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Abstract. Methods for mining graph sequences have recently attracted
considerable interest from researchers in the data-mining field. A graph
sequence is one of the data structures that represent changing networks.
The objective of graph sequence mining is to enumerate common chang-
ing patterns appearing more frequently than a given threshold from
graph sequences. Syntactic dependency analysis has been recognized as a
basic process in natural language processing. In a transition-based parser
for dependency analysis, a transition sequence can be represented by a
graph sequence where each graph, vertex, and edge respectively cor-
respond to a state, word, and dependency. In this paper, we propose
a method for mining rules for rewriting states reaching incorrect final
states to states reaching the correct final state, and propose a dependency
parser that uses rewriting rules. The proposed parser is comparable to
conventional dependency parsers in terms of computational complexity.

1 Introduction

Data mining is used to mine useful knowledge from large amounts of data. Re-
cently, methods for mining graph sequences (dynamic graphs [4] or evolving
graphs [3]) have attracted considerable interest from researchers in the data-
mining field [9]. For example, human networks can be represented by a graph
where each vertex and edge respectively correspond to a human and relationship
in the network. If a human joins or leaves the network, the numbers of vertices
and edges in the graph increase or decrease. A graph sequence is one of the
data structures used to represent a changing network. Figure 1(a) shows a graph
sequence that consists of four steps, five vertices, and edges among the vertices.
The objective of graph sequence mining is to enumerate subgraph subsequence
patterns, one of which is shown in Fig. 1(b), appearing more frequently than a
given threshold from graph sequences.

Syntactic dependency parsing has been recognized as a basic process in natu-
ral language processing, and a number of studies have been reported [12,14,16,8].
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Fig. 1. Examples of a graph sequence and one of mined frequent patterns

One reason for its increasing popularity is the fact that dependency-based syn-
tactic representations seem to be useful in many applications of language tech-
nology [11], such as machine translation [5] and information extraction [6]. In a
transition-based dependency parser, a transition sequence can be represented by
a graph sequence where each graph, vertex, and edge respectively correspond to a
state, word, and dependency. Because of the nature of the algorithm where tran-
sition actions are selected deterministically, an incorrect selection of an action
may adversely affect the remaining parsing actions. If characteristic patterns are
mined from transition sequences for sentences analyzed incorrectly by a parser,
it is possible to design new parsers and to generate better features in the machine
learner in the parser to avoid incorrect dependency structures.

The first and main objective of this study is to demonstrate the usefulness
of graph sequence mining in dependency analysis. Since methods for mining
graph sequences were developed, they have been applied to social networks in
Web services [3], article-citation networks [2], e-mail networks [4], and so on.
In this paper, we demonstrate a novel application of graph sequence mining to
dependency parsing in natural language processing. The second objective is to
propose a method for mining rewriting rules that can shed light on why incorrect
dependency structures are returned by transition-based dependency parsers. To
mine such rules, the rules should be human-readable. If we identify the reason
for incorrect dependency structures, it is possible to design new parsers and to
generate better features in the machine learner in the parser to avoid incorrect
dependency structures. The third objective is to propose a dependency parser
that uses rewriting rules, where the method is comparable to conventional meth-
ods whose time complexity is linear with respect to the number of segments in
a sentence. The fourth, but not a main, objective is to improve the attachment
score, which is a measure of the percentage of segments that have the correct
head, and the exact match score for measuring the percentage of completely and
correctly parsed sentences.

2 Transition-Based Dependency Parsing

In this paper, we focus on dependency analysis using an “arc-standard parser”
[14], which is a parser based on a transition system, for “Japanese sentences”,
for the sake of simplicity, because constraints in Japanese dependency structures
are stronger than those in other languages. Japanese dependency structures have
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Fig. 2. Example of a Japanese sentence and its dependency structure

Parse(x = 〈w1, w2, · · · , wn〉)
1) c← cs(x)
2) while c /∈ CF

3) c← [o(c)](c)
4) return c=(N,A)

Fig. 3. Dependency parser based on
a transition system

Transitions
Arc (N,A)⇒ (N,A ∪ {(i, j)})

where {i, j} = roots((N,A))
Shift (N,A)⇒ (N ∪ {|N |+ 1}, A)
Preconditions
Arc c is not a tree, but a forest.
Shift |N | �= n

Fig. 4. Transitions of an arc-standard parser

strictly head-final, single-head, single-rooted, connected, acyclic, and projective
constraints [10]. However, the principle of the method proposed in this paper
can basically be applied to any parser based on a transition system for sentences
in any language.

