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Abstract. In many real-world classifications such as video surveillance,
web retrieval and image segmentation, we often encounter that class
information is reflected by the pairwise constraints between data pairs
rather than the usual labels for each data, which indicate whether the
pairs belong to the same class or not. A common solution is combining
the pairs into some new samples labeled by the constraints and then de-
signing a smoothness-driven regularized classifier based on these samples.
However, it still utilizes the limited discriminative information involved
in the constraints insufficiently. In this paper, we propose a novel semi-
supervised discriminatively regularized classifier (SSDRC). By introduc-
ing a new discriminative regularization term into the classifier instead
of the usual smoothness-driven term, SSDRC can not only use the dis-
criminative information more fully but also explore the local geometry
of the new samples further to improve the classification performance.
Experiments demonstrate the superiority of our SSDRC.

Keywords: Discriminative information, Structural information, Pair-
wise constraints, Semi-supervised classification.

1 Introduction

Semi-supervised learning is a class of machine learning techniques that makes use
of both labeled and unlabeled data, which has achieved considerable development
in theory and application [1-4]. According to different actual circumstances, semi-
supervised learning usually involves two categories of class information, that is,
the class label and the pairwise constraint. The class label specifies the concrete
label for each datum, which is common in the traditional classification, while
the pairwise constraint is defined on the data pair, which indicates that whether
the pair belongs to the same class (must-link) or not (cannot-link). In many
applications, the pairwise constraint is actually more general than the class label,
because sometimes the true label may not be known prior, while it is easier for a
user to specify whether the data pair belong to the same class or different class.
Moreover, the pairwise constraints can be derived from the class label but not
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vice versa. Furthermore, different from the class label, the pairwise constraints
can sometimes be obtained automatically [5].

Recently, the research on semi-supervised classification with pairwise con-
straints has attracted more and more interests in machine learning [6,7]. How-
ever, compared to the common models, such classification problem is much
harder due to the difficulties in extracting the discriminative information from
the constraints. Generally, common classifiers mostly contain loss functions and
regularization terms, where loss functions measure the difference between the
predictions and the initial class labels. However, pairwise constraints just repre-
sent the relationship between the data pairs rather than certain labels. Conse-
quently, the constraints cannot be incorporated into the loss functions directly,
which leads to the inapplicability of most existing classifiers. Due to the particu-
larity of pairwise constraints, Zhang and Yan proposed a method dependent on
the value of pairwise constraints (OVPC), which combines the data pairs into
some new samples by outer product [8] and then designs a smoothness-driven
regularized classifier based on these samples. OVPC can deal with a large number
of pairwise constraints and avoid local minimum problem simultaneously. Yan
et al. [9] presented a unified classification framework which consists of two loss
functions for labeled data and pairwise constraints respectively and a common
Tikhonov regularization term to penalize the smoothness of the classifier.

Although these methods have shown much better classification performance,
they still extract the prior information from the pairwise constraints insuffi-
ciently. Firstly, they use the Tikhonov term as the regularization term which
only emphasizes on the smoothness of the classifier but ignores the limited dis-
criminative information inside the constraints. Xue et al. [10] have presented
that relatively speaking, the discriminability of the classifier is more important
than the usual smoothness. Hence, such regularization term is obviously insuf-
ficient for classification. Secondly, they also neglect the structural information
in the data. Yeung et al. [11] have indicated that a classifier should be sensitive
to the structure of the data distribution. Much related research has further val-
idated the effectivity of the structural information for classification [12-17]. The
absence of such vital information in these methods undoubtedly influences the
corresponding classification performance.

In this paper, we propose a new classifier with pairwise constraints called
SSDRC which stands for semi-supervised discriminatively regularized classifier
for binary classification problems . Inspired by OVPC, SSDRC firstly combines
the pairs into new samples. Then it applies a discriminative regularization term
into the classifier instead of the traditional smoothness-driven term, which di-
rectly emphasizes on the discriminability of these new samples through using two
terms to measure the intra-class compactness and inter-class separability respec-
tively. Moreover, SSDRC also introduces the local sample geometries into the
construction of the two terms in order to further fuse the structural information.

