


Lecture Notes in Computer Science 7438
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany



Antonis Bikakis Adrian Giurca (Eds.)

Rules on the Web:
Research
and Applications
6th International Symposium, RuleML 2012
Montpellier, France, August 27-29, 2012
Proceedings

13



Volume Editors

Antonis Bikakis
University College London
Department of Information Studies
Gower Street
London, WC1E 6BT, UK
E-mail: a.bikakis@ucl.ac.uk

Adrian Giurca
Brandenburg University of Technology at Cottbus
Department of Databases and Information Systems
Walther Pauer Str. 2
03046 Cottbus, Germany
E-mail: giurca@tu-cottbus.de

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-32688-2 e-ISBN 978-3-642-32689-9
DOI 10.1007/978-3-642-32689-9
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012944208

CR Subject Classification (1998): I.2.4, H.3.5, I.2.6, D.2, I.2.11, H.4.1,
F.3.2, D.1.6, J.1

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer-Verlag Berlin Heidelberg 2012

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Preface

The International Symposium on Rules, RuleML, has evolved from an annual
series of international workshops held since 2002, international conferences in
2005 and 2006, and international symposia since 2007. RuleML 2012, the sixth
symposium of this series, brought together researchers and practitioners from
industry, academia, and the broader AI community, and presented new research
results and applications in the field of rules. It was collocated with the 20th bien-
nial European Conference on Artificial Intelligence (ECAI 2012) in Montpellier,
France.

RuleML 2012 was created, inspired, and supported by the RuleML Initiative.
RuleML (http://ruleml.org) is a non-profit umbrella organization. It consists
of several technical groups organized by representatives from academia, indus-
try, and public sectors working on rule technologies and applications. Its aim
is to promote the study, research, and application of rules in heterogeneous,
distributed environments, such as the Web. RuleML acts as an intermediary
between various “specialized” rule vendors, industrial and academic research
groups, as well as standardization bodies such as W3C, OMG, OASIS, and ISO.
One of its major contributions is the Rule Markup Language, a unifying family
of XML-serialized rule languages spanning across all industrially relevant kinds
of Web rules.

The technical program of RuleML 2012 included presentations of novel rule-
based technologies, such as rule languages, visual languages, mark-up languages,
rule engines, formal and operational semantics as well as standardization efforts.
It was organized in six main research tracks: Business Rules and Processes, Rule-
Based Event Processing and Reaction Rules, Rule-Based Policies and Agents on
the Pragmatic Web, Rules and the Semantic Web, Rule Mark-Up Languages and
Rule Interchange, and Rule Transformation, Extraction and Learning. These
tracks reflect the significant role of rules in several research and application
areas, which includes: processing Semantic Web data, enabling the automation
of business processes, modeling and reasoning over interactions among agents on
the Pragmatic Web, reasoning over actions and events and developing reactive
systems, and specifying norms and policies for Web and corporate environments.

Special highlights of this year’s RuleML Symposium included three keynote
talks from:

– Robert Kowalski from Imperial College London (with co-author Fariba Sadri)
presenting a logic-based framework for reactive systems

– Marie-Laure Mugnier presenting a framework for ontology-based query an-
swering with existential rules

– Franc.ois Briant from IMB France describing the RIDER (Research for IT
Driven EneRgy efficiency) project
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The program also included the 6th International Rule Challenge, which was
dedicated to practical experiences with rule-based applications, and the RuleML
2012 Doctoral Consortium, which focused on PhD research in the area of rules
and mark-up languages.

The contributions in this volume include one paper and one abstract for the
first two keynote presentations, two track papers (one by Hans Weigand and
Adrian Paschke on the role of rules in the Pragmatic Web, and one by Adrian
Paschke, Harold Boley, Zhili Zhao, Kia Teymourian, and Tara Athan on Re-
action RuleML, a standardized rule mark-up/serialization language for reaction
rules and rule-based event processing), as well as a selection of 14 full papers and
eight short papers, including the paper “A Production Rule-Based Framework
for Causal and Epistemic Reasoning” by Theodore Patkos, Abdelghani Chibani,
Dimitris Plexousakis, and Yacine Amiratm, which was awarded by RuleML with
the Best Paper Award, and was invited for presentation at the 26th AAAI Con-
ference (AAAI-12).

We would like to thank all colleagues who submitted papers to RuleML 2012,
as well as our Steering Committee and our colleagues from ECAI 2012 for their
cooperation and partnership. We would also like to express our gratitude to the
Chairs, Program Committee members, and additional reviewers who ensured
that this year’s symposium maintained the highest standards of scientific quality.
Special thanks go to our keynote speakers, and to our sponsors and partners for
their contribution to the success of RuleML 2012. Last, but not least, we would
like to thank the development team of the EasyChair conference management
system and our publisher, Springer, for their support in the preparation of this
volume and the publication of the proceedings.

August 2012 Antonis Bikakis
Adrian Giurca



Organization

General Chairs

Grigoris Antoniou University of Huddersfield, UK
Guido Governatori NICTA, Australia

Steering Chairs

Mike Dean Raytheon BBN Technologies, USA
John Hall Model Systems, UK
Christian de Sainte Marie IBM ILOG, France

Program Chairs

Antonis Bikakis University College London, UK
Adrian Giurca Brandenburg University of Technology,

Germany

Local Chair

Madalina Croitoru University of Montpellier II, France

Publicity Chair

Frank Olken Frank Olken Consulting, USA

Metadata and Social Media Chair

Petros Stefaneas National Technical University of Athens,
Greece

Rule Responder Symposium Planner Chair

Chaudhry Usman Ali University of New Brunswick, Fredericton,
Canada

International Rule Challenge Steering Committee

Patrick Albert IBM, France
Franc.ois Briant IBM CAS, France



VIII Organization

International Rule Challenge Chairs

Hassan Aı̈t-Kaci IBM, Canada
Yuh-Jong Hu National Chengchi University, Taiwan
Dumitru Roman SINTEF, Norway

Dotoral Consortium Chairs

Grzegorz J. Nalepa AGH University of Science and Technology,
Poland

Yuh-Jong Hu National Chengchi University, Taiwan
Monica Palmirani CIRSFID-University of Bologna, Italy

Track Chairs

Business Rules and Processes

Patrick Albert IBM, France

Rule-Based Event Processing and Reaction Rules

Harold Boley University of New Brunswick, Canada

Rule-Based Policies and Agents on the Pragmatic Web

Adrian Paschke Freie Universität Berlin, Germany
Hans Weigand Tilburg University, The Netherlands

Rules and the Semantic Web
Grzegorz J. Nalepa AGH University of Science and Technology,

Poland

Rule Mark-Up Languages and Rule Interchange

Nick Bassiliades Aristotle University of Thessaloniki, Greece

Rule Transformation, Extraction, and Learning

Monica Palmirani CIRSFID-University of Bologna, Italy

Program Committee

Hassan Aı̈t-Kaci
Rajendra Akerkar
Patrick Albert
Darko Anicic
Alexander Artikis

Martin Atzmueller
Costin Badica
Ebrahim Bagheri
Matteo Baldoni
Nick Bassiliades



Organization IX

Bernhard Bauer
Yevgen Biletskiy
Pedro Bizarro
Luiz Olavo Bonino Da Silva Santos
Lars Braubach
Jan Broersen
Christoph Bussler
Federico Chesani
Horatiu Cirstea
Matteo Cristani
Claudia D’Amato
Célia Da Costa Pereira
Christian De Sainte Marie
Juergen Dix
Schahram Dustdar
Jenny Eriksson Lundström
Vadim Ermolayev
Opher Etzion
Luis Ferreira Pires
Michael Fink
Nicoletta Fornara
Enrico Francesconi
Fred Freitas
Aldo Gangemi
Dragan Gasevic
Christophe Gravier
Giancarlo Guizzardi
Ioannis Hatzilygeroudis
Stijn Heymans
Pascal Hitzler
Yuh-Jong Hu
Minsu Jang
Krzysztof Janowicz
Eric Jui-Yi Kao
Rainer Knauf
Paul Krause

Wolfgang Laun
Domenico Lembo
Francesca Alessandra Lisi
Thomas Lukasiewicz
Michael Maher
Angelo Montanari
Chieko Nakabasami
Grzegorz J. Nalepa
Frank Olken
Georgios Paliouras
Monica Palmirani
Jose Ignacio Panach Navarrete
Jeffrey Parsons
Adrian Paschke
Axel Polleres
Fabio Porto
Alun Preece
Dave Reynolds
Pierangela Samarati
Giovanni Sartor
Guy Sharon
Davide Sottara
Giorgos Stamou
Kostas Stathis
Giorgos Stoilos
Nenad Stojanovic
Umberto Straccia
Terrance Swift
Leon Van Der Torre
Jan Vanthienen
Wamberto Vasconcelos
Carlos Viegas Damásio
George Vouros
Renata Wassermann
Ching-Long Yeh

External Reviewers

Amina Chniti
Minh Dao-Tran
Benjamin Jailly
Stasinos Konstantopoulos

Jens Lehmann
Abhijeet Mohapatra
Kunal Sengupta
Anastasios Skarlatidis



RuleML 2012 Sponsors and Partners

Gold Sponsors

Bronze Sponsors



RuleML 2012 Sponsors and Partners XI

Partner Organizations



Table of Contents

Keynote Talks

A Logic-Based Framework for Reactive Systems . . . . . . . . . . . . . . . . . . . . . 1
Robert Kowalski and Fariba Sadri

Ontology-Based Query Answering with Existential Rules . . . . . . . . . . . . . . 16
Marie-Laure Mugnier

Business Rules and Processes

A Model Driven Reverse Engineering Framework for Extracting
Business Rules Out of a Java Application . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Valerio Cosentino, Jordi Cabot, Patrick Albert,
Philippe Bauquel, and Jacques Perronnet

Business Process Data Compliance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Mustafa Hashmi, Guido Governatori, and Moe Thandar Wynn

Formalizing Both Refraction-Based and Sequential Executions
of Production Rule Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Bruno Berstel-Da Silva

Bringing OWL Ontologies to the Business Rules Users . . . . . . . . . . . . . . . . 62
Adil El Ghali, Amina Chniti, and Hugues Citeau

From Regulatory Texts to BRMS: How to Guide the Acquisition
of Business Rules? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
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A Logic-Based Framework for Reactive Systems 

Robert Kowalski and Fariba Sadri 

Department of Computing   
Imperial College London 

{rak,fs}@doc.ic.ac.uk 

Abstract. We sketch a logic-based framework in which computation consists of 
performing actions to generate a sequence of states, with the purpose of making 
a set of reactive rules in the logical form antecedents → consequents all true. 
The antecedents of the rules are conjunctions of past or present conditions and 
events, and the consequents of the rules are disjunctions of conjunctions of fu-
ture conditions and actions. The antecedents can be viewed as  
complex/composite events, and the consequents as complex/composite/macro 
actions or processes. 

States are represented by sets of atomic sentences, and can be viewed as 
global variables, relational databases, Herbrand models, or mental representa-
tions of the real world. Events, including actions, transform one state into 
another. The operational semantics maintains only a single, destructively up-
dated current state, whereas the model-theoretic semantics treats the entire  
sequence of states, events and actions as a single model. The model-theoretic 
semantics can be viewed as the problem of generating a model that makes all 
the reactive rules true. 

Keywords: reactive systems, model generation, LPS, KELPS, complex events, 
complex actions. 

1 Introduction 

Reactive rules in one form or another play an important role in many different areas 
of Computing. They are explicit in the form of condition-action rules in production 
systems, event-condition-action rules in active databases, and plans in BDI agents. 
Moreover, they are implicit in many other areas of Computing. 

David Harel [7], for example, identifies reactive systems as one of the main kinds 
of computational system, characterizing them as having the general form “when event 
α occurs in state A, if condition C is true at the time, the system transfers to state B”. 
Harel [8] notes that StateCharts, a graphical language for specifying reactive systems, 
is “the heart of the UML - what many people refer to as its driving behavioral kernel”. 

Reactive systems can be regarded as an extension of transition systems. As Wolf-
gang Reisig [22] puts it, an initialized, deterministic transition system is “a triple C = 
(Q, I, F ) where Q is a set (its elements are denoted as states), I  Œ Q (the initial states), 
and F : Q → Q (the next-state function)”. Transition systems can be extended to  
reactive systems in which the transition from one state to the next is “not conducted 
by the program, but by the outside world”.  
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But even in their simpler “initialized, deterministic” form, transition systems have 
been proposed as a general model of Computing. Reisig points out that, in the first 
volume of The Art of Computer Programming [12], Donald Knuth suggests their use 
as a general semantics for algorithms. 

In this paper, we propose a simplified kernel, KELPS, of the Logic-based agent 
and Production System language LPS [15, 16, 17]. Whereas LPS combines reactive 
rules and logic programs, KELPS consists of reactive rules alone. The distinguishing 
features of LPS and KELPS are that: 

 

• They interpret reactive rules of the form antecedents → consequents as universally 
quantified sentences in first-order logic (FOL). 

• They have an operational semantics in which actions and other events destructive-
ly update a current state.  

• They have a model-theoretic semantics in which actions are performed to make 
the reactive rules all true in a single classical model associated with the sequence 
of states and events. 
 

The aim of this paper is to highlight the significance of reactive rules in LPS, and to 
take advantage of the simplicity of KELPS to introduce some extensions to LPS. The 
main extensions are the addition of complex events in the antecedents of reactive 
rules, the generalization of the sequential ordering of conditions and events to partial 
ordering, and the representation of conditions by arbitrary formulas of FOL.  

The paper is structured as follows: Section 2 introduces KELPS by means of an 
example. Section 3 sketches the background of LPS and KELPS. Sections 4-5 de-
scribe the syntax, model-theoretic and operational semantics of KELPS; and section 6 
discusses soundness and incompleteness. Section 7 describes the extension of KELPS 
by logic programs; and section 8 sketches an extension to the multi-agent case. Sec-
tions 9 and 10 conclude. 

2 Example 

We use a variant of an example in [9]. In this variant, a reactive agent monitors a 
building for any outbreaks of fire. The agent receives inputs from a fire alarm pre-
sensor and a smoke detector. If the agent detects a possible fire, then it activates local 
fire suppression devices and in the case that there is no longer a possible fire, calls for 
a security guard to inspect the area. Alternatively, it calls the fire department. This 
behaviour can be represented in KELPS by means of a reactive rule such as: 
 

if pre-sensor detects possible fire in area A at time T1 

and smoke detector detects smoke in area A at time T2 

and |T1 – T2 | ≤  60 sec  and max(T1, T2, T) 
then [[activate local fire suppression in area A at time T3  and T <T3  ≤ T + 10 sec 

and not fire in area A at time T4 and T3 <T4  ≤ T3 + 30 sec 
and send security guard to area A at time T5  and T4 <T5  ≤ T4 + 10 sec] 

or [call fire department to area A at time T3‘  and T <T3‘  ≤ T + 60 sec]  
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Here A, T1, T2 and T are implicitly universally quantified with scope the entire rule, 
but T3, T3‘, T4  and T5 are implicitly existentially quantified with scope the consequents 
of the rule. 

The notation employed in this example is an informal version of the internal syntax 
of KELPS with an explicit representation of time. It is compatible with a variety of 
external notations that hide the representation of time. We employ this internal syntax 
throughout the paper, as it clarifies the operational and model-theoretic semantics.  

Notice that the antecedents of the rule represent a complex event and the conse-
quents represent a complex action consisting of two alternative plans. The first plan 
consists of two actions and a condition, and the second consists of an action. Both 
plans include temporal constraints. In practice, the first plan might be preferred and 
tried before the second. If any part of the first plan fails, then the second plan can be 
tried. Moreover, even if some of the first plan fails, it can be retried as long as the 
temporal constraints can be satisfied. If both plans fail and cannot be retried, then the 
reactive rule cannot be made true. This can be avoided by adding additional alterna-
tive plans to the consequents of the rule. 

3 LPS and KELPS in Context 

LPS is a direct descendant of ALP agents [14], which descend in turn from abductive 
logic programming (ALP).  ALP extends logic programs with undefined (open or 
abducible) predicates, which are constrained by integrity constraints [11]. ALP agents 
embed ALP in an agent cycle, in which logic programs serve as the agent’s beliefs, 
and integrity constraints serve as the agent’s goals.  

In ALP agents, the world is represented, as in the situation calculus [20], event calcu-
lus [19] and other knowledge representation schemes in AI, by atomic predicates with 
time or state parameters, called fluents. Updates of the world are described by an event 
theory that specifies the fluents that are initiated and terminated by events. Frame 
axioms of one form or another express the property that if a fluent holds in a state, then 
it continues to hold in future states unless and until it is terminated by an event.  

Frame axioms used to reason about states of affairs exact a heavy computational 
penalty, which is prohibitively large for even moderately sized knowledge bases. As a 
consequence, frame axioms are rarely used in practical applications.  

ALP agents use the event calculus with its frame axiom to reason about fluents. 
However, ALP agents also have the option of observing fluents, instead of reasoning 
to derive them. This is one step towards eliminating frame axioms entirely. The next 
and final step, which historically resulted in LPS, came from trying to simulate pro-
duction systems by means of ALP agents. 

This final step was made difficult by the overabundance of semantics for ALP. The 
operational semantics of ALP agents, in particular, is based on the IFF proof proce-
dure [6], which is complete for the Kunen three-valued semantics. The attractiveness 
of this completeness result was an obstacle to identifying a semantics that is better 
suited for production systems. Eventually it became apparent that the necessary se-
mantics is one of the simplest possible, namely the minimal model semantics of Horn 
clauses [3]. 
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In LPS, an agent’s beliefs are represented by logic programs, and the agent’s goals 
are represented by reactive rules, which are a special case of integrity constraints in 
ALP. The purpose of the agent’s actions is to extend its beliefs about the world, so 
that its reactive rules are all true in the minimal model of the extended beliefs. The 
minimal model is unique if the beliefs are represented by Horn clauses [3]. If the be-
liefs are represented by locally stratified logic programs [21], then the extended be-
liefs have a unique intended, minimal model, called the perfect model.  

In retrospect, KELPS is probably closest to the modal agent language MetateM. In 
MetateM a program consists of sentences in logical form: 
 

‘past and present formula’ implies ‘present or future formula’ [4] 
 

and computation consists of generating a model in which all such sentences are true. 
These sentences are represented in a modal temporal logic, with truth values defined 
relative to a possible world embedded in a collection of possible worlds connected by 
a temporal accessibility relation. In contrast, in KELPS, similar sentences are ex-
pressed in classical FOL with an explicit representation of time, with truth values 
defined relative to a single classical model, in the standard Tarskian manner. Moreo-
ver, whereas MetateM uses frame axioms to reason about possible worlds, KELPS 
uses destructive updates to transform one state into another. 

In other respects, full LPS is closer to Transaction Logic (TR Logic) [1], which al-
so maintains only the current state, using destructive updates without frame axioms. 
Moreover, like LPS and MetateM, TR Logic also gives a model-theoretic semantics 
to complex actions (and transactions), by interpreting them as sentences in logical 
form and by generating a model in which these sentences are true.  

However, in TR Logic, transactions are expressed in a non-standard logic with 
logical connectives representing temporal sequence. The model in TR Logic is a 
collection of possible worlds, as in modal logic. But truth values are defined relative 
to paths between possible worlds.  

In LPS, in contrast with both MetateM and TR Logic, truth values are defined 
relative to a single, classical model, which contains the entire sequence of states and 
state-transforming events. Possible worlds in the semantics of MetateM and TR Log-
ic become sub-models of this single model in LPS, and the accessibility relation be-
comes a relation expressed by means of event descriptions and temporal constraints 
represented explicitly in the language. This simplifies the semantics and increases the 
expressive power of the language by making events and times first class objects. 

4 KELPS and Its Model-Theoretic Semantics 

Viewed in agent-oriented terms, reactive rules in KELPS are maintenance goals ex-
pressed in logical form. Their truth values are determined by the agent’s beliefs, 
which include an initialised sequence of states S0, S1,…, Si,…. and an associated se-
quence of state-transforming sets of events e1,…, ei,….  
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States Si in KELPS are sets of atomic sentences, also called facts or fluents.  
They can be understood as representing sets of global variables, relational databases, 
Herbrand models, or mental representations of the real world. Events ei are also sets 
of atomic sentences, and represent either external events or the agent’s own actions.  

4.1 The Syntax of Reactive Rules 

In the model-theoretic semantics, facts, events and reactive rules are represented with 
time-stamps. However, in the operational semantics, facts are represented without 
time-stamps, so that facts that are not affected by an event simply persist from one 
state to the next without needing to reason with frame axioms that they persist. 

Correspondingly, reactive rules can also be represented either in an internal syntax 
with time parameters, or in an external syntax without explicit time. The internal syn-
tax underpins the model-theoretic semantics, and is consequently more basic. It also 
facilitates more flexible and more powerful ways of representing and reasoning with 
temporal constraints. For these reasons we focus on the internal syntax in this paper. 

At the expense of restricting its expressive power, the internal syntax is compatible 
with a variety of external notations. In [16, 17], we specified an external syntax in 
which temporal ordering is indicated by the order in which formulas are written and 
by special logical connectives. However, the internal syntax is also compatible with 
other external notations, such as the syntax of TR Logic, in which P ⊗ Q means “do 
P and then do Q”. In LPS/KELPS this translates into P(T1) ∧ Q(T2)  ∧ T1 <T2.  

The internal syntax is also compatible with a modal external syntax. For example, 
P ∧ ◊Q can also be translated into P(T1) ∧ Q(T2)  ∧ T1 <T2. Graphical notations for 
partial ordering are also possible.  

Here we define the internal syntax of the reactive rules. A reactive rule (or more 
simply, a rule) is a universally quantified conditional sentence of the form1: 

∀X [antecedents(X)→ ∃Y consequents(X, Y)]  

X is the set of all time variables and any other unbound variables that occur in ante-
cedents, and Y is the set of all time variables and any other unbound variables that 
occur only in the consequents. This convention allows us to omit the explicit repre-
sentation of these two quantifiers and write rules in the simpler form: 

antecedents(X)→ consequents(X, Y) 

To ensure that the actions and conditions in consequents(X, Y) occur after the events 
and conditions in antecedents(X), the time variables in Y should be constrained  
directly or indirectly in consequents to be later than the time variables in X. 

Antecedents of rules can be viewed as complex (or composite) events, and conse-
quents can be viewed as complex actions (or processes). The antecedents are a con-
junction, each conjunct of which is either a condition, an event atom or a temporal 
constraint, where:   

                                                           
1 This notation means that X includes all the variables that occur in the antecedents(X). But it 

does not mean that consequents(X, Y) contains all of the variables in X. 



6 R. Kowalski and F. Sadri 

 

• A condition is an FOL formula including only a single time parameter in the 
vocabulary of the state predicates, possibly including auxiliary state-
independent predicates that do not change with time.2  

• An event atom is an atomic formula with a single time parameter represent-
ing the occurrence of an event. Similarly an action atom is an event atom in 
which the event is an action. 

• A temporal constraint is an inequality time1 < time2 or time1 ≤ time2, where 
time1 and time2 represent time points, one of which is a variable, and the 
other of which is a variable or constant.3     

The consequents of a rule are a disjunction, each disjunct of which is a conjunction, 
each conjunct of which is either a condition, an action atom or a temporal constraint. 
Temporal constraints in the antecedents should involve only time variables occurring 
elsewhere in the antecedents, and temporal constraints in the consequents should 
involve only time variables occurring elsewhere in the rule.4  

The various restrictions on the syntax described above simplify the operational 
semantics presented later. For example, these restrictions limit complex events to 
partially ordered sequences of conditions and simpler events. In particular, they do 
not allow complex events that include a constraint that no event of a certain kind 
occurs within a certain period of time.5 Moreover, they do not allow external events 
in the consequents of rules. 

Both of these restrictions can be removed at the expense of complicating the oper-
ational semantics. In fact, as we will see in the next section, the syntax of reactive 
rules can be generalized to include arbitrary sentences of FOL. 

4.2 The Model-Theoretic Semantics    

Viewed in general terms, the task in KELPS is to generate a Herbrand model that 
makes a set of sentences in FOL all true. The core of the model is determined by a 
sequence of states S0, S1,…, Si,…. and state-transforming sets of events e1,…, ei,…. 
These sequences are combined into a single model by time-stamping facts and events. 

The model-theoretic semantics is compatible with a variety of different notions of 
time and temporal ordering. However, for simplicity in this paper, we assume that 
time is discrete, and that events ei are instantaneous, and are stamped with the time ti 
of their occurrence, written either as ei(ti), happens(ei , ti) or simply ei*.   

We also assume that the time ti at the beginning of a state Si “lasts” until the time 
ti+1 at the end of state Si. So in effect t = ti for all ti ≤ t < ti+1. The time-stamping of a 

                                                           
2 For example, Aux might contain atomic sentences defining a predicate area A is connected to 

area B, which might be useful in a refinement of the reactive rule in section 2. 
3 We also need to allow arithmetic expressions such as t + n. This can be done by replacing 

such expressions by variables, and by including auxiliary conditions that perform the neces-
sary arithmetic. E.g. replace t + n by a variable T, and add a condition plus(t, n, T). 

4 To simplify both the model-theoretic and operational semantics we need to impose a range 
restriction on conditions, preventing such rules as ¬p(X, T1)→ q(X, Y, T2) ∧ T1 <T2, in which 
the variable X is unrestricted.  

5 E.g. the complex event stock goes up more than 5% at time T1 and stock goes up more than 
5% at a later time T2  and stock does not go down more than 2% between T1 and T2. 
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fact p that is true in a state Si is written either as p(ti) or as holds(p, ti). The resulting 
state Si in which all its facts have been time-stamped is written simply as Si*.  

Because the conditions and events in the antecedents and consequents of reactive 
rules are temporally ordered by inequality constraints between time points, the model-
theoretic semantics needs a specification of the inequality relation. In the operational 
semantics, the inequality relation can be computed by any means that respects this 
specification, including the use of temporal constraint processing. However, in the 
model theory, the specification of the temporal ordering is represented extensionally 
by an infinite set of atomic sentences t ≤ t’ and t < t’ for time points. 

This extensional representation of the inequality relations is included in a set Aux, 
which also includes extensional representations of any other auxiliary predicates, such 
as absolute value | | and max in the example of section 2. In LPS, these auxiliary pre-
dicates are defined by logic programs. 

With this time-stamping of facts and events, and this extensional representation of 
the inequality relation and of any other auxiliary predicates, the sequence of states and 
events can be combined into a single Herbrand model: 
 

M = Aux ∪ S0* ∪ e1* ∪ S1* ∪  e2* ∪   …    ∪ ei* ∪ Si* ∪ ei+1* …..  
 
In general, a Herbrand model, which is a set of atomic sentences, has a dual interpre-
tation. As a set of sentences, it is a purely syntactic object. But, as a specification of 
the set of all atomic sentences that are true in the Herbrand universe (i.e. the set of all 
variable-free terms that can be constructed from the vocabulary of the language), it is 
a model-theoretic structure. These two interpretations are closely related: A Herbrand 
model, viewed as a model-theoretic structure, is the unique minimal model of itself, 
viewed syntactically as a set of sentences. As we will see in section 7, this minimal 
model relationship is the key to the semantics of the more general case, in which the 
set Aux is generalized to a logic program. 

The definition of truth in a Herbrand model for arbitrary sentences of FOL follows 
the classical Tarskian definition. This includes the definition of truth for reactive 
rules: A rule of the form ∀X [antecedents(X)→ ∃Y consequents(X, Y)]  is true in M if 
and only if, for every ground instance x over the Herbrand universe of the variables X, 
if antecedents(x) is true in M, then there exists a ground instance y over the Herbrand 
universe of the variables Y such that consequents(x, y) is true in M.  

Notice that, in theory, because truth is defined for arbitrary sentences of FOL, the 
set of reactive rules could be replaced by any set of FOL sentences. The syntactic 
restrictions on reactive rules have been imposed primarily to simplify the operational 
semantics so that it operates with only a single current state.6 

Given a set of reactive rules R, an initial state S0 and a sequence of sets of external 
events ex1,…, exi,…, the task in KELPS is to generate an associated sequence of sets 
of actions a1,…, ai,…. such that all of the reactive rules in R are true in the resulting 

                                                           
6 For example, in the operational semantics, only the last set of events ei is accessible during the 

i-th cycle. This restriction can be liberalised to include a window of previous events, with the 
benefit that more complex events can be catered for without too much loss of efficiency.   
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Herbrand model M = Aux ∪  S0*  ∪ e1*  ∪ S1*  ∪   e2*  ∪   …    ∪ ei* ∪ Si* ∪ ei+1* 
….. Here ei = exi ∪ ai  and Si+1 is obtained from Si by adding any fluents initiated by 
the events in ei+1 and by deleting any fluents terminated by the events in ei+1. 

5 KELPS Operational Semantics 

The model-theoretic semantics of KELPS is compatible with many different opera-
tional semantics. The operational semantics sketched in this section uses the internal 
syntax, and employs an observe-think-decide-act agent cycle. It is relatively abstract, 
and is itself compatible with many different implementations. 

We assume that the i-th cycle starts at time ti, when the events ei transform the state 
Si-1 into the state Si, and that it ends at time ti+1 = ti +εi, where εi is the duration of the 
cycle. We assume that this duration εi is short enough that actions can be executed in 
a timely manner, and long enough that all the relevant conditions can be evaluated in 
the current state within a single cycle. In addition, we assume that the state Si remains 
unchanged throughout the period from ti to ti+1 i.e. t = ti for all ti ≤ t < ti+1. This is so 
that the truth values of conditions evaluated in Si are determined relative to a single 
time point ti, but their evaluation can take place during the interval from ti to ti+1. Any 
events are observed and assimilated only at the beginning of cycles.  

In addition to maintaining the current state Si, the operational semantics maintains 
a goal state Gi, which is a set of achievement goals, each of which can be regarded as 
a set of alternative conditional plans of actions for the future. Logically each goal 
state is a conjunction, and each conjunct is a disjunction of existentially quantified 
conjunctions of temporally constrained conditions and actions. These achievement 
goals are typically derived from the consequences of reactive rules (maintenance 
goals). However, they can also be given separately in the initial goal state G0. 

Operationally each achievement goal in the goal state can be regarded as a separate 
thread. In particular different threads, and different alternatives within the same 
thread, do not share any variables.7  

To deal with complex events in the antecedents of reactive rules, the operational 
semantics also maintains a current set of reactive rules Ri. A new rule is added to Ri 
when an instance of a condition or event in the antecedents of a rule is true in the 
current state. The new rule is an instance of the rest of the original rule that needs to 
be maintained in the future.  

To simplify the operational semantics, and to avoid over-constraining times, we 
exclude conditions and events of the form p(t) in reactive rules, where t is a time con-
stant. Instead, we write p(T) ∧ t ≤  T ≤ t + δ for some suitably small δ.   

With these simplifying assumptions, the operational semantics begins with an ini-
tial state S0, goal state G0 and set of reactive rules R0. The i-th cycle, starting with 
state Si-1, goal state Gi, rules Ri and events ei at time ti consists of the following steps: 
 
Step 0. Observe. State Si-1 is transformed into state Si by adding and deleting all the 
facts associated with all the events in ei.  
 

                                                           
7 Note that ∃Y[p(Y)∨q(Y)] is equivalent to ∃Y p(Y)∨ ∃Z q(Z). 
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Step 1. React. For every reactive rule in Ri of the form: 
 

antecedent(X) ∧ other-antecedents(X) → consequents(X, Y) 
 
where antecedent(X) is a conjunction of conditions and event atoms such that there 
are no conditions or event atoms in other-antecedents(X) constrained to be earlier or 
at the same time as those in antecedent(X),8 the operational semantics finds all 
ground instances antecedent(x) of antecedent(X) that are true in ei* ∪ Si* viewed as a 
Herbrand model.9 For each such instance, it generates the corresponding “resolvent”: 
 

other-antecedents(x) → consequents(x, Y) 
 
instantiating all the time variables Times that occur in antecedent(X)  to the current 
time ti, simplifying any temporal constraints, and adding the simplified resolvent as a 
new reactive rule to Ri. Simplification consists in deleting any inequalities that are 
true in Aux. Ri+1 is the resulting expanded set of reactive rules. 

If after simplification, other-antecedents(x) is an empty conjunction (equivalent to 
true), then the goal state Gi is updated by adding the simplified consequents(x, Y) as a 
new achievement goal, starting a new thread. 

Step 2. Solve Goals 

Step 2.1. Decide. The operational semantics deletes from Gi any disjuncts that are 
now too late, because they contain conditions whose times are constrained to be ear-
lier than ti or actions whose times are constrained to be earlier or identical to ti. If, as a 
result, all the disjuncts in a thread are deleted, then the thread is false, and the opera-
tional semantics terminates in failure. 

Otherwise, the operational semantics chooses a set D of disjuncts for evalua-
tion/execution from one or more threads in Gi. Choosing disjuncts from different 
threads amounts to solving several goals concurrently. Choosing disjuncts from the 
same thread explores different ways of solving the same goal simultaneously. 
 
Step 2.2. Think. For every disjunct in D, the operational semantics chooses a form10: 
 

conditions(Y) ∧ other-consequents(Y) 
 
where  conditions(Y) is a conjunction of conditions such that there are no conditions 
or events in other-consequents(Y) that are constrained to be earlier or at the same 
time as those in conditions(Y). 

The chosen conditions may be empty (equivalent to true), in which case the opera-
tional semantics continues with step 3. Otherwise, it queries the current state Si to 

                                                           
 8 This phrasing allows for the possibility that the antecedents of the rule are partially ordered. 

In such cases, it may be possible to parse a single rule into this form in different ways. 
 9 Note that x instantiates only those variables in X that are in antecedent(X). Any variables in X 

that are not in antecedent(X) remain as variables in x. 
10 Because all of the universally quantified variables have been instantiated in step 1 to varia-

ble-free terms, neither they nor their instances are displayed in this notation. 
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determine some instance conditions(y) of conditions(Y) that is true in Si*. It then gen-
erates the corresponding “resolvent”: 

other-consequents(y) 

instantiating the time variables Times’ in conditions(Y) to the current time ti, simpli-
fying any temporal constraints, and updating both D and Gi by adding the simplified 
resolvent to the thread in D and Gi containing conditions(Y) ∧ other-
consequents(Y).11 
 
Step 3. Act. For every disjunct in D the operational semantics chooses a form: 

actions(Z) ∧ further-consequents(Z) 

where actions(Z) is a conjunction of action atoms such that there are no conditions or 
actions in further-consequents(Y) that are constrained to be earlier or at the same time 
as those in actions(Z). 

The chosen actions may be empty (equivalent to true), in which case the operation-
al semantics continues with step 4. Otherwise, it attempts to execute actions(Z). For 
each such disjunct, if one of the actions in actions(Z) fails, then the conjunction of 
actions fails, and therefore all the actions in actions(Z) fail. For all the actions that 
succeed, it generates the corresponding “resolvent”12: 

further-consequents(z) 

instantiating the time variables Times’’ that occur in actions(Z) to the new current 
time ti+1, simplifying any temporal constraints in further-consequents(z), and updat-
ing Gi by adding the simplified resolvent to the thread containing actions(Z) ∧ fur-
ther-consequents(Z). 

If a new disjunct is empty (equivalent to true), the operational semantics deletes the 
thread containing the disjunct (because the thread is then also equivalent to true).  

Step 4. The cycle ends. The current goal state Gi becomes the next goal state Gi+1, and 
any successfully executed actions are added to the set of events ei+1. 

6 Soundness and Incompleteness 

The soundness of the operational semantics of KELPS can be shown by means of a 
similar argument to the argument for LPS [17]. The incompleteness of KELPS can 
also be shown by means of similar counterexamples. In particular, the operational 
semantics of neither LPS nor KELPS can:  
 

                                                           
11 Notice that conditions(Y) ∧ other-consequents(Y) is retained in Gi, because conditions(Y) can 

be queried again in the future, as long as no time in Times’ becomes constrained to be in the 
past. Moreover it may be possible to try the same disjunct again with a choice of different 
conditions(Y). Similarly, actions(Z) ∧ further-consequents(Z) is retained in Gi in step 2.3. 

12
 The instance z of the variables in Z can be regarded as a kind of a feedback from the  
environment. 
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1. preventively make a reactive rule true by making its antecedents false, or 
2. proactively make a reactive rule true by making its consequents true before 

its antecedents become true. 

These two kinds of incompleteness are tolerable for a simple-minded agent, which 
can compensate for them by the use of explicit, additional reactive rules, to cater in-
dependently for these cases. But they are undesirable for a genuinely intelligent agent. 

Examples of these two kinds of incompleteness include: 

1. attacks(X, you, T1) ∧ ¬ prepared-for-attack(you, T1)  
→ surrender(you, T2) ∧ T1 < T2  ≤ T1 + δ 
KELPS cannot make the rule true by performing actions to make  
prepared-for-attack(you, T) true and so ¬ prepared-for-attack(you, T) false. 
 

2. enter-bus(T1) → have-ticket(T2) ∧ T1 < T2 ≤ T1 + ε 
KELPS cannot make the rule true by performing actions to make  
have-ticket(T2) true before enter-bus(T1). 

7 KELPS + LP 

KELPS makes the simplifying assumption that auxiliary predicates are defined by 
possibly infinitely many facts Aux. This has the advantage that it highlights the pri-
mary role of reactive rules. But it ignores the need to define auxiliary predicates in a 
structured, reusable and computationally feasible manner. This need can be filled very 
simply by logic programs, whose minimal model and perfect model semantics are a 
natural extension of the model-theoretic semantics of KELPS. 

In addition to their use for defining auxiliary predicates, logic programs can be 
used to define intensional predicates, like view definitions in relational databases. 
They can also be used to name complex events and actions and to define them both 
recursively and in terms of other events and actions.  
 For example, whenever there is an emergency of any kind, we may want to isolate 
and monitor the area. This can be represented by the reactive rule:  

emergency(Area, T0) → isolate(Area, T1, T2) ∧ T0<T1<T2   

and logic program: 

emergency(Area, T) ← fire(Area, T) ∨ flood(Area, T) ∨ noxious-fumes(Area, T) 
isolate(Area, T1, T4) ← close-windows(Area, T1, T2) ∧ close-doors(Area, T2, T3) ∧ 
lock-doors(Area, T3, T4) ∧ T1<T2<T3<T4∧ focus-camera(Area, T5)∧ T1<T5≤T4 

Consider the simplest case, in which the auxiliary predicates are defined by a set of 
Horn clauses LP. This means that  

M = Aux ∪ S0* ∪ e1* ∪ S1* ∪  e2* ∪   …    ∪ ei* ∪ Si* ∪ ei+1* …..   

is the unique minimal model of the set of Horn clauses [3]: 
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LP ∪ S0* ∪ e1* ∪ S1* ∪  e2* ∪   …    ∪ ei* ∪ Si* ∪ ei+1* …..  
 
The uniqueness of the intended model continues to hold if Horn clause are generalised 
to locally stratified logic programs [21]. It also continues to hold if negative literals in 
logic programs are appropriately generalised to formulas of FOL.  

As in the case of KELPS, different operational semantics are possible for KELPS + 
LP. In the case of macro-actions in the consequents of reactive rules, the natural exe-
cution method is backward reasoning. However, in the case of macro-events in the 
antecedents of reactive rules, the natural execution method is a form of forward rea-
soning triggered by the observation of events. This kind of forward reasoning is simi-
lar to integrity checking methods for deductive databases and to the Rete algorithm 
[5] for production systems. It can be implemented, for example, by means of resolu-
tion in the connection graph proof procedure [13]. 

Earlier papers about LPS [16, 17] contain planning clauses and use intentional pre-
dicate definitions to generate future states. The focus in this paper is on defining a 
version of LPS that is closer to a practical programming language, rather than to a 
problem description and problem-solving language. 

8 MALPS – Multi-Agent LPS   

In LPS/KELPS, an agent interacts with a global state, observing and performing up-
dates. This global state can also serve as a communication and coordination medium 
for a community of agents, like the blackboard model in AI [10], tuple spaces in  
Linda [2], and conventional, multi-user database management systems. 

MALPS (Multi-Agent LPS) [18] exploits this potential of the global state to serve 
as a coordination medium. Different agents can have different goals, represented by 
different reactive rules, different beliefs, represented by different logic programs, and 
different capabilities, represented by different atomic actions.  

The extension of LPS/KELPS to MALPS requires no change to the model-
theoretic semantics: An action performed by one agent becomes an external event for 
other agents. Whereas in LPS/KELPS, only a single agent tries to make its own goals 
true, in MALPS all the agents try to make their goals true. 

The use of a global state as a communication and coordination medium contrasts 
with the use of message-passing in many other computing paradigms, in which the 
use of global states and global variables is considered an unsafe practice with a prob-
lematic semantics. In KELPS, global states not only provide the basis for its opera-
tional semantics, but they also underpin its model-theoretic semantics. 

The simplest way to implement MALPS is to synchronise updates, so that all of the 
agent cycles start and end at the same time. This is similar to the simplifying assump-
tion in KELPS that time stands still for the duration of a cycle. This simplifying as-
sumption ensures that, if the only external events are the actions of other agents, then 
if an agent believes that a condition is true in a given state, then it really is true be-
cause no other agent can update the state during the cycle.  
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9 Conclusions 

We have presented a reactive kernel KELPS of LPS that deals with complex events, 
generalized FOL conditions and temporal constraints. 

As we have already mentioned, KELPS is similar to MetateM, with their common 
focus on generating a model to make a collection of reactive rules true. However, 
MetateM differs from KELPS by employing modal logic syntax with a possible world 
semantics, and by using frame axioms to implement change of state.  

LPS is also similar to TR Logic, with their common use of a destructively updated 
state, and their common view of complex actions as sequences of conditions that are 
solved by queries and atomic actions that are perform by updates. Indeed, the fact that 
conditions in LPS can be FOL formulas is largely inspired by TR Logic.  

TR Logic employs a non-modal syntax, but with a possible world semantics, in 
which truth values are determined relative to paths in a collection of possible worlds. 
This semantics is natural for transactions. But it seems cumbersome for reactive rules, 
whose truth value then depends on whether, for every path over which the antece-
dents are true, there exists a later path over which the consequents are true.  

MetateM and Transaction Logic are the two computational frameworks that are 
closest to LPS/KELPS, but they are only the tip of an iceberg. Numerous other at-
tempts have been made to develop a model-theoretic semantics for state transition 
systems. As far as we can tell, none of them view computation as generating a clas-
sical FOL model of a program. 

The model-theoretic semantics of FOL, upon which the semantics of LPS is based, 
is the simplest model-theoretic semantics possible, because all other model-theoretic 
semantics, including the possible worlds semantics, reduce to it. The use of classical 
FOL semantics is possible for LPS, because the internal syntax of LPS includes expli-
cit representations of times and events, making it possible to generate single models 
that include the entire sequence of states and events. The representation of time in the 
internal syntax can be partially hidden in an external syntax, but can be brought to the 
surface when necessary, for example to refer to temporal constraints on times and 
durations. This ability to represent and reason about temporal constraints is essential 
for practical applications, including those that involve real time and scheduling. 

Those frameworks, other than transaction logic, that most obviously provide a 
model-theoretic semantics for state-transition systems, such as the situation calculus 
and Metatem, employ frame axioms in the operational semantics. We believe that the 
ability to update states destructively, without the use of frame axioms, is another im-
portant feature of LPS, which is essential for most practical applications. However, 
the importance of avoiding the use of frame axioms does not seem to be generally 
appreciated, making it difficult in many cases to compare LPS with other systems. It 
seems to us that this lack of appreciation is due to a confusion between the representa-
tional and computational aspects of the problem.  

The representation aspect of the frame problem is how to represent formally the 
property that if a fluent holds in a state, then it continues to hold in future states unless 
and until it is terminated by an event. Arguably, this aspect of the frame problem has 
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been solved adequately by the use of frame axioms formulated in various non-
monotonic logics, including logic programming.  

However, it is easy to see that the computational aspect of the frame problem of ef-
ficiently determining whether a fluent actually holds in a given state cannot be solved 
in the general case by reasoning with frame axioms. It simply is not computationally 
feasible either to reason forwards with frame axioms, duplicating facts that hold from 
one state to the next, or to reason backwards, to determine whether a fact holds in a 
state by determining whether it held in previous states. The solution of the computa-
tional problem requires the use of destructive updates.  

LPS/KELPS reconciles the use of destructive updates in the operational semantics 
with the model-theoretic semantics by making the frame axiom(s) emergent proper-
ties, which hold without the need to reason with them operationally. 

10 Future Work 

The operational semantics sketched in this paper is very abstract, and capable of many 
refinements and optimizations. We have implemented a prototype of LPS that in-
cludes some of these improvements, making it closer to a conventional programming 
language. For example, the implementation uses a Prolog-like depth-first search to 
choose a singleton set of disjuncts D. Some obvious additional improvements include 
the use of a constraint solver for handling temporal constraints and the use of a UML-
like graphical external syntax. 

LPS has its origins in AI knowledge representation and reasoning languages, but 
has developed into a framework that overlaps with many other areas of computing, 
including, most notably, database systems, as well as coordination languages that use 
a shared global state for parallel, concurrent and distributed computing. It is a major 
challenge to investigate the extent to which LPS might contribute to these areas.  
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Abstract. It is widely acknowledged that modern information sytems require
an ontological layer on top of data, associated with advanced reasoning mech-
anisms able to exploit the semantics encoded in ontologies. We focus here on
ontology-based data access (OBDA), a new paradigm that seeks to take ontolog-
ical knowledge into account when querying data. This paradigm is currently the
subject of intense research in the database, knowledge representation and reason-
ing, and Semantic Web communities. Indeed, it is expected to have a major im-
pact in many application domains, however some foundational issues need first to
be adressed. In this context, we consider an emerging logical framework based on
existential rules, also known as Datalog+/-. This framework can also be defined
in graph terms. Compared to the lighweight description logics currently devel-
oped for OBDA, it is more powerful and flexible; an important feature is that
predicate arity is not restricted, which allows for a natural coupling with database
schemas and facilitates the integration of additional information, such as contex-
tual knowledge. On the other hand, the existential rule framework extends the
deductive database language Datalog by enabling to infer the existence of entities
that do not necessarily occur in the database (hence the name existential rules), a
feature that has been recognized as crucial in the context of incomplete informa-
tion. In this talk, we will provide an introduction to this framework in the context
of OBDA, then present the main decidability and complexity results as well as
algorithmic techniques, and discuss some challenging research issues.
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Abstract. In order to react to the ever-changing market, every organi-
zation needs to periodically reevaluate and evolve its company policies.
These policies must be enforced by its Information System (IS) by means
of a set of business rules that drive the system behavior and data. Clearly,
policies and rules must be aligned at all times but unfortunately this is
a challenging task. In most ISs implementation of business rules is scat-
tered among the code so appropriate techniques must be provided for
the discovery and evolution of evolving business rules.

In this paper we describe a model driven reverse engineering frame-
work aiming at extracting business rules out of Java source code. The
use of modeling techniques facilitate the representation of the rules at
a higher-abstraction level which enables stakeholders to understand and
manipulate them.

1 Introduction

Today market needs oblige organizations to change periodically their policies
expressed as a set of business rules. A business rule represents a relevant ac-
tion or procedure aiming at defining or constraining some precise aspect of a
business. Business rules are a key component of the Information System (IS) of
the company. Unfortunately, they are not usually implemented as a single and
easily identifiable component in the IS but are generally scattered in many parts
of the IS source code. This makes it very difficult to quickly and safely evolve
the organizational policies.

To tackle this issue we propose a new Business Rule Extraction (BREX)
framework. BREX [1] is the process of extracting business rules out of an IS,
isolating the code segments which are directly related to business processes.
BREX includes three major activities: Variable Classification, Business Rule
Identification (mainly based on Program Slicing [2] techniques) and Business
Rule Representation.

A. Bikakis and A. Giurca (Eds.): RuleML 2012, LNCS 7438, pp. 17–31, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Variable Classification is used to reduce the number of variables to analyse.
It aims at finding variables that represent domain/business concepts and hint at
business rules. The set of domain concepts represent the sphere of non-technical
knowledge embedded in the application.

Business Rule Identification aims at identifying business rules by slicing the
source code [3] to focus on the chunks of code that are relevant to the domain
variables, identified in the previous step. A set of chunks related to the same
variable conforms a business rule.

Business Rule Representation consists of presenting the extracted business
rules through artifacts (graphs, text, . . . ) amenable to human comprehension.

A further activity in BREX is the traceability of business rules from the source
code. This task is not always present in BREX frameworks but we believe is a
key component to explain and justify the origin of the extracted business rules.

In this sense, this paper describes a model-driven framework for extracting
business rules out of a Java application. We show that Model Driven Engineering
(MDE) applied to reverse engineering/BREX approaches offers some important
benefits with respect to previous works. MDE allows working on an abstract
homogeneous representation of the system that avoids technological problems
and provides a non-intrusive solution, since the extraction process is performed
by working with the model of the system and not the system itself. Moreover,
when representing the system as a model we can benefit from the plethora of
MDE tools available to manipulate the (model of the) system.

MDE allows us to build a framework composed by independent and modular
steps, since each of them is related to the others by its input and output models.
In this way, the user can stop the BREX process at any moment, selecting the
level of output that better fits his needs.

The framework is fully automatic but allows user intervention at the end of
each sub-step. This allows users to complement the automatic process in order to
refine and improve the results of our extraction heuristics, e.g. users could provide
information about the company “coding style” to facilitate the identification of
rules.

This paper is structured as follows: Section 2 presents a running example;
Section 3 introduces the overall approach; Section 4 illustrates Traceability in
the framework, which describes how the entities composing the artifacts in the
framework are related to the source code; Section 5 analyses the result of this
framework; Section 6 discusses the related work and Section 7 closes the paper
with conclusion and future work.

2 Running Example

In order to illustrate our framework, we will use as running example a Java
application that belongs to the simulation software category and that contains
several business rules.
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The application simulates the behavior of animals and humans in a meadow,
where each actor, animal or human, can act and move according to its nature.
Two different functionalities are implemented in this application: one represents
the business logic and describes how predator-prey interactions affect population
sizes. The second one is used to store statistical information about the actors
participating in the simulation.

A schema of the application classes and their relationships is shown in Fig.1.
GUI class shows the graphical interface of the application; Simulator simulates
the predator-prey game and it stores information for statistical analysis; Sim-
ulatorView, AnimatedView and FieldView represent the graphical views of the
game. Counter provides a counter for each participant in the simulation; Grass
models the grass on the field; Field is a rectangular grid of field positions. Each
position is modelled as a Location. Actor is an interface containing methods to
modify the actor’s location and to perform the actor’s daily behavior. Human
and Animal implement Actor. Human provides the common features to all hu-
mans (get/set location). Animal stores the actual age, the location in the field
and the food level. It contains also a boolean variable for determining if the an-
imal is alive, the maximum and the breeding age, the breeding likelihood and
the maximum number of births which an animal can have.

Fig. 1. Class dependencies
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2.1 Rules Modeling the Application

A manual inspection of the source code of these classes reveals the existence of
several business rules.

Rules modelling hunter behaviours are:

– Hunters never die
– Hunters hunt animals

Rules modelling bird and rabbit behaviors are:

– Rabbits/Birds can die by being eaten by foxes, hunted by hunters, because
of starvation, old age or overcrowding

– Rabbits/Birds can breed when they reach their breeding age
– Rabbits/Birds eat grass

Rules modelling the fox behaviors are:

– Foxes can die by being eaten by hunters, because of starvation, old age or
overcrowding

– Foxes can breed when they reach their breeding age
– Foxes eat rabbits or birds

Fig.1 shows also the inheritance rules, but to detect them it’s not necessary
to perform an analysis like the one presented in this paper. The application is
composed by 2 packages and 16 classes. The presentation and the domain layers
are clearly separated.

3 Framework Description

As written in Section 1, a BREX is typically composed of three operations: Vari-
able Classification, Business Rule Identification and Business Rule Representa-
tion. A new operation, Model Discovery, is added to the framework in order to
move the global BREX process from a grammarware technological space to the
modelware one. Fig. 2 depicts these four phases together with the input/output
artfacts of each phase.

Fig. 2. Overall approach
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Model Discovery takes as input the source code of a Java application and
generates a Java model that has a one-to-one correspondence with the code (i.e
there is no information loss; all classes, methods, behavior,... of the Java code is
represented as part of the model). We will refer to this Java model as Platform
Specific Model (PSM) in the remainder of the paper since model discoveries are
available for several languages and could be reused in other BREX processes.

Variables Classification identifies the domain variables together with their
containing classes. The input of this operation is the PSM and the output is a
model containing all domain’s classes and their inner variables.

Business Rule Identification provides the means to identify the business rules
related to a domain variable. This operation takes as input the PSM and a
variable i contained in the Domain Variable Model. It returns two models: a
model containing the internal representation of the business rules belonging to i
and a global domain model with the set of classes, method signatures and class
attributes relevant for the union of domain variables models.

Business Rule Representation provides artifacts for representing business rules.
This operation takes as input the Business Rule Model for the variable i and
returns human-understandable artifacts that ease the comprehension of the busi-
ness rules for i.

The model discovery phase is implemented with MoDisco[4]. MoDisco is a tool
offering a set of model-based components to facilitate the creation of reverse
engineering solutions. MoDisco includes already a Java metamodel and a full
Java discovery that instantiates this Java metamodel with based on the source
code of a set of Java files.

The other three phases, which are the ones strictly corresponding to a BREX
process, are described in detail in the next subsections. They have all been imple-
mented by means of a chain of model-to-model transformations that manipulate
the input and output models as described in the text. All transformations have
been implemented using Atlas Transformation Language (ATL) [5], which is a
model transformation language specified as both a metamodel and a textual
concrete syntax.

In the field of MDE, ATL provides developers with a means to specify the way
to produce a number of target models from a set of source models by writing
rules that define how to create target models from source model elements.

3.1 Variable Classification

Variable Classification is used to reduce the number of variables to analyse by
filtering out those variables which are not representing (or relevant for) domain
information. This phase takes as input the PSM and returns a model with the
Java classes and variables modeling business concepts. These variables are used
as starting point to identify business rules.

To identify the relevant variables we have developed a set of heuristics based
on a sample of Java programs. For instance, for the running example, the heuris-
tics help to distinguish between classes belonging to the business layer and classes
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belonging to the presentation layer based on the package and import directives
in the class definition.

All classes in the presentation layer are collected and used as starting point
to find classes handling domain concepts. Since several functionalities can be
implemented in an application, the domain classes are organized in groups. The
classes composing a group contain one or more type dependencies of other classes
in the same group. Groups having the same classes are merged together.

The computation of calculating a group starts by creating the set of classes
using graphical imports (GUI, Simulator and AnimatedView, FieldView; while
SimulatorView is not considered because it is an interface). From each of these
classes three lists are generated: a list (output) containing the classes already
analysed, a list (temp) containing the classes which have a type dependency to
the current analysed class and a static list (forbidden) of classes that can not be
part of the group. The computation ends when the temp list is empty.

The variables in the classes of the output list are classified in three categories:
single-access, multi-access and potentials.

– Single-access variables are all the class attributes that occur at most once
on the left side of an assignment. In this group we can find final and static
variables and variables that are initialized in the constructor.

– Multi-access variables are all the class attributes occurring more than once
on the left side of an assignment.

– Potential variables are all the variables that are declared in methods and
occur on the left side of an assignment.

Single-access variables point at business rules modelling the initializations of an
application; whereas Multi-access and Potential variables point at business rules
modelling more complex behaviors.

The metamodel in Fig.3 is used to store the variables information. The meta-
model is composed by a root entity Model containing zero or more groups. Each
Group stores a set of classes related to it. A Class is a subtype of Element.

Fig. 3. Variable Classification metamodel
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Class is described by three lists of Variables: single-access, multi-access and
potentials. Variable is described by three properties: name, storing the name of
the variable; type, storing the type name of the variable and link. The latter
is used to store a reference to the entity in the PSM that corresponds to the
variable declaration statement in the code.

3.2 Business Rule Identification

Business Rule Identification, described in Fig.4, is composed of several sub-
steps: Domain Model Extraction, Slicing Operation and Business Rule Model
Extraction. It takes as input the PSM model and the Domain Variables Model
and generates two models (Domain Model and PSM enriched with slicing an-
notations (PSMA)). The first one stores a map between the domain concepts
expressed as class names, method signatures and class attributes pointed by the
domain variables and a customizable verbalization of these elements (to improve
the quality of the natural language explanation of the rules); whereas the second
one contains all the business rules related to a domain variable i selected by
the user.

Fig. 4. Business Rule Identification process

Domain Model Extraction. This operation allows extracting method sig-
natures and class attributes from the classes containing the domain variables
identified in the variables classification step, providing a default vocabulary for
these entities to be reused in the description of the business rules. The default
verbalization consists in simply splitting the names of classes, variables and
methods according to the common way to define them in Java (for example,
for static and final method or variable names: ABC DEF ->ABC DEF; in the
other cases: abcDef ->abc Def). Nevertheless, the user can tune the process and
define its own rule verbalization (or directly change the verbalization of some
methods).

The input of this operation is the PSM model and the Domain Variables
Model. The output of this step is a model conforming to the Business Object
Model/Vocabulary Model (BOM/VOC) metamodel of IBM WebSphere ILOG
JRules BRMS1.

1 http://www-01.ibm.com/software/integration/business-rule-management/

jrules-family/

http://www-01.ibm.com/software/integration/business-rule-management/jrules-family/
http://www-01.ibm.com/software/integration/business-rule-management/jrules-family/
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In Fig.5, a part of the BOM/VOC model concerning the class Grass is shown.
All the method signatures and class attributes belonging to Grass are stored in
a model conforming to the BOM metamodel. This model is used to generate an
instance of the VOC metamodel containing a default verbalization for all the
BOM elements. The name of the class is translated as a concept, while variables
and method signatures are translated as phrase in which the word this is used
to refer to concept.

Fig. 5. Example of the BOM/VOC model for the class Grass

Slicing Operation. The slicing operation is a variation of block slicing[6].
The inputs of this step are the PSM and a variable i contained in the Domain
Variables Model; whereas the output is the PSM enriched with annotations
(PSMA) on all the statements, variable declarations and methods relevant for i.
Each annotation for any of those elements concerns the granularity index, the
name of the slicing variable, the unique rule number and the type of relation
with the slicing variable i.

The granularity index is the position of a method (containing one of the
elements relevant to i) inside the ordered set of methods we cross in a program
from the main entry execution point to the statement that actually modifies the
value of the variable i. This ordered set of methods is defined as granularity set.

A relevant statement can be annotated as rule or related. All the statements
that allow passing from a method in the granularity set to another one in the
same set are annotated as rule. A statement is marked as related if it contains
a rule statement or contains a variable declaration used inside a related or rule
statement.

Two types of relations are defined for variable declarations. A variable dec-
laration is marked as sliced-variable if it is the selected slicing variable i. A
variable declaration is marked as related-variable if it is used inside a related or
rule statement.
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Relevant methods can be annotated as related if they contain at least one
related or rule statement or as reachable if one of its invocations occurs in a
related statement or in another reachable method.

All this information is then used to extract the business rule. The result of the
annotation can be visualized by the user if desired. The previously mentioned
MoDisco Eclipse plug-in can take the annotated model and transform it back
into a Java application where all annotations will appear as comments.

Fig. 6. Example of a slicing operation on foodLevel variable

In Fig.6 an example of slicing is presented. Line 9 contains the rule statement
of the slicing variable foodLevel for granularity zero. The if condition at line 7 is
annotated as related since it contains the rule statement. The statement at line
6 is annotated as related because the statement at line 7 cannot exist without it.
The statements at line 5 and 4 follow the same logic. The variable declaration
statement at line 3 is annotated as related, since the defined variable is used as
argument at line 4. The while statement at line 2 is marked as related, because
it contains statements that are related to the slicing variable. The statement
at line 1 is annotated as related, because it is used in the condition of the next
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while statement. The method is marked as related, since it contains related and
rule statements.

The method findfood is invoked from the body of the method act, which
contains elements related to the slicing variable with granularity 1. The two
methods are in the same class Fox.

The method act is invoked in simulateOneStep of the class Simulator. The
body of this method contains elements with a granularity value of 2.

Analysing where the related methods are invoked, it is possible to go back
until the method that starts the application.

Business Rule Model Extraction. The goal of this step is to extract from
the PSMA only those entities that are annotated and domain-related to the
variable i.

As seen in Fig.6, the slicing operation allows tracking all the methods and
statements for a specific domain variable. Since a part of those methods are
outside the domain layer, we use the information collected during the Domain
Model Extraction step to identify and remove them.

The input of this transformation is the PSMA and the Domain Model; the
output model contains all the business rules for the variable i. Each business
rule contains statements, methods and variable declarations annotated during
the slicing operation that have references to the domain concepts stored in the
Domain Model.

Fig. 7. Business Rule metamodel

The output model conforms to the metamodel shown in Fig.7. The Where en-
tity stores the class and method names from which the Slice has been extracted.
An Action entity represents a rule statement that can be a method invocation,
an assignment, an object creation statement or a variable declaration. The pre-
Actions list contains Structures related to the Action. A Structure can be a loop
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statement, a variable declaration or an if statement. Each Structure can store
zero or more Expressions. ReachableMethod and RelatedVariable entities contain
the methods and the variables that are invoked in Structures and Action. Ex-
pression, Action, Where and MethodDeclaration are Trace entities used to store
links pointing to the PSMA elements from which they have been generated.

Slice entities are related each other by following and follower list, that allow
creating a graph of slices. For each slice s, the first list contains slices which store
rule statements having the same id number of s and the immediately superior
granularity index. The second list contains slices storing rule statements having
the same id number of s and the immediately lower granularity index.

3.3 Business Rule Representation

Business Rule Representation, shown in Fig. 8, provides human-understandable
artifacts describing the extracted business rules for the slicing variable i.

This process takes as input the Business Rule Model for the variable i and
optionally the Domain Model. The latter is used if the user wants a verbalization
not completely based on the source code. It generates textual and graph artifacts
for easing the analysis of the extracted business rules.

Fig. 8. Business Rule Representation process

Text Generation. The text generation takes as input the Business Rule Model
and the Domain Model if selected. It generates a textual output where the sen-
tences contain the verbalization of the entities stored in the Business Rule Model
(Fig.10).

Generic Graph Generation. Since several types of graph exist and since each
of them can be used to emphasize some topology features; the framework allows
transforming the Business Rule Model into a generic graph model, that collects
edges, nodes, their labels and dependencies.

This step takes as input the Business Rule Model and the Domain Model
and generates a model conforming to the Portolan metamodel [7], that allows
bridging the gap between data of a given domain and its graph visualization.
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Specific Graph Generation. Thanks to Portolan [8] , we can delegate the
selection of a particular type of graph to a dedicated step.

This step takes as input the Portolan model and produces as output a specific
graph model, which currently conforms to a metamodel representing a GraphML
graph2.

4 Traceability Support in the Framework

Traceability in BREX can be defined as the ability to tie the source code elements
to those composing the extracted business rule [9]. Our approach offers full
traceability support between all the steps.

Our traceability implementation benefits from the key importance of the
traceability concept in MDE where generation of traces is already part of the
features offered by several model manipulation tools (e.g. in transformations [10],
to relate the target elements with the source elements that originated them; see
[11] for a survey of traceability approaches in MDE).

Given that our framework is MDE-based, we can implement BREX Traceabil-
ity through MDE Traceability using non-intrusive methods. This is an important
difference with respect to other methods that must use more intrusive actions
(e.g. modifying the compiler to instrument the code to generate traces) to collect
the needed information.

Fig. 9. Traceability Metamodel

Traceability information is stored in a traceability model conforming to the
trivial metamodel of Fig. 9). Traceability entity stores the sets of linked source
and target elements (generic EObjects) for all the rules executed in the ATL
transformations implementing the different steps of our method. Therefore, each
transformation rule creates not only the elements of the target model but also
links each target element with the source element that matched the rule and
triggered its execution.

5 Analysis of the Result

To validate our method we analyzed that the business rules returned at the end
of the BREX process for the running example coincide with the ones that we

2 http://graphml.graphdrawing.org/

http://graphml.graphdrawing.org/
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discovered after a manual inspection. For the running example, we were able to
generate both graphical and textual representations of all the identified rules,
facilitating this way the comprehension of the application.

As an example of the results obtained on the application described in
Section 2, we show some of the extracted business rules.

Fig. 10. Causes of death of a bird

Fig 10 presents a textual-based explanation of all possible causes of death for
birds. Each box is automatically generated and summarizes a different business
rule controlling the birds’ death: a bird can die hunted by a fox or by a hunter,
because of starvation, old age and overcrowding.

Currently we are testing our framework on a bigger case study provided by
IBM, but due to lack of space we can report only a part of the new result.

Thanks to our approach we have been able to discover uncovered rules that
the users were not aware of.

The IBM case study has allowed us to analyse the efficiency of our framework.
The most time-consuming step is the Slicing Operation (Section 3.2), since it is
based on recursive heuristics, which identify the relevant input elements for a
given variable and write annotations on them.

In order to optimize this step, we are implementing a pruning component that
will allow reducing the input size of the slicing operation for any given variable.
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We have remarked that the expressiveness of the inferred rules decreases as
long as the complexity of the application domain increases. In the example de-
scribed in this paper, the default verbalization allows going up towards a lan-
guage that is not programming-related. Unfortunately, this does not happen for
the complex case study, where the default verbalization adds more complexity
to the rule expressiveness.

6 Related Work

BREX has been extensively studied in the literature but we believe our approach
provides some additional benefits with respect to previous work.

First of all, the output of the framework is flexible. Thanks to the modularity
provided by the use of MDE techniques, we can separate the internal represen-
tation of the rules from their external visualization. This separation makes it
possible to create different verbalizations for the same business rule. In previous
work like [1], [12], [13] and [14] the verbalization step and a separation between
the internal and the external representations are not provided.

Traceability is also missing in most of the approaches [12], [13], [1], [15]. [16]
includes partial traceability support implemented by means of adding start line
number, end line number and annotations to the business process that facilitate
identifying the parts of the code relevant to the process. Instead, thanks to the
explicit relationships between the business rule model and the Java model, we
can navigate from one to the other and retrieve the exact code excerpt relevant
to the rule.

Regarding approaches specific for Java, [17] proposes an intrusive approach
based on the byte-code instrumentation. Our approach is non-intrusive, since we
work on an abstraction of the system.

In all of those papers the Granularity of the extracted business rules is not
treated or mentioned.

7 Conclusion and Future Work

This paper describes a MDE framework for extracting BRs out of a Java appli-
cations. The BRs extracted out of the source code are stored in a model-based
internal representation that can be externalized in several ways to fulfill the
needs of different users (business analysts, developers, . . . ). Moreover, our inte-
grated traceability mechanism allows to link back the rules to the corresponding
part of the source code that justifies their extraction.

The four steps composing the framework have been explained at hight de-
scription level, since we have preferred to discuss their heuristics, their input
and output instead of entering in details for each of them.

The example used along this article has been selected in order to develop a
framework that could be used for understanding a generic application.

We are now applying our framework on a real use case provided by IBM and
composed by more than 5000 Java classes. This will help us to develop additional
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heuristics for the framework and test its scalability. Moreover, we plan to extend
the framework to other technologies beyond Java. In particular, we will focus our
attention to the identification and consolidation of business rules enforced as part
of the presentation and persistence (e.g. as part of checking conditions in triggers)
layers. Finally, we would like to integrate machine-learning capabilities so that
the framework becomes able to learn both about the coding and implementation
style used by the company (so that the heuristics can be refined based on the
corrections provided by the users in previous projects) and about the domain
itself (i.e. the business rules extracted for the domain can be used as auxiliary
information when extracting business rules of another software for the same
domain).
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Abstract. Most approaches to business process compliance are restricted to the
analysis of the structure of processes. It has been argued that full regulatory com-
pliance requires information on not only the structure of processes but also on
what the tasks in a process do. To this end Governatori and Sadiq [2007] proposed
to extend business processes with semantic annotations. We propose a methodol-
ogy to automatically extract one kind of such annotations; in particular the anno-
tations related to the data schema and templates linked to the various tasks in a
business process.

Keywords: Business process, business process compliance, database schema,
compliance by design.

1 Introduction

Recently much interest has been seen in the business process management community
on business process compliance due to the introduction of new regulatory laws such
as Sarbanes-Oxley, BASEL II, and HIPPA to name a few. These laws impose severe
penalties on violations. Hence enterprises are heavily investing to comply with inter-
nal or external policies thus the compliance software and services industry is booming
rapidly. A recent survey by Deloitte Australia [1] reveals that, in Australia alone, es-
timated spending on compliance related activities in the public sector is around 4%
of total IT spending (approaching the annual cost of AUD$1-billion), and compliance
costs are expected to rise in coming years. No matter what they have to do, enterprises
are obliged to streamline their daily business operations to the regulatory laws for trans-
parency and better operations.

Enterprises develop process models to document and automate their operational ac-
tivities. These process models provide an enterprise with a high-level view on how to
achieve their business objectives and implement regulatory policies governing these
processes. Hence process models can be used to verify the effectiveness of regulatory
laws and/or policy controls. Furthermore, these models can also provide a view on the
flow of data and relationships among the activities in the process, thus making a pro-
cess model a natural venue to implement compliance related controls. Essentially com-
pliance is a relationship between two distinct spaces with different objectives: process
modeling specifications space and business rules specifications space. The business
modeling specification space is procedural in nature, detailing how a business activity
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should take place. In contrast, business rules specifications are descriptive, dictating
what need to be done to remain compliant [2].

Achieving balance between these two different worlds is not straightforward as a
number of efforts have been reported in business process management literature [3–5].
However, predominantly much of these efforts have been limited to the development
of descriptive approaches for BPM to achieve flexibility in business process execution
[6] or restricted their attention to the analysis of the structure of business processes
only [7, 8]. As compliance requirements come from different sources, it has been ar-
gued that to achieve full compliance it is inevitable to have complete information not
only on the structure of processes, but also on what the tasks in a process do. To this
end [2] proposed to enrich business processes with semantic annotations. Enhancing
processes with these annotations allows process designers to implement, and see the
control objectives within the process modeling space.

The idea to semantically annotate business processes is based on the notion of con-
trol tags. Control tags provide better understanding of the interaction between busi-
ness process modeling specifications and business rule specifications. From a business
process model perspective, there are four types of control tags: control-flow, data, re-
sources, and time control tags [2]. These control tags consist of the state and operations
of propositions about the conditions that are to be checked on a task; and are typed
linked. In addition to that, control tags are not based on specific ontology, and may
have associated constraints or policies. We build our work on the idea of these control
tags with primary focus on the data control tags which identify the data retention and
lineage requirements. For compliance checking purpose, the data control tags can be
designed through parsing of Formal Contract Language1(FCL) expressions, represent-
ing business rules. However, the problem is that how do we get the data for the data
control tags; and where the data will come from. In addition to that, another question
is how we can enforce the data constraints when annotating a process model with data
tags. In this paper we are interested with the first two questions only: how to get data for
data control tags; and from where. To address this problem, we proposed a query-based
methodology to extract the data for control tags to annotate process models.

Business rules can be used for a variety of purposes. One particular application of
business rules is to capture constraints on the data used in/by an application. Business
rules provide a declarative approach to model such constraints and typically, they do
not force specific technology and implementations.

A business process is a self-contained description of the activities to be done to
achieve particular business objectives, the order in which the activities have to be done,
the data the process operates on, and the resources required by the process. In this paper
we restrict our focus on the data aspect. Figure 1 shows the links between the data and
a task of a process model. Typically, there are three possible ways to provide data to
a task in a process: (i) the tasks receives the data from a previous task, (ii) the task
is given data from a user, and (iii) the task reads data from a database linked to the
process. We can reverse the direction for the data produced by a task. In general for the
data interactions we assume that: (a) users interact with a process using forms and get
reports back following some specific templates, and (b) data passes from one task to

1 FCL: A formalism to express normative specifications.
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Fig. 1. Links between Data and Task in Process Model

the other using messages (according to specified templates or schemas). Thus data can
be obtained by querying a database or parsing (XML) documents. The data produced,
again is obtained by queries on databases (including the generation of views).

A typical scenario for the methodology we are going to discuss in the rest of paper
is that where we have document-centric business processes, and where there is an orga-
nization that provides requirements for what data has to be in the documents, and how
the documents are handled. The issue is to provide compliance certification for a pro-
cess implementing the business rules specifications. A prototypical example is that of
electronic lodgment of applications (for which we provide a simplified scenario based
on a real life case, in Section 2).

Since we focus on compliance (i.e., design-time verification of the alignment of two
sets of specification), it is not possible to have the actual data of instances of a process.
Accordingly, the data control tags are not about the data of an instance case of a process,
but on the schema of the databases and the parameters of document templates. Thus the
research question of the paper is: how to extract relevant information from the schema
of the databases linked to a process.

The organization of the paper as follow: in Section 2, we introduce a motivating
scenario to set the stage to present our methodology. A short discussion on business
process compliance follows in Section 3. The basics of formal contract language (FCL)
will be presented in Section 4 after a short discussion on modeling normative require-
ments. In Section 5, we show how FCL can be used to model the business rules of our
motivating example. Section 6 will outline our proposed compliance by design schema
extraction methodology, followed by a review of latest research in the problem domain
in Section 7. Concluding remarks and an outlook on future work will be presented in
Section 8.

2 Scenario: Lodgment Verification Process

To present our proposed methodology consider a hypothetically simple lodgment case
verification process aiming to verify whether the lodgment case comply with all
designated rules, and whether it is in an acceptable form for further processing
(cf. Figure 2).
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Fig. 2. Lodgment Case Process

The data verification process can generate the following response:

– an indication that the elodgment case meets all requirements for the lodgment, or
– a list of business rules with which that elodgment case does not comply, including

registration requirements, and/or where required,
– a list of the manual examination processes that need to be performed on that elodg-

ment case following the lodgment.

The process starts with a verification request message from the subscriber containing
message data items included in the message header such as electronic lodgment notice
workspace ID, request message type, system request ID (from where message origi-
nates), operator ID, lodgment case ID just to name a few. The application consists of
four documents:

– Electronic Lodgment Case (eLC),
– eConsent Information Report (eCIR),
– eLodgment Information Report (eLIR), and
– eNotice of Sale Information Report (eNoSIR).

In addition to basic data in the verification request message data, additional information
pertaining lodgment case must be present in these documents. The main objective of
the verification process is to verify that these documents are present in an application,
and that they contain the information required to verify the suitability of the lodgment
case. Furthermore, the required data must be in the required format.

There are four documents associated with the request message data of the lodgment
case process. The request message must contain data items from these documents. The
data requirements are expressed by the following business rules.

Business Rules

BR1 Each eConsent Information Report must specify exactly one ELN (Electronic
Lodgment Notice) workspace ID.

BR2 The ELN workspace ID specified in each eConsent Information Report must be
the same as the ELN workspace ID specified in the eLodgment Information Re-
port in the eLodgment Case that includes that eConsent Information Report.
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BR3 Each eConsent Information Report must specify exactly one ELN eLodgment
Case ID.

BR4 The ELN eLodgment Case ID specified in each eConsent Information Report
must be the same as the ELN eLodgment Case ID specified in the eLodgment
Information Report ID in the eLodgment Information Report, in the eLodgment
Case that includes that eConsent Information Report.

BR5 Each eNoS Information Report must specify exactly one ELN eLodgment Case
ID.

BR6 The ELN elodgment Case ID specified in each eNoS Information Report must be
the same as the ELN eLodgment Case ID specified in the eLodgment Informa-
tion Report included in the eLodgment Case that includes the eNoS Information
Report.

In the next sections we introduce the methodology for business process compliance and
the formalism we are going to use to formalize the above business rules.

3 Business Process Compliance

The main objective of business process compliance is to ensure that businesses perform
their operations in accordance with regulatory laws and/or internal policies. Business
rules on one hand, and business process modeling on the other, are two separate worlds
with different objectives. The business rules specifications (a.k.a normative specifica-
tions) dictate what business has to do, in contrast, process modeling specifications de-
scribe how a business activity is performed. To properly verify that a business process
is fully compliant with designated normative specifications, it is compulsory to provide
a conceptually rich representation of both normative specifications and business pro-
cess modeling specifications. This defines what obligations and permissions a business
process is subject to. To capture the real intention of the business rules and for effec-
tive compliance checking, a formally rich representation of normative specifications is
mandatory and challenging. We follow the methodology proposed by Governatori and
Sadiq [9, 2, 10] for business process compliance. The key aspects of the methodology
are: (1) to enrich business process models with semantic annotations, (2) to extract
control objectives from business rules, and (3) to formalize the control objectives in an
appropriate logical formalism.

Annotations can be at the level of a business process or at the level of tasks, where
each task can have its own annotations. The annotations for a task, essentially, provide
additional information about what the task does (effects to the task), the resources in-
volved in a task, the data associated or produced by a task. The effects of the tasks are
accumulated over the tasks in an execution trace of the process using an update seman-
tics [11–13], and compliance is checked based on the algorithm proposed in [13, 14].
Figure 3 depicts the architecture of business process compliance. The proposed method-
ology goes well beyond simple structural compliance (i.e. checking the structure of a
business process). The cost for this is to have semantic annotations and properly model-
ing normative requirements. Most of the semantic annotations must be given by domain
experts. However, in the rest of the paper we are going to show how annotations for
data constraints on document-centric business processes can be extracted automatically
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from the schemas/templates associated to the process. In the next section we outline
how the formalism (FCL) proposed in [9] can be used for properly modeling normative
requirements.

4 Modeling Normative Requirements

Deontic logic studies formal properties of normative specifications in terms of the
so called normative positions (i.e. obligations, permissions and prohibitions). Deontic
logic provides machinery to investigate relationships among different normative posi-
tions. A detailed discussion on deontic logic and Standard Defeasible Logic (SDL) is
beyond the scope of this paper, the reader is directed to [9] for further reading. The
problem with deontic logic is that, it is not capable of dealing with violations and the
obligations arising from violated obligations [15]: in some situations business rules may
specify conditions about when other conditions in business rules books have been vio-
lated (i.e. some clauses of the rules have been violated). Deontic logic does not provide
a faithful representation of such situations. Governatori [16] proposed Formal Contract
Language (FCL), a formalism to analyze business contracts and address the deficiencies
of deontic logic by providing rich representation of contract violations. We used FCL
to provide formal representation of lodgment verification process. FCL is a rich com-
bination of an efficient non-monotonic formalism (defeasible logic (cf. [17, 18]), and
deontic logic of violations (Governatori and Rotolo [19]) which enables us to present
exceptions as well as ability to capture violations. Moreover, FCL provides for a con-
ceptually rich formalization of norms for compliance checking of a process where par-
tial information and possibly conflicting provisions are present.

FCL consists of two sets of atomic symbols: a numerable set of propositional letters
a,b,c . . . that represent the state variables and the tasks of a process. Formulas of the
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logic are built using the deontic operators O (for obligations), P (for permission), nega-
tion ¬ and the non-structural connective ⊗ (for the contrary to duty operator). An FCL
formula is defined in a two-step process under the following formation rules:

– every propositional letter is a literal;
– the negation (¬) of a literal is a literal;
– if X is deontic operator and l is a literal then Xl and ¬Xl are deontic literals.

In addition we introduce the notion of ⊗-expressions.