Most Japanese dependency parsers are based on bunsetsu segments (hereafter
segments), which are a similar in concept to English base phrases.

Definition 1. A dependency structure for a sentence x = 〈w1, · · · , wn〉 con-
sisting of n segments is represented as a directed rooted tree g = (V,E), where
V = {1, · · · , n}, E ⊂ V ×V , and n is the root of the tree. �

Example 1. A dependency structure for a sentence x = 〈KARE-WA, HON-WO,
YOMANAI, HITO-DA.〉 is represented by a directed graph without edge cross-
ings, as shown in Fig. 2.

We define a transition-based dependency parser whose input is x = 〈w1, · · · , wn〉
and output is g = (V,E).

Definition 2. A transition-based parser consists of S = (C, T, cs, CF ), where
– C = {(N,A)} is a set of states, where N and A are subsets of V = {1, · · · , n}

and N ×N , respectively,
– T is a set of transitions, where t ∈ T is a partial function s.t. t : C → C,
– cs is an initial function satisfying cs(x) = ({1}, ∅), and
– CF ⊆ C is a set of final states, and cF ∈ CF is a tree where n is the root. �

A transition sequence for x = 〈w1, · · · , wn〉 on S = (C, T, cs, CF ) is represented
as C1,m = 〈c1, · · · , cm〉, satisfying (1) c1 = cs(x), (2) cm ∈ CF , and (3) ∃t ∈ T
for ci (1 < i ≤ m), ci = t(ci−1). We denote sets of vertices and edges for a state
c as Nc and Ac, respectively.
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Fig. 5. Transition sequence for the sentence in Example 1

Definition 3. A transition-based parser S = (C, T, cs, CF ) is incremental if
Nc ⊆ Nt(c) and Ac ⊆ At(c). �

If a dependency parser is incremental, the numbers of vertices and edges in a
state c = (N,C) increase monotonically. In addition, the state c = (Nc, Ac) is
a forest that is a set of ordered trees, and a graph (Nc, Ac) is a subgraph of
cm = (Ncm , Acm) that S returns.

Figure 3 shows the algorithm of a transition-based dependency parser. In
Fig. 3, o is an oracle for selecting t to transit to the next state in a deterministic
way. In particular, the arc-standard parser, which is a transition-based parser,
selects either Arc or Shift to analyze Japanese sentences, as shown in Fig. 4,
where roots returns a pair of the largest roots {i, j} (i < j) from a forest c =
(N,A)1. If o selects Arc, then an edge (i, j) is added to transit from c to t(c).
Otherwise, the smallest vertex that does not exist in c = (N,A) is added to
c to transit from c to t(c). Since o is a function for determining whether the
i-th segment is the dependent of the j-th segment, it is implemented with a
binary classifier, such as a support vector machine (SVM), for feature vectors
that characterize the i-th and j-th segments [11].

Since the arc-standard parser is incremental, Arc is selected n− 1 times and
Shift is also selected n− 1 times to reach the final state. The time complexity of
the parser for a sentence with n segments is therefore O(nθ), where we assume
o, which is a binary classifier, returns its output in at most θ time.

Example 2. Figure 5 shows a transition sequence from the initial state to the
final state for the dependency structure shown in Fig. 2. The words are omitted
because of a lack of space. In the sequence, Shift, Shift, Arc, Shift, Arc, and Arc
are selected by o, in that order.

Figure 6 shows the search space for the sentence in Example 1. Since a search
space consisting of states is a tree, there is only one transition sequence from the
initial state to the correct final state. In addition, the branching factor of the tree
is at most two. Since the function o selects a transition between two branches,
if the function o selects an incorrect transition once, the parser never reaches
the correct final state. A straightforward approach to avoiding this mistake is
to integrate backtracking or a probabilistic algorithm with the parser. However,
this impairs the advantages of a parser whose time complexity is linear with
respect to the number of segments in a sentence.

