
Scalable Text Classification with Sparse

Generative Modeling

Antti Puurula

Department of Computer Science, The University of Waikato, Private Bag 3105,
Hamilton 3240, New Zealand

Abstract. Machine learning technology faces challenges in handling
“Big Data”: vast volumes of online data such as web pages, news sto-
ries and articles. A dominant solution has been parallelization, but this
does not make the tasks less challenging. An alternative solution is using
sparse computation methods to fundamentally change the complexity of
the processing tasks themselves. This can be done by using both the spar-
sity found in natural data and sparsified models. In this paper we show
that sparse representations can be used to reduce the time complexity
of generative classifiers to build fundamentally more scalable classifiers.
We reduce the time complexity of Multinomial Naive Bayes classification
with sparsity and show how to extend these findings into three multi-label
extensions: Binary Relevance, Label Powerset and Multi-label Mixture
Models. To provide competitive performance we provide the methods
with smoothing and pruning modifications and optimize model meta-
parameters using direct search optimization. We report on classification
experiments on 5 publicly available datasets for large-scale multi-label
classification. All three methods scale easily to the largest available tasks,
with training times measured in seconds and classification times in mil-
liseconds, even with millions of training documents, features and classes.
The presented sparse modeling techniques should be applicable to many
other classifiers, providing the same types of fundamental complexity
reductions when applied to large scale tasks.

Keywords: sparse modeling, multi-label mixture model, generative
classifiers, Multinomial Naive Bayes, sparse representation, scalable com-
puting, big data.

1 Introduction

Machine learning systems are operating on increasingly larger amounts of data,
or “Big Data”. A dominant idea has been to tackle these challenges by paral-
lelizing algorithms with cluster computing and more recently cloud computing.
An alternative approach to the scalability problem is to change the algorithms
to more scalable ones. Most types of web data are naturally sparse, including
graph and text data. The models can be made sparse as well. Sparse computing
methods offer the possibility of solving the scalability problem by reducing the

P. Anthony, M. Ishizuka, and D. Lukose (Eds.): PRICAI 2012, LNAI 7458, pp. 458–469, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Scalable Text Classification with Sparse Generative Modeling 459

computational complexity of the algorithms themselves, offering fundamentally
more efficient solutions.

Sparse computing works by representing data and models using sparse matrix
representations. For example, a vector of word counts of a document w can be
represented by two smaller vectors of indexes and non-zero counts. Alternatively
a hash table can be used for this, for constant time lookups and additions. In
both cases the complexity of storing sparse information is reduced from full
|w| to sparse complexity s(w), where s(w) is the number of non-zero counts.
Fundamental reductions in computing complexities can be gained by choosing
the correct sparse representation.

In this paper we show that by using the correct sparse representations the
time complexity of generative classifiers can be reduced. We propose a sparse
time complexity algorithm for MNB classification. We then demonstrate sparse
generative classification with three multi-label extensions of Multinomial Naive
Bayes (MNB), representing baseline approaches to multi-label classification. Bi-
nary Relevance (BR) method extends MNB by considering each label in multi-
label classification as a separate problem, performing binary-class classifications.
Label Powerset (PS) converts each labelset to a label, performing multi-class
classification. Finally, Multi-label Mixture Modeling (MLMM) decomposes la-
belsets into mixture components, performing full multi-label classification. For
each method a couple of meta-parameters are optimized using a direct search
algorithm to provide realistic performance on the datasets. The direct search op-
timizations are done using a parallelized random search algorithm, to optimize
the microaveraged F-score of development sets for each method.

Five freely available large-scale multi-label datasets are used for the experi-
ments, using reported preprocessing for comparison of results. It is demonstrated
that the use of sparse computing results in training times measured in seconds
and classification times in milliseconds, even on the largest datasets with millions
of documents, features and classes.

The paper continues as follows. Section 2 proposes sparse computation with
the MNB model. Section 3 proposes three extensions of sparse MNB to multi-
label classification. Section 4 presents experimental results on the five datasets
and Section 5 completes the paper with a discussion.