The rest of the paper is organized as follows. Section 2 briefly reviews the
OVPC methods. Section 3 presents the proposed SSDRC. In Section 4, the
experiment analysis is given. Conclusions are drawn in Section5.
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2 Classifier Dependent On the Value of Pairwise
Constraints(OVPC)

Given the training data which consist of two parts, (x1, y1),...,(xm, ym) are la-
beled data with yi representing the class label, and (x11, x12, y

′
1),...,(xn1, xn2, y

′
n)

are pairwise constraints with y′i indicating the relationship between pairs. 1 rep-
resents must-link constraint and -1 represents cannot-link constraint. That is,

y′i =
{
+1, yi1 = yi2
−1, yi1 �= yi2

OVPC firstly combines the pair (xi1, xi2) into a new sample by outer product
[5], which equals a transformation from the original space X to a new space
X̃. Let zi denote the corresponding transformed sample in X̃. Therefore, (zi, y

′
i)

is the new sample whose class label is y′i. Then OVPC constructs a common
regularized least-squares classifier in X̃. That is,

ϕ̂(n, λn) = argmin{ 1
n

n∑
i=1

(y′i − ϕT zi)
2 + λn ‖ ϕ ‖2} (1)

where λn is the regularization parameter. ‖ϕ‖2 is the Tikhonov regularization
term which penalizes the smoothness of the classifier. Finally, for a testing datum
x, OVPC applies some simple inverse transformations on the estimator ϕ̂(n, λn)
to get the final classification result.

Though OVPC has been shown much better performance in applications such
as video object classification [8,9], it still has some limitations. On the one hand,
the regularization term in OVPC is still the common Tikhonov term which can-
not fully mine the underlying discriminative information inside the pairwise con-
straints. On the other hand, OVPC also ignores the structural information of the
data distribution which can be used to enhance the classification performance.

3 Semi-Supervised Discriminatively Regularized
Classifier(SSDRC)

In this section, we present SSDRC which introduces a new discriminative reg-
ularization term into the classifier instead of the smoothness-driven Tikhonov
term. As a result, SSDRC can not only mine the discriminative information in
the pairwise constraints more sufficiently but also preserve the local geometry
of the new samples (zi, y

′
i) derived from pairwise constraints.

3.1 Data Pair Transformation

Inspired by OVPC, SSDRC firstly projects the data pair in each pairwise con-
straint into a new space X̃ as a single sample. Given the pairwise constraints
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(x11, x12, y
′
1),...,(xn1, xn2, y

′
n), where xi ∈ Rp. Let A denote the result of outer

product between the data pair in each pairwise constraint, that is,

A = xi1 ◦ xi2 (2)

Here, we also use the operator vech which returns the upper triangular elements
of a symmetric matrix in order of row as the new sample z, whose length is
(p+ 1)× p/2. That is,

z = vech(A+AT − diag(A)) (3)

For example, given A = [ai,j ] ∈ R3×3, z = [a11, a12 + a21, a13 + a31, a22, a23 +
a32, a33]. Consequently, the pairwise constraints (x11, x12, y

′
1),...,(xn1, xn2, y

′
n) in

the original space X are transformed into new samples (z1, y
′
1), ..., (zn, y

′
n) in the

new transformed space X̃.

3.2 Classifier Design in the Transformed Space

In view of the limitations in OVPC, here we aim to further fuse the discrimi-
native and structural information hidden in the new samples into the classifier.
Obviously, through the data pair transformation, the semi-supervised classifi-
cation problem in the original space X has been transformed to a supervised
binary-class classification task in the transformed space X̃, which can be solved
by some state-of-the-art supervised classifiers. In terms of the least-squares loss
function, Xue et al. [10] have proposed a new discriminatively regularized least-
squares classifier(DRLSC). Instead of the common Tikhonov regularization term,
DRLSC defines a discriminative regularization term

Rdisreg(f, η) = ηA(f) − (1− η)B(f) (4)

where A(f) and B(f) are the matrices which measure the intra-class compact-
ness and inter-class separability of the data respectively. η is the regularization
parameter which controls the relative significance of A(f) and B(f).