1 Although the arc-standard parser is defined using a stack and queue in many books
and articles, in this paper, we define it using graphs to link dependency parsing to
graph sequence mining.
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Fig. 6. Search space for the sentence in Example 1 Fig. 7. Change between
two successive graphs

In this paper, we propose a method for mining rules for rewriting from states
reaching incorrect final states to states reaching the correct final state, and pro-
pose a dependency parser that uses rewriting rules. The rewriting rules corre-
spond to bypasses among states in the search tree shown in Fig. 6, and the
proposed parser is comparable to a conventional dependency parser in terms
of computational complexity. To describe the proposed method, we explain an-
other method, called GTRACE, for mining graph sequences corresponding to
transition sequences in the next section.

3 Graph Sequence Mining

Figure 1(a) shows an example of a graph sequence. The graph g(j) is the j-th
labeled graph in the sequence. The problem we address in this section is how to
mine patterns that appear more frequently than a given threshold from a set of
graph sequences. We have proposed transformation rules for representing graph
sequences compactly under the assumption that “the change is gradual” [9]. In
other words, only a small part of the structure changes, while the other part
remains unchanged between two successive graphs g(j) and g(j+1) in a graph se-
quence. For example, the change between two successive graphs g(j) and g(j+1)

in the graph sequence shown in Fig. 7 is represented as an ordered list of two

transformation rules 〈vi(j)[1,A], ed
(j)
[(2,3),•]〉. This list implies that a vertex with ID 1

and label A is inserted (vi), and then an edge between vertices with IDs 2 and
3 is deleted (ed). By assuming the change in each graph to be gradual, we can
represent a graph sequence compactly, even if the graph in the graph sequence
has many vertices and edges. We have also proposed a method, called GTRACE,
for efficiently mining all frequent patterns from ordered lists of transformation
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Table 1. TRs for representing graph sequence

Vertex Insertion Insert a vertex u with label l

vi
(j,k)

[u,l] into g(j,k) to transform to g(j,k+1).

Vertex Deletion Delete an isolated vertex u

vd
(j,k)

[u,•] in g(j,k) to transform to g(j,k+1).

Vertex Relabeling Relabel a label of a vertex u

vr
(j,k)

[u,l]
in g(j,k) as l to transform to g(j,k+1).

Edge Insertion Insert an edge with label l between vertices

ei
(j,k)

[(u1,u2),l]
u1 and u2 into g(j,k) to transform to g(j,k+1).

Edge Deletion Delete an edge between vertices u1

ed
(j,k)
[(u1,u2),•] and u2 in g(j,k) to transform to g(j,k+1).

Edge Relabeling Relabel a label of an edge between vertices u1

er
(j,k)
[(u1,u2),l]

and u2 in g(j,k) as l to transform to g(j,k+1).

rules. A transition sequence in the dependency parser is represented as a graph
sequence. In addition, since the change between two successive graphs in the
graph sequence is an addition of a vertex (Shift) or of an edge (Arc), the as-
sumption holds.

A labeled graph g is represented as g = (V,E, L, l), where V = {1, · · · , n} is
a set of vertices, E ⊆ V × V is a set of edges, and L is a set of labels such that
l : V ∪E → L. In addition, a graph sequence is an ordered list of labeled graphs
and is represented as d = 〈g(1), · · · , g(z)〉.

To represent a graph sequence compactly, we focus on differences between two
successive graphs g(j) and g(j+1) in the sequence.

Definition 4. The differences between the graphs g(j) and g(j+1) in d are inter-
polated by a virtual sequence d(j) = 〈g(j,1), · · · , g(j,mj)〉, where g(j,1) = g(j) and
g(j,mj) = g(j+1). The graph sequence d is represented by the interpolations as
d = 〈d(1), · · · , d(z−1)〉. �

The order of graphs g(j) represents the order of graphs in an observed sequence.
On the other hand, the order of graphs g(j,k) is the order of graphs in the artificial
interpolation, and there can be various interpolations between the graphs g(j)

and g(j+1). We limit the interpolations to be compact and unambiguous by
taking one having the shortest length in terms of the graph edit distance to
reduce both the computational and spatial costs.