2 Sparse Computation with Multinomial Naive Bayes

2.1 Multinomial Naive Bayes

Naive Bayes (NB) models [1, 2, 3] are generative graphical models, models of
the joint probability distribution of features and classes. In text classification
the joint distribution p(w,m) is that of word count vectors w = [w1, ..., wN]
and label variables m : 1 ≤ m ≤ M , where N is the number of possible words
and M the number of possible labels. Bayes classifiers use the Bayes theorem to
factorize the joint distribution into label prior p(m) and label conditional pm(w)
models with separate parameters, so that p(w,m) = p(m)pm(w). NB uses the
additional assumption that the label conditional probabilities are independent,

460 A. Puurula

so that pm(w) =
∏

n pm(wn, n). Multinomial Naive Bayes (MNB) parameter-
izes the label conditional probabilities with a Multinomial distribution, so that
pm(wn, n) ∝ pm(n)wn . In summary, MNB takes the form:

p(w,m) = pm(w)p(m) ∝ p(m)
N∏

n=1

pm(n)wn , (1)

where p(m) is Categorical and pm(n)wn Multinomial.

2.2 Feature Normalization

Modern implementations of MNB use feature normalizations such as TF-IDF
[4]. Surprisingly, this method developed for improving information retrieval per-
formance has been shown to correct many of the incorrect data assumptions that
the MNB makes [3]. The version of TF-IDF we use here takes the form:

wn =
log[1 + wu

n]

s(wu)
log[max(1,

D

Dn
− 1)], (2)

where wu
n is the original word count, s(wu) the number of non-zero counts in

the word vector, Dn the number of training documents word n occurs in, and D
the number of training documents.

The first factor (TF) in the function performs unique length normalization
[5] and word frequency log transform. Unique length normalization is used, as
it has been shown to be consistent across different types of text data [5]. The
log transform corrects for the “burstiness effect” of word occurrences in docu-
ments, not captured by a Multinomial. As shown in [3], performing a simple
log-transform corrects this relatively well. The second factor (IDF) performs an
unsmoothed Croft-Harper IDF transform. This downweights words that occur
in many documents and gives more importance to rare words. The Croft-Harper
IDF downweights the common more words severely, actually setting the weight
of words occurring in more than half the documents to 0. This induces sparsity
and can be useful when scaling to large-scale tasks.

2.3 Sparse Representatation and Classification with Generative
Models

It is a common practice in text classification to represent word count vectors
w sparsely using two smaller vectors, one for indices of non-zero counts v and
one for the counts c. A mapping from dense to sparse vector representation can
be defined k(w) = [v, c]. Less commonly, the Multinomial models can be repre-
sented sparsely in the same way, using a vector for non-zero probability indices
and one for the probabilities. By using the right type of sparse representations
we can reduce both the space and time complexity of generative models much
further.

Instead of having either a dense or sparse vector for each Multinomial, all
Multinomial counts can be represented together in the same hashtable, using

Scalable Text Classification with Sparse Generative Modeling 461

tuples of indices {m,n} as the key and the log-probability log(pm(n)) as the
stored value. This is known as the dictionary of keys representation for sparse
matrices. Like dense vectors, the counts can be updated and queried in constant
time. Like sparse vectors, the space use of storing the Multinomial is s(w). But
unlike sparse vectors, there is no need for allocating vectors when a resize is
needed, or when a new label is encountered in training data.

The dictionary of keys is an efficient representation for model training, but
for classification an even more efficient sparse representation exists. The inverted
index forms the core technique of modern information retrieval, but surprisingly
it has been proposed for classification use only recently [6]. An inverted index
can be used to access the multinomials, consisting of a vector κ of label lists
called postings lists κn. In this paper it is shown that the inverted index can be
used to reduce the time complexity of inference with generative models.

A naive algorithm for MNB classification computes the probability of the
document for each label and keeps the label maximizing this probability. Taking
the data sparsity s(w) into account, this has the time complexity O(s(w)M).
With the inverted index, we can substantially reduce this complexity. Given a
word vector, only the labels occurring in the postings lists can be considered
for evaluation. To avoid a classification error in abnormal cases, the probability
for the apriori most likely label needs to be precomputed. The evaluation list
� of labels can be computed by taking a union of the occurring labels, � =
∪n:wn>0κn. Replacing the full set of labels with the evaluation list results in
sparse O(s(w)|�|) time complexity.

