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Abstract. This paper makes the first attempt to establish a framework for pos-
sibilistic reasoning in (nonmonotonic) multi-context systems, called possibilistic
MCS. We first introduce the syntax for possibilistic MCS and then define its
equilibrium semantics based on Brewka and Eiter’s nonmonotonic multi-context
systems. Then we investigate several properties and develop a fixoint theory for
possibilistic MCS.

1 Introduction

Sharing and reasoning about information in a distributed and heterogeneous environ-
ment is becoming more important than ever with the advent of the web and of ubiq-
uitous connectivity. In many cases, such information is not organized as a unique, ho-
mogeneous and coherent knowledge base, but is scattered in a large set of local and
inter-related contexts. As a result, advanced information systems for the web should
be able to deal with such heterogeneity. Moreover, this kind of information is usually
incomplete and the information flow between different sources can be quite diverse.
During the last decade, there have been extensive efforts in resolving this challenge and
in particular, multi-context systems are regarded a promising tool for formalizing and
processing heterogeneous and incomplete information [2; 3]. In artificial intelligence,
a context is either a situation in the general sense of the term or a part of knowledge
or both. Informally, a multi-context system is a formal description of the information
available in a number of contexts and specifies the information flow between those con-
texts. Several logical approaches to context systems have been proposed, most notably
McCarthy’s propositional logic of context [10] and the multi-context systems devised
by Giunchiglia and Serafini [7]. We note that multi-context systems are different from
multi-agent systems in that, unlike an agent, a context is not autonomous in general
while there is information flow between contexts.

Several different logic-based approahces to MCS have been proposed, e.g. in [10]
the contexts are based on classical monotonic reasoning and in [12] and [5] the contexts
allow for reasoning based on the absence of information from a context, and in [4] a
formalism of heterogeneous nonmonotonic multi-context systems is introduced, which
is capable of combining arbitrary monotonic and nonmonotonic logics.

On the other hand, possibility logic, which is developed from Zadeh’s possibility
theory [14], provides a useful framework for representing states of partial ignorance
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owing to the use of a dual pair of possibility and necessity measures [6]. We note that
some efforts have been made to merge possibilistic reasoning in multiple-source infor-
mation, e. g. [1], but MCS is different from the frameworks for merging multiple-source
information as MCS aims to provide a suitable framework for performing distributed
reasoning across multiple information sources.

To our best knowledge, the problem of incorporating possibilistic reasoning into
MCS has not been studied yet. This paper makes the first attempt to establish a frame-
work for combining nonmonotonic MCS and possibilistic reasoning. We first introduce
the syntax for our possibilistic MCS and then define the equilibrium semantics based
on Brewka and Eiter’s nonmonotonic MCS in [4]. In our framework, each context is
represented as a possibilistic logic program [11]. Then we investigate several properties
and develop algorithms for the possibilistic MCS.

We proceed, in section 2, with a brief review of possibilistic normal logic program
with answer set semantic. In section 3 we introduce the poss-MCS and deal with a part
of it, then we extend the result in section 4. Finally, we conclude the work in section 5.

2 Preliminary

We first recall some basics of possibilistic logic and then introduce the syntax and se-
mantics for possibilistic logic programs proposed in [11]. We deal with propositional
logic and logic programs. Throughout the paper, a possibilistic concept is denoted X
while its classical counterpart is denoted X .

We assume that Σ is a set of atoms. A (classical) interpretation I is a subset of Σ.
An atom a is true under I if a ∈ I; otherwise, a is false under I . By 2Σ we denote the
set of all interpretations on Σ, i. e. the power set of Σ.

A possibilistic formula φ on Σ is a pair (φ, [α]) where φ is a propositional formula
on Σ and α ∈ [0, 1]. Informally, (φ, [α]) expresses that the formula φ is certain at
least to the level α. This degree α is evaluated by a necessity measure but it is not
a probability. The higher is the level, the more certain is the formula. In particular, a
possibilistic formula φ is called a possibilistic atom if φ is an atom. A possibilistic
knowledge base (poss-KB) K on Σ is a finite set of possibilistic formula on Σ. If
K = {(φ1, [α1]), . . . , (φn, [αn])} (n ≥ 0), then the classical part of K is denoted
K = {φ1, . . . , φn}.

The basic part of the semantics for possibilistic logic is the possibility distributions,
each of which is a mapping from 2Σ to the interval [0, 1].