– every literal is an ⊗-expression;
– if l1, . . . , ln are literals, then l1 ⊗·· ·⊗ ln is an ⊗-expression

In FCL each business rule statement or any condition applying on a process is repre-
sented by a rule, where a rule is an expression

r : A1, . . . ,An =⇒O C

where r is the ID or name of a business rule statement, A1, . . . ,An is the antecedent of
rule and C is conclusion of the rule. Each Ai is either a literal or deontic literal and C is
an ⊗-expression. The meaning of the above expression is that normative position (e.g.,
obligations) represented by the conclusion of the rules is in force provided all premises
of the rule hold. By using the ⊗ connective, we can combine the primary as well as
contrary to duty obligations to form a unique rule e.g. A⊗B⊗C. The meaning of such
expressions is very simple: A is the primary obligation, but if A is violated or not done,
then B becomes the obligation as a replacement of A. Thus B becomes a reparation of
the violation of A which means that A does not hold but the negation of A i.e. ¬A holds.
In addition, in case if B also fails, then now it is required to fulfill the obligation of C.
Suppose we have the rules

r1 : a =⇒O b r2 : c,Ob =⇒O ¬d ⊗ e

and we have that a and c and d hold. From the first rule we obtain the b is obligatory
(Ob), and then we can apply r2. This rule produces O¬d (d is forbidden or ¬d is oblig-
atory). Rule r2 also states that the violation of the prohibition of d is compensated by e.
Thus, since we have d, we violated the prohibition, and now we have the obligation to
compensate it, that is Oe. See [16] for full details of FCL.

5 Modeling Control Objective and Business Rules

Based on the compliance methodology proposed by [2], we generate control objectives
corresponding to the business rules given above. For each control objective we identify
the relevant document, data items and constraints. We present how FCL intuitively cap-
tures the meanings of business rules and provides a faithful representation of normative
specifications for lodgment verification process scenario presented in Section 2.

The first step is to introduce the logical predicates needed for the representation
of the control objectives and business rules. Here we assume that the relevant data is
stored in a database. We will have two types of predicates. The predicates in the first
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class essentially correspond to the attributes in the database. Thus we have predicates
representing the tables and the attributes in the database. In the second class we have
the predicate contains(x,y). The meaning of it is ‘document x contains information/data
value y’.

In the first class we have the predicates (with their meaning)

– eLC(x): x is an Electronic Lodgment Case;
– eCIR(x): x is an eConsent Information Report;
– eLIR(x): x is an eLodgment Information Report;
– eNoSIR(x): x is a Notice of Sale information Report;
– ELNws(x): x is a ELN workspace.

We are now ready to provide the control objectives and the formalization of the rules.

Business Rules: BR1 and BR2
Document Type: eConsent Information Report
Data Item: ELN Workspace ID
Constraints on Data Item:

1. Exactly one must be present
2. Must be the same as the ELN workspace ID in the eLodgment information report

in the same elodgment case

Mapping:
r1,1 : ELNws(x),eCIR(y) =⇒O contains(y,x)
r1,2 : ELNws(x),eCIR(y),ELNws(z),x �= z,contains(y,x) =⇒O ¬contains(y,z)
r2 : ELNws(x),eCIR(y),eLIR(z),eLC(u),contains(y,x),contains(u,y),

contains(u,z) =⇒O contains(z,x)

The meaning of this formal representation is that, the predicate ELNws must be present
exactly once in the eConsent Information Report eCIR. Rule r1,1 specifies that if x is
the ID of an ELN workspace, and y is the ID of eConsent Information Report, then it
is obligatory that the value of the workspace ID appears in the eConsent Information
Report. Rule r1,2 states that if x and z are different workspaces (workspace IDs) and
one of them is present in the eConsent Information Report identified by y, then it is
forbidden for the other workspace ID to appear in y.

Rule r2 first identifies the type of several documents (e.g. eConsent Information
Report, eLodgment Information Report, eLodgment Case), and the ID for the ELN
workspace. In addition, if the eConsent Information Report contains a reference to a
ELN wokspace ID (contains(y,x)), and the eConsent Information Report is part of an
eLodgment Case (contains(u,y)), and there is an eLodgment Information Report that
is part of the same application (contains(u,z)), then the eLodgment Information Report
must contain a reference to the same ELN workspace contains(z,x).

Business Rules: BR3 and BR4
Document Type: eConsent Information Report
Data Item: ELN eLodgment Case ID
Constraints on Data Item:
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1. Exactly one must be present
2. Must be the same as the ELN elodgment case ID in the elodgment information

report in this elodgment case

Business Rules: BR5 and BR6
Document Type: eNoS Information Report
Data Item:ELN eLodgment Case ID
Constraints on Data Item:

1. Exactly one must be present
2. Must match the ELN elodgment Case ID in the elodgment information report

The formal rules for the control objectives for Business Rules BR3–BR6 have the same
formal representation of the rules for BR1 and BR2.

These control objectives and the resulting FCL rules will provide us guidance on (1)
what elements of a lodgment document are relevant for compliance, and consequently
which tables and attributes must be extracted from the database schema, and (2) how to
formally model the business rules.

6 The Schema Extraction: Compliance Methodology

In this section we provide the account of our proposed methodology which explicitly
shows how we can extract the schema for the required data from the databases linked
to a process. Figure 4 gives an overview of the overall methodology. As was mentioned
in Section 1, process models can be enriched with data in the form of data control tags
as required by the process to complete a specific task for compliance verification, and
the question was raised where these data annotations will come from. We propose to es-
sentially extract these annotations by querying the database created from the analysis of
business rules statements. We use abstract business rules with no information on the pro-
cesses and identified all pertaining entities involved in the data verification process by
means of Entity Relationship (ER) diagram as shown in Figure 5. In the data verification
process, each lodgment case has several associated documents with defined attributes.
These documents may have several identical and distinct attributes, we have not listed
all the attributes in the ER diagram and just give a nominal representation of the data
items. From the ER model, the database schema for the lodgment case has been ex-
tracted comprising several database tables corresponding to each associated document
such as e consentinformationreport, e registryinstrument, enos informationreport etc.,
and tables for request and response messages. The lodgment case table contains in-
formation about the lodgment case for which the data verification request message is
sent. In the created database, there are a number of system tables that are automatically
created containing information about the database such as columns and key constraints
tables. Figure 6 shows the schema for lodgment case database consisting of base tables
for each of the associated documents and their attributes, data types, and primary keys.
We can query the database to extract the predicates (attributes) of our business rules.
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Fig. 4. The Database Schema Extraction Methodology

Fig. 5. ER-Diagram for Data Verification
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Fig. 6. Column Schema for Lodgment Case Database

The query to extract the predicates ELNws, eCIR, eLIR, eNoSIR and eLC is2

SELECT TABLE_NAME, COLUMN_NAME

FROM SYSTEM_INFORMATION

WHERE COLUMN_KEY = ’PRI’

After that we have to take the TABLE_NAME as the name of the predicate and the
COLUMN_NAME as the argument of the predicate. For example, one of such predicates
would be enos informationreport(enos id), or if we use the mapping with the abbrevi-
ations eNoSIR(enos id). The meaning for ground instances of these predicates is, “col-
umn name”is the primary key of “table”; thus eNoSIR(enos id) means enos id is the
identifier of an eNoSIR document. This kind of predicates, where the variables (argu-
ments) of the predicates have names, are helpful in other respects. For example it could
be used to check conformance (compliance at run time, or that the data in an instance
of a process is correct). We can instantiate a predicate using the following schema for a
query:

SELECT $COLUMN_NAME

FROM $TABLE_NAME

2 For space and readability reasons, we use abbreviation for the predicates, and full names for
the database. It would have been possible to use the same names, or to establish a one-to-one
mapping between the elements in the data dictionary of the rules and the elements in the data
dictionary of the datebases linked to a process.
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So to get the extension of the predicate eNoSIR, we run the query

SELECT ENOS_ID

FROM ENOS_INFORMATIONREPORT

The abstract extension of the predicate contains can be computed by the following
query

SELECT X.COLUMN_NAME, Y.COLUMN_NAME

FROM SYSTEM_INFORMATION as X, SYSTEM_INFORMATION as Y

WHERE X.TABLE_NAME = Y.TABLE_NAME

AND X.COLUMN_KEY = ’PRI’

The query is a simple self-join of the system information table, using TABLE_NAME

as the join attribute, and it returns pairs of column names for columns in the same
table, where the first is the primary key of the table. Thus for example using the
data in Figure 6 we have the pair registryinstrument id and elodgmentcase id. Ev-
ery row of the table e registryinstrument has the ID of an e registryinsturment and
the ID of the elodgmentcase. In other words each row represents a document of a
given type, the information in it, and the primary key represents the document. Thus
registryinstruemnt id and elodgmentcase id means that the information report about
an e registryinstrument contains a reference to the elodgmentcase of which it is part of.
Notice that the first query and the last query are domain independent. All we need is a
system table with the information on the schema of the database used by a process.

Based on the idea presented above, checking data compliance (of a database schema
against a set of business rules defining the data constrains) can be simply performed by
running the above query on the database linked to a particular task to get the (data) an-
notations for that task. After that we can use a two step compliance checking algorithm
proposed by [13, 14] which, in the first step, examines each task in the process against
all relevant obligations; and generates a status report on active reparation chains. Then,
in the second step, it determines if a process is compliant with all regulations or not.

7 Related Work

In recent past a number of approaches focusing on checking compliance on business
process models have been reported in literature [3, 20–23]. As we discussed previously
about the requirement of a preventive approach compliance by design for business pro-
cess compliance. This literature can be divided into two distinct categories: compliance
by design and post design compliance checking. In the first approach new business pro-
cess models are fed with business rules as input whereas a process model is checked
against compliance requirements when a process has completed the design phase.

Lu et. al [24] objectively showed how to enforce compliance requirements to avoid
the chance of potential rules violations. Similar works reported by [25–27], although
provide good solution to achieve design-time compliance yet compliance checking will
be required if changes are made to the process model, and new business rules are intro-
duced. In addition to that, the emphasis of these approaches remained on the structural
compliance of a process model, and the data aspect has largely been ignored. Goedertier
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and Vantienen [25] achieved design-time business process compliance using rule sets
with permissions and obligations and proposed PENELOPE, a declarative language to
specify compliance rules. PENELOPE generates a state space and a BPMN model from
these rules which is compliant by design. This approach concentrates on acyclic pro-
cesses only, and the data and data constraints aspect in the business rules is not present.
An artifact-centric business process modeling approach has been recently proposed in
[28], exhibiting how artifact-centric business processes can be canonically extended to
take also compliance rules into account. As these business rules can express constraints
on the execution of actions, it is claimed that the data information can also be taken
into account but it is not clear whether the model will be semantically annotated with
the data, and how data constraints will be modeled. If in case business process model is
semantically annotated then where this data will come from.

In the post process model design compliance checking Awad et.al. [29] discussed a
temporal logic query based approach for specification, verification and explanation of
violations of data-aware compliance rules. The approach employs extended BPMN-Q
to realize the business rules including the data aspects to increase the expressiveness of
their previously proposed language in [30]. As the authors used past linear temporal
logic (PLTL) to formalize the business rule, the problem with temporal logic is that
it provides structural compliance only, and does not distinguish different normative
positions. There is no indication how these normative positions and data associated
with these normative positions can be represented. Moreover, this proposed approach
comes under the post design compliance checking. To measure the compliance distance
between the process model and a rule an automated approach was introduced in [31].
The degree of compliance is checked on a scale from 0 to 1 but the data aspect has not
been covered.

Our work reported in this paper falls in latter category to achieve compliance by
design. To our end, we believe until recently no work has been reported that specifically
extract data schema from the business rules to semantically annotate a process model
for compliance checking purpose.

8 Conclusions and Future Work

In this paper we proposed a methodology to automatically extract annotations related
to the data schema, and templates linked to the tasks in a process. This exhibits how we
can extract the data schema from the database generated from the business rules, includ-
ing the primary keys of the associated documents of the lodgment verification process
presented in Section 2. We see the contribution of this work in different ways: first our
methodology will provide a better understanding of data annotations from schema re-
lated to tasks a the process. Second: the BPM process model, at hand, can be extended
with the extracted annotations in the form of data tags as proposed in [2]. In addition
to that, the extracted schema will also help to model data constraints on the process
model for better compliance checking. Third: this methodology provides an answer to
the question where do we get the data annotations from, if we want to extend a process
model with these annotations, and model constraints on a process model.

Currently we have used abstract data, and a hypothetically created process example
to present our methodology to show how we can extract annotations from abstract data
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to extend a business process model. As this is a preliminary work and has not been
implemented yet, we are not aware of any complexity that might arise when extending
a process model. On the same note, we are also unable to report, at this stage, what
will be the behavior of process model populated with the extracted data schema. Hence
we believe this proposed preliminary work requires a large scale industry evaluation
and validation for further insights and generalization. In addition to that, due to the
varying nature of business process tasks, amount of data used, and data redundancies
are prevalent in the business rules statements, extracting a normalized data schema will
certainly be a challenge. In our example case scenario, we experienced many redundant
data items appearing several times in the business rules, we just used this redundant
data to extract preliminary schema. The positive aspect of using FCL is that, it provides
normalization functionalities to remove any redundancies in the business rules state-
ments, we believe that this matter is solvable and of further interest. Lastly, but no least,
as business rules tend to change frequently, a business analyst can come up with new
predicates. This requires further understanding how these changes can be accommo-
dated in the existing database.
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Abstract. Production systems are declarative, in that they do not ex-
plicitly specify the control flow. Yet, the concept of a production system
does not include the definition of a given control strategy. The control be-
tween rules in a production rule program is, in practice, defined by each
implementation of a production rule engine. Engines have traditionally
been implemented using the Rete algorithm. Since the turn of the cen-
tury, however, production systems have evolved into industrial products
known as Business Rules Management Systems (BRMS). BRMS have in-
troduced new compilation and execution schemes, which are often called
sequential in contrast with the incremental behavior of Rete. This change
in execution scheme came with a change in semantics for rule programs.
In this paper, we propose a formal description of the execution of pro-
duction rule programs. Existing descriptions either ignore the control
strategy, or assume a Rete semantics. Ours isolates the handling of rule
eligibility in the control strategy, which allows us to describe the sequen-
tial execution semantics of rule programs, as well as the Rete semantics,
and others.

1 Introduction

Business Rules Management Systems (BRMS) [7,11,16,21,22,26] are industrial
products that have gained substantial consideration as a way to lower the cost
of frequent changes in business policies [18,29]. The contribution of BRMS is to
externalize the business logic of an application as a rule program, and to provide
business experts with tools to author and manage these rules collaboratively.

The rules in question are of the condition-action type, also known as produc-
tion rules. As such, BRMS can be seen as descendants of production systems
[12,19], in the tradition of OPS5 [3,13]. Indeed, the rule engines present in most
BRMS compile and execute rule programs with variants of the Rete algorithm
[14,15,20], which is at the heart of OPS5. However, with the transition from
production systems to BRMS, rule programs have evolved from medium-sized
programs implementing inference algorithms to massive programs performing
simpler tasks [28]. In this context, the concern for the implementors of rule
engines has shifted from providing smart control strategies in the execution
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of programs to designing new compilation schemes that would ensure a high
throughput in the processing of data.

This new generation of compilation and execution algorithms is often referred
to as sequential [10,17,23], both due to the way they consume input data and
in contrast with the incremental behavior of Rete. Yet, the gain in performance
has been achieved at the price of a change in the execution semantics of the
rule programs. The main difference between the Rete and sequential semantics
is that the former allows rule programs to implement complex inference schemes,
whereas the latter makes assumptions (a stable working memory, a static rule
set, etc.) that opens the door to faster execution. This disruption in seman-
tics is usually acceptable for the users of BRMS, because their rule programs,
although important in size, implement simple algorithms that do not require
evolved inference mechanisms.

This paper is organized as follows. In Sect. 2, we expose our formal description
of rule program execution. Then, in Sects. 3 and 4, we review some selection
and eligibility strategies; in particular, we provide the formalization of Rete’s
refraction semantics and of the sequential semantics of modern BRMS. Finally,
in Sect. 5 we illustrate both semantics and their formalizations on an example
rule-based application, which we introduce in Sect. 1.2.

1.1 Related Work

Up to now, and to the best of our knowledge, there have been only few formal-
izations of the execution behavior of production rule programs with the Rete
semantics, and none with the sequential semantics. Such a formalization is how-
ever useful to develop tools that help understand, verify, test, and more generally
analyze, rule programs. In this paper, we present a logic-based description of rule
programs and of their execution, with a focus on the distinction between the ap-
plicability and the eligibility of a rule.

In the traditional presentations of Rete, eligibility is one step of the control
strategy, called refraction. By isolating the eligibility strategy, our formalization
allows us to depict the execution of rule programs with either Rete’s refrac-
tion semantics, the sequential semantics, or others. It is based on first-order
logic; we also use objects with attributes to reflect the fact that rule programs
in BRMS handle object-oriented data provided by an embedding application.
We model states as first-order logic structures and rule execution as relations
between states.

Production systems have been formalized in a number of ways, either based on
first-order logic or not. In [27] and in previous publications, Schmolze and Snyder
have explored the connection between production rules and term rewriting sys-
tems. However, their approach focuses on confluence and termination properties,
and does not aim at describing the execution behavior of production systems.

Production systems have also been studied from the viewpoint of active
databases (see [1] for a survey). Again, confluence and termination is the
main focus, and the composition of rules into a rule program execution is
not addressed. Safety properties are treated in [2], and mapped to constraint
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satisfiability problems on the transition constraints that describe the execution
of the rule program. However, the construction of these constraints is not stud-
ied. In [4], propositional production systems are modeled with μ-calculus, and
production systems with variables are modeled with fixed-point logic. This ap-
proach leads to using first-order logic structures as we do.

The formalizations of production systems that address their execution behav-
ior are due to Fages and Lissajoux [9], to Cirstea et al. [6], and to Damásio et
al. [8,25]. These formalizations are based on first-order logic, with [8] relying
on Answer-Set Programming. All consider the execution of rule programs by
the Rete algorithm. However, [9] explicitly discards the control strategy from
its scope and provides a nondeterministic view of rule program execution. On
the other hand, [6] includes the control strategy in its formal description of rule
program execution, but does not go into any detail; furthermore, the examples
given implement an explicit control flow and hence do not exhibit the role of the
control strategy. Finally, [8] does include the control strategy in its formalization
of rule programs semantics.

1.2 Running Example

Acme.com is an e-commerce company. It wants to introduce a rewarding program
in which customers earn bonus points, and chooses to implement it with a BRMS.
Customers are entered into the system with their current bonuses and their
purchases, to be processed by the rule program R = {P, S} that implements the
rewarding program.

The first rule in the program grants a customer bonus points, based on his/her
purchases. Namely, if the value of the purchase p exceeds $ 100, the customer c
earns 10 % of the purchase value in bonus points.

P(c, p) : c = p.buyer & p.value ≥ 100 ⇀ c.bonus := c.bonus+ p.value× .1

The second rule implements a sponsorship mechanism: if a customer s sponsors
another customer c, then a transfer of bonus points occurs; the transfer only
occurs if the sponsor has at least 200 points.

S(s, c) : s = c.sponsor & s.bonus ≥ 200 ⇀ s.bonus := s.bonus− 50 ;
c.bonus := c.bonus+ 30

This short example introduces rules, with a guard that determines when the
rule applies, and an action that indicates how the rule execution will evolve the
system state by performing updates on object attributes. The attributes in this
example program are bonus, value, buyer , and sponsor . Objects are held by rule
variables: the rule variables in P are c and p, those in S are s and c. These
concepts are formalized in Sect. 2.

In contrast with industrial rule languages or with RIF-PRD [25], our language
does not include adding objects to, or removing objects from, the working mem-
ory. However, like industrial rule languages, it regards the update of an object
attribute as a single operation.
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2 Formal Description of Rule Program Execution

2.1 Expressions, States, Rules, Programs

A rule program implements part of the logic of a larger application. To this end,
the rules handle the data of the application, in the format defined by the ap-
plication itself. In practice, they use the data types of the embedding language,
such as Booleans, numbers, enumerations, and, in an object-oriented context,
the classes defined by the application. From a formal viewpoint, the application
introduces a theory Θ, which contributes to the signature of the rule language
with a set of function symbols (including constants), and provides their inter-
pretation. Classically, the theory Θ can include Booleans with logical connectors
(∧, ∨, ¬...), numbers with arithmetic operators (+, −, ×...), uninterpreted func-
tions with equality, etc. In our framework, we assume that Θ includes at least
Booleans, without quantifiers, and objects with attributes as defined below. The
running example exposed in Sect. 1.2 also includes numbers.

Objects have a unique identity. The identities of two objects can be compared
for equality; no other operation is available on the identity of objects. Object
attribute symbols are unary function symbols.

In our rule language, objects are handled through variables. Expressions
are built in the classical, inductive way on the signature inherited from Θ. They
include arithmetic and Boolean expressions, but also attribute references. An
attribute reference denotes the value of an object’s attribute; it is written in
dotted postfix notation. For example, p.age refers to the attribute with symbol
age of the object held by the variable p.

A state is a first-order logic structure. The common domain to all states is
provided by the theory Θ; we note it D. As mentioned previously, it includes at
least the Booleans and the objects, the infinite set of which we note�. The inter-
pretation function Is of a state s interprets function symbols as specified by the
theory Θ—typically, logical connectors and arithmetic operators are interpreted
in the classical way. Attribute symbols are interpreted by partial functions from
� to D. For an attribute symbol f , we note Is(f) or fs the function that inter-
prets f in s. The definition domain of this partial function is noted Dom(fs).

A rule r = (�o, g, a) consists of the tuple �o = (o1, . . . , om) of its rule vari-
ables, the Boolean expression g called its guard, and its action a, described
further below. The arity of r, noted |r|, is m. A rule instance is a tuple
R = (r, O1, . . . , Om) where O1, . . . , Om ∈ � are objects. The objects in a rule
instance provide values for the rule variables, which are used to interpret the
rule guard and action, as described below.

A rule instance R = (r, O1, . . . , Om) is applicable in a state s if the guard g of
r holds in this state and on the objects O1, . . . , Om. That is, if the interpretation
of the Boolean expression g by state s, with each variable oj mapped onto the
object Oj for j = 1, . . . , m, yields true. The guard g is interpreted as false by s
if one has Oj /∈ Dom(fs) for any attribute reference oj .f that appears in g.
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When a rule instance R = (r, O1, . . . , Om) is applied, the action a of the
rule is executed on the objects in the instance. A rule action is a sequence
of assignments to attributes of rule variables. An assignment is a statement
ojk

.fk := ek that denotes the update of the attribute fk for the object held by
ojk

with the value of the expression ek. Its semantics, when executed from a
state s, is to produce a new state s′, in which all attribute and function symbols
are interpreted as in s, with the exception of fk. In state s′, the attribute symbol
fk is interpreted by the partial function fs′

k with the same domain as fs
k , and

such that

∀O ∈ Dom(fs
k) fs′

k (O) =

{
Is′(e[Oj/oj ]mj=1) if O = Ojk

fs
k(O) otherwise .

To summarize, given a rule r = (�o, g, a), a rule instance R = (r, O1, . . . , Om) is
applicable in a state s if the guard g holds in s and on the objects O1, . . . , Om.
When R is applicable in s, then the application of R in s produces a new state
s′ that results from the execution of the action a from s on O1, . . . , Om. We note
this application s

R−→ s′.
A rule program R = {r1, . . . , rn} is a finite set of rules. A rule program is

executed on a finite set of objects M ⊂ �, called the working memory. The set
of all rule instances that can be formed out of rules in R and objects in M is
noted I(R,M) = {(r, �O) | r ∈ R, �O ∈ �|r|}. Given a state s, the subset of rule
instances that are applicable in s is noted As.

2.2 Execution of a Rule Program

To formally describe the execution of a rule program, we introduce the notion
of a configuration of the rule engine, as a pair 〈E, s〉, where E ⊆ I(R,M) is a
set of rule instances and s is a state. In such a configuration, E denotes the set
of eligible rule instances in s.

With this definition, we say that an execution of a rule program R on a
working memory M from an initial state s0 is defined by a potentially infinite
sequence of transitions between configurations

〈I(R,M), s0〉 R1−−→ 〈E1, s1〉 R2−−→ 〈E2, s2〉 R3−−→ · · ·
in which each transition complies with the following transition rule, for k > 0:

{Rk} = S(Ask−1 ∩ Ek−1) sk−1
Rk−−→ sk Ek = E(Ek−1, . . .)

〈Ek−1, sk−1〉 Rk−−→ 〈Ek, sk〉
. (1)

This transition rule encodes that the rule engine can perform a transition by
rule instance Rk from configuration 〈Ek−1, sk−1〉 to configuration 〈Ek, sk〉 if the
following conditions are met: the rule instance Rk is selected among the rule
instances that are both applicable and eligible in sk−1, and its application in
sk−1 produces the state sk.
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This transition rule exhibits the selection strategy S and the eligibility strat-
egy E as two parameters of the rule engine semantics. The selection strategy S
is a function that takes a set of rule instances and returns either the empty set
or a singleton included in the set received. Sect. 3 reviews the most common
selection strategies.

Which rule instances are eligible at each step of the execution is determined
by the eligibility strategy E , based on the set of previously eligible rule instances
and on possibly other arguments, such as the rule instance being applied, the
initial or final states of the transition, etc. At the beginning of the execution, all
rule instances are eligible. Sect. 4 reviews the eligibility strategies at work in the
Rete and sequential execution semantics.

As an extreme case, consider the eligibility strategy Eid that always returns
the previous set of eligible rule instances, and the selection strategy Snd that non-
deterministically selects a rule instance. These strategies give the rule program
execution semantics considered by [9].

2.3 Comparison with Traditional Presentations

The control strategy in a production rule engine is analogous to the scheduler
in parallel programming or to the method call resolution in an object-oriented
language. In all these control mechanisms, a variation on any criterion can change
the course of program execution dramatically. However, in contrast with object-
oriented languages where the method call semantics is defined with the language,
rule languages do not include the definition of a control strategy. Instead, the
control strategy is brought in by the algorithm used to execute the rule program.

Since the seminal implementation by OPS5, production systems have tradi-
tionally executed rule programs with the Rete algorithm or a variant. More or
less formal descriptions of its control strategy can be found in the OPS5 User’s
Manual [13], in the RIF-PRD recommendation [25], in papers describing exten-
sions to OPS5 [5,24], or in the documentations of BRMS [17].

The Rete control strategy applies to the set As of applicable rule instances in
the current state s. In the context of Rete, this set is called the conflict set [3,19].
It is traditionally presented as the following four steps. If, after the first step,
the conflict set is empty, then the program execution stops. If, as the result of
any step, the conflict set contains only one rule instance, then this rule instance
is selected for application.

(i) Refraction: Discard from the conflict set any rule instance that has already
been applied, and has since remained applicable.

(ii) Recency: Retain the rule instances that include objects that have been
inserted or modified last.

(iii) Specificity: Retain the rule instances that relate to the most specific rules.
(We define rule specificity in Sect. 3.)

(iv) Random: Arbitrarily retain only one rule instance.
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Implementations of production systems other than OPS5 [7,11,16,21,22,26] have
adopted similar control strategies, with minor variations on the definition of
refraction, and a wider range of criteria to select the rule instance to apply
among those that successfully passed the refraction step.

From a broader perspective, one can identify two purposes in a control strategy
for the execution of rule programs. A first goal is to discard program executions
that do not make sense, for example to avoid trivial loops. In the Rete algo-
rithm, this is the role of the refraction step. Our formalism exposed in Sect. 2.2
generalizes this filtering task with the eligibility strategy. A second goal is to
choose one rule instance among the ones that have passed the filtering step.
This is the role of the three last steps of Rete. We generalize this task with the
selection strategy. The distinction that our framework introduces between the
selection and eligibility strategies allows us to describe other execution schemes
than Rete, as shown in Sect. 4.

3 Selection Strategies

When several rule instances are both applicable and eligible in a given state,
the choice of which to apply in the transition to the next configuration is the
role of the selection strategy. In the traditional Rete control strategy, exposed
in Sect. 2.3, this is addressed by the last three steps.

In practice, selection strategies define an order on rule instances, and return
the (applicable and eligible) instance that is maximal according to this order.
The order is classically defined by the lexicographic combination of various orders
such as the following ones [3,19].

– Priority on rule instances. A rule r = (�o, g, a) is equipped with a numerical
expression πr in the rule variables. The order is based on the value of this
expression for each rule instance in the current state.

– Priority on rules. This order is a simplified version of the previous one, where
the expressions πr are numerical constants. The priority of all instances of a
rule r are then equal to the number πr, independently of the state.

– Strict ordering of the rules. A strict order is explicitly defined on the rules,
for example by setting the rule priorities to a permutation of {1, . . . , n}.

– Specificity of the rules. A rule r1 = (�o1, g1, a1) is said to be more specific than
another rule r2 = (�o2, g2, a2) when one has g1 ⇒ g2. This defines a partial
order on rules. Some rule engines approximate this order by using empirical
indications of the rule specificity, such as the number of elementary Boolean
expressions in the rule guard, or the arity of the rule.

– Recency. This order is based on a numerical constant associated with each
object in the working memory, called the object recency, with the idea that
objects have been inserted into the working memory in some order. The
recency of a rule instance is given by the maximal recency of the objects in
the rule instance.
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4 Eligibility Strategies

4.1 The Refraction Eligibility Strategy

As stated in the RIF-PRD recommendation [25]: “The essential idea of refraction
is that a given instance of a rule must not be fired more than once as long as the
reasons that made it eligible for firing hold.” As a direct consequence, enforcing
refraction must take the execution history into account. To this end, [25] chooses
to define refraction by counting during how many execution steps each rule
instance has remained applicable, and since how many steps it has been applied.

In our framework, we base the definition of refraction on the set Ek of eligible
rule instances in a configuration 〈Ek, sk〉 of the rule engine. Using the formalism
introduced in Sect. 2.2, refraction can be defined as follows.

Refraction. If a rule instance R has been applied in a configuration
transition 〈Ei, si〉 R−→ 〈Ei+1, si+1〉, it is eligible for application in a sub-
sequent transition 〈Ek, sk〉 R−→ 〈Ek+1, sk+1〉 only if the execution contains
a configuration 〈Ej , sj〉 such that i + 1 ≤ j ≤ k and R /∈ Asj .

Of course, for the transition 〈Ek, sk〉 R−→ 〈Ek+1, sk+1〉 to occur, the rule instance
R will have to be applicable in sk, which implies j < k. However, this require-
ment does not relate to eligibility. The independence between applicability and
eligibility is visible in the example discussed in Sect. 5. For instance, we shall see
that in state σ1, the rule instance (S, Alice, Bob) is eligible but not applicable;
and that in σ3, it is applicable but not eligible.

The task of the eligibility strategy is to compute the set of eligible rule in-
stances that results from a transition between configurations of the rule engine.
As per the definition of refraction above, the refraction eligibility strategy Eref

makes a rule instance ineligible when it is applied, and makes it eligible again
as soon as its becomes inapplicable. That is, in a transition 〈E, s〉 R−→ 〈E′, s′〉:

Eref(E, R, s′) = E \ {R} ∪ {R′ ∈ I(R,M) | R′ is not applicable in s′} .

In this definition, the eligibility strategy first removes the rule instance R that
was just applied from the set of eligible rule instances, which corresponds to the
statement “a rule instance must not be fired more than once”. Then, the strategy
implements “as long as the reasons that made it eligible for firing hold” by adding
the rule instances that became inapplicable due the application of R.

Note that, although the definition of Eref refers to any rule instance inappli-
cable in s′, the rule instances added are precisely those that have been already
applied in this rule program execution and that have been made inapplicable by
the application of R. Indeed, the rule instances that have never been applied are
in E since the beginning of the rule program execution; and the rule instances
that were already inapplicable in s have been added to E in a previous transition.

Since, in the execution of the rule program, the selection is performed on
As ∩ E, the definition of the refraction eligibility strategy above ensures that
once applied, a rule instance will not be applied a second time before it becomes
first inapplicable and then applicable again, as stated by the Rete algorithm.
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4.2 The Sequential Control Strategy

Definition of Sequential Execution. Sequential execution schemes have ap-
peared in BRMS about a decade ago [10,17,23], as an answer to the evolution
of rule programs from the many patterns/many objects case for which Rete had
been invented, to a many rules/few objects case found in business applications.
In this section, we describe the sequential execution mode of IBM Websphere
Operational Decision Management [16]; the corresponding execution algorithms
in other BRMS [7,11,21,22,26] have similar behaviors.

The sequential execution mode considers all object tuples from the working
memory in sequence, and submits each tuple to all rules, in sequence again. If
the guard of a rule holds on an object tuple when they are considered together,
the rule action is executed. Otherwise, the next rule is considered. There is
no “second chance:” a rule instance that has already been considered and would
become applicable only later, due to the application of another rule instance, will
not be applied. The orders defined on object tuples and on rules are therefore
crucial. Any criterion described in Sect. 3 can be chosen, although simple rule
priorities are commonly used.

The semantics of the sequential execution mode can be considered poorer,
since it suppresses opportunities for inference and chaining between rules. How-
ever, it is considered an acceptable trade-off by BRMS users as it allows faster
execution. Furthermore, the greater control it provides through the explicit or-
dering of rules is found opportune with large rule programs.

The Sequential Control Strategy. Unlike refraction, which is a pure eli-
gibility strategy and hence can be combined with any selection strategy, the
sequential control strategy defines both a selection and an eligibility strategy.
These two strategies Sseq and Eseq implement the behavior just exposed. Namely,
the eligibility strategy defines the set of rule instances under consideration, and
the selection strategy ensures that the rule instances are picked in the proper
order.

As described above, the sequential control strategy is based on a strict ordering
of the rules in the rule program, and of the objects in the working memory. These
two orderings define a strict order <seq on rule instances lexicographically. The
sequential control strategy is then defined as follows:

(i) The selection strategy Sseq returns the minimal rule instance under con-
sideration:

Sseq(C) = {R ∈ C | R is minimal with respect to <seq} .

(ii) The eligibility strategy Eseq retains for further consideration only the rule
instances that follow (are greater than) the rule instance just applied; in
a transition 〈E, s〉 R−→ 〈E′, s′〉:

Eseq(E, R) = {R′ ∈ E | R <seq R′} .
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5 Illustration

Let us consider again the example rule-based application depicted in Sect. 1.2.
The rules of the program R = {P, S} are reminded below:

P(c, p) : c = p.buyer & p.value ≥ 100 ⇀ c.bonus := c.bonus+ p.value× .1

S(s, c) : s = c.sponsor & s.bonus ≥ 200 ⇀ s.bonus := s.bonus− 50 ;
c.bonus := c.bonus+ 30

As seen in Sect. 2, a rule program such as R is executed on a finite set of objects,
called the working memory. Assume that we plan to execute R on a working
memory M = {Alice, Bob, Don, Car} containing four objects: three customers
and a purchase. An execution of R on M from an initial state s0 consists of
a sequence of transitions between configurations, starting from 〈I(R,M), s0〉.
Assume that the execution starts from a state s0 in which Alice is a sponsor of
Bob and Don, their respective bonuses are 230, 100, and 50 points, and Alice
purchases a car for $ 900. State s0 can be depicted as follows:

s0

⎧⎪⎪⎨
⎪⎪⎩
Alice : bonus = 230
Bob : bonus = 100 sponsor = Alice
Car : buyer = Alice value = 900
Don : bonus = 50 sponsor = Alice .

5.1 Sequential Executions of the Rule Program

The sequential executions of R will be governed by two orders: the order on
object tuples, here customer pairs or customer-purchase pairs; and the order on
rules, here P and S. In our example, the rules apply to distinct types of objects;
as a result, their order has no impact. Let us assume that S comes before P. On
the other hand, the order on object tuples determines which of earning bonus
points on purchases, or of sponsoring friends, is favored.

Sponsorship over Purchases. Let us first assume that pairs of customers
come before customer-purchase pairs, and that object tuples are taken in the
following order:

(Alice, Alice) (Alice, Bob) . . . (Don, Don) (Alice, Car) (Bob, Car) (Don, Car) .

By definition, all rule instances are eligible in the initial configuration. The se-
quential selection strategy will hence pick the first applicable rule instance that
can be formed for rules P and S, with each of the object tuples in the order
above.

Per the definitions of Sect. 2.1, the rule instance (P, Alice, Alice) is not appli-
cable in s0, because Alice /∈ Dom(buyer s0). On the other hand, (S, Alice, Alice)
is not applicable in s0 either, because sponsor s0(Alice) �= Alice. Similarly,
(P, Alice, Bob) is not applicable in s0. However, (S, Alice, Bob) is applicable in
s0, and is thus selected by the sequential selection strategy.



Formalizing Executions of Production Rule Programs 57

Therefore, a transition by (S, Alice, Bob) from 〈I(R,M), s0〉 to 〈E1, s1〉 oc-
curs, where the state s1 results from the application of (S, Alice, Bob) in s0, that
is:

s1

⎧⎪⎪⎨
⎪⎪⎩
Alice : bonus = 180
Bob : bonus = 130 sponsor = Alice
Car : buyer = Alice value = 900
Don : bonus = 50 sponsor = Alice

and the set E1 contains the rule instances that are greater than (S, Alice, Bob),
that is:

E1 = {(P, Alice, Don), (S, Alice, Don), (P, Bob, Alice), . . . , (S, Don, Car)} .

Because Alice has less than 200 bonus points in state s1, the first applicable
rule instance in s1 among those in E1 is (P, Alice, Car). A transition by this
rule instance therefore occurs to 〈E2, s2〉, where the state s2 results from the
application of (P, Alice, Car) in s1, that is:

s2

⎧⎪⎪⎨
⎪⎪⎩
Alice : bonus = 270
Bob : bonus = 130 sponsor = Alice
Car : buyer = Alice value = 900
Don : bonus = 50 sponsor = Alice

and the set E2 contains the rule instances that are greater than (P, Alice, Car),
that is:

E2 = {(S, Alice, Car), (P, Bob, Car), (S, Bob, Car), (P, Don, Car), (S, Don, Car)} .

None of these rules is applicable in s2, that is, As2 ∩ E2 = ∅. Therefore, the
transition rule (1) cannot be applied and the execution of R ends.

One can note that (S, Alice, Don) was not applicable when it was considered in
s1, but is now applicable in s2. However, the sequential nature of the execution,
enforced by the sequential eligibility strategy, causes it to not be included in E2,
and hence not to be considered for execution in s2.

Purchases over Sponsorship. Let us now assume that customer-purchase
pairs come before customer pairs, and that object tuples are thus taken in the
following order:

(Alice, Car) (Bob, Car) (Don, Car) (Alice, Alice) (Alice, Bob) . . . (Don, Don) .

With this order on object tuples, the execution of R on M from s0 is

s0
(P,Alice,Car)−−−−−−−−→ s′1

(S,Alice,Bob)−−−−−−−−→ s′2
(S,Alice,Don)−−−−−−−−→ s′3

with in particular

s′2

⎧⎪⎪⎨
⎪⎪⎩
Alice : bonus = 270
Bob : bonus = 130 sponsor = Alice
Car : buyer = Alice value = 900
Don : bonus = 50 sponsor = Alice .
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In this execution, the rule instance (S, Alice, Don) is considered in s′2, where
it is applicable. This contrasts with the previous execution, in which the rule
instance is considered in state s1, where it is not applicable.

5.2 Refraction-Based Executions of the Rule Program

Let us consider the same rule program R on a subset M′ = {Alice, Bob, Car}
of the working memory M. Let us consider an execution of R on M′ from the
initial state σ0, equal to the restriction of s0 to M′, that is:

σ0

⎧⎨
⎩
Alice : bonus = 230
Bob : bonus = 100 sponsor = Alice
Car : buyer = Alice value = 900 .

Let us note that Alice is a sponsor of Bob and the buyer of the car in state σ0, and
that the actions of none of the rules in R can change this. This implies that, per
the definitions of Sect. 2.1, the only rule instances that can be applicable in any
state of an execution of R on M′ from σ0 are (P, Alice, Car) and (S, Alice, Bob).
In addition, the rule instance (P, Alice, Car) is applicable in σ0, and since the
actions of none of the rules in R can change this, it shall remain applicable in any
state of an execution of R on M′ from σ0. As a consequence, these executions
would never terminate, unless at some point the control strategy did refrain from
choosing (P, Alice, Car), even if it were the sole applicable rule instance. This is
the role of the eligibility strategy, as illustrated below.

By definition, all rule instances are eligible in the initial configuration. The
selection strategy will hence apply to the rule instances that are applicable in
the initial state σ0, namely:

Aσ0 = {(P, Alice, Car), (S, Alice, Bob)} .

Assume that the selection strategy chooses to apply (S, Alice, Bob) in σ0. This
causes a transition by this rule instance from 〈I(R,M), σ0〉 to 〈E1, σ1〉, where
the state σ1 results from the application of (S, Alice, Bob) in σ0, that is:

σ1

⎧⎨
⎩
Alice : bonus = 180
Bob : bonus = 130 sponsor = Alice
Car : buyer = Alice value = 900

and the set E1 is computed by first removing (S, Alice, Bob) from E0 = I(R,M),
and then adding all the rule instances that are not applicable in σ1. Since Alice
has less than 200 bonus points in σ1, the rule instance (S, Alice, Bob) is not
applicable in σ1, and E1 = I(R,M).

In configuration 〈E1, σ1〉, we have Aσ1 ∩E1 = {(P, Alice, Car)}. Therefore, a
transition to 〈E2, σ2〉 occurs by the application of (P, Alice, Car), which results
in

σ2

⎧⎨
⎩
Alice : bonus = 270
Bob : bonus = 130 sponsor = Alice
Car : buyer = Alice value = 900 .
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The set E2 is computed by removing (P, Alice, Car) from E1, and then adding all
the rule instances that are not applicable in σ2. Since (P, Alice, Car) is applicable
in σ2, it is not added back in E2, and we have

E2 = I(R,M) \ {(P, Alice, Car)}
Aσ2 = {(P, Alice, Car), (S, Alice, Bob)}

Aσ2 ∩ E2 = {(S, Alice, Bob)} .

Note that (S, Alice, Bob) was not applicable in σ1 but, in the transition to σ2,
Alice’s bonus has been increased to over 200 points, hence making (S, Alice, Bob)
applicable. As this rule instance has been inapplicable since its latest application,
it must not be discarded by refraction: indeed, we have (S, Alice, Bob) ∈ E2. The
fact that (S, Alice, Bob) is given the opportunity of being applied in σ2 contrasts
with the sequential execution, where this opportunity was denied in state s2.

The execution of R continues with a second application of (S, Alice, Bob),
and results in 〈E3, σ3〉 with

E3 = E2 \ {(S, Alice, Bob)} ∪ {R ∈ I(R,M) | R is not applicable in σ3} .

In this configuration, (P, Alice, Car) is not included in E3 since it is applicable
in σ3. On the other hand, (S, Alice, Bob) cannot be in Aσ3 ∩ E3 since either it
is not applicable in σ3, or it is and is thus not eligible.

As there is no rule instance that is both applicable and eligible in 〈E3, σ3〉,
the transition rule (1) cannot be applied and the execution of R ends.

5.3 Discussion

As can be seen on the example discussed in this section, the set of eligible rule
instances in each configuration is easier to compute in a sequential execution
than in a refraction-based one. This explains why adopting a sequential execution
semantics enables rule engines to execute rule programs faster.

On the other hand, this example also demonstrated that the refraction-based
semantics gives more opportunity to rule instances to execute, whereas the se-
quential mode imposes a stricter control. This can be seen as an advantage of
Rete-like execution, as this semantics seems more natural. However, some BRMS
users regard this richer semantics as less predictable, and appreciate the greater
control provided by the explicit ordering of rules of the sequential execution
mode, especially with large rule programs as can for example result from the
automatic translation of database tables into rules.

6 Conclusion

Business Rule Management Systems (BRMS) provide business applications with
the ability to externalize part of their logic as rule programs. For a long time,
these rule programs have been executed with the semantics linked to the Rete
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algorithm. More recently however, an alternative to Rete has emerged, known
as sequential, with a specific semantics.

In this paper, we give a formal description of the execution of rule programs
by BRMS. In this description, we isolate the handling of rule eligibility in the
control strategies of rule engines. We complete our formal description with the
expression of selection and eligibility strategies for the Rete algorithm and for
the sequential execution mode.

Finally, we illustrate our formalism with both a sequential and a refraction-
based execution of an example rule-based application.
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Abstract. Ontologies are known to be suitable to represent business
knowledge. However, in the Business Rules community the business mod-
els are usually represented using object models (OM). Many of the exist-
ing Business Rules Management Systems (BRMS) allow the Business
Users to represent Business Object Models in their own proprietary
languages. Some work has been done in the last years to bridge the
gap between the ontologies and the Business Rules. A pragmatic ap-
proach consist in projecting ontologies into the Object Models used by
the BRMS, to ease the use of ontologies by the Business Users. The main
issue with this approach is that the expressive power of the targeted Ob-
ject Model is not enough to cope with the content of the ontology. Hence,
the translation looses some of the information contained in the ontology,
such as axioms. The aim of this paper, is to go a step further using this
approach by translating some of the axioms defined in an OWL ontology
into Business Rules. This translation brings at least two benefits: (i) it
allow the Business Users to understand better the content of the On-
tology by having some of its axioms in the rule language they are used
to. (ii) at the run-time level, the translated axioms will be handled by
the rule engine. We explain the basic mechanism of this translation and
detail its implementation in the JRules BRMS system.

Keywords: Ontologies, Business Rules, OWL, RIF-PRD.

1 Introduction

Ontologies are more and more used to represent domain knowledge in business
applications. The flexibility of ontologies make it possible to define the domain
knowledge across different applications. On the other hand, business rules are an
established framework for defining a large class of business applications. Many
software vendors develop business rules management systems (BRMS) and a lot
of complex decision centered business applications are built using them. Those
BRMS use in the majority of cases object oriented models to formalize the
domain knowledge.
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These so called Business Object Models, are in general easy to use thanks
to the existing tools to manipulate them, and they are well understood by the
business users to represent the domain knowledge for the Business Rules appli-
cation, however their expressive power is not as good as the OWL ontologies
[8], this weakness requires the users to hand-write parts of their business model
using operative rules. The use of OWL ontologies to represent business models
will reduce the need of having rules that encode parts of the models, these rules
are then replaced by OWL axioms that constraint the model. Meanwhile, the
business users writing rules are not always familiar with OWL and do not have
a good understanding of the impact of axioms on the execution of their rules.

The aim of this work is to provide a simple mechanism to better exploit the
power of OWL in business rules applications, while preserving the rules devel-
opers understanding of the implications of OWL axioms on their application.
The method we present in this paper is based on a loosely-coupled approach
between Rules and Ontologies, such as in [6]. In our approach the execution of
Rules that use OWL Ontologies to represent domain knowledge is carried by
two engines a Rules Engine and an OWL reasoner. The basic idea is to map
the OWL ontology into a Business Object Model that can be used by the Rule
Engine, and to allow business users to author and execute their rules on this
model [4], an OWL reasoner is called by the Rule Engine whenever necessary to
carry out reasoning on the model. However, since the representation of the world
used by a Rule Engine is Object-Oriented while the OWL ontologies model the
world is Fact-based, the impedance mismatch between the two make it difficult
to achieve a full mapping between the two at the model level [3], and may con-
fuse the business users writing the rules since they are used to Object-Oriented
models and not familiar with Ontologies.

We propose to tackle these issues with a method based on the idea of OWL2RL
in RIF [7] that moves some of the OWL reasoning capabilities to the Rule Engine
by encoding OWL axioms using rules, and by integrating these reasoning rules
into the BRMS used by business users to author, manage and execute their
rules. The intuition behind this method is that the OWL ontology is translated,
in addition of a Business Object Model, into a set of reasoning rules that encode
some of the OWL reasoning capabilities using the Rule Engine. These reasoning
rules, presented in a business language, are also provided to help the business
user that develop the rule-based application to understand the OWL axioms. The
translation of the ontology into a Business Object Model and a set of reasoning
rules can be either complete or partial, in the first case the OWL reasoner is not
needed anymore and the Rule Engine carry out all the execution tasks, in the
second case, the OWL reasoner will still be necessary to carry out the parts of
the reasoning that are not covered by the reasoning rules.

We implemented this method on the top of the IBM WebSphere ILOG JRules
a widely used BRMS.

The paper is organized as follow, we start by introducing, in section 2, how
we add OWL support to the JRules BRMS, we then present the mechanic behind
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the translation of OWL axioms into rules, in section 3, and illustrates it with a
small example in section 4. We discuss some of the implications of the method
on the execution of the rules in section 5, before concluding and sketching the
possible evolutions and perspectives.

2 Using OWL in JRules BRMS

JRules offers an infrastructure that enables to author - in a controlled natural
language -, to manage and to execute business rules. The JRules OWL plug-
in exploit this infrastructure to import OWL ontologies within JRules and to
perform a mapping of OWL concepts (TBox) into the JRules formalism, the
Business Object Model (BOM) (see Section 2.1), which is used to represent the
concepts of the domain. Thus, when we import an OWL ontology within JRules,
the BOM is automatically generated and the functionalities offered by the BRMS
(ı.e rule authoring, rule execution and rule maintenance) can be used over the
content of the OWL ontology (see Figure 1).

Fig. 1. Adding basic OWL capabilities to JRules

2.1 IBM WebSphere ILOG JRules BRMS

The management of business policies becomes a complex task due to their imple-
mentation into a hard-coded application and their continuous evolution. Business
Rule Management System (BRMS), provides solutions to make this management



Bringing OWL Ontologies to the Business Rules Users 65

more efficient by externalizing the business logic from the hard-coded application
using Business Rules, which enables business users to manage business policies
with limited dependence on the IT department.

JRules is a BRMS, as such, it provides the means to author, manage, and
execute business rules. The authoring of business rules into JRules is performed
over the BOM which can be generated from an eXecutable Object Model (XOM)
that enables the rule execution. In the following we will introduce the BOM and
the XOM which are the main components for authoring and executing rules
within JRules.

Business Object Model (BOM). The BOM is an object model that repre-
sents the concepts of a given business. It defines the entities, actions and the
vocabulary used in business rules. A BOM contains a set of classes grouped into
packages and each class has a set of attributes and methods, which the rules
act on. It is generated from the XOM and is then verbalized. The verbalization
consists of generating a controlled natural language vocabulary (VOC) which
enables to edit the business rules.

eXecutable Object Model (XOM). The XOM is the model enabling the
execution of rules. It references the application objects and data, and is the
base implementation of the BOM. The XOM can be built from compiled Java
classes (Java execution object model) or XML Schema (dynamic execution object
model). Through the XOM, the rule engine can access application objects and
methods, which can be Java objects or XML data. At runtime, rules that were
written via the BOM are executed over the XOM.

Business Rules. From a business perspective, a business rule is a precise state-
ment that describes, constrains, or controls some aspect of your business. From
the IT perspective, business rules are a package of executable business policy
statements that can be called from an application.

In Jrules, business rule is an expression of a business policy in a form of “If-
Then” statements that are understandable by a business user and executed by
a rule engine. For instance:

IF the age of the client is between 18 and 25
THEN set the insurance ratio to 125

This controlled language, called Business Action Language (BAL), is compiled
into a lower-level technical language. The “business layer” is composed of two
models supporting the definition of the rules. The business objects of the domain
( client, age), which are represented in the BOM and the vocabulary model
(VOC), which add a layer of terminology on top of the BOM ( “the client”, “the
age of the client”). This vocabulary, introduced with the VOC is in turn used to
compose the text of the rules [5].
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2.2 Authoring Business Rules over Ontologies : OWL to BOM
Mappings

As described in Section 2.1 the BOM, is the main component for authoring
rules in JRules. To enable authoring business rules over OWL ontologies, we
performed a mapping of OWL construct into the BOM. This mapping enables
the automatic generation of the BOM when importing an OWL ontology within
JRules.

Due to the differences in knowledge representation conventions between the
BOM and OWL, there are some OWL constructs that cannot be mapped into the
BOM such as owl:disjointWith, owl:complementOf, owl:someValuesFrom. . .
The mapping from OWL to BOM is achieved as follow :

Classes: An OWL class is mapped into a BOM Class. The hierarchical relations
are mapped into the BOM using the subclass relation and, as the BOM
supports multiple inheritance, this information is also preserved;

Properties: An OWL property1 is mapped into an attribute of a BOM class.
Functional properties are mapped to single attributes and multi-valued prop-
erties are mapped to multiple cardinality attributes. The class of an attribute
corresponds to the domain of the corresponding property, and its type cor-
responds to the range of the property.
Nevertheless, a property may have a null or multiple domain (range, re-

spectively). These cases are mapped as follows:

– Null domain : the attribute is added to all the root classes, (ı.e which
inherit directly from owl:Thing);

– Multiple domain : the attribute is added to all the classes corresponding
to the set of the domains;

– Null range : the type of the attribute is inferred as follow :

• if the property has an equivalent property then the type of the at-
tribute will be the range of the equivalent property;

• if the property has an inverse property then the type of the attribute
will be the domain of the inverse property;

• otherwise the type of the attribute will Object.

Restrictions:

– owl:cardinality and owl:maxCardinality restrictions: when an at-
tribute’s such restrictions are equal to 1, it is mapped into a single-valued
attribute; otherwise, it is mapped into a multiple-valued attribute;

– owl:allValuesFrom restriction: the type of the attribute is the class
defined on the restriction;

– owl:oneOf restriction: Static values corresponding to the values defined
on the collection are attached to the class.

1 ObjectProperties and DataTypeProperties are handled the same way, since in the
BOM there is no distinction between the two.
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The table 1 summarize the mapping.

Table 1. OWL to BOM Mapping

OWL BOM

owl:Class ?A Class A

?B rdfs:subClassOf ?A Class B extends A

?C owl:intersectionOf(?A,?B) Class C extends A,B

?C owl:unionOf(?A,?B) Class A extends C and Class B extends C

?A owl:oneOf {x, y, z} Class A {domain {’x’, ’y’, ’z’};}
?A owl:equivalentClass ?B Keep only A, and references to B are

reported to A

rdf:Property ?P(?A,?B) Class A {B[ ] P};
P rdfs:subPropertyOf P’(?A,?C) Class A {B[ ] P; C[ ] P’;}
P’ owl:equivalentProperty P Class A {B[ ] P; B[ ] p’;}
P’ owl:inverseOf P Class B {A[ ] P;}
P owl:functionalProperty Class A {B P;}
P.cardinality = 1 Class A {B P;}
P.maxCardinality = 1 on P Class A {B P;}
P owl:allValuesFrom C Class A {C[ ] P;}

2.3 Executing Business Rules over OWL Ontologies

The process of executing business rules in JRules consists of several steps. Busi-
ness rules, authored in a controlled natural language (BAL) are translated into
executable rules, which are written in a formal technical rule language ILOG Rule
Language (IRL). During this translation, the references to the BOM’s classes and
properties are translated to references into the XOM. When the input provided
to JRules is a Java object model, the XOM is built from this model. But in our
case, the input provided to JRules is an OWL model.

Before introducing OWL axioms, to execute business rules authored from
ontologies, we perform a second mapping of OWL-to-BOM entities to a XOM
using Jena.2 Jena is a Java framework, including an API which allows to generate
Java objects from the entities of the ontology. These Java objects then constitute
the XOM.

The use of Jena provides an execution layer for the OWL ontologies. This
execution layer provides inference mechanisms on this model and the mapping
of OWL concepts, properties, and individuals to a Java object model.

2.4 Business Users Interactions with the System

A business scenario is described in the following based on personas that define
different kinds of business users involved in building and using a rule-based
application as defined in [1].

2 http://jena.sourceforge.net/

http://jena.sourceforge.net/
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The scenario stages three personas, Marc, Alice and Joana. Marc is the busi-
ness analyst. He acts as a bridge between between business and IT departments
in order to design the Business Rules Tools. His mission is to formalize the busi-
ness knowledge, so that it can be transformed into IT requirements. Alice is the
domain expert. She authors the rule of her domain, understands their formal-
ization and knows how to use BRMS. Joana is the operational user. She is the
user of the rule application. The rules allow her to realize business operational
tasks, she sees their execution but can’t their structure.

As shown in figure 2, the first step is achieved by Marc who imports the OWL
ontology in JRules and a BOM is automatically generated. Then Marc checks
the verbalization for this BOM proposed in the application. He can modify some
terminology proposed if needed. The Business vocabulary is then used by Alice
to author business rules. Then, Alice edits the rules with the business vocabulary
used in the company. She knows well the business policies of her domain and
has been trained for editing rules in the business rule application. Finally, Joana
uses the authored rules to realize business operational tasks she is in charge of.
If she sees the rules executed she can recognize business vocabulary used in the
company.

Fig. 2. Business Scenario
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3 OWL Axioms as Rules

In our loose coupling approach, the Rule Engine is expected to delegate the
reasoning tasks related to classification and navigation to the OWL reasoner.
Our goal is to move some of the reasoning capabilities to the Rule Engine side.
The production rules for advanced reasoning are added to the applicative rules
as higher priority rules. Those rules are adding reasoning related assertions such
as typing assertions to the OWL ontology. The OWL reasoner will take into
account those new reasoning assertions the next time it is asked to answer a
classification or a navigation query.

The first issue to solve here is to know how to express the reasoning production
rules. The OWL2RL ruleset [7] is providing us with these reasoning rules. Those
rules may be derivation rules or production rules. Forward chaining is sufficient
to process those rules. In the case of derivation rules, the rule language cannot be
as basic as it seems. Conjunction in the head must be supported because some
OWL2RL rules are providing more than one derivations at once. Sometimes,
those derivations are even not of a fixed size. Moreover, the matching of lists
of arbitrary length must also be supported in the body. Some rewriting of the
OWL2RL may take place to normalize it to simpler derivation rules. But from
a practical perspective, this rewriting will give simpler rules only if the ruleset
is instantiated on a fixed user vocabulary. This instantiation will produce more
reasoning rules than the original OWL2RL rules. The OWL2RL rules are only
manipulating RDF triples. The reason is that on many places, variables are
introduced as placeholders that denote classes or properties. OWL2RL rules can
be expressed differently. But either the rules language must support variables
for classes and properties, or the ruleset must be rewritten in the context of a
fixed user vocabulary for classes and properties [2].

Let us illustrate this with an example of an OWL2RL production rule that
express the equivalentClass axiom in OWL, in [7] this rule is using RDF-based
semantic of OWL :

production rule EQAxiomRule {

when {

Triple(?c,rdf:type,?cc);

Triple(?cc,owl:equivalentClass,?cd);

}

then {

insert Triple(?c,rdf:type,?cd);

}

}

When translated into a rule language that accepts variables for classes and prop-
erties, it will be rewritten as follow :

production rule EQAxiomRule_higher {

when {

?cc(?c);
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owl:equivalentClass(?cc,?cd);

}

then {

insert ?cd(?c);

}

}

But in order to be presented to a business user, or in a rule language that do
not accept variables for classes and properties, the rule should be instantiated
into a set of rules for all the classes that are concerned by the equivalentClass
axiom in the ontology, so for each classes CC and CD where owl:equivalent-

Class(CC,CD) we obtain a reasoning rule EQAxiomRule CD:

production rule EQAxiomRule_CD {

when {

CC(?c);

owl:equivalentClass(CC,CD);

}

then {

insert CD(?c);

}

}

The reasoning ruleset is added to the applicative ruleset, these rules must have
a higher priority for all the reasoning steps to be properly taken into account in
the applicative rules. At this point, we still want the OWL reasoner to perform
the subset of the reasoning that is not covered by the produced ruleset. But this
introduce a coupling issue that we need to solve. The state of the OWL ontology
will need to be shared by both the OWL reasoner and the Rule Engine. The
OWL reasoner will expect this state to be available as facts or triples, But an
object-oriented Rule Engine will not be able to deal with facts so easily. The cycle
that is expected to take place is that the Rule Engine is matching the content
of the OWL ontology, since it also takes care of advanced reasoning, the content
is not only the A-Box but also the T-Box. The advanced reasoning production
rules add derived assertions to the OWL ontology. The OWL reasoner must be
aware of those new assertions. The Rule Engine itself must also properly update
its matching state to take into account the new OWL assertions.

The state synchronization can be added to the reasoning rules directly using
rdf:type assertions, when it is using RDF-based semantic. On each firing of these
rules the action part will achieve two actions, one for the working memory of
the Rule Engine, and the other for the OWL ontology:

production rule Sync_EQAxiomRule {

when {

Triple(?c,rdf:type,?cc);

Triple(?cc,owl:equivalentClass,?cd);

}
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then {

// 1- Add: Triple(?c,rdf:type,?cd) to the OWL ontology

// for the OWL reasoner

// 2- Add: Triple(?c,rdf:type,?cd) to the working memory

// for the PR engine

}

}

On a Rule Engine that does not support variables for classes and properties, the
actions are also duplicated to deal with the synchronization :

production rule Sync_EQAxiomRule_CD {

when {

CC(?c);

owl:equivalentClass(CC,CD);

}

then {

// 1- Add: CD(?c) to the OWL ontology for the OWL reasoner

// 2- Add: CD(?c) to the working memory for the PR engine

}

}

Now that we know how to obtain the reasoning ruleset for an ontology, we
need to produce these rules in a user-friendly format. Our translation produce
the reasoning rules in the BAL language taking advantage of the verbalizations
contained in the ontology for classes and properties. The rules presented to the
business user will have the following form (for the EQAxiomRule CD) :

IF CC is equivalent to CD AND the type of c is CC
THEN set the type of c to CD

We create for each BOM entity translated from the OWL ontology an automatic
variable that is used to designate it in the reasoning rules.

4 The Simpsons Example

To illustrate the work we will use the Simpson ontology. In this ontology :

1. the concept Boyish is defined using the restriction owl:allValuesFrom such
as hasFriend only Boy where Boy is a concept;

2. the concept BartsFriend is defined using the restriction hasValue such as
hasFriend value Bart where Bart is an individual of the concept Boy.

The rule set of our rule project contain :

1. bartsFriends rule that lists the name of person that have Bart as a friend;
2. boyish rule that lists the name of all persons that have only boys as friends.

(see Figure 3)
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Fig. 3. Simpson Rules
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These rules cannot be directly executed as the rule engine cannot reasons on the
owl:hasValue and the owl:allValuesRestriction restrictions. To resolve this
problem we implement the so called resoningRules that enables to set the type
of a BusinessThing depending its restriction. BusinessThing is a super concept
of all the business concept of the ontology and is a sub concept of owl:Thing.
It define a property type (BusinessThing, BusinessThing) that represents the
type of a business thing. To resolve the problems discussed above the following,
resoningRules, will be executed before the Simpson rules (see Figure 4).

Fig. 4. Reasoning Rules

The rule allValuesFromRule tests if the friends list of a person contains only
boys then the type of the person is set to Boyish. The rule hasValueRule tests if
the list of friends of a person contains Bart then the type of the person is set to
BartsFriend. The execution process of the rules is orchestrated by a rule flow.
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5 Discussion

In the previous sections, we focused in the practical issues of translating the
axioms of an OWL ontology into business rules. But a fundamental issue has
not been discussed, namely the case when the production rule engine is object-
oriented and not fact based. The OWL reasoner is definitely fact based. But a
state of practice production rule engine is usually object-based. It means that it
is dedicated to objects, the nodes of the runtime graph. But it is not dedicated
to relations, the edges of the runtime graph. Objects are related through func-
tions. They are not related through relations. Practically, it means that only one
navigation path is supported from the subject (aka this) to another object. The
engine does not know how to follow the inverse navigation path. The inverse
navigation path has to be provided explicitly in the object model. It also has
to be maintained consistent with its dual counterpart manually. Moreover, the
engine is not able to deal with multiplicity. A subject is pointing to a single other
object. Collections have to be added manually to deal with multiplicity. On one
hand, the object-oriented approach is very efficient at runtime. But on the other
hand, its level of expressiveness is weaker when compared to the fact-based ap-
proach. In a fact-based approach, may subjects my be in relation with many
subjects by default. Hence, an OWL reasoner or a fact based production rule
engine have all the facilities to handle inverse navigation paths and multiplicity
as built-in constructs. What is looking like a detail has in fact a huge impact on
the design of the knowledge model and of the production rules. What is auto-
mated in a fact-based approach needs to manually added to an object-oriented
approach. And in the context of a coupling with an OWL ontology, there need
to be two different representations of the same knowledge, one fact-based for
the OWL reasoner and one object-based for the production rule engine. Some
additional synchronization needs to take place.

The object-oriented version of a reasoning production rule using RDF triples:

production rule OO_Sync_EQAxiomRule {

when {

Triple(subject == ?c; predicate == rdf_type; object == ?cc);

Triple(subject == ?cc; predicate == owl_equivalentClass;

object == ?cd);

}

then {

Triple triple = new Triple(?c,rdf:type,?cd);

ontology.addTriple(triple); // for the OWL reasoner

insert triple; // for the PR engine

}

}
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The object-oriented version of a reasoning production rule accepting variables
for classes and properties:

production rule OO_Sync_EQAxiomRule_higher {

when {

?c:?cc();

owl:equivalentClass(first == ?cc; second == ?cd);

}

then {

ontology.addClassAssertion(?c,?cd); // for the OWL reasoner

insert (?cd)?c; // for the PR engine

}

}

The object-oriented version of a reasoning production rule instantiated on a fixed
user vocabulary:

production rule OO_Sync_EQAxiomRule_CD {

when {

?c:CC();

owl:equivalentClass(first == CC; second == CD);

}

then {

ontology.addClassAssertion(?c,?cd); // for the OWL reasoner

insert (CD)?c; // for the PR engine

}

The benefit of using object-oriented reasoning rules is that it becomes possible to
abstract them to business rules using the object-oriented legacy tooling so that
business user can watch and understand what is going on during reasoning. The
business object-oriented reasoning production rules are also perfectly aligned
with the business applicative production rules.

6 Conclusions

The method presented in this paper allows the users of the Business Rules com-
munity to use OWL ontologies to represent the domain knowledge in their ap-
plications. The translation of an OWL ontology into a Business Object Model,
and a set of Reasoning Rules - that represent the axioms of the ontology -, offers
to the Business Users a convenient way to easily exploit the power of the OWL
language even without a prior knowledge of OWL. This method will, in our point
of view, ease the adoption of OWL as formalism to represent the domain knowl-
edge in Business Rules applications. But it will also, help the Business Users to
make better applications since they will have a clearer idea on the separation
between the what can be represented in the model and what can be represented
using the rules.
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The actual implementation of the method is still in an early stage of develop-
ment, and we are working on improving many aspects of it. The first one is on
the presentation of the Reasoning Rules to the Business Users, on this aspect,
we are investigating how we could cluster these rules and present them efficiently
to the users. The second aspect is on the execution side, where we still need to
compare the respective performances of the OWL reasoner and the Rule Engine
when dealing with the reasoning rules.

Acknowledgments. The work described in this paper has been partially sup-
ported by the European Commission under ONTORULE Project (FP7-ICT-
2008-3, project reference 231875, http://ontorule-project.eu).
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5. Del Fabro, M.D., Albert, P., Bézivin, J., Jouault, F.: Achieving Rule Interoperability
Using Chains of Model Transformations. In: Paige, R.F. (ed.) ICMT 2009. LNCS,
vol. 5563, pp. 249–259. Springer, Heidelberg (2009)

6. Meditskos, G., Bassiliades, N.: Hoopo: A hybrid object-oriented integration of pro-
duction rules owl ontologies. In: ECAI, pp. 729–730 (2008)

7. Reynolds, D.: OWL 2 RL in RIF. Tech. Rep., W3C (June 2010),
http://www.w3.org/TR/rif-owl-rl/

8. Tomaiuolo, M., Turci, P., Bergenti, F., Poggi, A.: An Ontology Support for Semantic
Aware Agents. In: Kolp, M., Bresciani, P., Henderson-Sellers, B., Winikoff, M. (eds.)
AOIS 2005. LNCS (LNAI), vol. 3529, pp. 140–153. Springer, Heidelberg (2006),
http://dx.doi.org/10.1007/11916291_10

http://ontorule-project.eu
http://www.w3.org/TR/2010/PR-rif-rdf-owl-20100511/
http://www.w3.org/TR/rif-owl-rl/
http://dx.doi.org/10.1007/11916291_10


From Regulatory Texts to BRMS:

How to Guide the Acquisition
of Business Rules?�
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Abstract. This paper tackles the problem of rule acquisition, which
is critical for the development of BRMS. The proposed approach as-
sumes that regulations written in natural language (NL) are an impor-
tant source of knowledge but that turning them into formal statements
is a complex task that cannot be fully automated. The present paper
focuses on the first phase of this acquisition process, the normalization
phase that aims at transforming NL statements into controlled language
(CL), rather than on their formalization into an operational rule base. We
show that turning a NL text into a set of self-sufficient and independent
CL rules is itself a complex task that involves some lexical and syntactic
normalizations but also the restoration of contextual information and of
implicit semantic entities to get a set of self-sufficient and unambigu-
ous rule statements. We also present the SemEx tool that supports the
proposed acquisition methodology based on the selection of the relevant
text fragments and their progressive and interactive transformation into
CL rule statements.

1 Introduction

Checking the conformance of a process with respect to regulations is a growing
domain of application for business rule management systems (BRMS). For in-
stance, in order to export cars in various countries, car manufacturers have to
satisfy safety and quality tests described in UNO regulations (e.g. 50 pages with-
out annexes for the sole safety belts) and others constraints from the European
and national authorities. Moreover, these regulations evolve over time (the UNO
text has been modified 10 times between 2005 and 2009). Even if efficient rule
systems are now able to exploit and maintain large rule bases, rule acquisition
remains a bottleneck, and text-based rule acquisition is an important challenge.

We propose a method for the acquisition of rules and a tool, SemEx, which
supports that method and guides the acquisition process. This approach relies
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on two strong assumptions. First of all, we believe that acquiring conformance
rules from regulations cannot be fully automated. This is due to the complexity
of human natural language (NL). The acquisition strategy that we propose relies
on the cooperation of a domain expert and local automated processes. The expert
controls the transformation of the regulation but automatic processes ease up
the expert work. Second, we consider that it is difficult if not impossible to
translate directly NL regulations into an operational rule bases expressed in
formal language. We rather propose to decompose the formalization work into
two main phases and to use controlled languages (CL) such as SBVR structured
English (SBVR-SE1) as an intermediate language. A domain expert designs a
set of CL rules from the source NL regulations and this set of candidate rules is
then passed on to a specialist of information technologies (IT) that formalizes
the candidate rule base taking the characteristics of the final application and the
constraints of the rule engine into account. We focus here on the first phase, the
normalization of the source regulation into a set of candidate rules written in
CL, rather than on the second phase, the transformation of the CL statements
into rules, which has been more studied. We show how this normalization process
can be divided into intermediary steps, which allows to decompose the expert
work and to guide each step with specific helping tools.

This rule acquisition method and the associated SemEx tool have been devel-
oped as part of the ONTORULE project, which aim was to define an integrated
platform for acquisition, maintenance and execution of business-oriented knowl-
edge bases combining ontologies and rules. The work has been tested on two in-
dustrial use cases. The AAdvantage use case aimed at developing a classification
application to determine the benefits that an airline customer retention program
member has earned over a given period. The business rule model had been de-
signed from the documentation downloaded from the American Airlines (AA) web
site, in particular the Terms and Conditions (5,744 words), which describes the
membership statuses and the associated benefits. In the Audi use case, a rule ap-
plication has been being defined to certify the conformance of Audi procedures
with vehicle safety international regulation. The present experiment is based on
the aforementioned UNO regulation. In each use case, the normalization process
has been guided by a domain ontology that had been built beforehand.

Section 2 presents the state of the art. The normalization methodology and
the architecture of the SemEx tool are described in Section 3. Section 4 details
the framework that we propose for the progressive translation of texts into CL,
showing the complexity of the involved linguistic and semantic transformations.
Section 5 presents the results of that normalization processes in our use cases.

2 Related Works

BRMS are useful for propagating automatically the changes in the business of
organizations into their information systems [1]. According to [11], the different
forms of business rules can be seen as a continuous flow of models: the rules

1 Semantic Business Vocabulary and Rules http://www.omg.org/spec/SBVR/1.0/

http://www.omg.org/spec/SBVR/1.0/
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Fig. 1. SVBR SE business rule example (www.brcommunity.com)

evolve from an initial state (the rules are included in documents specifying the
system), to a final state (they are formalized and integrated in information sys-
tems). However, some problems remain unsolved regarding 1) the acquisition of
rules from specification documents, 2) their modeling in a formal language that
enable their automation, 3) their integration in BRMS (storage, exploitation and
maintenance).

The present work focuses on the first two points. This question, already raised
by [3,11,9], concerns the transformation from informal to formal knowledge and
the translation of text fragments written in NL into formal rules. This translation
is difficult to automate, due to the complexity of NL and reduced expressivity of
formal languages. Even the translation into SPARQL of LN queries, which are
much simpler than texts, is acknowledged as a complex problem. To the best of
our knowledge, only [8] considers a direct translation of legal texts but, after a
parsing step, the abstract syntax trees are translated by hand into CTL2.

Controlled languages have been proposed as intermediate languages in this
translation process [18]. They allow to reformulate rules in a way that is still read-
able for the user and is easier to formalize than NL. In the Business Rules domain,
CLs are used in Oracle Policy Modeling Suite3, in IBM SPARCLE policy work-
bench [4]. Other in use controlled languages have been described by RuleSpeak
[16], by Atempto Controlled English (http://attempto.ifi.uzh.ch/site/docs/).

SBVR (Semantics of Business Vocabulary and Rules) can be seen as a syn-
thesis of several efforts and a standard independent of English or any natural
language. It has been accepted by the OMG (Object Management Group)4.
We refer to the English version of SBVR CL, namely SBVR Structured En-
glish (SBVR-SE). SBVR relies on formulas (Figure 1) combining linguistic basic
templates with logical, modal or quantification operators.

The NL to CL translation is a complex task, the automation of which has
been rarely considered. Recently, [2] has proposed NL2SBVR5, a tool to auto-
matically translate NL into SBVR-SE. According to the reported experiments,
the complexity of the translation depends on the number of clauses that com-
pose a sentence. Only so-called simple rules, composed of at most two clauses, are

2 CTL is a modal temporal logic.
3 www.oracle.com/technology/products/applications/policy-automation
4 http://www.omg.org
5 http://www.cs.bham.ac.uk/~isb855/nl2ocl/projects.html

www.oracle.com/technology/products/applications/policy-automation
http://www.omg.org
http://www.cs.bham.ac.uk/~isb855/nl2ocl/projects.html
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translated with a 80% success rate. This is the reason why, in SemEx, translation
into CL and simplification go along for complex and long NL rules.

NL simplification has been studied to ease translation [17], human under-
standing (esp. in case of understanding disorders [13]), text summarization [10,7],
foreign language learning (see [6] for a general presentation). Methods give a sig-
nificant role to the lexical part, trying to stick to a privileged vocabulary, and
to the brevity of sentences. Our transformation process (see Section 4) relies on
the same methods but differs in its goal. The above works aims at preserving
the discursive structure of texts while sometimes simplifying the information
content, whereas, in business rule acquisition, the simplification of text should
give a set of independent rule statements but preserve their meaning.

3 Normalization Process

3.1 Overall Approach

The normalization process takes a regulatory text as input and outputs a new
”text” composed of a list of independent, self-sufficient rules. The rules are writ-
ten in a language that is as controlled as possible and the set of rule forms a
draft of a business rule model (the basis of a formal rule model). The proposed
approach relies on the selection of the relevant text fragments (sentences or se-
quences of sentences) that convey rule information, and on their normalization,
i.e. on their translation into CL. Both steps are difficult to handle automatically.
The selection step calls for browsing facilities, since missing some important pas-
sages leads to a partial BR model. Only simple natural language statements can
be automatically and reliability translated in CL. An interactive approach is
therefore adopted, which consists in transforming step-by-step a regulatory text
fragment into one or several independent rules written in controlled language.

This approach is illustrated on Figure 2. The underlying methodology is sup-
ported by the SemEx tool6, which offers two main acquisition functionalities
for the selection and normalization of rules. Those functionalities and the corre-
sponding perspectives of SemEx are presented in sections 3.3 and 3.47.

For traceability, diagnosis and revision purposes, the whole set of transfor-
mation results needs to be stored and mined. SemEx therefore relies on a rich
annotation scheme to encode the rule base under construction and the source
text from which it derives. Once it is built, the annotation structure can be
explored through dedicated search functionalities. This annotation scheme is
described in Section 3.2.

SemEx is built on W3C standards and technologies, which enables the reuse
of resources (OWL ontologies) and components (SPARQL search engine).

6 http://www-lipn.univ-paris13.fr/~guisse/index.php?n=Semex.Semex
7 Additional functionalities are accessible via SemEx for text annotation and for min-
ing the text and the resulting business model, but they are not described in detail
here. See [12]. for an overall description of the tool.

http://www-lipn.univ-paris13.fr/~guisse/index.php?n=Semex.Semex
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Fig. 2. Rule acquisition overall approach. Two final candidate rules (4 and 6) have
been derived from the same initial candidate rule (1) extracted from the source text.
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Fig. 3. Annotation scheme

3.2 Annotation Scheme

The annotation scheme describes the data structure in which the source docu-
ment and the business rules that derive from it are encoded. The basic elements
of this scheme are the textual units that are either tokens or sequences of tokens
(elementary character strings resulting from a segmentation process). The source
document is actually represented as a corpus which is composed of one or several
documents. A document is a list of sentences, which are themselves represented
as sequences of tokens. The rule base is composed of a set of candidate rules
which are also sequences of tokens.

Two types of annotation relations are defined. The high-level ones relate sen-
tences and candidate rules. The rule base is similar to a document but the
candidate rules that compose it are partially ordered by an annotation relation.
A sentence as a whole can be annotated by a candidate rule which results from
its selection and a candidate rule as such can be annotated by one or several
candidate rules that derive from it. Low-level annotation relations link the tex-
tual units that compose the sentences and the candidate rules to elements of
the conceptual (or lexical) and logical (or grammatical) vocabularies: the onto-
logical elements (concepts, properties or individuals) that compose the domain
ontology chosen to interpret the source document, and the keywords that serve
as grammatical words in the controlled language.

In technical terms, this data structure is encoded as a RDF graph. Annotation
links are encoded in RDFa: the RDF annotations are anchored in textual units of
XML documents and refer to resources that are OWL entities or candidate rules.
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For visualization, low-level annotations are usually represented in a SBVR-style,
where the annotated units are colored in blue, red, green and orange according
to the type of element (concept, instance, property or known key word) that
is referred to. High-level annotations are encoded as explicit references in the
source sentence or candidate rule that point to the target candidate rules.

3.3 Selection of Regulatory Fragments

The first challenge for the knowledge engineer who develops a business rule model
is to identify the relevant parts of the document and to select the fragments
that convey regulatory information. He/she mainly has to read through the
source text but the relevant information is often scattered in large and complex
documents. At this step, precision must be favored over recall, as it is harder to
recover missed fragments than to drop irrelevant ones.

SemEx proposes several devices to help that selection task. The first one is
the low level of annotations. When browsing the annotated text in which all the
recognized textual units are colored, the expert can focus on passages in which
many textual units have been identified. The keywords are especially useful:
sentences with a lot of annotated keywords are likely to be relevant.

The second device is a small information extraction engine that allows to
design extraction patterns in an interactive mode and look for matching frag-
ments. For instance, a sentence that follows the structure ”if. . . [then]. . . must. . . ”
is likely to convey relevant information. Only a rudimentary version of the ex-
traction engine is integrated in SemEx for now but it could be extended. The
goal is to store the patterns so that the most generic and reliable ones can be
reused from one application to another.

The third device is a semantic search engine that returns a list of sentences or
candidate rules in answer to a semantic query. For instance, if one looks for all
the sentences that mention the concept participant, one gets all the sentences that
contain the word ”participant” but also in which the participant is designated as
”a participating company” or even as a ”member of the program”. This ensures
a high recall level.

3.4 Normalization

Once the relevant fragment are identified, they must be normalized into CL. The
goal is to get rid of ambiguities, to homogenize the lexical and syntactic turns
and to make explicit all useful information. This is a complex process that cannot
be fully automated. SemEx methodology supports an interactive and progressive
process that transforms the initial sentence extracted from the source document
into a standardized one, which is written in CL or as close as possible.