When conventional smoothing methods such as Dirichlet prior or interpolation
are used, the smoothing probabilities can be precomputed and only updated for
each label. Using this with generative modeling, we get another time complexity
reduction. When constructing the evaluation list, the matching words between
the word vector and unsmoothed multinomial can be saved as update lists νm

for each label. This reduces the time complexity to O(s(w)+
∑

m∈� |νm|)) where
|νm| are the update list sizes, at worst min(s(w), s(pum)). Algorithm 1 gives a
pseudocode description of sparse MNB classification.

3 Multi-label Extensions of Naive Bayes

Multi-label classification deals with the extension of single-label classification
from a single label to set of labels, or equivalently a binary labelvector of label
occurrences l = [l1, ..., lM]. In supervised multi-label tasks the training dataset
is labeled with the labelsets. Evaluation is done using a variety of metrics, most
commonly the micro-averaged and macro-averaged F-scores [7]. We optimize
and evaluate using micro-averaged F-score as the measure, as this been most
commonly used with the text datasets we are experimenting on.

We evaluate three scalable extensions to MNB for sparse multi-label classifi-
cation. The first two are the problem transformation methods of Binary Rele-
vance(BR) [8] and Label Powerset(PS) [9], that are commonly used as baselines
in multi-label classification [10, 11]. The third one is a multi-label mixture model

462 A. Puurula

Algorithm 1. Sparse MNB Classification

1: log smooth = 0

2: for all n ∈ k(w)1 do � Iterate document words k(w)1
3: log smooth+ = log(ps(n)) ∗ wn

4: for all m ∈ κn do � Iterate postings list κn

5: νm = ∪(νm, (n))

6: mmax = mapriori

7: pmax = log(p(mapriori)) + log smooth
8: for all m ∈ � do � Iterate evaluation list �

9: pnew = log(p(m)) + log smooth
10: for all n ∈ νm do � Iterate update list νm

11: pnew+ = (log(pm(n)) − log(ps(n))) ∗ wn

12: if pnew > pmax then
13: pmax = pnew

14: mmax = m

(MLMM) that we have developed, that uses mixture modeling to decompose la-
bel combinations.

3.1 Binary Relevance

The binary relevance method [8] considers each label in the labelvector inde-
pendently, by performing a binary classification for each label. The advantages
of BR are that it is very efficient and easy to implement with any classifier ca-
pable of binary-label classification. The disadvantage is that it totally ignores
label correlations, in the worst cases classifying all labels as positive or none.
A relevance thresholding scheme is commonly used to improve the results, by
adjusting the relevance decision boundary to maximize the evaluation score on
a held-out development set. Extending the MNB classifier for BR is straightfor-
ward, with a positive Multinomial and a corresponding negative Multinomial for
each label. Since we work with very large numbers of labels, we can approximate
the negative Multinomial with a background distribution p(n) with little loss in
accuracy.

3.2 Label Powerset

The label powerset method [9] is a straightforward way to perform multi-label
classification with single-label classifiers. Each labelset in training is converted to
a single label identifier and converted back to labelsets after classification. Both
operations can be done using hash table lookups, externally to the classifier. The
main disadvantage is the increased space and time complexity of classification.
Instead of models for at most M labels, PS constructs models for each labelset
configuration l occurring in the training data. It neither takes into account sim-
ilarities between the labelsets, and can only classify labelsets that are seen in

Scalable Text Classification with Sparse Generative Modeling 463

the training data. Despite the theoretical problems, PS forms the basis of some
of the most successful multi-label classification algorithms.

3.3 Multi-label Mixture Model

Multi-label mixture models [12, 13, 14] attempt generalization of MNB to multi-
label data by decomposing labelset-conditional Multinomials into mixtures of
label-conditional Multinomials. Here we propose a simple multi-label mixture
model that is closely related to the original Multi-label Mixture Model [12] and
Parametric Mixture Model [13], taking the form:

p(w, l) ∝ p(l)

N∏

n=1

[

M∑

m=1

lm
s(l)

pm(n)]wn (3)

By constraining the labelvector to a single label s(l) = 1, the model reduces
to MNB. A number of choices exist for modeling p(l), one being a Categorical
distribution over the labelvectors [12]. We use a fixed mixture of a Categorical
with a smoothing distribution:

p(l) = 0.5pu(l) + 0.5ps(s(l)), (4)

where pu is the unsmoothed Categorical, ps is a Categorical over labelcounts
s(l) corrected to l event space.