Given a possibility distribution π, for each interpretation ω, π(ω) represents the de-
gree of compatibility of the interpretation ω with the available information (or beliefs)
about the real world.

A possibility distribution π defines two different weights for propositional formulas.
For each propositional formula φ, we define

– Possibility degree: Π(φ) = max{π(ω) | ω |= φ}.
– Necessity degree: N(φ) = 1−Π(¬φ).

The possibility degree Π(φ) evaluates the extent to which φ is consistent with the
available beliefs expressed by π. Thus the possibility degree is also referred to as the
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consistent degree. The necessity degree N(φ), also called certainty degree evaluates
the extent to which φ is entailed by the available beliefs expressed by π.

We say a possibility distribution is compatible with a poss-KB K if, N(φ) ≥ α for
every (φ, [α]) ∈ K . Generally, there may exist several possibility distributions com-
patible with K. The most desirable distribution is usually selected by the minimum
specificity principle [13]. A possibility distribution π is said to be the least specific
distribution among all compatible distributions if there is no possibility distribution π′

such that it is compatible with K , π′ �= π, and ∀ω, π′(ω) ≥ π(ω).

Definition 1. Let Σ be a finite set of atoms. A possibilistic atom is a = (a, [α]). where
a ∈ Σ and α ∈ [0, 1].

The classical projection of a is the atom a and n(a) = α is the necessity degree of the
possibilistic atom a.

Definition 2. A possibilistic normal logic program (or poss-program) is a set of possi-
bilistic rules of the form:

r = a← a1, . . . , am, not b1, . . . ,not bn, [α]. (1)

where m ≥ 0, n ≥ 0, {a1, . . . , am, b1, . . . , bn, a} ⊆ Σ, and n(r) = α ∈ [0, 1].

The symbol “not” denotes the default negation and for each atom bi, not bi is a negative
literal.

Similar to possibilistic propositional logic, the classical projection r of a possibilistic
rule r is the classical rule a ← a1, . . . , am, not b1, . . . ,not bn. Also, α represents the
certainty level of the information described by the rule r.

Given a rule r of the form (1), its head is defined as head(r) = a and its body is
body(r) = body+(r) ∪ not body−(r) where body+(r) = {a1, . . . , am}, body−(r) =
{b1, . . . , bn}.

The positive projection of r is r+ = head(r)← body+(r), [α].
The set of all rules of P with the head a is H(P , a) = {r ∈ P | head(r) = a}.
If a poss-program P does not contain any default negation (i. e. body−(P ) = ∅),

then P is called a definite poss-program.
We first introduce the semantics for definite poss-programs.
The reduct of a poss-program P w. r. t. a set A of atoms is the definite poss-program

defined by:

P
A
= {r+ | r ∈ P , body−(r) ∩ A = ∅} (2)

We note that the rule r+ is actually the possibilistic rule formed by the classical reduct
r+ together with the certainty level of r.

For a set of atoms A ⊆ Σ and a rule r in P , we say r is applicable in A if body+(r) ⊆
A and body−(r) ∩ A = ∅. App(P ,A) denotes the set of rules in poss-program P that
are applicable in A.

P is said to be grounded if it can be ordered as a sequence 〈r1, . . . , rn〉 such that

∀i, 1 ≤ i ≤ n, ri ∈ App(P, head({r1, . . . , ri−1})) (3)
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Given a poss-program P over a set Σ of atoms, similar to the case of propositional pos-
sibilistic logic, the semantics ofP is also defined through possibility distributions onΣ.

The compatibility of a possibility distribution with definite poss-program P is de-
fined in [11] (Definition 4). There may exist several different possibility distributions
that are compatible with a given definite poss-program. Among these compatible dis-
tributions, we are particularly interested in the least specific one, which is given in the
next result.

Proposition 1. Let P be a definite poss-program. We define a possibilistic distribution
πP for P as, for each A ∈ 2Σ ,

πP (A) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, if A � head(App(P,A))

0, if App(P,A) is not grounded

1, if A is a model of P

1−max{n(r) | A � r}, otherwise.

(4)

Then πP is the least specific distribution compatible with P .

The least specific distribution for P determines its possibilistic measures.

Definition 3. Let P be a definite poss-program and πP the least specific distribution
compatible with P . Then the possibility and necessity degrees for an atom a is defined
by

ΠP (a) = max{πP (A) | a ∈ A}.
NP (a) = 1−max{πP (A) | a /∈ A}.