Definition 5. Let a transformation of a graph by either insertion, deletion, or
relabeling of a vertex or an edge be a unit, and let each unit have edit distance 1. A
graph sequence d(j) = 〈g(j,1), · · · , g(j,mj)〉 is defined as an interpolation in which
the edit distance between any two successive graphs is 1 and the edit distance
between any two graphs is minimum. �

Transformations are represented in this paper by the following “transformation
rule (TR)”.
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Definition 6. A TR transforming g(j,k) to g(j,k+1) is represented by tr
(j,k)
[ojk,ljk]

,

where

– tr is a transformation type that is either insertion, deletion, or relabeling of
a vertex or an edge,

– ojk is a vertex or edge to which the transformation is applied, and
– ljk ∈ L is a label to be assigned to the vertex or edge in the transforma-

tion. �

For the sake of simplicity, we simplify tr
(j,k)
[ojk ,ljk]

to tr
(j,k)
[o,l] . We use six TRs in

Table 1. In summary, we define a transformation sequence as follows.

Definition 7. A graph sequence d(j) = 〈g(j,1), · · · , g(j,mj)〉 is represented by

s
(j)
d = 〈tr(j,1)[o,l] , · · · , tr

(j,mj−1)

[o,l] 〉. Moreover, a graph sequence d = 〈g(1), · · · , g(z)〉 is
represented by a transformation sequence sd = 〈s(0)d , · · · , s(z−1)

d 〉. �

The notation of transformation sequences is far more compact than the original
graph-based representation since only differences between two successive graphs
in d are kept in the sequence. In addition, any graph sequence can be represented
by the six TRs in Table 1.

When a transformation sequence s′d is a subsequence of a transformation se-
quence sd, there is a mapping φ from vertex IDs in s′d to those in sd, and
it is denoted as s′d � sd. We omit its detailed definition because of a lack of
space (see [9] for a detailed definition). Given a set of graph sequences DB =
{〈g(1), · · · , g(z)〉}, we define a support σ(sp) of a transformation sequence sp as
σ(sp) = |{d | d ∈ DB, sp � sd}|/|DB|, where sd is a transformation sequence
of d. We call a transformation sequence whose support is no less than the min-
imum support σ′ a frequent transformation subsequence (FTS). Given a set of
graph sequences, GTRACE efficiently enumerates a set of all FTSs from the set.

4 Mining Rules for Rewriting States

As mentioned in Section 2, if the parser shown in Fig. 3 selects the incorrect tran-
sition once, it never reaches the correct state. In this paper, we aim to discover
rules for rewriting from states reaching incorrect final states to states reaching
the correct final state. To discover these rewriting rules, we mine FTSs from
graph sequences 〈c1, · · · , cm, g〉, each of which consists of a transition sequence
〈c1, · · · , cm〉 traversed by the parser and its correct dependency structure g.
If cm = g, then the final state cm is correct and there are no TRs for trans-
forming cm into g. Otherwise, cm is an incorrect final state and the TRs for
transforming cm into g are either

– transformation rules for inserting edges in g and not in cm, or
– transformation rules for deleting edges in cm and not in g.

As mentioned above, the rewriting rules to be mined are rules for transform-
ing graphs in states that do not reach the correct dependency structure into
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Fig. 8. Graph sequence for a transition sequence

graphs in other states that reach the correct structure for many sentences. The
rewriting rules are therefore FTSs containing TRs for transforming cm into g.
To distinguish TRs for transforming cm to g from other rules, we assign a label
l2 to edges in g and not in cm, and a label l1 to the other edges.

Example 3. Figure 8 shows a graph sequence dA generated by appending the
correct dependency structure g to the transition sequence for the sentence in
Example 1, where the function o in a parser selects an incorrect transition from
c′3 to c′4. Since the edge (2, 3) is not in c′m and is in g, the label l2 is assigned
to the edge. The transformation sequence of the graph sequence is given as

sdA = 〈vi(0,1)[1] vi
(1,1)
[2] vi

(2,1)
[3] vi

(3,1)
[4] ei

(4,1)
[(3,4),l1]

ei
(5,1)
[(2,4),l1]

ei
(6,1)
[(1,4),l1]

ei
(7,1)
[(2,3),l2]

〉23.
We select an FTS whose confidence is the highest among mined FTSs whose last
TR is the edge insertion of label l2. The definition of the confidence of an FTS is
similar to basket analysis [1], as described in the following. We call the selected
FTS a rewriting rule.