Classification with multi-label mixture models requires heuristics in practice,
as a naive algorithm would perform a 2M enumeration of all the possible la-
belsets. A common greedy algorithm [12, 13] starts with a labelvector of zeros
and iteratively sets to 1 the label m that improves p(w, l) the most. The itera-
tion ends if no label improves p(w, l). The labelcount prior ps constrains what
would be M2M to a maximum of Mq2 evaluations, where q = maxl:p(l)>0(s(l))
is the largest labelcount in training data, resulting in O(q2 M s(w)) complexity.

This algorithm can be improved by taking into account the sparse improve-
ments we’ve proposed for MNB and some additional heuristics. We can add
caching of probabilities, so that in each iteration the probabilities p(wn) can be
updated instead of recomputed. This reduces the time complexity toO(Mqs(w)).
We can also remove all non-improving labels in each iteration from the evaluation
list as a weak heuristic. Finally, we can combine these with the sparse classifi-
cation done in Algorithm 1, to get the worst time complexity of O(q(s(w) +∑

m∈� |νm|)), or simply q times the sparse MNB complexity.

3.4 Model Modifications

For competitive performance and to deal with realistic data some modifications
are required in generative modeling. An example of a mandatory modification
is smoothing for the conditional Multinomials. In this paper we use four meta-
parameters a to produce realistic performance for each compared method, except
for the additional label thresholding meta-parameter a5 used with BR.

464 A. Puurula

The first modification is the conditional smoothing. We use Jelinek-Mercer
interpolation, or linear interpolation with a background model. For each method,
we estimate a background Multinomial concurrently to the Multinomials and
interpolate this with the conditionals, so that pm(n) = (1− a1)p

u
m(n)+ a1p

s(n).
The second modification is to enable training with limited memory to very

large datasets. We first constrain the hashtable for the conditionals to a max-
imum of 8 million counts, so that adding keys above that is not allowed. In
addition we use pruning with the IDF weights. When a count is incremented, we
compare its IDF-weighted value to an insertion pruning threshold a2. If the value
is under the threshold, the count is removed from the hashtable. When stream
training is used, the IDF-values can be approximated with running estimates,
giving gradually more accurate pruning.

A third modification is to scale the priors, replacing p(l) by p(l)a3 . This is
commonly done in speech recognition, where language models are scaled. We’ve
added this modification as it has a very considerable effect, especially in cases
where the prior is less usable for a dataset and the generative model still weights
labels according to the prior.

As a fourth modification we add a pruning criteria to the classification al-
gorithm. We add a sorting to the evaluation lists, by scoring each label as
the sum of matching TF-IDF weighted word counts qm =

∑
n wn1pu

m(n)>0,
and sorting the evaluation list by the scores qm. We can then use the ranked
evaluation list, by stopping the classification once the mean log probability of
the evaluated labels deviates too far from the maximum log probability found,
mean logprob − a4 < max logprob. The scoring adds a O(|�| log(|�|)) term to
the time complexity, but this does not increase the worst time complexity in
typical cases.

3.5 Meta-parameter Optimization

We use a direct search [15] approach for optimizing the meta-parameters. The
function value f(a) we optimize is the micro-averaged F-score of held-out de-
velopment data. The type of direct search we use is a random search algorithm
[16, 17], an approach best suited for the low-dimensional, noisy and multimodal
function we are dealing with.

In random search the current best point a is improved by generating a new
point d ← a + Δ with step Δ and replacing a with d if the new point is as
good or better, if f(a) ≤ f(d), a ← d. The iterations are then continued to a
maximum number of iterations I. A number of heuristics are commonly used
to improve basic random search. We use a couple common ones, along a novel
Bernoulli-Lognormal function for step generation.

Instead of generating a single point, we generate a population of J points
in order to fully use parallel computing. Instead of having a single point for
generation, we keep many, so that if any point dj ← a+Δj improves or equals
f(a), we replace the current set of points by the Z best points sharing the best
value. Subsequent points are then generated evenly from the current set of best
points a1+j%Z .