ΠP (a) gives the level of consistency of a w. r. t. the definite poss-program P and
NP (a) evaluates the level at which a is inferred from P . For instance, whenever an
atom a belongs to the model of the classical program, its possibility is equal to 1.

The necessity measure allows us to introduce the following definition of the possi-
bilistic model of a definite poss-program.

Definition 4. Let P be a definite poss-program. Then the set

M(P ) = {(a,NP (a)) | a ∈ Σ, NP (a) > 0} (5)

is referred to as its possibilistic model.

So far we have introduced the semantics for definite poss-programs. Now we turn to
study the computation of the possibility distribution and possibilistic model for a given
poss-program. First we define β-applicability of a rule r to capture the certainty of an
conclusion that the rule can derive w. r. t. a set A of possibilistic atoms.

Definition 5. Let r be a possibilistic rule of the form c ← a1, . . . , an, [α] and A be a
set of possibilistic atoms.

1. r is β-applicable in A with possibility β=min{α, α1, . . . , αn} if
{(a1, α1), . . . , (an, αn)} ⊆ A.

2. r is 0-applicable otherwise.
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If the rule body is empty, then the rule is applicable with its own certainty degree and
if the body is not satisfied by A, then the rule is 0-applicable and it is actually not at all
applicable w. r. t. A. So the applicability level of the rule depends on the certainty level
of atoms in its body and its own certainty degree.

The set of rules in P that have the head a and are applicable w. r. t. A is denoted
App(P ,A, a):

App(P ,A, a) = {r ∈ H(P , a), r is β-applicable in A, β > 0} (6)

Having defined the applicability of possibilistic rules, we can generalise the conse-
quence operator of classical logic programs to poss-programs.

Definition 6. Let P be a poss-program, a be an atom and A be a set of possibilistic
atoms. Then we define the consequence operator for P by

TP (A) = {(a, δ) | a ∈ head(P ),App(P,A, a) �= ∅, δ = max{β | r is β-applicable in A}}

Then the iterated operator T
k

P is defined by

T
0

P = ∅ and T
n+1

P = TP (T
n

P ), ∀n ≥ 0. (7)

TP has a least fixpoint that is the possibilistic consequences of P and it is denoted by
Cn(P ). We have Cn(P ) = M(P ) (see [11] for more details).

For poss-programs, it is easy to formalize the notion of stable models by a general-
ized reduct [8].

Definition 7. Let P be a poss-program and A a set of atoms.

We say A is a stable model of poss-program P if A = Cn(P
A
).

The possibility distribution for P is defined in terms of its reduct’s possibility distribu-
tion as follows.

Definition 8. Let P be a possibilistic logic program and A be an atom set, then π̃P is
the possibility distribution defined by:

∀A ∈ 2Σ, π̃P (A) = π
P

A(A) (8)

With these two definitions we can also define the possibility and necessity measures to
each atom by Definition 3.

3 Possibilistic Multi-Context Systems

In this section we will first incorporate possibilistic reasoning into multi-context sys-
tems (MCS) and then discuss their properties.
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3.1 Syntax of Poss-MCS

A possibilistic multi-context system (or poss-MCS) is a collection of contexts where
each context is a poss-program with its own knowledge base and bridge rules. In this
paper, a possibilistic context C is a triple (Σ,K,B) where Σ is a set of atoms, K is
a poss-program, and B is a set of possibilistic bridge rules for the context C. Before
formally introducing poss-MCS, we first give the definition of possibilistic bridge rules.
Intuitively, a possibilistic bridge rule make it possible to infer new knowledge for a
context based on some other contexts. So possibilistic bridge rules provide an effective
way for the information flow between related contexts.

Definition 9. Let C1, . . . , Cn be n possibilistic contexts. A possibilistic bridge rule bri
for a context Ci (1 ≤ i ≤ n) is of the form

a← (C1 : a1), . . . , (Ck : ak), not (Ck+1 : ak+1), . . . , not (Cn : an), [α] (9)

where a is an atom in Ci, each aj is an atom in context Cj for j = 1, . . . , n.

Intuitively, a rule of the form (9) states that the information a is added to contextCi with
necessity degree α if, for 1 ≤ i ≤ k, aj is present in context Cj and for k+1 ≤ j ≤ n,
aj is not provable in Cj .

By bri we denote the classical projection of bri:

a← (C1 : a1), . . . , (Ck : ak), not (Ck+1 : ak+1), . . . , not (Cn : an). (10)

The necessity degree α of the bridge rule bri is written n(bri).