Following the line of the research in DRLSC, we further introduce the discrim-
inative regularization term into the classifier design in X̃. Based on the spectral
theory[14], we also use two graphs, intra-class graph Gw and inter-class graph
Gb with the weight matrices Ww and Wb respectively to define A(f) and B(f),
which can characterize the local geometry of the sample distribution in order to
utilize the structural information of the new samples better.

Concretely, for each sample zi, let ne(zi) denote its k nearest neighborhood
and divide ne(zi) into two non-overlapping subsets new(zi) and neb(zi). That is,

new(zi) = {zji | if y′i = y′j , 1 ≤ j ≤ k}
neb(zi) = {zji | if y′i �= y′j , 1 ≤ j ≤ k}

Then we put edges between zi and its neighbors, and thus obtain the intra-class
graph and inter-class graph respectively. The corresponding weights are defined
as follows:

Ww,ij =

{
1, if zj ∈ new(zi) or zi ∈ new(zj);
0, otherwise.
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Wb,ij =

{
1, if zj ∈ neb(zi) or zi ∈ neb(zj);
0, otherwise.

The goal of SSDRC is to keep the neighboring samples of Gw as close as possible
while separate the connected samples of Gb as far as possible. Thus,

A(f) =
1

2

n∑
i=1

n∑
j=1

Ww,ij ‖ f(zi)− f(zj) ‖2

Similarly,

B(f) =
1

2

n∑
i=1

n∑
j=1

Wb,ij ‖ f(zi)− f(zj) ‖2

Assume that the classifier has a linear form, that is,

f(z) = wT z (5)

Substitute the equation (5) into A(f) and B(f) and then obtain

A(f) =
1

2

n∑
i=1

n∑
j=1

Ww,ij ‖ f(zi)− f(zj) ‖2

= wTZ(Dw −Ww)Z
Tw

= wTZLwZ
Tw

where Dw is a diagonal matrix and its entries Dw,ij =
∑

j Ww,ij , Lw = Dw−Ww

is the laplacian matrix of Gw.

B(f) =
1

2

n∑
i=1

n∑
j=1

Wb,ij ‖ f(zi)− f(zj) ‖2

= wTZ(Db −Wb)Z
Tw

= wTZLbZ
Tw

where Db is a diagonal matrix and its entries Db,ij =
∑

j Wb,ij , Lb = Db −Wb

is the laplacian matrix of Gb.
The final optimization function can be formulated as

min{ 1
n

n∑
i=1

(y′i − f(zi))
2 + ηA(f)− (1− η)B(f)} (6)

that is,

min{ 1
n

n∑
i=1

(y′i − wT zi)
2 + wTZ[ηLw − (1 − η)Lb]Z

Tw} (7)

The solution of the optimization function can follow from solving a set of linear
equations by embedding equality type constraints in the formulation. Interested
reader can refer the literature [10] for more details.
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It is worthy to point out that, although the classifier design in SSDRC is simi-
lar to DRLSC, the corresponding classifier is defined in the transformed space X̃
rather than the original space as that in DRLSC. As a result, for a new testing
sample, SSDRC should firstly conduct the classifier in the transformed space
and then get the final classifier through some additional inverse transformations
rather than DRLSC that predicts the class label in the original space directly.
The particular process of the inverse transformation will be given in the next
subsection.

3.3 Classification in the Original Space

Here we apply the inverse operation of vech to the discriminative vector w
obtained in the transformed space X̃ , resulting in a p × p symmetric matrix
Θ. That is,

Θ = vech−1(w) (8)

For example, given w = {a11, a12, a13, a22, a23, a33}, Θ = [a11, a12, a13; a12, a22,
a23; a13, a23, a33] ∈ R3×3, . Then we perform the eigen-decomposition to the
symmetric matrix Θ, and obtain the largest eigenvalue s1 and its corresponding
eigenvector u1. We select

θ̂ =
√
s1u1

as the sign-insensitive estimator of β̂, which is the discriminative vector in the
original space. Here sign-insensitive means that the real sign of β̂ is still unknown.
The labeled sample (x1, y1),...,(xm, ym) are used to determine the correct sign

of β̂ .
To be more specific, the real sign of β̂ can be computed as

s(θ̂)

{
+1,

∑m
i=1 I(yiθ̂

Txi) ≥ 	m
2 
;−1, otherwise.