Scalable Text Classification with Sparse Generative Modeling 465

We generate steps with a Bernoulli-Lognormal function, so that for each at
we first generate a step direction with a uniform Bernoulli bjt ∈ (−1, 1) and
then multiply the stepsize by a Lognormal eN (0,2). We combine this with a
global adaptive stepsize decrease, so that we start stepsizes at half range ct =
0.5 ∗ (maxt −mint) and multiply them by 1.2 after an improving iteration and
by 0.8 otherwise. This gives the step generation process as Δjt ← bjt ct e

N (0,2).
In addition we improve variance among the generated points by generating each
alternate step in a mirrored direction: if j%2 = 0, bj ← −b(j−1). A heuristic
starting point a is used and to reduce the search space each meta-parameter
is constrained to a suitable range djt ← min(max(a1+j%Z +Δjt,mint),maxt)
found in model development.

4 Experiments

4.1 Experiment Setup

The experiment software was implemented using Java and executed on single
thread on a 3.40GHz Intel i7-2600 processor using 4GB of RAM. Five recent
large-scale multi-label datasets were used for the experiments, all freely avail-
able for download. Table 1 shows the dataset statistics. The numbers of distinct
labelsets are omitted from the table, but in the worst case this is 1468718 classes
for the WikipL dataset, close to a million and a half. The datasets were prepro-
cessed by lowercasing, stopwording and stemming, and stored in LIBSVM sparse
format.

Table 1. Statistics for the five training datasets. Documents D in training, unique
labels M , unique words N , mean of unique labels per document e(s(l)) and mean of
unique words per document e(s(w)).

Dataset Train D Labels M Words N e(s(l)) e(s(w)) Task description

RCV1-v2 343117 350 161218 1.595 63.169 News articles
Eurlex 17381 3870 179540 5.319 270.346 Legal documents

Ohsu-trec 197555 14379 291299 12.389 81.225 Medical abstracts
DMOZ 392756 27874 593769 1.028 174.124 Web pages
WikipL 2363436 325014 1617125 3.262 42.534 Wikipedia articles

The datasets consist of WikipL, DMOZ, Ohsu-trec, Eurlex and RCV1-v2,
each split to a training set, held-out development set and evaluation set. WikipL
and DMOZ are the larger datasets from LSHTC21 evaluation of multi-label clas-
sification. For Eurlex2 [18] the first 16381 documents of eurlex tokenstring CV1-
10 train.arff were used as the training set, the last 1000 as the development set
and eurlex tokenstring CV1-10 test.arff as the evaluation set. Ohsu-trec3 used

1 http://lshtc.iit.demokritos.gr/
2 http://www.ke.tu-darmstadt.de/resources/eurlex
3 http://trec.nist.gov/data/t9_filtering.html

http://lshtc.iit.demokritos.gr/
http://www.ke.tu-darmstadt.de/resources/eurlex
http://trec.nist.gov/data/t9_filtering.html

466 A. Puurula

both the title and abstract as document text, preprocessed by lowercasing, re-
moving <3 letter words and using the Porter stemmer. The MeSH terms were
used as labels with additional specifiers to terms discarded. Ohsumed.88-91 is
used as the training dataset, the first 1000 documents of ohsumed.87 as the devel-
opment set and the rest as the evaluation set. The files lyrl2004 tokens test pt*.
dat for RCV1-v24 [19] were used as the training set, the first 1000 documents
of lyrl2004 tokens train.dat were used as the development set and the last 8644
as the evaluation set. The categorization rcv1-v2.industries.qrels was used for
labeling.

4.2 Experiment Results

The three evaluated methods were optimized for micro-averaged F-score on each
development set using a 50x30 (50 iterations, 30 points) random search. Figure
1 compiles the results from the runs, showing training times in seconds, develop-
ment set classification times in milliseconds and evaluation set micro-averaged
F-scores. The time estimates were computed as the median of 8 runs. Table 2
shows the same numbers in a table form in addition to the development set
F-scores.