Definition 10. A possibilistic multi-context system, or just poss-MCS, M =
(C1, . . . , Cn) is a collection of contexts Ci = (Σi,Ki, Bi), 1 ≤ i ≤ n, where each Σi

is the set of atoms used in context Ci, Ki is a poss-program on Σi, and Bi is a set of
possibilistic bridge rule over atom sets (Σ1, . . . , Σn).

A poss-MCS is definite if the poss-program and possibilistic bridge rules of each
context is definite.

Definition 11. A possibilistic belief set S = (S1, . . . , Sn) is a collection of possibilis-
tic atom sets Si where each Si is a collection of possibilistic atoms ai and ai ∈ Σi

In the next two subsections we will study the semantics for possibilistic definite MCS.

3.2 Model Theory for Definite Poss-MCS

Like poss-programs we will first specify the semantics for definite poss-MCS (i. e. with-
out default negation) and then define the semantics for poss-MCS with default negation
by reducing the given poss-MCS to a definite poss-MCS.

For convenience, by a classical MCS we mean a multi-context system (MCS) with-
out possibility degrees as in [4]. The semantics of a classical MCS is defined by the set
of its equilibria, which characterize acceptable belief sets that an agent may adopt based
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on the knowledge represented in a knowledge base. Let us first recall the semantics of
classical MCS. Let M = (C1, . . . , Cn) be a classical MCS with each (classical) context
Ci = (Σi,Ki, Bi), where Σi is a set of atoms, Ki is a logic program, and Bi is a set of
(classical) bridge rules.

A belief state of a MCS M = (C1, . . . , Cn) is a collection S = (S1, . . . , Sn) where
each Si is a set of atoms that Si ⊆ Σi. A (classical) bridge rule (10) is applicable in a
belief state S iff for 1 ≤ j ≤ k, aj ∈ Sj and for k + 1 ≤ j ≤ n, aj �∈ Sj .

In general, not every belief state is acceptable for an MCS. Usually, the equilib-
rium semantics selects certain belief states for a given MCS as acceptable belief states.
Intuitively, an equilibrium is a belief state S = (S1, . . . , Sn) where each context Ci

respects all bridge rules applicable in S and accepts Si. The definition of equilibrium
can be found in [4]. There may exist several different equilibrium, among these equi-
librium, we are particularly interested in the minimal one. Formally, S is a grounded
equilibrium of an MCS M = (C1, . . . , Cn) iff for each i (1 ≤ i ≤ n), Si is an answer
set of logic program P = Ki∪{head(r) | r ∈ Bi is applicable in S}. Then if the logic
program P is grounded, we can use Cn(P ) to obtain its (unique) answer set, which is
the smallest set of atoms closed under P and alternatively, it can be computed as the
least fixpoint of the consequence operator TP : TP (A) = head(App(P,A)) (see [9]).

So for a classical definite MCS, its unique grounded equilibrium is the collection
consisting of the least model of each context. The grounded equilibrium of a definite
MCS M is denoted GE(M).

Then we clarify the links between the grounded equilibrium S of a definite MCS M
and the rules producing it. We see that for each context Ci, Si is underpinned by a set
of applicable rules Appi(M,S), that satisfies a stability condition and that is grounded.

Proposition 2. Let M be a definite MCS and S be a belief state,

S is the grounded equilibrium of M ⇔
⎧
⎨

⎩

Si = head(Appi(M,S))
⋃

i

Appi(M,S) is grounded (11)

Now let us turn to the semantics of definite poss-MCS. Thus, we will specify the pos-
sibility distribution of belief states for a given definite poss-MCS. As we know that the
satisfiability of a rule r is based on its applicability w. r. t. an belief state S and S � r iff
body+(r) ⊆ S∧head(r) /∈ S. But this is not enough to determine the possibility degree
of a belief state. For example, if we have a definite MCS M = (C1, C2) consisting of
two definite MCS. Assume K1 and K2 are empty, and B1 consists of the single bridge
rule p ← (2 : q) and B2 of the single bridge rule q ← (1 : p). Now S = ({p}, {q})
satisfies every rule in M . But it is not an equilibrium because the groundedness is not
satisfied. Besides, assume that an definite MCS M = (C1) with a single context, K1 is
{a} and B1 consists of the bridge rule b ← (1 : c). Now S = ({a, b}) satisfies every
rules in M but it is not an equilibrium because b cannot be produced by any rule from
C1 applicable in S. In these two cases, the possibility of S must be 0 since they cannot
be an equilibrium at all, even if they satisfy every rule in their MCS.
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Definition 12. Let M = (C1, . . . , Cn) be a definite poss-MCS and S = (S1, . . . , Sn)
be a belief state. The possibility distribution πM : 2Σ → [0, 1] for M is defined as, for
S ∈ 2Σ ,