In technical terms, the expert can derive a new candidate rule from an existing
one. The derivation is encoded as an annotation link and any intermediary step
can be restored at any moment. The next section details the transformations
that can be applied during the normalization of a rule base. Figure 4 on page
88 gives an example of a derivation tree.
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4 Guiding the Transformation Process

This section presents the types of elementary transformations that are needed
to translate a NL rule into controlled language. Each of them is explained and
illustrated on our use cases. Transformations aim at clarifying the text provided
to IT specialists in charge of implementing the rules. This involves reformulating
ambiguous or tricky sentences, while preserving the meaning of the underlying
rules. Each rule must also be formulated in a self sufficient way, so that its
operative meaning can be determined without referring to the source text or to
other rules.

Our target language is close to SBVR-SE. The main difference is that we
exploit a lexicalized ontology [15] to represent the domain and its conceptual
vocabulary. This vocabulary has a narrower scope than that of SBVR, which
often includes specific and general-purpose dictionaries8 whereas general purpose
vocabulary remain mostly out of the scope of our transformations.

We identified four types of transformation that are presented below. The lex-
ical normalizations replaces the terms of a candidate rule so as to stick to the
domain vocabulary. The decontextualization makes explicit the contextual ele-
ments of meaning, so that the resulting rules be understandable independently
of the source text and other rules. The syntactic normalization simplifies the
syntactic structure of the sentence so that it is unambiguous and easy to un-
derstand. The semantic normalization operates at the semantic level, where
discourse entities not explicitly referred in the text must often be introduced.

4.1 Lexical Normalization

The operation of lexical normalization aims at checking the business vocabulary
of a candidate rule and at replacing all the mentioned terms by their preferred
forms. This transformation process takes as input a candidate rule and a lexical-
ized ontology, which specifies not only the relevant concepts and properties for
the field of application but also the preferred and alternative terms to refer to
them [15]. The goal is that the candidate rule conform to that vocabulary. The
rule terms must be disambiguated and made as specific as possible with respect
to the terminology associated to the domain ontology.

The lexical normalization is based on the recognition of the terms of a can-
didate rule. This operation relies on the annotation of the candidate rule with
respect to the ontology: a semantic annotator is integrated in SemEx [12]. Terms
recognized as preferred terms in the ontology are left as is but alternate terms
are replaced by their associated preferred ones. These annotation and replace-
ment processes is based on a lemmatized version of the text as output by a
part-of-speech tagger9 to ensure the linguistic correctness of the resulting rule.

8 In the SBVR-SE specification, vocabularies can use ’Authoritative dictionaries for
the relevant natural languages’ [14, p.133]. The EU-rent example incorporates
Merriam-Webster Unabridged [14, p.275].

9 We rely on the TreeTagger
(http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/)

http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/
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The normalization process also requires that the ambiguity of terms which
can get several annotations be solved. The expert has to identify the relevant
term meaning in the context and select the proper unambiguous preferred terms.

For instance in

Two belts or restraint systems are required for the buckle inspection
and the low-temperature buckle test.

The concepts BuckleInspection and LowTemperatureBuckleTest are represented
by their preferred terms ”buckle inspection” and ”low-temperature buckle test”,
but ”belts” and ”restraint systems”, which stand for the concepts SeatBelt and
ChildRestraintSystem, are replaced by the preferred forms of these concepts (”seat
belt” and ”child restraint system”). This lead to the following transformed can-
didate rule:

Two seat belts or child restraint systems are required for the buckle
inspection and the low-temperature buckle test.

Lexical normalization also involves nominalizations when a domain concept
or entity is mentioned through a verbal phrase. For instance, ”be tested for
strength” should be replaced by ”undergo a strength test” in the following rule:

All the adjustment devices shall be tested for strength as prescribed
in paragraph 7.5.1.

4.2 Decontextualization

Decontextualization extends lexical normalization in that it tracks references to
business concepts which are not made by the specific business vocabulary stored
in the lexicalized ontology, but by a word or phrase (the referent) which co-refer
to a pre-mentioned word or phrase (the antecedent) and whose meaning depends
on the antecedent’s one. The co-reference link must be broken and the actual
meaning of the referent must be made explicit so that the rule can be understood
independently of its context. Various types of referent can be found.

Grammatical Words. Pronouns and possessive adjectives often embed a ref-
erence to a business entity. In the following rule, ”They” should be replaced by
”The adjustment devices”.

All the adjustment devices shall undergo a strength test as prescribed in
paragraph 7.5.1. They must not break or become detached under the
tension set up by the prescribed load.

This type of coreference can often be solved automatically using an anaphora
solver, which identifies the referring items and their antecedent. We plan to inte-
grate such an anaphora solver in SemEx and to test the benefit of this additional
helping tool but we do not have such an experimental feedback yet.
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Generic Business Terms referring to high-level concepts are often used to
refer to more specific ones. This is a stylistic way to avoid repetitions when the
context is clear enough, but those references must be made explicit in context-
independent candidate rules. In the UNO regulation, ”Test” is often used for the
specific test under description. In the following example, ”test” means ”micro-
slip test” and the generic term must be replaced by the specific one.

The samples to be submitted to the micro-slip test shall be kept for a
minimum of 24 hours in an atmosphere having a temperature of 20 ±5
◦C and a relative humidity of 65 ±5%. The test shall be carried out at
a temperature between 15 and 30 ◦C

Individual Constraints are often left implicit to skip straightforward details.
For instance, in

Mileage credit will be credited only to the account of the AAdvantage
member who flies, etc.

”Mileage credit” does not refer to the plain general concept MileageCredit, but to
a specific instance earned by the AAdvantage member who took the mentioned
flight (”who flies”). Decontextualization yields to

Mileage credit awarded for a flight will be credited only to the account
of the AAdvantage member who takes that flight, etc.

Searching for implicit individual constraints is difficult. We plan to compare the
concepts in the rule to configuration of roles in the ontology, as the triangle
which links the mileage credit earned for a ticket, an AAdvantage member who
buys a ticket and a flight for which the ticket is delivered.

Reference Keys are symbols or numbers which refer to a distant piece of text.
We observed that in regulation texts, the accompanying text can take various
forms but that reference keys are often used to introduce exceptions. Clarification
is therefore both important and cumbersome.

In the following example, two load determination procedures must be defined
depending on the fact that the buckle is part of the attachment or not. A complex
reorganization of the candidate rule is therefore necessary.

(7.5.1) The buckle shall be connected to the tensile-testing apparatus and
the load shall then build up to 980 daN . . . If the buckle is part of the
attachment, the buckle shall be tested with the attachment, in conformity
with paragraph 7.5.2. below,
(7.5.2) The attachments shall be tested in the manner indicated in para-
graph 7.5.1., but the load shall be 1,470 daN.

Such a text reorganization cannot be made automatically, but navigation facil-
ities can be proposed so that the expert can easily identify reference keys and
get a quick access to the referred parts of text.
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4.3 Syntactic Normalization

Syntactic normalization aims at giving a more standard phrasing of the simple
candidate rules or at splitting them into several simpler ones that are easier to
understand. This normalization is close to the text simplification operations that
have been proposed for English [17,5], but some of these simplifications are not
adequate in our business rules context and we propose more specific structures
and transformations for our specialized texts.

Sentence Reordering reorganizes the sentence to stick to the order of a logical
rule pattern. This often lead to exchange the main and subordinate clauses in
a candidate rule. In the following example, the elliptic ”upgrade” is understood
as a coreference and the clauses are reordered:

Upgrades are void if sold for cash or other consideration.
If upgrades are sold for cash or other consideration, these upgrades are
void.

Splitting Enumerations. Enumerations are a well-known factor of sentence
complexity and splitting enumerations leads to decompose candidate rules into
simpler ones. Enumerations have various linguistic forms : pairs of connectors
such as either...or, neither...nor, not only...but also, whether...or, etc., coordi-
nating conjunctions (and, or) or plain juxtaposition. The enumerated list can be
the subject, the object or even the verb of the clause. For instance, the following
candidate rule should be split into three independent sentences:

Neither accrued mileage, nor award tickets, nor upgrades are transfer-
able by the member upon death.
Accrued mileage is not transferable by the member upon death. Award tickets
are not transferable by the member upon death. Upgrades are not trans-
ferable by the member upon death.

Enumerations are difficult to handle automatically. Coordination markers are
easy to detect but the scopes of the enumerations are not. Their interpreta-
tion is sometimes difficult: splitting is correct only if the enumeration clusters
independent conditions; otherwise, it may lead to errors, as in:

Mileage credit may not be combined among AAdvantage members, their
estates, successors and assigns.

Splitting Rules. Independently of enumerations, complex candidate rules often
need to be split. Solving a coreference is a frequent cause that should be often
handled automatically when an anaphora solver will be integrated into Semex.
In the following example, the decontextualization of the pronouns ”which” and
”yours” leads to split the candidate rule into three independent ones:
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The membership year, which is the period in which your elite benefits
are available, runs from March 1 through the last day of February of the
following year.

The membership year is a period. Member’s elite benefits are avail-
able in the membership year. The membership year runs from March
1 through the last day of February of the following year.

4.4 Semantic Restoration

Semantic restoration is a fourth kind of transformation that is often implied
by decontextualization or syntactic normalization : discourse entities, which are
implicit in the source documents, often have to be restored during normalization.

Restoring an Entity to Solve a Reference. In some cases of decontextual-
ization, there is no unambiguous designation available for solving a coreference
and a new entity must be introduced.

In the following example, expliciting ”which” by ”two perpendicular axes”
misses the coreference, using ”these perpendicular axes” does not solve it but
introducing a reference to a SensitivityTestAxes concept enables the rule split.

When retractors are being tested for sensitivity to vehicle deceleration
they shall be tested at the above extraction along two perpendicular axes,
which are horizontal if the retractor is installed in a vehicle as specified
by the safety-belt manufacturer.

When retractors are being tested for sensitivity to vehicle deceleration
they shall be tested at the above extraction along the sensitivity test
axes. Sensitivity test axes are perpendicular. Sensitivity test axes
are horizontal if the retractor is installed in a vehicle as specified by the
safety-belt. manufacturer.

Restoring an Interval to Express Constraints. It often happens that con-
straints between entities are only expressible with the help of an interval that is
not mentioned as such in the text.

In the following example, the transformation depends on the concepts avail-
able to refer to time entities and the proposed solution assumes there is none
and defines them all:

The breaking load shall be determined within 5 minutes after the strap
is removed from the conditioning atmosphere or from the receptacle.

The determination time is the time when the breaking load is determined.
The removing time is the time when the strap is removed from the con-
ditioning atmosphere or from the receptacle. The delay between the re-
moving time and the determination time will be less than 5 minutes

These cases frequently occur for temporal and spatial constraints and keyword
search (e.g. after, until, since) should help to detect the problematic rules.
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Fig. 4. Example of a derivation tree

Fig. 5. SBVR translation

5 Experiments and Results

This normalization method has been tested on the two ONTORULE industrial
use cases for which two real BR models and rule applications had to be de-
fined, exploiting available sources of information. In each case, a rule base has
been designed by extracting a set of candidate rules from the source regulatory
texts and by normalizing them, using as many transformation steps as necessary.
Transformations which are not yet proposed by a tool incorporated in SemEx
have been handled manually by the expert, so as to test the completeness and
the correctness of the description.

Figure 4 shows the example of Rule R5, on which a decontextualization trans-
formation (R125) and then a syntactic normalization (R124) are applied before it
is decomposed into two elementary and independent sub-rules (R126 and R127).
We tried to automatically translate the initial and the final candidate rules into
SBVR, using the NL2SBVR tool [2].The result (Figure 5) shows that the mean-
ing of the initial sentence is lost in the translation (statement 1), but that the
translation works for the transformed final candidate rules giving valid SBVR
statements (2 and 3).

The following tables present the types and size of the rule bases that have
been designed out of the source regulatory texts for each use case. Four types
of transformations are considered here: the normalization of the vocabulary;
the restoration of contextual information, the syntactic transformation and the
decomposition of rules. Since the syntactic and semantic transformations are
often performed together, the semantic transformations are not isolated here.

Table 1 shows the results of the selection phase. It gives the size of the ini-
tial rule bases with respect to the size of the source texts. In the use cases, 1/4
at least of the sentences have been selected as relevant regulatory information.
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This high rates are due to the fact that the source text are short but dense.
This table also shows the initial structure of the rule base. More than 2/3 of the
extracted rule are structural rules, some of them are operative rules and few of
them are derivation rules.

Table 1. Results of the selection phase on the AAdvantage and Audi use cases (CR
= candidate rule; SR = structural rule; OR = operative rule; DR = derivation rule)

Use Case # of sentences # of initial CR Selection rate # of SR # of OR # of DR

AAdvantage 245 74 30% 54 14 6
Audi 221 54 25% 45 9 0

Table 2 details the types of transformations that have been made for each
use case. Four types of transformation are considered: the first three ones re-
spectively affect the vocabulary, the context and the syntax; the last one is the
decomposition of one candidate rule into several ones. In terms of number of
transformations, the syntactic normalization is the most expensive one: it re-
quires twice as much transformation steps than other types of transformations.
All the initial rules have undergone a syntactic normalization (100%). The vo-
cabulary transformation and decontextualization also affect more than half of
the initial candidate rules, whereas decomposition is required in less numerous
cases (resp. 35% and 20% for the AAdvantage and Audi use cases).

Table 2. Distribution of the different types of transformation (α = rate of a given type
of transformation when considering all the transformations that have been made; β =
rate of initial candidate rules that have undergone a given type of transformation)

Normalization types AAdvantage α AAdvantage β Audi α Audi β

Vocabulary 19% 65% 20% 61%
Context 18% 60% 19% 57%
Syntax 43% 100% 47% 100%
Decomposition 21% 35% 14% 20%

The last table (3) presents the structure of the resulting rule base, the number
and types of the final candidate rules. As expected, there are more final rules than
initial ones since some of them have undergone a decomposition. At the end of
the normalization process, the regulatory information written in the AAdvantage
text (245 sentences) has been reduced to a set of 104 candidate rules which are
autonomous SBVR statements. The reduction is even higher for the Audi use
case (225 sentences, 65 candidate rules), whose source text is more detailed.
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Table 3. Structure of the final rule base

Use Case SR OR DR Final CR

AAdvantage 71 27 6 104
Audi 54 11 0 65

6 Conclusion

This paper tackles the rule acquisition problem, assuming that regulations
written in NL are a rich source of knowledge but that turning NL into for-
mal statements is a complex task than cannot be fully automated. We propose
to decompose the acquisition process into two main phases: the translation of
NL statements into CL and their formalization into an operational rule base.

The present paper focuses on the first ”normalization” phase. It shows that
transforming NL statements into CL is itself a complex task that involves some
lexical and syntactic normalizations but also the restoration of contextual in-
formation and of implicit semantic entities to get a set of self-sufficient, unam-
biguous and easy to understand rule statement. We also present the SemEx tool
that supports the proposed acquisition methodology based on the selection of
the relevant text fragments and their normalization into a SBVR-like CL.

SemEx has been designed as an interactive rule acquisition tool. It guides the
domain expert through a sequence of steps that produces elementary candidate
rules, helps the detection of relevant keywords and controls the results. Some
helping tools have already been plugged in SemEx: e.g. a semantic annotator
that takes a lexicalized ontology as input and annotates a text with respect to
that ontology and a keyword search that helps locating the most relevant text
fragments or identifying the problematic features (e.g. anaphoric pronouns) in
the selected fragments.

In the next future, we plan to exploit more intensively NL processing tools
to guide and help the acquisition task. Part of the morphological and syntactic
calculus could be automated using a parser. Some anaphora could be solved and
syntactic transformation patterns could be exploited. We are currently testing
these technologies to enrich SemEx with additional helping tools. We are also
planning to integrate a SBVR parser to check the syntactic conformity of the
final candidate rules with SBVR-SE. Successful checking would indicate that
the transformation phase is achieved and failures would give some indication on
how to complete it. The last and most challenging tool would be a semantic
parser able to check the conformity of the final candidate rule to the underlying
ontology. That would help to identify the semantic shortcuts that need to be
made explicit in the candidate rules.
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Abstract. In this paper, a rule based approach is presented to translate Business 
Process Model Notation (BPMN) based a business process models into 
Semantics of Business Vocabulary based Rules (SBVR) based business rules. 
Such translation can simplify the process of understanding the information 
represented in BPMN models for the business stakeholders as information 
represented in business rules is easy to understand instead of a BPMN based 
graphical representation of a business process model. In this paper, we also 
present a case study to validate the performance of the case study.  

Keywords: Business Process Modelling, BPMN, SBVR. 

1 Introduction 

In typical Business Process Modeling [1] (BPM), business analysts analyze business 
information and model into business processes. To attain, efficient and quality 
business processes, a standard Business Process Modelling Notation [2] (BPMN) is 
used. BPMN supports graphical representation of a business process model. Once, a 
business process model is ready, it is demonstrated to the external business 
stakeholders to validate the correctness of the information represented in the model. 
However, it is a common knowledge that a graphical representation of a business 
process model can be complex to understand for the business stakeholders. While, a 
natural language (NL) representation of a BPMN based model can be easy to 
understand for external business stakeholders. In this paper, to address the above 
discussed challenge, we present a novel approach to translate a BPMN-based business 
process model to a NL representation such as SBVR [3] business rules. In BPMN to 
SBVR translation, SBVR is used a pivot representation and simplifies the translation 
process.  

The rest of the paper is structured as follows. Section 2 presents background and 
related work of the presented research. In Section 3, we present a framework used to 
generate SBVR based natural language expressions from the BPMN based graphical 
business process models. Section 4 presents a case study, finally, paper is concluded 
with the future work. 
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2 Background and Related Work 

2.1 Business Process Modelling Notation (BPMN) 

BPMN defines a Business Process Diagram (BPD), which is based on a flowcharting 
technique tailored for creating graphical models of business process operations. It is a 
notation that is understandable by all business users: from the business analysts that 
create the initial drafts of the processes, to the technical developers responsible for 
implementing the technology. A BPMN model consists of simple diagrams with a 
small set of graphical elements.  

Flow Objects: The flow objects [2] are used to define the behavior of a business 
process. Three flow objects are commonly used such as Activities, Events, and 
Gateways. 

Flow Object Connectors: The flow objects can be connected to each other by using 
following three connectors such as Sequence flows, Message flows, and Associations.  

Swimlanes: The swimlanes or partitions are used to group various objects involved in 
a process. Two commons types of swimlanes are Pools and Lanes.  

Artifacts: In a business process model, artifacts can be used to represent additional 
information related to the process. Commonly used artifacts in BPMN models are 
Data Objects, Groups and Annotations. 

2.2 Semantic Business Vocabulary and Rules (SBVR) 

Semantics of Business Vocabulary and Rules [3] is an adopted standard used to 
specify the business rules.  

SBVR Business Vocabulary. A business vocabulary [3] (section: 8.1) consists of all 
the specific terms and definitions of concepts used by an organization or community 
in course of business. In SBVR, there are four key elements: 

• An Object Type is a general concept e.g. Employee etc. 
• An Individual Concept is a qualified noun e.g. ‘Birmingham’, a famous city.  
• A Characteristic is an abstraction of a property of an object e.g. name of city. 
• A Verb Phrase is a verb in English sentences e.g. employee uses account.  

SBVR Business Rules. A SBVR business rule is a formal representation ‘Under 
business jurisdiction’ [3]. Each SBVR business rule is based on at least one fact type. 
The SBVR rules can be a structural rule [ibid] used to define an organization’s setup 
or a behavioural rule [ibid] used to express the conduct of a business entity. 
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2.3 Related Work 

SBVR can be used as an intermediate representation in translation of formal 
representations to natural language and vice versa. Examples of such translations are 
UML/OCL to SBVR [5], SBVR to UML models [6], SBVR to OCL constraints [7, 
9], etc. A SBVR based representation contains a set of business vocabulary and 
business rules. As far as we know, the presented approach is the first proposal to 
provide such translation. Moreover, our approach provides a standard format (such as 
SBVR) for defining the business rules in natural languages. 

3 Translating BPMN to English 

In this section we explain the mapping of all key elements in BPMN to their 
respective elements in SBVR metamodel to extract SBVR vocabulary. Then the 
SBVR vocabulary is mapped to Business rules and the Business rules are also 
represented using SBVR Structured English notation to make it easy to read. Details 
of the used framework for BPMN to SBVR translation is given below. 

3.1 Input BPMN Model 

To generate SBVR based English translation of a business process model, a XML or 
XMI representation of a BPMN model is used. The XML representation of a BPMN 
model can be used any CASE tool as most of the CASE tool provides this facility. 
However, we have used the Enterprise Architect tool [10] to generate a BPMN model 
and we exported the XML representation of the same BPMN model by using the 
Enterprise Architect tool.  

3.2 Mapping Flow Objects 

Flow objects are the main describing elements within BPMN, and consist of three 
core elements: events, activities, and gateways. Mapping of all three elements is 
presented below: 

Mapping Events: Start event is mapped to the initiation of the SBVR specification 
and End event is mapped to the end of the SBVR specification. To handle Start event, 
we add a string “The process of” + Model Name + “starts with” to text of the Start 
event. Here, XML file name is used as Model Name. However, to handle End event, a 
string “The process of” + Model name + “ends with” is added to the End event text.  

There can be some other types of Events such as Throwing (use to represent a 
completion message when a process ends) event or Catching (used to represent an 
incoming message starts a process) event. However, current implementation only 
supports Start event and End event. 
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Mapping Activity: An Activity is mapped to a Logical Formulation to be used in the 
consequent part of an implication or in Necessity Formulation. Following can be two 
possible cases for mapping Activity: 

• An activity is mapped to the Atomic Formulation in an ActivityFactType. In 
Activity to ActivityFactType mapping, the Object Type referred by role1 and the 
name of the Object Type referred to by role2 is mapped to the actor of the 
Activity.  

• An Activity without any condition is potentially an initial Activity and an initial 
activity is mapped to a Necessity Formulation in a Logical Formulation of SBVR 
model and a Necessity Formulation is represented by keywords “It is necessary”. 

Gateway: In a BPMN model, a Gateway represents the conditions such as OR, AND, 
etc. An example of BPMN gateway to English mapping is shown in Table 1. 

Table 1. Mapping BPMN Gateways to SBVR Logical Formulation 

BPMN Element SBVR Element  
XOR Exclusive Disjunction 
OR Disjunction 
AND Conjunction 

3.3 Mapping Flow Object Connectors 

Flow objects are connected to each other using Connecting objects, which are of three 
types: sequences, messages, and associations. We translate the only connecting 
objects with captions as shown in Table 2: 

Table 2. Mapping BPMN Flow Objects to SBVR representation 

BPMN Element SBVR Element  
Sequence Flow Activity-A results in Activity-B 
Conditional Flow Activity-B results if condition is True 
Message Flow Pool-A connected with Pool-B 
Association Fact Type (Artifact/Text is connected to Flow Object) 

3.4 Mapping Artifacts 

BPMN was designed to allow modelers and modeling tools some flexibility in 
extending the basic notation and in providing the ability to additional context 
appropriate to a specific modeling situation, such as for a vertical market (e.g., 
insurance or banking). Any number of Artifacts can be added to a diagram as 
appropriate for the context of the business processes being modeled. The current 
version of the BPMN specification pre-defines only three types of BPD Artifacts, 
which are shown in Table 3: 
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Table 3.  Mapping BPMN artefacts to SBVR representation 

BPMN Element SBVR Element  
Data Objects Source of a information 
Group Activities in a Group are written together. 
Annotation Additional Information 

3.5 Mapping Swim Lanes 

As Swim-lanes are use to group activities in a business process model, similarly, we 
have used Pool and Lane to group the business rules. All activities shown in a single 
Pool or Lane are grouped together. 

3.6 Process Dependencies 

The process dependencies of the BPMN model are mapped to the Logical-
Formulations of the SBVR model. For this transformation, we identified two 
alternative mappings, which depend on where the Logical Formulation is defined: (1) 
in the condition part of implications, or (2) in the consequent part of implications or in 
a Necessity Formulation. 

Mapping Relation: A Relation is mapped to a Logical Formulation used in the 
condition part such as an ‘And’ Relation is mapped to conjunction and a Disc 
Relation is mapped to disjunction.  

Mapping Variables: A variable is mapped to an Atomic Formulation in a Unary-
Fact Type, Association-Fact Type or IsOfPropertyFactType. Here, a variable can be 
of any type; either the Variable updated by the Activity or a Precondition of the 
Activity. 

Mapping Literals: A literal is mapped to a simple Atomic Formulation that is not 
based on a Fact Type and has only one binding Noun Concept, where the Noun 
Concept will be represented as an Individual Concept.  

3.7 Optimizing the English Representation 

In table 1, 2, and 3, we have shown the way various BPMN elements are mapped to 
SBVR based English. However, English generated in these examples is difficult to 
understand. Hence we need to optimize the generated English to make it easy to read 
and make it understandable. For the sake of optimization we have performed 
following two steps: 

Resolving Phrases: In this phase the unstructured phrases extracted from BPMN 
elements is structured to make the extracted information sensible.  To restructure the 
phrases following steps were performed:  
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Process Activity Text: The text in Activity symbol is processed as we append the text 
“user” at the start of the Activity symbol text. For example, the text “Buy item now” 
is processed as “User buys item now”. Here, we do add ‘s’ with the verb to keep 
grammar correct.  We have used WordNet [8] version 3.1 to identify possible POS 
tags for each token of the text.  

Process Gateway Text: The text in a gateway is handled in various ways.  

i. If the Gateway poses a Yes/No question then two copies of the text are generated: 
one copy with positive sense and second copy with the negative sense. To generate 
a positive sense we simple add a helping verb in between Noun and Verb. While, 
for generating the copy with negative sense we also add token “not” with the 
helping verb. For example the text “Item Sold” is structured to “It is sold” and 
“Item is not sold”.  

ii. If the Gateway does not pose Yes/No question then we generate two copies of the 
Gateway text with by adding the text of respective branch. For example, the text 
“auction type” is optimized to “auction type is buy now” and “auction type is bid 
for item”. 

Applying Structured English Notation: Finally, we apply SBVR  structured English 
notation to generated SBVR rule. Here, common nouns or Object Type are underlined 
e.g. employee; the verbs are represented as Verb Concept and are italicized e.g. uses; 
the SBVR keywords are bolded e.g. It is obligatory; the proper nouns are represented 
as Individual Concepts by double underlining e.g. London.  

4 A Case Study 

To demonstrate the potential of the presented approach, a small case study is 
discussed from the domain of Item Sale system (see Figure 1) that is online available 
in BPMN tutorial by IBM [11]. Following is the problem statement of the case study: 

 

Fig. 1. Item Sale Process Model [11] 
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The problem statement of the case study was given as input (XML representation) 
to the BR-Generator tool. The tool parses the XML representation tags and extracts 
the SBVR vocabulary by performing BPMN to SBVR mapping. The complete 
mapping  from BPMN to SBVR for solved case study is shown in Table 4: 

Table 4. SBVR vocabulary generated from BPMN XML representation 

Details 

The Sale Item process starts with item is available for sale. It is necessary that the 
user registers item for auction.  
If auction type is buy now then it is necessary that user buys item now. When there is 
end of auction, it is necessary that user closes auction.  If Item is sold then it is 
necessary that user completes sale. It is necessary that user collects commissions. 
The Sale Item process ends with successful auction.  
If auction type is bid for item then It is necessary that user bids for item. When there is 
end of auction, it is necessary that user closes auction.  If item is sold then it is 
necessary that user completes sale. If item is not sold them user re-submits for auction. 
If user resubmits for auction then it is necessary that user registers item for auction. If 
user not resubmit for auction then Sale Item process ends with item is not sold. 

 
There are few limitations of the approach e.g. “When there is end of auction, it is 

necessary that user close auction.” Moreover, there are a few grammatical mistakes 
such as “If auction type is buy now” and “If user not resubmit for auction”. We plan to 
provide grammar correction facility in the future research. 

4.1 Evaluation 

We have done performance evaluation to evaluate that how accurately the BPMN 
model notation is translated to SBVR based English specification by our tool BR-
Generator. There are total 26 BPMN symbols of 4 types in the solved case study 
problem those were translated to SBVR 1.0 based English sentences. In Table 5, the 
average recall for SBVR software requirement specification is calculated 88.46% 
while average precision is calculated 92.00%. 

Table 5.  Results of BPMN to SBVR based English Translation 

Type/Metrics Nsample Ncorrect Nincorrect Nmissing Rec% Prec% 

Software Requirements 26 23 2 1 88.46 92.00 

Table 6. Usability Survey Results 

User Easy to do Correct Understanding 

 Manual By Tool Manual By Tool 

Novice 30% 90% 
85% 

36% 87% 
Medium 55% 72% 82% 
Average 42.50% 87.50% 54.00% 84.50% 
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Besides measuring accuracy we also conducted a survey to measure the 
effectiveness of the presented approach. We made two groups with 10 members in 
each group. First, we gave them three BPMN process models to interpret. Then we 
told them to interpret those three BPMN models using our tool BR-Generator. Then 
we gave 1 to 10 score under easy to do and correct understanding categories. Though 
the accuracy of the tool is a bit concern but we can overcome this in future work by 
improving the implementation. The average results we received are shown in Table 6: 

5 Conclusion and Future Work 

In this paper, we presented a rule based approach that can be helpful in understanding 
the complex BPMN models specifically for the novel users that can lead to a better 
feedback from the Business stakeholders ultimately resulting in better business 
process models those are more acceptable for Business analysts and Business 
stakeholders. Moreover, the SBVR based output generated by the tool can be used for 
automated transformation to other formal specifications such as BPEL, UML, OCL, 
etc. Additionally, the BPMN models can be analyzed for consistency by translating 
the output of our approach (such as SBVR) to Alloy that globally accepted language 
used for model analysis. 
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Abstract. RuleML is a family of XML languages whose modular system
of schemas permits high-precision (Web) rule interchange. The family’s
top-level distinction is deliberation rules vs. reaction rules. In this paper
we address the Reaction RuleML subfamily of RuleML and survey re-
lated work. Reaction RuleML is a standardized rule markup/serialization
language and semantic interchange format for reaction rules and rule-
based event processing. Reaction rules include distributed Complex Event
Processing (CEP), Knowledge Representation (KR) calculi, as well as
Event-Condition-Action (ECA) rules, Production (CA) rules, and Trig-
ger (EA) rules. Reaction RuleML 1.0 incorporates this reactive spectrum
of rules into RuleML employing a system of step-wise extensions of the
Deliberation RuleML 1.0 foundation.

1 Introduction

Event-driven reactive functionalities are urgently needed in present-day dis-
tributed systems and dynamic Web-based environments. Reaction rules con-
stitute a promising approach to specify and program such reactive systems in a
declarative manner. In particular, they provide the ability to reason over events,
actions and their effects, and allow detecting events and responding to them
automatically. A great variety of approaches have been developed for reaction
rules, which have for the most part evolved separately and have defined their own
domain and platform specific languages [14, 12, 16]. Novel semantics are being
devised, including for the Logic-based agent and Production System language
(LPS) and KELPS [6].

Reaction RuleML1 is intended as a common standard for representing reaction
rules and rule-based complex event processing (CEP) in a platform independent

1 http://reaction.ruleml.org/
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XML markup expression language. Reaction RuleML allows for standardized
rule interchange, semantic interpretation and translation, and distributed event-
messaging interactions in loosely-coupled and de-coupled distributed rule-based
systems such as Web inference services and semantic agents.

RuleML2 has been designed for the standardized interchange of the major
kinds of rules in an XML format that is uniform across rule languages and plat-
forms. It has broad coverage and is defined as an extensible family of languages.
In this paper, we introduce Reaction RuleML 1.03, which directly builds on
RuleML 1.0 [3].4 By describing the language features of Reaction RuleML this
paper also surveys the major lines of reaction rule types. We assume that readers
are already familiar with Web rule technologies and their underlying semantics.5

The rest of the paper is organized as follows. Section 2 introduces the main
rule syntax of Reaction RuleML 1.0 and specializes it to the four subbranches
addressing the major reaction rule types. Section 3 describes selected expres-
sive features of Reaction RuleML. In section 4 we compare Reaction RuleML
with other platform-independent rule standards, analyzing its representational
completeness with respect to an ontological reference metamodel. Section 5
summarizes the approach of Reaction RuleML 1.0, discusses its applicability
with respect to recent works, and gives an outlook on future work in Reaction
RuleML 1.1.

2 Reaction RuleML for Representing Reaction Rules

Reaction rules are concerned with the invocation of actions in response to events
and actionable situations [12]. They state the conditions under which actions
must be taken and describe the effects of action executions. In the last decades
various reaction rule languages and rule-based event processing approaches have
been developed, which for the most part have been advanced separately [14, 16].

Reaction RuleML follows the general principles of markup language design as
defined in [11]. Its subbranches span across the four major reaction rule types:

– Production Rules (Condition-Action rules) in the Production RuleML branch
– Event-Condition-Action (ECA) rules in the ECA RuleML branch
– Rule-based Complex Event Processing (CEP) (complex event processing re-

action rules, (distributed) event messaging reaction rules, query reaction
rules etc.) in the CEP RuleML branch

– Knowledge Representation (KR) Event/Action/Situation Transition/Process
Logics and Calculi in the KR Reaction RuleML branch

Reaction rules are defined by a general <Rule> element which can be specialized
in the different Reaction RuleML branches to the four major types of reaction

2 http://ruleml.org/
3 http://ruleml.org/reaction/1.0/
4 http://ruleml.org/1.0/
5 For a deeper study of Web rule / event processing technologies we refer to [10–12, 7].

http://ruleml.org/
http://ruleml.org/reaction/1.0/
http://ruleml.org/1.0/
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rules (and variants thereof). The following template shows the most general rule
syntax of RuleML with a focus on Reaction RuleML. We use 1- or 2-letter indica-
tors for syntax from Deliberation (D), Reaction (R), or Deliberation+Reaction
(DR) RuleML.

<Rule @key @keyref @style>

<!-- rule info and life cycle management, modularization -->

<meta> <!-- DR: (semantic) metadata of the rule --> </meta>
<scope> <!-- R: scope of the rule e.g. a rule module --> </scope>

<!-- rule interface description -->

<evaluation> <!-- R: intended semantic profiles --> </evaluation>
<signature> <!-- R: rule interface signature and modes --> </signature>

<!-- rule implementation -->

<qualification> <!-- R: e.g. qualifying rule declarations, e.g.
priorities, validity, strategy --> </qualification>

<quantification> <!-- DR: quantifying rule declarations,
e.g. variable bindings --> </quantification>

<on> <!-- R: event part --> </on>
<if> <!-- DR: condition part --> </if>
<then> <!-- D: (logical) conclusion part --> </then>
<do> <!-- R: action part --> </do>
<after> <!-- R: postcondition part after action,

e.g. to check effects of execution --> </after>
<else> <!-- DR: (logical) else conclusion --> </else>
<elsedo> <!-- R: alternative/else action,

e.g. for default, exception handling --> </elsedo>
</Rule>

These role tag elements below the general <Rule> element are used for repre-
senting the following information blocks in a rule.

– The attribute @keyref is used for creating distributed and modularized ac-
cessibility within a (distributed) knowledge base, where @key is the identifier
key and @keyref is a key reference.

– The general style of a reaction rule is defined by the optional attribute
@style, which has the following values in Reaction RuleML
• active: actively polls and detects occurred events in ECA and CEP
rules or changed conditions in production rules.

• messaging: waits for incoming complex event message (inbound) and
sends messages (outbound) as actions.

• reasoning: logical reasoning as e.g. in formalisms such as event / action /
transition logics (as e.g. in Event Calculus, Situation Calculus, temporal
action languages formalizations) etc.

– The metadata <meta> is used to annotate the rule with optional metadata.
– The scope <scope> defines a (constructive) view on the rulebase, e.g. the

rule only applies to a particular module in the rulebase.
– The evaluation semantics (interpretation semantics and/or execution seman-

tics) of reaction rules is defined in the optional role subchild evaluation.
This can be used to define rule evaluation semantics such as weak or strong
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evaluation which defines the “execution lifecycle” of the rule execution or
other semantic policies, e.g. event consumption policies, transaction seman-
tics etc.

– The <signature> defines the rule signature with optional input / output
mode declarations. The rule signature declaration can act as public rule in-
terface and can be published together with the intended evaluation semantics
in distributed Reaction RuleML bases.

– The qualification <qualification> defines an optional set of rule qualifica-
tions such as a validity value, fuzzy value or a priority value.

– The quantification <quantification> is used to define quantifiers such as
the typical existential and universal quantification; it can also be used for
extensions such as variable binding patterns to restrict pattern matching in
production rules or define other operator definitions.

– The <on> part of a rule defines the triggering events, which can be atomic
or complex event definitions.

– The <if> part defines one or more conditions. In case of a reaction rule with
actions this would be the pre-conditions.

– The <then> part defines the (logical) conclusions of the rule. Hybrid rules
are possible which define a logical conclusion in the <then> part as well as
actions in the <do> part.

– The <do> part of a rule defines the actions, which can be an atomic as well
as a complex action definition.

– The <after> part of a rule defines the post-conditions which hold after the
actions. They can be used, e.g., as post-conditional integrity constraints on
the effects of the action execution on the knowledge state, which holds after
the action has been performed. Depending on the defined <evaluation>

semantics this might lead to roll-backs in the case of transactional semantics.

– The <else> part leads to if-then-else rules. Special semantics for <else>

might be defined in the <evaluation> semantics of the rule.

– The <elsedo> part is executed instead of the <do> part. This allows to define
e.g. compensating actions in transactional logics or default and exception
handling actions if the normal execution of the <do> fails. Special semantics
for <elsedo> might be defined in the <evaluation> semantics of the rule.

Depending on which parts of this general rule syntax are used, different types of
reaction rules can be expressed, e.g. if-then (derivation rules, as used e.g. in KR
RuleML for logical event/action calculi), if-do (production rules), on-do (trigger
rules), on-if-do (ECA rules).

Derivation Rule:

<Rule style="reasoning">
<if>...</if>
<then>---</then>

</Rule>

Production Rule:

<Rule style="active">
<if>...</if>
<do>---</do>

</Rule>

ECA Rule:

<Rule style="active">
<on> ____ </on>
<if> ... </if>
<do> ---- </do>

</Rule>

CEP Rule:

<Rule style="messaging">
<on> event 1 </on>
<do> action 1 </do>
<on> event 2 </on>
<if> condition</if>
<do> action 2 </do>
...

</Rule>
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Before we further describe the expressive features in Reaction RuleML 1.0 in
section 3, we first specialize this general reaction rules approach to the four
different Reaction RuleML branches in the following subsections.

2.1 Production RuleML

A production rule is a statement of rule programming logic, which specifies
the execution of one or more actions in case its conditions are satisfied, i.e.
production rules react to states changes (not to explicit events as e.g. in ECA
rules). The essential syntax is if Condition do Action as shown in the following
example (this is a ‘pure’ production rule since the <do><Assert><Atom> action in
Reaction RuleML maps to a <then><Atom> conclusion in Deliberation RuleML):

<!-- If premium customer and regular product do assert discount of 5 percent
for customer on product -->

<Rule style="active">
<if>
<And>

<Atom><Rel>premium</Rel><Var>cust</Var></Atom>
<Atom><Rel>regular</Rel><Var>prod</Var></Atom>

</And>
</if>
<do>
<Assert>

<Atom><Rel>discount</Rel><Data>5.0</Data><Var>cust</Var><Var>prod</Var></Atom>
</Assert>

</do>
</Rule>

The central predefined actions in Production RuleML are: <Assert> (add
knowledge); <Retract> (retract knowledge); <Update> (update/modify knowl-
edge); <Set> and <Get> (assignment/dereferencing of (global) variables);
<Execute> (execution of (external) functions). Furthermore, a generic <Action>
is defined which allows model references to externally defined action models, e.g.,
<Assert> is a shortcut for <Action type="ruleml:Assert">, where the action
such as for assertions is defined in the metamodel of Reaction RuleML (i.e. in
the Reaction RuleML meta-ontology).

Production RuleML supports “Negation-as-failure” (<Naf>), which by
default is interpreted with an inflationary semantics.6 Again, <Naf>

is a shortcut for the more generic negation definition <Negation

type="ruleml:InflationaryNegation"> with reference to the Produc-
tion RuleML metamodel. Other types of negations can be specified using the
@type attribute.

In the evaluation section the semantics for the interpretation and operational
execution can be specified. The Reaction RuleML metamodel predefines typical
semantic profiles (see section 3.2) for different classes of production rule systems.
This furthermore includes semantics for conflict resolution strategies such as
ruleml:Refraction, ruleml:Priority, and ruleml:Recency.

6 For a discussion in RIF-PRD see http://lists.w3.org/Archives/Public/

public-rif-wg/2008Dec/0053.html and http://lists.w3.org/Archives/Public/

public-rif-wg/2008Dec/0055.html

http://lists.w3.org/Archives/Public/public-rif-wg/2008Dec/0053.html
http://lists.w3.org/Archives/Public/public-rif-wg/2008Dec/0053.html
http://lists.w3.org/Archives/Public/public-rif-wg/2008Dec/0055.html
http://lists.w3.org/Archives/Public/public-rif-wg/2008Dec/0055.html
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The rule quantification can be used to quantify variables and define further
binding patterns. For instance, the following example defines a rule with a
<Forall> quantifier for one variable with a variable binding pattern. In con-
trast to Deliberation RuleML 1.0 the <quantification> is defined under the
<Rule> and not outside of Deliberation RuleML’s rule element <Implies>. The
reason for this is, because Reaction RuleML defines both the interface and the
implementation under the <Rule>, but possibly distributed within the KB with a
reference from the <Rule>’s interface description to the <Rule>’s implementation
in which the quantifier are defined.

<Rule style="active">
<!-- for all ?x such that ?x is John -->
<quantification> <!-- explicit quantification -->
<Forall>
<declare><Var>x</Var></declare><!-- for all ?x -->
<guard><Equal><Var>x</Var><Ind>John</Ind></Equal></guard> <!-- such that ?x is John -->

</Forall>
</quantification>
<if>...</if>
<do>...</do>

</Rule>

Note that not only Rules but also facts, conjunctions, disjunctions, and many
other constructs can be quantified in Reaction RuleML using the quantifica-
tion element. In particular, quantified variable declarations with explicit vari-
able bindings are also possible in the <do> part of a production rule in order to
initialize local action variables for the actions.

2.2 ECA Reaction RuleML

In contrast to production rules, Event-Condition-Action (ECA) rules define an
explicit event part which is separated from the conditions and actions of the
rule. Their essential syntax is on Event if Condition do Action. ECA RuleML
syntactically extends Production RuleML with an explicit <on> event part and
rich (complex) event and action constructs and semantics defined in event/action
libraries. Variants of this standard ECA rule are, e.g., Event-Action triggers (EA
rules) and ECAP rules (ECA rules with postconditions after the action part).

<!-- ECA rule -->
<Rule style="active">

<on>***</on>
<if>...</if>
<do>---</do>

</Rule>

<!-- EA trigger rule -->
<Rule style="active">

<on>***</on>
<do>---</do>

</Rule>

<!-- ECAP rule with postcondition ->
<Rule style="active">

<on>***</on>
<if>...</if>
<do>---</do>
<after>___</after>

</Rule>

We modify our discount example as follows:

<!-- On the order event of a product from a customer, if the customer is premium
do offer a discount of 5 percent to the customer -->

<Rule style="active">
<on>
<Event>
<signature>

<Atom><Rel per="value">order</Rel><Var>cust</Var><Var>prod</Var></Atom>
</signature>

</Event>
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</on>
<if>
<Atom><Rel>premium</Rel><Var>cust</Var></Atom>

</if>
<do>
<Action>
<signature>
<Atom><Rel per="effect">offer</Rel><Var>cust</Var><Var>prod</Var><Data>5.0</Data></Atom>

</signature>
</Action>

</do>
</Rule>

With the @per attribute it can be indicated whether the atomic <Rel>ations
will be uninterpreted ("copy"), interpreted ("value"), effectful ("effect") or
modal ("modal").

<Event> and <Action> (already introduced in Production RuleML) are used
to represent events and actions. We distinguish between the <signature> of
the event pattern definition, the concrete event instance <content> and other
properties of the event (similar to the <Rule> properties).

<Event @key @keyref @iri @type>
<!-- event info and life cycle management, modularization -->

<oid> <!-- R: event instance object id --> </oid>
<meta> <!-- R: (semantic) metadata of the event --> </meta>
<scope> <!-- R: scope of the event --> </scope>

<!-- event pattern description -->
<evaluation> <!-- R: semantics: selection, consumption policies --> </evaluation>
<signature> <!-- R: event pattern declaration --> </signature>

<!-- event instance -->
<qualification> <!-- R: e.g. qualifying event declarations, e.g.

priorities, validity, strategy --> </qualification>
<quantification> <!-- R: quantifying rule declarations --> </quantification>

<content> <!-- R: event instance content --> </content>
</Event>

The following standard library defines a set of typical event, action, counting,
temporal, and interval algebra operators for defining, e.g., complex events, ac-
tions, and intervals:

Action Algebra
Succession (Ordered), Choice (Non-Deterministic Choice),
Flow (Parallel Flow), Loop (Loops), Operator (generic Operator)

Event Algebra
Sequence (Ordered), Disjunction (Or), Xor (Mutually Exclusive), Conjunction (And),
Concurrent (Parallel), Any, Aperiodic, Periodic, Operator (generic Operator)

Counting Algebra
Counter, AtLeast, AtMost, Nth, Operator (generic Operator)

Negation / Absence Algebra
Not, Unless, Operator (generic Operator)

Temporal operators
Timer, Every, After, Any, Operator (generic Operator)

Interval Algebra (Time/Spatial/Event/Action Intervals)
During, Overlaps, Starts, Precedes, Succeeds, Meets,
Equals, Finishes, Operator (generic Operator)
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With its typed logic, RuleML provides support for (re)using external tempo-
ral, spatial, situation, event, and action ontologies and metamodels which can
be applied in the definition of semantic event/action types and temporal and
spatial relations (see section 3.1). Reaction RuleML defines generic elements
such as Event, Action , Situation, Time, Location, Interval, Operator.
The type of this generic elements can be defined by an @type reference to
such external ontologies, e.g. to the Reaction RuleML metamodel. For instance,
<Operator type="ruleml:Sequence"> instead of <Sequence>. The following
example shows a complex event pattern definition.

<Event key="ce2" type="ruleml:ComplexEvent">
<signature>
<Sequence>

<!-- atomic event -->
<signature>

<Event type="ruleml:SimpleEvent">
<signature><Atom>...event_A...</Atom></signature>

</Event>
</signature>
<!-- nested complex event referenced by @keyref -->
<signature><Event type="ruleml:ComplexEvent" keyref="ce1"/></signature>
<!-- Common Base event selected via xpointer/xpath query in iri attribute -->
<signature>

<Event type="cbe:CommonBaseEvent" iri="cbe.xml#xpointer(//CommonBaseEvent)"/>
</signature>

</Sequence>
</signature>

</Event>

<Event key="ce1">
<signature>
<Concurrent>

<Event><meta><Time>...t3</Time></meta><signature>...event_B</signature></Event>
<Event><meta><Time>...t3</Time></meta><signature>...event_C</signature></Event>

</Concurrent>
</signature>

</Event>

2.3 CEP RuleML

Complex Event Processing (CEP) is about the detection of complex events and
reaction to complex events in near realtime [7]. CEP rules might adopt the style
of ECA rules in CEP RuleML, where the <on> event part is a complex event
type definition; or, they might adopt the style of CA production rules where
the (complex) event types are defined as restrictions on the variable binding
definitions in the rule quantifications while event detection is then done in the
condition part with the conditions representing the event pattern definitions.
However, it is also possible to represent serial messaging CEP reaction rules
which <Receive> and <Send> events in arbitrary combinations, leading to an
event processing workflow-style logic following a forward-directed serial control
flow for the literals in the rule. A serial (messaging) reaction rule starts either
with a receiving event on – the trigger of the global reaction rule – or with a rule
conclusion then – the queryable head literal of another messaging reaction rule
or derivation rule (without further events or actions) – followed by an arbitrary
combination of conditions if, events (Receive), and actions (Send) in the body
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of the rule. This approach allows to combine forward-directed serial workflow-
style execution of reaction rules with backward-reasoning derivation rules.7 This
flexibility in terms of representing rule-based workflow style branching logics
with a serial execution control flow for the rule literals and with support for
modularization and aspect-oriented weaving of reactive rule code in combination
with derivation rule code is in particular useful in distributed systems where
event processing agents communicate and form a distributed event processing
network, as e.g. in the following example:

<Rule style="messaging">
<on><Receive> receive event from agent 1 </Receive></on>
<do><Send> query agent 2 for regular products in a new sub-conversation </Send></do>
<on><Receive> receive results from sub conversation with agent 2 </Receive></on>
<if> prove some conditions, e.g. make decisions on the received data

using backward-reasoning derivation rules and/or </if>
<do><Send> reply to agent 1 by sending results received from agent 2 </Send></do>

</Rule>

For better modularization the sub-conversation can be also written with a second
reaction rule as follows:

<Rule>
<on><Receive> receive event from agent 1 </Receive></on>
<if> <!- this goal activates the reaction rule via backward reasoning -- see below -->
<Atom><Rel>regular</Rel><Var>prod</Var></Atom>

</if>
<do><Send> reply to agent 1 by sending results received from agent 2 </Send></do>

</Rule>
<!-- the "if" goal from the first rule applies to the "then" conclusion of the second rule
and activates it via backward reasoning (rule chaining) -->
<Rule>

<then>
<Atom><Rel>regular</Rel><Var>prod</Var></Atom>

</then>
<do><Send> query agent 2 for regular products in a new sub-conversation </Send></do>
<on><Receive> receive results from sub conversation with agent 2 </Receive></on>

</Rule>

In the example the first reaction rule is triggered by a received event (on) which
starts the forward-directed serial execution flow of the rule. It then deductively
proves the condition (if) by applying it as a backward-reasoning subgoal on the
knowledge base. This subgoal unifies with the head (then) of the second rule
(which can be a standard derivation rule or a serial messaging reaction rule with
further send and receive subgoal literals in the body). The second rule starts a
subconversation sending a query to another agent 2 (do) and on receiving an
answer from this agent (on) the execution of the second rule terminates suc-
cessfully, which means the backward-reasoning subgoal of the first rule evaluates
to true with the variable bindings for the variable prod. The first reaction rule
then proceeds with its serial execution flow using the variable bindings for send-
ing the results back to agent 1 (do) – either one by one in multiple messages
for each resulting variable binding (default semantics according to backward-
reasoning resolution semantics) or as a collection of all resulting answers (like in
the findall built-in of Prolog or in join semantics of workflow branching logics).

7 See Prova’s serial messaging rules; http://www.prova.ws/

http://www.prova.ws/
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That is, the semantics of this serial reaction rules combine standard logic pro-
gramming (with resolution, backtracking, and variable binding) on the literals
in combination with a serial forward directed execution of the rule literals which
includes receiving and sending event queries to other distributed inference ser-
vices and event processing agents (see section 3.3). This expressiveness allows
us to represent workflow logics with parallel execution branches. The messag-
ing reaction rules can be translated, e.g., into serial messaging Horn rules and
executed in the Prova8 rule engine.

2.4 KR Reaction RuleML

Event/action logics, which have their origins in the area of knowledge represen-
tation (KR), focus on inferences that can be made from happened or planned
events/actions, i.e. they describe inferences about the effects of events/actions on
changeable properties of the world (situations, states). That is, the focus of this
calculi typically is on the logical inferences and effects of events/actions without
actually effecting any events/actions as in active reaction rules (although there
can be combinations of the logical effects and the actual execution of actions
and events). Reaction RuleML also defines syntax and semantics for knowledge
representation event/action calculi such as Situation Calculus, Event Calculus,
and Temporal Action Languages, etc. (for an overview see [14]) Specifically the
notion of an explicit <Situation> (a.k.a. as state or fluent in Event Calculus)
is introduced in KR Reaction RuleML. Situations are changeable fluents which
are initiated or terminated as the effect of events. An event, which <Happens>,
can <Initiate> or <Terminate> a situation. That is, a situation explicitly rep-
resents the abstract effect of occurred events and executed actions. Such states
can e.g. be used for situation reasoning, e.g. in the condition part of reaction
rules.
<!-- Initiates a situation -->
<Rule>
<on>*</on>
<if>.</if>
<do><Initiate>-</Initiate></do>
</Rule>

<!-- Terminates a situation -->
<Rule>
<on>*</on>
<if>.</if>
<do><Terminate>-</Terminate></do>
</Rule>

<!-- event happens -->
<Happens>*</Happens>

<!-- situation holds? -->
<if><Holds>-</Holds></if>

3 Reaction RuleML Features

Reaction RuleML provides several layers of expressiveness for adequately repre-
senting reactive logic and for interchanging events (queries, actions, event data)
and rules. In the following, some of the expressive constructs of Reaction RuleML
1.0 are described.

3.1 Reaction RuleML Metamodel, Semantic Types and Data
Queries

Reaction RuleML is based on metamodels and ‘pluggable’ ontologies. Figure 1
shows the top level structure of the Reaction RuleML metamodel. The Reaction

8 http://prova.ws

http://prova.ws
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Fig. 1. Reaction RuleML Semantic CEP Metamodel

RuleML metamodel defines general concepts such as space, time, event, action
situation, process, and agent in a modularized ontological top-level structure,
with a left to right vertical order in the top-level ontologies. For instance, the
concepts and relations for time and space are used in the event and action on-
tology, which is employed in the situation ontology etc. These general concepts
defined in the top-level ontologies can be further specialized with existing domain
ontologies and ontologies for generic tasks and activities (e.g. situation process-
ing, processes/workflows, agents including their pragmatic protocols etc.). The
applications ontologies for specialize these domain and task concepts with re-
spect to a specific application, often on a more technical platform specific level.
For instance, figure 2 shows the top-level ontology for situations. A situation
description hasProperties defined by other ontologies such as time, event, etc.,
and hasContent with the main content of a situation description. A situation
can be distinguished into two heterogeneous situation types – homogenous sit-
uation and heterogeneous situation. These two types can be further specialized
in domain-specific ontologies with more specific situation types as illustrated in
the figure.

Fig. 2. Reaction RuleML Situation Metamodel
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There are many existing ontologies which can be used in this generic mod-
ularized Reaction RuleML metamodel. For instance, the ontological constructs
from the metamodel for the Bunge-Wand-Web representation model from [17]
such as Conceivable State Space, Lawful State Space, State Law, Stable
State, Unstable State, History, and further specializations of the top-level
concepts such as event, thing, system, etc.

The Reaction RuleML metamodel defines the event, action, and interval al-
gebra operators for complex events, actions, and intervals as well as other se-
mantic concepts in the respective ontologies. These semantic definitions allow
distinguishing, e.g., event/action algebra operators from interval operators and
from logical operators (logical connectives). As described in section 2.2 Reac-
tion RuleML comes with a library of predefined syntactic constructs which are
syntactic short cut notations in the Reaction RuleML syntax for a more generic
syntax element which points to its (semantic) type definition in the Reaction
RuleML metamodel (or uses other external ontological definitions). To allow
these external type definitions Reaction RuleML uses the @type attribute in the
generic Reaction RuleML elements such as Event, Action , Situation, Time,
Location, Interval, Operator, Neg, Quantifier etc., as illustrated by the fol-
lowing examples:

<Operator type="ruleml:Conjunction"> == <Conjunction>
<Negation type="ruleml:InflationaryNegation"> == <Naf> (in production rules)
<Action type="ruleml:Assert"> == <Assert>
<Event type="ruleml:SimpleEvent"> == <Atom> ... </Atom>
<Event type="ibm:CommonBaseEvent"> == IBM CBE
<Operator type="snoop:Sequence"> == Snoop == <Operator type="ruleml:Sequence"> == <Sequence>

While @type is used to refer to external type definitions (defined e.g. in external
ontologies), the @iri attribute can be used as a general pointer to a (Web) re-
source having the semantics of containing either a standard IRI with a possible
query specification (after the “?”) or an XPointer and XPath expression as ma-
nipulation and query language to point into and select data from external XML
data sources. Note that XPointers and normal IRI references are syntactically
distinguishable so that there is no problem in processing them differently.

<Atom>
<Rel>name</Rel>
<Ind iri="person.xml#xpointer(//Person/LastName[1]/text())"/>

</Atom>

It is possible to define XPointer-based query and manipulation expressions that
operate on (large) resource sets instead on singleton resources, e.g. to specify
a constructive view over a set of external nodes specified by an XPath query
expression. The following example selects four CommonBaseEvent from an XML
document.

<Event iri="cbe.xml#xpointer(/CommonBaseEvent[1]/range-to(/CommonBaseEvent[4]))"/>
<Action iri="BPEL.xml#xpointer(//invoke[@name=checkHotel])"/>

That is the IRIs are query expressions that return constructive views on re-
source sets that are treated as singletons, i.e. a constructive view over a set of
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resources is a singleton with a unique IRI denoted by the query expression. It
is possible to assign these views to variables and reuse the variables in the local
reasoning/execution scope.

This external data and semantic knowledge can be used for Semantic Com-
plex Event Processing (SCEP). In [19] we showed how the usage of semantic
background knowledge about events and other related concepts can improve
the quality of event processing. We described how to formalize semantic com-
plex event patterns based on a logical interval-based event algebra, namely the
interval-based Event Calculus [8, 9].

3.2 Rule Interface Descriptions with Semantic Profiles and
Signatures

Reaction RuleML distinguishes between the interface of a rule and its imple-
mentation. The interface describes the functional and non-functional (semantic)
properties of the rule. Reaction RuleML provides an interface definition lan-
guage for the <signatures>s of publicly accessibly rule functions together with
their mode and type declarations. Modes are states of instantiation of the pred-
icate/function described by mode declarations, i.e. declarations of the intended
input-output constellations of the predicate terms with the following semantics:

– “+” The term is intended to be input
– “−” The term is intended to be output
– “?” The term is undefined/arbitrary (input or output)

For instance, the interface definition for the function add(Result, Arg1, Arg2)
is add(−,+,+), i.e. the function predicate add returns one output argument
followed by two input arguments. Also, all arguments must be integer values.
Serialized in Reaction RuleML this would be:

<signature>
<Atom>
<Rel>add</Rel>
<Var mode="-" type="xs:integer"/>
<Var mode="+" type="xs:integer"/>
<Var mode="+" type="xs:integer"/>

</Atom>
</signature>

The following example illustrates the use of such signatures declarations in the
interface descriptions of rules and distinguishes the interface from the implemen-
tation.

<-- rule interface with two alternative interpretation semantics and a signature.
The interface references the implementation identified by the corresponding key -->

<Rule keyref="r1">
<evaluation index="1">
<!-- WFS semantic profile define in the metamodel -->
<Profile type="ruleml:Well-Founded-Semantics" direction="backward"/>

</evaluation>
<evaluation index="2">
<!-- alternative ASS semantic profile define in the metamodel -->
<Profile type="ruleml:Answer-Set-Semantics" direction="backward"/>
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</evaluation>
<!-- the signature defines the queryable head of the backward-reasoning rule -->
<signature>
<Atom><Rel>discount</Rel><Var mode="-"/><Var mode="?"/><Var mode="+"/></Atom>

</signature>
</Rule>

<!-- implementation of rule 1 which is interpreted either by WFS or by ASS semantics
according to it’s interface definition. -->

<Rule key="r1" style="reasoning">
<if>
<And>

<Atom><Rel>premium</Rel><Var>cust</Var></Atom>
<Atom><Rel>regular</Rel><Var>prod</Var></Atom>

</And>
</if>
<then>
<Atom><Rel>discount</Rel><Data>5.0</Data><Var>cust</Var><Var>prod</Var></Atom>

</then>
</Rule>

The example above defines two rule interfaces which reference the implemen-
tation of rule 1 and rule 2 via key-keyref attributes. This approach supports
modularization of the knowledge base and reusability of (XML) code by refer-
ence. By separating the interface description from the rule implementation, in-
formation hiding can be realized in distributed KBs. This is in particular useful
for distributed rule inference service and rule agents which might publish some
of the rule interfaces of their KBs publicly on the Web, but hide the concrete
implementation of the rules. This enables a loosely-coupled interaction with the
inference service / agent, where queries can be posed against the public interface
signature descriptions. The interface defines the applicable evaluation seman-
tics, which in the example uses predefined semantic Profiles from the RuleML
metamodel.

Different interpretation, selection, consumption, and (transactional) execu-
tion policies for (complex) events and actions can be specified in the rule’s
<evaluation> semantics and the complex event/action descriptions.

The <Profile> can either point to externally defined profile type using @type
(e.g. in the RuleML metamodel) or using @iri for general pointers to external
definitions. Furthermore, since <Profile>’s content model is of type xs:any

an arbitrary XML based definition of a profile can be specified here. This gives
maximum flexibility in defining application-specific interpretation semantics and
execution policies.

3.3 Reaction RuleML Messaging

As described in the previous section, the interface description language of Re-
action RuleML allows for loosely-coupled interaction9 with distributed Reaction
RuleML inference services and agent’s KBs. For the communication between dis-
tributed rule-based (agent) systems, Reaction RuleML provides a general mes-
sage syntax:

9 Decoupled interaction is also possible by just publishing event (messages), e.g. in an
event stream or publish-scribe middleware.
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<Message directive="PRAGMATIC CONTEXT" >
<oid> <!-- conversation ID--> </oid>
<protocol> <!-- transport protocol --> </protocol>
<sender> <!-- sender agent/service --> </sender>
<receiver> <!-- receiver agent/service --> </receiver>
<content> <!-- message payload --> </content>

</Message>

In the context of these Reaction RuleML messages agents can interchange events
(e.g., queries and answers) as well as complete rule bases (rule set modules), e.g.
for remote parallel task processing. Agents can be engaged in long running pos-
sibly asynchronous conversations and nested sub-conversations using the conver-
sation id to manage the conversation state. The protocol is used to define the
message passing and coordination protocol. The directive attribute corresponds
to the pragmatic instruction, e.g. a FIPA ACL primitive, i.e. the pragmatic char-
acterization of the message context broadly characterizing the meaning of the
message.

For sending and receiving (event) messages, Reaction RuleML 1.0 supports
serial messaging CEP reaction rules that <Receive> and <Send> events in ar-
bitrary combinations. A serial (messaging) reaction rule starts with a receiving
event (<on>) followed by any combination of conditions (<if>), events
(<Receive>), and actions (<Send>) in the body of the rule for expressing com-
plex event processing logic. This flexibility with support for modularization and
aspect-oriented weaving of reactive rule code is in particular useful in distributed
systems where event processing agents communicate and form a distributed event
processing network, as e.g. in the following example:

<Rule style="active">
<on><Receive> receive event from agent 1 </Receive></on>
<do><Send> query agent 2 for regular products in a new sub-conversation </Send></do>
<on><Receive> receive results from sub conversation with agent 2 </Receive></on>
<if> prove some conditions, e.g. make decisions on the received data </if>
<do><Send> reply to agent 1 by sending results received from agent 2 </Send></do>

</Rule>

For better modularization the sub-conversation logic can be also written with
an inlined reaction rule as follows:

<Rule style="active">
<on><Receive> receive event from agent 1 </Receive></on>
<if> <!- this goal activates the inlined reaction rule -- see below -->
<Atom><Rel>regular</Rel><Var>prod</Var></Atom>

</if>
<do><Send> reply to agent 1 by sending results received from agent 2 </Send></do>

</Rule>

<Rule style="active">
<then>
<Atom><Rel>regular</Rel><Var>prod</Var></Atom>

</then>
<do><Send> query agent 2 for regular products in a new sub-conversation </Send></do>
<on><Receive> receive results from sub conversation with agent 2 </Receive></on>

</Rule>
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4 Comparison with Other Reaction Rule Representations

In this section we discuss and analyze related representation languages for re-
action rules. We focus on standards which are on the same modeling level as
Reaction RuleML – that is, the Platform Independent Model (PIM) according
to OMG’s Model Driven Architecture (MDA).

For an overview on standardizations see [16]. For a discussion of rule markup
languages and reaction rule languages see [12, 11]. Current standardization ef-
forts are also under way in the Event Processing Technical Society (EPTS) on a
common event processing glossary and vocabulary as well as reference architec-
tures and design patterns [15]. Besides many existing ontologies for events, time,
space etc., and industry standards for event communication, there have been
also many different approaches for rule-based event processing and reaction rule
languages [14].

Based on the metamodel of the Bunge-Wand-Weber (BWW) representation
model [17] we analyze the representational completeness of Reaction RuleML
1.0 with respect to an ontological reference metamodel and compare it with
the following rule standards: OMG PRR, W3C SWRL, and W3C RIF. We also
add Derivation RuleML 1.0 to this comparative coverage assessment, in order to
show the differences and additional expressiveness of Reaction RuleML. Before
we describe the analysis methodology and the analysis results we first introduce
the languages.

W3C SWRL. The Semantic Web Rule Language (SWRL)10 is defined as a
language combining sublanguages of the OWL Web Ontology Language (OWL
DL and Lite) with those of the Rule Markup Language (Unary/Binary Datalog).
Rules in SWRL are of the form of an implication between an antecedent (body)
conjunction and a consequent (head) conjunction, where description logic ex-
pressions can occur on both sides. The intended interpretation is as in classical
first-order logic: whenever the conditions specified in the antecedent hold, then
the conditions specified in the consequent must also hold.

Relationships between RuleML and SWRL: The W3C member submission
SWRL combines an earlier version of RuleML with OWL 1.0. An effort was
recently started to update SWRL, including for RuleML 1.0 and OWL 2.0.

W3C RIF. The W3C Rule Interchange Format (RIF) Working Group11 is
an effort, influenced by RuleML, to define a standard RIF for facilitating the ex-
change of rule sets among different systems and to facilitate the development of
intelligent rule-based application for the Semantic Web. So far, the RIF Working
Group has published two dialects as recommendations – the Production Rules
Dialect (PRD) for non-ground production rules with inflationary negation and
the Basic Logic Dialect (RIF-BLD), which semantically corresponds to a Horn
rule language with equality but without negation. A common condition language

10 http://www.w3.org/Submission/SWRL/
11 http://www.w3.org/2005/rules/wiki/RIF_Working_Group

http://www.w3.org/Submission/SWRL/
http://www.w3.org/2005/rules/wiki/RIF_Working_Group
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(RIF-Core) is shared between these two dialects. Like RuleML, RIF-BLD has a
number of syntactic extensions with respect to ’regular’ Horn rules, including F-
logic-like frames, and a standard system of built-ins drawn from Datatypes and
Built-Ins (RIF-DTB). The connection to other W3C Semantic Web languages is
established via RDF and OWL Compatibility (RIF-SWC).

Relationships between Production RuleML and RIF-PRD: Members of the
Reaction RuleML Technical Group have co-edited the W3C RIF Production
Rule Dialect (RIF-PRD). RIF-PRD with inflationary negation is a less expres-
sive subset of PR RuleML. Syntactically, production rules in RIF-PRD are writ-
ten in if-then syntax instead of PR RuleML’s if-do syntax, the latter allowing
a clear semantic distinction of a conclusion (then part) and an action (do part),
e.g. when both are allowed for the same rule. In RIF-PRD Do is used as a type tag
to syntactically denote a compound action which is a sequence of standard pro-
duction rule actions (Assert, Retract, and Modify), whereas Reaction RuleML
supports expressive complex action definitions using action algebra operators.
Quantifying variable binding declarations are supported by RIF-PRD (declare)
and by Production RuleML (quantification), which in addition also supports rule
qualifications.

OMG PRR. OMG’s Production Rule Representation (PRR)12 is a modeling
language for production rules. It uses OMG MOF to define a generic meta-
model for production rules and extends UML for modeling production rules.
PRR includes two types of rules: Forward chaining inference rules (e.g. Rete)
and sequentially processed procedural rules. PRR is defined at two levels. The
adopted PRR Core of PRR 1.0 includes the general rule and production rule
model. The PRR OCL, which is currently also in the focus of the PRR 1.1 ef-
fort, includes an extended OCL expression language enabling compatibility with
non UML representations.

Relationships between Production RuleML and OMG PRR: Based on [20]
and Production RuleML, members of the Reaction RuleML Technical Group
have co-edited the OMG Production Rule Representation (PRR). RuleML is
one of the languages whose features are to be covered by PRR on an abstract
level. Since PRR is a meta-language, Production RuleML’s XML syntax can be
used as a concrete expression language instantiating PRR models. That is, OMG
PRR provides a way to include rules into the (UML) model of an application at
design time and Production RuleML then provides a standard means of translat-
ing the model and feeding the executable rules into a PR application at run time.

Event Processing Standards. Besides Reaction RuleML, there exist no over-
arching interchange and representation standard for reaction rules and rule-based
event processing. Although several of the standards efforts such as PRR and
RIF (a Reaction Rules Dialect has been started but not finalized in RIF 1.0)
have reaction rules on their long-term agenda, no concrete standardization effort
started yet [16]. There have been several proposals for ECA-style rule languages

12 http://www.omg.org/spec/PRR/1.0/PDF/

http://www.omg.org/spec/PRR/1.0/PDF/
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and platform-specific languages coming from research projects (Rewerse R2ML,
...) or from industry communities (IBM SRML, CBE, ...), partially defined as
XML languages. Several event ontologies have been proposed.

Relationships between CEP RuleML and EPTS work: RuleML is a founding
member of the Event Processing Technical Society (EPTS)13. Members of the
Reaction RuleML Technical Group are contributing to the work on an Event
Processing glossary, event processing language models, use cases, reference ar-
chitectures, and design patterns. [15] With its flexible and extensible approach,
CEP RuleML is a highly expressive rule-based Event Processing Language (rule-
based EPL) which can make use of external event and action metamodels / on-
tologies such as the many existing event ontologies or the planned OMG Event
Metamodel and Profile (EMP). Since CEP RuleML syntactically builds on top
of Production RuleML and ECA RuleML – besides flexible (messaging) reaction
rules – both major rule types can be used for representing (complex) event pro-
cessing rules. Moreover, CEP RuleML can adequately represent typical use cases
and functionalities in Event-Driven Architectures (EDAs) and (distributed) EP
architectures.

For the analysis we selected a set of relevant ontological constructs from the
BWW representation model (BWW RM) and classified them according to typi-
cal top-level categories of expressiveness for reaction rules. We slightly adapt the
BWW model, introducing e.g. an explicit Action concept instead of an Event

which acts on. We also introduce the concept of an Agent instead of the un-
specific concept System. Following the methodology of [18] we then used this as
a reference model for our analysis by comparing the representation constructs
of the analyzed rule languages to the representation constructs of the reference
model. We analyze these results according to the (ontological/metamodel) com-
pleteness and clarity of the rule representation / modeling languages. Therefore,
we identify the representation deficiencies using the following metrics: construct
deficit (with respect to a construct in the BWW reference model), redundancy
(multiple language constructs map to the same construct in the BWW reference
model), overload (the same language construct maps to multiple (semantically
different) constructs in the BWW reference mode), and excess (language con-
structs that do not have a mapping to the BWW reference model). Table 1
shows the results of the comparison with the top-level categories. At this top
level, Reaction RuleML shows high ontological completeness and clarity with
respect to the adapted BWW reference model, which is due to its close semantic

Table 1. Comparison of Rule Markup and Modeling Standards

BWWRM SWRL PRR RIF DerivationRuleML ReactionRuleML
Thing + - + + +
Event - - - - +
Action - + + - +
State (Situation) - - - - +
System (Agent) - - - - +

13 http://www.ep-ts.com/

http://www.ep-ts.com/
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similarity to the top level constructs in the Reaction RuleML metamodel. The
System perspective in Reaction RuleML relates to the Agent metamodel in Re-
action RuleML, where Reaction RuleML serves as a standardized rule and event
interchange format between the agents / inference services (including the agent’s
interface descriptions). The agents internally run platform-specific rule engines
such as Prova, OO jDREW, Drools, and Emerald14 – see e.g. the Rule Re-
sponder project [13]15 for a reference implementation. Besides its use for smart
reactive agents on the Web, future application domains of Reaction RuleML
might directly enrich Rich Internet Applications (RIA), which are then trans-
lated into a domain-specific (Web browser) reaction rule language such as JSON
Rules [4].16 Translators, such as the Reaction RuleML translator service frame-
work and the MYNG syntax configurator17 of RuleML’s Relax NG schemas [1],
contribute to the interoperability by translating from the platform specific lan-
guages into (Reaction) RuleML and vice versa, as well as between RuleML/XML
and other XML-based languages such as RIF/XML. RIF RuleML interoperation
was started with a common subset [2]. Other systems include rule editors (e.g.,
Acumen Business Rule Manager and S2REd18).

5 Conclusion

The four major reactive rule types were surveyed based on Reaction RuleML.
Its uniform and flexible syntax can be specialized to branches of the correspond-
ing subfamily of RuleML. With its metamodel and ability to plug in external
vocabularies and type systems, Reaction RuleML has been developed as an ex-
tensible semantic rule language that is highly configurable via external semantic
definitions. Reaction RuleML supports distributed and modularized knowledge
bases through direct coupling via key references within a KB, iri pointers, and
support for query languages. With messaging, it also supports loosely-coupled
interface-based interaction using rule signatures and decoupled communication
via event messages. The specification of Reaction RuleML 1.0 is being developed
bi-schematically, ‘Rosetta’-style, in XML Schema and Relax NG.
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Abstract. Action theories are an important field of knowledge represen-
tation for reasoning about change and causality in dynamic domains. In
practical implementations agents often have incomplete knowledge about
the environment and need to acquire information at runtime through
sensing, the basic ontology of action theories needs to be extended with
epistemic notions. This paper presents a production system that can per-
form online causal, temporal and epistemic reasoning based on the Event
Calculus and on an epistemic extension of the latter. The framework im-
plements the declarative semantics of the underlying logic theories in a
forward-chaining rule-based system. This way, it combines the capacity of
highly expressive formalisms to represent a multitude of commonsense
phenomena with the efficiency of rule-based reasoning systems, which
typically lack real semantics and high-level structures.

1 Introduction

Action theories have emerged as an important subfield of knowledge representa-
tion in Artificial Intelligence for reasoning about actions and causality in dynamic
environments. Developed originally within the context of cognitive robotics, re-
lated formalisms have studied the relationship between the knowledge, the per-
ception and the action of autonomous agents [1], in order to infuse them with
cognitive and commonsense skills. A fundamental extension of most action the-
ories, vital for real-world domains, is related with their ability to refer not only
to what an agent knows, but also to what it does not know ([2], chapter 23).
This requires the modeling of epistemic notions and an account of knowledge
change through knowledge-producing (sense) actions. Epistemic extensions of
action theories have been used to reason about a multitude of commonsense
phenomena in partially observable domains, where agents deliberate about the
effects of actions having incomplete knowledge about the preconditions and the
state of the environment (e.g., [3–5]). To fully exploit the potential of epistemic
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reasoning in practice, a number of challenges need to be faced, with most im-
portant the ability to acquire information at run-time and effectively perform
reasoning tasks on-the-fly. This requires the coupling of formal theories that are
feasible under real-world conditions with efficient reasoning techniques.

In this paper, we present the design and implementation of a forward-chaining
production system that can perform causal, temporal and epistemic reasoning
both offline and online. The system combines rich declarative languages, such as
the Event Calculus and the recently proposed epistemic extension Discrete-time
Event Calculus Knowledge Theory (DECKT) [6], with features that enhance effi-
cient online reasoning, such as rule-based operational semantics, semi-destructive
knowledge update, negation-as-failure (NaF) and others. Whereas most imple-
mentations of the Event Calculus so far are based on logic programming, deduc-
tive or satisfiability techniques, which aremainly goal-driven, the proposed system
follows the forward-chaining production rules paradigm, which has demonstrated
prominent results for exhibiting reactive behavior at runtime.

The contribution of our approach is primarily pragmatic: in addition to an
implementation of the Event Calculus suitable for reacting to occurring events,
which is not supported by most current Event Calculus reasoners (with notable
exception the system presented in [7]), we further achieve to transfer the bene-
fits of the formalisms, such as the solution to the frame problem, temporal and
epistemic reasoning, or multi-model generation due to non-determinism, into an
efficient forward-chaining system. The proposed approach goes beyond ordinary
rule-based systems deployed in dynamic domains, where the actions that lead
to the assertion and retraction of facts have no real semantics and high-level
structures. Instead, it uses the underlying structures of the Event Calculus and
the Kripke equivalent semantics of DECKT to define the causal properties of ac-
tions or to manipulate ordinary and epistemic context-dependent facts. DECKT
employs a sound and complete yet computationally less intensive representation
for knowledge with respect to theories based on possible worlds structures.

The paper is structured as follows. After an introduction to the underlying
formal languages, we elaborate in Section 3 on the features of the rule-based
reasoner. Section 4 discusses implementation issues and Section 5 reports on the
application of the reasoner in an open-world use-case. We conclude in Section 6.

2 Background

The reasoner implements the Event Calculus and the Discrete time Event Calcu-
lus Knowledge Theory (DECKT), an epistemic extension of the basic formalism.

2.1 The Discrete Time Event Calculus

The Event Calculus [8] is a narrative-based many-sorted first-order language
for reasoning about action and change, where events indicate changes in the
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environment, fluents denote time-varying properties and a timepoint sort im-
plements a linear time structure. The calculus applies the principle of inertia,
which captures the property that things tend to persist over time unless affected
by some event. It also uses circumscription to solve the frame problem and sup-
port default reasoning. A set of predicates is defined to express which fluents
hold when (HoldsAt), which events happen (Happens), which their effects are
(Initiates, Terminates, Releases) and whether a fluent is subject to the law of
inertia or released from it (ReleasedAt).

Our account of action and knowledge is formulated within the circumscriptive
linear Discrete Event Calculus extensively described in [9]. The commonsense
notions of persistence and causality are captured in a set of domain independent
axioms, which we refer to as DEC, that express the influence of events on fluents
and the enforcement of inertia for the HoldsAt and ReleasedAt predicates.

A particular domain description consists of axioms that describe the common-
sense domain of interest, observations of world properties at various times and
a narrative of known world events1:

Definition 1. (Event Calculus Domain Description) A non-epistemic Event
Calculus domain description D = 〈Σ,Δ2, Ψ, Γ,Δ1, Ω〉 consists of: - a set Σ of
positive, negative and release effect axioms that describe the conditions under
which an event e initiates, terminates or releases a fluent f at timepoint t,
respectively:∧fi∈C [HoldsAt(fi, t)] ⇒ Initiates(e, f, t)∧fi∈C

[HoldsAt(fi, t)] ⇒ Terminates(e, f, t)∧fi∈C
[HoldsAt(fi, t)] ⇒ Releases(e, f, t)

where C denotes the context of the axiom (the set of precondition fluents), i.e.
C = {f1, ..., fn}, n ≥ 0.

- a set Ψ of state constraints:
∧fi∈Cf [HoldsAt(fi, t)] ⇒ HoldsAt(f, t)

- a set Δ2 of trigger axioms:∧fi∈Ce [HoldsAt(fi, t)] ∧
∧ei [Happens(ei, t)] ⇒ Happens(e, t),

where Ce is the set of precondition fluents for the triggering of e
- a set Γ = Γ (0) ∪ ..., denoting the observations at each timepoint,
- a set Δ1 = Δ1(0) ∪ ..., denoting the narrative of actions, and
- a set Ω of unique names axioms. �
Explanation closure axioms are created by means of circumscription to minimize
the extension of all Initiates, Terminates, Releases, Happens predicates.

A knowledge base KB(t) is a set of ground facts (i.e., fluents and events) and
represents the state of the world at timepoint t and the events that are planned
to occur at this timepoint. Initially, KB(0) = ∅.