Fig. 1. Median training times, median classification times and micro-averaged F-scores

One-tailed paired t-tests were used to test the differences in F-scores and times,
verified byWilcoxon signed rank tests with p < 0.05. Significances from t-tests p <
0.05 are shown in parenthesis. BR is outperformed in accuracy by both MLMM
(p < 0.006) and PS (p < 0.004). In addition the effect size is very large, with
BR falling behind by almost half the F-score on average. The difference between
MLMM and PS accuracy is not significant, although on average PS is over 3%
F-score better than MLMM. In terms of training set times all models perform
similarly, with no significant differences and very similar mean times. In terms of

4 http://www.daviddlewis.com/resources/testcollections/rcv1/

http://www.daviddlewis.com/resources/testcollections/rcv1/

Scalable Text Classification with Sparse Generative Modeling 467

classification times the large variance causes only the difference between BR and
PS to be significant (p < 0.013), although the mean times suggest BR is twice as
fast as both MLMM and PS, and MLMM is somewhat faster than PS.

Table 2. Median training times, median classification times and micro-averaged F-
scores

(a) Training times in seconds

BR MLMM PS

RCV1-v2 30.73 35.53 42.50
Eurlex 9.56 18.60 9.01

Ohsu-trec 123.51 63.43 48.32
DMOZ 152.95 148.29 147.14
WikipL 219.82 261.92 218.01

(b) Classification times in ms

BR MLMM PS

RCV1-v2 0.25 2.18 24.73
Eurlex 1.71 38.47 59.70

Ohsu-trec 47.72 5.90 150.85
DMOZ 148.55 324.79 164.98
WikipL 5.96 49.18 91.21

(c) Development set micro-
averaged F-scores

BR MLMM PS

RCV1-v2 0.439 0.660 0.702
Eurlex 0.259 0.422 0.508

Ohsu-trec 0.332 0.405 0.407
DMOZ 0.121 0.381 0.383
WikipL 0.143 0.206 0.249

(d) Evaluation set micro-
averaged F-scores

BR MLMM PS

RCV1-v2 0.434 0.665 0.705
Eurlex 0.242 0.408 0.498

Ohsu-trec 0.318 0.402 0.401
DMOZ 0.101 0.362 0.358
WikipL 0.111 0.190 0.228

5 Discussion

This paper showed how sparse matrix representations can be applied to reduce
the complexity requirements of generative models. Although sparse representa-
tions such as the inverted index are fundamental in fields such as information
retrieval, we have found no prior work on explicitly applying sparse represen-
tations for reducing space and time complexities for probabilistic models. It is
likely that sparse representations are used in practical implementations of exist-
ing models, but the connections to complexity theory have been so far omitted.

We demonstrated how generative classifiers such as MNB can utilize sparse
representations for reducing the time complexity of classification. We then used
these representations with three extensions of MNB on the largest publicly avail-
able multi-label classification datasets. To get representable performance, a cou-
ple of parameterized modifications were used. The meta-parameters required by
these were optimized regarding the micro-averaged F-score of development sets
with a direct search algorithm. All 3 classifiers could be trained in some minutes
on a single processor, with millions of documents, features and classes. Although
not optimized with classification speed in mind, the 3 classifiers performed clas-
sifications in times ranging from microseconds to some hundreds of milliseconds,
even when using over a million classes.

In the experiments presented here no comparisons to dense classifiers were
made, as it would be tedious to compare dense classification speeds with the large

468 A. Puurula

datasets. In preliminary work we attempted several toolkits, but did not find ones
that could scale to the databases discussed here. For future research it will be
interesting to see what other classifiers can benefit from sparse representations.
This can potentially change what classifiers are preferred in large scale tasks.
It is expectable that the use of sparse representations becomes a mainstay of
machine learning with the processing of web-scale tasks.