πM (S) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 if S � head(
⋃

i

Appi(M,S))

0 if
⋃

iAppi(M,S) is not grounded

1 if S is an equilibrium of M

πM (S) = 1−max{n(r) | S � r, r ∈ Bi or r ∈ Ki}, otherwise.
(12)

The possibility distribution specifies the degree of compatibility of each belief set S
with poss-MCS M .

Recall that GE(M) denotes the grounded equilibrium of a (classical) definite MCS
M . Then the possibility distribution for definite poss-MCS has the following useful
properties.

Proposition 3. Let M = (C1, . . . , Cn) be a definite poss-MCS, S = (S1, . . . , Sn) be
a belief state and GE(M) the grounded equilibrium of M , then

1. πM (S) = 1 iff S = GE(M).
2. If S ⊃ GE(M), then πM (S) = 0.
3. If GE(M) �= ∅, then πM (∅) = 1 −max{n(r) | body+(r) = ∅, r ∈ Bi or r ∈

Ki}.
Proof. 1. ⇒: Let πM (S) = 1. On the contrary, assume that S �= GE(M). Then by
Equation (12), πM (S) = 1 would only be obtained from the last case:

πM (S) = 1−max{n(r) | S � r, r ∈ Bi or r ∈ Ki}.
This implies that S |= r.

By the first case in Equation (12), we have that S ⊆ head(
⋃

i

Appi(M,S)).

By the second case in Equation (12),
⋃

i Appi(M,S) is grounded.
Therefore, S must be the least equilibrium of M .
⇐:If S = GE(M) by the definition we have πM (S) = 1.
2. BecauseS ⊃ GE(M) we have for each i : Si ⊃ head(Appi(M,S))∨App(M,S)

is not grounded by properties 2. So by definition πM (S) = 0.
3. It is obvious that ∅ ⊆ head(Appi(M, ∅)) and Appi(M, ∅) is grounded. So it can

only apply to the forth case of Equation 12.

Definition 13. Let M be a definite poss-MCS and πM be the possibilistic distribution
for M . The possibility and necessity of an atom in a belief state S is defined by:

ΠM (ai) = max{πM (S) | ai ∈ Si} (13)

NM (ai) = 1−max{πM (S) | ai /∈ Si} (14)
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Proposition 4. Let M be a definite poss-MCS and S = (S1, . . . , Sn) is a belief state.
Then

1. ai /∈ Si iff NM (ai) = 0.
2. If ai ∈ Si, then NM (ai) = min{max{n(r) | Si � r, r ∈ Bi or r ∈ Ki} | ai /∈

Si, Si ⊂ GE(M)}.
Proof. 1. Because πM (S) = 1, NM (ai) = 0 is obvious when ai /∈ Si. And when
NM (ai) = 0 it means there is an S such that ai /∈ Si and πM (S) = 1, So such an S
must be the equilibrium of M . Thus, a /∈ GE(M)

2.

NM (ai) =1−max{πM(S) | ai /∈ Si}
=1−max{πM(S) | ai /∈ Si, Si ⊂ GE(M)}

since by Proposition 3

=1−max{1−max{n(r) | Si � r, r ∈ Bi or r ∈ Ki | ai /∈ Si, Si ⊂ GE(M)}
since πM (S) = 1−max{n(r) | Si � r, r ∈ Bi or r ∈ Ki}

=min{max{n(r) | Si � r, r ∈ Bi or r ∈ Ki} | ai /∈ Si, Si ⊂ GE(M)}.

The semantics for definite poss-MCS is determined by its unique possibilistic grounded
equilibrium.

Definition 14. Let M be a definite poss-MCS. Then the following set of possibilistic
atoms is referred to as the possibilistic grounded equilibrium.

MD(M) = (S1, . . . , Sn)

where Si = {(ai, NM (ai)) | ai ∈ Σi, NM (ai) > 0} for i = 1, . . . , n.

By the first statement of Proposition 4, it is easy to see the following result holds.

Proposition 5. Let M be a definite poss-MCS and M be the classical projection of M .
Then the classical projection of MD(M) is the grounded equilibrium of the definite
MCS M .