Definition 8. Given an FTS s, let s′ be the prefix of s, obtained by removing the
last TR in s. The confidence of s is defined as σ(s′)/σ(s), and s′ is called a body
of s. In addition, a function for returning an edge to which the last TR in s is ap-
plied is defined as lastEdge(s). �

Example 4. When r = 〈vi(0,1)[2] vi
(1,1)
[3] vi

(2,1)
[4] ei

(3,1)
[(2,4),l1]

ei
(4,2)
[(2,3),l2]

〉 is a rewriting rule,

its confidence is σ(〈vi(0,1)[2] vi
(1,1)
[3] vi

(2,1)
[4] ei

(3,1)
[(2,4),l1]

〉)/σ(r), and lastEdge(r) = (2, 3).

If a parser has the rewriting rule r of Example 4 and is in the state c′6 of Exam-
ple 3, the method proposed in this paper adds an edge (2, 3) to c′6, and deletes
an edge (2, 4) from c′6, by applying r to transit another state c6 in Fig. 5 that can
reach the correct final state, since the transformation sequence of a transition
sequence 〈c′1, · · · , c′6〉 contains the body of r as a subsequence. Therefore, the
rewriting rule corresponds to a bypass from c′6 to c6 in the search tree shown in
Fig. 6.

2 Although each vertex is labeled by information such as words and parts-of-speech
(POSs), the labeling depends on the features generated for a binary classifier in a
parser. The details of labeling vertices are discussed in Section 5.

3 We have a priori knowledge that each vertex in a state has at most one parent.
Therefore, the fact that a TR t for inserting an edge with l2 exists in a transfor-
mation sequence s indicates that another TR for deleting an edge whose dependent
is identical to t must exist in s. For this reason, we do not include TRs for delet-
ing edges in s to reduce the computation time of GTRACE, which exponentially
increases with the average length of the transformation sequences in its input.
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RuleMiner(D, σ′){
1) R← ∅
2) r ← null
3) while
4) DB ← ∅
5) for sentence (x= 〈w1, · · · , wn〉, g)∈D
6) d← ParseWithRules (x, R ∪ {r})
7) DB ← DB ∪ {d♦g}
8) evaluete(cm, g), where d= 〈c1,· · · ,cm〉
9) if R �= ∅ and the attachment

score is saturated.
10) return R
11) if r �= null
12) R← R ∪ {r}
13) r ←MineRewritingRule(DB,σ′)
14) if r = null
15) return R

ParseWithRules(x= 〈w1, · · · , wn〉, R)
1) c← cs(x)
2) d← 〈c〉
3) while c /∈ CF

4) c← [o(c)](c)
5) d← d♦c
6) sd←the transformation sequence of d
7) for r ∈ R
8) (a, b)← lastEdge(r)
9) if body(r) 
 sd,

where φ : ID(body(r))→ ID(sd)
10) (i, j)← (φ(a), φ(b))
11) c← (Nc, Ac ∪ {(i, j)})
12) if ∃j′ s.t. (i, j′) ∈ Ac ∧ j′ �= j
13) c← (Nc, Ac \ {(i, j′)})
14) d← d♦c
15) return d

Fig. 9. Algorithms for mining rewriting rules and for parsing with the rules

Another way to generate a graph sequence from a transition sequence is to ap-
pend to the correct state to the transition sequence immediately after the oracle
in the parser selects the incorrect transition. In the case of Example 3, the graph
sequence generated in this way is dB = 〈c′1, · · · , c′4, c4〉, where c4 is of Fig. 5. Any
subsequence of the transformation sequence sdB of dB is always a subsequence
of sdA in Example 3. In addition, dA contains the information about vertices and
edges that are not contained in dB. Therefore, we use the approach to generate
graph sequences in the form of dA. Similarly, if r is a subsequence of sdB , r is a
subsequence of sdA . Therefore, we apply r to c′6 that is not the final state.

