the levels including the common constraint, given as: 
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in equation (4).  
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Generally for any level i we will solve the corresponding problem using evolutionary 
strategy, as shown in (5). 
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Once the kth level problem is solved, then ),...,,( 00
3

0
2 kxxx will be used as parameters 

to solve the problem given in equation (6) for 1
1x . 
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Similarly, to solve the second level for 1
2x  we fix ),...,,,( 00

4
0
3

1
1 kxxxx and use evolu-

tionary strategy. Once 1
2x is computed we fix ),...,,,( 421 kxxxx as 
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33 xx = . By continuing in similar way for all the 

levels down, at last ),...,,,( 11
3

1
2 kxxx will be fixed to solve for the first level problem for

2
11 xx = . This process will continue until a termination criterion is fulfilled. It means 

at jth iteration and optimizing ith level we will have the following optimization prob-
lem: 
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where S’i is the ith level constraint set with all the other variables are fixed and Si is 
also the common constraint with all the variables, except variable i, are fixed. 

At each step (1+1)-evolutionary algorithm will be used with a property of passing 
the previous solution. It means, suppose we are solving the ith level problem at a  

particular iteration j. ),...,,,...,,( 11
1121

−−
+−

j
k

j
i

j
i

jj xxxxx is fixed then when evolutionary 

strategy is used 1−j
ix will be taken as a member among the randomly generated initial 

solution set. This will help the algorithm not to move away from a good solution  
because of the conflict of objective functions. 
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The algorithm is summarized in the following tables: 
 
Table 1. The algorithm 

Input: },...,2,1{  ,),,...,,( 21 kiSSxxxf iki ∈∀  
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Table 2. Evolutionary strategy with passing a solution,  
              )',,),((  ryStrategyEvolutiona 1 xS, nSxf  

Input: f(x), S1,S, n, x’ 
Algorithm Parameter: δ  
Do: 
    Randomly generate m-1 solutions for x from the feasible region, say x1, x2,     
       …, xm-1. 
    Put xm = x’ (if x’ is given, else generate xm also randomly) 
 for i=1:m 
    Generate d from ),0( δN  

    xi*= xi + d     
     Check feasibility 
     if ( )(*)( ii xfxf ≤ ) 

         xi = xi* 
    end if 
end for 
Repeat until termination criteria is met 
x*=xj,   such that },...,2,1{   )()( mixfxf ij ∈∀≤  

Output: x* 
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4 Simulation Examples 

To demonstrate the algorithm we use a bilevel and a trilevel optimization problems. 
 

a) Bilevel Example 
The bilevel problem is taken from a book chapter [22]. It is as given in equation (8). 
After solving the problem using the algorithm, the solution is compared to the solu-
tion given in the book. According to the book the solution is (x’, y’) = (0.609, 0.391, 
0, 0, 1.828), with values 0.6429 and 1.6708 for f1 and f2, respectively. 
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The algorithm parameter δ  was set to be 1 and number of initial solutions, m, was set 
to be 50. Furthermore the number of iteration was set to be 30 for the evolutionary 
strategy and 50 for the algorithm. 

First the leader’s problem is solved with all the constraints as shown in equation (9) 
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Using (1+1)-evolutionary strategy, the solution for the problem in equation (9) is 
found to be x0= (0.2756 0.7117) and y0=(0.0167 1.1095 2.0073) with f1(x

0, y0) = 
0.4763.  

Then by fixing x0 the second level problem is solved. 
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Then equation (10) is solved using evolutionary strategy for y1, in such a way that  
y0 will be taken as one of the initial solutions in the evolutionary strategy. After  
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y1 is computed, it will be fixed to solve the leader’s problem for x1, again using  
evolutionary strategy with passing the previous best, x0, as one of the initial popula-
tion member.  
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After that the second problem will be solved for y2 by fixing x1 and passing y1 as a 
member of initial solutions in the evolutionary strategy. This pattern repeats itself 
until a preset iteration number, which in our case is 50, is reached. 

After running the program using matlab the optimal solution was found to be (x*, 
y*) = (0.5307 0.4683 0.0012 0.0002 1.5989), with 0.7122 and 1.2778 for f1 and f2, 
respectively. The performance of the algorithm compared to the solution in the book 
is presented in Figure (1). Furthermore, it compares the performance in terms of the 
sum of the functional values, f1(x’,y’)+f2(x’,y’) and f1(x*,y*)+f2(x*,y*). 

 

Fig. 1. Performance of the algorithm in the bilevel problem 

From the result it is clear that if equal weight is given to the objective functions 
the algorithm performs better because f1(x’,y’)+f2(x’,y’) = 2.3134 and 
f1(x*,y*)+f2(x*,y*) = 1.9900, where x’ is the solution from the book and x* is the solu-
tion after running the algorithm. 

b) Trilevel Example 
The second test problem is a trilevel optimization problem taken from a thesis done 
by Molla [23]. It is given in equation (12) 
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The algorithm parameter and number of iterations are the same in the previous case. 
According to the algorithm first the leader’s problem, as shown in equation (13), is 
solved. 
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After running the code the solution is found to be (x0, y0, z0) = (0.4999 0.0003 
0.1687). Now by fixing x0 we solve for the problem in equation (14).  
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The solution of equation (14) is 10-3(0.1097 0.2957), with f2(0.4999, (10-3)(0.1097), 
(10-3)(0.2957))=10-4 (5.1513). Hence (x0, y0, z0) is updated to (0.4999, (10-3)(0.1097), 
(10-3)(0.2957)). 

Afterwards we fix (x0, y0) and solve the third level problem for z0. 
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z0 is updated to be 0.4978. Hence (x0, y0, z0) is computed, then y0 and z0 will be fixed 
using evolutionary strategy to solve for x1, with x0 as one of the solution candidate for 
the evolutionary strategy algorithm. After running the matlab code the result becomes 
(x*, y*, z*) = (0.5, 0, 0.0095). And f1(x*, y*, z*) = -0.5, f2(x*, y*, z*) = 0.0127 and 
f3(x*, y*, z*) = -0.2499. The performance of the functional values as a function of 
iteration number is shown in the graph below: 

 
Fig. 2. Performance of the algorithm in the trilevel problem 

Our result is better than the result reported by Molla [17], which is (xm, ym, 
zm)=(0.5, 1, 1). This implies that f1(xm, ym, zm)=3.5, f2(xm, ym, zm)=3 and f3(xm, ym, 
zm)=0, which are worse in sense of minimization when compared to our result not 
only in average but also for each individual objective functions. 

5 Conclusion 

In this paper a new metaheuristic algorithm for multilevel optimization problem 
which mimic the concept of natural adaptation is introduced. The algorithm uses 
(1+1)-evolutionary strategy to solve one of the level’s optimization problem at once. 
The leader’s problem will be solved for all the variables satisfying all the constraint 
sets in all the levels. That solution will go through each level iteratively by adapting 
itself with the corresponding objective function and constraint set of each level. In 
each iteration the solution will respond to the change in the parameters and tries to 
update itself compared to the previous solution and the new parameters. (1+1)-
evolutionary strategy is used in the updating process with a property of considering 
the previous best as a candidate solution for the current stage. These updating will 
continue iteratively until termination criterion is met. From the simulation results on a 
bilevel and trilevel optimization problem, it is shown that the algorithm gives a prom-
ising result for multilevel optimization problems. 
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