Example 1. Let M = (C1, C2) be a definite poss-MCS where Σ1 = {a}, Σ2 = {b, c},
K1 = {(a, [0.9]), (c← b, [0.8])}, K2 = B1 = ∅, B2 = {(b← 1 : a, [0.7])}.
By Definition 12, πM ({∅}, {∅})=1 − max{0.9}=0.1, πM ({∅}, {b})=1 −
max{0.9, 0.8}=0.1, πM ({∅}, {c}) = 1 − max{0.9} = 0.1, πM ({∅}, {b, c}) = 0
(not inclusion), πM ({a}, {∅}) = 1 − max{0.7} = 0.3, πM ({a}, {b}) =
1−max{0.8, 0.7} = 0.2, πM ({a}, {c}) = 0 (not inclusion), and πM ({a}, {b, c}) = 1
(the grounded equilibrium).

And thus, by Definition 13, we can get the necessity value for each atom: NM (a) =
1 − max{0.1} = 0.9, NM (b) = 1 − max{0.1, 0.3, 0} = 0.7, and NM (c) = 1 −
max{0.1, 0.3, 0.2} = 0.7.

Then by Definition 14 we can get the possibilistic grounded equilibrium S =
({(a, [0.9])}, {(b, [0.7]), (c, [0.7])}).
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3.3 Fixpoint Theory for Definite Poss-MCS

In the last subsection we introduced the possibilistic grounded equilibrium and the pos-
sibilistic distribution of the belief states. In this subsection we will develop a fixpoint
theory for the possibilistic grounded equilibrium and thus provide a way for computing
the equilibrium.

Similar to Definition 5 for poss-programs, we can define the applicability of possi-
bilistic rules and thus, for an atom ai ∈ Σi and a possibilistic belief state S we define

App(M,S, ai) = {r ∈ H(M,ai), r is β-applicable in S, β > 0} (15)

The above set is the collection of rules that have the head ai and are β-applicable in S.
By modifying the approach in [4], we introduce the following consequence opera-

tor for a definite poss-MCS. As we already know from Definition 6, the possibilistic
consequences of a poss-program P is denoted by Cn(P ).

Definition 15. For each context Ci = (Σi,Ki, Bi) in a definite poss-MCS

M = (C1, . . . , Cn), we define K
t+1

i = K
t

i ∪ {(head(r), [β]) | r ∈
Bi and is β-applicable in E

t
, β > 0}, where K

0

i = Ki for 1 ≤ i ≤ n, E
t
=

(E
t

1, . . . , E
t

n), E
t

i = Cn(K
t

i) for t > 0.

Since Ki and Bi of each context are finite, the iteration based on K
t

i will reach a
fixpoint, which is denoted K

∞
i . Then we have the following proposition.

Proposition 6. Let M = (C1, . . . , Cn) be a definite poss-MCS with Ci =
(Σi,Ki, Bi) for 1 ≤ i ≤ n and S = (S1, . . . , Sn) be the grounded equilibrium for M .
Then

Cn(K
∞
i ) = Si.

The key idea above is that, for each knowledge base K
t

i, we use the operator Cn to
obtain its possibilistic answer set, and then by the first item in Definition 15, add atoms

from bridge rules that are derivale from K
t

i to get K
t+1

i . Then, we apply the operator
Cn again. Repeat this process until we reach the fixpoint.

Let us consider an example.

Example 2. Let M = (C1, C2, C3) be a definite poss-MCS, where
- K1 = {(a, [0.9])}, B1 = ∅;
- K2 = ∅, B2 = {(b← (1 : a), [0.8])};
- K3 = {(c, [0.7]), (d← c, [0.6]), (f ← e, [0.5])}, B3 = {(e← (2 : b), [0.4])}.

At the beginning we will start with K
0

i for each context.

For context C1 with K
0

1 = K1 = {(a, [0.9])}:
T

0

1,0 = ∅, T
1

1,0 = T 1,0(∅) = {(a, [0.9])}, T
2

1,0 = {(a, [0.9])}.
For context C2 with K

0

2 = K2 = ∅:
T

0

2,0 = ∅, T
1

2,0 = T
0

2,0 = ∅.
For context C3 with K

0

3 = K3 = {(c, [0.7]), (d← c, [0.6]), (f ← e, [0.5])}:
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T
0

3,0 = ∅, T
1

3,0 = T 3,0(∅) = {(c, [0.7])}, T
2

3,0 = T 3,0({(c, [0.7])}) =

{(c, [0.7]), (d, [0.6])}, T
3

3,0 = T
2

3,0 = {(c, [0.7]), (d, [0.6])}.
Thus, E

0
= {(a, [0.9]), (c, [0.7]), (d, [0.6])}.