1 In the sequel, variables of the sort event are represented by e, fluent variables by
f and variables of the timepoint sort by t, with subscripts where necessary. Free
variables are implicitly universally quantified.
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2.2 Epistemic Reasoning with the Event Calculus

DECKT [6, 10] is a provably sound and complete extension of the Event
Calculus that introduces epistemic features enabling reasoning under partial
observability about a wide range of commonsense phenomena, such as tempo-
ral and delayed knowledge effects, knowledge ramifications, non-determinism
and others. It assumes agents acting in dynamic environments possessing accu-
rate but potentially incomplete knowledge and able to perform sensing and ac-
tions with context-dependent effects. It introduces four epistemic fluents, namely
Knows, Kw (for ”knows whether”), KP (for ”knows persistently”) and KPw.
Whenever knowledge is subject to inertia the KP fluent is used. The latter is
related with the Knows fluent based on the axiom:

(KT2) HoldsAt(KP (φ), t) ⇒ HoldsAt(Knows(φ), t),

where φ is a non-epistemic fluent formula. The Knows fluent expresses knowl-
edge about domain fluents and formulae. Fluent formulae inside epistemic flu-
ents are reified so that Knows(P (x) ∨ Q(x)), for instance, is formally treated
as a term of first-order logic, rather than an atom. We define the abbreviation
HoldsAt(Kw(φ), t) ≡ HoldsAt(Knows(φ), t) ∨ HoldsAt(Knows(¬φ), t) (simi-
larly for HoldsAt(KPw(φ), t))2.

Instead of manipulating a set of possible worlds, the objective of DECKT
is to extend a given domain axiomatization using meta-axioms that transform
each effect axiom into a set of new ones, thus enabling an agent to perform
epistemic derivations under incomplete information. For instance, for each posi-
tive effect axiom

∧fi∈C [HoldsAt(fi, t)] ⇒ Initiates(e, f, t) DECKT introduces
a statement expressing that if the conjunction of preconditions is known then
after e the effect will be known:

(KT3.1)
∧fi∈C

[HoldsAt(Knows(fi), t)] ⇒ Initiates(e,KP (f), t)

However, if some precondition is unknown while none is known false, then after
e knowledge about the effect is lost:

(KT5.1) ¬HoldsAt(Knows(f), t) ∧ ∨fi∈C
[¬HoldsAt(Kw(fi), t)]∧

¬HoldsAt(Knows(
∨fi∈C ¬fi), t) ⇒ Terminates(e,KPw(f), t)

In this case, though, an epistemic relation is also created among the unknown
preconditions and the effect; if at some future timepoint the agent obtains infor-
mation through sensing about the state of the preconditions, it may also infer
the state of the effect:

(KT6.1.1) ¬HoldsAt(Knows(
∨fi∈C ¬fi), t) ∧

∨fi∈C
[¬HoldsAt(Kw(fi), t)]∧

¬HoldsAt(Knows(f), t) ⇒ Initiates(e,KP (f ∨ ∨fj∈C(t)− ¬fj), t),
2 The abbreviation only refers to the Kw and KPw fluents inside the distinguished
predicate HoldsAt; these epistemic fluents can still be used as ordinary fluents inside
any other predicate of the calculus, e.g., Terminates(e,KPw(f), t).
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where C(t)− = {f ∈ C|¬HoldsAt(Kw(f), t)} the set of precondition fluents
that are unknown to the agent3. Informally, the theory is augmented with a dis-
junctive knowledge formula, called a hidden causal dependency (HCD) [6], that,

considering (KT2), is equivalent to HoldsAt(Knows(
∧fj∈C(t)− fj ⇒ f), t+ 1).

In addition, when the effect is known to be false upon event occurrence, a HCD
is created between the effect and each of the unknown to the agent fluents.

The intuition is analogous for negative and release effect axioms. HCDs denote
temporal implication relations and are treated as ordinary fluent terms. DECKT
defines, in addition to the creation of HCDs, also axioms that determine when
the latter are destroyed and what knowledge should be preserved when a HCD
is destroyed. An in depth description of the axiomatization is beyond the scope
of this study (see [10]). We note only that HCDs characterize how an agent
believes the state of the world has evolved at a particular time instant, while
state constraints prescribe how the world should be at all times.

Finally, sense actions provide information about the truth value of fluents
and, by definition, only affect the agent’s mental state:

(KT4) Initiates(sense(f),KPw(f), t)

3 A Rule-Based Production System for the Event
Calculus

In this paper, we describe a rule-based reasoner for the Event Calculus that can
perform causal, temporal and epistemic reasoning tasks utilizing information
obtained at run-time. In our logic-based forward-chaining framework Event Cal-
culus epistemic and non-epistemic axioms, state constrains and domain rules are
compiled into production rules, preserving the declarative and Kripke equivalent
semantics. In this section, we describe the operational semantics of the system’s
reasoning cycle that achieves run-time monitoring of a dynamic environment.

The knowledge base is structured as a deductive database. A rule engine
matches facts in the working memory, event narratives and observations arriv-
ing on-the-fly with conditions of rules, deriving the resulting world state and the
events that are or may be triggered. In contrast with ordinary rule-based sys-
tems deployed for reactive reasoning in dynamic worlds, where the actions that
lead to the assertion and retraction of facts have no real semantics and high-level
structures, our system is based on rich declarative languages. It uses the under-
lying high-level structures of the Event Calculus to define causal properties, as
well as DECKT to distinguish between the ordinary and epistemic facts that are
initiated, terminated or triggered based on the given context.

3 Note that although the set C is fixed for a particular domain, C(t)− is a dynamic set
that changes from timepoint to timepoint. Axioms such as (KT6.1.1) are a compact
way of representing inferences without having to enumerate all axioms where knowl-
edge about fluents in C appear as preconditions. They are not meant to be parsed
at design-time, but can be straightforwardly implemented using lists constructs in
Prolog- or Lisp-like languages as explained in Section 4.
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The operational semantics implement a model generator to construct all pos-
sible models that satisfy a given narrative, a set of causal and temporal con-
straints and observations obtained at runtime. This is particularly interesting
when simulating the behavior of a system in the non-epistemic case, where non-
determinism and released fluents may give rise to distinct models at each time
instant. For the epistemic case on the other hand, DECKT meta-axioms capture
knowledge change in a set of HCD implication rules, thus requiring only a single
model to be preserved at all times. This leads to an efficient representation of
knowledge change [10] that is well suited for rule-based implementations.

3.1 The Operational Semantics

Next, we define the reasoning cycle, in which the reasoning module repeatedly
monitors the state of fluents, the execution of actions and the occurrence of
events in the environment and updates the pool of KBs to reflect the changes
brought about by these observations.

The assimilation of observations regarding the state of fluents requires care-
ful treatment within an online system. The Event Calculus does not allow for
inertial (i.e., not released) fluents to modify their state unless an event explic-
itly interacts with them. Consequently, for the non-epistemic component, where
complete world description must be preserved at all times, observations about
fluents that contradict stored derivations lead to model elimination. Updating
knowledge is only applicable within the epistemic component where sense action
are specifically used for that purpose.

The following reasoning cycle is executed both by omniscient systems that per-
form non-epistemic reasoning in a non-deterministic environment and by devices
that have only limited access to sensor data and maintain a KB that describes
only partially the current world state. A time threshold T determines how often
information from the environment should be interleaved with execution.

Definition 2. (Reasoning cycle) Given the domain-independent DEC and
DECKT axiomatizations, a domain description D = 〈Σ,Δ2, Ψ, Γ,Δ1, Ω〉 and a
bound T on the number of reasoning steps (i.e., timepoints), the following reason-
ing cycle determines a sequence of state transitions 〈PKB(t0)〉, (Γ (t0), Δ1(t0)), ..,
〈PKB(t0 +T − 1)〉, where PKB(t′) is the pool of knowledge bases KBj(t

′) that
represent the valid models produced at timepoint t′ and t0 is the initial timepoint:

– Step A (Init) For all t0 ≤ t < T take the next element KBj(t) from the pool
of knowledge bases until PKB(t) is empty.

– Step B (Main Loop)
• Step B.1 (Prog) Apply DEC and optionally DECKT axioms to KBj(t)∪
Δ1(t) ∪ Σ to obtain all inertial fluents at t + 1. Let KB∗

j (t
′′) denote

the inertial fluents of KBj(t
′′) at some timepoint t′′, i.e., KB∗

j (t
′′) =

(KBj(t
′′)− {f : Released(f, t′′)}). Then, obtain KB∗

j (t+ 1) as follows:
KB∗

j (t+1) = (KB∗
j (t)−{f : Happens(e, t) ∈ Δ1(t), T erminates(e, f, t)

∨Releases(e, f, t) ∈ Σ and all fi ∈ C hold in KBj(t)})∪ ({f : Happens
(e, t) ∈ Δ1(t), Initiates(e, f, t) ∈ Σ and all fi ∈ C hold in KBj(t)}).
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• Step B.2 (StC) Apply state constraints of Ψ to obtain all indirect effects
of actions as follows: KB∗∗

j (t+1) = KB∗
j (t+1)∪({f : HoldsAt(f, t+1)

is in the head of some r ∈ Ψ and all fi ∈ Cf of r hold in KB∗
j (t+ 1)}).

• Stem B.3 (NaF) All fluents not stored in KB∗∗
j (t + 1) are assumed not

to hold, thus forming KBj(t+ 1).
• Step B.4 (Tr) Apply trigger axioms in Δ2(t + 1) to obtain all occurring
events as follows: Δ′

1(t + 1) = Δ1(t + 1) ∪ ({e : Happens(e, t+ 1) is in
the head of some r ∈ Δ2(t+ 1), all fi ∈ Ce of r hold in KBj(t+ 1) and
Happens(ei, t+1) ∈ Δ1(t+1)}). That is, for every instance r of a trigger
axiom in Δ2(t) such that its context and event occurrence preconditions
are satisfied in KBj(t+1)∪Δ1(t+1), assert the head of r in Δ′

1(t+1).

– Step C (Expand) Determine non-epistemic fluents that are released in the
interval [t,T) and are not in the head of an activated state constraint of Ψ .
For every t′ ∈ [t, T ) create all possible combinations of the truth values of
these fluents and assert them in duplicates of KB∗∗

j (t′). If no state constraint
is violated perform steps B.2-4 to obtain a new KB (new model) and store
it in PKB(t′). Then, return to Step A.

– Step D (Sense) Update Γ andΔ1 sets according to information obtained by ex-
ternal procedures (e.g., sensors, communication modules, actuators etc). For
each element KBj(t) of the pool of knowledge bases, if KBj(t)∪Γ (t) is incon-
sistent (observations contradict inferences) remove KBj(t) from PKB(t).

Notice that only positive fluents are asserted in the knowledge base at steps
B.1 and B.2. Negative fluents are assumed to be false by application of NaF,
therefore they need not be explicitly introduced. Yet, the modeling of state
constraints and non-determinism deems necessary a semi-destructive update of
the knowledge base; destructive assignment is applied only on inertial fluents
at step B.1, preserving also the solution to the frame problem without the use
of additional axioms. Indirect derivations and released fluents are asserted in
successive steps of the execution.

3.2 Complexity Analysis

Theoretical computational complexity issues of the Event Calculus have been
studied in the past with respect to a multitude of reasoning tasks (e.g., [11, 12]).
Our implementation supports the subsets of the Event Calculus and DECKT
introduced in Section 2, in order to perform temporal projection with events
arriving at chronological order. In this section we report on the computational
complexity of the reasoning cycle.

Steps B.1, B.4 evaluate precondition fluents to determine which effect or trig-
ger axioms are activated. The problem of query answering on (untyped) ground
facts (data complexity) reduces to the problem of unifying the query with the
facts, which is O(n), where n is the size of the KB. In the worst case, the
number of fluents that need to be checked is n both in the epistemic and the
non-epistemic case: only atomic fluent preconditions need to be considered.

Step B.2 carries out deductive closure (materialization) on ground facts on a
set of universally quantified rules to produce all possible inferences that make
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implicit information explicit. In the general case, different strategies can be de-
ployed to accomplish this task characterized by diverse complexity properties.
Within our framework logical inference at each step is performed by Jess4, an ef-
ficient rule engine that uses an enhanced version of the Rete algorithm to process
rules. Jess makes intensive use of hash tables and caching to reduce time com-
plexity of pattern matching, which is tightly dependent on the syntactic form of
rules written by the knowledge engineer. In the best case, the performance of the
reasoner is O(p), i.e, linear to the number of patterns in a rule and independent
of the size of the KB, whereas in the worst case of badly constructed rules and
naive pattern-matching, it can be O(pn), where n the number of facts in the
KB that the reasoner has to evaluate in order to determine which rules to trig-
ger. Note also that in our case reasoning at each step operates in a monotonic
space; no information that has been inferred for a given timepoint is deleted
(facts retracted at Step B.1 refer to the successor timepoint). This enhances the
behavior of the system, considering for instance that pattern-matching in Jess
is performed while changes are made in the working memory, rather than just
at the actual execution time.

As a result the size of the domain may play a decisive role for computing Step
B.2. For a domain of n fluents the number of facts that influence performance are
O(n) at worse for the non-epistemic case and O(2n) for the epistemic case, due
to the fact that DECKT treats all disjunctions as ordinary fluents. The number
of state constraints plays no role in the complexity as Ψ is fixed and known at
compilation time.

Step C is linear to the number of fluents for the non-epistemic case; a
query needs to be issued to the KB and for each released fluent retrieved an
implementation-specific cloning procedure is executed. For the epistemic case
Step C is not applicable, as there is always a single KB to manage. This is also
the case at Step A: for the non-epistemic deliberation there might be at worse an
exponential number of KBs to the size of the domain at each timepoint, whereas
DECKT axiomatizes an epistemic domain on a single KB. Finally, for each KB
a query of linear cost needs to be issued at Step D as well, in order to compare
the stored truth value of the sensed fluent with the input from sensing.

Conclusion: It becomes clear that the predominant complexity factor for the
non-epistemic case is the number of released fluents causing the creation of KBs,
whereas for the epistemic case it is the number of HCDs stored. The former
characterizes the degree of non-determinism of the effects of actions in a given
environment. The latter parameter, i.e., the set of HCDs that are created as an
agent performs actions with unknown preconditions, is based on the knowledge
that the agent has about the state of the world, as well as on the sets of state
constraints that capture interrelated fluents. So called dominos domains which
lead to chaotic environments are not commonly met in commonsense domains.
Furthermore, HCDs fall under the agent’s control, enabling it to manage their
size according to resources.

4 Jess: http://www.jessrules.com/ (last accessed: June 2012)

http://www.jessrules.com/
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4 Implementation

The reasoner comprises different modules to facilitate developers in the con-
struction of Event Calculus theories, the refinement of production rules and the
monitoring of system execution at runtime. DEC and DECKT axiomatizations
are implemented on top of Jess. As a consequence, the resulting programs inherit
the declarative epistemic and non-epistemic semantics, while the reasoning cy-
cle’s operational semantics enable for online reasoning in dynamic environments.

A multitude of features have been integrated to the reasoner in order to en-
hance the implementation of its operational behavior, while still being consistent
with the basic tenets of its axiomatizations. The support for both epistemic and
non-epistemic derivations into a production framework, as well as the require-
ment for runtime execution, led to the introduction of alternative mechanisms
to the reasoning process, which are not typically met in the signature of the
original formalisms. For instance, instead of implementing parallel circumscrip-
tion of predicates as employed by standard Event Calculus, negation-as-failure
(NaF) and the semi-destructive update of the KB, which are encompassed in our
rule-based system, offer a solution to the computational frame problem without
the need to write additional frame axioms to perform predicate completion.

Moreover, although the underlying formalisms are neutral with respect to
the order of rule execution, the salience value-based conflict resolution strategy
used by the rule engine can be used as an additional feature in the operational
semantics to handle concurrent event occurrences. The support for reification
of fluent formulas in Event Calculus predicates was also deemed necessary, as
explained in Section 2, due to the epistemic nature of axioms.

The effective deployment of multi-agent systems calls for tools that can sup-
port the developer in all steps of design and implementation cycles through
graphical user interfaces. A visual development environment enables the pro-
grammer to implement the mental state of rational agents at a more abstract
level by either parsing only Event Calculus axiomatizations or in addition by
modifying specific rules of the Jess program for specialized tasks. New events
and observations can be asserted on-the-fly either manually by means of the
user interface or through a Java interface that enables the system to acquire
information arriving from sensors and actuators. At a higher level, the user can
choice between the execution of classical Event Calculus reasoning or epistemic
reasoning, i.e., to incorporate the DECKT axiomatization or not.

Fig.1 displays the visual development environment of the reasoner through a
typical interaction loop: the developer designs a domain axiomatization by means
of an intuitive Event Calculus syntax, which is then parsed automatically into
appropriate Jess rules and finally, at execution time, the programmer is informed
about the progress of reasoning and the elicitation of commonsense knowledge.
DEC and DECKT domain independent axioms are precompiled as Jess rules. Tu-
ple (a) of Table 1 for instance shows the translation into a production rule of the
Event Calculus axiom that captures the positive influence of event occurrences on
the state of fluents. According to the rule syntax, variables start with a question
mark ’?’, the ’←’ operator performs pattern binding to store a reference to a fact
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Fig. 1. The user interface facilitates developers in writing EC axioms, parsing them as
Jess rules and offering online reasoning functionalities

of the working memory in a variable, whereas the ’$’ symbol denotes lists of items
(i.e., fluents in this case). For example, the proposition HoldsAt(Knows(F1 ∨
¬F2∨F3), 3) is stored as the fact (EC (predicate HoldsAt) (epistemic Knows)
(posLtrs F1 F3)(negLtrs F2)(time 3)). Conjunctions of epistemic formulas are
decomposed into the individual components, as permitted by the properties of
knowledge. For non-epistemic fluents the posLtrs slot contains exactly one flu-
ent, whereas negLtrs is empty.

Example 1. Let the domain descriptionD1 for the three fluents F1, F2, F where
Σ contains only the effect axiom HoldsAt(F1, t) ∧ ¬HoldsAt(F2, t) ⇒
Initiates(E,F, t), and Δ1 = {Happens(E, 2)}, while no non-epistemic fluent is
released initially, i.e., ¬ReleasedAt(f, t) ∈ Γ . At design-time, the Java compiler
instantiates all DEC and DECKT domain meta-axioms given the particular do-
main description and produces a set of Jess rules. For example, the instantiation
of (KT3.1), (KT6.1.1) DECKT meta-axioms for the effect axiom of D1 appears
on Table 1(b) (with some simplifications for readability purposes). At runtime
the available knowledge at each timepoint is taken into account in the head of the
rule, in order to dynamically reconfigure its behavior. In particular, the body
of the rule checks that no precondition is known not to hold, whereas in the
head the two lists ?unknownPosF and ?unknownNegF collect the unknown
precondition fluents to construct the C(t)− set.

Referring to domain D1, it is possible for the reasoner to show entailments,
such as the following (fluents not explicitly mentioned in the initial state are
assumed to be false, by application of NaF):

D1 ∧HoldsAt(Knows(F1), 3) ∧HoldsAt(Knows(¬F2), 3) |=DEC,DECKT

HoldsAt(Knows(F ), 4)
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Table 1. Event Calculus axioms and their corresponding Jess rules

That is, axiom (KT3.1) is implemented by the rule. On the other hand,
D1 ∧ ¬HoldsAt(Kw(F1), 3) ∧HoldsAt(Knows(¬F2), 3) |=DEC,DECKT

HoldsAt(Knows(¬F1 ∨ F ), 4)
which is the disjunctive knowledge produced due to (KT6.1.1). �
Example 2. As an example of multiple non-epistemic model generation, con-
sider the domain axiomatization D2 for the fluents F, F1, F2, where the release
axioms Releases(E,F1, t) and Releases(E,F2, t) constitute Σ, the state con-
straint HoldsAt(F, t) ∧HoldsAt(F1, t) ⇒ HoldsAt(F2, t) is included in Ψ and
Γ = {HoldsAt(F, 0),¬ReleasedAt(f, t)}, i.e., initially only fluent F holds but no
fluent is released. If event E occurs at timepoint 1 the following entailment can
be proved, which causes three different models to be produced by the reasoner:

D2 ∧Happens(E, 1) |=DECHoldsAt(F, 2)∨
(HoldsAt(F, 2) ∧HoldsAt(F2, 2))∨
(HoldsAt(F, 2) ∧HoldsAt(F2, 2) ∨HoldsAt(F1, 2))

At any moment, if external observations provide information about any of the
involved fluents (e.g., ¬HoldsAt(F2, 2) as in Fig.1(c)), those models that contra-
dict the new knowledge are eliminated. New knowledge is asserted either manu-
ally or automatically given input generated by the sensors. From that point on,
reasoning proceeds with the remaining valid models. �
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Table 2. A trigger axiom with causal and temporal constraints

5 An Application Domain

This section illustrates the contribution of causal rule-based reasoning in a real-
world application domain. Specifically, we describe how the reasoner forms part
of a general framework for context-aware Ambient Assisted Living (AAL) ser-
vices, in order to monitor user actions, recognize parallel activities, detect haz-
ardous situations and react in a timely manner.

The development of context-aware sensor-rich smart spaces that adapt to
user’s preferences and needs is largely based on the research trends of Ubiqui-
tous Computing and Ambient Intelligence. Of the most prominent applications
of this research has been the implementation of AAL environments. The develop-
ment of enabling technologies to support people with mild cognitive disabilities
and dementia while they carry out everyday domestic activities is attracting
considerable attention. The aim is to increase the autonomy of this popula-
tion within their own living environment and improve their feeling of safety, a
goal that is considered essential both by patients and care providers. The cur-
rent trend in representing, recognizing and reasoning about human activities in
context-aware smart spaces relies largely on Semantic Web languages and re-
active systems, which, although mature enough, still do not meet many of the
challenges of such complex domains, in terms of expressing and reasoning about
complex situations [13]. Whereas rule-based systems are particularly efficient
for implementing reactive behavior upon recognized situations, deliberating in
ambient domains requires the integration of more powerful cognitive skills, po-
tentially under partial observability of the environment.

To our opinion, commonsense and temporal reasoning are key issue that need
to be encapsulated in entities that inhabit smart spaces. Already the Event Cal-
culus is regarded a prominent candidate to deliver solutions for more advanced
tasks in such domains [14, 15]. Our intension is to go beyond current implemen-
tations of reactive smart spaces in ways that consider both the current knowledge
and future contingencies of user activities.

Example 3. (Ambient Assisted Living) Let a domain axiomatization where
changes in the environment can be due to both user actions or physical events.
The user can move between rooms, change the location of objects or manipulate
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objects, e.g. turn on the hot plate. A pot will start heating up and eventually
its content will start to boil (Table 2) under appropriate conditions:

HoldsAt(TurnedOn(HotP late), t) ∧HoldsAt(PlacedOn(obj,HotP late), t) ∧
¬HoldsAt(Heating(obj), t) ⇒ Happens(StartHeating(obj), t)

The monitoring system can identify potentially critical situations both about
the present and the future, in order to trigger different types of alerts and rec-
ommendations in an as less intrusive manner as possible. For example, it can
foresee that the water will boil after a certain period of time, postponing any
alert action until a later point. Table 2 shows a sample trigger axiom with tem-
poral constraints and its corresponding Jess rule. If in the meantime the user
turns on the bathtub faucet and starts filling the bathtub with water, the system
should identify that these two parallel activities will demand the user’s attention
at approximately the same time at two different locations, i.e., she should stop
the water from reaching the rim of the bathtub while also turn off the hot plate
in the kitchen. Although the critical situation refers to a future point in time
and it is not certain that it will actually occur, a reminder is more appropriate
to be placed in the present state. In certain cases the system may need to take
initiative, such as to turn off the hot plate for her. �
Context knowledge in the general framework for AAL is captured in OWL on-
tologies and translated according to the reasoner’s syntax, in order to formalize
the causal properties of the domain and enable commonsense reasoning. For in-
stance, the open world assumption adopted by OWL is directly accommodated
by the epistemic component of the reasoner by application of NaF on epistemic
fluents: unless explicitly stated, fluents are by default unknown. Furthermore,
the representation of subsumption relations among domain objects is supported
by the reasoner in the definition of fluents or events. The following two sorts
describe classes and instances for the domain of Example 3 and characterize
objects that exist in the kitchen:

sort : kitchenware(Toaster,Kettle, Pot, Stove, Table).
sort : movable kitchenware(Toaster,Kettle, Pot).

These sorts reflect the fact that movable kitchenware � kitchenware as ob-
tained by the domain ontology. As such, the following event definition restricts
the range of permitted values when grounding its arguments:

event : PutOn(actor,movable kitchenware, kitchenware).

Given a narrative of actions performed by the user and observations obtained
from the environment, the non-epistemic component plays a dual part in the
framework: it performs high-level activity and situation recognition of the current
state and it progresses the KB into the future to identify exceptional situations,
to activate alerts and to determine the most appropriate time to trigger them.
The practical significance of elaborating on the feasibility or fidelity of a course
of actions by performing temporal projection is evidenced in recent implemen-
tations of autonomous systems (e.g. [16]). Epistemic reasoning can be applied
in case of partial observability of world aspects, e.g., when mobile devices such
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as robots or PDAs need to perform lightweight reasoning tasks having limited
access to the full description of the KB due to connection failures or resource
constraints. Situations that require epistemic reasoning in Ambient Intelligence
environments are described in [17]. Given the knowledge at hand, the epistemic
component of the reasoner can create a partial description of the world state by
associating and maintaining causal relations among unknown world parameters
that change dynamically. The causal relations provide a valuable source of infor-
mation, not only for outlining an agent’s epistemic reflection of the world state,
but also for the determination of which sense actions to perform and when. A
powerful epistemic model can enhance significantly the cognitive skills of deliber-
ating agents; even parameters not directly measurable may be indirectly inferred
when studying the epistemic ramifications of actions.

6 Discussion and Conclusion

The Event Calculus differentiates from other action theories due to its ability to
perform causal and temporal reasoning for a wide range of commonsense phe-
nomena. Nevertheless, its main use has been focused on deductive state progres-
sion given a known narrative of actions or abductive planning by application of
backward chaining strategies. Its application to dynamic environments, which is
the formalism’s primary target domain that calls for forward chaining methods,
has only recently started to attract attention [7, 15]. As a result, a rule-based im-
plementation of the Event Calculus, as presented in the present study, achieves
to exploit the rich expressiveness of the formal languages with the benefits of
rule-based theories for online reasoning. The systems presented in [7] and [18],
sharing a similar objective, focus furthermore on combining both forward- and
backward-chaining rules and formally prove the properties of the operational
semantics. On the other hand, their capacity in modeling complex phenomena,
such as partial observability of the world state or non-determinism, is limited.
Our current system manages to encompass solutions for supporting reification
of fluents, multiple model generation and others.

Currently, the implementation of the epistemic component follows the progress
made in the theoretical foundations of DECKT. As a result, there are limita-
tions in the range of domains that can be modeled to perform epistemic reasoning
and not all non-epistemic axiomatizations can fully be expressed as epistemic
theories. For instance, according to the formal definition for knowledge, sensed
information cannot contradict already established knowledge. The extension of
DECKT to apply belief revision strategies is our next logical step. Moreover, tem-
poral indeterminacy is not formalized in DECKT; therefore, actions happening
at some timepoint within an interval are not permitted for epistemic reasoning.
On the other hand, potential occurrences of events are formally axiomatized,
i.e., when the preconditions are unknown as in Example 3. Complex benchmark
domains have been modeled under partial observability to express commonsense
phenomena, such as complex ramifications, delayed knowledge effects, potential
event occurrences and others (e.g., Shanahan’s circuit [19]).
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This work provides the substrate for both theoretical and practical future
work. It offers the guidelines for the implementation and evaluation of different
versions of epistemic and non-epistemic reasoning. Apart from belief revision,
an interesting extension is to permit the attachment of certainty weights to
obtained models, in order to accommodate approaches that couple symbolic and
quantitative reasoning. From the practical standpoint, we work on the evaluation
the reasoner’s expressive capacity and performance using benchmark problems
in comparison with SAT or ASP implementations of the Event Calculus, as well
as under real-world conditions within our AAL framework.
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Abstract. Service oriented architectures and event driven enviroments
are becoming dominant over the web. Reactive Rules expressed by Rule
Markup Languages are used to define the system’s reactions. In this pa-
per we present a Hidden (Sorted) Algebra approach to some of the most
common families of Reactive Rules. This semantics will allow the map-
ping between Rule Markup Languages and Behavioral Algebraic Specifi-
cation Languages. Verification techniques for reactive rules, will provide
automated reasoning capabilities and support the development of new
rule based policies and trust models.

Keywords: Reactive Rules, Hidden Algebra, Observational Transition
Systems, Formal Semantics.

1 Introduction

The study of Reactive Rules for event driven applications started to become
extensive during the 1990s. The interest was on rules that specify the behav-
ior of systems that trigger actions as response to the detection of events from
the environment. As the authors of [10] point out, today’s research on Event
Driven Architecture IT infrastructures like on-Demand or Utility Computing,
Real- Time Enterprise, Business Activity Management and so on, is intensive.
In addition, a new push has been given in the field due to the strong demand
of the web community for event processing functionalities for Semantic Web
Markup Rule Languages such as RuleML.

Over the years different approaches to reactive event processing were devel-
oped. As analyzed in [10], in active databases the focus is on the support of
automatic triggering of global rules in response to either internal updates or
external events. In event notification and messaging systems, the focus is on the
sequence of events in a given context, while in event/action logics it is on the
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inferences that can be made from the fact that certain events have occurred.
For a survey on the event/action/state processing space we refer the interested
reader to [1]. Some of the most important families of reactive rules used in the
semantic web community are Production rules, Event Condition Action (ECA)
rules and Knowledge Representation (KR) rules. Also great interest is shown for
the definition of Complex Events.

We will present Observational Transition System (OTS) semantics for some
rule families, as depicted in figure 1. While there are many approaches in terms
of expressing the meaning of reaction rules, our contribution focuses on the
foundations for creating libraries of rules with verified behavior and allows the
composition of these rules in order to create more complex rule bases that pre-
serve desired properties. This can be achieved due to the strong modularisation
properties of hidden algebra, such as information hiding, renaming and sum [13].
Hidden algebra has been succesfully applied to system’s design verification. By
expressing reaction rules in the same framework we could reason not only about
the rules but also on their behavior in particular systems. Our paper is organized
as follows. In the second section, we briefly introduce the basic concepts we will
need. In section 3 we give OTS semantics for some of the most commonly used
types of reactive rules, and present some case studies.

2 Preliminaries

2.1 Hidden Algebra

Hidden Algebra is an approach for giving semantics to concurrent distributed
object oriented systems, as well as to software systems in general. It is a ver-
sion of behavioral type in the object oriented paradigm [3], called behavioral
specification.

For a set of sorts S, we say that the set A is S-sorted if it can be regarded as
a family of sub-sets as A = ∪{As}s∈S . Using this set of sorts, we can define a
signature Σ as the pair <S, F> where F is a set of function symbols. Such that F
is equipped with a mapping F → S∗×S meaning that each f ∈ F, f : s1× . . .×
sn → s. Then the type (or rank) of f is defined as rank (f) = s1 . . . sns ∈ S∗.
Given a signature as above, a Σ-Algebra A consists of a non-empty family of

Fig. 1. Reaction rules families and OTS
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carrier sets {As}s∈S and a total function fA : As1 × . . . × Asn → As for each
function symbol f : s1 × . . .× sn → s ∈ F .

AΣ-homomorphism between twoΣ-algebras A and B, denoted by h : A → B,
is a family of maps {hs : As → Bs}s∈S that preserves the operators. By imposing
a partial ordering on the sorts we get an Order Sorted Σ-Algebra (OSA).

An order sorted signature is a triple (S, ≤, Σ) such that (S, Σ) is a many-
sorted signature, (S,≤) is a poset, and the operators satisfy the following mono-
tonicity condition; Σ ∈ Σw1,s1 ∩Σw2,s2 and w1 ≤ w2 implies s1 ≤ s2. Given a
many-sorted signature, a (S, Σ)-algebra A is a family of sets {As | s ∈ S} called
the carriers of A, together with a function AΣ : w → As for each Σ in Σw,s.
Where Aw = As1× . . .×Asn andw=s1. . . sn. Let (S, ≤, Σ) be an order sorted
signature. A (S, ≤, Σ)-algebra is a (S, Σ)-algebra A such that, s ≤ s′ in S im-
plies As ⊆ As′ and Σ ∈ Σw1,s1 ∩ Σw2,s2 and w1 ≤ w2 implies AΣ : w1 → As1

equals AΣ : w2 → As2 on Aw1 [8]. The purpose of the formalisation of order
sorted signatures is to define sorts (similar to classes in OO), functions (similar
to methods in OO) and inheritence between the sorts.

In Hidden Algebra [3] two kinds of sorts exist: visible sorts and hidden sorts.
Visible sorts represent the data part of a specification while hidden sorts denote
the state of an abstract machine.

Given a signature (S,≤, Σ) and a subset H ⊂ S the hidden sorts, a hidden
algebra (or a hidden model in general) A interprets the visible sorts V and the
operations Ψ of the visible sorts as a fixed model D (the data model, say an
order sorted algebra) such that A�V,Ψ = D (where � is the model reduct). Given
two signatures (S,≤, Σ) and (S′,≤, Σ′) a signature morphism φ : (S,≤, Σ) →
(S′,≤, Σ′) consists of a mapping z on sorts that preserves the partial ordering, i.e.
for s ≤ s′ then z(s) ≤ z(s′) and an indexed mapping on operators g, such that
{gs1...sn : Σs1...sns → Σ′

z(s1)...z(sn)f(s)}s1...sns∈S,n≥0
. We will refer to operators

whose arguments contain a hidden sort and/or whose returned value is a hidden
sort, as hidden or behavioral operators.

The hidden signature morphism φ : (S,H,≤, Σ) → (S′, H ′,≤, Σ′) preserves
the visible and hidden part of the signatures and obeys to the following con-
ditions: (a) g maps each behavioral operator to a behavioral operator, (b) if
z(h) < z(h′) for arbitrary visible sorts h and h’ then h < h’ and (c) if σ′ ∈ Σw′s′

is a behavioral operator where w ∈ (S
⋃
H)

∗
and some sort of w is hidden, then

σ′ = g(σ) for some behavioral operator σ ∈ Σ.

2.2 Observational Transition Systems

An Observational Transition System (OTS) is a transition system that can be
written in terms of equations and is a proper sub-class of behavioral specifica-
tions. Assuming there exists a universal state space Y and that each data type
we need to use is already defined in terms of an initial algebra, an OTS S is
defined as the triplet S = 〈O, I, T 〉, where [4]:
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1. O is a finite set of observers. Each o ∈ O is a function o : Y → D, where
D is a data type (visible sorted) and may differ from observer to observer.
Given an OTS S and two states u1, u2 ∈ Y the equivalence between them
with respect to the OTS S is defined as ∀o ∈ O, o (u1) =S o (u2) .

2. I is the set of initial states of the system such that I ⊆ Y.
3. T is a finite set of transition functions. Each τ ∈ T is a function τ : Y → Y ,

such that τ (u1) = τ (u2) for each [u] ∈ Y/=S and u1, u2 ∈ [u]. The state
attained by τ(u) is called the successor state of u with respect to S. Also
with each τ comes a condition c-τ , called the effective condition of τ , such
that τ (u) =S u if ¬ (c-τ(u)).

Observers and transitions are usually parameterized and generally they are
denoted as oi1...im and τj1...jn provided that there exist data types Dk, k ∈
{i1 . . . im, j1 . . . jn} and m,n ≥ 0.

2.3 Timed Observational Transition Systems

Timed observational transition systems, TOTSs, are OTSs that are evolved by
introducing clock observers in order to deal with timing. Again Y denotes a
universal state space. Let B, N and R+ be a set of truth values, a set of natural
numbers and a set of non-negative real numbers, respectively. A TOTS S =
〈O, I, T ∪ {tickr | r ∈ R+}〉 where [9]:

1. O is a set of observers. The set O = D ∪ C is classified into the set D of
discrete observers and the set C of clock observers. Clock observers may
be called clocks. The discrete observers are defined in the same way as the
observers of an OTS.

2. I is the set of initial states such that I ⊆ Y.
3. T ∪ {tickr | r ∈ R+} is a set of conditional transitions. Each τ ∈ T ∪ {tickr |

r ∈ R+} is a function τ : Y → Y .

For each clock observer o ∈ C where o : Y → D, D is a subset (subtype) of
R+ ∪ {∞}. For each τ ∈ T , there are two clocks lτ : Y → R+ and uτ : Y →
{R+} ∪ {∞}, which return the lower and upper bounds of τ , respectively. They
are basically used to force τ to be executed, or applied between the lower bound
returned by lτ and the upper bound returned by uτ . There is also one special
clock now : Y → R+. It serves as the master clock and returns the time amount
that has passed after starting the execution of S. now initially returns 0. C
contains the two clocks lτ and uτ for each τ ∈ T , and the master clock now. For
each τ ∈ T , its effective condition consists of the timing part and the non-timing
part. The non-timing part is denoted by cτ . Given a state u ∈ Y , the timing
effective condition is lτ ≤ now(u) . Each tickr is a time advancing transition.
Given a state u ∈ Y , for each tickr, its effective condition is now(u)+ r ≤ uτ (u)
for each τ ∈ T , and now(tickr(u)) is now(u)+r if the effective condition of tickr
is true in u.
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3 Reactive Rules and Observational Transition Systems

3.1 Production Rules and OTSs

Our aim is to provide an OTS semantics to production rules. Production rule
systems use a set of condition-action rules cyclically invoking (assert, retract,
etc.) actions when tests over their working memory succeed. Their syntax is:
if Ci do Ai, where Ai denotes an action that must be applied automatically by
the system when it detects that the conditions denoted as Ci hold.

The semantics of these actions Ai could be those of transition rules in an
OTS, because both transition rules and actions Ai cause explicit changes to the
state of the system when they are applied. The conditions defined above can be
mapped to (or be part of) the effective conditions of the transition rules.

So at first, it looks like the OTS semantics of production rules are quite
straightforward. But a closer look will reveal that there is an error in the previ-
ous reasoning. In the OTS approach we can define under which conditions the
transitions will be successful but it is not possible to enforce the application
of those transitions on a state. On the other hand the production rules system
must react in the desired way when the conditions are met. So the semantics
of production rules in OTS should be the enforcement of the application of a
transition rule in a system state.

Here, we will attempt to give such semantics by providing a typing on the
states of an OTS. Then we will define an OTS that contains only transition
rules from the typed states, which can be regarded as a sort of typed OTS.

As mentioned in section 2.2, an OTS corresponds to an order sorted hidden
algebra (S,≤, Σ). We will use the hidden sorts, defined as H ⊂ S, to produce
the typing system. For the following we assume a set of hidden sorts H , denoting
the state space of the OTS Y , meaning that ∀u ∈ Y , ∃h ∈ H such that the sort
of u belongs to the sort h.

Definition 1. Suppose that the OTS contains n-transition rules τi : H D1i ...Dni

→ H, i ∈ (1, ..., N) and that each transition rule is affected by the effective con-
dition c-τi : HD1i ...Dni → Bool . For each transition τi and for all visible sort
constants dki ∈ Dki such that there ∃u ∈ Y for which c-τi(u, d1i , ..., dni) = true
we define;

– a hidden sub-sort, hid1i
...dni

≤ H. Such that ∀u ∈ hid1i
...dni

we have that c-
τi(u, d1i , . . . , dni) = true. This is the hidden sub-sort that satisfies the effec-
tive condition of the transition rule τi for visible sort arguments d1i , . . . , dni .

– also for each transition rule τi : HD1i ...Dni → H we define a new transition
τ ′id1i

...dni
: hid1i

...ni
→ H, such that τ ′i(u) = τi(u, d1i , ..., dni) ∀u ∈ hid1i

...dni
.

We will call the OTS S′ =< O′, I ′, T ′ > defined from S =< O, I, T > as

- O′ = O
- T ′ = {τ ′i |τi ∈ T }
- I ′ = I

the production OTS of S .
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Now for a given state of the system u ∈ Y it is possible to decide if it belongs to
a sort or not, by checking whether ∃ dik such that c-τi(u, di1 , . . . , din) = true. If
the previous expression holds then u ∈ hidi1 ...din

. The next definition describes
how with the above formalism we can semantically interpret a set of production
rules as an OTS.

Definition 2. Assume a set of production rules: if Ci do Ai, i ∈ {1, ..., N}.
In such a set of rules Ci defines a set of constraints that when they hold the
system should automatically apply the action(s) Ai. We define an OTS S =<
O, I, T > such that the actions Ai’s of the above rules are mapped to some
transition rules τi’s and the conditions Ci’s to effective conditions c−τi’s. The
production OTS S′ =< O′, I ′, T ′ >, created from S using definition 1 is the
semantic interpretation of the production rules in the OTS framework.

Example 1. As an example of the previous definition consider the following
production rule for an online store: ”If status of client is premium and the type
of product is regular then assert discount of 25 percent for the customer” [2].
It possible to fully characterize the above system with a set of queries (ob-
servers) as those in table 1. Where Client, Status, Product, Percent and Type
are predefined visible sorts. We map the assert action to a transition rule,
Assert : H Client Product → H . Given a client C and a product P, the ef-
fective condition for this transition rule is defined by the signature c-Assert
: H Client Product → Bool and the equation c-Assert(H,C, P ) = (client-
status(H,C) = premium) ∧(product-type(H,P ) = regular).

Now for each pair of constants ci and pi such that there exists a system state u
that makes c-Assert(u,ci,pi) = true, we define a new subsort hcipi ≤ H . Finally
for each such subsort we define a transition rule, ASSERTi : hcipi → H , such
that ∀u ∈ hcipi we have; Asserti(u) = Assert(u, ci, pi). These transition rules
can only be applied in states u ∈ hcipi , and in those states they are the only
applicable transitions. So basically in an OTS containing only these transition
rules we are enforcing the application of the desired transitions.

Following definition 2 we define the OTS S′ =< O′, I ′, T ′ > that corresponds
to the production rule as follows:

- O′ = { client-status, product-type, discount }
- I’ the set of initial states
- T ′ = {Asserti | such that hcipi ≤ H, }

Table 1. Observers of an OTS specifying a client discount system

Observer Signature Informal Definition

client-status H Client → Status returns the status of the client,
{premium,¬premium}

product-type H Product → Type returns the type of the product,
{regular,¬regular}

discount H Client Product → Percent returns the discount the client has
on a product
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In languages that implement OTS specifications definition 2 can not be easily
applied (possible infinity of sub-sorts). For this reason we will present a specifi-
cational approach to the semantics of production rules and prove that the two
OTSs, S and S′ defining the state spaces Y and Y ′ respectively, are behaviorally
equivalent1 [15].

In an OTS, a state is a kind of black box. This means that each state is
characterized only by the observable values returned by the observers o ∈ O.
As a result, the effect of a transition rule (or a change of the state in general)
can be characterized by the values returned by these observers. Now assuming
a set of production rules of the form if Ci do Ai, with i ∈ {1, ..., N}, we would
ideally wish to correspond action Ai to a transition rule τi with an effective
condition Ci. As we argued before it is not possible to enforce the application of
a transition rule in an OTS. On the other hand it is possible to have conditional
observations. So for an arbitrary state u ∈ Y we have that after the application
of the transition rule τi, o1(τi(u, d1, ..., dn), v1, ..., vk) = v1 if Ci(u, d1, ..., dn).
These observations, led to the following definition.

Definition 3. We define an OTS S =< O, I, T > from a set of production rules
if Ci do Ai, with i ∈ {1, ..., N} as:

- T = {read}, i.e. the only transition rule is read : H → H, a single transition
with no input.

- I is a set of initial states, I ⊆ Y .
- O = {o1, ..., ok} a finite set of observers. Each observer oi : HVi1 ...Vin

Di1 ...Dik → H satisfies the following equations for an arbitary system state
u:
oi(read(u), vii , ..., vin , di1 , ..., dik) = v1 if C1(u, di1 , ..., dik )
oi(read(u), vii , ..., vin , di1 , ..., dik) = v2 if C2(u, di1 , ..., dik )
...
oi(read(u), vii , ..., vin , di1 , ..., dik) = vN if CN (u, di1 , ..., dik)

Also ∀di1 , ..., dik , d′i1 , ..., d′ik we have that ∀oi ∈ O, u ∈ I oi(u, vii , ..., vin ,
di1 , ..., dik) = oi(u, vii , ..., vin , d

′
i1
, ..., d′ik). This means that initially the values

returned by the observers are only depended on the visible sorts vii , ..., vin and
not on the extra arguments di1 , ..., dik that are added to allow us to reason
about the effective conditions of the transitions. Finally,
oi(read(u), vii , ..., vin , di1 , ..., dik ) = oi(u, vii , ..., vin , di1 , ..., dik)
if ¬(C1(u, di1 , ..., dik) ∨ ... ∨ CN (u, di1 , ..., dik).

The intuition behind the previous definition is that we have a system that has
one transition only. This transition basically checks to see if any of the conditions
defined by the production rules are met and if so it automatically changes the

1 We will show that if S and S′ have the same set of initial states and the same set
of observers O then for u ∈ Y and u′ ∈ Y ′ such that ∀o ∈ O, o(u, y1, . . . yn) =
o(u′, y1, . . . , yn) applying a transition rule τ of S and τ ′ of S′ will result in states
τ (u), τ ′(u′) such that o(τ (u), y1, . . . , yn) = o(τ ′(u′), y1, . . . , yn) ∀o ∈ O.
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values returned by the observers to those we would expect if the corresponding
to the condition action was applied.

Proposition 1. Two OTSs defined from a set of production rules R, using defi-
nitions 2 and 3 that have the same set of initial states are behaviorally equivalent,
according to observational equivalence.

Proof. The proof can be found at http://cafeobjntua.wordpress.com/

3.2 Event Condition Action (ECA) Rules and OTSs

Event Condition Action rules (ECA) are one of the most commonly used cate-
gories of reactive rules. Their syntax is: on Event if Condition do Action, where
event denotes an explicit action that changes the state of the system, and action
denotes a change in the state of the system that is caused as a reaction to the
event, if the condition part of the rule holds.

Definition 4. In OTS notation the concept of an ECA-rule, r = on Ei if Ci do
Ai, can be transferred naturally. Suppose transition rules τ : S D1 . . .Dn → S
and τ ′ : S D′

1 . . . D
′
k → S, that are under the effective conditions c−τ and

c−τ ′ respectively. We assume that the first rule specifies the state change due
to Ei and the second rule specifies the state change due to Ai. We also as-
sume that c−τ ′ corresponds to Ci. We map r to a new transition rule in the
OTS r : SD1 . . .DnD

′
1 . . . D

′
k → S. Such that for an arbitrary state u and for

all observers o that change their returned value when τ ′ is applied we have: if
o(τ ′(u, d′1, . . . , d′k), v1, . . . , vm) = vo when c−τ ′(u, d′1, . . . , d′k), then o(r(u, d1, . . . ,
dn, d

′
1, . . . , d

′
k) v1, . . . , vm) = vo when c−τ ′(τ(u, d1, . . . , dn), d′1, . . . , d

′
k) and c−τ(u

, d1 , , dn). For all observers o’ whose observations remain unaffected by the
transition rule τ ′ we define; if o′(τ(u, d1, , dn), v′1, , v

′
q) = v′o then o′(r(u, d1, . . . ,

dn, d
′
1, . . . , d

′
k) v1, . . . , vm) = v′o if c−τ ′(τ(u, d1, . . . , dn), d′1, . . . , d

′
k) and c−τ(u, d1,

. . . , dn). This transition rule r, basically defines the sequential application of
transition rules τ and τ ′.

Example 2. As an example assume the following ECA rule: ”On receiving pre-
mium notification from marketing and if regular derivable do send discount to
customer” [2]. We identify the following components in that rule: The event ”re-
ceiving premium notification from marketing ”, the condition ”regular derivable
” and the action ”send discount to customer”. By corresponding the event and
action to transitions and using the appropriate observers we can define an OTS
S as shown on tables 2 and 3.

According to definition 4, we can use the previous OTS to define an OTS S′ =
〈O′, T ′, I ′〉 that models the ECA rule as:

- I ′ = I, where I is the set of initial states of S
- O′ = O, where O = {customer − type, discount, product− type}
- T ′ = {t}, where t : S SenderID ClientID ProductID → S, represents the
sequential application of the transitions receive − premium− notification
and send− discount.
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The result of applying t to an arbitary system state S is defined by the following
three equations:

1. discount(t(S, I1, C1, P1)), P2, C2) = true if c-receive-premium-notification
(S,I1,C1) ∧ product− type(receive-premium-notification (S, I1, C1), P1)) =
regular ∧ (C1 = C2) ∧ (P1 = P2)

2. customer-type(t(S,I1,C1,P1),C2) = customer-type(receive-premium- notifi-
cation((S,I1,C1),C2)

3. product-type(t(S,I1,C1,P1),P2) = product-type(S,P2)

In the previous equations I1 is a variable denoting an arbitrary sender id, C1,
C2 are variables denoting arbitrary client ids and finally P1, P2 are variables
denoting arbitrary product ids.

Note that on the above definition we define a transition rule that contains,
on the effective condition, a reference to a successor state of the arbitrary sys-
tem state u, namely τ(u, d1, . . . , dn). This approach while providing clear and
intuitively straight semantics for ECA rules cannot be applied to the algebraic
specification languages that implement OTSs. The reason for this is that it is
not permitted to have a transition rule on the right hand side of an equation
defining another transition rule. This guarantees the termination of the rewrit-
ing procedure that is used to create proofs with such languages. So once again
we will define another (semantically equivalent) model for the ECA rules that is
more specification orientated than intuitively straight forward. We wish to have
transitions (the events) that occur from an outside source to the system like the
typical transitions of an OTS, but at the same time we require for our system
to react to these events if some conditions hold. We try to achieve this double
goal by allowing the systems refresh transition (read) that we defined for the
production rules to be parameterized. Also we modify the OTS, with a memory
observer, so that it remembers if in the previous state an event occurred or not.
The parameterization allows us to simulate the execution of events, while the
memory allows us to decide if the OTS must react to this refresh or treat it as
an incoming event.

Assume a finite set of ECA-rules {ri = on Ei if Ci do Ai |i ∈ {1, . . . , n ∈
N}} and without harm of generality assume that for i �= j;Ei, Ai �= Ej , Aj

respectively. Also assume that for these events and actions there exist predefined
transition rules in an OTS say S and that the visible sorts D1, . . . , Dl were
required for their definition.

Table 2. Transitions of an OTS specifying a notification client discount system

Transitions Signature Informal Definition

receive-
premium-
notification

S SenderIDClientID → S transition modeling that a premium
notification for ClientID has been
sent by SenderID

send-discount S ProductIDClientID → S transition that models that a dis-
cound for ClientID on ProductID is
granted.
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Table 3. Observers of an OTS specifying a notification client discount system

Observers Signature Informal Definition

customer-type S ClientID → Status observer that returns the status of
the given client

discount S ProductIDClientID → Bool returns true (false) if the customer
has (no) discount on the product

product-type S ProductID → Type returns the type of the product
(regular or not)

Definition 5. Now we define a new OTS modeling these rules, S ′=<O ′, I ′,T ′>
where:

- O′ = O ∪ {memory}. Memory is a special observer that remembers if an
event has occurred in a state and what that event was. Since the set of rules
is finite we have a finite set of events. We can now define the observer
memory : S D1 . . .Dl → {1, . . . , n ∈ N}.

- T ′ = {read}. Where read : S {1, . . . , n ∈ N} → S, a single parameterized
transition function. This according to the value of the index n ∈ N models the
transition that corresponds to event En. For an arbitrary system state u and
i ∈ {1, . . . , n ∈ N} we define that ∀o ∈ O: o(read(u, i), d1, . . . , dl, v1, . . . , vq) =
vEi if c−τ

i
(u, d1, . . . , dl)∧(memory(u, d1, . . . , dl) = null). Here we state that

o will return the same value as it would in S, when the transition (event) Ei
had occured successfully, if the memory is empty. The memory is empty at
the initial states and after the occurence of an action.
Now in the case where the memory is not empty we specify that this triggers
a reaction from the OTS with the following equation: o(read(u, i), d1, . . . , dl,
v1, . . . , vq) = vAi if c−τAi(u, d1, . . . , dl) ∧(memory(u, d1, . . . , dl) = i). Here
we state that o will return the same value as it would in S, when the transition
(action) Ai had occured successfully, if the memory contains the index i (i.e.
in the previous state of S we had an occurrence of the event i).

* I ′ = I

Revisiting example 2 we can define the OTS S′ = 〈O′, I ′, T ′〉, based on definition
5, where:

- O′ = {customer− type, discount, product− type,memory}
- T ′ = {read}
- I ′ = I

Since in this example we have one event only, we map it to index 1. So for
an arbitary system state S the effect of read(S,1) on S is defined by the values
returned by the observers given in the following equations:

– customer-type(read(S,1),C1) = premium if c-receive-premium-notification(S)
∧ memory(S) = null

– memory(read(S,1)) = 1 if memory(S) = null
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– discount(read(S,1), P1, C1) = true if product-type(S,C1) = regular ∧ mem-
ory(S) = 1 and

– memory(read(S,1)) = null if memory(S) �= null

It is important to mention that in the case of multiple ECA rules, the semantics
of events is non-deterministic, i.e. in an arbitrary state arbitrary events can be
applied. On the other hand, actions are translated to deterministic behaviour.

3.3 Complex Events and OTSs

In this section we will attempt to define the semantics of a complex event algebra
as an algebra for a (timed) OTS. We chose the event algebra of [5] for reference.
We will define the semantics for some standard event algebra operators. In order
to do this however we must first introduce the notion of an observer group in a
(timed) OTS.

Definition 6. Assuming a (timed) OTS S, we define that the transition τ ∈ T
belongs to the Observer Group og = {o1, , on} ⊆ O iff ∀o ∈ O \ og, o(τ(u, d1, , dn),
v1, . . . , vn)= o(u, v1, . . . , vn).

Now assume that in our OTS the semantics of primitive events are those of
transitions, meaning that each primitive event A, is mapped to a transition rule
in the OTS. The proposed event algebra of [5] consists of the following 5 com-
plex event operators; disjunction, conjunction, negation, sequence and temporal
restriction . In the following definition we specify the semantics of these operators
in the OTS framework inductively.

Definition 7. Each transition rule that denotes a primitive event is a complex
event. Assuming complex events A and B with effective conditions cA and cB
respectively we define the following:

The disjunction transition rule A ∨B : S DA1 . . . DAnDB1 . . . DBm → S, with
effective condition cA∨cB. Where ∀o ∈ O, o(A∨B(u, dA1 , . . . , dAn , dB1 , . . . , dBm),
vo1 , . . . , vok) = o(A(u, dA1 . . . dAn), vo1 , . . . , vok) if cA or o(A∨B(u, dA1 , . . . , dAn

dB1 , . . . , dBm), vo1 , . . . , vok) = o(B(u, dB1 . . . dBn), vo1 , . . . , vok) if cB . Meaning
that either event A happens or event B, but not both.

The sequence transition A;B : SDA1 . . .DAnDB1 . . . DBm → S as the composi-
tion of transitions A and B. Such that ∀o ∈ O o(A;B(u, dA1 . . . dAn dB1 . . . dBm),
vo1 , . . . , vok) = o(A(B(u, dA1 . . . dAn) , dB1) . . . dBm) ,vo1 , . . . , vok). With effective
condition cA;B = cB(S)∧ cA(S

′), where S’ is the successor state of S when transi-
tion B is applied to it.

The conjuction transition rule A+B, denoting that both events occur. If the
events occur simultaneously then for the system to be able to observe them they
have to belong to different observer groups. So we define A+B : S DA1 . . . DAnDB1

. . . DBm → S, such that ∀o ∈ ogA; o(A+B(u, dA1 . . . dAn dB1 . . . dBm), vo1 , . . . , vok)
= o(A(u, dA1 . . . dAn), vo1 , . . . , vok) and ∀o ∈ ogB; o(A + B(u, dA1 . . . dAn dB1 . . .
dBm),vo1 , . . . , vok) = o(B(u, dB1 . . . dBn), vo1 , . . . , vok). Where ogA and ogB are
the observer groups of transitions A and B respectively. Note that ogA ∩ ogB = ∅.
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If the events do not occur simultaneously then A+B, B+A are equivalent to the
sequential complex events A;B and B;A respectively.

The negation transition A-B that denotes the state where there is an occur-
rence of event A while event B does not occur. Occurrence of an event A denotes
that the observers effected by transition A have the same values as when A is
applied to an arbitrary state. In this case we wish to define a new transition rule
stating that while all the observers in the observer group of A return the same
values as those returned by applying A to an arbitrary state it is not possible
for event B to occur. Since we are in a Timed OTS (TOTS) we have two asso-
ciated observers, lτ and uτ for each transition τ denoting the lower and upper
time bound of the transition rule respectively. So it suffices to define A − B :
S DA1 . . . DAn → S such that ∀o ∈ O, o(A − B(u, dA1 . . . dAn), vo1 , . . . , vok)
= o(A(u, dA1 . . . dAn), vo1 , . . . , vok) ∧ lB(A−B(u, dA1 . . . dAn)) = ∞.

Finally, we define temporal restrictions, i.e. an occurrence of an event A
shorter than τ − time units. In the TOTS framework the effective condition
of transitions tick basically forces the time to stop advancing if it will sur-
pass the upper bound of any transition rule. So we define the complex event
A−time : SDA1 . . . DAnR

+ → S such as ∀o ∈ ogA, o(A−time(u, dA1 . . . dAn , τ),
vo1 , . . . , vok) = o(A(u, dA1 . . . dAn) , vo1 , . . . , vok) under the same effective condi-
tion as transition A. Also for all other primitive or complex events τ that belong
to the same observer group as A, we define that lτ (A − time(u, dA1dAn , τ))=
now(A − time(u, dA1 . . . dAn , τ)) ∧ uτ (A− time(u, dA1 . . . dAn , τ)) = now(A −
time(u, dA1 . . . dAn , τ))+τ . Through the second half of the last predicate we make
sure that A will no longer occur after τ-time units, since the clock will be stopped
until a transition of the same observer group as A is applied successfully.

3.4 Knowledge Representation (KR) Rules and OTSs

Knowledge representation focuses on the inferences that can be made from the
fact that certain events are known to have occurred or are planned to happen
in future. Among the KR formalisms, are the event calculus [6], the situation
calculus [7], various action languages and event logics. In this paper we will focus
on:

– Situation Calculus (SC)
– Event Calculus (EC)

In SC approach we assume a set of properties of interest for the system, say
{P1, . . . Pn}. Now assuming an arbitary system state S and an action of the
system we define that if action A occurs in situation S a new situation results
(result(A,S)). In (result(A,S)) property P ∈ {P1, . . . Pn} will be true (false) if
action A in state S initiates (terminates) P.

This can be defined as follows :

P : true → A initiates P in S
P : false → A terminates P in S
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Here, with SC we mean the original version of McCarthy [7] and not of R. Reiter,
i.e. a situation is a state or a snapshot rather than a sequence of actions.

Definition 8. The formalization of such a system in the OTS approach can be
done using the OTS S = 〈O, I, T 〉where:
- T = ∪{Ai} a finite set of transitions that correspond to the finite set of
actions defined by the rules. Each such transition is defined as Ai : SysD1 . . .
Dki → Sys

- I a set of initial states
- O is the set of observers {initiated, terminated} ∪ {Pi}. Where initiated :
SysLabel1Label2 → Bool, terminated : SysLabel1 Label2 → Bool and
Pi ∈ {P1, . . . Pn} with Pi : SysD1i . . . Dni → Bool. In the previous we as-
sume the predefined visible sorts Label1 and Lable2 that denote the actions of
the system and the properties of interest respectively. The first observer re-
turns true when action A initiates property P and the second observer returns
true when action A terminates property P. This is formalized by the following
equations; Pj(Ak(S, v1i , . . . , vni)) = true if c−Ak(S) ∧ initiated(S, pj, a).
Also Pj(Ak(S, v1i , . . . , vni)) = false if c−Ak(S) ∧ terminated(S, pj, a).
Where, the constants a, pj denote an arbitrary action and a property j re-
spectively, while v1i . . . vni denote arbitrary visible sorts values needed for the
definition of the transitions.

In EC a model of change is defined in which events happen at time points and
initiate and/or terminate time intervals over which certain properties of the
world hold. The basic idea is to state that properties are true at particular time
points if they have been initiated by an event at some earlier time point and not
terminated by another in the meantime.

Definition 9. This notion can be formalized in the OTS approach as well using
a TOTS S =< O, I, T ∪ {tickr} > defined as follows.

- T is the set of transitions such that T = ∪{Ai} (a finite set of transitions
that correspond to the finite set of actions defined by the rules). Each such
transition is defined as Ai : Sys → Sys and {tickr} the usual tick operators
defined in the generic TOTS.

- I is a set of initial states
- O the set of observers, where O = {initiated, terminated, now}∪{Pi}, with
initiated, terminated and Pi as in definition 8. Also ”now” is a special ob-
server whose signature is now : S → R+ and denotes the systems master
clock. The equations defining the observers in an arbitary state are (adopting
the same notation as definition 8): Pj(Ak(S, v1i , . . . , vni)) = true if ∃S′, Am

such that initiated(S′, pj, am) = true ∧ now(S′) ≤ now(S)) ∨ �S′, Am such
that terminated(S′, pj , am) = true ∧ now(S′) ≤ now(S)). For the symmet-
rical observer (terminated) we have the equations:
Pj(Ak(S)) = false if �S′′, Am such that (initiated(S′′, pj , am) = true ∧
now(S′′) ≤ now(S) ) ∨ ∃S′′, Am such that (terminated(S′′, pj, am) = true
∧ now(S′′) ≤ now(S))
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In languages implementing OTSs quantifiers need to be treated carefully. This is
due to the fact that these languages usually relay on equational logic. There, the
∀ quantifier can be handled by free variables, i.e. each equation E(x) containing
an unbound variable x is semantically equivalent to ∀xE(x). On the other hand
the ∃ quantifier is not straightforwardly supported. However, each equation con-
taining an ∃ quantifier can be transformed into its equivalent Skolem normal
form without such quantifiers.

Definition 10. The equations defining the observers in the above definition, can
be replaced with the following for a language that implements an OTS.

- Pj(Ak(S, v1i , . . . , vni)) = true if initiated(fS′(S), pj , fam(S)) = true ∧ now
(fS′(S)) ≤ now(S)) ∨ terminated(fS′(S), pj , fam(S)) = true ∧ now(fS′(S))
≤ now(S)).

- Pj(Ak(S)) = false if (initiated(fS′(S), pj , fam(S)) = true ∧ now(fS′(S))
≤ now(S) ) ∨ (terminated(fS′(S), pj , fam(S)) = true ∧ now(fS′ (S)) ≤
now(S)).

Where fS′ and fam are the Skolemization functions that map each hidden sort
to a hidden sort and each hidden sort to a label 2, respectively.

The formalisation for EC presented here corresponds to Simplified Event Calcu-
lus (SEC), i.e. we employ time points instead of time periods. A similar approach
however could be adopted for the original EC as well.

4 Conclusions and Future Work

We presented an OTS semantics for production (PR), event condition action
(ECA) and knowledge representation rules (KR) as well as for complex event
processing. Our goal is to have a unifying theory and appropriate tool support
for it, built using algebraic specification languages (like CafeOBJ [11] or Maude
[13]). In the future we expect to extend this work by mapping Reaction RuleML
to one of the above languages and develop tools that automate this process.
Verification support for Reaction RuleML rule bases will lead to the creation of
online libraries and the definition of operators for combining these rules in a way
that preserves the desired properties.

Also the formal proofs of the verified properties are executable [12] and could
be used as trust credentials for the rule bases agents use, thus allowing the
creation of new trust policies and models. Finally, verification techniques could
be applied to rule engines and prove the correctness of the implementation of
the rules.

Acknowledgments. The authors would like to thank Prof. Harold Boley for
his valuable ideas and comments. Without him, this work would not have been
possible.
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Abstract. Rules are definitely among the main kinds of knowledge rep-
resentation in Artificial Intelligence. In recent years, there has been much
discussion about production rules and logic programming to understand
whether the two paradigms could be joined or, alternatively, which was
the better. Conversely, the idea to program a production system with
logic without actually relying on logic programming was proposed.

In this paper we present a software component that implements a
typical logic formalism, the Event Calculus within a production rules
system. This component allows to perform deductive reasoning tasks
(temporal projection or prediction, such as monitoring) and thanks to
some technical choices, it proves to be quite efficient. In addition, thanks
to its strong modular nature, it can adapt to the domain’s requirements
and complement other forms of reasoning at the same time.

We also present some preliminary results on tests that we have con-
ducted to show that our system based on a Java rules engine is almost
as efficient as an equivalent logic program running on the fastest C++
Prolog interpreter. Furthermore we show how our framework can be used
to effectively observe the evolving state of our use case – a Service Ori-
ented Architecture server – in a way that qualifies as Complex Event
Processing.

Keywords: Complex Event Processing, Event Calculus, Production
Rules, Rule-based Reasoning.

1 Introduction and Motivations

“Rules” are considered the basic form for representing the knowledge in many
areas of Artificial Intelligence. Among the possible different types of rules, the
production rules and the logic programs are probably the most common. Despite
both of them are widely used, there is a great deal of confusion and disagreement
about the different kinds of rules and their mutual relationship [1].

The production systems’ rules have the form if conditions then actions
and appears to be similar to conditionals in logic. The most popular textbook
on Artificial Intelligence [2, p. 286], in fact, considers production rules as mere
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conditionals for forward reasoning. One of the main textbooks on Cognitive
Science [3, p. 43], however, asserts that “rules are if-then structures” that, despite
being “very similar to the conditionals”, “they have different representational
and computational properties”. With respect to Prolog, it is presented as “a
programming language that uses logic representations and deductive techniques”
[4], but it is also included “among the production systems widely used in cognitive
simulations” [3].

Logic systems like Prolog, in fact, are backward-chaining tools: starting from
the goal, they apply logic clauses by inferring heads when bodies unify with
current goal until facts are reached. Such process, known as Selective Linear
Definite clause resolution with Negation as Failure (SLDNF ), is performed by
investigating a “derivation” for the goal at a time, possibly backtracking to try
others when it does not lead to any solution. Production rule systems, instead,
are typically forward-chaining tools: by considering the facts that are currently
known, they apply the consequences of those rules whose premises match the
facts. Such consequences may result in new knowledge that could trigger the
rules again. Thus, “threads of reasoning” here are built in the reversed order
with respect to “derivations”, but they are produced all together in parallel.
With respect to the case of the Event Calculus (EC ), for example, the latter
aspect is particularly successful when the status of many fluents is queried at
the same time as it typically happens with Complex Events Processing (CEP).
As a drawback, those systems are usually quite complex and some optimisations
may make their semantics a bit loose1.

With these premises, it is easy to see why these two worlds were kept sepa-
rate for a long time. Recently, however, the idea of using systems that are not
strictly logical to perform logic reasoning has been proposed. The logical systems
have the advantage of being able to prove formal properties of the reasoning (a
goal that is still possible with non-logical tools like production rules systems
if they are programmed in a proper “logical” manner [5]) but often they lack
other properties. According to such perspective, in this paper we present our
implementation of the EC – a framework that has been typically associated to
logic programming – embedded in a system to assist the processing of complex
events by means of production rules. Such a result is not trivial because the EC
machinery must be fast enough in order to blend in with the CEP philosophy.
Moreover, the machinery must also be self-contained and independent not to
clash with any other reasoning that is going on the same shared domain data.

The remainder of this work is organised as follows: in Section 2 we introduce
the EC and some of its variants, in Section 3 we present some desiderata for our
rule-based implementation, with a deep discussion on its architectural outline
and the results of some performance tests, Section 4 describes our use case – a
Service Oriented Architecture server – and shows how we have tackled it and,
finally, Section 5 draws some conclusions and outlines the future works.

1 Consider for example Conflict Resolution – the process that decides which activated
rules are executed first – for which it is difficult to demonstrate its non-determinism.



A Rule-Based Calculus and Processing of Complex Events 153

Table 1. The Event Calculus ontology

Axiom Meaning

holdsAt(F, T ) Fluent F holds at time T
initially(F ) Fluent F holds from the initial time
happens(E,T ) Event E happens at time T
initiates(E,F, T ) Event E initiates fluent F at time T
terminates(E,F, T ) Event E terminates fluent F at time T
clipped(F,T1, T2) Fluent F is terminated by an event in (T1, T2)

2 The Event Calculus

The Event Calculus (EC ) is a logic-based formalism for representing and rea-
soning about actions and their effects. It was introduced by Kowalski and Sergot
in 1986 [6] and later extended by Shanahan and Miller in the 90’s [7]. As for
other similar languages (the most prominent of which is probably the Situation
Calculus (SC ) [8]), its basic elements are the events and the fluents. An event is
any thing that occurs on a domain at any given time, that causes at least a par-
tial change of its state. A fluent instead is any measurable aspect of the domain
that is subject to changes over time (the set of the values of a domain’s fluents
is therefore its state). Together they are used to describe what is happening over
time, their effects and, ultimately, how a domain evolves.

The essence itself of the EC is contained in the following sentence that de-
scribes its main operating principle: a fluent is true in a given time instant t
iff it was initially true or it has been made true in the past and has not been
made false in the meantime. Most implementations of the EC were defined in
terms of the Horn subset of classical logic augmented with negation as failure to
make them straightforwardly executable as Prolog programs. Thus, the above
principle translates into the following clauses:

holdsAt(F, T ) ←
initially(F ), T0 < T,¬clipped(F, T0, T ). (1)

holdsAt(F, T ) ←
happens(Ei, Ti), initiates(Ei, F ), Ti < T,¬clipped(F, Ti, T ). (2)

clipped(F, Ts, Tf) ←
∃E, T : [happens(E, T ), terminates(E, F ), Ts < T, T < Tf ]. (3)

Notice that this core axiom needs to be supplemented by some auxiliary domain-
dependent axioms to provide enough information to complete the domain model.
The Table 1 contains the list of all the predicates that the user may safely use to
model a domain and interpret the results without tampering with the calculus
itself and their meaning. The Fig. 1, instead, suggests their purpose: initiates/3
and terminates/3 (what events do) express behavioural information, initially/1
and happens/2 (what happens when) which together take the name of narrative
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Fig. 1. Operating diagram of the Event Calculus for deductive tasks

or trace define temporal information and finally holdsAt/2 and clipped/3 (what’s
true when) for the core axiom. Notice that an additional < axiom is required to
determine temporal precedence: its definition, however, is not directly relevant,
provided that it satisfies some integrity constraints such as transitivity and anti-
-symmetry [9]. Consider the following example to see how the EC can control
the evolution of a domain.

Example. The light switch scenery is a classic example in EC research literature.
A fluent switchOn reflects the status of a switch anytime it is toggled by a turn
off or a turn on. Similarly, a fluent pwrAvail reveals whether power is available
after a power failure or a power restore. Finally, a fluent lightOn becomes true
anytime switchOn and pwrAvail are contextually true (or false in any other
case). If the power is initially available and the switch is turned off, each fluent’s
status may be determined when new events happen:

initially(pwrAvail).
initiates(turnOn, switchOn, T ) ← happens(turnOn, T ).
terminates(turnOff, switchOn, T ) ← happens(turnOff, T ).
initiates(pwrRest, pwrAvail, T ) ← happens(pwrRest, T ).
terminates(pwrFail, pwrAvail, T ) ← happens(pwrFail, T ).
initiates(turnOn, lightOn, T ) ← happens(turnOn, T ), holdsAt(pwrAvail, T ).
terminates(turnOff, lightOn, T ) ← happens(turnOff, T ).
initiates(pwrRest, lightOn, T ) ← happens(pwrRest, T ), holdsAt(switchOn, T ).
terminates(pwrFail, lightOn, T ) ← happens(pwrFail, T ).

The EC has been also defined as “a logical mechanism that infers what’s true
when given what happens when and what actions do” [10]2 (see Fig. 1).
It is not difficult to see, however, that it can provide other styles of reasoning
just by reversing the direction of some arrows. We have deductive reasoning,
for example, if we use “what happens when” and “what events do” to determine
“what’s true when”; it includes temporal projection or prediction to determine the
outcome of a known sequence of actions. The abductive reasoning, instead,
exploits “what events do” and “what’s true when” to find out “what happens
when”; referring to temporal explanation or postdiction, certain kinds of diagnosis
2 The Author explicitly states that he uses the terms action and event interchangeably.
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and planning, it is used to derive sequences of actions that lead to a desired
state. Finally, the inductive reasoning focuses on “what’s true when” and “what
happens when” to return “what events do”; it can perform certain kind of learning,
scientific discovery and theory formation and, generally, it supplies a set of rules
or a theory on the effects of actions that accounts for observed data. The tool
presented here, of course, can only perform deductive reasoning, however by
introducing the concept of desired future state and by properly expanding the
ruleset, it may support abductive reasoning as well. By opportunely partitioning
the knowledge base, in fact, the two reasoning styles may coexist. Such approach
has been already discussed in [5] and it will be object of future work.

According to [10,9,11], the most common and basic variant of the EC is prob-
ably the Simple EC (SEC ) [12], so called because it is based on time instants
rather than time intervals (as instead the original formulation was [6]) and there-
fore is less complicated. Numerous extensions to SEC have been proposed in
order to provide additional features such as, for example, the ability of properly
handling concurrent events and continuous changes that were introduced by the
Extended EC (EEC ) (sometimes also indicated as Basic EC by some authors)
[10,13]. This variant, for example, is particularly appealing for our use case be-
cause it provides predicates to handle conflicting events that may happen in such
a crowded domain with poor temporal granularity. These extensions, however,
suffer from the same drawback: anytime the notification of a domain’s event is
received, the EC computes the new result from scratch.

Instead, according to the common-sense law of inertia [14], small updates on
input (like the happening of an event) should cause marginal alterations on out-
put. This suggests that an incremental algorithm for the EC will ensure better
performance. Such a limitation has been pointed out for the first time and ad-
dressed by Chittaro and Montanari with their proposal of a Cached EC (CEC )
[15]. As the name suggests, all the fluent’s history is tucked away so that all the
subsequent updates are simply added on top of it. Later, a simplified and more
efficient version of the CEC called Reactive EC (REC) was proposed [16]. This
variant is ideal for all those domains where the notifications of the events’ occur-
rences are received in proper chronological order. Both CEC and REC introduce
a new predicate mvi(F, [T1, T2]) (not included in Table 1 and in what’s true when
side of Fig. 1) which models the maximal validity intervals during which fluents
uninterruptedly hold. Notice however that, despite being generally faster than
any standard EC variant, their implementations relies on the assert/1 and re-
tract/1 predicates which have no underlying declarative semantics in Prolog and
cannot prove formal properties of the calculus. This is not necessarily a problem
in almost any context, but it may be a deal breaker in a few cases.

For all these reasons, the EC is still one of the most used formalisms to rea-
son about the effects on a domain over time of the events, even after 25 years
from its introduction. It has been exploited, for example, in a variety of domains,
such as cognitive robotics [17], planning [18], service interaction [19] and compo-
sition [20], active databases [21], workflow modelling [22] and legal reasoning [23].
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Moreover, in addition to the original formulation [6,12], the EC has been proposed
in many other variants and extensions, based on both logics [9,10,13,11,15,16] and
other programming paradigms [23,1,5]. Nowadays networks, computers and com-
munications are so large and pervasive that their complexity is typically tackled by
decomposing them in smaller, possibly distributed entities. With respect to deduc-
tive reasoning – the reasoning style that will be addressed in the remainder of this
paper, the distributed software approach is very suitable to be modelled in terms of
EC. Examples of this approach are Business Process Management [24], (Comput-
erised)Clinical Guidelines [25], Service-OrientedComputing [26] and Multi-Agent
Systems [27].

3 A Rule-Based Incremental Event Calculus

In order to check the evolving state of a running system and, ultimately, to per-
form real-time monitoring on it, it is appropriate to exploit a deductive reasoning
framework. As we have suggested in Section 2, the EC is one of the formalisms
that is widely considered to be among the best choices to which to resort for this
kind of tasks. As seen, most existing implementations rely on Prolog and usually
take only advantage of the more basic variants of the EC. The adoption of Pro-
log guarantees the provability of some formal property of the calculus but it is
typically detrimental for performances. This is not necessarily due the adopted
technological platform but rather on the way these tools were implemented on
top of that platform. They were probably built with the idea to prove the feasi-
bility of the calculus rather than to provide an efficient solution. Aspects like the
adoption of a basic variant or the retention of all the objects in memory become
a bottleneck for the reasoning especially for larger complex domains, and they
will be discussed with more details in Section 3.2.

Conversely, our implementation is based on Drools3 which is an efficient well-
known forward chaining rules engine based on the RETE algorithm [28]. More
properly, it is is an open source suite for the integration of knowledge modelling
and business logic composed by several modules. One of them, Drools Fusion, is
responsible for complex event processing (CEP) [29] and reasoning over tempo-
ral intervals [30]. This rule engine has a blackboard-like memory called Working
Memory (WM ) where facts (simple Java objects) about the domain are han-
dled. Some objects may even be declared as Fusion’s events, meaning that they
are automatically decorated with temporal information that is used to reason
about time. The engine also has a Production Memory (PM ) which contains the
conditional statements known as rules that implement the processes that govern
the domain. The rules are composed by a pattern and a set of actions : when
some facts match with a rule’s pattern, that rule is activated by those facts and
its actions are subsequently executed. The patterns may be composed of several
facts whose values may of course be compared using operators (boolean, rela-
tional, equivalence, temporal, etc.). The rules can obviously be fired in cascade to

3 http://www.jboss.org/drools

http://www.jboss.org/drools


A Rule-Based Calculus and Processing of Complex Events 157

declare Maintenance
@role( event ) @timestamp( start ) @duration( extent )
routine : boolean start : long extent : long

end

rule "CEP Rule Example "
when

Number( $value : longValue > 2h ) from accumulate (
Maintenance( routine == false , $extent : extent ) over window:time( 7d ),
sum( $extent )

)
then

log("Weekly limit for maintence exceeded : " + $value);
end

Fig. 2. A simple Drools Fusion theory detecting excessive weekly maintenance

shape deeper and more sophisticated reasonings. The temporal reasoning is ref-
ereed by a clock that maintains the notion of time and determines which events
pertain to a given time interval. This clock can be instantiated as a pseudo or
real-time clock depending on whether you want to control the flowing of time
during simulations or to build online reactive systems. The following example
aims to provide an insight of how to model domains in Drool and its potential.

Example. Consider the code in Fig. 2 which shows how a contractor might detect
violations on an agreement regulating unexpected maintenance. Each interven-
tion is represented by an instance of Maintenance: a Fusion’s event whose times
are automatically set when the object enters the WM and on job done (by an-
other agent who sets the extent according to the some Report that has not
been modelled into the example for sake of simplicity). The routine attribute
distinguishes habitual works from unexpected ones. The PM contains only a rule
which searches for unexpected interventions that occurred in the last weekly time
interval and accumulates their duration. If the final figure exceeds the two hours
threshold, the agreement is then infringed and a notification is flagged.

3.1 Architectural Outline of the Tool

Before starting to work on the implementation of our software component for
the deductive reasoning, we have identified some desiderata that we set as non-
functional requirements in order to obtain a more usable, robust and powerful
system. In particular, we were aiming to a module as efficient, generic but easily
customisable and independent as possible. Notice that, in regards of the latter
requirement, we expressly aimed to be complementary with other extensions
that we have already proposed such as the fuzzy semantic one [31] and the one
supporting expectations [32].

We have decided then to organise the concepts of EC into several groups:
some of them where freely available to the user to define domains, while others
were not. The idea to use this sort of layering – which is known as stratification
– was borrowed from other implementations where the most sensible data for
the calculus were hidden from the user not to let him directly interfere with
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Fig. 3. Stratification of EC axioms for a proper use of the machinery

Fig. 4. Architectural pattern adopted for the tool which shows what subsystem handles
the knowledge pertaining to each layer of the stratification

the reasoning mechanism itself. The terms pertaining to the red area in Fig. 3,
for example, are labelled as “private” because only the engine can use them to
represent the domain’s status. The green area, instead, contains all the terms that
can be safely used: this area has been split into two parts because some concepts
may be totally used as the user pleases (read and write access), while other
may be just referred (read-only access). In particular, the former are labelled
as “domain” and the latter – that together with the private ones provide the
core definitions for operating the EC machinery – as “public”. The terms in the
green area that are not in italics have been explicitly added to introduce Event
(implemented as a Drools Fusion’s event) and Fluent (a simple object holding
a Boolean status field and a reference to the last Event which had affected it)
as top-level concepts: users just have to extend to specify their domains. Notice
also how all these terms recall the concepts listed into Table 1 (plus mvi/2, as
seen in Section 2, and holdsFor/3 added for user’s convenience to refer to a
fluent holding uninterruptedly over a given time interval): in this case, however,
they are all WM’s facts rather than logical predicates.