References

[1] Maron, M.E.: Automatic indexing: An experimental inquiry. J. ACM 8, 404–417
(1961)

[2] McCallum, A., Nigam, K.: A comparison of event models for Naive Bayes text
classification. In: AAAI 1998 Workshop on Learning for Text Categorization, pp.
41–48. AAAI Press (1998)

[3] Rennie, J.D., Shih, L., Teevan, J., Karger, D.R.: Tackling the poor assumptions
of naive bayes text classifiers. In: ICML 2003, pp. 616–623 (2003)

[4] Jones, K.S.: A Statistical Interpretation of Term Specificity and its Application
in Retrieval. Journal of Documentation 28(1), 11–21 (1972)

[5] Singhal, A., Buckley, C., Mitra, M.: Pivoted document length normalization. In:
Proceedings of the 19th Annual International ACM SIGIR Conference on Re-
search and Development in Information Retrieval, SIGIR 1996, pp. 21–29. ACM,
New York (1996)

[6] Shanks, V.R., Williams, H.E., Cannane, A.: Indexing for fast categorisation. In:
Proceedings of the 26th Australasian Computer Science Conference, ACSC 2003,
vol. 16, pp. 119–127. Australian Computer Society, Inc., Darlinghurst (2003)

[7] Tsoumakas, G., Katakis, I., Vlahavas, I.P.: Mining multi-label data. In: Maimon,
O., Rokach, L. (eds.) Data Mining and Knowledge Discovery Handbook, pp. 667–
685. Springer (2010)

[8] Godbole, S., Sarawagi, S.: Discriminative methods for multi-labeled classification,
pp. 22–30 (2004)

[9] Boutell, M.R., Luo, J., Shen, X., Brown, C.M.: Learning multi-label scene classi-
fication. Pattern Recognition 37(9), 1757 (2004)

[10] Tsoumakas, G., Katakis, I., Vlahavas, I.: A Review of Multi-Label Classifica-
tion Methods. In: Proceedings of the 2nd ADBIS Workshop on Data Mining and
Knowledge Discovery, ADMKD 2006, pp. 99–109 (2006)

[11] Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier Chains for Multi-label
Classification. In: Buntine, W., Grobelnik, M., Mladenić, D., Shawe-Taylor, J.
(eds.) ECML PKDD 2009, Part II. LNCS, vol. 5782, pp. 254–269. Springer, Hei-
delberg (2009)

[12] McCallum, A.: Multi-label text classification with a mixture model trained by
EM. In: Proceedings of the AAAI 1999 Workshop on Text Learning (1999)

[13] Ueda, N., Saito, K.: Parametric mixture models for multi-labeled text. In: Ad-
vances in Neural Information Processing Systems, vol. 15, pp. 721–728. MIT Press
(2002)

[14] Wang, H., Huang, M., Zhu, X.: A generative probabilistic model for multi-label
classification. In: Proceedings of the 2008 Eighth IEEE International Conference
on Data Mining, pp. 628–637. IEEE Computer Society, Washington, DC (2008)

[15] Powell, M.J.D.: Direct search algorithms for optimization calculations. Acta Nu-
merica 7, 287–336 (1998)

Scalable Text Classification with Sparse Generative Modeling 469

[16] Favreau, R.R., Franks, R.G.: Statistical optimization. In: Proceedings Second In-
ternational Analog Computer Conference (1958)

[17] Brunato, M., Battiti, R.: Rash: A self-adaptive random search method. In: Cotta,
C., Sevaux, M., Sörensen, K. (eds.) Adaptive and Multilevel Metaheuristics. SCI,
vol. 136, pp. 95–117. Springer (2008)

[18] Loza Menćıa, E., Fürnkranz, J.: Efficient Multilabel Classification Algorithms
for Large-Scale Problems in the Legal Domain. In: Francesconi, E., Montemagni,
S., Peters, W., Tiscornia, D. (eds.) Semantic Processing of Legal Texts. LNCS,
vol. 6036, pp. 192–215. Springer, Heidelberg (2010)

[19] Lewis, D.D., Yang, Y., Rose, T.G., Li, F.: RCV1: A New Benchmark Collection
for Text Categorization Research. J. Mach. Learn. Res. 5, 361–397 (2004)

	Scalable Text Classification with Sparse Generative Modeling
	Introduction
	Sparse Computation with Multinomial Naive Bayes
	Multinomial Naive Bayes
	Feature Normalization
	Sparse Representatation and Classification with Generative Models

	Multi-label Extensions of Naive Bayes
	Binary Relevance
	Label Powerset
	Multi-label Mixture Model
	Model Modifications
	Meta-parameter Optimization

	Experiments
	Experiment Setup
	Experiment Results

	Discussion
	References