Then starting from the fixpoint of TSi,0, for each context Ci we have:

For context 1 with K
1

1 = {(a, [0.9])}: T 0

1,1 = T
2

1,0 = {(a, [0.9])}.
For context 2 with K

1

2 = {(b, [0.8])}: T 0

2,1 = T
1

2,0 = ∅, T
1

2,1 = T2,1(∅) =

{(b, [0.8])}, T
2

2,1 = T 2,1({(b, [0.8])}) = {(b, [0.8])}.
For context 3 with K

1

3 = {(c, [0.7]), (d← c, [0.6]), (f ← e, [0.5])}:
T

0

3,1 = T
2

3,0 = {(c, [0.7]), (d, [0.6])}.
Thus, E

1
= {(a, [0.9]), (b, [0.8]), (c, [0.7]), (d, [0.6])}.

Then from the fixpoint of TSi,1, for each context Ci:

For context 1 with K
2

1 = {(a, [0.9])}: T 0

1,2 = T
0

1,1 = {(a, [0.9])}
For context 2 with K

2

2 = {(b, [0.8])}:
T

0

2,2=T
2

2,1={(b, [0.8])}, T
1

2,2=T 2,2({(b, [0.8])})={(b, [0.8])}.
For context 3 with K

2

3 = {(c, [0.7]), (d← c, [0.6]), (f ← e, [0.5]), (e, [0.4])}:
T

0

3,2=T
0

3,1={(c, [0.7]), (d, [0.6])}, T
1

3,2=T 3,2({(c, [0.7]), (d, [0.6])})={(c, [0.7]),
(d, [0.6]), (e, [0.4])},
T

2

3,2=T 3,2({(c, [0.7]), (d, [0.6]), (e, [0.4])}) = {(c, [0.7]), (d, [0.6]), (e, [0.4]),
(f, [0.4])},
T

3

3,2=T 3,2({(c, [0.7]), (d, [0.6]), (e, [0.4]), (f, [0.4])})={(c, [0.7]), (d, [0.6]),
(e, [0.4]), (f, [0.4])}.
Thus, E2 = {(a, [0.9]), (b, [0.8]), (c, [0.7]), (d, [0.6]), (e, [0.4]), (f, [0.4])}.
Therefore, the possibilistic grounded equilibrium of M is
S = ({(a, [0.9])}, {(b, [0.8])}, {(c, [0.7]), (d, [0.6]), (e, [0.4]), (f, [0.4])}).

Proposition 7. Let M = (C1, . . . , Cn) be a definite poss-MCS and S = (S1, . . . , Sn)
be a belief state. Then for each i (1 ≤ i ≤ n) and a cardinal t, TSi,t is monotonic, i. e.
for all sets A and B of possibilistic atoms with A � B, it holds that

TSi,t(A) � TSi,t(B).

Proof. For any A � B, ∀a ∈ head(K), App(K,A, t) ⊆ App(K,B, t). And relies on
the max operator, A � B ⇒ TSi,t(A) � TSi,t(B). Thus TSi,t is monotonic.

By Taski’s fixpoint theorem, we can state the following result.

Proposition 8. The operator TSi,t has a least fixedpoint when Si is a definite poss-
program. We denote T

∞
Si,t = Si then the S = (S1, . . . , Sn) is the equilibrium of M

and we denote it as ΠGE(M).

We can now show the relationship between the semantical approach and fixed point
approach:

Theorem 1. Let M be an definite poss-MCS, then GE(M) = MD(M).

The proof is similar to that in [11].
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4 Normal Poss-MCS

Having introduced the semantics for definite poss-MCS, we are ready to define the
semantics for normal poss-MCS with default negation. The idea is similar to the def-
inition of answer sets, we will reduce a poss-MCS with default negation to a definite
poss-MCS. Based on the definition of rule reduct in Equation (2), we can define the
reduct for normal poss-MCS.

Definition 16. Let M = (C1, . . . , Cn) be a normal poss-MCS and S = (S1, . . . , Sn)
be a belief state. The possibilistic reduct of M w. r. t. S is the poss-MCS

M
S
= (C

S

1 , . . . , C
S

N ). (16)

where C
S

i = (Σi,K
S

i , B
S

i ).