From a structural viewpoint, our Java tool is organised according the architec-
tural pattern presented in Fig. 4. This pattern, which we have already exploited
a few times in similar works, consists of two cascading stages. The former one is
used to process part of the domain knowledge: the result of this preprocessing is
passed to the 2nd stage that actually provide the expected reasoning by coupling
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rule "Transforming rule for ’Initiates ’ objects "
when

Initiates(
$e: event , $ep: eventPtrn , $f: fluent , $fp: fluentPtrn , $c: context )

then
Helper h = Helper.getInstance(); // a wrapper to ease conversion
String r = h.transform($e, $ep, $f, $fp, $c);
h.insertRule(r);

end

rule "Resulting rule"
when

$e: TurnOn( $t: time )
$f: lightOn () // a query returning this fluent instance
holdsAt ( powerAvail(), $t )

then
insert(new Declip($e, $f, $t));

end

Fig. 5. The transformation rule that converts Initiates objects into rules that trigger
the EC core upon events’ occurrence

the transformed data with the remaining domain knowledge. Notice that some
complex domains may require additional cascading stages, moreover logically
distinct stages may practically coexist in the same WM4.

Fig. 4 also shows which component handles the distinct pieces of information
identified with stratification. The 1st stage provides declarations of the base
Event and Fluent: the user extends them to declare domain’s events and fluents;
such declarations are passed to the 2nd stage where the calculus is actually done.
The user has also to insert a few Initially, Initiates and Terminates objects
into the 1st stage’s WM to fully define the model5. The former kind of objects
tells the system which Fluent among those previously introduced initially holds:
this is trivially addressed by a transformation rule that inserts a Declip object
(see later) with time equals to 0 into the 2nd stage’s WM for the given Fluent.

The latter objects define the causal relationship between events and fluents’
values: each Initiates (Terminates), for example, tells the system that when
an Event of the given type happens at time t, then a Declip (Clip) object
for the given Fluent with the same timestamp t must be inserted into the
2nd stage’s WM, if the given context is satisfied. The context is usually a
combination of constraints that may imply, for example, a delay between the
event and the commutations of target fluent’s state or a given compound sta-
tus for a few some other fluents at a certain time. A couple of transforma-
tion rules converts these objects into rules that trigger on instances of domain’s
Events. These events are directly fed into the 2nd stage by some external “sensor”
agents. Last but not least, the 2nd stage also contains the declarations and rules

4 Nevertheless, the data can be kept separate in Drools by partitioning the WM with
entry points: this good practice allows not to mess with data when several reasoning
tasks are being performed at the same time.

5 It has been proven, in fact, that the EC may return incorrect results whether the
knowledge on the domain is incomplete [10].
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// Lite mode core rules
query holds( Fluent $f )

$f := Fluent( status == true )
end

rule "Clipping an Event"
when

$c: Clip( $e: event , $f: fluent )
$f := Fluent( status == true )
not Declip( fluent == $f,

$c before this )
then

modify($f) {
setEvent ($e),
setStatus(false);

}
end

// Full mode core rules
query holdsAt (Fluent $f, long $t)

MVI( fluent == $f, start < $t,
stop >= $t)

end

rule "Clipping a MVI"
when

$c: Clip( $f: fluent,
$s: start)

$i: MVI( fluent == $f,
start < $s, stop > $s)

then
modify($i) {

setStop ($s);
}

end

rule "Declipping a MVI"
when

$d: Declip( $f: fluent,
$s: start )

not MVI( fluent == $f,
start >= $s || stop >= $s)

then
insert(new MVI($f, $s,

Long.MAX_VALUE));
end
// ---------------------------------

Fig. 6. The core rules for Lite and Full modes (complementary rules are omitted)

(discussed later) that make the EC machinery itself. The transformation rule
for Initiates objects and the resulting rule for the object Initiates(TurnOn,
LightOn, holdsAt(PowerAvail, t))6 is presented as an example in Fig. 5.

Notice that declared Events and Fluents may contain fields to distinguish
between instances of the same kind across the domain (consider for example a
circuit with a single generator but multiple switches and lights). This approach
allows a more streamlined definition of the model but, as well as the context,
it would require a proper language and parser to cope with it. Since this is not
the goal of this work, we have decided to let the user express this information
by means of strings whose content must be well formed Drools statements, pat-
terns or queries. This sort of loose-typing technique, however, poses a consistency
threat since the user must be consistent in all definitions.

The core of the module consists of a set of rules that works on the aforemen-
tioned Clip or Declip facts to update a domain’s state. We have implemented
two modes of operations for it that more or less resemble the two incremental
EC variants seen in Section 2: REC and CEC. The user may choose the one
he prefers at the beginning of each working session, according to his needs. The
mode of operation that was inspired by REC has been named Lite because it
requires only a few computational resources and it is very efficient when it is
reasonable to assume that the events are notified to the system in the proper
temporal order. In addition, this mode of operation purges any superfluous in-
stance from memory upon applying its effects on the current state of the domain.
This implies that it has a really small memory footprint allowing the compu-
tation of longer traces, but it may be used only to reason about the current state

6 t implicitly refers to the timestamp of the TurnOn instance that will trigger the
resulting rule.
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of the domain. The other mode of operation, instead, is similar to CEC since
it exploits MVI objects to memorise the evolution over time of each Fluent’s
status. We called it Full mode because it does not flush any information from
the WM, it updates properly MVIs (even in case of delayed events) and it can
report the status of any Fluent in any point of domains’ history. Notice however
that the size of the largest problems that can be handled is limited by the amount
of available memory, as for many other implementations. The core rules for both
the Lite and Full modes of operations are reported in Fig. 6.

3.2 Experimental Evidence

In order to asses the efficiency of our solution, we have conducted some prelimi-
nary tests to identify the fastest Prolog counterpart to be used later as a term of
comparison. We chose the Example introduced in Section 2 as a test case and we
prepared a trace that contains as much as 600 events. This trace has been used
to build three narratives: in the first one, the events were presented in chrono-
logical order, in the second one in reverse chronological order and in the third
one were scrambled as if some events were notified with some delay7. Then we
conducted a quick survey on open source or freely available Prolog tools to asses
the system on which to run the CEC and REC experiments. We have identified
the following suites: B-Prolog, SWI-Prolog, tuProlog and YAP Prolog8.

On the ordered trace, REC clearly outperformed CEC since it was meant to do
so by design. In the opposite scenario, CEC was performing better than REC but
not so outstandingly as we had assumed before starting the tests. The third test
being the most realistic and balanced, we decided to discard the other two and
rely solely on its outcomes to carry on our further analysis. REC was generally
quite faster than CEC with all the interpreters, with B-Prolog and YAP Prolog
being the fastest. B-Prolog was actually even faster than YAP Prolog, but due
to its aggressive strategy on memory allocation, some experiments were not able
to complete for lack of memory. Thus we concluded to stick with YAP Prolog to
perform the comparison with both the modes present in our system.

The execution times required to play events singularly and cumulatively are
respectively presented in Fig. 7a and Fig. 7b. The Full and Lite mode appear
to have trends similar to CEC and REC, with the latter two being only slightly
faster. The Lite mode and REC are performing best and the Fig. 7b suggests
that they have similar performance in the long run, with the Lite mode possibly
becoming faster in larger problems. It appears, instead, that CEC is better on
small problems (with less than 300 events in case of domains with a similar
complexity as this one) but then the Full mode outperforms the other.

7 The delay was modelled by assuming that each event had the same probability of
being received in time or after from 1 to 5 following events and by shifting events
accordingly.

8 Respectively: http://www.probp.com/, http://www.swi-prolog.org/,
http://tuprolog.alice.unibo.it and http://www.dcc.fc.up.pt/~vsc/Yap/

http://www.probp.com/
http://www.swi-prolog.org/
http://tuprolog.alice.unibo.it
http://www.dcc.fc.up.pt/~vsc/Yap/
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(a) Single times. (b) Cumulative times.

(c) Memory footprint.

Fig. 7. Comparison benchmarks between CEC, REC, Full and Lite mode, carried out
with YAP Prolog 6.2 and Drools 5.3 on an Intel i5 @ 2,4 GHz with 4GB

With respect to memory usage of the two modes, there are mainly two prob-
lems. Notice that this should not be regarded as a criticism toward logical rules
in favour of production rule since both issues actually depends on implementa-
tion choices rather than the underlying technology. The first issue is of course
the adoption of EC variants that are not incremental that lead to frequent free-
ing and allocation of memory every time filled with almost the same data. The
other one is the retention strategy of objects in memory: many implementations
in fact were aimed to demonstrate the feasibility and correctness of the calculus
and later were used in contexts where, instead, other features were advisable.
By reducing the number of objects in a WM and by marking them as “garbage
collectible” soon after being processed, the memory footprint is sensibly reduced
and larger domains can be handled. Fig. 7c compares the trend in memory us-
age of the two modes only: given the high amount of objects involved and its
complete retentions strategy, Full modes shows a rough and hectic behaviour
while Lite mode shows a nicer, more predictable pattern. Please notice that
these results does not suggest that the Lite mode is always preferable to Full
because, as we explained in Section 3.1, they are meant to address different needs.
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To be honest, many real cases would require a third mode that is a compromise
between the other two: a Full mode with memory limited to the recent past (be
it a time window or a fixed cache of events). We managed to tackle this problem
by configuring the system in Full mode and by manually including one or more
rules (similar to the one in the example of Section 3) that clean the memory
from the objects that are no more needed or too old. In a near future we could
even promote such strategy to a new stand-alone mode.

4 Use Case: Observing a SOA Server

As a testbed suitable for both EC and CEP reasoning together, we focused on
the Service-Oriented Architectures (SOA) domain by observing the state of a
Web server. Instead of using a traditional software stack, we adopted a new
technology called Jolie that we think is mature enough and very promising.

Jolie9 is a full-fledged programming language and development platform based
upon the service-oriented programming paradigm, suitable to both the rapid pro-
totyping of new services or the composition of existing ones to deliver new func-
tionalities. It offers an easy to learn syntax, a formal theoretical semantics and a
strongly modular approach. Thanks to its extensible development API, Jolie is
suitable to make lightweight services, very complex SOA or bridge systems based
on different technologies or communication standards. Such a highly customis-
able is prone to be monitored to verify it is conformant to user’s requirements
and to adapt its future operations according to its past performances. Despite
this is definitely matter of future work, now we simply want to asses that we can
observe such a complex domain and process all its data.

The Jolie interpreter relies on a virtual machine which is similar to Java’s
and capable of both deploying new services on the fly and keeping track of each
working session and all their inner operations. We have modelled our EC knowl-
edge base accordingly: we extract the notification of initiation and termination of
each session and all the operations in it and we feed it to the deductive reasoner
as events; sessions and operations become fluents whose activity intervals have
to be determined. At the moment, additional information such as the amount
of free memory is extracted but it is not involved in any other computation.
The information processed in this way by the module EC is then forwarded to a
separated Jolie service that we have implemented to display the outcome of the
calculus. Fig. 8 contains a small excerpt of an execution trace processed by the
EC reasoner as displayed by this service. Finally we have prepared an additional
script service that orchestrates calls to the services deployed on the Jolie VM
in a repetitive pattern. We had evidence that the deductive EC implementation
managed to handle all the information originated by the Jolie interpreter dur-
ing a real(-istic) working session. We have to admit, however, that the services
deployed on the testing machine were trivial, all the interactions were local and
not too numerous. Such aspects will be investigated in the future.

9 http://www.jolie-lang.org/

http://www.jolie-lang.org/
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Fig. 8. The graphical output of the service that displays the outcome of the deductive
reasoning performed by the EC module when observing the first steps of a Jolie server:
starting and ending events for services and sessions are captured (cyan, top) and their
effects are reflected on their fluents (light orange, bottom)

5 Conclusions and Future Work

In this paper we have presented our rule based implementation of two incre-
mental EC variants especially suited to be used with other forms of reasoning
in a CEP context. To the best of our knowledge, this is the first realisation
of this kind. In addition, its strong modular attitude qualifies it to be used in
conjunction with other reasoning modules that are blossoming on our reference
development platform. In the future, we intend to continue this work and extend
it toward monitoring tasks with particular attention to the case of Web services
and elders’ movements to prevent falls. Other possible future research topics are
the support of additional EC variants like the EEC that might be of some help
in distributed and heterogeneous domains such as the SOA and augmenting the
current EC machinery with abductive and deductive reasoning.
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Abstract. In this paper, we extend our previous work on complex reaction in
rule-based logical agents. In particular, we introduce the possibility of defining
and exploiting complex preferences for choosing the course of action to under-
take in response to external events, also based upon a (simplified) form of modal
reasoning and on sequences of past events.

1 Introduction

In past work we developed DALI, a logic agent-oriented language that extends prolog
with reactive and proactive features [1,2,3,4] (cf. [5] for a comprehensive list of refer-
ences). DALI in fact is equipped with “event-condition-action” rules (ECA rules) for
defining the behavior of an agent in consequence of perception of external events. A
distinguished feature that makes DALI proactive and strongly event-oriented is the in-
ternal events, i.e., the programmer can indicate internal conditions to be interpreted as
events, to which a reaction can be defined. These conditions are checked automatically
at a certain frequency, and then treated exactly like external events. The DALI inter-
preter provides directives that allow a programmer to influence reactivity by indicating
at which frequency (if different from default one) events occurrence should be checked,
and also since when and until when and/or upon which conditions. We defined man-
agement of events which occurred together (with the possibility to customize the time
interval defining ’together’) and priorities between events. In [6] and later in [7] we
tackled the issue of complex reactivity in logical agents, by considering the possibility
of choosing among different possible reactive patterns by means of simple preferences.

In the meanwhile, event processing (also called CEP, for “Complex Event Process-
ing”) has emerged as a relevant new field of software engineering and computer sci-
ence [8]. In fact, a lot of practical applications have the need to actively monitor vast
quantities of event data to make automated decisions and take time-critical actions
[9,10,11,12] (cf. also the Proceedings of the RuleML Workshop Series). Many products
for event processing have appeared on the market, provided by major software vendors
and by many start-up companies around the world (see e.g. [11,12] and the references
therein). With cloud computing, the effectiveness and usefulness of event processing is
even more visible, and a connection of “event pattern languages” with ontologies and
with the semantic web is envisaged. Many of the current approaches are declarative
and based on rules, and often on logic-programming-like languages and semantics: for
instance, [9] is based upon a specifically defined interval-based Event Calculus.

A. Bikakis and A. Giurca (Eds.): RuleML 2012, LNCS 7438, pp. 167–181, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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In this paper, we continue and extend the work of [6] by introducing more complex
forms of preferences among applicable reactive behaviors. Such preferences can be also
defined in terms of “possible worlds” elicited from a declarative description of a current
or hypothetical situation, and can depend upon past events, and the specific sequence in
which they occurred. To the best of our knowledge, these advancements are orthogonal
to the various proposals appeared in the literature, into which they could be possibly
merged. The declarative formalism that we use for describing a situation is Answer Set
Programming (ASP, cf., [13,14,15,16]), that has proved apt at a variety of complex rea-
soning tasks (cf., among others, [17,18,19,16] and the references therein), and provides
various options for connection to ontologies and semantic web frameworks (cf., e.g.,
[20] and the references therein).

As we have prototypically implemented the proposed approach using the DALI lan-
guage [1,2] (cf. [5] for a complete list of references about DALI), in the rest of the
paper we use a sample syntax which is reminiscent of DALI. However, we invite the
reader not to consider this syntax as mandatory. In fact, we have tried to design the ap-
proach so as to make it applicable to many languages and frameworks. The approach is
particularly well-suited for rule-based (even better prolog- or datalog-based) languages.
It would not be difficult to transform our syntax into a more standard XML-like form,
so as to fit into the area of Semantic Web and Rule Markup Languages (e.g., RuleML
[21]). Some of the features of our approach could be in fact usefully integrated into
existing approaches to CEP. In this paper we do not propose examples taken from real
industrial applications. We instead propose intuitive simple examples that should make
it easier to understand the new proposed features. We assume the reader to have basic
notions of logic programming and Answer Set Programming.

2 Background

In this section, we recall parts of our previous work that define some basic foundation
elements of the proposed approach.

2.1 Declarative Semantics of Logic Agent-Oriented languages

We base our proposal upon the declarative semantic framework introduced in [22],
aimed at encompassing approaches to evolving logical agents, by understanding changes
determined by external events and by the agent’s own activities as the result of the ap-
plication of program-transformation functions.

We abstractly formalize an agent as the tuple Ag = 〈PAg, E, I, A〉 where Ag is
the agent name and PAg is the “agent program” according to the specific language
adopted. E is the set of the external events, i.e, events that the agent is capable to per-
ceive and recognize: let E = {E1, . . . , En} for some n. I is the set of internal events
(distinguished internal conclusions, that may include desires and intentions): let I =
{I1, . . . , Im} for some m. A is the set of actions that the agent can possibly perform:
let A = {A1, . . . , Ak} for some k. Let Y = (E ∪ I ∪ A).

In DALI syntax, used below for the examples, atoms indicated with a postfix corre-
spond to events of various kinds. In particular, if p is an atom, pE is an external event,
pA is an action and pI an internal event.
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According to this semantic account, one will have an initial program Pe0 = PAg

which, according to events that happen, agent’s activities and actions which are per-
formed, will pass through corresponding program-transformation steps (each one trans-
forming Pei into Pei+1, cf. [22]), and thus gives rise to a Program Evolution Sequence
PE = [Pe0, ...,Pen, ...]. The program evolution sequence will imply a correspond-
ing Semantic Evolution Sequence ME = [M0, ...,Mn, ...] where Mi is the semantic
account of Pei.

Different languages and different formalisms in which an agent can possibly be ex-
pressed will influence the following key points: (i) when a transition from Pei to Pei+1

takes place, i.e., which are the external and internal factors that determine a change in
the agent; (ii) which kind of transformations are performed; (iii) which semantic ap-
proach is adopted, i.e., how Mi is obtained from Pei.

The semantic account includes an Initialization step, where the program PAg written
by the programmer is transformed into a corresponding programPe0 by means of some
sort of knowledge compilation. In DALI for instance, the initialization step extracts
the list of internal and external events, and the control directives that are associated to
the program (e.g., for defining priorities among events and frequencies for checking the
occurrence of events). In general in fact, Pe0 can be simply a program (logical theory)
or can have additional control information associated to it.

Agents usually record events that happened and actions that they performed. No-
tice that an agent can describe the state of the world only in terms of its perceptions,
where more recent remembrances define the agent’s approximation of the current state
of affairs. We thus define set Pof current (i.e., most recent) past events, and a set PNV
where we store all previous ones. We define the ’history’ H of an agent as the tuple
〈P , PNV 〉, dynamically augmented with new events that happen. In DALI, a past event
in P is in the form pP : Ti, where p is an atom corresponding to an event, postfix P
stands for ’past’ and Ti is a time-stamp indicating when the event has been perceived. In
[23] we have defined Past Constraints, which allow one to define when and upon which
conditions (apart from arrival of more recent versions) past events should be moved into
PNV.

Definition 1 (Evolutionary Semantics). Let Ag be an agent. The evolutionary seman-
tics εAg of Ag is a tuple 〈H,PE,ME〉, where H is the history of Ag, and PE and
ME are its program and semantic evolution sequence.

In [22] the detailed semantic treatment of some basic agent-oriented constructs is pro-
vided, in particular that of “condition-action-rules”

IF 〈Conditions〉 DO 〈Actions〉
that define simple reactivity: whenever theConditions hold, the correspondingActions
are performed. Whenever the conditions include external events that have happened,
such rules are called “event-condition-action-rules” (ECAs). These rules have been in-
troduced in logic agent-oriented languages since the seminal work of [24].

In our sample syntax, a reactive rule will be indicated with pE :>Body meaning
that whenever the external event p is perceived (as said, for the sake of immediate
readability external events are indicated with postfix E), the agent will execute Body .
In what follows, for the sake of clarity we will assume the body to consist just of a
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single action. This implies no loss of generality as the extension to a more general
form is easily done. In [22], these rules are treated in the initialization step so as to be
transformed into an intermediate form then managed by a suitably defined program-
transformation step.

2.2 Answer Set Modules

In [7], we have proposed kinds of ASP (Answer Set Programming) modules to be in-
voked by a logical agents. In particular, one kind is defined so as to allow forms of
reasoning to be expressed on possibility and necessity analogous to those of modal
logic. In this approach, the “possible worlds” that we consider refer to an ASP program
Π and are its answer sets. Therefore, given atom A, we say that A is possible if it be-
longs to some answer set, and that A is necessary if it belongs to the intersection of all
the answer sets.

Precisely, given answer set program Π (also called ’module’) with answer sets as
M1, . . . ,Mk, and an atom A, the possibility expression P (wi, A) is deemed to hold
(w.r.t. Π) whenever A ∈ Mwi , wi ∈ {1, . . . , k}. The possibility operator P (A) is
deemed to hold whenever ∃M ∈ {M1, . . . ,Mk} such that A ∈ M . Given answer set
program Π with answer sets M1, . . . ,Mk, and an atom A, the necessity expression
N(A) is deemed to hold (w.r.t. Π) whenever A ∈ (M1 ∩ . . . ∩Mk). Module Π can be
implicit (if unique) or explicit, where expressions take the form P (Π,wi, A), P (Π,A)
and N(Π,A) respectively.

Possibility and necessity can possibly be evaluated within a context, i.e., if E(Args)
(E = P or E = N ) is either a possibility or a necessity expression, the corresponding
contextual expression has the form E(Args) : Context where Context is a set of
ground facts and rules. E(Args) : Context is deemed to hold whenever E(Args)
holds w.r.t. Π ∪ Context , where, with some abuse of notation, we mean that each rule
in Context is added to Π . The answer set module T where to evaluate an operator can
possibly be explicitly specified, in the form: E(T,Args) : Context .

In this approach, one is able for instance to define meta-axioms, like, e.g., the fol-
lowing, which states that a proposition is plausible w.r.t. theory T if, say, it is possible
in at least two different worlds, given context C:

plausible(T,Q,C) ← P (T, I,Q) : C,P (T, J,Q) : C, I �= J.

3 Complex Reactivity with Preferences in Logical Agents: Past
Work, Integrations and Extensions

In [6] we have proposed to employ preferences for defining forms of complex reactivity
in logical agents.

The studies of the processes that support the construction or the elicitation of pref-
erences have historically deep roots. In logic, [25] initiated a line of research that was
subsequently systematized in [26] and continues nowadays, e.g, in [27] and [28]. Pref-
erences handling in computational logic has been extensively studied too. The reader
may refer to [29,30] for recent overviews and discussion of many existing approaches
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to preferences that for lack of space we cannot directly mention here. The approach of
[31] adopts in particular a form of defeasible logic.

Some of the authors of this paper have proposed approaches to preferences in agents
[6] or more generally in logic languages [32,33]. In particular, the approach defined
in [32] allows for the specification of various kinds of non-trivial preferences. These
preferences follow the quite intuitive principles first formalized in [26], and illustrated
at length, e.g., in [27]. The first two principles state that any preference relation is asym-
metric and transitive. For simplicity we stick to strict preferences, i.e., if in a certain
context one prefers φ to ψ, then in the same context one cannot also prefer ψ to φ.
In our approach, each preference holds in the context of the rule where it is defined.
Different (even contrasting) preferences can be expressed (and simultaneously hold) in
different rules. The third principle states that preferring φ to ψ means that a state of
affairs where φ ∧ ¬ψ holds is preferred to a state of affairs where ψ ∧ ¬φ holds. The
fourth principle states that if one prefers ψ to (φ ∨ ζ) then (s)he will prefer ψ to φ and
ψ to ζ. Finally, the last principle states that a change in the world might influence the
preference order between two states of affairs, but if all conditions stay constant in the
world (“ceteris paribus”), then so does the preference order.

We propose an example (reported from [34]) in order to illustrate the approach
to preferences in logical agents and languages that we have developed in previous
work [6,32,33]. The logic program below defines a recipe for a dessert. The construct
icecream > zabaglione is called a p-list (preference list) and states that with the given
ingredients one might obtain either ice-cream or zabaglione, but the former is preferred.
This is, in the terminology of [26], an “intrinsic preference”, i.e., a preference without
a specific reason. In preparing the dessert, one might employ either skim-milk or whole
milk. The p-list skimmilk > wholemilk ← diet states that, if on a diet, the former is
preferred. Finally, to spice the dessert, one would choose, by the p-set
{chocolate, nuts , coconut : less caloric}, the less caloric among chocolate, nuts, and
coconut. These are instead instances of “extrinsic preferences”, i.e., preferences which
come with some kind of “reason”, or “justification”. Notice that, in an agent, extrinsic
preferences may change even non-monotonically as the agent’s knowledge base evolves
in time, as the justification can be any conjunction of literals.

icecream > zabaglione← egg, sugar,(skimmilk > wholemilk ← diet),
{chocolate, nuts, coconut : less caloric}.

less caloric(X,Y ) ← calory(X,A), calory(Y,B), A < B.
calory(nuts, 2). calory(coconut, 3).

In general terms, a rule such as the first one in the above program fragment ’fires’, i.e.
can be applied, when the body is entailed by the present knowledge base. In particular,
using skim milk or whole milk is conditioned from ’diet’ (if both are available), and
the preferred outcome is ’ice-cream’. Consider however that preferences expressed in
this rule must be combined to preferences possibly expressed in other rules. There are
several politics for doing so, discussed in the above references. In the approach of [35]
these politics can be explicitly specified via suitable operators by associating a set of
preference rules to given program.
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The above features can be smoothly incorporated into agent-oriented rule-based lan-
guages. In fact, the evolutionary semantics presented in [22] can easily accommodate
this kind of preference reasoning.

As a first step towards complex reactivity, in the approach of [6], a disjunction among
two or more actions may occur in the body of a reactive rule that specifies the response
to an event. Associated to the reactive rule are preferences, which are local to the rule
where the disjunction occurs, that establish which action is preferred under which con-
ditions; actions as customary have preconditions, thus in any situation the agent should
perform the best preferred feasible action.

As an agent evolves in time and its knowledge changes, preferred choices will change
as well. Then, according to the same preference structure an agent will in general prefer
differently at different stages of its life.

In our sample syntax, we assume action a to be represented as aA. Actions may
have preconditions: the connective :< indicates that a rule defines the precondition of
an action. I.e., a precondition rule will be indicated as qA :<Body, meaning that the
action qA can be performed only if Body is true. We do not cope here with the effective
execution of actions, that is left to the language run-time support.

A disjunction (indicated with “|”) of actions may occur in the body of a reactive
rule. Then, a rule pE :>q1A | q2A,Body. means that in reaction to pE the agent may
perform indifferently either action q1A or action q2A and then it executes Body 1.

Preferences among actions are defined in preference condition expressions associated
to a reactive rule. Then, a rule pE :>q1A | q2A,Body :: q2A > q1A :-Conds. means
that in reaction to pE the agent may perform either action q1A or action q2A, but
action q2A is preferred over action q1A provided that Conds holds. I.e., if Conds
is not verified then the preference is not applicable, and thus any of the actions can be
indifferently executed. In general, a disjunction may contain several actions, and several
preference condition expressions can be expressed, by means of preference lists (seen
before).

These expressions define a partial order among actions, where preferences are tran-
sitively applied and actions that are unordered can be indifferently executed. In our ap-
proach preferences are applied on feasible actions. I.e., the partial order among actions
must be re-evaluated at each step of the agent life where a choice is possible, according
to the preconditions of the actions. The preferred actions at each stage are those that
can actually be performed and that are selected by the preference partial order.

Example 1. Consider a person who receives an invitation to go out for dinner. She
would prefer accepting the invitation rather than refusing, provided that the invitation
comes from nice people. She is able to accept if she has time. The invitation is an exter-
nal event that reaches the agent from her external environment. Accepting or refusing
constitutes the reaction to the event, and both are actions. One of the actions (namely,
accepting) has preconditions, i.e., to have time, and the money to pay for the restourant.
In our sample syntax, an agent program fragment formalizing this situation may look
as follows.

1 Notice that, as reactive rules perform forward reasoning, the part after the :> is a ’conse-
quence’ of the head and not vice versa. Procedurally, any of q1A, q2A,Body might fail.
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invitation dinnerE :> acceptA | refuseA ::
acceptA > refuseA :- nice people inviting .

acceptA :< have time, have money .

Notice that what the agent will do is not known in advance, as the agent evolves in
time: the invitation may arrive at a stage of the agent operation when time and money
are available, and then the preferred action is chosen. If instead the invitation arrives
when there are no resources for accepting, then the agent will have to refuse.

Consider instead a person who receives an invitation to a boring work meeting. She
will prefer (unconditionally) to refuse. However, she cannot do that if she does not
have an excuse to present. As we can see, preference among the same actions varies
according to the context. Also, if the preconditions of a preferred action are not verified,
a less preferred one will have to be performed.

invitation meetingE :> acceptA | refuseA ::
refuseA > acceptA.

refuseA :< acceptable excuse.

In [6], semantics of reaction with preference is provided as a suitable customization
of the evolutionary semantics seen before. In particular, the program evolution step re-
lated to reaction with preferences does the following: (i) evaluates actions preconditions
to identify feasible actions; (ii) solves the optimization problem defined by preference
expressions (where any action among equally preferred ones can be indifferently se-
lected); (iii) replaces the reactive rules with preferences with a plain reactive rule where
a best preferred action occurs; (iv) performs as usual for reactive rules.

An immediate extension that can be done to [6] is to allow all forms of p-lists and
p-sets as seen above to occur in preference expressions.

A limitation of the approach is that possible actions have to be listed explicitly, while
in different situations different action sets should be considered by the agent. For in-
stance, if one is at home in bed with a flu, (s)he cannot possibly accept an invitation,
whatever the preference. A distinction between preconditions of actions and general
feasibility/unfeasibility is in order. In fact, for the sake of elaboration-tolerance [36] it
is impractical and sometimes impossible to specify in advance all circumstances that
may prevent an action from being feasible. In our opinion it is better to evaluate general
feasibility w.r.t. the present situation, and then evaluate specific preconditions.

In order to determine which actions can possibly be performed in reaction to an
event in a given situation, in [7] we have introduced reactive ASP modules that describe
a situation and, triggered by events that have happened, will have answer sets which
encompass the possible reactions to these events (e.g., in the above examples, there
will possibly be an answer set containing acceptA and another one containing refuseA.
A reactive ASP module has an input/output interface. The input interface specifies the
event(s) that trigger the module. The output interface specifies the actions that the mod-
ule answer sets (if any) can possibly encompass. Each answer set can give as output
one or more actions, that can be selected either indifferently or according to prefer-
ences/priorities. So, there will be at least as many actions to consider (according to
preconditions and preferences) as the number of answer set of M . A possible new form
of the above rule can be for instance:
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invitation meetingE :> action(M) ::
refuseA > acceptA.

refuseA :< acceptable excuse.

where after the :> it is stated that any of the actions that are outputs of the ASP module
M can be possibly performed, given the local preconditions and the preferences. Mod-
ule M must be updated according to the present context. Say, e.g., that in at present the
meeting is important but one has flu: then, the outcome instead of acceptA or refuseA
could be for instance postponeA.

It can be intersting to define reaction in terms of meta-statements involving possibil-
ity and necessity w.r.t. module M . For instance, in the following example the reaction to
event evE can be either any action produced by M as a possible reaction, or a necessary
action, i.e., an action that belongs to all the answer sets of M . The latter is preferred in
a critical situation.

evE :>necessary(M)|action(M).
necessary(M) > action(M) :- critical situation.

4 Complex Reactivity with Preferences in Logical Agents:
Modal Preferences

Often, the kind of reaction that an agent might prefer to pursue in consequence of a
certain event is related to the objectives that the agent intends to reach, or to conditions
that the agent would like to fulfill. In order to introduce new more involved forms of
reactions possibly based on commonsense and non-monotonic reasoning, or on “local”
planning about the consequences that selected reaction strategies may have, we improve
the forms of preferential reasoning introduced so far.

To this aim, by drawing inspiration from the work of [28], we define further exten-
sions to expressing preferences in logical agents2. In particular, referring to agents, [28]
introduces a concept of complex preference where an agent prefers φ over ψ if, for
any “plausible” (i.e., presumably reachable) world where ψ holds, there exists a world
which is at least as good as this world and at least as plausible where φ is true. [28]
writes B(ψ → 〈H〉φ) where H is a new modality, and the reading is “Hopefullyφ”. Se-
mantically: if M is a preference model encompassing a set of worlds W and s, t ∈ W ,
≤ is a reachability relation meaning “at least as plausible” and � a preference relation,
we have that:

M, s � H φ iff for all t with both s ≤ t and s � t : M, t � φ

ASP modules are a good tool for redefining, extending and implementing the H op-
erator in practical languages. In particular, to stay within a logic programming com-
putationally affordable setting, we do not fully represent reachability and preferability
among worlds. Rather, “possible worlds” will be interpreted as the answer sets of a suit-
able ASP module Π representing the situation at hand. So, all the answer sets of Π are
equally reachable. Preferability among worlds is explicitly stated as a property that the

2 A preliminary version of part of the material presented in this section was presented in [37].
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agent desires to hold. Thus, we define the H operator in terms of the aspect that makes
a world in which φ holds preferable. In fact, we want to express preferences such as the
following, where one may choose to prefer a certain food rather than another one, in
the hope that the preferred food is good for health:

eat(pasta) > eat(meat) : H(healthy)

Here, ψ is eat(meat) while φ is eat(pasta), and I prefer a world where φ holds because
I hope that healthy (speaking of myself) will hold as well. Below we indicate this third
novel element that we introduce, i.e., the hoped-for reason for preference, with ξ.

As a basic step for defining such a preference we define φ : H(ξ) (or φ : H(Π, ξ)
if ASP module is explicitly indicated) meaning that, assuming φ, we expect that ξ will
hold in some reachable world, that in our setting is an answer set of an ASP module
that can be either implicit or explicitly indicated. Thus, ξ is the “reason why” reachable
worlds in which φ holds are preferred. We can thus define the operator H by a simple
adaptation of the contextual possibility operator as introduced in Section 2.2, where φ
is taken as the context.

Definition 2. Given an answer set module Π with answer sets M1,. . .,Mk, an atom φ
and an atom ξ, the expression φ : H(Π, ξ) is deemed to hold (w.r.t. Π) whenever the
contextual possibility expression P (Π, ξ) : φ holds. The answer set module Π can be
left implicit if it is unique, thus leading to the simplified form φ : H(ξ).

We can now formally define the above preference expression as follows.

Definition 3. Given atoms A,B,C and answer set module T , the construct
A > B : H (T ,C ) is called an mp-list (modal preference list) meaning that A is pre-
ferred to B (i.e., we have the p-list A > B) if A : H(T,C) holds. Otherwise, any of A
or B can be indifferently chosen.

A similar but stronger formulation of previous example can be the following, where one
chooses to prefer a food that in most situations can “reasonably” expected to procure
better health (where as before these situations are interpreted as the answer sets of an
underlying ASP module). The operator maxH (“maximal hope”) intuitively means that
the former food is preferred if it is most likely to procure good health.

eat(pasta) > eat(meat) : maxH (healthy)

To define these more involved preferences, the basic operator H must be extended to a
form φ : H [N ](ξ) meaning that, given φ, the hoped-for property ξ holds in exactly N
different possible worlds.

Definition 4. Given an answer set module Π with answer sets M1,. . .,Mk, an atom φ
and an atom ξ, the expression φ : H [n](ξ) is deemed to hold (w.r.t. Π) whenever there
exist {v1, . . . , vn}, vi ∈ {1, . . . , k} such that P (vi, ξ) : φ holds, i ≤ n, and for every
P (wi, ξ) : φ which holds, wi ∈ {v1, . . . , vn}. By convention, we assume φ : H [0](ξ)
to signify that φ : H [n](ξ) holds for no n.
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We can now extend Definition 3 so as to compareA andB w.r.t. how often a satisfactory
state of affairs can be reached. That is, we compare A and B on the basis of hoped-for
condition C. We prefer A over B if we assess that by assuming A it is more plausible
to reach C, i.e., C holds in more worlds than it is by assuming B.

Definition 5. Given atoms A,B,C and answer set module T , the construct
A > B : maxH (T ,C ) is called an mmp-list (modal max-preference list) meaning that
A is preferred to B (i.e., we have the p-list A > B) iff we have A : H [NA](T,C) and
B : H [NB](T,C), and NA ≥ NB .

The extension to preference lists with more than two elements is straightforward. The
“preference condition” C can be generalized to conjunctions. Operators H and maxH
can be contextual, in the form:

A : Context : H (T ,C ) and A : Context : maxH (T ,C )

where Context is a conjunction of rules, each of which to be added to the ASP module
T before evaluating H . This allows for expressions such as:

A > B : Context : H (T ,C ) or , respectively, A > B : Context : maxH (T ,C )

The aim of introducing contextual operators is expressivity in the practical sense: this
formulation in fact allows one to state in when and why one has a certain preference.
We can thus propose for instance the following variation of the above example:

eat(fruit salad) > eat(cake) : diabetes : maxH (healthy)

It can be also useful to introduce a generalized form of p-set, so as to allow for instance
for the representation below, which takes the varieties of food generated by food(F )
and the context diabetes , and generates a p-list where the various kinds f of foods
are ordered according to the degree of healthiness, interpreted as the value of N in
expression f : diabetes : H [N ]healthy .

{food(F ), eatA(F ) : diabetes : H (healthy)}
To define these new expressions, that we call modal p-sets, we have to start from their
ground version, where atoms eat(f ) are explicitly listed, instead of being generated by
food(F ).

Definition 6. A ground modal p-set (gmp-set) is an expression of the form:

{A1, . . . , As : B : H (T ,E )}

where T is an ASP module, the Ais are atoms, and B,E are conjunctions of atoms (B
possibly empty). This expression stands for the p-list A1 > . . . > As where for each
Aj , Ak in this p-list, Aj precedes (is preferred to) Ak iff the following expression holds:

Aj > Ak : B : maxH (T ,E ))
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Then, to introduce an implicit specification of the Ai’s such as the one adopted in the
above example (thus avoiding to list all them explicitly), we resort to a solution similar
to the one adopted in Answer Set Programming for weight constraints. In [38], the
authors introduce a notion of a conditional literal of the form l : d where l is a literal
and the conditional part d is a domain predicate, where the subset of given program
defining domain predicates consists of domain rules, syntactically restricted so that
their extension should be relatively efficiently computable.

Definition 7. A modal p-set (mp-set) is an expression of the form:

{p(X1 , . . . ,Xn), q(X1 , . . . ,Xn) : B : H (T ,E )}

where T is an ASP module, q is a predicate (possibly defining an action), p is a domain
predicate, X1, . . . , Xn are variables, B is a conjunction of atoms not involving the
Xis and involving terms Y1, . . . , Yv, v ≥ 0 and E is a conjunction of atoms possibly
involving the Xis and the Yjs. This expression stands for the gmp-set

{A1, . . . , As : B : H (T ,E )}

where the Ais are all the possible ground atoms of the form q(t1, . . . , tn) such that
p(t1, . . . , tn) holds.

Modal p-sets allow for the definition of a variety of useful statements and meta-
statements for complex reaction. In the following example for instance, in facing a
danger the agent has to choose between screaming, running or phoning to the police.
The choice will be done that, in the present situation, provides the best expectation of a
happy ending of the adventure. This is obtained via a ground modal p-set.

dangerE :>
{call policeA, runA, screamA : H (safe)}.

call policeA :<have phone.

The following example states that if a baby is hungry one should feed the baby with
attention to healthy food.

baby is hungryE :>
{food(F ), give food to babyA(F ) : : H (healthy)}.

It is important to emphasize that the quality of reactive reasoning obtainable via the
H and maxH operators is high, as ASP allows one to declaratively represent many
forms of reasoning and commonsense reasoning, and is able, e.g., to model complex
forms of configuration and planning and of reasoning about resources (cf., among oth-
ers, [17,18,19,16,39] and the references therein). ASP also provides various options for
connection to ontologies and semantic web frameworks (cf., e.g., [20,40,41] and the
references therein).

The evolutionary semantics can be customized to manage the above reactive rules by
defining a program evolution step that: (i) computes the answer sets of involved ASP
modules; (ii) computes preconditions of actions; (iii) computes preferences among fea-
sible actions; (iv) re-writes reactive rule into standard form and treats them accordingly.
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5 Complex Reactivity with Preferences in Logical Agents:
Conditional Preferences on Event Sequences

There can be situations where the course of actions to be undertaken depends upon
what happened in the past, i.e., upon past events. Past events may occur in the precon-
ditions of actions, so this need is partially covered already in standard DALI language.
However, sometimes the order and the number of times in which events have happened
count, thus another extension is in order. In the following example, one prefers (for the
sake of civility) to accept an invitation from nice people if it has been reiterated several
times in the past without being accepted. One instead prefers to refuse an invitation
from relatives already accepted several times. We apologize because for lack of space
we use a simplified syntax that doesn’t really allow specific invitations to be coupled to
the related acceptance/rejection, so the example just provides and intuitive idea of the
envisaged construct.

For event sequences we adapt the syntax of regular expressions (for lack of space we
can’t formally describe the adapted syntax here, some more detail is provided in [42]).

invitation dinnerE :> acceptA | refuseA ::

invitation dinnerEP
+
not acceptAP :

acceptA > refuseA :-nice people inviting .

invitation dinnerEP
+
acceptAP

+
:

refuseA > acceptA :- relatives inviting .
acceptA :< have time, have money .

To manage this case, the evolutionary semantics must provide a program evolution step
that evaluates a preference expression only if the specified event sequence matches the
agent’s knowledge base. If several alternatives are feasible, some politics will be applied
so as to select one and put it into play.

6 Concluding Remarks

For lack of space we can’t discuss here related work, and in particular the relationship
and the possible integration of our approach with the interesting work of [9] that pro-
poses a very comprehensive logical reaction rule language that explicitly considers time
intervals. As mentioned however, we believe that the treatment of preferences and the
use of ASP modules for reasoning about present situation in terms of what is possible
and/or necessary and of objectives that can be reached is new.

Though DALI is fully implemented and has been widely experimented in practical
(also industrial) applications (see [43] for a recent application that has won the third
prize as best demo), up to now there is no full implementation available for the approach
proposed here. Rather, some features have been implemented and some simulated in
DALI, mainly by means of the “internal events” construct. We have also implemented
in DALI the ASP modules and the related operators. A future aim is that of constructing
a full implementation an instance of the proposed framework. In the agent context, we
intend to consider KGP [44,45,46], DALI and EVOLP [47] (which are fully-defined
and fully-implemented approaches to logical agents) that provide the main elements
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and can be exploited in combination in an implementation. However, it would also be
very interesting to seek an integration with existing (even commercial) approaches and
languages for CEP.

In the perspective of CEP, the present proposal fits into a wider framework where we
provide (cf. [37,23,42,48] and the references therein) dynamic self-checking, manda-
tory whenever it is not known in advance which events will happen and in which order,
and advanced memory management.
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Abstract. The Internet is more than a web of computers and more than a web of 
documents. From a pragmatic point of view it is interesting what people do with 
the Internet and how. Actions and events have a meaning in the context of a 
process or practice as enveloping a set of shared norms. The norms apply to be-
havior, but also to interpretation and evaluation, and can be represented and im-
plemented using rule-based systems. 
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1 Introduction 

Traditionally, the study of signs (semiotics) distinguishes three components: syntax, 
semantics and pragmatics, where semantics deals with the meaning of symbols and 
pragmatics with their context of usage. Pragmatics in the sense of dealing with mean-
ing in context is of increasing importance once IT applications evolve from context-
free programs to highly context-sensitive devices.  

Basically, the Internet is a network infrastructure that allows uniquely identified 
machines to interact worldwide. The Pragmatic Web [17] can be defined as a particu-
lar view on the Internet as a platform of communication and coordination [19]. How 
does the Internet effectively support coordination?  To answer this question we need 
to go beyond a data exchange view of communication. What do people try to achieve 
when they send messages or write notes? Fig. 1 shows a conceptual (service-oriented) 
framework presented in [19] to connect the Internet technology, the coordination it 
implements, the real-world processes coordinated and their economic meaning as 
value networks. 

Viewing the Internet as a platform for coordination, we can distinguish the “what “ 
and the “how” of coordination. Central to the “what” are events in the “real world”, 
such as the delivery of a book, a money transfer or the establishment of a friendship. 
To coordinate events, human agents exchange messages that count as commitments, 
such as in a book ordering at Amazon, an online bank transaction or a Facebook 
friendship request/acceptance. In a narrow sense, “commitment” is restricted to prom-
ises or appointments preceding the event to be executed [12,5]. In a broader sense, it 
refers to all intentional stances that human agents make in the context of their mutual 
interactions, and can include, for instance, the support of a factual statement (“it is 
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2.1 Context and Community 

According to De Moor [13], ‘The Web’ combines a Syntactic, a Semantic, and a 
Pragmatic web. 

The Syntactic Web consists of interrelated syntactic information resources, such as 
documents and web pages linked by HTML references. These resources describe 
many different domains. Each web page has a unique identifier. 

The Semantic Web consists of a collection of semantic resources about the Syntac-
tic Web, mainly in the form of ontologies. The ontologies contain semantic networks 
of concepts, relations, and rules that define the meaning of particular information 
resources. Ideally, each concept or object has a unique identifier. 

The Pragmatic Web, according to De Moor, consists of a set of pragmatic contexts 
of semantic resources. A pragmatic context consists of a common context and a set of 
individual contexts. A common context is defined by the common concepts and con-
ceptual definitions of interest to a community, the communicative interactions in 
which these concepts are defined and used, and a set of common context parameters 
(relevant properties of concepts, joint goals, communicative situation, and so on). 
Each community member also has an individual context, consisting of individual 
concepts and definitions of interest and individual context parameters. In the line of 
the previous, we can say that ideally, each context has a unique identifier to start with.  

This approach is in line with the Pragmatic Web Manifesto [17] that states: “The 
vision of the Pragmatic Web is thus to augment human collaboration effectively by 
appropriate technologies, such as systems for ontology negotiations, for ontology-
based business interactions, and for pragmatic ontology-building efforts in communi-
ties of practice. In this view, the Pragmatic Web complements the Semantic Web by 
improving the quality and legitimacy of collaborative, goal-oriented discourses in 
communities”. Some would remark that the notion of context can be developed as 
well within the Semantic Web approach, and in fact has been in recent years, e.g. 
[1,3]. However, although the representation of context objects does not need to differ 
fundamentally from other objects, their status is quite different. The pragmatic pers-
pective is interested in how communicative actions get meaning in a context and let it 
evolve. 

De Moor’s approach is also consistent with pragmatism as a research paradigm [7] 
in IS that takes a central object of study the “practice”. A practice is a meaningful 
ensemble of actors, their different actions, interrelated material, linguistic and institu-
tional elements [16]. A practice is shaped by humans as an organized, artificial and 
continually evolving arrangement. Practices are at the same time stable (in following 
institutions and routines) and changing. According to the semiotic framework of 
Stamper [6], these practices are basically fields of shared norms. The norms can apply 
to behavior (prescriptive, constraining), but there are also cognitive norms that apply 
to interpretation and evaluation, and norms that apply to the communication, e.g. 
protocols. Nowadays, norms can be represented and implemented by means of  
rule-based systems, as far as they are explicit (see e.g. Deontic RuleML and Legal 
RuleML). 
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2.2 Putting Rules in Context 

The Semantic Web builds upon XML as the common machine-readable syntax to 
structure content and data, upon RDF as a simple language to express property rela-
tionships between arbitrary resources (e.g., objects or topics) identified by URIs, and 
ontology languages such as RDFS or OWL as a means to define rich vocabularies 
(ontologies) which are then used to precisely describe resources and their semantics. 
In the recent years, the Linked (Open) Data initiative of Semantic Web created a fast 
growing cloud of semantically enriched linkages of structured data sources on the 
web. Together with metadata vocabularies such as Dublin Core, vCard, Bibtex, FOAF 
and SIOC and further ontologies this prepares an infrastructure to share the relevant 
information and its knowledge meaning between distributed self-autonomous seman-
tic agents and loosely coupled semantic Web-based services and tools. Rule markup 
and modeling languages such as RuleML [24] and W3C RIF1  are used to represent 
the decision logic and behavioral logic of such agents and to interchange semantic 
messages (queries, answers, knowledge rules/ontologies, events) between them2.   

According to Paschke [15], on top of the syntactic and semantic layer, rules play an 
important role in a pragmatic layer to automatically and contextually transform data 
into information, interpret this information as (semantic) knowledge, derive new con-
clusions and decisions from existing knowledge, and behaviorally act according to 
changed conditions and occurred events.  

 

Fig. 2. Semantic-Pragmatic Knowledge Transformation for Machine Intelligence 

                                                           
1 The W3C RIF recommendation is part of the Semantic Web technology stack. It evolved 

from RuleML as an XML-based interchange format for rules in the Semantic Web 
2 Reaction RuleML serves as a standard for representing reaction rules and reactive knowledge 

(events, actions, messages etc.) [23]  
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Rules provide a powerful and declarative way to control and reuse the manifold 
semantically linked meaning representations published on the Semantic Web. Based 
on an understanding of underlying pragmatic principles this leads to machine under-
standing for automated “intelligence”. Services and intelligent agents3 can exploit 
rules to represent their decisions and reactions on how to use knowledge for a particu-
lar purpose or goal, including active selection and negotiation about relevant mean-
ings, achievement of tasks, and internal and external reactions on occurred events, 
changing conditions or new contexts. [25] This extends the Semantic Web to a rule-
based Semantic-Pragmatic Web [15] which puts the independent micro-ontologies 
and domain-specific data into a pragmatic context such as communicative situations, 
organizational norms, purposes or individual goals and values. 

In other words, the Pragmatic Web intends to utilize the Semantic Web with intel-
ligent agents and services that access data and ontologies and make rule-based infe-
rences and autonomous decisions and reaction based on these representations. The 
focus is on the adequate modeling, negotiation and controlling of the use of the my-
riad (meta)data and meaning representations of the Semantic Web in a collaborating 
community of users where the individual meanings as elements of the internal  
cognitive structures of the members become attuned to each others’ view in a com-
municative process. This allows dealing with issues like ambiguity of information and 
semantic choices, relevance of information, information overload, information hiding 
and strategic information selection, as well as positive and negative consequences of 
actions. 

As a result, this Pragmatic Web becomes more usable in the Social Semantic Web, 
where it supports the pragmatics in social interactions on the Public Web, as well as 
in the so called Corporate Semantic Web (CSW)4 [34,35,36], where it is used to sup-
port the pragmatic application of Semantic Web technologies and Knowledge Man-
agement methodologies in corporate environments, e.g., decision support systems 
(DSS), heterogeneous information systems (HIS) and enterprise application systems 
(EAS) for distributed human teams and semi-autonomous, agents and IT (web) ser-
vices: (1) It meaningfully annotates, links, and shares distributed knowledge sources 
according to common ontologies. (2) It employs rule-based logic for reasoning about 
source content and metadata. (3) It adds rule-based delegation and integration flow 
logic to distribute incoming requests towards appropriate virtual (team or organiza-
tion) members and to collect their responses. By using the Semantic Web as an infra-
structure for collaborative networks and by extending it with a rule-based pragmatic 
and behavioral layer, individuals agents and (Web) services – with their individual 
contexts, decisions and efforts – can form corporate, educational, or otherwise  
productive virtual teams or virtual organizations on the Web that have, beside their 
individual context, a shared context consisting of shared concepts, joint goals and 
common negotiation and coordination (communication) patterns. 

There is currently also a shift from in-house business processes to cross-domain 
and cross-organizational processes based on an Internet of Services infrastructure 
with highly flexible and agile IT service management including, e.g., on-demand 

                                                           
3 See e.g. Rule Responder Project: http://responder.ruleml.org and [30, 25]. For 

an overview on rule-based agent systems see [29, 31] 
4 http://en.wikipedia.org/wiki/Corporate_Semantic_Web 
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service discovery and coordination based on, e.g. semantic IT service interface de-
scriptions and their SLAs. The Semantic-Pragmatic Web of Agents enables such agile 
business and service management by providing support for semantic business process 
management (SBPM) [26], where additional semantic knowledge is used by agents to 
automate the dynamic (choreography-style) coordination and execution in the context 
of additional semantic policies and contracts such as Rule-Based Service Level 
Agreements (RBSLA) [27]. The agent model allows for a semantic and pragmatic 
abstraction from the underlying services.  

3 Pragmatic Web as a Web of Events 

The notion of “event” is becoming more and more important in Information Systems 
and in Business [20]. Real-Time-Enterprise (RTE) takes the role of timeliness to its 
logical extreme: zero latency, that is, all parts of the enterprise can respond to events 
as soon as they become known to any one part of the enterprise or extended enter-
prise. The Event-Driven Architecture (EDA) can support increased agility: to respond 
to exceptions and unanticipated events at any time, even when business processes are 
already under way. Complex Event Processing (CEP), often related to as Business 
Activity Monitoring (BAM), includes tools that monitor the events in the enterprise 
and are not only able to aggregate data into higher-level complex events but also to 
detect unusual event patterns that may need an alert [11] . Current standardization 
efforts are under way in the Event Processing Technical Society (EPTS)5, e.g. on a 
common event processing glossary and vocabulary as well as reference architectures 
and design patterns [28]. Besides many existing ontologies for events, time, space etc. 
and industry standards for event communication, there have been also many different 
approaches for rule-based event processing and reaction rule languages. [33] For an 
overview on standardizations see [32]. While standards such as OMG Production 
Rules Representation (UML modeling for production rules) and W3C RIF Production 
Rules Dialect (Semantic Web interchange format for production rules) focus on pro-
duction rules, Reaction RuleML [23] is an overarching standard for all types of reac-
tion rules, including rule-based CEP. 

Furthermore, we are currently witnessing major steps towards realization of the 
pervasive and ubiquitous computing vision of Weiser [21]. IT is getting smaller and 
smaller and increasingly becomes invisible, attached to objects and humans, for ex-
ample, in the form of an RFID chip. When such objects or humans meet, temporary 
connections are set up and executed. For example, containers get a unique RFID and 
when they pass the gate, this automatically triggers the generation of an “enter” event 
in the Information System. This event may trigger a message event (perhaps via the 
truck’s navigation system) to be passed to the driver in which he is informed about the 
exact location where the container is to be put, and may trigger internal tracking & 
tracing messages to update the information about the container as it is available to all 
parties involved. At the software level, pervasive computing requires that objects have 

                                                           
5 http://www.ep-ts.com/ 
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unique identities. This is slowly becoming possible now with the use of EPCIS (elec-
tronic product codes, developed for industry and logistics) and, more generally, the 
Internet of Things [2]. 

3.1 Smart Computing 

The two developments sketched above converge into what is called Smart Computing 
(Fig. 3). Events are picked up by monitoring functions, aggregated, evaluated and 
responded to [4]; all these activities are steered by rules. Auditability is a cross-
cutting concern. To date, Service-Oriented Architecture (SOA) is the de facto stan-
dard in software systems [14]. SOA relies on request/response mechanisms using 
standards such as WSDL and SOAP. Conceptually, this contrasts with EDA that typi-
cally promotes a decoupled communication such as a publish/subscribe mechanism 
[10]. Technically, a SOA can be built on top of an EDA by modeling the service re-
quest and its reply as two different events and ensuring that the reply is triggered by 
the request. However, there is still the question how to relate the two perspectives on 
the conceptual level. There are a few recent proposals in this direction, e.g. SOEDA 
[22]. SOEDA (Service-Oriented Event-Driven Architecture) allows the transforma-
tion of event-centric business process notations (EPC) to service-centric execution 
models (BPEL). According to [10], an event-driven approach should supplement the 
SOA approach in ubiquitous enterprises. 

 

Fig. 3. The 5 A’s of Smart Computing, after Forester Inc [4] 
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3.2 The Pragmatics of Event-Driven Processes  

As stated above, pragmatics in the sense of dealing with meaning in context is of 
increasing importance once IT applications change from context-free programs to 
highly context-sensitive devices, as in smart computing. Among others, this creates a 
need for context data management [18]. The coupling between data (sensors) and 
action (effectors) is much tighter than in traditional Information Systems in the office 
that only interact with the world via the interface of office people. Pragmatics has also 
to do with the social aspect of communication. The social aspect of event-driven 
processes may seem to be less prominent than traditional workflows running in the 
office. There are certainly human issues, e.g. privacy concern, that are essential. 
However, where traditionally Information Systems have been useful tools in coordi-
nating organizational behavior driven by humans, in the ubiquitous computing vision 
this behavior seems to be driven less and less by humans. To wit, it is no longer the 
human agent who does the shopping or the purchase ordering, but the fridge or the 
inventory itself interact with their counter-parts at the supermarket or supplier. 

Semantic Web technology can play an important role in the further development of 
the Internet of Things. Given the enormous amounts of data that will be produced in 
this kind of applications, a purely syntactic approach is too limiting in the long run. 
According to [9], two major functions for semantic technologies can be distinguished. 
First, not surprisingly, they are the basis for the discovery of heterogeneous resources 
and data integration across multiple domains. Second, they can be used for behavioral 
control and coordination of the agents representing those resources. In other words, 
semantic technologies are used both for descriptive specification of the services deli-
vered by the resources and for prescriptive specification of the expected behavior of 
the resources as well as the integrated system (cf. [16]). 

However, not only semantic but also pragmatic aspects such as dealing with con-
text should be taken into account. Economic and legal concerns (e.g. privacy) remain 
as relevant as before [2]. It may seem that taking humans out of the loop means that 
social aspects become less relevant. However, the event-driven approach separates 
the social aspect from the physical aspect, but the social aspect, e.g. the authorization 
structure, still needs to be addressed. The separation observed here in fact indicates a 
broader evolution. In the area of Electronic Markets, a separation of informational and 
physical trade processes was observed by Kambil & Van Heck [8]. This separation 
provides big opportunities for efficiency improvement and increased flexibility. For 
the internal operations, an authorization structure needs to be described. According to 
the Smart Computing vision, auditability of the event-driven systems is a general 
concern. An authorization structure, or authorization governance, in terms of rules, is 
therefore indispensable.  

A recent standardization effort is OASIS LegalRuleML6, which enables legal ar-
guments to be created, evaluated, and compared using RuleML representations. This 
includes, e.g., representation of norms such as deontic norms and other legal norms, 
legal reasoning on policies and contracts such as SLAs, e.g. in Internet of Service and 
cloud infrastructures, and representation of law systems (e.g. regulations, patent law).  
                                                           
6 https://www.oasis-open.org/committees/legalruleml/ 
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Abstract. Multi-agent systems are considered a modern medium of communi-
cation and interaction with limited or no human intervention. As intelligent 
agents are gradually enriched with Semantic Web technology, their use is con-
stantly increasing. To this end, the degree of trust that can be invested in a cer-
tain agent is recognized as a vital issue. Current trust models are mainly based 
on agents’ direct experience (interaction trust) or reports provided by others 
(witness reputation). Though, lately, some combinations of them (hybrid mod-
els) were also proposed. To overcome their main drawbacks, in this paper we 
propose HARM, a hybrid, rule-based reputation model based on temporal  
defeasible logic. It combines the advantages of the hybrid approach and the 
benefits of a rule-based reputation modeling approach, providing a stable and 
realistic estimation mechanism with low bandwidth and computational  
complexity. Moreover, an evaluation of the reputation model is presented, de-
monstrating the added value of the approach. 

Keywords: Semantic Web, Intelligent Multi-agent Systems, Agent Reputation, 
Temporal Defeasible Logic, Defeasible Reasoning. 

1 Introduction 

Intelligent multi-agent systems (MASs) are considered a rather modern medium of 
communication and interaction with limited or even no human intervention. As, 
intelligent agents (IAs) are gradually enriched with SW technology, realizing the 
Semantic Web (SW) vision [10], their use is constantly increasing. However, they are 
also increasingly removing us from the familiar styles of interacting that traditionally 
rely on some degree of pre-established trust between partners. Moreover, most 
traditional cues for assessing trust in the physical word are not available, through 
MASs, anymore. Whenever we, through our agents, have to interact with partners of 
whom we know nothing, we have to face the challenging task of making decisions 
involving risk. Thus, the success of an agent, in a MAS, may depend on its ability to 
choose reliable partners. Nevertheless, a critical issue is now raised: how can an agent 
trust an unknown partner in an open and thus risky environment? 

To this end, a number of researchers were motivated by the understanding that 
some individuals (agents) may be dishonest. Thus, they have proposed, in different 
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perspectives, models and metrics of trust and reputation, focusing on estimating the 
degree of trust that can be invested in a certain agent [23]. In general, reputation is  
the opinion of the public towards an agent. Reputation allows agents to build trust, or 
the degree to which one agent has confidence in another agent, helping them to estab-
lish relationships that achieve mutual benefits. Hence, reputation (trust) models help 
agents to decide who to trust, encouraging trustworthy behavior and deterring dishon-
est participation by providing the mean through which reputation and ultimately trust 
can be quantified [24]. Currently, computational reputation models are usually built 
either on interaction trust or witness reputation, namely, an agent’s direct experience 
or reports provided by others, respectively. 

However, both approaches have limitations. For instance, if the reputation estima-
tion is based only on direct experience, it would require a long time for an agent to 
reach a satisfying estimation level. This is because, when an agent enters an environ-
ment for the first time, it has no history of interactions with the other agents in the 
environment. Thus, it needs a long time to reach a sufficient amount of interactions 
that could lead to sufficient information. On the other hand, models based only on 
witness reports could not guarantee reliable estimation as self-interested agents could 
be unwilling or unable to sacrifice their resources in order to provide reports. Hence, 
models based only on one or the other approach typically cannot guarantee stable and 
reliable estimations. 

In order to overcome these drawbacks, some researchers, among them the authors 
of this paper [18], have proposed hybrid models that combine both interaction trust 
and witness reputation. However, most of hybrid models either have fixed proportion 
of their active participation in the final estimation or leave the choice to the final user. 
Although these approaches have significant advantages, sometimes they may lead to 
misleading estimations. Users may have little or no experience and thus take wrong 
decisions that could lead to wrong assessments, whereas fixed values provide just 
generic estimations. Our goal is not to estrange the users from the decision making 
process, but to help them, and their agents, to make better decisions. 

Hence, in order to overcome this drawback and improve the effectiveness of the 
hybrid approach, we propose a novel incremental solution that combines the advan-
tages of the hybrid approach and the benefits of a rule-based reputation modeling 
approach, which uses temporal defeasible logic. Temporal defeasible logic (TDL) is 
an extension of defeasible logic (DL), developed to capture the concept of temporal 
persistence [9]. This is an important issue in reputation estimation, as agents may 
change their objectives at any time. Defeasible logic, on the other hand, is a logic that 
has the notion of rules that can be defeated, allowing an existing belief to turn false, 
making it nonmonotonic [20][21]. It is part of a more general area of research, defeas-
ible reasoning, which is notable for its low computational complexity (linear [19]), a 
property preserved in TDL, too [8].  

Moreover, as DL and TDL are nonmonotonic logics, they are capable of modeling 
the way intelligent agents and humans draw reasonable conclusions from information 
which falls short of being definitive. These conclusions, despite being supported by 
the information currently available to the agent, could nonetheless be rejected in the 
light of new, or more refined, information. In a fundamental sense, nonmonotonic 
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logics occupy undoubtedly prominent position among the disciplines investigating 
intelligent reasoning about complex and dynamic situations. Thus, permitting agents 
to arrive at defeasible conclusions by using TDL, leads to more realistic assessments 
similar to human reasoning and logic.  

In this paper we propose HARM, a hybrid, rule-based reputation model which uses 
temporal defeasible logic and combines both interaction trust and witness reputation. 
It is a knowledge-based approach that provides a more intuitive method for non-
technical users, letting them draw reasonable and realistic conclusions similar to their 
own reasoning. Furthermore, HARM provides a stable and reliable estimation me-
chanism, under a centralized administration authority (agent), overcoming the diffi-
culty to locate witness reports. It is based on well established estimation parameters 
[3][4], such as information correctness, completeness, and validity, as well as the 
agent’s response time. Additionally, it provides low bandwidth and computational 
complexity. Finally, an evaluation is presented, demonstrating the added value of the 
approach. 

The rest of the paper is organized as follows. In Section 2, we present a brief over-
view of temporal defeasible logic. Section 3 presents HARM and its contribution. In 
Section 4, HARM’s evaluation is presented, that demonstrates the added value of the 
approach. Section 5 discusses related work, and Section 6 concludes with final re-
marks and directions for future work. 

2 Temporal Defeasible Logic 

As mentioned, temporal defeasible logic (TDL) is an extension of defeasible logic 
(DL). Defeasible logic is a logic that has the notion of rules that can be defeated. It is 
part of a more general area of research, defeasible reasoning [20][21]. Defeasible 
reasoning, in contrast with traditional deductive logic, allows the addition of further 
propositions to make an existing belief false, making it nonmonotonic [14]. One of 
the main interests in DL, and TDL consequently, is in the area of agents [7]. This is 
because DL is a nonmonotonic logic and, thus, capable of modeling the way intelli-
gent agents (like humans) draw reasonable conclusions from inconclusive informa-
tion. This feature, which leads to more realistic conclusions and assessments similar 
to human reasoning and logic, motivated plenty of researchers. Hence, even in early 
work performed by Pollock [22], it has been shown that there is a requirement for the 
addition of a temporal aspect to defeasible reasoning. Much has been done since then; 
temporal extensions to defeasible logic have already been discussed for agents, lead-
ing to temporal defeasible logic.  

Obviously, knowledge in TDL is, still, represented as in DL, namely in terms of 
facts and rules. Facts are indisputable statements, represented either in form of states 
of affairs (literal and modal literal) or actions that have been performed. Rules de-
scribe the relationship between a set of literals (premises) and a literal (conclusion). 
There are strict rules and defeasible rules. Strict rules take the form A1, … , An → B 
(B:-A1, … , An, in d-POSL syntax [13]). They are rules in the classical sense: when-
ever the premises are indisputable, then so is the conclusion. Thus, they can be used 
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for definitional clauses. Defeasible rules take the form A1, … , An => B (B:=A1, … , 
An, in d-POSL syntax). They are rules that can be defeated by contrary evidence. 
Actually, this is the main concept in TDL (inherited by DL): logic does not support 
contradictory conclusions, but it tries to resolve conflicts. Hence, in cases where there 
is some support for concluding A, but there is also support for concluding ¬A, no 
conclusion can be derived unless one of them has priority over the other. This priority 
is expressed through a superiority relation among rules which defines priorities 
among them, namely where one rule may override the conclusion of another rule. A 
special case of conflict is between different positive literals, all derived by different 
defeasible rules, whereas only one should be derived. “Conflicting literals” are de-
fined through a conflict set and the conflict is resolved through superiorities. 

The importance of adding a temporal dimension to rules and literals is undoubted. 
In TDL there are two types of temporal literals. The first, an expiring temporal literal, 
consists of a pair l:t that denotes a literal, l, that is valid for t time instances. The 
second type of temporal literal, a persistent temporal literal, consists of a pair l@t and 
denotes a literal, l, that is active after t time instances have passed and is valid thereaf-
ter. A temporal rule takes the form: a1:d1 ... an:dn =>d  b:db, where that pairs, e:d, 
represent an event identifier, e, and a duration d. The duration of instantaneous events 
is 0, whereas persistent events have an infinite duration. The =>d indicates the delay 
between the cause a1:d1 ... an:dn and the effect b:db. There are many definitions of the 
semantics of this delay [9]. For instance, the delay may be the delay between the start 
of the last cause and the beginning of the effect. Hence, temporal rules contain tem-
poral literals. To correctly model the delay between the body and the head, rules are 
created with the heads of the rules modified to accommodate the delay. For instance, 
given (r1) => a@1 and (r2) a@1=>7 b:3, a literal a is created due to r1. It becomes 
active at time offset 1 but does not cause the head of r2 to be fired until time 8. The 
result b, on the other hand, lasts only until time 10, thereafter, only the fact a remains.  

3 HARM 

HARM, the proposed model, is a hybrid, rule-based reputation model which uses 
temporal defeasible logic in order to combine interaction trust and witness reputation. 
It aims at improving the performance of the hybrid approach by providing a more 
effective and intuitive decision making mechanism.  

3.1 Model Abstract Architecture 

First of all, we had to consider the agents’ abilities that should be under evaluation, as 
an efficient decision making mechanism has to rely on carefully selected data. To this 
end, after a thorough study of the related literature, four properties were chosen, 
namely validity, completeness, correctness and response time [3][4].   

Validity is the conjunction of sincerity, and credibility. An agent is sincere when it 
believes what it says, whereas it is credible when what it believes is true in the world. 
Hence, an agent is valid if it is both sincere and credible. Completeness, on the other 
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hand, is the conjunction of cooperativity and vigilance. Cooperativity is, actually, 
defined by duality of sincerity, namely an agent is cooperative when it says what it 
believes. In the same way, vigilance is defined by duality of credibility, namely an 
agent is vigilant when it believes what is true in the world. Moreover, correctness 
refers to an agent’s providing services. An agent is correct if its provided service is 
correct with respect to a specification. Finally, response time refers to the time that an 
agent needs in order to complete the transaction. 

Consider an agent A establishing an interaction with an agent B; agent A can eva-
luate the other agent’s performance and thus affect its reputation. We call the evaluat-
ing agent (A) truster and the evaluated agent (B) trustee. For some interactions an 
agent can be both truster and trustee, since it can evaluate its partner while it is eva-
luated by that partner. After each interaction in the environment, the truster has to 
evaluate the abilities of the trustee, and report its rating in terms of validity, complete-
ness, correctness and response time. However, that is not enough. The truster has to 
indicate how confident he/she is for his/her rating and how important the transaction 
for him/her was. Confidence gives an estimation of the truster’s certainty, while 
transaction importance indicates how critical the transaction was for the truster, al-
lowing us to decide how much attention we should pay on the rating. Taking the 
above into account the truster’s rating value (r) in HARM has eight coefficients: 
(truster, trustee, validity, completeness, correctness, response time, confidence, trans-
action value).  

In HARM, confidence and transaction values vary from 0 (0%) to 1 (100%) while 
the rest rating values vary from 0.1 (terrible) to 10 (perfect); r∈[0.1, 10]. In order to 
analyze rating data better, by crossing out extremely positive or extremely negative 
values, we propose the logarithmical transformation of rating values. The most impor-
tant feature of the logarithm is that, relatively, it moves big values closer together 
while it moves small values farther apart. And this is useful in analyzing data, because 
many statistical techniques work better with data that are single-peaked and symme-
tric. Furthermore, it is easier to describe the relationship between variables when it is 
approximately linear. Thus, when these conditions are not true in the original data, 
they can often be achieved by applying a logarithmic transformation. Hence, each 
rating is normalized (r∈[-1,1] | -1≡terrible, 1≡perfect), by using 10 as base. Thus, the 
final reputation value ranges from -1 to +1, where -1, +1, 0 stand for absolutely nega-
tive, absolutely positive and neutral (also used for newcomers), respectively, which 
means that an agent’s reputation could be either negative or positive. 

Next, we had to consider another important issue; which experience will be taken 
into account, direct, indirect (witness) or both. Indirect experience is divided in two 
categories, reports provided by strangers and reports provided by known agents due to 
previous interactions. It is well known that using different opinions (ratings) of a large 
group maximizes the possibility of crossing out unfair ratings, ratings that do not 
reflect the genuine opinion of the rater, and deals with the discrimination issue.  
Discrimination means that an agent provides high quality services to one group of 
partners and low quality to another group of partners. Using both direct and indirect 
experience could lead to more truthful estimations. Hence, the final reputation value 
of an agent X, required by an agent A, is a combination of three coefficients:  
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RAX = {PRAX , KRAX, SRAX}. PRAX refers to the agent’s direct experience, KRAX refers to 
“known” witness ratings, and SRAX refers to the rest witness ratings.  

However, sometimes one or more rating categories are missing, for instance, a 
newcomer has no personal experience and, thus, there are no available ratings (prAX). 
To this end, we wish to ground our conclusions in trust relationships that have been 
built and maintained over time, much as individuals do in real world. A user is much 
more likely to believe statements from a trusted acquaintance than from a stranger. 
Thus, personal opinion (AX) is more valuable than strangers’ opinion (SX), as well as 
it is more valuable even from previously trusted partners (KX). This relationship 
among the rating categories is presented below, graphically, in Fig. 1. 

 

 

Fig. 1. Superiority relationship among rating categories 

Finally, each rating that is going to participate in the estimation, according to the 
chosen relationship theory (see also subsection 3.2), is used in RAX = {PRAX , KRAX, 
SRAX}. More specifically, the final reputation value RAX is a function that combines the 
transformed ratings for each available category: 
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In addition, whenever an agent requests the reputation value of another agent, maybe 
he/she wants to determine what is important for him/her. For instance, an agent may 
be considering response time to be more important (e.g., a 50% on the final value) 
than correctness (e.g., 30%) or completeness (e.g., 15%). To this end, HARM allows 
agents to determine weights that will indicate their personal preferences according the 
ratings’ coefficients. Thus, formula (1) is modified accordingly: 

( )( ) ( )( ) ( )( )

{ }( )

4 4 4

1 1 1

log log log
, , ,

, , , _ 2

coefficient coefficient coefficient
i AX i AX i AX

AX

i i ii i i

AVG w pr AVG w kr AVG w sr
R

w w w

coefficient validity completeness correctness response time

= = =

 × × ×
 = ℑ
 
 

=

  
 

3.2 Rule-Based Mechanism 

Traditionally, humans in real life rely on previous experience and knowledge in order 
to make decisions and act. Although, available information is mainly inconclusive, 

KX

AX, KX, SX

AX, KX AX, SX KX, SX

AX SX



 A Hybrid Rule-Based Agent Reputation Model 199 

since new and more refined information may come up at any time, humans are able to 
draw reasonable conclusions from it. Hence, it would be interesting, and probably 
more effective, to model agents’ logic in a human-like (nonmonotonic) logic, since 
their purpose is to act on behalf of their human users. To this end, knowledge-based 
(more specifically, rule-based) models, using nonmonotonic reasoning, would let 
agents to reach the way their human users think and act. Thus, permitting agents to 
arrive at defeasible conclusions leads to more realistic assessments similar to human 
reasoning and logic. 

In order to present the introduced terms and defeasible rules of our approach in a 
compact way, we express them in the compact d-POSL syntax [13] of defeasible Ru-
leML [1]. According to our rule-based approach, the truster’s rating (r) is the fact:  

rating(id→rating’s_id, truster→truster’s_name, trustee→trustee’s_name,  
validity→value1, completeness→value2, correctness→value3, 
 response_time→value4, confidence→value5, transaction_value→value6).  

Additionally, an example rating provided by agent (A) truster for the agent (B) trustee 
could be:  

rating(id→1, truster→A, trustee→B, validity→5, completeness→6, correctness→6,  
  response_time→8, confidence→0.8, transaction_value→0.9). 

Defining the rating values was the first step towards an efficient reputation model, the 
core of the approach, however, is its decision making mechanism. First, as already 
mentioned, two of the values, namely, the confidence and the transaction value, allow 
us to decide how much attention we should pay on that rating. In other words, it is 
important to take into account ratings that were made by confident trusters, since their 
ratings are more likely to be right. Additionally, confident trusters, that were interact-
ing in an important for them transaction, are even more likely to report truthful rat-
ings. This assumption led to the following three defeasible rules. These rules define 
which ratings will be taken into account in the reputation estimation and which not, 
according to the confidence and the transaction values, but they are not involved in 
the estimation itself.  

r1: count_rating(rating→?idx, truster→?a, trustee→ ?x) :=  
  confidence_threshold(?conf), transaction_value_threshold(?tran),  
  rating(id→?idx, confidence→?confx, transaction_value→?tranx),  
  ?confx >= ?conf, ?tranx >= ?tran. 
r2: count_rating(rating→?idx, truster→?a, trustee→ ?x) :=   
  confidence_threshold(?conf), transaction_value_threshold(?tran), 
  rating(id→?idx, confidence→?confx, transaction_value→?tranx),  
  ?confx >= ?conf. 
r3: count_rating(rating→?idx, truster→?a, trustee→ ?x) :=   
  confidence_threshold(?conf), transaction_value_threshold(?tran), 
  rating(id→?idx, confidence→?confx, transaction_value→?tranx),  
  ?tranx >= ?tran. 
r1>r2>r3 
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Rule r1 indicates that if both the truster’s confidence and transaction importance are 
high, according to the user’s threshold, then that rating will be counted during the 
estimation process. Rule r2, on the other hand, indicates that even if the transaction 
value is lower than the threshold, it doesn’t matter so much if the truster’s confidence 
is high. Rule r3, finally, indicates that if there are only ratings with high transaction 
value then they should be taken into account. In any other case, the rating should be 
omitted. Notice that the above rules are defeasible and they all conclude positive liter-
als. However, these literals are conflicting each other, for the same pair of agents 
(truster and trustee), since we want in the presence e.g. of personal experience to omit 
strangers’ ratings. That’s why there is also a superiority relationship between the 
rules. The conflict set is formally determined as follows: 

C[count_rating(truster→?a, trustee→?x)] =  
  { ¬ count_rating(truster→?a, trustee→?x) } ∪  
  { count_rating(truster→?a1, trustee→?x1) | ?a ≠ ?a1 ∧ ?x ≠ ?x1 } 

The next step is to decide whose experience will be taken into account, direct, indirect 
(witness), or both, as explained in section 3.1. Indirect experience, as mentioned, is 
divided in two categories, reports provided by strangers and reports provided by 
known agents due to previous interactions. Since we aim at providing a trust estima-
tion much as individuals do in real world, where they built and maintained trust rela-
tionships over time, we propose a set of defeasible rules that simulate their decision 
making process. Hence, HARM, firstly, checks the available ratings categorizing 
them (rules r4 to r7) and then decides which opinion will take into account for the final 
reputation value RAX (rules r8 to r10). 

r4: known(agent1→?a, agent2→?y) :-  
  count_rating(rating → ?id, truster→?a, trustee→?y).  
r5: count_prAX(agent→?a, truster→?a, trustee→?x, rating→?id) :- 

  count_rating(rating → ?id, truster→? a, trustee→ ?x).  
r6: count_krAX(agent→?a, truster→?k, trustee→?x, rating →?id) :- 

  known(agent1→?a, agent2→?k), 
   count_rating(rating→?id, truster→?k, trustee→ ?x).   
r7:count_srAX(agent→?a, truster→?s, trustee→?x, rating→?id) :- 

  count_rating(rating → ?id, truster →?s, trustee→ ?x),  
  not(known(agent1→?a, agent2→?s)). 

Rule r4 determines which agents are considered as known, whereas the rest of the 
rules, r5 to r7, categorize the counted ratings in PRAX (direct experience), KRAX 

(«known» witness) and SRAX (strangers’ witness), respectively. In r7, we use negation 
as failure, which means that if known() fails during execution then not(known()) will 
succeed, in order to determine which agents are considered totally strangers. Notice 
that the above rules are strict ones, i.e. their conclusions cannot be disputed. 