We propose a method for mining rewriting rules from transition sequences
traversed by a dependency parser. The left part of Fig. 9 shows the pseudo-code
for mining a set of rewriting rules R from the transition sequences. Let D be
a corpus D = {(x, g)} consisting of tokenized sentences x = 〈w1, · · · , wn〉 and
their dependency structures g. In Line 6, ParseWithRules returns a transition
sequence d by parsing a sentence x using rewriting rules R. Next, in Line 7,
after appending g to the tail of d, which is denoted by d♦g , d♦g is added to
DB. Subsequently, in Line 8, the attachment score is updated after comparing
the final state cm with the correct dependency g of the sentence x. In Line 9,
if the attachment score for R ∪ {r} is no greater than that for R, then R is
returned. Otherwise, r is added to R. In Line 13, a rewriting rule r with the
highest confidence is mined among the FTSs enumerated by GTRACE from
DB under the minimum support threshold σ′.

The right part of Fig. 9 shows the pseudo-code for parsing a sentence x using
rewriting rules R to return a transition sequence for x. The procedures from
Line 1 to Line 5 are similar to those in Fig. 3. If there is a rewriting rule whose
body is contained in sd and its mapping φ from vertex IDs in the body of r to
vertex IDs in sd, the state c is rewritten in Line 11 or 13 and is transited to
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Fig. 10. One of the mined rules in the first loop

another state. In Line 11, an edge (i, j), corresponding to (a, b), is added to Ac.
In addition, if the i-th segment has another parent j′ rather than j, an edge
(i, j′) is deleted from Ac in Line 13. The parser in Fig. 9 is not incremental, but
|Nc| ≤ |Nt(c)| and |Ac| ≤ |At(c)| hold.

In the remainder of this section, we discuss the time complexity of ParseWith-
Rules. Loops of Lines 3 and 7 in ParseWithRules are repeated 2n− 2 times, as
discussed in Section 2, and |R| times, respectively. If a graph sequence consists of
general graphs, the computation time needed to check whether body(r) � sd is
identical to the subgraph isomorphism is known to be NP-complete [7]. However,
since a graph sequence in this paper consists of ordered forests, the computation
time to check it is linear with respect to the number of vertices in a forest, which
corresponds to the number of segments in a sentence [13]. The complexity of
ParseWithRules is therefore O(n(θ + |R|n)). Additionally, in our implementa-
tion, for a transformation sequence s′d of d♦c, the computation to check whether
body(r) � s′d is solvable in constant time by storing mappings between ver-
tices in body(r) and vertices in sd,; that is, the complexity of ParseWithRules is
O(n(θ + |R|)). The complexity of parsing a sentence x is therefore linear with
respect to the number of segments n in a sentence, and is equivalent to that of
the conventional method.

5 Experiments

We evaluated the proposed method using Kyoto Text Corpus v4.0, which con-
sists of newspaper articles. In the implementation, CaboCha-0.60, which is a
representative transition-based parser for Japanese [12], was integrated into the
proposed method. We used the period from January 1 to 8 (7635 sentences) to
train the SVM. In addition, we used data for eight days between January 9 to
17 (12054 sentences) to mine the rewriting rules and data for one day that is
not used to mine the rules in evaluating the proposed method. We repeated this
process nine times, which corresponds to nine-fold cross-validation.

We assigned a feature name with value of 1 to each vertex as a vertex label,
since a feature vector that characterizes a segment wi and is processed in the
SVM of CaboCha-0.60 is a binary feature vector. In addition, we assigned fea-
ture names to each vertex as labels, although the original GTRACE assumes
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that a label is assigned to each vertex in a graph sequence. Therefore, in our
experiments, the insertion of a vertex with labels {lv1, · · · , lvn} and vertex ID 1

is naturally represented as 〈tr(j,1)[1,lv1]
, · · · , tr(j,n)[1,lvn]

〉. For example, the second seg-

ment shown in Example 1 is characterized by a set of features {HON,WO, noun,
common noun, particle}, and a vertex for the segment is labeled by the features.