We note that the reduct of Ki relies only on Si while the reduct of Bi depends on the
whole belief state S. This is another role difference of Ki from Bi.

Given the notion of reduct for normal poss-MCS, the equilibrium semantics of nor-
mal poss-MCS can be defined easily.

Definition 17. Let M be a normal poss-MCS and S be a possibilistic belief state. S is

a possibilistic equilibrium of M if S = GE(M
S
).

Example 3. Let M = (C1, C2, C3) be a definite poss-MCS with 3 contexts:
- K1 = {(a, [0.9])}, B1 = {(b← not 3 : e, [0.8])};
- K2 = {(d← not c, [0.7])}, B2 = {(c← 1 : a, [0.6])};
- K3 = ∅, B3 = {(e← not 1 : b, [0.5])}

We have S1 = ({a}, {c}, {e}) and thus M
S1 is obtained as

M
S1

=

⎧
⎪⎨

⎪⎩

K1 = {(a, [0.9)}, B1 = ∅
K2 = ∅, B2 = {(c← 1 : a, [0.6])}
K3 = ∅, B3 = {(e, [0.5])}

(17)

Following Definition 15, we can get S1 = {(a, [0.9]}, {c, [0.6]}, {e, [0.5]}).
And also S2 = ({a, b}, {c}, {∅}), then M

S2 is as follows:

M
S2

=

⎧
⎪⎨

⎪⎩

K1 = {(a, [0.9)}, B1 = {(b, [0.8])}
K2 = ∅, B2 = {(c← 1 : a, [0.6])}
K3 = ∅, B3 = ∅

(18)

So we have S2 = ({(a, [0.9]), (b, [0.8])}, {(c, 0.6)}, ({∅})).
The following proposition shows that a possibilistic equilibrium is actually deter-

mined by its classical counterpart and the necessity function, and vice versa.
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Proposition 9. Let M be a poss-MCS.
1. If S is a possibilistic equilibrium of M and ai ∈ Σi, then (ai, α) ∈ Si iff α =

NMS (ai).
2. If S is an equilibrium of M , then S = (S1, . . . , Sn) where Si =

{(ai, NMS (ai)) | NMS (ai) > 0 and ai ∈ Σi} (i = 1, . . . , n).
3. If S be a possibilistic equilibrium of M , then S is an equilibrium of M .

Let us introduce the possibility distribution for normal poss-MCS.

Definition 18. Let M be a normal poss-MCS and S be an belief state. Then the possi-
bility distribution, denoted π̃M , is defined by:

∀S, π̃M (S) = π
M

S (S). (19)

The possibility degree for a normal poss-MCS M and an equilibrium of the classical
projection M of M has the following connection.

Proposition 10. Let M be a poss-MCS and S be a belief state. Then π̃M (S) = 1 iff S
is an equilibrium of M .

Proof. If π̃M (S) = 1 then π
M

S (S) = 1, thus S = GE(MS). So S is an equilibrium
of M . And if S is an equilibrium of M , then S = GE(MS), thus π

M
S (S) = 1 then

π̃M (S) = 1.

The possibility distribution for normal poss-MCS defines two measures.

Definition 19. The two dual possibility and necessity measures for each atom in a nor-
mal poss-MCS are defined by

– Π̃M (ai) = max{π̃M (S) | ai ∈ Si}
– ÑM (ai) = 1−max{π̃M (S) | ai /∈ Si}

5 Conclusion

In this paper we have established the first framework for possibilistic reasoning and
nonmonotonic reasoning in multi-context systems, called possibilistic multi-context
systems (poss-MCS). In our framework, a context is represented as a possibilistic logic
programs and the semantics for a poss-MCS is defined by its equilibria that are based
on the concepts of possibilistic answer sets and possibility distributions. We have stud-
ied several properties of poss-MCS and in particular, developed a fixpoint theory for
poss-MCS, which provides a natural connection between the declarative semantics and
the computation of the equilibria. As a result, algorithms for poss-MCS are also pro-
vided. Needless to say, this is just the first and preliminary attempt in this direction.
There are several interesting issues for future study. First, as we have seen in the last
two sections, the possibilistic equilibriua of a poss-MCS are computed using a proce-
dure based double iterations. Such an algorithm can be inefficient in some cases. So it
would be useful to develop efficient algorithm for computing possibilistic equilibriua.
Another important issue is to apply poss-MCS in some semantic web applications.
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