The final decision making process for the PRAX is based on a relationship theory 
among the rating categories. In Fig. 1, we presented the complete relationship among 
all rating categories, whereas, below, we present three potential theories based on that 
relationship. In the first theory, all categories count equally, hence, if ratings from all 
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of them are available (r8 to r10), then they will all participate in the final reputation 
estimation. To this end, if one of them is missing, then the other two are combined, 
whereas if just one category is available, then just that will be taken into account. 

r8:  participate(agent→?a, trustee→?x, rating→?id_ratingAX) :=  
   count_pr(agent→?a, trustee→?x, rating→ ?id_ratingAX). 
r9:  participate(agent→?a, trustee→?x, rating→?id_ratingKX) :=  
  count_kr(agent→?a, trustee→?x, rating→ ?id_ratingKX). 
r10:  participate(agent→?a, trustee→?x, rating→?id_ratingSX) :=  
  count_sr(agent→?a, trustee→?x, rating→ ?id_ratingSX). 

In the rest two theories, opinions from different categories conflict each other (con-
flicting literals), therefore the conflict is being resolved via adding superiority rela-
tionships. Specifically, personal opinion is the most important, and then comes 
friends’ opinion and then strangers’. We will present only the superiority relationships 
and we will not duplicate the rules. The conflict set (for both theories) is: 

C[participate(agent→?a, trustee→?x)] =  
  { ¬ participate(agent→?a, trustee→?x) } ∪  
  { participate(agent→?a1, trustee→?x1) | ?a ≠ ?a1 ∧ ?x ≠ ?x1 } 

In the second theory, the priority relationship among the rules is based on the fact that 
an agent relies on its own experience if it believes it is sufficient, if not it acquires the 
opinions of others, much as do humans in real life.  

r8>r9>r10 

In the third theory, on the other hand, if direct experience is available (PRAX), then it is 
preferred to be combined with ratings from known agents (KRAX), whereas if it is not, 
HARM acts as a pure witness system. 

r8> r10, r9>r10 

3.3 Temporal Defeasible Logic Extension 

Since agents may change their objectives at any time, in dynamic environments such 
as MASs, evolution over time is important and should be taken into account in a trust 
model. For instance, a typical dishonest agent could provide quality services over a 
period to gain a high reputation score, and then, profiting from that high score could 
provide low quality services. Hence, in the temporal extension of HARM, each rating 
and each conclusion has time duration. To this end, we represent each rating as a per-
sistent temporal literal and each rule conclusion as an expiring temporal literal of 
TDL. Hence, the rating records are always there, in the model’s authority, but only 
the latest ratings (latest time offsets) will participate in the estimation, providing up-
to-date reputation estimation. The truster’s rating (r) is fully expressed below (it is 
active after time_offset time instances have passed and is valid thereafter):  

rating(id→value1, truster→value2, trustee→ value3, validity→value4,  
completeness→value5, correctness→value6, response_time →value7,  
confidence→value8, transaction_value→value9)@time_offset.  
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To this end, the rules presented in the previous section are modified accordingly. Each 
rating is active after t time instances have passed (“@t”) whereas each conclusion has 
a duration (“:duration”). Additionally, each rule has a delay which models the delay 
between the body and the head, indicating the delay between the cause and the effect. 
For instance, rule r1, which defines that ratings with high confidence and transaction 
values will be taken into account in the reputation estimation, is modified accordingly 
as presented below. In particular, a valid rating (t<tcurrent) that has confidence and 
transaction values greater than or equal to user’s thresholds will be considered availa-
ble for a specific time period (count_rating:duration). 

r1: count_rating(rating→?idx, truster→?a, trustee→ ?x):duration := delay  
  confidence_threshold(?conf), transaction_value_threshold(?tran),  
  rating(id→?idx, confidence→?confx, transaction_value→?tranx) @t,  
  ?confx >= ?conf, ?tranx >= ?tran. 

The rest of the rules, r4 to r10, are also modeled in TDL. For instance, rule r5, that 
distinguishes ratings reported by the agent itself (direct experience), is presented be-
low. In other words, a valid rating (t < tcurrent), that fulfills the participation restrictions 
(count_rating:duration) at a specific time period (duration), is recognized as valid 
direct experience (count_prAX:duration) in that period if so. 

r5: count_prAX(agent→?a, truster→?a, trustee→?x, rating→?id):duration :- delay 

  count_rating(rating → ?id, truster→?a, trustee→ ?x):duration, 
  rating(rating → ?id, truster→?a, trustee→ ?x)@t.  

4 Evaluation 

In order to use and evaluate HARM, we implemented the model in EMERALD [16], 
a framework for interoperating knowledge-based intelligent agents in the SW. It is 
built on JADE [2], a reliable and widely used multi-agent framework. The main ad-
vantage of EMERALD is that it provides a safe, generic, and reusable framework for 
modeling and monitoring agent communication and agreements. Among others, 
EMERALD proposes the use of Reasoners [17]. Reasoners are agents that offer rea-
soning services to the rest of the agent community. A Reasoner can launch an associ-
ated reasoning engine, in order to perform inference and provide results. Currently, 
the framework supports among others four Reasoners that use defeasible reasoning, 
among them is the DR-Reasoner (based on DR-Device defeasible logic system [1]), 
the defeasible reasoner that was used for the evaluation.  

Furthermore, since HARM is a centralized reputation model we implemented an 
agent, called HARMAgent, which acts as the central authority and is responsible for 
collecting, storing, and keeping the reports safe and available. However, since, cur-
rently, there is no available temporal defeasible logic inference engine to deploy di-
rectly our temporal defeasible trust model, we transformed our rule-based model into 
straightforward defeasible logic rules, using temporal predicates in order to simulate 
the temporal semantics. For the evaluation purposes, we use a testbed designed in [11] 
with slight changes, adopted from [12] and previously also used in [18]. Mention that, 
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we preserved the testbed design and the evaluation settings in order to compare the 
evaluation conclusions. Below, a description of the testbed is given, and next the me-
thodology and the experimental settings for our experiments are also presented. 

The testbed environment for evaluating HARM is a multi-agent system consisting 
of agents providing services and agents that use these services. We assume that the 
performance of a provider (and effectively its trustworthiness) is independent from 
the service that is provided. In order to reduce the complexity of the testbed’s 
environment, it is assumed that there is only one type of service in the testbed and, as 
a result, all the providers offer the same service. Nevertheless, the performance of the 
providers, such as the quality of the service, differs and determines the utility that a 
consumer gains from each interaction (called UG≡utility gain).  

Each agent interaction is a simulation round. Events that take place in the same 
round are considered simultaneous. The round number is used as the time value for 
events. In HARM, if a consumer agent needs to use the service, it can contact the 
centralized authority in order to be informed about the reputations of the provider 
agents. The consumer agent will select one provider to use its service, the one with 
the highest value of reputation (fig. 2). The selection process relies on the trust model 
to decide which provider is likely to be the most reliable. Consumer agents without 
the ability to choose a trust model will randomly select a provider from the list. 

 

Fig. 2. HARM transaction steps 

Firstly, the consumer agent selects a provider, then, it uses the service of the se-
lected provider and gains some utility from the interaction (UG). The value of UG 
varies from −10 to 10 and it depends on the level of performance of the provider in 
that interaction. A provider agent can serve many users at a time. After an interaction, 
the consumer agent rates the service of the provider based on the level of performance 
and the quality of the service it received. It is assumed that all agents exchange their 
information honestly in this testbed. This means an agent (as a witness) provides its 
true ratings as they are without any modification. 

The testbed in each experiment is populated with provider and consumer agents. 
Each consumer agent uses a particular trust model, which helps it selecting a provider 
when it needs to use a service. In this evaluation, we used HARM, T-REX [18], 
SETM [15], and NONE (no trust mechanism). The only difference among consumer 
agents is the trust models that they use, so the utility gained by each agent through 
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simulations will reflect the performance of its trust model in selecting reliable provid-
ers. Hence, the testbed records the UG of each interaction with each trust model used. 
In order to obtain an accurate result for performance comparisons between trust mod-
els, each one will be employed by a large number of consumer agents. 

Table 1. Experimental Setting 

Number of simulation: 500 / Number of providers: 100 

Good providers 10 

Ordinary providers 40 

Intermittent providers 5 

Bad providers 45 

 
After 500 simulations and 100 participants, as in [12][18], (Table 1 displays the 

setting), we figured out that the performances of T-REX, as expected, is essentially 
the same as in [18]. The performances of SERM, which is based just on the weighted 
sum of the relevant ratings is considerably low, whereas the performance of the 
NONE group, formed by selecting providers randomly without any trust evaluation, 
is, also as expected, consistently the lowest. The rest of the groups, based on centra-
lized mechanisms, were able to gather ratings about all interactions in the system. 
This allows agents using them to achieve higher performance right from the first inte-
ractions (Table 2 displays the average UG per interaction).  

Table 2. Average UG per interaction 

HARM 5.73 

T-REX 5.57 

SETM 2.41 

NONE 0.16 

CR 5.48 

SPORAS 4.65 

 
Furthermore, experiments with the same setting, presented in [12], have shown that 

the SPORAS [26] and Certified Reputation (CR) [12] are beneficial to consumer 
agents, helping them obtain significantly high UG. This means that the tested trust 
models can learn about the provider’s population and allow their agents to select prof-
itable providers for interactions. In contrast, since each provider only shows a small 
number of ratings to agents using CR, they spend the first few interactions learning 
about their environment. The slightly higher performance of HARM, is because it is a 
centralized model (like T-REX) and, thus, able to gather much more information than 
decentralized models additionally to using a dynamic (defeasible) reputation estima-
tion mechanisms. Furthermore, HARM could not be used to its full potential due to 
lack of a temporal defeasible inference engine. This is, also, the reason for the almost 
similar performance between T-REX and HARM. 
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5 Related Work 

Trust and reputation are key ingredients to most multi-agent systems and as a result 
many different metrics have already been proposed. SPORAS [26] is one of the most 
notable of these models. In this model, each agent rates its partner after an interaction 
and reports its ratings to the centralized repository. The received ratings are then used 
to update the global reputation values of the rated agents. In SPORAS, new agents 
start with a minimum value; later, reputation values are updated according to the 
feedback provided by other agents that are involved. Both in HARM and SPORAS 
ratings are discounted over time, so that the most recent ratings weigh more in an 
agent’s reputation evaluation. Moreover, both models use a learning formula for the 
updating process so that the reputation value can closely reflect an agent’s perfor-
mance, at any time. However, SPORAS has limitations and, as a result, it is not as 
dynamic as HARM that uses nonmonotonic logic, much like humans’ logic. Further-
more, in SPORAS newcomers are not supposed to be reliable and the other agents do 
not trust them easily. On the other hand, our approach overcame the problem by eva-
luating new agents with a neutral rating value. 

Certified Reputation [12] is a decentralized reputation model involving each agent 
keeping a set of references given to it from other agents. In this model, each agent is 
asked to give certified ratings of its performance after every transaction. The agent 
then chooses the highest ratings and stores them as references. Any other agent can 
then ask for the stored references and calculate the agent’s certified reputation. This 
model overcomes the problem of initial reliability in a similar way with HARM. 
However, opposed to our approach, this model is designed to determine the access 
rights of agents, rather than to determine their expected performance. Furthermore, it 
is a witness-based model, whereas HARM combines both witnesses and direct expe-
rience, providing a rule-based methodology to deal with the discrimination issue. 

T-REX [18] is a centralized reputation model presented by the authors of this pa-
per. It is a hybrid agent trust model based on both witness reputation and personal 
experience, similar to HARM. However, HARM uses a knowledge-based time-related 
defeasible theory (using temporal defeasible rules) for the decision making process, 
whereas T-REX depends on a static user’s opinion (provided weights at startup). Ad-
ditionally, they both deal with the time issue using a similar philosophy, but with a 
totally different approach. T-REX is based on a monotonic approach, where all past 
ratings are taken into account, although they lose their importance through a linear 
extinguishing function over time. In T-REX, a time stamp is used to organize the 
ratings: ratings with a higher time stamp are considered more important as they refer 
to more recent evaluations. On the other hand, HARM is based on a rule-based non-
monotonic approach, where ratings are considered more like expiring records. In 
HARM, each rating is characterized by a time offset property, which indicates the 
time instances that should pass in order to consider the rating active. Additionally, 
each rating counts only for a time duration, since the rules used in the decision mak-
ing process characterize them valid only for a specific amount of time. Hence, HARM 
takes into account only ratings that fulfill the above restrictions, which reflect a more 
realistic opinion similar to human logic. Comparing, these two models, we believe 
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that HARM improves T-REX’s approach by providing a novel knowledge-based 
mechanism that improves effectiveness and intuitiveness and that is more related to 
the traditional human reasoning for assessing trust in the physical word. 

6 Conclusions and Future Work 

This paper presented HARM, a hybrid, rule-based reputation model which uses tem-
poral defeasible logic in order to combine interaction trust and witness reputation. 
HARM provides a stable and reliable estimation mechanism, under a centralized ad-
ministration authority, overcoming the difficulty to locate witness reports. It is based 
on well-established estimation parameters [3][4], such as information correctness, 
completeness, and validity, as well as agent’s response time. One of the main advan-
tages of HARM is its ability to simulate human thinking and decision making. It is the 
first model that uses knowledge, in the form of defeasible logic, explicitly in order to 
predict agent’s future behavior. Furthermore, its mechanism can be adopted in any 
multi-agent system in the Semantic Web, such as JADE. This paper also provided an 
evaluation of the model’s performance and a comparison with four other models.  

As for future directions, first of all, we plan to analyze and integrate TDLParser, a 
temporal defeasible reasoning engine presented in [25], in EMERALD, or extend the 
DR-Device defeasible logic system [1] to handle temporal modalities. Next, we plan 
to evaluate our model using TDLParser or the enriched DR-Device system and com-
pare our model’s performance with other centralized and decentralized models from 
the literature, in order to estimate its performance more accurately. Finally, it would 
be interesting to combine HARM and T-REX or even develop a distributed version of 
HARM and verify its performance in real-world e-commerce applications, combining 
it also with Semantic Web metadata for trust [5][6].  
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Abstract. The issue of e-Maintenance, i.e. the remote maintenance of
devices, is more and more important as the loose-coupling between cen-
ter of competencies and productions sites is increasing. Maintenance op-
erators have to know procedures for all devices they are in charge of.
Whispering possible interactions to operators when they operate could
ease their task and increase their productivity. In this paper, we propose
to model maintenance procedures (therefore sequences of actions of hu-
man operators) using the Semantic Web standards. The system can infer
the possible next actions from the human operator, and assist him by
suggesting the next operation steps. An analysis of the use’s trace is also
proposed in order to hint operators on improvements in his processes.

Keywords: Semantic Web, Sequences, Rules, Human Computer
Interface.

1 Introduction

1.1 Computer-Aided Maintenance

Online engineering refers to the ability to perform remote operations on real
devices over the Internet. In the field of Computer-Aided Maintenance (hence-
forth CAM), online engineering help industries to execute maintenance proce-
dures on remote devices. Production and industrial maintenance sites rely on
highly qualified technicians and staff. The latter are responsible for many as-
sembly/disassembly operations, calibration, etc. These human operators are ex-
pected to understand and memorize a large panel of procedure steps, in a specific
order. Moreover, moving to the production site presents several issues (cost, risk,
etc.). As a consequence, a first maintenance operation is usually performed at
distance.
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Learning and being able to reproduce the full catalog of maintenance opera-
tions can be a difficult task. The complexity of this task is also rapidly exploding
since the number of devices operated by a single human operator increases when
these devices can be operated remotely. CAM systems must provide a formalism
to express such procedures in order to ease operators actions and increase their
productivity. In our point of view, on the Human Computer Interface (HCI) side,
the CAM systems must also provide indications on which action has been made
and ”whisper” to the operator the next possible actions in the maintenance pro-
cedures. The aim is to limit the number of human errors, as well as increasing
the efficiency (time spent, quality, etc.) of the maintenance process.

1.2 Use Case Scenario

In order to illustrate our proposition, we put forward the following scenario. Alice
is a technician working in a manufacture. Her device presents several malfunc-
tions. She calls Bob who is an operator in a company performing maintenance
services. In order to decrease the maintenance service cost, Bob first runs remote
operations on the device to avoid in situ maintenance, if possible. But since Bob
conducts maintenance on several devices for different companies, he does not
know by heart all the procedures for all the machines. He uses the CAM system
provided by his company to run the supervision that includes all the procedures
for the many devices he is in charge of.

This scenario implies several issues.

– Procedure formalism. The CAM system must provide a formalism to describe
procedures.

– Business Logic. The business logic determines which procedure is being per-
formed and what are the next possible actions. This logic must be loosely-
coupled with any programming language in order to be fully reusable.

– Analysis. The CAM system should provide tools to analyze actions that have
been made by the operators, in order to propose improvements..

In this paper, we propose a framework to express maintenance procedures based
on Semantic Web technologies. A rule-based engine provides the context logic
to indicate the operator which next possible actions can be made according to
the current procedures. The paper is organized as follows. Next section presents
the related work. Section 3 introduces the general architecture of our solution.
Section 4 details the implementation of our proposition. Section 5 concludes and
indicates future works.

2 Related Work

In the literature, many e-Maintenance systems are built on top of Semantic
Web technologies [1]. They provide a high level abstraction and description of
resources. Coupled with rules engines, they offer reasoning capacities. In [2],
the authors propose a complete conceptual framework for e-Maintenance. This
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framework helps designing e-Maintenance applications using five abstractions
levels such as strategic vision, business processes, organization, service, data
structure, and IT infrastructure. The sequences are designed as workflows. The
framework does not describe the formalism of the sequences and the way to help
operators in maintenance operation.

In [3], the authors propose a user model based on ontologies. This model is
used to characterize users in order to adapt Web application using rules. They
designed and implemented a rule-driven agent, which tries to capture interesting
patterns of user-system interactions. This approach is user-centred but not on
processes of pre-defined actions.

In [4], the authors want to provide a framework for personalized e-learning
system. The goal is to adapt the system depending on user context. This frame-
work is using ontologies and rules.

In [5], the authors propose a system to monitor and interpret sequential ac-
tivities in e-learning environments. Their system is based on pattern mining and
data clustering. The goal is to offer a personalization of e-learning services based
on the results of the analysis. Sequences are represented using Discrete Markov
Models. This approach is interesting for e-learning processes since the system is
able to determine if users have successfully completed the problem.

3 General Architecture

Rules engines enable a loose-coupling between business rules and programming
components. It entails a high level of portability and reuse.

By sequences we imply an ordered list of actions on a HCI that compose a
procedure. The usage of Semantic Web technologies to describe sequences of
actions for e-Maintenance is motivated by the interoperability they provide, the
detachment on specific programming language and mainly the reasoning they
provide through rule languages.

In this section, we explain the general architecture of our proposition. It is
illustrated in Figure 1 in a form of a middleware. The procedure expert edits
the sequences of actions that are serialized in the Knowledge Base (KB). The
operator sends actions to the middleware through the HCI’s widgets. The Pro-
cessing Blocks (PB) interprets the actions. It requests the KB through SPARQL
Protocol and RDF Query Language (SPARQL) queries, which are the current
possible sequences based on previous inferences. PB also put the new action to
be the current one in the KB. The Reasoner Bloc (RB) infers which are the next
possible interactions according to sequences rules and the Notification Block
(NB) pushes the results to the HCI.

We take the following example:
Let {Ai} be interactions made on a HCI through widgets. Let {Sj} be se-

quences of interactions pre-determined and serialized in the system. Sj is an
ordered list of actions Ai.

Let’s assume that :

S1 = {A1, A2, A3} and S2 = {A1, A2, A4}. (1)
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Fig. 1. General architecture

The operator sends the action A1. The system whispers that the next possible
action recorded is A2 in sequences S1 and S2. The widget corresponding to
A2 is highlighted in the HCI. The operator then sends A2. In S1 and S2, the
next actions are respectively A3 and A4, and the corresponding widgets are
highlighted in the HCI.

Back to our use case, Bob has now finished to perform maintenance operations
on Alice’s device. Let’s T be the trace of Bob’s actions. An example of T could
be :

T = {A3, S3, S5, A3, A3, S1, ...} (2)

where Ai is an action on the CAM system’s HCI and Sj is a sequence of actions
recorded in the system. Let’s assume that in the Business rules of his company:

S5 ≡ S3 and Card(S5) � Card(S3) (3)

The system should notify Bob that he performed one or several useless and/or
suboptimal actions in the maintenance procedures. In order to realize it, the full
use’s trace of Bob has to be serialized in the system before being analyzed.

Since the system could be used by somebody else than Bob, the use’s trace
need to contain the name of the operator. The system could also be collaborative,
i.e. Bob could be using the system in the meantime with James that has other
competencies for the task. The analysis of the trace can thus give details on the
full remote operation but also details on a single operation.

4 Implementation

4.1 Actions as RDF Resources

RDFS proposes in its core components rdfs:Container such as rdf:Alt, rdf:Bag,
rdf:Seq. They are used to describe group of things. Using rdfs:Container allows
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the granularity of expressing compositions of ordered lists and choices of actions,
with the power of Semantic Web tools. We define an action as a RDF resource.
This resource has 4 properties: isCurrent, isNext, isVerified and hasName. The
three first ones are XML Schema boolean datatypes, whereas the third one is a
XML Schema normalizedString datatype:

– isCurrent: defines if an action is the current one (i.e. if this action is the one
being applied).

– isNext: defines if an action is the following one to another. Its value is de-
termined by the rules engine, as explained in the following section.

– isVerified: defines if an action has already been called in the sequence.
– hasName: defines the name of the action.

The full sequence is then a composition rdf:Seq, which represents the sequences
of actions to perform, and rdf:Alt that represents a choice between actions (e.g.
A3 or A4). A literal value is predicated to the rdf:Seq in order to identify the
device.

As framework, Jena seems a good compromise between its RDF graph frame-
work and its reasoner capacities, based on Datalog and RETE [6]. The RDF
graphs are stored in Joseki1, an HTTP engine that supports SPARQL and
SPARQL/Update protocols.

4.2 Reasoning for Interactions Hints

The main goal of the rule engine is to determine the possible actions following
the current one and depending on the previous ones. Rules can be described as
the following pseudo-code inside a sequence:

PREFIX:

xsd: http://www.w3.org/2001/XMLSchema#

widg: http://ocelot.ow2.org/2012/Sequence/Actions/Widget#

if {item_{m}, widg:isCurrent, ’true’^^xsd:boolean}

and if {item_{m-n}, widg:isVerified, ’true’^^xsd:boolean}

then

{item_{m+1}, widg:isNext, ’true’^^xsd:boolean}

if the item (m+1) in the sequence has rdf:Alt type, we need to put all its elements
at next also. In order to verify the triple described above, we implemented custom
built-ins in the Jena rule-engine. This built-in is in the form hasNext(?seq, ?x,
?y). It verifies that {seq rdf:_(n) x} and {seq rdf:_(n+1) y} and that the
previous actions in the sequences have been validated.

Following the Open World Assumption, the reasoning system, based on Jena
rules engine, may accept new facts that might contradict previous ones. KB
revision could be a solution in order to keep consistency. Some works have been
conducted in this field such as in [8] and [9]. In [8], the authors introduce an

1 http://www.joseki.org/

http://www.joseki.org/
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annotation approach for prioritizing rules over the remaining ones, in order to
prevent contradiction clashes. The authors of [9] submit a system that maintains
the internal state of DL reasoners. But this topic is beyond the scope of this
article. In order to revise the KB and keep consistency, we therefore decided to
remove old assertions and replace them with new deducted ones when a clash
occurs.

Once the following actions are determined, the system pulls the ”whispers”
to the client application using the WebSocket protocol2.

4.3 Use’s Trace

We also decided to record traces using rdf:Seq for the same above-mentioned
reasons. Each recorded action is identified by its name and by the person who
made that action.

The use’s trace can thus easily be analyzed using pattern matching algorithm
such as SuffixTree [10] in order to determine which actions and/or sequences
have been made, and by whom.

The RDF resources representing the sequences need a property to express
equivalency in order to propose improvements to the operator. A disadvantage
using RDF against OWL is that RDF does not provide support for symmetric
properties. Whence, when designing sequences, we need to explicitly express that
Si ⇒ Sj and Sj ⇒ Si. If the system determines that S5 appears in the use’s
trace of Bob, the system can notify Bob that he should be considering using S3

instead. Again, the rules engine is responsible for doing those assumptions. The
analysis of use’s trace is available in our system through a RESTful API.

5 Conclusion and Future Works

The presented work is part of a global open source project: the Open Collabora-
tive Environment for the Leverage of Online insTrumentation, OCELOT3. The
goal of the OCELOT framework is to give a high level of interoperability and
reuse in the building of online laboratories. It also tries to bring collaboration
and group awareness using communication tools and notifications mechanism
[11]. This project is hosted by the OW2 forge and is available under the LGPL
license.

The ”whispering” system presented is integrated in the whole OCELOT frame-
work as a middleware component. This component predicts and hints users on
their interactions on HCIs based on pre-defined sequences of actions. Those se-
quences are modeled using RDF resources and mainly rdf:Seq elements. A rules-
based engine based on Datalog and RETE implemented in the Jena framework
determines following interactions. A notification block based on WebSockets
pushes the determined interactions to the client application that is responsible
for giving feedbacks to the operator. The system we propose is also capable of

2 http://tools.ietf.org/html/draft-hixie-thewebsocketprotocol-76
3 http://ocelot.ow2.org.

http://tools.ietf.org/html/draft-hixie-thewebsocketprotocol-76
http://ocelot.ow2.org.
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making basic analysis on the use’s trace and recommending improvements to the
operator.

Future works will consist in building a graphical Web interface to build such
sequences for non-programmers experts and in improving afterward analysis of
use’s trace. Afterwards, users tests will be conducted.
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Abstract. In this paper, the idea of providing personalized, location-based 
information services via rule-based policies is demonstrated. After a short 
introduction about related technologies and approaches, an innovative 
Personalized Location Information System (PLIS) is designed and implemented. 
PLIS delivers personalized and contextualized information to users according to 
rule-based policies. More specifically, many categories of points of interest (e.g. 
shops, restaurants) have rule-based policies to expose and deploy their marketing 
strategy on special offers, discounts, etc. PLIS evaluates these rules on-the-fly 
and delivers personalized information according to the user’s context and the 
corresponding rules fired within this context. After discussing the design and the 
implementation of PLIS, illustrative examples of PLIS functionality are 
presented. As a result, PLIS proves that combining contextual data and rules can 
lead to powerful personalized information services. 

Keywords: RuleML, Rules, Location Based Services, Context, Points of 
Interest, Jess. 

1 Introduction 

1.1 Rules and Policies 

Rule-based policies are an important sector of our everyday life. They are used 
consistently by various types of businesses (or in general, Points of Interest-POI in 
our Location- based context), not only to deploy their marketing strategy, but also to 
expose them to the public in a comprehensible manner. A constraint is that, such kind  
of policies, have to be translated into a computer understandable language, in order 
to be executed and adopted by an information service [1]. As a result, a general rule 
language is needed for this purpose. 

After various initials efforts in conventional languages [1], RIF was adopted as a 
general rule language [2] by the World Wide Web Consortium (W3C). RIF was 
influenced by a previous but still ongoing rule standardization initiative called 
RuleML [3]. RuleML is a family of sublanguages which are used to publish rules on 
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the web [4] and their main objective is to provide a useful rule markup approach for 
semantic web applications [5]. RuleML was widely accepted by scientific community 
and it was chosen as a general technology for various reasons. First of all, it is a 
powerful markup language (XML with a predefined Schema) which supports various 
types of rules such as deductive, reactive and normative [1]. As an XML-based 
language, RuleML addresses the issues of interoperability and flexibility among 
different systems on the web, by allowing rules to be encoded in a standard way [1, 6]. 
Last but not least, beyond representation, rules need to be translated to an inference 
engine (such as Jess, Drools, Prova, etc.) in order to be executed by a machine [7-9].  

1.2 Location-Based Services and Related Work 

On the other hand, the technological revolution on Smartphone’s capabilities and 
related technologies, such as semantics, made Location Based Services (LBS) very 
popular and led to a huge growth [10-13].They are used daily by millions of people 
for e.g. for navigation, for tracking, even in emergency situations [10]. 

LBS user’s environment changes continuously, so it is really important for 
successful LBS to deliver up-to-date personalized and contextualized information to 
user [14-18]. Researchers and industries are working in various sectors to evolve 
such services. Approaches related to the service proposed in this paper are described 
below.  

Latest LBS combine semantics (ontologies, rules) with smartphone’s capabilities 
(GPS, sensors) tο  deliver contextualized information [19-21]. Many approaches also 
use social media data for personalized POI recommendations [22,23]. Another 
interesting sub-sector of LBS is mobile search optimization. Up to date LBS offer 
high quality mobile search capabilities by personalizing query results or search tag 
recommendations [24-26].  

1.3 Motivation-Overview 

The aim of the work presented to this paper is to combine semantics with location 
information services to deliver personalized and contextualized information to users. 
A system called “PLIS - Personalized Location Information System” was 
implemented for this purpose.  

Our proposed system uses semantics due to the fact that a) these technologies are 
improving knowledge sharing and interoperability between systems and b) these 
technologies are well-suited for the representation of various policies, that is suitable 
for our case. Moreover, a rule-based approach was followed for PLIS implementation, 
so as to enable higher quality context perception. Rule-based systems are capable of 
understanding context changes and responding accordingly with intelligence to 
different situations without user intervention. Such systems are more autonomous [27, 
28]. Concerning the adoption of RuleML, except from the general advantages referred 
previously (interoperability, flexibility, rules representation), it fits perfectly to our 
case for another reason. Because of the fact that PLIS users are capable of adding 
rules at run-time, an xml-based user friendly language is desirable.  

PLIS could be easily combined with most of the existing approaches. On the 
other hand it is different because it enables a dynamic rule base by offering users the 
option to add rules at run time. Next section demonstrates the general idea, the design 
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and the implementation of the system. In section 3, PLIS’s functionalities become 
clear by the use of an illustrative an example. Finally, section 4 concludes the paper 
and discusses future directions. 

2 Design and Implementation 

PLIS provides a general interface for connection between POI owners and potential 
customers-users. In everyday life, many points of interest are businesses (for 
example restaurants), and as businesses, they have a rule-based policy in order to 
deploy their specific business or marketing strategy (for example a restaurant offering 
a free meal to children under 10 years old on Fridays).  The general idea is to 
combine POI’S rule-based policies with user’s context to deliver personalized, up-to-
date information. Every time a user logs into the system to search for a point of 
interest, PLIS gets user’s context, evaluates the rules associated with nearby POIs 
and delivers personalized information to user, depending on the rules fired. The 
personalized information is presented to the user on the well known Google Maps 
(http://maps.google.com). The general design of PLIS is illustrated in Figure 1. 

 
Fig. 1. PLIS design 

Various types of rules related to user context are supported by the system. PLIS 
vision is to be able to implement every possible rule, given that there is flexibility in 
the schema of the data kept by the system or even linked data found in the web. PLIS 
currently is able to handle rules concerning user’s occupation (e.g. a restaurant offers 
discount to   students), gender, age, location (e.g. a coffee shop decreases prices for 
users who are less than 200 meters away) and time. To be more specific, PLIS 
possesses the following functionalities (see figure 2, each operation has a number 
indicating the corresponding step): 

 A: User’s Registration: 
 ─ A1. User registers to the system by completing a registration form so as PLIS to 
build a profile (registration time user). 
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   ─ A2. User profile data such as first name, last name, occupation, gender, age, city, 
state, e.t.c are stored in the database. 

B: Insertion of Points of Interest 
  ─ B1. User is able to insert his own POI’s (via JSP server) accompanied by their 
own rule based policy. Because this policy can change e.g. by antagonism, the 
authorized editing of the corresponding rule base is allowed by the POI’s owners. 
  ─ B2. All the data concerning the POI accompanied by its rules, are saved to the    
corresponding database. 

C: Presentation of Personalized information 
To present the personalized information to the end user, the following steps are 
made: 

•  Step C1: 

─a. After registration, user is able to log into the system.  
─b. System checks user profile database for authentication. 

•  Step C2: JSP collects user context (profile, location, time,day). (run time user). 
•  Step C3: 

─a. For every POI, rules (if any) are being fetched (by JSP), along with relevant 
attribute values (for example price, etc). 
─b. Rules (after being transformed as shown above), POI data and user context 
attribute values are asserted to the Jess rule engine. 

• Step C4: Jess rule engine evaluates rules using the asserted facts and updates 
POIs’ attribute values according to the rules fired depending on user’s context. The 
new values are fetched by JSP. 
• Step C5: Finally, data transfer to client is performed for visualization and 
personalized information provision. 

 

Fig. 2. System operation process 
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To implement PLIS, the use of Reaction RuleML for rules representation is a 
clear choice based on the discussion in section 1. This subcategory of RuleML was 
chosen because such kinds of policies are usually represented by production rules and 
Reaction RuleML is up to that task [29]. Jess was chosen as an inference engine 
because of the fact that it is a lightweight rule engine and connects well with 
standard web technologies which were needed for PLIS system implementation (JSP, 
html, Javascript). To merge the two above design choices (RuleML and Jess), a 
transformation from rules in RuleML format to Jess rules is needed. This was done 
by developing such a transformation using XSLT technology [30]. For example in 
figure 3, the rule “if a person is a student, discount price 20% and store the new 
offer” is represented a) in Reaction RuleML and b) in Jess, with the transformation 
from a) to b)  to be made by the use of our developed XSLT file. 

 
RuleML representation   
 <RuleML… 

xsi:schemaLocation="http://www.ruleml.org/0.91/
xsd http://ruleml.org/reaction/0.2/dr.xsd "> 
<Assert> 
<Rule style="active"> 
<label>student_discount</label> 
<if> 
<And> 
<Atom> 
<Rel>person</Rel> 
<slot> 
<Ind>pid</Ind> 
<Var>x</Var> 
</slot> 
<slot> 
<Ind>occupation</Ind> 
<Ind>student</Ind> 
</slot> 
</Atom> 
<Atom> 
<Rel>service</Rel> 
<slot> 
<Ind>sid</Ind> 
<Var>y</Var> 
</slot> 
                                       Continued here  

 
 
 
 
 
 
<slot> 
<Ind>price</Ind> 
<Var>p</Var> 
</slot> 
</Atom> 
</And> 
</if> 
<then> 
<Equal> 
<Ind>offer</Ind> 
<Expr> 
<Fun>discount</Fun> 
<Var>p</Var> 
<Data>0.2</Data> 
</Expr> 
</Equal> 
</then> 
</Rule> 
</Assert> 
</RuleML> 

 

Jess equivalent after transformation 
(defrule student_discount 
(person (pid ?x)  
(occupation student)) (service(sid ?y) (price ?p) ) 
=>(store offer (discount ?p 0.2))) 

Fig. 3. Rule representation in Reaction RuleML and Jess 
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3 Demonstration of PLIS 

The PLIS capabilities are demonstrated, based on data from various POIs of the city 
of Thessaloniki, Greece that are also accompanied by rules specifying the marketing 
policy of the POI. Two different user profiles are used as an example (Table 1).  

Table 1. Two different user profiles 

Profile Environment

 Name Occupation Gender Age Time Day Location 
User A Bob Student Male 22 22:45 Thursday Location  A 
User B Mary Unemployed Female 35 19:10 Friday Location B 

On the other hand, except from the above profiles, a random place from the 
database selected for testing (Table 2). Table 2 shows default values for attributes 
‘average price per person’ and ‘minimum order’ and also the rules attached to this 
place. 

Table 2. A random place chosen for demonstration 

Name of 
Place 

Average 
price per 

person (€) 

Minimum 
order (€) Rule 1 Rule 2 

Pasta 
Pizza 

10 5 

Decrease minimum 
order 20% for 

students which are 
closer than 200m 

after 22:00 

Discount average 
price  10% for  
unemployed  
women on 

Fridays 

 
For demonstrating better the capabilities of PLIS, a scenario about User A and B 

will be  presented. 

Scenario. As soon as “Bob” (User A) logs into PLIS, rule 1 is fired for place A 
(because he is a student, assuming his distance from place A is closer than 200m and 
time is after 22:00 o’clock). Considering this rule, minimum order for Bob is 20% 
less (4€) for this place. PLIS evaluates rules and delivers personalized information to 
Bob (Figure 4). Similarly, when user B (Mary) logs into the system, one rule (rule 2) 
is fired for place A (because Mary is an unemployed woman and current day is 
Friday). Taking these under consideration, average price per person for Mary at place 
A is 10% less (9€). The delivered information to Mary is illustrated in figure 5. 
This scenario illustrates how the delivered information is displayed to the end user 
and the capabilities of PLIS representing rules concerning a) gender, b) day c) 
location d) occupation, e) time  and f) a non-applicable rule case (rule 1 for user B, 
rule 2 for user A). 
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4 Conclusions and Future Work 

Embedding rules to location-based information systems can offer a boost to the 
quality of delivered information. By developing PLIS, the viability of this idea was 
clearly demonstrated. Moreover, a capability of adding rules on the fly can not only 
lead to powerful, autonomous and intelligent services, but also to the evolution of 
these services. Experimental testing, confirmed PLIS evolution (as soon as more 
rules added to the system) without developers intervention. 

PLIS implementation can evolve in various ways. First of all, because of the fact 
that POI owners are unfamiliar with RuleML, a convenient (probably visual) RuleML 
editor could be embedded [31]. Furthermore, in our future plans is to use OWL and/or 
RDF data (as in linked data) to represent user profiles and POI related information, 
for greater flexibility. Moreover, a mobile application e.g. for a Smartphone, can be 
implemented and integrated with the native context sensing devices (e.g. GPS). 

 

         

       Fig. 4. Information for user “Bob”                 Fig. 5. Information for user “Mary” 
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Abstract. As an extension to decision tables, Semantic Decision Tables (SDTs)
are considered as a powerful tool of modeling processes in various domains. An
important motivation of consuming SDTs is to easily validate a decision table
during the Validation and Verification (V&V) processes. An SDT contains a set of
formal agreements called commitments. They are grounded on a domain ontology
and considered as a result from group decision making processes, which involve a
community of business stakeholders. A commitment contains a set of constraints,
such as uniqueness and mandatory, with which we can analyze a decision table.
A vital analysis issue is to detect inconsistency, which can arise within one table
or across tables. In this paper, we focus on the formalization of the semantics
within one SDT using the Description Logic SOIQ(D). By doing so, we can
use existing reasoners to detect inconsistency and thus assist decision modelers
(and evaluators) to validate a decision table.

Keywords: Semantic Decision Table, Conceptual Modeling, Description Logics.

1 Introduction

An important analysis issue for decision tables is Validation and Verification (V&V [6])1,
the goal of which is to ensure the quality of the modeled decision rules. Validation is a
process of checking whether or not the decision rules are correctly modeled according
to certain meta-rules (or models). It has the requirements of building a right decision
table model. Verification is a process of confirming that the decision rules are correctly
built. It has the requirements of building a decision table right. V&V is a mandatory
step towards ensuring the consistency and correctness of a decision table. More specif-
ically speaking, validation is to ensure its consistency; and verification is to ensure the
correctness.

A Semantic Decision Table (SDT [19]) is a decision table containing semantically
rich meta-information and meta-rules. It has been studied and exploited in the EC FP7
Prolix project2, EC ITEA DIYSE project3 and other national projects, where it has
shown its usefulness in several real-life applications, such as tuning parameters of an
algorithm [18,21] and managing data semantics for smart home [16].

1 V&V is a general problem for business models, which cover decision tables as illustrated in
this paper, and other models like decision trees and Bayesian networks etc.

2 http://www.prolixproject.org/
3 http://dyse.org:8080/

A. Bikakis and A. Giurca (Eds.): RuleML 2012, LNCS 7438, pp. 224–239, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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An SDT allows rule modelers, knowledge engineers or evaluators to analyze a deci-
sion table using domain semantics. It contains a set of formal agreements called com-
mitments, grounded on a domain ontology, and, specified by a community of business
stakeholders (domain experts). A commitment specifies how to use a binary fact types
defined in the ontology. It can be 1) instantiation of a concept or a binary fact type,
2) a constraint, 3) selecting/grouping binary fact types from one or several contexts,
4) instantiation of a value for a concept if its value range is defined in a constraint, 5)
articulation, which is a mapping between a concept and the glosses defined in a glos-
sary, dictionary and thesaurus, 6) interpretation and implementation of role pairs, and
7) alignment of concepts within/across contexts.

The process of modeling commitments is also called “commitment grounding”. Dur-
ing this process, the domain experts (e.g., rule editors and business people) specify hid-
den rules and meta-rules of this decision table in the commitments, which can be stored
in Semantic Decision Rule Markup Language (SDRule-ML,[19]). SDRule-ML is based
on First-Order Logic Rule Markup Language (FOL RuleML4, [2]) and developed as a
markup language for ontology-based semantic decision support languages and models.

There are a few existing V&V approaches for decision tables. Shwayder [15] pro-
poses combining decision columns in a decision table in order to reduce redundancies.
Pooch [13] illustrates a survey on decomposition and conversion algorithms of translat-
ing decision tables in order to check for its redundancy, contradiction and completeness.
Vanthienen et al. [22] illustrate using PROLOGA5 (a decision table tool) to discover the
intra-tabular anomaly, which is caused by a cyclic dependence between a condition and
an action, and inter-tabular anomaly, which is caused by redundancy, ambivalence and
deficiency. Qian et al. [14] use the approach of approximation reduction to managing
incomplete and inconsistent decision tables. Incomplete and inconsistent decision ta-
bles are reduced into complete and consistent sub tables. Other related work can be
found in [7,8,11] .

Compared to their work, our approach is focused on using ontological axioms as the
meta-rules for validating a decision table. As an ontology is shareable and community-
based, the SDT validation process thus supports group activities in a nature way. De-
cision modelers and rule auditors share their common view through this process. By
doing so, misunderstanding is minimized and the cost is consequently reduced.

Inconsistency can arise within one decision table or across tables. In this paper, we
focus on the former situation. In our previous papers [17,20], we have studied how onto-
logical constraints can be directly used within one SDT and how RDFs/OWL constraints
can be mapped from/to SDRule-ML. Yet the formalization and semantics concerning
computational properties for validating an SDT remain unanswered, which becomes the
paper motivation and our main contribution. In addition, we need to point out that our
effort here is restricted to the process of validation in V&V. Verification is out of the
paper scope.

In this paper, we formalize the semantics within an SDT using the Description Logic
(DL) language SOIQ(D), which has an advantage of the availability of reasoning
algorithms and tools. The paper is organized as follows. Sec.2 is the paper background.

4 http:..ruleml.orf/fol
5 http://www.econ.kuleuven.be/prologa

http:..ruleml.orf/fol
http://www.econ.kuleuven.be/prologa
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The main contribution of this paper is illustrated in Sec.3. We illustrate the related work
and discuss the ideas in Sec.4. In Sec.5, we present the conclusion and our future work.

2 Background: SOIQ(D)

Description Logics (DLs) [1] are the family of knowledge representation languages
that can be used to formally describe knowledge of an application domain (also called
Domain of Interests−DoI). DLs have been well studied for many years before being
the underlying formalism of Web Ontology Language (OWL)6 recommended by W3C.

In DLs, knowledge of the Domain of Interests is modeled by a set of concepts and
relationships among those concepts. A simple concept, e.g. Room, Sensor, is viewed
as a set of individuals (also called instances or objects) that share common properties.
More complex concepts, e.g. Room� ∃has.Sensor read as: Room that has some Sen-
sor, are constructed from simple ones using roles has and constructors, e.g., � and ∃.

A Knowledge Base in a Description Logic often consists of two parts: TBox (ter-
minological part) and ABox (assertion part). TBox contains the definition of concepts
in a particular application domain, relationships between concepts, and additional con-
straints over those concepts. ABox is about facts of that domain and specified through
assertions that relate individuals to concepts and roles.

Description Logic languages are considered as decidable fragments of First Order
Logic (FOL) in such a way that concepts and roles correspond to unary and binary
predicate respectively, constructors correspond to logical implications. For examples,
in ALC , the most basic language of interest, one can write complex concept ,e.g.
¬C,C � D, ∃R.C, ∀R.C, using negation, conjunction, and quantifiers. SOIQ(D) is
an extension to ALC; its name indicates the following syntactic constructors:

– S: transitivity is added to ALC. We can express that a role is transitive.
– O: nominal. It allows us to construct a concept using a set of objects.
– I: inverse roles; r− is the inverse role of r.
– Q: Qualified number restriction. We can specify a cardinality constraint on a role

with the role filler.
– D: data types, e.g. String and Integer.

Table 1 shows the syntax and semantics in SOIQ(D). We choose SOIQ(D) be-
cause it is expressive enough for SDT and it has a good balance between expressive-
ness and computational complexity. Moreover, the Ontology Web Language (OWL2)
recommended by the W3C is based on SROIQ(D), which includes SOIQ(D). We
can use various existing tools for editing, e.g., Protégé7, and reasoning, e.g., Pellet8 and
Hermit9.

In what follows, we will show how to use SOIQ(D) to formalize semantics within
an SDT.

6 http://www.w3.org/tr/owl2-overview
7 http://protege.stanford.edu
8 http://clarkparsia.com/pellet/
9 http://www.hermit-reasoner.com

http://www.w3.org/tr/owl2-overview
http://protege.stanford.edu
http://clarkparsia.com/pellet/
http://www.hermit-reasoner.com
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Table 1. Syntax and semantics of SOIQ(D)

Syntax Semantics

Atomic concept A AI ⊆ ΔI

Top concept � �I = ΔI

Bottom concept ⊥ ⊥I = ∅
Nominal {d} {a}I = aI ; where a is an individual
Role R RI ⊆ ΔI ×ΔI

Transitivity trans(S) {(a, b), (b, c)} ⊆ SI → (a, c) ∈ SI

Negation ¬C (¬C)I := ΔI \ CI

Conjunction C 	D (C 	D)I := CI ∩DI

Disjunction C �D (C �D)I := CI ∪DI

Existential restriction ∃R.C (∃R.C)I := {d ∈ ΔI |there is
e ∈ ΔI : (d, e) ∈ RI and e ∈ CI}

Value restriction ∀R.C (∀R.C)I := {d ∈ ΔI |for all e ∈ ΔI :
(d, e) ∈ RI implies e ∈ CI}

Qualified number �nR.C (�nR.C)I = {d ∈ ΔI |
restriction (at least) card({e | (d, e) ∈ rI ∧ e ∈ CI}) ≥ n}
Qualified number �nr.C (�nr.C)I = {d ∈ ΔI |
restriction (at most) card({e | (d, e) ∈ rI ∧ e ∈ CI}) ≤ n}

where card(X) is the cardinality of a set X

3 Formalizing Semantics within a Semantic Decision Table

A decision table has three constituents: conditions, actions and decision rules [3]. Each
condition has a condition stub and a condition entry. A decision rule, which is repre-
sented as a table column, is a combination of a set of conditions and actions.

ConditionEntry � ∀has.(string � boolean � integer � float)
Condition � �1has.ConditionStub 	 ∃has.ConditionStub
Condition � �1has.ConditionEntry 	 ∃has.ConditionEntry
ActionEntry � ∀has.(string � boolean)
Action � �1has.ActionStub 	 ∃has.ActionStub
Action � �1has.ActionEntry 	 ∃has.ActionEntry

The above axioms describes the basic structure of a decision table according to [3]. A
decision rule cannot be modeled as an axiom in DLs, but can be modeled as a query.
Table 2 is an example of decision table for a smart home. It is to decide which messages
a screen will show and which ring tones an iPhone will ring, depending on whether the
ear of a smart rabbit is moved or not, and whether there is pressure on a crib or not. In
this example, “People move Ear” is a condition stub. “Yes” is a condition entry. “Screen
shows Message” is an action stub. “Message1” is an action entry. Columns 1-4 are the
four decision rules. For example, we formalize column 1 as follows:
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ActionStub(screenShowsMessage),
hasActionEntry(screenShowsMessage,“message1”),
ActionStub(iphoneRings), hasActionEntry(iphoneRings, “”)
←
ConditionStub(peopleMoveEar),
hasConditionEntry(peopleMoveEar, yes),
ConditionStub(pressureOnCrib), hasConditionEntry(pressureOnCrib, yes)

Table 2. A decision table example used in a ubiquitous system

Condition 1 2 3 4
People move Ear Yes No Yes No
Pressure on Crib Yes Yes No No
Action

Screen shows Message Message1
iPhone rings RingTone1

A semantic decision table (SDT, [19]) contains three parts:a decision table, a set
of lexons and commitments. A lexon is a binary fact type, which has the format of
〈γ, t1, r1, r2, t2〉. t1 and t2 are the two terms that represent two concepts in a natural
language; r1 and r2 are the two roles that the two concepts presented by t1 and t2 can
possibly play with. γ is the context identifier that points to the document where t1 and t2
are originally defined, and where r1 and r2 become meaningful. A context identifier can
be, e.g., a URI. We formalize 〈γ, t1, r1, r2, t2〉 as t1�∀r1.t2, t2�∀r2.t1, and t1 = t−2 .
In this paper, we will not literally show any lexons seeing that they are anyhow illus-
trated in the commitments. For instance, the lexon 〈γ, Screen, shows, isShownBy,
Message〉 is illustrated in Screen��1shows.Message, which contains a mandatory
constraint on this lexon.

Commitments contain axioms and assertions on lexons. The axioms illustrated in the
earlier discussion in this section are the commitments as well. An important character-
istic of SDT concerning the commitments is the feasibility of commitment translation.
In the early literature of SDT, we called it “verbalization”. It is a way to help non-
technical decision modelers to understand SDT commitments by providing them with
translated sentences in a user-friendly, pseudo-natural language. For example, the com-
mitment Screen � �1shows.Message can be translated into the sentence “EACH
Screen shows AT LEAST ONE Message”.

In the rest of this paper, we will reuse the notations concerning data types from [12]
and we adopt the Unique Name Assumption, which means we consider two individuals
differently when they have different names.

Table 310 contains the formalization of the semantics in the SDT for the decision
table illustrated in Table 2. In the meanwhile, we show how those commitments are
translated into sentences in a pseudo-natural language. As we can see, this SDT is con-
sistent. In this example, we also want to show that a condition stub or an action stub

10 All the relevant SDT commitments for each SDT in this paper can be downloaded at
www.starlab.vub.ac.be/website/SDT_SOIQ

www.starlab.vub.ac.be/website/SDT_SOIQ
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can be modelled as an instance of a concept (see commitments 1 and 2) or an axiom
containing several concepts (see commitments 10-12). What form we should use is de-
pendent on what we need to reason at the end. In the following subsections, we will
illustrate inconsistent SDTs and show how to detect the inconsistency.

Table 3. The SDT commitments and their translation for Table 2

ID DL formalization Commitment Translation

1 ConditionStub � ConditionStub is
{peopleMoveEar, pressureOnCrib} {peopleMoveEar, pressureOnCrib}

2 ActionStub � ActionStub is
{screenShowsMessage, iPhoneRings} {screenShowsMessage, iPhoneRings}

3 ActionEntry � ActionEntry is
{message1, ringTone1} {message1, ringTone1}

4 {peopleMoveEar} � The VALUETYPE of the ConditionEntry
∀hasConditionEntry.boolean of peopleMoveEar is boolean

5 {pressureOnCrib} � The VALUETYPE of the ConditionEntry
∀hasConditionEntry.boolean of pressureOnCrib is boolean

6 Bunny � �1has.Name 	 ∃has.Name EACH Bunny has EXACTLY ONE Name

7 Crib � �1has.Name 	 ∃has.Name EACH Crib has EXACTLY ONE Name

8 Screen � �1has.Message EACH Screen has AT LEAST ONE
Message

9 IPhone � �1ringWith.RingTone EACH IPhone has AT LEAST ONE
RingTone

10 People 	 ∃move.Ear �ConditionStub People move Ear is ConditionStub

11 ∃hasPressure.Crib �ConditionStub Pressure on Crib is ConditionStub

12 Screen 	 ∃shows.Message� Screen shows Message is ConditionStub
ConditionStub

13 Iphone 	 ∃ring.� �ConditionStub IPhone rings is ConditionStub

14 {screenShowsMessage} � The VALUE TYPE of the ActionEntry
∀hasActionEntry.string of screenShowsMessage is string

15 {iPhoneRing} � The VALUE TYPE of the ActionEntry
∀hasActionEntry.string of iphoneRing is string

3.1 Value Constraint

A value constraint, sometimes called domain constraint, indicates which values are
allowed in a concept (in the case that this concept represents a value type) or role ([5],
p. 216-221).
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There are three kinds of value constraints: enumeration, range and multiple. With
enumeration, we list all the possible values. For example, the commitment “VALUE of
Gender is {“M”,“F”}” can be formalized as follows.

�� ∀hasGender.{“M”,“F”}
If we can list the values in a continuous order, then we can specify it with a range.
The range can as well be unbounded. For example, we have a commitment “VALUE of
Age is [0,..)”, which we formalize as �� ∀hasAge.int[≥0]. Multiple value constraint
combines enumeration and range.

Table 4 shows an SDT, the commitments of which contain formalization at two
different levels - conceptual (e.g., commitments 17-19) and data (e.g., commitments
20-22). More specifically, commitments 18-19 are three axioms, with which we spec-
ify value constraints of condition entries, and commitments 20-22 are three assertions,
with which we translate conditions from decision columns. For example, the condition
〈LoginStatus,Maybe〉 in column 3 is translated into the assertion in commitment 20.
The condition 〈 TemperatureSensor,(≥ −10, < 0)〉 in column 4 is translated into the
assertion shown in commitment 21, to which we randomly assign a value in the value
range indicated in the condition entry. And the condition 〈Age, (≥ 100,≤ 350)〉in
decision column n is translated into the assertion in commitment 22. As we can see,
commitment 20 is inconsistent with commitment 19. Commitment 21 is inconsistent
with commitment 18. Commitment 22 is inconsistent with commitment 17. Therefore,
decision columns 3, 4 and n from Table 4 are inconsistent.

3.2 Cardinality and Occurrence Frequency

A cardinality constraint can be either an object cardinality or a role cardinality ([5], p.
289). Object cardinality is applied to a lexon term when we want to restrict the number
of members or instances of the population of the type that this lexon term points to. For
example, if we want to allow at most three X-Box humidity sensors, then we design
a commitment as “AT MOST 2 X-Box Humidity Sensors ARE ALLOWED IN ANY
CASES” (�� �2has.XBoxHumiditySensor).

A role cardinality is comparable to a constraint of occurrence frequency, which is
applied when we want to restrict the number of members of the instance of a role. For
instance, the commitment “EACH Room has AT MOST 2 X-Box Humidity Sensors”
can be formalized as Room� �2has.XBoxHumiditySensor.

Note that these two commitments are different. The former emphasizes that in any
cases, at most two X-Box humidity sensors are allowed; while the latter specifies that
only in the case of in a room, at most two X-Box humidity sensors are allowed.

Table 5 shows an example of inconsistency caused by the violation of role cardinality.
Column 1 in Table 5 can be translated into the assertions in commitments 26-31. They
are inconsistent with commitments 22-25, especially commitment 24.

Note that Room� �2has.XBoxHumiditySensor is not enough to fully specify
the semantics in this SDT; we need to translate the condition entry “Yes” into, which
we link the existence of X-Box Humidity Sensor.

In the following two subsections, we will discuss two specific cases of role cardinal-
ity constraints. They are mandatory and uniqueness.
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Table 4. An SDT on deciding whether to accept to process or not based on the value received
from a temperature sensor, the age and the login state of a user

Condition 1 2 3 4 ... n
Age ≥ 18 ≥ 18 ≥ 18 ≥ 18 ... ≥ 100,≤ 350
Temperature Sensor ≥ 0,≤ 30 ≥ 0,≤ 30 ≥ 0,≤ 30 ≥ −10,≤ 0 ... ≥ 0,≤ 30
Login State Yes No Maybe Yes ... Yes
Action

Accept * * * *

SDT Commitments
ID DL Formalization Commitment Translation

16 Age� ∀hasConditionEntry.int[≥0 ∧ ≤200] The VALUE RANGE of the
ConditionEntry of Age
is [0,200] and the VALUE TYPE
of the ConditionEntry
of Age is Integer

17 TemperatureSensor� The VALUE RANGE of
∀hasConditionEntry.int[≥−100 ∧ ≤−20] the ConditionEntry
�int[≥0 ∧ ≤100] of TemparatureSensor

is{[−100,−20], [0, 100]}
and the VALUE TYPE of
the ConditionEntry
of Age is Integer

18 LoginStatus � The VALUE TYPE of
∀hasConditionEntry.boolean the ConditionEntry of

LoginStatus is Boolean

19 hasConditionEntry(loginStatus,“Maybe”) The ConditionEntry of
loginStatus is “Maybe”

20 hasConditionEntry(temperatureSensor,−5) The ConditionEntry
of temperatureSensor is -5

21 hasConditionEntry(age,120) The ConditionEntry of age is 120

3.3 Mandatory

A lexon role can be mandatory or optional. A mandatory is mandatory iff it is played
by every member of the population of its connected object type, otherwise, it is op-
tional ([5], p. 162). A mandatory constraint is equivalent to an “AT LEAST ONE” role
cardinality constraint.

Suppose we have a commitment that contains a mandatory constraint, which is
“EACH Room has AT LEAST ONE X-Box Humidity Sensor” and formalized as

Room � �1has.XBoxHumiditySensor
or
Room � ∃has.XBoxHumiditySensor
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Table 5. An SDT on deciding whether or not to turn on Actuator x based on the availability of
X-Box557, X-Box120 and MS Xbox 360

Condition 1 2 3 4 5 6 7 8
X-Box 557 Yes Yes Yes Yes No No No No
X-Box 120 Yes Yes No No Yes Yes No No
MS XBox 360 Yes No Yes No Yes No Yes No
Action

Actuator * * * * *

SDT Commitments
ID DL Formalization Commitment Translation

22 XBoxHumiditySensor � The VALUE TYPE of the
∀hasConditionEntry.boolean ConditionEntry of

XBoxHumiditySensor is Boolean

23 XBoxHumiditySensor ≡ XBoxHumiditySensor is
{xBox557, xBox120,msXBox360} {xBox557, xBox120, msXBox360}

24 Room � EACH Room has AT MOST 2
�2has.XBoxHumiditySensor XBoxHumiditySensor AND
	 ∃hasConditionEntry.{true} the ConditionEntry of

XBoxHumiditySensor is true

25 Room ≡ {room1} Room is {room1}
26 hasConditionEntry(xBox557, true) The ConditionEntry of xBox557

is true

27 hasConditionEntry(xBox120, true) The ConditionEntry of xBox120
is true

28 hasConditionEntry(mSXbox360, true) The ConditionEntry of mSXBox360
is true

29 has(room1, xBox557) room1 has xBox557

30 has(room1, xBox120) room1 has xBox120

31 has(room1,mSBBox360) room1 has mSBBox360

Before we apply this commitment to Table 5, we need to add the mapping between
“No” and “false” as we did in the previous section. And, we need to translate every
decision rule column into a set of assertions. Suppose we want to check column 8 in
Table 5. We first modify commitment 24 into the following axiom.

Room � ∃has.(XBoxHumiditySensor � ¬∀hasConditionEntry.{false})

Then, we replace commitment 26-28 with the following assertions.

hasConditionEntry(xBox557, false)
hasConditionEntry(xBox120, false)
hasConditionEntry(mSXBox360, false)



Using SOIQ(D) to Formalize Semantics within a Semantic Decision Table 233

As we can see, column 8 is inconsistent.
The above discussed example illustrates how a mandatory constraint can be used

when the condition stubs represent value members of an object type and their entries
are Boolean values.

Table 6 is another SDT example, which uses a mandatory constraint when an object
type is a condition stub and its value members are used as its condition entries.

Table 6. An SDT on deciding whether or not to turn on Actuator x based on the availability of
X-Box Humidity Sensors (diverted from Table 5)

Condition 1 2 3
X-Box Humidity Sensor {X-Box557, X-Box120} {X-Box557, MS XBox360} N/A
Action

Actuator * *

SDT Commitments
ID DL Formalization Commitment Translation

32 XBoxHumiditySensor ≡ XBoxHumiditySensor is
{xBox557, xBox120,mSXbox360} {xBox557, xBox120, mSXbox360}

33 {na} � ¬XBoxHumiditySensor n/a is NOT a XBoxHumiditySensor

34 XBoxHumiditySensor(na) n/a is XBoxHumiditySensor

In SDT, if there is no instance of XBoxHumiditySensor (noted as N/A) then the
mandatory constraint “EACH Room has AT LEAST ONE X-Box Humidity Sensor” is
violated. We map it to the SOIQ(D) axiom as shown in commitment 33, which means
that na cannot be an instance of XBoxHumiditySensor. Commitment 34 contains
an assertion, which is translated from column 3 in Table 6 and it contradicts the axiom
in commitment 33.

3.4 Uniqueness

A uniqueness constraint is used when we need to ensure a (co-)role from one lexon or a
combination of (co-)roles from several lexons is played at most once. For example, we
want to have a uniqueness constraint as “EACH Room has AT MOST ONE X-Box Hu-
midity Sensor”. It is formalized as Room� �1has.XBoxHumiditySensor. Suppose
we apply this constraint on Table 5 and take column 2 in Table 5 as an example. We
will get the commitments as shown in Table 7. As illustrated, column 2 is inconsistent.

Similarly, if we translate columns 1, 3 and 5 in Table 5, then we will see that they
are also inconsistent. This example shows how we can use a uniqueness constraint with
Boolean condition entries.

Table 8 is another example, which shows how to verify decision columns when con-
dition entries are sets. In its commitments, column 3 from Table 8 is formalized. Col-
umn 3 is invalid because X-Box120 is a humidity sensor and only one humidity sensor
is allowed in one room.
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Table 7. SDT commitments containing a uniqueness constraint for Table 5

SDT Commitments
ID DL Formalization Commitment Translation

35 Room � EACH Room has AT MOST ONE
�1has.XBoxHumiditySensor XBoxHumiditySensor AND
	∃hasConditionEntry.{true} the ConditionEntry of

XBoxHumiditySensor is true

36 hasConsditionEntry(xBox557, true) The ConditionEntry of xBox557
is true

37 hasConsditionEntry(xBox120, true) The ConditionEntry of xBox120
is true

38 hasConsditionEntry(mSXbox360, false) The ConditionEntry of msXBox360
is false

39 has(room1, xBox557) room1 has xBox557

40 has(room1, xBox120) room1 has xBox120

41 has(room1,msXBox360) room1 has msXBox360

3.5 Exclusive-Or

In an information system, an exclusive-or constraint is used to ensure that two sets do
not overlap each other. We can use it to check the combination of conditions or actions.

Table 9 shows an example containing both situations. Unlike the previous examples,
which we translate the condition entry “Yes” into the Boolean value “true”, we use an
anonymous individual to specify its existence. For example, we use the commitment
HumiditySensor(hs1) for the condition 〈HumiditySensor, Y es〉. Column 1 in Ta-
ble 9 is invalid because the assertions in commitments 53-57 are inconsistent with the
axioms in commitments 50-52. Similarly, we can add an exclusive-or relation between
Actuator X and Actuator Y. Then column 3 in Table 9 is invalid.

3.6 Subtyping

The “is-a” subtype/taxonomy relationship is probably one of the mostly used onto-
logical relations. A subtype is an object type, each of whose instances belongs to an
encompassing type.

We use subtyping to check the validity of a combination of conditions,e.g., Table 10.
As HumiditySensor is a subtype of Sensor, the condition 〈HumiditySensor, Y es〉
implies that there is a sensor in the room. Therefore, it is impossible to execute a deci-
sion rule, which contains the condition 〈Sensor,No〉. Accordingly, column 2 is invalid.

The formalization of the semantics is illustrated in the SDT commitments in Ta-
ble 10. Note that we use subset to formalize subtyping. In commitment 58, we specify
that HumiditySensor is a subtype of Sensor. In column 2 from Table 10, we for-
malize the semantics in the condition 〈HumiditySensor, Y es〉 into commitment 59,
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Table 8. An SDT on deciding whether or not to turn on Actuator x and Actuator y based on the
availability of Sensors

Condition 1 2 3
Humidity Sensor {X-Box557} {MS XBox360} X-Box557
Sensor {EZEYE 1011A} {EZEYE 1011A} X-Box120
Action

Actuator X * *
Actuator Y * *

SDT Commitments
ID DL Formalization Commitment Translation

42 HumiditySensor HumiditySensor is
≡ {xBox557, xBox120, msXBox360} {xBox557, xBox120, msXBox360}

43 Room� �1has.HumiditySensor EACH Room has AT MOST ONE
HumiditySensor

44 Sensor � {eZEY E1011A} Sensor is UNION of {eZEY E1011A}
�HumiditySensor and HumiditySensor

45 Room(room1) room1 is Room

46 HumiditySensor(xBox557) xBox557 is HumiditySensor

47 Sensor(xBox120) xBox120 is Sensor

48 has(room1, xBox557) room1 has xBox557

49 has(room1, xBox120) room1 has xBox120

and the one in 〈Sensor,No〉 into commitment 60. In order to trigger the reasoner to
check the inconsistency, we need to have commitment 61, which assigns an anonymous
individual to the concept “Room”.

In this section, we have discussed how to formalize the semantics within an SDT,
which is used for validating a decision table. In the next section, we will illustrate our
related work.

4 Related Work and Discussion

Including the related work concerns the validation issues for decision tables, which we
have presented in Sec. 1, it is also important to study the related work concerning the
technologies around Semantic Decision Table (SDT).

As discussed, the semantics in an SDT is modeled as ontological commitments,
which can be graphically modeled in Semantic Decision Rule Language (SDRule-L,
[19]), and which is based on Object Role Modeling language (ORM, [5]). Halpin stud-
ied formalization of ORM in first-order logic (FOL) in [4]. Later, Jarrar showed an
initial idea on how to map ORM into the DLRidf (one Description Logic language) in
[10] and the SHOIN Description Logic in [9].
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Table 9. An SDT on deciding whether or not to turn on Actuator x and Actuator y based on the
availability of Humidity Sensor and Light Sensor

Condition 1 2 3 4
Humidity Sensor Yes Yes No No
Light Sensor Yes No Yes No
Action

Actuator X * *
Actuator Y *

SDT Commitments
ID DL Formalization Commitment Translation

50 Room 	 ∃has.HumiditySensor Every Room that has a HumiditySensor
�RoomWithHS is called RoomWithHS

51 Room 	 ∃has.LightSensor Every Room that has a LightSensor
�RoomWithLS is called RoomWithLS

52 RoomWithHS 	 RoomWithLS A Room cannot has both
�⊥ HumiditySensor and LightSensor

53 Room(room1) room1 is a Room

54 HumiditySensor(xBox557) xBox557 is a HumiditySensor

55 LightSensor(ezEY E1011A) ezEY E1011A is a LightSensor

56 has(room1, xBox557) room1 has xBox557

57 has(room1, ezEY E1011A) room1 has ezEY E1011A

Table 10. An SDT on deciding whether or not to turn on Actuator x based on the availability of
Humidity Sensor and Sensor

Condition 1 2 3 4
Humidity Sensor Yes Yes No No
Sensor Yes No Yes No
Action

Actuator x * * *

SDT Commitments
ID DL Formalization Commitment Translation

58 HumiditySensor � Sensor HumiditySensor is a subtype of Sensor

59 Room� ∃has.HumiditySensor Room has SOME HumiditySensor

60 Room� ∀has.¬Sensor Room has NO Sensor

61 Room(room1) room1 is Room
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We have studied how to use FOL to formalize the extension graphical notations,
which are not defined in ORM but in SDRule-L, such as sequence and cross-context
operators, in [19]. In this paper, we do not focus on those extensions. Instead, we would
rather model the ontological commitments using existing ORM constraints. Based on
our previous work in [17,20,19] and the related work in [9], we formalize the ontologi-
cal commitments in SOIQ(D) in this paper.

We want to show how those commitments can be used to reason and validate an
SDT. We specify constraints in axioms and decision rules in assertions. Note that a
condition or action stub can be a concept or a lexon, which contains two concepts, or
an instance. To decide on which decision table element needs to be mapped into what
kind of formalization is a trivial task.

5 Conclusion and Future Work

As an extension to decision tables, SDT provide extra advantages while using it for
validation:

– It supports multiple decision modelers (also called “decision group”) to create, val-
idate and verify a decision table.

– It contains semantically rich meta-rules for its self-organization
– Its analysis functions take advantages of modern ontology engineering technolo-

gies, such as formality, shareability, interoperability and community enhancement.

It is important to ensure the correctness of SDTs especially when a community of deci-
sion modelers is involved. This problem belongs to V&V for decision making systems.

In this paper, we have discussed SDT validation issues concerning ontology-based
consistency checking. We identify the constraints of value, uniqueness, mandatory, car-
dinality, exclusive-or and subtyping as the ones that can be directly applied. We formal-
ize the semantics of SDT using SOIQ(D).

The SDT creation method used in this paper is to create an ontology that stores
the meta-rules for V&V. This creation phase can be replaced by importing existing
ontologies, which requires an extra effort during the annotation process.

By using SOIQ(D), we are able to fully keep the semantics of SDT with con-
straints mentioned in the paper. The consistency of the resulting ontology can be effi-
ciently checked by current reasoners, which are highly optimized, although consistency
checking for SOIQ(D) is NEXPTIME. In our future work, more expressive language
with the same computational complexity such as SHOIQ(D) can be used to formal-
ize SDT. By using SHOIQ(D), we will properly model role hierarchies for SDT and
make a good use of these hierarchies.

Each SDT commitment contains a DL statement. As discussed, an important char-
acteristic from SDT is the feasibility of commitment translation, with which a non-
technical decision modeler can understand the defined semantics. Currently, we are
working on the tool, which takes a commitment in the pseudo-natural language as the
input, and generates DL statements and an OWL2 file as the output. This tool will be
further integrated with the existing SDT tool set.
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Abstract. Introducing the dimension of time in ontologies turns binary
relations into ternary which cannot be handled by OWL. Approaches
such as the N-ary relations or the 4D-fluents approach discussed in this
work, offer satisfactory solutions to this problem. However, data and
property semantics are not preserved in the resulting representations nor
can they be handled by ordinary reasoners such as Pellet. We propose a
rule-based solution to this problem using SWRL.

1 Introduction

Welty and Fikes [3] showed how quantitative temporal information (i.e., in the
form of temporal intervals whose left and right endpoints are well defined) as well
as, the evolution of concepts in time, can be represented effectively in OWL using
the so-called “4D-fluents approach”. In our previous work [1], we extended this
approach with qualitative (in addition to quantitative) temporal expressions,
allowing for the representation of temporal intervals with unknown endpoints
by means of their relation (e.g., “before”, “after”) to other time intervals, or
alternatively, by translating relations between temporal intervals into equiva-
lent relations between time instants [2]. Property semantics such as cardinality
restrictions or property constraints are not handled. Typically, property seman-
tics in OWL are defined over binary relations. These relations are turned into
ternary with the introduction of the temporal dimension. Existing solutions to
this problem (e.g., the 4D-fluents or the N-ary relations approach) suggest intro-
ducing new objects into the temporal representation and also rewriting ternary
relations as sets of binary ones defined between the old and the new objects.
Accordingly, property relations, to become meaningful, need to be applied on
the new objects as well, rather than on the objects on which they were meant
to be defined originally. Then, property semantics can no longer be handled by
ordinary reasoners such as Pellet.

In this work, we propose a mechanism for handling OWL property semantics
over temporal representations in conjunction with the 4D-fluents and the N-ary
relations approaches. Property semantics are expressed by a set of SWRL rules
defined over temporal relations (rather than by OWL axioms as it is typical in
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static ontologies, since cardinality restrictions over non simple binary properties
lead to undecidability [5]). To the best of our knowledge, this is the only known
solution to this problem.

Related work in the field of knowledge representation is discussed in Sec. 2.
Restriction checking is discussed in Sec. 3, followed by evaluation in Sec. 4 and
conclusions and issues for future work in Sec.5.

2 Background and Related Work

The OWL-Time temporal ontology1 describes the concepts of time. Apart from
language constructs for the representation of time in ontologies, there is still
a need for mechanisms for the representation of the evolution of concepts (e.g.,
events) in time. Representation of the evolution of temporal concepts is achieved
using N-ary relations2 or 4D-fluents [3].

Following the N-ary relations approach, the temporal property is represented
by two properties, each one related with the new object. Fig.1(a) illustrates
the relation WorksFor(Employee, Company, TimeInterval) representing the fact
that an employee works for a company during a time interval using N-ary rela-
tions. This approach requires one additional object for every temporal interval.
The 4D-fluents (perdurantist) approach [3] suggests that concepts in time are
represented as 4-dimensional objects with the 4th dimension being the time
(timeslices). Properties having a time dimension are called fluent properties and
connect instances of class TimeSlice. Fig.1(b) illustrates the 4D-fluents represen-
tation for the temporal relation Works-For(Employee, Company, TimeInterval)
of the same example.

(a) N-ary Relations (b) 4D fluents

Fig. 1. Example of (a) N-ary Relations and (b) 4D-fluents

2.1 Temporal Ontology

According to Welty and Fikes [3], to add a time dimension to an ontology, classes
TimeSlice and TimeInterval with properties timeSliceOf and timeInterval are
introduced. Properties having a temporal dimension are called fluent properties
and connect instances of class TimeSlice (as in Fig.1(b)). In [1], the 4D-fluents
representation was enhanced with qualitative temporal relations (i.e., relations

1 http://www.w3.org/TR/owl-time
2 http://www.w3.org/TR/swbp-n-aryRelations

http://www.w3.org/TR/owl-time
http://www.w3.org/TR/swbp-n-aryRelations


242 S. Batsakis and E.G.M. Petrakis

holding between time intervals whose starting and ending points are not speci-
fied). A temporal relation can be one of the 13 pairwise disjoint Allen’s relations.

Definitions for temporal entities (e.g., instants and intervals) are provided by
incorporating OWL-Time into the ontology. A representation based on temporal
instants (rather than intervals) is also feasible [2]. Each interval (which is an
individual of the ProperInterval class of OWL-Time) is related with two instants
(individuals of the Instant class) that specify it’s starting and ending points
using the hasBegining and hasEnd object properties respectively. Notice that,
only one of the three relations (before, after, or equals) may hold between
any two temporal instants with the obvious interpretation. These relations can
be asserted even when exact dates of the time instants are unknown. Relations
between intervals are expressed as time instant relations between their starting
and ending points.

2.2 Temporal Reasoning

Reasoning is realized by introducing a set of SWRL3 rules operating on temporal
relations. Reasoners that support DL-safe rules such as Pellet4 can be used for
inference and consistency checking over temporal relations. Table 1 represents
the result of the composition of two temporal relations pairs (relations before,
after and equals, are denoted by symbols “<”,“>”,“=” respectively).

Table 1. Composition Table for point-based temporal relations.

Relations < = >

< < < <,=, >
= < = >
> <,=, > > >

For example, if relation R1 holds between instant1 and instant2 and rela-
tion R2 holds between instant2 and instant3, then the entry of the Table 1
corresponding to line R1 and column R2 denotes the possible relation(s) hold-
ing between instant1 and instant3. Compositions of relations R1, R2 yielding
a unique relation R3 as a result are expressed in SWRL using rules of the form:

R1(x, y) ∧R2(y, z) � R3(x, z)

The following is an example of such a temporal composition rule:

before(x, y) ∧ equals(y, z) � before(x, z)

A series of compositions of relations may imply relations which are inconsis-
tent with existing ones (for example the above rule will yield a contradiction if
after(x,z) has been asserted into the ontology for specific values of x,y,z ). Consis-
tency checking is achieved by ensuring path consistency [7] by applying formulas
of the the form:
3 http://www.w3.org/Submission/SWRL/
4 http://clarkparsia.com/pellet/

http://www.w3.org/Submission/SWRL/
http://clarkparsia.com/pellet/
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∀x, y, k Rs(x, y) � Ri(x, y) ∩ (Rj(x, k) ◦Rk(k, y))

representing intersection of compositions of relations with existing relations
(symbol ∩ denotes intersection, symbol ◦ denotes composition and Ri, Rj , Rk,
Rs denote temporal relations). A set of rules defining the result of intersect-
ing relations holding between two instances must also be defined in order to
implement path consistency. These rules are of the form:

R1(x, y) ∧R2(x, y) � R3(x, y)

where R3 can be the empty relation. For example, the intersection of relations
before and after yields the empty relation, and an inconsistency is detected:

before(x, y) ∧ after(x, y) � ⊥
Path consistency is implemented by defining compositions of relations using
SWRL rules and declaring the three basic relations as disjoint. It is sound and
complete when applied on the three basic relations [7].

3 Restriction Checking over Temporal Properties

Checking for restrictions holding on time dependent (fluent) properties in the
4D-fluents representation requires particular attention. If a fluent property holds
between two objects, then, these objects are only indirectly associated through
one or more artificial objects (e.g., TimeSlice object in 4D-fluents). A fluent
property is declared between the artificial object and an actual object (as in
Figure 1(a)) or between two artificial objects (as in Figure 1(b)). Checking for
property restrictions requires adjusting the domain and range of this property
from the artificial to the actual objects (e.g., to Company and Employee objects
in Figure 1(a)). For example, for the worksfor property in Figure 1(b), the
domain of the property is no longer class Employee but timeslice of Employee.
Accordingly, its range is timeslice of Company.

Similar adjustments must be made in the case of N-ary relations but in this
case, combining transitivity of properties while retaining domain and range re-
strictions becomes problematic. For example, the worksfor relation in Fig. 1(a)
must be provided with two alternative domains and ranges. Other restrictions on
properties such as symmetry, asymmetry, reflexiveness, irreflexiveness and tran-
sitivity can be applied directly on the temporal property retaining the intended
semantics.

Universal restrictions (e.g., “all Employees work for a company”) also require
adjusting domains and ranges (i.e., all timeslices of employees workfor times-
lices of companies). Existential restrictions are adjusted as well (if for example
each employee must work for some company, then timeslices of employees must
work for some timeslices of companies). Notice, that an existential restriction
corresponds to an at least one qualified cardinality restriction in OWL and the
way it is handled is discussed in the rest of this section.

Adjusting cardinality restrictions, functional and inverse functional proper-
ties is somewhat more complicated. Functional properties are a special case of
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cardinality restrictions (i.e., if a property is functional, then each object must be
connected to at most one subject which is different for each object). Cardinal-
ity restrictions are amenable to two different interpretations depending on the
specific application and the intended semantics:

Cardinality restrictions may be interpreted either as restricting the total num-
ber of individuals of a class (e.g., Company) related with each individual of
another class (e.g., Employee) through a fluent property at all times or as re-
stricting the number of individuals for each specific temporal interval over which
the fluent property holds true. Each interpretation calls for different ways of han-
dling which are discussed in the following.

The first interpretation is handled simply by counting on the number of indi-
viduals of a class related to this property and is implemented in SWRL. SWRL
rules are applied because OWL cardinality restrictions cannot handle fluent
properties connecting objects through intermediate objects. Specifically, impos-
ing cardinality restrictions as OWL axioms in the chain of properties involving
the intermediate objects (which are non-simple properties) leads to undecidabil-
ity [6].