(9)

where 	t
 is the ceil function which returns the smallest integer value that is no
less than t [5]. So the real estimator of the discriminative vector in the original
space is

β̂ = s(θ̂)θ̂ (10)

For a new testing datum x, the predicted class label is

ỹ = β̂Tx (11)

3.4 The Pseudo-code for SSDRC

Based on the previous analysis, we present the SSDRC method. The correspond-
ing pseudo-code is summarized in Algorithms 1.



118 J. Huang, H. Xue, and Y. Zhai

input : Labeled Samples{(xi, yi)}mi=1;
Pairwise Constraints {(xj1, xj2, y

′
j)

n
j=1};

The number k of the nearest neighbors of new sample zi derived
from the pairwise constraints;
The regularization parameters η (0 ≤ η ≤ 1)

output: the estimator β̂ of discriminative vector

for i← 1 to n do
A = xi1 ◦ xi2;
zi = vech(A+ AT − diag(A));

end
for j ← 1 to n do

zkj ← kth nearest neighbor of zj among (zi)
n
i=1;

end
for i← 1 to n do

for j ← 1 to k do
if y′

i = y′
j then Ww,ij ← 1;

else Wb,ij ← 1;

end

end
Dw,ij =

∑
j Ww,ij ; Db,ij =

∑
j Wb,ij ;

Lw = Dw −Ww; Lb = Db −Wb;
w ← solve the optimization function:

argmin{ 1
n

n∑

i=1

(y′
i − wT zi)

2 + wTZ[ηLw − (1− η)Lb]Z
Tw}

Θ = vech−1(w)
Compute the largest eigenvalue s1 and its corresponding eigenvector u1 of Θ
θ̂ =
√
s1u1

if
∑m

i=1 I(yiθ̂
Txi ≥ 0) ≥ �m

2
� then s(θ̂) = +1;

else s(θ̂) = −1;

β̂ = s(θ̂)θ̂

Algorithm 1. Pseudo-code for SSDRC

4 Experiments

In this section, we evaluate the performance of our SSDRC algorithms on the
real-word classification datasets: six datasets in UCI1 and IDA datasets2 in com-
parison to some state-of-the-art algorithms shown in the Table 1. We select the
supervised method RLSC as the baseline. OVPC and PKLR are two popular
semi-supervised classifiers with pairwise constraints.

1 The dataset is available from
http://www.ics.uci.edu/ mlearn/MLRepository.html

2 The database is available from
http://ida.first.fraunhofer.de/projects/bench/benchmarks.htm
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Table 1. The acronyms, full names and citations algorithms compared with the SS-
DRC in the experiments

Acronym Full name Citation

RLSC Regularized Least Square Classifier [18]

OVPC On the Value of Pairwise Constraints [8]

PKLR Pairwise Kernel Logistic Regression [9]

4.1 UCI Dataset

In this section we compare the relative performance of SSDRC with other three
classificationalgorithms on six datasets in UCI, namelyWater(39, 116), Sonar(60,
208), Ionosphere(34, 351),Wdbc(31,569),Pima(9,768),Spambase(58,4600).These
datasets are typical binary-classification datasets in UCI. To be more specific, the
first element in the brackets represents the dimension while the second means the
number of samples in each dataset. Notice that the scale of the dataset is incre-
ment, and we divide each dataset into two equal parts. One is for training set and
the other is for testing set. In our experiment, the pairwise constraints are obtained
randomly selecting pairs of instances from the training set, and creating must-link
and cannot-link constraints. The number of constraints is changed from 10 to 50 at
a rate of 10 increment.Moreover, In SSDRC, the number of the k nearest neighbors
is selected from {5, 10, 15, 20}. Especially, when the number of pairwise constraints
is 10which is relatively less to select the largenumber ofnearestneighbors, thevalue
of k is selected from {5, 10}. Moreover, in PKLR, we select the liner kernel as the
kernel function. The regularization parameters λ in OVPC and PKLR are selected
from {2−10, 2−9, ..., 29, 210}, and the regularization parameter η in SSDRC is cho-
sen in [0, 0.1, ..., 0.9, 1]. All the parameter selections are done by cross-validation.
Since labeled samples are only used to determine the real sign of the estimator, so
we only select one sample for each class. The whole process is repeated 100 runs
and the average results are reported.