Figure 10 shows one of the rewriting rules mined using the proposed method
under the minimum support threshold 0.5%, where h, i, j, and k are segment
IDs satisfying h < i < j < k, and the terms in each circle are labels. The rule
was mined in the first loop in Line 13 in Fig. 9. The support and confidence of
the rule are 0.58% and 89.7%, respectively. Japanese native speakers know that
a segment containing WO usually modifies the first transitive verb appearing
after the segment, and that the segment is the object of the verb in the sentence.
However, a segment containing a transitive verb has only one dependent that
contains WO and appears as the nearest before the verb. In the case that there
are two segments containing WO before a verb, the former segment modifies a
segment containing NI appearing after the former segment.

The rewriting rule shown in Fig. 10 mentions that the oracle selects Shift when
determining whether the h-th segment is the dependent of the i-th segment in
the second state, because a segment containing WO usually modifies a transitive
verb after the segment, as mentioned above. At this point, the parser does not
know that another segment containing WO appears between the h-th segment
and a segment containing a verb, because the parser is the arc-standard parser.
Subsequently, the oracle selects Arc to transit from the fourth state, for the same
reason. In the sixth state, the arc-standard parser cannot add an edge (h, i), and
it adds an edge (h, k), although the segment containing the verb already has a
dependent containing WO. This rule rewrites the seventh state by deleting the
edge (h, k), and adds an edge (h, i). The rule is therefore valid grammatically.

As shown above, the proposed method has the benefits that the rules mined
by the method are human-readable and easily understandable. In addition, the
rewriting rules contain context that is more complex and detailed than a set of
features of the conventional parser, because of the use of the graph representa-
tion. Furthermore, if the mined rules are valid grammatically, and a dependency
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structure obtained by the proposed method, after being rewritten by the rules,
is different from a dependency structure in the corpus made by humans, the
latter dependency structure may contain incorrect dependencies. The proposed
method is therefore also useful for rectifying human errors in the corpus.

Figures 11 and 12 show the attachment score and the exact match score of
the proposed method for the number of mined rewriting rules for nine-fold cross-
validation under the minimum support thresholds 0.3%, 0.4%, and 0.5%4. The
number of mined rewriting rules |R| increases one by one in each loop in Line 3
of Fig. 9. The number of mined rules is not very large, because some of the
rules are unlexicalized and the others are lexicalized not by content words but
by functional words (case markers such as WO or NI and auxiliary verbs). The
attachment and exact match scores at |R| = 16 were improved by 0.20% and
0.66% under the minimum support threshold 0.3%, respectively. The number of
mined rules differs for each trial in the nine-fold cross-validation, and the scores
of the proposed method were finally improved by 0.22% and 0.90% under the
minimum support threshold 0.3%, respectively. Since the number of mined rules
is small, the improvements in the scores are not high. However, we can conclude
that the mined rewriting rules are valid because improvements in the scores
were obtained. In addition, Fig. 13 shows the numbers of sentences rewritten
correctly and incorrectly under the various minimum support thresholds for
the test datasets. It shows that when the number of rewriting rules mined by
the proposed method increases, the numbers of sentences rewritten correctly
and incorrectly decrease and increase, respectively, because confidence in the
rewriting rules decreases with a progressive increase in the number of rules.

6 Discussion and Conclusion

In this paper, we proposed a method for mining rules for rewriting states reaching
incorrect final states, and proposed a dependency parser with rules maintaining
time complexity linear with respect to the number of segments in a sentence.
The rewriting rules mined by the proposed method are human-readable, and it
is possible for us to design new parsers and to generate features in the machine
learner in the parser to avoid obtaining incorrect dependency structures. In this
paper, we used GTRACE to analyze transition sequences, although there are
other data structures for representing graph sequences, such as dynamic graphs
and evolving graphs, and algorithms for mining the graphs. Since insertions of
vertices cannot be represented by dynamic graphs, and a vertex in an evolving
graph always comes with an edge connected to the vertex, these data structures
cannot be used to analyze transition sequences in transition-based parsers to
mine rewriting rules. The class of graph sequences is therefore general enough
to apply to the analysis of transition sequences, compared with dynamic graphs
and evolving graphs. The principle of the method proposed in this paper can
basically be applied to any parsers based on a transition system, including parsers

4 The attachment and exact match scores of the conventional method trained using
data for 15 days were 89.4% and 47.7%, respectively.
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employing the beam search [16,8], for sentences in any language. We plan to
apply the method proposed in this paper to other transition-based parsers and
to corpora of other languages in the future.
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