The following rule expresses the restriction that each employee can work for
at most n companies. If n+1 company individuals are found to connect with an
employee individual, then the restriction is violated (the Alldifferent keyword
is an abbreviation for a series of axioms imposing that the n+1 individuals
z1, z2...zn+1 are all different). By imposing a max cardinality restriction of 0
over property error at the definition of class Employee, the violation of the
cardinality restriction is detected by standard reasoners such as Pellet using the
rule:

(At−most− rule1)Employee(x) ∧ (tsT imesliceOf(x1, x)

∧... ∧ tsT imesliceOf(xn+1, x) ∧ worksfor(x1 , y1) ∧ worksfor(xn+1 , yn+1)

∧tsT imesliceOf(y1, z1)... ∧ tsT imesliceOf(yn+1, zn+1)

∧Alldifferent(z1, z2, ..., zn+1) ∧Company(z1)... → error(x, z1)

An at-least restriction is expressed similarly: an at-most n − 1 rule is applied
(changing the asserted property to satisfies(x, n)) combined with an at-least-
one cardinality restriction on the satisfies property for class Employee. All
rules impose also a restriction on the type of objects involved (e.g., they require
that only company objects are involved by checking only for objects connected
with timeslices of companies). Dropping such a check leads to an unqualified
numeric restriction on the property. Notice that the Open World Assumption of
OWL will cause a reasoner (e.g., Pellet) not to detect an inconsistency of an at−
least restriction as future assertions might cause invalidity of this inconsistency
detection. Instead, the user can retrieve individuals that are not yet proven to
satisfy the restriction using the following SPARQL query:

The second interpretation imposes restrictions on the number of individuals
associated with an individual of a specific class through a fluent property, for ev-
ery temporal interval that the property holds true. Checking for such restrictions
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select distinct ?x
where {
?x rdf:type ex1:Employee.
OPTIONAL{
?x ex1:satisfies ?y.}
FILTER(!bound(?y))}

requires applying reasoning rules over the relations between the temporal inter-
vals associated with the fluent property as described in Sec. 2.2. The next step is
to detect overlapping and non-overlapping intervals. After the Allen’s relations
holding between pairs of intervals have been inferred, Allen’s properties during,
contains, starts, startedby, finishes, finishedby, overlaps, overlapedby, equals are
defined as subproperties of property overlapping, thus detecting overlapping and
non-overlapping intervals. Moreover, properties before, after, meets, metby are
defined as subproperties of property non-overlapping.

Expressing an at most restriction for every time interval is based on the fol-
lowing observation: the restriction is violated if and only if n+ 1 distinct indi-
viduals are connected with a given individual (through their timeslices) with the
relation at hand, and their corresponding intervals are all pairwise overlapping.
If n + 1 intervals are pairwise overlapping, then, there exists an interval such
that n + 1 intervals share a common sub-interval, and this can be proven by
induction on n. The existence of such an interval implies that for this interval
the at least restriction is violated. The corresponding rule (used in combination
with a cardinality restriction on property error for inconsistency detection by
reasoners) is expressed as (the pairwiseoverlapping is an abbreviation for a set
of overlapping relations between all pairs of intervals at hand):

(At−most− rule2)Employee(x) ∧ (tsT imesliceOf(x1, x))

∧... ∧ tsT imesliceOf(xn+1, x) ∧ hasinterval(x1, w1)...

∧hasinterval(xn+1, wn+1) ∧ worksfor(x1 , y1) ∧ ... ∧worksfor(xn+1 , yn+1)

∧tsT imesliceOf(y1, z1)... ∧ tsT imesliceOf(yn+1, zn+1)∧
Alldifferent(z1, ..., zn+1) ∧ pairwiseoverlapping(w1, ...wn+1)

∧Company(z1)... → error(x, z1)

As in the case of the first interpretation, the at-least restriction cannot be im-
posed using only SWRL rules due to the Open World Assumption of OWL.
Nevertheless, SWRL rules combined with an SPARQL query that detects indi-
viduals that are not satisfying the restriction yet, (in a way analogous to the
first interpretation) can be applied.

All rules (with both interpretations) involve a time consuming selection of all
possible subsets of individuals and intervals. Therefore, expressing restrictions
using SWRL may become a tedious task and also detecting inconsistencies can
be time consuming. Specifically, rules for imposing a cardinality of at-least or
at most n involves the selection of all combinations of n among k timeslices, or
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reified relations, (where k is the number of temporal individuals in the ontology),
thus it is not scalable for large values of n. In the case of reification or N-ary
relations, cardinality constraints are expressed accordingly, using appropriate
adjustments on classes and on properties of objects involved.

Besides representation of cardinality restrictions, value restrictions and ad-
justments of domains and ranges, the following object property semantics are
redefined as follows:

– Functional : It is handled as an at most 1 unqualified cardinality restriction.
– Inverse Functional : The inverse property is handled as an at most one un-

qualified cardinality restriction.
– Symmetric: The fluent property is symmetric too, thus the symmetry axioms

apply on the interval that the involved timeslices exist (i.e., the temporal
property is declared symmetric).

– Asymmetric: This is handled as a cardinality restriction, where the same
property cannot hold for interchanged subjects and objects for timeslices
that share an overlapping interval.

– Equivalent : The fluent properties are equivalent too.
– Reflexive: The fluent property is reflexive too; when a timeslice has the

property for an interval, it is also the subject of the property for this interval.
– Irreflexive: This is handled as a cardinality restriction; two timeslices of

an object cannot be related with the property in question if their intervals
overlap.

– Subproperty: subproperty axioms apply for the fluent properties with the
intended semantics.

– Transitive: Fluent properties are declared transitive since related timeslices
must have equal intervals (by the definition of the 4D-fluent model) and for
these intervals transitivity is applied.

Datatype properties have fewer characteristics (i.e., subproperty, equivalence dis-
jointness, functional) and they are handled as is the case of object properties.
In the case of N-ary relations, the above adjustments must take into account the
different objects involved (i.e., Events instead of timeslices).

4 Evaluation

The resulting OWL ontology is decidable, since it complies with the correspond-
ing OWL 2 specifications5 . Introducing the set of temporal qualitative rules of
Sec. 2.2 retains decidability since rules are DL-safe rules6 and they apply only
on named individuals of the ontology Abox using Pellet (which support DL-safe
rules). Furthermore, computing the rules has polynomial time complexity since
tractable subsets of Allen’s temporal relations are used. Examples of tractable
sets include [7]. As shown in [4], by restricting the supported relations set to a

5 http://www.w3.org/TR/2009/REC-owl2-syntax-20091027/
6 http://www.w3.org/TR/rif-rdf-owl

http://www.w3.org/TR/2009/REC-owl2-syntax-20091027/
http://www.w3.org/TR/rif-rdf-owl
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tractable subset of Allen’s interval algebra, path consistency has O(n5) worst
time complexity (with n being the number of intervals) and it is sound and com-
plete. Notice that extending the model to the full set of relations would result
into an intractable reasoning procedure.

By applying the closure method [4] over Allen’s relations, the minimal tractable
sets containing the basic relations consist of 29 relations. For this set, the re-
quired number of OWL axioms and SWRL rules is 983. An implementation
with temporal instants does not require additional relations. Then, the number
of OWL axioms and SWRL rules required for reasoning is limited to 20 [2], im-
plying that the representation based on temporal instants must be preferred over
the one based on temporal intervals. However, restriction checking mechanism
work with either representation. The restriction checking rules are dependent on
the specific cardinality restriction imposed (i.e., the complexity of an at most r
restriction is a parameter of r). Specifically, restriction checking has O(nr) time
complexity.

5 Conclusions and Future Work

We introduce a rule-based approach for handling data and property semantics
in temporal ontologies in OWL. Addressing performance and scalability issues
for large scale applications are important issues for future research.
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Abstract. In this paper we describe a logic programming based imple-
mentation of the OWL 2 RL fragment. We show how goals are used for
querying, forward reasoning permits to infer new knowledge, and ontol-
ogy inconsistency is handled by backward reasoning, where explanations
and (minimal) justifications are given to inconsistent ontologies.

1 Introduction

The OWL 2 specification of the W3C [4] provides OWL profiles that correspond to
syntactic subsets of the OWL 2 language, namely OWL EL, OWL QL and OWL
RL. OWL RL is aimed at applications that require scalable reasoning without
sacrificing too much expressive power. OWL RL reasoning systems can be imple-
mented using rule-based engines by forward-chaining. The design of OWL RL was
inspired by Description Logic Programs [3] and pD∗ [6]. OWL RL is described by
a positive Datalog rule set which is a non-trivial superset of RDF(S) rules.

In this paper we describe a logic programming based implementation of the
OWL 2 RL fragment. We show how goals are used for querying, forward reason-
ing permits to infer new knowledge, and ontology inconsistency is handled by
backward reasoning, where explanations and (minimal) justifications are given
to inconsistent ontologies. The current work is an extension of our previous work
[1]. Here, we will focus on how ontology inconsistency is handled by our Prolog
based implementation.

OWL RL specification includes rules for inconsistency testing [10]. They have
been integrated in our Prolog based implementation of OWL RL in such a way
that an error ontology is obtained as an extension of the checked ontology. In
other words, the testing an ontology O generates OI+E , where OI are the in-
ferred elements from OWL RL rules, and E are the elements of the error ontology.
When the ontology E (i.e., the instance) is empty, then the ontology is consis-
tent. Using Prolog as query language, the user can inspect the elements of the
ontology E . Moreover, our approach permits to compute the justifications of each
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inconsistency. An ontology can be inconsistent due to a bad modeling. Incon-
sistency comes from unsatisfiable axioms. To eliminate the unsatisfiability one
has to nullify all its reasons. A common strategy to do this is to remove axioms
from each justification of the unsatisfiability. The resulting ontology is a repair of
the unsatisfiability, and the removed axioms is a diagnosis of the unsatisfiability.
Therefore, explanations for ontology consequences, and in particular, for incon-
sistent ontologies, are a key element for ontology repairing. Justifications are
minimal explanations, and collect ontology axioms and consequences involved
in the reasoning. Root justifications are explanations that are not derived from
others. Besides, the user can be interested to inspect derived consequences, called
lemmas, to find the reason of an inconsistency. We have included the following
services in our Prolog based implementation:

(a) Computation of each (all) explanation(s) of a given triple.
(b) Computation of each (all) justification(s) of a given triple.
(c) Computation of each (all) root justification(s) of a given triple.
(d) Computation of each (all) lemma(s) of a given triple.

Explanations, justifications and lemmas are obtained by applying backward the
OWL RL Prolog rules. Once the ontology has been materialized in secondary
memory, certain Prolog goals can be used to obtain the reasons of a given triple.
Prolog is used for the traversal of the search tree of the triple and each node of
the tree is collected. It permits to collect the explanations. Now, justifications
are minimal explanations and root justifications are leaves of the tree, while
lemmas are intermediate nodes. The Prolog implementation can be downloaded
from our web site http://indalog.ual.es/OWL-RL-Prolog. We have tested our
implementation with several examples of ontologies including the running exam-
ple presented. With large ontologies (with millions of triples) we have obtained
reasonable benchmarks.

1.1 Related Work

OWL RL has been implemented in some tools for the Semantic Web. The
OWLIM tool [2] applies forward chaining to OWL RL rules, having two edi-
tions: SwiftOWLIM and BigOWLIM, whereas SwiftOWLIM is an in-memory
system, BigOWLIM uses secondary memory. BigOWLIM supports consistency
checking with rules without head. The Oracle Database 11g [8] offers a OWL
RL implementation based on a materialization of the inferences using forward
chaining, using the materialization for query answering. QueryPIE [7] is also an
implementation of OWL RL that proposes an hybrid method (forward and back-
ward chaining) in order to improve the performance of query answering. They
have studied some optimizations in the application of OWL RL rules such that
precomputing of some reasoning branches which appear often in the computation
tree and early application of failures branches. Ontology consistency detection,
debugging, justification and repairing have been also studied in [9,12,5].

Let us remark that there exists a SWI-Prolog library called Thea2 [11] to sup-
port OWL 2 following precisely its structural syntax specification: every axiom

http://indalog.ual.es/OWL-RL-Prolog
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in the ontology would correspond on a one-to-one basis with facts in the Prolog
database. This allows querying the ontology by simply query the Prolog database
using goals with variables as arguments. The way in which Thea2 and our pro-
posal handle OWL 2 is different (OWL representation and rule execution). In
addition, our approach has added the handling of inconsistency.

The structure of the paper is as follows. Section 2 will present an example of
OWL RL ontology. Section 3 will describe the handling of inconsistency in our
approach. Finally, Section 4 will conclude and present future work.

2 OWL RL with Prolog

Let us see an example of an ontology in the OWL RL fragment. Let us suppose
an ontology about a social network in which we define ontology classes: user,
user_item, activity; and event, message � activity; and wall, album � user_item.
In addition, we can define (object) properties as follows: created_by which is a
property whose domain is the class activity and the range is user, and has two
sub-properties: added_by, sent_by � created_by (used for events and messages,
respectively). We have also belongs_to which is a (inverse) functional property
whose domain is user_item and range is user; friend_of which is a irreflexive
and symmetric property whose domain and range is user; invited_to which is
a property whose domain is user and range is event; recommended_friend_of
which is a property whose domain and range is user, and is the composition
of friend_of and friend_of, but disjoint with friend_of; replies_to which is an
irreflexive property whose domain and range is message; written_in which is a
functional property whose domain is message and range is wall; attends_to which
is a property whose domain is user and range is event and is the inverse of the
property confirmed_by; i_like_it which is a property whose domain is user and
range is activity, which is the inverse of the property liked_by. Besides, there are
some (data) properties: the content of a message, the date and name of an event,
and the nick and password of an user. Finally, we have defined the concepts pop-
ular which are events confirmed_by some user and activities liked_by some user:
event � ∃confirmed_by.user � popular and activity� ∃liked_by.user � popular and
we have defined constraints: activities are created_by at most one user: activity �
≤ 1 created_by.user; and message and event are disjoint classes. Let us now sup-
pose the set of individuals and object/data property instances of Table 1.

From OWL RL reasoning we can deduce new information. For instance, the in-
dividual message1 is an activity, because message is a subclass of activity, and the
individual event1 is also an activity because event is a subclass of activity. The in-
dividual wall_jesus is an user_item because wall is a subclass of user_item. These
inferences are obtained from the subclass relation. In addition, object properties
give us more information. For instance, the individuals message1, message2 and
event1 have been created_by jesus, luis and luis, respectively, since the prop-
erties sent_by and added_by are sub-properties of created_by. In addition, the
individual luis is a friend_of jesus because friend_of is symmetric. More inter-
esting is that the individual vicente is a recommended_friend_of jesus, because
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Table 1. Individuals and object/data properties of the ontology

Ontology Instance
user(jesus), nick(jesus,jalmen),
password(jesus,passjesus2011), friend_of(jesus,luis)
user(luis), nick(luis,Iamluis), password(luis,luis0000)
user(vicente), nick(vicente,vicente), password(vicente,vicvicvic),
friend_of(vicente,luis), i_like_it(vicente,message2),
invited_to(vicente,event1), attends_to(vicente,event1)
event(event1), added_by(event1,luis),
name(event1,“Next conference”), date(event1,21/10/2012)
event(event2)
message(message1), sent_by(message1,jesus),
content(message1,“I have sent the paper”)
message(message2), sent_by(message2,luis),
content(message2,“good luck!”), replies_to(message2,message1)
wall(wall_jesus), belongs_to(wall_jesus,jesus)
wall(wall_luis), belongs_to(wall_luis,luis)
wall(wall_vicente), belongs_to(wall_vicente,vicente)

jesus is a friend_of luis, and luis is a friend_of vicente, which is deduced from
the definition of recommended_friend_of, which is the composition of friend_of
and friend_of. Besides, the individual event1 is confirmed_by vicente, because
vicente attends_to event1 and the properties confirmed_by and attends_to are
inverses. Finally, there are popular concepts: event1 and message2; the first one
has been confirmed_by vicente and the second one is liked_by vicente.

The previous ontology is consistent. The ontology might introduce elements
that make the ontology inconsistent. We might add an user being friend_of of
him(er) self. Even more, we can define that certain events and messages are cre-
ated_by (either added_by or sent_by) more than one user. Also a message can
reply to itself. However, there are elements that do not affect ontology consis-
tency. For instance, event2 has not been created_by users. The ontology only
requires to have at most one creator. Also, messages have not been written_in a
wall. It cannot be forced by OWL RL.

3 Handling of Inconsistency

The Prolog implementation is based on the representation of OWL by triples,
the use of the RDF database of SWI-Prolog, and a bottom-up (i.e., forward
chaining) based Prolog interpreter. The Prolog rules for OWL RL have the form
triple():-triple(),...,triple(). For instance, the rule:

triple(C1, rdfs:subClassOf , C3):-triple(C1, rdfs:subClassOf , C2),
triple(C2, rdfs:subClassOf , C3).

defines the transitive closure of the subclass relationship. Such a rule loops in
a Prolog interpreter. However, with our bottom-up based implementation, the
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Table 2. Mapping of OWL RL Inconsistency rules into the Error Ontology

Name Antecedent Consequent

eq-diff1 x owl:sameAs y, x owl:differentFrom y
id rdf:type SameAndDifferentIndividuals
id individual x
id individual y

prp-irp p rdf:type owl:IrreflexiveProperty,
x p x

id rdf:type IrreflexiveProperty
id property p
id individual x

cax-dw c1 owl:disjointWith c2,
x rdf:type c1,x rdf:type c2

id rdf:type DisjointClasses
id class c1
id class c2
id individual x

process starts from the input ontology (stored by the RDF database) and rules
are applied with a forward chaining strategy, where the calls to the predicate
triple in the rule condition retrieve the instances from the RDF database of the
corresponding OWL triple. The inferences are materialized in the RDF database,
and we can query the database as follows:

?- rdf(X,rdf:type ,ex:popular).
X = ’http://www.semanticweb.org... socialnetwork.owl#event1 ’ ;
X = ’http://www.semanticweb.org... socialnetwork.owl#message2 ’.
false.
?- rdf(X,ex:recommended_friend_of,Y).
X = ’http://www.semanticweb.org/... socialnetwork.owl#jesus’,
Y = ’http://www.semanticweb.org/... socialnetwork.owl#vicente ’ ;
X = ’http://www.semanticweb.org/... socialnetwork.owl#vicente ’,
Y = ’http://www.semanticweb.org/... socialnetwork.owl#jesus’ ;
false.

The OWL RL specification includes consistency tests. Such tests are rules in
which the head is false. Our approach substitutes false by a mapping into an
ontology called error ontology.

In Table 2, we can see examples of the mapping into the error ontology. The
error ontology contains two main classes: Warning and Inconsistency. Incon-
sistency class contains as subclasses: SameandDifferentIndividuals, Irreflexive-
Property, AsymmetricProperty, DisjointProperties, NegativeAssertionProperty,
EmptyClass, DisjointClasses and WrongCardinality, and Warning has as sub-
class SameIndividuals. Warning and Inconsistency elements have an identifier
(id) and suitable properties. For instance, in rule eq-diff1 of Table 2, individual
represents the individuals which are at the same time equal and different; in rule
prp-irp, property is the property found to be reflexive in the value of individ-
ual; and, in rule cax-dw, class represents the classes that are not disjoint, and
individual represents the element that belongs to the intersection.

Now, we would like to show how inconsistency tests are handled by the Prolog
implementation. The idea is to extend the set of Prolog rules. For instance, the
rule cax-dw is represented as follows:

triple (Id,rdf:type ,’http: //www.semanticweb.org/
inconsistency.owl#DisjointClasses’):-

triple(C1, owl:disjointWith , C2),
triple(X, rdf:type , C1),
triple(X, rdf:type ,C2),
gen_id ([’error_ ’,X,’ belongs to ’,C1,’ and ’,C2],Id).
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triple (Id,inc:class ,C1):-triple(C1, owl:disjointWith , C2),
triple(X, rdf:type , C1),
triple(X, rdf:type ,C2),
gen_id ([’error_ ’,X,’ belongs to ’,C1 ,’ and ’,C2],Id).

triple (Id,inc:individual ,X):-triple(C1, owl:disjointWith , C2),
triple(X, rdf:type , C1),
triple(X, rdf:type ,C2),
gen_id ([’error_ ’,X,’ belongs to ’,C1 ,’ and ’,C2],Id).

....

where gen_id builds a string from a list of strings1.
Let us suppose that event1 is a member of the disjoint classes event and

message. In this case, an individual of the class DisjointClasses is generated
named “error_event1 belongs to event and message”, and the elements involved
in the inconsistency are represented as follows. The property class takes as value
the class names event and message, and event1 is the value of the property
individual.

In our Prolog implementation, a message arises whenever an inconsistent on-
tology is loaded:

?- load_owl (’socialnetwork.owl’).
ONTOLOGY SEEMS TO BE NOT CONSISTENT
true.

and we can obtain the following information:

?- rdf(X,rdf:type ,inc:’Inconsistency’).
X = ’error_ event1 belongs to event and message ’.

Besides, we can inspect the elements related to the inconsistency:

?- rdf(X,rdf:type ,inc:’Inconsistency’),
rdf(X,inc:class ,C),rdf(X,inc:individual ,Z).

X = ’error_ event1 belongs to event and message ’,
C = ’http://www.semanticweb.org/... socialnetwork.owl#event’,
Z = ’http://www.semanticweb.org/... socialnetwork.owl#event1 ’ ;
X = ’error_ event1 belongs to event and message ’,
C = ’http://www.semanticweb.org/... socialnetwork.owl#message ’,
Z = ’http://www.semanticweb.org/... socialnetwork.owl#event1 ’.

Our Prolog based implementation is also equipped with the following services:

(a) Computation of each (all) explanation(s) of a given triple.
(b) Computation of each (all) justification(s) of a given triple.
(c) Computation of each (all) root justification(s) of a given triple.
(d) Computation of each (all) lemma(s) of a given triple.

Let us suppose that we would like to know an explanation of “event1 has type
popular”. We can make use of the service explanation as follows:

1 We have found very useful for visualization purposes that the individual identifiers of
the error ontology are error messages built from variable values and the vocabulary
of the rule.
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?- explanation(ex:event1 ,rdf:type ,ex:popular ,S).
S = [rdf(ex:event1 , rdf:type , ex:popular)] ;
S = [rdf(ex:event1 , rdf:type , ex:somebody_attends), rdf(ex:somebody_attends,

rdfs:subClassOf , ex:popular)] ;
S = [rdf(ex:somebody_attends, rdfs:subClassOf , ex:popular), rdf(ex:event1 ,

rdf:type , exists(ex:confirmed_by , ex:user )), rdf(exists(ex:confirmed_by ,
ex:user ), rdfs:subClassOf , ex:somebody_attends)];

...

In such a way that Prolog retrieves each one of the explanations of the triple
found in the RDF database. However, explanations can be too big in many
cases. We have incorporated a service called justification to compute minimal
explanations of a given triple as follows:
?- justification(ex:event1 ,rdf:type ,ex:popular ,S).
S = [rdf(ex:event1 , rdf:type , ex:popular)] ;
S = [rdf(ex:event1 , rdf:type , ex:somebody_attends), rdf(ex:somebody_attends,

rdfs:subClassOf , ex:popular)] ;

For manual repairing the elements of the input ontology can be modified. For this
reason, a service, called root_explanation, is provided which offers each subset
of non derived elements of the ontology that contributes to a given triple. It can
be used as follows:
?- root_explanation(ex:event1 ,rdf:type ,ex:popular ,S).
S = [rdf(ex:somebody_attends, rdfs:subClassOf , ex:popular)] ;
S = [rdf(ex:somebody_attends, rdfs:subClassOf , ex:popular), rdf(ex:vicente ,

rdf:type , ex:user )] ;
S = [rdf(ex:somebody_attends, rdfs:subClassOf , ex:popular), rdf(ex:vicente ,

ex:attends_to , ex:event1), rdf(ex:attends_to , rdfs:domain , ex:user )] ;
....

While root_explanation provides the non derived ontology elements that con-
tributes to the triple, root_justification obtain minimal root explanations:
?- root_justification(ex:event1 ,rdf:type ,ex:popular ,S).
S = [rdf(ex:somebody_attends, rdfs:subClassOf , ex:popular)] ;
false.

In this case there is just one minimal root explanation: the remaining includes
this non derived axiom to conclude the triple. However, root justification could
not be satisfactory and we can inspect the lemmas (i.e., derived explanations
and justifications) associated to a given triple. They can be obtained as follows:
?- lemma_justification(ex:event1 ,rdf:type ,ex:popular ,S).
S = [rdf(ex:event1 , rdf:type , ex:popular)] ;
S = [rdf(ex:event1 , rdf:type , exists(ex:confirmed_by , ex:user )), rdf(exists(

ex:confirmed_by , ex:user ), rdfs:subClassOf , ex:popular)] ;
S = [rdf(exists(ex:confirmed_by , ex:user ), rdfs:subClassOf , ex:popular), rdf

(ex:event1 , ex:confirmed_by , ex:vicente), rdf(exists(ex:confirmed_by ,
ex:user ), owl:onProperty , ex:confirmed_by), rdf(exists(ex:confirmed_by ,
ex:user ), owl:someValuesFrom, ex:user )] ;

...

4 Conclusions and Future Work

In this paper we have described the elements of a Prolog based implementation
for OWL RL, that includes the handling of inconsistent ontologies. As future
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work we would like to extend our approach in several directions. First of all,
we would like to fully integrate our Prolog-based reasoning tool with the Pro-
tégé tool. Currently, Protégé is used for ontology modeling and the OWL RL
implementation is triggered at SWI-Prolog command line. We would like to im-
plement a Protegé plugin. Secondly, we would like to extend our work in the line
of ontology repairing. In particular, we would like to automatize the repairing
of ontologies. Automatic repairing is vital for large ontologies.
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Abstract. Mapping relational databases to knowledge bases is a fun-
damental prerequisite to many data integration activities in databases
and in Semantic Web. The crucial issue is then capturing and mapping
database integrity constraints in the way that ensures preservation of se-
mantics of data. We propose a set of rules defining dependencies between
a relational database and a knowledge base founded on OWL 2 EL. The
theory of data exchange is then adapted to develop data-to-knowledge
exchange with preservation of data semantics.

1 Introduction

Mapping of relational databases to OWL or RDFS knowledge bases is an impor-
tant research topic, since it is a necessary precondition for information integra-
tion stored in relational databases and in various heterogeneous data repositories
on the Web. Also the need to share data among collaborating partners motivates
them to expose relational data on the Web in a form of a knowledge base that
could be a subject of automatic reasoning procedures. Such a knowledge base
should represent the underlying relational database as accurately as possible.
Several papers have been published recently on this subject (see the survey
[13]). Also the W3C RDB2RDF Working Group is developing a direct mapping
standard for translating relational database instances to RDF [2,12]. Primary
key- and foreign key database integrity constraints are then identified as crucial
issues in defining such mappings.

In this paper, we study the problem of translating relational databases to a
knowledge base considering primary- and foreign keys as well as not null integrity
constraints. In our approach, we adapt the results of the theory of data exchange
[6], and chase procedure [1]. We identify this problem as the data-to-knowledge
exchange (dk-exchange) rather than the data-to-data exchange (dd-exchange).
In general, the dk-exchange problem is much more complex compared to the dd-
exchange [3,8]. The reasons are twofold: (1) Databases are based on the closed
world assumption (CWA) while knowledge bases are based on the open world
assumption (OWA) [11]. A statement in CWA is treated as false when it is not
known to be true. In OWA some new facts can be inferred. In consequence, what
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causes an inconsistency in a relational database, can cause an inference of new
knowledge in the knowledge base. (2) Databases use unique name assumption
while in knowledge bases this assumption is usually not made [4].

The novelties of the paper are the following: 1. We propose a translation
of relational database to a set of OWL 2 EL-compatible rules representing the
database schema and its instance in a knowledge base. The rules representing
the schema and integrity constraints form the set of TBox axioms, and the
rules for transforming an instance form a set of data-to-knowledge dependencies
(DKDs). 2. We show how the set of TBox axioms should be divided into two
sets – standard TBox axioms and integrity constraint TBox axioms. We show
that this distinction is necessary in dk-exchange systems to ensure completeness
in semantics preservation.

In Section 2 we formulate the problem of dk-exchange. Translation of rela-
tional schema along with integrity constraints into a set of knowledge base axioms
is proposed in Section 3. In Section 4 the problem of semantics preservation is
discussed. Section 6 concludes the paper.

2 Data-to-Knowledge Exchange: Setting of the Problem

2.1 Relational Database

A relational database schema (rdb-schema) is a pair R = (R, IC), where R =
{R1, . . . , Rn} is a relational schema and IC is a set of integrity constraints over
R. Each relation symbol R ∈ R has a nonempty finite set att(R) of attributes,
we assume that att(R) ∩ att(R′) = ∅ for R �= R′. An instance I of a schema
R is a finite set of facts of the form R(A1 : c1, . . . , Ak : ck), where R ∈ R,
att(R) = (A1, . . . Ak), ci ∈ Const ∪ {NULL}, Const is a set of constants. IC =
PKey ∪ FKey ∪NotNull , where: (1) PKey – a set of primary key constraints of
the form pkey(R, A), where R ∈ R, and A ∈ att(R). (2) FKey – a set of foreign
key constraints of the form fkey(R, A, R′, A′), where R, R′ ∈ R, A ∈ att(R),
A′ ∈ att(R′); A′ must be the primary key of R′, i.e. pkey(R′, A′) ∈ PKey . (3)
NotNull – a set of not null constraints of the form notnull(R, A), where R ∈ R,
A ∈ att(R). By RB = (R, IC, I) we denote a (relational) database with database
schema (R, IC) and an instance I of R. If I satisfies all integrity constraints in
I, then RB is a consistent otherwise an inconsistent database.

Example 1. The following database schema R defines a university database:
E(EId :v1, ESId :v2, Course :v3, Grade :v4) means that the exam v1 has been taken
by v2, the subject of examination was v3 and the achieved grade was v4;
S(SId :v1, Faculty :v2) means that a student v1 is enrolled in the faculty v2;
P(PId : v1 , Name :v2) means that a person v1 has name v2.

R = (R = {E(EId, ESId, Course, Grade), S(SId, Faculty), P(PId, Name)},
IC = PKey ∪ FKey ∪NotNull),

PKey = {pkey(E, EId), pkey(S, SId), pkey(P, PId)},
FKey = {fkey(E, ESId, S, SId), fkey(S, SId, P, PId)},
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NotNull = {notnull(E, EId), notnull(S, SId), notnull(P, PId),
notnull(E, ESId), notnull(E, Course)}.

Foreign keys say that exams were only taken by students, and that each student
is a person. The following instance I of R satisfies all integrity constraints.

I1 : E
EId ESId Course Grade
”1” ”3” ”db” ”A”

S
SId Faculty
”1” ”math”
”3” NULL

P
PId Name
”1” ”john”
”2” ”ann”
”3” ”eva”

2.2 Knowledge Base

An (extended) knowledge base is a tuple KB = (N,S, C,A) (see [8]), where

1. N = NC∪NOP ∪NI is the vocabulary of KB, where: NC – a set of class names,
NOP a set of object property names, NI = Tuple ∪ Const ∪ Var – a set of
individual names, Tuple and Var are infinite sets of labeled nulls (denoted
⊥1,⊥2, . . . ) for, respectively, tuples and attribute values. They are used as
”fresh” Skolem terms for unknown tuples and unknown attribute values.

2. S ∪ C is a set of TBox axioms divided into two groups [8]: (a) S is a finite
set of standard TBox axioms which can infer new facts; (b) C is a finite set
of integrity constraint TBox axioms used to check whether a given set A of
facts satisfies conditions specified by C.

3. A is a set of ABox facts (or assertions) of the form: (a) C(a) – a class
assertion, C ∈ NC, a ∈ NI, (b) P (a1, a2) – an object property assertion,
P ∈ NOP, a1, a2 ∈ NI; (c) a1 ≈ a2 – an equality assertion a1, a2 ∈ NI.

Axioms inS∪C are either: (a) tuple generating dependencies, TGDs: ∀x,y.(ϕ(x,y)
⇒ ∃z.ψ(x, z)); or (b) equality generating dependencies, EGDs: ∀x.(ϕ(x) ⇒ x′ ≈
x′′), where: x,y, z are tuples of individual variables, ϕ(x,y), ψ(x, z), and ϕ(x) are
conjunctions of atomic formulas over N, and x′, x′′ are variables in x.

The semantics of KB is defined by means of an interpretation I = 〈ΔI ,.I 〉
[4]. I is a model of A, written I |= A, if I satisfies all facts in A. A is consistent
with S, denoted A |= S, if every model of A is also a model of S. It was argued
in [8] that the satisfaction of integrity constraint axioms C should be treated
in another way. C is satisfied in A ∪ S if every minimal Herbrand model of
Skolemized version of A ∪ S is also a model of C, denoted sk(A∪ S) |=MM C.

Further on, by K = (N,S, C) we will denote a kb-schema. An ABox A is said
to be consistent with K, written A |= K if A |= S, and sk(A∪S) |=MM C. Then
KB = (N,S, C,A) is a consistent knowledge base.

2.3 Data-to-Knowledge Exchange

Definition 1. A data-to-knowledge exchange, or dk-exchange, is a tuple M =
(R, IC, N,S, C, Σ), where: (a) (R, IC) is a rdb-schema; (b) (N,S, C) is a kb-
schema; (c) Σ is a set of dk-dependencies: ∀v,u.(ϕd(v,u) ⇒ ∃x.ψk(x,v)), where
ϕd and ψk are conjunctions of atomic formulas over, respectively, R and N;
variables in v and u range over Const ∪ Var and x over Tuple.
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A dk-exchange is an adaptation of the dd-exchange setting originally proposed in
[6]. Dd-exchange is a quintuple (Rs, Σs,Rt, Σt, Σ), and is defined as the problem
of transforming data structured under the source schema Rs into an instance of
the target schema Rt that reflects the source data as accurately as possible and
satisfies all target dependencies Σt. Thus, it is assumed that all components in
dd-exchange are given in advance, and the problem is to investigate the existence
of a solution and to find a solution. The solution can be found by means of a
chase procedure if the set of target dependencies Σt is weakly acyclic. Such the
solution is called a canonical universal solution [6].

In the case of dk-exchange setting we are interested in transforming both a
database schema and its instances into a knowledge base. Thus our task consists
of two steps:

1. For a given rbd-schema R = (R, IC): (a) translate R into a kb-schema
K = (N,S, C); (b) determine a set Σ of dk-dependencies from R into N. In
result we obtain a dk-exchange system M = (R, IC, N,S, C, Σ).

2. For an instance I of R find an ABox A such that: (a) (I,A) |= Σ; (b) if I is
consistent with R, then A is consistent with K (soundness of M) ; (c) if I
is inconsistent with R, then A is inconsistent with K (completeness of M).

Such an A, if exists, is called a solution for I with respect to M.

3 Translation of Relational Database Schema into a
Relational Knowledge Base Schema

3.1 Creating Vocabulary

Now, we specify rules for translating rdb-schema (R, IC) into a kb-schema
(N,S, C), where N = NC ∪ NOP ∪ NI.

1. NI = Tuple ∪ Const ∪ Var (see Section 2.2).
2. Thing, Nothing, Tuple, and Val are in NC, (Val = Const ∪ Var – a set of

attribute values).
3. For each R ∈ R, there is a class name CR ∈ NC (CR � Tuple).
4. For each attribute A ∈ att(R), R ∈ R, there is a class name CA ∈ NC

(CA � Val) and an object property name PA ∈ NOP (from CR to CA).
5. For each foreign key fkey(R, A, R′, A′) ∈ FKey there is an object property

name FA ∈ NOP (from CR to CR′).

3.2 Creating TBox Axioms

By S ∪ C = τS,C(R) we will denote a translation of R = (R, IC) into a set
of TBox axioms. The axioms are listed in Table 1 as DL expressions and FO
formulas (universal quantifications in FO formulas are omitted).

Comments: Axioms: (A1)− (A4), (A8), (A9), (A14) are trivial and are satisfied
by assumption (construction of Σ in M) or are consequences of another axioms.
The set S of standard TBox axioms consists of the following six axioms that are
either in Table 1 or are derived from some axioms in Table 1:
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Table 1. TBox axioms of relational knowledge base (”-” denotes trivial axioms, S –
axioms used to derive S , and C – axioms in C)

Constraint DL FO

A1. - disjointness Tuple � Val � ⊥ Tuple(x) ∧ Val(x) ⇒ FALSE

A2. - R ∈ R CR � Tuple CR(x) ⇒ Tuple(x)
A3. - A ∈ att(R),R ∈ R CA � Val CA(v) ⇒ Val(v)

A4. - domain ∃PA.
 � CR PA(x, v) ⇒ CR(x)

A5. S range ∃P−
A .
 � CA PA(x, v) ⇒ CA(v)

A6. S pkey(R,A) CA �≤ 1P−
A .CR PA(x1, v) ∧ PA(x2, v) ⇒ x1 ≈ x2

A7. S fkey(R,A, R′, A′) CA � CA′ CA(v) ⇒ CA′(v)

A8. - domain ∃FA.
 � CR FA(x1, x2) ⇒ CR(x1)

A9. - range ∃F−
A .
 � CR′ FA(x1, x2) ⇒ CR′(x2)

A10. S chain FA ◦ PA′ � PA FA(x1, x2) ∧ PA′(x2, v) ⇒ PA(x1, v)

A11. S existence of FK ∃PA.CA � ∃FA.CR′ PA(x1, v) ⇒ ∃x2.FA(x1, x2)

A12. C existence of ref.att. ∃P−
A .CR � ∃P−

A′ .CR′ PA(x1, v) ⇒ ∃x2.PA′(x2, v)

A13. - fkey(R,A, R′, A′) CR � CR′ CR(x) ⇒ CR′(x)
A14. S and pkey(R,A) PA � PA′ PA(x, v) ⇒ PA′(x, v)

A15. C notnull(R, A) CR � ∃PA.CA CR(x) ⇒ ∃v.PA(x, v)

1. S1 = (A5) – the range of object property PA is CA.
2. S2 = (A6) – object property PA is a key for class CR.
3. S3 = (A7) – CA is a subclass of CA′ , if fkey(R, A, R′, A′) is a foreign key.
4. S4 = PA(x1, v) ∧ FA(x1, x2) ∧ PA′(x3, v) ⇒ x2 ≈ x3 – follows from (A6)

and (A10). If fkey(R, A, R′, A′) is a foreign key, and a tuple x1 is connected
througu PA to v and through FA to x2, then any tuple x3 connected by PA′

to v is equal to x2.
5. S5 = (A11) – if fkey(R, A, R′, A′) is a foreign key and a tuple x1 is connected

by PA to some attribute value v, then there exists such a tuple x2 of class
CR′ that x1 is connected to x2 by the object property FA.

6. S6 = FA(x1, x2)∧PA(x1, v)∧PA′(x2, v) ⇒ x1 ≈ x2 – follows from (A6) and
(A14). If fkey(R, A, R′, A′) is a foreign key and pkey(R, A) is a primary key,
then tuples x1 and x2 connected by FA are equal if they are connected to
the same value v through object properties, respectively, PA and PA′ .

The set C of integrity constraint axioms consists of the following two axioms:

1. C1 = (A12) – if fkey(R, A, R′, A′) is a foreign key, and the object property
PA connects a tuple x1 with a value v, then there exists a tuple x2 connected
with v by the object property PA′ .

2. C2 = (A15) – if notnull(R, A) is a not null constraint, then for each tuple
x of class CR exists such a value v that x is connected with v by the object
property PA.

3.3 Data-to-Knowledge Dependencies

Let R = (R, IC) be a database schema. A set Σ of dk-dependencies (DKDs)
is a set of implications determining dependencies between instances of R and a
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set of facts in an ABox A. Every DKD σ ∈ Σ has one of the following forms,
where: R ∈ R, Ak is a primary key, Ai is an attribute distinct from Ak:

R(A1 : v1, A2 : v2, . . . , An : vn) ∧ vk = NULL ⇒ ∃x.CR(x),
R(A1 : v1, A2 : v2, . . . , An : vn) ∧ vk �= NULL ⇒ ∃x.CR(x) ∧ PAk

(x, vk),
R(A1 : v1, A2 : v2, . . . , An : vn) ∧ vk �= NULL ∧ vi �= NULL

⇒ ∃x.CR(x) ∧ PAk
(x, vk) ∧ PAi(x, vi).

(1)

Each occurrence of ∃x substitutes to x a ”fresh” individual from Tuple. Any fact
R(t) from a database instance I is mapped to a set of facts in A. If the primary
key of t is NULL, then R(t) is mapped to a singleton CR(x) ∈ A. Otherwise, R(t)
is mapped to a set {CR(x), PAj (x, vj) | Aj ∈ att(R), vj �= NULL} ⊆ A. Note that
no-key attribute value, vi, is mapped together with the primary key attribute
value, vk, to ensure the proper identification of the relevant tuple x. Values of the
primary key Ak are then used to determine equalities between tuples (denoted
by x) (see axiom (A6)).

4 Chasing Facts in Knowledge Base

4.1 Dk-Chase Procedure

The proposed method for finding a solution A for a given instance I, called dk-
chase procedure, is based on classical chase procedure [1,6]. It was proven in [6]
that if the set of dependencies used in chasing is weakly acyclic then the solution
can be obtained in polynomial time, or it can be decided in polynomial time that
the solution does not exist. The solution, if it exists, is then called a canonical
universal solution. The dk-chase procedure is a procedure which successively
generates facts in A using dependencies from Σ (assuming that at the start A
is empty) and ”repairs” them relative to axioms in S so that the result satisfies
all dependencies and all axioms. The dk-chasing is denoted

(I, ∅) Σ∪S−→ (I,A),

meaning that the solution A will be achieved after a finite set of steps in which
dependencies from Σ ∪ S are applied. Finally, (I,A) |= Σ and A |= S.

4.2 Preservation of Semantics

One of the most challenging issues in dk-exchange is to show that the semantics
of the source data is not lost by the transformation (the dk-chase procedure). The
semantics is defined by the set of database integrity constraints. The preservation
of semantics of a dk-exchange system (R, IC, N,S, C, Σ) can be understood in
two ways:

1. A dk-exchange system is sound w.r.t. semantics preservation if every consis-
tent database RB = (R, IC, I) is transformed into a consistent knowledge
base KB = (N,S, C,A), i.e.

(I |= R ∧ (I,A) |= Σ ∧ A |= S ∧ I |= IC) ⇒ sk(A ∪ S) |=MM C.
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2. A dk-exchange system is complete w.r.t. semantics preservation if every in-
consistent database RB = (R, IC, I) is transformed into an inconsistent
knowledge base KB = (N,S, C,A), i.e.

(I |= R ∧ (I,A) |= Σ ∧ A |= S ∧ I �|= IC) ⇒ sk(A ∪ S) �|=MM C.

It can be proven that a dk-exchange system M = (R, IC, N,S, C, Σ), where S =
{S1, S2, S3, S4, S5, S6} and C = {C1, C2} (see Sec. 3.2), is sound and complete
w.r.t. semantics preservation. Moreover, if any axiom is moved from C into S
then M is sound but not complete. If any axiom is moved from S into C then
M is complete but not sound.

Example 2. Let S1 = S ∪ C. We will show that M1 = (R, IC, N,S1, ∅, Σ) is not
complete. Let I1 = {E(EId : ”1”, ESId : ”3”, Course : NULL, Grade : NULL), ∅, ∅}
be an (inconsistent) instance of (R, IC) (Example 1). Then we can consider
only two DKD,
σ1 = E(EId :v1, ESId :v2, Course :v3, Grade :v4) ⇒ ∃x.CE(x) ∧ PEId(x, v1),
σ2 = E(EId :v1, ESId :v2, Course :v3, Grade :v4) ⇒ ∃x.CE(x) ∧ PEId(x, v1)

∧ PESId(x, v2),
from the set Σ of all DKDs (1). Then (I1, ∅) Σ∪S1−→ (I1,A1). It can be easily
seen that the target knowledge base KB1 = (N,S1, ∅,A1) is consistent, although
the source database RB1 = (R, IC, I1) is not. A1 is presented in Figure 1(a)
in a form of a graph. Solid lines in the graph denote facts generated by depen-
dencies from Σ and axioms from S ⊂ S1, dotted lines denote facts inferred as
consequences of C ⊂ S1. In Figure 1(b) there is depicted the ABox A2 as the
result of M2 = (R, IC, N,S, C, Σ) on I1, i.e. (I1, ∅) Σ∪S−→ (I1,A2). Then KB2 =
(N,S, C,A2) is inconsistent, similarly as RB1. We can show that M2 is sound and
complete.
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Fig. 1. Consistent ABox A1 (a) (w.r.t. (N,S1, ∅)) produced by M1 from inconsistent
instance I1, and inconsistent ABox A2 (b) (w.r.t. (N,S ,C)) produced by M2 from I1



Using Data-to-Knowledge Exchange for Transforming Relational Databases 263

5 Conclusion

In this paper, we study how to map relational databases to OWL 2 EL-based
knowledge bases. We consider primary keys, foreign keys, and not-null properties
as database integrity constraints and discuss how the relational schema along
with the integrity constraints can be represented by vocabulary and TBox axioms
of a knowledge base. Next, we apply a chase procedure to define a transformation
of a database instance to a set of ABox facts. We focus on the problem of
semantics preservation in the data-to-knowledge exchange. We show how the
set of TBox axioms should be divided into a set of standard axioms and a set
of integrity constraint axioms to achieve complete semantics preservation. This
problem is of significant importance in many database-centered and Semantic
Web applications. We face it by developing the SixP2P system for semantic
integration of data in P2P environment [5,10]. The ontology-based approach is
then used to automatic generation of mappings and query rewriting [7,9].
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Abstract. PSOA RuleML is a recently specified rule language combin-
ing relational and object-oriented modeling. In order to provide reasoning
services for PSOA RuleML, we have implemented a reference translator,
PSOA2TPTP, to map knowledge bases and queries in the PSOA RuleML
presentation syntax (PSOA/PS) to the popular TPTP format, supported
by many first-order logic reasoners. In particular, PSOA RuleML reason-
ing has become available using the open-source VampirePrime reasoner,
enabling query answering and entailment as well as consistency checking.
The translator, currently composed of a lexer, a parser, and tree walkers,
is generated by the ANTLR v3 parser generator tool from the grammars
we developed. We discuss how to rewrite the original PSOA/PS gram-
mar into an LL(1) grammar, thus demonstrating that PSOA/PS can
be parsed efficiently. We also present a semantics-preserving mapping
from PSOA RuleML to TPTP through a normalization and a transla-
tion phase. We wrap the translation and querying code into RESTful
Web services for convenient remote access and provide a demo Web site.

1 Introduction

Semantic Web knowledge representations span objects, rules, and ontologies.
PSOA RuleML [1] is a positional-slotted object-applicative rule language, in-
cluding light-weight ontologies, which integrates relations (predicates) and ob-
jects (frames). To test the PSOA/PS syntax specification and also illustrate the
PSOA RuleML semantics, we have developed a reference implementation as a
translator named PSOA2TPTP1 mapping knowledge bases and queries of PSOA
RuleML in RIF-RuleML-like Presentation Syntax (PSOA/PS) to the TPTP2

format – a de facto standard supported by many first-order logic reasoners. The
translated document can then be executed by the open-source first-order rea-
soner VampirePrime3 or other TPTP systems for query answering or related
1 http://psoa2tptp.googlecode.com/
2 Thousands of Problems for Theorem Provers, http://www.cs.miami.edu/~tptp/
3 http://riazanov.webs.com/software.htm

A. Bikakis and A. Giurca (Eds.): RuleML 2012, LNCS 7438, pp. 264–279, 2012.
© Springer-Verlag Berlin Heidelberg 2012

http://psoa2tptp.googlecode.com/
http://www.cs.miami.edu/~tptp/
http://riazanov.webs.com/software.htm
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reasoning tasks, such as consistency testing and entailment checking (theorem
proving).

The main components of our two realizations of PSOA2TPTP include a
shared lexer and parser as well as two tree walkers. The lexer breaks the in-
put document up into a stream of tokens. The stream is then transformed by
the parser into an Abstract Syntax Tree (AST) which condenses and structures
the information of the input. Finally, the AST is traversed by the tree walkers,
either for direct TPTP generation or via Abstract Syntax Objects (ASOs). These
components are produced by the widely used ANTLR v3 framework4 from,
respectively, the specified grammars, namely a lexer grammar, a parser grammar
and two tree grammars.

To prove feasibility of efficient parsing, we rewrite the original PSOA RuleML
EBNF grammar into an LL(1) grammar which accepts a slightly restricted sub-
set of the PSOA RuleML language, including some syntactic sugar proposed
in [1]. With this rewriting, the grammar is accepted by ANTLR and is more effi-
cient for parsing. However, it becomes less readable and reusable. Thus, we chose
to construct a customized AST by embedding additional rewrite rules into the
parser grammar, and to develop an understandable and reusable tree grammar
for ANTLR to generate the tree walkers.

To combine and deploy the above-mentioned components, we have also devel-
oped a RESTful Web API for translating PSOA/PS documents to TPTP and
running VampirePrime. We have published a Web site to demonstrate the use
of the API, constituting the first PSOA RuleML implementation release.5

The rest of the paper is organized as follows. Section 2 explains the translation
source and targets of PSOA2TPTP. Section 3 shows the overall translation archi-
tecture. Section 4 discusses grammar implementation, especially the rewriting of
the parser grammar. Section 5 gives the syntactic translation from PSOA/PS to
TPTP-FOF. Section 6 discusses the RESTful Web API implementation. Section
7 concludes the paper and discusses future work.

2 Interoperation Source and Targets

We discuss here the source language, PSOA RuleML, the target language TPTP,
and the target reasoner VampirePrime, of our interoperating translator.

2.1 PSOA RuleML

PSOA RuleML is a rule language that generalizes the POSL [2] as well as the
F-Logic and W3C RIF-BLD languages [3]. In PSOA RuleML, the notion of a
positional-slotted, object-applicative (psoa) term is introduced as a generaliza-
tion of: (1) the positional-slotted term in POSL and (2) the frame term and the

4 ANother Tool for Language Recognition, a language framework for constructing
recognizers, interpreters, compilers and translators from grammatical descriptions
containing actions in a variety of target languages. http://www.antlr.org/

5 http://198.164.40.211:8082/psoa2tptp-trans/

http://www.antlr.org/
http://198.164.40.211:8082/psoa2tptp-trans/
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class membership term in RIF-BLD. A psoa term has the following general form:

o # f([t1,1 ... t1,n1] ... [tm,1 ... tm,nm] p1->v1 ... pk->vk)

Here, o is the object identifier (OID) which gives a unique identity to the object
described by the term by connecting three kinds of information: (1) The class
membership o # f makes o an instance of class f; (2) each tupled argument
[ti,1 ... ti,ni] represents a sequence of terms associated with o; (3) each slotted
argument pi->vi represents a pair of an attribute pi and its value vi associated
with o.

A psoa term can be used as an atomic formula. Atomic formulas in PSOA
RuleML can be combined into more complex formulas using constructors from
the Horn-like subset of first-order logic: conjunction, disjunction in premises, as
well as certain existential and universal quantifiers. Implication can be used to
form rules.

2.2 TPTP and VampirePrime

TPTP (Thousands of Problems for Theorem Provers) [10] is a library of test
problems for automated theorem proving systems using a problem format of the
same name. A TPTP problem is a list of annotated formulas of the form:

language(name, role, formula, source, useful info).

Here, language specifies the TPTP dialect used to write the formula. We employ
the FOF dialect which allows the use of arbitrary first-order formulas. name is
a name given to the formula; role specifies the intended use of the formula. The
most important roles are axiom, hypothesis, conjecture and theorem. formula
is the formula body. source and useful info are optional and irrelevant for us.
Some of the constructors of TPTP are shown in Table 1.

Table 1. TPTP constructors

Symbol Logical Meaning Symbol Logical Meaning
~ not != unequal
& and => implication
| or ?[v1, v2, ...] existential quantifier
= equal ![v1, v2, ...] universal quantifier

Following is an example of an annotated TPTP formula.
fof(first_order,axiom,

![X]: ( (p(X)| ˜q(a))=> ?[Y,Z]: (r(f(Y),Z) & ˜s) )
).

This formula represents the first order formula

∀X : ( (p(X)∨¬q(a))→ ∃Y ∃Z : r(f(Y), Z)∧¬s )
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Vampire [4] is a mature high-performace reasoner for first-order logic.
VampirePrime is an open source reasoner derived from the Sigma KEE6 edition
of Vampire. In addition to the standard first-order logic theorem proving tasks,
such as consistency checking and entailment, VampirePrime supports query an-
swering by implementing incremental query rewriting [5]. It can also be used for
semantic querying on relational (SQL) databases modulo arbitrary first-order
logic axioms.

3 Translation Architecture

The overall architecture of PSOA2TPTP shown in Figure 1 includes three real-
izations: the direct translator, the TPTP-Abstract-Syntax-Object-based
(TPTP-ASO-based) translator, and the fully-ASO-based translator. We have
completed the first two for a subset of the PSOA RuleML language and the
last one will be completed in the future. The input for the direct translator is a
PSOA/PS document. We use the ANTLR v3 tool to generate a parser-translator
that parses the input rulebase and query and generates a semantics-preserving
TPTP document, which can be fed into VampirePrime to compute the query
results. The concrete steps will be explained later. In contrast to the direct trans-
lator, the fully-ASO-based translator will create and transform PSOA RuleML
Abstract Syntax Objects (PSOA ASOs) – simple data structures representing the
information of the input document in a straightforward manner. The key com-
ponent is the PSOA-ASO-to-TPTP-ASO translator, which transforms a PSOA

Fig. 1. Components and workflow of the PSOA2TPTP architecture

6 http://en.wikipedia.org/wiki/Sigma_knowledge_engineering_environment

http://en.wikipedia.org/wiki/Sigma_knowledge_engineering_environment
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ASO into a TPTP ASO using the TPTP parser/renderer library.7 The fully-
ASO-based translator will also support documents conforming to a PSOA/XML
syntax designed in the companion effort PSOA RuleML API [6], which also has
developed a JAXB-based8 XML parser. The dashed lines in the diagram give
the context of components under development. The TPTP-ASO-based translator
generates TPTP ASO directly using ANTLR.

Fig. 2. Workflow of the parsing code generated from the ANTLR grammars

Figure 2 ‘explodes’ the shaded box of Figure 1, showing the detailed workflow
of the ANTLR-based PSOA/PS processor (a parser-generator). Firstly, the input
PSOA/PS document is broken up into a token stream by the PSOA/PS lexer.
In the stream, every token has an associated regular expression representing all
the strings that will be accepted as this token, and the decomposition is done by
matching these regular expressions. After this step, the PSOA/PS parser feeds
off the token stream, parses its syntactic structure, and creates an Abstract
Syntax Tree (AST), which is a condensed version of the input with a tree data
structure. Finally, the AST is processed by a tree walker which generates the
output. The tree walker on the left-hand side generates the TPTP document
directly, which is part of the direct translator in Figure 1. The tree walker in the
middle (resp., on the right-hand side) creates a TPTP (resp., PSOA) ASO, which
is part of the TPTP-ASO-based (resp., fully-ASO-based) translator. The lexer,
parser, and three tree walkers are generated by ANTLR from the corresponding
ANTLR grammars. The syntactic specifications of the three tree grammars are
identical while the embedded output-creating actions in the tree grammars are
different. The tree grammar with PSOA ASO actions has not yet been developed
while the two other ones have been completed.

Comparing the direct translator and the fully-ASO-based translator, the main
advantages of the direct translator are: (d1) It requires fewer steps in Figure 1;
(d2) it is only based on Java and ANTLR; (d3) it is more efficient, since there
are no intermediate representations.
7 http://riazanov.webs.com/tptp-parser.tgz
8 http://jaxb.java.net/

http://riazanov.webs.com/tptp-parser.tgz
http://jaxb.java.net/
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The advantages of the fully-ASO-based translator are: (f1) It reuses an ex-
isting parser/renderer library for TPTP concrete syntax generation; (f2) the
TPTP document generated from the TPTP library is more readable; (f3) it can
be reused for the translation from other concrete PSOA syntaxes, such as the
PSOA/XML serialization, provided that the corresponding parsers are able to
generate PSOA ASOs; (f4) it will be easier to evolve the translation procedure,
e.g., by implementing different translation styles, because the developers can
work with a clean and simple ASO API instead of the complicated ANTLR
AST parsing.

The TPTP-ASO-based translator is an intermediate implementation combin-
ing the advantages (d1), (d2), (f1), and (f2). To cover the entire interoperation
space, we started with the direct translation, are now developing the TPTP-
ASO-based translation, and will then proceed to the PSOA-ASO-based transla-
tion, thus allowing an overall comparison.

4 Grammar Implementation for PSOA RuleML
Presentation Syntax

In this section, we discuss the implementation of the ANTLR grammars, espe-
cially the parser grammar. Firstly, we review the original ANTLR parser gram-
mar for PSOA/PS which, in particular, incorporates the syntactic sugar into the
EBNF grammar spefication. After that, we propose some additional restrictions
on PSOA/PS to make efficient parsing possible. Then we apply some rewriting
techniques to the parser grammar to make it acceptable for ANTLR. Finally we
discuss the construction of AST and the tree grammar.

4.1 Original Parser Grammar

In [1], the EBNF grammar of PSOA/PS is specified. Besides this core grammar,
there is some optional syntactic sugar for psoa terms:

– In the anonymous version of a psoa term, the OID and the hash symbol ‘#’
are omitted.

– For psoa terms without tuples or slots, the empty pair of parentheses can
be omitted. For example, the psoa term o # f(), which represents just a
membership relation, can be abridged to o # f.

– For psoa terms with only one tuple, the square brackets ‘[’ and ‘]’ enclosing
the tuple’s term sequence can be omitted, e.g., o # f([t1 t2] p->v) can be
abridged to o # f(t1 t2 p->v).

In order to incorporate this syntactic sugar into the parser grammar, we need
to change the original production (1) for psoa term into productions (2) and (3)
shown below, where all the productions are in the ANTLR grammar style:



270 G. Zou et al.

psoa : term '#' term '(' tuple* (term '->' term)* ')'; (1)

psoa : term '#' term ('(' tuples_and_slots ')')? (2)
| term '(' tuples_and_slots ')' ;

tuples_and_slots : tuple* (term '->' term)* (3)
| term+ (term '->' term)* ;

The productions (2) and (3) will be further rewritten in Section 4.3.

4.2 Restricted PSOA RuleML Language

In order to simplify rewriting of the original PSOA/PS grammar into one which
can be accepted by ANTLR, we impose the following restrictions on the use of
the PSOA RuleML language.

1. The ‘-’ character is not allowed in constant and variable names.
2. The class term in a psoa term must be a constant or variable.
3. A subclass formula, an equality formula or an anonymous psoa term must

not start with an external term.

The first restriction is introduced to simplify tokenizing of the lexer. The second
and third restrictions are brought in when we rewrite the original parser grammar
into an LL(1) grammar, which will be elaborated in the next section.

4.3 Grammar Rewriting

The ANTLR-generated parser uses an LL parsing mechanism. It constructs
a DFA (Deterministic Finite Automaton) which can look ahead an arbitrary
number of lexer tokens and choose to match one of the candidate patterns in a
production. However, the original PSOA RuleML grammar is a non-LL grammar
and cannot be used directly by ANTLR to generate the parser. So we rewrite it
into an LL(1) grammar, accepted by ANTLR. The grammar is efficient in that
a single-token lookahead tells the parser which alternative to consider. We follow
the formal process in the compiler theory to do the rewriting [7]: (1) ambiguity
resolution; (2) elimination of left recursion; (3) left-factoring.

Ambiguity Resolution. In the original parser grammar, the production for
psoa term shown in Section 4.1 is ambiguous. The term o # f() can be accepted
in two ways: (1) o is accepted as the OID and f as the class term; (2) o # f is
accepted as a class term and o # f() as an anonymous psoa term. To resolve the
ambiguity, we restrict the class term to be either a constant or a variable. With
this restriction, a higher-order psoa term like a # b # c in which b # c is the class
term needs to be expressed as a conjunction of separate psoa terms a # b and
b # c.
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Elimination of Left Recursion. Left recursion is one of the main causes of
a grammar to become a non-LL grammar. A simple example of a left-recursive
grammar with a single terminal A is:

p : p A | ;

This grammar of non-terminal p accepts a string of the form A*. However, no
LL− based parser is capable of parsing such a production since it would not be
able to consume any token when it applies the alternative p : p A.

In PSOA/PS, the production for psoa is implicitly left-recursive since its first
non-terminal term can also be a psoa. In order to eliminate left recursion, we
employ a rewriting in the following steps, where productions (4), (5) and (8) are
the results:

1. Separate psoa from the production of term.

term : psoa | non_psoa_term ; (4)
non_psoa_term : const | var | external_term ; (5)

2. Merge the two alternatives of the psoa production in Section 4.1 by com-
bining the common prefix term, and group the remaining part using a new
non-terminal psoa_rest, yielding production (6). Then we separate the left-
recursive part from (6) and get (7).

psoa : term psoa_rest ; (6)
psoa : non_psoa_term psoa_rest | psoa psoa_rest ; (7)

3. Rewrite (7) to remove left recursion.

psoa : non_psoa_term psoa_rest+ ; (8)

Left Factoring. After removing the left recursion, the third step of rewriting
is left factoring, which makes the grammar an LL(1) grammar. Left factoring
means to combine multiple alternatives into one by merging their common pre-
fix. Following is an example consisting of non-terminals p,q and terminals A,B:

p : q A | q ;
q : B+ ;

While parsing a sentence of p, the parser needs to reach the end of the string
to decide on the two alternatives which have a common prefix q. Since q can
match an arbitrary number of tokens, no LL(k) parser is able to distinguish the
alternatives of p. By merging the common prefix, we can rewrite the production
into p : q A? and the grammar becomes an LL(1) grammar.

One of the examples of common prefixes in the original parser grammar is
the production for tuples_and_slots in Section 4.1 which matches zero or
more tuples or slots. The two alternatives have a common prefix term which
accepts an arbitrary number of lexer tokens. Apart from this, an LL-parser is
also incapable of predicting the end of term+ since the start of a slot is also a
term.
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We follow the steps below to rewrite the production into LL(1):

1. Separate the scenario which has the prefix term from the first alternative.
That is the case where tuples_and_slots matches one or more slots.

tuples_and_slots : tuple+ (term '->' term)*
| term+ (term '->' term)*
| (term '->' term)+
|
;

2. Rewrite the second and third alternatives to separate the prefix 'term'.
tuples_and_slots : tuple+ (term '->' term)*

| term+ (term '->' term (term '->' term)*)?
| term '->' term (term '->' term)*
|
;

3. Merge the second and the third alternatives into a single alternative.
tuples_and_slots : tuple+ (term '->' term)*

| term+ ('->' term (term '->' term)*)?
|
;

After merging, we can see that the common prefixes between different alter-
natives are eliminated and the grammar becomes an LL(1) grammar.

Besides the example shown above, there are many other occurrences of com-
mon prefixes in the original parser grammar. Some of them relate to multiple
productions and rewriting is more difficult. One method we employ to simplify
rewriting is adding restrictions to some alternatives to make it easier to separate
a common prefix. For example, the third restriction we introduced in Section 4.2
prohibits some use cases of external terms in an atomic formula. It allows us to
separate the cases with the prefix external_term from atomic and combine it
with the alternative formula: external '(' atom ')'.

4.4 Abstract Syntax Tree and Tree Grammar

In the previous section we have illustrated the rewriting of the parser grammar.
The resulting LL(1) grammar is easier for generating the parser but tends to be
less reusable and more difficult for future developers to read and work on. Thus,
we chose to construct an Abstract Syntax Tree (AST) by embedding rewrite rules
into the parser grammar and develop a simple and reusable tree grammar for
traversing the AST. Examples of rewrite rules used can be found in [8]. The AST
retains the meaningful input tokens and encodes them into a tree structure, while
some auxiliary tokens like '(' and ')' are removed. Some imaginary tokens, in
the ANTLR terminology, are also added for easy recognition and navigation.
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5 PSOA-to-TPTP Translation

5.1 Semantics-Preserving Translation from PSOA RuleML to
TPTP

The semantics-preserving translation from PSOA RuleML to TPTP has two
phases: (1) Normalization of composite formulas into a conjunction of elementary
constructs and (2) translating them into corresponding TPTP forms.

Normalization. In the normalization phase, we transform the original knowl-
edge base (KB) into a semantically equivalent one which only uses elemen-
tary constructs. An elementary construct is a term or a formula that cannot
be split into equivalent subformulas. The reason for normalization is that the
subsequent one-to-one translation of elementary constructs into TPTP avoids
adding additional axioms to derive subformulas. For example, the psoa formula
o # f(t1...tk) is equivalent to a conjunction of two translation-ready subformu-
las: o # f() and o # Top(t1...tk), where Top is the root class such that o # Top
is true for any o. If we translated o # f(t1...tk) into a single TPTP formula,
an additional axiom, corresponding to o # f() :- o # f(t1...tk), would need
to be added to be able to derive o # f() from o # f(t1...tk).

There are two major steps in this phase: flattening nested psoa formulas and
splitting flat composite psoa formulas. For the first step, any atomic formula
with nested psoa terms (which must be anonymous [1]) will be flattened: The
original formula is replaced by a conjunction containing equations pairing fresh
variables with the nested psoa terms and containing the atomic formula in which
each nested psoa term is replaced by its corresponding variable. Flattening will
be applied recursively to equations that contain psoa terms with nested psoa
terms until all the psoa terms are flat.

The second step is only needed for flattened psoa formulas that apply a pred-
icate (not for psoa terms that apply a function), where the OID, slot names and
values, and tuple components are all constants or variables. The definition of the
truth value of a psoa formula in [1] introduces splitting semantically as follows
(the meaning of a psoa formula is defined via its elementary constructs):

– TValI(o # f([t1,1 ... t1,n1] ... [tm,1 ... tm,nm] p1->v1 ...pk->vk)) = true
if and only if
TValI(o # f) =
TValI(o#Top([t1,1 ... t1,n1]))=...= TValI(o#Top([tm,1 ... tm,nm])) =
TValI(o#Top(p1->v1)) = ... = TValI(o#Top(pk->vk)) = true.

The composite psoa formula is split into a conjunction of 1+m+k subformulas,
including 1 class membership formula, m single-tuple formulas and k (RDF-triple-
like) single-slot formulas. Normalization perfoms such splitting syntactically.

Translation of Elementary PSOA RuleML Constructs. We define the
translation function τpsoa( . . .) mapping each PSOA/PS elementary construct to
a TPTP construct as follows:
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– Constants
In PSOA RuleML, constants have the form "literal"ˆˆsymspace, where
literal is a sequence of Unicode characters and symspace is an identifier
for a symbol space. There are also six kinds of shortcuts for constants, as
shown in the production of CONSTSHORT [9]:

CONSTSHORT ::= ANGLEBRACKIRI
| CURIE
| '"' UNICODESTRING '"'
| NumericLiteral
| '_' NCName
| '"' UNICODESTRING '"' '@' langtag

In TPTP, a constant can be either an identifier starting with a lower-case
letter, a single-quoted string or a numeric constant. In the current version of
the translator, we translate constants of the form '_' NCName into a TPTP
identifier by removing '_', and the first character of NCName is converted to
lower case. Constants of type NumericLiteral are kept without any change.
In future development we may consider using single-quoted full URIs for all
constants as a configuration option.

– Variables
A PSOA/PS variable is a ‘?’-preceded Unicode string. To translate it into
a TPTP variable starting with an upper-case letter, we replace ‘?’ with ‘Q’.
For example, a PSOA variable ?job is mapped to a TPTP variable Qjob.

– Tuple Terms
A tuple term in PSOA/PS is of the form o # Top(t1...tk). It associates
the tuple [t1...tk] with the OID o (other tuple terms can use the same
OID). To translate it into TPTP, we use a reserved predicate, tupterm,
and use o as the first argument of the predicate. The k components of the
tuple follow as the sequence of remaining arguments. Since o # Top is true
for every o, Top is omitted without affecting the semantics. The result is
a (1+k)-ary term, tupterm(τpsoa(o), τpsoa(t1) . . . τpsoa(tk)). Note that the
predicate name tupterm is polyadic – i.e., representing predicates of different
arities – as allowed by the TPTP syntax.

– Slot Terms
A slot term in PSOA/PS has the form o # Top(pi->vi). Its meaning is that
the object with an OID o has a property pi and the property value is vi.
We use another reserved predicate, sloterm, to represent this relationship
in TPTP. Top is omitted as for tuple terms. The result is a ternary term,
sloterm(τpsoa(o),τpsoa(pi),τpsoa(vi)), corresponding to an RDF triple.

– Membership Terms
Class membership terms in PSOA/PS are of the form o # f() (abridged
o # f), meaning o is an instance of class f. In the translation, we use a
third reserved predicate, member, so that the result is a binary term
member(τpsoa(o), τpsoa(f)). In future versions, we may optionally use an al-
ternative translation where o # f() would be translated as f(o), i.e., treating
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the class f as a unary predicate, for compatibility with other sources of TPTP
formulas, such as the translator from RIF to TPTP.9

– Subclass Formulas
Subclass formulas c1 ## c2 in PSOA/PS are reused unchanged from RIF,
meaning all the instances of class c1 are also instances of class c2. To trans-
late the subclass formula, a fourth reserved predicate subclass is used to
represent the subsumption relation ## in TPTP. The translation of the
formula in TPTP is subclass(τpsoa(c1), τpsoa(c2)). Note that solely with
such a translation, we are not able to infer the inheritance o # c2 just from
the translation of o # c1 and c1 ## c2. In order to make that inference, this
extra inference axiom for inheritance is needed in TPTP:

![X,Y,Z] (member(X,Y) & subclass(Y,Z) => member(X,Z))

– Equality Formulas
In PSOA/PS an equality formula a = b means the terms a and b are equal.
This formula can be translated to τpsoa(a) = τpsoa(b) in TPTP.

– Rule Implications
In PSOA/PS a rule is represented by ϕ :- ψ, meaning formula ϕ is implied
by formula ψ. It can be translated to τpsoa(ψ) => τpsoa(ϕ).

Table 2. Mapping from PSOA/PS constructs to TPTP constructs

PSOA/PS Constructs TPTP Constructs
o # Top(t1...tk) tupterm(τpsoa(o), τpsoa(t1) . . . τpsoa(tk))
o # Top(p -> v) sloterm(τpsoa(o), τpsoa(p), τpsoa(v))

o # f() member(τpsoa(o), τpsoa(f))
a ## b subclass(τpsoa(a), τpsoa(b))
a = b τpsoa(a) = τpsoa(b)

AND(f1 ... fn) (τpsoa(f1) & ... & τpsoa(fn))
ϕ :- ψ τpsoa(ψ) => τpsoa(ϕ)

Table 2 summarizes the mapping from elementary PSOA/PS constructs to TPTP
constructs, including one extra row for conjunctions, as needed in rule premises.
The mapping is sufficient for the translation of a KB but not yet for a query:
we expect to get the bindings for any query variables. Since query answering in
VampirePrime is done through answer predicates, we introduce a reserved pred-
icate ans as the answer predicate and map a PSOA query q into the following
formula

![X1,X2,...] (τpsoa(q) =>
ans("?X1 = ", τpsoa(X1), "?X2 = ", τpsoa(X2), ...))

where X1,X2, ... are free variables in q. Answers from VampirePrime are of
the form
9 http://riazanov.webs.com/RIF_BLD_to_TPTP.tgz

http://riazanov.webs.com/RIF_BLD_to_TPTP.tgz
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ans("?X1 = ", v1, "?X2 = ", v2, ...)

where v1, v2, . . . are bindings for the variables. When the query has no variables,
ans is used alone as the conclusion. A sample will be given in the next section.

5.2 Translator Implementation

In the current version of PSOA2TPTP, we have implemented the translation for
a PSOA RuleML subset where the accepted constants are numerals and short-
form RIF-like local constants starting with ‘_’. Following is a sample translation,
where the two conjunctions resulting from normalization are implicit in the en-
closing Group:

– Input KB:
Document(
Group(
_f1 # _family(_Mike _Jessie _child->_Fred _child->_Jane)
_Amy # _person([_female] [_bcs _mcs _phd] _job->_engineer)

)
)

– Normalized KB:
Document(
Group(
_f1 # _family() _f1 # Top(_Mike _Jessie)

_f1 # Top(_child->_Fred) _f1 # Top(_child->_Jane)
_Amy # _person() & _Amy # Top(_female)

_Amy # Top(_bcs _mcs _phd) _Amy # Top(_job->_engineer)
)

)

– Query: _Amy # _person(_job->?job)
– Translator Output:

fof( ax1, axiom,
member(f1, family) & tupterm(f1, mike, jessie) &
sloterm(f1, child, fred) & sloterm(f1, child, jane)).

fof( ax2, axiom,
member(amy, person) & tupterm(amy, female) &
tupterm(amy, bcs, mcs, phd) & sloterm(amy, job, engineer)).

fof( query, theorem,
![Qjob]: ((member(amy, person) & sloterm(amy, job, Qjob))

=> ans("?job = ", Qjob) )).

– VampirePrime Output:
Proof found.
· · ·
... | «ans»("?job = ", engineer) ...
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The sample KB has two psoa formulas as facts. The first fact has one tuple for
the family’s adults, where _Mike _Jessie is equivalent to [_Mike _Jessie], a
shortcut allowed only in single-tuple psoa terms; it has two slots for the family’s
children. The second fact has two tuples, of lengths 1 and 3, and also a slot. The
two formulas in the first stage are broken into two conjunctions of elementary
constructs, as shown in the normalized KB above. In the second stage, each con-
struct is mapped to a corresponding TPTP term. The above translator output
contains three translations, of which the first two are for the KB and the last
is for the query.10 In the VampirePrime output, «ans»("?job = ",engineer)
indicates one binding, engineer, is obtained for the variable ?job.

6 RESTful Web API

Representational State Transfer (REST) is an architectural style for distributed
systems, specified in [11]. A RESTful Web API is an API implemented by us-
ing HTTP (operations, URIs, Internet media types, response codes) and by
conforming to the architectural constraints specified in REST. We have imple-
mented a RESTful Web API consisting of two resources, see URIs in Table 3: a
resource representing the PSOA2TPTP translation component, and a resource
representing the VampirePrime reasoner component. As shown in Table 4, the
HTTP POST method is allowed and the application/json Internet media type
is supported for the listed resources.

For example, to translate PSOA RuleML into TPTP, an HTTP POST 11 re-
quest with a JSON-encoded PSOA document in the body is sent to the Translate
resource URI. The response will be a JSON encoding of the translated TPTP
document.

Table 3. RESTful resource URIs

Resource URI

Translate http://example.ws/translate
Execute http://example.ws/execute

To execute the translated TPTP sentences in the VampirePrime reasoner,
the Execute resource mentioned in Table 4 should be used by sending an HTTP
POST request containing an application/json encoding of the TPTP sentences
to the Execute resource URI. The server will then return the raw output stream
(text/plain) of the VampirePrime-generated solutions (see listing 1.5 in [8]).

10 PSOA2TPTP targets VampirePrime by using TPTP’s axiom for the KB and theorem
for queries, while [10] would suggest the use of conjecture for queries.

11 POST is chosen over PUT to reflect idempotency of the translation service: a new
translation (instance) is produced for each request.
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Table 4. RESTful resources

Resource Methods Description
Translate POST This resource represents the PSOA2TPTP translator.

Media types: application/json
Execute POST This resource represents the VampirePrime reasoner.

Media types: application/json, text/plain

7 Conclusion

To enable rule/theorem prover interoperation, we implemented a first version of
the PSOA2TPTP translator. It takes a document in PSOA/PS as input and gen-
erates a semantics-preserving TPTP document. Through the translator, PSOA
RuleML documents are translated into the TPTP format and can then be exe-
cuted by the VampirePrime reasoner or other TPTP systems.

Our work makes heavy use of the ANTLR v3 parser generator framework. We
(1) rewrite the complete PSOA/PS EBNF grammar into an LL(1) grammar;
(2) construct an intermediate AST using ANTLR’s tree rewrite mechanisms
embedded in the parser grammar; (3) develop reusable tree grammars for parsing
the AST; and (4) embed code into the tree grammars to generate ASOs and
TPTP documents.

Future work on the PSOA RuleML implementation includes: (1) Extending
the PSOA2TPTP translator capability to handle all PSOA RuleML constructs,
introducing another reserved predicate for functional psoa terms;
(2) implementing the fully-ASO-based translator; (3) creating a testbed for rigor-
ously testing PSOA RuleML implementations; (4) ‘inverting’ PSOA2TPTP into
a TPTP2PSOA translation for the Horn subset of first-order logic; (5) deploying
PSOA2TPTP in the Clinical Intelligence use case [12], where PSOA rules are
used to define a semantic mapping for a hospital data warehouse.
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Abstract. PSOA RuleML is a rule language which introduces positional-
slotted, object-applicative terms in generalized rules, permitting relation
applications with optional object identifiers and positional or slotted
arguments. This paper describes an open-source PSOA RuleML API,
whose functionality facilitates factory-based syntactic object creation
and manipulation. The API parses an XML-based concrete syntax of
PSOA RuleML, creates abstract syntax objects, and uses these objects
for translation into a RIF-like presentation syntax. The availability of
such an API will benefit PSOA rule-based research and applications.

1 Introduction

F-logic [1] and W3C RIF [2] define objects (frames) separately from functions
and predicates. POSL and PSOA RuleML [3,4] provide an integration of object
identifiers with applications of functions or predicates to positional or slotted
arguments, called positional-slotted, object-applicative (psoa) term. While RIF
requires different kinds of terms for positional and slotted information as well as
for frames and class memberships, PSOA RuleML can express them with a single
kind of psoa term. As a result, PSOA rules permit a compact way of authoring
rule bases, which are as expressive as POSL and semantically defined in the style
of RIF-BLD. The constructs of PSOA RuleML are described in [3] in detail. In
this paper, ‘psoa’ in lower-case letters refers to a kind of terms while ‘PSOA’ in
upper-case letters refers to the language.

Here we describe an open-source PSOA RuleML API. The inspiration comes
from well-known APIs for Semantic Web languages such as the OWL API [5] and
the Jena API [6]. The existence of these APIs facilitates a lot of experimental
research and development in Semantic Web technologies and we hope that our
API will have a similar effect on the PSOA adoption. Our API allows creation of
objects corresponding to PSOA constructs, such as constants, variables, tuples,
slots, atoms, formulas, rules, etc., using factory-based method calls, as well as
traversal of those objects using simple recursive traversal. Moreover, it supports

A. Bikakis and A. Giurca (Eds.): RuleML 2012, LNCS 7438, pp. 280–288, 2012.
© Springer-Verlag Berlin Heidelberg 2012
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parsing of XML-based PSOA documents and generation of presentation syntax.
Thus, users will be able to employ this API for rule processing, including rule
authoring, rule translation into other languages, rule-based applications, and
rule engines.

Due to space constraints, here we briefly describe the key features of the PSOA
RuleML presentation syntax. The language is best described using conditions
and rules built over various terms, centered around psoa terms in particular.

We begin with the disjoint sets of alphabets of the language. The alphabets
include a countably infinite set of constant and variable symbols, connective
symbols (e.g., And,Or,:-), quantifiers (e.g., Exists,Forall), and other auxil-
iary symbols (e.g., =,#,##,->,External,Group,(,),<,>,∧∧, ).

The language contains literal constants and IRI constants, the latter some-
times abbreviated as short constants.

The following examples illustrate double-type and string-type literal con-
stants:

"27.98"∧∧xs:double "The New York Times"∧∧xs:string
Constants like family, kid are short constants.

Each variable name is preceded by a ‘?’ sign, such as ?1,?Hu,?Wi, etc.
In a psoa term, the function or predicate symbol is instantiated by an object

identifier (OID) and applied to zero or more positional or named arguments. The
positional arguments are referred to as tuples while named arguments (attribute-
value pairs) are called slots.

For example, a psoa term (an atom), containing family relation with the OID
?inst, tuples husband ?Hu, and wife ?Wi, along with a slot child->?Ch can be
represented as follows:

?inst#family(?Hu ?Wi child->?Ch)
Terms include psoa terms as well as several different types of logic terms, such
as constants and variables, equality, subclass, and external terms.

An atomic formula with f as the predicate is defined as f(...) in general.
PSOA applies a syntactic transformation to incorporate the OID, which results
in the objectified atomic formula o#f(...), with o as the OID and f acting as
its class. The OID is represented by a stand-alone ‘ ’ for a ground (variable-free)
fact, an existentially-scoped variable for a non-ground fact or an atomic formula
in a rule conclusion, and a stand-alone ‘?’ as an anonymous variable for any
other atomic formula.