Figure 1 shows the corresponding average classification accuracies of the al-
gorithms in the six datasets. From the figure, we can see that the accuracies
of OVPC, PKLR and SSDRC are basically improved with the increase of the
number of the pairwise constraints step by step, which validates the ”No Free
Lunch” Theorem [14], that is, with more prior information incorporated, the
better classification performance we can get. In the comparison of the four algo-
rithms, the performance of RLSC is always the worst as a straight line, since it
only uses the limited labeled data, which justifies the significance of the pairwise
constraints data in semi-supervised learning. Furthermore, SSDRC outperforms
PKLR and OVPC at each same number of pairwise constraints in all the six
datasets, especially in Water, Wdbc and Pima, with more than 10% improve-
ment in average. Besides, the variance of experimental result in SSDRC is much
less than the ones in other three algorithms on most datasets. This also demon-
strates that the utilization of pairwise constraints and structural information in
SSDRC is much better than PKLR and OVPC.
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(c) Ionosphere
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(f) Spambase

Fig. 1. Classification accuracy on UCI database with different number of constraints

Table 2. The attributes of the thirteen datasets in the IDA database

Dataset Dimension Training Set Size Testing Set Size

Heart 13 170 100

Banana 2 400 4900

Breast-cancer 9 200 77

Diabetis 8 468 300

Flare-solar 9 666 400

German 20 700 300

Ringnorm 20 400 7000

Thyroid 5 140 75

Titanic 3 150 2051

Twonorm 20 400 7000

Waveform 21 400 4600

Image 18 1300 1010

Splice 60 1000 2175

4.2 IDA Database

In this subsection, we further evaluate the performance of the SSDRC algorithm
on the IDA database, which consists of thirteen datasets, and all of them has
two classes. The training and testing sets have been offered in each dataset al-
ready. Table 2 shows the attributes of the thirteen datasets in the IDA database:
the number of dataset’s dimension, the size of training set and testing set re-
spectively. The experimental settings are the same as those in the previous UCI
datasets.
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(c) Breast-cancer
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5 10 15 20 25 30 35 40 45 50 55
0.54

0.56

0.58

0.6

0.62

0.64

0.66

Number of Constraints

A
ve

ra
ge

 C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y

(e) Flare-solar

5 10 15 20 25 30 35 40 45 50 55
0.54

0.56

0.58

0.6

0.62

0.64

0.66

Number of Constraints

A
ve

ra
ge

 C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y
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(i) Titanic
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(k) Waveform
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(m) Splice

Fig. 2. Classification accuracy on IDA database with different number of constraints
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Figure 2 shows the corresponding average classification accuracies of the four
algorithms in the IDA datasets. From the figure, we can see that the SSDRC
outperforms other three algorithms obviously in most datasets, especially in
Banana, Splice, Titanic and German. The reason more likely lies in that different
from the other algorithms, SSDRC embeds the local structure involved in data
and makes use of the discriminative information in constraints more sufficiently,
which results in its superior performance in the real-world classification tasks.

5 Conclusion

In this paper, we propose a novel classification method with pairwise constraints
SSDRC. Different form many existing classifiers, SSDRC firstly transforms the
data pairs in pairwise constraints into some new samples and then designs a
discriminability-driven regularized classifier in the transformed space, which can
not only fully capture the discriminative information in the constraints but also
preserve the local structure of these new samples. Experimental results demon-
strates that SSDRC is much better than the popular related classifiers OVPC
and PKLR.

Throughout the paper, SSDRC focuses on the binary classification problems.
How to extend SSDRC to the multi-class problems deserves our further work.
Furthermore, the kernelization of SSDRC also needs more study.
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