Condition formulas are used as queries or rule premises. Conjunction and
disjunction of formulas are denoted by And and Or, respectively. Formulas with
existentially quantified variables are also condition formulas. An example of a
condition formula is given below:

And(?2#married(?Hu ?Wi) Or(?3#kid(?Hu ?Ch) ?4#kid(?Wi ?Ch)))
Aside from the condition formulas, the premise can also contain atomic formulas
and external formulas.
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A conclusion contains a head or conjunction of heads. A head refers to an
atomic formula which can also be existentially quantified. A conclusion example
is given below:

Exists ?1 (?1#family(husb->?Hu wife->?Wi child->?Ch))
An implication contains both conclusion and condition formulas. A clause is
either an atomic formula or an implication. A rule is generated by a clause
within the scope of the Forall quantifier or solely by a clause. Several formulas
can be collected into a Group formula.

The Group formula below contains a universally quantified formula, along
with two facts. The Forall quantifier declares the original universal argument
variables as well as the generated universal OID variables ?2, ?3, ?4. The in-
fix :- separates the conclusion from the premise, which derives the existential
family frame from a married relation And from a kid of the husb Or wife. The
following example from [3] shows an objectified form on the right.
Group (
Forall ?Hu ?Wi ?Ch (

family(husb->?Hu wife->?Wi child->?Ch) :-
And(married(?Hu ?Wi)

Or(kid(?Hu ?Ch) kid(?Wi ?Ch))) )
married(Joe Sue)
kid(Sue Pete)

)

Group (
Forall ?Hu ?Wi ?Ch ?2 ?3 ?4 (
Exists ?1 (
?1#family(husb->?Hu wife->?Wi child->?Ch)) :-
And(?2#married(?Hu ?Wi)

Or(?3#kid(?Hu ?Ch) ?4#kid(?Wi ?Ch))) )
_1#married(Joe Sue)
_2#kid(Sue Pete)

)

The objectified family term in the rule conclusion is slotted with 3 slots:
?1#family(husb->?Hu wife->?Wi child->?Ch)

The rules’s condition formulas use the relations married and kid, containing
only 2-tuples Hu, Wi, and Ch:

?2#married(?Hu ?Wi) ?3#kid(?Hu ?Ch) ?4#kid(?Wi ?Ch)
The next section will describe the API components and their uses. We begin by
describing the organization of the package, then illustrate the object creation
and traversal as well as parsing the PSOA/XML input, and rendering in presen-
tation syntax. For all of these operations, we use the objectified family example
above. Finally, we conclude by mentioning the scope of using our API with other
complementary tools and potential work directions in the future.

2 The API Structure and Functionality

2.1 Package Organization

The API is divided into two main components: one is for the creation and traver-
sal of abstract syntax objects and the other is for parsing and rendering of those
objects.

The AbstractSyntax is the top level class for factories and contains all Java
interfaces for different types of abstract syntax objects. A simple implementa-
tion of AbstractSyntax interfaces is in the DefaultAbstractSyntax class, which is
suitable for most purposes. However, more demanding uses may require custom
implementations of the interfaces.
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Fig. 1. The API Structure

The package also contains a Parser class, which provides PSOA/XML parsing
and translation into presentation syntax. Parsing is implemented using the Java
Architecture for XML Binding (JAXB) [7], which creates equivalent Java objects
based on XML schema files. The schema is a straight-forward encoding of the
syntactic construct hierarchy and is available in [8]. The parsed XML is then
converted to the abstract syntax by calling factory methods.

Figure 1 presents the most important classes and interfaces implementing
different types of syntactic constructs. Each of the names in a rectangular box
represents a Java interface, and is kept as close as possible to the presentation
syntax construct names. The corresponding implementations of these interfaces
use Java inheritance, shown by the solid arrows.

The interface Construct sits at the top of the hierarchy. Group can be pop-
ulated with more Groups and Rules. Both universal facts and universal rules
are represented by the Rule class, which encapsulates a Clause. The interface
Clause represents either an implication or an atomic formula. Implication is rep-
resented by the interface Implies whereas Atomic represents atomic formulas.
The generalized interface Atomic is implemented either by Atom (representing a
psoa term like ?2#married(?Hu ?Wi)) or by Subclass (representing a subclass
term like student##person) or by Equal (equality term like ?cost = ?spent).

Implementations of the generalized Formula interface represent either disjunc-
tion, conjunction, or existential formulas by implementing Formula Or (repre-
sented as Or(?3#kid(?Hu ?Ch) ?4#kid(?Wi ?Ch)), Formula And (And instead
of Or), and Formula Exists, respectively. In addition to atomic formulas, exter-
nal formulas (External(func:numeric-add(?cost1 ?cost2))) can be repre-
sented using the Formula External interface. The generalized interface Term is
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represented by implementing Const for different kinds of constants, Var for vari-
ables like ?Hu, ?Wi, Expr for expressions denoting psoa terms, and External for
external Expressions. Constants can be either Const Literal (e.g., "47.5"∧∧xs:
float, with Symspace referring to xs:float) or Const Constshort (e.g., family
,kid). Finally, the interface Psoa is implemented to represent objectified func-
tions or predicates with membership symbol ‘#’ and tuples and slots as ar-
guments, e.g., inst#family(Homer Merge child->Bart). The internal nodes
Sentence, Formula, Atomic, Term, Const, and Expr, are generalized classes and
implemented by more specific classes.

2.2 Construction of Abstract Syntax Objects
The abstract syntax objects are constructed by factory-based createX methods
calls, X being the object type name. The rest of this paper represents each
method in emphasized font. A factory can be created as follows:

DefaultAbstractSyntax absSynFactory = new DefaultAbstractSyntax()

We are going to illustrate the creation of facts and rules below.
Construction of Facts. A fact is of type Atomic. Let us look at the first fact
that tells us Joe and Sue are married to each other with the OID 1, whereas
the second fact says Pete is the kid of Sue with the OID 2, each fact referring
to a psoa term.

The creation of fact 1#married(Joe Sue) starts by creating the four con-
stants 1, married, Joe, Sue as const 1, const married, const Joe, const Sue,
respectively using the method createConst Constshort.

Const Constshort const 1 = absSynFactory.createConst Constshort(" 1")
Const Constshort const married = absSynFactory

.createConst Constshort("married")
Const Constshort const Joe = absSynFactory

.createConst Constshort("Joe")
Const Constshort const Sue = absSynFactory

.createConst Constshort("Sue")
Tuples const Joe and const Sue are constructed by the method createTuple.
The list of such tuples is referred to as a tuplesList.

Tuple tuples = absSynFactory.createTuple(tuplesList)
Method createPsoa assembles 1, married and tuples into a psoaTerm, while
null indicates the absence of slots.

Psoa psoaTerm = absSynFactory
.createPsoa(const 1, const married, tuples, null)

Here is how we create an atom:
Atom atom = absSynFactory.createAtom(psoaTerm)

Thus, we use the method createAtom for creating a fact of type Atom, cre-
ateEqual for a fact of type Equal, and createSubclass for type Subclass. This
creation is completed by the createClause and createRule method calls. The
representation for creating the fact 2#kid(Sue Pete) is similar to the method
calls described above, hence omitted.
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Construction of Rules. A rule contains condition and conclusion. We will
start with the condition formula, which is a conjunction of the atomic formula
?2#married(?Hu ?Wi) and disjunction of two atomic formulas, ?3#kid(?Hu
?Ch) and ?4#kid(?Wi ?Ch).

Forall ?Hu ?Wi ?Ch ?2 ?3 ?4 (
Exists ?1 (

?1#family(husb->?Hu wife->?Wi child->?Ch)) :-
And(?2#married(?Hu ?Wi) Or(?3#kid(?Hu ?Ch) ?4#kid(?Wi ?Ch)))

)
)

The following code snippet creates the disjunction of two atoms. Method cre-
ateFormula Or defines the disjunction of two atomic formulas, atomOr 1 and
atomOr 2. The OIDs ?3 and ?4 (var 4), as well as tuples ?Hu (var Hu), ?Wi
(var Wi) and ?Ch (var Ch), are variables. Only the construction of ?3 (var 3)
is shown below to avoid repetition (...).

Var var 3 = absSynFactory.createVar("3")
...
Tuple tuples = absSynFactory.createTuple(tuplesList 1)
Psoa psoaTerm 1 = absSynFactory

.createPsoa(var 3, const kid, tuples, null)
Atom atomOr 1 = absSynFactory.createAtom(psoaTerm 1)
...
Atom atomOr 2 = absSynFactory.createAtom(psoaTerm 2)

Both of the atomic formulas atomOr 1 and atomOr 2 are in a list called
formulaOrList.

Formula Or formula Or = absSynFactory.createFormula Or(formulaOrList)
The conjunction of the newly created formula Or and another atomic formula
atom And, ?2#married(?Hu ?Wi) is described next. Here var 2, var Hu and
var Wi denote the variables ?2, ?Hu and ?Wi, respectively. The code below
does this using the method createFormula And. The list formulaAndList
contains atomic formulas atom And and formula Or. The conjunction formula
formula And is the rule premise and created as follows:

Formula And formula And = absSynFactory
.createFormula And(formulaAndList)

We now move on to the rule Head creation, which is a psoa term containing
the OID ?1 with family class name and three slots, husb->?Hu, wife->?Wi,
and child->?Ch, in ?1#family(husb->?Hu wife->?Wi child->?Ch) as ar-
guments. These slots will be called slot 1, slot 2, and slot 3, respectively.

Var var 1 = absSynFactory.createVar("1")
...
Slot slot 1 = absSynFactory.createSlot(const husb, var Hu)
Slot slot 2 = absSynFactory.createSlot(const wife, var Wi
Slot slot 3 = absSynFactory.createSlot(const child, var Ch)

The list of slots slot 1, slot 2 and slot 3, called slotsList, is used to create
the psoa term.

Psoa psoa = absSynFactory.createPsoa(var 1, const family, null,slotsList)
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The atom created is atom head, and thus the rule head is created by the method
createHead, where the variable var 1 is existentially quantified. Both existen-
tially and universally quantified variables are treated as a list of variables, called
varsList.

Head rule head = absSynFactory.createHead(varsList, atom head)
The method createImplies combines the rule head, rule head and the rule
premise, formula And, into an implication. Method createClause creates the
implication. Finally, method createRule collects all the universally quantified
variables, var Hu, var Wi, var Ch, var 2, var 3, and var 4 into a varsList and
creates the rule with the clause.

Implies implication = absSynFactory.createImplies(rule head,formula And)
Clause clause = absSynFactory.createClause(implication)
Rule rule = absSynFactory.createRule(varsList, clause)

2.3 Abstract Syntax Structure Traversal

Our implementation recursively traverses the object tree generated from the
abstract syntax structure and is usually simpler than writing visit methods [9]
as used in OWL API.

All components of the abstract syntax structure can be accessed directly by
the corresponding accessor methods, which are getX methods. The general-
ized classes (see Figure 1) are Sentence, Formula, Atomic, Term, Const, and
Expr, containing isX methods to recognize the specific instance types. Alterna-
tively, specific classes of particular instances have to be identified, e.g., by using
instanceof.

For an atomic formula, an isX method in Atomic class needs to recognize if
the instance is of type Atom, Subclass, or Equal object. This principle applies
to each of the generalized classes.

For example, isEqual method in generalized class Atomic recognizes the in-
stance of Equality atom ?cost = "47.5"∧∧xs:float. Immediately, a cast is
made as the instance type Equal and getLeft and getRight methods are called,
each referring to an instance of another generalized class Term. Class Term con-
tains appropriate isX methods, which use similar techniques to find out if the
instance is of type Const, or Var, or an External expression.

assert this instanceof AbstractSyntax.Equal
return (AbstractSyntax.Equal) this
...
AbstractSyntax.Term getLeft()
AbstractSyntax.Term getRight()

Method getLeft, in this case, retrieves the instance of Var and thus string
variable ?cost is retrieved by the method getName as the variable instance.
On the other hand, getRight refers to the instance of type Const. Method
isConstLiteral recognizes Const Literal involving the literal and the type
float involving the instance of type Symspace. The literal object 47.5 is retrieved
as string by the method getLiteral. Finally, xs:float object is retrieved by the
method getValue as an instance of type Symspace.
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Thus, the traversal of objects in the API structure follows the same strategy
of going down to most specific instances in a recursive manner for both facts
and rules.

2.4 Parsing and Rendering

Aside from creating and traversing objects, the API is able to parse PSOA/XML
inputs and render them in human readable presentation syntax.

In section 2.1 we discuss an XML schema for PSOA RuleML. We generate the
XML parser with the help of JAXB, which creates Java classes from a schema
traversal, where the ultimate output of the parser is abstract syntax objects.

The following example shows a transformation of an XML input for a fact
and its rendering in presentation syntax.
<Atom>

<Member>
<instance>

<Const type="\&psoa;iri">inst1</Const>
</instance>
<class>

<Const type="\&psoa;iri">family</Const>
</class>

</Member>
<tuple>

<Const type="\&psoa;iri">Joe</Const>
<Const type="\&psoa;iri">Sue</Const>

</tuple>
<slot>

<Const type="\&psoa;iri">Child</Const>
<Const type="\&psoa;iri">Pete</Const>

</slot>
</Atom>

inst1#family(Joe Sue Child->Pete)

A toString method in each class implements this pretty-printing, which follows
the same traversal procedure described in section 2.3.

3 Conclusion and Future Work

The API is open-source and hosted in [10]. The companion effort PSOA2TPTP
[11] has developed a reference translator for PSOA RuleML, which facilitates in-
ferencing using TPTP reasoners (see e.g., [12]). One component of the translator
is a parser for the presentation syntax. Our API will greatly benefit from includ-
ing this presentation syntax parser. The other component of the PSOA2TPTP
translator is its mapping from abstract syntax objects to TPTP. Combined with
our API, this will also make PSOA/XML executable on the TPTP-aware Vam-
pirePrime [13] reasoner.

Currently, the API can render PSOA/XML only into presentation syntax. As
an extension, we plan to also include the translation of abstract syntax objects
back to PSOA/XML.

We have been using the API in our HAIKU work [14], where PSOA is used
to capture semantic modeling of relational data and needed, at least, to support
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authoring, including syntactic and, to some extent, logical validation (consis-
tency checking). We also plan to use it for automatic generation of Semantic
Web services from declarative descriptions.

PSOA RuleML API has become an input to the Object Management Group’s
API4KB effort [15], which tries to create a universal API for knowledge bases
that among other things combines the querying of RDF-style resource descrip-
tions, ODM/OWL2-style ontologies, and RIF RuleML-style rules.
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Abstract. We present here MXSL, a subset of XSLT re-interpreted as a syntac-
tic metalanguage for RuleML with operational semantics based on XSLT 
processing. This metalanguage increases the expressivity of RuleML know-
ledge bases and queries, with syntactic access to the complete XML tree 
through the XPath Data Model. The metalanguage is developed in an abstract 
manner, as a paradigm applicable to other KR languages, in XML or in other 
formats. 

Keywords: Metalanguage, metamodel, RuleML, operational semantics, XSLT. 

1 Introduction 

One of the most important issues in the field of knowledge representation (KR) is the 
issue of semantic interoperability. This issue might be described as the compounding 
of information overload with representation-format overload. Representation formats 
abound because information collections (datasets, knowledge bases, metadata, ...) 
have a wide diversity of characteristics (numerical, textual, hierarchical, ...) and uses 
(quantitative processing, search, reasoning, ...), and diverse formats have been devel-
oped to meet these diverse needs. 

One of the most widely-used formats is XML, due in part to its capability at 
representing both structured data and document markup, as well as the capability to 
specialize the syntax through schema languages, including XSD [1], Relax NG [2] 
and Schematron [3]. XML has been designated the foundational syntax of the seman-
tic web [4], although other formats, such as JSON [5] may play a larger role in the 
future. 

The need for compatibility between semantic and syntactic models of structured 
XML has been addressed from an RDF perspective in [6] and [7]. In the latter study, 
the syntactic XPath Data Model and the semantic RDFS model, are considered in 
parallel, as being alternate, and partially compatible, models of the same subject, an 
XML instance. This issue was considered again from the perspective of an XML-
based Common Logic syntax in [8].  

In this paper, we consider the case where the XML instance is itself a semantic re-
presentation, in particular instances of the RuleML [9] language, possibly containing 
embedded structured data. We investigate the use of a syntactic model of XML to 
describe correspondences between syntactic substructures of RuleML. 
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The goal of this investigation is to develop a syntactic metalanguage for RuleML 
in order to 

1. enable reasoning over large, structured legacy datasets (e.g. in XML or flat files) 
without large-scale conversion of compact representations into the more verbose 
RuleML format; 

2. allow user-specified deductive systems for reasoning over RuleML knowledge 
bases via axiom schemas; 

3. enhance the RuleML query capability.  

In addition, the principles of this metalanguage development are abstracted so that it 
may be viewed as a process that can be applied to the development of metalanguages 
for other (XML and non-XML) KR formats. 

We define an operational semantics of the metalanguage as a "metainterpretation" 
transformation.  This transformation maps the syntactic representations in the meta-
language into syntactic representations in the base language by substitution of (lexi-
cal) values for the metavariables, which we will call parameters to distinguish them 
from the logical variables.   

Thus, a full interpretation of an instance of the metalanguage consists of two dis-
tinct phases;  

1. the application of the metainterpretation to transform the metalanguage instance to 
another instance that is purely in the base language; 

2. the application of the base language’s model-theoretic interpretation to transform 
the derived instance to truth values.  

The proof theory of the metalanguage is defined similarly. The deductive apparatus of 
the base language is extended to include deduction from metalanguage axioms to base 
language axioms obtained from metainterpretation with a suitable binding of the pa-
rameters. 

The obvious model for a transformation language on XML-based metalanguage 
input is XSLT [10].  XSLT is a declarative language based on the same abstract data 
model underlying XPath and XQuery [11]. 

XSLT is a very rich language, which is in fact Turing complete [12]. We require 
only a small subset of the capabilities of XSLT for our purposes. In particular, our 
metalanguage should have the capability to 

• add an element node to the output tree, given the local name and namespace of the 
element as parameters; 

• add an attribute node to a particular element node, given the local name, names-
pace and value as parameters; 

• add a text node as the child of an element; 
• iteratively add, in a specified order, a number of nodes to the output tree, based on 

a set of parameter bindings represented in structured XML; 
• express the hierarchical and sequential structure of the output tree isomorphically 

according to the corresponding structure of the metalanguage instance. 
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In addition, we have the following operational requirements: Instances in the meta-
language, which we will call MXSL, will: 

• validate against the XSLT schema,  
• be self-contained, and  
• be self-executing.  

2 MXSL Syntax 

The core MXSL syntax is a subset of XSLT 2.0 syntax which uses primarily the fol-
lowing elements: 

• <xsl:for-each>, for iteration 
• <xsl:element>, for construction of XML elements 
• <xsl:attribute>, for addition of attributes to XML elements 
• <xsl:copy-of> with @select, for generation of the values of attributes and 

contents of element 

Additional elements which are allowed in MXSL in a restricted form (as indicated in 
parentheses) are: 

• <xsl:stylesheet>  (once as the root element) 
• <xsl:variable> (once as a header to define the parameter bindings and also 

as the first children of  <xsl:for-each>, once for each parameter in the itera-
tion) 

• <xsl:template match="/"> (once for the MXSL body) 
• <xsl:processing-instruction> (zero to many times as the first children 

of <xsl:template> ) 
• <ruleml:RuleML> (once as the last child of <xsl:template> to define the 

root for the output document) 
• <xsl:comment> (arbitrarily within the <ruleml:RuleML> element) 

A Relax NG schema that may be used to verify that an MXSL instance does not ex-
ceed these restrictions is given at rnc/mxsl.rnc .1  

3 Example: Captured Strings 

This example illustrates the definition of a function that takes as argument a character 
sequence, with some restrictions, and produces a name based on that string, equiva-
lent to the captured string syntax of IKL [13]. The capability introduced by such an 
axiom schema is extremely useful, for example, in setting naming conventions that 
identify types, or constructing meaningful object identifiers calculated from object 
properties. 

                                                           
1  The path to the directory for all files referenced in this paper is  

http://athant.com/mxsl. 
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A sample RuleML axiom that will be used to generate the axiom schema is 

<ruleml:Equal> 
  <ruleml:Expr> 
    <ruleml:Fun 
        iri="http://athant.com/mxsl/vocab#constant"/> 
    <ruleml:Data xsi:type="xs:string">stringParam</Data> 
  </ruleml:Expr> 
  <ruleml:Ind>stringParam</ruleml:Ind> 
</ruleml:Equal> 

RuleML syntax does not allow us to generalize the character sequence stringPa-
ram that appears as the simple content of both the <ruleml:Data> and <ru-
leml:Ind> elements. That is, we can replace the <ruleml:Data> data constant with 
a variable <Var> and the <ruleml:Ind> individual constant with a <Var>, but there is 
no means in RuleML to express the condition that the name of the individual constant 
should be the same character sequence as the lexical value of the data constant.  

The first step in preparing the MXSL instance that expresses such a generalization 
is to apply the utility stylesheet xsl/ruleml2mxsl.xsl . 

The <ruleml:Ind> element from the RuleML above is expressed in MXSL as 

<xsl:element name="Ind"  
     namespace="http://ruleml.org/spec"> 
  <xsl:copy-of select="'stringParam'"/> 
</xsl:element> 

An MXSL file is self-contained; that is, it is a stylesheet that takes itself as input. As 
written, the <xsl:element> declaration above will execute exactly once. In order 
to insert multiple <ruleml:Ind> elements into the output tree with different 
names, the content of the <ruleml:Ind> element may be generalized in MXSL as 

<xsl:for-each select="$input/v:first/m:binding"> 
  <xsl:variable name="stringParam" 
    select="v:stringParam" xsi:type="xs:string"/> 
... 
    <xsl:element name="Ind" 
      namespace="http://ruleml.org/spec"> 
      <xsl:copy-of select="$stringParam/node()"/> 
    </xsl:element> 
... 

An <xsl:for-each> contains an MXSL fragment that will be specialized multiple 
times, with different values substituted for the iteration parameter ($stringParam 
in the above case). The multiple specializations will be added to the output tree in the 
order in which the bindings appear in the input variable, as described in the next para-
graph.  In the most general form of MXSL, the names and values of elements, 
attributes, processing instructions, and comments, may be generalized in this fashion.  
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Each <xsl:for-each> element should have a different designation, such as 
v:first above so that the variable bindings for the iteration may be uniquely iden-
tified. The XPath expression $input/v:first/m:binding is then used when 
"self-executing" an MXSL document to identify the parameter values to be substi-
tuted. A binding specification of the example above, with two different bindings for 
the parameter stringParam, takes the form 

<variable name="input"> 
  <v:first> 
    <m:binding> 
      <v:stringParam xsi:type="xs:string" 
        >a</v:stringParam> 
    </m:binding> 
    <m:binding> 
      <v:stringParam xsi:type="xs:string" 
        >b</v:stringParam> 
    </m:binding> 
  </v:first> 
</variable>  

Each MXSL file contains a self-referential xsl-processing instruction to initiate the 
XSLT transformation.  

<?xml-stylesheet type="text/xsl" href="kb2.mxsl"?> 

After XSLT processing of the MXSL example above, the output contains two formu-
las (with default RuleML namespace) 

<Equal> 
  <Expr> 
    <Fun iri="http://athant.com/mxsl/vocab#constant"/> 
    <Data xsi:type="xs:string">a</Data> 
  </Expr> 
  <Ind>a</Ind> 
</Equal> 
<Equal> 
  <Expr> 
    <Fun iri="http://athant.com/mxsl/vocab#constant"/> 
    <Data xsi:type="xs:string">b</Data> 
  </Expr> 
  <Ind>b</Ind> 
</Equal> 

Notice that XSLT processing applied to the <xsl:for-each> element leads to 
multiple <Equal> elements occuring as siblings at the same depth in the tree rather 
than as a nesting to deeper levels of the tree. Recursive nesting, while possible in full 
XSLT through nesting of <xsl:call-template>, is not implemented in MXSL. 
The complete files for this example are available in the directory examples/kb2 . 
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4 Example: Structure Data 

The next example illustrates the specification of semantics for structured data. Con-
sider an XML database 

<ex:records 
  xml:base="http://example.com/base"> 
  <ex:record id="14507" type="business"> 
    <ex:name>Tara Athan</ex:name> 
    <ex:name>Athan Services</ex:name> 
  </ex:record> 
  <ex:record id="25478" type="customer"> 
    <ex:name>Susan Smith</ex:name> 
    <ex:name>Susie</ex:name> 
  </ex:record> 
</ex:records> 

The fields have a context sensitive semantics. The first child <ex:name> element indi-
cates of full name, while the second child <ex:name> represents either the business 
name or a nickname, depending on the value of the attribute type. To associate such 
an XML instance with RuleML axioms, we use generalizations of the following 
axiom instances: 

<Equivalent> 
  <Atom> 
    <Rel iri="&v;#data-record-business?rel"/> 
    <Data> 
      <ex:record id="14507" 
        xml:base="http://example.com/base"> 
        <ex:name>Tara Athan</ex:name> 
        <ex:name>Athan Services</ex:name> 
      </ex:record> 
    </Data> 
  </Atom> 
  <Atom xml:base="http://example.com/base"> 
    <oid><Ind iri="#b14507?oid"/></oid> 
    <Rel iri="&v;#atom-record-business?rel"/> 
    <slot> 
      <Ind iri="#name?key"/> 
      <Data xsi:type="xs:string">Tara Athan</Data> 
    </slot> 
    <slot> 
      <Ind iri="#business-name?key"/> 
      <Data xsi:type="xs:string">Athan Services</Data> 
    </slot> 
  </Atom> 
</Equivalent> 
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The strings 14507, http://example.com/base, Tara Athan, Athan 
Services are generalized by parameters with simple types, as in the previous ex-
ample. The only new featuere is the use of the datatype xs:anyURI for the IRI.  A 
similar axiom schema is used for the customer record. The third axiom schema han-
dles the records collection: 

<Equivalent> 
  <Atom> 
    <Rel iri="&v;#data-records?rel"/> 
    <Data> 
      <ex:records> 
        <ex:record type="business"> 
          <ex:record-content/> 
        </ex:record> 
        <ex:repo/> 
      </ex:records> 
    </Data> 
  </Atom> 
  <And> 
    <Atom> 
      <Rel iri="&v;#atom-record-business?rel"/> 
      <Data> 
        <ex:record type="business"> 
          <ex:record-content/> 
        </ex:record> 
      </Data> 
    </Atom> 
    <Atom> 
      <Rel iri="&v;#data-records?rel"/> 
      <Data> 
        <ex:records> 
          <ex:repo/> 
        </ex:records> 
      </Data> 
    </Atom> 
  </And> 
</Equivalent> 

This case requires the parameterization of <ex:record-content/> and <ex:repo/>, 
which have complex datatypes, where the parameter has datatype xs:anyType. The 
variable bindings are only slightly modified 

<ex:records> 
  <m:binding> 
    <ex:record-content xsi:type="xs:anyType"> 
      <ex:a/> 
    </ex:record-content> 
    <ex:repo xsi:type="xs:anyType"><ex:b/></ex:repo> 
  </m:binding> 
</ex:records> 
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Note that the datatype xs:anyType can be replaced with user-specified complex 
types, allowing validation of bindings against a schema as a pre-processing step. All 
files for this example are available in the directory examples/kb5 .  

The value that is added by the axiom schema is the ability to query the original 
XML database through the semantic representation in RuleML. Target applications 
include webservers such as Geoserver [14], which has the capability to serve geo-
graphic data that is transformed according to “app-schemas” from the content of one 
or more databases or other webservices. However, the ability to query the transformed 
output is lost because Geoserver is unable to invert the app-schema transformation. 
Because geographic databases tend to be quite larger, the user is burdened with the 
download of the large transformed database even when they are interested in a small 
amount of information. The MXSL metalanguage provides a means to express these 
transformations in a manner that a reasoner can use to invert the transformation, ob-
taining the queries to be applied to the original datasets. Only certain kinds of trans-
formations are amenable to solution by the reasoning algorithms currently available, 
and the general case will require the integration of reasoning with numerical solvers. 
However, many such transformations involve simple re-structuring of data and would 
be readily handled with such an approach. 

5 Semantics for the Finitary Case 

The semantics for the finitary case is based on the operational semantics of the XSLT 
processor, applied to the case when a non-empty but finite set of bindings is specified 
for all parameters. In this case, the output from XSLT processing of the MXSL file is 
guaranteed to produce well-formed XML, but not necessarily valid RuleML. There-
fore, something more is required to fully define the semantics.  

One approach for addressing this issue would be to require the user or generating 
program to pre-process the bindings to exclude those that lead to invalid RuleML. 
However, this would require complex conditionals to be generated for the input para-
meters, if it is even possible to specify such conditions. Instead, we define the metain-
terpretation transformation so that the invalid fragments are ignored (as described in 
the next paragraph), acting as an implicit syntactic-validation-based post-processor. 

The implicit post-processing step will be described for the special case, called the 
"Rulebase-for-each" restriction, when every <xsl:for-each> element is the child 
of the MXSL equivalent of a <ruleml:Rulebase> element; that is 

<xsl:element name="Rulebase" names-
pace="http://ruleml.org/spec">  

We consider each unit of XML produced by executing one iteration of XSLT 
processing on a single <xsl:for-each> element as a pre-formula. Any pre-
formula that does not satisfy the (finitary) validity requirements for the syntax catego-
ry of formulas is discarded, while all others are added to the XSLT output in the usual 
way (as siblings.) 

It is an important consequence of the MXSL syntax that such invalid pre-formulas 
may be identified from the output of a standard XSLT processor applied to an MXSL 
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instance. This is due to the removal of the XSLT feature (<xsl:text disable-
output-escaping="yes">) that allows unescaped XML punctuation characters 
(<>′"&) to be inserted implicitly through parameters, rather than explictly with 
<xsl:element>.  Because of the removal of this feature, every pre-formula is a 
well-formed XML child of a <ruleml:Rulebase> element. Therefore the post-
processing step may be implemented on the output of a standard XLST processor by 
checking the validity of each child of every <ruleml:Rulebase> element against 
the RuleML schema (for the appropriate RuleML sublanguage.)2 

6 Semantics for the Infinitary Case 

In the case when the input set of variable bindings for a particular <xsl:for-
each> element is empty, we extend the operational semantics of the metalanguage to 
interpret the <xsl:for-each> element as an axiom schema. The theory of infini-
tary logic may be used to make this precise. 

Again, we restrict our consideration to the "Rulebase-for-each"-restricted case. The 
default semantics of <ruleml:Rulebase> is an implicit conjunction, so that the 
theory of infinitary logics is applicable [15], whereby it is known that if the base (fini-
tary) logic is first-order then the corresponding infinitary language with countable 
conjunctions and disjunctions but only finite sequences of quantifiers is complete with 
respect to the extended deductive apparatus that allows countably infinite sets of 
axioms and countably infinite proofs3, but is not compact. 

In more practical terms, the usual application is when a finitary knowledge base is 
extended with a finite number of axiom schemas. It is sufficient for reasoning purpos-
es to consider only those instances of the axiom schemas that contain names from the 
vocabulary of the original finitary knowledge base. Consider, for example, the axioms 
schema for captured strings presented in Section 3. Forward reasoning of a finitary 
RuleML knowledge base yields at most a finite number of occurrences of names of 
the form  

<ruleml:Ind>…</ruleml:Ind> 

or expressions of the form 

<ruleml:Expr> 
  <ruleml:Fun 
        iri="http://athant.com/mxsl/vocab#constant"/> 
     … 
</ruleml:Expr> 

                                                           
2  http://ruleml.org/spec 
3  According to Moore, G.H.: The Emergence of First-Order Logic. In P.K. William Aspray 

(ed.) History and Philosophy of Modern Mathematics, Volume 11. University of Minnesota 
Press, Minneapolis (1988), this result was first proved by Skolem in 1920 Skolem, T.: 
Logisch-kombinatorische Untersuchungen über die Erfüllbarkeit oder Beweisbarkeit 
mathematischer Sätze nebst einem Theoreme über dichte Mengen.  Videnskapsselskapet 
Skrifter, I. Matematisk-naturvidenskabelig Klasse 6. p. 1–36 (1920). 
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Therefore it is sufficient to generate a finite number of equations, corresponding to 
specializations of the axiom schema for the particular, finite, set of bindings relevant 
to the knowledge base. Because this axiom schema does not create any new names or 
expressions, there is no need to revisit the axiom schema during forward reasoning on 
the knowledge base extended by this finite set of equations. Therefore, this axiom 
schema does not undermine the finite-model property of the knowledge base to which 
it is added. 

In general, with proper design of the axiom schemas and naming conventions, i.e. 
avoiding an infinite cascade of new names or expressions, the set of relevant speciali-
zations of the axiom schemas will be finite, ensuring that either backward or forward 
reasoning on such extended knowledge bases will terminate provided the base logic 
has this property.  

7 Extensions 

The "Rulebase-for-each" restriction of MXSL may be safely relaxed to allow a <ru-
leml:Assert> <xsl:for-each> <ruleml:Query> tree. This is because 
such queries can be transformed to an equivalent "Rulebase-for-each" case by form-
ing the negation of the existential closure of the formula contained in each query and 
inserting this into the rulebase which is being queried, where success of the query is 
equated with inconsistency of the resulting rulebase. 

Further relaxation of the metalanguage incurs the risk of allowing the expression of 
infinite sequences of quantifiers. For example, suppose we allow a <ruleml:And> 
<xsl:for-each> tree. It is then possible to construct an instance such that every 
<xsl:for-each> iteration produces a new free variable, named according to value 
of the iteration parameter. For example, 

<Exists closure="universal"> 
  <Var>F</Var> 
    <And> 
      <Atom> 
        <Rel>Apply</Rel> 
        <Var>F</Var> 
        <Var>M1</Var> 
        <Data>1</Data> 
      </Atom> 
    </And> 
</Exists>  

If the “And-for-each” construction is allowed, then we may create from the RuleML 
axiom above an MXSL axiom schema by generalizing the natural number 1 that ap-
pears both in the name of the variable <Var>M1</Var> and the content of the data 
element <Data>1</Data>. The resulting axiom schema can be applied to all natu-
ral numbers through the use of the datatype xs:positiveInteger for the schema 
parameter. See examples/andForeach/andForeach/mxsl for the complete 
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axiom schema. The effect of the closure attribute is an infinite sequence of quan-
tifiers, as this is necessary to implement closure on an infinite number of free va-
riables. With this axiom schema we are well on our way to a characterization of the 
real numbers, and have thus left the realm of first-order logic and countable models, 
let alone finite models. Thus we cannot consider the “And-for-each” relaxation as a 
safe extension of MXSL.  

Another possible extension of MXSL would be to allow recursive application of 
the metatransformation until a fixed point is reached, as was considered in [8]. Such 
recursion would implement a meta-circular evaluator [18]. In general it is an open 
question as to how such extensions of the metalanguage would affect the logical 
properties of the resulting infinitary language. 

8 Metalanguage Abstract Syntax 

From the development and theory explored while developing MXSL, and described 
above, we have  derived the following abstract syntax principles to form the founda-
tion of a metalanguage development approach that is applicable to other KR formats, 
whether XML-based or not. 

• The metalanguage uses a syntactic model of the base language, so that, for exam-
ple, grouping symbols are entered as pairs through a single command. 

• The hierarchical structure of a metalanguage instance mirrors the structure of the 
output document. 

• An iteration command is available to generate a set of sibling items based on a 
pattern, instantiated with parameters. 

• Text is always added through a metalanguage command, which implements out-
put-escaping of punctuation characters appropriate to the base language. 

All of the above can be implemented within XSLT for an arbitrary format. For exam-
ple, a stylesheet with special purpose templates for  an XSLT-based metalanguage for 
CLIF [19] has been implemented in examples.cl1/cl-header.xsl. This 
stylesheet may be imported into an MXSL-CLIF instance, allowing templates to be 
called, implementing, for example, the MXSL-CLIF extension syntax equivalent to 
<xsl:element>. That is, instead of XML tags, the expression is wrapped with 
parentheses and the name of the CLIF 'element' is placed into the first position of the 
list. MXSL-CLIF also has templates for the single quote and double quote containers 
for character sequences.  

Of special importance is the handling of escaped punctuation. As was described in 
the previous section, proper handling of grouping and tokenizing symbols is a key 
feature for the output of the XSLT transformation to be parsable into pre-formulas, 
which will then be individually post-processed based on their syntactic validity in the 
base language. The  imported MXSL-CLIF stylesheet uses the XSLT 2.0 character 
map and the XPath translate function to handling the escaping of the characters ' 
" ( ) \ that may appear in the value of iteration parameters. 
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An example illustrating the CLIF axiom schema for the captured string syntax is 
given in examples/cl1/cl1.mxsl . As an excerpt, the syntax for the MXSL 
command to wrap a character sequence in double quotes looks like 

<xsl:call-template name="element-dquote"> 
  <xsl:with-param name="arg" 
    select="$stringParam/node()"/> 
</xsl:call-template> 

Similar extensions to MXSL are possible for other formats, such as JSON. Although 
it appears awkward to have an XML metalanguage for rather different formats, such 
as CLIF or JSON, there are several advantages to this approach. For example, the 
common XML format of the metalanguages permits CLIF texts to be embedded into 
the RuleML XML syntax as data, while the semantic content is retained by defining 
axiom schemas relating parameterized CLIF sentences to the associated RuleML 
formulas.  

Further, XML has an advantage that many of these other formats lack: prefixes and 
namespaces. The prefixes of the XML element names, and their associated namespac-
es, allow us to distinguish the components of the metalanguage from the components 
of the base language and avoid naming collisions.  

9 Conclusions 

We have shown that a (small) subset of the XSLT language, which we call MXSL can 
be used as a flexible and powerful metalanguage for XML-based KR languages, with 
the additional advantage of familiarity to many XML users. This metalanguage may 
be used to express axiom schemas, the semantics of structured data and generalized 
queries. The paradigm used to develop the metalanguage for the XML syntax can be 
applied to non-XML-based formats. Future investigations will explore the implemen-
tation of reasoning using the MXSL metalanguage.  
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Abstract. We propose a Parallel Class Expression Learning algorithm
that is inspired by the OWLClass Expression Learner (OCEL) and its ex-
tension – Class Expression Learning for Ontology Engineering (CELOE)
– proposed by Lehmann et al. in the DL-Learner framework. Our algo-
rithm separates the computation of partial definitions from the aggrega-
tion of those solutions to an overall complete definition, which lends itself
to parallelisation. Our algorithm is implemented based on the DL-Learner
infrastructure and evaluated using a selection of datasets that have been
used in other ILP systems. It is shown that the proposed algorithm is suit-
able for learning problems that can only be solved by complex (long) defi-
nitions. Our approach is part of an ontology-based abnormality detection
framework that is developed to be used in smart homes.

Keywords: description logic learning, class expression learning, parcel,
parallel learning, abnormal behaviour detection.

1 Introduction

Description logic (DL) is a popular formalism used in knowledge representation.
Amongst its strengths are the availability of a formal semantics, the standardisa-
tion of description-logic-based languages by theW3C (RDFS and several versions
and flavours of OWL [1]), and the availability of robust tools to edit and reason
about ontologies.

The primary problem that motivates our research is the classification of nor-
mal and abnormal activities in a smart home environment, where elderly people
are monitored by a system that can alert medical professionals if abnormal be-
haviour is detected [2]. It is important in this scenario that we do not miss any
abnormal behaviours, in particular if these behaviours potentially pose a threat
to the person living in the smart home. In technical terms, this means that we
aim at avoiding false positives in the class of normal behaviours.

Using a symbolic (logic-based) approach in this context has the advantage
that systems can be designed that are inherently more trustworthy than sub-
symbolic machine learning approaches, as system decisions are traceable through
the proofs associated with classifications.

A common problem in symbolic AI is to find the “right” set of rules. Here, by
rules we mean the expressions that define concepts such as normal and abnormal
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behaviour. It takes a significant effort to create and maintain such a set of rules,
and comprehensive validation against real world data is needed to assess its
accuracy. An alternative approach is to learn the rules directly from sample
datasets. This has several advantages: if it can be demonstrated by means of a
formal proof that the learning algorithm produces expected rules and all available
data have been fed into the learning algorithm, then validation is no longer
necessary. Also, if new training data becomes available, the algorithm can be
easily reapplied and the new definitions can be created. In other words, the
system can easily be re-calibrated as needed.

However, this implies that we need to apply the learning algorithm often,
and on large datasets. Therefore, the scalability of the algorithm becomes a
major concern. Benchmark tests performed by Hellmann [3] indicate that the
DL-Learner [4] is a suitable starting point for the development of an expres-
sive and scalable DL learning algorithm. Our experiments with the use cases
described in [2] show that CELOE and its ancestor – OCEL – are the most suit-
able algorithms for solving this problem amongst the algorithms implemented
in DL-Learner. These algorithms generate expressions of increasing complexity
starting with explicitly defined classes in the ontology, and assess the accuracy
of these expressions against a training set consisting of positive and negative
examples. If an expression with a sufficiently high accuracy score is found, the
algorithm terminates and the expression is returned as the result of the compu-
tation.

Unfortunately, our experiments suggest that these algorithms do not have the
level of scalability necessary to be used in the smart home application domain,
particularly for smart home datasets generated from the uses cases in [2]. An
analysis of these algorithms reveals that the accuracy measure used to direct
the generation and evaluation of descriptions is a combination of correctness (no
negative examples are covered by the computed expression) and completeness
(all positive examples are covered). Motivated by the need for a higher accu-
racy in learning normal behaviour, we propose a DL learning algorithm that
separates this process into two steps: first the generation of correct rules (i.e.
they do not cover any negative examples) but not necessarily cover all positive
examples, and then the aggregation of those rules into a (sufficiently) complete
solution. In addition, there is no need to serialise these two steps: they can be
performed concurrently. In particular, multiple branches within the tree of possi-
ble descriptions can be traversed concurrently by multiple workers to find partial
results, while a central reducer aggregates partial results to the overall solution
until all positive examples are covered. The reducer also has the responsibility of
removing redundant definitions covering overlapping sets of positive examples.
We discuss several strategies to do this in section 3.

This approach follows the general ideas of the map-reduce architecture [5] and
therefore lends itself to parallelisation using either multiple threads that can take
advantage of multi-core processors, or may be developed for cloud computing
platforms such as Amazon EC2 in the future. It also has the advantage that
the resulting system shows anytime characteristics [6], which means that: i) it
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can return a correct solution even if it is interrupted before a complete solution
is computed, and ii) the solution is expected to improve (i.e., become more
complete) with increasing runtime of the system.

2 Related Work

Description logic learning has its roots in inductive logic programming (ILP)
[7,8,9]. In ILP, sets of positive and negative facts and some background knowl-
edge are given, and an ILP algorithm is used to compute a logic program that
describes all the positive and none of the negative examples. There are two funda-
mentally different strategies to compute this program: top-down and bottom-up
[7]. Combined strategies have also been investigated by different authors [10].

In description logic learning we are interested to find concepts that describe
all given positive examples, but do not describe any of the negative examples.
Our work is directly based on the DL-Learner framework [4], particularly the
CELOE and OCEL algorithms. Theses algorithms use a top-down strategy to
learn concepts. Starting with the root of the concept class hierarchy, concepts are
refined by means of specialisation until a suitable concept is found. The descrip-
tion learning space expansion is mainly directed by the accuracy (a combination
of correctness and completeness) of concepts with respect to the positive and
negative examples, the complexity of the expressions, the accuracy gained in
each expansion step, and some other factors. Note that the refinement opera-
tor used by these algorithms also has some implicit support for the bottom-up
strategy as it will generate complex expressions using disjunctions.

Lisi [11] has proposed an alternative top-down approach based on the hy-
brid AL-log language which combines ALC description logic and Datalog for
knowledge representation. This makes it possible to learn Datalog rules on top
of ontologies.

Several other approaches to concept learning have been proposed. This in-
cludes LCSLearn [12], an early bottom-up approach that creates concepts by
joining most specific concepts created for individuals (positive examples) us-
ing disjunction. This is a very simplistic approach that creates large concept
definitions that are not truly intentional in a sense that those definitions are
only enumerations of the sets of individuals they define. YinYang [13] is a hy-
brid learner that uses a combination of bottom-up (starting from most specific
concepts) generalisation and top-down specialisation strategies.

Our contribution is similar to DL-FOIL [14]: we separate the computation
of partial correct concepts from the computation of a complete concept. There
are two main differences however: (i) the algorithm proposed by [14] is serial by
nature as the computation of the partial correct concepts is executed in an inner
loop, while we use a parallel computation model, and (ii) we propose an extra
reduction step to compute an optimal set of partial concepts to be used in order
to compute the overall (complete) result. The above differences aim to bring some



An Approach to Parallel Class Expression Learning 305

benefits: i) improved scalability of the algorithm due to parallelisation, ii) the any
time characteristic of the algorithm, which means that the algorithm can produce
correct (but not necessarily complete) solutions if interrupted prematurely, and
iii) the flexibility gained through a separate reduction step that allows us to
tradeoff completeness, number of partial definitions and the (average) lengths of
the partial definitions.

3 Algorithm

Our algorithm is inspired by the popular map-reduce framework [5] that is widely
used to process large amounts of data. Here, input data to be processed is divided
into several pieces (sub-problems) and processed by multiple workers (map step)
in parallel and then the intermediate results are aggregated (reduce step) into a
final result.

In the context of our work, the problem of finding a correct and complete
concept definition is mapped to workers responsible for refining and evaluating
candidate concepts. The actual refinement operator used for this is the refine-
ment operator proposed in [15], which is one of the refinement operators currently
supported by the DL-Learner framework. However, the operator is customised
by disabling the generation of disjunctions as the generalisation is done in a
separate reducer step. In addition, its numerical data properties refinement has
also been improved by using a better strategy for identifying the domain of the
refinement.

The reduce step consists of combining the partial definitions until a complete
(or at least sufficiently good) coverage of the positive examples is obtained.
Often, this yields a set of partial definitions that is redundant in the sense that
multiple definitions cover the same positive examples, and that a proper subset
of definitions exists that is also complete with respect to the positive examples.
Here, we propose the use of a set coverage algorithm [16] to find such a subset.
This allows us to tailor the main algorithm, e.g. in order to compute smaller sets
of concepts, or sets of concepts with a shorter average expression length (lower
complexity).

An informal illustration of the algorithm is given in Figure 1. It shows the
interaction between the two parts of the algorithm: the reducer that aggregates
and compacts the partial definitions, and the worker(s) producing the partial
definitions. The coordination is done using an agenda. The agenda contains the
concepts to be refined, and an ordering of its nodes generated by an expansion
heuristic. This means that there is always a top element representing the most
promising concept for refinements based on the heuristic used. This element is
assigned to workers for processing. The current search heuristic is based on the
heuristic used in [17] that associates concepts with a score mainly based on their
accuracy (combination of correctness and completeness). In addition, a level of
penalty on complexity of the concepts (short expressions are preferred), bonus
on accuracy gained, etc. are also applied. In our learning heuristic, we also pe-
nalise long descriptions to avoid infinite deep searches because the refinement
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operator used in our learner is infinite. Instead, a description’s score is mainly
based on the correctness. Note that our learning heuristic can help to avoid in-
finite deep searches, but this does not avoid infinite loops in the whole learning
process because the refinement operator itself is infinite. Therefore, the termina-
tion is controlled by the accuracy of the definitions generated and the timeout
mechanism.

no 
yes 

add description 

no yes 

add partial definition 
yes 

no 

poll 

Fig. 1. Reducer-Workers interaction

For a more formal definition, we introduce some notations first. A learning
problem is a structure (K,E+, E−) that consists of a knowledge base K, a set of
positive examples E+ and a set of negative examples E−. We say that a concept
C covers an example e iff K � C(e). A concept C is called correct if it does not
cover any negative example and weak if it covers none of the positive examples.
We also refer to correct concepts as definitions. A definition is called a partial
definition if it covers at least one and less than all positive examples, and a
complete definition if it covers all positive examples.

There are some useful metrics to measure the amounts of correctness and
completeness of a concept C. Let R(C) be the set of individuals covered by C.
Then un(C) = E− \R(C) is the set of negative examples not covered by C, and
cp(C) = E+ ∩ R(C) the set of covered positive examples. We can then define
correctness, completeness and accuracy using predictive accuracy methodology
as follows:

correctness(C) =
|un(C)|
|E−|

completeness(C) =
|cp(C)|
|E+|
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accuracy(C) =
|cp(C)|+ |un(C)|

|E+ ∪ E−|

Our algorithm can now be defined in two parts. The computational heavy part
is done by the multiple workers: this is the refinement and the evaluation of
concepts. In particular, the evaluation of (complex) concepts (i.e., the check
whether a given example is defined by a concept) requires an ontology reasoner.
By default, Pellet [18] is used for this purpose.

The reducer creates a worker pool, which manages a number of workers, and
assigns new concepts for refinements and evaluations to worker pool until the
completeness of the combined partial definitions is sufficient. Then the reducer
tries to reduce the number of partial definitions in order to remove redundancies
using a reduction function. While the reducer computes sets of concepts, these
sets can be easily aggregated into a single concept using disjunction.

Algorithm 1 (Reducer Algorithm). For a given learning problem (K,E+,
E−), a noise value ε ∈ [0, 1] and a pool of workers, compute a set of partial
correct solutions {Ci} such that completeness(�i(Ci)) ≥ 1− ε.

1: agenda := {�}
2: solutions := {}
3: uncovered positive examples := E+

4: create a worker pool
5: while |uncovered positive examples | > |E+| × ε do
6: wait for new partial definition(s) produced by workers
7: reduce(solutions)
8: return solutions

The worker algorithm refines a concept and evaluates the results of the refine-
ment. It will first check whether concepts are weak. If this is the case the concept
can be safely removed from the computation as no partial definition can be com-
puted through specialisation. If a concept is a partial definition (i.e., correct and
not weak), it is added to the (shared) partial definitions set. If a concept is not
weak, but also not correct (i.e., if it covers some positive and some negative
examples), it is added back to the agenda and therefore scheduled for further
refinement. Note that the concepts that have been refined can be scheduled for
further refinement. This is necessary as each refinement step only computes a
finite (and usually small) number of new concepts, usually constrained by a
complexity constraint. For example, a concept of a given size N could first be
refined to compute new concepts of a length N+1, and later it could be revisited
to compute more concepts of length N + 2, etc. This technique is used in the
original DL-Learner and discussed in detail in [17]. When implementing workers,
an additional redundancy check takes place to make sure that the same concept
computed from different branches in the search tree is not added twice to the
agenda.
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Algorithm 2 (Worker Algorithm). For a set of positive examples E+ and
a set of negative examples E−, refine a given concept C using a refinement
operator ρ, and evaluate the refinements.

1: refinements := ρ(C )
2: for all description ∈ refinements do
3: positive covered := positive examples covered by refinement
4: if description is not weak then
5: if description is correct then
6: add description to solutions
7: uncovered positive examples := uncovered positive examples \ posi-

tive covered
8: else
9: add description to agenda

For the actual reduction step, we have investigated three simple algorithms:

– GMPC (greedy minimise partial definition count)
– GMPL (greedy minimise partial definition length)
– GOLR (greedy online algorithm - first in first out)

As the names suggest, they are all greedy optimisation algorithms that are based
on sorting the partial definitions. Once the partial definitions are sorted, a new
solution set (called the reduction set) is created and solutions are added to this
set in descending order. A definition is added only if it covers at least one positive
example not yet covered by any other solution in the reduction set. Details are
given in algorithm 3.

We have used different sort criteria, resulting in the different algorithms. In
GMPC, we sort partial definitions according to the number of positive examples
they cover, preferring definitions that cover more positive examples. If two defi-
nitions cover the same number of positive examples, we use the lexicographical
order of the respective string representations as a tiebreaker. This is important
to make the results repeatable. Otherwise the order that is used when iterating
over definitions could depend on internal system hash codes which the applica-
tion does not control.

In GMPL, we sort definitions according to their expression lengths, preferring
definitions with a shorter length. If two definitions have the same expression
lengths, we again use the lexicographical order.

In GOLR, we use time stamps assigned to definitions when they are added to
the solutions, preferring definitions that have been added earlier. While the other
two heuristics have to be run in batch mode after a complete set of definitions
has been computed, this algorithms can be employed just in time, the reduction
can take place whenever a new definition is found and added. This algorithm
is therefore very space efficient compared to the other two. On the other hand,
how timestamps are assigned in an application may depend on thread scheduling.
This again cannot be controlled completely by the application, causing variations
in the results between runs.
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More formally, we define a generic reduction algorithm that is based on a sort
function as follows:

Algorithm 3 Generic greedy reduction algorithm based on sorting. For
a set of definitions D and a function cover : D → 2E

+

that associates partial
definitions with the sets of covered positive examples, compute a subset D′ ⊆ D
such that

⋃
d∈D cover(d) =

⋃
d∈D′ cover(d) = E+

1: D′ := ∅
2: positive covered := ∅
3: sort D
4: while D is not empty and positive covered ⊂ E+ do
5: d := poll(D)
6: if cover(d) � positive covered then
7: D′ := D′ ∪ d
8: positive covered := positive covered ∪ cover(d)
9: return D′

4 Validation

4.1 Methodology

We have implemented our algorithmusing Java. The package is called the ParCEL
(PARallel ClassExpressionLearning) and aminimal set of this package is available
at https://parcel-mu.googlecode.com/. The algorithm is also integrated into
the DL-Learner repository http://dl-learner.svn.sourceforge.net.

In the validation, we were not only interested in measuring the overall com-
putation time of the benchmark learning problems, but also in measuring how
quickly accuracy improved during the computation. We consider this to be im-
portant in scenarios where an application could intercept the learner once a
sufficiently complete solution has been computed. For this purpose, two differ-
ent sorts of experiments have been performed: i) a 10-fold cross validation to
measure the learning time and accuracy, ii) a training run on different levels of
parallelism to observe the accuracy improvement on the training set. The for-
mer follows the standard cross-validation methodology in statistics. In the later
experiment, we start a background watcher thread that frequently takes probes
from learner thread(s) and records them. This thread represents some overhead,
so the net computation times are in fact slightly less than the values given below.
We benchmarked our learner against the CELOE and OCEL algorithms.

In our experiments, we have used a number of datasets that have been used by
other authors in similar experiments [19,20] to benefit comparisons. All datasets
used in this paper, except the UCA1 which will be described later, can be found
in any DL-Learner release or in the DL-Learner repository. An overview of these
datasets is given in Tables 1 and 2. Note that DL-Learner is in the development
process. New revisions have been being issued very regularly and the learning
time and accuracy for the same dataset may change over the revisions. In our

https://parcel-mu.googlecode.com/
http://dl-learner.svn.sourceforge.net
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Table 1. Experiment datasets summary

Moral
simple

Forte Poker Carcino
genesis

Family
benchmark

UCA1

Classes 43 3 2 142 4 65
Classes assertions 4646 86 374 22,372 606 300
Object properties 0 3 6 4 4 4
Object property
assertions

0 251 1080 40,666 728 200

Data properties 0 0 0 15 0 11
Data property
assertions

0 0 0 11,185 0 200

Examples 102p/
100n

23p/
163n

4p/
151n

182p/
155n

- 73p/
77n

Table 2. Family benchmark datasets - Number of examples

Aunt Uncle Cousin Daughter Father Grandson Brother

Examples 41p/
41n

38p/
38n

71p/
71n

52p/
52n

60p/
60n

30p/
30n

43p/
30n

experiment, we have used DL-Learner version 1.0.1. In addition, we used the
default learning configuration for CELOE/OCEL and ParCEL for all datasets.

In our experiment, we also used an additional dataset – UCA1 – which is
extracted from the use case descriptions of the smart home domain we are pri-
marily interested in [2]. This use case describes an over-long shower scenario in a
smart home, in which the showering duration depends upon the season of year.
This dataset is supported by an underlying smart home ontology which contains
the basic concepts for describing the activities in smart homes and some context
information, particularly the temporal and spacial information. The scenario was
modelled using a Bayesian Network and then the network was used to generate
the simulation dataset. The actual dataset contains a set of showering activities,
their start times and durations.

For the experiments, we used a Linux server with a 8 x Intel Xeon E5440
@2.83GHz processor, 32GB memory and the Redhat 4.1.2 (Linux version 2.6.18)
operating system with a JRE 1.6.0 (64-bit) Java Virtual Machine (JVM). The
heap size of the JMV in our experiments is 5GB.

The length of definition reported is the length of the best description learnt
so far.

4.2 Result Summary

Table 3 shows a summary of the results. The reduction mechanism used here is
GMPC, i.e. we use a simple greedy algorithm to reduce the number of partial
definitions.
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Table 3. Experiment result summary (averages ± standard deviations of 10 folds)

problem time (s) accuracy (%) (avg. partial)∗

def. length
no. of
partial
def.

CELOE ParCEL CELOE ParCEL CELOE ParCEL ParCEL

Moral 0.148 ±
0.03

0.024 ±
0.012

100 ± 0 100 ± 0 3 ± 0 1.517 ±
0.053

2.1 ±
0.316

Forte 6.664 ±
3.524

0.064 ±
0.06

98 ±
4.216

100 ± 0 12 ±
1.054

9.167 ±
3.15

1.9 ±
0.738

Poker-straight 0.36 ±
0.709

0.274 ±
0.189

94.333 ±
13.152

93.238 ±
8.834

11.7 ±
0.675

10.9 ±
1.308

1.7 ±
0.675

UCA1 OOMem∗∗

@2259s
29.747 ±
5.768

91.238 ±
6.409

100 ± 0 9 ± 0 12.75 ±
0

4 ± 0

CarcinoGenesis int.∗∗∗

@2000s
int.∗∗∗

@2000s
54.618 ±
2.711

55.865 ±
9.516

4.8 ±
0.422

55.865 ±
9.516

72.7 ±
3.433

Aunt 34.129 ±
14.94

0.256 ±
0.151

96.25 ±
11.859

100 ± 0 19 ± 0 8.267 ±
0.492

3.1 ±
0.316

Brother 0.191 ±
0.157

0.026 ±
0.015

100 ± 0 100 ± 0 6 ± 0 5.5 ±
0.707

1 ± 0

Uncle 34.129 ±
14.94

0.293 ±
0.178

96.25 ±
11.859

98.75 ±
3.953

19 ±
14.94

8.4 ±
0.378

3 ± 0

Cousin 471.555 ±
284.734

0.544 ±
0.199

94.286 ±
6.564

100 ± 0 23.4 ±
2.591

8.5 ±
0

2 ±
0

Daughter 0.023 ±
0.019

0.027 ±
0.025

100 ± 0 100 ± 0 5 ± 0 5.25 ±
1.087

1.1 ±
0.316

Father 0.023 ±
0.104

0.031 ±
0.03

100 ± 0 100 ± 0 5 ± 0 5.5 ±
0.527

1 ± 0

Grandson 0.054 ±
0.059

0.075 ±
0.066

100 ± 0 100 ± 0 7 ± 0 7.4 ±
0.459

1.3 ±
0.483

Note: ∗: For ParCEL ∗∗: Out Of Memory
∗∗∗: Interrupted

In general, CELOE performed better on smaller datasets with simple def-
initions required like Daughter, Father, and Grandson in the Family dataset.
This can be attributed to the more complex runtime architecture of ParCEL
that requires additional overhead for thread creation and synchronisation. How-
ever, when either the data or the queries become more complex, the ParCEL
outperforms CELOE. This is apparent in the Family dataset: CELOE is much
better in answering simple queries that require less reasoning, while ParCEL
performs better on complex queries on derived relationships. There are two rea-
sons for this: (i) ParCEL obviously better utilises the multi-core processor(s) due
to its parallel architecture, and (ii) different ParCEL workers explore different
branches of the search tree at the same time, while CELOE may spend longer
time to explore branches that at the end do not yield results, (iii) ParCEL plays
a tradeoff between the readability of the learning result again the accuracy and
learning time using the combination of specialisation and generalisation.
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Most importantly for our application scenario, ParCEL outperformed CELOE
on the UCA1 dataset, both on learning time and accuracy. Although the length
of the definition produced by ParCEL is longer than CELOE, it is readability
and describes well our scenario. For examples, one of the learnt results for the
concept normal showering is the disjunction of the following partial definitions:

1. EXISTS activityHasDuration.(hasDurationValue >= 4.5 AND

hasDurationValue <= 15.5)

2. EXISTS activityHasDuration.(hasDurationValue >= 15.5 AND

hasDurationValue <= 19.5) AND EXISTS activityHasStarttime.Spring

3. EXISTS activityHasDuration.(hasDurationValue >= 15.5 AND

<= 19.5) AND EXISTS activityHasStarttime.Summer

4. EXISTS activityHasStarttime.Autumn AND ALL activityHasDuration.

(hasDurationValue >= 4.5 AND hasDurationValue <= 19.5

One of the most difficult learning problems in our experiment is the Carcino-
Genesis dataset. Learning results for this dataset reported in [14,20] show that
CELOE gives the best accuracy in comparison with other learners with a cer-
tain learning configuration. In our experiment, neither CELEO nor ParCEL
could find an accurate definition on the training dataset before they ran out of
memory. CELOE runs out of memory in around 2100 seconds and ParCEL can
run for approximately 15800 seconds with the same JVM heap size. The exper-
iment result shows that ParCEL outperformed CELOE on the training dataset
by 36%. However, the accuracy for the testing dataset is not significantly dif-
ferent: 54.618% ± 2.711% for CELOE and 55.597% ± 9.516% for ParCEL. The
above accuracy is obtained at 2000 seconds when CELOE is approaching the out
of memory exception. Although ParCEL can run for more than 15800 seconds,
we only let it run the same amount of time as CELOE since our experiments
demonstrate that the accuracy does not improve significantly for the longer runs.
Note that this result is generated by the default learning configuration and it
may be different for the refined learning configuration. For example, show that
the predictive accuracy can be improved by allowing a level of noise in training
dataset. However, this has not yet been studied in our research.

A paired t-test rejected the null hypothesis (that the running times came from
the same distribution) at the 5% confidence level, for both the running times
and accuracies in Table 3. However, while an F test showed that the accuracies
were normally distributed, this was not true for the running times, and so this
result should be treated with caution.

4.3 Performance Improvement Comparison

We have used a monitoring thread as described above to investigate the level
of approximation that the learners can achieve. This is shown in figure 2. The
slightly odd values on the x-axis are due to the fact that they were taken from
the timestamps when the monitoring thread returns data. CELOE computes a
solution of about 0.55 accuracy very quickly (the first probe already returns this
values), but then “stays flat”. On the other hand, the ParCEL almost reaches
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Fig. 2. Learning using the Carcino Genesis dataset

maximum accuracy, i.e., a level of completeness of more than 0.95. The figure
also shows the impact of the number of threads: adding more threads can speed
up the computation.

Figure 3 shows details for the UCA1 dataset. In this case, CELOE cannot
compute a very accurate result before it times out, whereas ParCEL succeeds.
Adding more threads can again speed up the computation significantly.

Fig. 3. Learning using the UCA1 dataset
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4.4 Definition Aggregation

Finally, we conducted an experiment to compare the three reduction algorithms
discussed earlier. Here we measured the length of descriptions and the number
of descriptions defined. To compare the description length, we use the method
defined above, i.e., we measure the lengths of the virtual disjunction we could cre-
ate from the set of partial definitions. Comparison between reduction strategies
is given in Table 4. The results shows that GMPC gives the shortest definition
in most of the experiments and thus the definitions are more readable. On the
other hand, GORL produces the longest definitions in all the experiments. How-
ever, GMPC requires all partial definitions to be kept until the learning finishes
while the GORL can perform the reduction on the fly when the learning is hap-
pening. This may give us a selection on the tradeoff between the readability of
the learnt definition and the memory used by the learner as well as the learning
time.

Table 4. Definition length comparison between algorithms and reduction strategies
(averages ± standard deviations of 10 folds)

CELOE GMPC GOLR GMPL

dataset def. length no. of
partial
def.

avg. par-
tial def.
length

no. of
partial
def.

avg. par-
tial def.
length

no. of
partial
def.

avg. par-
tial def.
length

Moral 3 ± 0 2.1 ±
0.316

1.517 ±
0.053

3.4 ±
0.966

2.15 ±
1.263

3 ± 0 1.667 ±
0

Forte 12 ±
1.054

1.9 ±
0.738

9.167 ±
3.15

2.3 ±
0.675

7.708 ±
0.429

2.3 ±
0.675

7.617 ±
0.209

Poker-straight 11.7 ±
0.675

1.7 ±
0.675

10.9 ±
1.308

2.7 ±
0.483

9.883 ±
1.457

2.7 ±
0.483

9.483 ±
0.976

UCA1 9 ± 0
@OOMem

4 ± 0 12.75 ±
0

9.7 ±
1.059

13.479 ±
0.217

5.5 ±
1.179

13.063 ±
0.466

Aunt 19 ±
0

3.1 ±
0.316

8.267 ±
0.492

8.9 ±
2.079

7.75 ±
0.289

8.3 ±
1.418

7.477 ±
0.308

Brother 6 ± 0 1 ± 0 5.2 ±
0.422

1 ± 0 5.6 ±
0.516

1 ± 0 5.1 ±
0.316

Uncle 19 ±
14.94

3 ±
0

8.4 ±
0.378

7.1 ±
1.287

7.917 ±
0.163

6.8 ±
1.135

7.746 ±
0.482

Cousin 23.4 ±
2.591

2 ± 0 8.5 ±
0

8.2 ±
4.158

8.5 ±
0.575

5.7 ±
1.252

8.095 ±
0.208

Daughter 5 ± 0 1.1 ±
0.316

5.25 ±
1.087

1.5 ±
0.527

7.55 ±
2.409

1.4 ±
0.843

5.333 ±
0.471

Father 5 ± 0 1 ± 0 5.5 ±
0.527

1 ± 0 5.2 ±
0.422

1 ± 0 5.3 ±
0.483

Grandson 7 ± 0 1.3 ±
0.483

7.4 ±
0.459

2.9 ±
0.568

7.525 ±
0.553

2.5 ±
0.707

7.2 ±
0.502
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5 Conclusion

Our approach to parallelising the class expression logic learning shows promising
results on the datasets used in the evaluation. By dividing the learning process
into two separate stages, one for generating correct but potentially incomplete
definitions and another one for aggregating the partial definition to a complete
(or nearly complete) solution, we were able to spread the task over several sub-
processes that can run in parallel. As a result, we are able to utilise multi-core
machines and potentially also cloud computing, which makes the task of descrip-
tion logic learning more scalable.

Since the aggregation of partial solutions is now not integrated in the refine-
ment procedure anymore but runs as a separate thread concurrently to it, we are
able to easily test different strategies for aggregating the partial definitions. The
ones that we have tested are greedy strategies which avoid exhaustive search for
an optimal aggregate and therefore scale more easily.

The main motivation for our research is the classification of normal and ab-
normal activities in a smart home environment, in which UCA1 is one of our
simulation datasets. With this dataset, DL-Learner gave the best solution with
91.2% accuracy before it ran out of memory (with 5GB heap space allocated
and 38 minutes run time). Describing this problem requires a description with
the minimal length around 42 to 73 and this may be one of the potential causes
that exploded DL-Learner memory. Generally, 91.2% accuracy is a good learning
result. However, in this application domain, any false positive or false negative
classifications may affect strongly on the inhabitant safety and thus an accurate
definition is preferred to a readable one. With the combination of specialisation
and generalisation and the parallelisation approach, we are preliminarily getting
success with the first datasets in our research. In addition, completeness of the
partial definitions may provide us an interesting dimension in our classification:
belief of the classification.

In most of the datasets in our experiment, our learner algorithm gives a
promising result both in accuracy and learning time. The only dataset that our
learner could not give a better result is CarcinoGenesis. It shows that our learn-
ing currently does not deal well with noise data and this is a future development
for our learner so that it can deal with various learning problems.
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Abstract. Fuzzy metric temporal logic (FMTL) and situation graph
trees (SGTs) have been shown to be promising tools in high-level situa-
tion recognition. They generate semantic descriptions from numeric per-
ceptual data. FMTL and SGTs allow for sophisticated and universally
applicable rule-based expert systems. Dealing with incomplete data is
still a challenging task for rule-based systems. The FMTL/SGT system is
extended by interpolation and hallucination to become capable of incom-
plete data. Therefore, one analysis to the robustness of the FMTL/SGT
system in situation recognition is removing parts of the ground truth
input tracks. The recognition results are compared to ground truth for
situations such as “load object into car”. The results show that the pre-
sented approach is robust against incomplete data. The contribution of
this work is, first, an extension to the FMTL/SGT system to handle in-
complete data via interpolation and hallucination, second, a knowledge
base for recognizing vehicle-centered situations.

Keywords: rule-based expert system, fuzzy metric temporal logic, sit-
uation graph trees, semantic video understanding.

1 Introduction

High-level situation recognition is the process of generating semantic descriptions
from a scene observed through machine perception. First, video data needs to be
processed by computer vision to obtain corresponding tracks for people, vehicles,
and other objects of interest. Second, these tracks need to be processed by high-
level situation recognition to detect the occurrence of interesting situations. For
this contribution, we concentrate on deducing high-level situations as “loading
an object into a car” from tracking data in a surveillance context, as e.g. Figure 1
depicts.

High-level situation recognition should be able to handle any form of uncer-
tainty. This can be partial knowledge of the current state of the world, phe-
nomena which are not observed by our model, and noisy observations. One kind
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Fig. 1. Two scenes from the VIRAT video dataset [10]. Car park VIRAT S 000002
(left) and car park VIRAT S 000200 (right). Typical situations in this context are
getting into or getting out of a vehicle and loading or unloading an object.

of noisy observations is incomplete data from machine perception, in this case
video-based tracking. Data gaps can occur when objects are occluded, when ob-
jects move through areas without sensor coverage, or when machine perception
experiences technical problems. For this contribution, existing methods were ex-
tended to handle incomplete data.

This article is structured as follows: Section 2 provides a short overview of
related work in high-level situation recognition. Our own approach, the method-
ological improvements to handle incomplete data, and the particular SGT and
FMTL rules for a prototypical surveillance scenario are presented in Section 3.
Section 4 describes the evaluation and results. Section 5 provides a conclusion.

2 Related Work

A broad overview in situation recognition is given in the survey papers [1,5,11].
The whole field can be roughly divided into two main architectural strategies.
On the one hand, there are direct approaches working directly on videos. On
the other hand, there are the hierarchical approaches built of several layers. The
basic idea of using several layers is splitting up the whole recognition process into
specialized recognition methods. Usually, there are some methods performing
object detection and tracking, others are combining the gathered information
in a temporally and spatially limited context, and finally upon this information
the high-level situation recognition is performed. Hierarchical approaches are
divided into statistical methods often based on probabilistic graphical models
such as Bayesian networks or Markov models, syntactic approaches representing
actions trough symbols and combining them to situations with grammar-like
structures, and description-based approaches using formal languages such as
logic to describe situations. Usually, the latter rely on temporal and spatial
properties to describe situations [4].

SGTs were presented as knowledge representation for situation recognition
based on FMTL in [9]. [6,7] extended the situation recognition framework to
concurrent multi-hypothesis inference and optimized the runtime performance
for real-time operation in several domains.
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3 Methods

The general framework that underlies the high-level situation recognition is the
layered model for cognitive vision systems initially described in [8]. FMTL is
a powerful logic which can deal with notions of fuzziness and time. Handling
fuzziness allows for handling both uncertainty and inherently vague concepts in
the inference process itself. In [2] FMTL and SGTs are applied to the traffic
domain and [3] applies them to human behavior. The advantages of using SGTs
are the integrated modeling of knowledge, defining the rules and the inference
algorithm in a precise formalism and the consolidation in one powerful framework
– the SGT-Editor. The internal representation of SGTs is in FMTL rules. The
inference algorithm for SGTs is programmed in FMTL, too. Thus, the whole
situation recognition is built upon formal FMTL. This allows precise and fast
inference about complex information of a particular scene.

3.1 Handling Incomplete Data

Interpolation of Input Data For a deduction at time t, data x(t) from interval
[t−Δt1, t+Δt2] is used. Δt1 and Δt2 are dependent on the temporal range of
the applied FMTL rules. If data is missing from t to t + Δt0, each x(t′) with
t′ ∈ [t, t+Δt0] should be calculated as the average over all corresponding values
in Tp = [t−Δt1, t− 1] and Tf = [t+Δt0 + 1, t+Δt0 +Δt2] with Δt1 and Δt2
chosen freely:

x(t′) =
1

|Tp|+ |Tf | (
∑
tp∈Tp

(wx(tp) · x(tp)) +
∑

tf∈Tf

(wx(tf ) · x(tf ))). (1)

The weights wx(tp) and wx(tf ) can be used to reflect a larger influence of Tp

or Tf when t′ is closer to the beginning or the end of [t, t + Δt0] respectively.
This procedure works well for linear metric values, and radial values need to be
handled differently with radial metrics.

Hallucinating High-Level Evidence. When rule-based systems are getting
more complex they consequently have to deal with increasing challenges of noisy
and incomplete input data. The general drawbacks of such a system are when
trying to instantiate the preconditions of any situation scheme and all of the
rules can be satisfied except of a very few ones which leads to a discontinuation
of the situation recognition of the current path of inference.

To overcome this drawback we extended the situation recognition inference
algorithm presented in [7] to hallucinate missing evidence. If the predicted situa-
tion scheme cannot be instantiated due to missing evidence, the missing evidence
is hallucinated. That means, the algorithm creates satisfied dummy predicates
for the missing evidence so that the situation scheme can be instantiated. It is, of
course, internally known which situation schemes are hallucinated. And finally,
the situation graph traversal gets continued with the new hallucinated situation
scheme.
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3.2 Knowledge Base

Figure 2 depicts the SGT representing the knowledge for the situation recogni-
tion. The right specialization edge emerging from Root is not included in this
paper since it specializes for situations that are not evaluated in Section 4 like
people approaching each other, standing together, and walking together.

For a detailed description on traversing the SGT to recognize situations refer
to [7]. The traversal starts in the Root situation scheme and continues along the
left specialization edge emerging from Root. Then, the start situation scheme
PatientCar instantiates a car as the patient for the current agent. From there,
the situation schemes CarFar and CarNear can be reached through temporal
edges and so on.

The head of an FMTL rules activated by the SGT in Figure 2 is e.g.
HaveDistance(agent, patient, category). The body of this rule consists of
DistanceIs(agent, patient, distance)∧ AssociateDistance(distance, category).
DistanceIs(agent, patient, distance) calculates the Euclidian distance which is
then associated with distance categories using AssociateDistance(distance,
category) as described e.g. in Figure 7 in [2].

4 Evaluation

Experimental Setup. We implemented and evaluated the proposed method
on videos with annotated ground truth data from the VIRAT video dataset, see
Figure 1. The VIRAT Video Dataset Release 1.0 was made publicly available
in 2011 and is presented in [10]. For three out of six places there exist ground
truth annotated files where each object or person of interest is annotated. Addi-
tionally, in a second file there are annotated semantically interesting situations
and all the participating agents in the environment of a car park. The annotated
vehicle-centered situations comprising persons, objects and cars are getting into
or getting out of a vehicle, opening or closing trunk, and loading or unloading
an object of a vehicle.

The provided ground truth annotated data of the VIRAT video dataset is
regarded as complete information. In this evaluation every experiment was per-
formed ten times with a probabilistic unique removal of data.

First, we extended the situation recognition system as mentioned in Section
3.1 to be capable of incomplete data. Second, we developed the lower level basic
knowledge which is represented in FMTL rules. This universally valid knowledge
is domain independent and does not need to be changed when a different domain
is considered. Third, the knowledge about the expected situations is encoded
in an SGT. Consequently, the specific SGT, see Figure 2, describes all of the
expected situations of a certain domain.

Results. We choose the following six videos to evaluate on, due to the avail-
ability of annotations and the occurrence of different situations. From scene 00
we selected sequence 02 (a), 03 (b), 04 (c), and 06 (d); from scene 02 we selected
segment 06 (e) of sequence 00 and segment 00 (f) of sequence 02.
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PatientCar

GetPatient(agent,car)
IsCar(car)

NO ACTION PREDICATES

CarNear

BoxNearBox(agent,car)

NO ACTION PREDICATES

CarFar

HaveDistance(agent,car,notSmall)

NO ACTION PREDICATES

Root

Active(agent)

NO ACTION PREDICATES

PersonWithCar

HasSpeed(car,tinyOrZero)

NO ACTION PREDICATES

PersonEntersCar

Disappear(agent)

ViratOutput(agent,car,5)

PersonExitsCar

Appear(agent)

ViratOutput(agent,car,6)

ObjectWithCar

GetPatient(agent,object)

NO ACTION PREDICATES

UnloadObject

Appear(object)

ViratOutput(agent,car,object,2)

LoadObject

Disappear(object)

ViratOutput(agent,car,object,1)

IsObject(object)
BoxNearBox(object,agent)

Fig. 2. Part of the SGT representing the knowledge to detect the expected vehicle-
centered situations used in the evaluation. The basic structural element of an SGT
is a situation scheme which is identified by a unique name, a precondition, and a
postcondition both out of one or more FMTL predicates. An example is the “Root”
situation scheme with the precondition Active(agent) and without any postcondition.
A situation scheme can be a start resp. end situation which is marked with a small
box on the upper left resp. right of the situation scheme. Thin edges represent the
temporal structure of the situation schemes within a unit visualized with a thick box
called situation graph. Thick edges from a single situation scheme to a situation graph
model the conceptional refinement of a situation scheme. The resulting structure is a
hypergraph and is called SGT. In this figure the situation schemes PersonEntersCar,
PersonExitsCar, UnloadObject, and LoadObject raise as postcondition a message that
they could be instantiated with a distinct configuration of the variables.
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Fig. 3. The results of the unmodified, original scenarios of the six different videos of
the VIRAT dataset are visualized in terms of precision, recall, and f-score (upper left).
F-score of all evaluated videos with gap size of 5 seconds (upper right), precision (lower
left), and recall (lower right). The horizontal axis equals the removed data in percent.

The classification rates of the performed experiments on the six different video
sequences are shown in Figure 3 (upper left). The recall is throughout all the
six sequences equal to 1.0, which means, that the proposed method never misses
any interesting situation in the testset. The average precision is far from 1, the f-
score, of course, is slightly better. Some false positive classification results cause
the bad precision, but we argue that this is not as disappointing because every
single occurring situation was recognized.

Figure 3 depicts f-score (upper right), precision (lower left), and recall (lower
right) of all evaluated videos. The figures show that the proposed approach is
capable of handling incomplete data even if more than half of the data is missing.

Figure 4 shows the ROC-curves of video (d) for a gap size of 5 seconds (left).
The false positive rate slightly increases for larger amounts of missing data and
the larger the gaps, the true positive rate decreases slightly. The same evaluation
without data interpolation and hallucinating performs worse (right).
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Fig. 4. For video (d) with gap size five seconds the ROC-curves are shown (left).
True positive rate on vertical axis; false positive rate on horizontal axis. Without data
interpolation and hallucinating (right).
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Fig. 5. Video (d) with gap sizes of 1, 3, and 5 seconds (left). F-score (right) of video
(d) with gap size 5 including the error bars of the three standard deviations.

Figure 5 (left) consists of three different test configurations: gap sizes of 1,
3, and 5 seconds in video (d). Gap sizes of 1 and 3 perform slightly similar;
larger gaps of size 5 result in a roughly worse result. Figure 5 (right) shows f-
score of video (d) with gap size 5 including the error bars of the three standard
deviations.

5 Conclusion

We have presented a cognitive vision system that can deal with incomplete data
in the application of situation recognition in a video surveillance setup. The main
ideas to deal with incomplete data in a rule-based expert system are on the lower
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tier the interpolation of input data and its uncertainty and on the upper tier the
extension of the situation recognition inference algorithm. These two extensions
allows our system both to deal with ordinary incomplete data and to handle
high-level incomplete data such as occlusions. The contribution of this work is
the extension of the SGT-Editor and the formal situation recognition inference
algorithm to handle incomplete data. As well as developing a knowledge base for
recognizing vehicle-centered situations and the broad evaluation of the VIRAT
video dataset on a high semantic level. To the best of our knowledge nobody has
evaluated the VIRAT video dataset on a high semantic level before.
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